
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Machine Learning for Modeling Stock Returns

Teng Andrea XU

Thèse n° 11 011

2024

Présentée le 21 juin 2024

Prof. D. Kuhn, président du jury
Prof. S. Malamud, directeur de thèse
Prof. Y. Zhang, rapporteur
Dr E. Guidotti, rapporteur
Prof. D. Filipovic, rapporteur

Collège du management de la technologie
Chaire du Prof. associé Malamud
Programme doctoral en management de la technologie

Sapere Aude!

Quintus Horatius Flaccus.
Immanuel Kant answering the

question: What Is
Enlightenment?

Considerate la vostra semenza:
fatti non foste a viver come bruti,
ma per seguir virtute e canoscenza.

Dante Alighieri. Inferno, Canto XXVI.

3

Abstract

4

Throughout history, the pace of knowledge and information sharing has
evolved into an unthinkable speed and media. At the end of the XVII cen-
tury, in Europe, the ideas that would shape the “Age of Enlightenment” were
slowly being developed in coffeehouses, literary salons, and printed books. L’âge
des lumières was characterized by shedding light on the darkness of human igno-
rance, and it was not a coincidence that it developed after Gutenberg invented
the movable type printing machine. Today, at the end of the first quarter of
the XXI century, “The Age of AI has begun”–Bill Gates. And again, it is not
a coincidence that Artificial Intelligence is seeing its golden period after Tim
Berners-Lee invented the World Wide Web. Books enlighten human brains.
Similarly, massive datasets are now being fed to machine learning models and
artificial brains, also known as neural networks. It is noteworthy that human
brains are capable of creating knowledge; as for artificial brains, their capa-
bility in this regard is still uncertain. In this thesis, I will explore how data
proliferation and artificial intelligence are affecting financial markets through
the lens of a statistician. In the first chapter, I leverage extreme value theory
to study time-varying idiosyncratic tail risk using option-implied information.
In other words, does the information contained in the implied volatility surface
explain extreme losses? The second chapter moves away from the distribution
tails and focuses on the entire distribution of returns. It is known that stock
and options traders systematically use the geometric shape of the option’s im-
plied volatility surface to infer market expectations and risk attitudes and make
trading decisions. Thus, we leverage convolutional neural networks to capture
spatial patterns and relationships between pixels in images and translate this
information into a prediction forecast. Finally, it has been recently shown that a
particular kernel, the Neural Tangent Kernel, represents an infinitely wide neu-
ral network in the lazy training regime. This discovery has revived interest in
kernel methods and, thus, random features. In the final chapter, we provide an
algorithm, which we call Fast Annihilating Batch Regression, which is capable
of solving a regression with an infinite amount of random features, in theory.

5

Estratto

6

Durante la storia, il ritmo con cui condividiamo l’informazione e il sapere
si sono evoluti completamente. I mezzi di comunicazione e la velocità di dif-
fusione hanno raggiunto standard inimmaginabili. All fine del XVII secolo, in
Europa, le idee che hanno poi formato l’“Illuminismo” si stavano lentamente
sviluppando nei caffé, nei saloni letterari, e libri stampati. Illuminare l’oscurità
dell’ignoranza umana è stato il tratto caratterizzante dell’ âge des lumières e
non è stato un caso che l’illuminismo si sia evoluto dopo che Gutenberg inventò
la stampa mobile. Oggi, alla fine del primo quarto del XXI secolo,“The Age of
AI has begun”–Bill Gates. Di nuovo, non è una coincidenza che l’Intelligenza
Artificiale stia vivendo il periodo d’oro dopo che Tim Berners-Lee inventò il
World Wide Web. Come i libri hanno illuminato le nostre teste, i dataset mas-
sivi sono il pane quotidiano di modelli di apprendimento automatico e cervelli
artificiali, altrimenti conosciuti come reti neurali. È importante sottolineare il
fatto che il cervello umano è capace di creare sapere, mentre per i cervelli artifi-
ciali non lo sappiamo ancora. In questa tesi, esplorerò come questa proliferatione
di dati e l’uso dell’intelligenza artificiale stiano influenzando i mercati finanziari
attraverso la lente di uno statista. Nel primo capitolo, sfrutto la teoria dei val-
ori estremi per studiare il tempo-variante rischio idiosincratico di coda usando
l’informazione derivanti le opzioni. In altre parole, può l’informazione contenuta
nella superficie di volatilità implicita spiegare le perdite estreme? Il secondo
capitolo lascia le distribuzioni di coda e si focalizza sull’intero distribuzione
dei ritorni. È noto che i trader di stock e opzioni utilizzino sistematicamente la
forma geometrica della superficie di volatilità implicita delle opzioni per dedurre
conclusioni sul valore atteso del mercato, analisi dei rischi e prendere decisioni
di trading. Allora, usiamo le reti neurali convoluzionali per catturare pattern
spaziali e relazioni tra pixels nelle immagini e tradurre questa informazione in
una previsione. Infine, recentemente è stato provate che un particolare kernel,
il Neural Tangent Kernel, catturi l’essenza di una rete neural con infiniti nodi.
Questa scoperta ha resuscitato interesse nei kenrel e quindi anche nei ranom
features. Nel capitolo finale, sviluppiamo un algoritmo, che chiamiamo Fast
Annihilating Batch Regression, capace di risolvere, teoricamente, una regres-
sione con un infinito numero di random features.

7

Acknowledgements

8

I am extremely grateful to my advisor, Prof. Semyon Malamud, for giv-
ing me this invaluable experience and unconditional support. He is a brilliant
mind who seeks truthful knowledge, and, at the same time, he is a kind-hearted
man. I was truly inspired by him and enjoyed our brainstorming sessions, which
spanned tons of fields, including asset pricing, derivatives, cryptocurrencies, ker-
nel methods, statistical learning, deep learning, generative models, information
theory, and computer science.

During my PhD, I also had the privilege of visiting the Yale School of Man-
agement and the University of San Diego’s Halıcıoğlu Data Science Institute.
Prof. Bryan Kelly and Prof. “Misha” Belkin are leaders in their respective fields.
Thank you for your warm hospitality and for being professional in providing in-
valuable feedback and additional guidance. I’d like to thank Prof. Jiahua Xu
for her co-supervision during my early career. I would like to express my grati-
tude to my dissertation committee members for their time and feedback: Prof.
Damir Filipović, Prof. Daniel Kuhn, Dr. Emanuele Guidotti, and Prof. Yuan
Zhang.

The voyage to become a Philosophiae Doctor could be a stormy cruise. Very
stormy sometimes. Developing a vision, discovering unseen territories, and
connecting with other pioneers will make the voyage brighter. This is our

“Quiet after the Storm.”

A journey needs companions. Sometimes, journeys may last a lifetime. Since
kindergarten, I was lucky enough to meet, laugh, and share experiences with
tons of people who I now call friends. Uncountable friends literally forged me,
and I am who I am, thanks to them.

A journey can only be meaningful if we have a home to return to. And I was
blessed with two of them. I am grateful for my entire family’s unconditional love,
particularly my parents, who did everything to ensure I never missed anything,
and my siblings, who endured my craziness and still do.

A journey has an end. As a journey comes to its final destination, a new one
has to start. I am excited to start a new one, this time together with Bahar.
Thank you for being so inspirational and showing me that a stormy and dark
day can also be joyful and peaceful. “...e il naufragar m’è dolce in questo mare.”

Andrea

9

Introduction

10

Little more than half a century since Alan Turing proposed the imitation
game, or the Turing test, to assess a machine’s ability to exhibit intelligent
behavior equivalent to, or indistinguishable from, that of a human. In short,
this experiment involves a human judge engaging in a conversation with both a
human and a machine, unaware of which is which. The machine would pass the
test if the judge were incapable of distinguishing the machine from the human.
A recent Nature article now writes “ChatGPT broke the Turing test, the race is
on for new ways to assess AI”–[Bie23]. Of course, the test was never designed to
be a thorough experiment but rather to be food for thought. The race to strong
AI, the race to a human-like digital brain, was never as intense as today. After
the historic win of AlphaGo[Sil+16] over Lee Sedol winning the title of best Go
player, AI re-shaped human-related tasks across a variety of fields, such as pro-
tein folding [Jum+21], mineral discovery [Mer+23], text [Tou+23; Tea+23] and
image [Ram+21; Rom+22] generation, to name a few. Deepmind set the break-
ing point, the moment when the word “AI” was in the mouth of everyone. At
the same time, a few years later, OpenAI published a generative model [Ach+23]
which later led to sparks of artificial general intelligence [Bub+23]. It seems
that given enough information and computational power, neural networks are
capable of understanding the nature behind the given task [HSW89]. Equipped
with these notions, the primary goal of this work is to understand the nature
of return distributions using over-parametrized machine learning models. Let’s
introduce each concept. In capital markets, risky assets pay higher returns.
The behavior of those markets is a challenge that intertwines modeling agents’
utility function and pricing theory. This last sentence is well-explained by the
consumption-based model: “An investor must decide how much to save and how
much to consume, and what portfolio of assets to hold.–[Coc09].” Without going
into details, one would consume less if and only if the utility of this action equals
the future marginal utility gain of the assets payoff. The marginal utility rate,
also known as the stochastic discount factor (SDF), is used to discount future
payoff. The SDF is not observable. Capital market participants’ consumption
behavior leaves the breadcrumbs that could lead to the true SDF. Although the
consumption-based model is an elegant model, it does not work well in prac-
tice: it shows high pricing errors [Coc09]. A different approach to explain the
return distribution is to use a statistical model conditioned to some information
set [WG08; RSZ10]. From the point of view of a statistician, future risk premia
Rt+1 ∈ RN , the payoff of holding a set of risky assets, can be modeled as follows

Rt+1 = E[Rt+1|Ft] + ϵt+1, (1)

where the conditional expectation E[Rt+1|Ft] represents the return forecast con-
ditional to the information sets Ft, and ϵt+1 gathers the unpredictable variation
in returns. The information sets Ft is the usual mathematical representation
of all information known up to time t. Quoting [KX+23], these information
sets are large and hard to bind, spanning from public information to more sub-
tle, hard-to-get info. Then, by imposing the least statistical structure, we can
rewrite (1): let Xi,t ∈ Rd to be a vector of predictors describing stock i at time

11

<latexit sha1_base64="upV4PYtTE1WUdD8dSANGe7YZVgg=">AAAKL3icbZZLbxs3EMeZ9BW5L6c99NDLokaBogdDCoKklwKxJT+CWLZsWbZqyzVIilqxJpcbkmvHWOyn6bU99NMUuQS99lt0uNk0XNILSCL+Pw5nhjNakuSCG9vtvr53/4MPP/r4kwedlU8/+/yLL1cffnViVKEpm1AllJ4SbJjgGZtYbgWb5pphSQQ7JVd9x0+vmTZcZcf2NmcXEqcZX3CKLUiXq9/M7JJZnMx4lswktktCyqPq19Hl6lp3vVs/STzoNYM11Dyjy4cdNJsrWkiWWSqwMee9bm4vSqwtp4JVK7PCsBzTK5yycxhmWDJzUdYZVMn3oMyThdLwyWxSqy2L3wpj/w/7ZwpOmOZZCgvg3Emt9UuXiFVKmLaMpTG3koA7N8GEzIl3sfPCLn66KHmWF5Zl9G20i0IkViVuT5M514xacQsDTDWHhBO6xBpTCLLthSh1ZTFxcWXshiopcTYvZ5JW8FUIsFSikGE2Dmh101ZTjfMlp69AHTDYcc2GEPhBzjS2Sv9YzrBOJc+qsvldabukB84lWFAskoMgHio9OAzhjQdPQzipyvd0UgU4HYDtgAmLQ4ABYJEvI0AAENeiAWC5AXINeeeGi7oDWnZzoPM7PPXfBUhI0g/jG2nt4VGI9z24H8KBBwchPPPgWbQrrhYHkqVR8gqAugNsvcrdgqqptvszlU4LVz7GXEQTazGcSff8wu2FGDo7rYJ1ai1cZuE1x3YI9z24H+Y6BjjmqQxzJZsuMrJINkNnZNCQaLvJYUMOo72u89yDN+QcR1bDxmoYkY2GbEQJH/r7FrkzRV5XSsukHobWz33r5xE+83HUN2TaRDWNyMuGvIzIqCFRc5NxQ8ZRGNt+GNsRPvbxcYS3fLwV4aGPo503PM3Cxqu1cJnR+94qo9zowOu8QQiPPNOjyHTsxxfvzdTHUSHoro93I7zh47i5dny8E+EXPn4R4U0fR/8eeuLjkwj/AjgUx007t8pRi/GbVJGwbrUWuul7lekHcImFe58s4Cgte1X5KDR2PH03Ac4QkO+YZZZwj3JnBaPJzaWtkjbOlIXj9zowchoNNC4h+RlX0ZkCZdqpVuDO1AtvSPHg5NF678n648PHa882m9vTA/Qt+g79gHroKXqGdtEITRBFFfod/YH+7PzV+bvzpvPP26n37zU2X6PW0/n3PyUB1UY=</latexit>

✓ 2 RP

<latexit sha1_base64="thzE6tzI0NpfTB+jmuk46aaLIuk=">AAAKtHicfZZbb9s2FMfldJdWuzTtHvdCLFhR7CGwg6LbS4Emdi5F48Sp49hLFBgkTctcKFElqVyg6Zvsi+3b7EhVU4oMJsAx8//x8JzDcyySZIJr0+3+21l79NXX33z7+En43fc//Ph0/dnzMy1zRdmESiHVjGDNBE/ZxHAj2CxTDCdEsCm56ld8es2U5jI9NXcZu0xwnPIlp9iANF//ZxqhNxGKCIt5WpAEG8VvSxQihF6gv+ETiYU02v8nisJqynTeQy/u5en8yp41nY+aaf+zUhixdHHveV4sIsMTptGoDOfrG93Nbv0gf9BrBhtB84zmz54E0ULSPGGpoQJrfdHrZuaywMpwKlgZRrlmGaZXOGYXMEwxeLos6m0s0a+gLNBSKvikBtVqy+KvXJv7vXtDwQlTPI1hAZxVUmv9AjJaGSmFbss40fouIeCumqBdVokPsYvcLP+4LHia5Yal9FO0y1wgI1FVWLTgilEj7mCAqeKQMKIrrDCFINteiJRXBpMqrpTdUJkkGCoQJbSEP7kASynyxM2mAkretNVY4WzF6S2oAwY7rtgQAj/OmMJGqt+KCKs44WlZNN9h2yU9rlyCBcUCHTvx0MSCQxfeWHDqwklZfKGT0sHxAGwHTBjsAgwAi2zlAQKAMIORA1imgVxD3pnmou6Alt0C6OIBT/3PARKC+m58I6UsPHLxkQWPXDiw4MCF5xY893alqsVxwmIveQlAPgB2b7NqQdlUu/oxFZXmrnyKufAm1qI7kx7ahTt0MXR2XDrr1Jq7zNJqjj0XHlnwyM11DHDM48TNlexUkZEl2nGdkUFDvO0mJw058fa6zvMQXtML7FkNG6uhR7Ybsu0lfGLvm+dO51ldKZWgeuhav7Ot33n43MZe35BZE9XMIx8b8tEjo4Z4zU3GDRl7YezZYex5+NTGpx7etfGuh4c29nZe8zh1G6/W3GVGX3qr8HKjA6vzBi78YJl+8EzHdnz+3sxs7BWCHtj4wMPbNvaba9/G+x5+b+P3Ht6xsffroWc2PvPwn4Bdcdy0c6sctei/SSVx61Zrrpu+VZm+A1dYVO+TJRylRa8stlzjisefJ8AZAvIDs/QKLnPVWcEoupkbuGK1cCoNHL/XjlGlUUfjCSQfcemdKVCm/frO1HNvSP7gbGuz93rz1cmrjbc7ze3pcfBz8EvwMugFvwdvg4NgFEwC2lnrvOz0Olvh6zAKacg+TV3rNDY/Ba0nTP8D5Yz4Hw==</latexit>

W =

2
4

| . . . | . . . |
W1 . . . Wk . . . WP

| . . . | . . . |

3
5

d⇥P

<latexit sha1_base64="dO9r755+yHFnr8Hdp0m18nl+mPg=">AAAKXXicbZbdbts2FMfVr63xui7tLnaxG6LBsHYYArso1gJFgCZ2PorGiVPHsZsoM0ialjlTokpSSQNBT7Sn2eW2i73KjlS1pcgIsE38fzw85/AciySp4Nq023/fuHnr9p2vvr670vrm3rf3v1t98PBEy0xRNqJSSDUhWDPBEzYy3Ag2SRXDMRFsTJbdko8vmNJcJsfmKmXnMY4SPucUG5Cmq9vzx5Npzn9FpniJQrNgBr9E4ych2ghRqLN4mi83OsXvAxSmC/556s9oPF2iJ7XBdDldXWuvt6sH+YNOPVgL6mcwfbAShDNJs5glhgqs9VmnnZrzHCvDqWBFK8w0SzFd4oidwTDBMdPneZVvgX4CZYbmUsEnMahSGxZ/ZNp8TnKDghOmeBLBAjgtpcb6eYzNwkgpdFPGsdZXMQF35QTtslK8jp1lZv7iPOdJmhmW0I/RzjOBjERlBdCMK0aNuIIBpopDwogusMIUgmx6IVIuDSZlXAm7pDKOcTLLw5gW8JUJsJQii91sSqDkZVONFIYC0g+g9hjsuGJ9CPwwZQobqX7JQ6yimCdFXv+2mi7pYekSLCgW6NCJh8YW7Lvw0oJjF46K/AsdFQ6OemDbY8JgF2AAWKQLDxAABHoSOYClGsgF5J1qLqoOaNjNgM6u8dT9FCAhqOvGN1DKwgMXH1jwwIU9C/ZceGrBU29XylocxizykpcA5DVg+0NaLijrapd/przU3JWPMRfexEp0Z9J9u3D7LobOjgpnnUpzl5lbzbHjwgMLHri5DgEOeRS7uZKtMjIyR1uuM9Kribfd5KgmR95eV3nuw/t0hj2rfm3V98hmTTa9hI/sffPc6SytKqViVA1d69e29WsPn9rY6xsyqaOaeOR9Td57ZFATr7nJsCZDL4wdO4wdDx/b+NjD2zbe9nDfxt7Oax4lbuNVmrvM4Etv5V5utGd1Xs+Fby3Tt57p0I7P35uJjb1C0D0b73l408Z+c+3aeNfDb2z8xsNbNvb+PfTExicefgfYFYd1OzfKUYn+m1QSt26V5rrpWpXpOnCBRfk+mcNRmneK/KlrXPLo0wQ4Q0C+ZpZewK2rPCsYRZdTU6AmTqSB4/fCMSo16mg8huRDLr0zBcq0W7TgztRxb0j+4OTpeue39WdHz9ZebdW3p7vBj8Gj4HHQCZ4Hr4K9YBCMAhr8GfwV/BP8u/Jf607rXuv+x6k3b9Q23weNp/XD/+5T4Qs=</latexit>

f(Xi,t; ✓; W) =

PX

k=1

�(X 0
i,tWk)✓k

<latexit sha1_base64="GIs8YBsaQa0FAL4icwax5bPXsLA=">AAAKMXicbZbNbhs3EMc3SdtEbto6ySnoZVGjQBAEhhQESS4BYkv+CGLZsmXZqi1XIClqxZhcbkiuHWOx6NP02h76NLkVvfYlOtxsGi7pBSQR/x+HM8MZLYkzzrRptz/euHnrq6+/uX2ntfTt3e++/2H53v0jLXNF6IhILtUYI005S+nIMMPpOFMUCczpMT7vWn58QZVmMj00Vxk9EyhJ2ZwRZECaLj8cTwv2JDZlPGFpPBHILDAuDspfZ9PllfZqu3ricNCpBytR/Qym91rRZCZJLmhqCEdan3bamTkrkDKMcFouTXJNM0TOUUJPYZgiQfVZUeVQxj+DMovnUsEnNXGlNize5dr8H/grAk6oYmkCC6DMSo31C5uIkZLrpoyE1lcCgzs7QfvMitex09zMX54VLM1yQ1PyKdp5zmMjY7ur8YwpSgy/ggEiikHCMVkghQgE2fSCpTw3CNu4UnpJpBAonRUTQUr4yjlYSp4LPxsLlLxsqolC2YKRD6D2KOy4on0IfC+jChmpHhcTpBLB0rKof5eaLsmedQkWBPF4z4uHCAf2fXjpwGMfjsriCx2VHk56YNuj3CAfIACIZ4sAYACYGhR7gGYayAXknWnGqw5o2M2Azq7x1P0cIMZx149voJSDBz7edeCuD3sO7PnwxIEnwa7YWuwJmgTJSwDyGrDxIbMLyrra9s9UWM1f+RAxHkysRH8m2XELt+Nj6Oyk9NapNH+ZudMcmz7cdeCun+sQ4JAlws8Vr9vI8Dxe953hXk2C7cb7NdkP9rrKcwfekTMUWPVrq35A1mqyFiS87+5b4E7nWVUpJeJq6Fu/ca3fBPjExUHf4HEd1Tgg72vyPiCDmgTNjYc1GQZhbLphbAb40MWHAd5w8UaA+y4Odl6zJPUbr9L8ZQZfeqsIciM9p/N6PjxwTA8C06EbX7g3YxcHhSDbLt4O8JqLw+bacvFWgN+6+G2A110c/HvIkYuPAvwLYF8c1u3cKEclhm9Sif26VZrvputUpuvBBeL2fTKHo7TolMVT39jy5PMEOENAvmaWXsBNyp4VlMSXU7jsNHEqDRy/F56R1YinMQHJT5gMzhQo01a5BHemjn9DCgdHT1c7z1ef7T9beb1e357uRD9GP0WPok70InodbUeDaBSR6Lfo9+iP6M/WX62Prb9b/3yaevNGbfMgajytf/8DKfHV1A==</latexit>

Xi,t 2 Rd

<latexit sha1_base64="vh7iRHUJ2Mx5XooakWhDkdtk/BM=">AAAKKHicbZZLbxs3EMeZ9BW5L6c99rKoUTQtCkMKgraXArElP4JYthxZtmrLEEiKWrEmlxuSa8dY7DfptT300/RW5NpP0uFm03BJLyCJ+P84nBnOaEmSC25st/v63v333v/gw48edNY+/uTTzz5ff/jFqVGFpmxClVB6SrBhgmdsYrkVbJprhiUR7Ixc9R0/u2bacJWd2NucXUqcZnzJKbYgzdfXZ/mKP5rOS/6Drb5Nzr6br290N7v1k8SDXjPYQM0zmj/soNlC0UKyzFKBjbnodXN7WWJtORWsWpsVhuWYXuGUXcAww5KZy7IOvUq+AWWRLJWGT2aTWm1Z/FYY+3+8v1BwwjTPUlgA505qrV9KbFdWKWHaMpbG3EoC7twEEzIn3sUuCrv8+bLkWV5YltE30S4LkViVuM1MFlwzasUtDDDVHBJO6AprTCHIthei1JXFxMWVsRuqpMTZopxJWsFXIcBSiUKG2Tig1U1bTTWGmtFXoA4Y7LhmQwj8KGcaW6W/L2dYp5JnVdn8rrVd0iPnEiwoFslREA+VHhyG8MaDZyGcVOU7OqkCnA7AdsCExSHAALDIVxEgAAizOAkAyw2Qa8g7N1zUHdCyWwBd3OGp/zZAQpJ+GN9Iaw+PQnzowcMQDjw4COG5B8+jXXG1OJIsjZJXANQdYOdV7hZUTbXdn6l0WrjyCeYimliL4Ux64BfuIMTQ2WkVrFNr4TJLrzl2Q3jowcMw1zHAMU9lmCvZdpGRZbIdOiODhkTbTY4bchztdZ3nAbwaFziyGjZWw4hsNWQrSvjY37fInSnyulJaJvUwtH7mWz+L8LmPo74h0yaqaUReNuRlREYNiZqbjBsyjsLY9cPYjfCJj08ivOPjnQgPfRztvOFpFjZerYXLjN71VhnlRgde5w1C+MIzfRGZjv344r2Z+jgqBN338X6Et3wcN9eej/ci/NzHzyO87ePo30NPfXwa4V8Bh+K4aedWOWoxfpMqEtat1kI3fa8y/QCusHDvkyUcpWWvKh+Hxo6nbyfAGQLyHbPMCi5Q7qxgNLmZ2ypp40xZOH6vAyOn0UDjEpKfcRWdKVCmvWoN7ky98IYUD04fb/Z+3Hxy/GTj6XZze3qAvkJfo0eoh35CT9E+GqEJouga/Y7+QH92/ur83fmn8/rN1Pv3GpsvUevp/Psf2TjRnQ==</latexit>

�(X 0
i,tW)

Figure 1: A shallow neural network.

t then we get
E[Ri,t+1|Ft] = f(Xi,t), (2)

where f : Rd → R is a generic function. By plugging (2) into (1) we get

Ri,t+1 = f(Xi,t) + ϵi,t+1. (3)

In the literature, by machine learning portfolios, it refers to using a highly
parametrized statistical model f and to construct market timing strategies in
the form of

πi,t = f(Xi,t). (4)

That is, the strategy takes positions proportional (or equal) to the asset’s
conditional expected return. Two natural questions are raised at this stage:
first, which predictor should one pick, and then, without knowing the true
data-generating process, how could she avoid model misspecification?

The virtue of complexity in return predictions

The series of work that gave birth to the virtue of complexity (VoC) [KMZ22;
KMZ24] solves the two problems mentioned above. By leveraging the recent ad-
vances in statistical learning such as the “double descent” phenomenon [Bel+18],
the notion of random features [RR07], and random matrix theory [Tao23], the
authors are able to show that the portfolio out-of-sample performance, mea-
sured in Sharpe ratio, is strictly increasing in model complexity and number
of predictors. The intuition is built from the work of [Has+19], where it is
shown that when the number of parameters is much higher than the number
of observations, ridgeless regression selects the solution with the smallest norm.

12

This acts as shrinkage, biasing the beta estimate toward zero and thus inducing
the forecast variance to decrease. The choice of using random features should
not be overlooked. On one hand, it allows the authors to move smoothly from
a low-complexity model to a higher-complexity model. On the other hand, a
least-squares involving random features is equivalent to a shallow neural network
representation. Figure 1 depicts a neural network with a single hidden layer on
the left, while the mathematical random features representation is shown on the
right. When the elementwise non-linear activation function ϕ : R → R equals
a cosine/sine, then a shallow neural network is equivalent to the least squares
with a random Fourier features projection. The takeaway message, the bigger
the information sets, the better. The over-parametrized regime, when the num-
ber of parameters is higher than the number of observations, is currently being
studied by the most brilliant researchers. See, [COB19; dSB20; Bel21], to cite
a few. In case it was not clear, the classic concept of variance-bias trade-off
and the corresponding regularization of early-stopping are now obsolete. Past
the interpolation-threshold (when the number of data points equals the number
of features), the statistical model continues to improve its generalization per-
formance. It even leads to curious phenomena such as grokking [Pow+22] and
neural-collapse [PHD20].

This work

The VoC findings and the over-parametrized regime motivate the research of this
work. Neural networks are interpolators [Has+19], little is known about their
use in finance, and only a small subset of the current work in the literature show
correct parametrization, connection to the most recent advances in statistical
learning, and reproducibility of the results. Financial applications of neural
nets usually get two major criticisms: (i) because of their non-convexity, we
do not fully comprehend the reasons behind their exceptional out-of-sample
performance, and (ii) they do not have any economic value. Let’s first deep dive
into the first problem. When talking about neural networks parametrized with
wt, it is impossible to avoid mentioning the gradient descent to minimize the
in-sample loss L

wt+1 = wt − η∇L, (5)

where wt represents the current state of parameters and η the learning rate. In
this case, L is simply the mean-squared loss between the true realized return and
the model forecast. For feasibility reasons, in practice, the stochastic version of
the gradient descent is being used together with its variant, Adam [KB14]. At
initialization, w0 is usually drawn from a normal Gaussian distribution; then,
the neural net will optimize those weights through multiple optimization steps.
Because of the stochastic behavior, a correct parametrization is key to achiev-
ing high out-of-sample performance. A series of recent works called Tensor
Programs provably show how to initialize and parameterize multi-layer percep-
trons, convolutional neural networks, and attention matrices, among others,
correctly [Yan19; Yan20a; YL21; Yan20b; YH20; YL23; Yan+21; Yan+23].

13

[Kel+23] show, surprisingly, that running neural networks over independent
runs not only reduces uncertainty on convergence but also improves perfor-
mance. Little by little, the scientific community is shedding light on neural
networks by providing rigorous definitions and theorems. Finite neural nets are
equivalent to Gaussian processes [Nea96; Lee+18]. When their width is pushed
to the infinite limit, they converge to a kernel [JGH18; Aro+19b; Aro+19a].
The finite neural nets learn, through the gradient-outer product, which feature
matters [Rad+22]. A recent work directly connects optimal portfolio construc-
tion for infinite wide neural nets [Kel+24]. Thus, neural net behavior under
gradient descent steps is now almost predictable. About the lack of economic
value criticism, I will quote [KX+23]:

Relatively unstructured prediction models make them no less eco-
nomically important than the traditional econometrics of structural
hypothesis testing; they just play a different scientific role. [...]
Even if we could observe expected returns perfectly, we would still
need theories to explain their behavior and empirical analysis to test
those theories. [...] A critical benefit of expanding the set of known
contours in the empirical landscape is that, even if details of the
economic mechanisms remain shrouded, economic actors, financial
market participants in particular, can always benefit from improved
empirical maps. [...] The economics of the prediction model cul-
ture lies precisely in its ability to improve predictions. Armed with
better predictions–i.e., more accurate assessments of the economic
opportunity set—agents can better trade off costs and benefits when
allocating scarce resources. This enhances welfare.

We now close the long digression about consumption-based models, financial
markets return forecasts, and (deep) statistical learning. By now, it should
be clear that this work takes advantage of recent advances in deep learning to
explore various methods for explaining risk premia. The first chapter uses
extreme value theory to study time-varying idiosyncratic tail risk using option-
implied information. In this case, a neural network is trained to maximize the
conditional log-likelihood of log return exceedance using option-implied informa-
tion. The key point is the known Pickands–Balkema–De Haan theorem [BDH74;
Pic75]. In short, for a large class of distributions and given a sufficiently high
threshold, the distribution of the returns exceeding this threshold is approx-
imately given by a Generalized Pareto Distribution (GPD). The novel model
outperforms the most common linear and non-linear counterparts in the litera-
ture in terms of out-of-sample R2. The second chapter also leverages infor-
mation from option implied volatility, but it focuses on the entire distribution of
returns. Convolutional Neural Networks, introduced by Yann Lecun [LeC+98],
are fundamental pieces of state-of-art image recognition models. The geomet-
ric shape of the option’s implied volatility surfaces contains information about
market expectations and market participants’ risk attitudes. The experimental
investigation tries to capture spatial patterns and relationships between pixels
in images and translate this information into a return forecast. The returns of

14

the portfolios have a high Sharpe ratio, and they are uncorrelated with most of
the existing option-implied characteristics. Finally, as mentioned above, when
the width of a neural network goes to infinity, its evolution during training can
be captured by a special kernel, the Neural Tangent Kernel, which represents an
infinitely wide neural network in the lazy training regime. This discovery has
revived interest in kernel methods and, thus, random features. Random features
are a cheap approximation of kernels [RR07] useful when the number of data
points is massive [Sha+20]. In the final chapter, we provide an algorithm, which
we call Fast Annihilating Batch Regression, which is capable of solving a theo-
retical regression with an infinite amount of random features. Furthermore, we
demonstrate that our approach outperforms the state-of-the-art ridge regression
implemented by sklearn, especially with a high number of ridge penalties and
features.

Outline

In this section, we provide a concise overview of each chapter, the abstract.
For a more comprehensive analysis of the findings and a discussion of related
literature, please refer to the respective chapters. Furthermore, each chapter
introduces its own notation and is designed to be read independently.

Part-I: Tail Risk

Chapter 1: Tail Recovery [Xu23]

We use extreme value theory to study time-varying idiosyncratic tail risk for
a large panel of US stocks. We demonstrate a significant performance gain by
using forward-looking information extracted from implied volatilities and non-
linear models, compared to linear models that use only backward-looking infor-
mation. Extreme value theory plays a key role in predicting the distribution of
return realizations conditional on the occurrence of a tail event. We find that,
surprisingly, out-the-money calls (respectively, puts) contain important infor-
mation about lower (respectively, upper) tails. Furthermore, we find evidence
that the asymmetric nature of the negative tail distribution in comparison to
the positive tail is captured by non-linear models only.

Part-II: State Contingent Risk Premia

Chapter 2: Deep Learning from Implied Volatility Surfaces [Kel+23]

We develop a novel methodology for extracting information from option im-
plied volatility (IV) surfaces for the cross-section of stock returns, using image
recognition techniques from machine learning (ML). The predictive information
we identify is essentially uncorrelated with most of the existing option-implied
characteristics, delivers a higher Sharpe ratio, and has a significant alpha rel-
ative to a battery of standard and option-implied factors. We show the virtue
of ensemble complexity: Best results are achieved with a large ensemble of ML

15

models, with the out-of-sample performance increasing in the ensemble size, sat-
urating when the number of model parameters significantly exceeds the number
of observations. We introduce principal linear features, an analog of principal
components for ML and use them to show IV feature complexity: A low-rank
rotation of the IV surface cannot explain the model performance. Our results
are robust to short-sale constraints and transaction costs.

Part-III: Random Features

Chapter 3: A Simple Algorithm For Scaling up Kernel
Methods [XKM23]

The recent discovery of the equivalence between infinitely wide neural networks
(NNs) in the lazy training regime and Neural Tangent Kernels (NTKs) [JGH18]
has revived interest in kernel methods. However, conventional wisdom suggests
kernel methods are unsuitable for large samples due to their computational
complexity and memory requirements. We introduce a novel random feature
regression algorithm that allows us (when necessary) to scale to virtually infinite
numbers of random features. We illustrate the performance of our method on
the CIFAR-10 dataset.

16

Contents 17

Contents

I Tail Risk 21

1 Tail Recovery 23
1.1 Introduction . 24
1.2 Literature Review . 25
1.3 Extreme Value Theory and Generalized Pareto Distribution . . . 27
1.4 Data and Feature Construction 29
1.5 Estimation Procedures and Measures of OOS Predictability . . . 32

1.5.1 Do Stock Returns have Power Law Tails? 33
1.5.2 Neural Network Models 34
1.5.3 Log-Likelihood . 35
1.5.4 Benchmarks . 36
1.5.5 Measuring OOS Predictability 36

1.6 Forecasting Tail Events using Backward-Looking Measures 38
1.7 Forecasting Tail Risk Using Option-Implied Information 39

1.7.1 Calls, Puts, Upper, and Lower Tails 40
1.7.2 Non-linearity, Big Data, and Extreme Value Theory . . . 42
1.7.3 Tail risk during Earnings Announcements 43

1.8 Which features matter? . 44
1.9 Conclusion . 48
1.10 Appendix - CBOE Rule filings that potentially enhance the in-

formativeness of equity options 49
1.10.1 Appendix - Features description 51

1.11 Appendix - IV Bucket Correlation 52

II State Contingent Risk Premia 55

2 Deep Learning from Options Implied Volatility 57
2.1 Introduction . 58
2.2 Related Literature . 60
2.3 Data and methodology . 62

2.3.1 Data . 62

18 Contents

2.3.2 Ensembles of Randomly Initialized Neural Nets 63

2.4 Convolutional Neural Networks 64

2.4.1 CNN Architecture . 65

2.4.2 Training the CNN . 66

2.5 CNN Portfolio Performance . 66

2.5.1 Simpler Models . 68

2.5.2 Long only . 68

2.5.3 Transaction and Short-Sale Costs 69

2.6 Principal Linear Features . 70

2.7 Conclusion . 73

2.8 Appendix - Data Preprocessing 75

2.9 Appendix - More about Convolutional Neural Networks 76

2.9.1 The Convolution Function 76

2.9.2 The Activation Function 77

2.9.3 The Max-Pooling Function 77

2.9.4 The Batch-Normalization Function 78

2.9.5 The Global Average Pooling Function 78

2.10 Appendix - Results . 79

2.10.1 Long-only Portfolio Performance 97

2.10.2 The Impact of Costs . 99

2.11 Appendix - Additional Results 100

2.11.1 Ridge Regression Results 100

2.11.2 Comparison: Simple NN against CNN 106

2.12 Appendix - Additional Analysis for Different Size Groups of Stocks108

2.13 Appendix - Proofs . 108

III Kernel Methods 123

3 A Simple Algorithm For Scaling Up Kernel Methods 125

3.1 Introduction . 126

3.2 Related Work . 126

3.3 Random Features Ridge Regression and Classification 127

3.3.1 Dealing with High-Dimensional Features 128

3.3.2 Dealing with Massive Datasets 129

3.4 Numerical Results . 130

3.4.1 A comparison with sklearn 130

3.4.2 Experiments on Real Datasets 132

3.5 Conclusion and Discussion . 137

3.6 Appendix - Proofs . 138

3.7 Appendix - Additional Experimental Results 138

Contents 19

4 Conclusion 141
4.1 Working Experience . 145
4.2 Education . 146
4.3 Published Papers . 146
4.4 Teaching . 147
4.5 Talks . 147
4.6 Skills . 147

20 Contents

21

Part I

Tail Risk

23

1. Tail Recovery

24 Chapter 1. Tail Recovery

1.1. Introduction

Option prices contain forward-looking information about risk preferences and
beliefs of market participants. If market participants are sufficiently rational,
these beliefs are informative about the probabilities of future states. Recov-
ering these true probabilities from asset prices is one of the most important
problems in financial economics. While most existing papers focus on the bulk
of the return distribution, in this paper, we focus on “tail recovery”: The idea
that out-of-the-money (OTM) options prices should contain information about
probabilities of tail risks; that is, the likelihood (and the distribution) of large,
unexpected moves in the underlying.

The problem of forecasting tail risk can be decomposed into (1) predict-
ing the likelihood of a tail event and (2) predicting the distribution of extreme
return realizations conditional on the occurrence of a tail event. Our exten-
sive experiments with the data suggest that (1) is not possible in our dataset.
Neither backward-looking nor forward-looking (option-implied) information has
any forecasting power out of sample for the probability of tail events. By con-
trast, we find strong evidence that the distribution of returns upon the arrival
of a tail event can be efficiently predicted out of the sample, and the perfor-
mance of our predictions, measured by the out-of-sample (OOS) r-squared, is
comparable to that for forecasting realized volatility.

To estimate tail risks, we use extreme value theory that guarantees that
return distribution in the tails (over a sufficiently high threshold) is always given
by a power law. We set this threshold manually at two standard deviations of
returns, ensuring that tail events occur approximately 5% of the time.1 By the
classic theorem of [BDH74] and [Pic75], the tail is approximately given by the
generalized Pareto distribution (GPD) pinned down by two key characteristics:
the shape parameter ξ (the reciprocal of the power law exponent) and the scale
parameter σ that together determine the mean and dispersion of tail returns.
We leverage the power of a large cross-sectional dataset and follow the approach
of [GKX20b] and [Did+23], assuming that the potentially complex and non-
linear relationship between tail risk and stock characteristics is universal across
stocks. We estimate the functional dependence of the GPD parameters on stock
characteristics on a rolling window and test their performance in OOS prediction
of the distribution of log returns above the two-sigma threshold. We find that
OOS r-squared is high and stable over time (at weekly horizon) over the 15-year
period in our data sample. Our key empirical findings can be summarized as
follows2:

• OTMCalls (respectively, Puts) contain important information about lower
(respectively, upper) tails. For example, a predictive model that only uses
OTM Call implied volatilities (IVs) attains a high OOS r-squared for

1This approach is similar to that in [KJ14], who pick the threshold to be the 5th percentile
of the cross-section distribution of returns.

2We provide full access to our Tail Recovery Github link, which contains the codebase for
our research project.

https://github.com/tengandreaxu/tail-recovery

1.2. Literature Review 25

predicting lower tail risk, similar to an analogous model that only uses
OTM Puts IV. The same is true for upper tails.

• Predicting upper tails is easier than predicting lowering tails: Out-of-
sample r-squared is significantly higher and more stable over time for the
former than for the latter.

• Big data and non-linear models play an important role in efficient return
estimation: a simple OLS trained using backward-looking (momentum)
information underperforms both Lasso and a deep neural network (DNN)
performance based on forward-looking (implied volatility) information. Fi-
nally, Lasso underperforms slightly a DNN model, but it is not “aware”
of the negative and positive tails distribution asymmetry.

• Ceteris paribus,3 a DNN trained to maximize the conditional log-likelihood
of log return exceedances outperforms a DNN trained to minimize the
mean-squared loss. This discovery paves the way for novel approaches
to examining log return exceedances through the lens of extreme value
theory.

• The magnitude of predicted tail risk builds up monotonically during the
two weeks preceding earnings announcements and abruptly drops once
the information is released. Importantly, this happens even if the model
is trained on data that excludes earnings announcement dates. Several
days before the earnings announcement, the model can successfully iden-
tify stocks that do indeed experience an abnormal move on the event.
Furthermore, the model exhibits a remarkable ability to predict the dis-
tribution of tail returns on earnings announcement days.

• Following [Kel+23], we study option implied information relevance. We
find that both Put and Call have predictive power on tail risks (indepen-
dently if negative or positive). Moreover, coherent with our prediction
horizon, short option maturities are preferred.

1.2. Literature Review

Our paper is related to the growing literature on the recovery of the probabil-
ity distribution of future returns from option prices, partially motivated by the
[Ros15b] recovery theorem. Several papers test different versions of the recovery
theorem empirically. [JLP19] develop an extension of the recovery theorem that
allows them to deal with a very broad set of models.4 In their empirical tests,
they focus on forecasting the first two moments (mean and variance) of the
returns on a single asset, the S&P500 index, at monthly frequency. They find

3Same architecture and hyperparameters.
4Some papers extend Ross’ analysis to a continuous time setting. See, for example,

[BHS16a], [QL16], and [Wal17].

26 Chapter 1. Tail Recovery

little evidence that the recovered moments contain predictive information be-
yond that already contained in VIX and SVIX measures (see, [Mar17]). [JM20]
develop statistical tests for the recovery theorem and provide strong evidence
rejecting the ability of recovered moments to forecast future realized moments of
S&P500 index returns. We confirm the negative findings of [JLP19] and [JM20]
by testing a plethora of models (both simple, linear regressions and complex,
machine learning models such as deep neural networks) for their ability to pre-
dict the first two moments of single stock returns using a large panel of U.S.
stocks. We find no evidence for OOS predictability. Similarly, [BCYG18] find
no evidence of option-based predictability of moments of bond returns using
options on the 30-year Treasury bond futures.5

A related strain of literature attempts to directly extract predictive informa-
tion from option prices. [Bat00] investigates whether option implied volatility
skew in S&P 500 future option prices contains predictive information about
the likelihood (and the magnitude) of big downward jumps in the S&P500 in-
dex and finds no empirical evidence for this intuitive hypothesis. [BGZ11] and
[BTX15b] estimate the volatility risk premium and show that this premium effi-
ciently forecasts monthly expected returns on S&P500. [Mar17; MW19] provide
evidence that option prices contain information about expected stock returns
at long horizons (beyond one month).

[BT11] and [BTX15b] were among the first to investigate tail risk in market
returns. They find that negative jumps forecast volatility increases and provide
evidence for significant time variation in the tail behavior of the S&P 500.
They argue that the huge variation in the macroeconomic tail risk is hard to
reconcile with simple parametric models. They also derive model-free formulas
for extracting upper (lower) tail power laws from deep OTM put (call) options.
While these formulas are very intuitive, we do not find strong evidence that
deep OTM options are key for predicting idiosyncratic tail risk distributions for
single stocks in our data. As we mention above, OTM calls are equally (and,
sometimes, even better) able to forecast lower tails than OTM puts, suggesting
that information about tails is spread across option moneyness in a complex
fashion. Even more surprisingly, the relationship between OTM puts (calls)
and upper (lower) tail risk is often positive, which is hard to reconcile with
model-free formulas of [BTX15b].

[HLT20b] show that a linear model6 in option implied volatilities from the
IvyDB dataset could predict the probability of a downward (but not upward)
jump in stock prices at monthly horizon. In this paper, we look at shorter
horizons (daily and weekly) and use a different dataset. We do not find any
predictability of tail event probabilities. All (linear and non-linear) models
trying to predict the probabilities of a tail event on our data systematically

5[AHL19] develop a robust statistical methodology for implementing Ross Recovery but do
not test the actual predictability of stock returns by the recovered moments. However, they
show that a simple trading strategy that goes long S&P500 when the recovered first moment
is higher than in the previous week yields significant positive returns.

6Partial least squares; see [KP13] and [KP15].

1.3. Extreme Value Theory and Generalized Pareto Distribution
27

produce negative out-of-sample r-squared. 7 By contrast, we find strong out-
of-sample predictability for the distribution of tail return events conditional on
the occurrence of a tail event. We show that this distribution can be robustly
forecasted, with an out-of-sample r-squared of about 10% at daily and weekly
time windows. Furthermore, we find that the size of the upper tail is easier to
predict than that of the lower tail. [HLT20b] also shows that a portfolio that
is short stocks with high predicted downward jump probability and long stocks
with low predicted jump probability produces significant abnormal returns. In
contrast, [Neu+21] shows that this strategy has significant alpha relative to
many factors. Understanding the links between our predicted tail risk and
various stock characteristics is an important direction for future research.

The most closely related to ours is the paper by [KJ14]. Their aggregate tail
risk measure, derived from pooled stock-level extreme downside returns (below
the fifth percentile) every month, can predict market excess return from one
month ahead up to the five-year horizon. [KJ14] show that aggregate tail risk
is an important risk factor for the cross-section of stock returns: firms with
high aggregate tail risk betas8 outperform low-tail-risk-beta stocks. They also
show that their tail risk measure is correlated with standard option-based tail
risk measures, such as risk-neutral skewness and kurtosis for S&P 500 index
options, put/call ratio for all stock options as implied volatility slope averaged
across all stocks. In contrast to [KJ14], our focus in this paper is on predict-
ing idiosyncratic tail risk. Several papers show how probabilities of different
types of extreme events can be extracted from option prices. See, for example,
[KLVN16], [KPV16], and [ISV21].9 Investigating the link between our option-
implied measure of tail risk and major macroeconomic events is an important
direction for future research. This paper focuses on idiosyncratic events and
investigates the connection between option-implied tail risk expectations and
earnings announcements. We find that the magnitude of predicted tail risk
builds up monotonically during the two weeks preceding earnings announce-
ments and abruptly drops once the information is released.

1.3. Extreme Value Theory and Generalized Pareto
Distribution

The starting point of our analysis is the celebrated Pickands–Balkema–De Haan
theorem ([BDH74], [Pic75]) in extreme value theory. Roughly speaking, this

7Surprisingly, the model of [HLT20b] is estimated on a rolling window of just two months.
The findings of our study indicate that the development of robust predictive models necessi-
tates the utilization of substantially greater volumes of data. Furthermore, the relationship
found by [HLT20b] between the actual probability of a jump and the predicted has a pro-
nounced U-shape: When sorted in deciles according to the predicted probability of a downward
jump, stocks in decile ten have a higher probability of a downward jump than those in decile
one (by about 5-7%); however, stocks in deciles two to eight have a lower probability of a
downward jump (by about 3-4%).

8See also [VOZ16].
9See also [Alm+17] and [GKP16] for studies of tail risk and the macroeconomy.

28 Chapter 1. Tail Recovery

theorem states that the distribution of tail risk exhibits a power law beyond a
sufficiently high threshold. Formally, for a large class of underlying distributions,
there exists a sufficiently high threshold u such that the distribution P (R−u|R >
u) of returns R in excess of u is approximately given by a Generalized Pareto
Distribution (GPD):

P (R− u ≤ x|R > u) = 1−
(
1 + x

ξ

σ

)−1/ξ

for some σ > 0 (the scale parameter) and ξ ∈ R (the shape parameter). As is
common in the literature, we only consider the case with ξ ≥ 0.10 It will be
convenient for us to work with the so-called log exceedances, log(R − u), that
has an exponential GPD (exGPD) density

g(ξ,σ)(y) =

{
ey

σ

(
1 + ξey

σ

)−1/ξ−1

for ξ ̸= 0
1
σ e

y−ey/σ for ξ = 0
(1.1)

with a support on the whole R.11 Log exceedances are easier to work with
for statistical estimation. For example, the classic Hill estimator of the tail
parameter ξ is defined as an empirical average of log exceedances. See, e.g.,
[KJ14]. The mean and variance of an exGPD random variable are given by

E[y|ξ, σ] =
{

log
(

σ
ξ

)
+ ψ(1)− ψ(1/ξ) for ξ > 0

log σ + ψ(1) for ξ = 0
, (1.2)

and

Var[y|ξ, σ] =
{
ψ′(1) + ψ′(1/ξ) for ξ > 0
ψ′(1) for ξ = 0

, (1.3)

The function ψ(·) is the so-called digamma function, defined as the log derivative
of the gamma function.12 One can see that the roles of the scale parameter σ
and the shape parameter ξ under exGPD are separately interpretable since the
variance is determined solely by the shape parameter ξ.

Following [KJ14], we assume that tail characteristics of stock returns (i.e., σ
and ξ) move over time and are given by some (unknown but learnable) functions
of observable stock characteristics. We will use Ft to denote the information
set (consisting of the history of all stock characteristics) available at time t.
Furthermore, we investigate both the right tail and the left tail of the stock re-
turn distribution. Formally, we assume that there exist Ft-measurable variables

10When ξ < 0, return support has an unnatural upper bound of −σ/ξ.
11If returns are normally distributed, R ∼ N(0, σ2), then the log exceedances y = log(R−u)

have the density gGu,σ(y) = c 1√
2πσ

e−(ey+u)2/(2σ2)ey where c = 1/(1 − Φ(u/σ)) where Φ is

the cumulative distribution function (c.d.f.) of the standard normal distribution. Thus, tails
would be extremely thin under a Gaussian distribution.

