
Alternation makes the adversary weaker in two-player
games

Volkan Cevher
LIONS, EPFL

volkan.cevher@epfl.ch

Ashok Cutkosky
Boston University

ashok@cutkosky.com

Ali Kavis
LIONS, EPFL

ali.kavis@epfl.ch

Georgios Piliouras
SUTD

georgios@sutd.edu.sg

Stratis Skoulakis
LIONS, EPFL

efstratios.skoulakis@epfl.ch

Luca Viano
LIONS, EPFL

luca.viano@epfl.ch

Abstract

Motivated by alternating game-play in two-player games, we study an altenating
variant of the Online Linear Optimization (OLO). In alternating OLO, a learner at
each round t ∈ [n] selects a vector xt and then an adversary selects a cost-vector
ct ∈ [−1, 1]n. The learner then experiences cost (ct+ct−1)⊤xt instead of (ct)⊤xt

as in standard OLO. We establish that under this small twist, the Ω(
√
T) lower

bound on the regret is no longer valid. More precisely, we present two online
learning algorithms for alternating OLO that respectively admitO((log n)4/3T 1/3)
regret for the n-dimensional simplex and O(ρ log T) regret for the ball of radius
ρ > 0. Our results imply that in alternating game-play, an agent can always
guarantee Õ((log n)4/3T 1/3) regardless the strategies of the other agent while the
regret bound improves to O(log T) in case the agent admits only two actions.

1 Introduction

Game-dynamics study settings at which a set of selfish agents engaged in a repeated game update
their strategies over time in their attempt to minimize their overall individual cost. In simultaneous
play all agents simultaneously update their strategies, while in alternating play only one agent updates
its strategy at each round while all the other agents stand still. Intuitively, each agent only updates its
strategy in response to an observed change in another agent.

Alternating game-play captures interactions arising in various context such as animal behavior, social
behavior, traffic networks etc. (see [33] for various interesting examples) and thus has received
considerable attention from a game-theoretic point of view [11, 3, 33, 41, 40]. At the same time,
alternation has been proven a valuable tool in tackling min-max problems arising in modern machine
learning applications (e.g. training GANs, adversarial examples etc.) and thus has also been studied
from an offline optimization perspective [37, 35, 21, 42, 9, 8, 10].

In the context of two-players, alternating game-play admits the following form: Alice (odd player)
and Bob (even player) respectively update their strategies on odd and even rounds. Alice (resp. Bob)
should select her strategy at an odd round so as to exploit Bob’s strategy of the previous (even) round
while at the same time protecting herself from Bob’s response in the next (even) round. As a result,
the following question arises:

Q1: How should Alice (resp. Bob) update her actions in the odd rounds so that, regardless of Bob’s
strategies, her overall cost (over the T rounds of play) is minimized?

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

1.1 Standard and Alternating Online Linear Minimization

Motivated by the above question and building on the recent line of research studying online learning
settings with restricted adversaries [15, 25, 4, 5, 6, 34], we study an online linear optimization setting
[43], called alternating online linear optimization. We use the term “alternating” to highlight the
connection with alternating game-play that we subsequently present in Section 1.2.

In Algorithm 1 we jointly present both standard and alternating OLO so as to better illustrate the
differences of the two settings.

Algorithm 1 Standard and Alternating Online Linear Minimization

1: Input: A feasibility set D ⊆ Rn and c0 ← (0, . . . , 0).
2: for each round t = 1, . . . , T do
3: The learner selects a vector xt ∈ D based on c1, . . . , ct−1 ∈ [−1, 1]n

4: The adversary learns xt ∈ D and selects a cost vector ct ∈ [−1, 1]n (based on x1, . . . , xt).
5: The learner learns ct ∈ [−1, 1]n and receives cost,

(ct)⊤xt Standard OLM

(ct + ct−1)⊤xt Alternating OLM
6: end for

In both standard and alternating OLO, the adversary selects ct after the the learner’s selection of xt.
The only difference between standard and alternating OLM is that in the first case the learner admits
cost (ct)⊤xt while in the second its cost is (ct + ct−1)⊤xt. An online learning algorithm1selects
xt ∈ D solely based on the previous cost-vector sequence c1, . . . , ct−1 ∈ [−1, 1]n with the goal
minimizing the overall cost that is slightly different in standard and alternating OLO.

The quality of an online learning algorithm A in standard OLO is captured through the notion of
regret [23], comparing A’s overall cost with the overall cost of the best fixed action,

RA(T) := max
c1,...,cT

[
T∑

t=1

(ct)⊤xt −min
x∈D

T∑
t=1

(ct)⊤x

]
. (1)

When RA(T) = o(T), the algorithm A is called no-regret since it ensured that regardless of the
cost-vector sequence c1, . . . , cT , the time-averaged overall cost of A approaches the time-averaged
overall cost of the best fixed action with rate o(T)/T → 0. Correspondingly, the quality of an online
learning algorithm A in alternating OLO is captured through the notion of alternating regret,

Ralt
A (T) := max

c1,...,cT

[
T∑

t=1

(ct + ct−1)⊤xt −min
x∈D

T∑
t=1

(ct + ct−1)⊤x

]
. (2)

Over the years various no-regret algorithms have been proposed for different OLO settings2 achieving
RA(T) = Õ

(√
T
)

regret [28, 20, 43]. The latter regret bounds are optimal since there is is a simple

probabilistic construction establishing that any online learning algorithmA admitsRA(T) = Ω(
√
T)

even when D is the 2-dimensional simplex. This negative results comes from the fact that the
adversary has access to the action xt of the algorithm and can appropriately select ct to maximize
A’s regret.

At a first sight, it may seem that the adversary can still enforce Ω
(√

T
)

alternating regret to

any online learning algorithm A by appropriately selecting ct based on xt and possibly on ct−1.
Interestingly enough the construction establishing Ω(

√
T) regret, fails in the case of alternating

regret (see Section 2). As a result, the following question naturally arises,

1the notion of an online learning algorithm is exactly the same in standard and alternating OLO.
2the difference concerns the feasibility set D.

2

Q2: Are there online learning algorthm with o
(√

T
)

alternating regret?

Apart from its interest in the context of online learning, answering Q2 implies a very sound answer to
Q1. In Section 1.2 we present the connection between Alternating OLO and Alternating Game-Play.

1.2 Alternating OLO and Alternating Game-Play

Alternating game-play in the context of two-player games can be described formally as follows: Let
(A,B) be a game played between Alice and Bob. The matrix A ∈ [−1, 1]n×m represents Alice’s
costs, Aij is the cost of Alice if she selects action i ∈ [n] and Bob selects action j ∈ [m] (respectively
B ∈ [−1, 1]m×n for Bob). Initially Alice selects a mixed strategy x1 ∈ ∆n. Then,

• At the even rounds t = 2, 4, 6, . . . , 2k : Bob plays a new mixed strategy yt ∈ ∆m and Alice
plays xt−1 ∈ ∆n. Alice and Bob incur costs (xt−1)⊤Ayt and (yt)⊤Bxt−1 respectively.

• At the odd rounds t = 3, 5, . . . , 2k−1 : Alice plays a new mixed strategy xt ∈ ∆n and Bob
plays yt−1 ∈ ∆m. Alice and Bob incur costs (xt)⊤Ayt−1 and (yt−1)⊤Bxt respectively.

From the perspective of Alice (resp. Bob), the question is how to select her mixed strategies
x1, x3, . . . , x2k−1 ∈ ∆n so as to minimize her overall cost

(x1)⊤Ay2 +

T/2−1∑
k=1

(x2k+1)⊤A(y2k + y2k+2).

In Corollary 1.1 we establish that if Alice uses an online learning algorithm A then her overall regret
(over the course of T rounds of play) is at mostRalt

A (T/2). As a result, in case Q2 admits a positive

answer, then Alice can guarantee at most o(
√
T) regret and improve over the Õ

(√
T
)

regret bound
provided by standard no-regret algorithms [28, 20, 43, 23].

Corollary 1.1. In case Alice (resp. Bob) uses an online learning algorithmA to update her strategies
in the odd rounds, x2k+1 := A(Ay2, Ay4, . . . , Ay2k) for k = 1, . . . , T/2− 1. Then no matter Bob’s
selected sequence y2, y4, . . . , yT ∈ ∆m,

(x1)⊤Ay2+

T/2−1∑
k=1

(x2k+1)⊤A(y2k+y2k+2)−min
x∈∆n

x⊤Ay2 +

T/2−1∑
k=1

x⊤A(y2k + y2k+2)

 ≤ Ralt
A (T/2)

Remark 1.2. We remark that Corollary 1.1 refers to the standard notion of regret [23] andRalt
A (T/2)

appears only as an upper bound. We additionally remark that if both Alice and Bob respectively use
algorithmsA and B in the context of alternating play, then the time-average strategy vector converges
with rate O (max(RA(T),RB(T))/T) to Nash Equilibrium in case of zero-sum games (A = −B⊤)
and to Coarse Correlated Equilibrium for general two-player games [32]. Our objective is more
general: we focus on optimizing the performance of a single player regardless of the actions of the
other player.

1.3 Our Contribution and Techniques

In this work we answer Q2 on the affirmative. More precisely we establish that,

• There exists an online learning algorithm (Algorithm 3) with alternating regret
Õ
(
(log n)4/3T 1/3

)
for D = ∆n (n-dimensional simplex).

• There exists an online learning algorithm (Algorithm 4) with alternating regret O (ρ log T)
for D = B(c, ρ) (ball of radius ρ).

• There exists an online learning algorithm with alternating regret O (log T) for D = ∆2

(2-dimensional simplex), through a straight-forward reduction from D = B(c, ρ).

Due to Corollary 1.1 our results provide a non-trivial answer to Q1 and establish that Alice can
substantially improve over the O(

√
T) regret guarantees of standard no-regret algorithms.

3

Corollary 1.3. In the context of alternating game play, Alice can always guarantee at most
Õ
(
(log n)4/3T 1/3

)
regret regardless the actions of Bob. Moreover in case Alice admits only 2

actions (n = 2), the regret bound improves to O (log T).

Bailey et al. [3] studied alternating game-play in unconstrained two-player games (the strategy space
is Rn instead of ∆n). They established that if the x-player (resp. the y-player) uses Online Gradient
Descent (OGD) with constant step-size γ > 0 (x2k := x2k−2 − γAy2k−1) then it experiences at
most O(1/γ) regret regardless the actions of the y-player. In the context of alternating OLM this
result implies that OGD admits O(1/γ) alternating regret as long as it always stays in the interior of
D. However the latter cannot be guaranteed for bounded domains (simplex, ball). In fact there is a
simple example for D = ∆2 at which OGD with γ step-size admits Ω(1/γ + γT) alternating regret.
More recently, [40] studied alternating game-play in zero-sum games (B = −A⊤). They established
that if both player adopt Online Mirror Descent (OMD) the individual regret of each player is at most
O(T 1/3) and thus the time-averaged strategies converge to Nash Equilibrium with O(T−2/3) rate.
The setting considered in this works differs because where the y-player can behave adversarially.

In order to achieve Õ
(
(log n)4/3T 1/3

)
alternating regret in case D = ∆n, we first propose an

Õ(T 1/3) algorithm for the special case of D = ∆2. For this special case our proposed algorithm is
an optimistic-type of Follow the Regularized Leader (FTRL) with log-barrier regularization. Using
the latter as an algorithmic primitive, we derive the Õ

(
(log n)4/3T 1/3

)
alternating regret algorithm

for D = ∆n, by upper bounding the overall alternating regret by the sum of local alternating regret
of 2-actions decision points on a binary tree at which the leafs corresponds to the actual n actions.

In order to achieve O(ρ log T) alternating regret for D = B(c, ρ) we follow a relatively different
path. The major primitive of our algorithm is FTRL with adaptive step-size [16, 5]. The cornerstone
of our approach is to establish that in case Adaptive FTRL admits more than O (ρ log T) alternating
regret, then unormalized best-response (−ct−1) can compensate for the additional cost. By using
a recent result on Online Gradient Descent with Shrinking Domains [5], we provide an algorithm
interpolating between Adaptive FTRL and −ct−1 that achieves O(ρ log T) alternating regret.

