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Aerodynamic shape optimization (ASO) is a key technique in aerodynamic designs, aimed at
enhancing an object’s physical performance while adhering to specific constraints. Traditional
parameterization methods for ASO often require substantial manual tuning and are only limited
to surface deformations. This paper introduces the Deep Geometric Mapping (DeepGeo) model,
a fully automatic neural-network-based parameterization method for complex geometries. Deep-
Geo utilizes its universal approximation capability to provide large shape deformation freedom
with global shape smoothness, while achieving effective optimization in high-dimensional design
spaces. Additionally, DeepGeo integrates volumetric mesh deformation, simplifying the ASO
pipeline. By eliminating the need for extensive datasets and hyperparameter tuning, DeepGeo
significantly reduces implementation complexity and cost. Multiple case studies using the same
parameterization settings, including the two-dimensional circle-to-airfoil optimization, the
three-dimensional CRM wing optimization, and the Blended-Wing-Body aircraft optimization,
demonstrate DeepGeo’s effectiveness compared to state-of-the-art free-form deformation meth-
ods. This research highlights DeepGeo’s potential to automate ASO, making it more accessible
and efficient.

Nomenclature

𝛼 = the angle of attack
𝐶𝐷 , 𝐶𝐿 , 𝐶𝑀 = drag, lift and pitching moment coefficients
𝑓Θ, Θ = the Deep Geometric Mapping model and its weights
𝑔 = the adjoint solver
𝐿 = the loss function and the soft constraint
𝑀,𝑉, 𝐸 = the CFD mesh and its vertices, edges
𝑂 = the optimization objective
𝑃 = FFD control points
𝑆 = the initial object geometry for optimization
𝑡, 𝐴,𝑉𝑜𝑙 = the geometry’s thickness, area and volume
𝑉𝑆 , 𝑉𝐹 , 𝑉𝑉 = CFD mesh vertices on the objects surface, fixed patches and in the volumetric grids

I. Introduction
Shape parameterization is central to Aerodynamic Shape Optimization (ASO) whose objective is to describe

and represent an object through variables and mathematical models that implement efficient and effective geometry
manipulation. It critically influences the quality of ASO in several ways. Firstly, the parameterization sets the boundaries
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by determining the maximum geometric complexity ASO can handle, the allowable extent of geometric changes it can
make, and the surface smoothness it can ensure. Secondly, it must balance between having a large number of parameters
that allow for detailed modeling but can limit optimization algorithms’ effectiveness, and having fewer parameters that
simplify optimization but make accurate representation harder. Thirdly, shape parameterization determines the level
of human intervention required, including surface modeling, restricting design variables for different optimizers, and
processing the deformation of CFD computational meshes, thus affecting the overall cost of ASO.

Due to its significance, shape parameterization has been extensively studied over the years. For two-dimensional
shapes, Hicks-Henne bump functions [1], non-uniform rational B-spline (NURBS) curve and class-shape function
transformation (CST) [2] are commonly used, while free-form deformation (FFD) [3–5] is typically implemented for
three-dimensional problems. Despite their success across various applications, these methods have notable limitations.
Firstly, the quality and computational cost of ASO are highly sensitive to the choice of shape parameterization [6–8],
including the selection of algorithms and hyperparameters, with no formal methods to determine the best one. As a result,
parameterization design often relies on trial-and-error and empirical priors or adopts methods from similar optimization
cases followed by manual tuning. Tradeoffs must be made between deformation freedom, high-dimensional optimization
effectiveness, and global shape smoothness. Secondly, existing parameterizations model only the object’s surface,
requiring an additional module to process the volumetric CFD meshes either through deformation or re-meshing, which
introduces further implementation complexities. Additionally, The recent emergence of data-driven parameterization
models alleviates some of these issues but demands additional engineering efforts for large-scale geometric datasets in
ASO implementation. However, this raises its own challenges because training shapes are often few and expensive to
generate in practice.

In this work, we introduce a Deep Geometric Mapping (DeepGeo) model to address these difficulties. It uses a
deep neural network to represent the target shape and the surrounding CFD computational volumetric mesh required to
perform CFD simulations and estimate performance. Joint deformation of both the initial shape and the computational
mesh are obtained by changing the network weights. Shape optimization is achieved by minimizing an appropriate
objective function with respect to the network weights using an adjoint-based method [9]. Thus, the model’s weights
can be understood as the CFD mesh parameterization and the computational mesh can be recomputed directly from the
parameterization when the target shape changes.

This approach leverages a known strength of neural networks: They can have millions of parameters without
suffering from over-parameterization, which helps mitigate the curse of dimensionality that plagues other kinds of
models, such as the classical CMAES [10] that is rarely used when there are more than 100 parameters. Moreover, only
the target shape and a single template mesh are required to learn an initial set of weights, eliminating the need for a
training dataset of meshes and simplifying deployment in practical applications.

In earlier work [11], we introduced an early version of DeepGeo to model 2D airfoils, the Direct Mapping Model. In
this paper, we extend it to more challenging optimization tasks and 3D shapes, including 2D circle, 3D wing, and 3D
Blended-Wing-Body aircraft optimization.

II. Related Work
DeepGeo spans across multiple research domains, including the shape parameterization algorithms in computer

graphics and aerodynamic shape optimization studies, as well as self-prior models in deep learning research. Each part
will be briefly reviewed, and the DeepGeo’s technical prominence will be discussed afterward.

A. Shape Parameterization in Aerodynamic Shape Optimization
Shape parameterization in ASO refers to the mapping of explicit design variables to the object’s surface mesh, a

fundamental module for effectively solving ASO problems. Jameson [12] introduced a direct conformal mapping from a
circle to optimize airfoils, which provided the maximal design freedom in design space but lacked sufficient smoothness
for CFD solvers [13]. Therefore, shape parameterization is necessary to reduce the design space dimensionality and
introduce smoothness control. It can be broadly categorized as non-data-driven and data-driven approaches.