12ψ(x) = d
dx

ln(Γ(x)) =
Γ′(x)
Γ(x)

. The function ψ′(·) is the so-called the trigamma function

satisfying ψ′(1) = π2/6 ≈ 1.645.

1.4. Data and Feature Construction 29

ui,t > 0 such that the returns Ri,t+5 on stock i at time t+ 5 satisfy

P (Ri,t+5 − ui,t ≤ x|Ri,t+5 > ui,t and Ft) = 1−
(
1 + x

ξ+i,t

σ+
i,t

)−1/ξ+i,t

P (−Ri,t+5 − ui,t ≤ x| −Ri,t+5 > ui,t and Ft) = 1−
(
1 + x

ξ−i,t
σ−
i,t

)−1/ξ−i,t

(1.4)
where ξ+i,t, σ

+
i,t and ξ

−
i,t, σ

−
i,t are the Ft-measurable parameters of the conditional

distribution of tail returns for upper and lower tails, respectively. We follow a
reduced form approach and assume that ui,t = κ vi,t where vi,t is a measure of
(past) realized volatility and κ = 2, so that a “tail return” corresponds roughly
to a “two-sigma” event.13

Our estimation strategy exploits the power of a large cross-sectional dataset
of stock returns. Specifically, we assume there exist universal functions F+

ξ , F
−
ξ , F

+
σ , F

−
σ

that map the vector Xi,t of stock characteristics (to be defined below) to its cor-
responding parameters (ξ±i,t and σ

±
i,t) that govern the distributions of upper and

lower tails:
ξ+i,t ≡ F+

ξ (Xi,t)

ξ−i,t ≡ F−
ξ (Xi,t)

σ+
i,t ≡ F+

σ (Xi,t)

σ−
i,t ≡ F−

σ (Xi,t) .

(1.5)

To model the universal functions F (·) in a non-parametric fashion, we use the
popular multi-layer perceptron (MLP) family (see, e.g., [GKX20b]). This fully
non-parametric choice of F allows us to exploit the potentially highly nonlinear
relationship between the features Xi,t and the tail parameters (ξ±i,t, σ

±
i,t). In

addition to DNN, we also use the least absolute shrinkage and selection oper-
ator (Lasso) to examine the redundancies of our input features as well as to
investigate whether a linear (and sufficiently robust) model is sufficient to ap-
proximate the universal functions F (·). Once Lasso has selected the variables
that “matter”, we can use ordinary least squares to compute standard errors
and evaluate variable significance. The details of estimation procedures are
discussed in section 1.5.

1.4. Data and Feature Construction

We obtain daily option prices and Black-Scholes implied volatilities from Option
Research and Technology Services (ORATS). ORATS covers and provides data
for all US equity options quotes and implied volatilities.14 The dataset spans
the period of 2007-01-03 to 2022-12-31 and contains data for options bids, asks,

13We have tested other values of κ ∈ [1.5, 3] and the results are similar.
14https://www.orats.com/.

https://www.orats.com/

30 Chapter 1. Tail Recovery

2008 2010 2012 2014 2016 2018 2020 2022
Year

1400

1600

1800

2000

2200

2400

2600
N

um
be

r
of

 T
ic

ke
rs

(a) Firms

2008 2010 2012 2014 2016 2018 2020 2022
Year

0

2

4

6

8

N
um

be
r

of
 O

pt
io

ns

1e7

(b) Options

2008 2010 2012 2014 2016 2018 2020 2022
Volume

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ye
ar

1e9
Call Volume
Put Volume

(c) Volume

Figure 1.1: The figures above describe the evolution of our dataset size and
composition across time. Figure 1.1a shows the total number of different firms.
Figure 1.1b shows the daily number of distinct options, while Figure 1.1c shows
the daily volume of the number of contracts for put options and call options.
We smooth all results with a 12-month rolling average.

volume, open interest, implied volatilities, as well as the price of the underlying
asset for 5349 unique tickers traded at NYSE, AMEX, and NASDAQ .15 We use
all available stocks to avoid survivorship bias. Figure 1.1 shows the sample’s size
and composition evolution across time after our data preprocessing. Figure 1.1a
shows the number of unique firms, Figure 1.1b the number of unique option
contracts, and Figure 1.1c the traded volume (number of contracts) for the call-
and put-options.16

To predict tail risk at weekly horizon, we define for each firm i at time t two

sets of predicting variables, or features: forward-looking X
(f)
i,t and backward-

looking X
(b)
i,t . The former is constructed out of the cross-section of options,

while the latter is estimated out of historical variables.
We define eleven distinct backward-looking features to construct X

(b)
i,t : a)

three historical moments: standard deviation, skewness, and kurtosis, which we
estimate over three different rolling time windows: one week, one month and
one year for a total of nine different predictors, and b) a variable containing the
numbers of days until the next earning announcement, c) a variable including
the number of days until the next dividend.1718

15Due to data limitations, the Covid period represents the only out-of-sample global financial
crisis in our analysis. However, tail events may occur for individual stocks due to factors such
as extremely poor earnings announcements, delisting, or sector-specific crashes, among others.

16Most of the existing academic literature uses the IvyDB database provided by Option-
Metrics. We chose to use ORATS instead for two reasons: 1) unlike OptionMetrics, which
is updated yearly, ORATS provides data in real-time, which allows us to fully include recent
data up to and including the recent COVID crisis. 2) because the ORATS data is provided to
us exactly as it is available to market participants in real-time, we are certain that our results
do not suffer from look-ahead bias.

17The latter two variables are important because option markets may exhibit abnormal
behavior around earnings announcements and ex-dividend dates.

18Please note that, as our predictor set requires ex-dividend dates and earnings announce-
ments, we exclude any stocks lacking either of these elements. Consequently, ETFs and stocks

1.4. Data and Feature Construction 31

Table 1.1: Moneyness buckets.

Bucket Name Threshold

Deep OTM m < −2
OTM −2 ≤ m < −1

Table 1.2: Maturity buckets.

Bucket Name Threshold

0 0 < T ≤ 520

5 5 < T ≤ 15
15 15 < T ≤ 30
30 30 < T ≤ 60
60 60 < T ≤ 120
120 120 < T ≤ 250
250 250 < T

The construction of forward-looking predictors, X
(f)
i,t , is more subtle because

the option data in our panel is highly imbalanced. First, working with option
prices directly is inconvenient, and hence we need to use implied volatilities
instead. Second, the sets of available times-to-maturity and option strike prices
differ drastically across stocks. To circumvent these problems, we aggregate
option implied volatilities into a small number of buckets according to their
moneyness and time-to-maturity. These aggregated quantities are supposed to
capture the whole shape of the implied volatility surface for any given stock.

We define option moneyness as

m =
ln
(

K
St

)

σt
√
T
, (1.6)

where T is time-to-maturity (in calendar days), K is the strike price of the
option, St is the underlying asset’s price at time t and σt is a robust measure
of historical standard deviation.19

We deliberately do not consider ATM, ITM, and deep ITM options from
our analysis because they contain the least forward-looking information.21 We
also define seven different buckets grouping options by their time-to-maturity
T . These moneyness-maturity buckets are shown in Table 1.1 and Table 1.2,
respectively. Finally, we separately consider call and put options and use both
bid and ask implied volatilities22 for two reasons: (1) we find that bid-ask
spreads do contain important information and (2) neural network performance

such as TSLA are not included in our study.
19We compute rolling 5-day standard deviation σ̂i,t =

√
1
5

∑5
τ=1 r

2
i,t−τ and then define σt

as the rolling 20-day median of σ̂i,t, scaled to get a daily standard deviation. Our measure is
a bit non-standard and is roughly equal to the realized 20-day rolling standard deviation of
stock returns, but the rolling median part makes it more robust to outliers. The results with
a standard rolling 20-day standard deviation are similar and are available from the authors
upon request.

21We have also investigated DNN models that use all options (OTM, ITM, and ATM)
together, and the OOS performance deteriorates.

22The availability of implied volatilities for both bid and ask prices is another convenient
feature of the ORATS database.

32 Chapter 1. Tail Recovery

can actually increase upon inclusion of two highly correlated predictors because
it helps build endogenous features inside the network. See [GBC16]. Therefore,
on any given day and for each firm and each maturity-moneyness bin, we have 4
forward-looking features: bin-averaged implied volatilities of calls and puts for
bids and asks.

When no options exist in a particular bin, we fill the feature’s missing value
with the closest non-empty feature along the moneyness axis. Appendix 1.10.1
provides some summary statistics for the forward-looking features and underly-
ing bins.

This procedure produces 14 distinct moneyness-maturity bins, which trans-
lates into 14 × 4 = 56 unique features capturing the implied volatility surface
for call/put and bid/ask-implied volatilities with the most forward-looking in-
formation.

This procedure clearly follows the recent findings in finance revisiting the
principle of parsimony [Box+15] leading to the virtue of complexity theory:
better models are found when both the number of observations and the number
of features go to infinity. See the publication series [KMZ22], and [KMZ24].
Appendix 1.11 gives more insights about the implied volatility buckets correla-
tion.23

1.5. Estimation Procedures and Measures of OOS
Predictability

Following recent findings in empirical asset pricing (see, e.g., [GKX20b]), we rely
on deep neural network models to estimate the potentially non-linear relation-
ship between the input features and the predicted tail parameters. DNN models
are known for their ability to approximate a wide class of functions. In fact, the
universal approximation theorem24 tells us that a neural network model with
one hidden layer (i.e., a shallow network model) can potentially approximate
any continuous function with arbitrary accuracy, provided that the model has
a large number of neurons (the smallest unit in a neural network, which encap-
sulates the parameters of the model). In practice, we do not have the luxury of
using an infinite number of neurons. Fortunately, with more hidden layers, the
so-called deep neural network models can approximate reasonably well a wide
class of functions with a finite number of parameters25.

23While we do not observe any buckets 100% correlated, it is true that we might suffer from
multicollinearity. Notice that these buckets are being used from our forward-looking models
only, i.e., Lasso and DNN. Both are capable of learning to handle harmful dimensions through
their penalization, the first, and learning weights, the latter. See, also [Bel21], [Sim+23].

24See for example, [Cyb89], [HSW89].
25See for example, [Pin99] [SCC18], and [AS20].

1.5. Estimation Procedures and Measures of OOS Predictability
33

1.5.1. Do Stock Returns have Power Law Tails?

Before we proceed with modeling power laws for tail events, we would like to
see some basic empirical evidence for the presence of these power laws. To this
end, we first need to define the threshold for the exceedance returns. For each
day t and each stock i, the historical volatility vi,t is estimated as

v̂i,t =

√√√√ 1

n− 1

n∑

j=1

R2
i,t−j+1, (1.7)

where we take n = 252 days. Then, we define our empirical tail threshold as
ûi,t = 2 v̂i,t for each stock i and for each day t. Next, we define our sample as the
observations exceeding the threshold. In particular, for the right-tail estimation,
we take only stock returns with Ri,t+5 > ûi,t; for the left-tail estimation, we
take only stock returns with −Ri,t+5 > ûi,t.

After determining the sample of tail returns, we compute the log exceedance
returns as the actual input data for our estimation. For those days and stocks
with exceedance returns, we have our observations computed as

yi,t+5 ≡

log(Ri,t+5 − ûi,t) if Ri,t+5 > ûi,t
log(−Ri,t+5 − ûi,t) if Ri,t+5 < −ûi,t
not selected if |Ri,t+5| < ûi,t

, (1.8)

where the first row states the realized return for stock i at day t+5 is classified
as the right-tail sample; the second row states the realized return is classified as
the left-tail sample; the third row states the realized return is dropped from our
estimation. Note that only one out of the three cases can happen. With daily
returns in our sample, we never observe daily returns above 100% and hence
log(Ri,t+5 − ûi,t) < log(1) = 0. Similarly, negative returns below -100% are
simple impossible and hence log(−Ri,t+5 − ûi,t) < 0. This can be seen directly
from Figure 1.2, where the bulk of the support of the estimated exGPD is clearly
concentrated on R−.

We define a set S+,τ as including all observations yi,τ in the right-tail. Sim-
ilarly, the set S−,τ is the collection of the left-tail observations. For ease of
exposition, we also define the augmented set S̄∗,t as including S∗,t and the as-
sociated features Xi,t−1 for observation yi,t.

26

Figure 1.2 shows the empirical distributions of daily log exceedance return
sets ∪τS+,τ and ∪τS−,τ as well as the theoretical fit of exGPD distributions.27

As one can see, exGPD attains a remarkable fit.

26Thus, the augmented set S̄±,τ contains pairs (Xi,t, yi,t+5) for yi,t+5.
27If instead we assume that R ∼ N(0, σ2), then y = log(R − u) has the density
1√
2πσ

exp(−(ey +u)2/(2σ2)) ey/c with c = 1−Φ(u/σ) with Φ being the c.d.f. of the standard

normal. Clearly, this density has extremely thin tails.

34 Chapter 1. Tail Recovery

15.0 12.5 10.0 7.5 5.0 2.5 0.0 2.5
yi, t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

D
en

si
ty

exGPD

(a)

15.0 12.5 10.0 7.5 5.0 2.5 0.0 2.5
yi, t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

D
en

si
ty

exGPD

(b)

Figure 1.2: The figures above show the distribution of the log exceedances y±i,t+5.
Figure 1.2a shows the distribution of extreme negative events, while Figure 1.2b
(b) shows the distribution of extreme positive events. In both figures, we show
a histogram of the realized distribution and the PDF of an exGDP estimated
through maximum likelihood on the whole sample. The parameters of the esti-
mated distributions are given by ξ− = 0.442, σ− = 0.037 for the negative events,
and ξ+ = 0.452, σ+ = 0.029 for positive events.

1.5.2. Neural Network Models

In this section, we discuss the architecture of our deep neural network (DNN)
model. We use a DNN from the family of multi-layer perceptron (MLP),28

which is formally defined as

Definition 1 (Multi-Layer Perceptron (MLP)). Let (n1, · · · , nL) be the a neural
network layer widths and θ = (W 0, b0, · · · ,W (L), b(L)) be a collection of weights
and biases. Then, we say that the neural network has L layers with W (l) ∈
Rnl+1×nl , b(l) ∈ Rnl+1 , for each l = 1, . . . , L. Thus, the total dimension of θ is

P =
∑(L−2)

l=1 (nl + 1)nl+1 + nL. The MLP neural network f(x; θ) is defined as

x = input ∈ Rd

y(l)(x) =

{
x if l = 0,

ϕ(z(l−1)(x)) if l > 0.

z(l)(x) =W (l)y(l)(x) + b(l) ∈ Rnl+1 ,

(1.9)

Where σ is an elementwise non-linear activation function. The output of the
network is

f(x; θ) = z(L)(x) =

nL∑

j=1

W
(L)
j y

(L−1)
j (x) . (1.10)

28Also knows as dense network or feed-forward neural network.

1.5. Estimation Procedures and Measures of OOS Predictability
35

In this work, the weights are initialized following [Yan+22], the biases are
initialized as zeroes, and we use the hyperbolic tangent function as ϕ defined as
follows

tanh(x) =
ex − e−x

ex + e−x
(1.11)

Finally, the output layer weights WL ∈ R2×(L−1) produces the optimal param-
eters to approximate the optimal exGPD distribution

[
Fξ(Xi,t|θ)
Fσ(Xi,t|θ)

]
=WLy(L−1) + b(L) ∈ R2 .

We choose the DNN model with three hidden layers, with the following
number of neurons in each hidden layer: n1 = 256, n2 = 256, and n3 = 64. In
order to train the model, we use a variation of the stochastic gradient descent
(SGD) algorithm, which is called Adam29, together with the most recent ad-
vances in transfer learning [Yan+22]. Every time we train a DNN model, we
randomly remove 10% of the training sample to serve as a validation sample.30

We train five different DNN models with learning rates ∈ [2−3, . . . , 21]. We then
select the optimal learning rate that produces the highest r-squared score on
the validation sample.31 We retrain our model using a one-year rolling window.
Each time a new month begins, we retrain the neural network from scratch
to prevent overfitting past historical market behavior. It is known that neural
networks ’remember’ the past through the gradient steps taken to reach the
current weights, see [HS97]. Because the loss function is highly non-convex32,
the DNN results reported in this work follows [Kel+23], i.e., the DNN forecast
are averaged across ten different and independent runs.

1.5.3. Log-Likelihood

We train the DNN model to maximize the conditional log-likelihood function
generated by our DNN model for weekly log exceedances:

L(F ∗
ξ (·), F ∗

σ (·)|S̄∗,τ) =
∑

t

∑

i: yi,t+5∈S∗,t+5

log g(F∗
ξ ,F∗

σ)(yi,t+5|Xi,t), (1.12)

where the F ∗
ξ (·) and F ∗

σ (·) are defined33 in (1.5), representing the universal

function to produce ξ±i,t and σ±
i,t for each firm i and each day t in our samples

S±,τ . The universal function will be modeled here as deep neural networks. The
probability density function g(ξ,σ)(·) is defined in (1.1), representing the exGPD
density function.

29See [KB14].
30It is a random sample. We do not consider the time ordering.
31Batch size is set to 128 and number of epochs to 20.
32See, [LPB17].
33The superscript ∗ again denotes whether the universal function is for the right-tail or the

left-tail.

36 Chapter 1. Tail Recovery

Note that our log-likelihood function definition assumes that all observations
(weekly log exceedance returns) are conditionally independent, conditional on
the information at time t summarized by Xi,t.

1.5.4. Benchmarks

Lasso. In addition to the complex DNN model, we also consider a simple
model that is linear in the input features Xi,t and test its ability to forecast log
exceedance returns yi,t+5. To do so, we employ Lasso34 which minimizes the
following loss function

L(θ|S̄∗,τ) =
∑

yi,t+5∈S∗,τ

(yi,t+5 − ŷi,t+5(θ|Xi,t))
2
+ λ

n1∑

j=1

|θj | , (1.13)

where the set of observations S̄∗,τ include all tail events returns yi,t+5 and
associated features Xi,t before time τ .

Similarly to the neural network model, we train five different lasso models
with λ = [1e−6, 0.005, 0.01, 0.015, 0.2].35 and selected the optimal λ that pro-
duces the highest r-squared score on the validation sample.
Autoregressive (AR) models. AR models are still widely used in forecast-
ing time series. Therefore, it is natural to add an autoregressive model to our
benchmark. We consider an AR model of the type

yi,tjump+1
= α+ βyi,tjump

, (1.14)

where yi,tjump+1
and yi,tjump

∈ R are the future and past log return exceedances,
respectively.

1.5.5. Measuring OOS Predictability

It is known (see [WG08]) that many predictive models of stock returns that
work well in a sample fail to generate predictability out of a sample. Following
[WG08], we measure the performance of our predictive models using the various
versions of out-of-sample r-squared. To raise the bar for our (quite complex and
hence subject to the risk of overfit) models, we define several measures of OOS
predictability. These measures differ from each other in the benchmark against
which the predictability is evaluated. Each benchmark uses future information
to a different extent and is, therefore, hard to beat, implying that, in general,
we might well expect to see a negative OOS r-squared.

Our measures will allow us to disentangle a model’s (1) overall performance,
(2) cross-sectional performance, and (3) time-series performance. To do this, we

34Lasso is efficient for data suffering from co-linearity, whereby the penalization sets coeffi-
cients of less relevant predictors to zero.

35The grid of potential λ has been selected through trials and errors. Increasing the range
or refining the grid did not improve out-of-sample performance. We used 1e-6 instead of 0 for
numerical stability.

1.5. Estimation Procedures and Measures of OOS Predictability
37

first define three sets of parameters [ξ, σ], which we will use to construct three
different benchmarks.

Let ξ̄ and σ̄ be the parameters that maximize the log-likelihood of the ex-
ponential Pareto distribution over the whole sample:

ξ̄, σ̄ = argmax
ξ,σ

N∑

i=1

T∑

t=1

log g(ξ,σ)(yi,t), (1.15)

where g(ξ,σ)(·) is the exGPD distribution defined in equation (1.1) and yi,t is
the log of exceedance return defined in equation (1.8).

Next, we define ξ̄i and σ̄i as the parameters which maximize the log-likelihood
over the time period on the subsample of firm i’s jump events:

ξ̄i, σ̄i = argmax
ξ,σ

T∑

t=1

log g(ξ,σ)(yi,t) (1.16)

Finally, we define ξ̄year and σ̄year as the parameters that maximize the log-
likelihood on the subsample of jump events that happen during a particular
year:

ξ̄year, σ̄year = argmax
ξ,σ

N∑

i=1

∑

t∈year

log g(ξ,σ)(yi,t) (1.17)

We use these three sets of parameters to compute three sets of predictions using
equation (1.2) to finally define:

R2 = 1−

(∑N
i=1

∑T
t=1(yt,i − ŷt,i)

)2

(∑N
i=1

∑T
t=1

(
yt,i − E[yt,i|ξ̄, σ̄]

))2 , (1.18)

R2
firm = 1−

(∑N
i=1

∑T
t=1(yt,i − ŷt,i)

)2

(∑N
i=1

∑T
t=1

(
yt,i − E[yt,i|ξ̄i, σ̄i]

))2 , (1.19)

R2
year = 1−

(∑N
i=1

∑T
t=1(yt,i − ŷt,i)

)2

(∑N
i=1

∑T
t=1

(
yt,i − E[yt,i|ξ̄year, σ̄year]

))2 . (1.20)

Intuitively, we expect to see R2 > max{R2
firm, R

2
year} because it uses a min-

imal amount of future information and hence is the easiest to beat OOS. Since
there are thousands of firms in our sample, R2

firm is the hardest to best because

it uses future “average” information about all firms. We can view the R2
firm as

a version of R2 which controls cross-sectional fixed effects, while R2
year controls

for yearly fixed effects.

38 Chapter 1. Tail Recovery

1.6. Forecasting Tail Events using Backward-Looking
Measures

2010 2012 2014 2016 2018 2020 2022
Year

10

5

0

5

10

15

R
2

(%
)

(a)

2010 2012 2014 2016 2018 2020 2022
Year

25

20

15

10

5

0

5

R
2 fir

m
 (

%
)

(b)

2010 2012 2014 2016 2018 2020 2022
Year

40

30

20

10

0

10

R
2 ye

ar
 (

%
)

(c)

Figure 1.3: The figures above show the out-of-sample performance of the
backward-looking models on the subsample of negative tail event. Figure 1.3a
shows the out-of-sample R2 (OLS: 5.62 %) defined in equation (1.18), Fig-
ure 1.3b shows the out-of-sample R2

firm (OLS: -4.01 %) controlling for cross-
sectional fixed effects defined in equation (1.19), while Figure 1.3c shows the
out-of-sample R2

year (OLS: -1.44 %) controlling for yearly fixed effects defined
in equation (1.20). In each panel, we compute the R2 on a one-year rolling
window.

2010 2012 2014 2016 2018 2020 2022
Year

0

5

10

15

20

25

R
2

(%
)

(a)

2010 2012 2014 2016 2018 2020 2022
Year

20

15

10

5

0

5

10

15

20

R
2 fir

m
 (

%
)

(b)

2010 2012 2014 2016 2018 2020 2022
Year

2.5

0.0

2.5

5.0

7.5

10.0

12.5

R
2 ye

ar
 (

%
)

(c)

Figure 1.4: The figures above show the performance of the backward-looking
models as in figure 1.3 but on the subsample of positive jumps. R2 values: R2

(OLS: 9.78 %), R2
firm (OLS: -4.64 %), R2

year (OLS: 5.88 %)

In this section, we define and investigate a “backward-looking” model whereby
the functions (1.5) do not depend on option-implied information. As we show
below, such a model achieves low but positive r-squared OOS predictability.
Our benchmark is simple OLS panel regression for log exceedances (1.8) in the
sets S±,τ on the 11-dimensional vector Xb

i,t of backward-looking features (see

1.7. Forecasting Tail Risk Using Option-Implied Information 39

Section 1.4). To get predictions out-of-sample, we estimate the OLS panel re-
gression coefficients over a rolling window of one year.36

To evaluate this model performance, we estimate the out-of-sample R2 as
defined in section 1.5.5. Figure 1.3 shows the OOS r-squares computed on a
yearly rolling window for the subsample of negative tail events, while Figure 1.4
shows the same performance measures on the subsample of positive tail events.

As is clear from both Figures 1.3 and 1.4, backward-looking models achieve
barely positive R2 most of the time. While the performance is slightly posi-
tive on most years when measured without any fixed effects (see (1.18)), this
performance almost vanishes under the definition of performance controlling for
cross-sectional or annual fixed effects (see (1.19) and (1.20)).

In the 2020 period, when the data includes observations from the COVID
crisis, the OLS models achieve the best OOS performance for the positive sub-
sample, whereas it stays below zero in the negative subsample. This suggests
that historical moments can help capture the impact of systematic risk on id-
iosyncratic tail risks. The fact that almost no abnormal performance is measured
with R2

year further shows this performance comes from capturing effects that af-
fect the whole cross-section of stocks as opposed to predicting idiosyncratic tail
risk. Using the same set of information, the OLS out-of-sample performance
on the positive tail (R2: 9.8%) almost doubles the one on the negative tail
(R2: 5.6%). This is clear empirical evidence of the asymmetry in the two dis-
tributions. In the next sections, we will focus on the information set formed
by option-implied information only. The predictive models, when trained with
market participants’ expectations, exhibit a dramatic increase in out-of-sample
performance. We aim to interpret these results by analyzing the coefficients
and, following [GKX20b], providing a feature heatmap.

1.7. Forecasting Tail Risk Using Option-Implied
Information

In this section, we report the results of our DNN model. We consider a DNN
model that only uses out-of-the-money (OTM) option implied volatilities trained
to maximize the conditional log-likelihood of log return exceedance defined in
(1.12). The model is trained on a rolling window of one year. We show that
our novel approach outperforms the most common predictive models for returns
found in the literature, i.e., Lasso, AR, and a simple DNN trained to minimize
the mean-squared loss. We conclude this section with several key takeaways: (i)
non-linear models seem to better capture the asymmetry between the positive
and negative tails; (ii) the model can successfully identify stocks that experience
an abnormal move on earnings announcement days; (iii) it appears that most
option-implied information predominantly pertains to the upper tail, while the
lower tail heavily relies on put options with maturities of more than one year.

36The results obtained from expanding the window are slightly worse and more computa-
tionally expensive.

40 Chapter 1. Tail Recovery

1.7.1. Calls, Puts, Upper, and Lower Tails

Figures 1.5 and 1.6 show the out-of-sample performance of our DNN model
measured with the proposed definition of r-squared defined in (1.18). The
predictability we find is significant, about 10% and 15% OOS, r-squared on
average for R2 when predicting negative and positive tails, respectively. There-
fore, when predicting the negative tail, our nonlinear model, trained through
maximum likelihood using forward-looking options data, doubles the perfor-
mance compared to a linear model that minimizes the mean-squared error with
backward-looking data. Figure 1.5 and Figure 1.6 show that the model achieves,
on average, positive r-squared when controlling for cross-sectional fixed effects
and yearly fixed effects. However, while the model has shown the ability to
capture small shocks, we observe an abrupt drop of the r-squared in 2020,
specifically in the negative tail.

To further investigate the cross-sectional performance of the model, we re-
port in Figures 1.9 and 1.11 the scatter plots of mean realized exceedances
against predicted mean exceedances. The fit is striking, showing the model’s
remarkable ability to differentiate across firms with high and low tail risk. While
our analysis of r-squared focuses on the mean size of log exceedances, the model
also produces estimates for their standard deviations (see formulas (1.2) and
(1.3)).

2010 2012 2014 2016 2018 2020 2022
Year

10

5

0

5

10

15

20

R
2

(%
)

Put
Call
Both

(a)

2010 2012 2014 2016 2018 2020 2022
Year

20

10

0

10

R
2 fir

m
 (

%
)

Put
Call
Both

(b)

2010 2012 2014 2016 2018 2020 2022
Year

20

10

0

10

20

R
2 ye

ar
 (

%
)

Put
Call
Both

(c)

Figure 1.5: The figures above show the out-of-sample performance of the DNN
on the subsample of negative tail event. Figure 1.5a shows the out-of-sample
R2 (Call only: 11.32%, Put only: 10.62 %, Both: 10.60 %)defined in equation
(1.18), Figure 1.5b shows the out-of-sample R2

firm (Call only: 2.34 %, Put only:
1.57 %, Both: 1.55 %) controlling for cross-sectional fixed effects defined in
equation (1.19), while Figure 1.5c shows the out-of-sample R2

year (Call only:
4.57 %, Put only: 3.82%, Both: 3.80 %) controlling for yearly fixed effects
defined in equation (1.20).

Surprisingly, all three models (based on calls, puts, or both) produce com-
parable performance, even though OTM options of one type (call or put) com-
pletely miss the information for the strike subset corresponding to the “oppo-
site” type. We find that a predictive model that only uses OTM call prices

1.7. Forecasting Tail Risk Using Option-Implied Information 41

2010 2012 2014 2016 2018 2020 2022
Year

5

10

15

20

25

R
2

(%
)

Put
Call
Both

(a)

2010 2012 2014 2016 2018 2020 2022
Year

10

5

0

5

10

15

20

R
2 fir

m
 (

%
)

Put
Call
Both

(b)

2010 2012 2014 2016 2018 2020 2022
Year

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

R
2 ye

ar
 (

%
)

Put
Call
Both

(c)

Figure 1.6: The figures above show the performance of DNN as in figure 1.5 but
on the subsample of upper tail events. R2 values: R2

year (Call only: 15.57 %,
Put only: 14.40 %, Both: 15.44 %), R2

firm (Call only: 2.27 %, Put only: 0.91

%, Both: 1.17 %), R2
year (Call only: 11.85 %, Put only: 10.62 %, Both: 11.71

%)

attains comparable OOS r-squared for predicting lower tail risk than an analo-
gous model that only uses OTM Put prices. The same is true for upper tails.
DNN Using call prices, in particular, achieves constantly superior performance
in predicting both lower and upper tail risks. This is a very surprising phe-
nomenon. Indeed, rational models imply that deep OTM put prices contain all
the relevant information about lower tails. This is formally proved in [BT11]
and [BTX15b], which derive model-free formulas for extracting upper (lower)
tail power laws from deep OTM put (call) options. The fact that OTM calls
have similar lower tails predictive power to OTM puts suggests that the prices
of these options might be hard to reconcile with standard, rational asset pricing
models. To gain some insights into the nature of the dependence on tail risk on
option prices, we estimate two simple, linear Lasso models: One with only OTM
puts and another with only OTM calls. We then train an OLS with the statisti-
cally significant features selected by Lasso37. Figure 1.7 shows the dynamics of
these coefficients. As one can see in Figure 1.7a and Figure 1.7b, the sum of the
coefficients aligns coherently with the outcomes of the DNN models. Both tail
risks nearly equally rely on information from both calls and puts, albeit with a
slight preference for the former. Consistent with DNNs trained with call prices,
it seems that call prices contain on average more information than put prices.
However, the fact the OTM puts (calls) contain information related to upper
(lower) tail expectations is surprising and is hard to reconcile with model-free
formulas of [BT11] and [BTX15b] or any rational (arbitrage-free) asset pricing
model.

42 Chapter 1. Tail Recovery

2010 2012 2014 2016 2018 2020 2022
Year

0.005

0.010

0.015

0.020

0.025

0.030
Calls
Puts

(a)

2010 2012 2014 2016 2018 2020 2022
Year

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040
Calls
Puts

(b)

Figure 1.7: The figures above show the relative importance of the OTM puts
and calls across time (Figure 1.7a is for the lower tail, Figure 1.7b is for the
upper tail). Each month, we train a Lasso model with the OTM calls and puts
only. We then select all the features selected by Lasso—that is, features with a
non-zero coefficient—and we run an OLS regression and keep only the coefficient
with p-values smaller than 5%. We finally sum the value of those coefficients by
option types (put/call). In the figure above, we show the value of these sums
smoothed with a moving average on a yearly rolling window. Linear models load
on both call and put options. The figure above suggests that information about
tails is spread across calls and puts option-implied information in a complex
fashion.

1.7.2. Non-linearity, Big Data, and Extreme Value Theory

The forward-looking dataset that we have built and described in Section 1.4 cre-
ates big multi-dimensional option-implied features describing the cross-section.
In high contrast with the classic principle of parsimony [Box+15] and follow-
ing the virtue of complexity (VoC) discovered in [KMZ22], in this paragraph,
we show that only complex, non-linear models can successfully utilize high-
dimensional conditional information. Beginning with Figures 1.8a and 1.8b, we
present scatter plots comparing the expected mean of a negative tail risk event,
E[y−|ξ, σ] with the expected mean of a positive tail risk event, E[y+|ξ, σ], across
the entire sample for both the Lasso and DNN models, respectively. The Lasso
model exhibits a significant correlation between E[y−|ξ, σ] and E[y+|ξ, σ] of
91.69% demonstrating the inability to distinguish between negative and posi-
tive tails. Conversely, our DNN approach demonstrates a lower correlation of
80.88%, showing that it is somehow more “aware” of the differences. In terms
of out-of-sample R2 performance, Table 1.3 shows the predictive power of our
main model (reported as DNN exGPD) outperforming common models used
in the literature. For the sake of brevity, we report the average performance
measured in (1.18) of each model in forecasting both positive and negative tails.

37i.e. All features with non-zero coefficient and p-value smaller than 5%.

1.7. Forecasting Tail Risk Using Option-Implied Information 43

(a) (b)

Figure 1.8: The figures above show scatter plots of the predicted mean of a
negative tail risk event E[y−|ξ, σ] against the predicted mean of a positive tail
risk event E[y+|ξ, σ]. Figure 1.8a for the Lasso and Figure 1.8b for the DNN.
Figure 1.8b shows that the DNN is able to distinguish more between negative
and positive tail events than Lasso.

We can see that extracting option-implied information is not trivial. To start,
a non-linear model (DNN MSE) trained to minimize the mean-squared error
slightly outperforms a linear model (OLS) trained with backward-looking infor-
mation only, but it is outperformed by a linear model (LASSO) when trained
with forward-looking data. When we plug our extreme value theory, and thus,
the non-linear model (DNN exGPD) is trained to maximize the conditional log-
likelihood of an exponentiated generalized Pareto distribution, we achieve the
best performance. At the bottom, an autoregressive model shows that the infor-
mation of previous log return exceedances achieves a positive R2 although the
worst. Similar to the previous results, Table 1.3 shows the performance of each
model when trained with the set of all information (Call & Put), with call-only
option-implied information (Call), or with put-only option-implied information
(Put). The last column, yi,tjump

, corresponds to the information of a previous
log return exceedance.

1.7.3. Tail risk during Earnings Announcements

We complete this section with a discussion of the DNN during the earning an-
nouncement dates. Many of the big moves in stock prices occur on earnings
announcement dates when important fundamental news about companies is re-
leased. It is, therefore, important to see whether our model is able to learn
this relationship from option prices. Figures 1.9 and 1.11 show scatter plots of
realized returns log exceedances (1.8) and their predicted means (1.2) computed
with the estimated exGPD-DNN model.38 As one can see, the model achieves

38The model is trained on the full sample, including both regular and earnings announce-
ment dates. Interestingly enough, a model trained only on regular dates produces exactly the

44 Chapter 1. Tail Recovery

Table 1.3: The table below shows the out-of-sample performance measured as
vanillaR2 of our main model, DNN exGPD) trained to maximize the conditional
log-likelihood of log returns on the subsample of negative and positive tail events
using option-implied information. We compare its performance with a simple
DNN trained to minimize the classic mean-squared error, a Lasso model, and an
autoregressive model. While DNN exGPD, DNN MSR, and Lasso use implied
volatility information from either call, put, or both options, the autoregressive
model only uses the previous log return exceedance to forecast the next one.
Notice that our extreme value theory not only adds performance gain when
compared to, ceteris paribus, other non-linear models but adds “awareness”
about incoming earnings announcements and positive/negative tail asymmetry
compared to the Lasso model.

Call & Put Call Put yi,tjump

DNN exGPD 12.94 % 13.39 % 12.37 %
DNN MSE 6.09 % 9.15 % 7.92 %
Lasso 12.93 % 12.47 % 12.29 %
AR - - - 4.29 %

a remarkable fit with a correlation of about 35% between the predicted and
realized tail moves. The next interesting question is: Do option markets antici-
pate large moves on earnings announcement dates? To answer this question, we
plot in Figure 1.10 the average predicted log exceedances over the earnings cycle,
aggregating them as a function of the number of days to the nearest earnings an-
nouncement. Remarkably (and fully consistent with the conventional wisdom),
the DNN finds that option prices imply a continuous, monotonic build-up of ex-
pectations of a large move over about two weeks preceding the announcement.
These expectations immediately drop after the information is released.

1.8. Which features matter?

For both negative and positive tails, we investigate the relative importance of
each feature. Following [GKX20b], we compute the reduction in R2 from setting
all values of a given feature to zero within each test sample. Formally, we define
the importance of feature j as,

IMP (j) = |R2(f(X))−R2(f(X̃j))|, (1.21)

Where R2(·) is an out-of-sample measure of performance defined in equation
(1.18). f(·) is a function mapping the inputs to a prediction In this case, f(·) is
the mean log exceedance predicted with equation (1.2) and the DNN. X is the
matrix of inputs, and X̃j is similar to X except for columns j which is set to 0.

same results on earnings announcement dates. This suggests that the relationship between
option prices and tail events is universal.

1.8. Which features matter? 45

(a) (b)

Figure 1.9: The figures above show scatter plots of the average predicted mean
of a negative tail event E[y|ξ, σ] against the realized exceedances on days with
a negative tail event. Figure 1.9a shows this projection on the full sample
(correlation: 34.5%), while Figure 1.9b shows this projection on the subsample
of tail events occurring on an earning announcement day (correlation: 30.4%).

Figure 1.12 shows the relative importance of all 56 features when predicting a
negative tail, shown in Figure 1.12a, and a positive tail, shown in Figure 1.12b.
As in [GKX20b], we improved interpretation by normalizing the variables’ im-

portance to sum to one
(

ˆIMP (j) = IMP (j)∑2
k=1 0IMP (k)

)
. Several important patterns

emerge from these figures. First, no single feature can fully explain the predic-
tive power of the DNN. Among all features, the highest normalized importance
is as lower than 25% which shows that the DNNs do not just transform one sin-
gle measure of implied volatility but instead use a large part of the cross-section.
Second, surprisingly, the algorithms utilize a mixture of information from across
the entire cross-section to predict the positive tail. Third, the model seems to
favor implied volatility coming from out-the-money puts with expiration dates
over one year. Finally, it appears that out-of-the-money puts with expiration
dates exceeding one year are the most important features for predicting nega-
tive tails with a normalized ÎMP (j) > 50% when combined (bid and ask). This
is additional empirical evidence about the asymmetry of the two tails and an
interesting direction for future research: not only are negative tails harder to
forecast, but it seems that the cross-section (other than out-the-money puts) of
features has little information about that.

46 Chapter 1. Tail Recovery

(a) (b)

Figure 1.10: Figure 1.10a and Figure 1.10b show the average predicted mean
E[y|ξ, σ] for the negativeand positive tail events, respectively. We define t=0
as the day on which earnings are announced. We compute the average of the
DNN’s forecasted moments across all assets and time periods. Consistent with
the conventional wisdom, the DNN finds that option prices imply a continuous,
monotonic expectation of a large move preceding the announcement.

(a) (b)

Figure 1.11: The figures above show the average predicted mean of a positive
event E[y|ξ, σ] projected against the realized exceedances on days with a pos-
itive tail event. Figure 1.11a shows this projection on the full sample, while
Figure 1.11b shows this projection on the subsample of tail events occurring on
an earning announcement day. The correlation on the full sample is equal to
39.4%, while that on the earning announcement subsample is equal to 33.9%.

1.8. Which features matter? 47

0<
<

=
5

5<
<

=
15

15
<

<
=

30

30
<

<
=

60

60
<

<
=

12
0

12
0<

<
=

25
0

25
0<

Call|Bid|DOTM
Call|Ask|DOTM

Call|Bid|OTM
Call|Ask|OTM

Put|Bid|DOTM
Put|Ask|DOTM

Put|Bid|OTM
Put|Ask|OTM

5%

10%

15%

20%

25%

(a)

0<
<

=
5

5<
<

=
15

15
<

<
=

30

30
<

<
=

60

60
<

<
=

12
0

12
0<

<
=

25
0

25
0<

Call|Bid|DOTM
Call|Ask|DOTM

Call|Bid|OTM
Call|Ask|OTM

Put|Bid|DOTM
Put|Ask|DOTM

Put|Bid|OTM
Put|Ask|OTM

2%

4%

6%

8%

(b)

Figure 1.12: Figure 1.12a and Figure 1.12b show the normalized features im-
portance heatmap for the negative and positive tails, respectively. Surprisingly,
while the positive tail seems to extrapolate information across all maturities
and option types, the negative tail is mostly influenced by the out-of-the-money
puts with the largest time to maturity τ.

48 Chapter 1. Tail Recovery

1.9. Conclusion

In this paper, we have investigated the ability of complex machine learning
models to extract predictive information about tail risk, that is, the likelihood
(and the distribution) of large, unexpected moves in the underlying asset prices.
We find that the distribution of returns upon the arrival of a tail event can be
efficiently predicted out of sample, and the performance of our predictions is
comparable to that for forecasting realized volatility. Our dataset covers the
period of 2007-01-03 to 2022-12-31 and contains data (Black-Scholes implied
volatilities, underlying asset prices, volume, open interest, asks, bids) for 5349
different stocks traded at NYSE, AMEX, and NASDAQ at daily frequency. We
use the classic theorem of [BDH74] to approximate the tail distribution to a
generalized Pareto distribution, and we follow the approach of [GKX20b] to
conduct our studies. First, options information about tails is spread across
option moneyness in a complex fashion; in fact, we find that OTM calls (respec-
tively, puts) contain important information about lower (respectively, upper)
tails. Second, we find that predicting upper tails is easier than predicting lower
tails. Third, upper- and lower-tail risks can load positively on puts information
and call information, respectively. Then, we provide a new non-linear predictive
model capable of outperforming the most common linear and non-linear coun-
terparts in the literature through extreme value theory. Next, we find that the
magnitude of predicted tail risk builds up monotonically during the two weeks
preceding earnings announcements and abruptly drops once the information is
released. Finally, we show how both put and call information are important for
deep neural networks in predicting tail risks, and we find new evidence in eq-
uity premia’s non-linear nature. Understanding the links between our predicted
tail risk and various stock characteristics is an important direction for future
research. Moreover, the importance of OTM call (puts) information about the
lower (upper) tail is surprising, opening new challenges for both theoretical and
empirical studies.

1.10. Appendix - CBOE Rule filings that potentially enhance the
informativeness of equity options 49

1.10. Appendix - CBOE Rule filings that poten-
tially enhance the informativeness of equity
options

Below is a timeline of CBOE rule filings that are closely related to the informa-
tiveness of equity options markets. We split them into several categories:

• Number of weekly classes (options on distinctive equities): regular option
series expire on the third Friday of each month. However, that may not
coincide with particular dates for corporate events (which are important
risk sources for equity options). Hence, investors gain from being able to
trade options that expire every week in the next five weeks.

– CBOE proposed weekly option programs for index options back in
2005 (SEC pilot program)

– CBOE then introduced weekly options for ETF and equities in 2010

– On 12/12/2011, the filing SR-CBOE-2011-125 increases the number
of classes from 25 to 30

– On 03/01/2012, the filing SR-CBOE-2012-026 allows CBOE to open
new classes that are chosen by the other competitive exchanges (NAS-
DAQ, ISE by then)

– On 12/11/2013, the filing SR-CBOE-2013-121 increase the number
of classes to 50

• Maturities and strikes per weekly class

– On 09/19/2011, SR-CBOE-2011-086 allows CBOE to increase the
number of options per class from 20 to 30 for the weekly program

– On 11/08/2012, SR-CBOE-2012-110 allows CBOE to expand the
number of expirations available under the weekly program (i.e., freely
delist unpopular options, and add others)

– On 10/10/2012, SR-CBOE-2012-092 allows CBOE to initiate strike
prices in more granular intervals for weekly options

– On 07/02/2014, SR-CBOE-2014-052 allows CBOE to introduce finer
strike price intervals for standard expiration (third Friday) contracts
in option classes that also have weeklies

– On 01/21/2015, SR-CBOE-2015-009 allows CBOE to extend current
$0.50 strike price intervals in non-index options to short-term options
with strike prices less than $100

• Margin

50 Chapter 1. Tail Recovery

– On 05/29/2012, SR-CBOE-2012-043 allows CBOE to implement a
universal methodology for determining a spread margin requirement
that would accommodate the many types of spread strategies in
use today, and which will enable a wider variety of multi-leg op-
tion spreads, including numerous variations of butterfly and condor
spreads, to be accommodated

• Mini options

– On 01/04/2013, SR-CBOE-2013-001 allows CBOE to list and trade
options contracts overlying 10 shares of a security (“mini-option con-
tracts”)

To sum up, all the rule changes allow CBOE customers to trade options
that have finer strikes and expiration dates, under cheaper capital costs (due
to portfolio margin for spread strategies). In the time series of equity options
volumes, we shall expect to see these options slowly become popular over time
since 2013. Mini options and options with shorter maturities allow retail in-
vestors to express their views or speculate on equity options. Today, there are
610 different equities have weekly options being traded on CBOE.

1.10. Appendix - CBOE Rule filings that potentially enhance the
informativeness of equity options 51

1.10.1. Appendix - Features description

Table 1.4: The table shows the daily average number of options in a bin bucket,
the number of options standard deviation in the time series, and the time series’s
quantiles for the following values: 0.01, 0.25, 0.50, 0.75, 0.99. Please be advised
that the raw option prices we receive from ORATS are indexed by strike. his
indexing method results in the observed symmetry in the distribution of option
counts across each bin.

right moneyness maturity mean std q=0.01 q=0.25 q=0.50 q=0.75 q=0.99

put atm 120.0 12973.49 7814.72 3645.19 7654.75 10997.5 15792.25 40390.36
call atm 120.0 12973.49 7814.72 3645.19 7654.75 10997.5 15792.25 40390.36
put deep otm 15.0 12516.14 8268.44 10.00 5316.50 11446.5 19172.50 30814.10
call deep itm 15.0 12516.14 8268.44 10.00 5316.50 11446.5 19172.50 30814.10
put deep otm 5.0 12319.11 8844.63 5.00 5517.25 10194.0 19445.50 34101.36
call deep itm 5.0 12319.11 8844.63 5.00 5517.25 10194.0 19445.50 34101.36
put atm 60.0 11029.50 5201.96 3202.29 7457.75 9866.5 13308.50 24969.44
call atm 60.0 11029.50 5201.96 3202.29 7457.75 9866.5 13308.50 24969.44
put deep itm 5.0 10879.69 7702.11 9.00 5226.50 8720.0 17475.00 30075.10
call deep otm 5.0 10879.69 7702.11 9.00 5226.50 8720.0 17475.00 30075.10
put atm 15.0 10847.75 7632.36 6.00 3897.00 10734.0 16208.00 31167.44
call atm 15.0 10847.75 7632.36 6.00 3897.00 10734.0 16208.00 31167.44
put deep itm 15.0 10439.18 6933.60 17.00 4365.50 8606.0 16291.50 26691.78
call deep otm 15.0 10439.18 6933.60 17.00 4365.50 8606.0 16291.50 26691.78
call deep itm 60.0 9821.10 5808.45 452.56 5249.50 9998.0 13422.75 25551.82
put deep otm 60.0 9821.10 5808.45 452.56 5249.50 9998.0 13422.75 25551.82
call deep itm 30.0 9569.36 6972.71 447.68 3889.75 7693.0 14827.00 27508.77
put deep otm 30.0 9569.36 6972.71 447.68 3889.75 7693.0 14827.00 27508.77
put atm 250.0 9026.53 6010.77 2205.21 4828.00 6819.5 11672.25 27466.25
call atm 250.0 9026.53 6010.77 2205.21 4828.00 6819.5 11672.25 27466.25
put deep otm 0.0 8198.83 7417.50 15.46 3498.00 6288.0 9699.50 30228.08
call deep itm 0.0 8198.83 7417.50 15.46 3498.00 6288.0 9699.50 30228.08
call atm 30.0 7510.54 4796.33 859.78 3545.25 7041.5 10124.25 21334.77
put atm 30.0 7510.54 4796.33 859.78 3545.25 7041.5 10124.25 21334.77
call deep otm 0.0 7492.82 6581.73 27.00 3779.00 5908.0 8826.00 28021.16
put deep itm 0.0 7492.82 6581.73 27.00 3779.00 5908.0 8826.00 28021.16
put deep itm 30.0 7349.35 5440.12 513.29 3005.50 5753.5 11200.50 22526.07
call deep otm 30.0 7349.35 5440.12 513.29 3005.50 5753.5 11200.50 22526.07
put deep otm 120.0 6715.75 4369.24 114.39 3185.75 6437.0 9634.75 19136.56
call deep itm 120.0 6715.75 4369.24 114.39 3185.75 6437.0 9634.75 19136.56
put deep itm 60.0 6280.38 4000.68 704.39 3064.00 5875.5 8439.25 18144.40
call deep otm 60.0 6280.38 4000.68 704.39 3064.00 5875.5 8439.25 18144.40
put atm 5.0 6058.02 4304.39 3.00 2571.00 5509.0 8712.50 18276.68
call atm 5.0 6058.02 4304.39 3.00 2571.00 5509.0 8712.50 18276.68
put itm 60.0 5169.78 2540.22 1169.95 3330.50 4730.0 6423.25 12216.24
call otm 60.0 5169.78 2540.22 1169.95 3330.50 4730.0 6423.25 12216.24
call otm 120.0 4954.89 2866.67 722.78 2941.25 4580.0 6448.50 14333.64
put itm 120.0 4954.89 2866.67 722.78 2941.25 4580.0 6448.50 14333.64
call otm 15.0 4636.69 2906.06 4.00 1926.25 4625.0 6769.25 11144.81
put itm 15.0 4636.69 2906.06 4.00 1926.25 4625.0 6769.25 11144.81
call itm 120.0 4069.12 2331.37 523.00 2306.00 3659.5 5412.00 10726.44
put otm 120.0 4069.12 2331.37 523.00 2306.00 3659.5 5412.00 10726.44

Continued on next page

52 Chapter 1. Tail Recovery

Table 1.4: The table shows the daily average number of options in a bin bucket,
the number of options standard deviation in the time series, and the time series’s
quantiles for the following values: 0.01, 0.25, 0.50, 0.75, 0.99. Please be advised
that the raw option prices we receive from ORATS are indexed by strike. his
indexing method results in the observed symmetry in the distribution of option
counts across each bin.

right moneyness maturity mean std q=0.01 q=0.25 q=0.50 q=0.75 q=0.99

call deep itm 250.0 4008.94 5525.90 68.00 936.75 2207.0 4252.50 28713.27
put deep otm 250.0 4008.94 5525.90 68.00 936.75 2207.0 4252.50 28713.27
put otm 15.0 3997.30 2522.69 2.00 1627.00 4077.0 5971.00 10052.64
call itm 15.0 3997.30 2522.69 2.00 1627.00 4077.0 5971.00 10052.64
call itm 60.0 3994.64 1831.06 1046.78 2604.75 3780.5 4921.25 8679.88
put otm 60.0 3994.64 1831.06 1046.78 2604.75 3780.5 4921.25 8679.88
put itm 30.0 3546.75 2274.92 402.17 1670.50 3239.0 4790.50 10275.27
call otm 30.0 3546.75 2274.92 402.17 1670.50 3239.0 4790.50 10275.27
call deep otm 120.0 3475.57 2349.73 75.95 1708.75 3177.0 4799.00 9934.14
put deep itm 120.0 3475.57 2349.73 75.95 1708.75 3177.0 4799.00 9934.14
put itm 5.0 2898.31 1948.49 2.00 1336.00 2663.0 4114.00 7962.52
call otm 5.0 2898.31 1948.49 2.00 1336.00 2663.0 4114.00 7962.52
call itm 30.0 2839.06 1744.38 335.39 1383.00 2689.0 3877.00 7640.54
put otm 30.0 2839.06 1744.38 335.39 1383.00 2689.0 3877.00 7640.54
call itm 5.0 2584.95 1729.72 2.00 1169.00 2397.0 3720.00 7422.00
put otm 5.0 2584.95 1729.72 2.00 1169.00 2397.0 3720.00 7422.00
put deep itm 250.0 2343.47 4699.80 17.39 261.00 744.5 1562.50 24473.16
call deep otm 250.0 2343.47 4699.80 17.39 261.00 744.5 1562.50 24473.16
put itm 250.0 2337.41 1530.74 302.39 1319.75 1915.5 2948.00 7298.00
call otm 250.0 2337.41 1530.74 302.39 1319.75 1915.5 2948.00 7298.00
call itm 250.0 2261.27 1531.31 372.00 1131.75 1722.0 2963.50 7272.83
put otm 250.0 2261.27 1531.31 372.00 1131.75 1722.0 2963.50 7272.83
put atm 0.0 1718.61 1377.57 4.00 735.75 1484.0 2388.25 6203.54
call atm 0.0 1718.61 1377.57 4.00 735.75 1484.0 2388.25 6203.54
put itm 0.0 864.72 689.90 3.00 371.25 752.0 1196.00 3178.75
call otm 0.0 864.72 689.90 3.00 371.25 752.0 1196.00 3178.75
call itm 0.0 811.05 635.41 2.00 360.00 712.0 1122.50 2856.20
put otm 0.0 811.05 635.41 2.00 360.00 712.0 1122.50 2856.20

1.11. Appendix - IV Bucket Correlation

In this section, we show the correlation of each implied volatility bucket built following the
pre-processing procedure described in Section 1.10.1.

