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Abstract 18 

By acquiring or evolving resistance to one antibiotic, bacteria can become resistant to a 19 

second one, due to shared underlying mechanisms. This is called cross-resistance (XR) and 20 

further limits therapeutic choices. The opposite scenario, in which initial resistance leads to 21 

sensitivity to a second antibiotic, is termed collateral sensitivity (CS) and can inform cycling 22 

or combinatorial treatments. Despite their clinical relevance, our current knowledge of such 23 

interactions is limited, mostly due to experimental constraints in their assessment and lack of 24 

understanding of the underlying mechanisms. To fill this gap, we used published chemical 25 

genetic data on the impact of all Escherichia coli non-essential genes on 26 

resistance/sensitivity to 40 antibiotics, and devised a metric that robustly discriminates 27 

between known XR and CS antibiotic interactions. This metric, based on chemical genetic 28 

profile (dis)similarity between two drugs, allowed us to infer 404 XR and 267 CS interactions, 29 

thereby expanding the number of known interactions by more than 3-fold – including 30 

reclassifying 116 previously reported interactions. We benchmarked our results by validating 31 

55 out of 59 inferred interactions via experimental evolution. By identifying mutants driving 32 

XR and CS interactions in chemical genetics, we recapitulated known and uncovered 33 

previously unknown mechanisms, and demonstrated that a given drug pair can exhibit both 34 

interactions depending on the resistance mechanism. Finally, we applied CS drug pairs in 35 

combination to reduce antibiotic resistance development in vitro. Altogether, our approach 36 

provides a systematic framework to map XR/CS interactions and their mechanisms, paving 37 

the way for the development of rationally-designed antibiotic combination treatments. 38 
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Introduction 39 

While the spread of antibiotic resistance is increasing at alarming rates1, fewer and fewer 40 

novel antibiotics are being approved for clinical use2,3. Importantly, the development of 41 

intrinsic or horizontally acquired resistance to a given drug can lead to cross-resistance 42 

(XR)4 to other drugs, limiting treatment options. The same processes can also give rise to 43 

collateral sensitivity (CS)5 to other drugs, due to trade-offs or fitness costs of resistance 44 

mechanisms6,7 (Fig. 1a). The principle of CS has been successfully used to reduce the rates 45 

of resistance emergence8–15, or to even re-sensitize microbes to antibiotics16, by combining 46 

or cycling of CS drug pairs. The benefits of avoiding the use of XR drug pairs in tandem or 47 

consecutively are obvious. Overall, it is imperative to systematically map and understand XR 48 

and CS relationships between drugs, especially in an era of diminishing therapeutic options.  49 

 50 

The most common approach to measure XR and CS is to experimentally evolve resistance 51 

against one drug, and then to measure susceptibility to another drug for a number of evolved 52 

lineages (Fig. 1a). Our understanding of the underlying mechanism(s) relies on sequencing 53 

the genomes of the evolved strains to identify recurrent genetic alterations8,17–19. Although 54 

powerful, this approach has limitations in terms of effort, scale and costs. Hence current 55 

knowledge of XR and CS interactions is limited to a few bacterial species and a small 56 

number of antibiotics8,9,12,16–26. Importantly, experimental evolution probes a limited number 57 

of lineages and a small part of the solution space in terms of possible resistance mutations, 58 

which strongly depends on selection pressure applied. This may lead to inconsistencies 59 

when assessing drug pair interactions. Furthermore, evolution experiments inevitably lead to 60 

numerous additional mutations that make the mapping of causal resistance mechanisms 61 

difficult without additional experiments. To facilitate drug susceptibility testing of 62 

experimentally evolved strains or to dissect the evolved resistance mechanism(s), 63 

adaptations to the original method have been proposed, e.g. the automation of minimum 64 

inhibitory concentration (MIC) measurements26, or the phenotypic characterization of 65 

evolved strains with transcriptomics27,28. Even though these adaptations increase the 66 

number of lineages, chemicals and interactions probed, they still explore a limited genetic 67 

space for resistance, and require extensive sequencing and prior knowledge to identify the 68 

causal resistance mechanisms. Here, we set out to overcome these limitations by 69 

developing a predictive, sequencing-free framework based on drug-gene interactions, and 70 

harnessing the systematic nature of chemical genetic screens. 71 

 72 
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Chemical genetics involve the systematic assessment of drug effects on genome-wide 73 

mutant libraries29,30. Such data have been previously shown to capture information on drug 74 

mode of action, resistance and interactions in E. coli31–36. Importantly, chemical genetics 75 

systematically quantify how each gene in the genome contributes to resistance or 76 

susceptibility to a large set of drugs. The first large-scale chemical genetics study assessed 77 

close to 50 antibiotics over different concentrations in E. coli, along with several other 78 

conditions (including other antimicrobial compounds and non-antibiotic drugs) against an 79 

arrayed library of 3979 single-gene deletion mutants or alleles31 (Fig. 1b). The similarity 80 

between chemical genetic profiles for different drugs has been reported to correlate with XR 81 

frequency18, and has been used to minimize XR between antimicrobial peptides and 82 

antibiotics37. Several years ago, we proposed that such chemical genetic data would have in 83 

principle the capacity to identify both XR and CS interactions by comparing drug profiles30 84 

(Fig. 1c), expediting the systematic identification of XR/CS interactions and mapping of their 85 

underlying mechanisms.  86 

 87 

In this study, we used available E. coli chemical genetics data31 for 40 antibiotics (Methods) 88 

and explored different similarity metrics to identify the one best discerning between known 89 

XR and CS interactions. We applied this metric to many more drug pairs than probed 90 

collectively before, discovering three times more XR and six times more CS interactions than 91 

previously identified, including the reclassification of 116 previously wrongly reported drug-92 

pair relations. We independently validated 7% (59/840) of these interactions by experimental 93 

evolution with 93% accuracy. By integrating all data into a drug-interaction network, we could 94 

examine the monochromaticity (i.e. if a given interaction is exclusively XR or CS) and 95 

conservation within antibiotic classes, identifying antibiotic (classes) with extensive XR or CS 96 

interactions. Next, we took advantage of the available chemical genetics data to track back 97 

the mutations responsible for specific interactions, thereby confirming known and resolving 98 

new mechanisms experimentally. Lastly, we showed that newly identified CS pairs used in 99 

combination could reduce resistance evolution compared to single drugs. Overall, we 100 

present a framework to accelerate XR/CS discovery and mechanism deconvolution, paving 101 

the way for rationally designed combinatorial, cycling, or sequential antibiotic treatments. 102 

 103 

Results 104 
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Building a training set of known XR/CS interactions from evolution 105 

experiments 106 

To build a training set of known XR/CS interactions, we collected data from four studies that 107 

performed experimental evolution in E. coli8,17–19.  The majority of interactions (78%- 108 

338/429) had only been tested in one study. From the 91 antibiotic pairs tested in at least 109 

two studies, only a third (n=30; 20 Neutral, 9 XR and 1 CS) received the same assessment 110 

across studies, whereas 56 were called XR or CS interactions in one study, but neutral in the 111 

other (Fig. 2a). This suggests that XR/CS detection via experimental evolution is prone to 112 

high error rates, which could be due to several reasons: selection biases in evolution 113 

experiments (e.g. different selection pressure, drug resistance level cutoffs), slightly different 114 

criteria used in each study to define XR/CS, low power to call interactions (limited number of 115 

lineages tested), and population complexity (resistance or sensitivity assessment is done for 116 

lineage populations). We reasoned that most errors were likely due to false negatives, as 117 

studies were under-sampling the antibiotic resistance solution space. For this reason, we 118 

designated as XR or CS drug pairs that exhibited an interaction in at least one study, even if 119 

they were neutral in other(s). In contrast, drug pairs displaying conflicting responses, that is 120 

