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Abstract. Predictions of the dynamic wake meandering model (DWMM) were compared to flow measurements
of a scanning Doppler lidar mounted on the nacelle of a utility-scale wind turbine. We observed that the wake
meandering strength of the DWMM agrees better with the observation, if the incoming mean wind speed is
used as advection velocity for the downstream transport, while a better temporal agreement is achieved with
an advection velocity slower than the incoming mean wind speed. A subsequent investigation of the lateral
wake transport revealed differences to the passive tracer assumption of the DWMM in addition to a non-passive
downstream transport reported in earlier studies. We propose to include the turbulent Schmidt number in the
DWMM to improve (i) the consistency of the model physics and (ii) the prediction quality. Compared to the
observations, the thus modified DWMM showed a root-mean-square error reduction by 2 % for mean velocity
deficit and 1 % for the turbulence intensity, relative to the unmodified DWMM, in addition to better temporal
agreement of the dynamics. This is in contrast to an error increase of 35 % and 36 % if only a more accurate
downstream transport velocity is used without including the turbulent Schmidt number.

1 Introduction

Wind turbine wakes impinging on other wind turbines within
a wind farm are a significant source of power losses, and
they decrease the lifetime of affected wind turbines. Wake
meandering is a low-frequency horizontal and vertical oscil-
lation of the entire wake (Taylor et al., 1985). Large-scale
turbulence of the atmospheric boundary layer (Larsen et al.,
2008) and bluff body vortex shedding (Medici and Alfreds-
son, 2006) have been proposed as drivers of wake meander-
ing. Wake meandering affects power production due to its
impact on the velocity deficit recovery, and it affects loads
due to the turbulence added to the downstream flow (Larsen
et al., 2013). Therefore, the modeling of wake meandering is
one important aspect of wind farm development.

Modeling approaches for wake meandering can be
grouped into two categories. The first group are computa-

tionally expensive large-eddy simulations (LESs) that solve
filtered flow equations at a high temporal and spatial resolu-
tions (Mehta et al., 2014). However, their high fidelity comes
at the cost of a time-consuming forward integration and a
difficult initialization of the simulation. The second group
are computationally inexpensive engineering models like the
dynamic wake meandering model (DWMM) (Larsen et al.,
2008) and a statistical modeling approach (Thøgersen et al.,
2017). The DWMM is based on the assumption that the wake
behaves like a passive tracer, which is transported in the ver-
tical and horizontal directions due to large-scale turbulence
(Fig. 1). The DWMM has the advantage of fast computation
time, and it can be initialized with measurement data that are
commonly available at a wind farm.

The DWMM has seen validation efforts in literature,
which are reviewed in the following. The underlying pas-
sive scalar assumption of the DWMM has been accepted
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Figure 1. Illustration of wake meandering at an isolated wind turbine as assumed by the dynamic wake meandering model. Large-scale
turbulence of the inflow displaces the wake of a wind turbine in the spanwise direction while it is transported downstream.

with the exception of the downstream transport velocity of
wake meandering, which is slower than the mean wind speed
(Bingöl et al., 2010; Keck et al., 2014b; Machefaux et al.,
2015; Conti et al., 2021; Brugger et al., 2022). Machefaux
et al. (2015) additionally investigated the lateral transport ve-
locity of the wake while it is meandering, but they had no
measurements of the lateral velocity of the inflow for com-
parison. A validation of the mean velocity field and turbu-
lence intensity predicted by the DWMM against field mea-
surements showed good agreement and revealed a sensitivity
to the eddy-viscosity parameterization used (Reinwardt et al.,
2018, 2020).

The above-mentioned discrepancies between the passive
tracer assumption of the DWMM and observed transport
behavior warrant closer examination. Specifically, assuming
the wake as a passive tracer in the cross-stream directions
and non-passive in the streamwise direction is physically in-
consistent. Also, an investigation of the impact of the down-
stream advection velocity on the predictions of the DWMM
has not been carried out so far. Further, previous validation
efforts for the velocity deficit and the turbulence intensity
predicted by the DWMM focused on validating all compo-
nents of the DWMM simultaneously, with the exception of
Reinwardt et al. (2020). Here, we extend the validation of the
wake meandering module of the DWMM by Reinwardt et al.
(2020) to the turbulence intensity. This is especially interest-
ing, because the meandering framework of the DWMM is
what sets it fundamentally apart from analytical wake mod-
els.

Therefore, this paper will compare the wake dynamics
modeled by the DWMM to the wake dynamics observed with
field measurements. Further, we investigate how differences
between modeled and observed wake meandering dynamics
affect the predictions of the DWMM for the effect of wake
meandering on the mean velocity deficit and the turbulence
intensity. These research questions will be studied across a
wide range of atmospheric conditions using field measure-
ments of two pulsed Doppler lidars at a utility-scale wind
turbine.

2 Methods

This section introduces first the DWMM (Sect. 2.1) followed
by the research site and the instrument setup (Sect. 2.2) with
which the data set for the model validation was collected
(Sect. 2.3).

2.1 Dynamic wake meandering model

The dynamic wake meandering model (DWMM) was intro-
duced by Larsen et al. (2007, 2008) and assumes the wake
as a passive tracer that is advected by the large-scale tur-
bulence of the atmospheric boundary layer. The model de-
composes the wake into three parts: (i) a quasi-steady ve-
locity deficit calculated with the thin shear layer approxima-
tion of the Navier–Stokes equations (Ainslie, 1988), (ii) a
wake meandering part modeled as a displacement of the en-
tire wake with the large-scale turbulence of the background
flow (Larsen et al., 2008), and (iii) small-scale turbulence
based on a homogeneous Mann (1994) turbulence field that
is scaled based on the local depth of the quasi-steady velocity
deficit and its radial gradient. A schematic illustration of part
(i) and (ii) is on the right of Fig. 1 with the quasi-steady ve-
locity deficit in blue and the wake displacement in black. We
follow here the implementation of Reinwardt et al. (2020)
for the quasi-steady velocity deficit, including their recali-
bration, and Bingöl et al. (2010) for the wake meandering
part. The small-scale turbulence part of the DWMM is not
required here, because the present investigation focuses on
the wake meandering part of the DWMM. The DWMM was
implemented using the commercial software MATLAB for
this study.