1.11. Appendix - IV Bucket Correlation 53

C
al

l|B
id

|D
O

TM
|2

50
.0

C
al

l|B
id

|O
TM

|3
0.

0

C
al

l|B
id

|D
O

TM
|5

.0

C
al

l|A
sk

|O
TM

|2
50

.0

C
al

l|A
sk

|D
O

TM
|1

5.
0

C
al

l|A
sk

|D
O

TM
|6

0.
0

C
al

l|B
id

|O
TM

|1
20

.0

C
al

l|A
sk

|O
TM

|1
20

.0

C
al

l|B
id

|O
TM

|5
.0

C
al

l|B
id

|O
TM

|0
.0

C
al

l|A
sk

|O
TM

|5
.0

C
al

l|B
id

|O
TM

|2
50

.0

C
al

l|A
sk

|D
O

TM
|3

0.
0

C
al

l|A
sk

|D
O

TM
|5

.0

C
al

l|A
sk

|O
TM

|1
5.

0

C
al

l|A
sk

|O
TM

|0
.0

C
al

l|B
id

|D
O

TM
|3

0.
0

C
al

l|A
sk

|D
O

TM
|1

20
.0

C
al

l|B
id

|D
O

TM
|1

20
.0

C
al

l|B
id

|D
O

TM
|6

0.
0

C
al

l|B
id

|O
TM

|1
5.

0

C
al

l|A
sk

|O
TM

|6
0.

0

C
al

l|A
sk

|D
O

TM
|2

50
.0

C
al

l|B
id

|D
O

TM
|1

5.
0

C
al

l|A
sk

|O
TM

|3
0.

0

C
al

l|B
id

|D
O

TM
|0

.0

C
al

l|B
id

|O
TM

|6
0.

0

C
al

l|A
sk

|D
O

TM
|0

.0

Call|Bid|DOTM|250.0

Call|Bid|OTM|30.0

Call|Bid|DOTM|5.0

Call|Ask|OTM|250.0

Call|Ask|DOTM|15.0

Call|Ask|DOTM|60.0

Call|Bid|OTM|120.0

Call|Ask|OTM|120.0

Call|Bid|OTM|5.0

Call|Bid|OTM|0.0

Call|Ask|OTM|5.0

Call|Bid|OTM|250.0

Call|Ask|DOTM|30.0

Call|Ask|DOTM|5.0

Call|Ask|OTM|15.0

Call|Ask|OTM|0.0

Call|Bid|DOTM|30.0

Call|Ask|DOTM|120.0

Call|Bid|DOTM|120.0

Call|Bid|DOTM|60.0

Call|Bid|OTM|15.0

Call|Ask|OTM|60.0

Call|Ask|DOTM|250.0

Call|Bid|DOTM|15.0

Call|Ask|OTM|30.0

Call|Bid|DOTM|0.0

Call|Bid|OTM|60.0

Call|Ask|DOTM|0.0

0.38

0.08 0.24

0.62 0.69 0.25

0.43 0.51 0.60 0.62

0.68 0.58 0.25 0.88 0.74

0.50 0.74 0.16 0.86 0.36 0.63

0.62 0.60 0.26 0.97 0.65 0.90 0.75

0.35 0.64 0.73 0.71 0.72 0.63 0.59 0.69

0.53 0.54 0.04 0.90 0.49 0.77 0.78 0.88 0.55

0.62 0.57-0.080.91 0.41 0.80 0.79 0.89 0.40 0.89

0.58 0.66 0.23 0.95 0.55 0.80 0.79 0.93 0.68 0.86 0.88

0.64 0.22 0.15 0.75 0.54 0.84 0.50 0.78 0.48 0.73 0.70 0.67

0.52 0.27-0.650.42 0.05 0.50 0.36 0.40-0.150.51 0.64 0.38 0.49

0.56 0.69 0.38 0.93 0.74 0.84 0.75 0.94 0.77 0.81 0.81 0.89 0.63 0.27

0.63 0.73 0.39 0.93 0.63 0.84 0.78 0.91 0.77 0.73 0.80 0.88 0.64 0.28 0.92

0.28 0.79 0.24 0.42 0.40 0.37 0.48 0.35 0.36 0.24 0.37 0.41-0.110.16 0.51 0.51

0.74 0.58 0.26 0.88 0.71 0.97 0.65 0.90 0.62 0.79 0.81 0.81 0.85 0.52 0.83 0.84 0.39

0.63 0.61 0.16 0.83 0.43 0.73 0.87 0.76 0.51 0.72 0.79 0.75 0.59 0.46 0.75 0.77 0.52 0.76

0.50 0.46 0.20 0.74 0.29 0.47 0.75 0.68 0.46 0.69 0.70 0.73 0.47 0.25 0.66 0.64 0.36 0.59 0.76

0.43 0.33-0.200.64-0.010.50 0.65 0.58 0.25 0.70 0.70 0.62 0.63 0.53 0.37 0.51-0.030.54 0.54 0.52

0.60 0.61 0.22 0.97 0.61 0.89 0.78 0.98 0.66 0.87 0.91 0.93 0.73 0.42 0.95 0.91 0.40 0.87 0.80 0.67 0.56

0.32 0.43 0.24 0.55 0.42 0.60 0.47 0.53 0.41 0.50 0.50 0.50 0.50 0.33 0.50 0.52 0.37 0.65 0.59 0.45 0.33 0.52

0.27-0.04-0.500.30-0.450.19 0.36 0.26-0.180.37 0.47 0.29 0.41 0.55 0.03 0.18-0.250.24 0.36 0.37 0.78 0.28 0.16

0.60 0.46 0.22 0.95 0.55 0.85 0.75 0.96 0.64 0.90 0.89 0.91 0.83 0.39 0.88 0.86 0.20 0.85 0.75 0.71 0.66 0.95 0.49 0.37

0.17-0.06-0.470.32 0.05 0.27 0.24 0.33-0.100.61 0.47 0.30 0.47 0.59 0.20 0.02-0.260.30 0.25 0.32 0.42 0.30 0.25 0.41 0.40

0.41 0.67 0.22 0.72 0.35 0.47 0.77 0.62 0.62 0.71 0.58 0.72 0.47 0.23 0.57 0.61 0.30 0.55 0.58 0.72 0.67 0.55 0.37 0.27 0.61 0.26

0.45 0.47 0.58 0.32 0.46 0.45 0.27 0.29 0.47 0.02 0.15 0.28 0.21-0.080.35 0.54 0.55 0.47 0.38 0.15 0.03 0.30 0.31-0.170.20-0.640.18

Figure 1.13: The figure above shows the correlation matrix for each maturity-
moneyness bucket of call options only. We find that 59%, 27%, and 13% of the
buckets exhibit correlations of 50%, 75%, and 90%, respectively. The implied
volatility values are first averaged on a cross-sectional basis.

54 Chapter 1. Tail Recovery

Pu
t|

As
k|

D
O

TM
|1

20
.0

Pu
t|

B
id

|O
TM

|2
50

.0

Pu
t|

B
id

|D
O

TM
|1

5.
0

Pu
t|

B
id

|O
TM

|3
0.

0

Pu
t|

As
k|

D
O

TM
|0

.0

Pu
t|

B
id

|O
TM

|6
0.

0

Pu
t|

B
id

|O
TM

|5
.0

Pu
t|

B
id

|D
O

TM
|2

50
.0

Pu
t|

B
id

|D
O

TM
|5

.0

Pu
t|

As
k|

O
TM

|3
0.

0

Pu
t|

As
k|

O
TM

|2
50

.0

Pu
t|

B
id

|D
O

TM
|3

0.
0

Pu
t|

B
id

|O
TM

|1
20

.0

Pu
t|

As
k|

O
TM

|0
.0

Pu
t|

B
id

|O
TM

|0
.0

Pu
t|

As
k|

D
O

TM
|1

5.
0

Pu
t|

B
id

|D
O

TM
|1

20
.0

Pu
t|

B
id

|D
O

TM
|6

0.
0

Pu
t|

B
id

|D
O

TM
|0

.0

Pu
t|

As
k|

O
TM

|1
20

.0

Pu
t|

As
k|

D
O

TM
|6

0.
0

Pu
t|

As
k|

O
TM

|5
.0

Pu
t|

As
k|

D
O

TM
|5

.0

Pu
t|

As
k|

D
O

TM
|3

0.
0

Pu
t|

B
id

|O
TM

|1
5.

0

Pu
t|

As
k|

D
O

TM
|2

50
.0

Pu
t|

As
k|

O
TM

|1
5.

0

Pu
t|

As
k|

O
TM

|6
0.

0

Put|Ask|DOTM|120.0

Put|Bid|OTM|250.0

Put|Bid|DOTM|15.0

Put|Bid|OTM|30.0

Put|Ask|DOTM|0.0

Put|Bid|OTM|60.0

Put|Bid|OTM|5.0

Put|Bid|DOTM|250.0

Put|Bid|DOTM|5.0

Put|Ask|OTM|30.0

Put|Ask|OTM|250.0

Put|Bid|DOTM|30.0

Put|Bid|OTM|120.0

Put|Ask|OTM|0.0

Put|Bid|OTM|0.0

Put|Ask|DOTM|15.0

Put|Bid|DOTM|120.0

Put|Bid|DOTM|60.0

Put|Bid|DOTM|0.0

Put|Ask|OTM|120.0

Put|Ask|DOTM|60.0

Put|Ask|OTM|5.0

Put|Ask|DOTM|5.0

Put|Ask|DOTM|30.0

Put|Bid|OTM|15.0

Put|Ask|DOTM|250.0

Put|Ask|OTM|15.0

Put|Ask|OTM|60.0

0.59

0.20 0.43

0.55 0.95 0.35

0.38 0.24-0.090.34

0.50 0.96 0.44 0.95 0.22

0.63 0.91 0.23 0.91 0.39 0.89

0.63 0.59 0.36 0.56 0.44 0.54 0.54

0.30 0.31-0.360.34 0.58 0.32 0.60 0.15

0.71 0.90 0.50 0.77 0.15 0.81 0.84 0.61 0.27

0.71 0.97 0.42 0.93 0.30 0.92 0.92 0.63 0.33 0.92

0.28 0.57-0.050.74 0.55 0.58 0.56 0.39 0.32 0.28 0.55

0.48 0.96 0.46 0.96 0.25 0.98 0.87 0.55 0.28 0.80 0.92 0.62

0.67 0.89 0.29 0.88 0.51 0.81 0.91 0.64 0.46 0.82 0.92 0.61 0.82

0.67 0.94 0.48 0.89 0.11 0.89 0.86 0.59 0.20 0.93 0.95 0.46 0.89 0.82

0.62 0.30-0.550.36 0.43 0.23 0.50 0.30 0.62 0.29 0.39 0.44 0.22 0.45 0.31

0.38 0.85 0.50 0.87 0.35 0.86 0.75 0.59 0.23 0.70 0.82 0.69 0.90 0.75 0.79 0.16

0.34 0.80 0.48 0.79 0.16 0.86 0.74 0.51 0.29 0.71 0.76 0.54 0.83 0.65 0.77 0.11 0.84

0.33 0.35 0.46 0.25-0.580.34 0.18 0.21-0.390.48 0.37-0.120.32 0.07 0.57-0.040.28 0.37

0.80 0.91 0.35 0.83 0.26 0.82 0.88 0.62 0.34 0.94 0.95 0.44 0.81 0.88 0.92 0.46 0.68 0.67 0.39

0.90 0.53 0.16 0.50 0.39 0.40 0.55 0.56 0.21 0.61 0.65 0.28 0.43 0.63 0.59 0.61 0.37 0.13 0.25 0.71

0.63 0.87 0.59 0.82 0.12 0.79 0.70 0.64-0.030.87 0.89 0.47 0.81 0.77 0.92 0.17 0.77 0.70 0.53 0.86 0.58

0.38 0.25 0.61 0.24-0.130.21 0.02 0.45-0.660.30 0.31 0.13 0.25 0.17 0.39-0.160.34 0.17 0.60 0.29 0.42 0.57

0.75 0.38 0.47 0.23 0.05 0.31 0.39 0.50 0.09 0.66 0.49-0.280.28 0.38 0.53 0.22 0.22 0.23 0.52 0.58 0.68 0.48 0.40

0.56 0.93 0.67 0.89 0.20 0.92 0.83 0.60 0.16 0.87 0.91 0.45 0.93 0.80 0.92 0.09 0.85 0.80 0.43 0.83 0.49 0.88 0.41 0.48

0.60 0.56 0.27 0.57 0.36 0.53 0.56 0.46 0.28 0.54 0.62 0.46 0.55 0.57 0.58 0.35 0.61 0.48 0.29 0.59 0.55 0.55 0.32 0.42 0.56

0.66 0.89 0.11 0.88 0.34 0.80 0.91 0.56 0.47 0.82 0.91 0.64 0.80 0.90 0.85 0.60 0.72 0.68 0.23 0.91 0.60 0.76 0.12 0.33 0.73 0.55

0.73 0.93 0.39 0.87 0.28 0.82 0.87 0.62 0.28 0.93 0.96 0.52 0.84 0.90 0.91 0.40 0.77 0.66 0.35 0.97 0.71 0.90 0.33 0.50 0.85 0.60 0.92

Figure 1.14: The figure above shows the correlation matrix for each maturity-
moneyness bucket of call options only. We find that 59%, 34%, and 17% of the
buckets exhibit correlations of 50%, 75%, and 90%, respectively. The implied
volatility values are first averaged on a cross-sectional basis.

55

Part II

State Contingent Risk
Premia

57

2. Deep Learning from Options Im-
plied Volatility

58 Chapter 2. Deep Learning from Options Implied Volatility

2.1. Introduction

The Option Implied Volatility (IV) surface contains information about state-contingent risk
premia and the probability distribution of returns over multiple horizons. Stock and option
traders systematically use the shape of this surface, including its slope, skewness, and other
geometric features, to infer market expectations and risk attitudes and make trading decisions.
The option pricing theory provides a basis for such analysis: local properties of this surface
indeed contain information about the underlying market dynamics. For example, the surface
variation along the moneyness dimension can be used to uncover the Arrow-Debreu state
prices [BL78a], while the surface slope along the maturity dimension contains information
about volatility by the Dupire formula [Dav11]. In the language of machine learning, universal
local features (non-linear transformations that depend on neighboring strikes and maturities)
of the IV surface can be used to extract useful information about the stochastic structure of
returns.

Despite the underlying theory’s elegance, empirically computing the theory-driven features
is associated with often unsurmountable econometric difficulties: theoretical formulas rely
heavily on the continuity of strike and maturity dimensions, while, in reality, both strikes and
maturities are discrete, living on a sparse grid. Furthermore, high bid-ask spreads due to often
extreme illiquidity of options markets1 introduce large amounts of noise into the estimation
of equity implied volatilities.

In this paper, we leverage the progress in deep learning for computer vision and image
recognition to construct powerful, non-linear, local features of IV surfaces. To this end, we
exploit a particular neural network architecture called convolutional neural networks (CNNs).
Thanks to their use of convolutional layers, CNNs are designed to capture spatial patterns and
relationships between pixels in images. These layers apply filters to local regions of the input
image, allowing the network to learn and identify patterns at various levels of abstraction (e.g.,
edges, shapes, and more complex features). The behavior of CNNs closely resembles the way
in which humans interpret images. As a result, CNNs have the potential to detect patterns
on the IV surface that are similar to those recognized by professional traders during visual
inspection. Furthermore, the locality of CNNs makes them perfect instruments for learning
non-linear filters, extracting the volatility and risk premia information from the noisy IV
surface.2

We train several CNN architectures of increasing depth (complexity) on the standard Op-
tionMetrics dataset of IV surfaces for several thousand stocks to predict stock returns over a
one-month horizon. Since CNNs (like any neural networks) are trained by gradient descent,
they are sensitive to (random) weight initialization: Depending on where the gradient descent
starts, it may converge to a weight vector corresponding to a different local minimum.3 A
classic approach for dealing with this is to create an ensemble of neural networks correspond-
ing to different weight initializations and then combine them. See, [LPB17]. We find that
the benefits from this ensembling are huge because predictive models generated by different
initializations produce portfolios with low pairwise correlations. As a result, for the most
complex (4- and 5-layer) deep learning architectures, increasing the ensemble size from one to
a hundred leads to an increase in the out-of-sample Sharpe ratio from 0.9 to 2.7 for the full
stock universe. By contrast, for the lower complexity (1 hidden layer) CNN, the Sharpe ratio
only increases from 0.80 to 1.6. As [LPB17] explain, the sensitivity of predictions generated
by NN to initialization captures the degree of uncertainty around these predictions. In low
signal-to-noise ratio environments of financial markets, this uncertainty is very high, implying
large gains from ensembling.

Since each model in the ensemble is represented by a (completely) different set of pa-
rameters, this finding implies a very large virtue of complexity (in the language of [KMZ24]

1See [GMT23].
2Formally, locality means that two close points on the IV surface have similar informational

content.
3The reason is that the dependence of CNN mean squared error on the CNN coefficients

is highly non-convex. As a result, the problem is many local minima, and it is impossible to
predict to which local minimum the gradient descent will converge.

2.1. Introduction 59

and [Did+23]): bigger, more complex, non-linear models generate significant gains out-of-
sample.4 However, the nature of the complexity of the ensemble is different: While [KMZ24]
and [Did+23] establish the virtue of complexity for one very big model with all parameters
jointly trained, in this paper, we document the virtue of ensemble complexity. Namely, we
train a large number of randomly initialized CNNs with identical architecture and then av-
erage their predictions, and show that the out-of-sample Sharpe ratios are approximately
monotone, increasing in the ensemble size. A similar pattern is observed if we measure the
out-of-sample performance of the model in terms of its alpha with respect to a large set
of standard factors, including many standard stock characteristics as well as a large set of
option-based characteristics from [Neu+22].

The complexity of our CNN-based model ensemble seems to contradict the conventional
principle of parsimony in economics, suggesting that predictive information (originating, e.g.,
from risk premia or behavioral anomalies) can be encoded into a small number of factors and
stock characteristics. When applied to the IV surface, the principle of parsimony suggests
that only a few key surface features might contain useful information about future stock
returns. Most of these features used in the existing literature are constructed as simple,
linear combinations of implied volatilities, for example, the IV level, the slope of the term
structure, and the smile. To test whether such a low-dimensional structure is indeed present
in our highly non-linear predictive model, we use the methodology of [CDW14] to identify key
linear combinations of IVs with the most explanatory power. These combinations are natural
analogs of principal components for our highly non-linear models, and we refer to them as
principal linear features. Contrary to conventional wisdom, we find no evidence for a low-
dimensional structure. While broadly consistent with the complexity principle of [KMZ24]
and [Did+23], the nature of this phenomenon is different. Indeed, the results in [KMZ24] and
[Did+23] mostly concern complexity due to non-linearities, whereas our last finding is about
feature complexity, expressing the fact that a very large number of linear features is necessary
to extract the predictive information contained in the IV surface.

As [KMZ24; Did+23] explains, this virtue of complexity means that, even for an already
complex model, we can often find a new, nonlinear transformation of the IV surface that boosts
the out-of-sample performance. This complexity is not a puzzle to be solved or evidence of
data mining. Instead, it is the theoretically expected outcome of learning a non-linear, high-
dimensional relationship with limited data. The only constraint we impose on the model is
the principle of locality, formalized by choice of a convolutional NN instead of a generic NN
architecture utilized, say, in [GKX20b] and [CRW21].

Recently, several papers (see, e.g., [DeM+20], [DNMV23], and [MPP22]) have argued
that the performance of modern multi-factor models needs to be evaluated by accounting for
transaction costs and short-sale constraints. We perform a detailed analysis of trading costs for
our strategies and find that, perhaps surprisingly, the market-neutral portfolio constructed by
sorting stocks based on the CNN-predicted return makes most of the money with the long leg,
implying that our findings are not sensitive to short-selling costs and constraints. Transaction
costs incurred by our strategy are significant: As with many machine learning models, it
exhibits a high turnover (about 80% per month). Following [JKPrt] and [Did+23], we study
the model performance separately for several groups of stocks, created based on their market
capitalization (mega, large, small, micro, and the non-micro group constructed as the set of
all stocks excluding the micro-cap group). While the micro-group dominates the performance,
the non-micro group also delivers a very strong Sharpe Ratio and a significant alpha. Both
micro- and non-micro groups retain their alpha significance after accounting for realistic costs.
It is also important to note that, in any case, the optionable stocks (i.e., stocks with options
traded on them) are typically large and have a significant trading volume, implying that even
the predictability we identify for micro stocks can be exploited with some meaningful arbitrage
capital.5

The rest of this paper is organized as follows. Section 2.2 reviews the related literature.

4Table 2.9 shows that these models are indeed extremely complex, with the number of
parameters significantly exceeding the number of observations in our panel dataset.

5Recent results of [Jen+22] suggest that, by properly smoothing positions, it is possible to
reduce turnover and preserve the bulk of the performance of machine learning models such as
ours. We leave this important direction for future research.

60 Chapter 2. Deep Learning from Options Implied Volatility

Section 2.3 describes data and methodology. Section 2.4 provides the necessary background
on CNNs. Our main empirical results are reported in Section 2.5. Section 2.6 investigates
feature importance, introduces principal linear features, and documents the virtue of feature
complexity. Section 2.7 concludes.

2.2. Related Literature

Understanding why average returns differ across assets is a central question in finance. Over
the last few decades, the search for stock characteristics that predict returns has led to the
emergence of the (constantly growing) “factor zoo”: A huge number of characteristics that
contain information about the cross-section. See, for example, [Coc11], [HLZ16], [MP16],
[HXZ20], [FGX20], [JKPrt], and [GKX22] for a recent overview.

Many papers in this literature focus on predicting asset returns using complex, non-linear
models; see [MZ16], [CCJY19], [Han+19], [CPZ19], [BPZ20], [LZZ20], [GKX20b], [KNS20],
[FNW20], [ACM21], [GOPZ21], [LWZ22], [KMZ24], and [Did+23]. Given the ever-growing
complexity of these models (both in terms of the number of characteristics and the degree of
non-linearity of the predictive relationships), several papers develop techniques to “shrink” the
cross-section and find a sparse representation of the expected returns, either through a form
of dimensionality reduction (e.g., by exploiting principal components, as in [KPS20], [KNS18],
[KNS20], [LP20], and [GX21]), or by imposing sparsity directly in the space of characteristics
(see, e.g., [GKX20b], [FNW20], and [BHJ23]). While the evidence is mixed, recent findings
of [Did+23] suggest that complexity is there to stay, and there might be no feasible way to
find a sparse representation of expected returns. Namely, as [Did+23] show, the factor zoo
is simply a statistical phenomenon originating from the small data problem: We do not have
enough data to find the right low-dimensional representation of expected returns, even if it
exists; hence, our best bet is to build the most complex model without imposing a sparse
prior.6

Most of the above-mentioned papers focus on stock characteristics that are either purely
price-based (such as momentum; see, [CCM97]) or depend on company fundamentals such
as the book-to-market ratio. By contrast, our paper focuses exclusively on the predictive
information contained in the implied volatility surface, motivated by the idea that derivative
prices provide an interesting lens to uncover rich information about the underlying assets
and associated risks. The early contributions by [BL78b], [BM78] show how Arrow-Debreu
state prices can be recovered from the option prices. State prices contain information about
risk premia and (subjective) physical probabilities as market participants anticipate. Under
technical conditions, some information about these physical probabilities can be recovered;
see, e.g., [Ros15a], [BHS16b], and [JLP19]. The idea of extracting useful forward-looking
information from both individual equity and index options has been exploited in many papers.
For example, [BH09] show that the difference between implied (i.e., risk-neutral) and physical
volatility, as well as the difference between the implied volatilities of near-the-money call and
put options are both strong predictors of stock returns; [CW10] use deviations from put-call
parity to predict stock returns; [JS12] show that the ratio of the volume between options and
stocks predicts stock returns at the one-week horizon; [Cho+20] reach a similar conclusion
when examining the (signed) order flow in equity index options; [An+14] find that stocks
with large increases in call (put) implied volatilities over the previous month tend to have
high (low) future returns; [AFT15], [BT14; BTX15a], [LT19], [BDG20], and [HLT20a] show
how the jump (tail) risk extracted from options prices predicts future stock returns; [BBG18]
show that the volatility of implied volatility has predictive power for future stock returns, and
[DBG20] show how to estimate cross-sectional uncertainty from option prices.

Many option-implied predictors build on a potential risk-return relationship between the
risk-neutral variance, variance risk-premium (VRP), and stock returns; see, e.g., [BTZ09],
[FJPO18], [MW19], [KS19], [Feu+19], [Tan19], [KT20], [Ped20], and [DJW22].

6More generally, several recent papers have questioned the principle of sparsity in economic
modeling. See, e.g., [GLP21].

2.2. Related Literature 61

Several other papers propose characteristics of the IV surface that are related to the shape
of the implied volatility smirk or corresponding risk-neutral skewness portfolios; see, e.g.,
[XZZ10], [Yan11], [CDG13], [SKP17], [JMW18] and [BM19], and [Sch+20]. While many of
these papers find that IV-surface-based skewness measures contain predictive information, the
nature of this information seems extremely sensitive to precise details of factor construction.
For example, [CDG13] document a negative relation between ex-ante risk-neutral skewness
and asset returns, while [SKP17] finds a positive relation.7 These findings suggest that the
nature of predictive information might be extremely complex, making it difficult to pin down
the precise underlying economic mechanism.

The paragraphs above suggest that, even in the smaller world of option-implied charac-
teristics, we are clearly facing the problem of an ever-growing factor zoo, with new predictive
relationships constantly discovered by academic researchers. Two recent papers attempt to
bring order into this option-implied factor zoo by combining the informational contents of the
multiple factors identified in the existing literature. [BCYM22] use five of those factors (based
on the findings of [BH09], [CW10], [XZZ10], and [An+14]). They provide evidence that a lin-
ear tangency portfolio of these factors is not spanned by standard stock characteristics-based
managed portfolios. However, in a more recent paper, [Neu+22] provide evidence that the
factors in [BCYM22] are spanned by fundamental stock characteristics when more of those
characteristics are included in the model. [Neu+22] then argue that machine learning methods
can deal with the IV-surface-based factor zoo and extract useful information unspanned by
standard factors. They consider 17 options-based characteristics, including five of [BCYM22].
Then, they apply the adaptive group LASSO methodology of [FNW20] to build non-linear
predictive models based on these 17 characteristics. They provide strong evidence that only
4 out of 17 option characteristics contain information about future stock returns not spanned
by a large set of more than 60 stock characteristics. These four economically important
characteristics are all related to the shape of the IV smirk.

While [Neu+22] do develop a complex, non-linear, machine learning model, they utilize
relatively small (only 17) ready, pre-built characteristics of the IV surface, motivated by
sparsity considerations and the idea that a few linear features of the IV surface summarize
its predictive information. In this paper, we follow a different approach. First, we completely
abstract from the existing set of characteristics such as smirk, skew, slope, etc.; instead, we
take an agnostic approach and let the machine learning model decide which features of the IV
surface are useful for predicting stock returns. Second, we do not try to impose any form of
sparsity on the model. Instead, we build a model with an exorbitant number of features and
parameters following the principle of the virtue of complexity ([KMZ24; Did+23]) combined
with the virtue of ensemble complexity introduced in this paper. As explained above, we find
evidence for both virtues: There is a large amount of predictive information in the IV surface,
and we need a large ensemble of highly complex models to leverage this information efficiently.
Furthermore, our model exhibits a very high feature complexity: A small number of linear IV
features cannot span our model’s predictive content.

We complete this literature review by noting that implied volatility is closely related to
the physical volatility (in fact, in the idealized Black-Scholes continuous time setting, the two
should be identical) and, hence, any signal about the level of the IV surface is closely related
to the physical idiosyncratic stock volatility. The latter contains predictive information about
stock returns and belongs to the large family of “low-risk anomalies.” See, [ACX06], [HS00],
[BMV10], [FP14], [Ama+15] and [Sch+20]. In particular, [Sch+20] argue that these low-risk
anomalies reflect compensation for co-skewness risk. It is possible that the more complex
predictive signals extracted from the IV surface by our model might also reflect a form of risk
premium related to some jump, tail, or high-order moment risk. Understanding the connection
of our non-linear signals with risk premia is an important direction for future research.

7See, also, [Jia+20] for similar results based on physical measures of skewness; and [KNS13],
[ST19], and [OST20] for a studies of aggregate measures of skewness.

62 Chapter 2. Deep Learning from Options Implied Volatility

2.3. Data and methodology

2.3.1. Data

Options data are from OptionMetrics IvyDB. The historical IvyDB Volatility Surface dataset
contains interpolated option implied volatility surfaces for a large set of firms for each trading
day from January 1996 to December 2021. For interpolation, a proprietary kernel smoothing
algorithm is applied by OptionMetrics across both moneynesses (defined in terms of option δ)
and expiry (defined in terms of days-to-maturity τ) grids, allowing us to abstract from option
cycles and varying strikes. Thus, for each trading day, δ-moneyness grid goes from -1 to +1
in equidistant 0.05 steps (puts have negative δ, calls have positive δ), and expiry grid ranges
from 10 to 730 days-to-maturity.

06/05/2023, 16:38 127.0.0.1.html

file:///Users/tengxu/Desktop/127.0.0.1.html 1/1

Figure 2.1: Transformed implied volatility surface of TSLA stock, 01/07/2016.

We hypothesize that in-the-money calls contain the least forward-looking information
and only keep δ ∈ [−0.5, 0.5]; then, we drop all 10-days-to-maturity values due to lack of data
before 20108; lastly, we re-stack volatility surfaces at-the-money (so that δ goes from 0.1 to
0.5, then goes from -0.5 to -0.1) – this way, the combination of put and call IV components
results in a more seamless transition. Thus, we end up with implied volatility surface images
of size 10×18. Figure 2.1 shows a typical example of an implied volatility surface from Option
Metrics IvyDB that we work with. We denote IVi,t = (IVi,t(δ, τ))δ∈∆,τ∈§, ∈ R|∆|×|§| the
interpolated implied volatility surface of a stock i ∈ N on the last day of the month t ∈ T .
Here, δ ∈ ∆, where ∆ is the grid of available δ-levels, and τ ∈ §, where § is the grid of available
times to maturity.

We use daily stock data from CRSP to construct monthly total stock returns for all NYSE,
AMEX, and NASDAQ firms. CRSP sample is aligned to our OptionsMetrics sample and lasts
from January 1996 to December 2021. The number of stocks with available stock and options
data is shown in Figure 2.2. The total number of stocks in our sample is close to 25 thousand,
with the average number of stocks at any point in time exceeding three thousand.9 We denote
Ri,t+1 the total return on stock i from the last business day of the month t to the last business
day of the month t+ 1.

Monthly returns are constructed as follows. First, for each stock i and business day d,
daily total gross returns are computed as (1 + ri,d) or as (1 + ri,d)(1 + rdelisti,d) if the stock

8This is likely because so-called ”weeklies” (options with weekly expiration cycles) were
only introduced in 2005 and gained popularity after the Global Financial Crisis.

9See the section 2.8 of the Appendix for a detailed description of CRSP and OM datasets,
the dataset linking procedure, and some additional statistics.

2.3. Data and methodology 63

1996 2000 2004 2008 2012 2016 2020
Year

1500

2000

2500

3000

3500

4000

4500

#
 o

f
Fi

rm
s

Figure 2.2: Evolution of our post-processed dataset size regarding the number
of unique firms.

i delists on day d. Here, ri,d is the total daily return from the CRSP Daily Stock file, and
ri,d=delist is the delisting return from the Delisting Information CRSP file. Missing daily
returns10 are replaced with zeros. Monthly total gross returns for a month t, denoted by Ri,t,
are cumulative products of daily gross returns,

Ri,t =
∏
d∈t

(1 + ri,d)(1 + rdelisti,d 1d=delist) − 1 . (2.1)

Everywhere in this paper, we focus on predicting monthly returns Ri,t+1 using only implied
volatility surfaces on the last business day of the preceding month t, which we denote by
IVi,t.

11

2.3.2. Ensembles of Randomly Initialized Neural Nets

Given a family of non-linear functions, f(x;w), indexed by a (high-dimensional) vector of
parameters w (e.g., neural weights for the case of neural networks), we can optimize w with the
objective of predicting returns Ri,t+1 by plugging the month-end IVi,t into f and minimizing
an error on the training data: Given a look-back horizon T , we can try selecting a parameter
vector w that minimizes the in-sample prediction error based on the last T periods of the
data:

w∗,t = argmin
w

ℓ(w), ℓ(w) =
t∑

θ=t−T

Nθ∑
i=1

(Ri,θ+1 − f(IVi,θ;w))
2 , (2.2)

where Nθ is the number of stocks in our data set at time θ. The standard way of finding w∗ is
by using gradient descent: Given a learning rate η, one can randomly initialize w0 and then
implement the algorithm of gradient descent by iteratively computing

ŵj(w0) = ŵj−1 − η∇wℓ(ŵj−1) (2.3)

101.34% of the total number of return observations.
11One may wonder whether information about the daily dynamics of implied volatility

surfaces in the preceding month t contains predictive information about Ri,t+1 and whether we
are neglecting this information by keeping only month-end IVi,t. We have tried to incorporate
additional information about daily IV dynamics in the preceding month in our predictive
models, and these experiments suggested that lagged IV information during the month does
not add predictive power.

64 Chapter 2. Deep Learning from Options Implied Volatility

for j ≥ 1, where ∇wℓ is the gradient of the loss ℓ(w) with respect to w.
By definition, the path of ŵj(w0) during the gradient descent (as j increases from one to

∞) depends on the initialization w0. However, standard results imply that, as the number j
of gradient steps increases while the learning rate η converges to zero, ŵj(w0) converges to
a local extremum ŵ∞(w0) = limj→∞,η→0 ŵj(w0), satisfying ∇wℓ(ŵ∞(w0)) = 0. In fact, as
recent research shows, these local extrema are typically global minima for neural nets. See,
e.g., [SC16]. In simple, linear regression problems, the loss function ℓ(w) is convex in w and,
hence, has a unique extremum which is also a global minimum; hence, for convex problems,
ŵ∞ is independent of w0. By contrast, for realistic, non-linear machine-learning models (such
that CNNs in our paper), ℓ(w) is not convex and has a tremendous number of (global or local)
minima. See, e.g., [LPB17; Li+18; Yao+20; FHL19]. As a result, ŵ∞(w0) depends on the
initial weights, w0, in a highly complex fashion. In particular, for K different initializations
w0(k), k = 1, · · · ,K, we will typically end up with K different weight vectors ŵ∞(w0(k)).
This leads to a randomly initialized ensemble of K models, {f(x; ŵ∞(w0(k)))}, indexed by
k = 1, · · · ,K. We then build the ensemble prediction by taking a simple average across k :

R̂ ens
i,t =

1

K

K∑
k=1

f(IVi,t; ŵ∞(w0(k))) . (2.4)

Our findings present results for CNN ensembles of different sizes, with K ranging from 1
to 100. We observe a significant enhancement in portfolio performance as the ensemble size
increases up to around 50 models, after which it saturates.

Given these predictions at each month-end, all stocks are sorted into decile, equal-weighted
portfolios to construct a long-short spread portfolio, “H-L”, that is long the upper decile and
short the lower decile. Denote N

R̂ ens
i,t >Qt

the number of stocks in the upper decile at time t,

and N
R̂ ens

i,t <qt
the number of stocks in the lower decile at time t, the returns on “H-L” are

given by:

RH−L
t+1 =

Nt∑
i=1

Ri,t+1 wi,t , wi,t =
1
R̂ ens

i,t >Qt

N
R̂ ens

i,t >Qt

−
1
R̂ ens

i,t <qt

N
R̂ ens

i,t <qt

, (2.5)

where Qt and qt are the 90% and 10% percentiles of the distribution of R̂i,t at time t.
The algorithm described above depends on two key objects: The look-back window T

in (2.2) used for training the model and the family of non-linear functions f(x;w). For the
lookback window, we follow the approach of [GKX20b] and use an expanding window (allowing
us to use all available data at time t). 12

We consider three different families of functions fℓ(x;w), ℓ ∈ {CNN1, CNN4, CNN5}
in our analysis. Each family is a convolutional neural network (CNN, see Section 2.4 for
details), with CNNi equipped with i hidden convolutional layers, i = 1, 4, 5. The number
of layers of the network defines its complexity, expressive power, and ability to approximate
non-linear functions. The complexity of a CNN model (defined as the number of parameters
divided by the sample size, see [KMZ24]) increases exponentially with depth. See Table 2.9
for details. Intuitively, we expect shallow CNNs to learn fewer and simpler features, whereas
more complex CNNs will detect a greater variety of features. While such complex models are
tremendously over-parametrized and severely overfit the data in-sample, their performance
out-of-sample might be better due to the virtue of complexity. See [KMZ24], [Did+23], and
[Bel21].

2.4. Convolutional Neural Networks

This section provides a concise overview of the rationale behind Convolutional Neural Net-
works (CNNs), the architecture of the proposed models, and the training methodology em-

12We also report that using a rolling window of five years, which allows us to account for
potential non-stationarity, leads to a performance drop.

2.4. Convolutional Neural Networks 65

ployed.13 Additionally, we briefly discuss the discrete convolution operation and model op-
timization via stochastic gradient descent. Please refer to Appendix 2.9 for rigorous mathe-
matical definitions.

2.4.1. CNN Architecture

Convolutional Neural Networks (CNNs) continue to be the state-of-the-art approach for image
classification (see [Sha+20]). We outline some of the key advantages of utilizing CNNs.

1. Spatial Hierarchy and Local Connectivity: CNNs are designed to capture spatial pat-
terns and relationships between pixels in images, thanks to their use of convolutional
layers. These layers apply filters to local regions of the input image, allowing the net-
work to learn and identify patterns at various levels of abstraction (e.g., edges, shapes,
and more complex features). In contrast, Deep Neural Networks (DNNs) treat all in-
put features independently, losing the spatial information and relationships between
neighboring pixels. This makes it difficult for DNNs to learn and recognize complex
image patterns effectively.

2. Translational and Rotational Invariance: CNNs inherently possess translation and ro-
tational invariance, meaning that they can recognize patterns and features regardless
of their position in the image. Conversely, as mentioned earlier, DNNs treat each input
independently, resulting in the loss of information.

<latexit sha1_base64="7ysXFYN93LGJoVFAa1dgAPGIjNw=">AAAB8nicbZDLSgMxFIbP1Futt6pLN8EiuCozXajLYjcuK9gLTIeSSTNtaCYZkkyhDH0MNy4UcevTuPNtzLSz0NYfAh//OYec84cJZ9q47rdT2tre2d0r71cODo+OT6qnZ10tU0Voh0guVT/EmnImaMcww2k/URTHIae9cNrK670ZVZpJ8WTmCQ1iPBYsYgQba/ktKWaSpzkPqzW37i6FNsEroAaF2sPq12AkSRpTYQjHWvuem5ggw8owwumiMkg1TTCZ4jH1LQocUx1ky5UX6Mo6IxRJZZ8waOn+nshwrPU8Dm1njM1Er9dy87+an5roLsiYSFJDBVl9FKUcGYny+9GIKUoMn1vARDG7KyITrDAxNqWKDcFbP3kTuo26d1P3Hhu15n0RRxku4BKuwYNbaMIDtKEDBCQ8wyu8OcZ5cd6dj1VrySlmzuGPnM8fvEGRjA==</latexit>

Convolution
<latexit sha1_base64="O8tev5oQ4VYjq0gBTTp7aCqkYSo=">AAAB63icbVA9T8MwEHXKVylfBUYWiwqJqUo6AGMFCwNDQaSt1EaV415aq7YT2Q5SFfUvsDCAECt/iI1/g9NmgJYnnfT03p3u7oUJZ9q47rdTWlvf2Nwqb1d2dvf2D6qHR20dp4qCT2Meq25INHAmwTfMcOgmCogIOXTCyU3ud55AaRbLRzNNIBBkJFnEKDG59AB3/qBac+vuHHiVeAWpoQKtQfWrP4xpKkAayonWPc9NTJARZRjlMKv0Uw0JoRMygp6lkgjQQTa/dYbPrDLEUaxsSYPn6u+JjAitpyK0nYKYsV72cvE/r5ea6CrImExSA5IuFkUpxybG+eN4yBRQw6eWEKqYvRXTMVGEGhtPxYbgLb+8StqNundR9+4bteZ1EUcZnaBTdI48dIma6Ba1kI8oGqNn9IreHOG8OO/Ox6K15BQzx+gPnM8fq+2N/g==</latexit>

ReLU
<latexit sha1_base64="SYFwMRxVcsUdgfu/PgM8k0EuLKU=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KkkO6rHoxYtQwX5AGspmu2mXbnbD7kZaQn+GFw+KePXXePPfuG1z0NYHA4/3ZpiZF6WcaeO6387a+sbm1nZpp7y7t39wWDk6bmmZKUKbRHKpOhHWlDNBm4YZTjupojiJOG1Ho9uZ336iSjMpHs0kpWGCB4LFjGBjpcAf++gejxtS8l6l6tbcOdAq8QpShQKNXuWr25ckS6gwhGOtA89NTZhjZRjhdFruZpqmmIzwgAaWCpxQHebzk6fo3Cp9FEtlSxg0V39P5DjRepJEtjPBZqiXvZn4nxdkJr4OcybSzFBBFovijCMj0ex/1GeKEsMnlmCimL0VkSFWmBibUtmG4C2/vEpafs27rHkPfrV+U8RRglM4gwvw4ArqcAcNaAIBCc/wCm+OcV6cd+dj0brmFDMn8AfO5w9cuJCo</latexit>

2x2 MaxPool
<latexit sha1_base64="W5H/dRzE4CfKPZhRrxqRgL0lnAg=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBA8hd0c1GOIF08SwTwkWcLsZDYZMo9lZlYIS77CiwdFvPo53vwbJ8keNLGgoajqprsrSjgz1ve/vbX1jc2t7cJOcXdv/+CwdHTcMirVhDaJ4kp3ImwoZ5I2LbOcdhJNsYg4bUfjm5nffqLaMCUf7CShocBDyWJGsHXSYx1bMrpTWvRLZb/iz4FWSZCTMuRo9EtfvYEiqaDSEo6N6QZ+YsMMa8sIp9NiLzU0wWSMh7TrqMSCmjCbHzxF504ZoFhpV9Kiufp7IsPCmImIXKfAdmSWvZn4n9dNbXwdZkwmqaWSLBbFKUdWodn3aMA0JZZPHMFEM3crIiOsMbEuo6ILIVh+eZW0qpXgshLcV8u1eh5HAU7hDC4ggCuowS00oAkEBDzDK7x52nvx3r2PReual8+cwB94nz+xk5BW</latexit>

BatchNorm

Figure 2.3: The figure above shows a building block of the CNN model consisting
of a convolutional layer with a 3 × 3 filter, a ReLU layer, 2 × 2 max-pooling,
and batch normalization layers. Note the max-pooling layer shrinks the height
and width of the input by half and keeps the same depth.

We now describe a Convolutional Neural Network (CNN) as a sequence of operations to
transform raw images, implied volatility surfaces in this case, into a prediction. See Appendix
2.9 for details.

A CNN core building block consists of three operations: convolution, activation, and
pooling. In addition, we also use a batch normalization layer at the end of each block. A

13See, also, [JKDX22].

66 Chapter 2. Deep Learning from Options Implied Volatility

3x3
Conv ReLU 2x2

MaxPool
Batch
Norm

3x3
Conv ReLU 2x2

MaxPool
Batch
Norm

3x3
Conv ReLU 2x2

MaxPool
Batch
Norm

3x3
Conv ReLU 2x2

MaxPool
Batch
Norm

Global
AvgPool

Figure 2.4: The figure above describes our CNN4 architecture.

batch normalization layer normalizes the building core’s output reducing the so-called internal
covariance shift (acting as a regularizer) from one building core to the next [IS15b]. The
core CNN building block is shown in Fig. 2.3. A convolution layer applies filters to the
input data, capturing local spatial patterns and generating feature maps as output. An
activation function is a nonlinear function applied elementwise to the output of a layer. Max-
pooling is a downsampling operation in a CNN that reduces the spatial dimensions of a feature
map by selecting the maximum value within a defined neighborhood, helping to retain the
most prominent features while reducing computational complexity and achieving translation
invariance. Global Average Pooling is a pooling operation that computes the average value
of each feature map across its entire spatial extent, effectively “vectorizing” the feature map.
The final CNN layer is a single fully connected node that targets the next month’s stock gross
return. The CNNi architectures described above are constructed by stacking i such building
blocks. For example, Figure 2.4 shows the CNN4 architecture.14 See Appendix 2.9 for details
and precise mathematical definitions of convolutions, MaxPool, and Global Average Pooling
layers.

2.4.2. Training the CNN

Our initial training uses the first seven years of observations (1996-2002) for the expanding
window case. We call this the warm-up period. In this period, the CNN is trained for ten
epochs. Then, we apply the trained model to the features of the subsequent month (unseen to
the model) to make predictions. Afterward, we include this new month in the training set to
retrain the model using the same procedure. We call this the transfer-learning period. In this
period, the CNN is trained for five epochs only, as the CNN has mostly learned the market
dynamics during the warm-up period, and only requires fine-tuning to adjust to an additional
one month of observations.

We employ the same regularization methods as in [GKX20a] to mitigate overfitting and
facilitate efficient computation. We utilize the Xavier initializer for weight assignment in
each layer, as proposed by [GB10], which accelerates convergence by producing initial weight
values that align the prediction variance with the label scale. For loss function optimization,
we combine stochastic gradient descent with the Adam algorithm [KB14], setting the initial
learning rate at 1× 10−3 and using a batch size of 512.

2.5. CNN Portfolio Performance

In this section, we investigate the out-of-sample performance of CNN-based return forecasts.
Given a CNN architecture, we randomly initialize its weights w0 using 100 different random

14In particular, we use an increasing number of convolution filters in each block, i.e., 16,
32, 64, and 128.