XR in one study and CS in another, were excluded (n=5). After comparing to drugs for which 121 

chemical genetic data is available31, we came up with 206 drug pairs (111 neutral, 70 XR 122 

and 25 CS), involving 24 different antibiotics (Source Table of Fig. 2). In chemical genetics, 123 

the drug effects on each mutant are represented as s-scores – those assess the fitness of a 124 

mutant in one condition, normalized by its fitness across all conditions38,31 (Methods, 125 

Supplementary Table 1). 126 

 127 

Chemical genetic profile concordance identifies XR and CS drug pairs 128 

Using our training set, we hypothesized that drugs sharing resistance mechanisms (XR) 129 

should have concordant chemical genetic profiles (i.e. most E. coli mutants would behave 130 

similarly when treated with each drug), as previously suggested for a subset of XR pairs 131 

(n=36)18. The opposite should be true for CS pairs, as mutations that would cause resistance 132 

to one drug would sensitize cells to another drug, leading to discordant chemical genetic 133 

profiles for the two drugs (Fig. 1c). We used different metrics derived from chemical genetic 134 

data to test whether we could discriminate between known XR, CS or neutrality (Methods). 135 

First, we assessed metrics of correlation between chemical genetic profiles, which exhibited 136 

low performance in discriminating between known XR, CS and neutral interactions (Area 137 

Under the Receiver Operating Curve: 0.52-0.67; Extended Data Fig. 1a). We reasoned that 138 

the noise generated by the high proportion of neutral phenotypes in chemical genetic data31 139 

was compromising performance. To overcome this, we used six features based only on 140 
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extreme s-scores per condition: sum and count of positive concordant s-scores, of negative 141 

concordant s-scores, and of total discordant s-scores (Methods). We then trained several 142 

machine learning classifier models (decision tree models) with these features for each drug 143 

pair. Such a trained classifier performs well, with F1 score, recall, precision and AUC ROC 144 

consistently exceeding 0.7 (Extended Data Fig. 1b). To avoid overfitting of a model based 145 

on a training dataset of XR/CS with caveats described before (Fig. 2a), we aimed to interpret 146 

the model instead of applying it directly on our test dataset. We learned from decision tree 147 

attributes (Extended Data Fig. 1c) that the sum and count of concordant negative s-scores 148 

are the most informative features, followed by the sum of discordant s-scores. Additionally, if 149 

the count of concordant negative s-scores is higher than the median count of concordant hits 150 

(this is mutants showing extreme positive or negative s-scores in both drugs) across all drug 151 

pairs (which is 7), the level of discordance is not important to classify interactions. Placing 152 

these attributes in an experimental evolution setting, this means that presence of mutants 153 

with resistance to both drugs (concordance) in heterogeneous populations would result in 154 

XR, while presence of only discordant mutants would lead to CS. Using this information we 155 

generated an Outlier Concordance-Discordance Metric (OCDM) that can discriminate 156 

between previously reported CS and XR interactions from the rest (AUC = 0.76 and 0.73, 157 

respectively; Fig. 2b-c; Source Table of Fig. 2, Methods), and selected the cutoff for 158 

extreme s-scores based on OCDM performance (Extended Data Fig. 1d). We then used 159 

the OCDM cutoffs (Fig. 2c; Methods) to classify all possible interactions between the 40 160 

antibiotics within the chemical genetics data31. This yielded 634 new drug pair relationships 161 

(313 XR, 196 CS, 125 neutral), expanding the number of currently known XR and CS 162 

interactions by two and four times, respectively (Fig. 2d; Supplementary Table 2). In terms 163 

of previously measured drug pairs (n=206), our metric agreed for 90 and disagreed for 116 164 

with previous calls, the latter coming mostly from previously called neutral interactions 165 

(Extended Data Fig. 2a-c), and thus potential false negatives. This increased the total 166 

number of inferred drug pair relationships to 840 (404 XR, 267 CS, 169 neutral), and 167 

expanded the number of known XR and CS interactions by three and six times, respectively 168 

(Extended Data Fig. 2d). 169 

 170 

Chemical-genetics based metric detects XR and CS with high accuracy  171 

To benchmark our chemical genetic based metric (OCDM) and cutoff decisions, we selected 172 

a subset of 35 newly inferred and 24 previously tested drug pairs (for 13/24 we predicted a 173 

different interaction than one previously reported), and measured their interactions with 174 

experimental evolution. In our experimental evolution setup, we evolved resistance to 23 175 

antibiotics in 12 parallel lineages, and tested resistant lineages for changes in susceptibility 176 
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to a second antibiotic (Supplementary Table 3; Fig. 3a; Methods). Drug pairs were chosen 177 

to cover a wide OCDM range and to have low initial MICs to be able to evolve several-fold 178 

resistance. Pairs of antibiotics belonging to the same chemical class were mostly excluded 179 

from the validation set to avoid inflating the prediction accuracy of XR predictions, as such 180 

drug pairs are highly likely to be XR because of common resistance mechanisms. Evolving 181 

resistance to both drugs of each pair allowed us to assess whether interactions are 182 

(bi)directional, something we did not account for in the OCDM score. XR interactions are by 183 

definition bidirectional (at least to a certain) degree, and failure to detect them both ways in 184 

experimental evolution experiments exemplifies the limitation of the method. In contrast, CS 185 

interactions can be directional, as resistance mechanisms for each drug of the pair are 186 

different, and do not have to bear a fitness cost in the other drug. As a consequence, most of 187 

the previously detected CS pairs have been unidirectional. Furthermore, evolving resistance 188 

to 12 lineages allowed us to gain insight into the monochromaticity of interactions, that is 189 

whether drug pairs showed exclusively one type of interaction. 190 

 191 

In total, we validated all but four of the inferred interactions, amounting to a total validation 192 

rate of 93.2%, and 91.4% of newly inferred interactions (Fig. 3b; Source Table of Fig. 3). 193 

Not only did we confirm those interactions for which literature and our metric agreed (n=11), 194 

but also 12 out of 13 interactions for which our predictions contradicted previous studies 195 

(Fig. 3b; Extended Data Fig. 2). These included 8 false negative (6 CS and 2 XR, reported 196 

neutral before) and 4 false positive (as 1 XR and 3CS) cases (Fig. 3c-e). This highlights the 197 

superior accuracy of chemical genetics (compared to limited/biased experimental evolution 198 

efforts) in mapping CS and XR interactions, and supports that the 103 further drug pair 199 

relationships (n=116 total) from our training set warrant reclassification (Extended Data Fig. 200 

2).   201 

 202 

We started with only 25 CS interactions in the training set (from the 4 published studies). 203 