2.1.1 Quasi-steady velocity deficit

The quasi-steady velocity deficit is modeled with the steady-
state, axisymmetric thin shear layer approximation of the
Navier–Stokes equations with an eddy-viscosity turbulence
closure (Ainslie, 1988). The momentum equation is given by
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and the continuity equation is given by
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where u is the mean wind speed in the axial direction, vr is
the mean wind speed in the radial (or spanwise) direction, r is
the radial coordinate, x is the downstream coordinate, and ν
is the eddy viscosity. The recalibrated mixing-length param-
eterization of the eddy viscosity of Reinwardt et al. (2020) is
given by
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where uhub is the mean wind speed at hub height, umin is
the minimum velocity of the wake, TIu is the longitudinal
turbulence intensity at hub height, x̃ = x/R, R is the rotor
radius, Rw is the wake width, k1 = 0.0914 and k2 = 0.0216
are calibration constants, and F1 and F2 are empirical filter
functions given by

F1 =

{
0.25x̃, for x̃ < 4,

1, for x̃ ≥ 4
(4)

and

F2 =

{
0.035, for x̃ < 4,

1− 0.965exp(−0.35(0.5x̃− 2)), for x̃ ≥ 4.
(5)

The system of partial differential equations given by
Eq. (1) and Eq. (2) was solved on an isotropic grid with a res-
olution of 0.01D spanning 10D from the origin at the nacelle
using the method of Crank and Nicolson (1947). The inner
boundary condition is V (r = 0)= 0, and the outer bound-
ary condition is U (r = 10D)= uhub. The initial condition at
x = 0 is introduced in the next section.

2.1.2 Initial velocity deficit at the rotor plane

The thin shear layer equations (Eqs. 1 and 2) omit the pres-
sure gradient terms. The effect of the pressure gradients is
considered negligible at a distance of 3D (Madsen et al.,
2010). Therefore, the boundary condition at x = 0 is de-
signed to account for the effect of the neglected pressure gra-
dient by including expansion and deceleration of the flow at
the rotor disk such that the resulting flow field after 3D is ac-
curately represented. The initial velocity deficit is iteratively
given by

uini
(
rw,i

)
= uhub(1− (1+ fu)a) (6)

and

rw,i = ri

√
1− a

1− (1+ fR)a
, (7)

where fu = 1.1, fR = 0.98, a is the induction factor averaged
along all radial positions, ri is the rotor radius at position i,
and rw,i is the wake radius at position i (Keck et al., 2013).
The induction factor is computed from the thrust coefficient
of the wind turbine (CT) by using the relationship

CT = 4a(1− a), (8)

where a is assumed to be constant across the rotor area. The
thrust coefficient is selected from Fig. A1 based on uhub. The
assumption of a constant induction factor is necessary be-
cause its radial distribution is not available to us for the wind
turbine at the research site. However, testing with two dif-
ferent induction factor distributions of model wind turbines
shown in literature (scaled so that they yield the same mean
induction factor) showed that the two initial velocity deficits
at x > 4D had a mean absolute difference of 0.9 % with a
maximum of 1.5 % based on the mean wind speed for the
wind speed range covered in the results.

2.1.3 Wake meandering

The DWMM uses the hypothesis that the wake can be mod-
eled as a passive tracer that is transported by the large-scale
turbulence structures of the atmospheric boundary layer. The
process can be imagined as a continuous sequence of velocity
deficits emitted by the wind turbine that are passively trans-
ported by the large-scale turbulence (Larsen et al., 2008).
Therefore, a suitable description of the turbulence field is
required. We depart here from the implementation of Rein-
wardt et al. (2020), who used a Kaimal spectrum to generate
a stochastic turbulence field, and instead we will follow the
approach of Bingöl et al. (2010) that is more suitable for a
direct comparison with wake measurements. They adopted
Taylor’s frozen turbulence hypothesis (Taylor, 1938) and as-
sumed that the large-scale turbulence is correlated across the
rotor area. The instantaneous wake position is then given by

dxpre(t,1T )
dt

= ua, (9)

dypre(t,1T )
dt

= v(t,1T ) (10)

and

dzpre(t,1T )
dt

= w(t,1T ), (11)

where the subscript “pre” stands for prediction, ua is the
downstream advection velocity (also called downstream
transport velocity), v and w are the large-scale lateral and
vertical turbulent velocity fluctuations, t is the time when
a quasi-steady velocity deficit arrives at a downstream lo-
cation, and 1T is the time delay until the emitted velocity
deficit has reached a given downstream distance. Using the
lateral velocity at the turbine location for the right-hand side
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of Eq. (10), the instantaneous wake center position in the hor-
izontal plane is given by

ypre(x, t)= v(t −1T (x))1T (x), (12)

where 1T was expressed as a function of the downstream
distance x with

1T (x)=

x∫
0

dx
ua(x)

. (13)

We will compare two assumptions for the downstream ad-
vection velocity in the results: (1) the advection velocity is
the same as mean wind speed with ua(x)= uhub, and (2) the
advection velocity is given by the average of the mean wind
speed and mean velocity at the wake center with

ua(x)= 0.5(ucen(x)+ uhub) (14)

as proposed by Cheng and Porté-Agel (2018). For the lat-
ter, the mean velocity at the wake center ucen(x) is computed
with the analytical wake model of Bastankhah and Porté-
Agel (2016) (see Eq. A2 in Appendix A). Assumption (1)
is following the simplified DWMM in Larsen et al. (2008).
Assumption (2) is an improvement on Keck (2015), who as-
sumed that the downstream advection velocity is a constant
80 % of the mean wind speed.

The vertical component of wake meandering cannot be
computed directly, because measurements for the right-hand
side of Eq. (11) are not available. Instead, we assume that the
vertical wake meandering can be modeled to be proportional
to the lateral wake meandering with

zpre(x, t)= ryzypre(x, t), (15)

where the factor ryz is the ratio between the horizontal and
the vertical wake meandering strength.

