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Abstract
Biohybrid systems in which robotic lures interact with animals have become compelling tools for
probing and identifying the mechanisms underlying collective animal behavior. One key challenge
lies in the transfer of social interaction models from simulations to reality, using robotics to
validate the modeling hypotheses. This challenge arises in bridging what we term the ‘biomimicry
gap’, which is caused by imperfect robotic replicas, communication cues and physics constraints
not incorporated in the simulations, that may elicit unrealistic behavioral responses in animals. In
this work, we used a biomimetic lure of a rummy-nose tetra fish (Hemigrammus rhodostomus) and
a neural network (NN) model for generating biomimetic social interactions. Through experiments
with a biohybrid pair comprising a fish and the robotic lure, a pair of real fish, and simulations of
pairs of fish, we demonstrate that our biohybrid system generates social interactions mirroring
those of genuine fish pairs. Our analyses highlight that: 1) the lure and NN maintain minimal
deviation in real-world interactions compared to simulations and fish-only experiments, 2) our
NN controls the robot efficiently in real-time, and 3) a comprehensive validation is crucial to
bridge the biomimicry gap, ensuring realistic biohybrid systems.

Robot–animal interactions have been increasingly
gaining momentum as means to study collect-
ive behavior. Biohybrid systems, composed of liv-
ing organisms and artificial agents, are particularly
compelling as they enable researchers to investig-
ate the way animals respond to controlled interac-
tions. This is typically achieved through autonom-
ous robotic devices equipped with species-specific
communication channels, which can be employed to
evoke responses in a biomimetic or non-biomimetic
manner [41]. Robots offer the advantage of conduct-
ing repetitive and repeatable experiments, even when
driven by complex behavioral models. This is partic-
ularly important in the context of social interactions,
which encompass considerable complexity when scal-
ing from short-term interactions at the individual
level to long-term emergent collective patterns.

Social fish species, such as the rummy-nose
tetra (Hemigrammus rhodostomus) and zebrafish

(Danio rerio), are frequently selected for these stud-
ies due to the intricacy of their short- and long-
term interactions and their suitability for laboratory
environments [10, 41], as well as the abundance of
general knowledge about their behavior, genetics, and
housing conditions [19, 22, 31, 33, 48]. As a matter of
fact, many fish-robot systems have been proposed to
investigate various aspects of fish behavior, employ-
ing behavioral models with diverse degrees of detail
and realistic features, and typically relying on ana-
lytical modeling approaches based on observation of
fish interaction [6, 7, 15–17, 19, 21, 29, 30, 34, 39, 42,
44, 47]. Concurrently, machine learning-based mod-
eling approaches have gained a growing interest [13,
14, 20, 23, 36], but only a handful have been tested in
real-time with a robotic device [13]. These machine
learning approaches are usually intended to study
collective behavior by predicting motion in simula-
tions alone [13, 20, 23], while the studies that exploit
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Figure 1. Illustration of the sources of the biomimicry gap. (1) The modeling phase may introduce a first source of discrepancy
between the effect of social interactions on the swimming patterns in the model and the ones observed in real fish. (2) A second
source of discrepancy between the visual appearance of the lure and that of a real fish might introduce imperfect communication
cues and elicit unrealistic behavioral responses from neighboring organisms. (3) Finally, a third source of discrepancy between the
characteristics of the movement produced by the model and its realization by the lure occurs when the numerical model is
transferred to real-world scenarios due to the physics constrains that were not accounted for in the model. H. rhodostomus photo
was taken by David Villa ScienceImage/CBI/CNRS, Toulouse. Adapted from [12]. CC BY 4.0.

robotic systems typically evaluate only instantaneous
group-level quantities in the short-term timescale
[14].

A few flockingmodels for fish behavior, analytical
or machine learning, have been evaluated in exten-
ded simulations to study long-term emergent col-
lective behavior [12, 19, 36]. However, these mod-
els have not been tested and validated in biohybrid
groups. Conversely, numerous models have been
implemented on robotic devices without being tested
in simulations [2, 8, 14–17, 34]. Furthermore, the
majority of these studies involve robot experiments
lasting no more than 30 min, with the resulting
interaction patterns being rarely or only superfi-
cially quantified. Consequently, none of these mod-
els have been stringently benchmarked on both short-
and long-term timescales within both simulation and
fish-robot biohybrid experiments. In fact, previous
research indicates that certainmodels may yield satis-
factory biomimetic outcomes in the short term while
failing to reproduce emergent dynamics accurately on
longer time scales [36].

Moreover, the transfer of computer models of
social interactions into robot controllers that oper-
ate in real situations involving animals is not straight-
forward and can generate a discrepancy with the cor-
responding numerical simulations, akin to the reality
gap observed when transferring simulated robot con-
trollers to real-world applications [32]. As depicted in

figure 1, several sources of discrepancy can combine
and feed this gap:

(1) subtle behavioral patterns of the actual animals
that social interaction models may fail to cap-
ture;

(2) non-trivial physics related to the operation of the
robot in real life that were not accounted for,
and which would alter the rendering of the social
model;

(3) the extent of biomimicry exhibited by artifi-
cial lures and behaviors [35, 43], resulting in an
animal not interacting with the robot as it would
do with a conspecific.

We refer to the cumulative effect of these discrep-
ancies with the term ‘biomimicry gap’. Therefore, the
biomimicry gap is an inherent aspect of the multi-
faceted, cross-domain process of creating biohybrid
groups composed of animals and robots. To the best
of our knowledge, the feasibility of bridging this
biomimicry gap—achieved by conducting extended
experiments in both simulated and real-world envir-
onments, and comparing their results—has yet to be
conclusively and rigorously validated across all these
levels in a single approach.

In this study, we investigate this notion by
employing the (pretrained) machine learning model
presented in [36]. We implement this model on a
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robotic system which is shown to achieve unpreced-
ented levels of biomimicry, the LureBot [35]. The
LureBot consists of an agile mobile robot capable
of generating accelerations and velocities that closely
mimic those of H. rhodostomus. The robot moves
between two plates under the tank where the real
fish swim. Additionally, a highly biomimetic artifi-
cial lure is magnetically attached to the robot and
moves in the same tank as the fish. This lure is
meticulously designed to faithfully resemble a real
H. rhodostomus. We exploit the robotic system to
execute approximately 11 h of multiple pair experi-
ments wherein the biomimetic lure interacts with a
single H. rhodostomus. This allows us to measure the
behavioral differences between actual and simulated
pairs H. rhodostomus, as well as, pairs of 1 biomi-
metic lure and 1 H. rhodostomus. In turn, this yields
the first end-to-end approach aimed at minimizing
the biomimicry gap, and presented in the following
sections.