2.5. CNN Portfolio Performance 67

seeds and train each of these NNs using gradient descent, as described in Section 2.4, thus
creating an ensemble of CNNs. As described in Section 2.3.2, we construct a long-short
spread portfolio, “H-L”, that is long the upper decile and short the lower decile of predicted
stock returns, with a monthly holding period, see (2.5). Then, we compute the predictions
(2.4) gradually increasing the ensemble size K from 1 to 100 and report the corresponding
out-of-sample Sharpe ratios in Figure 2.13, and summarize their distribution in Table 2.2.
Following [JKPrt] and [Did+23], we perform the analysis separately for different size groups
of stocks: mega (largest 20% of stocks based on NYSE monthly breakpoints), large (between
80% and 50% percentile of NYSE breakpoints), small (between 50% and 20% percentile of
NYSE breakpoints), and micro (smallest 20% of stocks). Additionally, we report the results
for the non-micro group that comprises all stocks with a market cap larger than the 20%
NYSE percentile.

Figure 2.13 clearly illustrates the virtue of ensemble complexity: Sharpe ratios are mono-
tone increasing in the ensemble size and, for more complex models (CNN4 and CNN5), sat-
urate only around K = 40. While a single run of CNN1, CNN4, and CNN5 achieves an
annualized Sharpe Ratio of 0.80, 1.48, and 0.88, respectively, the portfolios built using ensem-
bles of K = 100 randomly initialized CNN1, CNN4, and CNN5 (see (2.4) for the definition),
achieve out-of-sample Sharpe ratios of 1.64, 2.72, and 2.50, respectively. Figure 2.14 shows the
cumulative performance of our strategy over time and compares it with the three strongest
option characteristics-based factors from [Neu+22]. As one can see, the complex model clearly
outperforms these factors. Sharpe ratios for 100-ensemble CNN models per market cap seg-
ment are reported in Table 2.17.

We now investigate to what extent standard and option-based characteristics span the
performance of CNN-based factors. As Table 2.3 shows, ensemble CNN portfolios deliver a
highly significant alpha against a variety of option-based factor portfolios from [Neu+22] as
well as the standard Fama-French factors. Complexity also has a very strong impact on the
regression R2 : While for the lower-complexity CNN1, the R2 is about 66%, it drops all the
way to 36% for CNN4 and CNN5 models, suggesting that more complex models are able
to pick up highly non-linear predictive patterns in the IV surface that are not accessible to
simpler models.

Perhaps surprisingly, our most complex CNN4 and CNN5 models have only minimal and
marginally significant exposure to option characteristics-based factors. It has some exposure
to long-term reversal while being significantly negatively exposed to short-term reversal, sug-
gesting that the predictability we identify is not driven by standard short-term statistical
arbitrage. Instead, exposure to long-term reversal suggests some link between our signals
and fundamental stock valuations. The low complexity CNN1 model does pick up significant
exposure to the Skew factor, but as complexity increases, this exposure vanishes, confirming
our intuition that complex models identify highly non-linear patterns that are not spanned
by standard, linear characteristics of the IV surface.

The H-L strategy (2.5) is non-linear and exploits the power of the relationship between
CNN-based predictions and future returns in the tails of the prediction distribution. We test
the robustness of the above results by running simple, cross-sectional (Fama-MacBeth) regres-
sions of returns on CNN-based predicted returns, using multiple characteristics as controls.
Table 2.10 strongly supports our findings: Stock returns are indeed highly significantly re-
lated to CNN-based predictions, even after controlling for a large number of standard stock
characteristics, including reversal, momentum, idiosyncratic volatility, as well as standard
option-based characteristics.

We find that smaller-capitalization stocks largely drive the model performance, see Tables
2.4-2.8, nonetheless, CNN models still generate significant alpha for the not-micro group. We
also find that it exhibits the same virtue of the ensemble complexity15. Notably, the results
from the Fama-Macbeth regressions per-segment reveal that the statistical power of CNN
forecasts is mainly concentrated in the small-cap stock group. This is highlighted in Tables
2.11 to 2.15. Value-weighted16 portfolios built using CNN4 forecasts generate alphas that are
statistically significant at a 10% level, see Table 2.38.

15These results are not included and are available from the authors upon request.
16Weights are set in proportion to stock market capitalization, with market caps winsorized

at 80% NYSE percentile as described in [JKPrt].

68 Chapter 2. Deep Learning from Options Implied Volatility

2.5.1. Simpler Models

The above findings clearly indicate that CNN-based models are able to extract important
predictive information from the IV surface. But do we really need CNNs? Is it possible to
extract the same information using simpler models?

We start by investigating whether it is possible to use all IVs in a linear fashion to predict
returns. To this end, we generate predictions based on the simple ridge panel regression model

with an expanding window by building the prediction R̂ridge
t :

R̂ridge
t = IVt(IV

⊤
0:t−1IV0:t−1 + zI)−1IV ⊤

0:t−1R0:t−1, (2.6)

for each period in time t = 0, . . . , T with a ridge penalty z. Here, IVt ∈ RNt×|∆|×|§| represents
the panel of implied volatility surfaces for Nt stocks at time t; IV0:t−1 ∈ RN0:t−1×|∆|×|§| and
R0:t−1 ∈ RN0:t−1 denote the expanding window of implied volatility and true gross returns,
respectively, covering the time period t = 0, . . . , t − 1. This is a “kitchen sink” approach,
whereby we are completely agnostic about the nature of predictors that the model generates.
Table 2.18 reports the corresponding H-L strategy. As one can see, even such a simple strategy
generates significant alpha relative to existing option-based factors. However, a per-group
analysis, see Tables 2.19-2.23, indicates that, in fact, only the micro-group delivers significant
alpha, in stark contrast to the case of CNN, see Tables 2.4-2.8.

We now turn to a simpler non-linear model, referred to as NN1 in the sequel: A single-
hidden layer perceptron (a fully connected neural network). We use a relatively wide hidden
layer of 128 neurons, implying a modest complexity (see Table 2.9). As for the CNNs, we
build an ensemble of 100 randomly initialized NN1 models and find evidence for the same
virtue of ensemble complexity as for the CNN models. Thus, we build our final NN1 model by
averaging across 100 seeds and then build the corresponding H-L portfolios. Table 2.24 studies
whether the NN1-based factor absorbs any significant fraction of the alpha generated by the
CNN models. Comparing with Table 2.3, we see that both alphas significance and magnitudes
are preserved: While NN1 does absorb about 50% of the CNN1 alpha, it absorbs only 25%
of the alpha of more complex CNN4 and CNN5 models. At the same time, Table 2.25 shows
that the NN1 model does not exhibit any alpha relative to the simple CNN1 model. These
findings have two important implications for us. First, they imply a very strong form of the
virtue of complexity, manifesting itself in the ability of CNN4 and CNN5 models to identify
non-linear features that the simpler models cannot capture. Second, ignoring the geometry
of the IV surface and the key locality principle used by CNNs for feature construction leads
to highly inferior performance of the simple NN1 model. Just naively building bigger models
suggested by the complexity principle of [KMZ24] and [Did+23] is not enough: One needs
to exploit the economic structure of the data and build neural architectures that optimally
exploit this structure.

2.5.2. Long only

Short selling might be extremely costly for some stocks, especially less liquid ones. Many
anomalies have been criticized for being difficult to implement for this reason. See [MPP22].
In this section, we investigate the long leg of our strategy, defined as

RH
t+1 =

Nt∑
i=1

Ri,t+1 wi,t , wi,t =
1
R̂ ens

i,t >Qt

N
R̂ ens

i,t >Qt

, (2.7)

where Qt is the 90% percentile of the predicted returns, and N
R̂ ens

i,t >Qt
is the number of

stocks in the upper decile at time t. The performance of this long-only strategy is reported in
Figure 2.15 (cumulative returns plot) and Table 2.16 (regressions statistics) for all stocks. To
emphasize the power of our results, we set an extremely high bar for our long-only strategy
and compute the alphas with respect to the benchmark factors (including all option-based
factors) that are long-short. As one can see, the performance is robust, and alphas are highly
significant. Compared to Table 2.3, complex models lose about half of their alpha and gain
(not surprisingly) a huge exposure to the market portfolio.

2.5. CNN Portfolio Performance 69

2.5.3. Transaction and Short-Sale Costs

Many stock market anomalies and factors have been criticized for generating very high turnover
and hence, their performance being extremely sensitive to transaction costs. Many characteristics-
based portfolios generate negative performance after costs. See, for example, [DNMV23]. As
[Jen+22] show, efficiently exploiting machine-learning-based strategies requires optimizing
portfolio positions to reduce turnover optimally. While it is possible to use the methodology
of [Jen+22] and incorporate costs and turnover directly into our optimization algorithm, in
this paper, we purposely follow a simpler approach and evaluate the performance of (2.5) and
its long-only version (2.7) after costs, without applying position smoothing techniques.

We apply linear transaction fees 17 and short-sale costs to all our portfolios (CNN1, CNN4,
CNN5, NN1, and Ridge) and, for a fair comparison, to all option-based factors from [Neu+22]
against which we benchmark our models. We do not apply fees to the factors that are not
option-based (e.g., momentum, reversal, Fama-French factors), which makes our analysis even
more conservative. Following [CSKS23], we apply the method that accounts for transaction
costs at a portfolio level, which is described below. At a given time t, denote wt ∈ RNt the
weight vector with coordinates

wi,t =
1
R̂ ens

i,t >Qt

N
R̂ ens

i,t >Qt

−
1
R̂ ens

i,t <qt

N
R̂ ens

i,t <qt

, (2.8)

i.e., our portfolios (CNN1, CNN4, CNN5, NN1, and Ridge) are equal-weighted, and, at a given
t, all positive (negative) weights sum up to 1 (-1). We abuse the notation and use Nt ∪Nt+1

to denote the set of stocks available for trading at times t and t+ 1. Then, the unit cost (per
dollar of investment) of rebalancing and short-selling at time t+ 1 is given by

f̄t+1 =
∑

i∈Nt∪Nt+1

(fi|wi,t+1 −
1 + ri,t+1

1 + rt+1
wi,t|+ (−wi,t)

+θi)

= θi +
∑

i∈Nt∪Nt+1

fi|wi,t+1 −
1 + ri,t+1

1 + rt+1
wi,t|,

(2.9)

where rt+1 stands for the total return on the long-short portfolio with weights defined in (2.8)
and x+ = max(x, 0). Notice that we used that weights set at time t change from t to t + 1

relative to the total portfolio value by
1+ri,t+1

1+rt+1
. This reflects the fact that the security value

in the portfolio compounds from t to t+1, and the portfolio value compounds from t to t+1
as a whole. For simplicity, we assume that short-sale costs are paid out at the beginning
of each holding period (this is why we use wi,t in the (−wi,t)

+θi term). We also used that∑
i∈Nt∪Nt+1

(−wi,t)
+ = 1 by definition (2.8). Now, let It denote the total investment value

of the portfolio at time t. The investment value evolves from t+ 1 to t+ 2 as follows:

It+2 = It+1(1− f̄t+1)rt+2, (2.10)

where rt+2 is a pre-fee gross return on the portfolio of stocks between t + 1 and t + 2, and
It+1 is pre-(t+1)-rebalancing investment value. Regrouping, we get the net-of-fee net return
on the portfolio

It+2

It+1
− 1 = (1− f̄t+1)rt+2 − 1. (2.11)

This simple identity allows us to deduct linear transaction costs without keeping track of the
investment value but by discounting net-of-fee returns only.

We set transaction costs fi for a stock i in the micro-cap segment to be two times the
cost level for other segments so that

fi = (1 + 1i∈microcap)fbase (2.12)

17Restricting the analysis to linear transaction costs abstracts from important price impact
considerations, see [Jen+22].

70 Chapter 2. Deep Learning from Options Implied Volatility

and we investigate two settings: fbase = 0.001 (ten basis points (bps)) and fbase = 0.002
(twenty bps). To account for costly short-selling, we assume a fixed monthly cost of

θi = fi. (2.13)

For fbase = 0.002, this corresponds to 40 bps (= 4.8% per annum) short-sale cost for
micro-stocks and 20 bps (=2.5% per annum) short-sale cost for non-micro stocks.18

Again, to ensure a fair comparison, we apply the same fee structure to all option-based
factor portfolios from [Neu+22], and we do not apply fees to other factors, which adds to the
challenge for CNN-based portfolios to maintain their superiority.

Tables 2.26 to 2.37 present the performance of long-short portfolios net of linear transac-
tion costs and short-sale fixed monthly costs, at two different cost levels: 10 bps (and 20 bps
for the micro-cap segment) and 20 bps (and 40 bps for the micro-cap segment). In both cases,
the micro-cap segment shows high and significant net-of-fee excess returns for CNNs, and,
notably, CNN4 also exhibits consistent excess performance in the not-micro-cap segment at
5% (10%) significance level for the 10 (20) bps cost level. On the other hand, the performance
of NN1 and the ridge model diminishes, indicating that it’s not solely the micro-cap segment
that drives excess returns for CNNs. Overall, CNN4 withstands tests with conservative linear
transaction and short-sale costs, even outside the micro-cap segment.

2.6. Principal Linear Features

Despite the abundance of data and the recent emergence of the “factor zoo” with numer-
ous characteristics identified as return predictors, predictive relationships in economic and
financial data are commonly believed to be sparse. While characteristic-based sparsity (the
hypothesis that only a few characteristics matter for economic relationships) is likely an il-
lusion [GLP21], many papers argue that there exists some form of “linear feature sparsity”,
usually formulated in terms of the principal components [KNS20]. Namely, only a few top
principle components are believed to be responsible for most of the predictable variation in
returns.

Literature on the predictive content of the IV surface largely relies on the idea of linear fea-
ture sparsity and studies only a small number of signals represented as linear transformations
of the IV surface, for instance, CIV, PIV, IVSatm, IVSotm, and related option characteristics
described above are all examples of linear transformations of the IV surface. It is thus natural
to ask a more general question of whether it is possible to use some non-parametric statistical
techniques to extract relevant, linear combinations of the IV surface with the most predictive
content.19 Under the linear feature sparsity hypothesis, we expect that the true dependence

f(IVi,t) = E[Ri,t+1|IVi,t] (2.14)

of expected returns on implied volatilities is given by a low-rank function, as formalized in
the following definition.

Definition 2. Let S ⊆ Rd. A function f : S → R is said to have rank r on S if there exists
a low-rank matrix M ∈ Rr×d, r < d, and a function g : MS → R such that f(x) = g(Mx)
∀x ∈ S.

18These estimates are very conservative. According to [Da02], most stocks have short-selling
costs below 1% per annum.

19One common way of detecting sparsity in a non-linear model is by measuring feature
importance. If most features get a low importance score, then one can conclude that the
model is effectively sparse. The standard way of measuring feature importance is based on
the Shapley value. See, e.g., [LL17]. This approach is designed to measure the importance of a
given feature that is expected to contain predictive information. This is the case for standard
stock characteristics such as momentum, value, reversal, etc. (see, e.g., [Jen+22]). However,
in the case of the IV surface, the features are individual IVs. Hence, it is unlikely that a given
IV for a specific (moneyness, maturity) combination contains distinct predictive information,
and removing just one point on the IV surface will likely not impact model performance.

2.6. Principal Linear Features 71

In the context of our machine learning task, x̂ = Mx ∈ Rr is the r-dimensional vector
of linear features, i.e., those linear transformations of x that matter for the function f . To
determine whether a given function is low-rank, we will use the following observation from
[CDW14] and [Rad+22]:

Lemma 2.6.1. Let S ⊂ Rd be an open subset and f(x) : S → R be a real analytic function
such that ∇f(x) is bounded on S. Let also X be a random vector taking values in S, such
that its density p(x) : S → R+ is Lebesgue-almost surely positive on S. Define

M∗ = E[∇f(X)∇f(X)′] ∈ Rd×d . (2.15)

Suppose that rankM∗ = r, and let M∗ = UDU ′ be its eigenvalue decomposition, where
D = diag(λ1, · · · , λr) is the vector of non-zero eigenvalues of M∗ and U ∈ Rd×r is the
matrix of corresponding eigenvectors. Then, for Lebesgue almost every x0, g(y) = f((I −
UU ′)x0 + Uy) satisfies f(x) = g(U ′x) ∀x ∈ S. Conversely, any function f : S → R of rank
r has rankE[∇f(X)∇f(X)′] ≤ r. Furthermore, if f(x) = g(Mx) where M ∈ Rr×d has rank
exactly r and g(y) is real analytic on MS and the functions ∇yig(y), i = 1, · · · , r, are linearly
independent, then, rankE[∇f(X)∇f(X)′] = r.

This lemma motivates the following definition:

Definition 3. We refer to the eigenvectors of the gradient outer product matrix (2.15) as
the principal linear features.

By definition, principal linear features of f are the directions along which the function
varies the most.

We now show how principal linear features can be used to capture a large fraction of
variation of the f function. To state the result, we will make use of the Poincare inequality
[Leo17]: We say that a probability measure p(x)dx on Ω ⊂ Rd satisfies the Poincare inequality
on Ω if there exists a constant C such that

Var[f(x)] ≤ C E[∥∇f(x)∥2] (2.16)

for any continuously differentiable function f. Here, we use this inequality for Gaussian mea-
sure [BL76]: If p(x) is a Gaussian measure with the covariance matrix Σ on Ω = Rn, then
C = λ1(Σ), where λ1 is the largest eigenvalue of Σ. It is possible to prove the following result
using subtle properties of the Gaussian measures.

Lemma 2.6.2. Let M∗ = UDU ′ be the eigenvalue decomposition of M∗ and Up the matrix
whose columns are the top p eigenvectors of M∗. Suppose that the data x ∼ N(µ,Σ) is
normally distributed. Let fp(y) : Rp → R be defined via fp(y) = E[f(x)|U ′

px = y]. Then,

E[(f(x)− fp(U
′
px))

2] ≤ λ1(Σ)Λ(M∗) , (2.17)

where

Λ−p(M∗) =

d∑
i=p+1

λi(M∗) . (2.18)

Lemma 2.6.2 shows that fp(U ′
px) represents a good approximation to f(x) as long as

the residual variation Λ−p(M∗) is sufficiently small. The linear feature sparsity hypothesis is
then simply a claim about the quality of the approximation of Lemma 2.6.2. The smaller the
residual variation Λ−p(M∗), the more accurate the approximation is. To validate our analysis,
we verify that Λ−p(M∗) is reasonably small for each CNNi model and each p of interest.

Algorithm 1 describes the procedure of building the low-rank counterparts of the ensemble
function fens(x) = 1

K

∑K
k=1 f(x; ŵ∞(wo(k))). Using p-predictions obtained with fens

p (x)
counterparts, we build long-short portfolios and compare them by the Sharpe ratio.

Figure 2.5 shows the out-of-sample Sharpe ratios of this strategy as a function of p.
We find a striking virtue of feature complexity: The out-of-sample performance is monotone
increasing for p > 50, and the increase is slow. Even for p = 100, the Sharpe ratio is still
significantly below the full model (corresponding to p = 180 linear features). Even for the low
complexity CNN1 model, p = 100 recovers only about half of the full model Sharpe ratio, and
the effect is even stronger for more complex models. It means that we need more than 100
linear features of the IV surface to capture the predictive relationships identified by the CNN
models.

72 Chapter 2. Deep Learning from Options Implied Volatility

Algorithm 1 Linear Feature Sparsity

Require: Full sample of IVi,t ∈ R18×10 for each stock i ∈ Nt available at time t, and
ensembles of CNNs fens

t (·) trained until t for all t ∈ T .
1: Compute the total number of IVi,t observations in the sample N =

∑T
t Nt,

2: Compute average outer gradient product M = 1
N

∑
i,t∇f

ens
T (IVi,t)∇fens

T (IVi,t)
′,

3: Perform eigenvalue decomposition of M = UDU ′,
4: for p ∈ [1, . . . , 180] do
5: Pick eigenvectors Up corresponding to p largest eigenvalues, and denote U−p the

remainder,
6: Let vec(x) be the vertical stack of flattened IVi,t for each i, t, i.e. vec(x) ∈

RN×180×1,
7: Compute µy = 1

N

∑
i,t Upvec(x),

8: Compute µz = 1
N

∑
i,t U−pvec(x),

9: Compute Σx = Cov(vec(x), vec(x)) ∈ R180×180,
10: Compute Σz = U ′

−pΣxU−p,
11: Compute Σzy = U ′

−pΣxUp,
12: Compute Σy = U ′

pΣxUp,

13: Compute Σ̂z = Σz − ΣzyΣ
−1
y Σyz,

14: Sample ϵ ∼ N (0, 1) ∈ Rn×(180−p),
15: for i, t do
16: Compute vec(yi,t) = U ′

pvec(xi,t), where

17: Sample Nε realisations of vec(z|yi,t,k) = µz+ΣzyΣ
−1
y (vec(yi,t)−µy)+Σ̂

1/2
z εk,

k = 1, ..., Nε,
18: Estimate fens

p,t (yi,t) = E
[
fens
t (z + Upyi,t)|yi,t

]
= 1

Nε

∑Nε
k=1 f

ens
t (z|yi,t,k +

Upyi,t).
19: end for
20: end for
21: We end up with N new fens

p,t (yi,t) for p-predictions (for each p of interest) for each
i, t by which new p-portfolios are sorted.

2.7. Conclusion 73

0 25 50 75 100 125 150 175
P

0.0

0.5

1.0

1.5

2.0

2.5

Sh
ar

pe
 R

at
io

CNN1
CNN4
CNN5

Figure 2.5: The figures above show the Sharpe Ratio of our H-L strategy (2.5)
as a function of P, the number of principal features, based on the function fP (x)
constructed using Algorithm 1. The experiment is run separately for each of
the CNN1, CNN4, and CNN5 models.

2.7. Conclusion

The remarkable growth of the factor zoo [FGX20], [BHJ23] over the last few years has been
accompanied by the development of machine learning methods for asset pricing [GKX20b].
As [KMZ24] and [Did+23] explain, this is no coincidence: Factor zoo is a natural consequence
of complexity: A highly non-linear predictive relationship between returns and characteristics.
The most naive and direct way of exploiting this complexity is to build large, unstructured
non-linear models such as simple, fully connected neural networks of [GKX20b] or the random
feature models of [KMZ24] and [Did+23]. While this approach works well with structured
stock characteristics, it is unsuited for unstructured data, such as the IV surface. To deal
with such data, one needs to develop tools and ML algorithms that exploit the data structure
optimally. In this paper, we take a step in this direction and propose Convolutional Neural
Networks (CNN) architecture designed specifically to extract features of the IV surface that
respect locality, as economic theory requires. We show that CNNs can successfully identify
highly complex non-linear relationships that cannot be learned with naive, fully-connected
networks. Importantly, we find that consistent with the existing evidence for image data
[LPB17], the loss landscape of the CNN is extremely non-convex and is characterized by a
very large number of local minima. All those minima contain information about returns.
Exploiting them requires using an ensemble of CNNs, and we document a very large virtue of
ensemble complexity. Gaining insights into the incremental information offered by the model
as it converges to different local minima for other return prediction problems (including even
simpler ones, with the fully connected networks of [GKX20b]) is an important direction for
future research.

Conventional wisdom based on the numerous manually constructed option characteristics
suggests that a few linear features of the IV surface (e.g., level, slope, skew, and convexity)
should fully summarize its predictive content. To test this “linear feature sparsity hypothesis,”
we introduce a novel object in financial machine learning, the gradient outer product, whose
eigenvectors, the principal linear features, are natural analogs of principal components for ma-
chine learning [Rad+22]. We find no evidence for linear feature sparsity and show that a very
large number (more than 100) of linear features are necessary to explain the predictive content
of IV, manifesting a very high feature complexity. Investigating principal linear features for
other ML models and datasets might bring interesting novel insights into the different notions

74 Chapter 2. Deep Learning from Options Implied Volatility

of sparsity in return prediction.

2.8. Appendix - Data Preprocessing 75

2.8. Appendix - Data Preprocessing

We get option implied volatility surfaces from the Option Metrics IvyDB. In IvyDB, each
option chain is already normalized across expiration dates and deltas20 (11 and 34 different
values, respectively). We remove all rows with 10-days-to-expiration implied volatility values
due to the high number of missing values at the beginning of the time frame. For each option
implied volatility surface, we end up with a 2D matrix of size 10× 34.

1995 1998 2001 2004 2007 2010 2013 2016 2019 2022
Year

200K

400K

600K

800K

1000K

1200K

#
 O

bs
er

va
ti

on
s

Incomplete Images
Missing Images
Complete Images

Figure 2.6: The figure above shows our dataset sample size. On the y-axis,
we show the number of observations, while on the x-axis, we show the corre-
sponding year. One observation is a single image obtained by stacking implied
volatility surfaces for a given pair of stock and date. Incomplete Images are
those observations (stock and date pair) where some implied volatility value is
missing, given a particular expiration date and delta pair. Missing Images are
the sample where the stock and date pair appear in the dataset but have all
empty values. Complete Images are the correctly built images where the implied
volatility surfaces are complete.

We link the CRSP dataset together with the CRSP delisting dataset, both available in
WRDS, to take into account the delisting return as explained in subsection 2.3.1. As the
Option Metrics database uses its own security identifier and CRSP uses the PERMNO to
identify an asset uniquely, we merge these datasets thanks to a linking dataset provided by
WRDS. From the linking dataset, we remove ”bad” entries:

1. If an entry has a score lower than 1 is removed from our sample. A score of 1 means
a 100% of mapping confidence.

2. Each entry has a starting date (sdate), ending date (edate), Option Metrics ID (secid),
and the PERMNO. We double-sort the dataset using sdate and PERMNO. If two
consecutive entries have the same PERMNO, but the first (preceding) row has edate
higher than the second (following) row sdate, then the PERMNO is removed from our
sample as well.

20In other words, each option implied volatility surface in IvyDB is interpolated across
moneyness and maturities.

76 Chapter 2. Deep Learning from Options Implied Volatility

Table 2.1: The table below shows our preprocessed Option Metrics statistics.
Namely, Incomplete Images are those observations (stock and date pair) where
some implied volatility value is missing, given a particular expiration date and
delta pair. Missing Images are the sample where the stock and date pair appear
in the dataset but have all empty values. Complete Images are the correctly
built images where the implied volatility surfaces are complete.

Year Missing (%) Incomplete (%) Complete (%) Total

1996 3289 (0.68%) 0 (0.0%) 477674 (99.32%) 480963
1997 5975 (1.03%) 0 (0.0%) 574945 (98.97%) 580920
1998 8789 (1.33%) 2 (0.0%) 651291 (98.67%) 660082
1999 11665 (1.7%) 10 (0.0%) 673334 (98.3%) 685009
2000 19943 (3.18%) 15 (0.0%) 606628 (96.81%) 626586
2001 28265 (4.84%) 6 (0.0%) 555407 (95.16%) 583678
2002 27345 (4.59%) 2 (0.0%) 568126 (95.41%) 595473
2003 10304 (1.84%) 5 (0.0%) 548341 (98.15%) 558650
2004 6137 (1.02%) 6 (0.0%) 593240 (98.98%) 599383
2005 6203 (0.94%) 3 (0.0%) 655095 (99.06%) 661301
2006 5991 (0.84%) 4 (0.0%) 706582 (99.16%) 712577
2007 8783 (1.12%) 5 (0.0%) 776060 (98.88%) 784848
2008 29436 (3.6%) 8 (0.0%) 788981 (96.4%) 818425
2009 40659 (5.04%) 7 (0.0%) 766591 (94.96%) 807257
2010 20822 (2.47%) 7 (0.0%) 821281 (97.53%) 842110
2011 26609 (2.94%) 9 (0.0%) 877955 (97.06%) 904573
2012 38756 (4.19%) 6 (0.0%) 886891 (95.81%) 925653
2013 31810 (3.22%) 3 (0.0%) 956879 (96.78%) 988692
2014 32621 (3.1%) 0 (0.0%) 1020567 (96.9%) 1053188
2015 51663 (4.78%) 0 (0.0%) 1030061 (95.22%) 1081724
2016 60616 (5.45%) 3 (0.0%) 1052121 (94.55%) 1112740
2017 53694 (4.95%) 1 (0.0%) 1031601 (95.05%) 1085296
2018 44705 (4.14%) 3 (0.0%) 1034656 (95.86%) 1079364
2019 54570 (5.1%) 1 (0.0%) 1016092 (94.9%) 1070663
2020 57409 (5.33%) 2 (0.0%) 1020423 (94.67%) 1077834
2021 20653 (1.63%) 0 (0.0%) 1248461 (98.37%) 1269114

2.9. Appendix - More about Convolutional Neu-
ral Networks

2.9.1. The Convolution Function

In this section, we present the convolution operation in continuous time and subsequently
expound upon its counterpart in the discrete domain. Convolution is a fundamental concept
in mathematics and is used in many areas of science and engineering to analyze and manipulate
signals and images. The operation involves taking a smaller function, called a kernel or filter,
and sliding it over a larger function, called the input, to compute the area of overlap at each
point. This process can be thought of as extracting local features from the input function and
creating a third function that captures the interactions between the two functions. Formally,
if we define the kernel function with g(t) and the signal as f(t), then the convolution function
is defined as

(f ∗ g)(t) :=
∫ ∞

−∞
f(τ)g(t− τ)dτ. (2.19)

One can imagine this operation as “sliding” (to the right) the kernel function while the
signal function stays still. At some point, the kernel function g(t) will start overlapping with
the signal function f(t). The area of overlap will be less or bigger depending on the “shape”

2.9. Appendix - More about Convolutional Neural Networks 77

of the two functions. Equation 2.19 defines exactly the area where the two functions intersect.
Figure 2.19 shows an example of convolution in continuous time.

We now introduce the definition of convolution in case the signal is discrete:

(f ∗ g)(t) :=
∞∑

τ=−∞
f(a)g(t− a). (2.20)

While in signal processing, the convolution function can be used to filter, smooth, or
extract features from signals, in image processing and machine learning, an edge-detection
kernel can be convolved with an image to highlight edges and contours. However, in this case,
we will have a two-dimensional signal (the image) I and a two-dimensional kernel K

(I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n). (2.21)

Starting from the top-left corner of the image matrix and moving clockwise, the 2D kernel
extracts features from the matrix. Figure 2.8 illustrates an example of 2D convolution applied
to a 6× 6 matrix using a 3× 3 kernel. In this case, the kernel captures the first 3× 3 block of
the image matrix (highlighted in yellow) and generates a feature mapping output for the first
cell by computing 23+255+34−66−67−89 = 90. The kernel then moves by 2 cells to capture
the number -154. The distance by which the kernel moves is referred to as the stride. Finally,
the last column is dropped as the kernel wouldn’t fit, and no padding was specified. Padding
refers to adding additional pixels or values around the edges of the input image to increase its
spatial dimensions and prevent the output feature maps from becoming too small. By adding
padding, we can control the spatial resolution of the output feature maps and ensure that the
features extracted by the convolutional layers are more representative of the original input.
Normally, in the machine learning literature, the following forms of padding are used:

• Zero-padding, where additional zero values are added to the edges of the input data.

• Reflective padding, where the values at the edges of the input are reflected to create
the additional padding.

We show in Figure 2.9 a more concrete example using a popular edge detection algorithm
in computer vision (see [Dav75]). Like the Sobel kernel, there are many others, like the
Gaussian kernel and the Laplacian kernel. probably expand on the conclusion

2.9.2. The Activation Function

Now that we have a basic understanding of image processing and discrete convolution, we can
discuss using activation functions in deep learning. These functions are non-linear and are
applied element-wise to the tensor, determining how a neuron should ”fire.” In our work, we
exclusively use the Rectified Linear Unit (ReLU) activation function, defined as

z = max{0, x} (2.22)

The ReLU activation function is popular in the literature due to its simplicity and ability
to create sparsity by setting negative values to zero. This can help reduce overfitting and
improve generalization. Additionally, the ReLU function is inspired by real biological neuron
models, such as the leaky integrate-and-fire model (see, e.g., [AL01], [DA05], and [GB10]).

Figure 2.10 shows an example: By applying the ReLU function, the negative values are
set to zero, leaving only the positive values. This helps highlight the important features in
the input image and can improve the neural network’s performance.

2.9.3. The Max-Pooling Function

Empirical data is often noisy, and images are no exception to this rule. When working with
image data, noise can come from various sources, such as imperfect sensors, compression
algorithms, or environmental factors. Moreover, the dimension of these images can grow

78 Chapter 2. Deep Learning from Options Implied Volatility

exponentially when applying CNNs. To this end, [LeC+98] has first introduced the max-
pooling function.

The max-pooling function selects the maximum value within each pooling region, making
the pooling operation less sensitive to small variations in the input and more resistant to
noise. By reducing the dimensionality of the data, the function also helps lower the network’s
computational cost while improving performance.

Figure 2.11 shows an example of this function. At the top, a max-pool with a kernel size
of 2×2 is applied to an input matrix of 2×2, giving out a single number; then, at the bottom,
the same kernel is applied to a 4× 2 matrix, giving in output a 2× 1 vector.

2.9.4. The Batch-Normalization Function

When training CNNs, finding a local minimum convergence might be slow due to the distri-
bution change for each layer in the deep architecture. While data normalization is a common
practice in machine learning, the hidden layers’ input is not normalized due to random pa-
rameter initialization and non-linearities. Because these inputs are not normalized by they
are rather shifted, [IS15b] call this phenomenon the internal covariate shift. The Batch-
Normalization function accelerates convergence dramatically and acts as a regularizer, re-
placing the need for further heuristics techniques, e.g., Dropout. The Batch-Normalization
function is applied at each mini-batch, and Algorithm 2 sums up the procedure.

Algorithm 2 Batch Normalization Algorithm

Require: Mini-batch of data {x1, x2, ..., xm}, trainable parameters γ and β, and a
small constant ϵ

1: µ = 1
m

∑m
i=1 St

2: σ2 = 1
m

∑m
i=1(St − µ)2

3: x̂i =
St−µ√
σ2+ϵ

4: Rt+1 = γx̂i + β

2.9.5. The Global Average Pooling Function

As we approach the end of the CNN architecture, it is crucial to transform the input to the
final layer into a vector right before producing a regression or classification output.

This transformation process, often referred to as ”flattening” or ”vectorization”, involves
taking the multi-dimensional output from the previous layer (usually a feature map or activa-
tion map) and converting it into a one-dimensional vector. This is an essential step because
the final layer, which is typically a fully connected layer (also known as a dense layer), expects
its input data to be in the form of a vector. This flattened vector is then fed into the final layer
to produce the desired output, such as class probabilities for classification tasks or continuous
values for regression tasks.

Flattening the image into a one-dimensional vector can lead to several issues when using
images as input to a neural network. One problem is that flattening the image discards the
spatial structure of the image, which can be important for capturing meaningful patterns in
the data. In addition, flattening the image can result in a very high-dimensional input, which
can increase the number of parameters in the model and make it more difficult to train.

In this work, we use the Global Average Pooling (GAP) [LCY13], a technique that ad-
dresses these issues by summarizing the feature maps produced by a convolutional layer using
an average pooling operation. Unlike flattening, GAP preserves the feature maps’ spatial
structure by computing each feature map’s average value over its entire spatial extent. This
reduces the dimensionality of the data, which can improve the model’s efficiency while reducing
the risk of overfitting.

2.10. Appendix - Results 79

Table 2.2: Annualized Sharpe Ratio Minimum & Maximum Values of the curves
shown in Figure 2.13 for CNN1, CNN4 and CNN5 long-short portfolios from
2003 to 2022.

SRfull SRmega SRlarge SRsmall SRmicro SRnot micro

CNN1
Min 0.756 -0.181 -0.038 0.371 1.506 0.175
Max 1.641 0.201 0.534 0.962 2.163 1.059

CNN4
Min 1.477 -0.156 0.140 0.647 1.300 0.757
Max 2.724 0.204 0.613 1.502 2.365 1.470

CNN5
Min 0.881 -0.204 -0.340 0.096 1.111 0.001
Max 2.501 0.174 0.511 1.383 2.184 1.377

Furthermore, GAP has been shown to have additional benefits, such as better resistance
to adversarial attacks and better generalization performance than flattening. This is because
GAP encourages the model to learn features that are robust to spatial transformations of the
input, which can help the model generalize better to new data.

Figure 2.12 illustrates a shallow CNN consisting of a sequence of operations: a single
convolutional layer with a ReLU activation function, followed by a max-pooling layer, and
finally, a GAP layer before the input is fed into the dense network.

2.10. Appendix - Results

80 Chapter 2. Deep Learning from Options Implied Volatility

Table 2.3: All stocks, long-short portfolio. Monthly OLS regression of the
CNN1, CNN4, and CNN5 portfolios on the factor model that includes CIV,
PIV, IVSatm, IVSotm, Skew, VOV, ∆CIV, and ∆PIV factor portfolios from
[Neu+22], along with the standard Fama-French factors. The intercept coeffi-
cient is reported in monthly return terms, with corresponding standard errors
in parentheses.

CNN1 CNN4 CNN5

Intercept 0.008∗∗∗ 0.012∗∗∗ 0.011∗∗∗

(0.002) (0.002) (0.002)
rM − rf -0.047 0.016 -0.048

(0.061) (0.056) (0.055)
SMB -0.183∗ -0.040 0.021

(0.100) (0.090) (0.089)
HML -0.085 -0.082 -0.132∗

(0.085) (0.077) (0.076)
2-12 Momentum -0.097∗∗ -0.081∗ -0.107∗∗

(0.046) (0.042) (0.041)
ST Reversal -0.074 -0.137∗∗ -0.175∗∗∗

(0.067) (0.060) (0.060)
LT Reversal 0.153∗ 0.173∗∗ 0.262∗∗∗

(0.087) (0.078) (0.077)
CIV 0.519∗∗ 0.120 0.053

(0.231) (0.209) (0.206)
PIV -0.304 -0.025 -0.014

(0.236) (0.213) (0.210)
IVSatm -0.356∗∗∗ 0.088 0.245∗∗

(0.118) (0.106) (0.105)
IVSotm 0.679∗∗∗ 0.181 0.170

(0.133) (0.121) (0.119)
Skew 0.600∗∗∗ 0.244∗∗ 0.135

(0.125) (0.113) (0.111)
VOV 0.159∗ 0.139∗ 0.144∗

(0.084) (0.076) (0.075)
∆ CIV 0.055 0.288∗∗∗ 0.182∗

(0.119) (0.107) (0.106)
∆ PIV 0.135 0.170∗ 0.086

(0.108) (0.098) (0.096)

Observations 227 227 227
R2 0.657 0.367 0.344
Adjusted R2 0.634 0.325 0.301
Residual Std. Error 0.023 0.020 0.020
F Statistic 29.003∗∗∗ 8.766∗∗∗ 7.949∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

2.10. Appendix - Results 81

2 1 0 1 2 3

g(t) f(t)

(a) t

2 1 0 1 2 3

g(t) f(t)

(b) t

2 1 0 1 2 3

f(t) g(t)

(c) t

2 1 0 1 2 3

f(t) g(t)

(d) t

2 1 0 1 2 3

(f * g)(t)

(e) t

Figure 2.7: The figures above show the convolution operation (f ∗g)(t) in contin-
uous time. In this particular example, the kernel function, in red, g(t), is equal
to the input signal, in blue, f(t), and they share the same area. In information
theory, this is a known example where the convolution of two “rectangular”
functions gives an output a “triangle.” The more you slide the kernel function
to the right, the kernel g(t) will start overlapping with the signal f(t). The
overlapping area will start increasing (b), reaching the maximum at (c), and it
will smoothly decay (d). The final figure (e) shows the convolution result.

82 Chapter 2. Deep Learning from Options Implied Volatility

∗ = -321

Feature Mapping

90 -154

130

0

1 0 -1

1 -1

1 0 -1

3 x 3 Kernel

23 200 66 90 99 2

255 34 67 253 55 17

34 0 89 128 222 24

165 155 168 129 48 35

189 33 148 44 45 255

208 27 56 78 36 98

Kernel Size

Stride Size Drop

S
tri

de
 S

iz
e

6 x 6 Image

D
ro

p

Figure 2.8: The figure above shows the convolution operation. A kernel filter
with size 3x3 and stride equal to two is convolved to the 2-dimensional image
matrix. The kernel filter moves clockwise and projects the output value to the
Feature Mapping matrix. A padding is necessary to obtain the convolution in
the figure. In this case, we show the ”same” padding. Another popular option
in literature is not to use padding at all. In case of no padding, the last column
would have been dropped, and the feature mapping matrix would have been a
2x2 matrix.

Figure 2.9: The figure above shows an example of an edge detection algorithm
using the Sobel operator.

2.10. Appendix - Results 83

Feature Mapping

-321

90 -154

130

Output

0

90 0

130

Figure 2.10: The figure above shows the output of a ReLU activation function
applied to a 2× 2 matrix.

0

90 0

130
130

1

45 88

15 88

255

193 23

100

255

Figure 2.11: The figure above shows the max-pooling function. In this particular
example, we show a max-pooling function with a kernel 2× 2. That means the
function extracts the maximum value in a pool as big as 2 × 2. Hence, the
output of a 2× 2 input has size 1× 1, and similarly, the output of a 4× 2 input
has size 2× 1.

84 Chapter 2. Deep Learning from Options Implied Volatility

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 1

0 0 0

0 0

0 0 0

1 0 -1

1 0 0

1 0 0

1 0 -1

1 0 0

1 0 0

1 0 -1

1 -1

1 0 -1

∗

102 201 759 165

0 267 384 666

465 504 387 144

99 444 132 135

327 -985 -425 1114

66 -963 -3 1302

-275 -339 270 -39

87 -108 729 -411

102 201 759 165

0 267 384 666

465 504 387 144

99 444 132 135

327 0 0 1114

66 0 0 1302

0 0 270 0

87 0 729 0

267 759

504 387

327 1302

87 729

=

Convolution layer Activation
function

Pooling
layer

Kernel 1 (3x3)

Kernel N (3x3)

1 13 67 33 56 102

56 34 67 253 55 17

99 0 89 128 222 24

78 155 168 129 48 35

90 33 148 44 45 255

213 27 56 78 36 98

236 77 88 111 128 36

225 34 67 253 55 17

87 0 89 128 222 24

39 155 168 129 48 35

159 33 148 44 45 255

62 27 56 78 36 98

23 200 66 90 99 2

255 34 67 253 55 17

34 0 89 128 222 24

165 155 168 129 48 35

189 33 148 44 45 255

208 27 56 78 36 98

Implied Volatility Surface

Delta

Lookback horizon

E
xp

ira
tio

n
da

ys

= 479

611

Figure 2.12: The figure above shows a building block of a CNN model. From
left to right, we have the input image decomposed in an RGB tensor. To this
tensor, a series of convolutions are applied using N different kernels, in this case,
with size 3x3. Next, a ReLU activation function is applied to the previous step
result. Finally, to reduce the image’s complexity even more, a Pooling Layer is
applied. The figure shows a classic MaxPool with kernel and stride size equal
to two.

0 20 40 60 80 100
Ensembles

0.0

0.5

1.0

1.5

2.0

Sh
ar

pe
 R

at
io

Full
Mega
Large
Small
Micro
Not Micro

(a)

0 20 40 60 80 100
Ensembles

0.0

0.5

1.0

1.5

2.0

2.5

Sh
ar

pe
 R

at
io

Full
Mega
Large
Small
Micro
Not Micro

(b)

0 20 40 60 80 100
Ensembles

0.0

0.5

1.0

1.5

2.0

2.5

Sh
ar

pe
 R

at
io

Full
Mega
Large
Small
Micro
Not Micro

(c)

Figure 2.13: Sharpe ratios of ensemble-based returns (2.5) as a function of en-
semble size. In particular, Figures 2.13a, 2.13b, and 2.13c show the performance
of CNN1, CNN4, and CNN5, respectively.

2.10. Appendix - Results 85

2004 2006 2008 2010 2012 2014 2016 2018 2020 2022
Year

100

101

In
ve

st
m

en
t

Va
lu

e
($

)

IVSATM
IVSOTM
SKEW
SPY
CNN1_100
CNN4_100
CNN5_100
CNN1_1
CNN4_1
CNN5_1

Figure 2.14: Cumulative Returns of the market neutral (long-short) strat-
egy (2.5) for a full universe of stocks. CNNi K refers to the ensemble of
K CNNi models. IVSATM, IVSOTM, and SKEW are the top three option
characteristics-based factors from [Neu+22] in terms of Sharpe ratio, and SPY
is the S&P500 ETF.

86 Chapter 2. Deep Learning from Options Implied Volatility

Table 2.4: Mega-cap segment, long-short portfolio. Monthly OLS regres-
sion of the CNN1, CNN4, and CNN5 portfolios on the factor model that includes
CIV, PIV, IVSatm, IVSotm, Skew, VOV, ∆CIV, and ∆PIV factor portfolios from
[Neu+22], along with the standard Fama-French factors. The intercept coeffi-
cient is reported in monthly return terms, with corresponding standard errors
in parentheses.

CNN1 CNN4 CNN5

Intercept -0.001 -0.001 -0.003
(0.002) (0.002) (0.002)

rM − rf 0.065 0.107 0.062
(0.073) (0.073) (0.071)

SMB 0.070 0.117 0.015
(0.119) (0.119) (0.115)

HML -0.061 -0.009 0.093
(0.102) (0.101) (0.098)

2-12 Momentum 0.036 -0.029 -0.016
(0.055) (0.055) (0.053)

ST Reversal -0.238∗∗∗ -0.154∗ -0.202∗∗∗

(0.080) (0.079) (0.077)
LT Reversal 0.159 0.198∗ 0.124

(0.103) (0.103) (0.100)
CIV -0.443 -0.331 -0.444∗

(0.276) (0.274) (0.267)
PIV 0.206 0.242 0.376

(0.282) (0.280) (0.272)
IVSatm -0.326∗∗ 0.031 0.195

(0.141) (0.140) (0.136)
IVSotm 0.232 -0.165 0.046

(0.159) (0.158) (0.154)
Skew 0.666∗∗∗ 0.309∗∗ 0.147

(0.149) (0.148) (0.144)
VOV 0.127 0.165∗ 0.209∗∗

(0.100) (0.099) (0.097)
∆ CIV 0.280∗∗ 0.246∗ 0.137

(0.142) (0.141) (0.137)
∆ PIV 0.311∗∗ 0.106 -0.081

(0.129) (0.128) (0.124)

Observations 227 227 227
R2 0.523 0.100 0.098
Adjusted R2 0.491 0.040 0.038
Residual Std. Error 0.027 0.027 0.026
F Statistic 16.591∗∗∗ 1.676∗ 1.636∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

2.10. Appendix - Results 87

Table 2.5: Large-cap segment, long-short portfolio. Monthly OLS regres-
sion of the CNN1, CNN4, and CNN5 portfolios on the factor model that includes
CIV, PIV, IVSatm, IVSotm, Skew, VOV, ∆CIV, and ∆PIV factor portfolios from
[Neu+22], along with the standard Fama-French factors. The intercept coeffi-
cient is reported in monthly return terms, with corresponding standard errors
in parentheses.

CNN1 CNN4 CNN5

Intercept -0.000 -0.001 -0.001
(0.002) (0.002) (0.002)

rM − rf 0.153∗∗ 0.085 0.016
(0.064) (0.058) (0.061)

SMB 0.118 -0.080 0.013
(0.103) (0.095) (0.100)

HML -0.022 -0.118 -0.076
(0.088) (0.081) (0.085)

2-12 Momentum -0.025 -0.052 -0.066
(0.048) (0.044) (0.046)

ST Reversal -0.031 -0.088 -0.159∗∗

(0.069) (0.063) (0.067)
LT Reversal 0.029 0.195∗∗ 0.160∗

(0.090) (0.082) (0.086)
CIV -0.099 -0.180 -0.379

(0.239) (0.219) (0.231)
PIV -0.077 0.176 0.367

(0.244) (0.223) (0.236)
IVSatm -0.451∗∗∗ 0.226∗∗ 0.368∗∗∗

(0.122) (0.111) (0.117)
IVSotm 0.684∗∗∗ -0.094 -0.154

(0.138) (0.126) (0.133)
Skew 0.577∗∗∗ 0.419∗∗∗ 0.375∗∗∗

(0.129) (0.118) (0.125)
VOV -0.060 0.200∗∗ 0.207∗∗

(0.087) (0.079) (0.084)
∆ CIV -0.050 0.114 0.126

(0.123) (0.112) (0.118)
∆ PIV 0.166 -0.150 -0.199∗

(0.112) (0.102) (0.108)

Observations 227 227 227
R2 0.534 0.199 0.194
Adjusted R2 0.503 0.146 0.141
Residual Std. Error 0.023 0.021 0.023
F Statistic 17.321∗∗∗ 3.752∗∗∗ 3.641∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

88 Chapter 2. Deep Learning from Options Implied Volatility

Table 2.6: Small-cap segment, long-short portfolio. Monthly OLS regres-
sion of the CNN1, CNN4, and CNN5 portfolios on the factor model that includes
CIV, PIV, IVSatm, IVSotm, Skew, VOV, ∆CIV, and ∆PIV factor portfolios from
[Neu+22], along with the standard Fama-French factors. The intercept coeffi-
cient is reported in monthly return terms, with corresponding standard errors
in parentheses.

