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Abstract. A new statistical wake meandering (SWM) model is proposed that improves
on existing models in the literature. Compared to the existing SWM models, the proposed
model has a closed description that does not require simulations to create look-up tables
while maintaining applicability to a wide range of flow conditions. The proposed SWM model
is compared to the predictions of the Dynamic Wake Meandering (DWM) model and to
wind speed measurements from a scanning Doppler lidar mounted on the nacelle of a utility-
scale wind turbine for validation. The results show that the proposed model has a similar
performance as the DWM model for the effect of wake meandering on the mean velocity deficit
and the turbulence intensity, while being significantly faster to compute.

1. Introduction

Wind turbine wakes impinging on other wind turbines within a wind farm are a significant
source of power losses and they decrease the lifetime of affected wind turbines. Wake
meandering is a low-frequency spanwise oscillation of the entire wake for which large-scale
turbulence of the inflow is assumed to be a dominant driver (Fig. 1) [17]. It affects power
production of wind farms due to its impact on the velocity deficit recovery, and it affects
loads due to the turbulence added to the downstream flow [13]. Therefore, the modelling of
wake meandering is one important aspect of wind farm development. However, simulations
resolving all relevant turbulent length scales are still too computationally costly for iterative
wind farm design tools [4].

Computationally fast modelling approaches for wake meandering are the Dynamic Wake
Meandering (DWM) model [13] and statistical wake meandering (SWM) models [11, 18, 4].
The DWM model operates on the assumption that the wake behaves like a passive tracer
that is transported as a whole by the large-scale turbulence of the atmosphere (Fig. 1). The
DWM model solves the shear-layer equations [1] for the velocity deficit, which is assumed to
be steady in a meandering frame of reference (MFoR) following the instantaneous wake center
position. The wake meandering is then described by displacing the quasi-steady velocity
deficit in the lateral and vertical direction along the pathlines of the low-pass filtered velocity
field originating from the wind turbine. These pathlines require the DWM model to be
coupled with another model for the background flow field like e.g. an aerolastic solver. The
underlying passive-tracer assumption of the DWM model has been validated with some minor
modifications [3, 19, 14, 5].

Statistical wake meandering (SWM) models further simplify the modelling framework of
the DWM model by replacing the pathlines with a probability density function (PDF) of the
instantaneous wake center position. This removes the need for coupling with external models
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Incoming Flow Wind Turbine Wake

Figure 1. Illustration of wake meandering at an isolated wind turbine. Large-scale turbulence of the inflow

(left) displaces the wake of a wind turbine in the spanwise direction (right). The quasi-steady velocity deficit in

the meandering frame of reference is indicated in blue and the wake center displacement in black. Figure reused

from [6] under the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/).

for the background flow field, which is the reason why they are also referred to as standalone
DWM model in [11], at the cost of the spectral information that the DWM model can provide.
They retain the modelling framework of the DWM model consisting of three parts: (i) a quasi-
steady velocity deficit in the MFoR, (ii) a lateral and vertical displacement of the quasi-steady
velocity deficit due to the large-scale turbulence of the boundary layer, and (iii) a method that
combines (i) and (ii) for predictions of the mean wind field and the turbulence in the fixed
frame of reference (FFoR). Currently, there are three different SWM models in the literature,
namely the Keck model [11], the Thøgersen et al. model, [18], and the Braunbehrens and
Segalini model [4]. An overview of them is presented in Table. 1.

As can be seen from Table. 1, the existing SWM models each use different methods with
their own drawbacks and benefits. While the Thøgersen et al. [18] model is easy to implement
and fast to compute, it fails to capture the influence of ambient flow conditions on the wake
meandering. While the Braunbehrens and Segalini model [4] and the Keck model [11] lead to
more realistic results compared to the Thøgersen et al. model, their set up requires look-up
tables created from prior simulations and they do not include a realistic prediction of the
turbulence intensity (the latter will be shown in section 2.3). Therefore, we believe there is a
need for an improved SWM model that addresses those issues.

