
Master Thesis Project

Termination Analysis in a Higher-Order Functional Context

Nicolas Voirol
EPFL

School of Computer and Communication Sciences

Fall 2013

Supervisor
Etienne Kneuss

EPFL

Professor
Prof. Viktor Kuncak

EPFL

Abstract
We start by describing how higher-order function support can be added to a (first

order) functional verification framework. We cover both the higher-order construct
management and framework extensions necessary for constraint specification. Next, we
outline a termination proof constructor for the aforementioned framework. In order to
provide effectiveness as well as performance, our approach combines different techniques
in a weeding-out strategy where each partial proof is carried on to the next prover.
To enable high-level reasoning about formulas during termination proofs, we make
use of the underlying verification framework while maintaining soundness by carefully
restricting the acceptable formula space. Finally, we propose an extension to the
framework input language that adds support for generic type polymorphism while
maintaining compatibility with legacy features.

1. Introduction 2

1 Introduction
Higher-order functions are ubiquitous in functional programming as they provide a
powerful and elegant abstraction to the developer. Any verification framework aiming for
real-world program analysis must therefore support the use of some kind of higher-order
construct. These are provided through the addition of function types, function applications
(distinct here from method calls) and anonymous functions.

The key role of a verification framework consists in proving certain properties on a
program, sometimes given certain assumptions. In order to state meaningful properties
and assumptions on higher-order functions, we need some means of specification. There
are different options for such requirements description (type based [6, 14], closure based,
etc), and we present a restricted variant of universal quantification that fits well with the
pre-existing framework.

The actual verification relies on a pattern based instantiation algorithm that generates
constraints on function applications. These constraints are introduced by a flexible system
that enables handling of complex multivariate requirements. Anonymous functions are
maintained (with closures) by our system until application sites where their body is inlined
into the formula, thus reducing the impact on the underlying framework.

Termination proving, notwithstanding the halting problem, can be tractable and
even efficient in many concrete programs, making it a worthy addition to any verification
framework, even more so in our case as the underlying framework is complete given termina-
tion. This presents interesting challenges during proof construction as we use the verifying
capabilities of the system to provide a powerful formula abstraction during reasoning.

We present a modular approach (derived from [5]) where termination problems are
broken up into independent sub-components which are treated individually. The result of
each technique application then consists in a subset of the input problem where only harder
parts of the problem remain to be proven. We encode our basic termination problems as
sets of methods which are passed from one technique to another. These problems can
also be extended with additional information computed during (failed) proof construction,
which can be used further along by a more powerful technique.

A multitude of techniques can then be injected into this modular scheme. We focused
mainly on size-based termination [10], but most of the principles can be extended to numeric
convergence. We will discuss three such techniques in the scope of this paper.

Generic type polymorphism provides a flexible and powerful means to reuse type-
independent constructs (which is the case of most algebraic data types). Moreover, any
framework that aims to support real-world applications should support these to some
extend as they are present in many – if not most – modern languages.

The SMT solver that powers most of the proofs in the underlying framework does
not support generic algebraic data types, so this feature needs to be simulated by our
extension for any possibility of generic verification. We present a type unfolding algorithm
that complements the unrolling nature of the framework proof construction.

2. Higher-Order Functions 3

2 Higher-Order Functions
We trivially extend the Leon syntax (ie. PureScala [2]) with higher-order constructs by
following the Scala syntax (see Figure 2.1).

type ::= PureScala type

| type ⇒ type

expr ::= PureScala expr

| (decls) ⇒ expr

| expr (〈 expr 〈 , expr 〉∗〉?)
| forall ((decls) ⇒ expr)

Figure 2.1: Syntax extensions for higher-order functions support

2.1 Requirements specification

A natural abstraction for functions are relations, along with the additional constraint that,
for a relation R,

∀(r1, r
′
1), (r2, r

′
2) ∈ R. r1 = r2 =⇒ r′1 = r′2.

Moreover, powerful tools for stating properties on relations (as we can see in the above
formula) are universal and existential quantification. In the context of deterministic pro-
grams, it is generally more useful to consider universal than existential quantification, so
we dismissed the later in our extension.

Bearing these considerations in mind, we extend the framework syntax with a forall
construct. This statement expresses universal quantification with the restrictions that
1) the forall statement must be a top-level conjunct in the requirement, to disallow exis-
tential quantification expressed with inner and outer negation, 2) forall statements must
constrain function applications (and only function applications), to avoid unsupported uses,
3) one cannot define recursive constraints with the forall construct as in ∀a.f(a+1) > f(a),
since the implications of such constraints cannot be captured by pattern instantiation, and
4) the arguments to function applications can only contain surjective operators, as equali-
ties with concrete values could prove meaningless otherwise. A generalized forall statement
would be an interesting extension in its own right but is out of the scope of this paper. Note
that conditions 3) and 4) are satisfied in our case by requiring these arguments to either
a) not include universally quantified variables, or b) consist only of a quantified variable
(eg. f(a+ 1) is in fact disallowed).

One could criticize the simplicity of this construct in favor of a more complex model
that exposes memory structures before and after execution (see [11] for a more complete

2.2 Generating constraints 4

example), but such approaches do not scale well and lack clarity. Universally quantified
requirements offer a flexible means of specification without introducing unnecessary con-
volutions.

2.2 Generating constraints

The constraint generation algorithm is a particular case of pattern based universal quan-
tification as implemented in modern SMT solvers. Directly using Z3 [4] universal quantifi-
cation unfortunately did not pan out (presumably) because of model completeness require-
ments. Our system provides this functionality in a flexible way that supports the method
invocation unfolding scheme implemented by the underlying framework [13].

2.2.1 Pattern based quantification

Universal quantification can be viewed as a pattern generalization, where universally quan-
tified variables act as named wild-cards. Expressions that match the pattern given wild-
card instantiation are then constrained by the quantified proposition. We call this process
instantiating the pattern.

Our case is slightly different as we only consider universal quantification in the context
of higher-order function constraining. This means that pattern matching is a much simpler
task than in the general setting. Indeed, it suffices to perform matching on higher-order
function applications in pattern and expression since other types of wild-card patterns are
explicitly disallowed. Furthermore, we require parse tree equality for higher-order functions
due to the lack of formalism of true function equality (undecidable). It may be interesting
to relax this constraint in future work by using a type-based matching to allow a wider
range of universally quantified specifications .

2.2.2 Defining patterns

The main observation behind our pattern definition is that the entry requirement (pre-
condition) holds at all times once inside the body of a method. This means that while
visiting the body, we are guaranteed that the precondition can be asserted at any given
point without constraining a possible solution any further. Furthermore, since the whole
precondition expression holds, any sub-proposition of a top-level conjunction must hold as
well, and can also be asserted anytime during body traversal.

These considerations, associated with the description of our restricted universal quan-
tification, lead to the following natural definition: a pattern is a conjunct of a universally
quantified proposition that contains universally quantified variables as well as constrained
higher-order function applications. Note that from 2.1, universally quantified propositions
must be top-level conjuncts in the precondition expression. For example, if the precondition

2.2 Generating constraints 5

of a function definition is stated as

f(1) = 1 ∧ ∀b.g(b) 6= 0 ∧ (∀a.f(a) < 0 ∨ f(a) > 0),

we can extract the two patterns ∀b.g(b) 6= 0 and ∀a.f(a) < 0 ∨ f(a) > 0.

2.2.3 Constraints from context

As presented in section 2.2.1, pattern matching is performed via higher-order function
application comparison. This means that to match a pattern, we must have seen concrete
applications for all higher-order functions that are applied in the pattern. At most one
function application can be encountered by a visitor at any given time and interacting
program components are not necessarily close to each other, so local search is not sufficient.
We therefore need a global mechanism to accumulate visited applications until patterns
can be instantiated. In order to keep track of previous applications, we define the concept
of context, a partial map from application callers to sets of concrete applications. This map
is used to check whether patterns can be matched by verifying that callers in patterns all
have at least one concrete counter-part in the context.