1. Methods

1.1. Experimental procedure
All experiments were conducted with approxim-
ately 60 Hemigrammus rhodostomus (rummy-nose
tetra) fish that were purchased from Amazonie
Labège in Toulouse, France. They were housed at the
animal facilities of the Centre de Biologie Intégrative
(Université de Toulouse—Paul Sabatier) in two
16 L aquariums set to a 12/12 h, dark/light pho-
toperiod, with a 30min dimming period between
light and dark phases. The water temperature in
the housing tanks and the experimental setup was
maintained at 27◦C. Trained technicians regu-
larly measured the fish length (found to be on
average 35mm long), verified the housing con-
ditions and fed the fish daily between 8:30 am
and 9:30 am.

The experiments were conducted in a circular
arena of radius R= 25 cm, where the water wasmain-
tained at a height of approximately 5 cm. We used
the same source of water used in the housing tanks
to assure the same water quality and salinity. All
experiments were strictly conducted after feeding and
within the fully lit period (between 9:00 am and
20:30 pm). For our experiments, we randomly selec-
ted fish fromone aquarium. Then, we allowed the fish
a 15min acclimation period. In the case of biohybrid
experiments, the robot would not operate during
these 15min. At the end of each experiment, the fish
were returned to a temporary tank to ensure that
they would not be part of the experiment twice on
the same day. In fact, on the next day, we repeated
this process with fish from the second tank, thus,
ensuring that no single fish is used two days in a
row.

1.2. Real-time tracking and robot control
We made use of the LureBot [35], an agile robotic
system, along with a high-fidelity biomimetic lure
modeled after the H. rhodostomus and shown in
[35] to be of significant importance to elicit social
responses from the fish. The LureBot can achieve lin-
ear speeds up to 100 cm s−1 with amaximum acceler-
ation measured at 175 cm s−2. This typically corres-
ponds to three times themaximum speed and acceler-
ation achieved by the considered fish species, showing
that the LureBot can comfortably match the physical
capabilities of the fish.

To close the interaction loop, the experiments
were performed with the behavioral observation and
biohybrid interaction (BOBI) framework [35], which
includes the LureBot, the biomimetic lure, ancillary
robot software, and hardware mounted around the
aquarium. A 30Hz camera mounted at the top of the
setup keeps track of fish and the artificial lure swim-
ming inside a circular water tank of radius R= 25 cm.
In addition, a second 30Hz camera on the bottom
of the setup tracks the LureBot. The information
is combined to distinguish which of the individu-
als seen by the top camera is the lure. Furthermore,
BOBI is able to track multiple agents (here, only
2 are used) in real time, while maintaining unique
IDs for each agent’s trajectory. These agent-specific
sequences of spatial movement can be exploited by a
behavioral model (see section 1.3) to compute real-
time individual and collective quantities concerning
the biohybrid group, and close the loop of interaction
by adapting the robot’s behavior with instructions on
future movements.

In BOBI (see [35] for more details), the output
of such a behavioral model is communicated to a
motion controller and converted tomotor commands
for the differential drive of the LureBot. Here, we
use the proportional–integral–derivative (PID) con-
troller as defined in BOBI, that incorporates a pri-
ori velocity information provided by the behavioral
model. The PID combines the linear and angular
errors between the LureBot’s current and desired pos-
ition, as well as the model’s predicted velocity profile,
to smoothly displace the robot.

1.3. Deep Learning Interactionmodel
We use a pretrained version of the Deep Learning
Interaction (DLI) model [36], to generate real-time
goal positions for the LureBot [35]. The DLI con-
sists of 7 layers (see figure 2(b): 1st and 4th are LSTM
layers [24]; the remaining are densely connected lay-
ers; ReLU activations are used for all layers except for
the last one which is linear. For a single agent i, the
state at time t is defined as a 1× 5 vector si(t):

si (t) =
(
u⃗i (t) , v⃗i (t) , r

i
w (t)

)
∈ R5, (1)

where u⃗i(t), v⃗i(t) are the 2D position and velocity,
respectively, and where riw(t) is the distance of the
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Figure 2. Closed-loop robot control with deep learning interaction (DLI) model. (a) We use the top setup camera to track all
agents (fish and/or lure) in real-time, and store unique trajectories for each agent. A 5× 11 vector of individual and collective
states, spanning 5 timesteps is fed to the DLI. (b) The DLI outputs two acceleration distributions, one for each Cartesian
component. Then, the acceleration is used to compute the updated desired speed and position for t+ 1, which are communicated
to the robot.

individual i from the wall at time t. Then, the pairwise
state at time t is summarized in the following 1× 11
vector:

Sij (t) =

 si (t)︸︷︷︸
individual ( focal)

information

, sj (t)︸︷︷︸
individual (neighbor)

information

, dij (t)︸ ︷︷ ︸
collective

information

 ∈ R11, (2)

with i the focal individual for which we generate tra-
jectory predictions, j its neighbor, and dij their inter-
individual distance. In real-time, we feed theDLIwith
a 5× 11 sequence (S(t− 4), . . . ,S(t)) of the pair-wise
states (see figure 2(a), where wemake sure that i (focal
individual) corresponds to the LureBot.

Subsequently, the DLI model outputs the expec-
ted acceleration mean and standard deviation value,
(µx,σx) and (µy,σy), of the Cartesian components
x and y. Assuming a Gaussian distribution for the
acceleration [18], we sample this distribution to pro-
duce acceleration predictions a⃗= (ax,ay) and use
the following motion equations to generate velocity
commands and the goal position of the LureBot at
time t+ 1:

v⃗i (t+ 1) = v⃗i (t)+∆t a⃗, (3)

u⃗i (t+ 1) = u⃗i (t)+∆t v⃗i (t+ 1) , (4)

where ∆t= 0.12 s, a choice made with respect to
the data filtering procedure applied on the raw
data to generate an intermediate training data-
set for the DLI [36]. The 2D velocity commands,
defined in equation (3), and goal position, defined
in equation (4), are given to the BOBI’s PID [35],
and eventually translated to motor commands (see
section 1.2; see figures 2(a) and (b).

