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Abstract

This thesis concerns the well-posedness of nonlinear dispersive equations in the low
regularity setting. We will present two results on global existence for such equations
with data at or below the scaling regularity.
In chapter 1 we take a probabilistic perspective to study the energy-critical nonlinear
Schrödinger equation in dimensions d > 6. We prove that the Cauchy problem is
almost surely globally well-posed with scattering for super-critical initial data in Hs(Rd)
whenever s > max{ 4d−1

3(2d−1) ,
d2+6d−4

(2d−1)(d+2)}. The randomisation is based on a decomposition
of the data in physical space, frequency space and the angular variable. This extends
previously known results in dimension 4 and the main difficulty in the generalisation to
high dimensions is the non-smoothness of the nonlinearity. The work of this chapter is
taken from the publication [Mar23].
Chapter 2 concerns the half-wave maps equation, a nonlocal geometric equation arising
in the continuum dynamics of Haldane-Shashtry and Calogero-Moser spin systems. We
will prove that in three dimensions the equation is “weakly” globally well-posed (in the
sense of [Tao01a]) for angularly regular data which is small in a critical Besov space,
partially generalising known results in dimensions d ≥ 4. The main difficulty in moving
to three dimensions is the loss of a key L2

tL
∞
x Strichartz estimate. We overcome this by

using Sterbenz’s improved Strichartz estimates [Ste05] in conjunction with commuting
vector fields to develop trilinear estimates in weighted Strichartz spaces which avoid the
use of the L2

tL
∞
x endpoint. This work is taken from [Mar24].

Keywords: Dispersive partial differential equations, well-posedness, global existence, random
initial data, nonlinear Schrödinger equation, half-wave maps equation.
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Résumé

Cette thèse concerne le caractère bien-posé des équations dispersives non linéaires à
régularité faible. Nous présentons deux résultats sur l’existence globale pour de telles
équations avec des données à régularité critique ou sur-critique.
Dans le chapitre 1, nous prenons une perspective probabiliste pour étudier l’équation
de Schrödinger non linéaire à énergie critique en dimension d > 6. Nous démontrons
que le problème de Cauchy est presque sûrement bien posé avec scattering pour des
données initiales sur-critiques dans Hs(Rd) pourvu que s > max{ 4d−1

3(2d−1) ,
d2+6d−4

(2d−1)(d+2)}. La
randomisation se base sur une décomposition à la fois en espace physique, en fréquence
et en variable angulaire. Ceci étend des résultats connus en dimension 4 et la principale
difficulté dans la généralisation aux hautes dimensions est la nature non lisse de la
non-linéarité. Le travail de ce chapitre est tiré de la publication [Mar23].
Le chapitre 2 concerne le « half-wave maps equation », une équation non-locale géo-
métrique qui survient dans la dynamique du continuum des systèmes de type Haldane-
Shashtry et Calogero-Moser. Nous prouvons qu’en dimension trois, l’équation est «
faiblement » bien posée (dans le sens de [Tao01a]) pour des données initiales angulai-
rement régulières qui sont petites dans un espace de Besov critique, ce qui généralise
partiellement des résultats connus en dimension d ≥ 4. La principale difficulté du passage
à trois dimensions est la perte de l’essentielle estimation de Strichartz en L2

tL
∞
x . Nous

surmontons ce problème en utilisant les estimations de Strichartz améliorées de Sterbenz
[Ste05] conjointement avec des champs de vecteurs commutant. Ceci nous permet de
développer des estimations trilinéaires dans des espaces de Strichartz avec poids en
évitant l’usage de l’espace L2

tL
∞
x . Ce travail est tiré de [Mar24].

Mots-clés : Équations aux dérivées partielles dispersives, bien posé, existence globale, données
initiales aléatoires, équation de Schrödinger non linéaire, half-wave maps.

v





Contents

Acknowledgements i

Abstract (English/Français) iii

Introduction 1
0.0.1 Supercritical Cauchy theory for NLS: a probabilistic approach. . 5
0.0.2 Small Data Global Regularity for the Half-Wave Maps Equation. 9

0.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
0.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
0.1.2 The Littlewood-Paley decomposition . . . . . . . . . . . . . . . . 15
0.1.3 Strichartz estimates for wave and Schrödinger equations . . . . . 16
0.1.4 Spherical harmonics . . . . . . . . . . . . . . . . . . . . . . . . . 18

1 Almost Sure Scattering of the Energy-Critical NLS in d > 6. 21
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.1.1 Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.1.2 Randomisation Procedure . . . . . . . . . . . . . . . . . . . . . . 25
1.1.3 Regularisation of the Nonlinearity . . . . . . . . . . . . . . . . . 28

1.2 Notation and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.2.2 Properties of the Nonlinearity . . . . . . . . . . . . . . . . . . . . 31
1.2.3 Deterministic Estimates . . . . . . . . . . . . . . . . . . . . . . . 31

1.3 Function Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.4 Local wellposedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.4.1 Linear and Nonlinear Estimates . . . . . . . . . . . . . . . . . . . 33
1.4.2 Proof of Local wellposedness and Scattering Condition . . . . . . 34

1.5 Conditional Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.6 Energy bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
1.7 Almost sure bounds for the forcing term . . . . . . . . . . . . . . . . . . 50

1.7.1 Bounds using randomisation-improved Strichartz. . . . . . . . . . 51
1.7.2 Randomised L1

t estimate . . . . . . . . . . . . . . . . . . . . . . . 55

Appendices 59
1.A Calculation of energy increment (1.6.5)-(1.6.6) . . . . . . . . . . . . . . 59
1.B Justification of Remark 1.1.6 . . . . . . . . . . . . . . . . . . . . . . . . 61

vii



Contents

2 Global Solutions to the 3D Half-Wave Maps Equation with Angular
Regularity. 65
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.2.1 Angular Derivatives and Commuting Vector Fields . . . . . . . . 72
2.2.2 Function Spaces and Linear Estimates . . . . . . . . . . . . . . . 75
2.2.3 Angular Multipliers . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.3 Reduction to main proposition . . . . . . . . . . . . . . . . . . . . . . . 78
2.4 Discarding some error terms . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.5 The half-wave maps contributions are negligible . . . . . . . . . . . . . . 83

2.5.1 Showing that P0(HWM1(ϕ)) = error . . . . . . . . . . . . . . . 96
2.5.2 Showing that P0(HWM2(ϕ)) = error . . . . . . . . . . . . . . . 103

2.6 Normal Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
2.6.1 Low-high-high term . . . . . . . . . . . . . . . . . . . . . . . . . 116
2.6.2 Low-low-high error term . . . . . . . . . . . . . . . . . . . . . . . 122

2.7 The gauge transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 126
2.8 The (very low-low-high) cancellation . . . . . . . . . . . . . . . . . . . . 132
2.9 Putting it all together . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
2.10 Proof of local wellposedness . . . . . . . . . . . . . . . . . . . . . . . . . 139

2.10.1 Local Wellposedness of the Differentiated Equation (2.1.2). . . . 139
2.10.2 Local Wellposedness of the Half-Wave Maps Equation (2.1.1). . . 153

Appendices 155
2.A Control of the Low Frequencies . . . . . . . . . . . . . . . . . . . . . . . 155
2.B Proof of Moser Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . 156
2.C Proof of Lemma 2.10.10. . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Bibliography 182

Curriculum Vitae 183

viii



Introduction

This thesis concerns the existence of solutions to nonlinear dispersive equations at low
regularity. A classical example of such an equation is the nonlinear Schrödinger equation(i∂t + ∆)u = σ u|u|p−1

u(0, x) = u0(x)
(p > 1, σ = ±1, u : R × Rd → C). (NLS)

which will be the focus of the first chapter of this thesis, where we will discuss the work
contained in [Mar23]. The second chapter will concern the more recently introduced
half-wave maps equation and the result in [Mar24].

We begin this introduction with a discussion of the general principles and background
concerning well-posedness of nonlinear dispersive equations. For the sake of concreteness,
we will restrict our attention to (NLS), as many of the principles that apply to this
equation are also relevant to the half-wave maps equation. Later in the introduction
(Sections 0.0.1 and 0.0.2), we will present more specific background on the main topics of
this thesis, leaving detailed descriptions of the results and outlines of the arguments to
the relevant chapters.

We refer to Section 0.1.1 for standard notation and definitions used in this introduction.

The main concern of this thesis is the question of global existence of solutions, i.e.

• For which classes of initial data u0 do solutions to (NLS) exist for all time?

This question is non-vacuous, as can be seen by the physically motivated example of the
three dimensional focusing cubic NLS (i.e. d = 3, p = 3, σ = −1),1 which is known to
have solutions which blow up in finite time for arbitrarily smooth initial data [Gla77].

Before developing this discussion further, we should clarify what is meant by a solution
of (NLS). Since we will mainly be interested in low regularity solutions, which may
not even afford the two derivatives required for the equation to make sense classically,
we adopt the following more general concept of solution for initial data belonging to a
Sobolev space Hs(Rd).

1Here, “focusing” refers to the choice σ = −1 in the nonlinearity. The choice σ = +1 corresponds to
the “defocusing” equation.
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Introduction

Definition 1 (Solution). Let s ∈ R, 0 ∈ I ⊂ R. For u0 ∈ Hs(Rd), u ∈ C0
t,locH

s
x(I ×

Rd) ∩X is called a strong solution of (NLS) if it solves the Duhamel formula

u(t) = eit∆u0 − i

∫ t

0
ei(t−s)∆(σ u|u|p−1)(s)ds for all t ∈ I.

Here X is some function space which ensures that the nonlinearity u|u|p−1 and the
Duhamel integral make sense as distributions. The operator eit∆ denotes the solution
operator for the free (linear) Schrödinger equation.

Before we consider global solutions, let us first understand for which classes of initial
data we expect to have local solutions. We will seek well-posed solutions in the following
sense.

Definition 2 (Well-posedness). Let s ∈ R. We say that (NLS) is locally well-posed in
Hs(Rd) if

1. Existence: For any u0 ∈ Hs(Rd), there exists an interval 0 ∈ I ⊂ R and a strong
solution u ∈ C(I,Hs(Rd)) to (NLS) with data u0.

2. Uniqueness: There exists a space X as in the previous definition such that u is the
unique solution to (NLS) in the space C(I,Hs(Rd)) ∩X.

3. Continuous dependence: If u0,k → u0 in Hs(Rd), then the corresponding solutions
uk converge to u in C(I,Hs(Rd)).

This issue of well-posedness turns out to be intimately related to the scaling symmetry
of the equation. For (NLS), one may verify that for any solution u, the rescaled function

uλ(t, x) := λ
2

p−1u(λ2t, λx)

remains a solution for any λ ̸= 0. This rescaling leaves the homogeneous Sobolev space
Ḣsc ,

sc := d

2 − 2
p− 1 ,

invariant in the sense that

∥u(0, ·)∥Ḣsc = ∥uλ(0, ·)∥Ḣsc

It was shown in the seminal work of Cazenave and Weissler [CW90], that (NLS) is locally
well-posed in Hs whenever s ∈ [max{sc, 0}, n/2) and the nonlinearity is sufficiently
regular.2,3 In this thesis we will primarily be concerned with low regularity solutions in
the regime sc > 0, so the threshold will generally be interpreted as s ≥ sc.

2In particular, we require that either p be an odd integer so that the nonlinearity u|u|p−1 is a
polynomial, or else ⌊s⌋ < p− 1. The assumption s < n/2 can also often be discarded, see for example
Proposition 3.8 [Tao06].

3The continuity of the data-solution map shown in [CFH11].
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Introduction

In the subcritical case, s > sc, the arguments of [CW90] show that we in fact have the
following lower bound on the time of existence of the solution:

T ≳s,d,p ∥u0∥−β

Ḣs , β = 2
s− sc

. (0.0.1)

In particular, if the local solution only exists up to some maximal time T+, we must have

lim
t↗T+

∥u(t)∥Ḣs = +∞. (0.0.2)

The proof of local well-posedness involves a contraction mapping (also known as Picard
iteration) argument in Strichartz spaces.4 This is based on the principle that over small
time scales the nonlinear forcing can be treated as a perturbation to the underlying linear
equation.

In low regularity spaces Hs with s < max{sc, 0}, various ill-posedness results are known.
In the focusing case, σ = −1, the existence of finite-time blow-up solutions implies by
rescaling that one can obtain data converging to 0 in Hs which blow up in arbitrarily
short time. Even without the focusing assumption, it was shown in [CCT03] that the
solution map u0 7→ u0(t) fails to be uniformly continuous at u0 = 0. For further examples
of ill-posedness see for instance [KPV01, AC09] and the appendix of [BGT05].

We now turn to the question of global well-posedness, for which the theory is far less
complete. Observe first that in the critical case s = sc, the lower bound (0.0.1) might
lead us to expect that for small initial data (∥u0∥Ḣsc ≪ 1) all solutions should be global.
This is indeed a direct consequence of the contraction mapping argument of [CW90] and
we say that there is “small data-global well-posedness” in the critical space Ḣsc .

In Chapter 2, we will use an approach along these lines to construct global solutions to
the half-wave maps equation with small initial data. See Section 0.0.2 for further details.

When it comes to constructing global solutions for large data, iterative arguments are
less fruitful. Indeed, it is clear that in such cases the nonlinearity cannot be viewed as
perturbative over large time scales. However, we can sometimes exploit conservation laws
to obtain global control on solutions. For example, the nonlinear Schrödinger equation
admits the conserved mass

M(t) :=
∫
Rd

|u(t, x)|2dx,

and it follows from (0.0.2) that (NLS) admits global solutions for arbitrary L2 data
provided the equation is mass-subcritical, i.e. sc < 0. In the case sc ≥ 0 with the focusing
choice of nonlinearity, we have already seen that finite time blow-up is possible for large
data [Gla77].

To understand the situation for sc ≥ 0 in the defocusing case, we introduce a second

4See Section 0.1.3.
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conserved quantity, the energy

E(t) := 1
2

∫
|∇u(t, x)|2dx+ σ

1
p+ 1

∫
|u(t, x)|p+1dx.

Restricting henceforth to σ = +1, the energy controls the Ḣ1 norm and it again follows
from (0.0.2) that (NLS) admits global solutions for arbitrary H1 data provided the
equation is energy-subcritical, i.e. sc < 1. For Hs data below the energy space, i.e.
sc < s < 1, global wellposedness is still sometimes achievable using Bourgain’s “high-low”
method [Bou98]. This involves exploiting a nonlinear smoothing effect on the high
frequency portion of the solution to show that

u− eit∆u0 ∈ Cloc(R, H1(Rd)),

Since eit∆ preserves the regularity of u0, this prevents u from blowing up in the Hs

norm and leads to global wellposedness.5 Results for higher regularity solutions are often
possible by persistence of regularity (see Proposition 3.11, [Tao06]).

We next consider energy-critical equations (sc = 1), for which

p = d+ 2
d− 2 .

In this case the lower bound (0.0.1) fails in H1, and conservation laws are insufficient to
deduce global well-posedness. Nonetheless, following initial results for radial data due to
Bourgain [Bou99] and Grillakis [Gri00], the global existence of finite energy solutions to
the defocusing NLS was established by Colliander-Keel-Staffilani-Takaoka-Tao [CKS+08]
in dimension three. The problem in four dimensions and higher was settled by Ryckman
and Visan [RV07] and Visan [Vis07] respectively.

In addition to global well-posedness, the results [CKS+08, RV07, Vis07] also yield precise
information on the asymptotic behaviour of solutions in terms of scattering: there exist
states u± ∈ Ḣ1 such that

lim
t→±∞

∥u(t) − eit∆u±∥Ḣ1 = 0. (0.0.3)

Lastly, for energy-supercritical equations (sc > 1), the issue of global well-posedness
is least tractable due to the lack of relevant conserved quantities. For certain (still
defocusing) equations in this regime, finite time blow up was shown relatively recently in
the celebrated work [MRRS22].6

5Of course, if sc < 0 one could also use the L2 conservation and obtain global solutions in L2. One
could then deduce global existence in Hs for some 0 < s < 1 by persistence of regularity for a smooth
nonlinearity.

6We also draw attention to the works [SY20, Sy21] establishing almost sure global well-posedness for
certain energy supercritical nonlinear Schrödinger equations with energy subcritical initial data (s > 1)
in the periodic setting. Probabilistic results of this type are discussed in detail in the next section.
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This concludes the general part of the introduction, bringing us reasonably up to speed on
the state of the “deterministic” theory of (NLS). Similar theories relating well-posedness
to the invariances of the equation and conserved quantities are also available for other
semilinear dispersive equations, such as the nonlinear wave [LS95, Sog08] and KdV
[KPV96, Bou93] equations. In the next two sections we will give additional background
relevant to the main chapters of this thesis. The first section concerns the extension of
the above results for NLS into the low-regularity supercritical setting by probabilistic
methods, and the second concerns the analogous theory for the recently introduced
“half-wave maps” equation.

0.0.1 Supercritical Cauchy theory for NLS: a probabilistic approach.

In the first chapter of this thesis we consider whether the well-posedness theory discussed
above can be improved for generic initial data. For instance,

• For data chosen at random from a supercritical Sobolev space (s < sc), can we still
expect local (global!?) solutions?

• In spaces where conservation laws are not available, might we still find global
solutions for “most” initial data?

Note that a positive answer to the first question above would be in contrast to the
ill-posedness shown in [CCT03, KPV01, AC09, BGT05], while a positive result for the
second question would be an extension of the developments in [Bou98].

The study of (NLS) from a “probabilisitic” perspective was pioneered by Lebowitz-Rose-
Speer [LRS88] in their work on invariant measures. These measures are supported on
low regularity Sobolev spaces and so provide a means of interpreting such spaces as
probability spaces. Moreover, the flow of (NLS) can be seen to be volume-preserving
with respect to these “Gibbs measures” (akin to Liouville’s theorem for finite dimensional
Hamiltonian systems), which can serve as a useful substitute for conservation laws when
considering global results. This was first observed by Bourgain [Bou94], who used the
invariance to prove almost sure global well-posedness of (NLS) below the energy space
in the 1-D periodic setting.7 In [Bou96] he also showed almost sure well-posedness for
supercritical initial data by taking advantage of improved integrability estimates for
the randomised free evolution. However, the latter results are only valid for a modified
“Wick-ordered” NLS.

The notion of an invariant measure is clearly highly valuable, however there are often
significant barriers to constructing one. On the one hand, in high dimensions the Gibbs
measure proposed in [LRS88] is supported on functions of such low regularity that there

7On the torus, one has similar heuristics for the well-posedness of (NLS), however the reality is more
complicated due to the lack of dispersion.

5
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are issues even defining it.8 On the other hand, the construction relies on the existence
of an orthonormal basis of eigenfunctions of the Laplacian. Since our primary interest is
in the Euclidean domain Rd, such a construction cannot easily be applied and we must
seek other methods of randomising the initial data.9

A commonly used randomisation procedure is the so-called Wiener randomisation, which
naturally generalises the construction in [LRS88]. For a compact domain this method
is due to Burq-Tzvetkov [BT08] (in the context of the nonlinear wave equation) and
allows for the construction of a large family of measures on any Sobolev space Hs, albeit
non-invariant.10 See [BT13] for more details on the interpretation of these measures
and their measure-theoretic properties. Here we will present the analogous procedure
in the Euclidean setting, introduced by Lührmann-Mendelson [LM14] and Bényi-Oh-
Pocovnicu [BOP14] based on a similar randomisation in [ZF12]. In the periodic case,
the randomisation relies on the discrete Fourier decomposition of the initial data, so the
first step is to define an analogous decomposition in the Euclidean setting. We introduce
smooth, radial cut-offs ψ : Rd → [0, 1] equal to 1 on {x ∈ Rd : |x| ≤

√
d} and vanishing

for |x| ≥ 2
√
d, then define11

ψj(x) := ψ(x− j)∑
k∈Zd ψ(x− k) (j ∈ Zd).

Observe that the ψj form a partition of unity on Rd and denote by Pj the Fourier
multiplier

Pju0 := F−1(ψj(·)F(u0)(·)) =⇒ u0 =
∑

j∈Zd

Pju0.

The next ingredient is a family of independent identically distributed Gaussian random
variables (gj)j : Ω → R of mean zero on a probability space (Ω,A,P).12 We then consider
the probability measure µu0 on Hs(Rd) induced by the random function

Ω ∋ ω 7→
∑

j∈Zd

gj(ω)Pju0 =: uω
0 . (0.0.4)

One may verify that uω
0 ∈ Hs(Rd)\Hs+ϵ(Rd) almost surely for any ϵ > 0, so the

randomisation does not regularise on the level of Sobolev spaces (see Lemma B.1,

8Under a radial assumption, Gibbs measures were constructed in higher (three) dimensions in
[Tzv06, Tzv07, BT07].

9An invariant measure was constructed for (NLS) on the real line in [CdS15], however the probabilistic
techniques are more involved than in the periodic setting. See also [dS14] concerning the Klein-Gordon
equation. Invariant measures have also been constructed for the nonlinear Schrödinger equation with
an external potential, for which an orthonormal basis of eigenfunctions can be found. The results can
sometimes be mapped back to (NLS) by transformations, see for instance [BTT13, Den10, PRT14] and
[dS13] for a similar procedure in the context of the nonlinear wave equation.

10Importantly, we can construct these measures on spaces of arbitrary regularity, whereas the invariant
measures of [LRS88, Bou94, Bou96] force the regularity we must work in.

11The factor of
√
d is just to ensure that every point of Rd is in the support of some ψj .

12It is possible to consider more general families of random variables, see for instance [BT13].
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[BT08]). Contrary to the periodic case, the measure µu0 does not have dense support in
Hs(Rd), however it still allows us to generate results for large sets of initial data.

The key property of the above randomisation procedure is that, while it does not improve
the regularity of the evolution eit∆uω

0 (which almost surely retains the regularity of u0)
it does improve the integrability. This is based on Bernstein’s inequality

∥Pju∥Lq
x
≲ ∥Pju∥Lp

x
(∞ ≥ q ≥ p ≥ 1).

Note there is no loss of derivatives in this estimate due to our working on unit scales.
To see the significance of this, we remark that many probabilistic well-posedness results
rely on decomposing the desired solution uω (with random data uω

0 ) into the rough free
evolution eit∆uω

0 and the nonlinear portion vω := uω − eit∆uω
0 . Then vω must satisfy(i∂t + ∆)vω = σ (vω + eit∆uω

0 )|vω + eit∆uω
0 |p−1

vω(0, ·) = 0
(0.0.5)

(in the case of (NLS)). By showing that eit∆uω
0 has improved integrability properties

(compared to those attainable by standard Strichartz estimates), it can often be shown
by direct iteration that (0.0.5) is well-posed in a subcritical Sobolev space, often H1, even
when u0 is very rough. This idea is closely related to the high-low argument of [Bou98].

In Chapter 1, we will present an almost-sure global well-posedness and scattering result
for a class of energy critical nonlinear Schrödinger equations with supercritical data,
using a careful refinement of the randomisation above (see Section 1.1.2). It is therefore
important to understand how randomising initial data can lead to improved global results
in the absence of an invariant measure.

Unless stated otherwise, henceforth all results discussed concern defocusing equations on
the Euclidean space with respect to the Wiener randomisation (0.0.4). When we say a
result holds “almost surely in Hs”, we mean

“For all u0 ∈ Hs the result holds almost surely with respect to the measure µu0 on Hs,
i.e. with data uω

0 for almost every ω ∈ Ω.”

One natural approach for obtaining global results is to use Bourgain’s high-low method
in the probabilistic setting. This involves treating the smoother low frequency part of the
solution deterministically, and appealing to probabilistic methods to show almost-sure
smoothing for the high frequency portion. This approach was first used in [CO12] to prove
almost sure global well-posedness of the (Wick-ordered) cubic NLS in mass-supercritical
Sobolev spaces Hs with − 1

12 < s < 0. This result is on the torus with respect to a natural
probability measure on the negative Sobolev spaces.13 The same method was applied in

13The argument of [CO12] is valid in both the focusing and defocusing settings, since when working in
negative Sobolev spaces we rely on the conserved mass rather than energy.
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the Euclidean setting in [LM14] for a range of energy-subcritical wave equations, proving
almost sure global well-posedness in a range of scaling supercritical Sobolev spaces. In
this energy subcritical setting, global well-posedness can also be achieved by finding
probabilistic a priori energy bounds on the nonlinear evolution vω (see (0.0.5)), as in
[BT13, LM16]. See also [SX16].