Whenever an application is discovered by the visitor, it is used in conjunction with the
current context to instantiate new constraints. Each pattern is considered, and function
applications contained in the pattern are associated to all possible combinations of concrete
applications afforded by the context. These associations are then fed to the pattern in-
stantiation system which generates a set of new constraints. Note that only combinations
featuring the newly discovered application need be instantiated, as others have already
been handled (when they were discovered). Finally, the new application is added to the
context for subsequent instantiations.

2.2.4 Pattern instantiation

We mentioned in section 2.2.1 that patterns are instantiated. Simply asserting the pattern
is meaningless, as the universally quantified variables do not capture as such the actual
values figuring in the concrete expression. We need a more complex behavior that links
patterns and concrete applications. As we are guaranteed by 2.1 that universally quantified
variables in application arguments can only appear as variable arguments, we could solve
this issue by building a mapping from the quantified variables to concrete expressions.
This mapping associated with equality constraints for variables that have multiple images
would provide the necessary binding, but we present a different option that fits better with
a possible relaxation in future work of the constraint on the shape of universally quantified
application arguments.

We propose a solution where the binding is enforced by equality constraints between
pattern and concrete arguments expressions (note that this poses no restriction on the
pattern shape). If we consider the pattern f(a, 1) > 0 and the concrete application f(2, 1),

2.2 Generating constraints 6

we would assert f(a, 1) > 0 and generate the additional constraints a = 2 and 1 = 1. These
new equality constraints are not so trivial to manage:

• They cannot be asserted (or analogously linked by conjunction with the pattern).
Indeed, patterns like f(a, 1) = 1 would break satisfiability of any program calling
f(x, 2) (1 = 2 /∈ SAT).

• They cannot imply the pattern. The counter-example driven nature of the underlying
verification framework will fulfill implication truth requirement with false =⇒ ∗
by setting free variables to arbitrary values, thus leaving concrete applications un-
constrained to generate counter-examples.

We solve this issue by separating equality constraints into two sets: hard constraints and
soft constraints. Hard constraints are used to bind free variables by asserting equality
constraints containing new free variables, whereas soft constraints provide the flexibility to
handle constraints that can never be satisfied by using implication:

hard ∧ (soft =⇒ pattern)

In order to compute the collection of hard constraints, we start by assigning each
constraint to the set of free variables contained within it. Given these sets, we then group
constraints and order the groups by increasing free variable set size. Finally, we traverse the
sequence of groups and select one constraint per group and add it to the hard constraints.
We must make sure to select the constraint with least structural size to avoid under-
constraining caused by surjectivity (eg. g(a) = g(x) weaker than a = x but contains the
same free variables). All remaining constraints are soft constraints.

Since higher-order function equality is not allowed in our system, equality constraints
as described above do not extend to universally quantified higher-order variables. Happily,
due to the lack of operators on functions, these can be elegantly handled via the mapping
option we presented previously without constraining argument shape. We therefore col-
lect all equality constraints inducing a mapping from universally quantified function-typed
variables to concrete expressions (of the shape f1 = expr where f1 is universally quantified
and of function type). This mapping is then used to replace all other instances of these
variables by concrete expressions (eg. f1(x) becomes expr(x)). As this replacement may
create new concrete applications, these must also be constrained by running the complete
algorithm over the generated constraint.

2.2.5 Inductive invariants

We have discussed how to generate constraints based on universal quantification in the
precondition, but we have not yet addressed constraints that appear through inductive
invariants (ie. postcondition assumption).

2.3 Universal quantification in formulas 7

Postcondition assumption is handled like preconditions in the general case. Indeed, we
know the postcondition must be true during assumption, so we can instantiate the univer-
sally quantified propositions contained within it as patterns based on method invocation
arguments. We use the same context as for preconditions, extended with a partial map-
ping from methods to concrete invocations (to encode the invocation result). The same
procedure for argument equality is used as for variable function applications.

2.3 Universal quantification in formulas

We have discussed pattern based instantiation for universally quantified propositions found
in the precondition, but the driving observation behind precondition pattern validity does
not hold in general. By definition, universal quantification can only appear in the pre-
or postcondition, and and we know from [13] that these are either handled as presented
previously, or appear on the right-hand side of a top-level implication in the formula.

Since the framework is counter-example based, we know it will be searching to satisfy
these formulas with a model m such that m |= ¬(a =⇒ b), thus disproving the base
proposition. This implies that m |= a and m |= ¬b. By definition of our restricted
universal quantification, all universally quantified propositions are top-level conjuncts in
b. Hence, there must be at least one universally quantified proposition that does not hold
in b. In other words, we can replace all patterns of the shape ∀ā′i.q′i by ∃ā′i.¬q′i in b while
maintaining full equivalence. Since our formula is then fed to a SMT solver that will
search for a model m, existential quantification is assumed by default for free variables in
the formula. This means we can drop the explicit existential quantification from b as long
as we make sure all āi are free over the whole formula.

Sometimes, preconditions located on the right-hand side of the implication are issued
from method invocations that take place in an anonymous function body. In this case, we
generally do not yet have the concrete arguments to the anonymous function application,
so the formula will contain free variables (ie. the anonymous function formal arguments).
As we wish our proofs to remain general and not depend on eventual future invocations, we
simply ignore whether or not we are in an anonymous function during proof construction.
This makes the proof harder to build, but it also makes it sufficiently general to satisfy
any concrete arguments.

2.4 Formalization

In this section, we formally describe the procedure that quite naturally emerges from the
requirements specification and constraint generation schemes presented above.

We start by defining the two classes of formulas we are considering. Let LΠ be the base
theory (logic) already supported by the verification framework [13]. We also borrow symbols
program Π , implementation implΠf , as well as pre- and postcondition precΠ

f and postΠf
from [13]. Let LΠU be the extension of LΠ that supports the restricted case of universal

2.4 Formalization 8

quantification described in 2.1 and function variables (these can actually be handled in LΠ

by translating them to maps from argument tuples to results [12]).
By definition, the universal quantification construct we introduced in LΠU can only

be found in top-level conjuncts of precΠ
f and/or postΠf . We can therefore infer that these

formulas (given some trivial rearrangements) will be of the shape (
∧

i ∀āi.qi) ∧ p where
p ∈ LΠ (modulo function variables as maps, which will be the general assumption from
here on), and can be rewritten as (

∧
j ∀ā′j .q′j)∧p′ where for all j, q′j is not a conjunction and

p′ ∈ LΠ . Note that each conjunct ∀ā′j .q′j represents a pattern as defined in 2.2.2. Finally,
we define ρ (expr) as the formula encoding of the context-flow-graph to expr in the current
definition (ie. path to expr).

Algorithm 1 Pseudo-code for constraint generation procedure with higher-order functions

precondition := precΠ
f

procedure constrain(q)
formula := q

[
bprecΠ

f c, postΠf /E, precΠ
g /E

]
for fi(x̄)i in formula
for ∀ā′

j .q
′
j in precondition

constraints :=
∧

(context, fi(x̄)i) |= ∀ā′
j .q

′
j

formula := formula ∧ ρ (fi(x)i) =⇒ constraints
done
context := context ∪ {fi(x̄)i}

done
return formula

end

The constraint procedure in Algorithm 1 is applied to all formulas generated by the un-
derlying framework. Then, to integrate with invocation unrolling, it is applied to unrolled
invocation bodies whenever these are introduced.