Here we could infer and validate 21 further CS interactions. All of them were monochromatic 204 

and the majority (n=15) also bidirectional (Fig. 3c). This illustrates the power of chemical 205 

genetics to identify new CS interactions, and especially the rare bidirectional ones, which are 206 

the most promising for cycling/combination therapies8–15. In contrast to CS drug pairs, about 207 

a third of the tested XR pairs (n=11/31), including ones previously known, were non-208 

monochromatic (Fig. 3d), i.e. some evolved lineages were sensitive, instead of resistant, to 209 

the second antibiotic. In seven XR cases we failed to detect the expected bidirectionality, 210 

and in 4 further cases, we failed to detect the interaction overall (Fig. 3d). Overall, this 211 

highlights again that experimental evolution experiments are prone to false negative calls 212 
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(even with large number of lineages being evolved), and uncovers an unexpected tendency 213 

for XR interactions to be non-monochromatic.  214 

 215 

Antibiotic classes with extensive XR or CS 216 

In contrast to most other studies looking into CS and XR, where one antibiotic per class is 217 

tested, here we could assess more systematically antibiotic class behaviors, as several 218 

antibiotic classes were represented by multiple members in the chemical genetics data31.  As 219 

expected, antibiotics belonging to the same class had exclusively XR interactions between 220 

them, as they largely share mode of action and mechanisms of resistance. In contrast, as 221 

previously shown39, antibiotics of different chemical classes, exhibited both XR and CS 222 

interactions (Fig. 4a), the former often driven by promiscuous resistance mechanisms (e.g. 223 

efflux pumps), and the latter by mutations that lead to modifications of the outer membrane 224 

composition (Extended Data Fig. 3). We next asked whether antibiotic classes behaved 225 

coherently, i.e. whether members of two classes interacted predominantly in the same way. 226 

Although this was true for antibiotic classes with members that share cellular target(s) and/or 227 

transport mechanisms to enter or exit the cell (e.g. tetracyclines, macrolides), this was less 228 

of a case for classes with distinct targets (beta-lactams) or distinct transport mechanisms 229 

(quinolones of different generations) (Fig. 4c). Interestingly, protein synthesis inhibitor 230 

classes did not only act coherently, but were also dominated by XR interactions between 231 

them (Fig. 4b) with the exception of aminoglycosides, which have been reported to show 232 

extensive CS interactions with drugs of different classes8,17,19. 233 

 234 

Besides aminoglycosides, the only other class reported to be enriched in CS interactions are 235 

polymyxins8,17. In addition to these two classes and nitrofurantoin, which has been reported 236 

before17, we identified sulfonamides and a number of single drugs (fosfomycin, rifampicin, 237 

tunicamycin) with extensive CS interactions (Fig. 4b, d). Sulfonamides were largely 238 

collateral sensitive to macrolides and beta-lactams, driven by LPS- and nucleotide 239 

biosynthesis- related mechanisms (Fig 4b, Extended Data Fig. 3a). In contrast, protein 240 

synthesis inhibitors (apart from aminoglycosides) were enriched in XR interactions, largely 241 

because of shared efflux resistance mechanisms (AcrAB-TolC) between them (Fig 4b, d & 242 

Extended Data Fig. 3b).      243 

Chemical genetics capture CS and XR mechanisms occurring during evolution 244 

Causal mechanisms behind XR and CS interactions are hard to identify from evolution 245 

experiments, as passenger mutations occur in parallel to causal one(s) and indirect 246 

mutations can also affect the expression/activity of causal resistance elements. The situation 247 
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is worse for CS interactions, as very few are known to begin with7,17,19,26. Chemical genetics 248 

makes it easier to disentangle causality, as all genes contributing to resistance or sensitivity 249 

to a certain drug are identified. To prove this point, we first investigated how known CS 250 

interactions were represented in chemical genetics. For example, the decrease in proton 251 

motive force (PMF) across the inner membrane decreases aminoglycoside uptake and 252 

makes cells more resistant to aminoglycosides, but also collateral sensitive to other drugs 253 

whose efflux is driven by PMF-dependent pumps, like AcrAB-TolC17,19. Mutations in trkH, 254 

encoding a proton-potassium symporter, were previously shown to cause this phenotype, in 255 

particular for the CS interaction between the aminoglycoside tobramycin and nalidixic acid or 256 

tetracycline17,39. Indeed, the trkH mutant, as well as mutants in subunits of the respiratory 257 

complexes17,39, exhibited extreme discordant s-scores for these known CS drug pairs in 258 

chemical genetics (Extended Data Fig. 4a). Using the same approach, we tested whether 259 

we could unravel the unknown mechanism underpinning the recently described CS 260 

interaction between cefoxitin-novobiocin26. Genes involved in adding polarity to the 261 

lipopolysaccharide (LPS) core, waaG, waaP and waaQ, were strongly discordant for this 262 

drug pair, leading to cefoxitin resistance and novobiocin sensitivity (Extended Data Fig. 4b). 263 

The outer membrane (OM) penetration of novobiocin, a large lipophilic antibiotic is known to 264 

be affected by LPS modifications40,41. At the same time these mutations lower the levels of 265 

the OM porins, OmpC and OmpF42, allowing cefoxitin and other cephalosporins to enter the 266 

cell43. 267 

 268 

CS and XR interactions can be non-monochromatic, as multiple resistance mechanisms 269 

exist for a given drug. Since chemical genetics systematically explore the mutational space, 270 

we assumed that they should capture better the dynamics of such interactions. To assess 271 

this, we focused on XR drug pairs which exhibited some level of inconsistency in our 272 

experimental evolution (n=11/31; Fig. 3d). Antibiotic pairs with non-monochromatic XR 273 

interactions exhibited significantly stronger discordance scores in chemical genetics than 274 

drug pairs with monochromatic XR (Extended Data Fig. 4c). Hence chemical genetics can 275 

capture monochromaticity of XR interactions, and identify those antibiotic pairs that can also 276 

evolve CS relationships (Extended Data Fig. 4d-g). We then investigated in more detail the 277 

most non-monochromatic pair, that of tetracycline and azithromycin, which showed XR, CS 278 

and neutral interactions in 4, 6 and 2 lineages, respectively (Fig. 3d). For each of our 12 279 

tetracycline-evolved lineages, we measured changes in susceptibility to both antibiotics at 280 

each of the 10 passages (Fig. 5a, Methods). Almost all lineages exhibited increased 281 

neutrality with time, except for three lineages (1, 4 and 12), which evolved the lowest 282 

resistance to tetracycline, and remained CS to azithromycin (Fig. 5a). First, this partially 283 

explains the low rates of CS and XR discovery in previous studies (Fig. 2a), since evolution 284 
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experiments typically use final populations with high resistance to test for XR/CS. Second, it 285 

implies that with time cells evolve more specific resistance mechanisms, e.g. target- 286 

compared to intracellular concentration-related ones. 287 

 288 

To better understand the mechanisms underlying the changes of the tetracycline-289 

azithromycin relationship over time, we sequenced all 12 lineage populations from days 3, 5, 290 

and 7 (Extended Data Fig. 5). Lineages with neutral interactions carried either point 291 

mutations in tetracycline target genes (e.g. lineage 3 with rpsJ V57L– coding for the S10 292 

ribosomal protein44), or a combination of CS and XR strains in the population (e.g. linage 7 293 

with mutations in hldE and marR) (Fig. 5a, Extended Data Fig. 5). Mutations in marR, a 294 

gene encoding for a repressor of the main transcriptional regulator of efflux pumps in E. coli 295 

and known modulator of antibiotic resistance45,46, were behind all XR interactions observed 296 

in different lineages (2, 5, 7 and 10 – Fig. 5a, Extended Data Fig. 5). This was in agreement 297 

with ΔmarR increased resistance to both drugs in chemical genetics data (Fig. 5b). In 298 

contrast, all lineages with stable and strong CS interactions had promoter or deletion 299 

mutations in waaD (Extended Data Fig. 5), one of most sensitive mutants to azithromycin 300 

and resistant to tetracycline in chemical genetics data31,47 (Fig. 5b). Lineages that were 301 

initially CS but became neutral (8, 9 and 11), carried initially strong CS mutations on waaD 302 

or hldE, both involved in synthesis of the ADP-heptose precursor of core LPS, which were 303 

then replaced by strains with mutations in genes with milder CS or XR phenotypes, like 304 

waaF and marR (Fig. 5b-c, Extended Data Fig. 5). We confirmed the slightly milder CS 305 