CNN1 CNN4 CNN5

Intercept 0.001 0.005∗∗ 0.005∗∗

(0.002) (0.002) (0.002)
rM − rf -0.013 0.125 0.005

(0.077) (0.079) (0.072)
SMB -0.333∗∗∗ -0.022 0.054

(0.125) (0.129) (0.117)
HML 0.176∗ 0.065 0.006

(0.107) (0.110) (0.099)
2-12 Momentum 0.022 0.007 -0.074

(0.058) (0.060) (0.054)
ST Reversal 0.022 -0.050 -0.109

(0.084) (0.086) (0.078)
LT Reversal -0.022 -0.034 0.152

(0.108) (0.111) (0.101)
CIV 0.347 0.374 0.207

(0.290) (0.298) (0.270)
PIV -0.068 -0.318 -0.181

(0.295) (0.304) (0.275)
IVSatm -0.198 0.059 0.414∗∗∗

(0.147) (0.152) (0.137)
IVSotm 0.511∗∗∗ 0.190 0.081

(0.167) (0.172) (0.155)
Skew 0.540∗∗∗ 0.191 0.121

(0.156) (0.161) (0.146)
VOV -0.007 0.106 0.105

(0.105) (0.108) (0.098)
∆ CIV -0.039 0.011 -0.139

(0.148) (0.153) (0.138)
∆ PIV 0.232∗ 0.124 -0.053

(0.135) (0.139) (0.126)

Observations 227 227 227
R2 0.457 0.132 0.190
Adjusted R2 0.421 0.074 0.136
Residual Std. Error 0.028 0.029 0.026
F Statistic 12.723∗∗∗ 2.297∗∗∗ 3.547∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

2.10. Appendix - Results 89

Table 2.7: Micro-cap segment, long-short portfolio. Monthly OLS re-
gression of the CNN1, CNN4, and CNN5 portfolios on the factor model that
includes the CIV, PIV, IVSatm, IVSotm, Skew, VOV, ∆CIV, and ∆PIV factor
portfolios from [Neu+22], along with the standard Fama-French factors. The
intercept coefficient is reported in monthly return terms, with corresponding
standard errors in parentheses.

CNN1 CNN4 CNN5

Intercept 0.034∗∗∗ 0.041∗∗∗ 0.038∗∗∗

(0.006) (0.006) (0.006)
rM − rf -0.512∗∗∗ -0.389∗ -0.245

(0.187) (0.204) (0.204)
SMB -0.228 0.061 0.291

(0.305) (0.333) (0.332)
HML -0.417 -0.341 -0.456

(0.260) (0.283) (0.283)
2-12 Momentum -0.253∗ -0.376∗∗ -0.378∗∗

(0.141) (0.154) (0.154)
ST Reversal -0.265 -0.639∗∗∗ -0.670∗∗∗

(0.204) (0.222) (0.222)
LT Reversal 0.397 0.434 0.568∗∗

(0.264) (0.288) (0.288)
CIV 1.769∗∗ 0.543 0.459

(0.706) (0.770) (0.769)
PIV -1.351∗ -0.478 -0.666

(0.720) (0.785) (0.785)
IVSatm -0.304 0.553 0.440

(0.359) (0.391) (0.391)
IVSotm 0.858∗∗ 0.385 0.741∗

(0.406) (0.443) (0.443)
Skew 0.372 -0.031 -0.280

(0.381) (0.416) (0.416)
VOV 0.279 1.043∗∗∗ 0.833∗∗∗

(0.255) (0.279) (0.278)
∆ CIV 0.301 0.691∗ 0.774∗

(0.362) (0.394) (0.394)
∆ PIV 0.212 0.370 0.293

(0.329) (0.359) (0.359)

Observations 227 227 227
R2 0.354 0.240 0.219
Adjusted R2 0.312 0.190 0.167
Residual Std. Error 0.069 0.075 0.075
F Statistic 8.305∗∗∗ 4.778∗∗∗ 4.235∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

90 Chapter 2. Deep Learning from Options Implied Volatility

Table 2.8: Not-micro-cap segment, long-short portfolio. Monthly OLS
regression of the CNN1, CNN4, and CNN5 portfolios on the factor model that
includes CIV, PIV, IVSatm, IVSotm, Skew, VOV, ∆CIV, and ∆PIV factor port-
folios from [Neu+22], along with the standard Fama-French factors. The inter-
cept coefficient is reported in monthly return terms, with corresponding stan-
dard errors in parentheses.

CNN1 CNN4 CNN5

Intercept 0.002 0.004∗∗ 0.003∗

(0.002) (0.002) (0.002)
rM − rf 0.061 0.047 0.023

(0.057) (0.051) (0.048)
SMB -0.067 0.017 0.032

(0.093) (0.083) (0.079)
HML 0.018 0.029 -0.012

(0.079) (0.070) (0.067)
2-12 Momentum -0.042 -0.002 -0.026

(0.043) (0.038) (0.036)
ST Reversal -0.059 -0.001 -0.086

(0.062) (0.055) (0.053)
LT Reversal 0.063 0.074 0.147∗∗

(0.080) (0.071) (0.068)
CIV 0.150 -0.076 -0.107

(0.215) (0.191) (0.182)
PIV -0.081 0.130 0.132

(0.219) (0.195) (0.186)
IVSatm -0.303∗∗∗ 0.089 0.286∗∗∗

(0.109) (0.097) (0.093)
IVSotm 0.490∗∗∗ 0.029 0.005

(0.124) (0.110) (0.105)
Skew 0.582∗∗∗ 0.329∗∗∗ 0.256∗∗∗

(0.116) (0.103) (0.098)
VOV 0.018 0.095 0.111∗

(0.078) (0.069) (0.066)
∆ CIV -0.065 0.087 -0.043

(0.110) (0.098) (0.093)
∆ PIV 0.120 0.066 -0.081

(0.100) (0.089) (0.085)

Observations 227 227 227
R2 0.512 0.205 0.216
Adjusted R2 0.479 0.153 0.164
Residual Std. Error 0.021 0.019 0.018
F Statistic 15.865∗∗∗ 3.908∗∗∗ 4.169∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 2.9: The number of parameters for a single, 40-ensemble, and 100-
ensemble for our set of CNN models. Similarly, Single c, 40-ensemble c, and 100-
ensemble c show the total model complexity as defined in [KMZ24]: c := P/T ,
where T = 973947 is the total number of observations at the end of the sample
(all models are trained using an expanding window).

Model Single 40-Ensemble 100-Ensemble Single c 40-Ensemble c 100-Ensemble c

CNN1 1921 76840 192100 0.002 0.079 0.197
CNN4 98241 3929640 9824100 0.101 4.035 10.087
CNN5 394561 15782440 39456100 0.405 16.205 40.512
NN1 23809 952360 2380900 0.024 0.978 2.445

2.10. Appendix - Results 91

Table 2.10: All stocks, long-short portfolio. Cross-sectional (Fama-
MacBeth) regression of next-month security returns ri,t+1 for the full stock
universe on a set of predictive characteristics over the time period February
2003 to December 2021. R̂ens

t,CNN is the prediction in (2.4). CIV, PIV, IVSatm,
IVSotm, Skew, VOV, ∆CIV and ∆PIV are option characteristics from [Neu+22].
ret are momentum- and short-term-reversal-based characteristics; β are market
beta characteristics; ivol are idiosyncratic volatility characteristics. All these
are taken from [JKP22]. T-statistics are reported in parentheses.

CNN1 CNN4 CNN5

R̂ens
t,CNN 16.28∗∗∗ 8.30∗∗∗ 3.85∗∗

(4.38) (4.42) (2.44)
CIV 0.54∗∗ 0.52∗ 0.57∗∗

(2.02) (1.91) (2.14)
PIV -0.70∗∗∗ -0.64∗∗ -0.68∗∗

(-2.58) (-2.32) (-2.46)
IVSatm -1.24∗∗∗ -1.15∗∗∗ -1.25∗∗∗

(-4.15) (-3.80) (-4.16)
IVSotm 0.10 -0.13 -0.16

(0.31) (-0.40) (-0.51)
Skew -0.56∗ -0.73∗∗ -0.75∗∗

(-1.68) (-2.19) (-2.24)
VOV -0.88∗∗ -0.91∗∗ -0.93∗∗

(-2.44) (-2.50) (-2.54)
∆CIV -0.22 -0.28 -0.33

(-0.64) (-0.85) (-0.98)
∆PIV 0.22 0.18 0.21

(0.62) (0.50) (0.59)
ret 1 0 -0.48 -0.50 -0.54

(-0.86) (-0.89) (-0.97)
ret 6 1 0.06 0.05 0.05

(0.24) (0.20) (0.19)
ret 12 1 0.30∗∗ 0.28∗ 0.28∗

(2.01) (1.90) (1.91)
ret 18 1 -0.26∗∗ -0.26∗∗ -0.27∗∗

(-2.21) (-2.16) (-2.21)
rvol 21d -8.68 -9.64 -9.34

(-0.43) (-0.48) (-0.46)
rvol 252d -125.12∗∗ -116.52∗∗ -113.90∗∗

(-2.15) (-2.01) (-1.96)
beta 21d -0.08 -0.07 -0.08

(-0.43) (-0.42) (-0.46)
beta 252d 0.70∗∗ 0.63∗ 0.63∗

(2.11) (1.90) (1.91)
ivol capm 21d 6.02 6.74 6.67

(0.31) (0.35) (0.35)
ivol capm 252d 105.79∗ 98.22∗ 95.50∗

(1.89) (1.76) (1.71)
ami 126d 1.05 1.22 1.24

(1.01) (1.18) (1.21)

Note: ∗t>1.645; ∗∗t<1.960; ∗∗∗t>2.576

92 Chapter 2. Deep Learning from Options Implied Volatility

Table 2.11: Mega-cap segment, long-short portfolio. Cross-sectional
(Fama-MacBeth) regression of next-month security returns ri,t+1 for the full
stock universe on a set of predictive characteristics over the time period Febru-
ary 2003 to December 2021. R̂ens

t,CNN is the prediction in (2.4). CIV, PIV,
IVSatm, IVSotm, Skew, VOV, ∆CIV and ∆PIV are option characteristics from
[Neu+22]. ret are momentum- and short-term-reversal-based characteristics; β
are market beta characteristics; ivol are idiosyncratic volatility characteristics.
All these are taken from [JKP22]. T-statistics are reported in parentheses.

CNN1 CNN4 CNN5

R̂t+1,CNN -3.56 1.30 -6.29
(-0.25) (0.17) (-0.98)

CIV 0.54 0.65 0.60
(0.75) (0.89) (0.83)

PIV 0.11 0.32 0.25
(0.14) (0.44) (0.34)

∆CIV 0.45 0.45 0.43
(0.45) (0.43) (0.41)

∆PIV -0.68 -0.75 -0.63
(-0.65) (-0.71) (-0.60)

IVSatm -0.43 -0.33 -0.35
(-0.43) (-0.34) (-0.36)

IVSotm -1.26 -1.14 -1.23
(-1.54) (-1.47) (-1.58)

Skew -0.53 -1.31 -1.29
(-0.54) (-1.31) (-1.25)

VOV -0.70 -0.64 -0.71
(-1.04) (-0.95) (-1.06)

ret 1 0 -0.26 -0.32 -0.29
(-0.34) (-0.41) (-0.38)

ret 6 1 0.16 0.17 0.16
(0.42) (0.44) (0.42)

ret 12 1 0.35 0.35 0.35
(1.11) (1.09) (1.11)

ret 18 1 0.05 0.03 0.03
(0.23) (0.16) (0.14)

rvol 21d -91.26∗∗ -102.38∗∗ -97.26∗∗

(-2.19) (-2.45) (-2.34)
rvol 252d -31.30 -15.06 -22.78

(-0.29) (-0.14) (-0.21)
beta 21d 0.58 0.68∗ 0.67∗

(1.57) (1.81) (1.79)
beta 252d -0.48 -0.63 -0.56

(-0.54) (-0.71) (-0.64)
ivol capm 21d 80.89∗∗ 89.25∗∗ 84.49∗∗

(2.13) (2.36) (2.24)
ivol capm 252d 17.16 1.28 8.71

(0.18) (0.01) (0.09)
ami 126d 59.06 63.12 72.27

(0.62) (0.65) (0.75)

Note: ∗t>1.645; ∗∗t<1.960; ∗∗∗t>2.576

2.10. Appendix - Results 93

Table 2.12: Large-cap segment, long-short portfolio. Cross-sectional
(Fama-MacBeth) regression of next-month security returns ri,t+1 for the full
stock universe on a set of predictive characteristics over the time period Febru-
ary 2003 to December 2021. R̂ens

t,CNN is the prediction in (2.4). CIV, PIV,
IVSatm, IVSotm, Skew, VOV, ∆CIV and ∆PIV are option characteristics from
[Neu+22]. ret are momentum- and short-term-reversal-based characteristics; β
are market beta characteristics; ivol are idiosyncratic volatility characteristics.
All these are taken from [JKP22]. T-statistics are reported in parentheses.

CNN1 CNN4 CNN5

R̂t+1,CNN 5.82 -1.05 -0.50
(0.67) (-0.28) (-0.15)

CIV 0.43 0.33 0.37
(1.02) (0.79) (0.88)

PIV -0.28 -0.38 -0.33
(-0.67) (-0.91) (-0.79)

∆CIV 0.02 -0.06 -0.08
(0.03) (-0.11) (-0.14)

∆PIV 0.25 0.28 0.27
(0.46) (0.50) (0.50)

IVSatm -0.70 -0.71 -0.69
(-1.27) (-1.25) (-1.23)

IVSotm 0.30 0.20 0.15
(0.64) (0.42) (0.33)

Skew -0.95∗∗ -1.03∗∗ -1.03∗∗

(-2.01) (-2.08) (-2.08)
VOV -0.97∗∗ -0.93∗ -0.93∗

(-2.00) (-1.92) (-1.92)
ret 1 0 -0.69 -0.65 -0.63

(-0.95) (-0.91) (-0.87)
ret 6 1 0.25 0.24 0.25

(0.81) (0.77) (0.79)
ret 12 1 0.25 0.25 0.25

(1.26) (1.24) (1.23)
ret 18 1 -0.24 -0.24 -0.24

(-1.53) (-1.50) (-1.48)
rvol 21d 2.96 3.39 4.67

(0.10) (0.11) (0.16)
rvol 252d 38.71 34.80 36.87

(0.37) (0.33) (0.35)
beta 21d -0.26 -0.26 -0.26

(-1.06) (-1.04) (-1.08)
beta 252d 0.13 0.16 0.15

(0.21) (0.25) (0.24)
ivol capm 21d 2.28 1.63 0.29

(0.08) (0.06) (0.01)
ivol capm 252d -59.77 -53.94 -56.82

(-0.62) (-0.57) (-0.60)
ami 126d 4.24 0.60 0.05

(0.25) (0.04) (0.00)

Note: ∗t>1.645; ∗∗t<1.960; ∗∗∗t>2.576

94 Chapter 2. Deep Learning from Options Implied Volatility

Table 2.13: Small-cap segment, long-short portfolio. Cross-sectional
(Fama-MacBeth) regression of next-month security returns ri,t+1 for the full
stock universe on a set of predictive characteristics over the time period Febru-
ary 2003 to December 2021. R̂ens

t,CNN is the prediction in (2.4). CIV, PIV,
IVSatm, IVSotm, Skew, VOV, ∆CIV and ∆PIV are option characteristics from
[Neu+22]. ret are momentum- and short-term-reversal-based characteristics; β
are market beta characteristics; ivol are idiosyncratic volatility characteristics.
All these are taken from [JKP22]. T-statistics are reported in parentheses.

CNN1 CNN4 CNN5

R̂t+1,CNN 19.85∗∗∗ 10.43∗∗∗ 6.88∗∗

(2.86) (3.71) (2.47)
CIV 0.85∗∗ 0.74∗ 0.77∗

(2.02) (1.78) (1.86)
PIV -0.78∗∗ -0.74∗ -0.79∗∗

(-1.98) (-1.92) (-2.03)
∆CIV -0.45 -0.61 -0.65

(-0.86) (-1.18) (-1.26)
∆PIV 0.29 0.35 0.38

(0.56) (0.69) (0.74)
IVSatm -1.62∗∗∗ -1.48∗∗∗ -1.57∗∗∗

(-3.70) (-3.36) (-3.53)
IVSotm -0.12 -0.38 -0.39

(-0.29) (-0.97) (-0.97)
Skew 0.30 0.11 0.09

(0.59) (0.22) (0.18)
VOV -0.98∗∗ -0.94∗∗ -0.94∗∗

(-2.09) (-2.10) (-2.08)
ret 1 0 -0.61 -0.61 -0.65

(-0.98) (-0.98) (-1.04)
ret 6 1 0.14 0.12 0.12

(0.50) (0.43) (0.43)
ret 12 1 0.17 0.17 0.18

(1.01) (1.01) (1.07)
ret 18 1 -0.23∗ -0.22∗ -0.23∗

(-1.75) (-1.65) (-1.75)
rvol 21d -2.11 -2.74 -2.36

(-0.07) (-0.10) (-0.08)
rvol 252d -143.25 -133.55 -140.45

(-1.22) (-1.15) (-1.20)
beta 21d -0.27 -0.26 -0.26

(-0.97) (-0.93) (-0.94)
beta 252d 0.63 0.55 0.58

(1.22) (1.06) (1.13)
ivol capm 21d 4.33 4.12 4.33

(0.16) (0.15) (0.16)
ivol capm 252d 121.52 113.08 119.74

(1.10) (1.03) (1.08)
ami 126d 1.10 0.64 1.02

(0.25) (0.15) (0.23)

Note: ∗t>1.645; ∗∗t<1.960; ∗∗∗t>2.576

2.10. Appendix - Results 95

Table 2.14: Micro-cap segment, long-short portfolio. Cross-sectional
(Fama-MacBeth) regression of next-month security returns ri,t+1 for the full
stock universe on a set of predictive characteristics over the time period Febru-
ary 2003 to December 2021. R̂ens

t,CNN is the prediction in (2.4). CIV, PIV,
IVSatm, IVSotm, Skew, VOV, ∆CIV and ∆PIV are option characteristics from
[Neu+22]. ret are momentum- and short-term-reversal-based characteristics; β
are market beta characteristics; ivol are idiosyncratic volatility characteristics.
All these are taken from [JKP22]. T-statistics are reported in parentheses.

CNN1 CNN4 CNN5

R̂t+1,CNN 16.11∗ 6.71 2.11
(1.94) (1.26) (0.37)

CIV -0.49 -0.48 -0.35
(-0.83) (-0.83) (-0.56)

PIV -0.79 -0.65 -0.70
(-1.42) (-1.14) (-1.20)

∆CIV 0.36 0.35 0.17
(0.46) (0.44) (0.22)

∆PIV 0.23 0.12 0.24
(0.29) (0.15) (0.30)

IVSatm -0.29 -0.17 -0.35
(-0.32) (-0.19) (-0.37)

IVSotm -0.58 -1.05 -1.02
(-0.58) (-1.13) (-1.13)

Skew -1.32 -1.63∗∗ -1.68∗∗

(-1.58) (-2.12) (-2.24)
VOV -3.94∗∗∗ -4.43∗∗∗ -4.50∗∗∗

(-2.77) (-3.07) (-3.07)
ret 1 0 -0.25 -0.26 -0.38

(-0.32) (-0.34) (-0.49)
ret 6 1 -0.31 -0.30 -0.33

(-0.71) (-0.69) (-0.76)
ret 12 1 0.33 0.24 0.25

(0.94) (0.70) (0.71)
ret 18 1 -0.21 -0.16 -0.15

(-0.76) (-0.55) (-0.51)
rvol 21d -98.64 -91.46 -93.97

(-1.60) (-1.53) (-1.59)
rvol 252d 197.02 241.10 261.30

(0.60) (0.74) (0.80)
beta 21d 0.08 0.09 0.08

(0.30) (0.34) (0.29)
beta 252d -0.40 -0.63 -0.61

(-0.40) (-0.63) (-0.62)
ivol capm 21d 83.45 75.97 78.99

(1.40) (1.30) (1.37)
ivol capm 252d -193.20 -236.00 -256.20

(-0.60) (-0.74) (-0.80)
ami 126d 0.57 0.34 0.36

(0.42) (0.26) (0.27)

Note: ∗t>1.645; ∗∗t<1.960; ∗∗∗t>2.576

96 Chapter 2. Deep Learning from Options Implied Volatility

Table 2.15: Not-micro-cap segment, long-short portfolio. Cross-sectional
regression of next-month security returns ri,t+1 for the full stock universe on a
set of predictive characteristics over the time period February 2003 to December
2021. R̂ens

t,CNN is the prediction in (2.4). CIV, PIV, IVSatm, IVSotm, Skew,
VOV, ∆CIV and ∆PIV are option characteristics from [Neu+22]. ret are
momentum- and short-term-reversal-based characteristics; β are market beta
characteristics; ivol are idiosyncratic volatility characteristics. All these are
taken from [JKP22]. T-statistics are reported in parentheses.

CNN1 CNN4 CNN5

R̂t+1,CNN 18.18∗∗∗ 7.50∗∗∗ 4.60∗∗

(3.38) (3.15) (2.17)
CIV 0.61∗ 0.53∗ 0.56∗

(1.93) (1.69) (1.77)
PIV -0.50∗ -0.49 -0.53∗

(-1.66) (-1.59) (-1.71)
∆CIV -0.23 -0.33 -0.35

(-0.58) (-0.83) (-0.89)
∆PIV 0.19 0.18 0.21

(0.46) (0.45) (0.52)
IVSatm -1.12∗∗∗ -1.02∗∗∗ -1.08∗∗∗

(-3.58) (-3.23) (-3.43)
IVSotm 0.15 -0.11 -0.13

(0.44) (-0.34) (-0.39)
Skew -0.36 -0.53 -0.55

(-0.99) (-1.48) (-1.53)
VOV -0.83∗∗ -0.84∗∗ -0.85∗∗

(-2.20) (-2.24) (-2.25)
ret 1 0 -0.66 -0.70 -0.70

(-1.08) (-1.14) (-1.15)
ret 6 1 0.14 0.12 0.13

(0.54) (0.46) (0.48)
ret 12 1 0.27∗ 0.27∗ 0.27∗

(1.73) (1.71) (1.74)
ret 18 1 -0.23∗ -0.23∗ -0.23∗

(-1.89) (-1.85) (-1.88)
rvol 21d -4.91 -5.17 -4.94

(-0.24) (-0.25) (-0.24)
rvol 252d -101.99 -91.69 -93.77

(-1.44) (-1.30) (-1.32)
beta 21d -0.08 -0.09 -0.09

(-0.40) (-0.42) (-0.41)
beta 252d 0.48 0.42 0.43

(1.10) (0.97) (1.00)
ivol capm 21d 7.84 7.85 7.73

(0.40) (0.40) (0.39)
ivol capm 252d 79.41 70.26 71.99

(1.20) (1.07) (1.09)
ami 126d 2.58 2.79 3.06

(0.70) (0.76) (0.83)

Note: ∗t>1.645; ∗∗t<1.960; ∗∗∗t>2.576

2.10. Appendix - Results 97

2.10.1. Long-only Portfolio Performance

2004 2006 2008 2010 2012 2014 2016 2018 2020 2022
Year

100

101

102

In
ve

st
m

en
t

Va
lu

e
($

)

IVSATM
IVSOTM
SKEW
SPY
CNN1_100
CNN4_100
CNN5_100
CNN1_1
CNN4_1
CNN5_1

Figure 2.15: Long-only strategy (2.7). Cumulative Returns of (2.7) for the
full universe of stocks. CNNi K refers to the ensemble of K CNNi models.
IVSATM, IVSOTM, and SKEW are the top three option characteristics-based
factors from [Neu+22], and SPY is the S&P500 ETF.

98 Chapter 2. Deep Learning from Options Implied Volatility

Table 2.16: All stocks, long-only portfolio (2.7). Monthly OLS regression
of the CNN1, CNN4, and CNN5 long-only portfolios on the factor model that
includes the CIV, PIV, IVSatm, IVSotm, Skew, VOV, ∆CIV, and ∆PIV factor
portfolios from [Neu+22], along with the standard Fama-French factors. The
intercept coefficient is reported in monthly return terms, with corresponding
standard errors in parentheses.

CNN1ew CNN4ew CNN5ew

Intercept 0.004∗∗∗ 0.005∗∗∗ 0.005∗∗∗

(0.002) (0.001) (0.001)
rM − rf 0.835∗∗∗ 0.944∗∗∗ 0.930∗∗∗

(0.049) (0.041) (0.042)
SMB 0.248∗∗∗ 0.422∗∗∗ 0.473∗∗∗

(0.079) (0.066) (0.068)
HML 0.048 0.016 -0.014

(0.067) (0.056) (0.058)
2-12 Momentum -0.167∗∗∗ -0.127∗∗∗ -0.145∗∗∗

(0.037) (0.031) (0.032)
ST Reversal 0.048 0.015 0.008

(0.053) (0.044) (0.046)
LT Reversal 0.099 0.130∗∗ 0.176∗∗∗

(0.068) (0.057) (0.059)
CIV 0.655∗∗∗ 0.568∗∗∗ 0.467∗∗∗

(0.183) (0.153) (0.158)
PIV -0.105 -0.026 0.016

(0.187) (0.157) (0.161)
IVSatm -0.299∗∗∗ -0.157∗∗ -0.050

(0.093) (0.078) (0.080)
IVSotm 0.401∗∗∗ 0.171∗ 0.142

(0.105) (0.088) (0.091)
Skew 0.458∗∗∗ 0.279∗∗∗ 0.221∗∗

(0.099) (0.083) (0.085)
VOV 0.115∗ 0.125∗∗ 0.141∗∗

(0.066) (0.056) (0.057)
∆ CIV 0.035 0.112 0.029

(0.094) (0.079) (0.081)
∆ PIV -0.007 0.036 -0.022

(0.085) (0.072) (0.074)

Observations 227 227 227
R2 0.946 0.967 0.963
Adjusted R2 0.943 0.965 0.961
Residual Std. Error 0.018 0.015 0.015
F Statistic 267.669∗∗∗ 444.960∗∗∗ 395.497∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

2.10. Appendix - Results 99

2.10.2. The Impact of Costs

Table 2.17: Annualized Sharpe Ratio calculated for equal-weighted portfolios
constructed using our 100-Ensemble models (CNNi and NN1) and Ridge Re-
gression predictions. We consider both transaction and short-sale fees of 0, 20,
and 40 bps for the micro-cap group, and fees of 0, 10, and 20 bps for all other
groups.

SRfull SRmega SRlarge SRsmall SRmicro SRnot micro

Base Fee: 0bps
Model
CNN1 1.57 0.06 0.47 0.86 1.92 0.94
CNN4 2.66 0.03 0.47 1.45 2.22 1.45
CNN5 2.44 -0.05 0.36 1.34 2.14 1.29

Ridgez=0.1 1.70 0.43 0.59 1.09 1.93 0.98
NN1 2.04 0.31 0.63 1.30 2.53 1.22

Base Fee: 10bps
Model
CNN1 1.20 -0.26 0.11 0.54 1.67 0.54
CNN4 2.05 -0.42 -0.08 1.03 1.95 0.84
CNN5 1.80 -0.51 -0.16 0.89 1.86 0.65

Ridgez=0.1 1.30 0.09 0.23 0.74 1.56 0.61
NN1 1.62 -0.03 0.23 0.94 2.21 0.79

Base Fee: 20bps
Model
CNN1 0.83 -0.59 -0.26 0.21 1.41 0.13
CNN4 1.43 -0.87 -0.62 0.61 1.67 0.23
CNN5 1.16 -0.98 -0.69 0.43 1.58 0.00

Ridgez=0.1 0.90 -0.24 -0.13 0.39 1.19 0.23
NN1 1.19 -0.38 -0.16 0.58 1.89 0.36

100 Chapter 2. Deep Learning from Options Implied Volatility

2.11. Appendix - Additional Results

2.11.1. Ridge Regression Results

Table 2.18: All stocks, ridge long-short portfolio Monthly OLS regression
of the Ridge portfolios on the factor model that includes the CIV, PIV, IVSatm,
IVSotm, Skew, VOV, ∆CIV, and ∆PIV factor portfolios from [Neu+22], along
with the standard Fama-French factors. The intercept coefficient is reported in
monthly return terms, with corresponding standard errors in parentheses. z is
the penalty term. Sharpe Ratio Full Sample: 1.70.

z = 10−5 z = 10−3 z = 10−1 z = 100 z = 101

Intercept 0.006∗∗∗ 0.006∗∗∗ 0.006∗∗∗ 0.006∗∗∗ 0.006∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)
rM − rf 0.066 0.066 0.065 0.059 0.059

(0.051) (0.051) (0.051) (0.051) (0.050)
SMB -0.028 -0.028 -0.028 -0.026 -0.042

(0.083) (0.083) (0.083) (0.082) (0.081)
HML -0.139∗ -0.139∗∗ -0.141∗∗ -0.140∗∗ -0.158∗∗

(0.071) (0.071) (0.070) (0.070) (0.069)
2-12 Momentum 0.109∗∗∗ 0.109∗∗∗ 0.108∗∗∗ 0.107∗∗∗ 0.117∗∗∗

(0.038) (0.038) (0.038) (0.038) (0.038)
ST Reversal 0.013 0.013 0.016 0.022 0.029

(0.055) (0.055) (0.055) (0.055) (0.054)
LT Reversal 0.223∗∗∗ 0.223∗∗∗ 0.226∗∗∗ 0.223∗∗∗ 0.233∗∗∗

(0.072) (0.072) (0.072) (0.071) (0.070)
CIV 0.473∗∗ 0.473∗∗ 0.475∗∗ 0.500∗∗∗ 0.518∗∗∗

(0.192) (0.192) (0.191) (0.190) (0.188)
PIV -0.169 -0.169 -0.171 -0.193 -0.190

(0.195) (0.195) (0.195) (0.194) (0.192)
IVSatm -0.010 -0.010 -0.009 -0.014 -0.012

(0.097) (0.097) (0.097) (0.097) (0.096)
IVSotm 0.412∗∗∗ 0.412∗∗∗ 0.408∗∗∗ 0.405∗∗∗ 0.353∗∗∗

(0.110) (0.110) (0.110) (0.110) (0.108)
Skew 0.549∗∗∗ 0.549∗∗∗ 0.554∗∗∗ 0.555∗∗∗ 0.584∗∗∗

(0.104) (0.104) (0.103) (0.103) (0.102)
VOV 0.152∗∗ 0.152∗∗ 0.153∗∗ 0.155∗∗ 0.137∗∗

(0.069) (0.069) (0.069) (0.069) (0.068)
∆ CIV -0.055 -0.055 -0.060 -0.066 -0.070

(0.098) (0.098) (0.098) (0.098) (0.096)
∆ PIV 0.145 0.145 0.142 0.149∗ 0.158∗

(0.089) (0.089) (0.089) (0.089) (0.088)

Observations 227 227 227 227 227
R2 0.734 0.734 0.735 0.738 0.743
Adjusted R2 0.717 0.717 0.718 0.721 0.726
Residual Std. Error 0.019 0.019 0.019 0.019 0.018
F Statistic 41.861∗∗∗ 41.874∗∗∗ 42.093∗∗∗ 42.653∗∗∗ 43.801∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

2.11. Appendix - Additional Results 101

Table 2.19: Mega-cap segment, ridge long-short portfolio Monthly OLS
regression of the Ridge portfolios on the factor model that includes the CIV,
PIV, IVSatm, IVSotm, Skew, VOV, ∆CIV, and ∆PIV factor portfolios from
[Neu+22], along with the standard Fama-French factors. The intercept coeffi-
cient is reported in monthly return terms, with corresponding standard errors
in parentheses. z is the penalty term. Sharpe Ratio Mega Sample: 0.42.

z = 10−5 z = 10−3 z = 10−1 z = 100 z = 101

Intercept -0.001 -0.001 -0.001 -0.001 -0.001
(0.002) (0.002) (0.002) (0.002) (0.002)

rM − rf 0.173∗∗ 0.173∗∗ 0.173∗∗ 0.178∗∗ 0.180∗∗

(0.073) (0.073) (0.073) (0.073) (0.073)
SMB 0.055 0.055 0.057 0.060 0.048

(0.118) (0.118) (0.118) (0.119) (0.119)
HML -0.165 -0.165 -0.165 -0.153 -0.178∗

(0.101) (0.101) (0.101) (0.101) (0.101)
2-12 Momentum 0.190∗∗∗ 0.190∗∗∗ 0.190∗∗∗ 0.188∗∗∗ 0.199∗∗∗

(0.055) (0.055) (0.055) (0.055) (0.055)
ST Reversal 0.004 0.004 0.000 -0.000 -0.003

(0.079) (0.079) (0.079) (0.079) (0.079)
LT Reversal 0.214∗∗ 0.214∗∗ 0.215∗∗ 0.214∗∗ 0.232∗∗

(0.102) (0.102) (0.102) (0.103) (0.103)
CIV -0.050 -0.050 -0.057 -0.056 -0.025

(0.273) (0.273) (0.273) (0.275) (0.275)
PIV 0.070 0.070 0.075 0.067 0.034

(0.279) (0.279) (0.279) (0.281) (0.280)
IVSatm -0.262∗ -0.262∗ -0.261∗ -0.272∗ -0.311∗∗

(0.139) (0.139) (0.139) (0.140) (0.140)
IVSotm 0.215 0.215 0.214 0.235 0.226

(0.157) (0.157) (0.157) (0.158) (0.158)
Skew 0.597∗∗∗ 0.597∗∗∗ 0.593∗∗∗ 0.579∗∗∗ 0.571∗∗∗

(0.148) (0.148) (0.148) (0.149) (0.149)
VOV 0.551∗∗∗ 0.551∗∗∗ 0.550∗∗∗ 0.547∗∗∗ 0.540∗∗∗

(0.099) (0.099) (0.099) (0.100) (0.099)
∆ CIV -0.077 -0.077 -0.075 -0.071 -0.014

(0.140) (0.140) (0.140) (0.141) (0.141)
∆ PIV 0.174 0.174 0.173 0.181 0.229∗

(0.127) (0.127) (0.127) (0.128) (0.128)

Observations 227 227 227 227 227
R2 0.444 0.444 0.443 0.439 0.447
Adjusted R2 0.408 0.408 0.406 0.402 0.410
Residual Std. Error 0.027 0.027 0.027 0.027 0.027
F Statistic 12.106∗∗∗ 12.106∗∗∗ 12.051∗∗∗ 11.847∗∗∗ 12.240∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

102 Chapter 2. Deep Learning from Options Implied Volatility

Table 2.20: Large-cap segment, ridge long-short portfolio Monthly OLS
regression of the Ridge portfolios on the factor model that includes the CIV,
PIV, IVSatm, IVSotm, Skew, VOV, ∆CIV, and ∆PIV factor portfolios from
[Neu+22], along with the standard Fama-French factors. The intercept coeffi-
cient is reported in monthly return terms, with corresponding standard errors
in parentheses. z is the penalty term. Sharpe Ratio Large Sample: 0.60.

z = 10−5 z = 10−3 z = 10−1 z = 100 z = 101

Intercept -0.003 -0.003 -0.003 -0.003 -0.002
(0.002) (0.002) (0.002) (0.002) (0.002)

rM − rf 0.214∗∗∗ 0.214∗∗∗ 0.214∗∗∗ 0.204∗∗∗ 0.188∗∗∗

(0.062) (0.062) (0.062) (0.062) (0.061)
SMB 0.321∗∗∗ 0.321∗∗∗ 0.322∗∗∗ 0.304∗∗∗ 0.327∗∗∗

(0.101) (0.101) (0.101) (0.101) (0.099)
HML -0.239∗∗∗ -0.239∗∗∗ -0.237∗∗∗ -0.243∗∗∗ -0.283∗∗∗

(0.086) (0.086) (0.086) (0.086) (0.085)
2-12 Momentum 0.185∗∗∗ 0.185∗∗∗ 0.184∗∗∗ 0.181∗∗∗ 0.174∗∗∗

(0.047) (0.047) (0.047) (0.047) (0.046)
ST Reversal 0.183∗∗∗ 0.183∗∗∗ 0.183∗∗∗ 0.174∗∗ 0.191∗∗∗

(0.068) (0.068) (0.068) (0.067) (0.066)
LT Reversal 0.194∗∗ 0.194∗∗ 0.193∗∗ 0.197∗∗ 0.247∗∗∗

(0.088) (0.088) (0.088) (0.087) (0.086)
CIV -0.028 -0.028 -0.035 -0.035 -0.030

(0.234) (0.234) (0.234) (0.233) (0.230)
PIV 0.046 0.046 0.052 0.064 0.046

(0.239) (0.239) (0.239) (0.238) (0.234)
IVSatm -0.072 -0.072 -0.074 -0.052 -0.062

(0.119) (0.119) (0.119) (0.118) (0.117)
IVSotm 0.281∗∗ 0.281∗∗ 0.279∗∗ 0.261∗ 0.265∗∗

(0.135) (0.135) (0.135) (0.134) (0.132)
Skew 0.587∗∗∗ 0.587∗∗∗ 0.590∗∗∗ 0.595∗∗∗ 0.568∗∗∗

(0.127) (0.127) (0.126) (0.126) (0.124)
VOV 0.262∗∗∗ 0.262∗∗∗ 0.260∗∗∗ 0.275∗∗∗ 0.277∗∗∗

(0.085) (0.085) (0.085) (0.084) (0.083)
∆ CIV -0.156 -0.156 -0.154 -0.170 -0.194

(0.120) (0.120) (0.120) (0.119) (0.118)
∆ PIV 0.258∗∗ 0.258∗∗ 0.258∗∗ 0.234∗∗ 0.256∗∗

(0.109) (0.109) (0.109) (0.109) (0.107)

Observations 227 227 227 227 227
R2 0.557 0.557 0.557 0.556 0.570
Adjusted R2 0.528 0.528 0.527 0.527 0.542
Residual Std. Error 0.023 0.023 0.023 0.023 0.022
F Statistic 19.063∗∗∗ 19.062∗∗∗ 19.005∗∗∗ 18.971∗∗∗ 20.088∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

2.11. Appendix - Additional Results 103

Table 2.21: Small-cap segment, ridge long-short portfolio Monthly OLS
regression of the Ridge portfolios on the factor model that includes the CIV,
PIV, IVSatm, IVSotm, Skew, VOV, ∆CIV, and ∆PIV factor portfolios from
[Neu+22], along with the standard Fama-French factors. The intercept coeffi-
cient is reported in monthly return terms, with corresponding standard errors
in parentheses. z is the penalty term. Sharpe Ratio Small Sample: 1.09.

z = 10−5 z = 10−3 z = 10−1 z = 100 z = 101

Intercept 0.000 0.000 0.000 0.000 0.000
(0.002) (0.002) (0.002) (0.002) (0.002)

rM − rf 0.038 0.038 0.035 0.032 0.045
(0.067) (0.067) (0.067) (0.067) (0.067)

SMB -0.022 -0.022 -0.026 -0.031 -0.036
(0.109) (0.109) (0.109) (0.109) (0.109)

HML 0.026 0.026 0.020 0.020 0.032
(0.093) (0.093) (0.093) (0.093) (0.092)

2-12 Momentum 0.174∗∗∗ 0.173∗∗∗ 0.173∗∗∗ 0.173∗∗∗ 0.162∗∗∗

(0.051) (0.051) (0.051) (0.050) (0.050)
ST Reversal -0.015 -0.015 -0.015 -0.016 -0.001

(0.073) (0.073) (0.073) (0.073) (0.073)
LT Reversal 0.111 0.111 0.116 0.121 0.099

(0.095) (0.095) (0.095) (0.094) (0.094)
CIV 0.121 0.121 0.110 0.107 0.050

(0.253) (0.253) (0.253) (0.252) (0.251)
PIV 0.153 0.153 0.166 0.172 0.228

(0.258) (0.258) (0.258) (0.257) (0.256)
IVSatm 0.194 0.194 0.199 0.201 0.173

(0.129) (0.129) (0.129) (0.128) (0.128)
IVSotm 0.386∗∗∗ 0.385∗∗∗ 0.380∗∗∗ 0.365∗∗ 0.376∗∗

(0.146) (0.146) (0.146) (0.145) (0.145)
Skew 0.370∗∗∗ 0.370∗∗∗ 0.375∗∗∗ 0.374∗∗∗ 0.408∗∗∗

(0.137) (0.137) (0.137) (0.136) (0.136)
VOV 0.041 0.041 0.044 0.044 0.040

(0.091) (0.091) (0.092) (0.091) (0.091)
∆ CIV -0.027 -0.026 -0.029 -0.021 0.015

(0.130) (0.130) (0.130) (0.129) (0.129)
∆ PIV 0.125 0.126 0.123 0.141 0.169

(0.118) (0.118) (0.118) (0.118) (0.117)

Observations 227 227 227 227 227
R2 0.526 0.526 0.526 0.526 0.532
Adjusted R2 0.494 0.494 0.495 0.495 0.501
Residual Std. Error 0.025 0.025 0.025 0.025 0.024
F Statistic 16.786∗∗∗ 16.785∗∗∗ 16.805∗∗∗ 16.793∗∗∗ 17.197∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

104 Chapter 2. Deep Learning from Options Implied Volatility

Table 2.22: Micro-cap segment, ridge long-short portfolio Monthly OLS
regression of the Ridge portfolios on the factor model that includes the CIV,
PIV, IVSatm, IVSotm, Skew, VOV, ∆CIV, and ∆PIV factor portfolios from
[Neu+22], along with the standard Fama-French factors. The intercept coeffi-
cient is reported in monthly return terms, with corresponding standard errors
in parentheses. z is the penalty term. Sharpe Ratio Micro Sample: 1.90.

z = 10−5 z = 10−3 z = 10−1 z = 100 z = 101

Intercept 0.015∗∗∗ 0.015∗∗∗ 0.015∗∗∗ 0.015∗∗∗ 0.018∗∗∗

(0.004) (0.004) (0.004) (0.004) (0.005)
rM − rf 0.242∗ 0.242∗ 0.246∗ 0.237∗ -0.011

(0.139) (0.139) (0.138) (0.139) (0.147)
SMB -0.030 -0.030 -0.031 -0.030 -0.193

(0.226) (0.226) (0.225) (0.226) (0.240)
HML -0.021 -0.021 -0.028 -0.013 -0.001

(0.192) (0.192) (0.192) (0.192) (0.205)
2-12 Momentum -0.149 -0.149 -0.147 -0.139 -0.125

(0.104) (0.104) (0.104) (0.104) (0.111)
ST Reversal 0.172 0.172 0.169 0.197 0.107

(0.151) (0.151) (0.151) (0.151) (0.161)
LT Reversal -0.116 -0.116 -0.112 -0.141 0.039

(0.195) (0.195) (0.195) (0.196) (0.208)
CIV 1.241∗∗ 1.241∗∗ 1.252∗∗ 1.270∗∗ 1.729∗∗∗

(0.522) (0.522) (0.521) (0.523) (0.556)
PIV -0.972∗ -0.972∗ -0.979∗ -0.991∗ -1.390∗∗

(0.533) (0.533) (0.532) (0.533) (0.567)
IVSatm 0.284 0.284 0.278 0.268 0.415

(0.266) (0.266) (0.265) (0.266) (0.283)
IVSotm 0.320 0.320 0.320 0.303 0.285

(0.301) (0.301) (0.300) (0.301) (0.320)
Skew 0.947∗∗∗ 0.947∗∗∗ 0.949∗∗∗ 0.958∗∗∗ 0.815∗∗∗

(0.282) (0.282) (0.282) (0.282) (0.300)
VOV 0.230 0.230 0.222 0.214 0.456∗∗

(0.189) (0.189) (0.189) (0.189) (0.201)
∆ CIV -0.535∗∗ -0.535∗∗ -0.523∗ -0.532∗∗ -0.595∗∗

(0.268) (0.268) (0.267) (0.268) (0.285)
∆ PIV -0.422∗ -0.422∗ -0.418∗ -0.417∗ -0.295

(0.244) (0.244) (0.243) (0.244) (0.259)

Observations 227 227 227 227 227
R2 0.345 0.345 0.348 0.345 0.333
Adjusted R2 0.302 0.302 0.304 0.302 0.289
Residual Std. Error 0.051 0.051 0.051 0.051 0.054
F Statistic 7.982∗∗∗ 7.982∗∗∗ 8.067∗∗∗ 7.974∗∗∗ 7.556∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

2.11. Appendix - Additional Results 105

Table 2.23: Not-micro-cap segment, ridge long-short portfolio Monthly
OLS regression of the Ridge portfolios on the factor model that includes the
CIV, PIV, IVSatm, IVSotm, Skew, VOV, ∆CIV, and ∆PIV factor portfolios
from [Neu+22], along with the standard Fama-French factors. The intercept
coefficient is reported in monthly return terms, with corresponding standard
errors in parentheses. z is the penalty term. Sharpe Ratio Non-Micro Sample:
0.99

z = 10−5 z = 10−3 z = 10−1 z = 100 z = 101

Intercept -0.001 -0.001 -0.001 -0.001 -0.001
(0.002) (0.002) (0.002) (0.002) (0.001)

rM − rf 0.118∗∗ 0.118∗∗ 0.118∗∗ 0.120∗∗ 0.121∗∗

(0.049) (0.049) (0.049) (0.049) (0.048)
SMB 0.151∗ 0.151∗ 0.152∗ 0.152∗ 0.160∗∗

(0.080) (0.080) (0.080) (0.080) (0.078)
HML -0.137∗∗ -0.137∗∗ -0.139∗∗ -0.140∗∗ -0.150∗∗

(0.068) (0.068) (0.068) (0.068) (0.067)
2-12 Momentum 0.146∗∗∗ 0.146∗∗∗ 0.146∗∗∗ 0.145∗∗∗ 0.144∗∗∗

(0.037) (0.037) (0.037) (0.037) (0.036)
ST Reversal 0.053 0.053 0.054 0.055 0.051

(0.054) (0.054) (0.054) (0.053) (0.052)
LT Reversal 0.173∗∗ 0.173∗∗ 0.172∗∗ 0.169∗∗ 0.179∗∗∗

(0.069) (0.069) (0.069) (0.069) (0.068)
CIV -0.002 -0.002 -0.001 -0.021 -0.018

(0.185) (0.185) (0.185) (0.185) (0.181)
PIV 0.203 0.203 0.203 0.221 0.228

(0.189) (0.189) (0.189) (0.189) (0.184)
IVSatm 0.061 0.061 0.060 0.061 0.057

(0.094) (0.094) (0.094) (0.094) (0.092)
IVSotm 0.301∗∗∗ 0.301∗∗∗ 0.299∗∗∗ 0.303∗∗∗ 0.285∗∗∗

(0.107) (0.107) (0.107) (0.106) (0.104)
Skew 0.519∗∗∗ 0.519∗∗∗ 0.522∗∗∗ 0.517∗∗∗ 0.533∗∗∗

(0.100) (0.100) (0.100) (0.100) (0.098)
VOV 0.148∗∗ 0.148∗∗ 0.150∗∗ 0.149∗∗ 0.142∗∗

(0.067) (0.067) (0.067) (0.067) (0.065)
∆ CIV -0.055 -0.055 -0.057 -0.051 -0.063

(0.095) (0.095) (0.095) (0.095) (0.093)
∆ PIV 0.209∗∗ 0.209∗∗ 0.211∗∗ 0.216∗∗ 0.212∗∗

(0.086) (0.086) (0.086) (0.086) (0.084)

Observations 227 227 227 227 227
R2 0.681 0.681 0.683 0.683 0.698
Adjusted R2 0.660 0.660 0.662 0.662 0.678
Residual Std. Error 0.018 0.018 0.018 0.018 0.018
F Statistic 32.393∗∗∗ 32.393∗∗∗ 32.555∗∗∗ 32.660∗∗∗ 34.945∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

106 Chapter 2. Deep Learning from Options Implied Volatility

2.11.2. Comparison: Simple NN against CNN

Table 2.24: All stocks, long-short. Monthly OLS regression of the CNNs
portfolios on the factor model that includes the NN, CIV, PIV, IVSatm, IVSotm,
Skew, VOV, ∆CIV, and ∆PIV factor portfolios from [Neu+22], along with the
standard Fama-French factors. The intercept coefficient is reported in monthly
return terms, with corresponding standard errors in parentheses. As we can
see, the alphas survive for any CNNi even if the NN factor portfolio is included
on the right-hand side.

CNN1ew CNN4ew CNN5ew

Intercept 0.004∗∗ 0.009∗∗∗ 0.009∗∗∗

(0.001) (0.002) (0.002)
rM − rf -0.134∗∗∗ -0.045 -0.096∗

(0.047) (0.048) (0.050)
SMB -0.170∗∗ -0.030 0.028

(0.076) (0.078) (0.081)
HML -0.035 -0.047 -0.104

(0.065) (0.066) (0.069)
2-12 Momentum -0.142∗∗∗ -0.112∗∗∗ -0.132∗∗∗

(0.035) (0.036) (0.038)
ST Reversal -0.065 -0.131∗∗ -0.170∗∗∗

(0.051) (0.052) (0.054)
LT Reversal 0.053 0.102 0.205∗∗∗

(0.066) (0.068) (0.071)
CIV 0.242 -0.076 -0.104

(0.177) (0.182) (0.190)
PIV -0.153 0.082 0.071

(0.180) (0.184) (0.192)
IVSatm -0.394∗∗∗ 0.061 0.224∗∗

(0.089) (0.092) (0.096)
IVSotm 0.427∗∗∗ 0.002 0.028

(0.103) (0.106) (0.110)
Skew 0.222∗∗ -0.024 -0.079

(0.100) (0.102) (0.107)
VOV 0.089 0.089 0.104

(0.064) (0.066) (0.068)
∆ CIV 0.049 0.283∗∗∗ 0.179∗

(0.090) (0.092) (0.096)
∆ PIV 0.039 0.102 0.032

(0.082) (0.084) (0.088)
NN 0.619∗∗∗ 0.438∗∗∗ 0.350∗∗∗

(0.049) (0.051) (0.053)

Observations 227 227 227
R2 0.803 0.532 0.456
Adjusted R2 0.789 0.499 0.418
Residual Std. Error 0.017 0.018 0.018
F Statistic 57.399∗∗∗ 15.985∗∗∗ 11.814∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

2.11. Appendix - Additional Results 107

Table 2.25: All stocks, long-short. Monthly OLS regression of the NN port-
folio on the factor model that includes the CNN, CIV, PIV, IVSatm, IVSotm,
Skew, VOV, ∆CIV, and ∆PIV factor portfolios from [Neu+22], along with the
standard Fama-French factors. The intercept coefficient is reported in monthly
return terms, with corresponding standard errors in parentheses. As we can
see, the NN’s alpha does not survive when the CNN1 factor portfolio is included
in the right-hand side.