We reduce precΠ
f to bprecΠ

f c by clearing it of all universal quantification (ie. the∧
j ∀ā′j .q′j conjuncts, leaving only p′). All postΠf and precΠ

g are reduced to, respectively,
postΠf /E and precΠ

g /E by following the procedure described in 2.3. This means that
all formulas handled by the framework belong to LΠ . We also know that in each formula
generated from method f , precΠ

f must hold, and therefore each conjunct ∀ā′j .q′j (ie. pattern)
contained in precΠ

f must hold as well.
Therefore, during its execution, our constraint generation algorithm visits the formula

(rewritten for bprecΠ
f c, postΠf /E and precΠ

g /E) with the context described in 2.2.3. All
function applications are checked for possible pattern instantiations, and each instantiation
will generate a constraint that forces the model to conform to the universally quantified
specifications. In other words, our algorithm handles universal quantification by reducing
predicate logic formulas in LΠU to formulas in the propositional logic supported by LΠ

2.4 Formalization 9

while maintaining satisfiability and model equivalence (for a somewhat intuitive notion of
equality).

To implement inductive invariance as specified in 2.2.5, we present Algorithm 2 that
makes sure function-typed invocation results are correctly constrained. The assume proce-
dure is called whenever the underlying framework generates an inductive invariant for such
an invocation. Note that fi(x̄)i in Algorithm 1 represents variable function applications
whereas fi(x̄)i represents method invocations in Algorithm 2. We use the same notation
due to the high similarity between both use cases.

Algorithm 2 Inductive invariant assumption generation for method invocation unrolling
precedure assume(fi(x̄)i)
postcondition := postΠfi

formula := bpostconditionc
for ∀ā′

j .q
′
j in postcondition

constraints :=
∧

(context, fi(x̄)i) |= ∀ā′
j .q

′
j

formula := formula ∧ ρ (fi(x̄)i) =⇒ constraints
done
context := context ∪ {fi(x̄)i}
return constrain(formula)

end

2.4.1 Property preservation

We wish to establish that the satisfiability procedure of the underlying framework given in
[13] remains (assuming declared function termination):

1. sound for models: every model it returns makes the formula true;

2. terminating for all formulas that are satisfiable;

3. sound for proofs: if it reports UNSAT, then there are no models;

4. terminating for all sufficiently surjective abstractions.

Since we model functions as maps, properties 2 and 4 are satisfied by previous work in [12].

Soundness for Models. Let q ∈ LΠU be a formula generated by the framework such
that q ∈ SAT . Let m be a model for q, and R(q) ∈ LΠ be the result of running our
algorithm on q. It is clear that m satisfies R(q) as all generated constraints are guaran-
teed by the universal quantifiers in precΠ

f and all other transformations on q only remove
constraints by clearing universal quantification. Therefore, R(q) ∈ SAT .

Now letmR be a model forR(q). It is just as clear as above thatmR does not satisfy q (in
the general case). Indeed, only a finite number of propositional conjuncts (the constraints

2.4 Formalization 10

generated by the algorithm) are available to constrain function variables and we therefore
cannot be as general as universal quantification. However, the function variables in mR

are sufficiently constrained for all applications in q to be defined. This means that mR is
only incomplete in the sense that infinite input domain sizes cannot be modeled, but still
suffices to prove that q ∈ SAT , and model soundness is (sufficiently) preserved. We say
here that mR is locally complete. This infinite model issue is in fact what kept us from
using the SMT solver’s native universal quantification capabilities.

Soundness for Proofs. Let q ∈ LΠU be a formula generated by the framework such
that q ∈ UNSAT and let R(q) ∈ LΠ be the result of running our algorithm on q. Assume
R(q) ∈ SAT , and that modelmR satisfies R(q). As q /∈ SAT , we know that there is at least
one conjunct ∀ā′j .q′j that is not locally satisfied by mR. In other words, for some g ∈ mR

such that g ⊆ q′j and for some ā such that the concrete application g(ā) ⊆ q, either 1) mR

does not define g(ā), or 2) mR |= q′j

[
ā′j → ā

]
is false. Both cases cannot happen since 1)

if g(ā) ⊆ q, then g(ā) ⊆ R(q), as our algorithm does not remove any concrete function
application, and 2) q′j

[
ā′j → ā

]
cannot evaluate to false for any concrete ā since constraints

will have been generated by the algorithm run for all possible concrete instances of q′j . It
follows that R(q) ∈ UNSAT as well and therefore q ∈ UNSAT =⇒ R(q) ∈ UNSAT .

Now consider another pair q ∈ LΠU , R(q) ∈ LΠ such that R(q) ∈ UNSAT . Assume
q ∈ SAT and we have a model m for q. Since constraints are handled by our algorithm
by asserting instantiated universally quantified propositions ∀ā′j .q′j , if one holds then it is
clear that q′j

[
ā′j → ā

]
must hold as well. It derives that if q ∈ SAT , all added constraints

are also in SAT by construction.
We know from [13] that q has one of three possible shapes (for some p ∈ LΠ):

1. precΠ
f =⇒ postΠf [p/ρ]

2. precΠ
f ∧ p

3. precΠ
f ∧ p =⇒ precΠ

g

As only precΠ
f , postΠf and precΠ

g are modified by our algorithm, only these parts of the
formula need be considered.

The transformation from precΠ
f to bprecΠ

f c only removes conjuncts and since precΠ
f is

always a top-level conjunct or a top-level conjunct of the left-hand side in an implication,
the reduction cannot break satisfiability.

The other transformation, namely p/E that is applied to postΠf and precΠ
g only takes

place on the right-hand side of an implication. This means that for R(q) ∈ UNSAT , the
implication must stand as true =⇒ false. We have just seen that precΠ

f =⇒ bprecΠ
f c, so

the left-hand side of the implication has the same satisfiability for q and R(q). As q ∈ SAT

2.5 Integration into Leon 11

and, given the process p/E described in 2.3, we must have a conjunct ∀ā′j .q′j in postΠf or
precΠ

g such that ∀ā′j .q′j ∈ SAT but ∃ā.q′j
[
ā′j → ā

]
∈ UNSAT , which is impossible.

Due to our special handling of postΠf in case of functional return types, there remains
a final shape introduced by our extension:

4. precΠ
f =⇒ postΠf [p′/ρ] where p′ ∈ LΠU

As presented in 2.2.5, our algorithm makes sure method invocations are correctly con-
strained by all conjuncts ∀ā′j .q′j , and we can apply the same argument as for p/E to show
R(q) ∈ UNSAT =⇒ q ∈ UNSAT . Soundness for proofs is therefore preserved as well.

2.5 Integration into Leon

Higher-order functions can easily be translated to Z3 as Z3 arrays, a special type of map
that does not require initialization, however the constraint generation algorithm presented
in section 2.2 cannot simply be added to Leon as a stand-alone component. Indeed,
higher-order function applications that appear during invocation unfolding must also be
constrained, a task that cannot be performed ahead of time as constraints are context-
dependent.

Leon manages named function invocation unfolding by transforming function defini-
tions into a series of clauses which can then be blocked to control access to uninterpreted
function invocations. These clauses are translated to Z3 structures and cached on creation.
To unfold an invocation, the Z3 clauses assigned to its definition are updated by substi-
tuting formal arguments with the Z3 invocation arguments before being asserted by the
solver. This procedure guarantees high-performance unfolding without loss of expressivity.
Unfortunately, this procedure cannot be trivially extended to higher-order functions.

Constraint generation requires the fulfillment of multiple conditions to be possible.
First of all, we need a precondition specifying constraints on the higher-order function
applications present in the expression we wish to constrain. This can easily be provided
by adding an extra argument to the solving system interface. We also need to propagate
the context from one unfolding to the next in order for constraints concerning different
unfoldings to be instantiated. Again, this condition is readily met by storing context as a
global variable in the unfolding framework.

Regrettably, some requirements to constraint generation are not so trivially satisfied and
their integration into the Leon unfolding framework is discussed in the following sections.

2.5.1 Higher-order clauses

In order for pattern matching to be possible, untranslated higher-order function applica-
tions in clauses are required during constraint generation. This issue can be solved by
deferring translation until unfolding time. This unfortunately comes with a toll on perfor-
mance since translation must now take place at each invocation unfolding and cannot be

2.5 Integration into Leon 12

cached. We can improve this naive approach by noticing that as long as the translation
remains consistent, different clauses can be translated at different times.