1. Non-Data-Driven Approaches
Non-data-driven algorithms include both constructive and deformative methods [6]. Constructive methods, such

as polynomial/spline based methods [2, 13, 14] and partial differential equation methods [15, 16], represent the
airfoil surface based on specified parameters. Deformative methods deform an existing shape, including analytical
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Fig. 1 The ASO pipeline with DeepGeo parameterization. (a) The initialization of DeepGeo learns to deform from template
mesh �̂� to fit initial geometry 𝑆 while maintaining mesh quality, and parameterizes 𝑆 in terms of weights Θ. (b) The shape
optimization is performed by varying Θ to minimize an objective function using an adjoint solver and imposing geometric
constraints.

methods [1, 17, 18] and the free-form deformation (FFD) [3–5]. Early analytical approaches, like the Hicks-Henne bump
function [1] and others [17, 18], optimized the shape through linear combinations of basis functions. B-splines [13] and
its variants, like the Bezier curve and nonuniform rational B-spline (NURBS) [14], use control points and piece-wise
polynomials to define the geometry. Polynomial-based methods like parameterised sections (PARSEC) [19] and CST [2]
approximate surfaces with weighted sums of polynomials with different orders. While effective, these methods are
suited for 2D curves. The FFD, originating from soft object animation in computer graphics [3, 4, 20], enables smooth
continuous volume transformations based on control point movements. It is widely used in optimizing 3D objects like
the CRM wing [21, 22] and the overall aircraft [23].

When applied to infinite-dimensional problems with finite-dimensional design variables, non-data-driven methods
require compromising between the dimensionality for effective parameterization and the optimization complexity [24].
Additionally, the lack of self-adaptation leads to heavy reliance on expert knowledge and manual tuning for hyperparamters.
As such, different settings can significantly impact optimization results. To address these limitations, DeepGeo bases on
the neural network which provides universal approximation ability [25] and mitigates the curse of dimensionality [25, 26].

2. Data-Driven Approaches
Data-driven methods aim to reduce the dimension of design variables using existing geometry datasets, facilitating

effective optimization for challenging problems or extracting patterns to reduce human intervention [27]. Linear
dimension reduction methods use proper orthogonal decomposition (POD) to derive a set of orthogonal modes. This can
be done by Gram-Schmitt orthogonalization [28] or applying a singular value decomposition (SVD) to find orthogonal
shape modes from a dataset [29–31]. However, reconstructing the geometry from a latent vector remains challenging and
requires dedicated manual designs for specific tasks. The active subspace model (ASM) [32–36] and active subspace
identification (ASI) [37] reduce the dimensionality by analyzing the gradient from surrogate models for surrogate-based
optimization or uncertainty quantification. Random sampling methods were used to estimate the real active subspace.
However, generating valid samples requires handcrafted rules, and the approximation error is upper bounded by the
Poincaré constant, which increases with dimensionality given a limited number of samples [38, 39]. Among the
non-linear approaches, Viswanath et al. [40] proposed the generative topographic mapping (GTM) that projects a
30-dimensional design variable into a 2D latent vector. GTM’s Bayesian generative model makes it challenging to
integrate its latent representation into a gradient-based pipeline. More recently, generative adversarial network (GAN)
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has been used for novel geometry generation [41–44] to improve the quality of dimension reduction [43, 44] or serve as
a parameterization model directly [41, 42].

Data-driven methods typically demand large datasets for training [27]. DeepGeo stands out for its high data-efficiency
as it requires only a single initial geometry for training, without requiring any additional user input comparing to the
traditional ASO pipeline. This characteristic makes it a feasible solution for complex 3D geometries with limited data
availability.

B. Shape Parameterization in Computer Graphics
Shape parameterization in computer graphics aims to create bĳective mappings between two surfaces or volumes,

with one domain represented as a mesh [45]. This long-standing and active research field has diverse applications,
like in mesh morphing, smoothing, remeshing, and so on. Creating one-to-one mappings between coordinate spaces
inevitably introduces distortions that need to be minimized to retain desired mesh properties. Research has focused on
surface mesh parameterization using cost functions that include distortion metrics, leading to the development of angle-
preserving/conformal mappings, area-preserving/authalic mappings [45, 46], as-rigid-as-possible transformation [47, 48],
least squares conformal mapping [49] and Dirichlet energy minimization methods [50–52]. DeepGeo extends the
elasticity model [52] so that it works with complicated volumetric and unstructured CFD meshes. DeepGeo aligns
more closely with the concept of a computer graphics parameterization model, as it establishes a mapping between
volumetric CFD meshes instead of generating a design variable vector.

While early ASO shape parameterization methods were inspired by computer graphics, they are not directly
applicable to volumetric CFD meshes. DeepGeo’s key contribution lies in its regularization loss, which efficiently
implements constrained volumetric mesh parameterization. Specifically, DeepGeo’s regularization loss is derived from
the strain energy of continuous elastic material, eliminating the need for mesh topology and allowing for flexible and
highly sparse sampling for loss calculation, thus avoiding unaffordable time and memory consumption on large-scale
CFD meshes. Then, DeepGeo uses a neural network, replacing finite difference and finite element approximations with
analytical auto-differentiation. Additionally, it uses adjoint gradient descent optimization, which is more effective and
computationally efficient than Euler implicit solutions commonly used in computer graphics parameterization models.
Third, DeepGeo’s approach is independent of mesh topology, which avoids complex mesh processing, especially in
cases of extreme cell irregularity where the simple triangulation/tetrahedralization assumption do not hold for CFD
meshes.

C. Deep Learning Model with Self-Prior
Self-prior is an emerging research topic in the field of deep learning, where deep neural networks are trained to

acquire domain-specific prior knowledge from a single data sample. The deep image prior [53] and its follow-ups
have shown strong capabilities in multiple low-level vision tasks with self-supervision, such as image super-resolution,
denoising, inpainting, dehazing and deblur. In 3D domain, the deep geometric prior [54] introduced MLP models to
reconstruct partial geometry of a point cloud, while Point2Mesh [55] proposed to reconstruct the entire surface mesh
from a point cloud.