1.4 Further Related Work

The question of going beyond O(
√
T) regret in the context of simultaneous game-play has received a

lot of attention. A recent line of work establishes that if both agents simultaneously use the same
no-regret algorithm (in most cases Optimistic Hedge) to update their strategies, then the individual
regret of each agent is Õ(1) [1, 14, 13, 2, 36, 26, 17].

Our work also relates with the more recent works in establishing improved regret bounds parametrized
by the cost-vector sequence c1, . . . , cT , sometimes also called “adaptive” regret bounds [16, 29, 38,
30, 12]. However these parametrized upper bounds focus on finding “easy” instances while still
maintainingO(

√
T) in the worst case. Alternating OLO can be considered as providing a slight "hint"

to the learner that fundamentally changes the worst-case behavior, since its cost is (ct + ct−1)⊤xt

with the learner being aware of ct−1 prior to selecting xt. Improved regret bounds under different
notions of hints have been established in [4, 5, 15, 34, 24, 39].

Finally our work also relates with the research line of no-regret learning in the context of Extensive
Form Games [44, 18, 19] and Stackelberg Games [27, 22].

2 Preliminaries

We denote with ∆n ⊆ Rn the n-dimensional simplex, ∆n := {x ∈ Rn : xi ≥ 0 and
∑n

i=1 xi = 1}.
B(c, ρ) denotes the ball of radius ρ > 0 centered at c ∈ Rn, B(c, ρ) := {x ∈ Rn : ∥x− c∥2 ≤ ρ}.
We also denote with [x]D := argminz∈D ∥z − x∥2 the projection operator to set D.

2.1 Standard and Alternating Online Linear Minimization

As depicted in Algorithm 1 the only difference between standard and Alternating OLM is the cost of
the learner, (ct)⊤xt (OLM) and (ct + ct−1)⊤xt (Alternating OLM). Thus, the notion of an online
learning algorithm is exactly the same in both settings.

4

Definition 2.1. An online learning algorithm A, for an Online Linear Optimization setting with
D ⊆ Rn, is a sequence of functions A := (A1, . . . ,At, . . .) where At : Rd × . . .× Rd︸ ︷︷ ︸

t−1

7→ D.

As Definition 2.1 reveals, the notion of an online learning algorithm depends only on the feasibility
set D. As a result, an online learning algorithm A simultaneously admits both standardRA(T) and
alternating regret Ralt

A (T) (see Equations 1 and 2 for the respective definitions). In Theorem 2.2,
we present the well-known lower bound establishing that any online learning algorithm A admits
RA(T) = Ω(

√
T) and explain why it fails in the case of alternating regretRalt

A (T).
Proposition 2.2. Any online learning algorithm A for D = ∆2, admits regretRA(T) ≥ Ω

(√
T
)

.

Proof. Let ct be independently selected between (−1, 1) and (1,−1) with probability 1/2. Since ct

is independent of (c1, . . . , ct−1) then
∑T

t=1 E
[
(ct)⊤xt

]
= 0 where xt := At(c

1, . . . , ct−1). At the

same time, E
[
−minx∈∆2

∑T
t=1(c

t)⊤x
]
≤ O(

√
T). As a result,RA(T) ≥ Ω(

√
T).

We now explain why the above randomized construction does not apply for alternating regret
Ralt

A (T). Let A be the best-response algorithm, At(c
1, . . . , ct−1) := argminx∈∆2

(ct−1)⊤x. Since
ct = (1,−1) or ct = (−1, 1) we get that minx∈∆2(c

t−1)⊤x = −1 while E
[
(ct)⊤xt

]
= 0 since

xt := argminx∈∆2
(ct−1)⊤x and ct is independent of ct−1. As a result,

E

[
T∑

t=1

(ct + ct−1)⊤xt −
T∑

t=1

min
x∈∆2

(ct + ct−1)⊤x

]
= −T +Ω(

√
T).

The latter implies that there exists at least one online learning algorithm (Best-Response) that admits
Θ(−T) alternating regret in the above randomized construction. However the latter is not very
informative since there is a simple construction at which Best-Response admits linear alternating
regret.

We conclude this section with the formal statement of our results. First, for the case that D is the
simplex, we show Õ(T 1/3) alternating regret (Section 3):
Theorem 2.3. Let D be the n-dimensional simplex, D = ∆n. There exists an online learning
algorithm A (Algorithm 3) such that for any cost-vector sequence c1, . . . , cT ∈ [−1, 1]n,
T∑

t=1

(ct−1+ct)⊤xt−min
x∗∈D

T∑
t=1

(ct−1+ct)⊤x∗ ≤ O
(
T 1/3 · log4/3 (nT)

)
where xt = At(c

1, . . . , ct−1).

Next, when D is a ball of radius ρ, we can improve to Õ(1) alternating regret (Section 4):
Theorem 2.4. Let D be a ball of radius ρ, D = B(c, ρ). There exists an online learning algorithm A
(Algorithm 4) such that for any cost-vector sequence c1, . . . , cT where ∥ct∥2 ≤ 1,

T∑
t=1

(ct−1 + ct)⊤xt − min
x∗∈D

T∑
t=1

(ct−1 + ct)⊤x∗ ≤ O(ρ log T) where xt = At(c
1, . . . , ct−1).

Remark 2.5. Using Algorithm 4 we directly get an online learning algorithm with O(log T) alter-
nating regret for D = ∆2.

2.2 Alternating Game-Play

A two-player normal form game (A,B) is defined by the payoff matrix A ∈ [−1, 1]n×m denoting
the payoff of Alice and the matrix B ∈ [−1, 1]m×n denoting the payoff of Bob. Once the Alice
selects a mixed strategy x ∈ ∆n (prob. distr. over [n]) and Bob selects a mixed strategy y ∈ ∆m

(prob. distr. over [n]). Then Alice suffers (expected) cost x⊤Ay and Bob y⊤Bx.

In alternating game-play, Alice updates her mixed strategy in the even rounds while Bob updates in
the odd rounds. As a result, a sequence of alternating play for T = 2K rounds (resp. for T = 2K+1)
admits the form (x1, y2), (x3, y2), . . . , (x2k+1, y2k), (x2k+1, y2k+2), . . . , (x2K−1, y2K). Thus, the
regret of Alice in the above sequence of play equals the difference between her overall cost and the
cost of the best-fixed action,

Rx(T) := (x1)⊤Ay2 +

T/2−1∑
k=1

(x2k+1)⊤A(y2k + y2k+2)︸ ︷︷ ︸
Alice’s cost

− min
x∈∆n

x⊤Ay1 +

T/2−1∑
k=1

x⊤A(y2k + y2k+2)

︸ ︷︷ ︸

cost of Alice’s best action

5

If Alice selects x2k+1 := Ak(Ay2, Ay4, . . . , Ay2k−2, Ay2k) for k ∈ [K − 1] and x1 = A1(·) then
by the definition of alternating regret in Equation 2, we get that

(x1)⊤Ay2+

K−1∑
k=1

(x2k+1)⊤(Ay2k+Ay2k+2)−min
x∈∆n

[
x⊤Ay2 +

K−1∑
k=1

x⊤(Ay2k +Ay2k+2)

]
≤ Ralt

A (K)

which establishes Corollary 1.1. The proof for T = 2K + 1 is the same by considering Ay2K+2 = 0.

3 The Simplex case
Before presenting our algorithm for the n-dimensional simplex, we present Algorithm 2 that admits
O(log2/3 T · T 1/3) alternating regret for the 2-simplex and is the basis of our algorithm for ∆n.
Definition 3.1 (Log-Barrier Regularization). Let the function R : ∆2 7→ R≥0 where R(x) :=
− log x1 − log x2.

Algorithm 2 Online Learning Algorithm for 2D-Simplex

1: Input: c0 ← (0, 0)
2: for rounds t = 1, . . . , T do
3: The learner selects xt := minx∈∆2 [2(c

t−1)⊤x+
∑t−1

τ=1(c
τ + cτ−1)⊤x+R(x)/γ].

4: The adversary selects cost vector ct ∈ [0, 1]n

5: The learner suffers cost (ct + ct−1)⊤xt

6: end for

In order to analyze Algorithm 2 we will compare its performance with the performance of the Be the
Regularized Leader algorithm with log-barrier regularization that is ensured to achieve O(log T/γ)
alternating regret [23]. The latter is formally stated and established in Lemma 3.2.

Lemma 3.2. Let y1, . . . , yT ∈ ∆2 where yt := minx∈∆2

[
(ct + ct−1)⊤x+

∑t−1
s=1(c

s + cs−1)⊤x+R(x)/γ
]
.

Then,
∑T

t=1(c
t + ct−1)⊤yt −mini∈[n]

∑T
t=1(c

t
i + ct−1

i) ≤ 2 log T/γ + 2.

In Lemma 3.3 we provide a closed formula capturing the difference between the output xt ∈ ∆2 of
Algorithm 2 and the output yt ∈ ∆2 of Be the Regularized Leader algorithm defined in Lemma 3.2.
Lemma 3.3. Let xt = (xt

1, x
t
2) ∈ ∆2 as in Algorithm 2 and yt = (yt1, y

t
2) ∈ ∆2 as in Lemma 3.2.

Then,
xt
1 − yt1 = γA−1(xt

1, y
t
1) ·
(
(ct1 − ct2)− (ct−1

1 − ct−1
2)

)
with A(x1, y1) := (x1y1)

−1+(1−x1)
−1(1−y1)

−1 and |A−1(xt
1, y

t
1)−A−1(xt+1

1 , yt+1
1)| ≤ O(γ).

Up next we use Lemma 3.2 and Lemma 3.3 to establish that Algorithm 2 admits O(log2/3 T · T 1/3)
alternating regret.
Theorem 3.4. Let x1, . . . , xT ∈ ∆2 the sequence produced by Algorithm 2 for the cost sequence
c1, . . . , cT ∈ [−1, 1]2 with γ = O

(
log1/3 T · T−1/3

)
thenRalt(T) = O

(
log2/3 T · T 1/3

)
.

Proof. By Lemma 3.2 then
∑

t∈[T](c
t + ct−1)⊤xt −mini∈[n]

∑
t∈[T](c

t
i + ct−1

i) ≤ O (log T/γ) +∑
t∈[T](c

t + ct−1)⊤(xt − yt) where yt ∈ ∆2 as in Lemma 3.2. Using Lemma 3.3 we get that
T∑

t=1

(ct + ct−1)⊤(xt − yt) =

T∑
t=1

(
(ct1 − ct2) + (ct−1

1 − ct−1
2)

)
(xt

1 − yt1)

= γ

T∑
t=1

(
(ct1 − ct2) + (ct−1

1 − ct−1
2)

)
A−1(xt

1, y
t
1) ·
(
(ct1 − ct2)− (ct−1

1 − ct−1
2)

)
= γ

T∑
t=1

A−1(xt
1, y

t
1)
(
(ct1 − ct2)

2 − (ct−1
1 − ct−1

2)2
)

= γ

T∑
t=1

(ct1 − ct2)
2 ·
(
A−1(xt

1, y
t
1)−A−1(xt+1

1 , yt+1
1)

)
≤ O(γ2T)

HenceRalt(T) ≤ O
(
log T/γ + γ2T)

)
≤ O

(
log2/3 T · T 1/3

)
for γ := O

(
log1/3 T/T 1/3

)
.

6

3.1 The n-Dimensional Simplex

In this section we extend Algorithm 2 to the case of the n-dimensional simplex. Our extension is
motivated and builds upon the CFR algorithm develloped in the context of EFGs [44].

Without loss of generality we assume that n = 2H . We consider a complete binary tree T (V,E)
of height H = log n where the leaves L ⊆ V corresponds to the n actions, |L| = n. Each node
s ∈ V/L admits exactly two children with ℓ(s), r(s) respectively denoting the left and right child.
Moreover, Level(h) ⊆ V denotes the nodes lying at depth h from the root (Level(1) = {root} and
Level(log n) = L). Up next we present the notion of policy on the nodes of T (V,E).
Definition 3.5. • A policy over the nodes π : V/L 7→ ∆2 encodes the probability of selecting

the left/right child at node s ∈ V . Specifically π(s) = (π(ℓ(s)|s), π(r(s)|s)) where π(ℓ(s)|s) +
π(r(s)|s) = 1 and π(ℓ(s)|s) is the probability of selecting ℓ(s) (resp. for r(s)).