We assume that a suitable choice of ryz is the ratio of
lateral to vertical turbulence intensity. For a purely shear-
driven atmospheric boundary layer, ratios of TIv/TIu and
TIw/TIv are about 0.5, while for a purely convective atmo-
spheric boundary layer TIv ≈ TIu < TIw above the surface
layer and TIv ≈ TIu > TIw within the surface layer (Moeng
and Sullivan, 1994). Wind tunnel experiments with purely
shear-driven flows showed that wake meandering in the ver-
tical direction had a smaller amplitude than the lateral direc-
tion (España et al., 2012; Bastankhah and Porté-Agel, 2017),
which supports the assumed proportionality to the turbulence
intensity ratios. Keck et al. (2014a) presented ratios for verti-
cal to lateral wake meandering of approximately 0.6, 0.8, and
0.9 for stable, neutral, and unstable conditions, respectively.
We do not have direct measurements of TIw/TIv , and the
data available to us from a nearby meteorological tower were
not suitable to determine the boundary layer state. Therefore,
we assume ryz = 0.8 as an average ratio.

Figure 2. Satellite image of the measurement site with the location
of the wind turbine (© Google Earth). The wind turbine coordinates
are 41.9165° latitude and −91.6508° longitude.

Further, Eq. (15) implies a perfect correlation between ypre
and zpre, which might not be the case in reality. However,
randomly rearranging zpre changed the slopes of the linear re-
gressions shown in Sect. 3.2 by less than 0.02 (no detectable
change for the intercept and the correlation coefficient) and,
therefore, does not affect the drawn conclusions.

2.2 Research site and measurement setup

The research site and the measurement setup are the same
as reported in Brugger et al. (2022). The setup was imple-
mented between 19 August 2017 and 2 October 2017. Qual-
ity assurance and data selection criteria are summarized at
the beginning of Sect. 3.

The site consists of an isolated wind turbine located
at Kirkwood Community College in Cedar Rapids, Iowa
(Fig. 2). The wind turbine is a 2.5 MW Liberty C96 from
Clipper Windpower with a hub height of zhub = 79m and a
rotor diameter of D = 96m. The area in the vicinity of the
wind turbine is urbanized with some agricultural farmland to
the south and east. Data from the supervisory control and
data acquisition (SCADA) system of the wind turbine are
available to us with a 10 min resolution.

We installed two pulsed Doppler lidars on the roof of
the nacelle (Fig. 3a). A Doppler lidar emits infrared laser
pulses that are scattered by aerosols within the atmosphere.
The backscattered light receives a frequency shift due to the
Doppler effect caused by the movement of the aerosols. As-
suming that aerosols are transported by the wind, the line-
of-sight velocity of the air along the laser beam can be es-
timated from the frequency shift detected by the instrument.
The instruments were StreamLine models from Halo Photon-
ics Ltd. (Worcestershire, UK).

The Doppler lidar mounted towards the rear of the nacelle
was used to scan the wake. It was configured to average 3000
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Figure 3. Photo of the front-mounted Doppler lidar on the nacelle of the wind turbine (a). Scan patterns of the nacelle mounted Doppler
lidars viewed from top (b). Wake scans of the rear-mounted Doppler lidar (red) were accompanied by measurements in a lateral staring mode
of the front-mounted Doppler lidar (blue). Lidar beams are shown as lines with range gate centers indicated as points. The wind turbine is
stylized in black, and the rotor-edge projection in the wind direction is indicated with dashed black lines. The bottom panel shows the scanner
path for a section of a wake scan (c), where the grey area indicates the successive PPIs that, together, become a wake scan. Figure adapted
from Brugger et al. (2022) with changes under the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/,
last access: 5 September 2022).

pulses per velocity estimate and use six points per range gate.
This leads to an effective sampling frequency of approxi-
mately 3 Hz and spatial resolution of 18 m along the laser
beam. A signal-to-noise ratio (SNR) threshold of −14 dB is
used to reject low-quality Doppler lidar measurements, re-
sulting in a theoretical standard deviation of the Doppler esti-
mate of 0.3 m s−1 as the upper limit for the uncertainty (Pear-
son et al., 2009). It was programmed to perform 230 succes-
sive plan position indicator (PPI) scans in the downstream
direction with an opening angle of±12° and an azimuth step
of 2° to capture the wake (Fig. 3). Each individual PPI sweep
with the return to the starting position took 7.2 s, and the full
scan was completed in approximately 28.4 min. The scans
were designed to be slightly shorter than the 30 min period
allocated in the scan schedule to ensure smooth operation
of the measurements. Because the scanner head was moving
during the sampling, we assume that the spatial uncertainty
of a measurement is equal to its travel distance (2°).

Simultaneously, the front-mounted Doppler lidar was used
to measure the inflow. It was configured to average 5000
pulses per velocity estimate and uses six points per range
gate. It was programmed to measure the lateral velocity com-
ponent with a horizontal, fixed beam at a 90° to the rotor axis
for a period of 14 min (for the remainder of the 30 min pe-
riod, it measured with a fixed beam parallel to the rotor axis
upstream, but those measurements were only used to vali-

date the SCADA data). This scan pattern of the two Doppler
lidars were scheduled to begin every second hour at the half-
hour mark. The theoretical uncertainty of the radial velocity
was estimated based on the recorded SNR using Eq. (2) from
Pearson et al. (2009), but it was smaller than the velocity res-
olution of the instrument due to the proximity of the range
gate from which the data are used (see Sect. 2.3.1). There-
fore, the velocity resolution will be assumed as the uncer-
tainty of the lateral velocity (0.038 m s−1).

2.3 Model inputs and reference data

The input values of the DWMM and the reference of
the validation use data from separate measurement instru-
ments to keep them independent. The model input is gen-
erated from the SCADA data and the measurements of the
front-mounted Doppler lidar. The measurements of the rear-
mounted Doppler lidar are used as the reference for the vali-
dation.