DeepGeo uses a similar learning technique, but it is the first model that demonstrates how the self-prior can be
effectively harnessed and manipulated with the mesh representation under the guidance of an external adjoint CFD
solver.

III. Deep Geometric Mapping Model
Optimizing a 3D shape to maximize its performance requires parameterizing it in terms of a set of variables

suitable for optimization. In this section, we introduce the Deep Geometric Mapping (DeepGeo) model, which uses its
parameters for optimization given only the 3D shape to be optimized. It relies on a neural network 𝑓Θ with weights Θ. To
initialize, DeepGeo learns to reconstruct the initial geometry 𝑆 by deforming from a template CFD mesh �̂� , embedding
the shape parameterization in its weights, as depicted in Figure 1(a). Varying DeepGeo’s weights produces variations of
the initial shape and properly deforms the corresponding CFD computational mesh, resulting in an output CFD mesh
𝑀. During optimization, the deformed CFD mesh is forwarded to an adjoint CFD solver (denoted as 𝑔), where the
sensitivity of the optimization objectives with respect to the surface vertices is computed. Simultaneously, the gradients
of geometric constraints are computed based on the CFD mesh. DeepGeo then backpropagates the surface sensitivity to
Θ through auto-differentiation. Thus, the shape can be optimized with respect to Θ, as shown in the pipeline in Fig. 1(b).
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This iterative process of gradient calculation and weight update continues until the object reaches an optimum.

A. Formalization
Let �̂� = {�̂� , 𝐸} represent a template CFD mesh, where �̂� = {v̂1, v̂2, ..., v̂𝑁 } are the vertices and 𝐸 denotes its edges.

The vertices in �̂� can be grouped into three separate sets: �̂�𝑆 , the vertices on the object surface; �̂�𝐹 , the vertices from
fixed patches if any; and �̂�𝑉 , the remaining vertices defining the volumetric computational cells. Let 𝑆 = {s1, s2, ..., s𝑁 }
be the vertices defining the surface of the initial geometry to be optimized, and 𝑆 are registered with �̂� .

We implement DeepGeo as a feed-forward network 𝑓Θ that acts as a continuous mapping between coordinates
spaces, defined as:

𝑓Θ : R3 → R3 , 𝛿v = 𝑓Θ (v̂) , (1)

where 𝛿v is the translation of the input vertex. For brevity, we denote 𝐹Θ (�̂�) ∈ R𝑁×3 as the translation matrix of the 𝑁

vertices. The deformed mesh becomes 𝑀 = {�̂� + 𝐹Θ (�̂�), 𝐸}.
The initialization of DeepGeo and the shape parameterization step embed the geometric information of the initial

shape 𝑆 into Θ by solving an optimization problem that minimizes the initialization loss function L𝑖𝑛𝑖𝑡 as:

Θ∗ = argmin
Θ

Linit (Θ, 𝐹Θ (�̂�𝑆), 𝐹Θ (�̂�𝑉 ), 𝑆) . (2)

𝐿init is minimized if and only if the following three conditions are met: (1) the geometric difference between the
deformed mesh surface 𝑉𝑆 = �̂�𝑆 + 𝐹Θ (�̂�𝑆) and the provided geometry 𝑆 is minimized, (2) the computational mesh
quality is maintained during deformation, and (3) the fixed mesh patches remain unchanged, if any. These conditions are
guaranteed by the geometric loss 𝐿geo, the mesh regularization loss 𝐿reg and the fixation loss 𝐿fix, respectively. Thus,
𝐿init is written as:

Linit = Lgeo (Θ) + 𝜆fixLfix (Θ) + 𝜆regLreg (Θ) , (3)

where Lgeo (Θ) =
1
𝑁
∥�̂�𝑆 + 𝐹Θ (�̂�𝑆) − 𝑆∥2

𝐹 , (4)

Lfix (Θ) =
1���̂�𝐹
�� ����𝐹Θ (�̂�𝐹)

����2
𝐹

, (5)

Lreg (Θ) = ∥H
(
𝐹Θ (𝑉𝑉 )

)
∥2
𝐹 . (6)

𝜆reg controls the strength of Lreg. H is the Hessian matrix of the network’s output with respect to the input vertices.
Lgeo, Lfix, and Lreg are explained below.

The Geometric Loss Lgeo is the Euclidean distance between 𝑉𝑆 and 𝑆.

The Fixed Loss Lfix measures the magnitude of deformation on fixed patches and constrains their movement, such as
on mesh boundaries applied with boundary conditions or on patches constrained by the optimization problem.

The Regularization Loss Lreg preserves CFD mesh quality by minimizing non-rigid volumetric mesh deformation,
avoiding the degradation in cell properties such as skewness, orthogonality and aspect ratio, as well as the mesh’s ability
to represent the underlying physics [56]. Instead of explicitly constraining any mesh quality measurement, minimizing
Lreg is implemented as a global energy optimization problem. To this end, we treat the coordinate space as a continuous
elastic material, and minimizing Lreg adds resilience against distortion, inducing the deformed cells to resemble those
in the template mesh, so as to prevent serious issues such as negative volume and severely non-orthogonality.