As in the deterministic case, the issue of probabilistic global well-posedness is more
delicate for energy-critical equations. The first result in this direction for NLS appeared
in [BOP15a], where Bényi-Oh-Pocovnicu proved conditional almost-sure global well-
posedness for the 4-D energy critical NLS with supercritical data. The condition is an
a priori energy bound for the nonlinear evolution vω, which is needed to treat (0.0.5)
as a perturbation of the usual energy critical NLS in H1 (and then appealing to the
deterministic results for that equation). In [OOP17] such energy estimates were obtained,
yielding almost-sure global well-posedness in dimensions 5 and 6 (where there is the
additional challenge of handling a non-polynomial nonlinearity). See also in [Poc17, OP16]
for results on the nonlinear wave equation (NLW) and [OP17] for analogous results in
the periodic setting.14

The results discussed above all relied on the deterministic theory for the energy-critical
NLS, for which finite energy solutions are also known to scatter at large times. It is
therefore reasonable to ask whether some supercritical data might also lead to almost-sure
scattering. The results of the previous paragraph do not imply this since the a priori
energy bounds involved have explicit time dependence, which is a known obstruction
to scattering. We note however that for small initial data, scattering on large sets in
supercritical Sobolev spaces was shown in [LM14, Poc17].

The first large data probabilistic scattering result for an energy critical equation was
obtained by Dodson-Lührmann-Mendelson in [DLM20] for the 4-D cubic NLW with
“radial data”.15 The proof again relies on energy critical perturbation theory, with the key
addition of a Morawetz estimate adapted to the forced equation (0.0.5) to find a global
energy bound via a “double bootstrap” argument.16 The use of this estimate requires
almost sure spatial decay on the randomised free evolution, which was obtained for radial
data by means of a radially averaged Sobolev estimate,∥∥∥∥∥∥∥|x|

3
2

∑
j∈Z4

|Pjf(x)|2
 1

2
∥∥∥∥∥∥∥

L∞
x (R4)

≲s ∥f∥Hs
rad(R4) (s > 0, f radial).

One may compare this to the usual radial Sobolev estimate, ∥|x|
3
2 f∥L∞

x (R4) ≲ ∥f∥H1
rad(R4),

14We remark that global results for NLW are generally simpler due to the smoothing effect of the wave
propagator and the presence of time derivatives in the conserved energy, which significantly simplifies
estimates of the energy increment.

15This means that the data u0 generating the measure (0.0.4) are radial, however this does not imply
that the measure µu0 is supported on radial functions.

16Note that Morawetz estimates also play an important role in the deterministic scattering theory of
(NLS).
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and observe the important distinction that even when f is radial the square sum
(∑j∈Z4 |Pjf(x)|2) 1

2 may not be.

The methods of [DLM20] were adapted to the energy-critical NLS in [KMV19] (still in
four dimensions with radial data), invoking local smoothing estimates and a modified
Morawetz inequality to obtain improved integrability for the derivatives of vω and eit∆uω

0 .
The regularity threshold for almost sure scattering was then lowered from 5

6 to 1
2 in

[DLM19] by working in lateral function spaces, previously introduced in the context of
the derivative nonlinear Schrödinger equation and Schrödinger maps problems.

In [Spi21], Spitz removed the radial assumption by using a modified randomisation
procedure involving a decomposition into spherical harmonics and on unit scales in
physical space, see Section 1.1.2. This randomisation allows access to a much wider
range of spacetime bounds for the free evolution and its derivatives without appealing to
Morawetz or local smoothing estimates.

The goal of Chapter 1 is to extend the results of [Spi21] to energy-critical equations in
high dimensions with non-algebraic nonlinearities. The work is taken from [Mar23].

0.0.2 Small Data Global Regularity for the Half-Wave Maps Equation.

We now introduce the second major topic of this thesis, namely the well-posedness of the
half-wave maps equation,∂tϕ = ϕ× (−∆)1/2ϕ

ϕ(0, ·) = ϕ0
(ϕ : R × Rd → S2). (HWM)

This is a geometric equation, where we view the sphere S2 as embedded into R3 so
that the cross product on the right hand side makes sense (note in particular that then
∂tϕ ⊥ TϕS2). The operator (−∆)1/2 is defined (for sufficiently regular functions) via its
action in Fourier space,

F((−∆)1/2ϕ)(ξ) := |ξ| F(ϕ)(ξ),

and may be interpreted as a nonlocal spatial derivative.

(HWM) is a relatively recently introduced equation [ZS15], and even the local well-
posedness theory is not yet fully developed. The equation admits the scaling invariance

u(t, x) ⇝ u(λt, λx)

from which we deduce the critical exponent is sc = d/2. The equation also admits the
positive definite conserved quantities

Mass: M(t) =
∫
Rd

|u(t, x)|2dx

9
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Energy: E(t) =
∫
Rd

|(−∆)
1
4u(t, x)|2dx

Given the previous discussions on (NLS), we are thus led to search for local well-posedness
in Hs with s > d/2, and small data-global well-posedness in Ḣd/2. The energy space is
now Ḣ1/2 so the equation is energy-critical in dimension 1, and supercritical in all higher
dimensions. In particular, we expect global results to be challenging for d ≥ 2.

The half-wave maps equation was first derived in one dimension [ZS15] upon taking the
classical then continuum limit of a Haldane-Shashtry spin chain. See also [GL18]. The
equation was further shown in [LS20] to arise in the continuum limit of the completely
integrable (classical) Calegero-Moser spin systems. It is therefore unsurprising that the
one-dimensional equation is completely integrable in the sense that it admits a Lax Pair
[GL18], and in this setting there has been significant interest in special solutions of the
equation. Indeed, soliton solutions were first studied numerically and analytically in
[ZS15], with further investigations of multi-solitons in [BKL20, Mat22] and a complete
classification of the finite-energy travelling solitary waves in [LS18].

When it comes to the question of well-posedness, the one-dimensional problem turns
out to be the most delicate. One way to see this is from the wave-like structure of the
equation (see (0.0.6) below), which is less useful in one dimension where waves do not
disperse and standard techniques cannot be applied (see Section 0.1.3). So far, results
on the existence of solutions in one dimension include [Liu23] establishing the global
existence of weak solutions with large data in Ḣ1 ∩ Ḣ1/2, and the more recent work
[Ohl23] concerning the global existence of a particular family of rational solutions.

We now discuss the known well-posedness results for (HWM) in high dimensions, starting
with the observation of Krieger and Sire [KS17] that the quasilinear half-wave maps
equation can reduced to the semilinear problem17

□ϕ ≡ (∂2
t − ∆)ϕ = − ϕ ∂αϕ · ∂αϕ

+ Πϕ⊥ [((−∆)1/2ϕ)(ϕ · (−∆)1/2ϕ)]
+ ϕ× [(−∆)1/2(ϕ× (−∆)1/2ϕ) − (ϕ× (−∆)ϕ)] (0.0.6)

upon differentiating in time.18 Here Πϕ⊥ denotes the projection onto the orthogonal
complement of ϕ and we sum over α = 0, . . . , 3 with respect to the Minkowski metric so
that

∂αϕ · ∂αϕ = −|∂tϕ|2 + |∇xϕ|2.

The passage from (HWM) to (0.0.6) relies heavily on the property ϕ · ϕ = 1.

The formulation (0.0.6) shows that (HWM) is intimately linked to the wave maps

17Despite the presence of the Laplacian in the nonlinearity of (0.0.6), the equation behaves like a
semilinear equation due to the cancellation structure of the final term.

18In passing from (HWM) to the second order equation (0.0.6) we fix the initial velocity ∂tϕ(0, ·) ≡
ϕ0 × (−∆)1/2ϕ0.
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equation, □ϕ = −ϕ ∂αϕ · ∂αϕ

(ϕ, ∂tϕ)(0, ·) = (ϕ0, ϕ1)
(WM)

which has been the subject of intense study during late 1990s and early 2000s. In
particular, the local and small data-global well-posedness of (WM) is well understood.
In preparation for our discussion on half-wave maps, we start by reviewing the relevant
results for wave maps below. Henceforth we use the notation ϕ[t] := (ϕ(t), ∂tϕ(t)).

Interlude on the Theory of Wave Maps.

In the scaling subcritical case, s > d/2, the wave maps equation is known to be locally
well-posed in both the Sobolev and Besov spaces. This was first proved in dimension 3 by
Klainerman-Machedon in [KM96b] and then extended to all dimensions greater than or
equal to 2 by Klainerman-Selberg in [KS97], the special one dimensional result appearing
in [MNT10].19,20 It is important to note that these results are specific to the nonlinearity
of (WM). Indeed, Lindblad [Lin93] showed ill-posedness of the 3-D quadratic derivative
nonlinear wave equation

□ϕ = (∂tϕ)2 (0.0.7)

in H2−ϵ × H1−ϵ for any ϵ > 0, even though the equation scales in the same way as
(WM).21

The particular structure of (WM) which allows for improved wellposedness is the presence
of the “null form”

∂αϕ · ∂αϕ = 1
2(□(ϕ · ϕ) − 2ϕ ·□ϕ), (0.0.8)

which relates the nonlinearity to the linear operator of the equation and kills off resonant
interactions. This plays a fundamental role in the analysis of the wave maps equation,
and is exploited in [KM96b, KS97] via the identity (0.0.8) by iterating in the Xs,θ spaces,
dating back to Bourgain [Bou93] (see Section 2.10).

The scale-invariant case s = d/2 is far more delicate. In fact, the equation is known to
be ill-posed in the critical Sobolev space Ḣd/2 insofar as the solution operator not being
uniformly continuous. This was shown in [DG04] via a family of solutions contained in
geodesics on the target manifold S2 (see also [Tao00] for the case d = 1). Nonetheless,
Tataru showed in [Tat98, Tat01] that small data-global wellposedness holds in the critical
Besov space Ḃ

d/2
2,1 provided d ≥ 2 (again the null structure plays an important role

19The references cited concern the Sobolev case, however it is possible to adapt them to the Besov case
(see Section 2.10).

20The one-dimensional case is special owing to the fact that the 1-D wave equation is not dispersive.
Unlike for (HWM), however, the one dimensional wave maps equation is not energy-critical. Rather the
conserved energy for (WM) scales like Ḣ1 and the equation is energy-critical in dimension 2.

21In three dimensions, the space H2+ϵ ×H1+ϵ is the minimum regularity attainable by appealing only
to Strichartz estimates. See section 0.1.3.
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here).22 The Besov space (defined in (2.1.15)) is a stronger version of the Sobolev space
satisfying the embedding

Ḃ
d/2
2,1 ↪→ L∞(Rd)

which just fails for Ḣd/2. This is particularly useful when dealing with geometric problems
such as (WM) since it renders the problem local with respect to the target manifold. Of
Tataru’s results [Tat98, Tat01], the high dimensional case (d ≥ 4) is simpler, proved via
a contraction mapping argument in modified versions of the Xs,θ spaces. This method
breaks down in low dimensions and the argument for d = 2, 3 in [Tat01] relies on the
construction of intricate function spaces involving a decomposition in Fourier space with
respect to angular sectors on the characteristic lightcone.

Despite the ill-posedness results, Tao was still able to prove a certain notion of “weak
wellposedness” for wave maps in the critical Sobolev space Ḣd/2 (see [Tao01a, Tao01b]
for d ≥ 5 and d = 2, 3, 4 respectively). Precisely, he proved that for any ϕ[0] ∈ Hs ×Hs−1,
s > d/2, the subcritical local solution ϕ[t] provided by [KM96b, KS97] can be continued
globally provided that the critical norm of the data is sufficiently small:

∥ϕ[0]∥Ḣd/2×Ḣd/2−1 < ϵ ≪ 1. (0.0.9)

Moreover, for |s− d/2| ≪ 1 he obtained the uniform bounds

∥ϕ[t]∥L∞(R; Hs×Hs−1) ≲ ∥ϕ[0]∥Hs×Hs−1 .

It follows that all smooth, compactly supported initial data which are sufficiently small
in Ḣd/2 × Ḣd/2−1 lead to a global solution, however in accordance with the ill-posedness
results there is no claim of continuous dependence.23

Tao’s argument is based on a methodical study of the frequency interactions in the
nonlinearity with two key novel ingredients. Since the lack of uniform continuity implies
that Picard iteration will surely fail, Tao introduced a new bootstrap argument based on
the concept of frequency envelopes. This new technology provides a means of tracking
the transfer of energy among different frequencies in order to maintain control of the
solution in the more regular Hs norms, leading to global existence. The second new
ingredient is a co-ordinate transformation on the sphere which eliminates certain difficult
frequency interactions. In the high dimensional case d ≥ 5 this transformation allows
Tao to close the argument using only Strichartz spaces, rather than spaces adapted to
the null structure as in [KM96b, KS97, Tat98, Tat01]. In low dimensions d = 2, 3, 4 the
argument is significantly more involved and the null structure again plays an essential
role. The methods of [Tao01a] play an important role in the argument in Chapter 2.

This concludes our interlude on the wave maps equation, and we now return to our main

22In one dimension, there is again a failure of uniform continuity for the solution operator in the critical
Besov space [Tao00].

23See [Tat05] for a weaker notion of continuous dependence for critical wave maps.
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discussion on half-wave maps. To this point, the well-posedness theory of (HWM) in high
dimensions is limited to the scaling-critical case.24 This was first investigated by Krieger
and Sire [KS17] who proved small data-global wellposedness in the critical Besov space
for d ≥ 5. This was extended to four dimensions in [KK21]. The key idea of Krieger and
Sire was to use the reformulation (0.0.6) to study (HWM) as a semilinear wave equation.
Naturally, the high dimensional results of Tataru for critical wave maps [Tat98] played an
important role in their analysis. Note that beyond the explicit connection to wave maps
via the first forcing term, the entire nonlinearity of (0.0.6) is heuristically of wave-maps
type

ϕ∇ϕ∇ϕ,

provided one can account for the action of the nonlinear projection operator and cancel-
lations in the nonlocal derivatives. The difficulty is that the new forcing terms lack the
null structure that was so crucial in the analysis of (WM). It turns out that this can be
compensated by the in fact stronger geometric structure of these terms, which in essence
comes down to the property

ϕ · ∇ϕ = 0 (0.0.10)

for functions into the sphere. By rewriting this identity in terms of frequency cancellations,
Krieger-Sire were able to handle the half -wave maps contributions to the nonlinearity of
(0.0.6) entirely in Strichartz spaces, incorporating the methods from [Tat98] to handle
the wave maps terms. A delicate Fourier analysis was required to exploit (0.0.10) in the
context of the nonlocal derivatives.

In the critical Sobolev space, Liu [Liu21] showed weak well-posedness in the sense of
[Tao01a] by incorporating the methods of [KS17] into Tao’s argument. We also mention
that the issue of uniqueness was addressed in [EFS22], and the half-wave maps equation
into manifolds other than the sphere has been studied in [GL18, Liu21], both in the
context of hyperbolic space.

In Chapter 2, we extend the results of [KS17, KK21] to three dimensions under an
additional assumption of angular regularity on the initial data. As for the wave maps
equation, (HWM) is increasingly complicated in lower dimensions and in passing from
four to three dimensions we in particular lose the key endpoint L2

tL
∞
x Strichartz estimate.

To overcome this, we adapt the methods of [Tao01a] and [KS17] by exploiting improved
Strichartz estimates for functions with angular regularity [Ste05] and incorporating the
full range of commuting vector fields for the wave operator. A more detailed discussion
of our methods can be found in the introduction of Chapter 2. This work is taken from
the preprint [Mar24] (submitted to Ars Inveniendi Analytica).

24The subcritical case s > d/2 is discussed in Section 2.10 in Chapter 2. Due to the loss of regularity
in passing from the first order half-wave maps equation to the second order equation (0.0.6), a standard
subcritical well-posedness result was not achieved.
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0.1 Preliminaries

0.1.1 Notation

In this section we present some of the general notation used throughout this thesis.
Topic-specific notation is defined in the respective chapters.

Throughout, Cα1,...,αn denotes a constant depending only on the parameters α1, ..., αn

whose precise value may change line-to-line. We write X ≲α1,...,αn Y to mean X ≤
Cα1,...,αnY and X ∼α Y to mean X ≲α Y and Y ≲α X.

Unless stated otherwise, whenever p ∈ [1,∞], p′ ∈ [1,∞] denotes its conjugate exponent
such that

1
p

+ 1
p′ = 1.

We will frequently work in the Lebesgue spaces Lp
x with norms

∥f∥Lp
x

≡ ∥f∥p =
(∫

Rd
|f(x)|p dx

)1/p

and for spacetime functions f : R × Rd → C we also use the mixed spaces Lp
tL

q
x where

∥f∥Lp
t Lq

x(I×Rd) ≡ ∥f∥Lp
t Lq

x(I) ≡ ∥f∥p,q[I] := ∥∥f∥Lq
x(Rd)∥Lp

t (I).

For the Fourier transform we use the notation

F(f)(ξ) ≡ f̂(ξ) :=
∫
Rd
e−ix·ξf(x)dx

which allows use to define the inhomogeneous Sobolev spaces Hs, s ∈ R, by

∥f∥Hs := ∥(1 + |ξ|2)s/2f̂(ξ)∥L2
ξ
.

Whenever we say that a function space is “defined by the norm ∥ · ∥”, we mean that the
space is the closure of the Schwarz functions with respect to the given norm. In this vein
we define the homogeneous Sobolev spaces Ḣs via

∥f∥Ḣs := ∥|ξ|sf̂(ξ)∥L2
ξ
.

This is well-defined as a space of distributions if and only if s < d/2.25

Next we introduce the free evolution operators for the Schrödinger and wave equations.
Denote

eit∆f := F−1(e−it|ξ|2 f̂(ξ)) = 1
(2π)d

∫
Rd
eix·ξ−it|ξ|2 f̂(ξ)dξ (0.1.1)

25In contrast, the critical homogeneous Besov spaces we will work with in Chapter 2 do embed into
distributions.

14



0.1 Preliminaries

the free solution to the linear Schrödinger equation (i∂t + ∆)u = 0 with sufficiently
regular data u(0, x) = f(x). For the wave equation we denote

Wt(f, g) ≡ cos(t|∇|)f + sin(t|∇|)
|∇|

g (0.1.2)

the free solution to □u = 0 with data (u, ∂tu)(0, x) = (f(x), g(x)). We interpret the right
hand side above using the Euler formulae and the definitions

e±it|∇|f := F−1(e±it|ξ|f̂(ξ)) = 1
(2π)d

∫
Rd
eix·ξ±it|ξ|f̂(ξ)dξ. (0.1.3)

with a similar formula for e±it|∇|

|∇| g. We will sometimes write
√

−∆ instead of |∇|.

0.1.2 The Littlewood-Paley decomposition

Littlewood-Paley theory is a core tool in modern harmonic analysis. Let χ : Rd → [0, 1]
be a smooth function supported in {|ξ| ≤ 2} and equal to 1 on {|ξ| ≤ 1}. For M ∈ 2Z set

χM (ξ) := χ(ξ/M) − χ(2ξ/M) (0.1.4)

so that χ is supported in {M
2 ≤ |ξ| ≤ 2M} and∑

M∈2Z
χM (ξ) = 1

for all ξ ̸= 0. For any f ∈ S ′(Rd) define the Littlewood-Paley multiplier

PMf := F−1(χM · f̂). (0.1.5)

We will also write χ̃M for ∑| log(N/M)|≤C χN and P̃Mf or f∼M for F−1(χ̃M · f̂) whenever
C is any fixed constant up to 100. Similarly, f<M := ∑

N<M fN and so on.

A key property of these multipliers is that they are uniformly bounded on all Lp spaces:

∥PNf∥Lp
x
≲p ∥f∥Lp

x
(1 ≤ p ≤ ∞).

Moreover, if we define Fourier multipliers |∇|s by

|∇|sf := F−1(|ξ|sf̂(ξ))

we have
∥|∇|sPNf∥Lp(Rd) ∼p,d N

s∥PNf∥Lp(Rd) (1 ≤ p ≤ ∞).

In the case s = 1, we also have the key Riesz estimate which allows us to exchange
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nonlocal derivatives for true derivatives,

∥|∇|PNf∥Lp(Rd) ∼p,d ∥∇PNf∥Lp(Rd) (1 ≤ p ≤ ∞).

In fact, the Riesz estimate holds even in the absence of the projection PN provided we
restrict the range to 1 < p < ∞.

We end this section with the following fundamental inequality relating the norm of a
function to that of its Littlewood-Paley square sum.

Lemma 0.1.1 (Littlewood-Paley Inequality [LP31, Ste70a]). For any 1 < p < ∞ it
holds

∥f∥Lp(Rd) ∼p,d

∥∥∥∥∥∥∥
 ∑

N∈2Z
|PNf |2

 1
2
∥∥∥∥∥∥∥

Lp(Rd)

Warning: In Chapter 2, in order to be consistent with other papers on the topic we
adopt the different notation Pkf to mean P2kf with k ∈ Z.

0.1.3 Strichartz estimates for wave and Schrödinger equations

In this section we present the key dispersive estimates for the Schrödinger and wave
equations. By dispersive, we mean that the equations admit wave-like solutions travelling
at different velocities depending on the wavenumber.26 For example, considering (0.1.1)-
(0.1.3) we find the plane wave solutions

Schrödinger: ei(x·k−t|k|2) = ei|k|(x·k̂−t|k|)

Wave: ei(x·k±t|k|) = ei|k|(x·k̂±t)

for fixed k ∈ Rd. We see that in the Schrödinger case different waves even travel at
different speeds, |k|, however in the wave case they only travel in different directions,
making this is a somewhat degenerate case of dispersion.

The dispersion leads to pointwise decay of solutions with sufficiently decaying initial data
(so that plane wave solutions are precluded). The estimates below can be proved using
the theory of oscillatory integrals:

Schrödinger: ∥eit∆f∥L∞
x
≲d |t|−d/2∥f∥L1

x
(0.1.6)

Wave: ∥e±it|∇|(P1f)∥L∞
x
≲d |t|−(d−1)/2∥P1f∥L1

x
(0.1.7)

Note the stronger decay for the Schrödinger equation, and the necessary inclusion of the
Littlewood-Paley projection for the wave estimate. We have stronger decay in higher
dimensions where there are “more directions for the waves to disperse”. Interpolating the

26The wavenumber k indicates the direction, k̂, and wavelength 2π/|k| of a wave.
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decay estimates above with the Plancherel identities

∥eit∆P1f∥L2
x

= ∥P1f∥L2
x

∥e±it|∇|f∥L2
x

= ∥f∥L2
x

one can deduce decay estimates in all Lp
x spaces, 2 ≤ p ≤ ∞.

We now turn to the time-averaged Strichartz estimates. These are obtained from the
estimates above using functional analytic techniques involving a TT ∗ argument and the
Hardy-Littlewood-Sobolev inequality. We obtain estimates for solutions to inhomogeneous
equations via Duhamel’s formula, which in the Schrödinger case reads as

u =
∫ t

t0
ei(t−s)∆F (s)ds

for the solution to the inhomogeneous equation (i∂t + ∆)u = F , u(0) = 0.

Theorem 0.1.2 (Strichartz estimates for the Schrödinger equation). Let d ≥ 1. We call
2 ≤ q, r ≤ ∞ a Schrödinger-admissible pair if

2
q

+ d

r
= d

2 , (q, r, d) ̸= (2,∞, 2). (0.1.8)

Let (q, r) and (q̃, r̃) be Schrödinger-admissible pairs and denote by q̃′ and r̃′ the conjugate
exponents of q̃ and r̃. Let I⊂R be a time interval containing t0. It holds

∥ei(t−t0)∆f∥Lq
t Lr

x(I×Rd) ≲d,r,q ∥f∥L2(Rd) (0.1.9)∥∥∥∥∫
I
e−is∆F (s)ds

∥∥∥∥
L2(Rd)

≲d,r̃,q̃ ∥F∥
Lq̃′

t Lr̃′
x (I×Rd) (0.1.10)∥∥∥∥∫ t

t0
ei(t−s)∆F (s)ds

∥∥∥∥
Lq

t Lr
x(I×Rd)

≲d,r,q,r̃,q̃ ∥F∥
Lq̃′

t Lr̃′
x (I×Rd) (0.1.11)

For the wave equation, we only have estimates in dimensions d ≥ 2.

Theorem 0.1.3 (Strichartz estimates for the wave equation). Let d ≥ 2. We call
2 ≤ q, r ≤ ∞ a wave-admissible pair if

2
q

+ n− 1
r

<
n− 1

2 , (q, r, d) ̸= (2,∞, 3).