(lower azithromycin sensitivity) for ΔwaaF, a gene encoding a protein that adds the second 306 

heptose sugar to the LPS inner core, compared to ΔhldeE or ΔwaaD (Fig. 5d). We 307 

postulated that the increased tetracycline resistance of all these LPS core mutants is due to 308 

reduced uptake compared to the wildtype, and confirmed this by measuring intracellular 309 

tetracycline fluorescence in ΔwaaF cells (Fig. 5e; Source Table of Fig. 5e). This lower 310 

intracellular tetracycline is likely due to low OmpF levels in in ΔwaaF cells (Fig. 5f)42, as 311 

OmpF is the major tetracycline importer43,48,49. This is in agreement with chemical genetics 312 

data, where ΔompF is tetracycline resistant, but not azithromycin-sensitive (Fig. 5b, d). 313 

Hence, loss-of-function mutations in waaF (or in other LPS core genes, such as hldE, waaD, 314 

waaP) lead to less OmpF in the OM, and tetracycline resistance. At the same time, cells 315 

become more sensitive to azithromycin (and macrolides), because the OM becomes less 316 

polar and thereby more permeable to hydrophobic antibiotics50.  317 

 318 

Overall, we confirmed that chemical genetics data can pinpoint CS and XR mechanisms that 319 

emerge and get selected during experimental evolution, thereby helping us to even 320 

rationalize the dynamics of non-monochromatic antibiotic interactions.  321 
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 322 

Combining newly identified CS antibiotic pairs reduces evolution of resistance  323 

The combination, sequential use or cycling of CS drug pairs has been shown to reduce the 324 

rate of resistance evolution8–15 and re-sensitize resistant strains16 in laboratory settings, and 325 

for a Pseudomonas aeruginosa infection in clinics23. Considering the therapeutic potential of 326 

CS antibiotic combinations, we tested the degree to which our newly identified CS pairs 327 

could reduce resistance evolution in combination, when compared to single drugs (Fig. 6a). 328 

We selected 4 CS, 2 neutral, and 1 XR pairs involving 9 commonly used antibiotics. For 329 

seven parallel E. coli lineages, we measured the MIC alone and in combination (using 1:1 330 

ratio compared to drug MICs). We evolved 7 E. coli lineages to single drugs or combinations 331 

for 7 days, and measured the MIC of the evolved population (Fig. 6a, Methods). For each 332 

antibiotic combination, we calculated 2401 Evolvability Indexes (74 combinations), that is the 333 

degree by which resistance to any of the single drugs increases (log2 Evolvability Index > 0) 334 

or decreases (log2 Evolvability Index < 0) in the drug combination (Methods)21. As expected, 335 

lineages evolved in the presence of the ceftazidime-ciprofloxacin XR combination reached 336 

higher resistance to each drug, compared to lineages evolved with single antibiotic 337 

treatments (Fig. 6b; Source Table of Fig. 6). In contrast, most lineages treated with CS or 338 

neutral combinations evolved lower resistance than those treated with single antibiotics (Fig. 339 

6b). The strongest reduction in resistance evolution occurred for combinations of 340 

bidirectional CS pairs (Fig. 3c, 6b). For example, 6 out of 7 lineages evolved full resistance 341 

towards mecillinam alone (256-fold increase in MIC), while combining mecillinam with 342 

nitrofurantoin or levofloxacin led to almost no mecillinam resistance (average fold-change in 343 

MIC < 2). For the cefoxitin-levofloxacin pair, resistance evolved in combination was lower 344 

just for cefoxitin but not levofloxacin (Fig. 6b, Extended Data Fig. 6), despite the pair 345 

showing bidirectional CS during experimental evolution (Fig. 3c). Altogether, we 346 

demonstrate that reciprocally CS antibiotic pairs hold a great potential for diminishing 347 

resistance evolution when used in combination. 348 

Discussion 349 

A better understanding of how resistance to one antibiotic limits treatment with others (cross-350 

resistance - XR) or opens new opportunities (collateral sensitivity - CS) is imperative in the 351 

context of the ongoing AMR crisis. In the last decade, such drug interactions have been 352 

assessed in several pathogens8,12,16–18,21–25,51. However, the main detection method, 353 

experimental evolution, has obvious limitations. First, it has low sensitivity, which leads to 354 

different studies reporting different interactions for the same drug pairs even in the same 355 

species (Fig. 2a). This is because during experimental evolution experiments, often only a 356 
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limited number of lineages and resistance mechanisms are probed. What further augments 357 

the problem is that resistance mechanisms largely depend on the amount and time of 358 

selective pressure applied, as we show here for the tetracycline-azithromycin pair (Fig. 5a), 359 

and that each study uses different selection pressure, metrics and number of lineages to 360 

assess interactions. Although within species comparisons are possible when metric and 361 

selection pressure are standardized52, cross-species comparisons become prohibitive with 362 

high false negative rates. Second, experimental evolution is laborious and limits the number 363 

of drug-pairs that can be tested. As a result, monochromaticity of interactions (especially for 364 

drug classes) has been impossible to assess properly in the past. Last, it is very hard to 365 

identify the underlying mechanism for CS or XR interactions by sequencing the resistance 366 

lineages from experimental evolution, and without additional tailored experiments. 367 

 368 

By assessing the impact of thousands of individual mutations at once on resistance or 369 

sensitivity to different drugs, chemical genetics can bypass most of these limitations. As we 370 

show here, chemical genetics offer a way to systematically and quantitatively assess all 371 

chromosomal resistance mechanisms (independent of selective pressure), and can 372 

dramatically increase the throughput of bacterial species and drugs tested. In addition, it 373 

gives insights into how monochromatic, reciprocal or conserved such interactions are, as 374 

well as a basis to dissect the driving mechanisms. As proof-of-principle we focused on 375 

published chemical genetics data from E. coli31, because of the large number of antibiotics 376 

screened at different concentrations and the extensive benchmarking. In the future, similar 377 

analyses can be expanded to other available datasets in the same or other species34,47,53–56. 378 

Such datasets will inevitably increase with time, as genome-wide mutant libraries are 379 

becoming available in tens of species and even more strains57,58, whether those are arrayed 380 

or pooled29,59, and constructed by targeted deletions60–62, transposon insertions59,63, or 381 

CRISPRi knockdowns53,64. Including such libraries will allow to probe the role of essential 382 

genes and/or gene overexpression when mapping antibiotic resistance and XR/CS 383 

relationships.   384 

 385 

In this study we devised a new approach and metric to map CS and XR in E. coli, using 386 

available chemical genetics data for 40 antibiotics. Thereby, we increased the number of 387 

known interactions by several-fold, and resolved more than a hundred cases of prior 388 

conflicts and/or misclassifications reported in literature. Beyond this, we obtained unique 389 

insights into within-class interactions, unraveling that all antibiotic classes are dominated by 390 