• Pr(s, i, π) denotes the probability of reaching leaf i ∈ L starting from node s ∈ V/L and following
π(·) at each step.

• xπ ∈ ∆n denotes the probability distribution over the leaves/actions induced by π(·). Formally,
we have xπ

i := Pr(root, i, π) for each leaf i ∈ L.
Definition 3.6. Given a cost vector c ∈ [−1, 1]n for the leaves/actions, the virtual cost of a node
s ∈ V under policy π(·), denoted as Q(s, π, c), equals

Q(s, π, c) :=

{
cs s ∈ L∑

i∈L Pr(s, i, π) · ci s /∈ L

The virtual cost vector of s ∈ V under π(·) is defined as q(s, π, c) := (Q(ℓ(s), π, c), Q(r(s), π, c)).

We remark that Q(s, π, c) is the expected cost of the random walk starting from s ∈ V and following
policy π(·) until a leaf i ∈ L is reached in which case cost ci is occurred.

Our online learning algorithm for the n-dimensional simplex is illustrated in Algorithm 3.

Algorithm 3 An Online Learning Algorithm for the n-Dimensional Simplex

1: Input: A sequence of cost vectors c1, . . . , cT ∈ [−1, 1]n

2: The learner constructs a complete binary tree T (V,E) with L = A.
3: for each round t = 1, . . . , T do
4: for each h = log n to 1 do
5: for every node s ∈ Level(h) do
6: The learner computes q

(
s, πt, ct−1

)
:=
(
Q
(
ℓ(s), πt, ct−1

)
, Q
(
r(s), πt, ct−1

))
and

sets

πt(s) := argmin
x∈∆2

[
2q(s, πt, ct−1)⊤x+

t−1∑
τ=1

(
q(s, πτ , cτ−1) + q(s, πτ , cτ)

)⊤
x+R(x)/γ

]
7: end for
8: end for
9: The learner selects xt := xπt ∈ ∆n (induced by policy πt, Definition 3.5).

10: The adversary selects cost vector ct ∈ [0, 1]n

11: The learner suffers cost (ct + ct−1)⊤xt

12: end for

We remark that at each round t, the learner computes a policy πt(·) as an intermediate step (Step 6)
that then uses to select the probability distribution xt := xπt ∈ ∆n (Step 9). Notice that the
computation of policy πt(·) is performed in Steps (4)-(8). Since nodes are processed in decreasing
order (with respect to their level), during Step 6 πt(·) has already been determined for nodes ℓ(s), r(s)
and thus Q

(
ℓ(s), πt, ct−1

)
, Q
(
r(s), πt, ct−1

)
are well-defined.

Up next we present the main steps for establishing Theorem 2.3. A key notion in the analysis of
Algorithm 3 is that of local alternating regret of a node s ∈ V presented in Definition 3.7. As
established in Lemma 3.8 the overall alternating regret of Algorithm 3 can be upper bounded by the
sum of the local alternating regrets of the nodes lying in the path of the best fixed leaf/action.

7

Definition 3.7. For any sequence c1, . . . , cT ∈ [−1, 1]n the alternating local regret of a node s ∈ V ,
denoted asRT

loc(s), is defined as

RT
loc(s) :=

∑
t∈[T]

(
q(s, πt, ct) + q(s, πt, ct−1)

)⊤
πt(s)− min

α∈{ℓ(s),r(s)}

∑
t∈[T]

(
Q(α, πt, ct) +Q(α, πt, ct−1)

)
Lemma 3.8. Let a leaf/action i ∈ L and consider the path p = (root = s1, . . . , sH = i) from the
root to the leaf i ∈ L. Then,

∑T
t=1(c

t + ct−1)⊤xπt − 2
∑T

t=1 c
t
i ≤

∑H
ℓ=1Rloc(sℓ).

Up to this point, it is evident that in order to bound the overall alternating regret of Algorithm 3,
we just need to bound the local alternating regret of any node s ∈ V . Using Theorem 3.4 we
can bound the local regret of leaves i ∈ L for which q(i, πt, ct−1) = q(i, πt−1, ct−1). However
this approach does apply for nodes s ∈ V/L since the local regret does not have the alternating
structure, q(s, πt, ct−1) ̸= q(s, πt−1, ct−1). To overcome the latter in Lemma 3.9 we establish that
q(s, πt, ct−1), q(s, πt−1, ct−1) are in distanceO (γ) which permits us to boundRT

loc(s) for s ∈ V/L
by tweaking the proof of Theorem 3.4.
Lemma 3.9. Let π1, . . . , πT the policies produced by Algorithm 3 then for any node s ∈ V ,
i) ∥πt(s)− πt−1(s)∥1 ≤ 48γ and ii) ∥q(s, πt, ct−1)− q(s, πt−1, ct−1)∥∞ ≤ 48γ log n.

Using Lemma 3.9 we can establish an upper bound on the local regret of any actions s ∈ V . The proof
of Lemma 3.10 lies in Appendix B and follows a similar structure with the proof of Theorem 3.4.

Lemma 3.10. Let γ := O
(
log1/3 T/(T 1/3 log1/3 n)

)
in Algorithm 3 then RT

loc(s) ≤

O
(
log2/3 T · log1/3 n · T 1/3

)
for all s ∈ V .

Theorem 2.3 directly follows by combining Lemma 3.10, Lemma 3.8 and H = log n.

4 The Ball case

In Algorithm 4 we present an online learning algorithm with O (log T) for D = B(0, 1) and
∥ct∥2 ≤ 1. Then through the transformation x̂t := c+ ρxt with xt ∈ B(0, 1), Algorithm 4 can be
transformed to a O (ρ log T)-alternating regret algorithm for D = B(c, ρ).

Algorithm 4 may seem complicated at the first sight however it is composed by two basic algorithmic
primitives. At Step 4 Algorithm 4 computes the output wt ∈ B(0, 1) of the Follow the Regularized
Leader (FTRL) with Euclidean regularization and adaptive step-size r0:t−1 (Step 3 of Algorithm 4).At
Step 5, it mixes the output wt ∈ B(0, 1) of FTRL with the unnormalized best-response −ct−1 ∈
B(0, 1). The selection of the mixing coefficient pt is adaptively updated at Step 7.

4.1 Proof of Theorem 2.4

In this section we present the main steps of the proof of Theorem 2.4. In Lemma 4.1 we provide a
first upper bound on the alternating regret of Adaptive FTRL.
Lemma 4.1. Let w1, . . . , wT ∈ B(0, 1) the sequence produced by Adaptive FTRL (Step 4 of Algo-
rithm 4) given as input the cost-vector sequence c1, . . . , cT ∈ B(0, 1). Let t1 denote the maximum
time-index such that

∑t
s=1(c

s + cs−1)⊤wt ≥ −
∑t

s=1 ∥cs + cs−1∥22/4. Then,

T∑
t=1

(ct + ct−1)⊤wt − min
x∈B(0,1)

T∑
t=1

(ct + ct−1)⊤x ≤ 4

√√√√1 +

t1∑
t=1

∥ct + ct−1∥22 +O (log T)

Lemma 4.1 guarantees that Adaptive FTRL admits only o(
√
T) alternating regret in case t1 = o(T).

Using Lemma 4.1, we establish Lemma 4.2 which is the cornerstone of our algorithm and guarantees
that once Adaptive FTRL is appropriately mixed with unormalized best-response (−ct−1), then the
resulting algorithm always admits O(log T) regret.
Lemma 4.2. Let w1, . . . , wT ∈ B(0, 1) be produced by Adaptive FTRL given as input c1, . . . , cT ∈
B(0, 1) and t1 be the maximum round such that

∑t
s=1(c

s + cs−1)⊤ws ≥ −
∑t

s=1 ∥cs + cs−1∥22/4.

8

Algorithm 4 Online Learning Algorithm for Unit Ball

1: p1 ← 0, D1 ← [0, 1] and c0 ← (0, . . . , 0).
2: for each round t = 1, · · · , T do
3: The learner computes the coefficient r0:t−1 ←

√
1 +

∑t−1
s=1 ∥cs + cs−1∥22

4: The learner computes the output of FTRL,

wt ← argmin∥x∥≤1

[
t−1∑
s=1

(cs + cs−1)⊤x+
r0:t−1

2
∥x∥22

]
Adaptive FTRL

5: The learner selects the action xt ← (1− pt)wt + pt(−ct−1) # Mixing Adaptive FTRL
with Unormalized Best-Response

6: The adversary selects cost ct with ∥ct∥2 ≤ 1 and the learner suffers cost (ct−1 + ct)⊤xt.
7: The learner updates the interval Dt ⊆ [0, 1] as follows,

Dt ←

0,min

1,
20√

1 +
∑t

s=1 ∥cs + cs−1∥22

and then updates the coefficient pt ∈ [0, 1] as follows,

pt+1 ←

[
pt +

20(ct + ct−1)⊤ · (xt + ct−1)

1 +
∑t

s=1 ∥cs + cs−1∥22

]
Dt

8: end for

Let p := 20/
√
400 +

∑t1
t=1 ∥ct + ct−1∥22 and let yt := (1− p)wt − pct−1 for t ≤ t1 and yt := wt

for t ≥ t1 + 1. Then
∑T

t=1(c
t + ct−1)⊤yt −minx∈B(0,1)

∑T
t=1(c

t + ct−1)⊤x ≤ O (log T).

Lemma 4.2 establishes that in case at Step 5, Algorithm 4 mixed the output wt of Adaptive FTRL
with the unormalized best-response (−ct−1 ∈ B(0, 1)) as follows,

yt := (1− qt) · wt + qt · (−ct−1) with qt :=
20I [t ≤ t1]√

400 +
∑t1

t=1 ∥ct + ct−1∥22
, (3)

then it would admit O(log T) alternating regret. Obviously, Algorithm 4 does not know a-priori
neither t1 nor

∑t1
t=1 ∥ct + ct−1∥22. However by using the recent result of [5] for Online Gradient

Descent in Shrinking Domains, we can establish that the mixing coefficients pt ∈ [0, 1] selected by
Algorithm 4 at Step 7, admit the exact same result as selecting qt ∈ [0, 1] described in Equation 3.
The latter is formalized in Lemma 4.3.
Lemma 4.3. Let the sequences w1, . . . , wT ∈ B(0, 1) and p1, . . . , pT ∈ (0, 1) produced by
Algorithm 4 given as input c1, . . . , cT ∈ B(0, 1). Additionally let t1 denote the maximum
time such that

∑t
s=1(c

s + cs−1)⊤ws ≥ −
∑t

s=1 ∥cs + cs−1∥22/4 and consider the sequence

qt := I [t ≤ t1] ·
(
20/
√
400 +

∑t1
t=1 ∥ct + ct−1∥22

)
. Then,∑

t∈[T]

(ct−1 + ct)⊤(wt + ct−1) · qt −
∑
t∈[T]

(ct−1 + ct)⊤(wt + ct−1) · pt ≤ O(log T)

5 Conclusion

In this paper we introduced a variant of the Online Linear Optimization that we call Alternating
Online Linear Optimization for which we developed the first online learning algoithms with o(

√
T)

regret guarantees. Our work is motivated by the popular setting of alternating play in two-player
games and raises some interesting open questions. The most natural ones is understanding whether

9

Õ(1) regret guarantees can be established the n-dimensional simplex as well as establishing o(
√
T)

for general convex losses.

Limitations: The current work is limited to the linear losses setting. Notice that the classic reduction
from convex to linear losses in Standard OLM no longer holds in Alternating OLM. Therefore the
generalization to general convex losses seems to require new techniques. We defer this study for
future work.