To derive Lreg, we define an energy function E that quantifies the total non-rigid distortion as the squared Frobenius
norm of the infinitesimal strain tensor. We have

E :=
1
2
����∇𝐹Θ (�̂�𝑉 ) + ∇𝐹Θ (�̂�𝑉 )𝑇

����2
𝐹

=
1
2

|𝑉𝑉 |∑︁
𝑖=1


2
𝜕𝛿𝑣𝑉

𝑥,𝑖

𝜕𝑥
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𝜕𝑦
+
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𝜕𝑥
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𝜕𝑧
+ 𝜕𝛿𝑣𝑉
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𝜕𝑦
2
𝜕𝛿𝑣𝑉

𝑦,𝑖
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𝑦,𝑖

𝜕𝑧
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𝜕𝑥
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𝜕𝑧
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𝑧,𝑖
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2

𝐹

,

(7)
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where (𝛿𝑣𝑉
𝑥,𝑖
, 𝛿𝑣𝑉

𝑦,𝑖
, 𝛿𝑣𝑉

𝑧,𝑖
) = 𝛿v𝑉

𝑖
are the three components of single vertex displacement. An optimal deformed mesh

with vertices 𝑉∗ that has minimal non-rigid distortion should satisfy the Euler-Lagrange equation of E that stipulates{
2
𝜕2𝑣∗𝑥
𝜕𝑥2 + 2

𝜕2𝑣∗𝑦

𝜕𝑦2 + 2
𝜕2𝑣∗𝑧
𝜕𝑧2 +

𝜕2𝑣∗𝑥
𝜕𝑦2 + 𝜕2𝑣∗𝑥

𝜕𝑧2 +
𝜕2𝑣∗𝑦

𝜕𝑥2 +
𝜕2𝑣∗𝑦

𝜕𝑧2 +
𝜕2𝑣∗𝑧
𝜕𝑥2 +

𝜕2𝑣∗𝑧
𝜕𝑦2 +

𝜕2𝑣∗𝑥
𝜕𝑥𝑦

+
𝜕2𝑣∗𝑦

𝜕𝑥𝑦
+ 𝜕2𝑣∗𝑥

𝜕𝑥𝑧
+
𝜕2𝑣∗𝑧
𝜕𝑥𝑧

+
𝜕2𝑣∗𝑦

𝜕𝑦𝑧
+
𝜕2𝑣∗𝑧
𝜕𝑦𝑧

}
= 0 ,∀v∗ ∈ 𝑉∗𝑉 , (8)

indicating that 𝑉∗ sits at a stationary point of the distortion energy system. Equation. 8 is trivially satisfied if all the
individual derivative terms are zero. Thus, we define L𝑟𝑒𝑔 as

Lreg :=
∑︁

v∗∈𝑉∗𝑉

��������𝜕2𝑣∗𝑥
𝜕𝑥2

�������� + �����
�����𝜕2𝑣∗𝑦

𝜕𝑦2

�����
����� +

�����
�����𝜕2𝑣∗𝑧
𝜕𝑧2

�����
�����+��������𝜕2𝑣∗𝑥

𝜕𝑦2

�������� + ��������𝜕2𝑣∗𝑥
𝜕𝑧2

�������� + �����
�����𝜕2𝑣∗𝑦

𝜕𝑥2

�����
����� +

�����
�����𝜕2𝑣∗𝑦

𝜕𝑧2

�����
����� +

�����
�����𝜕2𝑣∗𝑧
𝜕𝑥2

�����
����� +

�����
�����𝜕2𝑣∗𝑧
𝜕𝑦2

�����
�����+��������𝜕2𝑣∗𝑥

𝜕𝑥𝑦

�������� + �����
�����𝜕2𝑣∗𝑦

𝜕𝑥𝑦

�����
����� + ��������𝜕2𝑣∗𝑥

𝜕𝑥𝑧

�������� + �����
�����𝜕2𝑣∗𝑧
𝜕𝑥𝑧

�����
����� +

�����
�����𝜕2𝑣∗𝑦

𝜕𝑦𝑧

�����
����� +

�����
�����𝜕2𝑣∗𝑧
𝜕𝑦𝑧

�����
�����

=

������H (
𝐹Θ (�̂�𝑉 )

)������2
𝐹

, (9)

where H is the Hessian of 𝑓Θ. Minimizing Lreg favors fields of deformation vectors with minimal non-rigid distortion.
Equation 9 can be efficiently computed via auto-differentiation through DeepGeo’s neural network backbone, such as
with the implementation of PyTorch ∗.

B. Implementation Details
DeepGeo is implemented as a multi-layer perceptron (MLP) model. Both the input and output dimensions are three.

For 2D ASO cases, the 𝑧 coordinate is simply set to 0. The default configuration of DeepGeo for all case studies includes
three hidden layers, with dimensions set to 64, 256, and 512 from the input side to the output side, respectively. All
layers include bias terms and use the layer normalization [57], resulting in a total of 151 686 parameters. The activation
function is a sum of ReLU [58] and sine functions, which ensures fast convergence and enables the computation of
higher-order derivatives for 𝐿reg. DeepGeo’s specifications remain fixed for all ASO pipeline for all cases we studied,
thus eliminating the need for tuning.

IV. Adjoint-Based Shape Optimization with Deep Geometric Mapping Model
Given the DeepGeo model described above, all ASO case studies discussed in this paper utilize the finite-volume

CFD solver ADflow [59] for Reynolds-Averaged Navier-Stokes (RANS) simulation with the Spalart–Allmaras (SA)
turbulence model, based on the generated CFD mesh 𝑀 from DeepGeo. Sensitivities of optimization objectives with
respect to the object surface 𝑉𝑆 are obtained with ADflow’s discrete adjoint solver. Meanwhile, the deformed object
surface is evaluated by the geometric constraints, denoted as 𝐿cons. These constraints are implemented as differentiable
soft constraints, and their gradients with respect to𝑉𝑆 are calculated via auto-differentiation. The gradients of Θ are then
computed following the chain rule that begins with the ADflow’s surface sensitivities and the gradients of geometric
constraints. Θ is updated with the RAdam optimizer.

In short, the overall objective of ASO is:

O = OCFD + 𝑤consLcons + 𝜆regLreg + 𝜆fixLfix , (10)

where 𝑤cons is the balancing weights, which depends on the number, dimension and unit of different geometric constraints.
The regularization loss Lreg and the fixed loss Lfix are as defined in Eq. 3, and the loss weights remain the same. These
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losses are necessary to maintain CFD mesh quality and freeze the fixed patches during optimization. 𝑂CFD represents
physical objectives such as drag minimization, lift maximization, etc. It is defined precisely, along with 𝐿cons, in each
case study below. ASO then involves finding the solution to:

Θ∗ = argmin
Θ

(
O

(
𝐹Θ (�̂�),Θ

) )
= argmin

Θ

(
O𝐶𝐹𝐷

({
�̂� + 𝐹Θ (�̂�), 𝐸

})
+ 𝑤𝑐𝑜𝑛𝑠L𝑐𝑜𝑛𝑠 (Θ) + 𝜆regLreg (Θ) + 𝜆fixLfix (Θ)

)
, (11)

where
{
�̂� + 𝐹Θ (�̂�)

}
denotes the set of vertices displaced by the translations predicted by 𝑓Θ. This iterative process is

stopped based on the early stopping strategy commonly used in gradient-descent-based neural network training [60].
This occurs when 𝑂 falls below a user-defined threshold or shows no significant improvement after a certain number of
iterations.