XR interactions between their members. Although this is largely expected, some classes 391 

have members with non-overlapping targets and/or resistance mechanisms. Specifically for 392 

beta-lactams,  their use in combination has been reported to constrain resistance evolution, 393 
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during fast switching regimens65 or for specific pairs and resistance mechanisms66. 394 

Moreover, we identified many new bidirectional CS interactions, and used a handful to show 395 

that evolution of antibiotic resistance against combinations of such antibiotics is harder. Last, 396 

we mechanistically rationalized CS interactions and explained why some drug interactions 397 

can be non-monochromatic. In the case of tetracycline-azithromycin, the mechanisms that 398 

played a role in experimental evolution were a small subset of the possible mechanisms 399 

revealed by chemical genetics. This is likely due to probing only 12 lineages, but also likely 400 

due to the fitness costs of some of these resistance mechanisms. Interestingly, the 401 

interaction changed non-monotonically over time, and longer/stronger selection on one drug 402 

(tetracycline) led to more neutral interactions to the second one (azithromycin). This means 403 

that long-term, bacterial populations may opt for target mutations or low/neutralized fitness 404 

cost resistance mechanisms, neutralizing also CS/XR interactions. Hence fast switching or 405 

combinatorial treatments may be more efficient than sequential antibiotic treatments for CS 406 

drug pairs. 407 

 408 

In the future, the increased ability to map XR and CS interactions between drugs opens the 409 

path for expanding such endeavors to non-antibiotics with antibacterial or adjuvant activity67–
410 

69, and to probing interactions in different environments, such as in bile, different pH70, urine 411 

media, biofilms71 or gut microbiome communities, as fitness costs are known to change with 412 

environment72. Moreover, the systematic nature of chemical genetics limits false negatives 413 

and metric biases, and can allow for comprehensive comparisons across species and strains 414 

using corresponding genome-wide mutant libraries. Cross-species studies have been 415 

conducted previously to map drug synergies and antagonisms35,73. Knowing how drugs 416 

interact at multiple levels - resistance evolution, efficacy (growth inhibition or killing), long-417 

term clearance effects74, and host cytotoxicity will open the path for designing more effective 418 

and long-lasting combinations for clinics.  419 

Materials and Methods 420 

Data sources and preprocessing 421 

The E. coli chemical genetics data were obtained from a previous study31, where the fitness 422 

of 3979 non-essential single-gene knockout mutants and essential gene hypomorphs was 423 

evaluated in 324 different conditions (114 unique stresses and drugs tested in different 424 

concentrations). Fitness effects were quantified as s-scores, i.e. a modified t-statistic on the 425 

deviation of the colony size of one mutant in one condition from the median colony size of 426 

the mutant across all conditions38,75
. We reprocessed the data to exclude: a) strains from the 427 
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hypomorphic mutant collection and mutants that had 10 or more missing values for the 428 

conditions - reaching a final number of 3904 mutants; and b) environmental stresses (e.g. 429 

different temperatures, pH, heavy metals, amino acids, dyes and alternative carbon 430 

sources), non-antibiotic drugs, and drug combinations. Antibiotics with a narrow range of s-431 

scores (no extreme s- scores below -6.9 or above 3.9) were also excluded from analysis 432 

(n=7). This left us with 40 antibiotics that were further used in this study (Supplementary 433 

Table 1). For those antibiotics tested in multiple concentrations, the highest one was 434 

selected. 435 

 436 

Previously reported XR and CS interactions were collected from four studies. Viktoria Lazar 437 

et al.17,18 measured XR and CS in E. coli BW25113 using 12 antibiotics where interactions 438 

were defined based on at least a 10% difference in the growth of more than 50% evolved 439 

lineages compared to control lineages. Tugce Oz et al.19 and Lejla Imamovic and Morten O. 440 

A. Sommer8 compared MICs of evolved populations against the wildtype to define XR and 441 

CS in E. coli MG1655 using 22 and 23 antibiotics respectively. We kept the original 442 

definitions and assessments of XR and CS used in the respective study. When integrating 443 

these datasets, interactions of overlapping antibiotic pairs were annotated as “XR & Neutral”, 444 

“CS & Neutral”, “XR & CS”, and “XR & CS & Neutral” if conflicting interactions were 445 

observed in different studies. Interactions with “XR & CS” and “XR & CS & Neutral” 446 

annotations were removed (n=6) and “XR & Neutral” and “CS & Neutral” were reannotated 447 

as “XR” and “CS”, respectively, because evolution experiments are prone to false negatives. 448 

Directionality was reduced (keeping drug 1 - drug 2 but removing reciprocal) by removing 449 

one pair (if XR/CS was bidirectional) or by removing the “neutral pair” (if the interaction was 450 

unidirectional). After the preprocessing steps, only conditions for which chemical genetics 451 

data was available were selected as training set (n=24), amounting to 111 neutral, 70 XR, 452 

and 25 CS drug pair relationships (Supplementary Table 3). 453 

Assessment of correlation metrics 454 

Since the first attempts of combining chemical genetics profiles and XR/CS interactions 455 

found associations between chemical genetics profile similarity and XR/CS17,18, we assessed 456 

several correlation methods from SciPy76 to compute various correlation coefficients 457 

between two drugs (Drug 1 and Drug 2; Extended Data Fig 1a). The correlation functions 458 

were applied to drug pairs with known interactions for which chemical genetics data is 459 

available. For each drug pair in this dataset, the correlation coefficient was computed for the 460 

four methods (Pearson, Spearman, Kendall Tau, and Weighted Tau). Receiver Operating 461 

Characteristic (ROC) curves were plotted to evaluate the performance of the computed 462 
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correlation coefficients in distinguishing between interaction types (XR (n=70) vs non-XR 463 

(n=136), and CS (n=25) vs non-CS (n=181)). The correlation coefficients served as the 464 

predictor values, and the interaction types (either XR or CS) were the true labels. The area 465 

under the ROC curve (AUC) was computed for each correlation method (Extended Data 466 

Fig. 1a). 467 

Feature generation and interpretation of decision trees  468 

For each condition in the chemical genetic data, 3% extreme positive and negative s-scores 469 

were chosen after assessment of different cutoffs (Extended Data Fig. 1d). Six features 470 

were generated by antibiotics pairwise calculation: sum of positive concordant s-scores, sum 471 

of negative concordant s-scores, sum of discordant s-scores, count of positive concordant s-472 

scores, count of negative concordant s-scores, and count of discordant s-scores. Using 473 

these features, machine learning algorithms (based on decision trees77) were used and 474 

models were trained to classify XR (n=70) vs non-XR (n=136) and CS (n=25) vs non-CS 475 

(n=181). 476 

 477 

To address the class imbalance, the minority class was oversampled to match the size of the 478 

majority class. A search space for hyperparameters was defined for the decision tree 479 

classifier, including the function to measure the quality of a split, the maximum depth of the 480 

tree, the minimum number of samples required to split an internal node, and the minimum 481 

number of samples required to be at a leaf node. A five-fold grid search cross-validation, 482 

stratified to maintain the same proportion of the target class as the entire dataset, was used 483 

to find the best hyperparameters for the decision tree classifier based on the F1 score. The 484 

resulting classifier was trained and again evaluated on the balanced dataset using cross-485 

validation. The best classifier according to F1 score, precision, recall, and ROC AUC was 486 

then fitted to the balanced dataset.  487 

 488 

The trained decision tree classifier was visualized, showing the decision paths and splits. 489 