Set
s(d, q, r) = d

2 − 1
q

− d

r

Let (q, r) and (q̃, r̃) be wave-admissible pairs satisfying the scaling condition

s(p, q, d) + s(q̃, p̃, d) = 1

and denote q̃′, r̃′ the conjugate exponents of q̃, r̃. Let I⊂R be a time interval containing
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t0. For N ∈ 2Z it holds

∥e±i(t−t0)|∇|PNf∥Lq
t Lr

x(I×Rd) ≲d,r,q ∥PNf∥Ḣs(Rd) (0.1.12)

If moreover q, q̃ ≠ ∞, we may remove the projection PN in the estimate above, and there
is the inhomogeneous estimate∥∥∥∥∫ t

t0

sin((t− s)|∇|)
|∇|

F (s)ds
∥∥∥∥

Lq
t Lr

x(I×Rd)
≲d,r,q,r̃,q̃ ∥F∥

Lq̃′
t Lr̃′

x (I×Rd) (0.1.13)

In the two main chapters of this thesis we will consider different settings in which the
above estimates can be improved. In the first chapter this will be by randomisation, and
in the second chapter for functions with angular regularity.

0.1.4 Spherical harmonics

In this section we describe some basic properties of the spherical harmonics which will be
of use to us in the coming chapters. We refer to Chapter IV of [SW16] for further details.

For each k ≥ 0 we denote by Ek the space of (surface) spherical harmonics of degree
k, that is to say the kth eigenspace of the spherical Laplacian ∆sph with corresponding
eigenvalue −k(k + d− 2). ∆sph is the angular component of the usual Laplacian, so that

∆f = ∂2f

∂r2 + d− 1
r

∂f

∂r
+ 1
r2 ∆sphf

in spherical coordinates. For example, in dimension three we have

∆sphf = 1
sin2 θ

∂2f

∂φ2 + 1
sin θ

∂

∂θ

(
sin θ∂f

∂θ

)
for co-ordinates (x1, x2, x3) = r(sin θ cosφ, sin θ sinφ, sin θ). We also have the expression

∆sph =
∑

i,j=1,...,d
i<j

Ω2
ij

where Ωij are the angular derivatives

Ωij := xi∂j − xj∂i.

One may also characterise Ek as the restrictions to the unit sphere of homogeneous
harmonic polynomials of degree k.

18



0.1 Preliminaries

Each Ek is a finite dimensional vector space of dimension

Nk =
(
d+ k − 1

k

)
−
(
d+ k − 3
k − 2

)
.

The spaces (Ek)k≥0 are mutually orthogonal and span L2(Sd−1) so we may construct an
orthonormal Hilbert basis

B = (bk,l)k∈N,l=1,...,Nk

for L2(Sd−1), with each bk,l ∈ Ek. In particular, for any f ∈ L2(Rd) and almost every
r > 0 we may uniquely express

f(rθ) =
∑
k≥0

Nk∑
l=1

ck,l(r)bk,l(θ), ck,l(r) :=
∫
Sd−1

f(r, θ)bk,l(θ)dθ.

It follows that ck,l ∈ L2(rd−1dr) and

∥f∥2
L2(Rd) =

∑
k≥0

Nk∑
l=1

∥ck,l∥2
L2(rd−1dr)

An interesting and important property of the spherical harmonics is that they are invariant
under the action of the Fourier transform, that is to say that for each k ≥ 0 there is a
map Tk : L2(rd−1dr) 7→ L2(rd−1dr) such that

F(c(r)bk,l(θ))(ρ, ω) = Tk(c)(ρ)bk,l(ω).

Here we use coordinates x = rθ in physical space and ξ = ρω in Fourier space, with
θ, ω ∈ Sd−1. Precisely,

(Tkc)(r) = (2π)
d
2 i−kr− d−2

2

∫ ∞

0
c(s)Jν(k)(rs)s

d
2 ds (0.1.14)

with ν(k) := d+2k−2
2 and

Jµ(r) := (r/2)µ

Γ
(

2µ+1
2

)
Γ
(

1
2

) ∫ 1

−1
eirs(1 − s2)

2µ−1
2 ds (µ > −1/2)

the Bessel function of the first kind.

Since the operators e−it∆ and e±it
√

−∆ are given by radial multipliers we find in particular
that the spaces Ek are preserved by the linear evolutions of the Schrödinger and wave
equations, i.e.

eit∆(c(r)bk,l(θ)) = T−1
k (e−it|·|2Tk(c))(r)bk,l(θ)

e±it|∇|(c(r)bk,l(θ)) = T−1
k (e±it|·|Tk(c))(r)bk,l(θ) (0.1.15)
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Warning: Again for consistency with other works we use different notation for the
spherical harmonics in Chapter 2. Precisely we write Y i

l (l ≥ 0, i = 1, . . . , Nl) in place
of bl,i.
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1 Almost Sure Scattering of the
Energy-Critical NLS in d > 6.
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Chapter 1. Almost Sure Scattering of the Energy-Critical NLS in d > 6.

The content of this chapter is taken from [Mar23], published in Communications on Pure
and Applied Analysis, with minor modifications for consistency with the rest of the thesis.

1.1 Introduction

We consider the defocusing energy-critical nonlinear Schrödinger equation (NLS) in
dimension d > 6 (i∂t + ∆)u = u|u|

4
d−2

u(0) = f ∈ Hs(Rd)
(0 < s < 1) (1.1.1)

Here “defocusing” refers to the plus sign in front of the nonlinearity and “energy-critical”
refers to the fact that the conserved energy

E(u(t)) = 1
2

∫
Rd

|∇u(t)|2dx+ d− 2
2d

∫
Rd

|u(t)|
2d

d−2dx (1.1.2)

is invariant with respect to the scaling symmetry u(t, x) 7→ λ
d−2

2 u(λ2t, λx). Since the
energy scales like the Ḣ1 norm of u, we say the equation has scaling regularity 1.

As discussed in the main introduction, it was shown in [Vis07] that equation (1.1.1) is
globally well-posed with scattering for initial data in the energy space Ḣ1, however for
s < 1 this is not in general true [CCT03]. The goal of this chapter is to investigate
the global wellposedness of (1.1.1) below the critical regularity s = 1 by randomising
the initial data, generalising known results in dimension four [KMV19, DLM20, Spi21]
to high dimensions d > 6. We show that for all s ∈ (sd, 1), where sd is a constant
depending only on the dimension, the equation is almost surely globally well-posed with
respect to a particular randomisation in Hs(Rd). We moreover establish almost sure
scattering in Ḣs(Rd) both forwards and backwards in time. The randomisation is based
on a decomposition of the initial data in physical space, Fourier space and the angular
variable as in [Spi21].

The main difficulty we encounter in moving to high dimensions is the non-smoothness of
the nonlinearity u|u|

4
d−2 . To deal with this, we use an adapted version of the work of

Tao-Visan [TV05] in Section 1.5 to study the stability of the energy-critical NLS which is
needed to prove a conditional scattering result, since in high dimensions the nonlinearity
is not twice differentiable and standard stability techniques are insufficient. We also
prove local wellposedness via a regularisation argument (Section 1.4), allowing us to work
with higher regularity solutions when proving the scattering condition is satisfied. This
is necessary due to the lack of persistence of regularity for the high dimensional equation
(1.1.1). The regularisation we use effectively renders the nonlinearity energy-subcritical,
allowing us to use persistence of H2 regularity as in [Caz03]. This is sufficient to perform
computations involving the energy in Section 1.6.

The many-fold randomisation procedure we consider in this work was introduced by Spitz
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1.1 Introduction

in [Spi21], however each sub-randomisation had previously been used with success. In
particular, the randomisation with respect to a unit-scale frequency decomposition, also
known as the Wiener randomisation (0.0.4), has been extensively applied to nonlinear
Schrödinger and wave equations, among others, since its simultaneous introduction by
Lührmann-Mendelson [LM14] and Bényi-Oh-Pocovnicu [BOP15a, BOP15b], see also
[ZF12]. Randomisation in the angular variable was introduced by Burq-Krieger in [BK21]
in the context of a wave maps type equation, and randomisation in physical space has
had applications to the final state problem of the NLS and other dispersive equations, see
for example [NY18, Mur19]. The randomisation we use also involves a dyadic frequency
decomposition, however unlike its unit-scale counterpart, randomisation with respect to
this decomposition alone has not proved useful since it does not entail any improved
integrability.

1.1.1 Main Result

We now state our main result. We will define the randomisation of the initial data
fully in the next section, however loosely speaking, for any function f ∈ Hs(Rd), its
randomisation over a probability space (Ω,A,P) is an Hs-valued random variable

Ω ∋ ω 7→ fω ∈ Hs(Rd).

Theorem 1.1.1. Let d > 6, sd := max{ 4d−1
3(2d−1) ,

d2+6d−4
(2d−1)(d+2)} < s < 1. Let f ∈ Hs(Rd)

and fω denote the randomisation of f (defined in Section 1.1.2). Then there exists Σ⊂Ω
with P(Σ) = 1 such that for every ω ∈ Σ there exists a unique global solution

u(t) ∈ eit∆fω + C(R;H1(Rd))

to the defocusing energy-critical nonlinear Schrödinger equation with initial data fω(i∂t + ∆)u = u|u|
4

d−2

u(0) = fω
(1.1.3)

Moreover, this solution scatters both forwards and backwards in time, i.e. there exist u+,
u− ∈ Ḣs(Rd) such that

lim
t→±∞

∥u(t) − eit∆u±∥Ḣ1(Rd) = 0

Observe that sd = d2+6d−4
(2d−1)(d+2) if and only if d ≤ 10.

Remark 1.1.2. By a solution to equation (1.1.1), we mean a solution to the Duhamel
formulation of the equation

u(t) = eit∆f − i

∫ t

0
ei(t−s)∆(u|u|

4
d−2 )(s)ds

in an appropriate function space.
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Chapter 1. Almost Sure Scattering of the Energy-Critical NLS in d > 6.

Remark 1.1.3. In Theorem 1.1.1 uniqueness holds in the sense that upon writing the
solution u in the form

u(t) = eit∆fω + v(t) (1.1.4)

with v ∈ C(R;H1(Rd))∩W (I), where the space W (I) will be defined shortly (see Section
1.3), the function v is unique.

Remark 1.1.4. By writing a solution u of (1.1.3) in the form (1.1.4) we find that v
must satisfy the forced equation(i∂t + ∆)v = (F + v)|F + v|

4
d−2

v(0) = v0
(1.1.5)

with F = eit∆fω and v0 = 0. Thus, it is sufficient to study the wellposedness of (1.1.5)
in H1(Rd) under some appropriate conditions on F .

Before going into further details we briefly outline the structure of this chapter. In
Sections 1.1.2 and 1.1.3 we will introduce the randomisation procedure for fω and the
regularisation that we will use for the nonlinearity.

After discussing some preliminaries in Section 1.2 we will establish (deterministic) local
wellposedness of (1.1.5) in the critical space Ḣ1 in Section 1.4, under certain conditions
on F = eit∆fω, via a regularisation argument in the space Ẇ with norm

∥v∥Ẇ (I) := ∥∇v∥
L

2(d+2)
d−2

t L

2d(d+2)
d2+4

x (I×Rd)

This is the norm used by Tao and Visan to study the energy-critical NLS in [TV05].
The argument will also require the forcing, F , to lie in Ẇ (I). Setting F = eit∆fω this
represents a gain in derivatives which we obtain via a randomisation-improved radially
averaged Strichartz estimate as in [Spi21] (see Section 1.7).

We remark that Ẇ is not the optimal space to work in to establish local wellposedness
of (1.1.5). Indeed, the requirement that eit∆fω also lies in Ẇ represents a gain of

(d− 1)(d− 2)
(2d− 1)(d+ 2)

derivatives on eit∆fω. However, when used at its endpoint the randomisation-improved
radially averaged Strichartz estimate allows us to gain up to d−1

2d−1 derivatives and our
method can be extended to obtain almost sure local wellposedness for

1 − d− 1
2d− 1 = d

2d− 1 < s < 1

We are not able to acheive twice this gain as in [Spi21] due to the non-algebraic nature of
the nonlinearity which prevents a more precise analysis of the equation on dyadic scales.
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1.1 Introduction

In Section 1.5 we prove a conditional scattering result. The local wellposedness theory of
Section 1.4 is accompanied by a scattering criterion: if the solution to (1.1.5) satisfies

∥v∥Ẇ (I∗) < ∞

on its maximal interval of existence I∗ then the solution is global and scatters as t → ±∞.
In this section we show that this condition is satisfied provided the energy of v is uniformly
bounded on I∗. To this end we develop a perturbation theory in the space Ẇ to compare
solutions of (1.1.5) with those of the “usual” NLS (1.1.3), since by [Vis07] we already
have a bound on those solutions in Ẇ in terms of their energy. Since for d > 6 the
nonlinearity is not twice differentiable, we cannot develop the perturbation theory in the
standard way and instead adapt the work in [TV05] on the stability of high dimensional
energy-critical Schrödinger equations.

In this section we again work in the space Ẇ and again this is not optimal. Improving the
result for this section would require further notation and not improve the final restriction
on s in Theorem 1.1.1, so we do not present the optimal case.

In Section 1.6 we prove the uniform-in-time energy bound mentioned above, placing
the forcing term in spaces with low time integrability as in [Spi21]. We argue via the
regularised solutions, since the true solution does not have sufficient regularity to perform
the necessary computations (in particular, an explicit differentiation of the energy).

Finally in Section 1.7 we show that Fω := eit∆fω indeed satisfies all the conditions
needed to run the arguments above (almost surely). This follows the same arguments as
in [Spi21]. In particular, the randomisation with respect to the angular variable allows
us to (almost surely) gain derivatives on the free evolution via improved radial Strichartz
estimates (see Proposition 1.7.3), and we no longer need to exploit local smoothing effects
as in [DLM19]. The unit-scale randomisation in the physical variable allows us to prove
estimates on the gradient of F in spaces of type L1

tL
p
x by appealing to the temporal decay

of the Schrödinger semi-group (Proposition 1.7.10). This allows us to bound the energy
increment in Section 1.6 without appealing to Morawetz estimates. These additions are
what enables us to avoid a radial assumption as in [DLM19, KMV19].

1.1.2 Randomisation Procedure

We now describe how to construct the random variable fω appearing in the main theorem.

Decomposition in Fourier space, physical space, and the angular variable.

In what follows, let f ∈ L2(Rd).

We first introduce the physical space decomposition. Let φ : Rd → [0, 1] be a smooth,
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Chapter 1. Almost Sure Scattering of the Energy-Critical NLS in d > 6.

radially symmetric function with φ(x) = 1 for |x| ≤
√
d and φ(x) = 0 for |x| ≥ 2

√
d.

φi(x) := φ(x− i)∑
k∈Zd φ(x− k) (1.1.6)

so that φi has support in {x : |x− i| ≤ 2
√
d}. We then have the unit scale decomposition

of f in physical space,
f =

∑
i∈Zd

φi(x)f(x)

Note that this representation holds in both the L2 and the pointwise sense.

We next apply an angular decomposition to each component φif using the spherical
harmonics defined in Section 0.1.4. First decompose φif on dyadic scales in Fourier
space, using the Littlewood-Paley multipliers defined in (0.1.5):

φif =
∑

M∈2Z
PM (φif)

It is convenient to rescale PM (φif) to unit frequency by setting

gM
i = (PM (φif))(M−1·)

Now recall that there is an orthonormal Hilbert basis

B = (bk,l)k∈N,l=1,...,Nk

of L2(Sd−1) consisting of spherical harmonics. By Theorem 6 of [BL13] (see also Theorem
1 of [BL14] and Theorem 1.1 of [BK21]), there exists a choice of such basis, which we
call a good basis, such that for any q ∈ [2,∞), it holds

∥bk,l∥Lq(Sd−1) ≤ Cq,d (1.1.7)

for some constant Cq,d depending only on the indicated parameters and independent of
k, l. Fix a good basis as described and decompose

ĝM
i (ρθ) =

∞∑
k=0

Nk∑
l=1

ĉM,i
k,l (ρ)bk,l(θ)

with each ĉM,i
k,l supported in [1

2 , 2] (by orthogonality). Then using that the spherical
harmonics are invariant under the Fourier transform, and in particular the formula
(0.1.14), we have

gM
i (rθ) = (2π)−dF(ĝM

i )(−rθ) =
∞∑

k=0

Nk∑
l=1

akr
− d−2

2

(∫ ∞

0
ĉM,i

k,l (s)Jν(k)(rs)s
d
2 ds

)
bk,l(θ)

for ak = (2π)− d
2 ik, using that bk,l(−θ) = (−1)kbk,l(θ). It is useful to observe at this point
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1.1 Introduction

that

∥gM
i ∥2

L2(Rd) =
∞∑

k=0

Nk∑
l=1

∥ĉM,i
k,l ∥2

L2(ρd−1dρ) (1.1.8)

Scaling this back to frequency M we obtain

PM (φif)(rθ) =
∞∑

k=0

Nk∑
l=1

ak(Mr)− d−2
2

(∫ ∞

0
ĉM,i

k,l (s)Jν(k)(Mrs)s
d
2 ds

)
bk,l(θ) (1.1.9)

The final step is to include a unit-scale frequency decomposition. To this end we introduce
the operators

Pjf := F−1(ψj(ξ)f̂(ξ)) (1.1.10)

where ψj(ξ) := φj(ξ) is as in the physical space decomposition. We make this change of
notation in order to clarify the distinction between the decompositions in physical and
frequency space. Incorporating these projections into (1.1.9) we obtain

PM (φif)(rθ) =
∑

j∈Zd

∞∑
k=0

Nk∑
l=1

akM
− d−2

2 Pj

[
r− d−2

2

(∫ ∞

0
ĉM,i

k,l (s)Jν(k)(Mrs)s
d
2 ds

)
bk,l(θ)

]

from which

f(rθ) =
∑

M∈2Z

∑
i,j∈Zd

∞∑
k=0

Nk∑
l=1

akM
− d−2

2 Pj

[
r− d−2

2

(∫ ∞

0
ĉM,i

k,l (s)Jν(k)(Mrs)s
d
2 ds

)
bk,l(θ)

]

with convergence in L2(Rd).

Randomisation with respect to the decomposition.

We now introduce a family

(XM
i,j,k,l : M ∈ 2Z, i, j ∈ Zd, k ∈ N0, l ∈ {1, . . . , Nk})

of independent, mean-zero, real-valued random variables on a probability space (Ω,A,P)
with respective distributions (µM

i,j,k,l : M ∈ 2Z, i, j ∈ Zd, k ∈ N0, l ∈ {1, . . . , Nk}) for
which there exists a c > 0 such that∫

R
eγxdµM

i,j,k,l(x) ≤ ecγ2

for all γ ∈ R, M ∈ 2Z, i, j ∈ Zd, k ∈ N0, l ∈ {1, . . . , Nk}. This is satisfied by independent
identically distributed Gaussians for example. We can then define the randomisation
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Chapter 1. Almost Sure Scattering of the Energy-Critical NLS in d > 6.

fω =
∑

M∈2Z

∑
i,j∈Zd

∞∑
k=0

Nk∑
l=1

XM
i,j,k,l(ω)Pjf

M,i
k,l

≡
∑

M,i,j,k,l

XM
i,j,k,l(ω)akM

− d−2
2 Pj

[
r− d−2

2

(∫ ∞

0
ĉM,i

k,l (s)Jν(k)(Mrs)s
d
2 ds

)
bk,l(θ)

]
(1.1.11)

which is well-defined in L2(Ω, L2(Rd)).

Remark 1.1.5. In fact, for f ∈ Hs(Rd), the randomisation fω also lies in Hs(Rd) almost
surely. In particular, it holds

∥∥fω∥Hs(Rd)∥L2(Ω) ≲d ∥f∥Hs(Rd)

This can be seen using the fundamental large deviation estimate of Burq and Tvetkov (see
Section 1.7), combined with the orthogonality of the decompositions in frequency space
and into spherical harmonics, and Corollary 3.3 of [Spi21] to handle the intertwining
of the physical space decomposition and the Hs norm. In what follows, we implicitly
restrict to a subset Σ ⊂ Ω of probability one such that fω ∈ Hs(Rd) for every ω ∈ Σ.

Remark 1.1.6. It is important to note that the above randomisation does not in general
improve the regularity of the data. In particular, choose the probability space (Ω,A,P)
to be the product of spaces (Ωi,Ai,Pi)i=1,2,3 and the random variables to be given by

XM
i,j,k,l(ω) = Xj(ω1)XM

k,l(ω2)Xi(ω3), ω = (ω1, ω2, ω3) ∈ Ω1 × Ω2 × Ω3

with the Xj , XM
k,l, Xi independent identically distributed Bernoulli random variables on

Ω1, Ω2, Ω3 respectively taking values ±1 with equal probability 1
2 . Then one can show

that, for 0 < s < 1, f /∈ Hs(Rd) implies that fω /∈ Hs(Rd) for almost every ω ∈ Ω. See
Appendix 1.B for further details.

1.1.3 Regularisation of the Nonlinearity

We shall study solutions to (1.1.1) via a regularisation of the nonlinearity g(u) := u|u|
4

d−2 ,
allowing us to work with H2 solutions when performing calculations involving the energy
later on. This step is not necessary in the lower 4 dimensional settings of [DLM19] and
[Spi21] when the nonlinearity in (1.1.1) is algebraic and persistence of regularity allows
us to directly construct a solution in H1 as a limit of solutions in H2.

Denote p = d+2
d−2 , so p− 1 = 4

d−2 . For each n ∈ N define

gn(u) := uφ′
n(|u|2)
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for φn(x) = np+1φ1(x/n2). Here φ1 ∈ C∞((0,∞)) ∩ C([0,∞)) with φ1(0) = 0 and

φ′
1(x) =

x
p−1

2 for 0 < x ≤ 1
2p−1 for x ≥ 4

(1.1.12)

in such a way that φ′
1(x) ≤ x

p−1
2 for all x ≥ 0. Thus

φ′
n(x) =

x
p−1

2 for 0 < x ≤ n2

(2n)p−1 for x ≥ (2n)2 (1.1.13)

and gn(u) = g(u) whenever |u| ≤ n. Since φ′′
1 is compactly supported, we also see that

|φ′′
n(x)| ≲ |x|

p−3
2 .

Consider the regularised NLS (i∂t + ∆)un = gn(un)
un(0) = un,0 ∈ H2(Rd)

(1.1.14)

By Theorem 4.8.1 of [Caz03] we see that (1.1.14) admits a local solution in C(I,H2(Rd))∩
C1(I, L2(Rd)) on some neighbourhood I of 0. Here

C1(I, L2(Rd)) := {f ∈ C(I, L2(Rd)) : ∂tf ∈ C(I, L2(Rd))} (1.1.15)

where ∂tf is defined as the vector-valued distribution such that∫
I
∂tψ(t)f(t, ·)dt = −

∫
I
ψ(t)∂tf(t, ·)dt

for all ψ ∈ D(I), with the above integrals evaluated in the Bochner sense.

Theorem 5.3.1 of [Caz03] then shows that this solution exists in H2 for as long as it
exists in H1, which is for all time since solutions of (1.1.14) have conserved energy

En(un) = 1
2

∫
Rd

|∇un|2dx+ 1
2

∫
Rd
φn(|un|2)dx

We thus see that (1.1.14) admits global solutions in C(R, H2(Rd)) ∩ C1(R, L2(Rd)).

As discussed in Remark 1.1.4, in this work we will actually study the wellposedness of
the forced equation (1.1.5) in H1(Rd), with the forcing term given by the free evolution
of the randomised data: F = eit∆fω. Thus to obtain H2 solutions to (1.1.5), we must
also regularise the forcing.
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Chapter 1. Almost Sure Scattering of the Energy-Critical NLS in d > 6.

Set Fn = P≤nF = eit∆P≤nf
ω, where

P≤nf
ω :=

∑
M∈2Z
M≤2n

PMfω

Then by Lemma 4.8.2 of [Caz03], Fn ∈ C(R, H2(Rd)) ∩ C1(R, L2(Rd)). Observe that for
any 1 ≤ a, b ≤ ∞ it holds

∥Fn∥La
t Lb

x(R) ≲a,b,d ∥F∥La
t Lb

x(R)

Fix v0 ∈ H1(Rd). Setting un := vn + Fn and un,0 = P≤n(v0 + fω) in (1.1.14), we thus
obtain unique global solutions to the forced NLS(i∂t + ∆)vn = gn(Fn + vn)

vn(0) = vn,0 ∈ H2(Rd)

in C(R, H2(Rd)) ∩ C1(R, L2(Rd)). Here vn,0 := P≤nv0 → v0 in H1(Rd).