Here, we want to propose a further iteration of a SWM model that has a closed model
description like the Thøgersen et al. model [18], while maintaining the applicability to a wide-
range of flow states like the Keck model and the Braunbehrens and Segalini model. Further,
we want to improve the predictions of the turbulence intensity added by wake meandering
compared to previous SWM models. The paper is structured as follows: section 2 describes
the proposed model, section 3 describes the measurements used for the model validation,
section 4 presents the validation results, and we close with our conclusions in section 5.

2. Statistical wake meandering model

The proposed statistical wake meandering model can be divided into three parts: First, the
quasi-steady velocity deficit is modelled with an adapted analytical wake model. Second, a
PDF of the instantaneous wake center positions for a given flow state and downstream distance
is created. And lastly, an ensemble of quasi-steady velocity deficits is created according the
PDF and the mean velocity field and added turbulence intensity are derived from its statistics.
Each part is detailed in the following subsections.



The Science of Making Torque from Wind (TORQUE 2024)
Journal of Physics: Conference Series 2767 (2024) 092048

IOP Publishing
doi:10.1088/1742-6596/2767/9/092048

3

T
a
b
le

1
.
O
v
er
v
ie
w

o
f
st
a
ti
st
ic
a
l
w
a
k
e
m
ea
n
d
er
in
g
m
o
d
el
s
in

th
e
li
te
ra
tu
re

a
n
d
th
e
h
er
e
p
ro
p
o
se
d
m
o
d
el
.
T
h
e
ta
b
le

d
et
a
il
s
th
e
th
re
e
p
ri
n
ci
p
a
l
co
m
p
o
n
en
ts

o
f
ea
ch

m
o
d
el

(r
ow

s
tw

o
to

fo
u
r)

a
n
d
h
ig
h
li
g
h
ts

d
iff
er
en

ce
s
to

th
e
h
er
e
p
ro
p
o
se
d
m
o
d
el

(b
o
tt
o
m

ro
w
).

A
u
th
o
rs

K
ec
k
(2
0
1
5
)
[1
1
]

T
h
ø
g
er
se
n
et

a
l.
(2
0
1
7
)
[1
8
]

B
ra
u
n
b
eh
re
n
s
a
n
d

S
eg
a
li
n
i

(2
0
1
9
)
[4
]

P
ro
p
o
se
d
m
o
d
el

Q
u
a
si
-s
te
a
d
y

ve
lo
ci
ty

d
efi

ci
t

in
th
e
M
F
oR

A
x
is
-s
y
m
m
et
ri
c

sh
ea
r-
la
ye
r

eq
u
a
ti
o
n
s

[1
]

u
si
n
g

m
ea
n

w
in
d

sp
ee
d
,
tu
rb
u
le
n
ce

in
-

te
n
si
ty
,
a
n
d
ax

ia
l
in
d
u
ct
io
n

fa
ct
o
r
a
s
in
p
u
t.

T
o
p
-h
a
t
sh
a
p
ed

w
a
ke

fr
o
m

a
n
a
ly
ti
ca
l
J
en
se
n
m
o
d
el

[1
0
]

u
si
n
g
a
sm

a
ll

w
ak
e
g
ro
w
th

ra
te

an
d
m
ea
n
w
in
d
sp
ee
d
as

in
p
u
t.

G
a
u
ss
ia
n
sh
a
p
ed

w
a
ke

fr
o
m

lo
o
k
-u
p

ta
b
le

g
en

er
a
te
d

fr
o
m

so
lv
in
g

li
n
ea
ri
se
d

N
av
ia
r-
S
to
ke
s

eq
u
a
ti
o
n
s

w
it
h

a
ct
u
a
to
r

d
is
k

fo
r

se
ve
ra
l
fl
ow

co
n
fi
g
u
ra
ti
o
n
s.

G
a
u
ss
ia
n
sh
a
p
ed

w
a
ke

fr
o
m

a
n
a
ly
ti
ca
l
w
a
ke

m
o
d
el

[2
]

u
si
n
g
a
sm

a
ll

w
ak
e
g
ro
w
th

ra
te

an
d
m
ea
n
w
in
d
sp
ee
d
,

tu
rb
u
le
n
ce

in
te
n
si
ty
,

a
n
d

th
ru
st
-c
o
effi

ci
en
t
a
s
in
p
u
t.