The only part of the Leon to Z3 translation that can vary from one execution to the
next is the handling of variables. The initial translation mechanism already sets up a map
to guarantee consistency from one clause to the next, so we simply store this map until
higher-order clause translation to guarantee overall consistency. In order to maintain high-
performance for inputs that do not feature higher-order functions while simultaneously
guaranteeing the availability of all higher-order constructs untranslated during constraint
generation, we separate the clauses containing higher-order constructs from those that do
not. Legacy clauses are handled as before while higher-order clauses are stored untranslated
until unfolding time and are only translated once constraints have been generated.

Another issue pertaining to Z3 translation arises when receiving the Z3 invocation
arguments. Higher-order arguments are needed untranslated in order to be replaced in
higher-order clauses and used to generate constraints. Happily, the Leon solving framework
already caches variable translations which lets us translate the Z3 higher-order arguments
back to the necessary Leon trees, as long as the initial higher-order construct is a variable.
Section 2.5.2 generalizes this approach to all higher-order constructs.

2.5.2 Anonymous functions

We have not yet addressed anonymous function handling in our system. This is because
they are managed separately from the constraint generation framework. Anonymous func-
tions are simply propagated until they are applied, whereupon the formal arguments are
replaced with the application arguments in the function body.

The translation of anonymous functions to and from Z3 (necessary for Z3 arguments to
named function invocation unfolding) is performed by storing a bijection between anony-
mous functions and fresh variables and translating the mapped variable to Z3. This scheme
makes sure that the only Z3 higher-order constructs received as arguments to named func-
tion unfoldings are variables, and can therefore be translated back to Leon trees as described
in section 2.5.1. To guarantee a unified and consistent approach, we (recursively) encode
all non-variable higher-order arguments (eg. named functions) into anonymous functions.

Furthermore, a major strong-point of anonymous functions is their support for contex-
tual closure. This means that when translating the result of anonymous function applica-
tions, we must be consistent with the translation of their defining functions. This can be
partially solved by storing the relevant pieces of the Z3 variable translation map alongside
the anonymous function in the bijection introduced above and adding these pieces to the
map used during translation of application to Z3. Unfortunately, this solution creates a
new issue: if we have multiple anonymous functions issued from the same definition but
with different contexts, the pieces of translation map will conflict with each other due to
matching keys. Free variables (ie. contextual variables) in newly defined anonymous func-
tions must therefore be freshened and the translation map must be extended with these

2.5 Integration into Leon 13

public abstract class AnonymousFunction {
public abstract Object apply(Object[] args);

}

Figure 2.2: Higher-order function JVM type signature

new variables. This guarantees that all anonymous functions will contain completely fresh
closure variables, thus preventing any conflict while maintaining translation consistency.

2.5.3 Application evaluation

An important feature of Leon is its ability to evaluate fully determined formulas. As
presented previously, we rewrite function-typed expressions to either be a function variable
(argument to the current definition), or an anonymous function. We therefore observe
that formulas are fully determined regarding higher-order functions as long as they do not
contain any free function variables (indeed, anonymous functions are themselves completely
determined).

Leon evaluator. Leon features a tree evaluator based on evaluation rules. To provide
support for higher-order functions, a new evaluation rule must be introduced to evaluate
higher-order function applications. As seen above, we know our function must be an anony-
mous function (formulas that are not fully determined are never evaluated). Evaluation
is therefore trivially implemented by inlining the anonymous function body rewritten for
application arguments.

One should notice that since anonymous functions enable contextual closure, whenever
an anonymous function definition is encountered by the evaluation visitor, its free variables
should be replaced by the evaluated contextual variables (which must be fully determined
by the time we encounter an anonymous function).

JVM evaluator. To provide a more efficient implementation, a second evaluator is pro-
vided by Leon that compiles the formula to JVM byte-code before executing it and re-
covering the result. We introduce a new abstract class to provide a unified interface to
higher-order functions (see Figure 2.2). This makes function application definition quite
natural as it simply consists in the apply method invocation on the arguments array.

Anonymous functions are handled by defining a new class that extends the higher-
order function interface for each new anonymous function encountered during compilation.
To manage contextual closure, the class is provided with a constructor that takes all the
contextually closed variables of the anonymous function body as arguments and viewing
these as fields during the compilation of the apply method body. Finally, it is added to
the JVM class-loader to enable instantiation at runtime. The actual anonymous function

3. Termination 14

definition is compiled as an instantiation of its associated class with the contextually closed
variables taken as argument.

3 Termination
Termination proving is an unsolvable problem in the general sense, but this does not mean
certain specific instances cannot be solved. Indeed, different techniques can be used to prove
(or partially prove) many real-world termination problems. The number and diversity of
problems which each technique can solve generally depends on its complexity and directly
correlates to increased runtime. Unfortunately, it is very difficult to (efficiently) determine
which technique will suffice to prove termination without actually applying it.

3.1 Modular approach

If the difference in runtimes is large (at least double), an efficient strategy is to apply each
technique one after the other with increasing complexity until the problem is solved. We
further improve this strategy by keeping track of partial results, obtained during previous
technique applications, and injecting these into the current proof.

As we are working in a functional context, function definitions stand out as the natural
building blocks to be carried from one proof to the next. Each proof problem consists of a
set of function definitions which is refined during each technique application before being
passed on. This procedure grants us clear-cut modularity with a nice system for carrying
proof results over to the next technique.

Let us formalize these notions. As mentioned above, we use function definitions (noted
as FunDef) as our basic blocks, but it is often more interesting to consider a set of interde-
pendent definitions. Furthermore, to provide flexible capabilities to each technique, these
must be able to return multiple sub-problems (used in strongly-connected termination, for
example). Keeping these considerations in mind, we formalize each technique’s type as

Set[FunDef] =⇒ List[Set[FunDef]],

where the function definition sets contained in the result are disjoint, and the union of
all results is a subset of the input. Definitions that do not figure in the result have been
cleared by this technique.

In this setting, clearing a function definition means that that particular function is not
critical to program termination. This does not mean the function necessarily terminates
(as it may still call – or transitively call – non-terminating functions), but we do not need
to consider it explicitly when constructing later proofs and therefore does not belong to
any problem.

3.1 Modular approach 15

3.1.1 Composing techniques

The framework modularity and overall performance is a consequence of the potential for
composition. Simpler (and more efficient) techniques are applied initially to weed-out
trivial (or easier) problems and the remaining problems are then fed to the more powerful
(and more resource intensive) ones.

The refinement of a problem by a later technique application can create new oppor-
tunities for previous ones. For example, if a powerful technique eliminates one function
definition in a strongly connected component (ie. clears the function), this might split the
remaining set into multiple distinct sub-components that do not interact with each other
and should therefore be treated as distinct problems. To avoid missing these opportunities,
each successful problem refinement sends the results back to the beginning of the queue.

The system thus described is an adaptation of the Dependency Pair Framework [5] for
TRS to a functional programming setting and gives rise to Algorithm 3. If a termination
problem has not been solved after having run through the whole pipeline, it is added to
an unsolvable set and ignored during the rest of the algorithm execution. Indeed, the
modularity of the system ensures that problems have no cross-dependencies.

By definition, problem size is strictly under-bounded by zero and refined sub-problems
are subsets of source problem. Since refinements can only take place finitely many times
on each problem, we can see that Algorithm 3 is guaranteed terminating.

Algorithm 3 Pseudo-code for the adaptation of the Dependency Pair Framework for TRS
to a functional setting.
processors := initial processors
problems := initial functions
unsolvable := ∅
while (problems 6= ∅) {
(problem, index) = problems.head
result := processors[index](problem)
if (result = {problem}) {
if (index = processors.size - 1)
unsolvable += {problem}

else
problems += {(problem, index + 1)}

} else {
problems += {(p, 0) | p ∈ result}

}
}

3.1 Modular approach 16

3.1.2 Using verification

As we are building on a fully fledged verification framework (Leon), it would be quite
interesting to be able to use its capabilities during termination proving. This enables us
to reason about formulas, thus providing a welcome abstraction from syntax trees.