The tree visualization was limited to a depth of 3 for clarity (Extended Data Fig. 1c). We 490 

learned from decision tree classifiers that if the count of concordant negative s-scores was 491 

higher, the level of discordance was not important to classify interactions. The sum and 492 

count of concordant negative s-scores were found to be the most important features, 493 

followed by the sum of discordant s-scores. This information was used to generate the 494 

OCDM metric, described in detail below. Classifier training, hyperparameter tuning, and 495 

visualization were implemented using the scikit-learn package (version 1.1.3)78. 496 
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Metric generation and interaction measurement  497 

Among correlation methods, six chemical genetics derived features, and their engineered 498 

combinations, we identified the outlier concordance-discordance difference metric (OCDM) 499 

as the best metric to statistically significantly separate XR, neutral and CS interactions (Fig. 500 

2c). OCDM is defined as the difference between the sum of concordant s-scores and the 501 

sum of discordant s-scores if the count of concordant s-scores (NC) is below the median 502 

count as shown below. Otherwise, OCDM is simply the sum of concordant s-scores. 503 

Formula 1: 504 

  505 

where C represents concordant s-scores and D represents discordant s-scores. To identify 506 

optimal threshold determination (cutoffs) of OCDM, False Positive Rate (FPR) and True 507 

Positive Rate (TPR) were used to calculate True Factor (TF) = TPR−(1−FPR) = Sensitivity - 508 

Specificity, which was computed for each threshold. This threshold represents the best 509 

trade-off between sensitivity (TPR) and specificity (1-FPR), which are >105.159057 (to 510 

define XR) and <27.224792 (to define CS). 511 

 512 

All data analysis was performed in Python (v3.9.17). 513 

Bacterial strains and growth conditions 514 

For all experiments and unless otherwise specified, E. coli (strain BW25113) was grown in 515 

LB Lennox broth (tryptone 10�g�l−1, yeast extract 5�g�l−1, sodium chloride 5�g�l−1) at 516 

37ºC and fully aerobically (850 rpm), or on agar (2%) plates (same media and temperature). 517 

MIC determination 518 

E. coli BW25113 overnight cultures were diluted to an OD600nm of 0.001 and grown with 519 

antibiotics (Supplementary Table 1) at eight concentrations on a two-fold dilution gradient, 520 

in two technical replicates in microtiter plates (U bottom 96-well plates, Greiner Bio-One 521 

268200) at 37 °C with continuous shaking (850 rpm - orbital microplate shaking). Plates 522 

were sealed with breathable membrane (Breathe-Easy; Z380059-1PAK) and OD600nm was 523 

measured every 30 mins for 24 hours. The liquid handler Biomek FX (Beckman Coulter) was 524 

used to prepare plates. All MIC tests were performed in a total volume of 100 µL per well. 525 
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Controls included: no-cell + no-drug controls to assess contamination, no-drug controls to 526 

assess maximal growth, no-cell controls to assess artifacts (OD600nm change) of the drugs 527 

alone or of their interaction with medium components. The area under the growth curve was 528 

calculated using simps function from SciPy76 and divided by the no-drug control. 90% 529 

inhibitory concentration (IC90 which we define as MIC) was calculated using the drc 530 

package in R79
. 531 

Experimental evolution and XR/CS measurements 532 

E. coli wildtype overnight cultures were diluted 1:1000 and exposed to 23 antibiotics in eight 533 

concentrations from 0.5 x IC90 to 64 x IC90, in 12 lineages using the same volumes and 534 

plates as for MIC determination. Every 24 hours, the lineages growing in the highest 535 

concentration (OD600nm > 0.3) were back-diluted to OD600nm of 0.01, and the volume needed 536 

to reach a final dilution of 1:1000 (3-10 µL) was transferred to the next plate with the same 537 

concentration gradients. Once the evolution experiment was completed (5 passages for total 538 

of 5 days; ~50 generations in total), the lineages were tested for antibiotic susceptibility for 539 

59 of the 634 predicted interactions (9.3%; 23 novel XR, 8 known XR, 21 novel CS, 2 known 540 

CS, 4 novel neutral, and 1 known neutral interaction; Fig. 3c-e & Source Table of Fig. 3). 541 

MICs were measured as in “MIC determination” (12 lineages/populations x 118 drug pairs 542 

(59 unique drug pairs) x 2 technical replicates = 2832 MIC values; Source Table of Fig. 3c-543 

e). Changes in IC90 were compared to the ancestor strain. Interactions were defined as XR 544 

or CS if log2 fold-change > +1 or -1, respectively. For the azithromycin-tetracycline pair, we 545 

performed five more passages (total of 10 passages; ~100 generations), and tracked 546 

changes both in tetracycline resistance and azithromycin susceptibilities. 547 

Whole-genome sequencing and analysis 548 

A clone from the wildtype and from populations of 12 lineages from day 3, 5, and 7 were 549 

sequenced to determine mutations responsible for given phenotype. Genomic DNA was 550 

extracted using Macherey Nagel DNA extraction kit and sequenced using single-end Illumina 551 

NextSeq 2000 (P1; length of 122 bp). Mutations were identified by mapping sequences to 552 

the reference genome from the NCBI database (E. coli BW25113 strain K-12 chromosome; 553 

GCF_000750555.1)80 using Breseq 81
 with the following parameters: -p -l 80 -j 8 -b 5 -m 30. 554 

Mutations present in the wildtype clone compared to the NCBI reference genome were 555 

eliminated to only identify mutations that are associated with resistance/sensitivity. 556 
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P1 transduction 557 

Single colonies of E. coli wildtype (BW25113) and corresponding Keio mutants60 were used 558 

for P1 transduction. P1 lysate preparation and transduction was performed as previously 559 

described82. We confirmed the transduction success via colony PCR.    560 

Tetracycline fluorescence assay 561 

Wildtype and knockout mutants of waaF, waaD, and hldE, and E. coli was grown in 5 mL LB 562 

with continuous shaking at 37ºC until they reached an OD600nm of 0.5. 1 mL aliquots of each 563 

culture were centrifuged at 3,500 rpm for 10 minutes and supernatants were discarded. 564 

Pellets were further washed three times with 0.5 mL of 137 mM PBS, and resuspended in 50 565 

µL of 137 mM PBS and transferred in black-walled, clear- and flat-bottom 96-well plates 566 

(Greiner Bio-One 655096), containing three concentrations of two-fold serially diluted 567 

tetracycline (highest final concentration 16 µg/mL, final volume 100 µL/well). OD600 nm and 568 

fluorescence (excitation λ 405 nm and emission λ 535 nm) were measured with an Infinite 569 

M1000 PRO plate reader (Tecan), for 15 minutes with readings taken every minute. 570 