2.3.1 Model inputs

The input variables of the DWMM and the measurements
from which they are taken are listed below:

– uhub is the mean wind speed at hub height. It is mea-
sured by a cup anemometer located on the roof of the
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wind turbine and reported in the SCADA data. Be-
cause the SCADA data have a 10 min resolution, we
use the average of a 20 min period for the mean wind
speed, which is longer than the 14 min measurement
period of the front-mounted Doppler lidar. Based on a
comparison to the upstream stare of the front-mounted
Doppler lidar, we assume that uhub has an uncertainty
of 0.25 m s−1 quantified as the root-mean-square error.

– v(t) is the time series of the large-scale lateral velocity
of the inflow. It is generated from the measurements of
the front-mounted Doppler lidar using the range gate at
a distance of 117 m, which is the closest range gate that
is not affected by the rotor. A mean is removed, and a
low-pass filter with a threshold of β1T with β = 0.8 is
applied to isolate the large-scale turbulence fluctuations
(Cheng and Porté-Agel, 2018). In the spatial domain,
this threshold of the low-pass filter is proportional to
the downstream distance x, and it is considerably larger
than the rotor diameter, which makes it reasonable to
assume that v(t) is representative of the full rotor area.
Further, the lateral turbulence intensity (TIv) and the in-
tegral time scale (Ti,v) are computed from v(t) prior to
the low-pass filtering. A proportionality between longi-
tudinal and lateral turbulence intensity with TIu = 3

2 TIv
is assumed.

– CT is the wind-speed-dependent thrust coefficient of
the wind turbine. It is selected from the thrust curve in
Fig. A1 based on uhub.

2.3.2 Reference data set

The instantaneous wake center position, the turbulence in-
tensity added by wake meandering, and the reduction of the
mean velocity deficit due to wake meandering are extracted
from the measurements of the rear-mounted Doppler lidar.
The processing steps listed below and illustrated in Fig. 4 are
similar to those in Brugger et al. (2022):

1. The line-of-sight velocities are gridded on a polar coor-
dinate system ur(φ,r, t) with an azimuth (φ) resolution
of 2°, a radial (r) resolution of 18 m, and a time step (t)
aligning with the PPIs of the wake scans. The az posi-
tions of the lidar scans and the φ positions of the polar
coordinate system can have a difference of 0.2° towards
the end of a PPI resulting from the acceleration phase of
the scanner head, small variations of the scanner behav-
ior, and fluctuations of the sampling frequency. Multiple
measurements are available for the outside grid points
due to a short resting time of the scanner at the turn-
around point, and the measurements closest in time are
used at those grid points.

2. The transformation to a Cartesian coordinate system is
made using y = rsin−1(φ) and x = 〈rcos−1(φ)〉, where
the angle brackets indicate the lateral averaging.

3. An instantaneous velocity deficit is computed with
1ur(x,y, t)= uhub−ur(x,y, t). This approach maps all
measurements during a PPI on a single time stamp ne-
glecting the travel time of the scanner head.

4. The instantaneous position of the wake center is de-
tected with the centroid of the velocity deficit with

ywc(x, t)=

∑
yy1ur(x,y, t)∑
y1ur(x,y, t)

, (16)

where the subscript “wc” stands for wake centroid, and
negative values of 1ur(x,y, t) are set to zero.

5. The instantaneous velocity deficit in the meandering
frame of reference (1ur(x, ỹ, t)) is computed by trans-
formation of the lateral coordinate with ỹ = y−ywc and
interpolated on the original y grid points.

6. The temporal mean and the standard deviation of
1ur(x,y, t) and 1ur(x, ỹ, t) provide profiles of the
mean velocity deficit and the turbulence intensity in the
nacelle frame of reference (NFOR) and the meandering
frame of reference (MFOR), respectively. The NFOR
is identical to a fixed frame of reference here, because
data were selected to have no yaw activity of the wind
turbine.

7. The reduction of the mean velocity deficit due to wake
meandering is then quantified by the amplitude differ-
ence of two Gaussian functions fitted to the mean ve-
locity deficit in the NFOR and the MFOR, respectively.
The difference will be denoted as C̃−C, where C (C̃)
is the amplitude of the Gaussian function in the NFOR
(MFOR).

8. The turbulence added by wake meandering is quanti-
fied by the laterally averaged difference in turbulence
intensity between the NFOR and the MFOR. It will be
denoted as 〈TIu− T̃Iu〉.

9. Lastly, a temporal mean is also removed ywc(x, t), and
a low-pass filter is applied to make it comparable to
ypre(x, t) of the DWMM that is based on the detrended
and low-pass filtered v(t).

The above processing steps are applied for downstream
distances between xD−1

= 3 and xD−1
= 7. The Doppler

lidar’s field of view and the double-peak shape of veloc-
ity deficit in the near-wake were problems for the detection
of ywc for xD−1 < 3, and the lateral resolution of the lidar
scans became coarser than 10 m for xD−1 > 7. Some parts of
the results will focus on a downstream distance of x = 5D,
because the scanning cone has an ideal width of 2D, there
and 5D is typical distance between wind turbines in onshore
wind farms.
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Figure 4. The data processing steps to quantify the effect of wake meandering on the mean velocity deficit and the turbulence intensity are
illustrated for an example at a downstream distance of x = 5D. The instantaneous velocity deficit in the nacelle frame of reference (a) and
meandering frame of reference (b) have a temporal average (c, e) and standard deviation (d, f) applied. The reduction of the mean velocity
deficit due to wake meandering is then quantified as amplitude difference (g) of two Gaussian fits to the two velocity deficits in (c) and (e).
The turbulence intensity added by wake meandering is quantified as the spatially averaged difference in turbulence intensity (h).

2.3.3 Error propagation of the measurement uncertainty

The measurement uncertainties are propagated to the model
predictions and the reference data with a Monte Carlo
method. We created 100 resamples of the measurement data
with random fluctuations added that were drawn from a nor-
mal distribution with a standard deviation equal to the mea-
surement uncertainty (except for the azimuth for which a uni-
form distribution was used). The model predictions and the
wake quantities were computed for each of the 100 resam-
ples, and the propagated measurement uncertainty was quan-
tified as the root-mean-square error. If results are normalized
in Sect. 3, we apply the error propagation rules for a division
as a last step.