P
D
F

of
th
e

in
st
a
n
ta
n
eo
u
s

w
ak
e

ce
n
te
r

p
os
it
io
n

L
o
o
k
-u
p
ta
b
le

fo
r
m
ea
n
d
er
-

in
g

P
D
F

g
en

er
a
te
d

fr
o
m

si
m
u
la
ti
o
n
s
fo
r
se
ve
ra
l
a
m
-

b
ie
n
t
fl
ow

co
n
d
it
io
n
s.

A
x
is
-s
y
m
m
et
ri
c

P
D
F

in
d
e-

p
en
d
en
t
o
f
a
m
b
ie
n
t
co
n
d
i-

ti
o
n
s.

N
o
rm

a
l
d
is
tr
ib
u
ti
o
n

sc
a
le
d

w
it
h

th
e

fr
ic
ti
o
n

ve
lo
ci
ty

a
n
d

th
e
in
te
g
ra
l
ti
m
e
sc
a
le

(v
er
ti
ca
l
m
ea
n
d
er
in
g
se
t
to

h
a
lf
o
f
th
e
la
te
ra
l)
.

N
o
rm

a
l
d
is
tr
ib
u
ti
o
n

sc
a
le
d

w
it
h

tu
rb
u
le
n
ce

in
te
n
si
ty
,

a
n
d
m
ea
n
w
in
d
sp
ee
d
(v
er
-

ti
ca
l
m
ea
n
d
er
in
g
se
t
to

0
.6
-

0
.9

of
th
e
la
te
ra
l)
.

M
o
d
el

ou
tp
u
t

a
n
d

co
m
b
in
a
-

ti
o
n
m
et
h
o
d

M
ea
n
ve
lo
ci
ty

fi
el
d
a
n
d
tu
r-

b
u
le
n
ce

in
te
n
si
ty

co
m
p
u
te
d

fr
o
m

co
n
vo
lu
ti
o
n

o
f

th
e

m
ea
n
d
er
in
g

P
D
F

an
d

th
e

q
u
a
si
-s
te
a
d
y
ve
lo
ci
ty

d
efi

ci
t.

M
ea
n

ve
lo
ci
ty

d
efi

ci
t
fr
o
m

en
se
m
b
le

av
er
a
g
e.

M
ea
n

ve
lo
ci
ty

fi
el
d

co
m
-

p
u
te
d

fr
o
m

co
n
vo

lu
ti
o
n

of
th
e

m
ea
n
d
er
in
g

P
D
F

an
d

th
e

q
u
a
si
-s
te
a
d
y

ve
lo
ci
ty

d
efi

ci
t.

M
ea
n

ve
lo
ci
ty

d
efi

ci
t
fr
o
m

en
se
m
b
le
av
er
a
g
e
a
n
d
a
d
d
ed

tu
rb
u
le
n
ce

in
te
n
si
ty

fr
o
m

en
se
m
b
le

st
a
n
d
a
rd

d
ev
ia
-

ti
o
n
.

K
ey

d
iff
er
-

en
ce
s

b
et
w
ee
n

ex
is
ti
n
g

m
o
d
-

el
s

an
d

th
e

p
ro
p
o
se
d

m
o
d
el

R
eq
u
ir
es

si
m
u
la
ti
o
n
s
to

cr
e-

a
te

lo
ok

-u
p

ta
b
le

an
d

th
e

m
et
h
o
d
to

co
m
p
u
te

th
e
tu
r-

b
u
le
n
ce

in
te
n
si
ty

le
a
d
s

to
u
n
re
a
li
st
ic

re
su
lt
s.

V
er
y

fa
st

a
n
d

si
m
p
li
st
ic

m
o
d
el
,
b
u
t
a

m
a
jo
r
d
ra
w
-

b
a
ck

is
m
is
si
n
g
th
e
in
fl
u
en

ce
o
f
th
e

am
b
ie
n
t

tu
rb
u
le
n
ce

in
te
n
si
ty

on
th
e
w
ak
e
m
ea
n
-

d
er
in
g
st
re
n
g
th
.

D
o
es

n
o
t
p
ro
v
id
e
th
e
tu
rb
u
-

le
n
ce

in
te
n
si
ty

a
n
d
re
q
u
ir
es

si
m
u
la
ti
o
n
s
to

cr
ea
te

lo
ok

-
u
p
ta
b
le
s.