One of the main strengths of Leon is its ability to handle function invocations through
unfolding as described in [13], and to assume postconditions (an invariant on function
results). Sadly, the inductive nature of these postconditions requires the declaring function
to terminate in order for them to be guaranteed. Therefore, these must be ignored during
the unfolding of functions that have not (yet) been proved terminating.

Our definition for cleared functions specifically noted that these are not guaranteed
to terminate, but simply are not critical to solving the current problem. To determine
termination, we must therefore check that the function in question is cleared AND that
it does not transitively call any function that still lies in the problems queue or in the
unsolvable set. This means that problems are now interdependent and implies a certain
loss in framework modularity. In practice, the only modification required in the solving
algorithm is that when new refinements successfully take place, we must reenter the previ-
ously unsolvable definitions into the problems queue and clear the set, since the processors
now have more information, and may be able to prove termination this time around (see
Algorithm 4). We also introduce the refined problems at the beginning of the queue since
the more the overall proof is advanced, the more the power of the verification framework
can be harnessed. The algorithm is still guaranteed to converge as reset can only happen
finitely many times (it requires clearing a definition).

Algorithm 4 Modular solving algorithm presented in Algorithm 3 when using the under-
lying verification framework.
processors := initial processors
problems := initial functions
unsolved := ∅
while (problems 6= ∅) {
(problem, index) = problems.head
result := processors[index](problem)
if (result = {problem}) {
if (index = processors.size - 1)
unsolved += {problem}

else
problems += {(problem, index + 1)}

} else {
problems := {(p, 0) |p ∈ result}+ problems + {(unsolved, 0)}
unsolved := ∅

}
}

3.2 Termination techniques 17

Aside from the necessary loss of modularity, unwanted function unfolding poses no se-
rious problem. Indeed, it suffices to remove the postconditions specified on these functions.
Since the underlying verification system is counter-example based, this can only weaken
the termination condition, which is why we may improve solutions by sending previously
unsolvable problems back through the pipeline. Once a function has been proved terminat-
ing, its inductive invariant may be reinstated to bolster proof construction. However, this
implies that the validity of our termination proof depends on the validity of the invariant.
As we have shown the function is terminating, we can simply use the underlying framework
to prove the invariant holds (as it is complete given termination).

It should also be noted that the heuristics used to determine problem solving order
can have a substantial impact on the number of times unsolvable problems will be sent
back into the pipeline, but will not impact the power of the solving framework. These
heuristics are kept simple here (breadth-first search in Algorithms 3 and 4) and are not
further discussed in this paper.

3.2 Termination techniques

The modular framework we introduced above only makes sense when composing multiple
techniques. Five processors (read techniques) were therefore implemented and hierarchi-
cally integrated into our system:

Component processor relies on the program call graph in order to group function defi-
nitions into strongly connected components and filters out definitions that are tran-
sitively non-calling.

Recursion processor searches for structural decreasing of same argument in strictly self-
recursive functions.

Relation processor compares the structural size of definition inputs with that of sub-call
inputs, searching for strict decreasing or transitively strict decreasing.

Chain processor discovers call chains with start- and end-points in a given definition
and searches for convergence towards terminating CFG nodes through structural size
reduction, numeric progression or boolean inversion.

Loop processor searches for loops in call chains (again with start- and end-points in
same definition) with identical arguments at start and end of the chain that imply
non-termination.

The first two processors were taken as such from previous work, and will not be discussed
in this paper. They serve to illustrate how easily extra processors can be integrated into
this framework.

3.2 Termination techniques 18

3.2.1 Structural size

We must now introduce the notion of structural size, which is the key to understanding the
relation processor and (at least part of) the chain processor. We recursively define
structural size on types as

size(x) =

∑N

i=1 size(xi) if x : TupleN

1 +
∑N

i=1 size(x.fieldi) if x : ADTN

0 otherwise

This function is guaranteed to terminate because the only recursively definable types,
namely algebraic data types (ADTs), have a loop-free structure by design. Furthermore, the
function is monotonic with respect to ADT inclusion (x.fieldi ⊂ x), which is a well founded
order (can be easily proven by induction). Moreover, the function is lower-bounded by 0,
a much desired quality in our case. We can now define a total order on data structures
as size(x1) < size(x2). Since the structural size function is lower-bounded by 0, it is
impossible to generate infinite chains with decreasing size! This property is the main
driving force behind size-change termination proofs [10].

As the size function described above is a synthetic program construct (ie. generated
by the framework), it cannot be referenced by user-defined functions in the program. This
unfortunately makes size reduction proofs much harder as no invariants on size are available
to bolster proving capabilities. To alleviate this issue, we can automatically generate
different types of invariants that will help build such proofs.

Inductive invariants on size. We know by definition that

∀x.size(x) ≥ 0 and ∀x : ADT.size(x) > 0.

These observations can be used to provide an inductive invariant on the size function. We
therefore extend postΠsize with the conjunct size(āsize) >:ADT 0 where >:ADT represents
strict or soft inequality depending on whether the argument to size is an ADT or not.

We can further strengthen the invariant by adding bound constraints on recursive sub-
calls to size in implΠsize. These are provided by

N∧
i=0

size(x̄)i >:ADT 0 where ∀i ∈ [0, N].size(x̄)i ⊆ implΠsize.

The truth of these new assertions is inductively guaranteed, and they ensure that the
values taken by uninterpreted sub-calls in implΠsize make (more) sense as inductive invariant
assumption only takes place after definition unfolding in the underlying framework.

3.2 Termination techniques 19

Inductive invariants on f . It can also be interesting for function f ∈ Π to provide
inductive invariants that constrain the relation between the size of inputs and outputs of
f (eg. size (āf) < size (f (āf))) as this will provide valuable information for proofs where
sub-call arguments are function results. Such instances are practically impossible to prove
terminating without these size invariants.

Since we are working atop a verification framework, we can use it when providing
these invariants by attempting verification of a potential inductive invariant that states
a relation between inputs and outputs of function f . If the verification succeeds, we can
maintain the invariant, otherwise it must be dropped. As verification is only complete
given termination, we can only provide these invariants on functions that have already
been proved terminating.

From [13], we know that verification depends on the proof of three different properties:

1. precΠ
f =⇒ postΠf

[
implΠf /ρ

]
;

2. for any call fi(x̄)i ⊆ implΠf , the formula ρ (fi(x̄)i) =⇒ precΠ
fi

must hold;

3. for each pattern-matching expression, the patterns must be shown to cover all possible
inputs under the path condition.

Properties 2 and 3 are not modified by our extension of the inductive invariant (ie. postΠf),
so we need not consider these. Therefore, to verify whether our new inductive invariant
holds or not, it suffices to prove property 1 where postΠf is replaced by postΠf ∧ size(āf) <
size (f(āf)). Note that soft decreasing is also a worthwhile property to consider if strict
decreasing proof fails.

3.2.2 Relation processor

Structural size provides us with a comparison metric between any two values, not only
those which share a type. This means we can compare the arguments of any sub-call with
those of the caller. If the tuple of sub-call arguments has strictly smaller structural size
than the tuple of caller arguments for all sub-calls in a definition, then we can mark it as
non-critical for program termination. Indeed, any program loop leading to non-termination
which contains a definition with decreasing argument structural size for all sub-calls must
also contain (at least) one definition for which this property does not hold (otherwise, we
have a lower-bounded infinitely decreasing chain: contradiction).