In the case of the DWMM, the Monte Carlo approach was
implemented in two stages. First, we estimated the uncer-
tainty of ypre with the Monte Carlo approach based on the
uncertainties of v and uhub. Then, we estimated the uncer-
tainty of the mean velocity deficit and the added turbulence
intensity with a second Monte Carlo approach based on the
uncertainties of ypre and uhub.

3 Results

The first part of the results will focus on the modeling of
wake meandering itself, while the second part will focus on
the validation of the predicted effects that wake meander-
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ing has on the mean velocity deficit and the turbulence in-
tensity. A set of 43 cases, each covering an approximately
14 min period, was selected from the measurement data of
the campaign. The selection criteria were a mean wind speed
above 5 m s−1, no yaw movement of the wind turbine, a suf-
ficient mean SNR of the Doppler lidar, and a wake within the
Doppler lidar’s scanning cone. The 43 cases cover a wind
speed range from 5 to 11 m s−1, with turbulence intensities
of the lateral velocity component up to 8 % (for higher tur-
bulence intensities, the wake is not covered by the Doppler
lidars scanning cone due to very strong wake meandering).
The selection criteria and the data set are identical to Brug-
ger et al. (2022).

3.1 Testing of the passive scalar assumption of the
DWMM

First, the predictions of the instantaneous wake center posi-
tions will be validated. The root-mean-square error (RMSE)
and the correlation coefficient between the predicted wake
center position (Eq. 12) and the observed wake center po-
sition (Eq. 16) will be used as quality metrics. The observed
wake center position has been low-pass filtered with the same
filter threshold as the input of the DWMM for comparabil-
ity. The results of the evaluation at x = 5D are shown in
Fig. 5. They have a general trend of an increasing corre-
lation and a decreasing normalized RMSE with Ti,v1T −1.
The ratio Ti,v1T −1 quantifies the rate of evolution of the
turbulent wind field during the time of downstream advec-
tion (or in other words how well the Taylor’s frozen turbu-
lence hypothesis holds). This behavior is in agreement with
the recommendation that for large downstream distances, the
spatial variability of the large-scale turbulence components
should be taken into account (Larsen et al., 2008), which is
supported by the results of a previous data analysis (Brugger
et al., 2022).

Next, we will investigate the effect of the downstream ad-
vection velocity on the predicted wake-center positions. We
will compare predictions using the reduced downstream ad-
vection velocity given by Eq. (14) with predictions using the
mean wind speed of the inflow as the downstream advec-
tion velocity. The effect of the choice of advection velocities
on the correlation coefficient is shown in Fig. 6a. It shows
that using ua instead of uhub improved the correlation be-
tween predictions and observations for x < 5D, indicating
better temporal alignment for the predictions using the re-
duced downstream advection velocity. Removing a temporal
trend instead of the mean from ypre and ywc prior to the cor-
relation would lead to a twice as large improvement of the
correlation (we do not remove a linear trend here, because it
is problematic for Sect. 3.2 where we cannot remove a trend
from the observations). This can be explained by non-steady
effects like a change of the wind direction, which contribute
to the correlation but do not depend on the downstream trans-
port. No systematic effect on the correlation is observed be-

yond 5D, which can be explained by ua(x) approaching uhub
with increasing x and the decorrelation of the two turbulent
signals with increasing separation.

Despite the increase in correlation coefficient, using ua had
a detrimental effect on the normalized RMSE (Fig. 6b). This
will be investigated in more detail in the following section.

3.1.1 Overestimation of the wake meandering strength

It was previously observed that using ua as the advection ve-
locity increases the RMSE despite having a higher correla-
tion with the observation. Analyzing several cases visually,
we observed that the predictions had in many cases an am-
plitude of the wake displacement that is too large compared
to the observations. Figure 7 shows three examples from the
data set to illustrate the behavior. It is apparent that the better
temporal alignment of the predictions using ua is accompa-
nied by an overestimation of the wake displacement com-
pared to the predictions with uhub. Quantifying the overesti-
mation with the difference in wake meandering strength for
the whole data set, it becomes clear that this is a system-
atic bias that is introduced by the reduced advection velocity
(compare Figs. 8a and b).

Better temporal agreement of the DWMM when using a
downstream advection velocity slower than the mean wind
speed was observed in several studies (Bingöl et al., 2010;
Keck et al., 2014b; Machefaux et al., 2015). However, a sub-
sequent overestimation of the wake meandering strength has
not been reported as a problem so far. While Keck et al.
(2014a) showed in their Fig. 3 that the lateral wake meander-
ing strength predicted by the DWMM increases with a slower
downstream transport velocity for x < 10D, they did not fur-
ther investigate the matter (possibly due to a scaling of the
wake meandering strength at a later stage of their DWMM
implementation). In a previous validation of the passive
scalar assumption by Bingöl et al. (2010), this phenomenon
was not reported, but a visual inspection of their Fig. 8 sug-
gests that three of their four cases also exhibit a larger dis-
placement of the wake center position in the DWMM pre-
dictions compared to the wake measurements. Trujillo et al.
(2011) showed an example case in their Fig. 5, which we dig-
itized (linearly interpolating the parts that where obstructed
by other plot elements), and found similar displacements of
the wake center position for the predictions and the obser-
vations. However, the description of their data processing
mentions low-pass filtering only for the modeled wake of the
DWMM and not the observed wake, which could mask the
overestimation. Other validations might not have observed
this issue previously, because using the mean wind speed for
the downstream advection and a temporally averaged valida-
tion approach masks the issue (Reinwardt et al., 2018, 2020;
Conti et al., 2021).