DeepGeo’s specifications remain fixed when implementing the ASO pipeline for different cases, making it a
tuning-free and automatic parameterization module. In the following sections, the effectiveness of the DeepGeo-based
ASO framework is verified through three different case studies, including tasks that optimize a 2D circle, a 3D business
jet wing, and a 3D Blended-Wing-Body aircraft.

V. Case Study I: Optimization from Circle
This section presents a 2D case study where the objective is to minimize the drag from a circle, with the optimization

expected to converge to an airfoil. This case involves significant geometric manipulation and changes in the fluid field,
testing the stability of DeepGeo’s parameterization for maintaining global shape smoothness and its mesh deformation
ability to handle large shape variations.

A. Problem Formulation
The initial geometry is a 2D circle with a diameter of 1. The objective is to minimize the drag coefficient 𝐶𝐷 while

maintaining the lift coefficient 𝐶𝐿 at 0.824 and constraining the pitching moment coefficient to 𝐶𝑀 ≥ −0.092. The
optimization is conducted in a transonic turbulent flow with a Mach number of 0.734, a Reynolds number of 5 × 106

and an initial angle of attack of 2.0◦. The initial mesh, built on the circle using pyHyp [23], consists of 20 331 cells, as
shown in Figure 2(a).

Table 1 Aerodynamic shape optimization task specifications for the Case Study I.

Objectives Functions/Variables Description DeepGeo Quantity FFD Quantity
Minimize 𝐶𝐷 Drag coefficient

With respect to

Θ Weights of DeepGeo 151 585
𝑃𝑧 Control points’ 𝑧 coordinates 30
𝛼 Angle of attack 1 1

Total design variables 151 586 31

Subject to

𝐶𝐿 = 0.824 Lift coefficient constraint 1 1
𝐶𝑀 ≤ 0.092 Moment coefficient constraint 1 1
𝑡 ≥ 0.2 𝑡RAE2822 Minimum thickness constraints 30
𝐴 ≥ 0.0654 Minimum area constraints 1 1
𝛿vTE = 0 Trailing edge constraint 1
𝛿vLE = 0 Leading edge constraint 1
0.5 ≤ 𝛼 ≤ 4.0 Angle of attack constraint 1 1

Total constraints 6 34
Need value range limits for each DV? NO YES
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(a) (b)

Fig. 2 The geometric setups for for Case Study I, including: (a) template mesh for DeepGeo and (b) the control point
setting for FFD baseline.

B. Configuration of Deep Geometric Mapping Model
Following the strategy designed by Li and Zhang [44], a two-step optimization is performed. First, the drag

coefficient 𝐶𝐷 is minimized. Once the optimization converges, constraints for the lift coefficient 𝐶𝐿 and the pitching
moment coefficient 𝐶𝑀 are added, and the optimization continues as the second stage. The two objectives, 𝑂𝐶𝐹𝐷,1 and
𝑂𝐶𝐹𝐷,2, are defined as

O𝐶𝐹𝐷,1 := |𝐶𝐷 | ,
O𝐶𝐹𝐷,2 := |𝐶𝐷 | + |𝐶𝐿 − 0.824| + max (−0.092 − 𝐶𝑀 , 0) , (12)

where the coefficients are obtained with the adjoint solver as (𝐶𝐷 , 𝐶𝐿 , 𝐶𝑀 ) = 𝑔
(
{�̂� + 𝐹Θ (�̂�), 𝐸}

)
. The airfoil’s area,

denoted as 𝐴(𝑉𝑆), is calculated from the deformed surface using the Shoelace formula. The geometric constraint
consists of a terms that avoid the deformed area to be less than the area of RAE 2822 profile (namely 0.0654), and two

𝐶𝐶 𝐷𝐷 𝐶𝐶 𝐿𝐿 L/
D

Optimization Iteration Optimization IterationOptimization Iteration

𝐶𝐶 𝑀𝑀 Ao
A

𝐿𝐿 𝑐𝑐
𝑐𝑐𝑐𝑐
𝑐𝑐

Optimization Iteration Optimization IterationOptimization Iteration

Circle 2 airfoil

Fig. 3 The optimization history of Case Study I. The dashed line in 𝐶𝐿 and 𝐶𝑀 figures demonstrates the optimization
objectives.
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(a)

(b)

Fig. 4 The change of pressure coefficient field in Case Study I during the optimization with DeepGeo, including (a) the first
optimization stage and (b) the second optimization stage.
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Fig. 5 The FFD-based optimization history in Case Study I. The absence of fluid field means a failed simulation.

terms that fix the LE and TE vertices, which is defined as:

L𝑐𝑜𝑛𝑠 = max (0.0654 − 𝐴(𝑉𝑆), 0)2︸                            ︷︷                            ︸
area constraint

+
����𝛿vLE����2︸   ︷︷   ︸

LE constraint

+
����𝛿vTE����2︸   ︷︷   ︸

TE constraint

. (13)

A summary of the optimization setups is shown in Table 1.
DeepGeo uses the initial mesh as its template mesh. During parameterization, DeepGeo learns to output an all-zero

deformation since the template mesh is built exactly on the initial mesh, a process we call self-initialization. Empirical
evidence confirms that self-initialization does not lead to an all-zero trivial solution for Θ and does not degrade the
expressiveness of DeepGeo.