We can formalize the non-criticality of a function f as follows. First of all, let the set
{fi(x̄)i | 0 ≤ i ≤ N ∧ fi ∈ Π} consist of all method invocations in implΠf (note that fi may
equal fj for i 6= j), and α (fi(x̄)i) be the tuple of argument expressions to invocation fi(x̄)i.
We obtain the following general formula for non-criticality of function f :

N∧
i=0

(ρ (fi(x̄)i) =⇒ size(α (fi(x̄)i)) < size(āf))

3.2 Termination techniques 20

We can even slightly relax the structural size decreasing constraint by requiring tran-
sitive decreasing instead of strict decreasing. If the structural size of caller arguments is
less than or equal to that of a sub-call (ie. soft decreasing) and is strictly decreasing in
sub-call definition, we say that the argument structural size is transitively decreasing. This
concept can be extended over arbitrarily large invocation trees as long as the leaf nodes
feature strict decreasing. We compute this tree by fixed point iteration, starting from
the set of strictly decreasing definitions and adding all definitions that only call functions
present in the decreasing set (and feature soft decreasing for all invocations in body). Any
loop containing a definition with transitively decreasing structural size of arguments must
contain (at least) one definition featuring strict decreasing (all call chains starting at a
definition with transitively decreasing argument structural size must pass through a tree
leaf or be non-looping because of loop-free tree structure). We can therefore apply the
same argument as previously to show that such definitions are non-critical.

3.2.3 Chain processor

Non-termination arises when a program gets stuck in a never-ending loop. Therefore, an
excellent way of proving termination is showing that no loop in the program can generate
an infinite sequence. Such a loop must contain a critical function (else we have termination,
as exposed previously). These observations are the basis upon which the chain processor
is built.

Chains and clusters. Let us start by defining the notion of chain that will be used
throughout this section. A chain c is a sequence f0(x̄)0, . . . , fN (x̄)N of function invocations
such that f0(x̄)0 ⊆ implΠfN

and fi(x̄)i ⊆ implΠfi−1
for 0 < i ≤ N . Note that fi = fj is

possible for i 6= j; we use this notation to easily refer to functions by index. It is clear that
a homomorphism exists between loops and chain equivalence classes, so each loop can be
represented by at least one chain.

We define ρ (c) as the SAT formula encoding of a chain. We bind the control-flow-
graph encoding ρ (fi(x̄)i) of each invocation fi(x̄)i with the next invocation fi+1(x̄)i+1 by
requiring equality between the free variables āfi+1 in fi+1 (ie. formal arguments) and the
invocation arguments α (fi(x̄)i). This gives us the formulas ρ (fi(x̄)i)∧

(
āfi+1 = α (fi(x̄)i)

)
for each invocation fi where 0 ≤ i < N . As fi may equal fj for i 6= j, the free variables in
each formula must be freshened, but we must still maintain bindings between invocation
fi(x̄)i and fi+1(x̄)i+1. We achieve this by building a map F from variables āfi

to their
fresh counterparts, thus obtaining the formula

ρT (c) =
N∧

i=0
F
(
ρ (fi(x̄)i) ∧

(
āfi+1 = α (fi(x̄)i)

))
.

We must also introduce a final constraint that ensures the formula ρ (f0(x̄)0) is still in SAT

3.2 Termination techniques 21

after a run through the loop, which gives us

F ′(p) = p [āf0 → F (α (fN (x)N))]
ρL(c) = F ′ (ρ (f0(x̄)0) ∧ (af0 = α (f0(x̄)0))) .

The complete formula is clearly obtained as the conjunction ρ(c) = ρT (c) ∧ ρL(c).
For any two chains a, b that share a same f0, we define chain composition a · b as the

chain resulting from the execution of a and then b. Formally,

a · b = f0a(x̄)0a , . . . , fNa(x̄)Na , f0b
(x̄)0b

, . . . , fNb
(x̄)Nb

.

Let Cf be the set of all chains starting in a given function f such that for any index
pairs i, j ∈ [0, N], we have fi(x̄)i = fj(x̄)j =⇒ i = j (we consider full invocation equality
and not simply result equality here). Notice that there is a finite number of chains in Cf

and that Cf does not contain all possible loops starting in f (consider the loop going twice
through chain a ∈ Cf , then once through chain b ∈ Cf before starting over again). Let
us also define Lf as the set of chains which start in f and that do not contain sub-loops
starting in function g 6= f . We see that ∀c ∈ Lf ,∃c0, . . . , cn ∈ Cf such that c = c0 · . . . · cn.

We can now define the notion of chain re-entrance. Let Rf ⊆ Cf×Cf be the re-entrance
relation such that for any a, b ∈ Cf , (a, b) ∈ R if and only if ρ (a) ∧ ρ (f0b

(x̄)0b
) ∈ SAT .

Note that for any a, b ∈ Cf , ρ (a · b) ∈ SAT only if (a, b) ∈ R. Indeed, if (a, b) /∈ R, then
there are no possible inputs to a such that it can re-enter b, so the program can never
execute a and then b.

Given the re-entrance relation Rf , for c ∈ Cf we define the cluster γ(c) as the least
fixed point of Rf on c. An interesting property of γ(c) is that ∀cL ∈ Lf such that cL starts
with c, ∃c1, . . . , cn ∈ γ(c) such that cL = c · c1 · . . . · cn. Note that ∀cL ∈ Lf ,∃c ∈ Cf such
that cL starts with c. Furthermore, given cn ∈ γ(c) such that cL ends with cn,

{a ∈ γ(c) | ρ (cL · a) ∈ SAT}
⊆

{a ∈ γ(c) | (cn, a) ∈ R}

follows from ρ(cL) =⇒ ρ (cL[0 : n− 1]) ∧ ρ (cn) by construction. Moreover, ρ only adds
more constraints, so ρ (cn)∧ρ (f0a(x̄)0a) ∈ SAT if ρ (cn · a) ∈ SAT , which in turn is implied
by ρ (cL · a) ∈ SAT . This means that if we are able to build a termination proof based on
satisfiability of a formula concerning all a ∈ γ(c) for all c ∈ Cf , then cL is not critical to
termination for any cL ∈ Lf .

Proving cluster termination. In order to prove that a certain chain is terminating, we
must show that it is impossible to build an infinite sequence of invocations from that chain.
We can show this by considering structural size reduction, as in the relation processor.

3.2 Termination techniques 22

But in this case, we can greatly improve the finesse of the comparison by using the fact that
the chain loops back to its first component, so we can compare input arguments before and
after a run through the chain. Therefore, instead of proving size decrease for the argument
tuple, it suffices to show that one single argument decreases.

This condition can be further relaxed since any decreasing sequence lower-bounded by
0 is sufficient to prove termination. We can therefore consider tuple fields individually, for
example. This observation can be generalized making a distinction between two categories
of types: container types and recursive types. Container types encompass tuples and ADTs
that have no siblings and are not recursively defined. Recursive types are all other ADTs.
Since container types basically behave like tuples, we can show termination by consider-
ing single fields of the container type (this statement can be inductively expanded since
container types are non-recursive).

In fact, it is not necessary to limit ourselves to structural decrease as the convergence
criteria. Indeed, since we now have a context (namely the start and end definition of the
chain), we can also discover numeric convergence criteria. These can be extracted from the
definition body by considering CFG nodes where splits take place and checking for Integer
bound conditions selecting a branch that terminates. We can even inline chain invocation
bodies to find more end-points.

We now have a tool to prove single chain termination, but what we are interested in is
cluster termination. The previous technique can be easily extended to whole clusters by
requiring the same sub-component of the argument tuple to converge for all chains in the
cluster. This means that for each cluster γ(c), each cc ∈ γ(c) will have the same decreasing
sub-component and therefore cc,1 · . . . · cc,n converges for any cc,0, . . . , cc,n ∈ γ(c).