Based on our own findings and the literature review, we
believe that the discrepancy between temporal agreement and
wake meandering strength points towards a short-coming of
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Figure 5. The correlation coefficient (a) and normalized root-mean-square error (b) between the wake center position predicted by the
dynamic wake meandering model (ypre, Eq. 12) and the observed wake position by the wake scanning Doppler lidar (ywc, Eq. 16) at a
downstream distance of 5D from the wind turbine. The ratio between the integral time scale of lateral velocity (Ti,v) and the time delay
due to downstream advection (1T ) quantifies the rate of evolution of the turbulent wind field during the time of downstream advection. The
error bars show the standard deviation of the propagated measurement uncertainty. The 95 % confidence bounds of the linear fit show the
statistical uncertainty due to the scatter of the data points.

Figure 6. The effect of the downstream advection velocity on the correlation coefficient (a) and on the normalized root-mean-square error
(b) between ypre and ywc as a function of the downstream distance. The subscript “a” (“hub”) indicates ua (uhub) as downstream advection
velocity. The whiskers show the range of the data, the top and bottom of the blue box indicating the 25th and 75th percentile, and the red
center marker showing the median.

the passive-tracer assumption of the DWMM. In the follow-
ing section, we will provide a hypothesis to address this prob-
lem. Other possible explanations for the overestimation that
were tested on the data and rejected are listed in Appendix B.

3.1.2 Improvement of the DWMM to account for
momentum transport

We hypothesize that the transport of the wake with large-
scale turbulence is more akin to the transport of momen-
tum than the transport of a passive tracer and that, subse-
quently, the turbulent Schmidt number should be considered

in the modeling of wake meandering. The turbulent Schmidt
number characterizes the ratio between the turbulent trans-
port of momentum and the turbulent transport of passive
scalars. Previous experiments indicated that momentum is
transported less efficiently than scalars in turbulent wakes
(Reynolds, 1976; Antonia et al., 1993). First, we provide
support for this hypothesis by comparing observed trans-
port behavior of the wake with the expectation of a passive
scalar. Then we include the turbulent Schmidt number into
the DWMM and compare those new predictions with the ob-
servations.
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Figure 7. The time series of the observed and the predicted wake center positions at x = 5D for three example cases, which were selected
for their high correlation between reference and prediction. The predictions are shown for uhub (dashed blue) and ua (solid blue) as the
downstream transport velocity. The reference from the observations is shown in black.

Figure 8. Error between observed and predicted wake meandering strength with uhub (a) and ua (b) as downstream advection velocity. The
whiskers show the range of the data, the top and bottom of the blue box indicate the 25th and 75th percentile, and the red center marker
shows the median.

We use the diffusion theory of Taylor (1922) to compare
the observed transport of wake meandering with the expected
transport of a scalar. Cheng and Porté-Agel (2018) adapted
the diffusion theory from a point source to an area source
for wind turbine wakes. The standard deviation of a lateral
profile of a scalar concentration in a wake at1x downstream
of the virtual point source is then given by

σy,scalar =
〈
v2
〉0.51x

ua
, (17)

where
〈
v2〉0.5 is the standard deviation of the lateral air ve-

locity. If momentum is considered, which is transported less
efficient than a scalar in a wake (Reynolds, 1976), this ex-
pression becomes

σy,wake =
√
Sct

〈
v2
〉0.51x

ua
, (18)

where Sct is the turbulent Schmidt number. We assume
that the standard deviation of the lateral transport veloc-
ity of the wake centroid can be expressed as

〈
v2

wake
〉0.5
=

√
Sct
〈
v2〉0.5. With this assumption, we can determine the tur-

bulent Schmidt number of wake meandering from the ratio of

the standard deviation of the lateral velocity to the standard
deviation of the lateral velocity of the wake centroid:

Sct =

(〈
v2

wake

〉0.5〈
v2
〉−0.5

)2

. (19)

The lateral transport velocity of the wake center (vwake)
can be determined from the lateral displacement of the wake
center position following a method of Machefaux et al.
(2015). First, the time lag 1t between v(t) and the wake
center position ywc(t) for a given downstream distance is de-
termined with a cross-correlation. We do not use Eq. (13) to
compute the time delay to make no assumptions on the down-
stream transport velocity here. Then, the lateral transport ve-
locity of the wake center is estimated with vwake = ywc/1t .
If the cross-correlation for determining 1t is lower than 0.8,
the estimate of vwake is rejected.

The turbulent Schmidt number was determined with
Eq. (19) using v measured by the front-mounted Doppler li-
dar as described in Sect. 2.3.1 and vwake determined as de-
scribed in the previous paragraph. Both time series were low-
pass filtered and detrended to make them comparable. The
results in Fig. 9 show that the turbulent Schmidt numbers of
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Figure 9. Turbulent Schmidt numbers of wake meandering (Eq. 19)
as function of the downstream distance from the wind turbine. The
whiskers show the range of the data, the top and bottom of the blue
box indicate the 25th and 75th percentile, and the red center marker
shows the median.

wake meandering are smaller than unity for the majority of
the data set. The average of the observed Sct is 0.71, which is
close to 0.7 used by Cheng and Porté-Agel (2018) for wind
turbine wakes based on Reynolds (1976). This suggests that
wake meandering is more akin to the transport of momentum
than the transport of a passive scalar. Using an average over
multiple range gates to determine v to mirror the spatial av-
eraging of the wake center detection changes the average Sct
to 0.69. Downsampling v to the temporal resolution of ywc
prior to low-pass filtering has also only a small effect on the
results by changing the average Sct to 0.64.

Following our hypothesis, we modified the DWMM to ac-
count for a reduced momentum transport efficiency by in-
cluding

√
Sct with constant Sct = 0.7 in Eq. (12). The re-

sults are shown in Fig. 10. Including Sct reconciled 89 % of
the overestimation of the wake meandering strength.

3.2 Validation of the modified DWMM

The second part of the results will validate the predictions
of the DWMM for the effect of wake meandering on the
mean velocity deficit and the added turbulence intensity. The
DWMM will be compared to the observations in Sect. 3.1.2,
and the impact of the previously proposed modification will
be investigated in Sect. 3.2.2. The validation is focused on
the effect of wake meandering instead of the absolute values,
because the absolute values can be predicted with an analyt-
ical model (e.g., Qian and Ishihara, 2018) and the ability to
predict the effect of wake meandering sets the DWMM apart.