C. Configuration of Free-Form Deformation Baseline
For baseline comparison, we use the study case implemented in [44] with a 30-point configuration for FFD, as

shown in Figure 2(b). Denote the airfoil’s thickness as 𝑡, and 𝑡RAE2822 as the thickness of the RAE 2822 airfoil. A set of
thickness constraints 𝑡 ≥ 0.2 𝑡RAE2822 is applied to avoid the negative volume error at the beginning of optimization.
The SLSQP optimizer in pyOptSparse [61] is used for optimization.

D. Results and Analysis
The optimization history and the visualization of fluid field changes are demonstrated in Figure 3 and Figure 4,

respectively. In the first optimization step with DeepGeo, the drag coefficient 𝐶𝐷 drops significantly. The shape
gradually and smoothly becomes thinner, with symmetry mostly maintained. The leading and trailing edges begin
to appear. No singular shapes or simulation failures occur during this process, indicating the strong robustness of
parameterization and mesh deformation. In the second stage, the shape’s symmetry is intentionally broken to achieve a
streamline commonly seen in high-lift transonic airfoils, so as to generate more lift. A shock wave initially appears
and is then gradually diffused by the end of optimization. The final airfoil achieves 𝐶𝐷 = 0.012 195 (i.e. 121.95
counts), and its lift-over-drag ratio (𝐿/𝐷) is improved from 1 × 10−3 to 67.22, comparable to modern supercritical
airfoil well-developed for transonic flights.

As a comparison, the FFD-based optimization failed after a small number of iterations due to the singularity of the
deformed shape and subsequent severe meshing issues. The optimization process shown in Figure 5 contains discrete
shapes that fail in CFD simulations. The iterations visualized only with the mesh mean failures in the simulation.
Although FFD ensures smoothness within a local control cage using spline interpolation, the control points as design
variables are local and can lead to abnormalities from a more global perspective. The failure of FFD-based optimization
persists regardless of the selection of hyperparameters. DeepGeo outperforms FFD in terms of providing global
smoothness while still enabling sufficient freedom on the surface and stability in the volumetric mesh deformation.

10



VI. Case Study II: the Common Research Model Wing Optimization
This section presents the DeepGeo-based ASO results for NASA’s Common Research Model Wing (CRM wing)

and compares them with the well-established FFD-based ASO results.

A. Problem Formulation
The initial geometry is a three-dimensional wing-only geometry with a blunt trailing edge, extracted from the CRM

wing-body configuration, as shown in Figure 6(b). The objective is to minimize its drag coefficient 𝐶𝐷 with the lift
coefficient 𝐶𝐿 constrained to 0.5, and the pitching moment coefficient constrained to 𝐶𝑀 ≥ −0.17. This single-point
optimization problem is performed under fully turbulent flow conditions at a Mach number of 0.85, Reynolds number of
5 × 106 and an initial angle of attack of 2.2◦. The optimization is conducted on the L2 grid, as shown in Figure 2(a),
which has 450 560 cells. For geometric constraints, the wing’s volume must be greater than or equal to its initial value,
and the thickness must be at least 25% of the initial thickness. All trailing edge (TE) vertices and the leading edge
(LE) vertex on the root section are fixed. The other LE vertices are only allowed to move along the the 𝑧 direction.
The projected area is fixed if the constraints on LE and TE are satisfied. The parameterization manipulates the wing’s
surface, and the angle of attack is treated as a standalone design variable. Table 2 summarizes the optimization problem.

B. Configurations of Deep Geometric Mapping Model
DeepGeo uses the L2 grid as the input template mesh. DeepGeo’s physical objectives are defined according to the

optimization problem statement as:

OCFD = |𝐶𝐷 | + |𝐶𝐿 − 0.5| + max (−0.17 − 𝐶𝑀 , 0) , (14)

Meanwhile, the constraints write:

L𝑐𝑜𝑛𝑠 = max
(
𝑉𝑜𝑙 (𝑉𝑆) −𝑉𝑜𝑙original (𝑆), 0

)2︸                                        ︷︷                                        ︸
volume constraint

+
����Δ𝑉TE����2︸    ︷︷    ︸
TE constraint

+
����Δ𝑉LE

𝑥

����2 + ����Δ𝑉LE
𝑦

����2︸                    ︷︷                    ︸
LE constraint

+
����𝛿vLE,root����2︸        ︷︷        ︸
fixed-wing root

incidence constraint

, (15)

where the volume 𝑉𝑜𝑙 (𝑉𝑆) of the deformed wing is computed using the extended Shoelace formula [62] with an
arbitrary reference point on the root section plane, and 𝑉𝑜𝑙original (𝑆) is the initial wing volume. vLE,root is the single LE
vertex on the root section. 𝑉𝑥 and 𝑉𝑦 refer to the sets of 𝑥 and 𝑦 vertex coordinates, respectively. DeepGeo can satisfy
the thickness requirement without an explicit constraint.

C. Configurations of Free-Form Deformation Baseline
The FFD-based baseline optimization follows the 192-point setting provided by Hwang et al. [63] and Li et al. [30],

as shown in Figure 6(c). The FFD control points are denoted as 𝑃 = {p1, p2, ..., p192}, where p = {𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧}, and

(a) (b) (c)

Fig. 6 The geometric setups for Case Study II, including: (a) the template mesh for DeepGeo, (b) the initial CRM wing
geometry and (c) the 192-point FFD setting.
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Table 2 Aerodynamic shape optimization task specifications for the Case Study II.