A
cc
o
u
n
ts

fo
r

in
fl
u
en
ce

o
f

a
m
b
ie
n
t
fl
ow

w
it
h
o
u
t
lo
o
k
-

u
p

ta
b
le
s

g
en

er
a
te
d

fr
o
m

si
m
u
la
ti
o
n
s

an
d

p
ro
v
id
es

th
e
m
ea
n
v
el
o
ci
ty

fi
el
d
an

d
th
e
ad

d
ed

tu
rb
u
le
n
ce

in
te
n
-

si
ty
.



The Science of Making Torque from Wind (TORQUE 2024)
Journal of Physics: Conference Series 2767 (2024) 092048

IOP Publishing
doi:10.1088/1742-6596/2767/9/092048

4

2.1. Quasi-steady velocity deficit

Inspired by Thøgersen et al. [18], we also use an analytical model for the quasi-steady velocity
deficit in the MFoR (ΔUqs). This has the benefit of faster computation times compared to the
Keck model [11] and not requiring simulations to be done in advance like for the Braunbehrens
and Segalini model [4]. The quasi-steady velocity deficit in MFoR has been shown to be of
Gaussian shape beyond a certain downstream distance [16]. Therefore, we propose to use the
analytical model of Bastankhah and Porté-Agel [2] with a wake growth rate that only accounts
for the turbulence created by the wake itself. It is given by:

ΔUqs(x, y, z)

U0(z)
=

(
1−

√
1− CT

8σ2
w(x)D

−2

)
e−0.5y

2σ−2
w (x)e−0.5z

2σ−2
w (x) (1)

where U0 is the incoming mean wind speed, CT is the thrust coefficient of the wind turbine,
D is the rotor diameter, y (z) is the lateral (vertical) coordinate with origin at the turbine
nacelle, and the σw is the wake width given by

σw = k∗MFoR(x− x0) +
D√
8
, (2)

where k∗MFoR = 0.021 is the wake growth rate in the MFoR chosen to account only for the self
induced wake growth based on observed wake growth rates at very low ambient turbulence
levels from LES [2], and the near-wake length is given by

x0 =
(1 +

√
1− CT )D√

2(αTIu + β(1−√1− CT ))
, (3)

where TIu is the streamwise turbulence intensity of the inflow at hub height, α = 3.6, and
β = 0.154. Figure. 2a shows that the resulting quasi-steady velocity deficit agrees well with
the results obtained by solving the shear-layer equations for large x, but overestimates the
amplitude for small x. We consider this as acceptable because turbine spacing in wind farms
is typically larger than 5D and Eq. 1 is an order of magnitude faster to compute (or more for
a larger grid). A dependency of the amplitude of the quasi-steady velocity deficit in the MFoR
to the turbulence intensity as reported in [16] is reproduced with Eq. (1) due to x0 decreasing
with TIu, but the dependency is stronger than in their data. The choice of a Gaussian shape
for the quasi-steady velocity deficit and Eq. (3) for the near-wake length is further justified
by Fig. 2b, which shows the onset of a Gaussian shaped quasi-steady velocity deficit from
observations. Equation (3) provides a reasonable approximation of x0,MFoR even though it
was designed for the FFoR and not the MFOR. We applied the quasi-steady velocity deficit
that is determined at x0,MFoR also to x < x0,MFoR, which leads to unrealistic results at short
downstream distances inside the near-wake.

2.2. Probability density function of the instantaneous wake center position

The PDF of the instantaneous wake center position is designed to account for the most
important effects of the ambient flow on wake meandering. These are an increase of the
wake meandering strength with the ambient turbulence intensity and with the downstream
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Figure 2. Comparison of quasi-steady velocity deficit in the MFoR between Eq. (1) in red and the shear-layer

equations [1] used by the DWM model in blue (a). Results shown between x = 3D (highest curves) and x = 10D

(lowest curves) in 1D increments and the models where initialised with U0 = 5 m s−1, TIu = 0.12, CT = 0.8,

and D = 96 m. The right panel (b) shows the onset of a Gaussian shaped wake in the MFoR quantified as the

first downstream distance with an R2 > 0.95 for a Gaussian fit [7]. The data set and the transformation into

the MFoR are from [5].