In [36], this approach was validated in long sim-
ulations and was shown to be capable of reproducing

the social dynamics ofH. rhodostomus pairs faithfully
compared to experiments. In the following sections,
we test the extent to which the DLI can produce faith-
ful interactions when deployed on a physical robot-
fish group instead of a simulated group.

1.4. Evaluating the outcome of short- and
long-term interactions between fish and the
LureBot
Evaluating the extent to which models can repro-
duce the social dynamics of animal groups, here
H. rhodostomus fish, is a non-trivial task. As explored
in [36], such models may succeed in reproducing
quantities in the short-term timescale, but may also
fail to reproduce the emergent dynamics in the long
term. Here, we opt to benchmark our results by
exploiting the 9 observables considered in [25, 36].

The first 3 observables correspond to instantan-
eous quantities at the individual level, for which we
measure their probability density function (PDF):
the speed of an individual, V ; its distance to the
wall, rw; and its heading angle relative to the nor-
mal to the wall, θw. 3 additional observables probe
the instantaneous collective dynamics: the distance
dij between the pair of individuals; the difference
|ϕij| between the heading directions of the two indi-
viduals; and the viewing angle ψij at which an indi-
vidual perceives its neighbor (see figure 3). Finally,
we consider 3 temporal correlation functions that
probe the social dynamics at a very fine level [25],
and which are generally particularly difficult to
reproduce:

CX (t) =
⟨
[⃗ui (t+ t ′)− u⃗i (t

′)]
2
⟩
, (5)

CV (t) = ⟨v⃗i (t+ t ′) · v⃗i (t ′)⟩ , (6)

4
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Figure 3. Individual and collective variables. For the focal
individual i (light gray), we define the individual quantities:
u⃗i, its Cartesian position; v⃗i, its instantaneous velocity; riw,
its distance to the wall; ϕi, its heading angle. We also define
the collective quantities from i’s perspective when another
individual j (dark gray) is also present in the circular tank of
radius R= 25 cm: dij, the interindividual distance; ϕij, the
heading difference between both individuals; ψij, the
viewing angle with which individual j is perceived by the
focal individual i. Note that, for visualization purposes, the
size of agents is not to scale.

Cθw (t) =
⟨
cos

[
θiw (t+ t ′)− θiw (t

′)
]⟩
. (7)

CX is the mean-squared displacement, CV the
velocity autocorrelation, and Cθw the autocorrela-
tion of the angle of incidence to the wall. In gen-
eral, we denote Cq(t) = ⟨q(t+ t ′)q(t ′)⟩ as the aver-
age of the quantity q(t ′)q(t+ t ′) over the reference
times t′, over individuals, and over different experi-
ments. Assuming the stationarity of the system, the
temporal correlation function Cq(t) only depends
on the time difference between observations, and is
often noted Cq(t) = ⟨q(t)q(0)⟩ (implicitly implying
an average over the reference time t ′ = 0).

1.5. Quantifying the (dis)similarity between two
PDF: the Hellinger distance
The comparison between the different test cases
exploits the 9 observables introduced above and
supplementary videos for fish-only experiments,
DLI simulated pairs (DLI-SP), and biohybrid pairs
(DLI-SP)4.

For all quantities (PDF and correlation func-
tions), we have computed the statistical and sample to
sample standard error by using a bootstrap method.
In addition, for each PDF, we report the mean and
standard deviation (SD) in table 1, as well as their
standard error that we will omit to mention in the

4 The videos are also available at https://doi.org/10.5281/zenodo.
8253256.

hereafter analysis of the results, for readability (except
when their value is relevant to the discussion).

Moreover, in order to compare the PDF for a given
quantity between two given test cases, we compute
the Hellinger distance between these distributions in
table 2. For two PDF F and G for the same quant-
ity x, the Hellinger distance H(F|G) quantifies their
(dis)similarity [4, 5]:

H(F|G) = 1

2

ˆ (√
F(x)−

√
G(x)

)2
dx, (8)

= 1−
ˆ √

F(x)
√

G(x)dx, (9)

where we have used the normalization of the PDF,´
F(x)dx=

´
G(x)dx= 1, to obtain the last equal-

ity. The first definition of H(F|G) clarifies that it
measures the overall difference between F(x) and
G(x). Meanwhile, the second equivalent definition
provides a complementary interpretation in terms of
the overlap of both PDF. Indeed, the second defini-
tion measures the distance from unity of the scalar
product of

√
F(x) and

√
G(x) seen as vectors of

unit Euclidean norm (a consequence of the nor-

malization,
´ √

F(x)
2
dx= 1). TheHellinger distance

is 0 if both PDFs are identical, and is bounded
by 1, a limit reached if the distributions have a
non-overlapping support. In general, a Hellinger
distance H(F|G)≲ 0.1 points to a good agreement
between both PDF, 0.1≲H(F|G)≲ 0.2 points to a
fair similarity between them, while H(F|G)≳ 0.2
indicates that the two distributions are significantly
dissimilar.

1.6. Data for the dynamics of pairs of agents
In this work, we focus on the social dynamics that
arise from pairwise interactions in three different
conditions. First, we consider ≈11 h of experiments
involving pairs ofH. rhodostomus, to characterize and
quantify the spontaneous social interactions when no
artificial devices are present in the tank.

Secondly, we consider ≈16 h of effective traject-
ories for DLI-SP [36], as a baseline to the robot’s
underlying model in ideal conditions. This DLI
model was originally trained in [36] on a differ-
ent series of experimental data obtained in [12] for
the same species (H. rhodostomus), but in differ-
ent conditions. More specifically, we used a differ-
ent tank of the same radius R= 25 cm, but made
of a higher-quality material that is compatible with
our robotic system [35]. In addition, our lighting
conditions (which greatly impact the fish behavior)
are also slightly different and adapted to the con-
straints for the real-time fish tracking algorithm. We
will also mention the results obtained after retrain-
ing the DLI model with the fish data considered
in the present work, which we will refer to as the
DLIv2 simulated pairs (DLIv2-SP) (see table 1 and
figures 7–9).