We will show in Section 1.4 that the solutions vn converge locally to solutions of the
non-regularised equation (1.1.5).

1.2 Notation and Preliminaries

1.2.1 Notation

In addition to the notation introduced in Section 0.1.1, we will also need the homogeneous
ℓ2 Besov spaces with

∥f∥Ḃr
q,2(I) :=

 ∑
N∈2Z

N2r∥PNf∥2
Lq

x(I×Rd)

 1
2

as well as the mixed spacetime Besov spaces with

∥f∥Ḃr
p,q,2(I) :=

 ∑
N∈2Z

N2r∥PNf∥2
Lp

t Lq
x(I×Rd)

 1
2

Since we shall always be considering the ℓ2 Besov-type spaces we will sometimes omit
the subscript “2”, writing only Ḃr

p,q(I).

Throughout this chapter it is always assumed that d > 6, and we will often use the
notation p = d+2

d−2 ∈ (1, 2) without comment.
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1.2 Notation and Preliminaries

1.2.2 Properties of the Nonlinearity

Denote g(u) := u|u|
4

d−2 . We record here some properties of g for future reference. As
well as the trivial bound |g(u)| ≤ |u|

d+2
d−2 , we have the gradient bounds |gz(u)| ≲d |u|

4
d−2 ,

|gz̄(u)| ≲d |u|
4

d−2 . Here gz, gz̄ denote the complex derivatives:

gz(x+ iy) ≡ ∂zg(x+ iy) = 1
2(∂g
∂x

− i
∂g

∂y
), gz̄(x+ iy) = 1

2(∂g
∂x

+ i
∂g

∂y
)

for z = x+ iy, x, y ∈ R. We also have the difference bound

|g(u1) − g(u2)| ≲d (|u1|
4

d−2 + |u2|
4

d−2 )|u1 − u2| (1.2.1)

which follows from the identity

g(u1 + u2) − g(u1) =
∫ 1

0
[gz(u1 + θu2)u2 + gz̄(u1 + θu2)ū2]dθ (1.2.2)

On the other hand, the chain rule

∇g(u(x)) = gz(u(x))∇u(x) + gz̄(u(x))∇ū(x) (1.2.3)

with the bound1

|gz(u1) − gz(u2)| ≲d |u1 − u2|
4

d−2 (1.2.4)

(and the analogous statement for gz̄), implies that

|∇g(u1) − ∇g(u2)| ≲d |u1 − u2|
4

d−2 |∇u1| + |u2|
4

d−2 |∇u1 − ∇u2| (1.2.5)

Moreover, the above bounds all also hold for gn with bounds independent of n.

1.2.3 Deterministic Estimates

We first recall some basic estimates related to the Littlewood-Paley inequality (0.1.1),
which allows us to easily transfer between the Besov and standard Lebesgue spaces.
Combined with the triangle inequality it yields

∥f∥Lp
t Lq

x
≲q,d

 ∑
N∈2Z

∥PNf∥2
Lp

t Lq
x

 1
2

(1.2.6)

1Note this bound holds since d > 6. For d ≤ 6 we have Lipschitz continuity of gz, gz̄, making some
aspects of the problem simpler to study.
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Chapter 1. Almost Sure Scattering of the Energy-Critical NLS in d > 6.

for any 2 ≤ p ≤ ∞, 2 ≤ q < ∞. We also have the dual estimate
 ∑

N∈2Z
∥PNf∥2

Lp
t Lq

x

 1
2

≲q,d ∥f∥Lp
t Lq

x
(1.2.7)

for 1 ≤ p ≤ 2, 1 < q ≤ 2.

1.3 Function Spaces

We now define the function spaces in which we shall place the solution and the forcing in
order to obtain local wellposedness.

Let I be an open time interval. We will place the solution v to the forced NLS into the
space defined by the norm

∥v∥W (I) := ∥v∥V (I) + ∥∇v∥V (I)

where
∥v∥V (I) := ∥v∥ 2(d+2)

d−2 ,
2d(d+2)

d2+4
[I]

We will also denote ∥v∥Ẇ (I) := ∥∇v∥V (I).

To prove local wellposedness it will be sufficient to place the forcing term F into the
same space W . However to obtain the conditional scattering result in Section 1.5 we will
need F to lie in the stronger space2

R(I) := W (I) ∩ Ḃ
4

d+2

d+2,
2(d+2)

d

(I) (1.3.1)

which is necessary in order to apply the theory developed in [TV05] to study the stability
of the forced equation.

Again we will also denote Ṙ(I) := Ẇ (I) ∩ Ḃ
4

d+2

d+2,
2(d+2)

d

(I).

Observe that the above norms are continuous in their endpoints and are “time-divisible”
in the sense that for each of the spaces S(I) just introduced there exists a finite constant
α(S) > 0 such that  J∑

j=1
∥v∥α(S)

S(Ij)

 1
α(S)

≤ ∥v∥S(I)

whenever I is the disjoint union of consecutive intervals (Ij)J
j=1. In particular, α(W ) =

α(Ẇ ) = α(V ) = 2(d+2)
d−2 and α(R) = α(Ṙ) = d+ 2 (see, for example, [DLM19]).

2Here we use the classical definition ∥ · ∥X∩Y ≡ ∥ · ∥X + ∥ · ∥Y .
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1.4 Local wellposedness

We deduce that whenever ∥v∥S(I) < ∞ for S any of W, Ẇ , V,R or Ṙ, we may partition
I into J consecutive intervals (Ij)J

j=1 with disjoint interiors such that

∥v∥S(Ij) ≤ ϵ

for each j = 1, ..., J and

J ≤ 2
(

∥v∥S(I)
ϵ

)α(S)

We end this section with the observation that for Fn = P≤nF the regularised forcing
term as in Section 1.1.3 it holds ∥Fn∥S(I) ≲d ∥F∥S(I) and

∥Fn − F∥S(I) → 0

as n → ∞ for S any of the function spaces W, Ẇ ,R, Ṙ or V .

1.4 Local wellposedness

In this section we will prove the deterministic local wellposedness of the problem(i∂t + ∆)v = (F + v)|F + v|
4

d−2

v(t0) = v0 ∈ H1(Rd)
(1.4.1)

in H1 under appropriate conditions on the forcing term F . We will construct solutions
via the regularised equation(i∂t + ∆)vn = gn(Fn + vn)

vn(t0) = vn,0 ∈ H2(Rd)
(1.4.2)

for gn as in Section 1.1.3.

1.4.1 Linear and Nonlinear Estimates

Let I ⊂ R be an interval containing t0. First observe the following inhomogeneous
estimate, which is a direct application of the Strichartz inequality (0.1.2):

∥ei(t−t0)∆v0∥Ẇ (R) ≲d ∥v0∥Ḣ1

Then by the inhomogeneous Strichartz estimate (0.1.11) followed by the chain rule (1.2.3)
we have ∥∥∥∥∇ ∫ t

t0
ei(t−s)∆gn(u)(s)ds

∥∥∥∥
q,r[I]

≲d,q,r ∥|u|
4

d−2 ∇u∥2, 2d
d+2 [I]

for any Strichartz pair (q, r). Moreover, using Hölder’s inequality and the Sobolev
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Chapter 1. Almost Sure Scattering of the Energy-Critical NLS in d > 6.

embedding Ẇ 1,
2d(d+2)

d2+4 (Rd) ↪→ L
2(d+2)

d−2 (Rd) we observe that

∥|u1|
4

d−2u2∥2, 2d
d+2 [I] ≲d ∥u1∥

4
d−2
Ẇ (I)∥u2∥V (I) (1.4.3)

which in particular gives∥∥∥∥∫ t

t0
ei(t−s)∆gn(u)(s)ds

∥∥∥∥
Ẇ (I)

≲ ∥|u|
4

d−2 ∇u∥2, 2d
d+2 [I] ≲d ∥u∥p

Ẇ (I)

for all u ∈ Ẇ (I), recalling p = d+2
d−2 .

1.4.2 Proof of Local wellposedness and Scattering Condition

Theorem 1.4.1. There exists ϵ0(d) > 0 such that the following holds. Let v0 ∈ H1(Rd)
and F ∈ W ∩ L∞

t L
2d

d−2
x (R). Let I ∋ t0 be a sufficiently small time interval such that

∥ei(t−t0)∆v0∥Ẇ (I) + ∥F∥Ẇ (I) ≤ ϵ (1.4.4)

for some 0 < ϵ < ϵ0(d). Then there exists a unique solution v ∈ C(I,H1(Rd)) ∩W (I) to
(1.4.1) which satisfies

∥v∥Ẇ (I) ≤ 4ϵ

This solution extends to a maximal interval of existence I∗ := (T−, T+) in this space.
Moreover,

1. if T+ < ∞, then ∥v∥Ẇ ([t0,T+)) = ∞

2. if T+ = ∞ and ∥v∥Ẇ ([t0,T+)) < ∞, then the solution v scatters forwards in time,
i.e. there exists v+ ∈ Ḣ1(Rd) with

lim
t→∞

∥v(t) − eit∆v+∥Ḣ1 = 0

The analogous statements hold for T−.

On compact subintervals Ĩ of I∗, v is obtained as a limit in Lq
tL

r
x(Ĩ) of solutions vn to

the regularised equation (1.4.2), for any Strichartz pair (q, r).

Proof. Denote by vn the unique solution in C(I,H2(Rd)) ∩C1(I, L2(Rd)) to (1.4.2) with
initial data vn,0 = P≤nv0. We will show that (vn)n is Cauchy in V (I). Observe that for
any Strichartz pair (q, r) and any l ≥ n, we have

∥vn − vl∥q,r[I] ≲q,r,d∥vn,0 − vl,0∥L2(Rd) + ∥gn(Fn + vn) − gn(Fl + vl)∥2, 2d
d+2 [I]

+ ∥gn(Fl + vl) − g(Fl + vl)∥2, 2d
d+2 [I] + ∥g(Fl + vl) − gl(Fl + vl)∥2, 2d

d+2 [I]
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1.4 Local wellposedness

We bound each of these terms separately. Firstly, by (1.2.1) applied to gn and the
nonlinear estimate (1.4.3) we have, for any u1, u2 ∈ W (I),

∥gn(u1) − gn(u2)∥2, 2d
d+2 [I] ≲d(∥u1∥p−1

Ẇ (I) + ∥u2∥p−1
Ẇ (I))∥u1 − u2∥V (I)

and the analogous bound for g. Next, since gn(u) = g(u) for |u| ≤ n, we may bound

∥gn(u) − g(u)∥2, 2d
d+2 [I] ≲d∥|u|p1|u|≥n∥2, 2d

d+2 [I]

≲d∥u∥p−1
Ẇ (I)∥u · 1|u|≥n∥ 2(d+2)

d−2 ,
2d(d+2)

d2+4
[I]

≲d∥u∥p−1
Ẇ (I)∥1|u|≥n∥∞,

d(d+2)
4 [I]∥u∥ 2(d+2)

d−2 , 2d
d−2 [I]

≲d∥u∥p−1
Ẇ (I)

(
sup
t∈I

1
n

2d
d−2

∫
Rd

|u|
2d

d−2dx

) 4
d(d+2)

|I|
d−2

2(d+2) ∥u∥∞, 2d
d−2 [I]

≲d|I|
d−2

2(d+2)n
− 8

d2−4 ∥u∥p−1
Ẇ (I)∥u∥

d2+4
d2−4
∞,p+1[I]

Thus since l ≥ n, using that Fn = P≤nF and Ḣ1(Rd) ↪→ Lp+1(Rd), we have

∥vn − vl∥q,r[I] ≲q,r,d∥vn,0 − vl,0∥L2(Rd)

+ (∥vn∥p−1
Ẇ (I) + ∥vl∥p−1

Ẇ (I) + ∥F∥p−1
Ẇ (I) + ∥F∥p−1

Ẇ (I))∥vn − vl + Fn − Fl∥V (I)

+ |I|
d−2

2(d+2)n
− 8

d2−4 (∥vl∥p−1
Ẇ (I) + ∥F∥p−1

Ẇ (I))(∥vl∥
d2+4
d2−4
L∞

t Ḣ1(I) + ∥F∥
d2+4
d2−4
∞,p+1[R])

(1.4.5)

To proceed, we need a bound on ∥vn∥Ẇ (I). By the nonlinear estimates we have, for any
t0 ∈ I ′ ⊂ I,

∥vn∥Ẇ (I′) ≤∥ei(t−t0)∆(vn,0 − v0)∥Ẇ (I) + ∥ei(t−t0)∆v0∥Ẇ (I) + Cd(∥vn∥p

Ẇ (I′) + ∥Fn∥p

Ẇ (I′))

≤2ϵ+ Cd∥vn∥p

Ẇ (I′)

for n sufficiently large, ϵ(d) sufficiently small. Taking ϵ(d) smaller still, a standard
continuity argument shows that ∥vn∥Ẇ (I) ≤ 4ϵ.

Lastly we observe that

∥vn∥L∞
t Ḣ1

x(I) ≲d ∥vn,0∥Ḣ1 + ∥vn∥p

Ẇ (I) + ∥Fn∥p

Ẇ (I) ≲d ∥v0∥Ḣ1 + ϵp (1.4.6)

so the vn are uniformly bounded in Ḣ1 on I, say by C(v0, ϵ, d).

Putting the above estimates into (1.4.5) along with the assumption (1.4.4), we see that
(vn)n is Cauchy in Lq

tL
r
x for any Strichartz pair (q, r). In particular (vn)n has a limit

v ∈ V (I), which still satisfies ∥v∥Ẇ (I) ≤ 4ϵ and solves equation (1.4.1).
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Chapter 1. Almost Sure Scattering of the Energy-Critical NLS in d > 6.

By standard arguments, one may extend v to a maximal interval of existence (T−, T+),
such that it is the unique solution to (1.4.1) in C([α, β];H1

x(Rd)) ∩W ([α, β]) for any
T− < α < t0 < β < T+.

We next prove the blow up criterion. We work forwards in time since the result in
the negative time direction is proved in the same way. Suppose that T+ < ∞ and
∥v∥Ẇ ([t0,T+)) < ∞. Consider a sequence tn ↗ T+. Note that

ei(t−tn)∆v(tn) = ei(t−t0)∆v0 − i

∫ tn

t0
ei(t−s)∆g(F + v)ds = v(t) + i

∫ t

tn

ei(t−s)∆g(F + v)ds

Thus by the continuity of the Ẇ norm, we find

∥ei(t−tn)∆v(tn)∥Ẇ ([tn,T+)) + ∥F∥Ẇ ([tn,T+))

≤∥v∥Ẇ ([tn,T+)) + Cd(∥v∥p

Ẇ ([tn,T+)) + ∥F∥p

Ẇ ([tn,T+))) + ∥F∥Ẇ ([tn,T+)) ≤ ϵ

2 (1.4.7)

for n sufficiently large. Then since F , ei(t−tn)∆v(tn) ∈ Ẇ (R) we find η > 0 such that

∥ei(t−tn)∆v(tn)∥Ẇ ([tn,T++η]) + ∥F∥Ẇ ([tn,T++η]) ≤ ϵ

Therefore by the local wellposedness result we can extend the solution to T+ + η, which
is a contradiction.

Finally, we turn to scattering. Suppose that T+ = ∞ and ∥v∥Ẇ ([t0,∞)) < ∞. Define

v+ = e−it0∆v0 − i

∫ ∞

t0
e−is∆g(F + v)ds

Then for any t > t0, the dual Strichartz estimate (0.1.10) gives

∥v(t) − eit∆v+∥Ḣ1(Rd) =
∥∥∥∥∫ ∞

t
ei(t−s)∆g(F + v)(s)ds

∥∥∥∥
Ḣ1(Rd)

≲d ∥v∥p

Ẇ ([t,∞)) + ∥F∥p

Ẇ ([t,∞)) → 0 as t → ∞

since ∥v∥Ẇ ([t0,∞)) < ∞ and ∥F∥Ẇ ([t0,∞)) < ∞. Thus v+ ∈ Ḣ1(Rd) and the solution v

scatters to v+ as t → +∞.

Lastly, the fact that v is the limit of (vn)n on compact subintervals of (T−, T+) follows by
induction of the existence proof over subintervals on which ∥v∥Ẇ and ∥F∥Ẇ are small,
using (1.4.7) to obtain (1.4.4) on each interval. The number of such intervals required is
controlled due to the time-divisibility of the Ẇ -norm.

Remark 1.4.2. Observe that by applying Strichartz’s inequality at dyadic scales followed
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1.5 Conditional Scattering

by the dual estimate (1.2.7) we obtain

 ∑
N∈2Z

N2∥PNv∥2
q,r[I]

 1
2

≲

 ∑
N∈2Z

∥PNv0∥2
Ḣ1

 1
2

+

 ∑
N∈2Z

∥PN ∇g(F + v)∥2
2, 2d

d+2 [I]

 1
2

≲∥v0∥Ḣ1 + ∥∇g(F + v)∥2, 2d
d+2 [I] < ∞

for any Strichartz pair (q, r), I ⊂⊂ I∗.

1.5 Conditional Scattering

In this section we will prove the following theorem, giving a sufficient condition for
scattering of the solution to the forced NLS(i∂t + ∆)v = |F + v|

4
d−2 (F + v)

v(t0) = v0 ∈ H1(Rd)
(1.5.1)

studied in the previous section.

Theorem 1.5.1. (Conditional Scattering) Let v0 ∈ H1(Rd), F ∈ R ∩ L∞
t L

2d
d−2
x (R) (see

the definition in 1.3.1). Let v(t) be the solution to (1.5.1) defined on its maximal interval
of existence I∗. Suppose moreover that

M := sup
t∈I∗

E(v(t)) < ∞

Then I∗ = R, i.e. v(t) is globally defined, and it holds that

∥v∥Ẇ (R) ≤ C(M, ∥F∥Ṙ(R), d) (1.5.2)

As a result, the solution v scatters in Ḣ1 as t → ±∞.

Throughout this section v will refer to the solution to (1.5.1) obtained in Theorem 1.4.1,
defined on its maximal interval of existence I∗ := (T−, T+). We first present a lemma
bounding the Ẇ (R) norm of solutions to the unforced defocusing equation(i∂t + ∆)u = |u|

4
d−2u

u(t0) = u0 ∈ Ḣ1(Rd)
(1.5.3)

Lemma 1.5.2. There exists a non-decreasing function K : [0,∞) → [0,∞) with the
following property. Let u0 ∈ Ḣ1(Rd) and t0 ∈ R. Then there exists a unique global
solution u ∈ C(R; Ḣ1(Rd)) to the defocusing energy-critical NLS (1.5.3) satisfying

∥u∥Ẇ (R) ≤ K(E(u0))
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Chapter 1. Almost Sure Scattering of the Energy-Critical NLS in d > 6.

where
E(u0) := 1

2

∫
Rd

|∇u0|2dx+ d− 2
2d

∫
Rd

|u0|
2d

d−2dx

Proof. The existence of a global solution follows from the work of Visan [Vis07]. Combin-
ing Theorem 1.1 and Lemma 3.1 of [Vis07] with the conservation of energy for solutions
to (1.5.3),3 we infer the existence of a non-decreasing function K : [0,∞) → [0,∞) such
that the solution u ∈ C(R; Ḣ1(Rd)) to (1.5.3) satisfies

∥u∥Ṡ1(R×Rd) ≤ K(E(u0))

where ∥u∥Ṡ1(R×Rd) := sup
(∑

N∈2Z N
2∥PNu∥2

q,r[R]

) 1
2 , with the supremum taken over

all Strichartz admissible pairs (q, r). Since this norm controls the Ẇ -norm (by the
Littlewood-Paley inequality) we have the result.

Given the blow-up criterion proved in Theorem 1.4.1, to prove global existence and
scattering of v it is sufficient to show that

∥v∥Ẇ (I∗) < ∞ (1.5.4)

With this in mind, and in light of Lemma 1.5.2, we will develop a suitable perturbation
theory to compare solutions of (1.5.1) with those of (1.5.3) in Ẇ .

We start with a lemma concerning short-time perturbations.

Lemma 1.5.3. (Short-time perturbations) Let I⊂R be a compact time interval containing
t0 and let u0, v0 ∈ H1(Rd) with

∥u0∥Ḣ1(Rd), ∥v0∥Ḣ1(Rd) ≤ E

for some E > 0. Let u solve the defocusing NLS (1.5.3) with initial data u(t0) = u0.

Let F ∈ R ∩ L∞
t L

2d
d−2
x (R). Then there exists a constant ϵ0(E, d) ∈ (0, 1) such that if we

further suppose

∥u∥Ẇ (I) ≤ ϵ0 (1.5.5)(∑
N

∥PNe
i(t−t0)∆(u0 − v0)∥2

Ẇ (I)

) 1
2

≤ ϵ (1.5.6)

∥F∥Ṙ(I) ≤ ϵ (1.5.7)

3Conservation of energy for solutions to (1.5.3) is well-known. Nonetheless we remark that, as in the
next section of this chapter, the formal calculations used to prove it can for example be justified via the
regularisation (1.1.14), using the stability theory in Theorem 1.3 of [TV05] to show that solutions of the
regularised problem converge locally uniformly to solutions of (1.5.3) in Ḣ1

x.

38



1.5 Conditional Scattering

for some 0 < ϵ < ϵ0, then there exists a unique solution v : I ×Rd → C solving the forced
equation (1.5.1) with v(t0) = v0 satisfying

∥v − u∥Ẇ (I) ≤ Cd,1ϵ
7

(d−2)2 (1.5.8)

∥∇[g(F + v) − g(u)]∥2, 2d
d+2 [I] ≤ Cd,1ϵ

28
(d−2)3 (1.5.9)

for a constant Cd,1 > 1 depending only on the dimension d.

Proof. In view of the local existence theory, it suffices to prove (1.5.8) and (1.5.9) as
a priori estimates. In what follows all spacetime norms are taken over I × Rd. Define
w := v − u, which solves(i∂t + ∆)w = |u+ w + F |

4
d−2 (u+ w + F ) − |u|

4
d−2u on I × Rd

w(t0) = v0 − u0
(1.5.10)

with ∥w(t0)∥Ḣ1 ≲ E. We have

∥w∥Ẇ ≲d ∥ei(t−t0)∆w(t0)∥Ẇ + ∥∇[g(u+ w + F ) − g(u)]∥2, 2d
d+2

(1.5.11)

where by (1.2.5)

∥∇[g(u+ w + F ) − g(u)]∥2, 2d
d+2

≲d∥|F |
4

d−2 ∇F∥2, 2d
d+2

+ ∥|w|
4

d−2 ∇F∥2, 2d
d+2

+ ∥|F |
4

d−2 ∇u∥2, 2d
d+2

+ ∥|w|
4

d−2 ∇u∥2, 2d
d+2

+ ∥|F |
4

d−2 ∇w∥2, 2d
d+2

+ ∥|w|
4

d−2 ∇w∥2, 2d
d+2

+ ∥|u|
4

d−2 ∇F∥2, 2d
d+2

+ ∥|u|
4

d−2 ∇w∥2, 2d
d+2

Then using the nonlinear bound ∥|u1|
4

d−2 ∇u2∥2, 2d
d+2
≲d ∥u1∥

4
d−2
Ẇ

∥u2∥Ẇ , assumptions
(1.5.5)-(1.5.7) and Young’s inequality we have

∥∇[g(u+ w + F ) − g(u)]∥2, 2d
d+2

≲dϵ
d+2
d−2 + ϵ

4
d−2 ϵ0 + ϵ

4
d−2
0 ϵ+ ϵ

4
d−2 ∥w∥Ẇ + ϵ

4
d−2
0 ∥w∥Ẇ + ϵ∥w∥

4
d−2
Ẇ

+ ∥w∥
d+2
d−2
Ẇ

+ ∥|w|
4

d−2 ∇u∥2, 2d
d+2

≲dϵ
4

d−2 + ϵ
4

d−2
0 ∥w∥Ẇ + ∥|w|

4
d−2 ∇u∥2, 2d

d+2
+ ∥w∥

d+2
d−2
Ẇ

(1.5.12)

taking ϵ0(d) < 1.

It is tempting to also expand the remaining term in Ẇ and run a continuity argument,
however this will produce the term ϵ0∥w∥

4
d−2
Ẇ

on the right hand side which is an issue
for d > 6 since the power 4

d−2 is less than 1. We therefore make use of auxiliary spaces
X and Y introduced by Visan and Tao in [TV05]. These spaces invoke only 4

d+2 <
4

d−2

39



Chapter 1. Almost Sure Scattering of the Energy-Critical NLS in d > 6.

derivatives instead of a whole derivative as in Ẇ making it possible to run a standard
continuity argument in X. Once we have a bound on ∥w∥X we can use it in (1.5.12) to
bound ∥w∥Ẇ .