NN1ew

Intercept 0.001
(0.002)

rM − rf 0.172∗∗∗

(0.049)
SMB 0.104

(0.081)
HML -0.022

(0.068)
2-12 Momentum 0.139∗∗∗

(0.037)
ST Reversal 0.037

(0.054)
LT Reversal 0.057

(0.070)
CIV 0.090

(0.187)
PIV -0.034

(0.190)
IVSatm 0.306∗∗∗

(0.096)
IVSotm -0.060

(0.113)
Skew 0.198∗

(0.105)
VOV 0.004

(0.068)
∆ CIV -0.027

(0.095)
∆ PIV 0.063

(0.087)
CNN1 0.688∗∗∗

(0.055)

Observations 227
R2 0.755
Adjusted R2 0.738
Residual Std. Error 0.018
F Statistic 43.409∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

108 Chapter 2. Deep Learning from Options Implied Volatility

2.12. Appendix - Additional Analysis for Differ-
ent Size Groups of Stocks

2.13. Appendix - Proofs

Proof of Lemma 2.6.1. For any x0, define

g(y) = f((I − UU ′)x0 + Uy) , (2.23)

and note that g is also real analytic. Then, defining x̃ = (I − UU ′)x0 + UU ′x

g(U ′x)− f(x) = f(x̃) − f(x) =

∫ 1

0
∇f(t(x̃− x) + x)′(x̃− x)dt. (2.24)

We have
(I − UU ′)M∗(I − UU ′) = (I − UU ′)UDU ′(I − UU ′) = 0 (2.25)

since (I − UU ′)U = 0. Thus, for any vector z, the function ∇f(x)′(I − UU ′)z is zero for
Lebesgue almost every x because E[(∇f(x)′(I − UU ′)z)2] = z′M∗z = 0 and, hence, the real
analytic function

G(x1, x2) = ∇f(x1)′(I − UU ′)x2 (2.26)

is zero for Lebesgue almost every (x1, x2). Therefore, for any fixed t, the real analytic function

Ĝ(t, x0, x) = ∇f(t(x̃−x)+x)′(x̃−x) = ∇f(t(I−UU ′)(x−x0)+x)′(I−UU ′)(x−x0) (2.27)

is zero for Lebesgue almost every (x0, x). Hence,

g(U ′x)− f(x) = 0 (2.28)

for Lebesgue almost every (x0, x). Thus, for Lebesgue almost every x0, we have that g(U ′x) =
f(x). To prove the last statement, note that

E[∇f(X)∇f(X)′] = E[M ′∇g(MX)∇g(MX)′M] = M ′E[∇g(MX)∇g(MX)]M. (2.29)

Since the components of ∇g(MX) are linearly independent, we have that the term

E[∇g(MX)∇g(MX)′] ∈ Rr×r

is strictly positive definite, and hence, rank(M ′E[∇g(MX)∇g(MX)]M) = r. Indeed,

a′E[∇g(MX)∇g(MX)′]a = E[(∇g(MX)′a)2] > 0 (2.30)

because ∇g(MX)′a is not identically zero (linear independence) and hence is almost surely
non-zero (by real analyticity). Then, for any y in the image of M (which has dimension r),
we have that y′E[∇g(MX)∇g(MX)]y > 0, this concludes the proof.

Proof of Lemma 2.6.2. Let Up ∈ Rd×p be the matrix with first p eigenvectors and U−p ∈
Rd×(d−p) the matrix with the last d − p eigenvectors. Then, defining y = U ′

px ∈ Rp and

z = U ′
−px ∈ Rd−p, we get x = Upy + U−pz. Then, the conditional multivariate Gaussian

z|y ∼ N(µ(y), Σ̂z), where Σ̂z ∈ Rd×d satisfies

Σ̂z = Σz − ΣzyΣ
−1
y Σyz ≤ λ1(Σ)I, (2.31)

where we have defined the blocks

Σz = U ′
−pΣU−p ∈ R(d−p)×(d−p), Σzy = U ′

−pΣUp ∈ R(d−p)×d, Σy = U ′
pΣUp ∈ Rp×p.

(2.32)
Let fp(y) = E[f(x)|U ′

px = y]. Let us fix y and define F (z) = f(U−pz + Upy) − fp(y) :

Rd−p → R (with a fixed y). Then, its gradient ∇zF (z) ∈ Rd−p satisfies (by the chain rule)

∇zF (z) = ∇z(f(U−pz + Upy)− fp(y) = U ′
−p∇xf(x) (2.33)

2.13. Appendix - Proofs 109

Table 2.26: All-stocks, long-short portfolio. Monthly OLS regression of
the CNN1, CNN4, CNN5, NN1, and Ridge Regression long-short portfolios
on the factor model that includes the CIV, PIV, IVSatm, IVSotm, Skew, VOV,
∆CIV, and ∆PIV factor long-short portfolios from [Neu+22], along with the
standard Fama-French factors. The intercept coefficient is reported in monthly
return terms, with corresponding standard errors in parentheses. We apply a
linear fee of 10 bps and a short-sale monthly cost of 10 bps to the returns of
CNN1, CNN4, CNN5, NN1, Ridge Regression and all option-based portfolios
from [Neu+22].

CNN1ew CNN4ew CNN5ew NN1ew z = 0.1

Intercept 0.010∗∗∗ 0.013∗∗∗ 0.011∗∗∗ 0.010∗∗∗ 0.007∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)
rM − rf -0.047 0.016 -0.047 0.099∗ 0.065

(0.061) (0.055) (0.054) (0.058) (0.050)
SMB -0.179∗ -0.035 0.024 -0.024 -0.025

(0.100) (0.090) (0.089) (0.095) (0.082)
HML -0.085 -0.080 -0.130∗ -0.105 -0.141∗∗

(0.085) (0.077) (0.075) (0.081) (0.070)
2-12 Momentum -0.098∗∗ -0.081∗ -0.107∗∗∗ 0.064 0.107∗∗∗

(0.046) (0.042) (0.041) (0.044) (0.038)
ST Reversal -0.074 -0.135∗∗ -0.173∗∗∗ -0.039 0.017

(0.067) (0.060) (0.059) (0.063) (0.055)
LT Reversal 0.156∗ 0.173∗∗ 0.261∗∗∗ 0.239∗∗∗ 0.227∗∗∗

(0.086) (0.078) (0.077) (0.082) (0.071)
CIV 0.525∗∗ 0.120 0.048 0.463∗∗ 0.480∗∗

(0.231) (0.209) (0.205) (0.220) (0.191)
PIV -0.314 -0.029 -0.011 -0.266 -0.179

(0.236) (0.213) (0.209) (0.224) (0.195)
IVSatm -0.357∗∗∗ 0.089 0.248∗∗ 0.018 -0.010

(0.118) (0.106) (0.105) (0.112) (0.097)
IVSotm 0.686∗∗∗ 0.190 0.176 0.432∗∗∗ 0.415∗∗∗

(0.133) (0.120) (0.118) (0.127) (0.110)
Skew 0.594∗∗∗ 0.237∗∗ 0.129 0.542∗∗∗ 0.548∗∗∗

(0.125) (0.113) (0.111) (0.119) (0.103)
VOV 0.159∗ 0.139∗ 0.144∗ 0.115 0.153∗∗

(0.084) (0.076) (0.074) (0.080) (0.069)
∆ CIV 0.050 0.279∗∗ 0.176∗ 0.067 -0.069

(0.119) (0.108) (0.106) (0.113) (0.098)
∆ PIV 0.130 0.162∗ 0.081 0.160 0.135

(0.108) (0.098) (0.096) (0.103) (0.089)

Observations 227 227 227 227 227
R2 0.657 0.366 0.345 0.620 0.735
Adjusted R2 0.634 0.324 0.302 0.595 0.718
Residual Std. Error 0.022 0.020 0.020 0.021 0.019
F Statistic 28.965∗∗∗ 8.752∗∗∗ 7.972∗∗∗ 24.756∗∗∗ 42.095∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

110 Chapter 2. Deep Learning from Options Implied Volatility

Table 2.27: Mega-cap segment, long-short portfolio. Monthly OLS regres-
sion of the CNN1, CNN4, CNN5, NN1, and Ridge Regression long-short port-
folios on the factor model that includes the CIV, PIV, IVSatm, IVSotm, Skew,
VOV, ∆CIV, and ∆PIV factor long-short portfolios from [Neu+22], along
with the standard Fama-French factors. The intercept coefficient is reported in
monthly return terms, with corresponding standard errors in parentheses. We
apply a linear fee of 10 bps and a short-sale monthly cost of 10 bps to the
returns of CNN1, CNN4, CNN5, NN1, Ridge Regression and all option-based
portfolios from [Neu+22].

CNN1ew CNN4ew CNN5ew NN1ew z = 0.1

Intercept 0.000 -0.002 -0.004∗ 0.001 0.001
(0.002) (0.002) (0.002) (0.002) (0.002)

rM − rf 0.065 0.108 0.064 0.149∗ 0.172∗∗

(0.073) (0.073) (0.071) (0.076) (0.072)
SMB 0.069 0.119 0.017 0.022 0.056

(0.119) (0.118) (0.115) (0.124) (0.118)
HML -0.063 -0.007 0.095 -0.016 -0.166∗

(0.101) (0.101) (0.098) (0.106) (0.100)
2-12 Momentum 0.034 -0.028 -0.015 0.211∗∗∗ 0.190∗∗∗

(0.055) (0.055) (0.053) (0.058) (0.054)
ST Reversal -0.237∗∗∗ -0.153∗ -0.202∗∗∗ -0.129 -0.000

(0.080) (0.079) (0.077) (0.083) (0.079)
LT Reversal 0.161 0.194∗ 0.121 0.187∗ 0.218∗∗

(0.103) (0.102) (0.099) (0.108) (0.102)
CIV -0.444 -0.330 -0.448∗ -0.240 -0.050

(0.276) (0.274) (0.267) (0.289) (0.273)
PIV 0.206 0.240 0.377 0.206 0.067

(0.282) (0.279) (0.272) (0.294) (0.279)
IVSatm -0.327∗∗ 0.026 0.192 -0.214 -0.265∗

(0.141) (0.140) (0.136) (0.147) (0.139)
IVSotm 0.234 -0.160 0.051 0.041 0.217

(0.159) (0.158) (0.154) (0.167) (0.158)
Skew 0.664∗∗∗ 0.305∗∗ 0.144 0.768∗∗∗ 0.589∗∗∗

(0.149) (0.148) (0.144) (0.156) (0.148)
VOV 0.125 0.162 0.206∗∗ 0.390∗∗∗ 0.548∗∗∗

(0.100) (0.099) (0.097) (0.105) (0.099)
∆ CIV 0.280∗ 0.245∗ 0.138 0.133 -0.076

(0.143) (0.141) (0.138) (0.149) (0.141)
∆ PIV 0.308∗∗ 0.104 -0.082 0.233∗ 0.170

(0.129) (0.128) (0.125) (0.135) (0.128)

Observations 227 227 227 227 227
R2 0.522 0.099 0.097 0.385 0.442
Adjusted R2 0.491 0.039 0.037 0.345 0.405
Residual Std. Error 0.027 0.027 0.026 0.028 0.027
F Statistic 16.561∗∗∗ 1.661∗ 1.628∗ 9.485∗∗∗ 11.992∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

2.13. Appendix - Proofs 111

Table 2.28: Large-cap segment, long-short portfolio. Monthly OLS regres-
sion of the CNN1, CNN4, CNN5, NN1, and Ridge Regression long-short port-
folios on the factor model that includes the CIV, PIV, IVSatm, IVSotm, Skew,
VOV, ∆CIV, and ∆PIV factor long-short portfolios from [Neu+22], along
with the standard Fama-French factors. The intercept coefficient is reported in
monthly return terms, with corresponding standard errors in parentheses. We
apply a linear fee of 10 bps and a short-sale monthly cost of 10 bps to the
returns of CNN1, CNN4, CNN5, NN1, Ridge Regression and all option-based
portfolios from [Neu+22].

CNN1ew CNN4ew CNN5ew NN1ew z = 0.1

Intercept -0.001 -0.002 -0.002 -0.002 -0.002
(0.002) (0.002) (0.002) (0.002) (0.002)

rM − rf 0.152∗∗ 0.086 0.017 0.202∗∗∗ 0.215∗∗∗

(0.063) (0.058) (0.061) (0.064) (0.062)
SMB 0.117 -0.084 0.008 0.208∗∗ 0.324∗∗∗

(0.103) (0.094) (0.099) (0.105) (0.101)
HML -0.027 -0.119 -0.072 -0.150∗ -0.239∗∗∗

(0.088) (0.080) (0.084) (0.089) (0.086)
2-12 Momentum -0.025 -0.048 -0.062 0.148∗∗∗ 0.182∗∗∗

(0.048) (0.043) (0.046) (0.049) (0.047)
ST Reversal -0.029 -0.088 -0.157∗∗ 0.123∗ 0.184∗∗∗

(0.069) (0.063) (0.066) (0.070) (0.067)
LT Reversal 0.032 0.197∗∗ 0.157∗ 0.191∗∗ 0.192∗∗

(0.089) (0.081) (0.086) (0.091) (0.087)
CIV -0.098 -0.179 -0.375 0.038 -0.028

(0.239) (0.218) (0.230) (0.243) (0.234)
PIV -0.080 0.179 0.368 -0.105 0.041

(0.244) (0.222) (0.235) (0.248) (0.238)
IVSatm -0.449∗∗∗ 0.220∗∗ 0.362∗∗∗ -0.007 -0.081

(0.122) (0.111) (0.117) (0.124) (0.119)
IVSotm 0.682∗∗∗ -0.100 -0.157 0.220 0.284∗∗

(0.138) (0.126) (0.133) (0.140) (0.135)
Skew 0.577∗∗∗ 0.428∗∗∗ 0.381∗∗∗ 0.636∗∗∗ 0.585∗∗∗

(0.129) (0.118) (0.124) (0.131) (0.126)
VOV -0.061 0.195∗∗ 0.204∗∗ 0.119 0.259∗∗∗

(0.087) (0.079) (0.083) (0.088) (0.085)
∆ CIV -0.055 0.113 0.123 -0.018 -0.164

(0.124) (0.113) (0.119) (0.126) (0.121)
∆ PIV 0.157 -0.149 -0.200∗ 0.247∗∗ 0.253∗∗

(0.112) (0.102) (0.108) (0.114) (0.109)

Observations 227 227 227 227 227
R2 0.533 0.199 0.192 0.452 0.556
Adjusted R2 0.502 0.146 0.139 0.416 0.527
Residual Std. Error 0.023 0.021 0.022 0.024 0.023
F Statistic 17.267∗∗∗ 3.754∗∗∗ 3.600∗∗∗ 12.503∗∗∗ 18.951∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

112 Chapter 2. Deep Learning from Options Implied Volatility

Table 2.29: Small-cap segment, long-short portfolio. Monthly OLS regres-
sion of the CNN1, CNN4, CNN5, NN1, and Ridge Regression long-short port-
folios on the factor model that includes the CIV, PIV, IVSatm, IVSotm, Skew,
VOV, ∆CIV, and ∆PIV factor long-short portfolios from [Neu+22], along
with the standard Fama-French factors. The intercept coefficient is reported in
monthly return terms, with corresponding standard errors in parentheses. We
apply a linear fee of 10 bps and a short-sale monthly cost of 10 bps to the
returns of CNN1, CNN4, CNN5, NN1, Ridge Regression and all option-based
portfolios from [Neu+22].

CNN1ew CNN4ew CNN5ew NN1ew z = 0.1

Intercept 0.002 0.005∗∗ 0.003 0.002 0.002
(0.002) (0.002) (0.002) (0.002) (0.002)

rM − rf -0.003 0.130∗ 0.013 0.154∗∗ 0.038
(0.077) (0.079) (0.071) (0.072) (0.068)

SMB -0.334∗∗∗ -0.017 0.072 -0.087 -0.034
(0.125) (0.128) (0.116) (0.118) (0.110)

HML 0.183∗ 0.065 -0.008 0.112 0.010
(0.106) (0.109) (0.099) (0.100) (0.094)

2-12 Momentum 0.020 0.010 -0.080 0.096∗ 0.174∗∗∗

(0.058) (0.059) (0.054) (0.054) (0.051)
ST Reversal 0.006 -0.048 -0.106 -0.027 -0.010

(0.083) (0.086) (0.078) (0.079) (0.074)
LT Reversal -0.014 -0.019 0.162 0.015 0.135

(0.108) (0.111) (0.101) (0.102) (0.095)
CIV 0.371 0.325 0.155 -0.012 0.146

(0.289) (0.297) (0.270) (0.273) (0.255)
PIV -0.100 -0.274 -0.145 0.181 0.130

(0.295) (0.303) (0.275) (0.279) (0.260)
IVSatm -0.216 0.074 0.422∗∗∗ 0.503∗∗∗ 0.182

(0.147) (0.152) (0.138) (0.139) (0.130)
IVSotm 0.518∗∗∗ 0.194 0.086 0.257 0.353∗∗

(0.167) (0.171) (0.156) (0.158) (0.147)
Skew 0.537∗∗∗ 0.187 0.128 0.499∗∗∗ 0.393∗∗∗

(0.156) (0.161) (0.146) (0.148) (0.138)
VOV 0.006 0.105 0.103 0.005 0.045

(0.105) (0.108) (0.098) (0.099) (0.092)
∆ CIV -0.042 -0.001 -0.153 -0.057 -0.062

(0.149) (0.153) (0.139) (0.141) (0.132)
∆ PIV 0.228∗ 0.116 -0.067 0.049 0.119

(0.135) (0.139) (0.126) (0.128) (0.119)

Observations 227 227 227 227 227
R2 0.454 0.131 0.185 0.416 0.514
Adjusted R2 0.418 0.073 0.131 0.377 0.482
Residual Std. Error 0.028 0.029 0.026 0.027 0.025
F Statistic 12.580∗∗∗ 2.280∗∗∗ 3.443∗∗∗ 10.783∗∗∗ 16.034∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

2.13. Appendix - Proofs 113

Table 2.30: Micro-cap segment, long-short portfolio. Monthly OLS re-
gression of the CNN1, CNN4, CNN5, NN1, and Ridge Regression long-short
portfolios on the factor model that includes the CIV, PIV, IVSatm, IVSotm,
Skew, VOV, ∆CIV, and ∆PIV factor long-short portfolios from [Neu+22],
along with the standard Fama-French factors. The intercept coefficient is re-
ported in monthly return terms, with corresponding standard errors in paren-
theses. We apply a linear fee of 20 bps and a short-sale monthly cost of 20
bps to the returns of CNN1, CNN4, CNN5, NN1, Ridge Regression and all
option-based portfolios from [Neu+22].

CNN1ew CNN4ew CNN5ew NN1ew z = 0.1

Intercept 0.036∗∗∗ 0.046∗∗∗ 0.042∗∗∗ 0.036∗∗∗ 0.013∗∗∗

(0.005) (0.006) (0.006) (0.005) (0.004)
rM − rf -0.517∗∗∗ -0.401∗ -0.254 -0.160 0.245∗

(0.185) (0.203) (0.203) (0.160) (0.136)
SMB -0.246 0.049 0.257 -0.325 -0.017

(0.301) (0.331) (0.331) (0.261) (0.221)
HML -0.427∗ -0.310 -0.410 -0.079 -0.007

(0.256) (0.282) (0.282) (0.222) (0.188)
2-12 Momentum -0.259∗ -0.366∗∗ -0.359∗∗ -0.057 -0.137

(0.139) (0.153) (0.153) (0.121) (0.102)
ST Reversal -0.242 -0.625∗∗∗ -0.664∗∗∗ -0.027 0.132

(0.201) (0.221) (0.221) (0.174) (0.148)
LT Reversal 0.412 0.402 0.544∗ 0.063 -0.105

(0.260) (0.286) (0.286) (0.225) (0.191)
CIV 1.858∗∗∗ 0.732 0.524 1.615∗∗∗ 1.269∗∗

(0.697) (0.769) (0.767) (0.605) (0.513)
PIV -1.457∗∗ -0.663 -0.713 -1.189∗ -0.984∗

(0.711) (0.783) (0.782) (0.617) (0.523)
IVSatm -0.321 0.525 0.460 -0.020 0.227

(0.356) (0.392) (0.391) (0.308) (0.261)
IVSotm 0.883∗∗ 0.415 0.748∗ 0.563 0.302

(0.402) (0.443) (0.443) (0.349) (0.296)
Skew 0.341 -0.072 -0.300 0.467 0.945∗∗∗

(0.377) (0.415) (0.414) (0.327) (0.277)
VOV 0.289 1.020∗∗∗ 0.819∗∗∗ 0.503∗∗ 0.152

(0.253) (0.278) (0.278) (0.219) (0.186)
∆ CIV 0.267 0.691∗ 0.749∗ -0.138 -0.481∗

(0.360) (0.397) (0.396) (0.312) (0.265)
∆ PIV 0.155 0.367 0.253 0.068 -0.367

(0.326) (0.359) (0.359) (0.283) (0.240)

Observations 227 227 227 227 227
R2 0.356 0.239 0.215 0.305 0.347
Adjusted R2 0.314 0.188 0.163 0.259 0.304
Residual Std. Error 0.068 0.075 0.075 0.059 0.050
F Statistic 8.378∗∗∗ 4.748∗∗∗ 4.139∗∗∗ 6.635∗∗∗ 8.057∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

114 Chapter 2. Deep Learning from Options Implied Volatility

Table 2.31: Not-micro-cap segment, long-short portfolio. Monthly OLS
regression of the CNN1, CNN4, CNN5, NN1, and Ridge Regression long-short
portfolios on the factor model that includes the CIV, PIV, IVSatm, IVSotm,
Skew, VOV, ∆CIV, and ∆PIV factor long-short portfolios from [Neu+22],
along with the standard Fama-French factors. The intercept coefficient is re-
ported in monthly return terms, with corresponding standard errors in paren-
theses. We apply a linear fee of 10 bps and a short-sale monthly cost of 10
bps to the returns of CNN1, CNN4, CNN5, NN1, Ridge Regression and all
option-based portfolios from [Neu+22].

CNN1ew CNN4ew CNN5ew NN1ew z = 0.1

Intercept 0.002 0.004∗∗ 0.002 0.001 0.001
(0.002) (0.002) (0.001) (0.002) (0.001)

rM − rf 0.066 0.049 0.028 0.151∗∗∗ 0.123∗∗

(0.057) (0.051) (0.048) (0.053) (0.049)
SMB -0.069 0.022 0.036 0.071 0.151∗

(0.093) (0.082) (0.078) (0.087) (0.080)
HML 0.018 0.031 -0.010 -0.026 -0.144∗∗

(0.079) (0.070) (0.066) (0.074) (0.068)
2-12 Momentum -0.040 -0.000 -0.025 0.123∗∗∗ 0.145∗∗∗

(0.043) (0.038) (0.036) (0.040) (0.037)
ST Reversal -0.064 -0.002 -0.085 0.015 0.056

(0.062) (0.055) (0.052) (0.058) (0.053)
LT Reversal 0.066 0.073 0.149∗∗ 0.139∗ 0.176∗∗

(0.080) (0.071) (0.068) (0.075) (0.069)
CIV 0.160 -0.099 -0.132 -0.020 0.014

(0.215) (0.191) (0.181) (0.201) (0.186)
PIV -0.090 0.150 0.151 0.105 0.185

(0.219) (0.195) (0.185) (0.205) (0.189)
IVSatm -0.313∗∗∗ 0.096 0.284∗∗∗ 0.211∗∗ 0.056

(0.110) (0.097) (0.092) (0.102) (0.095)
IVSotm 0.485∗∗∗ 0.029 0.009 0.291∗∗ 0.299∗∗∗

(0.124) (0.110) (0.104) (0.116) (0.107)
Skew 0.587∗∗∗ 0.329∗∗∗ 0.260∗∗∗ 0.486∗∗∗ 0.519∗∗∗

(0.116) (0.103) (0.098) (0.108) (0.100)
VOV 0.014 0.097 0.110∗ 0.045 0.146∗∗

(0.078) (0.069) (0.066) (0.073) (0.067)
∆ CIV -0.059 0.082 -0.041 0.031 -0.070

(0.111) (0.099) (0.094) (0.104) (0.096)
∆ PIV 0.126 0.058 -0.082 0.165∗ 0.209∗∗

(0.100) (0.089) (0.085) (0.094) (0.087)

Observations 227 227 227 227 227
R2 0.511 0.202 0.216 0.528 0.679
Adjusted R2 0.479 0.150 0.164 0.497 0.658
Residual Std. Error 0.021 0.019 0.018 0.020 0.018
F Statistic 15.812∗∗∗ 3.838∗∗∗ 4.170∗∗∗ 16.950∗∗∗ 32.048∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

2.13. Appendix - Proofs 115

Table 2.32: All-stocks, long-short portfolio. Monthly OLS regression of
the CNN1, CNN4, CNN5, NN1, and Ridge Regression long-short portfolios
on the factor model that includes the CIV, PIV, IVSatm, IVSotm, Skew, VOV,
∆CIV, and ∆PIV factor long-short portfolios from [Neu+22], along with the
standard Fama-French factors. The intercept coefficient is reported in monthly
return terms, with corresponding standard errors in parentheses. We apply a
linear fee of 20 bps and a short-sale monthly cost of 20 bps to the returns of
CNN1, CNN4, CNN5, NN1, Ridge Regression and all option-based portfolios
from [Neu+22].

CNN1ew CNN4ew CNN5ew NN1ew z = 0.1

Intercept 0.012∗∗∗ 0.013∗∗∗ 0.011∗∗∗ 0.012∗∗∗ 0.009∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)
rM − rf -0.046 0.016 -0.047 0.098∗ 0.065

(0.061) (0.055) (0.054) (0.058) (0.050)
SMB -0.174∗ -0.031 0.027 -0.020 -0.021

(0.099) (0.090) (0.088) (0.094) (0.082)
HML -0.086 -0.079 -0.127∗ -0.105 -0.141∗∗

(0.084) (0.076) (0.075) (0.080) (0.070)
2-12 Momentum -0.098∗∗ -0.082∗∗ -0.107∗∗∗ 0.063 0.106∗∗∗

(0.046) (0.041) (0.041) (0.044) (0.038)
ST Reversal -0.074 -0.133∗∗ -0.171∗∗∗ -0.037 0.019

(0.066) (0.060) (0.059) (0.063) (0.055)
LT Reversal 0.158∗ 0.173∗∗ 0.260∗∗∗ 0.241∗∗∗ 0.228∗∗∗

(0.086) (0.077) (0.076) (0.081) (0.071)
CIV 0.531∗∗ 0.120 0.043 0.471∗∗ 0.485∗∗

(0.231) (0.208) (0.205) (0.219) (0.190)
PIV -0.324 -0.033 -0.008 -0.278 -0.187

(0.235) (0.212) (0.208) (0.223) (0.194)
IVSatm -0.359∗∗∗ 0.090 0.250∗∗ 0.018 -0.011

(0.118) (0.106) (0.105) (0.112) (0.097)
IVSotm 0.693∗∗∗ 0.199∗ 0.182 0.441∗∗∗ 0.421∗∗∗

(0.133) (0.120) (0.118) (0.127) (0.110)
Skew 0.588∗∗∗ 0.230∗∗ 0.125 0.533∗∗∗ 0.542∗∗∗

(0.125) (0.112) (0.110) (0.118) (0.103)
VOV 0.159∗ 0.140∗ 0.144∗ 0.116 0.152∗∗

(0.084) (0.075) (0.074) (0.079) (0.069)
∆ CIV 0.045 0.271∗∗ 0.171 0.054 -0.078

(0.120) (0.108) (0.106) (0.114) (0.099)
∆ PIV 0.124 0.154 0.076 0.147 0.127

(0.108) (0.097) (0.096) (0.103) (0.089)

Observations 227 227 227 227 227
R2 0.656 0.366 0.346 0.621 0.735
Adjusted R2 0.634 0.324 0.303 0.596 0.718
Residual Std. Error 0.022 0.020 0.020 0.021 0.018
F Statistic 28.926∗∗∗ 8.747∗∗∗ 8.003∗∗∗ 24.782∗∗∗ 42.107∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

116 Chapter 2. Deep Learning from Options Implied Volatility

Table 2.33: Mega-cap segment, long-short portfolio. Monthly OLS regres-
sion of the CNN1, CNN4, CNN5, NN1, and Ridge Regression long-short port-
folios on the factor model that includes the CIV, PIV, IVSatm, IVSotm, Skew,
VOV, ∆CIV, and ∆PIV factor long-short portfolios from [Neu+22], along
with the standard Fama-French factors. The intercept coefficient is reported in
monthly return terms, with corresponding standard errors in parentheses. We
apply a linear fee of 20 bps and a short-sale monthly cost of 20 bps to the
returns of CNN1, CNN4, CNN5, NN1, Ridge Regression and all option-based
portfolios from [Neu+22].

CNN1ew CNN4ew CNN5ew NN1ew z = 0.1

Intercept 0.001 -0.003 -0.005∗ 0.003 0.002
(0.003) (0.003) (0.003) (0.003) (0.003)

rM − rf 0.065 0.110 0.066 0.149∗ 0.172∗∗

(0.073) (0.072) (0.070) (0.076) (0.072)
SMB 0.070 0.120 0.018 0.023 0.056

(0.119) (0.118) (0.115) (0.124) (0.118)
HML -0.064 -0.004 0.096 -0.017 -0.166∗

(0.101) (0.100) (0.097) (0.106) (0.100)
2-12 Momentum 0.034 -0.028 -0.015 0.210∗∗∗ 0.189∗∗∗

(0.055) (0.054) (0.053) (0.057) (0.054)
ST Reversal -0.237∗∗∗ -0.152∗ -0.202∗∗∗ -0.129 -0.001

(0.079) (0.079) (0.077) (0.083) (0.078)
LT Reversal 0.163 0.191∗ 0.120 0.189∗ 0.219∗∗

(0.103) (0.102) (0.099) (0.107) (0.102)
CIV -0.443 -0.330 -0.450∗ -0.232 -0.043

(0.276) (0.274) (0.267) (0.289) (0.273)
PIV 0.203 0.238 0.378 0.196 0.058

(0.282) (0.279) (0.272) (0.294) (0.278)
IVSatm -0.327∗∗ 0.022 0.189 -0.219 -0.270∗

(0.141) (0.140) (0.136) (0.148) (0.140)
IVSotm 0.238 -0.155 0.054 0.046 0.222

(0.160) (0.158) (0.154) (0.167) (0.158)
Skew 0.660∗∗∗ 0.300∗∗ 0.142 0.762∗∗∗ 0.584∗∗∗

(0.149) (0.148) (0.144) (0.156) (0.148)
VOV 0.122 0.160 0.203∗∗ 0.387∗∗∗ 0.546∗∗∗

(0.100) (0.099) (0.097) (0.105) (0.099)
∆ CIV 0.280∗ 0.243∗ 0.139 0.132 -0.079

(0.144) (0.142) (0.139) (0.150) (0.142)
∆ PIV 0.305∗∗ 0.101 -0.082 0.229∗ 0.167

(0.129) (0.128) (0.125) (0.135) (0.128)

Observations 227 227 227 227 227
R2 0.522 0.098 0.097 0.384 0.441
Adjusted R2 0.490 0.039 0.037 0.343 0.404
Residual Std. Error 0.027 0.027 0.026 0.028 0.026
F Statistic 16.527∗∗∗ 1.648∗ 1.620∗ 9.425∗∗∗ 11.930∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

2.13. Appendix - Proofs 117

Table 2.34: Large-cap segment, long-short portfolio. Monthly OLS regres-
sion of the CNN1, CNN4, CNN5, NN1, and Ridge Regression long-short port-
folios on the factor model that includes the CIV, PIV, IVSatm, IVSotm, Skew,
VOV, ∆CIV, and ∆PIV factor long-short portfolios from [Neu+22], along
with the standard Fama-French factors. The intercept coefficient is reported in
monthly return terms, with corresponding standard errors in parentheses. We
apply a linear fee of 20 bps and a short-sale monthly cost of 20 bps to the
returns of CNN1, CNN4, CNN5, NN1, Ridge Regression and all option-based
portfolios from [Neu+22].

CNN1ew CNN4ew CNN5ew NN1ew z = 0.1

Intercept -0.001 -0.003 -0.003 -0.000 -0.000
(0.002) (0.002) (0.002) (0.002) (0.002)

rM − rf 0.151∗∗ 0.086 0.017 0.201∗∗∗ 0.214∗∗∗

(0.063) (0.057) (0.061) (0.064) (0.062)
SMB 0.118 -0.082 0.008 0.209∗∗ 0.323∗∗∗

(0.103) (0.094) (0.099) (0.105) (0.101)
HML -0.028 -0.119 -0.072 -0.151∗ -0.240∗∗∗

(0.087) (0.080) (0.084) (0.089) (0.085)
2-12 Momentum -0.025 -0.048 -0.061 0.148∗∗∗ 0.182∗∗∗

(0.048) (0.043) (0.046) (0.048) (0.046)
ST Reversal -0.029 -0.087 -0.155∗∗ 0.123∗ 0.184∗∗∗

(0.069) (0.063) (0.066) (0.070) (0.067)
LT Reversal 0.033 0.196∗∗ 0.157∗ 0.193∗∗ 0.194∗∗

(0.089) (0.081) (0.085) (0.090) (0.087)
CIV -0.093 -0.174 -0.371 0.046 -0.023

(0.239) (0.218) (0.230) (0.243) (0.234)
PIV -0.086 0.173 0.363 -0.115 0.035

(0.244) (0.222) (0.234) (0.248) (0.238)
IVSatm -0.450∗∗∗ 0.216∗ 0.359∗∗∗ -0.009 -0.082

(0.122) (0.111) (0.118) (0.124) (0.120)
IVSotm 0.685∗∗∗ -0.099 -0.157 0.223 0.286∗∗

(0.138) (0.126) (0.133) (0.141) (0.135)
Skew 0.573∗∗∗ 0.427∗∗∗ 0.380∗∗∗ 0.631∗∗∗ 0.580∗∗∗

(0.129) (0.118) (0.124) (0.131) (0.126)
VOV -0.062 0.194∗∗ 0.202∗∗ 0.118 0.259∗∗∗

(0.087) (0.079) (0.083) (0.088) (0.085)
∆ CIV -0.059 0.111 0.121 -0.024 -0.170

(0.124) (0.113) (0.119) (0.126) (0.121)
∆ PIV 0.153 -0.151 -0.202∗ 0.240∗∗ 0.248∗∗

(0.112) (0.102) (0.108) (0.114) (0.109)

Observations 227 227 227 227 227
R2 0.532 0.197 0.190 0.451 0.555
Adjusted R2 0.501 0.144 0.137 0.414 0.525
Residual Std. Error 0.023 0.021 0.022 0.024 0.023
F Statistic 17.195∗∗∗ 3.716∗∗∗ 3.562∗∗∗ 12.419∗∗∗ 18.862∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

118 Chapter 2. Deep Learning from Options Implied Volatility

Table 2.35: Small-cap segment, long-short portfolio. Monthly OLS regres-
sion of the CNN1, CNN4, CNN5, NN1, and Ridge Regression long-short port-
folios on the factor model that includes the CIV, PIV, IVSatm, IVSotm, Skew,
VOV, ∆CIV, and ∆PIV factor long-short portfolios from [Neu+22], along
with the standard Fama-French factors. The intercept coefficient is reported in
monthly return terms, with corresponding standard errors in parentheses. We
apply a linear fee of 20 bps and a short-sale monthly cost of 20 bps to the
returns of CNN1, CNN4, CNN5, NN1, Ridge Regression and all option-based
portfolios from [Neu+22].

CNN1ew CNN4ew CNN5ew NN1ew z = 0.1

Intercept 0.004 0.004 0.002 0.004 0.004∗

(0.003) (0.003) (0.003) (0.003) (0.002)
rM − rf -0.002 0.130∗ 0.013 0.153∗∗ 0.037

(0.076) (0.078) (0.071) (0.072) (0.067)
SMB -0.331∗∗∗ -0.014 0.072 -0.085 -0.033

(0.124) (0.128) (0.116) (0.118) (0.110)
HML 0.180∗ 0.066 -0.008 0.109 0.008

(0.106) (0.109) (0.099) (0.100) (0.093)
2-12 Momentum 0.019 0.010 -0.079 0.096∗ 0.174∗∗∗

(0.057) (0.059) (0.054) (0.054) (0.051)
ST Reversal 0.005 -0.048 -0.105 -0.025 -0.009

(0.083) (0.085) (0.077) (0.079) (0.073)
LT Reversal -0.012 -0.019 0.161 0.018 0.136

(0.107) (0.110) (0.100) (0.102) (0.095)
CIV 0.380 0.325 0.155 -0.001 0.153

(0.289) (0.297) (0.270) (0.274) (0.255)
PIV -0.111 -0.276 -0.145 0.167 0.121

(0.294) (0.302) (0.275) (0.279) (0.260)
IVSatm -0.221 0.073 0.422∗∗∗ 0.499∗∗∗ 0.179

(0.148) (0.152) (0.138) (0.140) (0.131)
IVSotm 0.520∗∗∗ 0.197 0.085 0.260 0.355∗∗

(0.167) (0.171) (0.156) (0.158) (0.148)
Skew 0.534∗∗∗ 0.182 0.126 0.492∗∗∗ 0.388∗∗∗

(0.156) (0.160) (0.146) (0.148) (0.138)
VOV 0.006 0.105 0.102 0.003 0.043

(0.105) (0.108) (0.098) (0.099) (0.093)
∆ CIV -0.041 -0.004 -0.159 -0.063 -0.067

(0.150) (0.154) (0.140) (0.142) (0.133)
∆ PIV 0.228∗ 0.114 -0.070 0.043 0.114

(0.135) (0.139) (0.126) (0.128) (0.120)

Observations 227 227 227 227 227
R2 0.453 0.130 0.184 0.413 0.512
Adjusted R2 0.417 0.072 0.130 0.374 0.480
Residual Std. Error 0.028 0.029 0.026 0.027 0.025
F Statistic 12.540∗∗∗ 2.257∗∗∗ 3.410∗∗∗ 10.656∗∗∗ 15.890∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

2.13. Appendix - Proofs 119

Table 2.36: Micro-cap segment, long-short portfolio. Monthly OLS re-
gression of the CNN1, CNN4, CNN5, NN1, and Ridge Regression long-short
portfolios on the factor model that includes the CIV, PIV, IVSatm, IVSotm,
Skew, VOV, ∆CIV, and ∆PIV factor long-short portfolios from [Neu+22],
along with the standard Fama-French factors. The intercept coefficient is re-
ported in monthly return terms, with corresponding standard errors in paren-
theses. We apply a linear fee of 40 bps and a short-sale monthly cost of 40
bps to the returns of CNN1, CNN4, CNN5, NN1, Ridge Regression and all
option-based portfolios from [Neu+22].

CNN1ew CNN4ew CNN5ew NN1ew z = 0.1

Intercept 0.037∗∗∗ 0.052∗∗∗ 0.047∗∗∗ 0.036∗∗∗ 0.010∗∗

(0.007) (0.007) (0.007) (0.006) (0.005)
rM − rf -0.514∗∗∗ -0.399∗∗ -0.253 -0.160 0.244∗

(0.184) (0.202) (0.202) (0.159) (0.135)
SMB -0.241 0.053 0.259 -0.321 -0.017

(0.299) (0.330) (0.329) (0.260) (0.220)
HML -0.427∗ -0.308 -0.407 -0.081 -0.008

(0.254) (0.280) (0.280) (0.221) (0.187)
2-12 Momentum -0.256∗ -0.362∗∗ -0.355∗∗ -0.055 -0.135

(0.138) (0.152) (0.152) (0.120) (0.102)
ST Reversal -0.237 -0.617∗∗∗ -0.656∗∗∗ -0.023 0.132

(0.200) (0.220) (0.220) (0.173) (0.147)
LT Reversal 0.414 0.403 0.543∗ 0.067 -0.102

(0.259) (0.285) (0.284) (0.224) (0.190)
CIV 1.873∗∗∗ 0.733 0.527 1.629∗∗∗ 1.273∗∗

(0.696) (0.766) (0.765) (0.603) (0.511)
PIV -1.480∗∗ -0.671 -0.721 -1.209∗ -0.990∗

(0.709) (0.781) (0.779) (0.615) (0.521)
IVSatm -0.321 0.533 0.467 -0.021 0.222

(0.356) (0.392) (0.391) (0.309) (0.261)
IVSotm 0.897∗∗ 0.435 0.765∗ 0.575 0.305

(0.402) (0.442) (0.442) (0.348) (0.295)
Skew 0.318 -0.096 -0.322 0.448 0.936∗∗∗

(0.376) (0.414) (0.413) (0.326) (0.276)
VOV 0.285 1.017∗∗∗ 0.815∗∗∗ 0.499∗∗ 0.148

(0.252) (0.278) (0.277) (0.219) (0.185)
∆ CIV 0.239 0.665∗ 0.721∗ -0.165 -0.489∗

(0.362) (0.398) (0.397) (0.314) (0.266)
∆ PIV 0.129 0.339 0.226 0.043 -0.374

(0.326) (0.359) (0.358) (0.282) (0.239)

Observations 227 227 227 227 227
R2 0.354 0.237 0.213 0.302 0.346
Adjusted R2 0.311 0.187 0.161 0.256 0.303
Residual Std. Error 0.067 0.074 0.074 0.058 0.050
F Statistic 8.295∗∗∗ 4.708∗∗∗ 4.101∗∗∗ 6.566∗∗∗ 8.020∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

120 Chapter 2. Deep Learning from Options Implied Volatility

Table 2.37: Not-micro-cap segment, long-short portfolio. Monthly OLS
regression of the CNN1, CNN4, CNN5, NN1, and Ridge Regression long-short
portfolios on the factor model that includes the CIV, PIV, IVSatm, IVSotm,
Skew, VOV, ∆CIV, and ∆PIV factor long-short portfolios from [Neu+22],
along with the standard Fama-French factors. The intercept coefficient is re-
ported in monthly return terms, with corresponding standard errors in paren-
theses. We apply a linear fee of 20 bps and a short-sale monthly cost of 20
bps to the returns of CNN1, CNN4, CNN5, NN1, Ridge Regression and all
option-based portfolios from [Neu+22].

CNN1ew CNN4ew CNN5ew NN1ew z = 0.1

Intercept 0.003 0.003∗ 0.000 0.003∗ 0.003∗

(0.002) (0.002) (0.002) (0.002) (0.002)
rM − rf 0.067 0.049 0.028 0.151∗∗∗ 0.122∗∗

(0.057) (0.050) (0.048) (0.053) (0.049)
SMB -0.068 0.024 0.037 0.072 0.152∗

(0.092) (0.082) (0.078) (0.086) (0.080)
HML 0.016 0.031 -0.010 -0.028 -0.145∗∗

(0.079) (0.070) (0.066) (0.073) (0.068)
2-12 Momentum -0.040 0.000 -0.024 0.123∗∗∗ 0.145∗∗∗

(0.043) (0.038) (0.036) (0.040) (0.037)
ST Reversal -0.065 -0.002 -0.084 0.015 0.057

(0.062) (0.055) (0.052) (0.058) (0.053)
LT Reversal 0.068 0.072 0.149∗∗ 0.142∗ 0.177∗∗

(0.080) (0.071) (0.067) (0.075) (0.069)
CIV 0.166 -0.095 -0.132 -0.010 0.024

(0.215) (0.191) (0.181) (0.201) (0.186)
PIV -0.098 0.145 0.151 0.092 0.173

(0.219) (0.194) (0.184) (0.205) (0.189)
IVSatm -0.315∗∗∗ 0.093 0.283∗∗∗ 0.209∗∗ 0.052

(0.110) (0.098) (0.093) (0.103) (0.095)
IVSotm 0.487∗∗∗ 0.031 0.009 0.295∗∗ 0.302∗∗∗

(0.124) (0.110) (0.104) (0.116) (0.107)
Skew 0.585∗∗∗ 0.326∗∗∗ 0.259∗∗∗ 0.480∗∗∗ 0.513∗∗∗

(0.116) (0.103) (0.098) (0.108) (0.100)
VOV 0.013 0.096 0.109∗ 0.044 0.145∗∗

(0.078) (0.069) (0.066) (0.073) (0.067)
∆ CIV -0.058 0.079 -0.043 0.025 -0.075

(0.112) (0.099) (0.094) (0.104) (0.097)
∆ PIV 0.125 0.056 -0.084 0.158∗ 0.204∗∗

(0.101) (0.089) (0.085) (0.094) (0.087)

Observations 227 227 227 227 227
R2 0.510 0.200 0.214 0.526 0.677
Adjusted R2 0.478 0.147 0.162 0.494 0.656
Residual Std. Error 0.021 0.018 0.018 0.019 0.018
F Statistic 15.762∗∗∗ 3.786∗∗∗ 4.131∗∗∗ 16.788∗∗∗ 31.776∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

2.13. Appendix - Proofs 121

Table 2.38: Capped-value-weighted long-short portfolio (weights are
set in proportion to stock market capitalisation, with market caps
winsorized at 80% NYSE percentile as described in [JKPrt]). Monthly
OLS regression of the CNN1, CNN4, CNN5, NN1, and Ridge Regression long-
short portfolios on the factor model that includes the CIV, PIV, IVSatm,
IVSotm, Skew, VOV, ∆CIV, and ∆PIV factor long-short portfolios from
[Neu+22], along with the standard Fama-French factors. The intercept coef-
ficient is reported in monthly return terms, with corresponding standard errors
in parentheses.

CNN1ew CNN4ew CNN5ew NN1ew z = 0.1

Intercept 0.000 0.003∗ 0.002 0.000 0.001
(0.002) (0.002) (0.002) (0.002) (0.002)

rM − rf 0.079 0.081 0.053 0.112∗ 0.044
(0.073) (0.059) (0.059) (0.063) (0.053)

SMB -0.110 0.128 0.104 0.061 0.126
(0.109) (0.088) (0.087) (0.093) (0.078)

HML -0.048 -0.012 0.039 -0.003 -0.207∗∗∗

(0.101) (0.082) (0.081) (0.087) (0.073)
2-12 Momentum -0.117∗∗ -0.119∗∗∗ -0.076∗ 0.092∗ 0.024

(0.056) (0.045) (0.044) (0.047) (0.040)
ST Reversal -0.040 0.044 -0.043 0.016 0.025

(0.080) (0.065) (0.064) (0.069) (0.058)
LT Reversal 0.012 0.012 0.045 0.091 0.109

(0.107) (0.087) (0.085) (0.091) (0.077)
CIV 0.144 0.039 -0.045 0.109 0.109

(0.160) (0.130) (0.128) (0.136) (0.115)
PIV -0.005 -0.022 -0.001 0.030 0.138

(0.165) (0.134) (0.132) (0.141) (0.119)
IVSatm -0.141 0.165∗ 0.190∗ 0.412∗∗∗ 0.200∗∗

(0.122) (0.099) (0.098) (0.104) (0.088)
IVSotm 0.771∗∗∗ 0.066 0.091 0.371∗∗∗ 0.410∗∗∗

(0.140) (0.114) (0.112) (0.120) (0.101)
Skew 0.818∗∗∗ 0.364∗∗∗ 0.234∗∗ 0.621∗∗∗ 0.596∗∗∗

(0.122) (0.099) (0.097) (0.104) (0.088)
VOV -0.049 -0.036 0.101 0.010 0.160∗∗

(0.090) (0.073) (0.072) (0.077) (0.065)
∆ CIV -0.096 0.221∗ 0.137 -0.107 0.027

(0.147) (0.120) (0.118) (0.126) (0.106)
∆ PIV 0.019 0.149 0.055 0.056 0.168∗

(0.134) (0.109) (0.108) (0.115) (0.097)

Observations 227 227 227 227 227
R2 0.597 0.280 0.174 0.589 0.728
Adjusted R2 0.571 0.233 0.119 0.562 0.710
Residual Std. Error 0.027 0.022 0.022 0.023 0.020
F Statistic 22.476∗∗∗ 5.897∗∗∗ 3.183∗∗∗ 21.684∗∗∗ 40.452∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

122 Chapter 2. Deep Learning from Options Implied Volatility

for x = U−pz + Upy. Then, by the [BL76] inequality,

Var[F (z)|y] = E[F (z)2|y] ≤ E[∇zF (z)′Σ̂z∇zF (z)|y]

≤ Λ1(Σ)E[∥∇zF (z)∥2|y] = Λ1(Σ)E[∥∇zF (z)∥2|y]

= λ1(Σ)E[∥U ′
−p∇xf(x)∥2|U ′

px = y]

= λ1(Σ)E[(U ′
−p∇xf(x))

′U ′
−p∇xf(x)|U ′

px = y]

= λ1(Σ)E[∇xf(x)
′U−pU

′
−p∇xf(x)|U ′

px = y]

= λ1(Σ) ⊺ E[U−pU
′
−p∇xf(x)∇xf(x)

′|U ′
px = y]

= λ1(Σ) ⊺ (U−pU
′
−pE[∇xf(x)∇xf(x)

′|U ′
px = y])

(2.34)

and, hence,
E[(f(x)− fp(U

′
px))

2] = E[F (z)2] = E[E[F (z)2|y]]

≤ λ1(Σ)E[λ1(Σ) ⊺ (U−pU
′
−pE[∇xf(x)∇xf(x)

′|U ′
px = y])]

= λ1(Σ) ⊺ (U−pU
′
−pE[∇xf(x)∇xf(x)

′])

= λ1(Σ) ⊺ (U−pU
′
−pM̄∗) = λ1(Σ)Λ−p(M∗).