Objectives Functions/Variables Description DeepGeo Quantity FFD Quantity
Minimize 𝐶𝐷 Drag coefficient

With respect to

Θ Weights of DeepGeo 151 585
𝑃𝑧 Control points’ 𝑧 coordinates 720

Twist function 7
𝛼 Angle of attack 1 1

Total design variables 151 586 728

Subject to

𝐶𝐿 = 0.5 Lift coefficient constraint 1 1
𝐶𝑀 ≥ −0.17 Moment coefficient constraint 1 1
𝑡 ≥ 0.25 𝑡original Minimum thickness constraints 750
𝑉𝑜𝑙 ≥ 𝑉𝑜𝑙original Minimum volume constraint 1 1
Δ𝑉TE = 0 Trailing edge constraint 1
Δ𝑉LE

𝑥 = 0, Δ𝑉LE
𝑦 = 0 Leading edge constraint 1

𝛿vLE,root = 0 Fixed-wing root incidence constraint 1
Δ𝑃

TE,upper
𝑧 = −Δ𝑃TE,lower

𝑧 Fixed trailing-edge constraints 15
Δ𝑃

LE,upper,root
𝑧 =

Fixed-wing root incidence constraint 1−Δ𝑃LE,lower,root
𝑧

2.0 ≤ 𝛼 ≤ 4.0 Angle of attack constraint 1 1
Total constraints 7 770
Need value range limits for each DV? NO YES

their displacements are denoted as Δ𝑃. Both the local shape function and the twist function are employed. The baseline
optimization uses the MACH-Aero framework, implementing the parameterization with pyGeo [5], deforming the
computational mesh with IDWarp [23], and optimizing with IPOPT in pyOptSparse [61].

D. Results and Analysis
Quantitative results are presented in Table 3. A direct comparison of minimized drags show that the DeepGeo

parameterization is quantitatively comparable to the best-tuned FFD.
Figure 7 demonstrates the optimization history with DeepGeo. The optimization includes two steps. First, DeepGeo

parameterizes the initial CRM wing by self-initialization, similar to the first case study on optimizing a circle. With
the first 300 iterations, the optimization increases the wing’s lift-over-drag ratio (𝐿/𝐷) from 22.5 to 23.8. Once the
optimization converges, we reparameterize the partially optimized wing by self-initialization again with a new DeepGeo
model and continue the optimization. The wing’s 𝐿/𝐷 reaches a maximum of 25.0 and then slowly decreases. The
optimal result is collected at the 320th iteration.

A comparison of the pressure distributions and shock wave shapes is shown in Figure 8. The shock waves in both
optimized results have been mostly reduced. The parallel spacing of pressure contour lines in both optimized results
can be clearly observed, indicating improved aerodynamic performance, though they exhibit differences. Figure 9
compares the optimized wings with slices at different positions along the wing span. FFD and DeepGeo lead to different
optimized shapes: FFD’s result shows very sharp leading edges and significantly redistributed thickness along the wing
span. DeepGeo’s result shows less variation from the initial shape. The leading edges are less sharp, the trailing edges
better satisfy the geometric constraint, and the wing tip avoids becoming too thin.

The results show that, under strict geometric constraint settings, DeepGeo achieves comparable aerodynamic

Table 3 CRM wing optimization results of the Case Study II. One count for 𝐶𝐷 equals to 10−4.

Parameterization Final 𝐶𝐷 (counts) Final 𝐶𝐿 Final 𝐶𝑀 Final 𝛼
DeepGeo 200.05 0.5000 -0.1717 2.08
FFD 199.03 0.5000 -0.1700 2.14
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𝐶𝐶 𝐷𝐷 𝐶𝐶 𝐿𝐿 L/
D

Optimization Iteration Optimization IterationOptimization Iteration

𝐶𝐶 𝑀𝑀 Ao
A

𝐿𝐿 𝑐𝑐
𝑐𝑐𝑐𝑐
𝑐𝑐

Optimization Iteration Optimization IterationOptimization Iteration

Crm at 320iter

Fig. 7 The optimization history of Case Study II. The dashed line in 𝐶𝐿 and 𝐶𝑀 figures demonstrates the optimization
objectives.
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Fig. 8 A comparison of Case Study II on the pressure coefficient distributions and shock shapes of (a) the initial CRM wing,
(b) the wing optimized with 192-point FFD, and (c) the wing optimized with DeepGeo.

performance with FFD. The DeepGeo-based optimal design is found in a narrow design space close to the baseline
design, which may be due to the local convergence in solving the high-dimensional gradient-based optimization problem.
Nevertheless, this design is preferable for industry applications because the off-design performance is well preserved
with minor shape modifications from the initial design. In contrast, FFD-based optimization significantly reduces the
leading edge to minimize on-design drag, which severely impacts low-speed aerodynamic performance [64], affecting
aircraft landing and takeoff. Thus, optimization using DeepGeo is beneficial than using FFD when starting from a
well-design conceptual baseline geometry, facilitates a more controllable ASO pipeline.
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D E F

A: 2.35%

B: 26.7%

C: 55.7%

D: 69.5%

E: 82.8%

F: 94.4%

Total Length: 26.73

(a) (b)

Initial CRM Wing Optimized Wing w/ FFD Optimized Wing w/ DeepGeo

Fig. 9 A comparison of Case Study II on sliced geometries, including (a) the positions of slices, and (b) the shape variation
and pressure coefficient distribution of each slice.

VII. Case Study III: the Blended-Wing-Body Aircraft Optimization
This case study demonstrates DeepGeo’s capability in handling more complicated 3D geometry without tunning.

A. Problem Formulation
A Blended-Wing-Body (BWB) aircraft integrates the wing and fuselage into a single, seamless structure, aiming

to improve aerodynamic efficiency, reduce drag, and enhance fuel economy. The initial BWB geometry, shown in
Figure 10, is similar in planform to the first-generation Boeing BWB design with a capacity of 800 passengers [65].
This geometry has a span of 280 feet and a total length of 144 feet.

The objective of this case study is to minimize the drag coefficient 𝐶𝐷 with the lift coefficient 𝐶𝐿 constrained to
0.20056, and the pitching moment coefficient 𝐶𝑀 constrained to 0. This single-point optimization problem is conducted
under fully turbulent flow conditions at a Mach number of 0.85, Reynolds number of 5 × 106 and an initial angle of
attack of 0.58◦. The optimization is performed on both the L2, which has 1 142 505 cells. For geometric constraints,

Table 4 Aerodynamic shape optimization task specifications for the Case Study III.