The spaces X and Y are defined by the following norms:

∥f∥X :=
(∑

N

N
8

d+2 ∥PNf∥2
d+2,

2(d+2)
d

) 1
2

∥h∥Y :=
(∑

N

N
8

d+2 ∥PNh∥2
d+2

3 ,
2(d+2)

d+4

) 1
2

Note that the space X scales in the same way as Ẇ . Observe also that ∥F∥X ≤ ∥F∥Ṙ.

To see that w belongs to X we observe the following relation between X and Ẇ : By
Bernstein’s inequality we have

∥f∥X ≲d

(∑
N

N2∥PNf∥2
d+2,

2d(d+2)
d2+2d−4

) 1
2

We now interpolate the Ld+2
t L

2d(d+2)
d2+2d−4
x norm between L

2(d+2)
d−2

t L
2d(d+2)

d2+4
x and L∞

t L
2
x yielding

∥PNf∥
d+2,

2d(d+2)
d2+2d−4

≲ ∥PNf∥
2

d−2
2(d+2)

d−2 ,
2d(d+2)

d2+4

∥PNf∥
d−4
d−2
∞,2

and apply Hölder’s inequality for sequences to get

∥f∥X ≲d

(∑
N

N2∥PNf∥2
2(d+2)

d−2 ,
2d(d+2)

d2+4

) 2
2(d−2)

(∑
N

N2∥PNf∥2
∞,2

) d−4
2(d−2)

≲d

(∑
N

∥PNf∥2
Ẇ

) 1
d−2

(∑
N

∥PNf∥2
L∞

t Ḣ1
x

) d−4
2(d−2)

(1.5.13)

Thus by Remark 1.4.2, w indeed belongs to X.

We can use this to bound the remaining term in (1.5.12). Indeed, by the Littlewood-Paley
inequality followed by Bernstein’s inequality we have

∥|w|
4

d−2 ∇u∥2, 2d
d+2

≤∥w∥
4

d−2
X ∥∇u∥ 2(d2−4)

d2−12
,

2d(d2−4)
d3−2d2−4d+24

where, since (2(d2−4)
d2−12 ,

2d(d2−4)
d3−2d2−4d+24) is a Strichartz pair, we can use the nonlinear estimate

to bound

∥∇u∥ 2(d2−4)
d2−12

,
2d(d2−4)

d3−2d2−4d+24
≲d ∥u0∥Ḣ1(Rd) + ∥u∥

d+2
d−2
Ẇ
≲d E + ϵ

d+2
d−2
0 ≲d E

40



1.5 Conditional Scattering

for ϵ0(E, d) sufficiently small.

Substituting this into (1.5.12) and combining the result with (1.5.11) we have

∥w∥Ẇ ≲d ∥ei(t−t0)∆w(t0)∥Ẇ + ϵ
4

d−2 + ϵ
4

d−2
0 ∥w∥Ẇ + E∥w∥

4
d−2
X + ∥w∥

d+2
d−2
Ẇ

(1.5.14)

So we must show that ∥w∥X is small. This will require two estimates both proved in
[TV05], see also [LZ11]. The first (Lemma 3.2, [TV05]) is a Strichartz-type estimate
between X and Y : ∥∥∥∥∫ t

t0
ei(t−s)∆F (s)ds

∥∥∥∥
X

≲d ∥F∥Y (1.5.15)

and the second (Lemma 3.3, [TV05]) is the nonlinear estimate

∥gz(v)u∥Y ≲d ∥v∥
4

d−2
Ẇ

∥u∥X (1.5.16)

(with a similar estimate for gz̄).

Using (1.5.15) and the fact that w satisfies equation (1.5.10) we immediately obtain

∥w∥X ≲d ∥ei(t−t0)∆w(t0)∥X + ∥g(u+ w + F ) − g(u)∥Y (1.5.17)

First consider the free evolution term. By (1.5.13) we see

∥ei(t−t0)∆w(t0)∥X ≲d

(∑
N

∥PNe
i(t−t0)∆w(t0)∥2

Ẇ

) 1
d−2

(∑
N

∥PNw(t0)∥2
Ḣ1

) d−4
2(d−2)

≲dϵ
2

d−2E
d−4
d−2

We now move onto the second term in (1.5.17). Using (1.2.2), Minkowski’s inequality
and the nonlinear estimate (1.5.16) we have

∥g(u+ w + F ) − g(u)∥Y ≤
∫ 1

0
∥u+ θ(F + w)∥

4
d−2
Ẇ

∥F + w∥Xdθ

≲d(∥u∥
4

d−2
Ẇ

+ ∥F∥
4

d−2
Ẇ

+ ∥v∥
4

d−2
Ẇ

)(∥F∥X + ∥w∥X)

≲d(ϵ
4

d−2
0 + ϵ

4
d−2 + ∥v∥

4
d−2
Ẇ

)(ϵ+ ∥w∥X)

where we used that ∥F∥Ẇ + ∥F∥X = ∥F∥Ṙ ≤ ϵ in the last line.

To bound ∥v∥Ẇ , we first use that v0 is close to u0 and that u satisfies the standard NLS
(1.5.3) to bound the linear part:

∥ei(t−t0)∆v0∥Ẇ ≲d∥ei(t−t0)∆(v0 − u0)∥Ẇ + ∥ei(t−t0)∆u0∥Ẇ

≲dϵ+ ∥u∥Ẇ + ∥u∥
d+2
d−2
Ẇ
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≲dϵ0

We can thus apply the local wellposedness theory to infer that, on the interval I,

∥v∥Ẇ ≲d ϵ0

Returning to (1.5.17) we thus have

∥w∥X ≲dϵ
2

d−2E
d−4
d−2 + (ϵ

4
d−2
0 + ϵ

4
d−2 + ϵ

4
d−2
0 )(ϵ+ ∥w∥X)

≲dϵ
2

d−2E
d−4
d−2 + ϵ+ ϵ

4
d−2
0 ∥w∥X

Thus choosing ϵ0 sufficiently small depending on d and E we conclude

∥w∥X ≲d ϵ
2

d−2E
d−4
d−2

Now that we have bounded ∥w∥X , we can return to (1.5.14) to bound ∥w∥Ẇ . We have

∥w∥Ẇ ≲d∥ei(t−t0)∆w(t0)∥Ẇ + ϵ
4

d−2 + ϵ
4

d−2
0 ∥w∥Ẇ + E∥w∥

4
d−2
X + ∥w∥

d+2
d−2
Ẇ

≲dϵ+ ϵ
4

d−2 + ϵ
4

d−2
0 ∥w∥Ẇ + E(ϵ

2
d−2E

d−4
d−2 )

4
d−2 + ∥w∥

d+2
d−2
Ẇ

≲dϵ
7

(d−2)2 + 1
2∥w∥Ẇ + ∥w∥

d+2
d−2
Ẇ

for ϵ0(E, d) sufficiently small. The result (1.5.8) now follows from a standard continuity
argument.

Lastly, we show (1.5.9). By (1.5.12)

∥∇[g(F + v) − g(u)]∥2, 2d
d+2
≲dϵ

4
d−2 + ϵ

4
d−2
0 ∥w∥Ẇ + ∥u∥Ẇ ∥w∥

4
d−2
Ẇ

+ ∥w∥
d+2
d−2
Ẇ

≲dϵ
4

d−2 + ∥w∥Ẇ + ∥w∥
4

d−2
Ẇ

+ ∥w∥
d+2
d−2
Ẇ

using the bounds assumed on ∥u∥Ẇ and ∥F∥Ẇ . Substituting in the bound just obtained
for ∥w∥Ẇ gives the result.

We now extend this result by removing the smallness assumption on u in the case when
u and v have the same initial data.

Lemma 1.5.4. (Long-time perturbations) Let I⊂R be a compact time interval with
t0 ∈ I and let v0 ∈ H1(Rd) with

E(v0) ≤ E

Let u ∈ C(I, Ḣ1(Rd)) be the solution to the defocusing NLS (1.5.3) with initial data
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1.5 Conditional Scattering

u(t0) = v0 and
∥u∥Ẇ (I) ≤ K

for some K > 0. Then there exists ϵ1(E,K, d) ∈ (0, 1) such that for any F ∈ R(I)
sufficiently small in the sense that

∥F∥Ṙ(I) ≤ ϵ1,

there exists a unique solution v : I × Rd → C to the forced equation (1.5.1) with initial
data v(t0) = v0 and it holds

∥v − u∥Ẇ (I) ≤ 1 (1.5.18)

Proof. Without loss of generality assume t0 = inf I. As in the previous proposition it
suffices to prove the bound as an a priori estimate. In order to make use of the short-time
perturbation theory, we will induct over intervals on which the Ẇ (I)-norm of u is small.
To this end we partition I into consecutive intervals with disjoint interiors (Ij)J

j=1 such
that

∥u∥Ẇ (Ij) ≤ ϵ0(2(2E)
1
2 , d) (1.5.19)

for each j = 1, ..., J , where ϵ0 is as in Lemma 1.5.3. By the time-divisibility properties of
Ẇ we are able to do this with

J ≲

(
K

ϵ0(2(2E) 1
2 , d)

) 2(d+2)
d−2

(1.5.20)

Denote Ij = [tj−1, tj ]. We must check that the conditions of Lemma 1.5.3 are satisfied
on this interval.

We first make two observations. Using Strichartz’s inequality (0.1.10) we have

∥v(tj) − u(tj)∥Ḣ1(Rd) ≃
∥∥∥∥∫ tj

t0
ei(tj−s)∆∇[g(F + v) − g(u)](s)ds

∥∥∥∥
L2(Rd)

≤Ad,1∥∇[g(F + v) − g(u)]∥2, 2d
d+2 [t0,tj ] (1.5.21)

Secondly, by the Strichartz estimates (0.1.9) and (0.1.10) followed by the embedding
(1.2.7) we obtain

(∑
N

∥PNe
i(t−tj)∆(v(tj) − u(tj))∥2

Ẇ (Ij+1)

) 1
2

≃

∑
N

N2
∥∥∥∥∫ tj

t0
ei(t−s)∆PN [g(F + v) − g(u)](s)ds

∥∥∥∥2

2(d+2)
d−2 ,

2d(d+2)
d2+4

[Ij+1]

 1
2
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≤ Ad,2

(∑
N

N2∥PN [g(F + v) − g(u)](s)∥2
2, 2d

d+2 [t0,tj ]

) 1
2

≤ A′
d,2∥∇[g(F + v) − g(u)]∥2, 2d

d+2 [t0,tj ] (1.5.22)

Set Ad := max{1, Ad,1, A
′
d,2}.

We now prove a technical claim that will be useful for the inductive step. In the rest
of this proof we denote α := 28

(d−2)3 and Cd := AdCd,1 ≥ 1, with Cd,1 the constant from
Lemma 1.5.3.

Claim 1. We may take ϵ1(E,K, d) > 0 sufficiently small such that the following holds:
Define a sequence (ϵ(j))J+1

j=1 by

ϵ(1) = ϵ1(E,K, d), ϵ(j + 1) = Cd

j∑
k=1

ϵ(k)α for 1 ≤ j ≤ J

Then for all 1 ≤ j ≤ J + 1 it holds

ϵ1 ≤ ϵ(j) ≤ (2Cd)
∑j−2

k=0 αk

ϵα
j−1

1 < min{ϵ0(2(2E)
1
2 , d), (2E)

1
2 }

Proof of claim. The cases j = 1, 2 are easily verified (since α < 1). Suppose that the
claim holds for all 1 ≤ j ≤ k for some k ≤ J . Then by definition

ϵ(k + 1) = ϵ(k) + Cdϵ(k)α ≤ 2Cdϵ(k)α ≤ (2Cd)
∑k−1

k′=0 αk′
ϵα

k

1

as required. That ϵ(k) ≥ ϵ1 is clear since the sequence is increasing, and for 1 ≤ k ≤ J ,

ϵ(k + 1) ≤(2Cd)
∑J−1

k′=0 αk′
ϵα

J

1 < min{ϵ0(2(2E)
1
2 , d), (2E)

1
2 }

for ϵ1 sufficiently small depending on E, K and d.

We now prove a second claim in which we reduce the long time perturbation result to
the short time result on the intervals Ij . In the rest of this proof we will take ϵ1(E,K, d)
as in the above claim.

Claim 2. Under the assumptions of the lemma, for all 1 ≤ j ≤ J it holds

∥v(tj−1)∥Ḣ1(Rd) ≤ 2(2E)
1
2(∑

N

∥PNe
i(t−tj−1)∆(u(tj−1) − v(tj−1))∥2

Ẇ (Ij)

) 1
2

≤ ϵ(j) < ϵ0(2(2E)
1
2 , d)

∥∇[g(F + v) − g(u)]∥2, 2d
d+2 [Ij ] ≤ Cd,1ϵ(j)α

∥u− v∥Ẇ (Ij) ≤ Cd,1ϵ(j)
7

(d−2)2
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1.5 Conditional Scattering

for ϵ(j) as in the previous claim.

Proof of claim. Recall that for each j = 1, ..., J it holds

∥u∥Ẇ (Ij) ≤ ϵ0(2(2E)
1
2 , d)

∥F∥Ṙ(Ij) ≤ ϵ1 < ϵ0(2(2E)
1
2 , d)

∥u(tj−1)∥Ḣ1 ≤ (2E)
1
2

where we used that u has conserved energy.

For j = 1, we have u(t0) = v(t0) = v0 so we can immediately apply Lemma 1.5.3 to
obtain (using ϵ(1) = ϵ1)

∥∇[g(F + v) − g(u)]∥ 2d
d+2 [I1] ≤ Cd,1ϵ(1)α

and
∥u− v∥Ẇ (I1) ≤ Cd,1ϵ(1)

7
(d−2)2

Now suppose that the claim holds for all 1 ≤ j ≤ k for some k ≤ J − 1. Then by (1.5.21)
we have

∥u(tk) − v(tk)∥Ḣ1(Rd) ≤Ad

k∑
k′=1

∥∇[g(F + v) − g(u)]∥2, 2d
d+2 [Ik′ ]

≤Ad

k∑
k′=1

Cd,1ϵ(k′)α = ϵ(k + 1) < (2E)
1
2

and so ∥v(tk)∥Ḣ1(Rd) < 2(2E) 1
2 . Similarly using (1.5.22) we see that

(∑
N

∥PNe
i(t−tk)∆(v(tk) − u(tk))∥2

Ẇ (Ik+1)

) 1
2

≤Ad

k∑
k′=1

∥∇[g(F + v) − g(u)]∥2, 2d
d+2 [Ik′ ]

≤ϵ(k + 1) < ϵ0(2(2E)
1
2 , d)

Thus since also ∥F∥Ṙ(Ik+1) ≤ ϵ1 ≤ ϵ(k + 1), we can apply Lemma 1.5.3 on Ik+1 to obtain

∥u− v∥Ẇ (Ik+1) ≤ Cd,1ϵ(k + 1)
7

(d−2)2

and
∥∇[g(F + v) − g(u)]∥2, 2d

d+2 [Ik+1] ≤ Cd,1ϵ(k + 1)α

This completes the proof of the claim.
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We now sum the bounds over all the sub-intervals and use that α < 7
(d−2)2 to obtain

∥u− v∥Ẇ (I) ≤ Cd,1

J∑
j=1

ϵ(j)α ≤ ϵ(J + 1) < 1

Using the perturbation theory developed we are now able to prove the conditional
scattering result.

Proof of Theorem 1.5.1. By the local wellposedness theory, it remains to prove that

∥v∥Ẇ (I∗) ≤ C(M, ∥F∥Ṙ(R), d)

Consider first [t0, T+). Partition [t0, T+) into J consecutive intervals Ij such that

∥F∥Ṙ(Ij) ≤ ϵ1(M,K(M), d)

where K is the non-decreasing function from Lemma 1.5.2 and ϵ1 is the constant from
Lemma 1.5.4. Due to the time divisibility of the Ṙ-norm, we can do this with

J ≲

(
∥F∥Ṙ(R)

ϵ1(M,K(M), d)

)d+2

Denote Ij = [tj−1, tj ] for 1 ≤ j ≤ J . On each Ij we compare v with the solution
uj to the usual defocusing NLS (1.5.3) with initial data u(tj−1) = v(tj−1), satisfying
E(u(tj−1)) ≤ M by assumption. By Lemma 1.5.2 we know that such a solution uj exists
globally in time and satisfies

∥uj∥Ẇ (Ij) ≤ ∥uj∥Ẇ (R) ≤ K(M)

We can therefore apply Lemma 1.5.4 on each Ij to see that v satisfies

∥v∥Ẇ (Ij) ≤ ∥v − uj∥Ẇ (Ij) + ∥uj∥Ẇ (Ij) ≤ K(M) + 1

Summing the estimates over the intervals Ij and arguing in the same way on (T−, t0]
implies the result.

1.6 Energy bound

In this section we prove that the solution v to the forced NLS (1.5.1) does indeed satisfy
a uniform in time energy bound on its maximal interval of existence I∗ = (T−, T+), under
assumptions on F which we shall prove to hold almost surely for F = eit∆fω in the next
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section. The precise result is the following.

Theorem 1.6.1. Let v0 ∈ H1(Rd), t0 = 0. Denote by v ∈ C0
t H

1
x ∩W (I∗) the unique

solution to (1.5.1) obtained in Theorem 1.4.1, for a forcing term F ∈ R ∩ L∞
t L

2d
d−2
x (R)

which solves the linear Schrödinger equation (i∂t + ∆)F = 0 with L2 initial data and
satisfies

F ∈ L
1
σ
t L

2d
d−4σ
x

∇F ∈ L2
tL

4d−2
2d−3−σ
x ∩ L2

tL
2d(2d−1)

2d2−7d+4+dσ
x ∩ L1

tL
2d

d−4
x ∩ L

d−2
d−2−4σ
t L

2d(d−2)
d(d−6)+16σ
x (R)

for some σ(d) sufficiently small. Then it holds

sup
t∈I∗

E(v(t)) ≤ (1 + E(v0) + ∥F∥
2(d−2)

d−6
∞, 2d

d−2 [R] + ∥F∥
2(d+2)

d−2
∞, 2d

d−2 [R])

· exp(Cd(∥F∥
1
σ
1
σ , 2d

d−4σ [R] + ∥∇F∥2
2, 4d−2

2d−3−σ [R] + ∥∇F∥2
2,

2d(2d−1)
2d2−7d+4+dσ

[R]

+ ∥∇F∥1, 2d
d−4 [R] + ∥∇F∥

d−2
d−2−4σ

d−2
d−2−4σ ,

2d(d−2)
d(d−6)+16σ

[R]
)) (1.6.1)

for some Cd > 0.

This will follow from an analogous theorem for the regularised solutions vn to(i∂t + ∆)vn = gn(Fn + vn)
vn(0) = vn,0 ∈ H2(Rd)

(1.6.2)

with gn(u) = uφ′
n(|u|2), Fn = P≤nF and vn,0 = P≤nv0, as in Section 1.1.3.

Theorem 1.6.2. Suppose that F satisfies the assumptions of Theorem 1.6.1. Let vn be
the unique global solution to (1.6.2) in C(R, H2(Rd)) ∩ C1(R, L2(Rd)). Then it holds

sup
t∈R

En(vn(t)) ≤ (1 + E(vn,0) + ∥F∥
2(d−2)

d−6
∞, 2d

d−2 [R] + ∥F∥
2(d+2)

d−2
∞, 2d

d−2 [R])

· exp(Cd(∥F∥
1
σ
1
σ , 2d

d−4σ [R] + ∥∇F∥2
2, 4d−2

2d−3−σ [R] + ∥∇F∥2
2,

2d(2d−1)
2d2−7d+4+dσ

[R]

+ ∥∇F∥1, 2d
d−4 [R] + ∥∇F∥

d−2
d−2−4σ

d−2
d−2−4σ ,

2d(d−2)
d(d−6)+16σ

[R]
)) (1.6.3)

for some Cd > 0. Here

En(vn(t)) := 1
2

∫
Rd

|∇vn|2dx+ 1
2

∫
Rd
φn(|vn|2)dx

Before proving this theorem, we show how it can be used to deduce Theorem 1.6.1.

Proof of Theorem 1.6.1 given Theorem 1.6.2. Fix a compact subinterval 0 ∈ I ⊂ I∗.
Observe that E(vn,0) → E(v0). Therefore, denoting Mn the quantity on the right hand
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side of inequality (1.6.3) and M the right hand side of (1.6.1), we have Mn → M .

Consider the sequence vn,n := vn1|vn|≤n. For every t ∈ I we have

∥vn,n(t)∥p+1
Lp+1(Rd) =

∫
|vn|≤n

|vn(t)|p+1dx ≤ p+ 1
2

∫
Rd
φn(|vn(t)|2)dx ≤ (p+ 1) sup

n′
Mn′

and so for each t ∈ I there exists a subsequence (vnj ,nj )j weakly converging to v in
Lp+1(Rd), from which we deduce

∥v(t)∥p+1
Lp+1(Rd) ≤ lim inf

j

p+ 1
2

∫
Rd
φnj (|vnj (t)|2)dx

for every t ∈ I. Similarly, we have ∥v(t)∥2
Ḣ1(Rd) ≤ lim infj ∥vnj ∥2

Ḣ1 , so

E(v(t)) ≤ lim inf
j

Enj (vnj (t)) ≤ lim inf
j

Mnj = M

We now prove Theorem 1.6.2. The idea of the proof is to work on small intervals on
which F is small and use a bootstrap argument to control the energy increment there.
By only placing F into spaces with finite time exponents we are able to iterate this
finitely many times to obtain a bound over the whole interval. In early papers on this
topic [KMV19, DLM19, DLM20], a double bootstrap method was used, simultaneously
controlling the solution in weighted Lp spaces via Morawetz inequalities. Thanks to a
randomised L1

t -estimate introduced by Spitz in [Spi21] (see Section 1.7.2), this is not
necessary here and we can directly bound the energy increment by placing F into spaces
of low time-integrability.

Proof of Theorem 1.6.2. In this proof we will often use the notation p instead of d+2
d−2 , so

any implicit constants depending on p in fact depend only on d. We will show the bound
holds on the compact interval [0, T ] for any T > 0. Since the bound does not depend
on T , this clearly extends to [0,∞), and the argument in the reverse time direction is
analogous.

Define the norm

∥F∥Z := ∥F∥ 1
σ

, 2d
d−4σ

+ ∥∇F∥2, 4d−2
2d−3−σ

+ ∥∇F∥2,
2d(2d−1)

2d2−7d+4+dσ

+ ∥∇F∥1, 2d
d−4

+ ∥∇F∥ d−2
d−2−4σ

,
2d(d−2)

d(d−6)+16σ

on any time interval. Partition [0, T ] into J consecutive subintervals Ij := [tj−1, tj ],
j = 1, . . . , J such that

∥F∥Z[Ij ] ≤ η

for each j = 1, . . . , J and some η < 1 to be determined which depends only on the
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dimension d. Note that by the time-divisibility properties of the Z norm, it is possible to
do this with

J ≲d ∥F∥
1
σ
1
σ

, 2d
d−4σ

[R] + ∥∇F∥2
2, 4d−2

2d−3−σ
[R]

+ ∥∇F∥2
2,

2d(2d−1)
2d2−7d+4+dσ

[R]
+ ∥∇F∥1, 2d

d−4 [R] + ∥∇F∥
d−2

d−2−4σ

d−2
d−2−4σ

,
2d(d−2)

d(d−6)+16σ
[R]

(1.6.4)

For each j = 1, . . . , J define

Atj−1(tj) := 1 + sup
t∈[tj−1,tj ]

En(vn(t))

In the following calculations all spacetime norms above are taken over [tj−1, t]×Rd. Since
vn ∈ C1(R, L2(Rd)) ∩ C(R, H2(Rd)) one may differentiate En(vn(t)) to obtain

∂tEn(vn(t)) = −Re
∫
Rd
∂tv̄n(∆vn − vnφ

′
n(|vn|2))dx

which is well-defined since ∂tvn, ∆vn ∈ L2(Rd). Integrating this over [tj−1, t] and
performing a calculation similar to that in [KMV19, DLM19] (see Appendix 1.A for
details), we obtain

|En(vn(t)) − En(vn(tj−1))|

≤ 1
2 sup

[tj−1,t]
∥φn(|Fn + vn|2) − φn(|vn|2) − φn(|Fn|2)∥L1(Rd) (1.6.5)

+ ∥∇Fn · ∇(gn(Fn + vn) − gn(Fn))∥1,1 (1.6.6)

First consider (1.6.5). Observe that∣∣∣φn(|Fn + vn|2) − φn(|vn|2) − φn(|Fn|2)
∣∣∣ ≲p |Fn|p|vn| + |Fn||vn|p

uniformly in n. Hence by Young’s inequality we have∥∥∥φn(|Fn + vn|2) − φn(|vn|2) − φn(|Fn|2)
∥∥∥

∞,1

≲d δ∥vn∥2
∞,p+1 + Cδ,d∥Fn∥

2
2−p

∞,p+1 + Cδ,d∥Fn∥2p
∞,p+1

≲d δAtj−1(tj) + Cδ,d∥Fn∥
2

2−p

∞,p+1 + Cδ,d∥Fn∥2p
∞,p+1

for any δ > 0, since ∥vn∥2
∞,p+1 ≲ ∥vn∥2

L∞
t Ḣ1

x
.