Experiments were conducted for three to six biological replicates. 571 

Experimental evolution against antibiotic combinations  572 

IC90 for individual antibiotics (n=8) and drug combinations at 1:1 MIC ratio (n=7) were 573 

measured as in “MIC determination”. The evolution experiment was carried out in the same 574 

way as described in “Experimental evolution and XR/CS measurements” with the following 575 

changes: the initial wildtype culture was exposed to 8 single and 7 combinations of 576 

antibiotics in 11 concentrations from 0.125 x IC90 to 128 x IC90, for 7 lineages. At the end of 577 

the experiment (7 passages for the total of 7 days; ~70 generations), IC90 of drug 1 and 2 578 

were measured in drug 1, drug 2 and drug 1 + drug 2 resistant lineages as described in “MIC 579 

measurements”. To compare evolution of resistance to single drugs vs drug combinations, 580 

Evolvability Indexes were calculated for each possible pair (2401 values per antibiotic 581 

combination) as shown below. 582 

 583 

Formula 2:   584 

 585 

 586 
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where IC90[Drug 1]Drug1 + Drug2 corresponds to IC90 of drug 1 for lineage evolved against drug 587 

1+2 combination. 588 
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Figure Legends 589 

Fig 1. Chemical genetics allows for systematic XR and CS assessment. a, Schematic 590 

illustration of conventional way to assess XR/CS drug interactions via experimental 591 

evolution. Resistant mutants are raised against drug 1 and then tested for susceptibility to 592 

drug 2. The MIC/IC90 is compared to that of the ancestral strain. b, Schematic illustration of 593 

chemical genetic screens with arrayed libraries. Several drugs (1, 2 …) are profiled across 594 

genome-wide gain-of-function or loss-of-function mutant libraries. The fitness of each mutant 595 

is evaluated independently, e.g. by measuring colony size. c, XR and CS are associated 596 

with chemical genetic profile similarity and dissimilarity, respectively. The fitness of deletion 597 

mutants (s-scores; positive and negative scores denote increased and decreased fitness 598 

respectively) is plotted for two drugs simulating XR and CS paradigms in E. coli.  Labelled 599 

mutants are involved in known mechanisms of XR and CS17–19. If the same mutations make 600 

cells more resistant or sensitive to two drugs, cells are more likely to evolve mechanisms 601 

that inhibit or promote these exact processes during evolution and become XR to both 602 

drugs. The opposite is true for CS.  603 

 604 

Fig 2. Chemical genetics-derived metric separates well known XR and CS interactions, 605 

and infers new ones. a, The overlap between published XR/CS interactions from four 606 

existing datasets8,17–19.  is low.  b, A devised metric derived from chemical genetic profile 607 

similarity, OCDM, can robustly discern between known XR, CS, and neutral interactions. P-608 

values were obtained from two-sided paired Mann-Whitney U test. c, Receiver operating 609 

characteristic (ROC) curves for classification of XR (positive class) versus non-XR (negative 610 

class) and CS (positive class) versus non-CS (negative class). Each OCDM cutoff 611 

represents a point on the curve and is associated with a true positive rate and a false 612 

positive rate. The OCDM cutoffs chosen for XR and CS interactions are depicted with a 613 

circle. d, New XR, neutral and CS pairs inferred by chemical genetics using the OCDM cutoff 614 

are 2- and 4-fold more that currently known XR and CS interactions in E. coli. This difference 615 

is actually larger, as we reclassify 27.6% (n=116) of the known interactions (Extended Data 616 

Fig. 2). Known interactions include those between drugs for which there is no available 617 

chemical genetics (total n=420). 618 

 619 

Fig 3. Inferred XR/CS interactions are validated with high accuracy. a, Schematic of 620 

benchmarking done by experimental evolution and MIC measurement for 59 drug pairs. 621 

Twelve lineages are evolved in parallel for 5 passages in 23 antibiotics. In each passage the 622 

culture growing at the highest concentration is transferred. The MIC of the final resistant 623 
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population is then measured for all lineages in the relevant antibiotics. b, Most inferred 624 

interactions are experimentally validated, whether those are previously known (and our 625 

inference agreed/disagreed; latter designated as reclassified) or new. We considered an 626 

interaction to be validated if at least one lineage had log2 MIC fold-change > 1 for XR and < -627 

1 for CS, compared to the wildtype. c-e, Heatmap of 59 new, known (positive control), and 628 

reclassified interactions, split depending on whether they were inferred as CS (c), XR (d) or 629 

neutral (e). Interactions were tested in both directions, and directions are shown one after 630 

the other - the drug for which selection occurred is shown first, and the drug for which MIC 631 

was tested comes second. In each interaction, all tested lineages are shown. Interaction 632 

monochromaticity (whether interaction is exclusively CS or XR - neutral lineages do not 633 

affect this call), and published interaction assessment are also shown. Reclassified 634 

interactions are those for which our inference and validation agree, but previous reports 635 

have missed or reported wrongly. Interaction in red (least monochromatic interaction) is used 636 

in Fig. 5 to understand the mechanisms in play. Interactions in bold are used later in Fig. 6 637 

to test resistance evolution in drug combinations. The interaction in italics (drug pair #14), 638 

which was conflicting across studies (XR in one study and CS in another), has been inferred 639 

and validated to be CS.  640 

 641 

Fig 4. CS and XR interactions between and within antibiotic classes. a, Interactions 642 

between members of same antibiotic class (within class) are exclusively XR. The within 643 

class group includes classes with more than one member: beta-lactams, aminoglycosides, 644 

quinolones, macrolides, tetracyclines and sulfonamides. b, Overview of all inferred and 645 

known drug interactions in E. coli at the class level. When a class has only one 646 

representative then antibiotic is named and shown in grey. Within class interactions are not 647 

displayed in the plot, but are all exclusively XR. Antibiotics are grouped according to their 648 

modes of action. Dot size represents the count of interactions between classes (or single 649 

antibiotics). c, Coherency of interactions of each class with all other classes, calculated by 650 

the sum of the absolute differences between XR and CS interactions with each other class, 651 

normalized by the number of drugs in the class. The higher the number, the more coherently 652 

the class is interacting. d, Interaction preference of each class (single- or multi- membered), 653 

calculated as the ratio between the number of CS and XR interactions with all other 654 

antibiotics from other classes. Antibiotic classes with ratio>1 are considered as 655 

predominantly CS (n=8), whereas those with ratio<1 as predominantly XR (n=12). 656 

 657 

Fig 5. Chemical genetics recapitulates dynamics and explains mechanisms of non-658 

monochromatic interactions. a, Changes in azithromycin susceptibility during evolution of 659 

12 lineages in tetracycline. Evolution was performed by passaging every 24 h for 10 days 660 
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(total 100 generations, Methods). Resistance levels of 12 lineages to both antibiotics are 661 

shown for days 2, 3, 5, 7 and 10. Lineages are grouped according to whether they exhibited 662 

CS, neutrality and XR at day 5 (same as Fig. 3e). b, Scatter plot of chemical genetic profiles 663 

of the E. coli deletion library in tetracycline and azithromycin31. Mutants with concordant (XR-664 

related) and discordant (CS-related) profiles are highlighted. Dots in grey represent mutants 665 

that do not have s-scores within our chosen 3% extreme cutoff for both drugs. c, Mutations 666 

of lineage 11 during evolution. Genome sequencing of lineage population reveals a 667 

succession of two point mutations in genes that both lead to CS - first in hldE, which is then 668 

replaced by mutations in waaF, a slightly less detrimental gene for azithromycin resistance 669 

according to chemical genetics data (b). For the other 11 lineages see Extended Data Fig. 670 