5
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Finally, we have conducted ≈11 h of experi-
ments where the LureBot propels a biomimetic lure
moving inside the circular arena, which is interact-
ing in closed-loop with an actual H. rhodostomus.
For brevity, in the following analysis of the res-
ults, we will simply refer to the LureBot and the
lure attached to it as the LureBot. The LureBot
is given a pre-trained copy of the DLI model of
[36], which is queried in real time to generate
biomimetic trajectories (see section 1.3). We refer
to these data as DLI biohybrid pairs (DLI-BP).
We did not perform experiments with the LureBot
trainedwith theDLIv2model, since our experimental
campaign obviously predated the training of the
DLIv2model, which required these new experimental
results.

In all experiments involving fish pairs or LureBot-
fish pairs, we have explicitly designed a protocol
which did not allow the use of the same fish in an
experiment for at least 48 h after their first test, to
avoid potential learning effects when the fish interact
with the lure (see section 1.1). The fish housing con-
ditions and experiments have been approved by the
local ethical committee (see Ethic Statement) and are
described in detail in [35].

2. Results

This section reports the detailed comparison between
the three test cases: (fish-only) experiments with
pairs of H. rhodostomus; DLI-SP; DLI-BP, that con-
sist of the LureBot interacting in closed loop with
a H. rhodostomus. Our results are also qualitatively
illustrated by a supplementary video (see https://
zenodo.org/doi/10.5281/zenodo.8253256) displaying
side-by-side trajectories for the three test cases. In
addition, at the end of this section, we will briefly
present results for DLIv2 simulated pairs (DLIv2-
SP; trained on the fish-only experimental data of the
present work).

As mentioned above, this section will also exploit
the results of table 1 (means and SD and their
standard error) and table 2 (Hellinger distances
between PDF corresponding to two different con-
ditions). At the end of table 2, we also report the
Hellinger distances resulting from the inherent vari-
ability observed in fish-only experiments. They were
obtained by a bootstrap method by randomly split-
ting the 14 fish-only experiments in two sets. Then,
for each pair of sets, we compute the correspond-
ing Hellinger distances between their associated PDF
and average the results over the random draws. We
find a mean Hellinger distance (averaged over the 6
observables) of H̄= 0.10, which constitutes a baseline
for comparing the results of fish-only experiments
to other conditions involving biohybrid or simulated
pairs.

2.1. Instantaneous individual observables
Figure 4(a) shows the speed PDF for the three cases
we considered. Fish pairs swim at a mean speed of
10.5 cm s−1, associated to a standard deviation (SD)
of 5.7 cm s−1 (see table 1). DLI-SP produce a rather
similar speed PDF (Hellinger distance H= 0.09; see
table 2), albeit slightly wider (SD of 7.0 cm s−1), with
a nearly identical mean of 11.1 cm s−1. For biohybrid
pairs, the fish and the LureBot have a very similar
mean speed (identical within error bars; see table 1),
but which is 20% smaller than in the fish-only exper-
iments, although the SD is similar to that of the
fish experiments, resulting in a Hellinger distance of
H= 0.18 (see section 1.5).

In figure 4(b), we plot the PDF of the distance
to the wall, rw, for each case. Fish pairs swim very
close to the wall, with a mean distance of 4.4 cm
and a SD of 3.9 cm, both comparable to the typical
fish body length (∼3.5 cm). This is a consequence
of the burst-and-coast swimming mode exhibited by
H. rhodostomus, as shown in [12]. Indeed, themotion
of this species is characterized by a succession of sud-
den acceleration periods (‘kicks’ or bursts of typ-
ical duration 0.1 s), each followed by a longer glid-
ing period of typical duration 0.5 s, during which
the fish moves in a quasi straight line. Because of
the rather narrow distribution of heading changes
between kicks, even observed when a fish is far from
the wall [12], the fish is unable to escape the concave
boundaries of thewall, exceptwhen rare large heading
changes occur. Themean distance to the wall is 5.7 cm
for the DLI-SP, and the associated PDF compared to
fish experiments has a Hellinger distance ofH= 0.13,
showing that the DLI model captures reasonably well
the tendency of the fish to move close to the wall. For
biohybrid pairs, we found that the fish swims farther
from the wall than in fish-only experiments, with a
mean distance of 5.5 cm. In this case, the LureBot is
even farther to the wall, at a mean distance of 6.6 cm,
which likely also causes the fish to swim farther to the
wall than in fish-only experiments.

Finally, in figure 4(c), we plot the PDF of the abso-
lute value of the heading angle relative to the nor-
mal to the wall, |θw|. As a consequence of the agents
(fish, DLI model, or LureBot) moving close to the
wall, we naturally find that the mean of |θw| is very
close to, but slightly below 90◦ (see table 1), with a
difference which is statistically significant. Indeed, as
already reported in the experiments of [12], the agents
spend slightly more time heading toward the wall
(|θw|< 90◦) than moving away from it (|θw|> 90◦).
The PDF for the three considered cases are symmetric
around their mean, but we find that the fish experi-
ments lead to the narrowest distribution, with a SD
of 22◦, compared to a SD of 35◦ for the DLI-SP, and
a SD of 33◦ and 43◦ for the fish and the LureBot in
a biohybrid pair. The values of these SD are naturally
correlated with the mean distance of the agent to the
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Table 1.Means and standard deviations. For fish-only experiments, DLI simulated pairs (DLI-SP), and biohybrid pairs (DLI-SP), we
report the mean and the standard deviation (SD) of the 6 observables introduced in section 1.4, along with their respective standard
error. The speed V is given in cm s−1, the distances rw and dij are given in cm, and the angles |θw|, |ϕij|, and ψij are in degrees. Note the
small standard error in the case of the (DLI-SP) resulting from extensive simulations (16.6 h long, almost twice the amount of data
collected for other cases) and the fact that the 2 agents are statistically identical. For the biohybrid experiments, we report the mean and
SD for V, rw, and |θw|, averaged over the fish and the LureBot, as well as for each of them. Finally, we present the corresponding results
for a DLI model retrained on the present fish experiments (DLIv2-SP).