distance from the wind turbine [8, 14, 5]. The PDF for the lateral wake position is modelled
with a normal distribution given by

PDFm(x, y) =
1√

2πσm,y(x)
e
− 1

2

(
y

σm,y(x)

)2

, (4)

where the width of the meandering distribution is modelled with

σm,y(x) =
1

2
TIv,fx, (5)

where TIv,f is the low-pass filtered turbulence intensity with filter threshold of 2D to reflect
that only the large-scale turbulence contributes to the wake meandering. The assumption
of a linear relationship between wake meandering strength and the downstream distance
is based on experimental data [5] and the scaling factor was chosen empirically to provide
good agreement in the validation. It has been suggested that the linear increase of the wake
meandering strength changes to a square-root growth at large downstream distances (x > 10D)
[4]. However, our data availability for the validation in section 4 is scarce for x > 9D and we
cannot investigate this therefore.

The PDF for the vertical wake position also follows Eq. (4) with a modified width given
by σm,z(x) = cyzσm,y(x) where the ratio of lateral to vertical wake meandering is given by
cyz = 0.8, which has been suggested for neutral stratification [12]. This is larger than the
value of 0.5 used by the Braunbehrens and Segalini model [4] and there is no consensus on its
value or its dependency with the stratification in the literature.

2.3. Velocity deficit and turbulence intensity in the fixed frame of reference

Lastly, the PDF of the wake center position (Eq. 4) needs to be combined with the quasi-
steady velocity deficit (Eq. 1) to model the mean velocity deficit and the added turbulence
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intensity. We use an ensemble average of the spatially displaced quasi-steady velocity deficits
to compute the mean velocity deficit given by

ΔUavg(y, z) = 〈ΔUqs(y − ym, z − zm)〉 (6)

with ym and zm drawn randomly from PDFm, and 〈...〉 is the ensemble average. For the added
turbulence intensity due to wake meandering, the ensemble standard deviation given by

TIstd(y, z) =

√
〈ΔUqs(y − ym, z − zm)−ΔUavg(y, z)〉2U−10 (7)

is used. A convolution approach that is computationally faster exists in literature [11], but it
led to unrealistic results for the added turbulence intensity (not shown).

3. Research site and measurements

The test site is an isolated 2.5 MW Liberty C96 wind turbine form Clipper Windpower (hub
height of 79 m and a rotor diameter of 96 m) at the Kirkwood Community Collage in Cedar
Rapids, Iowa. Measurements were conducted over one month in autumn 2017. The supervisory
control and data acquisition (SCADA) of the wind turbine provided the wind speed at hub
height averaged over 10-minute periods (U0). The measurement uncertainty of U0 is assumed
to be 0.25 m s−1 based on a comparisons to the Doppler LiDAR measurements (not shown).

Two pulsed Doppler Light Detection and Ranging (LiDAR) systems were mounted on
the roof of the nacelle (Fig. 3a). A Doppler LiDAR measures the line-of-sight velocity of the
air along a laser beam that is emitted by the instrument. The instruments were Stream Line
models from Halo Photonics Ltd. (Worecestershire, UK). The Doppler LiDARs sampled the
velocity with a temporal frequency of 3 Hz and spatial resolution of 18 m along the laser beam.

The Doppler LiDAR mounted towards the front of the nacelle was programmed to measure
the lateral velocity component with a horizontal, fixed beam at a 90◦ to the rotor axis (Fig. 3b,
blue) for a period of 14 minutes. The time series of the lateral velocity v(t) was extracted
from the range gate at y = 117 m and low-pass filtered with a moving average using a
window of 2D

U0
. The short measurement distance leads to a high SNR, which causes the

theoretical velocity uncertainty to be smaller than the velocity resolution of the instrument
(0.038 m s−1) [15]. Subsequently, the standard deviation of the lateral velocity (σv,f ) and
the lateral turbulence intensity (TIv,f =

σv,f

U0
) were computed from the measurements and

assumed to be representative for the rotor area.
The rear-mounted Doppler LiDAR scanned the velocity field of the wake at hub height