3.2.1 Prediction of the mean velocity deficit and the
turbulence intensity

First, we validate the predicted reduction of the mean veloc-
ity deficit due to wake meandering. The modified DWMM
treating the wake as non-passive (i.e., using ua as the down-

stream advection velocity and Sct = 0.7) is shown in Fig. 11a
and compared to the observations in Fig. 11b. While both
show that the recovery of the mean velocity deficit increases
with the wake meandering strength, there is a main difference
between the model and the observations: for a weak wake
meandering strength (small values of σ (ywc)D−1), the ob-
servations scatter around zero, but the model has strictly pos-
itive values. This causes the model to have a smaller slope
in a linear regression and a larger intercept compared to the
observations. The negative values in the observations can be
explained by the method of isolating the effect of wake me-
andering. Random fluctuations of the detected wake center
position due to measurement errors, measurement resolution,
and morphing of the wake introduce more variability into the
MFOR than just the small-scale turbulence alone. If the wake
meandering is weak, this erroneous variability in the MFOR
can be of the same magnitude as the variability in the NFOR,
thus leading to values scattering around zero.

Next, the model predictions of the added turbulence in-
tensity due to wake meandering are validated. We observe
that both the modified DWMM and the observations show
an increase of the added turbulence intensity with the wake
meandering strength (Fig. 12a and b). Similar to the mean
velocity deficit in the previous paragraph, the predictions of
the DWMM are strictly positive for weak wake meandering,
while the observations scatter around zero. This leads to a
smaller slope and larger intercept for the model compared
to the observations. The reason is that for weak wake me-
andering, the difference in turbulence intensity between the
MFOR and the NFOR becomes very small, and the afore-
mentioned variance in the MFOR from other sources than
small-scale turbulence affecting the observations leads to a
scattering around zero.

3.2.2 Effect of modifications to the DWMM

To investigate the effect of the proposed modification to the
DWMM on the comparison with the observations, we com-
pare three versions of the DWMM:

1. The original DWMM uses the passive tracer assumption
(uhub as the downstream advection velocity and Sct =

1.0).

2. A semi-modified DWMM only accounts for the slower
downstream advection velocity without modifying the
lateral transport (ua as the downstream advection veloc-
ity and Sct = 1.0). This is in line with recommendations
in the literature for the application of the DWMM that
suggest a downstream transport velocity slower than the
mean wind speed but do not mention further changes
to the lateral and vertical transport equations of the
DWMM (Bingöl et al., 2010; Brugger et al., 2022).
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Figure 10. Observed wake meandering strength and predicted wake meandering strength of the DWMM. Panel (a) shows the DWMM
with the passive scalar assumption, and panel (b) shows the DWMM modified with turbulent Schmidt number to account for a less efficient
momentum transport. The error bars show the standard deviation of the measurement uncertainty propagated to the predicted and observed
wake meandering strength, respectively. The 95 % confidence bounds of the linear fit show the statistical uncertainty due to the scatter of the
predictions.

Figure 11. The reduction of the mean velocity deficit as a function of the wake meandering strength at a downstream distance of x = 5D.
Panel (a) shows predictions of the modified DWMM using ua as the downstream advection velocity with a turbulent Schmidt number of
Sct = 0.7, and panel (b) shows the observations. The error bars show the standard deviation of the measurement uncertainty propagated to
the observed wake meandering strength or the predicted velocity deficit reduction, respectively. The 95 % confidence bounds of the linear fit
show the statistical uncertainty due to the scatter of the data points.

3. The fully modified DWMM as proposed here treats the
wake as non-passive (ua as the downstream advection
velocity and Sct = 0.7).

Table 1 shows the root-mean-square error of a direct com-
parison between the observations and the three versions of
the DWMM. We observe from Table 1 that (i) the original
DWMM and the fully modified DWMM have similar errors
to the observations and that (ii) the semi-modified DWMM
has a considerably larger error. This is the case for the effect

of wake meandering on the mean velocity deficit as well as
for the added turbulence intensity.

The similar results for the original DWMM and the fully
modified DWMM are explained by the temporally averaged
validation approach used here, where the errors of a down-
stream transport that is too fast and a lateral transport that is
too efficient mostly cancel out, which might also explain why
the issue was not noticed in previous validations. Only when
including dynamics into the validation as in Sect. 3.1 does
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Figure 12. The added turbulence intensity as a function of the wake meandering strength at a downstream distance of x = 5D. Panel (a)
shows predictions of the modified DWMM using ua as the downstream advection velocity with a turbulent Schmidt number of Sct = 0.7,
and panel (b) shows the observations. The error bars show the standard deviation of the measurement uncertainty propagated to the observed
wake meandering strength or the predictions of the added turbulence intensity, respectively. The 95 % confidence bounds of the linear fit
show the statistical uncertainty due to the scatter of the data points.

Table 1. The root-mean-square error (RMSE) between the observa-
tions and three versions of the DWMM. The left column shows the
error percentage for the reduction of the normalized mean veloc-
ity deficit due to wake meandering (C̃−C), and the right column
shows the error of the turbulence intensity added by wake mean-
dering (〈TIu− T̃Iu〉). All values were computed at a downstream
distance of x = 5D.

C̃−C
〈
TIu− T̃Iu

〉
Original DWMM (uhub, Sct = 1.0) 2.42 1.91
Semi-modified DWMM (ua, Sct = 1.0) 3.29 2.58
Fully modified DWMM (ua, Sct = 0.7) 2.38 1.89

the benefit of non-passive implementation of the DWMM be-
come apparent.

The considerably larger error of the semi-modified
DWMM compared to the other two implementations is
explained by the overestimation of the wake meandering
strength observed in Sect. 3.1.1 that leads to an overestima-
tion of its effect on the mean velocity deficit and the tur-
bulence intensity. This indicates that only using a slower
downstream transport velocity in the DWMM is not fully
accounting for the non-passive nature of the wind turbine
wake. Lastly, it should be mentioned that the semi-modified
DWMM is also treating the wake inconsistently by using ua
(non-passive in the x direction) and Sct = 1.0 (passive in the
y and z direction). Including the Schmidt number is required
to accurately represent momentum transport in the wake.