We now turn to (1.6.6). This time we use (1.2.5) to bound

(1.6.6) ≲d∥|vn|p−1|∇Fn|2∥1,1 + ∥|vn|p−1|∇vn||∇Fn|∥1,1 + ∥|Fn|p−1|∇Fn||∇vn|∥1,1
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We can control these terms as follows, using that Atj−1(tj) ≥ 1:

∥|vn|p−1|∇Fn|2∥1,1 ≤∥vn∥p−1
∞,p+1∥∇Fn∥2, 4d−2

2d−3−σ
∥∇Fn∥2,

2d(2d−1)
2d2−7d+4+dσ

≲dAtj−1(tj)∥∇Fn∥2, 4d−2
2d−3−σ

∥∇Fn∥2,
2d(2d−1)

2d2−7d+4+dσ

∥|vn|p−1|∇vn||∇Fn|∥1,1 ≤∥vn∥p−1
∞,p+1∥∇vn∥∞,2∥∇Fn∥1, 2d

d−4

≲dAtj−1(tj)∥∇Fn∥1, 2d
d−4

∥|Fn|p−1|∇Fn||∇vn|∥1,1 ≤∥∇vn∥∞,2∥Fn∥p−1
1
σ

, 2d
d−4σ

∥∇Fn∥ d−2
d−2−4σ

,
2d(d−2)

d(d−6)+16σ

≤Atj−1(tj)∥Fn∥p−1
1
σ

, 2d
d−4σ

∥∇Fn∥ d−2
d−2−4σ

,
2d(d−2)

d(d−6)+16σ

Noting that the spaces into which Fn has been placed here are exactly those which make
up the Z-norm, we can bound each term by CdAtj−1(tj)η, and so by (1.6.5)-(1.6.6) it
holds

Atj−1(tj) ≲d 1 + En(vn(tj−1)) + δAtj−1(tj) + Cδ,d∥Fn∥
2

2−p

∞,p+1[tj−1,tj ]

+ Cδ,d∥Fn∥2p
∞,p+1[tj−1,tj ] + ηAtj−1(tj)

Choosing δ(d) and η(d) sufficiently small and using that ∥Fn∥a,b ≲ ∥F∥a,b for 1 ≤ a, b ≤ ∞
(and likewise for ∇Fn), we thus have

Atj−1(tj) ≤ C∗
d(1 + En(vn(tj−1)) + ∥F∥

2
2−p

∞,p+1[R] + ∥F∥2p
∞,p+1[R])

for some constant C∗
d > 1.

Iterating the results on the consecutive intervals (Ij)J
j=1, we obtain

Atj−1(tj) ≤ (2C∗
d)j(1 + En(vn(0)) + ∥F∥

2
2−p

∞,p+1[R] + ∥F∥2p
∞,p+1[R])

for all j = 1, . . . , J , from which

A0(T ) ≤ (2C∗
d)J(1 + E(vn,0) + ∥F∥

2
2−p

∞,p+1[R] + ∥F∥2p
∞,p+1[R])

where we used that En(vn,0) ≤ E(vn,0). Combining this with (1.6.4) yields the result.

1.7 Almost sure bounds for the forcing term

In this section we show that the randomised linear evolution Fω := eit∆fω almost surely
satisfies the conditions required for wellposedness and scattering provided the initial
data f lies in a Sobolev space of sufficiently high regularity. In particular, we prove the
following theorem:
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1.7 Almost sure bounds for the forcing term

Theorem 1.7.1. Let max{ 4d−1
3(2d−1) ,

d2+6d−4
(2d−1)(d+2)} < s < 1 and f ∈ Hs(Rd). Let fω denote

the randomisation of f as in (1.1.11) and Fω := eit∆fω. Then when σ(d) is sufficiently
small we have

Fω ∈ L∞
t L

2d
d−2
x ∩ L

1
σ
t L

2d
d−4σ
x ∩R(R)

∇Fω ∈ L2
tL

4d−2
2d−3−σ
x ∩ L2

tL
2d(2d−1)

2d2−7d+4+dσ
x ∩ L1

tL
2d

d−4
x ∩ L

d−2
d−2−4σ
t L

2d(d−2)
d(d−6)+16σ
x (R)

for almost every ω ∈ Ω.

When combined with the results of the previous section, this completes the proof of
Theorem 1.1.1.

The proof of the bounds in the above theorem is split into subsections according to the
method used to obtain the almost sure bound. Throughout, we shall make repeated use
of the following important generalisation of Khintchine’s inequality due to Burq and
Tzvetkov [BT08], formulated here as in [BT08].
Lemma 1.7.2. (Large Deviation Estimate, Lemma 3.1 [BT08]) Let (gk)k∈N be a sequence
of independent, real-valued, zero-mean random variables on a probability space (Ω,A,P)
with distributions (µk)k satisfying∫

R
eγxdµk(x) ≤ ecγ2 ∀γ ∈ R

with the constant c > 0 independent of k, γ. Then there is a constant C > 0 such that∥∥∥∥∥∥
∑
k∈N

ckgk

∥∥∥∥∥∥
Lβ(Ω)

≤ C
√
β

∑
k∈N

|ck|2
 1

2

for all (ck)k ∈ ℓ2(N) and β ∈ [2,∞).

1.7.1 Bounds using randomisation-improved Strichartz.

In this section we will prove that under the conditions of Theorem 1.7.1, we have

Fω ∈ L∞
t L

2d
d−2
x ∩ L

1
σ
t L

2d
d−4σ
x ∩R(R) (1.7.1)

and
∇Fω ∈ L2

tL
4d−2

2d−3−σ
x ∩ L2

tL
2d(2d−1)

2d2−7d+4+dσ
x ∩ L2

tL
2d(d−2)

d(d−6)+16σ
x (R) (1.7.2)

almost surely. Note that it is not claimed in the Theorem that ∇Fω lies in the final space
listed above, but we need it in order to deduce one of the other bounds by interpolation.

These results rely on the following proposition allowing us to gain derivatives on the
randomised free evolution, adapted from [Spi21]. Throughout this section, fω always
refers to the randomisation of f as in (1.1.11) and all spacetime norms are over R × Rd.
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Chapter 1. Almost Sure Scattering of the Energy-Critical NLS in d > 6.

The key estimate for this section then reads as follows.

Proposition 1.7.3 (See Proposition 3.4(ii), [Spi21]). Let (q, p0) ∈ [2,∞) satisfy

1
q

≤
(
d− 1

2

)(1
2 − 1

p0

)
and (q, p0) ̸=

(
2, 4d− 2

2d− 3

)
(1.7.3)

Let p ∈ [p0,∞). Then for any f ∈ Hs(Rd) with s ≥ 0, it holds

∥eit∆fω∥
Lβ

ωḂ
s+ 2

q + d
p0

− d
2

q,p,2

≲d,q,p,p0

√
β∥f∥Hs(Rd)

for all β ∈ [1,∞).

Observe that the maximum derivative gain by this estimate occurs at the non-allowed
endpoint (2, 4d−2

2d−3), where we would gain

2
q

+ d

p0
− d

2 = d− 1
2d− 1

derivatives.

Since the proof of Proposition 1.7.3 is very similar to the d = 4 case in [Spi21], we omit
it here, however we remark that it relies crucially on a Strichartz estimate in radially
averaged spaces due to Guo [Guo16].

The bounds on Fω without any derivatives are then implied by the following corollary:

Corollary 1.7.4. Let q ∈ [2,∞), p ∈ [2,∞) satisfy

2
q

+ d

p
≤ d

2 (1.7.4)

Let f ∈ L2(Rd), fω its randomisation. Then for almost every ω ∈ Ω it holds

∥eit∆fω∥Lq
t Lp

x
< ∞

Proof. Let β ≥ 2. By the Littlewood-Paley inequality we have

∥eit∆fω∥
Lβ

ωLq
t Lp

x
≲d

∥∥∥∥∥∥
(∑

N

∥PNe
it∆fω∥Lq

t Lp
x

) 1
2
∥∥∥∥∥∥

Lβ
ω

= ∥eit∆fω∥
Lβ

ωḂ0
q,p,2

Since (q, p) satisfy (1.7.4), there exists 2 ≤ p0 ≤ p such that (q, p0) is a Strichartz pair,
i.e.

2
q

+ d

p0
− d

2 = 0

Since every Strichartz pair satisfies (1.7.3), we are able to immediately apply Proposition
1.7.3 with s = 0 to obtain the result.
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1.7 Almost sure bounds for the forcing term

It is then immediate that, for σ(d) sufficiently small, Fω ∈ L
1
σ
t L

2d
d−4σ
x almost surely.

To show that Fω ∈ L∞
t L

2d
d−2
x (R) for almost every ω requires an endpoint case of Proposition

1.7.3 allowing for q = ∞. We prove this as in [KMV19].

Lemma 1.7.5. Let s ≥ d−2
2d−1 , f ∈ Hs(Rd), fω its randomisation. Then for almost every

ω ∈ Ω it holds
eit∆fω ∈ L∞

t L
2d

d−2
x (Rd)

Proof. Let I ⊂ R with |I| = δ to be determined. Let t0, t ∈ I. Then for any N ∈ 2Z we
have

∥PNe
it∆fω∥

L
2d

d−2
x (Rd)

≤ ∥PNe
it∆fω(t0)∥

L
2d

d−2
x (Rd)

+ ∥∂tPNe
it∆fω∥

L1
t L

2d
d−2
x (I)

and averaging this over t0 ∈ I we find

∥PNe
it∆fω∥

L
2d

d−2
x (Rd)

≲δ−1∥PNe
it∆fω∥1, 2d

d−2 [I] + ∥∂tPNe
it∆fω∥1, 2d

d−2 [I]

≲δ− d−2
2d ∥PNe

it∆fω∥ 2d
d−2 , 2d

d−2 [R] + δ
d+2
2d ∥∂tPNe

it∆fω∥ 2d
d−2 , 2d

d−2 [R]

≲δ− d−2
2d ∥PNe

it∆fω∥ 2d
d−2 , 2d

d−2 [R] + δ
d+2
2d N2∥PNe

it∆fω∥ 2d
d−2 , 2d

d−2 [R]

≲N
d−2

d ∥PNe
it∆fω∥ 2d

d−2 , 2d
d−2 [R]

choosing δ = N−2 in the last line.

Averaging over ω we thus obtain, via the Littlewood-Paley inequality,

∥eit∆fω∥
Lβ

ωL∞
t L

2d
d−2
x (R)

≲

∥∥∥∥∥∥
(∑

N

∥PNe
it∆fω∥2

∞, 2d
d−2 [R]

) 1
2
∥∥∥∥∥∥

Lβ
ω

≲

∥∥∥∥∥∥
(∑

N

(N
d−2

d ∥PNe
it∆fω∥ 2d

d−2 , 2d
d−2

)2
) 1

2
∥∥∥∥∥∥

Lβ
ω

=∥eit∆fω∥
Lβ

ωḂ
d−2

d
2d

d−2 , 2d
d−2 ,2

Applying Proposition 1.7.3 with s = d−2
2d−1 , q = p = 2d

d−2 and p0 = 2d(2d−1)
2d2−3d+4 we see that

this is bounded by
√
β∥f∥Hs .

For the remaining bounds of (1.7.1)-(1.7.2), we prove another corollary of Proposition
1.7.3 to handle the terms involving ∇Fω.

Corollary 1.7.6. Let q, p ∈ [2,∞) satisfy (1.7.3), s > 1 −
(

d−1
2d−1

)
2
q ∈ (0, 1). Then for
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any f ∈ Hs(Rd), fω its randomisation, we have

∥∇eit∆fω∥Lq
t Lp

x
< ∞

for almost every ω ∈ Ω.

Proof. Setting p0 =
(

1
2 − 2

2d−1 · 1
q

)−1
∈ (2,∞) for q ̸= 2, and p0 = 4d−2

2d−3−δ for q = 2,
where δ is a small constant, the pair (q, p0) satisfies (1.7.3) and

2
q

+ d

p0
− d

2 =


(

d−1
2d−1

)
2
q for q ̸= 2

d−1
2d−1 − δ

2
d

2d−1 for q = 2

Applying Proposition 1.7.3 in combination with the Littlewood-Paley inequality for these
parameters yields the result, provided δ(d, p, s) is sufficiently small.

Applying this corollary with q = 2 we immediately obtain that

∇Fω ∈ L2
tL

4d−2
2d−3−σ
x ∩ L2

tL
2d(2d−1)

2d2−7d+4+dσ
x ∩ L2

tL
2d(d−2)

d(d−6)+16σ
x (R)

completing the proof of (1.7.1)-(1.7.2) since s > 1 −
(

d−1
2d−1

)
.

To conclude this section, we show that ∥Fω∥R(R) < ∞ almost everywhere.

Proposition 1.7.7. Let s > d2+6d−4
(2d−1)(d+2) . Then for almost every ω ∈ Ω we have

Fω ∈ R(R)

Proof. Recall

∥Fω∥R(R) := ∥Fω∥ 2(d+2)
d−2 ,

2d(d+2)
d2+4

(R) + ∥∇Fω∥ 2(d+2)
d−2 ,

2d(d+2)
d2+4

(R) + ∥Fω∥
Ḃ

4
d+2

d+2,
2(d+2)

d

(R)

For the first terms, we apply Corollaries 1.7.4 and 1.7.6 with q = 2(d+2)
d−2 , p = 2d(d+2)

d2+4 ,
which forces the lower bound

s >
d2 + 6d− 4

(2d− 1)(d+ 2)

For the final term, apply Proposition 1.7.3 with q = d + 2, p = 2(d+2)
d and p0 =

2(2d−1)(d+2)
2d2+3d−6 ∈ [2, p] to obtain

∥Fω∥
Lβ

ωḂ
4

d+2

d+2,
2(d+2)

d
,2

≲
√
β∥f∥Hs(Rd)

for any s > 2(3d−1)
(d+2)(2d−1) and β ≥ 1.
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1.7.2 Randomised L1
t estimate

In this section we will prove that, under the conditions of Theorem 1.7.1, we have

∇Fω ∈ L1
tL

2d
d−4
x ∩ L

d−2
d−2−4σ
t L

2d(d−2)
d(d−6)+16σ
x (R) (1.7.5)

almost surely. Since we have already proved that ∇Fω ∈ L2
tL

2d(d−2)
d(d−6)+16σ
x (R) almost surely,

for the third bound it is sufficient to prove that

∇Fω ∈ L1
tL

2d(d−2)
d(d−6)+16σ
x (R) (1.7.6)

We thus only need to find estimates in Lebesgue spaces with time exponent 1. Key to
such bounds are the following propositions which are generalisations of results of Spitz
[Spi21] to high dimensions. The proofs are the same as in the dimension 4 case so we do
not present them here, however we remark that it is for these results that the physical
space part of the randomisation of f is necessary.

The first result exploits the decay properties of the Schrödinger semi-group to achieve
bounds in spaces with low time integrability away from t = 0:

Proposition 1.7.8 (Proposition 3.6, [Spi21]). Let s ≥ 0 and consider q ∈ [1,∞),
p ∈ [2,∞) σ ≥ 0 such that

σ <
d

2 − 1
q

− d

p

Let f ∈ Hs(Rd) and fω be its randomisation as in (1.1.11). Then it holds

∥tσeit∆fω∥
Lβ

ωLq
t Ḃs

p,2([1,∞)) ≲d,q,p,σ

√
β∥f∥Hs(Rd)

for all β ≥ 1.

The gain in derivatives needed for (1.7.5) is obtained by interpolating this with the
improved Strichartz estimate of Proposition 1.7.3 to obtain the following:

Proposition 1.7.9 (Proposition 3.7, [Spi21]). Let s > d+1
2d−1 . Then for any f ∈ Hs(Rd),

fω its randomisation, it holds

∥∇eit∆fω∥
Lβ

ωL1
t L∞

x (R) ≲s,d

√
β∥f∥Hs(Rd)

for all β ≥ 1.

To prove (1.7.5), we need a more general version of this proposition allowing for a larger
range of exponents in the x-variable. The proof is a modification of the proof in [Spi21]
of the previous result.

Proposition 1.7.10. Let s > 4d−1
3(2d−1) , β ≥ 1. Then for any f ∈ Hs(Rd), fω its
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randomisation, it holds

∥∇eit∆fω∥
Lβ

ωL1
t Lr

x(R) ≲d,s,r

√
β∥f∥Hs(Rd) (1.7.7)

for any 2d
d−4 ≤ r ≤ ∞.

Proof. We will prove the case r = 2d
d−4 . This is sufficient by interpolation with Proposition

1.7.9.

Observe that we may decompose the left hand side of (1.7.7) as

∥∇eit∆fω∥
Lβ

ωL1
t L

2d
d−4
x (R)

≲ ∥eit∆fω∥
Lβ

ωL1
t Ḃ1

2d
d−4 ,2

(R)

≲∥eit∆fω∥
Lβ

ωL1
t Ḃ1

2d
d−4 ,2

(−1,1) + ∥eit∆fω∥
Lβ

ωL1
t Ḃ1

2d
d−4 ,2

(−∞,−1] + ∥eit∆fω∥
Lβ

ωL1
t Ḃ1

2d
d−4 ,2

[1,∞)

We first consider the term over (−1, 1). By Hölder’s inequality we have

∥eit∆fω∥
Lβ

ωL1
t Ḃ1

2d
d−4 ,2

(−1,1) ≲d ∥eit∆fω∥
Lβ

ωL2
t Ḃ1

2d
d−4 ,2

(−1,1) ≲d ∥eit∆fω∥
Lβ

ωḂ
ν(δ)+β(δ)
2, 2d

d−4 ,2
(−1,1)

where

β(δ) = d− 1
2d− 1 − δ

2
d

2d− 1 and ν(δ) = d

2d− 1 + δ

2
d

2d− 1

for some 0 < δ(d, s) ≪ 1 to be determined.

We may now apply Proposition 1.7.3 with q = 2, p0 = 4d−2
2d−3−δ , p = 2d

d−4 to obtain

∥eit∆fω∥
Lβ

ωL1
t Ḃ1

2d
d−4 ,2

(−1,1) ≲d

√
β∥f∥Hν(δ) ≲d

√
β∥f∥Hs

for δ(s, d) sufficiently small.

Next consider the term over [1,∞). By Hölder’s inequality for sequences we have

∥eit∆fω∥Ḃ1
2d

d−4 ,2
=
(∑

N

N2∥PNe
it∆fω∥2

2d
d−4

) 1
2

≤ ∥eit∆fω∥α
Ḃ1+γ

2d
d−4 ,2

∥eit∆fω∥1−α

Ḃ
1− αγ

1−α
2d

d−4 ,2

for α ∈ [0, 1), γ ∈ [0, 1−α
α ) to be determined.

Combining this with Hölder’s inequality in time, we have

∥eit∆fω∥
Lβ

ωL1
t Ḃ1

2d
d−4 ,2

[1,∞) ≲δ

∥∥∥∥∥∥∥t
1+δ

2 ∥eit∆fω∥α
Ḃ1+γ

2d
d−4 ,2

∥eit∆fω∥1−α

Ḃ
1− αγ

1−α
2d

d−4 ,2

∥∥∥∥∥∥∥
Lβ

ωL2
t [1,∞)
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≲δ∥eit∆fω∥α
Lβ

ωL2
t Ḃ1+γ

2d
d−4 ,2

[1,∞)∥t
1+δ

2(1−α) eit∆fω∥1−α

Lβ
ωL2

t Ḃ
1− αγ

1−α
2d

d−4 ,2
[1,∞)

(1.7.8)

We will bound the first term of (1.7.8) using the randomisation-improved Strichartz
estimate from Proposition 1.7.3, and the second term using Proposition 1.7.8. Fix

α = 2
3 − δ and γ = d− 1

3(2d− 1)

(chosen to optimise the gain in derivatives in what follows). Applying Proposition 1.7.3
with q = 2, p0 = 4d−2

2d−3−δ and p = 2d
d−4 we obtain, for β(δ) and ν(δ) as before,

∥eit∆fω∥
Lβ

ωL2
t Ḃ1+γ

2d
d−4 ,2

[1,∞) ≲d ∥eit∆fω∥
Lβ

ωḂ
γ+ν(δ)+β(δ)
2, 2d

d−4 ,2
[1,∞)

≲d,δ

√
β∥f∥Hγ+ν(δ)

≲d,δ

√
β∥f∥Hs

since γ + ν(δ) = 4d−1
3(2d−1) + δ

2
d

2d−1 < s for δ sufficiently small.

For the second term we apply Proposition 1.7.8 with q = 2, p = 2d
d−4 , σ = 1+δ

2(1−α) = 3+3δ
2+6δ

to find

∥t
1+δ

2(1−α) eit∆fω∥
Lβ

ωL2
t Ḃ

1− αγ
1−α

2d
d−4 ,2

[1,∞)
≲
√
β∥f∥Hs

since 1 − αγ
1−α = 4d−1

3(2d−1) +O(δ) < s for δ sufficiently small. Returning to (1.7.8) we have

∥eit∆fω∥
Lβ

ωL1
t Ḃ1

2d
d−4 ,2

[1,∞) ≲d

√
β∥f∥Hs

Treating the term over (−∞,−1] in the same way we obtain the desired result.

The bounds (1.7.5) (via (1.7.6)) are now immediate, observing that r = 2d(d−2)
d(d−6)+16σ is

greater than 2d
d−4 for σ(d) sufficiently small.
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Appendix

1.A Calculation of energy increment (1.6.5)-(1.6.6)

Proposition 1.A.1. Let vn ∈ C1(R, L2) ∩C(R, H2) solve (1.6.2) for some Fn satisfying
the conditions of Theorem 1.6.1. Then for any T1, T2 ∈ R it holds

En(vn(T2)) − En(vn(T1)) = −1
2

[∫
Rd
φn(|Fn + vn|2) − φn(|vn|2) − φn(|Fn|2)dx

]T2

T1

− Im
∫ T2

T1

∫
Rd

∇Fn · ∇(gn(Fn + vn) − gn(Fn))dxdt

Before proving this proposition, we recall without proof the following useful fact:

Let X be a Banach space. Then any f ∈ C1(R, X) is in fact Fréchet differentiable from
R to X with Fréchet derivative ∂tf(t, ·) (see, for example, Section 1.3 [Caz03]).4

We will also use the following result to differentiate the nonlinearity:

Lemma 1.A.2. Let ψ ∈ C2(C,C) with bounded second derivatives. Suppose also
ψ(w) ∈ L1(Rd) for all w ∈ L2(Rd). Then the map

H : w 7→
∫
Rd
ψ(w(x))dx

is Fréchet differentiable from L2(Rd) to R with derivative

DH|w(h) =
∫
Rd

(h∂zψ(w) + h̄∂z̄ψ(w))dx

Applying this lemma with ψ(z) = φn(|z|2) and using the chain rule we observe that for
any v ∈ C1(R, L2(Rd)) it holds

∂t

∫
Rd
φn(|v|2)dx = 2Re

∫
Rd
∂tv gn(v)dx (1.A.1)

4C1(R, X) is defined anaologously to 1.1.15.
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We can now prove Proposition 1.A.1.

Proof of Proposition 1.A.1. We split the energy into a kinetic and a potential term:

KE(v) := 1
2⟨∇v,∇v⟩L2 and Gn(u) := 1

2

∫
Rd
φn(|u|2)dx

The map KE is (Fréchet) differentiable from H1(Rd) to R, thus if we further suppose
that v ∈ C1(R, H1) we have

d

dt
KE(v(t)) = Re

∫
Rd

∇v∇(∂tv)dx = −Re
∫
Rd
∂tv̄∆vdx

and the same formula holds for vn ∈ C1(R, L2(Rd)) ∩ C(R, H2(Rd)) by approximation.