Clearing definitions. It is clear by cluster construction that ∀a, b ∈ Cf , we either have
γ(a) = γ(b) or γ(a) ∩ γ(b) = ∅. Furthermore, if Cf = {c0, . . . , cN}, then ∀a ∈ Cf such
that a /∈

⋃N
i=0 γ(ci), a cannot be part of a possible loop starting in f since ∀b ∈ Cf ,

ρ (a) ∧ ρ (f0b
(x̄)0b

) ∈ UNSAT , and all other possible loops are of the shape c0 · . . . · cn

for c0, . . . , cn ∈ γ (c0). Therefore, if we show termination of γ(c) for all c ∈ Cf , we have
termination for Lf .

We can determine that a function f is cleared when non-termination can only be implied
by non-termination in another function g 6= f . We state that if ∀cL ∈ Lf , cL is non-critical,
then the function definition f is non-critical. The reasoning behind this affirmation is as
follows:

We start by considering all chains starting in f that contain no sub-loops starting in
g 6= f . All of these chains belong to Lf by definition and are non-critical by our starting
assumption. Remaining chains must contain a sub-loop that starts and ends in another
definition g 6= f (ie. for any remaining chain c, ∃cg ∈ Lg such that cg ⊆ c). If that chain
is non-terminating, then non-termination of f is implied by criticality of g.

If the chain cg is terminating, then we have a limit case when the convergence criteria
are different and each loop works against the other. But we are guaranteed that if the work

3.3 Handling higher-order functions 23

is equal (increments and decrements are symmetrical), then there is a chain originating in
each definition that is non-terminating (since it goes through both loops once), illustrated
in Figure 3.1a. If the work is asymmetrical, then either one chain or the other belongs to
a critical cluster. Indeed, one cannot prove convergence for the same criteria in sub-loop
and containing loop, as seen in Figure 3.1b.

3.2.4 Loop processor

All we have done up until now is introduce techniques to prove termination. But it can also
be useful to consider the converse case, namely proving non-termination, especially if we
can present precise information about the issue like an example set of arguments causing
infinite execution.

This can be easily implemented with our current framework. Indeed, we already have
a nice formalism to reason about a large class of loops (namely chains). If for any chain
c ∈ Cf , ρ(c) ∧ F ′ (āf0 = α(f0(x̄)0)) ∈ SAT holds (cf. 3.2.3 for the definition of F ′(p)),
then we know that there exists an infinite execution through c. Since the underlying model
provides us with a model when proving SAT, we also obtain a set of input arguments to
the chain that create an infinite execution.

We can further improve this technique by considering chain compositions c0 · . . . · cn

(for finite c0, . . . , cn ∈ Cf). However, since this processor is not guaranteed to prove non-
termination even when it may exist (eg. does not detect count-to-infinity) and there is an
infinite number of different compositions, in practice, we must limit ourselves to a certain
finite subset lest the processor run forever.

3.3 Handling higher-order functions

We have not mentioned up to now how higher-order functions can be managed during ter-
mination proving. As observed previously, non-termination can only arise when a program
execution gets stuck in a never-ending loop, and the only constructs that can generate
loops in a functional context are function invocations.

3.3.1 Proving termination

When extending a first-order functional context with higher-order functions, we add a new
type of function: variable functions. The concrete instances of variable functions are always
anonymous functions (modulo rewriting function-typed method invocations or methods as
anonymous functions, which preserves semantics in our functional call-by-value context).
Anonymous functions that do not contain function applications – variable or method – are
guaranteed terminating as they cannot generate loops.

When anonymous functions contain method invocations, this means these invocations
will only be evaluated when the anonymous function is applied, generally with arguments
depending on those passed to the anonymous function. We can therefore prove termination

3.3 Handling higher-order functions 24

f

g

h

(a) Chain starting in f

f

g

h

(b) Cluster in function g

Figure 3.1: Illustration of clearing limit-cases handled by complementarity chains and
clusters. Let us assume that the loops in g and h compensate each other. If they do so by
looping an equal number of times, then proving that the loop depicted in 3.1a terminates
implies termination for any number of loops through g and h as long as they cancel each
other out. If the loop in h needs to loop more times than the other, then the cluster in 3.1b
will not be proved terminating (as the small loop in h will not make the same arguments
decrease as the large one that loops through g). By symmetry, we have the same property
if g has to loop more to compensate for h.

3.3 Handling higher-order functions 25

f

def f(i: Int, l: List) = {
 ... g(x=>f(x, l.tail)) ...
}

g

def g(x: Int => Int) = {
 ... h(x) ...
}

h

def h(x: Int => Int) = {
 ... x(a) ...
}f(a, l.tail)

Figure 3.2: Example of higher-order termination. Termination of f(x, l.tail) implies termi-
nation of f(a, l.tail) regardless of the path taken to f(a, l.tail) since x is a generalization
of a.

by building the complete function application graph and verifying each set of arguments
to make sure they imply termination. However, loops generated by method invocations
in anonymous functions only depend on the path taken to function application in the
constraints it will add to the application arguments. Therefore, termination for method
invocation regardless of application arguments implies termination for all concrete appli-
cations (as in 2.3). Such a proof is harder to build as we must do so with fewer constraints,
but it has a valuable feature: anonymous functions that have been cleared remain so even
in the case of program extension. This means that all termination problems that have been
solved for our program Π need not be considered in program Π ′ for all f ′ ∈ Π ′ such that
f ′ ∈ Π .

This approach also makes for a much simpler implementation. Indeed, we can com-
pletely ignore variable functions (as they are guaranteed terminating at creation) and
presence or not of considered method invocations in anonymous function definitions. We
disregard concrete application arguments by treating formal arguments as free variables.

3.3.2 Proving non-termination

Unlike termination proving, concrete arguments to variable function applications do impact
non-termination in an unavoidable way. Indeed, the free variables introduced by anony-
mous functions make loops formulas easier to satisfy by the underlying framework, and
thus often depend on future concrete applications that may never take place in the current
program.

As we (optimistically) focused on termination proving in this work, we left the ques-
tion of non-termination in the context of higher-order functions open and simply noted
loops going through anonymous functions as unreliable. Non-termination in a higher-order

4. Generic Type Polymorphism 26

functional context would be an interesting extension to this work.

3.3.3 Providing invariants

Although we disregard application sites for anonymous functions to simplify proofs and
make them more general, we can still build invariants on their argument sizes in certain
cases. If we can provide a relation on all applications of a certain function-typed argument
in the body of a definition, then we know this invariant will hold on arguments of the
higher-order functions passed to invocations of this definition. Note that these relations
can be built transitively.

We use this observation by building invariants regarding the size of definition argu-
ments and higher-order function arguments which can then be inlined into the path con-
ditions considered for termination proving. This greatly increases proof capabilities in the
context of higher-order functions as these size relations appear in many – if not most –
catamorphisms and are therefore ubiquitous in higher-order functional programming.

4 Generic Type Polymorphism
We extend the syntax with type parameters, largely by following the Scala language spec-
ifications (see Figure 4.1). As the underlying type system provides only a very simple
inheritance scheme, type constraints are not supported in our implementation. Further-
more, to ensure backwards compatibility to different pre-existing features, both parent and
child algebraic data types must be completely defined by their children, respectively par-
ent. In other words, a bijective mapping between parent and child type parameters must
exist for the ADT definition to be valid. The simplest way to ensure this is to only accept
ADTs where both parents and children have an equal number of (constrained and simple)
type parameters.