Acknowledgements

This work was supported by the Swiss National Science Foundation (SNSF) under grant number
200021_205011, by Hasler Foundation Program: Hasler Responsible AI (project number 21043)
and Innovation project supported by Innosuisse (contract agreement 100.960 IP-ICT). Luca Viano is
funded through a PhD fellowship of the Swiss Data Science Center, a joint venture between EPFL
and ETH Zurich. This research was also supported in part by the National Research Foundation,
Singapore and DSO National Laboratories under its AI Singapore Program (AISG Award No: AISG2-
RP-2020-016), grant PIESGP-AI-2020-01, AME Programmatic Fund (Grant No.A20H6b0151) from
A*STAR and Provost’s Chair Professorship grant RGEPPV2101.

References
[1] Ioannis Anagnostides, Constantinos Daskalakis, Gabriele Farina, Maxwell Fishelson, Noah

Golowich, and Tuomas Sandholm. Near-optimal no-regret learning for correlated equilibria in
multi-player general-sum games. In Stefano Leonardi and Anupam Gupta, editors, STOC ’22:
54th Annual ACM SIGACT Symposium on Theory of Computing, pages 736–749. ACM, 2022.

[2] Ioannis Anagnostides, Gabriele Farina, Christian Kroer, Chung-Wei Lee, Haipeng Luo, and
Tuomas Sandholm. Uncoupled learning dynamics with o(log T) swap regret in multiplayer
games. CoRR, abs/2204.11417, 2022.

[3] James P. Bailey, Gauthier Gidel, and Georgios Piliouras. Finite regret and cycles with fixed
step-size via alternating gradient descent-ascent. In Jacob D. Abernethy and Shivani Agarwal,
editors, Conference on Learning Theory, COLT 2020, 9-12 July 2020, Virtual Event [Graz,
Austria], volume 125 of Proceedings of Machine Learning Research, pages 391–407. PMLR,
2020.

[4] Aditya Bhaskara, Ashok Cutkosky, Ravi Kumar, and Manish Purohit. Online learning with
imperfect hints. In Proceedings of the 37th International Conference on Machine Learning,
ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning
Research, pages 822–831. PMLR, 2020.

[5] Aditya Bhaskara, Ashok Cutkosky, Ravi Kumar, and Manish Purohit. Logarithmic regret from
sublinear hints. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang,
and Jennifer Wortman Vaughan, editors, Advances in Neural Information Processing Systems
34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, pages
28222–28232, 2021.

[6] Aditya Bhaskara, Ashok Cutkosky, Ravi Kumar, and Manish Purohit. Power of hints for online
learning with movement costs. In Arindam Banerjee and Kenji Fukumizu, editors, The 24th
International Conference on Artificial Intelligence and Statistics, AISTATS 2021, volume 130 of
Proceedings of Machine Learning Research, pages 2818–2826. PMLR, 2021.

[7] Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge university
press, 2006.

[8] Antonin Chambolle and Thomas Pock. A first-order primal-dual algorithm for convex problems
with applications to imaging. J. Math. Imaging Vis., 40(1):120–145, 2011.

[9] Tatjana Chavdarova, Gauthier Gidel, François Fleuret, and Simon Lacoste-Julien. Reducing
noise in GAN training with variance reduced extragradient. In Hanna M. Wallach, Hugo
Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett,

10

editors, Advances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 391–401, 2019.

[10] Tatjana Chavdarova, Matteo Pagliardini, Sebastian U. Stich, François Fleuret, and Martin
Jaggi. Taming gans with lookahead-minmax. In 9th International Conference on Learning
Representations, ICLR 2021. OpenReview.net, 2021.

[11] Steve Chien and Alistair Sinclair. Convergence to approximate nash equilibria in congestion
games. In Nikhil Bansal, Kirk Pruhs, and Clifford Stein, editors, Proceedings of the Eighteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, New Orleans, Louisiana,
USA, January 7-9, 2007, pages 169–178. SIAM, 2007.

[12] Ashok Cutkosky and Francesco Orabona. Black-box reductions for parameter-free online
learning in banach spaces. In Conference On Learning Theory, pages 1493–1529. PMLR, 2018.

[13] Constantinos Daskalakis, Alan Deckelbaum, and Anthony Kim. Near-optimal no-regret algo-
rithms for zero-sum games. In Dana Randall, editor, Proceedings of the Twenty-Second Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, pages 235–254. SIAM, 2011.

[14] Constantinos Daskalakis, Maxwell Fishelson, and Noah Golowich. Near-optimal no-regret
learning in general games. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin,
Percy Liang, and Jennifer Wortman Vaughan, editors, Advances in Neural Information Process-
ing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS
2021, pages 27604–27616, 2021.

[15] Ofer Dekel, Arthur Flajolet, Nika Haghtalab, and Patrick Jaillet. Online learning with a hint. In
Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N.
Vishwanathan, and Roman Garnett, editors, Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems 2017, pages 5299–5308,
2017.

[16] John C. Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online
learning and stochastic optimization. In Adam Tauman Kalai and Mehryar Mohri, editors,
COLT 2010 - The 23rd Conference on Learning Theory, Haifa, Israel, June 27-29, 2010, pages
257–269. Omnipress, 2010.

[17] Liad Erez, Tal Lancewicki, Uri Sherman, Tomer Koren, and Yishay Mansour. Regret mini-
mization and convergence to equilibria in general-sum markov games. CoRR, abs/2207.14211,
2022.

[18] Gabriele Farina and Tuomas Sandholm. Model-free online learning in unknown sequential
decision making problems and games. In Thirty-Fifth AAAI Conference on Artificial Intelligence,
AAAI 2021.

[19] Gabriele Farina, Robin Schmucker, and Tuomas Sandholm. Bandit linear optimization for
sequential decision making and extensive-form games. In Thirty-Fifth AAAI Conference on
Artificial Intelligence, AAAI 2021.

[20] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. J. Comput. Syst. Sci., 55(1):119–139, 1997.

[21] Gauthier Gidel, Hugo Berard, Gaëtan Vignoud, Pascal Vincent, and Simon Lacoste-Julien.
A variational inequality perspective on generative adversarial networks. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019.

[22] Denizalp Goktas, Jiayi Zhao, and Amy Greenwald. Robust no-regret learning in min-max
stackelberg games. In 21st International Conference on Autonomous Agents and Multiagens
Systems, AAMAS 2022.

[23] Elad Hazan. Introduction to online convex optimization. Found. Trends Optim., 2(3-4):157–325,
2016.

11

[24] Elad Hazan and Satyen Kale. Extracting certainty from uncertainty: regret bounded by variation
in costs. Mach. Learn., 80(2-3):165–188, 2010.

[25] Elad Hazan and Nimrod Megiddo. Online learning with prior knowledge. In Nader H. Bshouty
and Claudio Gentile, editors, Learning Theory, 20th Annual Conference on Learning Theory,
COLT 2007, volume 4539 of Lecture Notes in Computer Science, pages 499–513. Springer,
2007.

[26] Yu-Guan Hsieh, Kimon Antonakopoulos, and Panayotis Mertikopoulos. Adaptive learning in
continuous games: Optimal regret bounds and convergence to nash equilibrium. In Mikhail
Belkin and Samory Kpotufe, editors, Conference on Learning Theory, COLT 2021, volume 134
of Proceedings of Machine Learning Research, pages 2388–2422. PMLR, 2021.

[27] Niklas T. Lauffer, Mahsa Ghasemi, Abolfazl Hashemi, Yagiz Savas, and Ufuk Topcu. No-regret
learning in dynamic stackelberg games. CoRR, abs/2202.04786, 2022.

[28] Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm. 108(2), 1994.

[29] Haipeng Luo and Robert E Schapire. Achieving all with no parameters: Adanormalhedge. In
Conference on Learning Theory, pages 1286–1304. PMLR, 2015.

[30] H Brendan McMahan. A survey of algorithms and analysis for adaptive online learning. The
Journal of Machine Learning Research, 18(1):3117–3166, 2017.

[31] H. Brendan McMahan. A survey of algorithms and analysis for adaptive online learning. J.
Mach. Learn. Res., 18:90:1–90:50, 2017.

[32] Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V Vazirani. Algorithmic game theory.
Cambridge university press, 2007.

[33] Peter Park, Martin Nowak, and Christian Hilbe. Cooperation in alternating interactions with
memory constraints. Nature Communications, 13:737, 02 2022.

[34] Alexander Rakhlin and Karthik Sridharan. Online learning with predictable sequences. In Shai
Shalev-Shwartz and Ingo Steinwart, editors, COLT 2013 - The 26th Annual Conference on
Learning Theory, volume 30 of JMLR Workshop and Conference Proceedings, pages 993–1019.
JMLR.org, 2013.

[35] Mehmet Fatih Sahin, Armin Eftekhari, Ahmet Alacaoglu, Fabian Latorre Gómez, and Volkan
Cevher. An inexact augmented lagrangian framework for nonconvex optimization with nonlinear
constraints. In Advances in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, pages 13943–13955, 2019.

[36] Vasilis Syrgkanis, Alekh Agarwal, Haipeng Luo, and Robert E. Schapire. Fast convergence of
regularized learning in games. In Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi
Sugiyama, and Roman Garnett, editors, Advances in Neural Information Processing Systems 28:
Annual Conference on Neural Information Processing Systems 2015, pages 2989–2997, 2015.

[37] Oskari Tammelin, Neil Burch, Michael Johanson, and Michael Bowling. Solving heads-up
limit texas hold’em. In Qiang Yang and Michael J. Wooldridge, editors, Proceedings of the
Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos
Aires, Argentina, July 25-31, 2015, pages 645–652. AAAI Press, 2015.

[38] Tim Van Erven and Wouter M Koolen. Metagrad: Multiple learning rates in online learning.
Advances in Neural Information Processing Systems, 29, 2016.

[39] Chen-Yu Wei, Haipeng Luo, and Alekh Agarwal. Taking a hint: How to leverage loss predictors
in contextual bandits? In Jacob D. Abernethy and Shivani Agarwal, editors, Conference on
Learning Theory, COLT 2020, 9-12 July 2020, Virtual Event [Graz, Austria], volume 125 of
Proceedings of Machine Learning Research, pages 3583–3634. PMLR, 2020.

[40] Andre Wibisono, Molei Tao, and Georgios Piliouras. Alternating mirror descent for constrained
min-max games. In NeurIPS, 2022.

12

[41] Guodong Zhang, Yuanhao Wang, Laurent Lessard, and Roger B. Grosse. Near-optimal local
convergence of alternating gradient descent-ascent for minimax optimization. In Gustau Camps-
Valls, Francisco J. R. Ruiz, and Isabel Valera, editors, International Conference on Artificial
Intelligence and Statistics, AISTATS 2022, volume 151 of Proceedings of Machine Learning
Research, pages 7659–7679. PMLR, 2022.

[42] Guojun Zhang and Yaoliang Yu. Convergence of gradient methods on bilinear zero-sum games.
In 8th International Conference on Learning Representations, ICLR 2020. OpenReview.net,
2020.

[43] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent.
In Tom Fawcett and Nina Mishra, editors, Machine Learning, Proceedings of the Twentieth
International Conference (ICML 2003), August 21-24, 2003, Washington, DC, USA, pages
928–936. AAAI Press, 2003.

[44] Martin Zinkevich, Michael Johanson, Michael H. Bowling, and Carmelo Piccione. Regret
minimization in games with incomplete information. In Advances in Neural Information Pro-
cessing Systems 20, Proceedings of the Twenty-First Annual Conference on Neural Information
Processing Systems, Vancouver, NIPS 2007, pages 1729–1736. Curran Associates, Inc., 2007.

13

A Omitted Proofs of Section 3

A.1 Auxilliary Lemmas

Lemma A.1. The log-barrier function R(x) = − log x− log(1− x) is 1-strongly convex in [0, 1].
More precisely, for all x, y ∈ [0, 1]

R(y) ≥ R(x) +R′(x)⊤(y − x) +
1

2
|x− y|2

Proof. Let f(x) := − log x then f ′(x) = − 1
x and f ′′(x) = 1

x2 . Since x ≤ 1 we get that f ′′(x) ≥ 1
and thus

f(y) ≥ f(x) + f ′(x)(y − x) +
1

2
(x− y)2

At the same time the function f(x) = − log(1− x) is convex in [0, 1]. This concludes the proof.