Likewise, by (1.A.1), we have

d

dt
Gn(vn(t)) = Re

∫
Rd
∂tvngn(vn)dx

Combining these results and using that vn satisfies equation (1.6.2) we obtain

En(vn(T2)) − En(vn(T1)) = Re
∫ T2

T1

∫
Rd
∂tvn[−∆vn + gn(vn)]dxdt

= − Re
∫ T2

T1

∫
Rd
∂tvn[gn(Fn + vn) − gn(vn)]dxdt

= − Re
∫ T2

T1

∫
Rd

(∂t(Fn + vn)gn(Fn + vn) − ∂tvngn(vn) − ∂tFngn(Fn))dxdt

+ Re
∫ T2

T1

∫
Rd
∂tFn(gn(Fn + vn) − gn(Fn))dxdt

It then remains to use (1.A.1) to rewrite the first integral above, and ∂tFn = i∆Fn for
the second, to obtain

En(vn(T2)) − En(vn(T1))

= −1
2

∫ T2

T1
∂t

∫
Rd
φn(|Fn + vn|2) − φn(|vn|2) − φn(|Fn|2)dxdt

+ Im
∫ T2

T1

∫
Rd

∆Fn(gn(Fn + vn) − gn(Fn))dxdt

= −1
2

[∫
Rd
φn(|Fn + vn|2) − φn(|vn|2) − φn(|Fn|2)dx

]T2

T1

− Im
∫ T2

T1

∫
Rd

∇Fn · ∇(gn(Fn + vn) − gn(Fn))dxdt

where we used the fundamental theorem of calculus and integrated by parts to obtain
the final equality.
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1.B Justification of Remark 1.1.6

Here we will outline the proof of the following statement claimed in Remark 1.1.6.

Lemma 1.B.1. Let 0 < s < 1. Let f ∈ L2(Rd) and fω denote its randomisation (1.1.11).
Then if the probability space (Ω,A,P) and the random variables XM

i,j,k,l : Ω → R are as
described in Remark 1.1.6, we have that f /∈ Hs(Rd) implies fω /∈ Hs(Rd) for almost
every ω ∈ Ω.

We will follow the method of [BT08] (Appendix B), using the almost-orthogonality of
the projections Pj to estimate∫

Ω1×Ω2×Ω3
e−∥fω∥2

HsdP(ω1, ω2, ω3)

≤
∫

Ω2×Ω3

∫
Ω1
e

−C
∑

j
|Xj(ω1)|2∥Pj

∑
k,l,M,i

XM
k,l(ω2)Xi(ω3)fM,i

k,l
∥2

HsdP(ω1)dP(ω2, ω3)

≤
∫

Ω2×Ω3
e

−C∥
∑

k,l,M
XM

k,l(ω2)
∑

i
Xi(ω3)fM,i

k,l
∥2

HsdP(ω2, ω3)

where we used that the random variables Xj take values in {±1}.

We can treat the integral over Ω2 similarly to find∫
Ω1×Ω2×Ω3

e−∥fω∥2
HsdP(ω1, ω2, ω3) ≤

∫
Ω3
e−C∥

∑
i

Xi(ω3)φif∥2
HsdP(ω3)

In order to repeat the argument on Ω3 and complete the proof, it remains to prove

∥f∥2
Hs ≲s,d

∑
i

∥φif∥2
Hs ≲s,d ∥

∑
i

Xi(ω3)φif∥2
Hs (1.B.1)

We will only prove the second inequality, the first being similar. Denote fi := Xi(ω)f =
±f and write

∥φif∥ℓ2
i Hs

x(Rd) = ∥φifi∥ℓ2
i Hs

x(Rd) ≤ ∥P≤M0φifi∥ℓ2
i Hs

x(Rd) + ∥P>M0φifi∥ℓ2
i Hs

x(Rd)

for some M0 ≥ 1. We first handle the low frequency contributions using the almost-
orthogonality of the (φi)i:

∥P≤M0φifi∥ℓ2
i Hs

x
≲ ⟨M0⟩s∥φifi∥ℓ2

i L2
x
≲ ⟨M0⟩s∥

∑
i

φifi∥L2

For the high frequency contributions we have to study the commutators [PM , φi]. We
have

∥P>M0φifi∥ℓ2
i Hs

x
≲∥M sPMφifi∥ℓ2

M>M0
ℓ2

i L2
x
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≲∥M sφiPMfi∥ℓ2
M>M0

ℓ2
i L2

x
+ ∥M s[PM , φi]fi∥ℓ2

M>M0
ℓ2

i L2
x︸ ︷︷ ︸

(A)

≲∥M s
∑

i

φiPMfi∥ℓ2
M>M0

L2
x

+ (A)

≲∥P>M0

∑
i

φifi∥Hs
x

+ ∥M s
∑

i

[φi, PM ]fi∥ℓ2
M>M0

L2
x︸ ︷︷ ︸

(B)

+(A)

≲∥
∑

i

φifi∥Hs
x

+ (A) + (B)

so it remains to bound (A) and (B).

Let’s study (A) first. Since the (Xi)i take values in {±1} we have that |[PM , φi]fi| =
|[PM , φi]f | so

(A) = ∥M s[PM , φi]f∥ℓ2
M>M0

ℓ2
i L2

x

≲ ∥M s[PM , φi]φ̃if∥ℓ2
M>M0

ℓ2
i L2

x
+ ∥M sφiPM

∑
j:|j−i|>8

√
d

φjf∥ℓ2
M>M0

ℓ2
i L2

x
(1.B.2)

for φ̃i = ∑
j:|j−i|≤8

√
d φj , so that φ̃iφi = 1. To handle the first term, we will use the

bound

∥[PM , φi]g∥2 ≲d M
−1∥∇φi∥∞∥g∥2 ≲d M

−1∥g∥2 (1.B.3)

which follows from writing the frequency projection as a convolution operator. For the
second term we will use a slightly stronger form of Lemma 3.2 from [Spi21], holding for
any D > 0, |i− j| ≥ 8

√
d:

∥φiPMφjg∥2 ≲d,D M−D|i− j|−D∥φjg∥2 (1.B.4)

With these results in hand, we are able to bound (A). Using (1.B.3) on the first term
and the triangle inequality followed by (1.B.4) on the second term we obtain

(A) ≲ ∥M s−1φ̃if∥ℓ2
M>M0

ℓ2
i L2

x
+ ∥M s−D|i− j|−Dφjf∥ℓ2

M>M0
ℓ2

i ℓ1
j:|j−i|>8

√
d
L2

x

≲M s−1
0 ∥f∥2 +M s−D

0

∥∥∥∥∥|i− j|−D/2∥ℓ2
j:|j−i|>8

√
d

· ∥|i− j|−D/2φjf∥ℓ2
j:|j−i|>8

√
d
L2

x

∥∥∥∥
ℓ2

i

by the Cauchy-Schwarz inequality. For D sufficiently large, ∥|i − j|−D/2∥ℓ2
j:|j−i|>8

√
d

is
finite and we may swap the sums over i and j in the second term to obtain

(A) ≲M s−1
0 ∥f∥2 +M s−D

0 ∥|i− j|−D/2φjf∥ℓ2
j ℓ2

i:|i−j|>8
√

d
L2

x

≲M s−1
0 ∥f∥L2(Rd)
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We now turn to
(B) = ∥M s

∑
i

[PM , φi]fi∥ℓ2
M>M0

L2
x

This time write
[PM , φi] = φ̃i[PM , φi] + (1 − φ̃i)PMφi

We have

∥M s
∑

i

φ̃i[PM , φi]fi∥ℓ2
M>M0

L2
x

≤∥M sφ̃i[PM , φi]fi∥ℓ2
M>M0

ℓ2
i L2

x
≤ (A) ≲M s−1

0 ∥f∥2

since the φ̃i are bounded. On the other hand, using that fi = Xi(ω)f , we have

∥M s
∑

i

(1 − φ̃i)PMφifi∥ℓ2
M>M0

L2
x

=∥M s
∑

i

∑
j:|j−i|>8

√
d

φjPMφif∥ℓ2
M>M0

L2
x

=∥
∑

j

φj ·M sPM (
∑

i:|i−j|>8
√

d

φi)f∥ℓ2
M>M0

L2
x

≲∥φj ·M sPM (
∑

i:|i−j|>8
√

d

φi)f∥ℓ2
M>M0

ℓ2
j L2

x

by the almost-orthogonality of the projections φj . Using the triangle inequality followed
by the estimate (1.B.4), we can bound the previous line by

∥M s−D|i− j|−Dφif∥ℓ2
M>M0

ℓ2
j ℓ1

i:|i−j|>8
√

d
L2

x

≲M s−D
0 ∥|i− j|−Dφif∥ℓ2

j ℓ1
i:|i−j|>8

√
d
L2

x

≲M s−D
0 ∥∥|i− j|−D/2∥ℓ2

i:|i−j|>8
√

d
· ∥|i− j|−D/2φif∥ℓ2

i:|i−j|>8
√

d
L2

x
∥ℓ2

j

≲M s−D
0 ∥|i− j|−D/2φif∥ℓ2

i ℓ2
j:|j−i|>8

√
d
L2

x
≲M s−1

0 ∥f∥2

since D,M0 ≥ 1. This completes the estimate for (B).

Combining the estimates we have just found with the bound on the low frequency
contributions we conclude that

∥φif∥ℓ2
i Hs

x(Rd) ≲⟨M0⟩s∥
∑

i

φifi∥L2(Rd) + ∥
∑

i

φifi∥Hs(Rd) +M s−1
0 ∥f∥L2(Rd)

≲(1 + ⟨M0⟩s)∥
∑

i

Xi(ω)φif∥Hs(Rd) +M s−1
0 ∥φif∥ℓ2

i L2
x(Rd)

Now, since ∥φif∥ℓ2
i L2

x(Rd) ≲ ∥φif∥ℓ2
i Hs

x(Rd) and s < 1, if we take M0 sufficiently large
(depending only on s and d) we may move this term to the left hand side to obtain

(∑
i

∥φif∥2
Hs(Rd)

) 1
2

≲s,d ∥
∑

i

Xi(ω)φif∥Hs(Rd)
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which completes the proof of the second inequality in (1.B.1).
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2 Global Solutions to the 3D
Half-Wave Maps Equation with
Angular Regularity.
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Chapter 2. Global Solutions to the 3D Half-Wave Maps Equation with
Angular Regularity.

The work of this chapter is taken from the preprint [Mar24], submitted to Ars Inveniendi
Analytica.

2.1 Introduction

This chapter concerns the global existence of solutions to the three dimensional half-wave
maps equation ∂tϕ = ϕ× (−∆)1/2ϕ

ϕ(0, ·) = ϕ0
(ϕ : R × R3 → S2) (2.1.1)

in the critical Besov space Ḃ3/2
2,1 , partially generalising known results in higher dimensions

(see Theorem 2.1.1 for the precise statement). The space Ḃ3/2
2,1 is critical in the sense that

it is invariant with respect to the scaling

ϕ(t, x) 7→ ϕλ(t, x) := ϕ(λt, λx).

As discussed in the main introduction (Section 0.0.2), the half-wave maps equation is
known to be globally well-posed for small critical Besov data in high dimensions, thanks
to Krieger-Sire [KS17] for d ≥ 5 and Krieger-Kiesenhofer [KK21] for d = 4. We recall
the formulation of (2.1.1) as a semilinear wave equation (Section 2, [KS17]),

(∂2
t − ∆)ϕ = −ϕ ∂αϕT∂αϕ

+ Πϕ⊥ [((−∆)1/2ϕ)(ϕ · (−∆)1/2ϕ)]
+ ϕ× [(−∆)1/2(ϕ× (−∆)1/2ϕ) − (ϕ× (−∆)ϕ)] (2.1.2)

where the first term in the forcing corresponds to that of the wave maps equation, and
the whole nonlinearity can (very loosely speaking) be written as

ϕ∇ϕ∇ϕ.

We will now briefly discuss the difficulties in extending the methods of Krieger and Sire
to three dimensions. Krieger and Sire used dyadic versions of the Xs,θ spaces to handle
the wave maps term in (2.1.2), in an argument relying heavily on the null structure.
When it comes to the new half-wave maps terms, it was observed that there is enough
geometric structure (see (2.1.13)) to close the argument in the Strichartz spaces Lp

tL
q
x,

where
2
p

+ d− 1
q

≤ d− 1
2 , d ≥ 2, (d, p, q) ̸= (3, 2,∞).

Alas, this range becomes increasingly restrictive in lower dimensions, and already in
dimension 4 we lose the L2

tL
4
x space which was used frequently in [KS17]. This was

overcome in [KK21] using a refinement of the methods of [KS17] and the results were
extended to d = 4. In three dimensions, the range of available estimates becomes smaller
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2.1 Introduction

still, and in particular we lose the endpoint L2
tL

∞
x [Tao98]. This space plays an essential

role in the arguments of [KS17, KK21] and hence it is not clear how to generalise these
methods to d = 3. On the other hand, if we restrict to radial data, we may appeal to the
wider range of radially admissible Strichartz spaces, with

1
p

+ d− 1
q

<
d− 1

2 .

We thus recover the L2
tL

∞
x space and the methods of [KK21] can be straightforwardly

applied. The standard and radial Strichartz pairs are displayed in Figure 2.1.1.

1
p

1
q

1
2

1
2

(1
4 ,

1
2)

Figure 2.1.1: The admissible Strichartz pairs (p, q) in d = 3. The dark gray region depicts
the standard admissible pairs, and the light gray region the extended range of radially
admissible pairs. The endpoint L2

tL
∞
x is radially but not standard admissible.

In this chapter we will make the weaker assumption that the data is not radial but merely
has some angular regularity. In this setting Sterbenz [Ste05] proved modified Strichartz
estimates in the full range of radially admissible spaces which we will exploit to obtain
the following “weak” small data-global wellposedness result. We introduce the notation

∥⟨Ω⟩u∥ ≡ ∥u∥ + max
i,j

∥Ωiju∥ (2.1.3)

for any norm ∥ · ∥ and the angular derivatives Ωij , see (2.1.7). Here and throughout,
∥⟨Ω⟩(x · ∇)ϕ[0]∥ is taken to mean maxk,l=1,2,3 ∥⟨Ω⟩(xk∇lϕ[0])∥.

Theorem 2.1.1. Let ϕ0 : R3 → S2 be a smooth initial datum which is constant outside a
compact set. There exists 0 < ϵ < 1 such that whenever

∥⟨Ω⟩ϕ0∥
Ḃ

3/2
2,1

+ ∥⟨Ω⟩(x · ∇)ϕ0∥
Ḃ

3/2
2,1

< ϵ (2.1.4)

the problem (2.1.1) admits a global smooth solution. Moreover for any s sufficiently close
to 3/2 it holds

∥ϕ(t)∥Ḃs
2,1
≲s ∥⟨Ω⟩ϕ0∥Ḃs

2,1
+ ∥⟨Ω⟩(x · ∇)ϕ0∥Ḃs

2,1
(2.1.5)

for all t ∈ R.
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The slightly unusual assumptions on the initial data come from our use of commuting
vector fields, to be discussed shortly.

We now give some more details on the proof of Theorem 2.1.1. As we have discussed, in
low dimensions the analysis of the wave maps equation becomes increasingly reliant on
the null structure, and the iteration argument of Tataru [Tat01] involves the development
of highly tailored function spaces. We therefore turn to Tao’s approach for studying
wave maps in the critical Sobolev space [Tao01a] which works entirely in the framework
of Strichartz spaces and does not rely so essentially on the null structure. The cost is
that we can only obtain a weak wellposedness result as in Theorem 2.1.1.

The argument of [Tao01a] relies on a carefully chosen coordinate transformation which
cancels out the most difficult frequency interactions in the nonlinearity. These are the
(lowest)∇(low)∇(high) interactions in which one of the differentiated factors appears at
low frequency, but not as low as the non-differentiated factor. Admitting this cancellation,
the principal difficulty of the present work is dealing with interactions of the form

(low)∇(lowest)∇(high). (2.1.6)

Tao controlled such interactions by placing the terms into L2
tL

∞
x , L2

tL
∞
x and L∞

t L
2
x

respectively, with no flexibility in the estimate. As we have mentioned, the space L2
tL

∞
x

is no longer available to us. To overcome this we incorporate into our function spaces a
range of commuting vector fields,

Ln := xn∂t + t∂xn and Ωij := xi∂xj − xj∂xi (n, i, j = 1, 2, 3), (2.1.7)

first introduced in the context of global regularity for nonlinear wave equations in
[Kla85].1 By incorporating these into the Strichartz norms, we are able to develop
spacetime estimates for terms of the form (2.1.6), gaining decay in time via the Lorentz
boosts and in space via the heuristic

ϕ(x) ≃ 1
Ωij

Ωijϕ(x) ≃ 1
xiξj − xjξi

Ωijϕ(x) ≃ 1
|xij ||ξij | sin(∠(xij , ξij))Ωijϕ(x) (2.1.8)

Here x, ξ denote the physical and Fourier variables respectively, and xij , ξij their
projections onto the i− j plane. Assuming ϕ has angular regularity and can absorb the
derivative Ωij , we therefore gain decay in x whenever the Fourier and physical variables
have some angular separation (see Lemma 2.5.2). In practice, we implement this via a
simultaneous decomposition of the trilinear term (2.1.6) on angular caps in physical and
Fourier space. See Lemma 2.5.3 for the detailed argument.

We remark that it is the use of commuting vector fields which limits our result to Besov

1Unlike in [Kla85], our method does not rely on energy estimates so we are able to work at low
regularity. Note also that in three dimensions Klainerman’s vector field method requires the nonlinearity
to satisfy the null condition [Kla86], which is not satisfied by (2.1.2).
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rather than Sobolev spaces. The issue is that we occasionally need bounds such as

∥Ωijϕ∥L∞
t L∞

x
, ∥Lnϕ∥L∞

t L∞
x
≲ 1,

which in the absence of the commuting vector fields would come for free from the fact
that the solution lies on the sphere.

Before discussing our methods further, we note here the paper [Ste07] of Sterbenz
regarding global regularity of the (4 + 1)-dimensional Yang-Mills equation in Lorentz
gauge, which also uses an angular regularity assumption to exploit the improved estimates
of [Ste05]. The argument there is based on measuring angular concentration phenomena
and avoids the use of the Lorentz boosts in order to recover estimates in Xs,θ-based
spaces. We also refer to [Hon22] for results on nonlinear wave equations and [HKO24] in
the context of a supercritical nonlinear Schrödinger equation.

We now give a brief outline of the main argument and structure of this chapter. We
will prove Theorem 2.1.1 via the following small data-global existence result for the
differentiated equation (2.1.2). Denote ϕ[t] ≡ (ϕ(t), ∂tϕ(t)).

Theorem 2.1.2. Let ϕ[0] := (ϕ0, ϕ1) : R3 → S2 × TS2 be a smooth initial data pair
which is constant outside a compact set. There exists 0 < ϵ < 1 such that whenever

∥⟨Ω⟩ϕ[0]∥
Ḃ

3/2
2,1 ×Ḃ

1/2
2,1

+ ∥⟨Ω⟩(x · ∇)ϕ[0]∥
Ḃ

3/2
2,1 ×Ḃ

1/2
2,1

< ϵ (2.1.9)

the equation (2.1.2) with data ϕ[0] admits a global smooth solution ϕ[t] with

∥ϕ[t]∥Ḃs
2,1×Ḃs−1

2,1
≲s ∥⟨Ω⟩ϕ[0]∥Ḃs

2,1×Ḃs−1
2,1

+ ∥⟨Ω⟩(x · ∇)ϕ[0]∥Ḃs
2,1×Ḃs−1

2,1
(2.1.10)

If moreover ϕ1 = ϕ0 × (−∆)1/2ϕ0, the global solution solves the half-wave maps equation
(2.1.1).

Note that in the case ϕ1 = ϕ0 × (−∆)1/2ϕ0, the smallness assumption on ϕ1 in (2.1.9) is
inherited from that on ϕ0 so this theorem implies Theorem 2.1.1.

The starting point for our proof is the following local existence result, whose proof is
postponed to Section 2.10 so as not to distract from the main argument.

Theorem 2.1.3. There exists ν > 0 such that for any 3/2 < s < 3/2 + ν the following
holds. Let ϕ[0] ∈ Bs

2,1 ×Bs−1
2,1 be a smooth initial data taking values in S2 × TS2, equal to
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a constant p outside a compact set.2,3 Suppose further that

∥⟨Ω⟩ϕ[0]∥
Ḃ

3/2
2,1 ×Ḃ

1/2
2,1

+ ∥⟨Ω⟩(x · ∇)ϕ[0]∥
Ḃ

3/2
2,1 ×Ḃ

1/2
2,1

< ϵ

for some ϵ sufficiently small. Then there exists T > 0 depending only on ∥ϕ[0]∥Bs
2,1×Bs−1

2,1

and a smooth solution ϕ ∈ C([0, T ], Bs
2,1)∩C1([0, T ], Bs−1

2,1 ) to (2.1.2). Moreover, ϕ(t) ∈ S2

for all t ∈ [0, T ].

If we further have ϕ1 = ϕ0 × (−∆)1/2ϕ0, this solution solves the half-wave maps equation
(2.1.1) on its maximal interval of existence.

Remark 2.1.4. Note the unusual assumption of smallness in a critical norm. This
restriction appears somewhat artificial since it is only needed to keep the Picard iterates
away from the origin in order to control the projection operator Πϕ⊥ , which is only a
feature of the differentiated equation.

Returning to the main argument, we see from Theorem 2.1.3 that it suffices to find
uniform bounds on the solution in subcritical Besov spaces. Following Tao’s method of
frequency envelopes, we will show (in Section 2.3) that this reduces to proving a priori
estimates for the solution in a certain critical space S (defined in Section 2.2.2). Since
we are working in a scale invariant setting, it is sufficient to bound the solution at unit
frequency, P0ϕ =: ψ. Then by straightforward linear estimates (Section 2.2.2), we find
that it effectively remains to bound

∥⟨Ω⟩L□ψ∥L1
t L2

x

Accordingly we will write F = error if ∥⟨Ω⟩LF∥L1
t L2

x
is suitably small.4

In Section 2.5 we will show that the nonlocal half-wave maps terms in equation (2.1.2)
are in fact entirely of the form error, as will be discussed further at the end of the
introduction, so it remains to consider the wave maps contributions to the nonlinearity.
We first (in Section 2.4) discard the frequency interactions in which the non-differentiated
factor of ϕ appears at high frequency, which can be dealt with via standard Strichartz
estimates. This reduces the equation to5

□ψ = −P0(2ϕ≤−10∂αϕ
T
≤−10∂

αϕ>−10 + ϕ≤−10∂αϕ
T
>−10∂

αϕ>−10) + error

(where we are now more precise about the meaning of a “low” and “high” frequency
2Since ϕ lies on S2, when we say e.g. ϕ ∈ Bs

2,1 we really mean that ϕ− p ∈ Bs
2,1 for p the limit of the

initial data at infinity, which is viewed as fixed throughout the chapter.
3This assumption is far stronger than necessary, and not preserved under the flow (since the equation

is nonlocal). A more suitable assumption for our purposes is actually that ϕ[0], Lnϕ[0] and Ωijϕ[0]
lie in Bs′

2,1 × Bs′−1
2,1 for every s′ ≥ 1. This property is preserved by the flow (as can be seen by a

persistence-of-regularity type argument) and thus leads to a blow-up criterion.
4The actual definition of an error term is slightly modified in the main argument for technical reasons,

however the reader is advised to ignore this for the time being.
5With the whole term localised to unit frequency, (low)∇(low)∇(low) interactions are impossible.
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term). In Section 2.6 we discard the (low)∇(high)∇(high) interactions via a normal form
transformation using the null structure. We similarly pass the localisation P0 through
the low frequency factors in the remaining forcing term and achieve

□Φ = −2ϕ≤−10∂αϕ
T
≤−10∂

αψ + error

for the transformed variable Φ, so that only the (low)∇(low)∇(high) wave maps interac-
tions remain. We handle such terms using Tao’s gauge transformation in Sections 2.7
and 2.8. Precisely, we construct a matrix field U satisfying

∂αU ≃ −(ϕ≤−10∂αϕ
T
≤−10)U (2.1.11)

such that upon transforming Φ to w := U−1Φ, the remaining forcing terms cancel out
and we find

□w = error

We have to be a little careful since at this point we are working with Φ rather than ψ,
however this issue is minor.