4 Conclusions

A test of the existing formulation of the DWMM and a new
formulation that incorporated additional physics was pre-
sented. The test site was an isolated wind turbine in Cedar
Rapids, Iowa. A Doppler lidar deployed on the nacelle of
the wind turbine scanning the velocity field of the wake at
hub height was used as reference to which the models were
compared. A second Doppler lidar and the SCADA data of
the wind turbine were used to initialize the wake meandering
models.

The results for the instantaneous wake center position ex-
posed an issue with the passive tracer assumption of the ex-
isting formulation of the DWMM. The wake meandering
strength had better agreement with the observation, if the
mean wind speed were used for the downstream transport;
at the same time, a better temporal agreement is reached if
the downstream transport used a special wake velocity to
more accurately represent the advective transport. Analyzing
the transport behavior of the wake, we found that both the
downstream transport of wake meandering as well as the lat-
eral wake displacement showed differences compared with
the DWMM, assuming a passive scalar transport. Therefore,
we propose to include the turbulent Schmidt number in the
DWMM to account for the less efficient turbulent transport
of momentum compared to a passive scalar in addition to the
a slower downstream transport velocity. This will also make
the DWMM physically more consistent, because the wake
is considered fully non-passive with this modification, while
previously it has been treated as non-passive in the down-
stream direction and passive in radial direction.

https://doi.org/10.5194/wes-9-1363-2024 Wind Energ. Sci., 9, 1363–1379, 2024



1376 P. Brugger et al.: Comparison and validation of modeling approaches to wake meandering

A comparison of the thus modified DWMM with mea-
surements showed that it reconciles the previously noted dis-
crepancy of statistics and dynamics. The DWMM using only
the more accurate downstream transport velocity had an er-
ror increase of 35 % for the mean velocity deficit reduction
and 36 % for the added turbulence intensity compared to the
original DWMM using the passive tracer assumption. The
DWMM that included the Schmidt number in addition to the
more accurate downstream transport velocity had an error re-
duction for those statistics by 2 % and 1%, respectively (and
better temporal agreement for the dynamics of wake mean-
dering).

In future work, we propose a validation of our findings
with a different experimental approach or through simula-
tions to exclude site factors or methodological biases. It
would also be interesting to investigate if the variability in
the MFOR can be fully explained with the small-scale turbu-
lence part of the DWMM. However, the latter requires wake
measurements with a higher temporal and spatial resolution.

Appendix A: Equations of the Bastankhah and
Porté-Agel (2016) model

The normalized mean velocity deficit of the Bastankhah and
Porté-Agel (2016) model for a wind turbine aligned with the
mean wind direction is given by

1u

uhub
= A(x)exp

(
−

1
2
y2
+ z2

σ 2

)
, (A1)

where A is the normalized mean velocity deficit at the wake
center, and σ is the wake width. The normalized mean veloc-
ity deficit at the wake center is given by

A(x)=

(
1−

√
1−

CT

8σ (x)2/D2

)
, (A2)

with the thrust coefficient CT. The thrust curve for this
turbine model is not available to us, and we will use an
ensemble-averaged thrust curve of several wind turbine mod-
els given there general similarity of CT between different
wind turbines (Fig. A1). The CT is then chosen from the as-
sumed thrust curve based on uhub. The wake width is given
by

σ (x)= k∗
(x− x0)
D

+
1
√

8
, (A3)

where x0 is the near-wake length and k∗ is the wake growth
rate. The growth rate is computed with k∗ = 0.35TIu, assum-
ing the linear relationship between k∗ and the turbulence in-
tensity found by Carbajo Fuertes et al. (2018). The near-wake
length x0 is given by

x0 =
1+
√

1−CT
√

2(α∗TIu+β∗(1−
√

1−CT))
, (A4)

where α∗ = 2.32 and β∗ = 0.154. For the computation of the
advection velocity in Eq. (14), we use ucen(x)= uhub(1−
A(x)), with A(x) given by Eq. (A2), assuming that A(x0) is
valid for x < x0.
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Figure A1. Thrust coefficient curves of six wind turbines from manufacturer data (first compiled by Abdulrahman, 2017) and the ensemble
average, which is assumed as the CT curve for wind turbine at the measurement site. Figure reused from Brugger et al. (2020) without
changes under the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/, last access: 8 October 2020).

Appendix B: Tested hypotheses for the
overestimation of the wake meandering strength

The following hypotheses for the overestimation of the wake
meandering strength observed in Sect. 3.1.1 were tested:

– Temporal variations of the downstream advection ve-
locity during a 14 min period would lead to a reduced
(increased) amplitude of the wake meandering during
times with faster (slower) than average advection ve-
locity. Utilizing the outside points of PPI of the wake
scanning lidar to gain a time series of the wind speed,
we found that the effect on the predicted wake center
position is too small to explain the overestimation.

– A misalignment of the wind turbine could contami-
nate the lateral velocity measured by the front-mounted
Doppler lidar with contributions from the longitudinal
velocity. We used the yaw angle reported in the SCADA
data and the mean wake center position within the wake
scanning lidar’s field of view to quantify the yaw mis-
alignment of the wind turbine. The overestimation did
not show any relationship to the average or trend.

– The overestimation persists if the mean instead of a lin-
ear trend is removed from v and ywc. A decrease in mag-
nitude in case of a removed linear trend is explained by
removing the largest scales of turbulence.

– In case any remaining flow distortion of the wind tur-
bine affecting v(t) went unnoticed, range gates at a
greater distance than y = 117 m were tested, but the
overestimation persisted.

– We had the hypothesis that the onset of wake meander-
ing is delayed due to a sheltering effect within the near
wake until entrainment has reached the wake center.
However, this assumption seems unrealistic based on
the fact that the wake-scanning lidar shows wake mean-
dering within the near wake. Testing the hypotheses on

the data led to a increased of the RMSE for xD−1 < 5
due to an underestimation of the wake meandering there
and small decrease of the RMSE at greater x.
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