Lemma A.2. Let x := argminz∈[0,1] [γc · z +R(z)] and y := argminz∈[0,1] [γĉ · z +R(z)] where
R(·) is an 1-strongly convex function in R. Then,

|x− y| ≤ 2γ |c− ĉ|

Proof. By the strong convexity of the function γcT z +R(z) and first order optimality conditions for
x, we get that

γc⊤y +R(y) ≥ γc⊤x+R(x) +
1

2
|x− y|2

As a result, we get that

1

2
|x− y|2 ≤ γc · (y − x) +R(y)−R(x)

= γĉ · (y − x) + γ(c− ĉ) · (y − x) +R(y)−R(x)

≤ γ(c− ĉ) · (y − x)

which implies that |x− y| ≤ 2γ |c− ĉ|.

A.2 Proof of Lemma 3.2

Lemma 3.2. Let y1, . . . , yT ∈ ∆2 where yt := minx∈∆2

[
(ct + ct−1)⊤x+

∑t−1
s=1(c

s + cs−1)⊤x+R(x)/γ
]
.

Then,
∑T

t=1(c
t + ct−1)⊤xt −mini∈[2]

∑T
t=1(c

t
i + ct−1

i) ≤ 2 log T/γ + 2.

Proof. We start by rewrite the regret minimization problem over ∆2 as an equivalent one over [0, 1],
that is

T∑
t=1

(ct + ct−1)⊤(xt − x⋆) =

T∑
t=1

(ĉt + ĉt−1)⊤(xt
1 − x⋆

1)

where ĉt = ct1 − ct2. Moreover notice that

yt1 := argmin
p∈[0,1]

[
t∑

τ=1

(ĉτ + ĉτ−1)p− log p+ log(1− p)

γ

]
(4)

By the "Follow the Leader/Be the Leader" Lemma [7, Lemma 3.1] , we have that[
T∑

t=1

(ĉt + ĉt−1)yt1 −
log yt1 + log(1− yt1)

γ

]
≤ min

p∈[0,1]

[
T∑

t=1

(ĉt + ĉt−1)p− log p+ log(1− p)

γ

]
.

That implies [
T∑

t=1

(ĉt + ĉt−1)yt1

]
≤ min

p∈[0,1]

[
T∑

t=1

(ĉt + ĉt−1)p− log p+ log(1− p)

γ

]

14

Now let x⋆ = argminp∈[0,1]

∑T
t=1(ĉ

t + ĉt−1)p and let us subtract
∑T

t=1(ĉ
t + ĉt−1)x⋆ from both

sides[
T∑

t=1

(ĉt + ĉt−1)(yt1 − x⋆)

]
≤ min

p∈[0,1]

[
T∑

t=1

(ĉt + ĉt−1)p− log p+ log(1− p)

γ

]
−

T∑
t=1

(ĉt + ĉt−1)x⋆

In case x⋆ = 0, we upper bound the minimum on the right hand side with the same expression
evaluated at p := 1/T . As a result,[

T∑
t=1

(ĉt + ĉt−1)(yt1 − 0)

]
≤

T∑
t=1

(ĉt + ĉt−1)
1

T
−

log(1
T) + log(1− 1

T)

γ

≤ 2 +
log(T) + log(T

T−1)

γ
≤ 2 +

2 log T

γ
(5)

In case x⋆ = 1, we upper bound the minimum on the right hand side by the expression evaluated at
p := 1− 1/T . As a result,[

T∑
t=1

(ĉt + ĉt−1)(yt1 − 1)

]
≤

T∑
t=1

(ĉt + ĉt−1)

(
1− 1

T

)
−

log(1
T) + log(1− 1

T)

γ
−

T∑
t=1

(ĉt + ĉt−1)

≤ 2 +
log(T) + log(T

T−1)

γ
≤ 2 +

2 log T

γ
(6)

Therefore putting together Equation (5) and Equation (6), we can conclude that
∑T

t=1(c
t+ct−1)⊤xt−

mini∈[2]

∑T
t=1(c

t
i + ct−1

i) ≤ 2 log T/γ + 2.

A.3 Proof of Lemma 3.3

Before presenting the formal proof of Lemma 3.3 we present Lemma A.3 and Lemma A.4 that are
necessary for its proof.
Lemma A.3. Let xt as in Algorithm 2 and yt1 be the BTRL update as in Lemma 3.2 with R(x) =
− log x− log(1− x) and xt

1 be the update as in Algorithm 3. Then the following hold.

• |xt
1 − yt1| ≤ 8γ

• |xt
1 − xt+1

1 | ≤ 16γ

•
∣∣yt1 − yt+1

1

∣∣ ≤ 8γ

Proof. Notice that for any x, y ∈ ∆2 and cost vector c = (c1, c2) ∈ R2, we have that

c⊤(x− y) = c1(x1 − y1) + c2(x2 − y2) = c1(x1 − y1) + c2(−x1 + y1) = (x1 − y1)(c1 − c2).

This means that we can reduce the bidimensional update in Algorithm 2 as

xt
1 = argmin

p∈[0,1]

[
2(ct−1

1 − ct−1
2)p+

t−1∑
s=1

(cs1 − cs2 + cs−1
1 − cs−1

2)p− log p+ log(1− p)

γ

]
(7)

At this point, using strong convexity of the log barrier function (Lemma A.1), the form of the updates
in Equation (4) and Equation (7), we can invoke Lemma A.2 using x = xt

1 and y = yt1, this gives∣∣xt
1 − yt1

∣∣ ≤ 2γ
∣∣2ct−1

1 − 2ct−1
2 − ct1 − ct−1

1 + ct2 + ct−1
2

∣∣ ≤ 8γ

where we used that the cost sequence is in [−1, 1]. For the second fact, we invoke again Lemma A.2
but with x = xt

1 and y = xt+1
1 and we obtain∣∣xt

1 − xt+1
1

∣∣ ≤ 2γ
∣∣2ct−1

1 − 2ct−1
2 − ct1 − ct−1

1 + ct2 + ct−1
2 − 2ct1 + 2ct2

∣∣ ≤ 16γ

For the third fact, we use Lemma A.2 but with x = yt1 and y = yt+1
1 and we obtain∣∣yt1 − yt+1

1

∣∣ ≤ 2γ
∣∣ct+1

1 − ct+1
2 − ct1 + ct2

∣∣ ≤ 8γ

15

Lemma A.4. Let (x, y) ∈ [0, 1]2 and (x′, y′) ∈ [0, 1]2 such that |x − y| ≤ B , |x − y′| ≤ B,
|x′ − y| ≤ B and |x′ − y′| ≤ B with B ≤ 1

8 then

|A−1(x, y)−A−1(x′, y′)| ≤ 192|x− x′|+ 192|y − y′|

where A(x, y) = (xy)−1 − (1− x)−1(1− y)−1.

Proof. To simplify notation we denote xt := tx+ (1− t)x′ and yt := ty + (1− t)y′. Then

A−1(x, y)−A−1(x′, y′) =

∫ 1

0

⟨∇A−1(xt, yt), (x, y)− (x′, y′)⟩ ∂t

≤ max
t∈[0,1]

∥∇A−1(xt, yt)∥∞ · ∥(x, y)− (x′, y′)∥1 (8)

Let us focus on bounding ∥∇A−1(xt, yt)∥∞. Notice that∣∣∣∣∂A−1(xt, yt)

∂x

∣∣∣∣ ≤ 3

((1− xt)(1− yt) + xtyt)
2 . (9)

Now, notice that |xt − yt| ≤ t|x− y|+ (1− t)|x′ − y′| ≤ B. Using the latter we can lower bound
the denominator of Equation 9. More precisely,

(1− xt)(1− yt) + xtyt = x2
t + (1− xt)

2 + (2xt − 1)(yt − xt)

≥ 1

4
− |2xt − 1| |yt − xt|

≥ 1

4
−B

So for B ≤ 1
8 we obtain ∣∣∣∣∂A−1(xt, yt)

∂x

∣∣∣∣ ≤ 3 · 82 = 192.

By symmetricity, we can bound with analogous steps the partial derivative wrt to y and hence we get

∥∇A−1(xt, yt)∥∞ ≤ 192.

Plugging this bound back in Equation (8) concludes the proof.

Lemma 3.3. Let xt = (xt
1, x

t
2) ∈ ∆2 as in Algorithm 2 and yt = (yt1, y

t
2) ∈ ∆2 as in Lemma 3.2.

Then,
xt
1 − yt1 = γA−1(xt

1, y
t
1) ·
(
(ct1 − ct2)− (ct−1

1 − ct−1
2)

)
with A(x1, y1) := (x1y1)

−1+(1−x1)
−1(1−y1)

−1 and |A−1(xt
1, y

t
1)−A−1(xt+1

1 , yt+1
1)| ≤ O(γ).

Proof. In order to prove this Lemma 3.3, we use the equivalent one-dimensional description provided
in Equation 10.

xt
1 = argmin

p∈[0,1]

[
2(ct−1

1 − ct−1
2)p+

t−1∑
s=1

(cs1 − cs2 + cs−1
1 − cs−1

2)p− log p+ log(1− p)

γ

]
. (10)

Similarly the update of BTRL in Lemma 3.2 can be equivalently descirbed as,

yt1 = argmin
p∈[0,1]

[
t∑

s=1

(cs1 − cs2 + cs−1
1 − cs−1

2)p− log p+ log(1− p)

γ

]
. (11)

Since limp→∂[0,1] R(p) =∞ both xt
1, y

t
1 ∈ [0, 1] \ ∂[0, 1]. Therefore, the first order optimality for

Equation (7) requires that

2γ(ct−1
1 − ct−1

2) + γ

t−1∑
s=1

cs1 + cs−1
1 − (cs2 + cs−1

2)− 1

xt
1

+
1

1− xt
1

= 0 (12)

16

Using the same reasoning for the BTRL updates in Equation (4)

γ(ct1 − ct2) + γ(ct−1
1 − ct−1

2) + γ

t−1∑
s=1

(cs1 + cs−1
1)− (cs2 + cs−1

2)− 1

yt1
+

1

1− yt1
= 0. (13)

Now, subtracting Equation (12) to Equation (13), we obtain

γ(ct1 − ct2 − ct−1
1 + ct−1

2)− 1

yt1
+

1

xt
1

+
1

1− yt1
− 1

1− xt
1

= 0

that implies

γ(ct1 − ct2)− γ(ct−1
1 − ct−1

2) = (xt
1 − yt1)

(
1

xt
1y

t
1

+
1

(1− yt1)(1− xt
1)

)
︸ ︷︷ ︸

A(xt
1,y

t
1)

.

Therefore, we can express the difference between the updates as a function of the costs according to
the following formula

xt
1 − yt1 = γA−1(xt

1, y
t
1)
(
(ct1 − ct2)− (ct−1

1 − ct−1
2)

)
. (14)

We conclude the proof by establishing that∣∣A−1(xt
1, y

t
1)−A−1(xt+1

1 , yt+1
1)

∣∣ ≤ O(γ).
By Lemma A.3 we are ensured that

• |xt
1 − yt1| ≤ 8γ

• |xt
1 − xt+1

1 | ≤ 16γ

•
∣∣yt1 − yt+1

1

∣∣ ≤ 8γ

In case γ ≤ 1/(16 · 8) we are ensured that the conditions of Lemma A.4 are satisfied (B ≤ 1/8) and
thus ∣∣A−1(xt

1, y
t
1)−A−1(xt+1

1 , yt+1
1)

∣∣ ≤ 192(
∣∣xt

1 − xt+1
1

∣∣+ ∣∣yt1 − yt+1
1

∣∣)
Combining the latter with the guarantees of Lemma A.4 we get that∣∣A−1(xt

1, y
t
1)−A−1(xt+1

1 , yt+1
1)

∣∣ ≤ 192 · 24γ

17

B Omitted proofs for the n dimensional case.

B.1 Auxiliary Lemmas

Corollary B.1. i) Q(s, π, c) = q(s, π, c)⊤ · π(s) ii) c⊤xπ = Q(root, π, c).