(2.35)

123

Part III

Kernel Methods

125

3. A Simple Algorithm For Scaling
Up Kernel Methods

126 Chapter 3. A Simple Algorithm For Scaling Up Kernel
Methods

3.1. Introduction

Modern neural networks operate in the over-parametrized regime, which sometimes requires
orders of magnitude more parameters than training data points. Effectively, they are interpo-
lators (see, [Bel21]) and overfit the data in the training sample, with no consequences for the
out-of-sample performance. This seemingly counterintuitive phenomenon is sometimes called
“benign overfit” [Bar+20; TB20].

In the so-called lazy training regime [COB19], wide neural networks (many nodes in
each layer) are effectively kernel regressions, and “early stopping” commonly used in neural
network training is closely related to ridge regularization [AKT19]. See, [JGH18; Has+19;
Du+18; Du+19a; AZLS19]. Recent research also emphasizes the “double descent,” in which
expected forecast error drops in the high-complexity regime. See, for example, [Zha+16;
Bel+18; BRT19; Spi+19; BHX20].

These discoveries made many researchers argue that we need to gain a deeper under-
standing of kernel methods (and, hence, random feature regressions) and their link to deep
learning. See, e.g., [BMM18]. Several recent papers have developed numerical algorithms for
scaling kernel-type methods to large datasets and large numbers of random features. See,
e.g., [Zan+21; MB17; Aro+19a; Sha+20]. In particular, [Aro+19b] show how NTK combined
with the support vector machines (SVM) (see also [FD+14]) perform well on small data tasks
relative to many competitors, including the highly over-parametrized ResNet-34. In particu-
lar, while modern deep neural networks do generalize on small datasets (see, e.g., [OWB18]),
[Aro+19b] show that kernel-based methods achieve superior performance in such small data
environments. Similarly, [Du+19b] find that the graph neural tangent kernel (GNTK) domi-
nates graph neural networks on datasets with up to 5000 samples. [Sha+20] show that, while
NTK is a powerful kernel, it is possible to build other classes of kernels (they call Neural Ker-
nels) that are even more powerful and are often at par with extremely complex deep neural
networks.

In this paper, we develop a novel form of kernel ridge regression that can be applied to
any kernel and any way of generating random features. We use a doubly stochastic method
similar to that in [Dai+14], with an important caveat: We generate (potentially large, defined
by the RAM constraints) batches of random features and then use linear algebraic properties
of covariance matrices to recursively update the eigenvalue decomposition of the feature co-
variance matrix, allowing us to perform the optimization in one shot across a large grid of
ridge parameters.

The paper is organized as follows. Section 3.2 discusses related work. In Section 3.3, we
provide a novel random feature regression mathematical formulation and algorithm. Then,
Section 3.4 and Section 3.5 present numerical results and conclusions, respectively.

3.2. Related Work

Before the formal introduction of the NTK in [JGH18], numerous papers discussed the intrigu-
ing connections between infinitely wide neural networks and kernel methods. See, e.g., [Nea96];
[Wil97]; [LRB07]; [HJ15]; [Lee+18]; [Mat+18]; [Nov+18]; [GARA18]; [CS09]; [DFS16]; [Dan17].
As in the standard random feature approximation of the kernel ridge regression (see [RR07]),
only the network’s last layer is trained in the standard kernel ridge regression. A surpris-
ing discovery of [JGH18] is that (infinitely) wide neural networks in the lazy training regime
converge to a kernel even though all network layers are trained. The corresponding kernel,
the NTK, has a complex structure dependent on the neural network’s architecture. See also
[Lee+19], [Aro+19a] for more results about the link between NTK and the underlying neural
network, and [Nov+19] for an efficient algorithm for implementing the NTK. In a recent pa-
per, [Sha+20] introduce a new class of kernels and show that they perform remarkably well
on even very large datasets, achieving a 90% accuracy on the CIFAR-10 dataset. While this
performance is striking, it comes at a huge computational cost. [Sha+20] write:

“CIFAR-10/CIFAR-100 consist of 60, 000 32 × 32 × 3 images and MNIST consists of
70, 000 28 × 28 images. Even with this constraint, the largest compositional kernel matrices

3.3. Random Features Ridge Regression and Classification 127

we study took approximately 1000 GPU hours to compute. Thus, we believe an imperative
direction of future work is reducing the complexity of each kernel evaluation. Random feature
methods or other compression schemes could play a significant role here.

In this paper, we offer one such highly scalable scheme based on random features. However,
computing the random features underlying the Neural Kernels of [Sha+20] would require
developing non-trivial numerical algorithms based on the recursive iteration of non-linear
functions. We leave this as an important direction for future research.

As in standard kernel ridge regressions, we train our random feature regression on the
full sample. This is a key computational limitation for large datasets. After all, one of
the reasons for the success of modern deep learning is the possibility of training them using
stochastic gradient descent on mini-batches of data. [MB17] shows how mini-batch training
can be applied to kernel ridge regression. A key technical difficulty arises because kernel
matrices (equivalently, covariance matrices of random features) have eigenvalues that decay
very quickly. Yet, these low eigenvalues contain essential information and cannot be neglected.
Our regression method can be easily modified to allow for mini-batches. Furthermore, it is
known that mini-batch linear regression can even lead to performance gains in the high-
complexity regime. As [LJB20] show, one can run regression on mini-batches and then treat
the obtained predictions as an ensemble. [LJB20] prove that, under technical conditions, the
average of these predictions attains a lower generalization error than the full-train-sample-
based regression. We test this mini-batch ensemble approach using our method and show
that, indeed, with moderately-sized mini-batches, the method’s performance matches that of
the full sample regression.

Moreover, there is an intriguing connection between mini-batch regressions and spectral
dimensionality reduction. By construction, the feature covariance matrix with a mini-batch
of size B has at most B non-zero eigenvalues. Thus, a mini-batch effectively performs a di-
mensionality reduction on the covariance matrix. Intuitively, we expect that the two methods
(using a mini-batch of size B or using the full sample but only keeping B largest eigenvalues)
should achieve comparable performance. We show that this is indeed the case for small sample
sizes. However, the spectral method for larger-sized samples (N ≥ 10000) is superior to the
mini-batch method unless we use very large mini-batches. For example, on the full CIFAR-10
dataset, the spectral method outperforms the mini-batch approach by 3% (see Section 3.4 for
details).

3.3. Random Features Ridge Regression and Clas-
sification

Suppose that we have a train sample (X, y) = (xi, yi)
N
i=1, xi ∈ Rd, yi ∈ R, so that

X ∈ RN×d, y ∈ RN×1. Following [RR07] we construct a large number of random features
f(x; θp), p = 1, . . . , P, where f is a non-linear function and θp are sampled from some dis-
tribution, and P is a large number. We denote S = f(X; θ) ∈ RN×P as the train sample
realizations of random features. Following [RR07], we consider the random features ridge
regression,

β(z) = (S⊤S/N + zI)−1S⊤y/N , (3.1)

as an approximation for kernel ridge regression when P → ∞. For classification problems,
it is common to use categorical cross-entropy as the objective. However, as [Bel21] explains,
minimizing the mean-squared error with one-hot encoding often achieves superior generaliza-
tion performance. Here, we follow this approach. Given the K labels, k = 1, . . . ,K, we build
the one-hot encoding matrix Q = (qi,k) where qi,k = 1yi=k. Then, we get

β(z) = (S⊤S/N + zI)−1S⊤Q/N ∈ RP×K . (3.2)

Then, for each test feature vector s = f(x; θ) ∈ RP , we get a vector β(z)⊤s ∈ RK . Next,
define the actual classifier as

k(x; z) = argmax{β(z)⊤s} ∈ {1, · · · ,K} . (3.3)

128 Chapter 3. A Simple Algorithm For Scaling Up Kernel
Methods

3.3.1. Dealing with High-Dimensional Features

A key computational (hardware) limitation of kernel methods comes from the fact that, when
P is large, computing the matrix S⊤S ∈ RP×P becomes prohibitively expensive, in particular,
because S cannot even be stored in RAM.We start with a simple observation that the following
identity implies that storing all these features is not necessary:1

(S⊤S/N + zI)−1S⊤ = S⊤(SS⊤/N + zI)−1 , (3.4)

and therefore we can compute β(z) as

β(z) = S⊤(SS⊤/N + zI)−1y/N . (3.5)

Suppose now we split S into multiple blocks, S1, . . . , SK , where Sk ∈ RN×P1 for all
k = 1, . . . ,K, for some small P1, with KP1 = P. Then,

Ψ = SS⊤ =

K∑
k=1

SkS
⊤
k (3.6)

can be computed by generating the blocks Sk, one at a time, and recursively adding SkS
⊤
k

up. Once Ψ has been computed, one can calculate its eigenvalue decomposition, Ψ = V DV ⊤,
and then evaluate Q(z) = (Ψ/N + zI)−1y/N = V (D + zI)−1V ⊤y/N ∈ RN in one go for
a grid of z. Then, using the same seeds, we can again generate the random features Sk and
compute βk(z) = S⊤

k Q(z) ∈ RP1 . Then, β(z) = (βk(z))
K
k=1 ∈ RP . The logic described above

is formalized in Algorithm 3.

Algorithm 3 FABReg

Require: P1, P , X ∈ RN×d, y ∈ RN , z, voc curve
blocks← P//P1

k ← 0
Ψ← 0N×N

while k < blocks do
Generate Sk ∈ RN×P1 Use k as seed
Ψ← Ψ+ SkSk⊤
if k in voc curve then

DV ← eigen(Ψ
N
)

Qk(z)← V (D + zI)−1V ⊤ y
N
{Store Qk(z)}

end if
k = k + 1

end while
DV ← eigen(Ψ

N
)

Q(z)← V (D + zI)−1V ⊤ y
N

k ← 0
while k < blocks do

(re-)Generate Sk ∈ RN×P1 {Use k as seed}
βk(z)← S⊤

k Q(z)
ŷ += Skβk

end while

1This identity follows directly from (S⊤S/N + zI)S⊤ = S⊤(SS⊤/N + zI).

3.3. Random Features Ridge Regression and Classification 129

3.3.2. Dealing with Massive Datasets

The above algorithm relies crucially on the assumption that N is small. Suppose now that
the sample size N is so large that storing and eigen-decomposing the matrix SS⊤ ∈ RN×N

becomes prohibitively expensive. In this case, we proceed as follows.
Define for all k = 1, . . . ,K

Ψk =

k∑
κ=1

SkS
⊤
k ∈ RN×N , Ψ0 = 0N×N , (3.7)

and let λ1(A) ≥ · · · ≥ λN (A) be the eigenvalues of a symmetric matrix A ∈ RN×N . Our
goal is to design an approximation to (ΨK + zI)−1, based on a simple observation that the
eigenvalues of the empirically observed Ψk matrices tend to decay very quickly, with only a
few hundreds of largest eigenvalues being significantly different from zero. In this case, we can
fix a ν ∈ N and design a simple, rank−ν approximation to ΨK by annihilating all eigenvalues
below λν(ΨK). As we now show, it is possible to design a recursive algorithm for constructing
such an approximation to ΨK , dealing with small subsets of random features simultaneously.
To this end, we proceed as follows.

Suppose we have constructed an approximation Ψ̂k ∈ RN×N to Ψk with rank ν, and
let Vk ∈ RN×ν be the corresponding matrix of orthogonal eigenvectors for the non-zero
eigenvalues, and Dk ∈ Rν×ν the diagonal matrix of eigenvalues so that Ψ̂k = VkDkV

⊤
k and

V ⊤
k Vk = Iν×ν . Instead of storing the full Ψ̂k matrix, we only need to store the pair (Vk, Dk).

For all k = 1, . . . ,K, we now define

Ψ̃k+1 = Ψ̂k + Sk+1S
⊤
k+1 . (3.8)

This N × N matrix is a theoretical construct. We never actually compute it (see Algorithm

4). Let Θk = I − VkV
⊤
k be the orthogonal projection on the kernel of Ψ̂k, and

S̃k+1 = ΘkSk+1 = Sk+1 − Vk︸︷︷︸
N×ν

(V ⊤
k Sk+1︸ ︷︷ ︸
ν×P1

) (3.9)

be S̃k+1 orthogonalized with respect to the columns of Vk. Then, we define W̃k+1 to be a

matrix with orthogonalized columns of S̃k+1, and V̂k+1 = [Vk, W̃k+1]. We can compute W̃k+1

using the following lemma.

Lemma 3.3.1. Let S̃⊤
k+1S̃k+1︸ ︷︷ ︸
P1×P1

= WδW⊤ be the eigenvalue decomposition of S̃⊤
k+1S̃k+1.

Then, W̃k+1 = S̃k+1Wδ−1/2 is the matrix of eigenvectors of S̃k+1S̃
⊤
k+1 for the non-zero

eigenvalues.

By construction, the columns of V̂k+1 form an orthogonal basis of the span of the columns
of Vk, Sk+1, and hence

Ψk+1,∗ = V̂ ⊤
k+1Ψ̃k+1V̂k+1 ∈ R(P1+ν)×(P1+ν) (3.10)

has the same non-zero eigenvalues as Ψ̃k+1. We then define Ṽk+1 ∈ R(P1+ν)×ν to be the
matrix with eigenvectors of Ψk+1,∗ for the largest ν eigenvalues, and we denote the diagonal

matrix of these eigenvalues by Dk+1 ∈ Rν×ν , and then we define Vk+1 = V̂k+1Ṽk+1 . Then,

Ψ̂k+1 = Vk+1Dk+1Vk+1 = Πk+1Ψ̃k+1Π
⊤
k+1 , where Πk+1 = V̂k+1Ṽk+1Ṽ

⊤
k+1V̂

⊤
k+1 is the

orthogonal projection onto the eigen-subspace of Ψ̃k+1 for the largest ν eigenvalues.

Lemma 3.3.2. We have Ψ̂k ≤ Ψ̃k ≤ ΨK and

∥Ψk − Ψ̂k∥ ≤
k∑

i=1

λν+1(Ψi) ≤ k λν+1(ΨK) , (3.11)

and

∥(Ψk+1 + zI)−1 − (Ψ̂k+1 + zI)−1∥ ≤ z−2
k∑

i=1

λν+1(Ψi) . (3.12)

130 Chapter 3. A Simple Algorithm For Scaling Up Kernel
Methods

Proof. We have

Ψk+1 = Ψk + Sk+1S
⊤
k+1

Ψ̃k+1 = Ψ̂k + Sk+1S
⊤
k+1

Ψ̂k+1 = Pk+1Ψ̃k+1P
⊤
k+1 .

(3.13)

By the definition of the spectral projection, we have

∥Ψ̃k+1 − Ψ̂k+1∥ ≤ λν+1(Ψ̃k+1) ≤ λν+1(Ψk+1) , (3.14)

and hence
∥Ψk+1 − Ψ̂k+1∥

≤ ∥Ψk+1 − Ψ̃k+1∥+ ∥Ψ̃k+1 − Ψ̂k+1∥

= ∥Ψk − Ψ̂k∥+ ∥Ψ̃k+1 − Ψ̂k+1∥

≤ ∥Ψk − Ψ̂k∥ + λν+1(Ψk+1) ,

(3.15)

and the claim follows by induction. The last claim follows from the simple inequality

∥(Ψk+1 + zI)−1 − (Ψ̂k+1 + zI)−1∥ ≤ z−2∥Ψk+1 − Ψ̂k+1∥ . (3.16)

There is another important aspect of our algorithm: It allows us to directly compute the
performance of models with an expanding level of complexity. Indeed, since we load random
features in batches of size P1, we generate predictions for P ∈ [P1, 2P1, · · · ,KP1]. This is
useful because we might use it to calibrate the optimal degree of complexity and because
we can directly study the double descent-like phenomena, see, e.g., [Bel+18] and [Nak+21].
That is the effect of complexity on the generalization error. In the next section, we do this.
As we show, consistent with recent theoretical results [KMZ22], with sufficient shrinkage, the
double descent curve disappears, and the performance becomes almost monotonic in complex-
ity. Following [KMZ22], we name this phenomenon the virtue of complexity (VoC) and the
corresponding performance plots the VoC curves. See, Figure 3.6 below.

We call this algorithm Fast Annihilating Batch Regression (FABReg) as it annihilates all
eigenvalues below λν(ΨK) and allows to solve the random features ridge regression in one go
for a grid of z. Algorithm 4 formalizes the logic described above.

3.4. Numerical Results

This section presents several experimental results on different datasets to evaluate FABReg’s
performance and applications. In contrast to the most recent computational power demand
in kernel methods, e.g., [Sha+20], we ran all experiments on a laptop, a MacBook Pro model
A2485, equipped with an M1 Max with a 10-core CPU and 32 GB RAM.

3.4.1. A comparison with sklearn

We now aim to show FABReg’s training and prediction time with respect to the number of
features d. To this end, we do not use any random feature projection or the rank-ν matrix
approximation described in Section 3.3.1. We draw N = 5000 i.i.d. samples from ⊗d

j=1N (0, 1)
and let

yi = xiβ + ϵi ∀i = 1, . . . , N,

where β ∼ ⊗d
j=1N (0, 1), and ϵi ∼ N (0, 1) for all i = 1, . . . , N . Then, we define

yi =

{
1 if yi > median(y),

0 otherwise
∀i = 1, . . . , N.

Next, we create a set of datasets for classification with varying complexity d and keep the first
4000 samples as the training set and the remaining 1000 as the test set. We show in Figure 3.1

3.4. Numerical Results 131

Algorithm 4 FABReg-ν

Require: ν, P1, P , X ∈ RN×d, y ∈ RN , z, voc curve
blocks← P//P1

k ← 0
while k < blocks do

Generate Sk ∈ RN×P1 {Use k as seed to generate the random features}
if k = 0 then

d̃, Ṽ ← eigen(S⊤
k Sk)

V ← SkṼ diag(d̃)−
1
2

V0 ← V:,min(ν,P1) {Save V0}
d0 ← d̃:min(ν,P1) {Save d0}
if k in voc curve then

Q0(z)← V0(diag(d0) + zI)−1V ⊤
0 y {Save Q0(z)}

end if
else if k > 0 then

S̃k ← (I − Vk−1V
⊤
k−1)Sk

Γk ← S̃⊤
k S̃k

δk,Wk ← eigen(Γk)
Keep top min(ν, P1) eigenvalues and eigenvectors from δk,Wk

W̃k ← S̃kWkdiag(δk)
− 1

2

V̂k ← [Vk−1, W̃k]
V̄k ← V̂ ⊤

k Vk−1

W̄k ← V̄kdiag(dk−1)V̄
⊤
k

S̄k ← V̂ ⊤
k Sk

Z̄k ← S̄kS
⊤
k

Ψ∗ ← W̄kZ̄k

dk, Vk ← eigen(Ψ∗)
Keep top min(ν, P1) eigenvalues and eigenvectors from dk, Vk

Vk ← V̂kVk {Save dk, Vk}
if k in voc curve then

Qk(z)← Vk(diag(dk) + zI)−1V ⊤
k y {Save Qk(z)}

end if
end if
k = k + 1

end while
k ← 0
while k < blocks do

(re-)Generate Sk ∈ RN×P1 {Use k as seed to generate the random features}
βk(z)← S⊤

k Qk(z)
ŷ += Skβk

end while

132 Chapter 3. A Simple Algorithm For Scaling Up Kernel
Methods

0 20000 40000 60000 80000 100000
d

0

200

400

600

800

Tr
ai

ni
ng

 a
nd

 P
re

di
ct

io
n

Ti
m

e
(s

)

FABR - |z| = 5
FABR - |z| = 10
FABR - |z| = 20
FABR - |z| = 50
sklearn - |z| = 5
sklearn - |z| = 10
sklearn - |z| = 20
sklearn - |z| = 50

Figure 3.1: The figure above compares FABReg training and prediction time,
shown on the y-axis, in black, against sklearn’s RidgeClassifier, in red, for an
increasing amount of features, shown on the x-axis, and the number of shrinkages
z. Here, |z| denotes the number of different values of z for which we perform
the training.

the average training and prediction time (in seconds) of FABReg with a different number of
regularizers (we denote this number by |z|) and sklearn RidgeClassifier with an increasing
number of features d. The training and prediction time is averaged over five independent
runs. As one can see, our method is drastically faster when d > 10000. E.g., for d = 100000
we outperform sklearn by approximately 5 and 25 times for |z| = 5 and |z| = 50, respectively.
Moreover, one can notice that the number of different shrinkages |z| does not affect FABReg.
We report a more detailed table with average training and prediction time and standard
deviation in Appendix 3.7.

3.4.2. Experiments on Real Datasets

We assess FABReg’s performance on both small and big datasets regimes for further evalua-
tion. For all experiments, we perform a random features kernel ridge regression for demeaned
one-hot labels and solve the optimization problem using FABReg as described in Section 3.3.

Data Representation

Table 3.1: The table below shows the average test accuracy and standard
deviation of ResNet-34, CNTK, and FABR on the subsampled CIFAR-10
datasets. The test accuracy is average over twenty independent runs.

n ResNet-34 14-layer CNTK z=1 z=100 z=10000 z=100000

10 14.59% ± 1.99% 15.33% ± 2.43% 18.50% ± 2.18% 18.50% ± 2.18% 18.42% ± 2.13% 18.13% ± 2.01%
20 17.50% ± 2.47% 18.79% ± 2.13% 20.84% ± 2.38% 20.85% ± 2.38% 20.78% ± 2.35% 20.13% ± 2.34%
40 19.52% ± 1.39% 21.34% ± 1.91% 25.09% ± 1.76% 25.10% ± 1.76% 25.14% ± 1.75% 24.41% ± 1.88%
80 23.32% ± 1.61% 25.48% ± 1.91% 29.61% ± 1.35% 29.60% ± 1.35% 29.62% ± 1.39% 28.63% ± 1.66%
160 28.30% ± 1.38% 30.48% ± 1.17% 34.86% ± 1.12% 34.87% ± 1.12% 35.02% ± 1.11% 33.54% ± 1.24%
320 33.15% ± 1.20% 36.57% ± 0.88% 40.46% ± 0.73% 40.47% ± 0.73% 40.66% ± 0.72% 39.34% ± 0.72%
640 41.66% ± 1.09% 42.63% ± 0.68% 45.68% ± 0.71% 45.68% ± 0.72% 46.17% ± 0.68% 44.91% ± 0.72%

1280 49.14% ± 1.31% 48.86% ± 0.68% 50.30% ± 0.57% 50.32% ± 0.56% 51.05% ± 0.54% 49.74% ± 0.42%

FABReg requires, like any standard kernel methods or randomized-feature techniques, a
good data representation. Usually, we don’t know such a representation a-priori, and learning
a good kernel is outside the scope of this paper. Therefore, we build a simple Convolutional

3.4. Numerical Results 133

GlobalAveragePool

3x3 Convolution

ReLU

2x2 Average Pool

BatchNormalization

3x3 Convolution

ReLU

2x2 Average Pool

BatchNormalization

3x3 Convolution

ReLU

2x2 Average Pool

BatchNormalization

3x3 Convolution

ReLU

2x2 Average Pool

BatchNormalization

Figure 3.2: CNN architecture used to extract image features.

Neural Network (CNN) mapping h : Rd → RD; that extracts image features x̃ ∈ RD for
some sample x ∈ Rd. The CNN is not optimized; we use it as a simple random feature
mapping. The CNN architecture, shown in Fig. 3.2, alternates a 3× 3 convolution layer with
a ReLU activation function, a 2 × 2 Average Pool, and a BatchNormalization layer [IS15a].
Convolutional layers weights are initialized using He Uniform [He+15]. To vectorize images,
we use a global average pooling layer that has proven to enforce correspondences between
feature maps and to be more robust to spatial translations of the input [LCY13]. We finally
obtain the train and test random features realizations s = f(x̃, θ). Specifically, we use the
following random features mapping

si = σ(Wx̃), (3.17)

where W ∈ RP×D with wi,j ∼ N (0, 1) and σ is some elementwise activation function. This
can be described as a one-layer neural network with random weights W . To show the impor-
tance of over-parametrized models, throughout the results, we report the complexity, c, of the
model as c = P/N , that is, the ratio between the parameters (dimensions) and the number of
observations. See [Bel+18; Has+19; KMZ22].

134 Chapter 3. A Simple Algorithm For Scaling Up Kernel
Methods

Figure 3.3: The figures above show FABReg’s test accuracy increases with the
model’s complexity c on the subsampled CIFAR-10 dataset for n = 10. The
test accuracy is averaged over five independent runs.

Small Datasets

We now study the performance of FABReg on the subsampled CIFAR-10 dataset [KH+09]. To
this end, we reproduce the same experiment described in [Aro+19b]. In particular, we obtain
random subsampled training set (y;X) = (yi;xi)

n
i=1 where n ∈ {10, 20, 40, 80, 160, 320, 640, 1280}

and test on the whole test set of size 10000. We make sure that exactly n/10 sample from each
image class is in the training sample. We train FABReg using random features projection of
the subsampled training set

S = σ(Wg(X)) ∈ Rn×P ,

where g is an untrained CNN from Figure 3.2, randomly initialized using He Uniform distri-
bution. In this experiment, we push the model complexity c to 100; in other words, FABReg’s
number of parameters equals a hundred times the number of observations in the subsample.
As n is small, we deliberately do not perform any low-rank covariance matrix approximation.
Finally, we run our model twenty times and report the mean out-of-sample performance and
the standard deviation. We report in Table 3.1 FABReg’s performance for different shrinkages
(z) together with ResNet-34 and the 14-layers CNTK. Without any complicated random fea-
ture projection, FABReg can outperform both ResNet-34 and CNTK. FABReg’s test accuracy
increases with the model’s complexity c on different (n) subsampled CIFAR-10 datasets. We
show Figure 3.3 as an example for n = 10. Additionally, we show, to better observe the double
descent phenomena, truncated curves at c = 25 for all CIFAR-10 subsamples in Figure 3.4.
The full curves are shown in Appendix 3.7. To sum up this section findings:

• FABReg, with enough complexity together and a simple random feature projection, is
able to outperform deep neural networks (ResNet-34) and CNTKs.

• FABReg always reaches the maximum accuracy beyond the interpolation threshold.

• Moreover, if the random feature ridge regression shrinkage z is sufficiently high, the
double descent phenomenon disappears, and the accuracy does not drop at the inter-
polation threshold point, i.e., when c = 1 or n = P . Following [KMZ22], we call this
phenomenon virtue of complexity (VoC).

Big Datasets

In this section, we repeat the same experiments described in Section 3.4.2, but we extend the
training set size n up to the full CIFAR-10 dataset. For each n, we train FABReg, FABReg-ν
with a rank-ν approximation as described in Algorithm 4, and the min-batch FABReg. We
use ν = 2000 and batch size = 2000 in the last two algorithms. Following [Aro+19b], we
train ResNet-34 as the benchmark for 160 epochs, with an initial learning rate of 0.001 and

3.4. Numerical Results 135

(a) n = 10 (b) n = 20 (c) n = 40 (d) n = 80

(e) n = 160 (f) n = 320 (g) n = 640 (h) n = 1280

Figure 3.4: The figures above show FABReg’s test accuracy increases with the
model’s complexity c on different (n) subsampled CIFAR-10 datasets. The
expanded dataset follows similar patterns. We truncate the curve for c > 25
to better show the double descent phenomena. The full curves are shown in
Appendix 3.7. Notice that when the shrinkage is sufficiently high, the double
descent disappears, and the accuracy monotonically increases in complexity.
Following [KMZ22], we name this phenomenon the virtue of complexity (VoC).
The test accuracy is averaged over 20 independent runs.

a batch size of 32. We decrease the learning rate by ten at epochs 80 and 120. ResNet-34
always reaches close to perfect accuracy on the training set, i.e., above 99%. We run each
training five times and report mean out-of-sample performance and its standard deviation. As
the training sample is sufficiently large already, we set the model complexity to only c = 15,
meaning that for the full sample, FABReg performs a random feature ridge regression with
P = 7.5× 105. We report the results in Tables 3.4.2 and 3.3.

Table 3.2: The table below shows the average test accuracy and standard devi-
ation of ResNet-34 and FABR on the subsampled and full CIFAR-10 dataset.
The test accuracy is average over five independent runs.

n ResNet-34 z=1 z=100 z=10000 z=100000

2560 48.12% ± 0.69% 52.24% ± 0.29% 52.45% ± 0.21% 54.29% ± 0.44% 48.28% ± 0.37%
5120 56.03% ± 0.82% 55.34% ± 0.32% 55.74% ± 0.34% 58.29% ± 0.20% 52.06% ± 0.08%
10240 63.21% ± 0.26% 58.36% ± 0.45% 58.86% ± 0.54% 62.17% ± 0.35% 55.75% ± 0.18%
20480 69.24% ± 0.47% 61.08% ± 0.17% 61.65% ± 0.27% 65.12% ± 0.19% 59.34% ± 0.14%
50000 75.34% ± 0.21% 66.38% ± 0.00% 66.98% ± 0.00% 68.62% ± 0.00% 63.25% ± 0.00%

The experiment delivers a number of additional conclusions:

• First, we observe that, while for small train sample sizes of n ≤ 10000, simple kernel
methods achieve performance comparable with that of DNNs, this is not the case for
n > 20000. Beating DNNs on big datasets with shallow methods requires more complex
kernels, such as those in [Sha+20; Li+19].

• Second, we confirm the findings of [MB17; Lee+20] suggesting that the role of small

eigenvalues is important. For example, FABReg-ν with ν = 2000 loses several percent
of accuracy on larger datasets.

136 Chapter 3. A Simple Algorithm For Scaling Up Kernel
Methods

(a) n = 2560 (b) n = 50000

Figure 3.5: The figures above show FABReg’s test accuracy increases with the
model’s complexity c on the subsampled CIFAR-10 dataset 3.5a and the full
CIFAR-10 dataset 3.5b. FABReg is trained using a ν = 2000 low-rank co-
variance matrix approximation. Notice that we still observe a (shifted) double
descent when ν ≈ n. The same phenomenon disappears when ν ≪ n. The test
accuracy is averaged over five independent runs.

Table 3.3: The table below shows the average test accuracy and standard devia-
tion of FABReg-ν and mini-batch FABReg on the subsampled and full CIFAR-
10 dataset. The test accuracy is average over five independent runs.

z = 1 z = 100 z = 10000 z = 100000

FABReg batch = 2000 ν = 2000 batch = 2000 ν = 2000 batch = 2000 ν = 2000 batch = 2000 ν = 2000
n

2560 53.13% ± 0.38% 53.48% ± 0.22% 53.15% ± 0.42% 53.63% ± 0.24% 52.01% ± 0.51% 54.05% ± 0.44% 46.78% ± 0.52% 48.23% ± 0.34%
5120 57.68% ± 0.18% 57.63% ± 0.19% 57.70% ± 0.16% 57.63% ± 0.18% 56.83% ± 0.27% 57.53% ± 0.11% 51.42% ± 0.22% 51.75% ± 0.14%
10240 59.79% ± 0.35% 61.20% ± 0.39% 59.79% ± 0.35% 61.20% ± 0.38% 58.63% ± 0.28% 60.63% ± 0.21% 53.73% ± 0.37% 55.16% ± 0.34%
20480 61.56% ± 0.35% 63.50% ± 0.12% 61.55% ± 0.37% 63.50% ± 0.13% 60.90% ± 0.20% 62.92% ± 0.12% 57.10% ± 0.19% 58.40% ± 0.21%
50000 62.74% ± 0.10% 65.45% ± 0.18% 62.74% ± 0.10% 65.44% ± 0.18% 62.35% ± 0.05% 65.04% ± 0.19% 59.99% ± 0.02% 61.71% ± 0.09%

• Third, surprisingly, both the mini-batch FABReg and FABReg-ν sometimes achieve
higher accuracy than the full sample regression on moderately-sized datasets. See
Tables 3.2 and 3.3. Understanding these phenomena is an interesting direction for
future research.

• Fourth, the double descent phenomenon naturally appears for both FABReg-ν and the
mini-batch FABReg but only when ν ≈ n or batch size ≈ n. However, the double
descent phenomenon disappears when ν ≪ n. This intriguing finding is shown in
Figure 3.5 for FABReg-ν, and in Appendix 3.7 for the mini-batch FABReg.

• Fifth, on average, FABReg-ν outperforms mini-batch FABReg on larger datasets.

3.5. Conclusion and Discussion 137

3.5. Conclusion and Discussion

The recent discovery of the equivalence between infinitely wide neural networks (NNs) in the
lazy training regime and neural tangent kernels (NTKs) [JGH18] has revived interest in kernel
methods. However, these kernels are extremely complex and usually require running on big
and expensive computing clusters [ACW17; Sha+20] due to memory (RAM) requirements.
This paper proposes a highly scalable random features ridge regression that can run on a simple
laptop. We name it Fast Annihilating Batch Regression (FABReg). Thanks to the linear
algebraic properties of covariance matrices, this tool can be applied to any kernel and any
way of generating random features. Moreover, we provide several experimental results to assess
its performance. We show how FABReg can outperform (in training and prediction speed) the
current state-of-the-art ridge classifier’s implementation. Then, we show how a simple data
representation strategy combined with a random features ridge regression can outperform
complicated kernels (CNTKs) and over-parametrized Deep Neural Networks (ResNet-34) in
the few-shot learning setting. The experiments section concludes by showing additional results
on big datasets. In this paper, we focus on very simple classes of random features. Recent
findings (see, e.g., [Sha+20]) suggest that highly complex kernel architectures are necessary
to achieve competitive performance on large datasets. Since each kernel regression can be
approximated with random features, our method is potentially applicable to these kernels as
well. However, directly computing the random feature representation of such complex kernels
is non-trivial and we leave it for future research.

138 Chapter 3. A Simple Algorithm For Scaling Up Kernel
Methods

3.6. Appendix - Proofs

3.7. Appendix - Additional Experimental Results

This section provides additional experiments and findings that may xhelp the community with
future research.

First, we dive into more details about our comparison with sklearn. Table 3.4 shows a more
detailed training and prediction time comparison between FABReg and sklearn. In particular,
we average training and prediction time over five independent runs. The experiment settings
are explained in Section 3.4.1. We show how one, depending on the number shrinkages |z|,
would start considering using FABReg when the number of observations in the dataset n ≈
5000. In this case, we have used the numpy linear algebra library to decompose FABReg’s
covariance matrix, which appears to be faster than the scipy counterpart. We share our code
in the following repository: https://github.com/tengandreaxu/fabr.

Second, while Figure 3.4 shows FABReg’s test accuracy on increasing complexity c trun-
cated curves, we present here the whole picture; i.e., Figure 3.6 shows full FABReg’s test accu-
racy increases with the model’s complexity c on different (n) subsampled CIFAR-10 datasets
averaged over twenty independent runs. The expanded dataset follows similar patterns. Sim-
ilar to Figure 3.4, one can notice that when the shrinkage is sufficiently high, the double
descent disappears, and the accuracy monotonically increases in complexity.

Third, the double descent phenomenon naturally appears for both FABReg-ν and the
mini-batch FABReg but only when ν ≈ n or batch size ≈ n. However, the double descent
phenomenon disappears when ν ≪ n. This intriguing finding is shown in Figure 3.5 for
FABReg-ν, and here, in Figure 3.7, we report the same curves for mini-batch FABReg.

Table 3.4: The table below shows FABReg and sklearn’s training and prediction
time (in seconds) on a synthetic dataset. We vary the dataset number of features
d and the number of shrinkages (|z|). We report the average running time and
the standard deviation over five independent runs.

|z| = 5 |z| = 10 |z| = 20 |z| = 50

FABReg sklearn FABReg sklearn FABReg sklearn FABReg sklearn
d

10 7.72s ± 0.36s 0.01s ± 0.00s 6.90s ± 0.77s 0.02s ± 0.00s 7.04s ± 0.67s 0.03s ± 0.00s 7.44s ± 0.57s 0.07s ± 0.01s
100 7.35s ± 0.36s 0.06s ± 0.02s 6.58s ± 0.34s 0.11s ± 0.01s 7.61s ± 1.14s 0.24s ± 0.04s 7.3s ± 0.49s 0.53s ± 0.06s
500 7.37s ± 0.44s 0.33s ± 0.16s 6.81s ± 0.25s 0.54s ± 0.03s 7.02s ± 0.35s 1.01s ± 0.07s 7.44s ± 0.48s 2.41s ± 0.21s
1000 7.62s ± 0.31s 0.58s ± 0.21s 7.38s ± 0.23s 1.06s ± 0.04s 7.51s ± 0.24s 2.04s ± 0.04s 7.69s ± 0.08s 4.79s ± 0.36s
2000 8.33s ± 0.42s 1.21s ± 0.03s 8.09s ± 0.73s 2.44s ± 0.05s 8.33s ± 0.24s 4.87s ± 0.07s 8.29s ± 0.47s 12.21s ± 0.15s
3000 9.24s ± 0.25s 2.49s ± 0.05s 9.18s ± 0.41s 5.08s ± 0.03s 9.51s ± 0.20s 10.06s ± 0.02s 9.67s ± 0.41s 25.67s ± 0.23s
5000 10.64s ± 0.86s 5.36s ± 0.05s 11.01s ± 0.7s 10.74s ± 0.06s 11.57s ± 0.81s 21.31s ± 0.12s 11.54s ± 0.41s 54.18s ± 0.73s
10000 11.49s ± 0.66s 17.87s ± 8.58s 11.81s ± 0.47s 28.32s ± 10.53s 11.61s ± 0.49s 44.72s ± 9.99s 12.55s ± 0.3s 101.58s ± 15.66s
25000 13.89s ± 0.21s 27.79s ± 8.75s 14.50s ± 0.45s 49.84s ± 9.68s 14.46s ± 0.96s 94.08s ± 10.94s 15.68s ± 0.74s 224.31s ± 11.75s
50000 17.99s ± 0.22s 50.51s ± 8.99s 18.27s ± 0.37s 92.88s ± 10.45s 19.10s ± 0.37s 176.24s ± 10.07s 19.68s ± 0.85s 422.95s ± 13.22s
100000 25.30s ± 0.39s 95.57s ± 0.25s 26.16s ± 0.46s 177.54s ± 3.77s 27.93s ± 0.35s 340.32s ± 3.74s 29.48s ± 1.38s 816.25s ± 4.35s

https://github.com/tengandreaxu/fabr

3.7. Appendix - Additional Experimental Results 139

(a) n = 10 (b) n = 20 (c) n = 40 (d) n = 80

(e) n = 160 (f) n = 320 (g) n = 640 (h) n = 1280

Figure 3.6: The figure above shows the full FABReg’s accuracy increase with
the model’s complexity c in the small dataset regime. The expanded dataset
follows similar patterns.

(a) n = 2560 (b) n = 50000

Figure 3.7: Similar to Figure 3.5, the figures above show FABReg’s test ac-
curacy increases with the model’s complexity c on the subsampled CIFAR-10
dataset 3.7a and the full CIFAR-10 dataset 3.7b. FABReg trains using mini-
batches with batch size=2000 in both cases. Notice that we still observe a
(shifted) double descent when batch size ≈ n, while the same phenomenon dis-
appears when batch size ≪ n. The test accuracy is averaged over 5 independent
runs.

140 Chapter 3. A Simple Algorithm For Scaling Up Kernel
Methods

141

4. Conclusion

142 Chapter 4. Conclusion

This work was inspired by recent breakthroughs in combining deep learning with em-
pirical asset pricing. Regarding neural nets, the “black-box” criticism—the fact that we do
not yet fully understand their incredible out-of-sample performance and their feature learn-
ing process—is slowly fading away. These models are interpolators acting like Gaussian
processes [Nea96; Lee+18] in the finite case, while they are equivalent to kernels [JGH18;
Aro+19b; Aro+19a] when the width is pushed to the infinite limit. Finite neural net-
works are provable to learn features via Dynamic Dichotomy Theorem [Yan+23]. Optimal
parametrization, guaranteeing converge settings, are explained via the Tensor Programs work
series [Yan19; Yan20b; YH20; Yan+23], to cite a few, and under the dynamic isometry
technical condition [SMG13]. In particular, under [Yan+21] parametrization, wider neural
networks are always better in terms of out-of-sample performance. When the network sat-
isfies the dynamic isometry condition, the deeper neural networks will not collapse during
training [PSG17]. Deeper neural networks are proven–via Riemann geometry and mean-field
theory [Poo+16]–to show higher (exponential) expressivity growth, i.e., higher generalization,
than their shallow counterparties. Highly parametrized statistical models are being used in
return predictions as well. The economic gain from more accurate forecasts comes from bet-
ter portfolio construction and, thus, utility for the agent. [GKX20b] set the breaking point
by showing that machine learning models were outperforming the class least-square models
in terms of R2 and Sharpe ratio. Then, the series of work of [KMZ22] and [KMZ24] has
provably shown how highly parametrized models (when the number of parameters is higher
than the number of data points) higher out-of-sample performance. This is directly con-
nected to the double descent phenomenon in the machine learning literature [Bel+18; Has+19].
These discoveries together with other phenomena, such as grokking [Pow+22] and neural col-
lapse [PHD20], have put in discussion the principle of parsimony [Box+15], the variance-bias
trade-off [Bel+18], and different type of regularization such as dropout and early-stopping.
With these in mind, we have explored different topics in empirical asset pricing using neu-
ral networks and machine learning models. The conclusion of each chapter, and thus, their
contribution, is briefly reported below.

Tail Recovery In this paper, we have investigated the ability of complex machine learn-
ing models to extract predictive information about tail risk, that is, the likelihood (and the
distribution) of large, unexpected moves in the underlying asset prices. We find that the dis-
tribution of returns upon the arrival of a tail event can be efficiently predicted out of sample,
and the performance of our predictions is comparable to that for forecasting realized volatility.
Our dataset covers the period of 2007-01-03 to 2022-12-31 and contains data (Black-Scholes
implied volatilities, underlying asset prices, volume, open interest, asks, bids) for 5349 dif-
ferent stocks traded at NYSE, AMEX, and NASDAQ at daily frequency. We use the classic
theorem of [BDH74] to approximate the tail distribution to a generalized Pareto distribution,
and we follow the approach of [GKX20b] to conduct our studies. First, options information
about tails is spread across option moneyness in a complex fashion; in fact, we find that
OTM calls (respectively, puts) contain important information about lower (respectively, up-
per) tails. Second, we find that predicting upper tails is easier than predicting lower tails.
Third, upper- and lower-tail risks can load positively on puts information and call information,
respectively. Then, we provide a new non-linear predictive model capable of outperforming
the most common linear and non-linear counterparts in the literature through extreme value
theory. Next, we find that the magnitude of predicted tail risk builds up monotonically during
the two weeks preceding earnings announcements and abruptly drops once the information is
released. Finally, we show how both put and call information are important for deep neural
networks in predicting tail risks, and we find new evidence in equity premia’s non-linear na-
ture. Understanding the links between our predicted tail risk and various stock characteristics
is an important direction for future research. Moreover, the importance of OTM call (puts)
information about the lower (upper) tail is surprising, opening new challenges for both theo-
retical and empirical studies.
Deep Learning from Options Implied Volatility Surfaces The remarkable growth of
the factor zoo [FGX20], [BHJ23] over the last few years has been accompanied by the devel-
opment of machine learning methods for asset pricing [GKX20b]. As [KMZ24] and [Did+23]
explain, this is no coincidence: Factor zoo is a natural consequence of complexity: A highly
non-linear predictive relationship between returns and characteristics. The most naive and

143

direct way of exploiting this complexity is to build large, unstructured non-linear models such
as simple, fully connected neural networks of [GKX20b] or the random feature models of
[KMZ24] and [Did+23]. While this approach works well with structured stock characteristics,
it is unsuited for unstructured data, such as the IV surface. To deal with such data, one
needs to develop tools and ML algorithms that exploit the data structure optimally. In this
paper, we take a step in this direction and propose Convolutional Neural Networks (CNN)
architecture designed specifically to extract features of the IV surface that respect locality, as
economic theory requires. We show that CNNs can successfully identify highly complex non-
linear relationships that cannot be learned with naive, fully-connected networks. Importantly,
we find that consistent with the existing evidence for image data [LPB17], the loss landscape
of the CNN is extremely non-convex and is characterized by a very large number of local
minima. All those minima contain information about returns. Exploiting them requires using
an ensemble of CNNs, and we document a very large virtue of ensemble complexity. Gaining
insights into the incremental information offered by the model as it converges to different
local minima for other return prediction problems (including even simpler ones, with the fully
connected networks of [GKX20b]) is an important direction for future research. Conventional
wisdom based on the numerous manually constructed option characteristics suggests that a
few linear features of the IV surface (e.g., level, slope, skew, and convexity) should fully sum-
marize its predictive content. To test this “linear feature sparsity hypothesis,” we introduce
a novel object in financial machine learning, the gradient outer product, whose eigenvectors,
the principal linear features, are natural analogs of principal components for machine learning
[Rad+22]. We find no evidence for linear feature sparsity and show that a very large num-
ber (more than 100) of linear features are necessary to explain the predictive content of IV,
manifesting a very high feature complexity. Investigating principal linear features for other
ML models and datasets might bring interesting novel insights into the different notions of
sparsity in return prediction.
A Simple Algorithm for Scaling Up Kernel Methods The recent discovery of the
equivalence between infinitely wide neural networks (NNs) in the lazy training regime and
neural tangent kernels (NTKs) [JGH18] has revived interest in kernel methods. However,
these kernels are extremely complex and usually require running on big and expensive com-
puting clusters [ACW17; Sha+20] due to memory (RAM) requirements. This paper proposes
a highly scalable random features ridge regression that can run on a simple laptop. We name
it Fast Annihilating Batch Regression (FABReg). Thanks to the linear algebraic properties
of covariance matrices, this tool can be applied to any kernel and any way of generating ran-
dom features. Moreover, we provide several experimental results to assess its performance.
We show how FABReg can outperform (in training and prediction speed) the current state-
of-the-art ridge classifier’s implementation. Then, we show how a simple data representation
strategy combined with a random features ridge regression can outperform complicated kernels
(CNTKs) and over-parametrized Deep Neural Networks (ResNet-34) in the few-shot learning
setting. The experiments section concludes by showing additional results on big datasets. In
this paper, we focus on very simple classes of random features. Recent findings (see, e.g.,
[Sha+20]) suggest that highly complex kernel architectures are necessary to achieve compet-
itive performance on large datasets. Since each kernel regression can be approximated with
random features, our method is potentially applicable to these kernels as well. However, di-
rectly computing the random feature representation of such complex kernels is non-trivial and
we leave it for future research.

144 Chapter 4. Conclusion

4.1. Working Experience 145

Curriculum

Teng Andrea Xu Email : andrea.xu@epfl.ch
Mobile : +410787011864

Working Experience

• AQR Capital Management Greenwich, CT, USA.
Contractor - Full Remote December 2023 - Present

◦ Research.

• École Polytechnique Fédérale de Lausanne (EPFL)Lausanne, Switzerland
Ph.D. Swiss Finance Institute (SFI-SM) Sep 2020 - Present

◦ MTE 2020-2022 Best Teaching Assistant Award.

◦ Granted 36,000 GPU hours on “Piz Daint” by the Swiss National Supercomputing
Centre.

◦ EPFL-CDMT Research Day 2023 Runner-up.

• Schlossberg&Co. Zug, Switzerland
Quant Engineer (Remote) June 2021 - November 2023

◦ Implemented a fully automated portfolio management strategy with Interactive Bro-
kers (IB) TWS.

◦ Built the distributed system in Google Cloud (GC) exploiting Python, Docker, Post-
greSQL, and Linux.

◦ Restructured the company’s private dashboard using Google App Engine, Next.js,
React, and Typescript.

• Hercle Milan, Italy
Software Developer (Remote) April 2022 - June 2022

◦ Integrated FTX and Bitpanda APIs to Hercle’s high-frequency market-making algo-
rithm in C-Sharp.

◦ Managed user account information via REST endpoints.

◦ Collected full-depth order book data and placed orders via Websocket and FIX API,
respectively.

• Science Quant Investments LLC Lausanne, Switzerland
IT Consultant - Software Engineer Nov. 2020 - April 2022

◦ Created a (private) fully automated GC live options mid-frequency trading strategy.

◦ Used software: Python, Docker, Firebase Cloud Firestore (CF), Redis, Angular8, and
Linux.

mailto:andrea.xu@epfl.ch
https://www.aqr.com/
https://www.epfl.ch/en/
https://actu.epfl.ch/news/congratulations-to-our-new-mfe-and-mte-graduate-10/
https://www.cscs.ch/user-lab/allocation-schemes/production-projects
https://www.cscs.ch/user-lab/allocation-schemes/production-projects
https://news.epfl.ch/news/presentation-prizes-of-the-2023-edmt-doctoral-prog/
https://schlossberg.co/
https://www.hercle.financial/
https://www.science-quants.com/

146 Chapter 4. Conclusion

◦ Analyzed and customized ad-hoc broker IB API using asynchronous socket message
communications.

• École Polytechnique Fédérale de Lausanne (EPFL)Lausanne, Switzerland
Software Engineer June 2019 - Sep 2020

◦ Developed a GC production web application for retail option trading.

◦ Built private mid-frequency options trading algorithm.

◦ Led a group of three master students and coordinated their programming tasks.

• University of Luxembourg Luxembourg, Luxembourg
Research Assistant May 2018 - Nov. 2018

◦ Implemented the protocol IEEE 802.1 Audio Video Bridging (AVB) & Time-Sensitive
Networking (TSN).

◦ Built a working test bed using an open-source C++ project compliant with AVB/TSN
standards.