Pair Quantity Mean Standard deviation

Fish-only V 10.50± 0.60 5.73± 0.36
rw 4.39± 0.43 3.86± 0.22
|θw| 87.42± 0.39 21.91± 1.46
dij 8.05± 0.71 5.11± 0.43
|ϕij| 26.72± 1.91 29.81± 1.24
ψij 7.96± 4.73 108.98± 1.19

DLI-SP V 11.06± 0.04 7.04± 0.02
rw 5.66± 0.03 4.42± 0.03
|θw| 88.07± 0.06 34.55± 0.16
dij 7.43± 0.03 4.38± 0.04
|ϕij| 38.06± 0.19 38.63± 0.17
ψij −4.11± 0.33 107.13± 0.06

DLI-BP V 8.60± 0.22 5.93± 0.12
rw 6.05± 0.25 4.76± 0.06
|θw| 86.44± 0.17 38.07± 0.73
dij 9.96± 0.48 6.27± 0.33
|ϕij| 58.60± 0.91 48.38± 0.24
ψij −7.42± 4.16 110.41± 0.51

DLI-BP (fish) V 8.44± 0.26 5.13± 0.21
rw 5.54± 0.35 4.54± 0.09
|θw| 87.46± 0.19 32.76± 1.25

DLI-BP (robot) V 8.74± 0.16 6.62± 0.12
rw 6.59± 0.15 4.91± 0.05
|θw| 85.42± 0.24 42.78± 0.79

DLIv2-SP V 10.53± 0.48 6.18± 0.28
rw 4.64± 0.23 4.37± 0.05
|θw| 87.56± 0.11 26.47± 0.47
dij 8.39± 0.07 6.15± 0.11
|ϕij| 30.54± 0.30 33.11± 0.29
ψij 11.72± 0.87 109.08± 0.19

wall: the farther the agent, the larger are the fluctu-
ations (SD) of its heading angle relative to the wall.

In summary, the DLI-BP system presents a fair
agreement with the experimental results for all quant-
ities. Concurrently, DLI-BP and DLI-SP show smal-
ler dissimilarity, indicating that the transposition of
the simulated model into the robot was successful
(see table 2). We also observe that, in some cases (e.g.
as reflected in the PDF of |θw|), the fish’s behavior
guides the DLI-powered robot, the latter behaving
more closely as a fish than the virtual/simulated DLI
agents. Nonetheless, the observables test the DLI’s
performance at a very fine level, especially in the case
of DLI-BP, where the physical aspect is also impeding
the precise reproduction of the social dynamics, either
due to the imperfect (with respect to fish) motion of
the robot or the varying degree the robotic system’s
acceptance by the fish.

2.2. Instantaneous collective observables
H. rhodostomus have a natural tendency to swim in
close proximity to each other. In our experiments, fish
pairs typically maintain a median interindividual dis-
tance dij of less than two body lengths (see figure 5(a),
with a mean distance of 8.05± 0.7 cm and a SD of
5.1 cm (see table 1). The dynamics of DLI-SP res-
ults in a very similar PDF (H= 0.16), with a mean
of 7.43± 0.03 cm, which is within one standard error
(for the fish experiments) from themean obtained for
fish. As for the biohybrid pair, it is less bound than
pairs of fish or DLI, with a mean distance between
the fish and the LureBot of 9.96± 0.5 cm. The distri-
bution is also slightly wider, with a SD of 6.3 cm. In
fact, although the peak of the interindividual distance
PDF is located at a similar value as for fish orDLI pairs
(5− 6 cm in the three cases), the biohybrid pairs are
more often separated by a distance larger than 15 cm.
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Table 2.Hellinger distances. We exploit the Hellinger distance between two PDF (see section 1.5) to compare the PDF of the 6
observables introduced in section 1.4, for fish-only experiments, DLI simulated pairs (DLI-SP and DLIv2-SP), and biohybrid pairs
(DLI-BP). The last condition describes the inherent variability between the 14 fish experiments and is obtained by a bootstrap method
by randomly splitting these 14 experiments in two sets, and computing the Hellinger distance between their 6 corresponding PDF. We
also report the average Hellinger distance H̄ for each condition.

Pair Quantity Hellinger distance H

Fish-only vs DLI-SP V 0.09
rw 0.13
|θw| 0.23
dij 0.12
|ϕij| 0.14
ψij 0.09
Average H̄ 0.13

Fish-only vs DLI-BP V 0.18
rw 0.15
|θw| 0.25
dij 0.16
|ϕij| 0.30
ψij 0.15
Average H̄ 0.20

DLI-SP vs DLI-BP V 0.14
rw 0.04
|θw| 0.04
dij 0.18
|ϕij| 0.17
ψij 0.07
Average H̄ 0.11

Fish-only vs DLIv2-SP V 0.05
rw 0.08
|θw| 0.08
dij 0.14
|ϕij| 0.06
ψij 0.04
Average H̄ 0.08

Fish-only vs Fish-only (Bootstrap) V 0.07
rw 0.09
|θw| 0.04
dij 0.16
|ϕij| 0.15
ψij 0.09
Average H̄ 0.10

H. rhodostomus is a social species, often found to
formwell aligned schools. In fact, their pairwise align-
ment interactionwas quantitativelymeasured in [12],
showing that this interaction remains strong up to
three body lengths, well within the typical distance
between fish. In figure 5(b), to quantify the align-
ment within pairs of agents, we plot the distribu-
tion of the absolute value of the difference between
the heading angles of the two agents, |ϕij| (see the
graphical definition in figure 3). The mean head-
ing difference observed in fish experiments is 27◦,
with a rather narrow PDF associated with a SD of
30◦, confirming the good level of alignment between
the two fish. The DLI-SP are not as aligned as fish
pairs, with a larger mean and SD equal to 38◦,
although the Hellinger distance between the two PDF
(H= 0.14) remains satisfactory. The corresponding

PDF for biohybrid pairs exhibits the largest disagree-
ment with the fish experiments of all the PDF presen-
ted here (H= 0.30). Indeed, despite also being peaked
at |ϕij|= 0, the PDF has a non-negligible weight
for |ϕij|> 90◦, resulting in a much larger mean of
59◦ and a SD of 48◦. This wider PDF is a con-
sequence of the fact that the fish and the LureBot,
despite remaining close to each other on average,
have a much higher probability than fish pairs to
be at a distance above the range of the alignment
interaction. Moreover, when the fish and the LureBot
are far apart and attempt to get closer, they have a
high chance to be actually anti-aligned during this
process, hence the significant weight of the PDF
near |ϕij|= 180◦.