Proof. For fact i) for any s ∈ Level(h), we have that

Q(s, π, c) =
∑
i∈L

Pr(s, i, π)ci

=
∑
i∈L

π(ℓ(s)|s)Pr(ℓ(s), i, π)ci +
∑
i∈L

π(r(s)|s)Pr(r(s), i, π)ci

= π(ℓ(s)|s)
∑
h∈L

Pr(ℓ(s), i, π)ci + π(r(s)|s)
∑
i∈L

Pr(r(s), i, π)ci

= π(ℓ(s)|s)Q(ℓ(s), π, c) + π(r(s)|s)Q(r(s), π, c)

= q(s, π, c)⊤ · π(s)
where the second last equality uses the fact that s ∈ Level(h) =⇒ ℓ(s), r(s) ∈ Level(h+ 1).

Finally, fact ii) follows trivially from the definition of xπ . Indeed, we have that

c⊤ · xπ =
∑
i∈L

xπ(i)ci =
∑
i∈L

Pr(root, i, π)ci = Q(root, π, c)

B.2 Proof of Lemma 3.8

Lemma 3.8. Let a leaf node i ∈ L and let p = (root = s1, . . . , sH = i) denotes the path from the
root to i. Then the following holds,

T∑
t=1

(ct + ct−1)⊤ · xπt

− 2

T∑
t=1

cti ≤
∑
sℓ∈p

Rloc(sℓ)

Proof. By Item 2 of Corollary B.1 and the fact that c0 = 0, we get
T∑

t=1

(ct + ct−1)⊤ · xπt

− 2

T∑
t=1

cti =

T∑
t=1

(
Q(root, πt, ct) +Q(root, πt, ct−1)−Q(i, πt, ct)−Q(i, πt, ct−1)

)
=

T∑
t=1

H−1∑
ℓ=1

(
Q(sℓ, π

t, ct) +Q(sℓ, π
t, ct−1)−Q(sℓ+1, π

t, ct)−Q(sℓ+1, π
t, ct−1)

)
=

T∑
t=1

H−1∑
ℓ=1

(
Q(sℓ, π

t, ct) +Q(sℓ, π
t, ct−1))

)
− min

α∈{ℓ(sℓ),r(sℓ)}

T∑
t=1

(
Q(α, πt, ct) +Q(α, πt, ct−1)

)
=

T∑
t=1

H−1∑
ℓ=1

(
q(sℓ, π

t, ct) + q(sℓ, π
t, ct−1)

)⊤ · πt(sℓ)

− min
α∈{ℓ(sℓ),r(sℓ)}

T∑
t=1

(
Q(α, πt, ct) +Q(α, πt, ct−1)

)
Corollary B.1

=
∑
sℓ∈p

Rloc(sℓ)

18

B.3 Proof of Lemma 3.9

Lemma 3.9. Let π1, . . . , πT the policies produced by Algorithm 3 then for any state s ∈ V ,
i) ∥πt(s)− πt−1(s)∥1 ≤ 48γ and ii) ∥q(s, πt, ct−1)− q(s, πt−1, ct−1)∥∞ ≤ 48γ log n.

Proof. We first establish that ∥πt(s)− πt−1(s)∥1 ≤ 48γ.

Let Q̄(s, π, c) := Q(ℓ(s), π, c)−Q(r(s), π, c) then policy update in Step 6 of Algorithm 3 admits
the following one dimensional form,

πt(ℓ(s)|s) = argmin
x∈[0,1]

[
2γ(Q̄(s, πt, ct) + Q̄(s, πt, ct−1)) + γ

t−1∑
τ=1

(Q̄(s, πτ , cτ) + Q̄(s, πτ , cτ−1)) +R(x)

]
.

Similarly for the policy πt−1,

πt−1(ℓ(s)|s) = argmin
x∈[0,1]

[
2γ(Q̄(s, πt−1, ct−1) + Q̄(s, πt−1, ct−2)) + γ

t−2∑
τ=1

(Q̄(s, πτ , cτ) + Q̄(s, πτ , cτ−1)) +R(x)

]
.

Using Lemma A.2 we get that,∣∣πt(ℓ(s)|s)− πt−1(ℓ(s)|s)
∣∣ ≤ 2γ

∣∣∣∣2Q̄(s, πt, ct) + 2Q̄(s, πt, ct−1) + Q̄(s, πt−1, ct−1) + Q̄(s, πt−1, ct−2)

− 2Q̄(s, πt−1, ct−1)− 2Q̄(s, πt−1, ct−2)

∣∣∣∣ ≤ 24γ

where the last inequality comes from the fact that −1 ≤ Q(s, π, c) ≤ 1 and thus
∣∣Q̄(s, π, c)

∣∣ ≤ 2.

Up next we establish that

∥q(s, πt, ct−1)− q(s, πt−1, ct−1)∥∞ ≤ 48γ log n.

To simplify notation we let h0 denote the depth of state s0 ∈ V . Up next we prove that

∥q(s0, πt, ct−1)− q(s0, π
t−1, ct−1)∥∞ ≤ 48γ log n.

In order to prove the latter we deploy a coupling argument by considering two correlated random
walks (s0, s0), (s1, s′1), . . . , (sH , s′H) where both walks are initialized at (s0, s0) while at each level
h ∈ {h0, . . . ,H − 1}, the first walk marginally follows policy π ∈ ∆2 while the second walk
marginally follows π′ ∈ ∆2.

More precisely, let (sh, s′h) the pair of nodes visited respectively by the first and the second walk at
level h ∈ {h0, . . . ,H−1}. Then the next pair of nodes (sh, s′h) follow the following joint probability
distribution.

• In case s′h ̸= sh: The next pair of nodes (sh+1, s
′
h+1) are independent random variables

respectively following π(sh) ∈ ∆2 and π′(s′h) ∈ ∆2. More precisely,

sh+1 =

{
ℓ(sh) w.p. π(ℓ(sh)|sh)
r(sh) w.p. 1− π(ℓ(sh)|sh)

and s′h+1 =

{
ℓ(s′h) w.p. π′(ℓ(s′h)|s′h)
r(s′h) w.p. 1− π′(ℓ(s′h)|s′h)

• In case sh = s′h = s and π(ℓ(s)|s) ≤ π′(ℓ(s)|s): Then the next pair of nodes (sj , s′h) fol-
lows the joint probability distribution,

(sh+1, s
′
h+1) =

(ℓ(s), ℓ(s)) w.p. π(ℓ(s)|s)
(r(s), ℓ(s)) w.p. π′(ℓ(s)|s)− π(ℓ(s)|s)
(r(s), r(s)) w.p. 1− π′(ℓ(s)|s)

• In case sh = s′h = s and π(ℓ(s)|s) ≥ π′(ℓ(s)|s): Then the next pair of nodes (sj , s′h) fol-
lows the joint probability distribution,

(sh+1, s
′
h+1) =

(ℓ(s), ℓ(s)) w.p. π′(ℓ(s)|s)
(ℓ(s), r(s)) w.p. π(ℓ(s)|s)− π′(ℓ(s)|s)
(r(s), r(s)) w.p. 1− π(ℓ(s)|s)

19

The above joint random walk, guarantees that the first random walk (resp. the second) follows policy
π (resp. π′ for the second coordinate). More precisely,

Pr [sh+1 = ℓ(s) | sh = s] = π(ℓ(s)|s) and Pr
[
s′h+1 = ℓ(s) | s′h = s

]
= π′(ℓ(s)|s)

As a result,
E [ci − ci′] = Q(s0, π, c)−Q(s0, π

′, c)

where (i, i′) ∈ L × L denotes the pair of leaves reached by the joint random walk initialized at
s0 ∈ V/L.

|Q(s0, π, c)−Q(s0, π
′, c)| = |E [ci − ci′]| ≤ E [|ci − ci′ |]

=

H−1∑
h=h0

∑
s∈Level(h)

E
[
|ci − ci′ | |s′h+1 ̸= sh+1, s

′
h = sh = s

]
P
[
s′h+1 ̸= sh+1, s

′
h = sh = s

]
≤ 2

H−1∑
h=h0

∑
s∈Level(h)

P
[
s′h+1 ̸= sh+1, s

′
h = sh = s

]
= 2

H−1∑
h=h0

∑
s∈Level(h)

P
[
s′h+1 ̸= sh+1|s′h = sh = s

]
P [s′h = sh = s]

≤ 2

H−1∑
h=h0

∑
s∈Level(h)

|π(ℓ(s)|s)− π′(ℓ(s)|s)|P [s′h = sh = s]

where in the second equality we used the fact that
{
s′h+1 ̸= sh+1, s

′
h = sh = s

}
s∈V,h∈[H]

are disjoint
events.

By setting π′ = πt and π = πt−1 we get that

∣∣Q(s0, π
t, c)−Q(s0, π

t−1, c)
∣∣ ≤ 2

H−1∑
h=h0

∑
s∈Level(h)

∣∣πt(ℓ(s)|s)− πt−1(ℓ(s)|s)
∣∣P [s′h = sh = s]

≤ 48γ

H−1∑
h=h0

∑
s∈Level(h)

P [s′h = sh = s]

= 48γ

H−1∑
h=h0

1 = 48γ log n

Finally,

∥q(s0, πt, ct−1)− q(s0, π
t−1, ct−1)∥∞ = max

α∈{ℓ(s0),r(s0)}

∣∣Q(α, πt, ct−1)−Q(α, πt−1, ct−1)
∣∣ ≤ 48γ log n.

B.4 Proof of Lemma 3.10

Lemma 3.10. Let γ := O
(
log1/3 T/(T 1/3 log1/3 n)

)
in Algorithm 3 then RT

loc(s) ≤

O
(
log2/3 T · log1/3 n · T 1/3

)
for all s ∈ V .

Proof. Let the step-size γ > 0 of Algorithm 3 defined as γ := 1
32·8

(
log(T)
T logn

) 1
3

. Let us also introduce
the BTRL update for state s that is

π̃t(s) := argmin
x∈∆2

[
t∑

τ=1

(
q(s, πτ , cτ−1) + q(s, πτ , cτ)

)⊤
x+R(x)/γ

]
(15)

20

We can bound two separate sources of regret, according to the decomposition

RT
loc(s) =

T∑
t=1

(
q(s, πt, ct) + q(s, πt−1, ct)

)⊤ · π̃t(s)− min
α∈{ℓ(s),r(s)}

T∑
t=1

(
Q(α, πt, ct) +Q(α, πt−1, ct)

)
︸ ︷︷ ︸

Term I

+

T∑
t=1

(
q(s, πt, ct) + q(s, πt−1, ct)

)⊤ · (πt(s)− π̃t(s)
)

︸ ︷︷ ︸
Term II

(16)

First, we recognize that Term I is the BTRL local regret, therefore applying Lemma 3.2, we have

Term I ≤ O
(
log T

γ

)

Then, it remains to bound the term that quantifies the closeness between πt and π̃t, that is

T∑
t=1

(
q(s, πt, ct) + q(s, πt−1, ct)

)⊤ · (πt(s)− π̃t(s)
)

Let Q̄(s, π, c) := Q(ℓ(s), π, c)−Q(r(s), π, c) then by using Corollary B.1 we get that

T∑
t=1

(
q(s, πt, ct) + q(s, πt−1, ct)

)⊤·(πt(s)− π̃t(s)
)
=

T∑
t=1

[
Q̄(s, πt, ct) + Q̄(s, πt, ct−1)

]
·
[
πt(ℓ(s)|s)− π̃t(ℓ(s)|s)

]
(17)

At the same time by Lemma 3.3 we get that

πt(ℓ(s)|s)− π̃t(ℓ(s)|s) = γ
Q̄(s, πt, ct)− Q̄(s, πt, ct−1)

A(πt(ℓ(s)|s), π̃t(ℓ(s)|s))
(18)

Hence combining Equation 17 with Equation 18 we obtain

T∑
t=1

(
q(s, πt, ct) + q(s, πt−1, ct)

)⊤ · (πt(s)− π̃t(s)
)
= γ

T∑
t=1

Q̄2(s, πt, ct)− Q̄2(s, πt, ct−1)

A(πt(ℓ(s)|s), π̃t(ℓ(s)|s))

At this point, we notice that unfortunately we can not rearrange the sum easily because of the term
Q̄2(s, πt, ct−1) that depends on both indices t and t− 1. To go around this issue, we add and subtract
the term Q̄2(s,πt−1,ct−1)

A(πt(ℓ(s)|s),π̃t(ℓ(s)|s)) ,

T∑
t=1

(
q(s, πt, ct) + q(s, πt−1, ct)

)⊤ · (πt(s)− π̃t(s)
)
= γ

T∑
t=1

Q̄2(s, πt, ct)− Q̄2(s, πt−1, ct−1)

A(πt(ℓ(s)|s), π̃t(ℓ(s)|s))

+ γ

T∑
t=1

Q̄2(s, πt−1, ct−1)− Q̄2(s, πt, ct−1)

A(πt(ℓ(s)|s), π̃t(ℓ(s)|s))
.