(Fig. 3b, red). It was programmed to perform 230 successive Plan Position Indicator (PPI)
scans in the downstream direction with an opening angle of ±12◦ and an azimuth step of 2◦

to capture the wake. Each PPI took 7.2 s to complete including the return to the starting
position and the full scan was completed in approximately 28.4 minutes. A signal-to-noise
ratio (SNR) threshold of -14 dB was used, which leads to an upper bound of the theoretical
velocity uncertainty of 0.3 m s−1 [15] and the spatial uncertainty due to the scanner movement
is assumed to be equal to the azimuth step. The amplitude of the mean velocity deficit and the
turbulence intensity added by wake meandering were derived from the wake scans following
the post-processing, and data selection criteria described in [5]. Only the first half of the wake
scans that coincides with the measurements of the front-mounted Doppler LiDAR are analysed
for the comparison in Sect. 4.
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Figure 3. Photo of the front-mounted Doppler LiDAR on the nacelle of the wind turbine (a). The scan patterns

of the nacelle mounted Doppler LiDARs viewed from top (b). Wake scans of the rear-mounted Doppler LiDAR

(red) were accompanied by measurements in a lateral staring mode of the front-mounted Doppler LiDAR

(blue). LiDAR beams are shown as lines with range gate centers indicated as points. The wind turbine and

the projection of the rotor edge is shown in black dashed lines.

4. Results

The proposed SWM model will be compared to predictions of the DWM model and to
observations of the wake scanning Doppler LiDAR for validation. The implementation of
the DWM model is the same as in [6]. Both, the SWM model and the DWM model, were
initialised with U0 from the SCADA data and v(t) from the front-mounted Doppler LiDAR.
The data set for the validation comprises of 43 cases of inflow and wake measurements covering
a wind speed range between 5 m s−1 and 11 m s−1, and lateral turbulence intensities up to
8% (a more detailed characterization is provided in [5]). The validation will focus on x = 5D
where the scanning cone of the wake scanning Doppler LiDAR has a width of 2D.

First, the amplitude of the mean velocity deficit predicted by the SWMmodel is validated.
The results of the SWM model, the DWM model and the observations are shown in Fig. 4a-c.
All three show a decrease of the normalized velocity deficit with TIv. Agreement of the SWM
model to the DWM model and to the observations is good for TIv > 0.04, but the SWM model
predicts a larger mean velocity deficit for TIv < 0.04. The reason for this overestimation is that
x0,MFoR > 5D for TIv < 0.04 (not withstanding some variation due to the thrust coefficient)
and the quasi-steady velocity deficit becomes unrealistic in the near-wake. The slope and
intercept of a linear regression of the SWM model for TIv > 0.04 agree within the the 95%-
confidence bounds to the linear regressions of DWM model. The lower correlation coefficient
of the observations in Fig. 4c can be explained by the already lower correlation coefficient
between the wake meandering strength and the TIv that is r = 0.6 [5].

To demonstrate the additional value that the SWM model provides over analytical wake
models, the fraction of the velocity deficit recovery that is caused by wake meandering is
investigated next (Fig. 4d-f). Both models and the observations show that the contribution of
wake meandering to the velocity deficit recovery increases with TIv. The slope of the linear
regression of the SWM model agrees to the DWM model and the observations within the
confidence bounds. The problems that the SWM model has with the quasi-steady velocity
deficit in the near-wake do not affect this comparison strongly from which we interpret that
the meandering distribution is realistic across the full range of TIv. If the SWM model uses the
same quasi-steady velocity deficit as the DWM model, the difference in slope reduces to 0.02.
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Figure 4. The upper row shows the normalized amplitude of the velocity deficit in the FFoR (C) as a function

of the lateral turbulence intensity at x = 5D for the proposed SWM model (a), the DWM model (b), and the

observations of the wake scanning Doppler LiDAR (c). The bottom row shows the difference of velocity deficit

amplitude between the MFoR and the FFoR ( ˜C − C) for the proposed SWM model (d), the DWM model (e),

and the observations of the wake scanning Doppler LiDAR (f). C is the maximum of ΔUavg (Eq. 1) and ˜C is

the maximum of ΔUqs (Eq. 6). A linear regression with the 95%-confidence bounds are shown in red (in case

of panel (a) only TIv > 0.04 is used for the regression). The error bars of the data points show the propagated

errors based on the measurement uncertainties stated in Sect. 3 using a Monte-Carlo approach.