Finally, figure 5(c) shows the PDF of the angle
of perception ψij, defined in figure 3. For pairs of
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Figure 4. Instantaneous individual quantities. (a) Speed V probability density function. (b) Distance to the wall rw probability
density function. (c) Angle of incidence to the wall θw probability density function. Dark gray, blue, and red colors correspond to
the distributions of the fish-only experiment, the DLI simulated pairs, and the DLI biohybrid pairs, respectively. In all PDFs, the
colored dot corresponds to the median, and the thick horizontal black line corresponds to the limits of the first and third quartile.
The top inset plots depict the PDFs of the DLI biohybrid pair experiments, where the dotted and dashed lines correspond to the
robot’s and its neighbor’s distributions, respectively. The shaded areas correspond to the standard deviation.

Figure 5. Instantaneous collective quantities. (a) Interindividual distance dij probability density function. (b) Difference in
heading angles |ϕij| probability density function. (c) Viewing angle ψij probability density function. Dark gray, blue, and red
colors correspond to the distributions of the experiment, DLI simulated pairs and DLI biohybrid pairs, respectively. In all PDFs,
the colored dot corresponds to the median, and the thick horizontal black line corresponds to the limits of the first and third
quartile. The inset plots depict the PDFs of the DLI biohybrid pair experiments where the dotted, dashed, and solid lines
correspond to the robot, neighbor and average agent distributions, respectively. The shaded areas correspond to the standard
deviation.

fish, the PDF presents clear peaks atψij = 0◦ and near
|ψij|= 180◦. This indicates that the well aligned fish
are following each other rather than swimming side
by side. For DLI-SP, the same pattern is observed
but with slightly less pronounced peaks, although the
Hellinger distance of H= 0.05 confirms the excellent
agreement between both PDF. As for the biohybrid

pair, the PDF averaged over the fish and the LureBot
again presents the same peaks as before, but even less
pronounced. Again, the less sharp peaks are a con-
sequence of the fact that the biohybrid pairs stand
farther from the wall than fish pairs, and above all,
of the fact that their distance has a higher probability
to be large enough so that their angle of perception
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ψij becomes uncorrelated. The lesser alignment of the
biohybrid pairs (see above) originates from the same
causes, and in turn also results in a more homogen-
eous distribution of the angle of perception.However,
the apparent reasonable agreement with the PDF for
the fish-only and DLI-SP pairs masks the difference
between the PDF for the fish and for the LureBot
shown in the top inset of figure 5(c). There, we
observe that the peak near ψij = 0◦ is dominated by
the contribution of the fish, showing that the fish
more often follows the LureBot than the converse.
In addition, we find that the PDF for the fish is also
peaked slightly above ψij =−180◦, while the PDF for
the LureBot has a corresponding peak slightly below
ψij =+180◦. By periodicity of 360◦, these two peaks
are obviously located at almost the same angle, but
this slight angular shift translates to the fact that the
fish is, on average, slightly closer to the wall than the
LureBot, as noted in section 2.1.

The instantaneous collective quantities demon-
strate that despite the dissimilarities measured in
the individual behavior of both DLI-SP and DLI-
BP with respect to the fish-only experiment, the col-
lective dynamics are fairly reproduced. Furthermore,
the DLI is transferred in a physical system with good
agreement compared to its simulated version, and the
living agent responds positively. However, the angu-
lar control of the robot is arguably less precise, which
contributes to the general deviation from the experi-
mental angle-related distributions.

2.3. Temporal correlation functions
In figure 6, we plot the three observables used to
quantify the temporal correlations that emerge in the
system during the long-term dynamics, which are
defined in section 1.4.

Figure 6(a) shows the mean square displacement
of the agents, CX(t), in the three considered cases.
After a rapid growth, CX(t) presents a peak and an
ultimate decay to a mean level equal to twice the
mean square of the distance to the center of the tank.
Indeed, for large time difference, the positions at time
t′ and t+ t ′ become uncorrelated, and we obtain

CX (t) =
⟨
[⃗ui (t+ t ′)− u⃗i (t

′)]
2
⟩

≈
t→+∞

⟨
u⃗2i (t+ t ′)

⟩
+
⟨
u⃗2i (t

′)
⟩

= 2
⟨
u⃗2i (t

′)
⟩
, (10)

which becomes time-independent due to the station-
arity of the dynamics. Although CX(t) has the same
qualitative form in the three cases, one observes dif-
ferences in the position and height of the peak and
in the asymptotic value. The latter is explained by
the fact that the closer the agents are to the wall,
the larger is the mean square of their distance to the
center of the tank,

⟨
u⃗2i (t

′)
⟩
. Indeed, we have found,

in section 2.1, that fish pairs swim closest to the
wall, while biohybrid pairs are the farthest, which

is consistent with the asymptotic behavior of CX(t)
observed in figure 6(a). Furthermore, the top inset of
figure 6(a) for the biohybrid pairs shows thatCX(t) for
the fish is systematically larger than for the LureBot,
which is also consistent with the fact that the fish
swims slightly closer to the wall than the LureBot. As
for the position of the peaks in figure 6(a), it roughly
corresponds to the time for the corresponding agent
to travel half of the tank perimeter. This time is dir-
ectly correlated with the mean speed of the agent. In
section 2.1, we found that the fish pairs and DLI-SP
had essentially the same mean speed, which explains
the agreement between the position of the corres-
ponding peaks in CX(t). However, we also found that
the biohybrid pairs were 20% slower, which explains
the fact that the peak in theirCX(t) is reached at a later
time than for fish and DLI pairs.