(19)

Now we bound the first term. Notice that the assumption of Lemma A.4 are satisfied with B = 32γ
and that γ ≤ (8 · 32)−1 ensures B ≤ 1

8 . , Therefore, rearranging the sum and invoking Lemma A.4

21

for x = πt, y = π̃t, x′ = πt+1, y′ = π̃t+1, we get

γ

T∑
t=1

Q̄2(s, πt, ct)− Q̄2(s, πt−1, ct−1)

A(πt(ℓ(s)|s), π̃t(ℓ(s)|s))
= γ

T−1∑
t=1

(
Q̄2(s, πt, ct)

A(πt(ℓ(s)|s), π̃t(ℓ(s)|s))
− Q̄2(s, πt, ct)

A(πt+1(ℓ(s)|s), π̃t+1(ℓ(s)|s))

)
+ γ

Q̄2(s, πT , cT)

A(πT (ℓ(s)|s), π̃T (ℓ(s)|s))

= γ

T−1∑
t=1

(
1

A(πt(ℓ(s)|s), π̃t(ℓ(s)|s))
− 1

A(πt+1(ℓ(s)|s), π̃t+1(ℓ(s)|s))

)
Q̄2(s, πt, ct)

+ γ
Q̄2(s, πT , cT)

A(πT (ℓ(s)|s), π̃T (ℓ(s)|s))
Lemma A.4
≤ 192γ

T−1∑
t=1

Q̄2(s, πt, ct)
(∣∣πt(ℓ(s)|s)− πt+1(ℓ(s)|s)

∣∣+ ∣∣π̃t(ℓ(s)|s)− π̃t+1(ℓ(s)|s)
∣∣)

+ γQ̄2(s, πT , cT)
∣∣A−1(πT (ℓ(s)|s), π̃T (ℓ(s)|s))

∣∣
Lemma A.3
≤ 192γ

T−1∑
t=1

Q̄2(s, πt, ct) (24γ + 4γ) + γQ̄2(s, πT , cT)
∣∣A−1(πT (ℓ(s)|s), π̃T (ℓ(s)|s))

∣∣
≤ 4 · 192 · 28γ2T + 32γ

where in the last inequality we used Q̄2(s, πt, ct) ≤ 4 ∀t and A(πT (ℓ(s)|s), π̃T (ℓ(s)|s)) ≥ 1
8 .

Then, for the second term in Equation (19), we use the second fact of Lemma 3.9. In more details,
we have that

γ

T∑
t=1

Q̄2(s, πt−1, ct−1)− Q̄2(s, πt, ct−1)

A(πt(ℓ(s)|s), π̃t(ℓ(s)|s))

= γ

T∑
t=1

(
Q̄(s, πt−1, ct−1) + Q̄(s, πt, ct−1)

)
·
(
Q̄(s, πt−1, ct−1)− Q̄(s, πt, ct−1)

)
A(πt(ℓ(s)|s), π̃t(ℓ(s)|s))

≤ γ

T∑
t=1

∣∣Q̄(s, πt−1, ct−1) + Q̄(s, πt, ct−1)
∣∣︸ ︷︷ ︸

≤4

∣∣Q̄(s, πt−1, ct−1)− Q̄(s, πt, ct−1)
∣∣ ∣∣A−1(πt(ℓ(s)|s), π̃t(ℓ(s)|s))

∣∣︸ ︷︷ ︸
≤8

≤ 32γ

T∑
t=1

∣∣Q̄(s, πt−1, ct−1)− Q̄(s, πt, ct−1)
∣∣

Lemma 3.9
≤ 32 · 48γ2T log n.

Therefore
Term II ≤ 4 · 192 · 28γ2T + 32 · 48γ2T log n+ 32γ.

Therefore, neglecting constants, and plugging in the bounds in Equation (16), we obtain

RT
loc(s) ≤ O

(
log T

γ
+ γ2T log n

)
Therefore by our selection of γ := O

(
log1/3 T/(T 1/3 log1/3 n)

)
we get

RT
loc(s) ≤ O

(
(log(T))

2
3 (log n)

1
3T

1
3

)

B.5 Proof of Therem 2.3

Theorem 2.3. Let D be the n-dimensional simplex, D = ∆n. There exists an online learning
algorithm A (Algorithm 3) such that for any cost-vector sequence c1, . . . , cT ∈ [−1, 1]n,

T∑
t=1

(ct−1 + ct)⊤xt − min
x∗∈D

T∑
t=1

(ct−1 + ct)⊤x∗ ≤ O
(
T 1/3 · log4/3 (nT)

)

22

where xt = At(c
1, . . . , ct−1).

Proof. By Lemma 3.8 we obtain thatRalt(T) ≤ Hmaxs∈V RT
loc(s)

Then, recalling that by construction H = log n and using the bound onRT
loc(s) in Lemma 3.10 gives

Ralt(T) ≤ (log n) · O
(
(log(T))

2
3 (log n)

1
3T

1
3

)
= O

(
(log(T))

2
3 (log n)

4
3T

1
3

)

C Omitted Proof of Section 4

In this section we present the omitted proofs of Section 4.

C.1 Proof of Lemma 4.1

To simplify notation we denote ĉt := ct+ct−1 for t ≥ 1 where c0 = (0, . . . , 0). Moreover we denote
with ∥·∥ the euclidean norm ∥·∥2. Adaptive FTRL (Algorithm 5) admits the following equivalent
form.

Algorithm 5 Adaptive FTRL

1: for round t = 1, . . . , T do

2: The learner computes r0:t−1 ←
√
1 +

∑t−1
s=1 ∥ĉs∥

3: The learner plays wt ← argmin∥x∥≤1

[∑t−1
s=1 ĉ

⊤
t x+ r0:t−1

2 ∥x∥2
]

4: The adversary selects cost ĉt with ∥ĉt∥2 ≤ 2 and the learner receives cost ĉ⊤t · xt.
5: end for

Lemma C.1 ([5]). Let w1, . . . , wT ∈ B(0, 1) the sequence of points produced by Adaptive FTRL

given as input the cost-vector sequence ĉ1, . . . , ĉT and x∗ := argminx∈B(0,1)

[∑T
t=1 ĉ

⊤
t x
]
. Then

for any index S ∈ [T],
S∑

t=1

ĉ⊤t (wS+1 − x∗) +

T∑
t=S+1

ĉ⊤t (wt − x∗) ≤ r0:S
2

(
∥x∗∥2 − ∥wS+1∥2

)
+

T∑
t=S+1

[rt
2

(
∥x∗∥2 − ∥wt+1∥2

)]
+

T∑
t=S+1

ĉ⊤t (wt − wt+1)

where rt = r0:t − r0:t−1 for t ≥ 1.

Proof. Let ft(x) := ĉ⊤t x + rt
2 ∥x∥

2 where r0 = 1 and ĉ0 = 0. Let us also define f0:t(x) :=∑t
t=0 ft(x). Since ĉ0 = 0 we get that f0:t(x) =

∑t
s=1 ĉ

⊤
s x + r0:t

2 ∥x∥
2 and thus wt+1 :=

argminx∈B(0,1)f0:t(x). Then,

f0:T (x
∗) ≥ f0:T (wT+1)

= fT (wT+1) + f0:T−1(wT+1)

≥ fT (wT+1) + f0:T−1(wT)

≥
T∑

t=S+1

ft(wt+1) + f0:S(wS+1)

As a result we get that,
T∑

t=0

(
ĉ⊤t x

∗ +
rt
2
∥x∗∥2

)
≥

T∑
t=S+1

(
ĉ⊤t wt+1 +

rt
2
∥wt+1∥2

)
+

S∑
t=0

(
ĉ⊤t wS+1 +

rt
2
∥wS+1∥2

)

23

By rearranging the terms and using the fact that ĉ0 = 0 and r0 = 1 we get that,
S∑

t=1

ĉ⊤t (wS+1 − x∗) +

T∑
t=S+1

ĉ⊤t (wt − x∗) ≤ r0:S
2

(
∥x∗∥2 − ∥wS+1∥2

)
+

T∑
t=S+1

[rt
2

(
∥x∗∥2 − ∥wt+1∥2

)]
+

T∑
t=S+1

ĉ⊤t (wt − wt+1)

Lemma C.2 ([6]). Let w1, . . . , wT ∈ B(0, 1) the sequence of points produced by Adaptive FTRL

given as input the cost-vector sequence ĉ1, . . . , ĉT and x∗ := argminx∈B(0,1)

[∑T
t=1 ĉ

⊤
t x
]
. Then,

T∑
t=1

ĉ⊤t wt −
T∑

t=1

ĉ⊤t x
∗ ≤ 4.5

√√√√1 +

T∑
t=1

∥ĉt∥2

Proof. Applying Lemma C.1 with S = 0 we get that,
T∑

t=1

ĉ⊤t (wt − x∗) ≤
T∑

t=1

rt
2

(
∥x∗∥2 − ∥wt+1∥2

)
+

T∑
t=1

ĉ⊤t (wt − wt+1) (20)

≤ r0:T
2

+

T∑
t=1

ĉ⊤t (wt − wt+1) (21)

≤ 0.5

√√√√1 +

T∑
t=1

∥ĉt∥2 +
T∑

t=1

ĉ⊤t (wt − wt+1) (22)

Up next we bound the second term. Let ft(x) := ĉ⊤t x+
rt
2 . By Lemma 7 in [31] for f1 := f0:t−1 and

f2 := f0:t. Since f1 is 1-strongly convex with respect to the norm r0:t−1∥x∥2 and f2 − f1 is convex
and 2∥ct∥-Lipschitz. Then since wt := argminx∈B(0,1)f1(x) and wt+1 := argminx∈B(0,1)f2(x),
Lemma 7 in [31] implies that

∥wt − wt+1∥ ≤
2∥ĉt∥
r0:t−1

≤ 2∥ĉt∥√
1 +

∑t−1
s=1 ∥ĉs∥2

As a result, we get that

ĉ⊤t (wt − wt+1) ≤ ∥ĉt∥∥wt − wt+1∥ ≤
2∥ĉt∥2√

1 +
∑t−1

s=1 ∥ĉs∥2
≤ 2∥ĉt∥2√

1 +
∑t

s=1 ∥ĉs∥2

Summing from t = 1 to T , we get that

T∑
t=1

ĉ⊤t (wt − wt+1) ≤ 4

√√√√1 +

T∑
t=1

∥ĉt∥2

Lemma C.3. Let w1, . . . , wT ∈ B(0, 1) the sequence of points produced by Adaptive FTRL given as
input the cost-vector sequence ĉ1, . . . , ĉT . Let any round t∗ ∈ [T] such that for all t ≥ t∗ + 1,

∥
t∑

s=1

ĉs∥ ≥
1

4
∥ĉs∥2 and

t∑
s=1

∥ĉs∥2 ≥ 17

Then ∥wt∥ = 1 for all t ≥ t∗ + 1 and additionally,
T−1∑
t=t∗

ĉ⊤t · (wt − wt+1) ≤ log (1 + T) .