Objectives Functions/Variables Description DeepGeo Quantity FFD Quantity
Minimize 𝐶𝐷 Drag coefficient

With respect to

Θ Weights of DeepGeo 151 585
𝑃𝑧 Control points’ 𝑧 coordinates 240
𝛼 Angle of attack 1 1

Total design variables 151 586 241

Subject to

𝐶𝐿 = 0.20056 Lift coefficient constraint 1 1
𝐶𝑀 = 0 Moment coefficient constraint 1 1
𝑡 ≥ 0.01 𝑡original Minimum thickness constraints 750
𝑉𝑜𝑙 ≥ 𝑉𝑜𝑙original Minimum volume constraint 1 1
0 ≤ 𝛼 ≤ 2.5 Angle of attack constraint 1 1

Total constraints 7 754
Need value range limits for each DV? NO YES
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(a) (b) (c)

Fig. 10 The geometric setups for Case Study III, including: (a) the template mesh for DeepGeo, (b) the initial BWB aircraft
geometry and (c) the 240-point FFD setting.

Table 5 BWB aircraft optimization results of the Case Study III.

Parameterization Final 𝐶𝐷 (counts) Final 𝐶𝐿 Final 𝐶𝑀 Final 𝛼
DeepGeo 86.42 0.200 72 9.8807 × 10−4 0.60
FFD 87.05 0.200 56 2.4675 × 10−9 2.47

the aircraft’s volume must be greater than or equal to its initial value. Shape changes are only allowed along the 𝑧 axis to
keep the aircraft’s projected area constant. Table 4 summarizes the optimization problem.

B. Configurations of Deep Geometric Mapping Model
DeepGeo uses the L2 grid as template mesh. Similarly, DeepGeo parameterizes the BWB aircraft geometry through

self-initialization, learning to generate all-zero deformation. DeepGeo’s physical objective is defined as:

O𝐶𝐹𝐷 = |𝐶𝐷 | + |𝐶𝐿 − 0.5| + |𝐶𝑀 | . (16)

𝐶𝐶 𝐷𝐷 𝐶𝐶 𝐿𝐿 L/
D

Optimization Iteration Optimization IterationOptimization Iteration

𝐶𝐶 𝑀𝑀 Ao
A

𝐿𝐿 𝑐𝑐
𝑐𝑐𝑐𝑐
𝑐𝑐

Optimization Iteration Optimization IterationOptimization Iteration

Bwb L2

Fig. 11 The optimization history of Case Study III. The dashed line in 𝐶𝐿 and 𝐶𝑀 figures demonstrates the optimization
objectives.
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Fig. 12 A comparison of Case Study III on the pressure coefficient distributions and shock shapes of (a) the initial CRM
wing, (b) the wing optimized with 240-point FFD, and (c) the wing optimized with DeepGeo.

In this case study, we enforce DeepGeo only generates shape variations along the 𝑧 axis to follow the allowed changes
defined by the optimization problem without the use of extra geometric constraints for the leading edge (LE) or trailing
edge (TE). It is done by setting the 𝑥 and 𝑦 components of 𝐹Θ (�̂�) to 0. The only constraint relates to the total volume:

L𝑐𝑜𝑛𝑠 = max
(
𝑉𝑜𝑙 (𝑉𝑆) −𝑉𝑜𝑙original (𝑆), 0

)2
. (17)

C. Configurations of Free-Form Deformation Baseline
The FFD configuration follows the well-established settings proposed by Lyu and Martins [66]. This configuration

uses 240 control points, as shown in Figure 10(c). A minimal thickness constraint is added to avoid the crashes caused
by the negative volume error during optimization. The FFD baseline case uses IPOPT implemented in pyOptSparse [61]
for optimization.

D. Results and Analysis
The optimization history is shown in Figure 11. Quantitative comparisons of the optimization results are presented in

Table 5. The DeepGeo-based optimized result demonstrates comparable aerodynamic performance to the state-of-the-art
FFD-based one. Figure 12 compares the pressure distribution and the shock wave shapes. The optimal design solved
using FFD even exhibits a double-shock on the wing tip, which should be avoided in practical design. In contrast, the
design found by DeepGeo-based optimization has much weaker shock waves near the tip.

Figure 13 further analyze the geometry variations. The DeepGeo-based result shows more drastic changes in the
span-wise bending and is less tilted upwards, while the shape variation on each slice is less significant. Similar to the
result in Case Study II, the FFD-based result has very sharp leading edges.

The comparison concludes that, under less constrained settings, DeepGeo provides larger deformation freedom and
thus a wider design space for exploration. In contrast, to enable FFD with a similar capability, users have to implement
various global design functions by hand, such as sweep and dihedral, while restricting the value range of each design
variable more cautiously to avoid failed optimization, which adds even more human engineering efforts.
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Fig. 13 A comparison of Case Study III on sliced geometries, including (a) the positions of slices, and (b) the shape variation
and pressure coefficient distribution of each slice.

VIII. Conclusion
In this paper, we introduced the Deep Geometric Mapping (DeepGeo) model, a fully automated neural-network-based

parameterization method for aerodynamic shape optimization (ASO). DeepGeo addresses key limitations of traditional
parameterization methods by eliminating the need for extensive manual tuning and integrating volumetric mesh
deformation, thus reducing implementation complexity and making the ASO pipeline more accessible. DeepGeo is
based on deep geometric learning techniques but does not rely on large-scale training datasets.

Through multiple case studies, including 2D circle-to-airfoil optimization, 3D CRM wing optimization, and 3D
Blended-Wing-Body aircraft optimization, we demonstrated the effectiveness and robustness of DeepGeo, showing
its comparable performance to state-of-the-art free-form deformation methods and effectiveness in addressing their
shortness. The results highlight DeepGeo’s capability to provide significant shape deformation freedom, maintain
global shape smoothness, and ensure the effectiveness of optimization.

In overall, DeepGeo offers a promising solution for complex geometric parameterization in the field of ASO. Future
work will focus on further refining DeepGeo and exploring its applications in other ASO cases.
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