Figure 6(b) shows the velocity autocorrelation,
CV(t), in the three considered cases, which vanishes
for t large enough, when the velocity at time t+ t ′

becomes uncorrelated with that at time t′. It can be
formally shown that CV(t) =

1
2
d2CX
dt2 (t) (although this

relation is only approximate, when the 2 quantities are
observed independently over a finite sampling time),
so that the interpretation of the shape of CV(t) res-
ults from the analysis that we have presented above for
CX(t). In particular, the peaks of the first two oscilla-
tions in CV(t) roughly correspond to the two inflec-
tion points just before and after the main peak in
CX(t). In addition,CV(t= 0) is themean square velo-
city, and we indeed observe an agreement between
its value for fish and DLI pairs, while the slower
biohybrid pairs result in a lower initial value ofCV(t=
0) in this case.

Finally, the (most subtle) temporal correlation
function of the heading of an agent relative to the
wall, Cθw(t) =

⟨
cos

[
θiw(t+ t ′)− θiw(t

′)
]⟩
, is shown

in figure 6(c). For very large time t, Cθw(t) must
obviously decay, but we observe that for fish pairs,
we still have Cθw(t= 30s)≈ 0.35, indicating strong
correlations. For DLI-SP, We find that Cθw(t) van-
ishes very rapidly (Cθw(t= 15s)≈ 0). Finally, for
biohybrid pairs, we still observe some weak rem-
nant correlations at t= 30s, with Cθw(t= 30s)≈ 0.1
(although the correlation is dominated by the con-
tribution of the fish, as shown in the top inset of
figure 6(c). Here, the decay rate of Cθw(t) is strongly
related to the sharpness of the peak near θw = 90◦

in the PDF of θw (see figure 4(c) and section 2.1).
Indeed, a sharp peak suggests that it can take a long
time to explore values of θw far from 90◦, leading to a
slower decay of Cθw(t). Accordingly, we indeed found
that the least sharp peak in the PDF of θw is observed
for DLI-SP, resulting in the fastest decay of Cθw(t) in
this case.

Both the DLI-SP and DLI-BP fail to precisely
reproduce the correlation function Cθw(t), producing
a very similar sharp decay compared to the one of
real fish. This is again due to the DLI’s tendency
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Figure 6. Temporal correlation quantities. (a) Mean squared displacement CX(t). (b) Velocity autocorrelation CV(t). (c) Temporal
correlations of the angle of incidence to the wall Cθw

(t). Dark gray, blue and red colors correspond to the distributions of the
experiment, DLI simulated pairs and DLI biohybrid pairs, respectively. Dotted, dashed and solid lines indicate the robot,
neighbor and average agent distributions, respectively. The shaded areas correspond to the standard deviation.

Figure 7. Instantaneous individual quantities. (a) Speed V probability density function. (b) Distance to the wall rw probability
density function. (c) Angle of incidence to the wall θw probability density function. Dark gray, blue, and red colors correspond to
the distributions of the fish-only experiment, the DLI simulated pairs, and the DLIv2 simulated pairs, respectively. In all PDFs, the
colored dot corresponds to the median, and the thick horizontal black line corresponds to the limits of the first and third quartile.
The shaded areas correspond to the standard deviation.

to frequently produce trajectories farther from the
wall than what observed in the experiment. Despite
that, the DLI-BP remains fairly faithful to the DLI-SP,
which indicates that the DLI is missing some aspects
of the social dynamics before being implemented on
the robot, but that the robot performs reasonably well
in reproducing its underlying model.

2.4. Complementary results for DLIv2 simulated
pairs
In addition to the DLI pretrained network util-
ized in the previous sections, we have also con-
sidered an updated version, the DLIv2. This ver-
sion was retrained on data gathered from the present
fish-only experiments under new lighting conditions,

concurrently to the robot experiments presented
in this work, so that retraining was only feasible
after their completion. However, it provided us with
the opportunity to test the scalability and predict-
ive performance of the pretrained DLI with new
input samples, which, while not fundamentally dif-
ferent, originated from altered social dynamics. For
this purpose, we conducted extensive simulations
with the DLIv2, and found that their results are in
excellent agreement with the present fish-only pair
experiments (see tables 1 and 2 for further details)
for the individual (see figure 7) and collective (see
figure 8) observables, and for the temporal cor-
relation functions (see figure 9). The performance
of the simulated DLIv2 model present a significant
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Figure 8. Instantaneous collective quantities. (a) Interindividual distance dij probability density function. (b) Difference in
heading angles |ϕij| probability density function. (c) Viewing angle ψij probability density function. Dark gray, blue, and red
colors correspond to the distributions of the experiment, DLI simulated pairs and DLIv2 simulated pairs, respectively. In all PDFs,
the colored dot corresponds to the median, and the thick horizontal black line corresponds to the limits of the first and third
quartile. The shaded areas correspond to the standard deviation.

Figure 9. Temporal correlation quantities. (a) Mean squared displacement CX(t). (b) Velocity autocorrelation CV(t). (c) Temporal
correlations of the angle of incidence to the wall Cθw

(t). Dark gray, blue and red colors correspond to the distributions of the
experiment, DLI simulated pairs and DLIv2 simulated pairs, respectively. The shaded areas correspond to the standard deviation.

improvement compared to that of the pretrained DLI
model, and one could expect that the LureBot com-
manded by the DLIv2 model would lead to better
results than for the LureBot commanded by the pre-
trained DLI model. Yet, our point here is that the pre-
trained DLI model, in different experimental condi-
tions, can still interact with a fish in a similar way as a
fish would do.

3. Discussion and Conclusion

Despite the wealth of studies on fish-robot interac-
tions, to our knowledge, no prior research has drawn
a systematic and quantitative comparison between
the social interaction dynamics produced by fish-
only, biohybrid, and simulated groups, with a robot
commanded by amachine learningmodel. This com-
parison also raises an intriguing issue: while the real-
ity gap in robotics [32] typically pertains to the
transferability of robot controllers from simulation
to real-life conditions, a parallel can be drawn for

biohybrid social interactions, termed the biomimicry
gap. Addressing this gap is complicated by:

(1) subtle behavioral patterns that behavioral math-
ematical models or machine learningmodels fail
to capture;

(2) the imperfect or absence of the rendition of the
real physics in most models;

(3) the inherently imperfect biomimetic properties
of artificial lures and devices.