5. d, Fold changes in tetracycline and azithromycin IC90s of wildtype and knockout mutants 671 

confirm that both hldE and waaF contribute to resistance to tetracycline and sensitivity to 672 

azithromycin, while ompF deletion leads only to resistance to tetracycline. e, Tetracycline 673 

uptake is reduced in a waaF deletion mutant. Tetracycline fluorescence was measured in 674 

cell pellets, and signal was normalized by cellular abundance (OD600nm). The mean and 675 

standard error are shown (n = 3-6 biological replicates). f, OmpF, a major tetracycline 676 

importer, is the most downregulated protein in the waaF deletion mutant42. 677 

 678 

Fig 6. Combinations of reciprocal CS antibiotic pairs reduce resistance evolution. a, 679 

Experimental design: after evolution of resistance against single antibiotics or their 680 

combination (7 lineages for each, passaging every 24h for 7 days, 70 generations in total), 681 

the IC90 with both antibiotics was tested for the evolved mutants. In each passage mutants 682 

growing (colored as yellow) at highest concentration (denoted by thick circle) were 683 

transferred (Methods). b, Measured IC90 values were used to calculate Evolvability Index 684 

(Formula 2; Methods). Red line represents the cutoff (Evolvability Index = 0), below which 685 

the antibiotic pair is considered to reduce resistance evolution compared to single antibiotics. 686 

Red dots on the violin plots represent the median. Non-XR antibiotic combinations led to 687 

lower collective resistance, and in the case of reciprocal CS to lower Evolvability indexes 688 

and lower resistance to each of the antibiotics combined (Extended Data Fig. 6).  689 

 690 

Extended Data Fig. 1. Performance of different metrics & models in capturing XR and 691 

CS antibiotic interactions from chemical genetics data. a. Receiver operating 692 

characteristic (ROC) curves for classification of XR (positive class) vs non-XR (negative 693 

class), and CS (positive class) vs non-CS (negative class), using simple linear and non-694 

linear correlation metrics. AUC is the area under the curve.  b. Performance of the decision 695 

tree model on balanced classes shows that both XR and CS interactions can be well 696 

classified. c. decision tree with classes CS (class 1) versus the rest (class 0), where 697 
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maximum depth of 3 is shown for visualization, illustrates hierarchy of decisions to 698 

discriminate classes. Each node in the tree represents a decision point based on the value 699 

of a particular feature, and branches represent the outcome of the decision. The root node 700 

divides the data based on the concordant_negative_w feature, which is a sum of s-scores 701 

(as weights) of hits on negative concordant site of a scatterplot. The tree branches out to 702 

discordant_w feature, which is a sum of s-scores (as weights) of hits on discordant site of a 703 

scatterplot, while discordant_w_m is a sum of products of s-scores (as weights) of hits on 704 

discordant site of a scatterplot. d. P-values from a paired Mann-Whitney U-test (two-sided) 705 

are depicted across quantile cutoffs for extreme s-scores to differentiate XR/CS/neutral 706 

interactions based on OCDM values. Q3 and Q97 perform the best. 707 

 708 

Extended Data Fig. 2. Chemical genetics metric captures well prior information and 709 

reclassifies a subset of prior interactions. a-b. Comparison of previously reported XR (a) 710 

and CS (b) interactions with our inferences based on our chemical genetics metric (OCDM) 711 

show an agreement of 67-68% for CS (n=17) and XR (n=47) - 11 such interactions were 712 

validated experimentally during our benchmarking (Fig. 3c-d). The rest is wrongly inferred 713 

as neutral or the opposite interaction, including four interactions (3 XR & 1 CS) that we 714 

experimentally validated as false positives (Fig. 3c-e). c. In contrast to CS or XS, there is 715 

less agreement for neutral interactions with previous studies. This is consistent with the high 716 

false negative rates when comparing prior studies between them (Fig. 2a). The majority of 717 

previously reported neutral interactions (76.6%, n=85) are inferred as CS/XR by chemical 718 

genetics. All 8 we included in the benchmarking set were confirmed as false negatives (Fig. 719 

3c-e). d. New XR, Neutral and CS pairs inferred by chemical genetics and the OCDM cutoff 720 

are 2.8- and 6.4-fold more that currently known XR and CS antibiotic interactions in E. coli, 721 

after reclassifying interactions (n = 116) we infer differently than previously reported. This 722 

plot includes interactions that are known and for which chemical genetics data is not 723 

available. 724 

 725 

Extended Data Fig. 3. Chemical genetics can uncover the biological processes that 726 

drive interactions between antibiotic classes. a. Clustered heatmap of discordant 727 

mutants that are part of CS interactions between sulfonamides and macrolides (blue) or 728 

beta-lactams (green). Genes in bold are involved in LPS or nucleotide biosynthesis. b. 729 

Clustered heatmap of concordant mutants that are part of XR interactions between 730 

tetracyclines (violet), macrolides (blue) and other protein synthesis inhibitors. Genes in bold 731 

regulate or are part of the major efflux pump in E. coli (AcrAB-TolC). 732 

 733 
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Extended Data Fig. 4. Chemical genetics can infer mechanisms and monochromaticity 734 

of XR and CS drug interactions. a. Scatter plot of chemical genetic profiles of the E. coli 735 

deletion library in tobramycin and nalidixic acid31. Mutants with concordant (XR-related) and 736 

discordant (CS-related) profiles are highlighted. Dots in grey represent mutants that do not 737 

have s-scores within the 3% extreme values for both drugs. The underlined knockout 738 

mutants are known causal genes of this CS interaction17,19. b. Chemical genetic profiles for 739 

novobiocin and cefoxitin, presented as in a. Underlined knockout mutants indicate that the 740 

changes in polarity of the lipopolysaccharide (LPS) core can drive resistance to cefoxitin, 741 

while providing sensitivity to the large and non-polar novobiocin. c. Non-monochromatic XR 742 

interactions (n=11) have higher absolute discordance scores than their monochromatic 743 

counterparts (n=20) (Mann-Whitney U-test) - monochromaticity was defined in the validation 744 

experiment. This means that chemical genetics can infer monochromaticity of XR 745 

interactions. d, Highest discordance score of -133.8481 based on the 11 non-746 

monochromatic XR interactions from c was used to separate all XR interactions into 747 

monochromatic (n=230) or non-monochromatic (n=174). e-g. Scatter plots of chemical 748 

genetic profiles of the E. coli deletion library31 for examples of other pairs of drugs with both 749 

high concordance and discordance (in addition to azithromycin and tetracycline shown in 750 

Fig. 5b). As the azithromycin-tetracycline pair, those are expected to be non-751 

monochromatic. Data are depicted as in a-b. 752 

 753 

Extended Data Fig. 5. Genome sequencing of lineage populations evolved in 754 

tetracycline. Results of remaining 11 lineages from days 3, 5, and 7. Results shown as in 755 

Fig. 5c, and lineages grouped in XR, CS and neutral according to classification in Fig. 5a. 756 

  757 

Extended Data Fig. 6. Antibiotics combinations constrain resistance evolution to both, 758 

one or none of the compounds. The log2 of MIC (IC90) of evolved population in both 759 

drugs compared evolved population to drug itself is used to identify whether and how well 760 

combining drugs reduces resistance to each drug compared to single-drug treatments. 761 

Reciprocal CS drug pairs do this efficiently. Red dashed line shows the no-effect, when 762 

combining drugs is not changing resistance evolution to single drug treatments. 763 
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