Lastly, the predictions for the added turbulence intensity due to wake meandering are
validated. Both models and the observations show that 〈TIadded〉 increases with TIv (Fig. 5).
In a linear regression, the slope of the SWM model agrees within the confidence bounds to the
DWM model and the observations. However, the intercept of the DWM model and the SWM
model are significantly different from the observations, indicating that one of them is biased.

The distribution of 〈TIadded〉 as a function of x is shown in Fig. 6. This figure should
be interpreted cautiously for several reasons. First, the scanning cone of the Doppler LiDAR
increases in width with downstream distance while the spatial resolution decreases. This
behaviour was replicated in the evaluation of the models for comparability, but it possibly
biases the behaviour of 〈TIadded〉 with x compared to what would be observed with a constant
domain and a constant spatial resolution. Second, we initialize the DWM model with a
constant thrust coefficient along the radius. This makes the quasi-steady velocity deficit
become more top-hat shaped for small x and the sharp velocity gradient at the edge inflates
〈TIadded〉 for the DWM model. This could possibly be improved by using a non-constant
distribution of the thrust coefficient in the DWM model. The results show a decrease of
〈TIadded〉 with x for the SWM model and the observations. Similar to the results of Fig. 4,
we observe a positive bias of the SWM model compared to the observations that exists across
the whole range of x. A difference of 〈TIadded〉 between the SWM model and the DWM model
reduces with x. Overall, the SWM model replicate the trends of the observations, but has a
constant positive bias compared to the observations.
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Figure 5. The added wake turbulence intensity due to wake meandering 〈TIadded〉 at x = 5D as function of

the lateral turbulence intensity of the inflow for the proposed SWM model (a), the DWM model (b), and the

observations of the wake scanning Doppler LiDAR (c). For the SWM model and the DWM model, 〈TIadded〉 was
quantified using Eq. (7) at grid points corresponding to the measurement points of the wake-scanning LiDAR

and then laterally averaged across the scanning cone of the rear-mounted Doppler LiDAR. For the observations,

〈TIadded〉 was quantified as the laterally averaged difference in turbulence intensity between FFoR and MFoR

[5]. A linear regression with the 95%-confidence bounds are shown in red. The error bars show the propagated

errors based on the measurement uncertainties stated in Sect. 3 using a Monte-Carlo approach.
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Figure 6. The added wake turbulence intensity due to wake meandering 〈TIadded〉 as a function of the

downstream distance for the proposed SWM model (a), the DWM model (b), and the observations of the wake

scanning Doppler LiDAR (c). Our implementation of the DWM model uses a constant thrust coefficient that

negatively affects the results (see main text). The whiskers show the range of the data, blue bins the 25th and

75th percentile, and the red line the median value. The range of the data at each bin is explained by turbulence

intensity, which can be seen for x = 5D in Fig. 5.

5. Conclusions

A new statistical wake meandering (SWM) model has been proposed. Compared to previous
SWM models, the proposed model has the benefit of a simple implementation, because it does
not require look-up tables created from simulations, while at the same time being applicable to
a wide range of flow conditions. The predictions of the proposed SWM model for the effect of
wake meandering on the mean velocity field show agreement to the Dynamic Wake Meandering
(DWM) model and to the observations of a wake scanning Doppler LiDAR at a utility-scale
wind turbine in the far-wake. For the added turbulence intensity due to wake meandering, the
SWM model shows agreement with the DWM model, but has a positive bias compared to the
observations.

We consider the quasi-steady velocity deficit in the near-wake to be the weakest point of
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the proposed SWM model. Improving it to be applicable in near-wake would be desirable to
make the model viable for shorter turbine spacings, which is relevant for the modernization
(repowering) of existing wind farms. Also, it is desirable to find a convolution-based expression
for the added turbulence intensity instead of the ensemble standard deviation, which would
improve the computation speed of the SWM model significantly. Lastly, a validation of the
proposed SWM model with a reference data set from the Horns Rev and Lillgrund offshore
wind farms [9] would be desirable for better comparison to existing SWM models that were
validated on this data set.
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of wake dynamics. part ii: two-dimensional scanning. Wind Energy, 14(1):61–75, 2011.