24

Proof. To simplify notation we denote σ̂t := ∥ĉt∥2 Moreover we denote ĉ1:t =
∑t

s=1 ĉs and
σ̂1:t =

∑t
s=1 σ̂s. By the definition of t∗ ∈ [T] we know that for all t ≥ t∗ + 1,

∥ĉ1:t∥√
1 + σ̂1:t

≥ σ̂1:t

4
√
1 + σ̂1:t

≥ 1

where the last inequality follows by the fact that σ1:t ≥ 17. Since wt ∈ B(0, 1) the latter implies that
∥wt∥ = 1 for all t ≥ t∗ + 1 and thus,

wt = −
ĉ1:t−1

∥ĉ1:t−1∥
and wt+1 = − ĉ1:t

∥ĉ1:t∥

∥wt − wt+1∥ = ∥ ĉ1:t−1

∥ĉ1:t−1∥
− ĉ1:t
∥ĉ1:t∥

∥

≤ ∥ ĉ1:t−1

∥ĉ1:t−1∥
− ĉ1:t−1

∥ĉ1:t∥
∥+ ∥ ĉ1:t−1

∥ĉ1:t∥
− ĉ1:t
∥ĉ1:t∥

∥

≤ ∥ĉ1:t−1∥ · ∥
1

∥ĉ1:t−1∥
− 1

∥ĉ1:t∥
∥+ ∥ĉt∥
∥ĉ1:t∥

≤ ∥ĉ1:t∥ − ∥ĉ1:t−1∥
∥ĉ1:t∥

+
∥ĉt∥
∥ĉ1:t∥

≤ 2
∥ĉt∥
∥ĉ1:t∥

where the last inequality follows by the triangle inequality, ∥ĉ1:t∥ ≤ ∥ĉ1:t−1∥+ ∥ĉt∥. As a result,

∥wt − wt+1∥ ≤
2∥ĉt∥
∥ĉ1:t∥

≤ 8∥ĉt∥
σ̂1:t

where the last inequality follows by the fact that t ≥ t∗ + 1 and thus ∥ĉ1:t∥ ≥ 1
4 σ̂1:t. Finally we get

that,
T∑

t=t∗+1

ĉ⊤t (wt − wt+1) ≤
T∑

t=t∗+1

∥ĉt∥∥wt − wt+1∥

≤
T∑

t=t∗+1

8∥ĉt∥2

1 + σ̂1:t

≤
T∑

t=t∗+1

8σ̂t

1 + σ̂1:t

≤ log

(
1 +

T∑
t=t∗+1

σ̂t

)
≤ log (1 + T)

We conclude the section with the proof of Lemma 4.1. We restate the theorem so as to be consistent
with the notation of the section.
Lemma 4.1. Let w1, . . . , wT ∈ B(0, 1) the sequence of points produced by Adaptive FTRL given as
input the cost-vector sequence ĉ1, . . . , ĉT . Let t1 denote the maximum index such that

t1∑
t=1

ĉ⊤t wt ≥ −
1

4

t1∑
t=1

∥ĉt∥2.

Then the followig holds,

T∑
t=1

ĉ⊤t wt − min
x∈B(0,1)

T∑
t=1

ĉ⊤t x ≤ 4

√√√√1 +

t1∑
t=1

∥ĉt∥2 +O (log T)

25

Proof. Let t2 denotes the maximum index such that
∑t

s=1 ĉ
⊤
s ws ≤ −∥ĉ1:t∥ and t3 the maximum

index such that σ̂1:t ≤ 17 (as in the proof of Lemma C.3). We consider the following 3 mutually
exclusive case,

• t2 ≥ max(t1, t3):

Due to the fact that t2 ≥ t1 we have that for any t ≥ t2 + 1,

−∥ĉ1:t∥ ≤
t∑

s=1

ĉ⊤s ws ≤ −
1

4
σ̂1:t

where the first inequality follows by the definition of t2 while the second by the definition
of t1,

∑t
s=1 ĉ

⊤
s ws ≤ − 1

4 σ̂1:t for all t ≥ t1 + 1. Since t2 ≥ t3 we additionally get that
σ̂1:t ≥ 17 for all t ≥ t2 + 1. As a result,

∥ĉ1:t∥ ≥
1

4
σ̂1:t and σ̂1:t ≥ 17 for all t ≥ t2 + 1

Meaning that the conditions of Lemma C.3 are satisfied for all t ≥ t2 + 1 and thus
T∑

t=t2+1

ĉ⊤t (wt − wt+1) ≤ log (1 + T) and ∥wt∥ = 1 for all t ≥ t2 + 1 (23)

Up next we analyze the regret of Adaptive FTRL,
T∑

t=1

ĉ⊤t (wt − x∗) =

t2∑
t=1

ĉ⊤t (wt − x∗) +

T∑
t=t2+1

ĉ⊤t (wt − x∗) (24)

=

t2∑
t=1

ĉ⊤t (wt − xt2+1) +

t2∑
t=1

ĉ⊤t (wt2+1 − x∗)

+

T∑
t=t2+1

ĉ⊤t (wt − x∗) (25)

≤ −∥ĉ1:t2∥ −
t2∑
t=1

ĉ⊤t xt2+1 +

t2∑
t=1

ĉ⊤t (xt2+1 − x∗)

+

T∑
t=t2+1

ĉ⊤t (wt − x∗) (26)

≤
t2∑
t=1

ĉ⊤t (wt2+1 − x∗) +

T∑
t=t2+1

ĉ⊤t (wt − x∗) (27)

≤ r0:t2
2

(∥x∗∥2 − ∥wt2+1∥2)

+

T∑
t=t2+1

rt
2
(∥x∗∥2 − ∥wt+1∥2) +

T∑
t=t2+1

ĉ⊤t (wt − wt+1) (28)

=
r0:t2
2

(∥x∗∥2 − 1) +

T∑
t=t2+1

rt
2
(∥x∗∥2 − 1)

+

T∑
t=t2+1

ĉ⊤t (wt − wt+1) (29)

≤
T∑

t=t2+1

ĉ⊤t (wt − wt+1) ≤ log (1 + T) (30)

where Inequality (9) follows by the definition of t2 i.e.
∑t2

t=1 ĉ
⊤
t x

t ≤ −∥ĉ1:t2∥. Inequal-
ity (10) follows by the fact that

∑t2
t=1 ĉ

⊤
t xt2+1 ≥ −ĉ1:t2 . Inequality (11) follows by

applying Lemma C.1 for S := t2. Equality (12) and Inequality (13) follow by Equation 23.

26

• t1 ≥ max(t2, t3): By using the exact same arguments as above we can establish that

T∑
t=t2+1

ĉ⊤t (x
t − xt+1) ≤ log (1 + T) and ∥xt∥2 = 1 for all t ≥ t1 + 1 (31)

Using the exact same arguments as above we conclude that
T∑

t=1

ĉ⊤t (wt − x∗) =

t1∑
t=1

ĉ⊤t (wt − x∗) +

T∑
t=t1+1

ĉ⊤t (wt − x∗)

=

t1∑
t=1

ĉ⊤t (wt − wt1+1) +

t1∑
t=1

ĉ⊤t (wt1+1 − x∗) +

T∑
t=t1+1

ĉ⊤t (wt − x∗)

≤ 4.5
√
1 + σ̂1:t1 ++

t1∑
t=1

ĉ⊤t (wt1+1 − x∗) +

T∑
t=t1+1

ĉ⊤t (wt − x∗)

≤ 4.5
√
1 + σ1:t1 + log(1 + T)

where the first inequality follows by applying Lemma C.2 for T = t1 and the second by
repeating Inequalities (11)− (15).

• t2 ≥ max(t1, t3): By the exact same arguments as in the previous case,

T∑
t=1

ĉ⊤t (wt − x∗) ≤ 4.5
√
1 + σ1:t3 + log (1 + T) ≤ 4.5

√
18 + log (1 + T)

where the last inequality follows by the fact that σ1:t3 ≤ 17 (definition of t3).

As a result, we have established that in any case,

T∑
t=1

ĉ⊤t (wt − x∗) ≤ 4.5

√√√√1 +

t1∑
t=1

∥ĉt∥22 + log (1 + T) + 4.5
√
18

C.2 Proof of Lemma 4.3

To simplify notation we summarize the Step 7 of Algorithm 4 in Algorithm 6.

Algorithm 6 OGD with Shrinking Domain

1: p1 ← 0, D1 ← [0, 1]

2: for t = 1 . . . T do
3: The learner plays pt ∈ Dt

4: The adversary selects zt and σt ≤ 1.

5: The learner updates the interval Dt ⊆ [0, 1] as follows,

Dt ←

0,min

1,
λ√

1 +
∑t

s=1 σs

and its actions pt+1 ∈ [0, 1] as follows

pt+1 ← [pt − ηt · zt]Dt

6: end for

Remark C.4. We remark that Algorithm 6 corresponds to Step 7 of Algorithm 4 once

λ := 20, zt := (ct + ct−1)⊤ · (wt + ct−1) and σt := ∥ct + ct−1∥2

27

Definition C.5. A sequence q1, . . . , qT ∈ [0, 1] is valid in hindsight if and only if there exists a round
t∗ ∈ [T] and a δ ∈ [0, 1] such that the following hold,

1. qt = δ · I [t ≤ t1] (qt = δ for all t ≤ t∗ and qt = 0 for all t ≥ t∗ + 1).

2. At the switching point t∗ ∈ [T],

δ2 ≤ λ2

1 +
∑t∗

t=1 σt

In Theorem C.6 we present the payoff guarantees of Algorithm 6 with respect to any sequence qt that
is valid in hindsight.
Theorem C.6 ([5]). Let p1, . . . , pT ∈ [0, 1] a sequence of points produced by Algorithm 6 given as
input the sequence (z1, σ1), . . . , (zT , σT). In case z2t ≤ 4σt for all rounds t ∈ [T] then for any valid
in hindsight sequence q1, . . . , qT ∈ [0, 1] (Definition C.5) the following holds,

T∑
t=1

zt(pt − qt) ≤ λ

(
1 + 3 log

(
1 +

T∑
t=1

σt

))

We conclude the section with the proof of Lemma 4.3.
Lemma 4.3. Let the sequence of cost-vector c1, . . . , cT given to Algorithm 4 and the produced
sequences x1, . . . , xt ∈ ∆n and p1, . . . , pT ∈ (0, 1). Additionally let t1 denote the maximum time
such that

t∑
s=1

(cs + cs−1)⊤ · ws ≥ −
1

4

t∑
s=1

∥cs + cs−1∥22

and consider the sequence qt := I [t ≤ t1] ·
(
20/
√
400 +

∑t1
t=1 ∥ct + ct−1∥22

)
. Then the following

holds,

T∑
t=1

(ct−1 + ct)⊤(wt + ct−1) · qt −
T∑

t=1

(ct−1 + ct)⊤(wt + ct−1) · pt ≤ O(log T)

Proof. The sequence qt is a valid sequence with switching point t∗ := t1 and

δ :=
20√

400 +
∑t1

t=1 ∥ct + ct−1∥22

Now the sequence pt produced by Algorithm 4 in Steps 7 and Steps 8 can be viewed as the output of
Algorithm 6 with of the input sequence zt := (ct + ct−1)⊤ · (wt + ct−1) and σt := ∥ct + ct−1∥2.
Since

δ2 ≤ λ2

1 +
∑t∗

t=1 σt

Lemma 4.3 follows by Theorem C.6.

28

	Introduction
	Standard and Alternating Online Linear Minimization
	Alternating OLO and Alternating Game-Play
	Our Contribution and Techniques
	Further Related Work

	Preliminaries
	Standard and Alternating Online Linear Minimization
	Alternating Game-Play

	The Simplex case
	The n-Dimensional Simplex

	The Ball case
	Proof of Theorem 2.4

	Conclusion
	Omitted Proofs of Section 3
	Auxilliary Lemmas
	Proof of Lemma 3.2
	Proof of Lemma 3.3

	Omitted proofs for the n dimensional case.
	Auxiliary Lemmas
	Proof of Lemma 3.8
	Proof of Lemma 3.9
	Proof of Lemma 3.10
	Proof of Therem 2.3

	Omitted Proof of Section 4
	Proof of Lemma 4.1
	Proof of Lemma 4.3