Education

• University of Yale New Haven, Connecticut, USA
Visiting PhD with Prof. Kelly December 2023

• University of San Diego San Diego, California, USA
Visiting PhD with Prof. Belkin October 2023

• University of Rome “La Sapienza”. Rome, Italy
M.Sc. Eng. in Computer Sc.; Summa cum laude. Sep. 2016 – Jan. 2019

• Rjksuniversiteit Groningen. Groningen, Netherlands
M.Sc. Computer Science (Exchange, 6 months); 8.5/10. Sep. 2017 – Jan. 2018

• University of Rome 3. Rome, Italy
B.Sc. Information Technology Engineering; 103/110. Sep. 2013 – Jul. 2016

Published Papers

• Deep Learning from Implied Volatility Surfaces. 2023
Bryan Kelly, Boris Kuznetsov, Semyon Malamud, and TA Xu

• A Simple Algorithm For Scaling Up Kernel Methods. 2023
TA Xu, Bryan Kelly, and Semyon Malamud

• Tail Recovery. 2023
TA Xu

• Benign Autoencoders. 2022
TA Xu, Semyon Malamud, and Antoine Didisheim

• A Framework for DAO Token Valuation. 2022
TA Xu, Jiahua Xu, and Kristof Lommers

• DeFi vs TradFi: Valuation using multiples and discounted
cash flows. 2022
TA Xu, Jiahua Xu, and Kristof Lommers

• A Short Survey on Business Models of DeFi Protocols. 2022
TA Xu and Jiahua Xu

• Poster: Performance Evaluation of an Open-Source Audio-Video
Bridging/Time-Sensitive Networking

Testbed for Automotive Ethernet 2018
TA Xu, F. Adamsky, I. Turcanu, R. Soua, C. Köbel, T. Engel, and A. Baiocchi

https://www.epfl.ch/en/
https://www.uni.lu/en/
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4531181
https://arxiv.org/abs/2301.11414
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4380818
https://arxiv.org/abs/2210.00637
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4309744
https://arxiv.org/abs/2210.16846
https://arxiv.org/abs/2210.16846
https://arxiv.org/abs/2202.07742
https://ieeexplore.ieee.org/abstract/document/8628414
https://ieeexplore.ieee.org/abstract/document/8628414
https://ieeexplore.ieee.org/abstract/document/8628414

4.4. Teaching 147

Teaching

• Financial applications of blockchains and distributed ledgers.Fall 2022
FIN-413. Lecturer: Jiahua Xu.

• Corporate strategy. 2020-2022
MGT-400. Lecturer: Katherine Tatarinov.

• Data driven business analytics. Spring 2021
MGT-302. Lecturer: S. Malamud, N. Kiyavash, and J. Etesami.

Talks

• EPFL - CDMT Research Day. 2023
Deep Learning from Implied Volatility Surfaces.

• University College London - Financial Computing. 2022
Benign Autoencoders.

• Complexity Science Hub Vienna. 2022
A Short Survey on Business Models of DeFi Protocols.

• EPFL - CDMT Research Day. 2022
A Simple Algorithm For Scaling Up Kernel Methods.

• Financial Cryptography and Data Security - DeFi Workshop 2022
A Short Survey on Business Models of DeFi Protocols.

• University of Luxembourg - SECAN Lab. 2018
Poster: AVB/TSN Testbed for Automotive Ethernet.

Skills

• Programming Languages
Python, Java, Javascript, C++, C-Sharp, Typescript.

• Softwares–Part 1
PostgreSQL, Docker, Redis, systemd, ufw, Nginx, gUnicorn

• Softwares–Part 2
MongoDB, tmux, VSCode, Git, SLURM, Jenkins, ELK.

• Libraries/Frameworks
Pytorch, Tensorflow, React, Angular, Next.js.

• Languages–Part 1
English (Fluent). Italian (Native).

• Languages–Part 2
Spanish, French, and Wenzhounese(Conversational). Turkish (Currently Learning).

https://edu.epfl.ch/coursebook/en/financial-applications-of-blockchains-and-distributed-ledgers-FIN-413
https://edu.epfl.ch/coursebook/fr/corporate-strategy-MGT-400
https://edu.epfl.ch/coursebook/fr/data-driven-business-analytics-MGT-302
https://www.youtube.com/watch?v=X3UlNgy7xd8
https://www.youtube.com/watch?v=v_JuixA554w&list=PL_aN0fSJkEsqleUXvu2bNYq2jOLsrvAFR

148 Bibliography

Bibliography

[Ach+23] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D.
Almeida, J. Altenschmidt, S. Altman, S. Anadkat, et al. “Gpt-4 technical re-
port”. arXiv preprint arXiv:2303.08774 (2023).

[ACM21] D. Avramov, S. Cheng, and L. Metzker. “Machine learning versus economic re-
strictions: Evidence from stock return predictability”.Available at SSRN 3450322
(2021).

[ACW17] H. Avron, K. L. Clarkson, and D. P. Woodruff. “Faster kernel ridge regression
using sketching and preconditioning”. SIAM Journal on Matrix Analysis and
Applications 38.4 (2017), pp. 1116–1138.

[ACX06] A. Ang, J. Chen, and Y. Xing. “Downside risk’”. en. Review of Financial Studies
19 (2006), 1191–1239.

[AFT15] T. Andersen, N. Fusari, and V. Todorov. “The risk premia embedded in index
options’”. en. Journal of Financial Economics 117 (2015), 558–584.

[AHL19] F. Audrino, R. Huitema, and M. Ludwig. “An empirical implementation of the
Ross recovery theorem as a prediction device”. Journal of Financial Economet-
rics (2019).

[AKT19] A. Ali, J. Z. Kolter, and R. J. Tibshirani. “A continuous-time view of early
stopping for least squares regression”. The 22nd International Conference on
Artificial Intelligence and Statistics. PMLR. 2019, pp. 1370–1378.

[AL01] D. Attwell and S. B. Laughlin. “An energy budget for signaling in the grey
matter of the brain”. Journal of Cerebral Blood Flow & Metabolism 21.10 (2001),
pp. 1133–1145.

[Alm+17] C. Almeida, K. Ardison, R. Garcia, and J. Vicente. “Nonparametric tail risk,
stock returns, and the macroeconomy”. Journal of Financial Econometrics 15.3
(2017), pp. 333–376.

[Ama+15] D. Amaya, P. Christoffersen, K. Jacobs, and A. Vasquez. “Does realized skewness
predict the cross-section of equity returns?’” en. Journal of Financial Economics
118.1 (2015), 135–167.

[An+14] B.-J. An, A. Ang, T. Bali, and N. Cakici. “The joint cross section of stocks and
options’”. en. The Journal of Finance 69.5 (2014), 2279–2337.

[Aro+19a] S. Arora, S. S. Du, W. Hu, Z. Li, R. R. Salakhutdinov, and R. Wang. “On exact
computation with an infinitely wide neural net”. Advances in Neural Informa-
tion Processing Systems 32 (2019).

[Aro+19b] S. Arora, S. S. Du, Z. Li, R. Salakhutdinov, R. Wang, and D. Yu. “Harness-
ing the power of infinitely wide deep nets on small-data tasks”. arXiv preprint
arXiv:1910.01663 (2019).

[AS20] E. Abbe and C. Sandon. “Poly-time universality and limitations of deep learn-
ing”. arXiv preprint arXiv:2001.02992 (2020).

[AZLS19] Z. Allen-Zhu, Y. Li, and Z. Song. “A convergence theory for deep learning via
over-parameterization”. International Conference on Machine Learning. PMLR.
2019, pp. 242–252.

[Bar+20] P. L. Bartlett, P. M. Long, G. Lugosi, and A. Tsigler. “Benign overfitting in linear
regression”. Proceedings of the National Academy of Sciences 117.48 (2020),
pp. 30063–30070.

[Bat00] D. S. Bates. “Post-’87 crash fears in the S&P 500 futures option market”. Journal
of econometrics 94.1-2 (2000), pp. 181–238.

[BBG18] G. Baltussen, S. Bekkum, and B. Grient. “Unknown unknowns: uncertainty
about risk and stock returns’”. io. Journal of Financial and Quantitative Anal-
ysis 53.4 (2018), 1615–1651.

Bibliography 149

[BCYG18] G. Bakshi, F. Chabi-Yo, and X. Gao. “A recovery that we can trust? deducing
and testing the restrictions of the recovery theorem”. The Review of Financial
Studies 31.2 (2018), pp. 532–555.

[BCYM22] T. G. Bali, F. Chabi-Yo, and S. Murray. “A factor model for stock returns based
on option prices”. Available at SSRN 4071995 (2022).

[BDG20] J.-F. Begin, C. Dorion, and G. Gauthier. “Idiosyncratic jump risk matters: Ev-
idence from equity returns and options’”. en. Review of Financial Studies 33
(2020), 155–211.

[BDH74] A. A. Balkema and L. De Haan. “Residual life time at great age”. The Annals
of probability (1974), pp. 792–804.

[Bel+18] M Belkin, D Hsu, S Ma, and S Mandal. Reconciling modern machine learning
and the bias-variance trade-off. arXiv e-prints. 2018.

[Bel21] M. Belkin. “Fit without fear: remarkable mathematical phenomena of deep learn-
ing through the prism of interpolation”. Acta Numerica 30 (2021), pp. 203–248.

[BGZ11] T. Bollerslev, M. Gibson, and H. Zhou. “Dynamic estimation of volatility risk
premia and investor risk aversion from option-implied and realized volatilities”.
Journal of econometrics 160.1 (2011), pp. 235–245.

[BH09] T. Bali and A. Hovakimian. “Volatility spreads and expected stock returns’”.
en. Management Science 55.11 (2009), 1797–1812.

[BHJ23] S. Bryzgalova, J. Huang, and C. Julliard. “Bayesian solutions for the factor
zoo: We just ran two quadrillion models”. The Journal of Finance 78.1 (2023),
pp. 487–557.

[BHS16a] J. Borovička, L. P. Hansen, and J. A. Scheinkman. “Misspecified recovery”. The
Journal of Finance 71.6 (2016), pp. 2493–2544.

[BHS16b] J. Borovička, L. Hansen, and J. Scheinkman. “Misspecified recovery’”. en. The
Journal of Finance 71.6 (2016), 2493–2544.

[BHX20] M. Belkin, D. Hsu, and J. Xu. “Two models of double descent for weak features”.
SIAM Journal on Mathematics of Data Science 2.4 (2020), pp. 1167–1180.

[Bie23] C. Biever. “ChatGPT broke the Turing test-the race is on for new ways to assess
AI”. Nature 619.7971 (2023), pp. 686–689.

[BL76] H. J. Brascamp and E. H. Lieb. “On extensions of the Brunn-Minkowski and
Prékopa-Leindler theorems, including inequalities for log concave functions, and
with an application to the diffusion equation”. Journal of functional analysis
22.4 (1976), pp. 366–389.

[BL78a] D. T. Breeden and R. H. Litzenberger. “Prices of state-contingent claims implicit
in option prices”. Journal of business (1978), pp. 621–651.

[BL78b] D. Breeden and R. Litzenberger. “Prices of state-contingent claims implicit in
option prices’”. en. The Journal of Business 51 (1978), 621–651.

[BM19] T. Bali and S. Murray. “In search for a factor model for optionable stocks”. en.
Unpublished manuscript, 2019.

[BM78] R. Banz and M. Miller. “Prices for state-contingent claims: Some estimates and
applications’”. en. Journal of Business (1978), 653–672.

[BMM18] M. Belkin, S. Ma, and S. Mandal. “To understand deep learning we need to
understand kernel learning”. International Conference on Machine Learning.
PMLR. 2018, pp. 541–549.

[BMV10] B. Boyer, T. Mitton, and K. Vorking. “Expected idiosyncratic skewness’”. en.
Review of Financial Studies 23 (2010), 169–202.

[Box+15] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung. Time series analysis:
forecasting and control. John Wiley & Sons, 2015.

150 Bibliography

[BPZ20] S. Bryzgalova, M. Pelger, and J. Zhu. “Forest through the trees: Building cross-
sections of stock returns”. Available at SSRN 3493458 (2020).

[BRT19] M. Belkin, A. Rakhlin, and A. B. Tsybakov. “Does data interpolation contra-
dict statistical optimality?” The 22nd International Conference on Artificial
Intelligence and Statistics. PMLR. 2019, pp. 1611–1619.

[BT11] T. Bollerslev and V. Todorov. “Tails, fears, and risk premia”. The Journal of
Finance 66.6 (2011), pp. 2165–2211.

[BT14] T. Bollerslev and V. Todorov. “Time-varying jump tails’”. en. Journal of Econo-
metrics 183 (2014), 168–180.

[BTX15a] T. Bollerslev, V. Todorov, and L. Xu. “Tail risk premia and return predictabil-
ity’”. es. Journal of Financial Economics 118 (2015), 113–134.

[BTX15b] T. Bollerslev, V. Todorov, and L. Xu. “Tail risk premia and return predictabil-
ity”. Journal of Financial Economics 118.1 (2015), pp. 113–134.

[BTZ09] T. Bollerslev, G. Tauchen, and H. Zhou. “Expected stock returns and variance
risk premia”. The Review of Financial Studies 22.11 (2009), pp. 4463–4492.

[Bub+23] S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Kamar, P.
Lee, Y. T. Lee, Y. Li, S. Lundberg, et al. “Sparks of artificial general intelligence:
Early experiments with gpt-4”. arXiv preprint arXiv:2303.12712 (2023).

[CCJY19] A. Chinco, A. D. Clark-Joseph, and M. Ye. “Sparse signals in the cross-section
of returns”. The Journal of Finance 74.1 (2019), pp. 449–492.

[CCM97] M. Carhart, P. Carr, and D. Madan. “On persistence in mutual fund perfor-
mance’”. en. The Journal of Finance 52.1 (1997). Towards the theory of volatil-
ity trading, in R. Jarrow, ed., ‘Risk book on, 57–82.

[CDG13] J. Conrad, R. Dittmar, and E. Ghysels. “Ex ante skewness and expected stock
returns’”. en. The Journal of Finance 68.1 (2013), 85–124.

[CDW14] P. G. Constantine, E. Dow, and Q. Wang. “Active subspace methods in the-
ory and practice: applications to kriging surfaces”. SIAM Journal on Scientific
Computing 36.4 (2014), A1500–A1524.

[Cho+20] T. Chordia, A. Kurov, D. Muravyev, and A. Subrahmanyam. Index option trad-
ing activity and market returns’, Management Science forthcoming. en. 2020.

[COB19] L. Chizat, E. Oyallon, and F. Bach. “On lazy training in differentiable program-
ming”. Advances in Neural Information Processing Systems 32 (2019).

[Coc09] J. H. Cochrane. Asset pricing: Revised edition. Princeton university press, 2009.

[Coc11] J. H. Cochrane. “Presidential address: Discount rates”. The Journal of Finance
66.4 (2011), pp. 1047–1108.

[CPZ19] L. Chen, M. Pelger, and J. Zhu. “Deep learning in asset pricing”. arXiv preprint
arXiv:1904.00745 (2019).

[CRW21] Q. Chen, N. Roussanov, and X. Wang. “Semiparametric Conditional Factor
Models: Estimation and Inference”. arXiv preprint arXiv:2112.07121 (2021).

[CS09] Y. Cho and L. Saul. “Kernel methods for deep learning”. Advances in neural
information processing systems 22 (2009).

[CSKS23] J. Crego, J. Soerlie Kvaerner, and M. Stam. “Machine Learning and Expected
Returns”. Available at SSRN 4345646 (2023).

[CW10] M. Cremers and D. Weinbaum. “Deviations from Put-Call Parity and Stock
Return Predictability”. The Journal of Financial and Quantitative Analysis
45.2 (2010), pp. 335–367. issn: 00221090, 17566916. url: http://www.jstor.
org/stable/27801488 (visited on 04/30/2023).

[Cyb89] G. Cybenko. “Approximation by superpositions of a sigmoidal function”. Math-
ematics of control, signals and systems 2.4 (1989), pp. 303–314.

http://www.jstor.org/stable/27801488
http://www.jstor.org/stable/27801488

Bibliography 151

[Da02] G. D’ avolio. “The market for borrowing stock”. Journal of financial economics
66.2-3 (2002), pp. 271–306.

[DA05] P. Dayan and L. F. Abbott. Theoretical neuroscience: computational and math-
ematical modeling of neural systems. MIT press, 2005.

[Dai+14] B. Dai, B. Xie, N. He, Y. Liang, A. Raj, M.-F. F. Balcan, and L. Song. “Scalable
kernel methods via doubly stochastic gradients”. Advances in neural information
processing systems 27 (2014).

[Dan17] A. Daniely. “SGD learns the conjugate kernel class of the network”. Advances
in Neural Information Processing Systems 30 (2017).

[Dav11] M. H. Davis. “The Dupire formula”. Imperial College London, Finite Difference
Methods Course material (2011).

[Dav75] L. S. Davis. “A survey of edge detection techniques”. Computer graphics and
image processing 4.3 (1975), pp. 248–270.

[DBG20] I. Dew-Becker and S. Giglio. en. Cross-sectional uncertainty and the business
cycle: evidence from 40 years. 2020.

[DeM+20] V. DeMiguel, A. Martin-Utrera, F. J. Nogales, and R. Uppal. “A transaction-cost
perspective on the multitude of firm characteristics”. The Review of Financial
Studies 33.5 (2020), pp. 2180–2222.

[DFS16] A. Daniely, R. Frostig, and Y. Singer. “Toward deeper understanding of neural
networks: The power of initialization and a dual view on expressivity”. Advances
in neural information processing systems 29 (2016).

[Did+23] A. Didisheim, S. B. Ke, B. T. Kelly, and S. Malamud. Complexity in factor
pricing models. Tech. rep. National Bureau of Economic Research, 2023.

[DJW22] J. Duarte, C. Jones, and H. Wang. “Very noisy option prices and inference
regarding the volatility risk premium”. en. Unpublished manuscript, 2022.

[DNMV23] A. Detzel, R. Novy-Marx, and M. Velikov. “Model comparison with transaction
costs”. The Journal of Finance (2023).

[dSB20] S. d’Ascoli, L. Sagun, and G. Biroli. “Triple descent and the two kinds of overfit-
ting: Where & why do they appear?” Advances in Neural Information Processing
Systems 33 (2020), pp. 3058–3069.

[Du+18] S. S. Du, X. Zhai, B. Poczos, and A. Singh. “Gradient descent provably optimizes
over-parameterized neural networks”. arXiv preprint arXiv:1810.02054 (2018).

[Du+19a] S. Du, J. Lee, H. Li, L. Wang, and X. Zhai. “Gradient descent finds global minima
of deep neural networks”. International conference on machine learning. PMLR.
2019, pp. 1675–1685.

[Du+19b] S. S. Du, K. Hou, R. R. Salakhutdinov, B. Poczos, R. Wang, and K. Xu. “Graph
neural tangent kernel: Fusing graph neural networks with graph kernels”. Ad-
vances in neural information processing systems 32 (2019).

[FD+14] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim. “Do we need
hundreds of classifiers to solve real world classification problems?” The journal
of machine learning research 15.1 (2014), pp. 3133–3181.

[Feu+19] B. Feunou, R. Aliouchkin, R. Tedongap, and L. Xu. “Loss uncertainty, gain
uncertainty, and expected stock returns”. es. Unpublished manuscript, 2019.

[FGX20] G. Feng, S. Giglio, and D. Xiu. “Taming the factor zoo: A test of new factors”.
The Journal of Finance 75.3 (2020), pp. 1327–1370.

[FHL19] S. Fort, H. Hu, and B. Lakshminarayanan. “Deep ensembles: A loss landscape
perspective”. arXiv preprint arXiv:1912.02757 (2019).

[FJPO18] B. Feunou, M. Jahan-Parvar, and C. Okou. “Downside variance risk premium’”.
es. Journal of Financial Econometrics 16 (2018), 341–383.

152 Bibliography

[FNW20] J. Freyberger, A. Neuhierl, and M. Weber. “Dissecting characteristics nonpara-
metrically”. The Review of Financial Studies 33.5 (2020), pp. 2326–2377.

[FP14] A. Frazzini and L. H. Pedersen. “Betting against beta”. Journal of Financial
Economics 111.1 (2014), pp. 1 –25. issn: 0304-405X. doi: https://doi.org/10.
1016/j.jfineco.2013.10.005. url: http://www.sciencedirect.com/science/
article/pii/S0304405X13002675.

[GARA18] A. Garriga-Alonso, C. E. Rasmussen, and L. Aitchison. “Deep Convolutional
Networks as shallow Gaussian Processes”. International Conference on Learning
Representations. 2018.

[GB10] X. Glorot and Y. Bengio. “Understanding the difficulty of training deep feedfor-
ward neural networks”. en. Proceedings of the thirteenth international conference
on artificial intelligence and statistics. 2010, 249–256.

[GBC16] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. http : / / www .

deeplearningbook.org. MIT Press, 2016.

[GKP16] S. Giglio, B. Kelly, and S. Pruitt. “Systemic risk and the macroeconomy: An
empirical evaluation”. Journal of Financial Economics 119.3 (2016), pp. 457–
471.

[GKX20a] S. Gu, B. Kelly, and D. Xiu. “Empirical asset pricing via machine learning’”.
en. The Review of Financial Studies 33.5 (2020), 2223–2273.

[GKX20b] S. Gu, B. Kelly, and D. Xiu. “Empirical asset pricing via machine learning”.
The Review of Financial Studies 33.5 (2020), pp. 2223–2273.

[GKX22] S. Giglio, B. Kelly, and D. Xiu. “Factor models, machine learning, and asset
pricing”. Annual Review of Financial Economics 14 (2022).

[GLP21] D. Giannone, M. Lenza, and G. E. Primiceri. “Economic predictions with big
data: The illusion of sparsity”. Econometrica 89.5 (2021), pp. 2409–2437.

[GMT23] S. Glebkin, S. Malamud, and A. Teguia. “Illiquidity and Higher Cumulants”.
The Review of Financial Studies 36.5 (2023), pp. 2131–2173.

[GOPZ21] J. Guijarro-Ordonez, M. Pelger, and G. Zanotti. “Deep learning statistical arbi-
trage”. arXiv preprint arXiv:2106.04028 (2021).

[GX21] S. Giglio and D. Xiu. “Asset pricing with omitted factors”. Journal of Political
Economy 129.7 (2021), pp. 1947–1990.

[Han+19] Y. Han, A. He, D. Rapach, and G. Zhou. “Expected stock returns and firm
characteristics: E-LASSO, assessment, and implications”. SSRN (2019).

[Has+19] T. Hastie, A. Montanari, S. Rosset, and R. J. Tibshirani. “Surprises in high-
dimensional ridgeless least squares interpolation”. arXiv preprint arXiv:1903.08560
(2019).

[He+15] K. He, X. Zhang, S. Ren, and J. Sun. “Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification”. Proceedings of the IEEE
international conference on computer vision. 2015, pp. 1026–1034.

[HJ15] T. Hazan and T. Jaakkola. “Steps toward deep kernel methods from infinite
neural networks”. arXiv preprint arXiv:1508.05133 (2015).

[HLT20a] Y. Han, F. Liu, and X. Tang. The information content of the implied volatility
surface: Can option prices predict jumps?’ en. Working Paper, 2020.

[HLT20b] Y. Han, F. Liu, and X. Tang. “The Information Content of The Implied Volatility
Surface: Can Option Prices Predict Jumps?” Available at SSRN 3454330 (2020).

[HLZ16] C. R. Harvey, Y. Liu, and H. Zhu. “. . . and the cross-section of expected re-
turns”. The Review of Financial Studies 29.1 (2016), pp. 5–68.

[HS00] C. Harvey and A. Siddique. “Conditional skewness in asset pricing tests”. en.
Journal of Finance 55 (2000), 1263– 1295.

https://doi.org/https://doi.org/10.1016/j.jfineco.2013.10.005
https://doi.org/https://doi.org/10.1016/j.jfineco.2013.10.005
http://www.sciencedirect.com/science/article/pii/S0304405X13002675
http://www.sciencedirect.com/science/article/pii/S0304405X13002675
http://www.deeplearningbook.org
http://www.deeplearningbook.org

Bibliography 153

[HS97] S. Hochreiter and J. Schmidhuber. “Long short-term memory”. Neural compu-
tation 9.8 (1997), pp. 1735–1780.

[HSW89] K. Hornik, M. Stinchcombe, and H. White. “Multilayer feedforward networks
are universal approximators”. Neural networks 2.5 (1989), pp. 359–366.

[HXZ20] K. Hou, C. Xue, and L. Zhang. “Replicating anomalies”. The Review of Finan-
cial Studies 33.5 (2020), pp. 2019–2133.

[IS15a] S. Ioffe and C. Szegedy. “Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift”. International conference on machine
learning. PMLR. 2015, pp. 448–456.

[IS15b] S. Ioffe and C. Szegedy. “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift”. 32nd International Conference
on Machine Learning, ICML 2015 1 (Feb. 2015), pp. 448–456. doi: 10.48550/
arxiv.1502.03167. url: https://arxiv.org/abs/1502.03167v3.

[ISV21] E. Ilhan, Z. Sautner, and G. Vilkov. “Carbon tail risk”. The Review of Financial
Studies 34.3 (2021), pp. 1540–1571.

[Jen+22] T. I. Jensen, B. T. Kelly, S. Malamud, and L. H. Pedersen. “Machine learning
and the implementable efficient frontier”. Available at SSRN 4187217 (2022).

[JGH18] A. Jacot, F. Gabriel, and C. Hongler. “Neural tangent kernel: Convergence and
generalization in neural networks”. Advances in neural information processing
systems 31 (2018).

[Jia+20] L. Jiang, K. Wu, G. Zhou, and Y. Zhu. “Stock return asymmetry: Beyond skew-
ness”. io. Journal of Financial and Quantitative Analysis 55.2 (2020), 357–386.

[JKDX22] J. Jiang, B. Kelly, and N. Dacheng Xiu. (Re-)Imag(in)ing Price Trends. Tech.
rep. 2022. doi: http://dx.doi.org/10.2139/ssrn.3756587. url: https:

//ssrn.com/abstract=3756587.

[JKP22] T. I. Jensen, B. T. Kelly, and L. H. Pedersen. “Is there a replication crisis in
finance?” en. Journal of Finance (2022).

[JKPrt] T. I. Jensen, B. T. Kelly, and L. H. Pedersen. Is there a replication crisis in
finance? Tech. rep. Journal of Finance, Forthcoming.

[JLP19] C. S. Jensen, D. Lando, and L. H. Pedersen. “Generalized recovery”. Journal of
Financial Economics 133.1 (2019), pp. 154–174.

[JM20] J. C. Jackwerth and M. Menner. “Does the Ross recovery theorem work empir-
ically?” Journal of Financial Economics 137.3 (2020), pp. 723–739.

[JMW18] C. Jones, H. Mo, and H. Wang. “Do option prices forecast aggregate stock re-
turns?” en. Unpublished manuscript, 2018.

[JS12] T. Johnson and E. So. “The option to stock volume ratio and future returns”.
en. Journal of Financial Economics 106.2 (2012), 262–286.

[Jum+21] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K.
Tunyasuvunakool, R. Bates, A. Ž́ıdek, A. Potapenko, et al. “Highly accurate
protein structure prediction with AlphaFold”. Nature 596.7873 (2021), pp. 583–
589.

[KB14] D. P. Kingma and J. Ba. “Adam: A method for stochastic optimization”. arXiv
preprint arXiv:1412.6980 (2014).

[Kel+23] B. T. Kelly, B. Kuznetsov, S. Malamud, and T. A. Xu. “Deep Learning from Im-
plied Volatility Surfaces”. Swiss Finance Institute Research Paper 23-60 (2023).

[Kel+24] B. Kelly, B. Kuznetsov, S. Malamud, and T. A. Xu. “Large (and Deep) Factor
Models”. arXiv preprint arXiv:2402.06635 (2024).

[KH+09] A. Krizhevsky, G. Hinton, et al. “Learning multiple layers of features from tiny
images” (2009).

https://doi.org/10.48550/arxiv.1502.03167
https://doi.org/10.48550/arxiv.1502.03167
https://arxiv.org/abs/1502.03167v3
https://doi.org/http://dx.doi.org/10.2139/ssrn.3756587
https://ssrn.com/abstract=3756587
https://ssrn.com/abstract=3756587

154 Bibliography

[KJ14] B. Kelly and H. Jiang. “Tail risk and asset prices”. The Review of Financial
Studies 27.10 (2014), pp. 2841–2871.

[KLVN16] B. Kelly, H. Lustig, and S. Van Nieuwerburgh. “Too-systemic-to-fail: What op-
tion markets imply about sector-wide government guarantees”. American Eco-
nomic Review 106.6 (2016), pp. 1278–1319.

[KMZ22] B. T. Kelly, S. Malamud, and K. Zhou. “The virtue of complexity everywhere”.
Available at SSRN 4166368 (2022).

[KMZ24] B. Kelly, S. Malamud, and K. Zhou. “The virtue of complexity in return pre-
diction”. The Journal of Finance 79.1 (2024), pp. 459–503.

[KNS13] R. Kozhan, A. Neuberger, and P. Schneider. “The skew risk premium in the eq-
uity index option market’”. en. Review of Financial Studies 26 (2013), 2174–2203.

[KNS18] S. Kozak, S. Nagel, and S. Santosh. “Interpreting Factor Models”. The Journal of
Finance 73.3 (2018), pp. 1183–1223. doi: 10.1111/jofi.12612. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1111/jofi.12612. url: https:

//onlinelibrary.wiley.com/doi/abs/10.1111/jofi.12612.

[KNS20] S. Kozak, S. Nagel, and S. Santosh. “Shrinking the cross-section”. Journal of
Financial Economics 135.2 (2020), pp. 271–292. issn: 0304-405X. doi: https:
//doi.org/10.1016/j.jfineco.2019.06.008. url: http://www.sciencedirect.
com/science/article/pii/S0304405X19301655.

[KP13] B. Kelly and S. Pruitt. “Market expectations in the cross-section of present
values”. The Journal of Finance 68.5 (2013), pp. 1721–1756.

[KP15] B. Kelly and S. Pruitt. “The three-pass regression filter: A new approach to fore-
casting using many predictors”. Journal of Econometrics 186.2 (2015), pp. 294–
316.

[KPS20] B. Kelly, S. Pruitt, and Y. Su. “Characteristics are Covariances: A Unified Model
of Risk and Return”. Journal of Financial Economics (2020).

[KPV16] B. Kelly, L. Pástor, and P. Veronesi. “The price of political uncertainty: Theory
and evidence from the option market”. The Journal of Finance 71.5 (2016),
pp. 2417–2480.

[KS19] M. Kilic and I. Shaliastovich. “Good and bad variance premia and expected
returns”. fr. Management Science 65 (2019), 2522–2544.

[KT20] O. Kadan and X. Tang. “A bound on expected stock returns”. en. Review of
Financial Studies 33 (2020), 1565–1617.

[KX+23] B. Kelly, D. Xiu, et al. “Financial machine learning”. Foundations and Trends®
in Finance 13.3-4 (2023), pp. 205–363.

[LCY13] M. Lin, Q. Chen, and S. Yan. “Network in network”. arXiv preprint arXiv:1312.4400
(2013).

[LeC+98] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning ap-
plied to document recognition”. Proceedings of the IEEE 86.11 (1998), pp. 2278–
2324.

[Lee+18] J. Lee, Y. Bahri, R. Novak, S. S. Schoenholz, J. Pennington, and J. Sohl-
Dickstein. “Deep Neural Networks as Gaussian Processes”. International Con-
ference on Learning Representations. 2018.

[Lee+19] J. Lee, L. Xiao, S. Schoenholz, Y. Bahri, R. Novak, J. Sohl-Dickstein, and J.
Pennington. “Wide neural networks of any depth evolve as linear models under
gradient descent”. Advances in neural information processing systems 32 (2019),
pp. 8572–8583.

[Lee+20] J. Lee, S. Schoenholz, J. Pennington, B. Adlam, L. Xiao, R. Novak, and J. Sohl-
Dickstein. “Finite versus infinite neural networks: an empirical study”. Advances
in Neural Information Processing Systems 33 (2020), pp. 15156–15172.

https://doi.org/10.1111/jofi.12612
https://onlinelibrary.wiley.com/doi/pdf/10.1111/jofi.12612
https://onlinelibrary.wiley.com/doi/pdf/10.1111/jofi.12612
https://onlinelibrary.wiley.com/doi/abs/10.1111/jofi.12612
https://onlinelibrary.wiley.com/doi/abs/10.1111/jofi.12612
https://doi.org/https://doi.org/10.1016/j.jfineco.2019.06.008
https://doi.org/https://doi.org/10.1016/j.jfineco.2019.06.008
http://www.sciencedirect.com/science/article/pii/S0304405X19301655
http://www.sciencedirect.com/science/article/pii/S0304405X19301655

Bibliography 155

[Leo17] G. Leoni. A first course in Sobolev spaces. American Mathematical Soc., 2017.

[Li+18] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein. “Visualizing the loss
landscape of neural nets”. Advances in neural information processing systems
31 (2018).

[Li+19] Z. Li, R. Wang, D. Yu, S. S. Du, W. Hu, R. Salakhutdinov, and S. Arora. “En-
hanced convolutional neural tangent kernels”. arXiv preprint arXiv:1911.00809
(2019).

[LJB20] D. LeJeune, H. Javadi, and R. Baraniuk. “The implicit regularization of ordinary
least squares ensembles”. International Conference on Artificial Intelligence and
Statistics. PMLR. 2020, pp. 3525–3535.

[LL17] S. M. Lundberg and S.-I. Lee. “A unified approach to interpreting model pre-
dictions”. Advances in neural information processing systems 30 (2017).

[LP20] M. Lettau and M. Pelger. “Factors that fit the time series and cross-section of
stock returns”. The Review of Financial Studies 33.5 (2020), pp. 2274–2325.

[LPB17] B. Lakshminarayanan, A. Pritzel, and C. Blundell. “Simple and scalable predic-
tive uncertainty estimation using deep ensembles”. Advances in neural informa-
tion processing systems 30 (2017).

[LRB07] N. Le Roux and Y. Bengio. “Continuous neural networks”. Artificial Intelligence
and Statistics. PMLR. 2007, pp. 404–411.

[LT19] H. Lin and V. Todorov. “Aggregate asymmetry in idiosyncratic jump risk”. en.
Unpublished manuscript, 2019.

[LWZ22] M. Leippold, Q. Wang, and W. Zhou. “Machine learning in the Chinese stock
market”. Journal of Financial Economics 145.2 (2022), pp. 64–82.

[LZZ20] Y. Liu, G. Zhou, and Y. Zhu. “Maximizing the Sharpe ratio: A genetic program-
ming approach”. Available at SSRN 3726609 (2020).

[Mar17] I. Martin. “What is the Expected Return on the Market?” The Quarterly Jour-
nal of Economics 132.1 (2017), pp. 367–433.

[Mat+18] A. G. d. G. Matthews, M. Rowland, J. Hron, R. E. Turner, and Z. Ghahramani.
“Gaussian process behaviour in wide deep neural networks”. arXiv preprint
arXiv:1804.11271 (2018).

[MB17] S. Ma and M. Belkin. “Diving into the shallows: a computational perspective on
large-scale shallow learning”. Advances in neural information processing systems
30 (2017).

[Mer+23] A. Merchant, S. Batzner, S. S. Schoenholz, M. Aykol, G. Cheon, and E. D.
Cubuk. “Scaling deep learning for materials discovery”. Nature 624.7990 (2023),
pp. 80–85.

[MP16] R. D. McLean and J. Pontiff. “Does academic research destroy stock return
predictability?” The Journal of Finance 71.1 (2016), pp. 5–32.

[MPP22] D. Muravyev, N. D. Pearson, and J. M. Pollet. “Anomalies and Their Short-Sale
Costs”. Available at SSRN 4266059 (2022).

[MW19] I. W. Martin and C. Wagner. “What is the Expected Return on a Stock?” The
Journal of Finance 74.4 (2019), pp. 1887–1929.

[MZ16] B. Moritz and T. Zimmermann. “Tree-based conditional portfolio sorts: The
relation between past and future stock returns”. Available at SSRN 2740751
(2016).

[Nak+21] P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak, and I. Sutskever. “Deep
double descent: Where bigger models and more data hurt”. Journal of Statistical
Mechanics: Theory and Experiment 2021.12 (2021), p. 124003.

[Nea96] R. M. Neal. “Priors for infinite networks”. Bayesian Learning for Neural Net-
works. Springer, 1996, pp. 29–53.

156 Bibliography

[Neu+21] A. Neuhierl, X. Tang, R. T. Varneskov, and G. Zhou. “Stock Option Predictabil-
ity for the Cross-Section”. Available at SSRN 3795486 (2021).

[Neu+22] A. Neuhierl, X. Tang, R. T. Varneskov, and G. Zhou. “Option characteristics as
cross-sectional predictors”. SSRN Electronic Journal June 9, 2022 (Mar. 2022).
doi: 10.2139/SSRN.3795486. url: http://publikationen.ub.uni-frankfurt.
de/frontdoor/index/index/docId/65244.

[Nov+18] R. Novak, L. Xiao, Y. Bahri, J. Lee, G. Yang, J. Hron, D. A. Abolafia, J.
Pennington, and J. Sohl-dickstein. “Bayesian Deep Convolutional Networks with
Many Channels are Gaussian Processes”. International Conference on Learning
Representations. 2018.

[Nov+19] R. Novak, L. Xiao, J. Hron, J. Lee, A. A. Alemi, J. Sohl-Dickstein, and S. S.
Schoenholz. “Neural tangents: Fast and easy infinite neural networks in python”.
arXiv preprint arXiv:1912.02803 (2019).

[OST20] P. Orlowski, P. Schneider, and F. Trojani. “On the nature of jump risk premia”.
fr. Unpublished manuscript, Swiss finance institute. 2020.

[OWB18] M. Olson, A. Wyner, and R. Berk. “Modern neural networks generalize on small
data sets”. Advances in Neural Information Processing Systems 31 (2018).

[Ped20] P. Pederzoli. “Skewness swaps on individual stocks”. en. Unpublished manuscript,
2020.

[PHD20] V. Papyan, X. Han, and D. L. Donoho. “Prevalence of neural collapse during the
terminal phase of deep learning training”. Proceedings of the National Academy
of Sciences 117.40 (2020), pp. 24652–24663.

[Pic75] J. Pickands. “Statistical inference using extreme order statistics”. the Annals of
Statistics 3.1 (1975), pp. 119–131.

[Pin99] A. Pinkus. “Approximation theory of the MLP model”. Acta Numerica 1999:
Volume 8 8 (1999), pp. 143–195.

[Poo+16] B. Poole, S. Lahiri, M. Raghu, J. Sohl-Dickstein, and S. Ganguli. “Exponen-
tial expressivity in deep neural networks through transient chaos”. Advances in
neural information processing systems 29 (2016).

[Pow+22] A. Power, Y. Burda, H. Edwards, I. Babuschkin, and V. Misra. “Grokking:
Generalization beyond overfitting on small algorithmic datasets”. arXiv preprint
arXiv:2201.02177 (2022).

[PSG17] J. Pennington, S. Schoenholz, and S. Ganguli. “Resurrecting the sigmoid in deep
learning through dynamical isometry: theory and practice”. Advances in neural
information processing systems 30 (2017).

[QL16] L. Qin and V. Linetsky. “Positive eigenfunctions of markovian pricing opera-
tors: Hansen-scheinkman factorization, ross recovery, and long-term pricing”.
Operations Research 64.1 (2016), pp. 99–117.

[Rad+22] A. Radhakrishnan, D. Beaglehole, P. Pandit, and M. Belkin. “Feature learning
in neural networks and kernel machines that recursively learn features”. arXiv
preprint arXiv:2212.13881 (2022).

[Ram+21] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and
I. Sutskever. “Zero-shot text-to-image generation”. International conference on
machine learning. Pmlr. 2021, pp. 8821–8831.

[Rom+22] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. “High-resolution
image synthesis with latent diffusion models”. Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 2022, pp. 10684–10695.

[Ros15a] S. Ross. “The recovery theorem’”. en. The Journal of Finance 70.2 (2015),
615–648.

[Ros15b] S. Ross. “The recovery theorem”. The Journal of Finance 70.2 (2015), pp. 615–
648.

https://doi.org/10.2139/SSRN.3795486
http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/65244
http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/65244

Bibliography 157

[RR07] A. Rahimi and B. Recht. “Random Features for Large-Scale Kernel Machines.”
NIPS. Vol. 3. 4. Citeseer. 2007, p. 5.

[RSZ10] D. E. Rapach, J. K. Strauss, and G. Zhou. “Out-of-sample equity premium
prediction: Combination forecasts and links to the real economy”. The Review
of Financial Studies 23.2 (2010), pp. 821–862.

[SC16] D. Soudry and Y. Carmon. “No bad local minima: Data independent training er-
ror guarantees for multilayer neural networks”. arXiv preprint arXiv:1605.08361
(2016).

[SCC18] U. Shaham, A. Cloninger, and R. R. Coifman. “Provable approximation proper-
ties for deep neural networks”. Applied and Computational Harmonic Analysis
44.3 (2018), pp. 537–557.

[Sch+20] P. Schneider, C. Wagner, J. Zechner, and W. Sharpe. “Low-risk anomalies?’”
en. The Journal of Finance 75.5 (2020), 2673–2718.

[Sha+20] V. Shankar, A. Fang, W. Guo, S. Fridovich-Keil, J. Ragan-Kelley, L. Schmidt,
and B. Recht. “Neural kernels without tangents”. International Conference on
Machine Learning. PMLR. 2020, pp. 8614–8623.

[Sil+16] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J.
Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. “Mastering
the game of Go with deep neural networks and tree search”. nature 529.7587
(2016), pp. 484–489.

[Sim+23] J. B. Simon, D. Karkada, N. Ghosh, and M. Belkin. “More is better in modern
machine learning: when infinite overparameterization is optimal and overfitting
is obligatory”. arXiv preprint arXiv:2311.14646 (2023).

[SKP17] P. Stilger, A. Kostakis, and S.-H. Poon. “What does risk-neutral skewness tell
us about future stock returns?’” fr. Management Science 63 (2017), 1814–1834.

[SMG13] A. M. Saxe, J. L. McClelland, and S. Ganguli. “Exact solutions to the non-
linear dynamics of learning in deep linear neural networks”. arXiv preprint
arXiv:1312.6120 (2013).

[Spi+19] S. Spigler, M. Geiger, S. d’Ascoli, L. Sagun, G. Biroli, and M. Wyart. “A jam-
ming transition from under-to over-parametrization affects generalization in deep
learning”. Journal of Physics A: Mathematical and Theoretical 52.47 (2019),
p. 474001.

[ST19] P. Schneider and F. Trojani. “Divergence and the price of uncertainty’”. en.
Journal of Financial Econometrics 17 (2019), 341–396.

[Tan19] X. Tang. “Variance asymmetry managed portfolios”. en. Unpublished manuscript,
2019.

[Tao23] T. Tao. Topics in random matrix theory. Vol. 132. American Mathematical So-
ciety, 2023.

[TB20] A. Tsigler and P. L. Bartlett. Benign overfitting in ridge regression. 2020. arXiv:
2009.14286 [math.ST].

[Tea+23] G. Team, R. Anil, S. Borgeaud, Y. Wu, J.-B. Alayrac, J. Yu, R. Soricut, J.
Schalkwyk, A. M. Dai, A. Hauth, et al. “Gemini: a family of highly capable
multimodal models”. arXiv preprint arXiv:2312.11805 (2023).

[Tou+23] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix,
B. Rozière, N. Goyal, E. Hambro, F. Azhar, et al. “Llama: Open and efficient
foundation language models”. arXiv preprint arXiv:2302.13971 (2023).

[VOZ16] M. R. Van Oordt and C. Zhou. “Systematic tail risk”. Journal of Financial and
Quantitative Analysis (2016), pp. 685–705.

[Wal17] J. Walden. “Recovery with unbounded diffusion processes”. Review of Finance
21.4 (2017), pp. 1403–1444.

https://arxiv.org/abs/2009.14286

158 Bibliography

[WG08] I. Welch and A. Goyal. “A comprehensive look at the empirical performance
of equity premium prediction”. The Review of Financial Studies 21.4 (2008),
pp. 1455–1508.

[Wil97] C. K. Williams. “Computing with infinite networks”. Advances in Neural Infor-
mation Processing Systems 9: Proceedings of the 1996 Conference. Vol. 9. MIT
Press. 1997, p. 295.

[XKM23] T. A. Xu, B. Kelly, and S. Malamud. “A Simple Algorithm For Scaling Up
Kernel Methods”. arXiv preprint arXiv:2301.11414 (2023).

[Xu23] T. A. Xu. “Tail Recovery”. Available at SSRN 4380818 (2023).

[XZZ10] Y. Xing, X. Zhang, and R. Zhao. “What does the individual option volatility
smirk tell us about future equity returns?’” en. Journal of Financial and Quan-
titative Analysis (2010), 641–662.

[Yan11] Y. Yan. “Jump risk, stock returns and slope of implied volatility smile’”. en.
Journal of Financial Economics 99 (2011), 216–223.

[Yan19] G. Yang. “Wide feedforward or recurrent neural networks of any architecture
are gaussian processes”. Advances in Neural Information Processing Systems
32 (2019).

[Yan20a] G. Yang. “Tensor programs ii: Neural tangent kernel for any architecture”. arXiv
preprint arXiv:2006.14548 (2020).

[Yan20b] G. Yang. “Tensor programs iii: Neural matrix laws”. arXiv preprint arXiv:2009.10685
(2020).

[Yan+21] G. Yang, E. Hu, I. Babuschkin, S. Sidor, X. Liu, D. Farhi, N. Ryder, J. Pachocki,
W. Chen, and J. Gao. “Tuning large neural networks via zero-shot hyperparam-
eter transfer”. Advances in Neural Information Processing Systems 34 (2021),
pp. 17084–17097.

[Yan+22] G. Yang, E. J. Hu, I. Babuschkin, S. Sidor, X. Liu, D. Farhi, N. Ryder, J.
Pachocki, W. Chen, and J. Gao. “Tensor programs v: Tuning large neural net-
works via zero-shot hyperparameter transfer”. arXiv preprint arXiv:2203.03466
(2022).

[Yan+23] G. Yang, D. Yu, C. Zhu, and S. Hayou. “Feature Learning in Infinite Depth
Neural Networks”. The Twelfth International Conference on Learning Repre-
sentations. 2023.

[Yao+20] Z. Yao, A. Gholami, K. Keutzer, and M. W. Mahoney. “Pyhessian: Neural net-
works through the lens of the hessian”. 2020 IEEE international conference on
big data (Big data). IEEE. 2020, pp. 581–590.

[YH20] G. Yang and E. J. Hu. “Feature learning in infinite-width neural networks”.
arXiv preprint arXiv:2011.14522 (2020).

[YL21] G. Yang and E. Littwin. “Tensor programs iib: Architectural universality of
neural tangent kernel training dynamics”. International Conference on Machine
Learning. PMLR. 2021, pp. 11762–11772.

[YL23] G. Yang and E. Littwin. “Tensor programs ivb: Adaptive optimization in the
infinite-width limit”. arXiv preprint arXiv:2308.01814 (2023).

[Zan+21] A. Zandieh, I. Han, H. Avron, N. Shoham, C. Kim, and J. Shin. “Scaling Neu-
ral Tangent Kernels via Sketching and Random Features”. Advances in Neu-
ral Information Processing Systems. Ed. by M. Ranzato, A. Beygelzimer, Y.
Dauphin, P. Liang, and J. W. Vaughan. Vol. 34. Curran Associates, Inc., 2021,
pp. 1062–1073. url: https://proceedings.neurips.cc/paper/2021/file/
08ae6a26b7cb089ea588e94aed36bd15-Paper.pdf.

[Zha+16] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. “Understanding deep
learning requires rethinking generalization”. arXiv preprint arXiv:1611.03530
(2016).

https://proceedings.neurips.cc/paper/2021/file/08ae6a26b7cb089ea588e94aed36bd15-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/08ae6a26b7cb089ea588e94aed36bd15-Paper.pdf

	I Tail Risk
	Tail Recovery
	Introduction
	Literature Review
	Extreme Value Theory and Generalized Pareto Distribution
	Data and Feature Construction
	Estimation Procedures and Measures of OOS Predictability
	Do Stock Returns have Power Law Tails?
	Neural Network Models
	Log-Likelihood
	Benchmarks
	Measuring OOS Predictability

	Forecasting Tail Events using Backward-Looking Measures
	Forecasting Tail Risk Using Option-Implied Information
	Calls, Puts, Upper, and Lower Tails
	Non-linearity, Big Data, and Extreme Value Theory
	Tail risk during Earnings Announcements

	Which features matter?
	Conclusion
	Appendix - CBOE Rule filings that potentially enhance the informativeness of equity options
	Appendix - Features description

	Appendix - IV Bucket Correlation

	II State Contingent Risk Premia
	Deep Learning from Options Implied Volatility
	Introduction
	Related Literature
	Data and methodology
	Data
	Ensembles of Randomly Initialized Neural Nets

	Convolutional Neural Networks
	CNN Architecture
	Training the CNN

	CNN Portfolio Performance
	Simpler Models
	Long only
	Transaction and Short-Sale Costs

	Principal Linear Features
	Conclusion
	Appendix - Data Preprocessing
	Appendix - More about Convolutional Neural Networks
	The Convolution Function
	The Activation Function
	The Max-Pooling Function
	The Batch-Normalization Function
	The Global Average Pooling Function

	Appendix - Results
	Long-only Portfolio Performance
	The Impact of Costs

	Appendix - Additional Results
	Ridge Regression Results
	Comparison: Simple NN against CNN

	Appendix - Additional Analysis for Different Size Groups of Stocks
	Appendix - Proofs

	III Kernel Methods
	A Simple Algorithm For Scaling Up Kernel Methods
	Introduction
	Related Work
	Random Features Ridge Regression and Classification
	Dealing with High-Dimensional Features
	Dealing with Massive Datasets

	Numerical Results
	A comparison with sklearn
	Experiments on Real Datasets

	Conclusion and Discussion
	Appendix - Proofs
	Appendix - Additional Experimental Results

	Conclusion
	Working Experience
	Education
	Published Papers
	Teaching
	Talks
	Skills