Constructing biohybrid systems with minimal or,
ideally, no biomimicry gap, thus making them indis-
tinguishable from pure animal groups, could open
doors to groundbreaking research in the study of col-
lective phenomena in animal groups. In particular,
this would allow to accurately gauge the reactions of
an animal or an animal group to a controlled per-
turbation (for instance, a robot changing its behavior
by adopting a different mean speed or aiming at a
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target location). Such endeavors require that any non-
biomimetic effects of the robot be stringently assessed
and resolved. Moreover, it is crucial to ensure that
models do not simply overfit experimental data, but
can be genuinely transferred to real-world scenarios,
through robotic systems that faithfully execute the
instructions of these models when interacting with
animals.

Unfortunately, despite significant strides in the
integration of behavioral modeling and robotics
hardware, which has long been touted as crucial
for deciphering and comprehending the mechanisms
underlying collective behavior in animal groups, the
closing of the biomimicry gap lacks convincing sup-
port in the literature. In particular, several biohybrid
implementations tend to limit the set of decisions of
the robot (spatial choices, like clockwise/anticlock-
wise motion) [9, 34]. In addition, many of these sys-
tems rely on simplified passive (open-loop) [1, 3,
11, 27, 28, 37, 38, 45, 46] or reactive (closed-loop)
[13, 17, 21, 26, 29, 30, 40, 47] models, with only
a handful utilizing biomimetic models. Even fewer
biomimetic models have been successfully tested in
biohybrid groups [13, 17] to emulate real-life dynam-
ics of fish groups. Moreover, to our knowledge, no
end-to-end machine learning (ML) model has been
examined in this context, despite the booming field
of ML. As developed in [36], assessing a model’s
fidelity is particularly challenging in the case of ML
models, which are often black-box (i.e. not easily
explainable). Themethodology presented here to val-
idate a model and the robotic platform in which it
is implemented offers a preliminary solution to this
conundrum. Finally, the importance of high-fidelity
biomimetic lures and agile robotic devices capable
of reproducing the typical motion patterns of the
considered animal (speed, acceleration...) is usually
underplayed [35].

In this work, through the precise and comparative
quantification of collective behavior in pairs of agents
(fish-only pairs, DLI-SP, and DLI-BP), we demon-
strate that our biomimetic lure and robot system [35],
combinedwith theDLI, are capable of bridging a sub-
stantial part of the biomimicry gap. More specific-
ally, our study reveals that the overall gap between
actual pairs of H. rhodostomus and DLI-SP is fairly
small (mean Hellinger distance of H̄= 0.13), while
biohybrid pairs (DLI-BP) and fish-only pairs are
more dissimilar, but in fair agreement (H̄= 0.20).
Despite this larger difference, the DLI-BP and DLI-
SP remain in very good agreement (H̄= 0.11). We
also found that the inherent variability between fish
experiments results in an average Hellinger distance
of H̄= 0.10 (see the end of table 2), which could be
considered as the target performance for future stud-
ies following the benchmarking paradigm exploited
in this study. In essence, our DLI model is success-
ful in generating realistic social interactions [36], our

robotic system faithfully replicates its instructions,
but the transferredmodel results in greater discrepan-
cies and the gap widens compared to the simulation
(see table 2). Nonetheless, the biohybrid pair is not
fully aligned compared to fish groups: the Hellinger
distance for the PDF of the angle of incidence to the
wall is H= 0.25 and that of the heading difference is
H= 0.30. These observables are the largest contrib-
utors to widening the social interaction discrepancies
(i.e. the largest contributor, out of all observables, to
increasing the mean Hellinger distance). These dis-
crepancies are consequently observed for the correl-
ation function of the angle of incidence to the wall.
However, it is important to recognize that even when
comparing two independent fish-only series of exper-
iments, themeanHellinger distance would not vanish
(H̄= 0.10, in our case), owing to the inherent variab-
ility in fish behavior across experiments. This implies
that the main objective for robotic systems should be
to notably narrow the gap between experimental res-
ults, rather than completely eradicating it.

Moreover, the present work, complementing [35,
36], also presents a systematic methodology for a
comprehensive assessment of the extent of the bio-
mimicry gap. This is accomplished by introducing
nine observables (easily generalizable to larger groups
or other species) that quantify the instantaneous indi-
vidual and collective behavior, as well as the temporal
correlations present in the system. In addition, this
methodology is supplemented by the utilization of
theHellinger distance quantifier.We strongly encour-
age researchers in the field to explore a similar meth-
odology to evaluate the biomimicry gap in their
respective systems of study.

Despite the positive results highlighted in our
study, we demonstrated that further closing the bio-
mimicry gap necessitates efforts to minimize all three
discrepancy sources depicted in figure 1. First, it
would require that we refine our modeling approach,
e.g. by repeating the biohybrid experiments with
the DLIv2 model. Secondly, the physics-related dis-
crepancies, primarily attributable to the transpos-
ition of the model into the robot, remains relat-
ively small, but also requires measurable improve-
ment in the robotic system’s operation to fully
bridge the gap. Finally, discrepancies in the com-
munication cues pose a considerable challenge in
terms of evaluation and could only be fully meas-
ured in the absence of the other two sources of
discrepancies.

We believe that our study may mark the begin-
ning of many endeavors that integrate animal exper-
iments, biomimetic biohybrid experiments, and sim-
ulations of a model commanding the robot, all
within a single end-to-end approach. As demon-
strated, this approach, combined with a systematic
methodology to quantify the biomimicry gap, offers
a deeper understanding of the factors contributing
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to behavioral inaccuracies in biohybrid experiments,
thereby highlighting areas in need of improvement.
This, in turn, contributes to two main objectives:

(1) establishing a more robust experimentation
pipeline to explore the diverse sources of the bio-
mimicry gap (such as physical limitations of the
robot, social interactions as depicted by themod-
els, and potential discrepancies in the commu-
nication cues used to elicit responses);

(2) drawing more definitive and insightful beha-
vioral conclusions without the introduction of
unrealistic effects inherent in robotic systems
and social interaction models.

In future research, we aim to extend our experi-
ments to involve multiple individuals and other spe-
cies, thereby enhancing our understanding of how
our robotic platform and DLI model scale to multi-
agent interactions and whether large groups of living
animals respond similarly to the DLI-driven artificial
agent. Additionally, we intend to consistently report
the biomimicry gap score, as presented here, with the
hope that future studies may adopt a standardized
methodology to evaluate the fidelity of biohybrid sys-
tems compared to natural ones.
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