4.1 Verification

The SMT solver that powers most of the framework proofs does not support genericity.
However, this feature can be simulated. Indeed, the only generic control-flow construct
featured by the framework is named function invocations. We can therefore define the typed
function f[:T] where the type parameters Tf of f are mapped to concrete type parameters
T issued from an invocation f[:T](x̄). For any typed function f[:T], we have implΠf[:T]

,
precΠ

f[:T]
and postΠf[:T]

issued respectively from implΠf , precΠ
f and postΠf by applying the

type mapping [Tf → T] to the formula. Furthermore, for any formula q and typed function

4.1 Verification 27

definition ::= abstract class id tparams
| case class id tparams 〈 extends id tparams 〉?
| fundef

fundef ::= def id tparams (decls) : type = {
〈 require (expr) 〉?
expr

} 〈 ensuring (id ⇒ expr) 〉?
tparams ::= ε | [id 〈 , id 〉∗]

expr ::= PureScala expr

| id [type 〈 , type 〉∗] (〈 expr 〈 , expr 〉∗ 〉?)
type ::= PureScala type

| id [type 〈 , type 〉∗]

Figure 4.1: Syntax extensions for generic type polymorphism support

f[:T], we can also define

τ(q) = {T |x : T ∧ x ⊆ q}
τ
(
f[:T]

)
= τ

(
implΠf[:T]

)
∪ τ

(
precΠ

f[:T]

)
∪ τ

(
postΠf[:T]

)
Γ (q) =

{
fi[:Ti] | fi[:Ti](x̄)i ⊆ q

}
Γ
(
f[:T]

)
= Γ

(
implΠf[:T]

)
∪ Γ

(
precΠ

f[:T]

)
∪ Γ

(
postΠf[:T]

)
.

For any formula q that will be fed to the SMT solver, we define the transitive type set
of q as the least fix-point of Γ (trivially extended to sets by union) over Γ(q) and finally
running τ over the resulting set of typed functions. Once we have the transitive type set,
generic types can be mapped to equivalent non-generic types which are supported by the
framework. However, we cannot build the fix-point directly as it is not guaranteed to
terminate. What we can build is a limited fix-point that stops after a certain number of
iterations. As the underlying framework progressively unrolls the function definitions (like
the fix-point iteration), we can optimistically compute the fix-point to a certain limit and
if this limit is passed without a proof having been constructed, we extend the fix-point
limit and build a new generic to non-generic mapping before resuming proof construction.

4.2 Evaluation 28

4.2 Evaluation

As introduced in 2.5.3, the underlying framework provides evaluation features as well as
verification. Since values that are generically typed have no operators defined (except for
equality), no rule need be added to the tree walking evaluator. We simply need to make
sure type parameter mappings are correctly propagated during the visit. We therefore
modify the named function invocation rule (as only named function invocations propagate
types) by visiting implΠf[:T]

, precΠ
f[:T]

and postΠf[:T]
instead of their respective counterparts

during invocation unfolding.
JVM evaluation is handled by generalizing type parameters to the Object JVM type,

thus performing type erasure. However, as types are unfortunately no longer fully deter-
mined at compile time, we must now perform boxing and unboxing on primitive typed
values when these are passed off as Objects. Furthermore, we now also require an equals
method defined on all types as any value can be injected into an object that will require
checking equality (and Leon features true equality, unlike the JVM). This can be imple-
mented through wrapper classes for native constructs (eg. arrays) that will provide the
necessary method at the unfortunate cost of performance. We chose to focus on soundness
here and not performance, so instead of implementing a complex type analysis scheme to
encapsulate and decapsulate arrays only when needed, we simply dropped native arrays
and replaced them with a wrapper class that provides sound array operations regardless
of concrete type.

5 Conclusion
We have presented extensions to a functional verification framework that add support
for higher-order functions, complex termination analysis and generic type polymorphism.
Each feature was furthermore implemented and evaluated on diverse functional programs.

Higher-order verification was extremely conclusive at detecting erroneous specifications,
but was not so good at proofs. Indeed, the lack of meaningful inductive invariants that
one can specify on higher-order functions unfortunately curbs the power of the verifica-
tion framework. However, when the induction scheme is manually specified, success rate
increases drastically. This approach enabled us to prove relations between many data-
structure operators such as map, filter, exists, forall, etc. It should also be noted that
pattern based universal quantification as introduced by the forall construct provides a nice
foundation for introducing lemmas into Leon in future work.

Termination analysis proved surprisingly effective, with all pre-existing PureScala ADT
based code samples proved terminating by the extension. The size invariant builder for
higher-order function applications permitted proofs of diverse tree-walking and transform-
ing functions based on argument partial functions. A few rather synthetic examples could
not be proven terminating, but, to offer a certain effectiveness metric, the native ACL2
[8] termination prover also failed on these. It would be interesting to complement the

References 29

few automated invariant identification schemes we presented with more powerful logic to
fill in the gaps still missing in some proofs. More techniques could also be added to the
pipeline, such as quorum chain termination proving or a summary based relation processor
as featured by T2 [3].

Finally, generic data-structure verification support increases the input space dramat-
ically while coming at a decidedly low cost, particularly since the transitive type set is
actually finite and quite shallow in most real-world programs.

References
[1] Andreas Abel. foetus–termination checker for simple functional programs. Program-

ming Lab Report, 1998.

[2] Régis Blanc, Viktor Kuncak, Etienne Kneuss, and Philippe Suter. An overview of
the leon verification system: Verification by translation to recursive functions. In
Proceedings of the 4th Workshop on Scala, page 1. ACM, 2013.

[3] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Summarization for termi-
nation: no return! Formal Methods in System Design, 35(3):369–387, 2009.

[4] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Tools and
Algorithms for the Construction and Analysis of Systems, pages 337–340. Springer,
2008.

[5] Jürgen Giesl, René Thiemann, and Peter Schneider-Kamp. The dependency pair
framework: Combining techniques for automated termination proofs. In Logic for
Programming, Artificial Intelligence, and Reasoning, pages 301–331. Springer, 2005.

[6] Jessica Gronski, Kenneth Knowles, Aaron Tomb, Stephen N Freund, and Cormac
Flanagan. Sage: Hybrid checking for flexible specifications. In Scheme and Functional
Programming Workshop, pages 93–104, 2006.

[7] John Hughes. Functional Programming Languages and Computer Architecture: 5th
ACM Conference. Cambridge, MA, USA, August 26-30, 1991 Proceedings, volume
523. Springer, 1991.

[8] Matt Kaufmann and J Strother Moore. Acl2 homepage. See URL http://www. cs.
utexas. edu/users/moore/acl2, 2006.

[9] Ali Sinan Köksal, Viktor Kuncak, and Philippe Suter. Scala to the power of z3:
Integrating smt and programming. In Automated Deduction–CADE-23, pages 400–
406. Springer, 2011.

References 30

[10] Chin Soon Lee, Neil D Jones, and Amir M Ben-Amram. The size-change principle
for program termination. In ACM SIGPLAN Notices, volume 36, pages 81–92. ACM,
2001.

[11] Martin Nordio, Cristiano Calcagno, Bertrand Meyer, Peter Müller, and Julian Tschan-
nen. Reasoning about function objects. In Objects, Models, Components, Patterns,
pages 79–96. Springer, 2010.

[12] Philippe Suter, Mirco Dotta, and Viktor Kuncak. Decision procedures for algebraic
data types with abstractions. In Acm Sigplan Notices, volume 45, pages 199–210.
ACM, 2010.

[13] Philippe Suter, Ali Sinan Köksal, and Viktor Kuncak. Satisfiability modulo recursive
programs. In Static Analysis, pages 298–315. Springer, 2011.

[14] Niki Vazou, Patrick M Rondon, and Ranjit Jhala. Abstract refinement types. In
Programming Languages and Systems, pages 209–228. Springer, 2013.

	Introduction
	Higher-Order Functions
	Requirements specification
	Generating constraints
	Pattern based quantification
	Defining patterns
	Constraints from context
	Pattern instantiation
	Inductive invariants

	Universal quantification in formulas
	Formalization
	Property preservation

	Integration into Leon
	Higher-order clauses
	Anonymous functions
	Application evaluation

	Termination
	Modular approach
	Composing techniques
	Using verification

	Termination techniques
	Structural size
	Relation processor
	Chain processor
	Loop processor

	Handling higher-order functions
	Proving termination
	Proving non-termination
	Providing invariants

	Generic Type Polymorphism
	Verification
	Evaluation

	Conclusion