In showing (2.1.11) (Section 2.8), the (lowest)∇(low)∇(high) terms cancel out exactly,
and we finally have to deal with the terms of the form

(low)∇(lowest)∇(high),

for which we invoke the arguments involving commuting vector fields already discussed.

Remark 2.1.5. We are able to slightly simplify the gauge transformation from [Tao01a]
due to our working in Besov spaces. In particular, we do not need to antisymmetrise the
equation in order to obtain almost-orthogonality of the transformation matrix, which is
instead automatically a perturbation of the identity.

It remains to discuss how to control the nonlocal terms appearing in the half-wave maps
equation. This is the content of Section 2.5. The main difference from the wave maps
terms arises in studying interactions which are (morally speaking) of type

(low)∇(high)∇(high) or (lowest)∇(low)∇(high) (2.1.12)

The analogous wave maps source terms were discarded by the normal form and gauge
transformations respectively, both of which relied on the structure of the nonlinearity so
can no longer be applied. To compensate this we use that the remaining terms of (2.1.2)
involve interactions which are loosely speaking of the form

ϕ · ∇ϕ, (2.1.13)

which vanishes for functions on the sphere. As in [KS17], we exploit this cancellation via
the following identity which allows us to flip the low frequency factors in (2.1.12) to high
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frequency, and thus appeal to Strichartz-based methods:

Pk(ϕ<k−10 · ϕ≥k−10) = −1
2Pk(ϕ≥k−10 · ϕ≥k−10) (GeId)

This is a straightforward consequence of the property Pk(ϕ ·ϕ) = Pk(1) = 0. Besides this,
the half-wave maps terms present various technical complications due to the nonlocal
nature of the operator (−∆)1/2. This is a particular issue when working with the
commuting vector fields which are non-translation invariant.

2.1.1 Notation

We emphasise again that we adopt a different notation from the previous chapter and
denote

Pkϕ ≡ ϕk := F−1(χk(ξ)ϕ̂(ξ)) (2.1.14)

where χk corresponds to the function χ2k from (0.1.4). Again χ̃k(ξ) = ∑k+C
j=k−C χj(ξ),

P̃kϕ ≡ ϕ∼k = F−1(χ̃k(ξ)ϕ̂(ξ)) and so on. To reduce notation, we will often abusively
write j ≪ k to mean j ≤ k − C, of course this really means 2j ≪ 2k. We have similar
interpretations for j ∼ k, j ≲ k etc..

Our argument is based in the homogeneous ℓ1 Besov spaces with norm

∥ϕ∥Ḃs
2,1

:=
∑
k∈Z

2sk∥ϕk∥L2
x

(2.1.15)

or in the subcritical case (for the proof of local wellposedness) the inhomogeneous spaces

∥ϕ∥Bs
2,1

:=
∑
k>0

2sk∥ϕk∥L2
x

+ ∥P≤0ϕ∥L2
x

In addition to the usual Littlewood-Paley cut-offs we will also need dyadic cut-offs in
physical space which we denote φλ(x), λ ∈ Z (again this inconsistent with the notation of
the previous chapter). Here φλ(x) ≡ χλ(x) but we adopt a different notation in order to
emphasise that the cut-offs are acting in different spaces. We will also use notation such
as φ≥λ := ∑

λ′≥λ φλ′ , and denote φλ(t) for the analogous cut-offs in the time variable.

Throughout M should always be interpreted as a very large constant.

2.2 Preliminaries

2.2.1 Angular Derivatives and Commuting Vector Fields

In our argument the Lorentz boosts, Ln, and the angular derivative operators, Ωij ,
defined in (2.1.7) will play a key role. Observe that these operators obey the Leibniz
rule. We will also need the Riesz transforms Rn defined by F(Rnϕ)(ξ) = ξn

|ξ|F(ϕ)(ξ)
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(n = 1, 2, 3), which we recall are bounded on Lp
x for 1 < p < ∞.

One may readily verify that the operators Ln and Ωij commute with the wave operator
□, and satisfy the relations

[L, ∂] = ∂, [L, (−∆)1/2] = R∂t, [L,Ω] = L (2.2.1)

and

[Ω, R] = R, [Ω, ∂] = ∂ (2.2.2)

Here L, R, Ω, and ∂ denote linear combinations of the identity with the operators
(Ln)n=1,2,3, (Rn)n=1,2,3, (Ωij)i,j=1,2,3, (∂α)α=0,1,2,3 respectively. Note that Ω commutes
with any radial Fourier multiplier such as (−∆)1/2, thanks to the property F(Ωijϕ) =
ΩijF(ϕ).

Unfortunately, there is a non-trivial commutation relation between the Ln and the
Littlewood-Paley operators Pj , which will be a source of some irritation in what follows.
Precisely, let Pj denote a generic operator corresponding to a (not necessarily radial)
smooth multiplier χ(P)(2−jξ), with suppχ(P) ⊂ suppχ. It holds

[Ln,Pj ] = 2−j∂tPj and [Ω,Pj ] = Pj (2.2.3)

for potentially different operators Pj of the same form on the right hand side.

We now introduce the angular Sobolev spaces which will play an important role in our
proof, using the construction in [Ste05].

For a function f on R3, we define fractional angular derivatives |Ω|s as follows. First
decompose f into a sum of spherical harmonics:6

f(r, θ) =
∞∑

l=0

Nl∑
i=1

ci
l(r)Y i

l (θ), ci
l(r) :=

∫
S2
f(r, θ)Y i

l(θ)dθ (2.2.4)

Since the spherical harmonics are eigenfunctions of the spherical Laplacian ∆sph,

∆sphY
i

l = −l(l + 1)Y i
l , l ≥ 0, i = 0, . . . , Nl,

it follows that a suitable definition of |Ω|sf is given by

|Ω|sf(r, θ) :=
∞∑

l=0

Nl∑
i=1

[l(l + 1)]s/2ci
l(r)Y i

l (θ)

so that |Ω|2 = −∆sph. Note that this vanishes whenever f is a radial function.
6Recall that we use the different notation (Y i

l )i=1,...,Nl for an orthonormal basis of the space of
spherical harmonics of degree l.
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Furthermore, since the decomposition into spherical harmonics is preserved by the wave
evolution (see (0.1.15)), it also follows that the fractional angular derivatives commute
with the free evolution operators:

|Ω|s(e±it
√

−∆f) = e±it
√

−∆(|Ω|sf)

By incorporating angular regularity into our function spaces, we are able to make use of
the following generalised Strichartz estimate which follows from the work of [Ste05].

Theorem 2.2.1 (n = 3 Strichartz estimates with angular regularity). Let (p, q) be a
pair which is radially admissible but not standard wave admissible:

1
p

+ 2
q
< 1, 1

p
+ 1
q
>

1
2

Suppose further that p ̸= 2. Then for all η > 0 sufficiently small it holds

∥e±it
√

−∆Pkf∥Lp
t Lq

x
≲η 2( 3

2 − 1
p

− 3
q

)k(∥Pkf∥L2
x

+ ∥|Ω|s(p,q)Pkf∥L2
x
)

for any function f such that the right hand side is finite. Here

s(p, q) := 2
p

+ 2
q

− 1 + ϵ(p, q; η)

where ϵ(p, q; η) → 0 as η → 0. Note that s(p, q) ≤ 1
2 for (p, q) as given and η sufficiently

small.

Proof. By scaling it suffices to consider k = 0. We use the notation of [Ste05] and direct
the reader to that work for further details. In particular, let θ : [0,∞) → [0, 1] be a smooth
function equal to 1 on [1, 2] and vanishing outside [1/2, 4], and set θN (l) := θ(N−1l) for
N ∈ 2N. For the decomposition of f as in (2.2.4) we then denote

fN :=
∞∑

l=0

Nl∑
i=1

θN (l)ci
l(r)Y i

l (θ) (2.2.5)

Let η > 0. By Proposition 3.4 in [Ste05] we find

∥e±it
√

−∆P0fN ∥L2
t L

rη
x
≲η N

1
2 +η∥P0fN ∥L2

x

for some rη ↘ 4 as η → 0. A three-way interpolation of this result with the standard
Strichartz estimate

∥e±it
√

−∆P0fN ∥
L

2
1−η
t L∞

x

≲η ∥P0fN ∥L2
x

and the energy estimate

∥e±it
√

−∆P0fN ∥L∞
t L2

x
≲ ∥P0fN ∥L2

x
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yields
∥e±it

√
−∆P0fN ∥Lp

t Lq
x
≲η N

s(p,q)∥P0fN ∥L2
x

≃ ∥|Ω|s(p,q)P0fN ∥L2
x

provided we choose η sufficiently small to ensure that the pair (p, q) is covered by the
interpolation.

The radial part of the evolution is covered by the radial Strichartz estimate (Theorem
1.3, [Ste05]): denoting f0 := c0

0(r)Y 0
0 (θ) = c0

0(r), the radial part of f , we have

∥e±it
√

−∆P0f0∥Lp
t Lq

x
≲ ∥P0f0∥L2

x

The result then follows from the Littlewood-Paley-Stein theorem for the sphere (Theorem
2 [Str72], see also [Ste70b].), upon observing that the angular frequency localisation
(2.2.5) commutes with the operator P0e

±it
√

−∆.

In practice, we will only work with integer-order angular derivatives so as to use the
Leibniz properties discussed previously. For this we must be able to exchange fractional
angular derivatives for true derivatives, which is possible thanks to the following result:

Lemma 2.2.2 (Riesz estimate for angular Sobolev spaces (Theorem 3.5.3, [DX13])). Let
1 < p < ∞. Then

max
i,j

∥Ωijf∥Lp
x

≃ ∥|Ω|f∥Lp
x

for any f such that the right hand side is finite.

We also use the following monotonicity property for the angular Sobolev spaces, which
can be proved for example using the decay of the corresponding multiplier (see Corollary
1, [Str72]).

Lemma 2.2.3 (Monotonicity of Angular Sobolev Spaces). Let 1 < p < ∞, s > s′ > 0.
It holds

∥|Ω|s′
f∥Lp

x
≲s−s′ ∥|Ω|sf∥Lp

x

Combined with Theorem 2.2.1 the previous two lemmas yield the following (defining ⟨Ω⟩
as in (2.1.3)).

Corollary 2.2.4. Let Q be any finite set of radially admissible pairs (p, q) with p ̸= 2.
Then it holds

max
(p,q)∈Q

2( 3
2 − 1

p
− 3

q
)k∥e±it

√
−∆Pkf∥Lp

t Lq
x
≲Q ∥⟨Ω⟩Pkf∥L2

x

2.2.2 Function Spaces and Linear Estimates

Our function spaces are an adaptation of the usual Besov-type Strichartz spaces. Hence-
forth Q will denote a fixed set of radially admissible exponents as in Corollary 2.2.4 to
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be determined throughout the proof, but certainly containing (∞, 2). We then define the
norm

∥ϕ∥S([0,T ]) =
∑
k∈Z

∥ϕk∥Sk([0,T ])

with
∥ϕk∥Sk([0,T ]) := max

(p,q)∈Q
2( 1

p
+ 3

q
−1)k∥⟨Ω⟩1−δ(p,q)∇t,xPkϕ∥Lp

t Lq
x([0,T ]×R3)

Here7

δ(p, q) =

0 if 1
p + 1

q ≤ 1
2

1 otherwise

We will also work with the vector fields Ln introduced in Section 2.2.1, however rather
than incorporating these into the norm we will directly apply them to the solution we
are working with.8 Define

ϕL := Lϕ =


ϕ

L1ϕ

L2ϕ

L3ϕ

 , L :=


1
L1
L2
L3

 , (2.2.6)

so

∥Pkϕ
L∥Sk([0,T ]) ≃ max

n=0,...,3
max

(p,q)∈Q
2( 1

p
+ 3

q
−1)k∥⟨Ω⟩1−δ(p,q)∇t,xPkLnϕ∥Lp

t Lq
x([0,T ]×R3)

with the convention L0 := 1.

We have the following linear estimate which is a straightforward application of Corollary
2.2.4:

Theorem 2.2.5 (Linear Estimate). Let ϕ satisfy the linear wave equation □ϕ = F with
initial data ϕ[0] ≡ (ϕ(0, ·), ∂tϕ(0, ·)) on the interval [0, T ]. It holds

∥ϕk∥Sk([0,T ]) ≲ ∥⟨Ω⟩Pkϕ[0]∥Ḣ3/2×Ḣ1/2 + ∥⟨Ω⟩Fk∥
L1

t Ḣ
1/2
x ([0,T ]×R3)

and as a corollary

∥Pkϕ
L∥Sk([0,T ])

≲ ∥⟨Ω⟩Pkϕ[0]∥Ḣ3/2×Ḣ1/2 + ∥⟨Ω⟩Pk(x · ∇)ϕ[0]∥Ḣ3/2×Ḣ1/2 + ∥⟨Ω⟩Pk(x ·□ϕ(0))∥Ḣ1/2

+ ∥⟨Ω⟩PkF
L∥

L1
t Ḣ

1/2
x ([0,T ]×R3)

where FL is as in (2.2.6).
7Note that a more natural choice would be δ(p, q) = max{ 2

p
+ 2

q
− 1 + ϵ(p, q; η), 0}, however we opt for

the weaker norm above so as to encounter only full angular derivatives. Presumably it would be possible
to to work with fractional angular derivatives by introducing a paradifferential calculus in the angular
variable, see for instance [HKO24, Hon22].

8This is for technical reasons to handle the non-trivial commutator [Ln, Pk].
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2.2.3 Angular Multipliers

To conclude this section, we introduce the angular multipliers which will play a key role
in the main estimates of this work (see Lemma 2.5.2). For fixed ρ ≤ 0, we introduce a
smooth partition of unity on the sphere, (σβ

ρ )β∈Sρ , given by

σβ
ρ (x) := σ(2−ρ∥x̂× β∥)∑

β′∈Sρ
σ(2−ρ∥x̂× β′∥) (2.2.7)

for σ ∈ C∞
c supported on [0, 101/100] and equal to 1 on [0, 1]. Sρ is a set of ∼ 2−2ρ points

on the sphere such that for every x̂ ∈ S2 there exists β ∈ Sρ such that ∥x̂× β∥ ≤ 2ρ. We
choose our functions in such a way as to ensure the almost-orthogonality relation

∥u∥L2
x

≃

∑
β∈Sρ

∥σβ
ρ (x)u(x)∥2

L2
x

 1
2

holds uniformly in ρ ≤ 0.

For each ρ sufficiently small, β ∈ Sρ, we also introduce a Whitney-type decomposition of
the sphere in Fourier space. This consists of functions η(r,l)

r cutting off to discs of radius
∼ 2r at distance ∼ 2r from β, made precise in the following proposition. These cut-offs
are turned into operators by defining, for example,

η(r,l)
r (D)ϕ(x) := F−1(η(r,l)

r (ξ)ϕ̂(ξ))(x)

Proposition 2.2.6. There exist absolute constants C1, C2, C3, C4, N > 0 such that the
following holds. For any ρ ≤ −C1, β ∈ Sρ there is a partition of unity consisting of
functions

ηβ
ρ and η(r,l)

r (ρ+ C1 ≤ r ≤ 0, l = 1, . . . , N) (2.2.8)

with the following properties:

1. There are points αr,l ∈ S2 and functions η̃β
ρ , η̃

(r,l)
r of the form η̃β

ρ (ξ) = σ(2−(ρ+C2)∥ξ̂×
β∥) and η̃(r,l)

r (ξ) = σ(2−(r−C3)∥ξ̂ × αr,l∥) for σ as before such that

ηβ
ρ =

η̃β
ρ

η̃β
ρ +∑

η̃
(r,l)
r

and η(r,l)
r = η̃

(r,l)
r

η̃β
ρ +∑

η̃
(r,l)
r

We allow for a different constant C3 when r = 0.

2. ∥αr,l × β∥ ≃ 2r and ∥x̂× ξ̂∥ ≳ 2r whenever x̂ ∈ supp(σβ
ρ ) and ξ̂ ∈ supp(η(r,l)

r ), for
all (r, l).

3. supp(η(r′,l′)
r′ ) ∩ supp(η(r,l)

r ) = ∅ for all |r − r′| ≥ C4 and supp(ηβ
ρ ) ∩ supp(η(r,l)

r ) = ∅
for all r ≥ ρ+ C4.
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Proof (sketch). We may without loss of generality fix β = e3, the unit vector in the
z-direction. For r = 0 we then choose N equally spaced points (α0,l)N

l=0 on the equator
{z = 0} and C sufficiently large such that the functions

η(C−1∥ξ̂ × α0,l∥)

cover the set {ξ̂ ∈ S2 : |ξ̂3| ≤ 3/4}. It then remains to find a partition of unity on
{ξ̂ ∈ S2 : |ξ̂3| > 3/4}. By diffeomorphism to the unit disc, it suffices to find functions
η̃

(r,l)
r with the required properties on B(0, 1), which is straightforward.

We then have the following lemma concerning the boundedness of these multipliers. We
omit the proof which is similar to that of Lemma 2.5.2.

Lemma 2.2.7. Let 1 ≤ q ≤ ∞. For any j ∈ Z, ρ ≤ −C1, β ∈ Sρ, ρ+ C1 ≤ r ≤ 0 and
l = 1, . . . , N it holds

∥ηβ
ρ+C1

(D)Pjϕ∥Lq
x
, ∥η(r,l)

r (D)Pjϕ∥Lq
x
≲q ∥Pjϕ∥Lq

x

2.3 Reduction to main proposition

We will work with frequency envelopes to reduce our critical global result to the subcritical
local result of Theorem 2.1.3 (proved in Section 2.10). This section is largely based on
Section 3 of [Tao01a].

In what follows we fix σ ∈ (0, 1) (which will need to be taken sufficiently small),
s ∈ (3/2, 3/2 + σ) and 0 < ϵ ≪ 1 which may depend on σ. We also need the following
definition from [Tao01a].

Definition 3 (Frequency envelope). We call c = (ck)k∈Z ∈ ℓ1 a frequency envelope if

∥c∥ℓ1 ≲ ϵ

and
2−σ|k−k′|ck′ ≲ ck ≲ 2σ|k−k′|ck′

We say that (f, g) lies underneath the envelope c if

∥Pk(f, g)∥Ḣ3/2×Ḣ1/2 ≤ ck

for all k ∈ Z.

Our first step in proving Theorem 2.1.2 is to make the following reduction, saying that
the frequency profile of the solution stays roughly constant along the evolution.

Proposition 2.3.1 (Main Proposition). Let 0 < T < ∞, c be a frequency envelope and
ϕ a smooth solution to (2.1.2) on [0, T ]×R3 with initial data ϕ[0] satisfying the smallness
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condition
∥⟨Ω⟩Pkϕ[0]∥Ḣ3/2×Ḣ1/2 + ∥⟨Ω⟩(x · ∇)Pkϕ[0]∥Ḣ3/2×Ḣ1/2 ≤ ck (2.3.1)

for all k. Let ϕL be as in (2.2.6). Then if ϵ is sufficiently small it holds

∥Pkϕ
L∥Sk([0,T ]) ≤ C0ck (2.3.2)

for all k ∈ Z, where C0 ≫ 1 is an absolute constant. In particular, ϕ[t] lies underneath
the frequency envelope C0c for all t ∈ [0, T ].

We quickly outline how Theorem 2.1.2 follows from this proposition (and Theorem 2.1.3).
Given data ϕ[0] as in the statement with ϵ sufficiently small, define a frequency envelope

ck :=
∑
j∈Z

2−σ|j−k|(∥⟨Ω⟩Pjϕ[0]∥Ḣ3/2×Ḣ1/2 + ∥⟨Ω⟩(x · ∇)Pjϕ[0]∥Ḣ3/2×Ḣ1/2)

It is then clear that (2.3.1) holds, so we see from the proposition that the local solution
ϕ : [0, T ] × R3 → S2 of Theorem 2.1.3 satisfies

∥Pkϕ∥Sk([0,T ]) ≤ C0ck

for all k. It follows that for any s > 3/2 with |s− 3/2| < σ we have

∥Pkϕ∥L∞Ḣs([0,T ]×R3) + ∥Pk∂tϕ∥L∞Ḣs−1([0,T ]×R3)

≲ 2(s−3/2)k∥Pkϕ∥Sk([0,T ])

≲ 2(s−3/2)kC0ck

≲ C0
∑
j∈Z

2(|s−3/2|−σ)|k−j|(∥Pj⟨Ω⟩ϕ[0]∥Ḣs×Ḣs−1 + ∥Pj⟨Ω⟩(x · ∇)ϕ[0]∥Ḣs×Ḣs−1)

for all k ∈ Z, from which we see that

∥ϕ[t]∥Ḃs
2,1×Ḃs−1

2,1
≲ C0(∥⟨Ω⟩ϕ[0]∥Ḃs

2,1×Ḃs−1
2,1

+ ∥⟨Ω⟩(x · ∇)ϕ[0]∥Ḃs
2,1×Ḃs−1

2,1
)

for all t ∈ [0, T ]. The low-frequency portion of ϕ[t] is straightforward to bound using
energy estimates, however it is something of a distraction at this point so we postpone
this to Appendix 2.A.

In summary we obtain uniform bounds on the Bs
2,1 ×Bs−1

2,1 norm of the solution. Since
Proposition 2.3.1 also shows that smallness in the critical space is (almost) conserved, it
follows from the local theory that the solution extends globally.

Using the same argument as in [Tao01a], we see that Proposition 2.3.1 can be further
reduced to the following statement, to whose proof the bulk of this chapter is dedicated.

Proposition 2.3.2 (Reduced Main Proposition). Let c be a frequency envelope, 0 <
T < ∞ and ϕ be a smooth half-wave map on [0, T ] × R3 such that ϕ[0] satisfies (2.3.1).
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Suppose that
∥Pkϕ

L∥Sk([0,T ]) ≤ 2C0ck (2.3.3)

for all k ∈ Z. Then in fact
∥Pkϕ

L∥Sk([0,T ]) ≤ C0ck (2.3.4)

for all k ∈ Z (assuming that C0 is sufficiently large and ϵ is sufficiently small).

2.4 Discarding some error terms

We now begin the first step in the proof of Proposition 2.3.2, where we will show that
some terms in the forcing of equation (2.1.2) can be ignored.

Fix c, T and ϕ satisfying the hypotheses of the proposition. We need to show (2.3.4). By
scaling invariance it suffices to prove that

∥ψL∥S0([0,T ]) ≤ C0c0

for ψL := P0(ϕL). We will use the notation ψL ≡ (ψ0, ψ1, ψ2, ψ3) so that ψn = P0(Lnϕ).

Thanks to the linear estimate, it would be sufficient to show that

∥⟨Ω⟩□ψL∥L1
t L2

x
≲ C3

0c0ϵ

and take ϵ(C0) sufficiently small (the initial data term involving □ϕ can be bounded
straightforwardly, see (2.6.3)). Unfortunately, it will not be possible to show this directly,
however after some transformations we will be able to achieve a similar form, as we shall
see in the coming sections.

This motivates the definition of an “error” term:

Definition 4 (Error terms). A function F = (F0, . . . , F3) on [0, T ] × Rn is said to be an
acceptable error if

∥⟨Ω⟩F∥L1
t L2

x
≲ C3

0c0ϵ

In this case we write F = error. We will also denote by error the components of such a
vector.

Applying P0 to equation (2.1.2) we find

□ψL = P0L(−ϕ∂αϕ
T∂αϕ+HWM(ϕ)) (2.4.1)

where

HWM(ϕ) := Πϕ⊥ [((−∆)1/2ϕ)(ϕ·(−∆)1/2ϕ)]+ϕ×[(−∆)1/2(ϕ×(−∆)1/2ϕ)−(ϕ×(−∆)ϕ)]

Our first step is to remove the most simple frequency interactions from the wave-maps
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2.4 Discarding some error terms

source term. We introduce the following notation for some commonly used Strichartz
pairs, with M = ∞− a large constant which η, σ and ϵ will all depend on.

(2+,∞−) := ( 2M
M − 1 , 2M), ∥⟨Ω⟩Pkϕ

L∥2+,∞− ≲ 2−( 1
2 + 1

M
)k∥Pkϕ

L∥Sk

(∞−, 2+) := (M,
2M
M − 2), ∥⟨Ω⟩Pkϕ

L∥∞−,2+ ≲ 2−( 3
2 − 2

M
)k∥Pkϕ

L∥Sk

(2.4.2)

Proposition 2.4.1. We have

P0(ϕ∂αϕ
T∂αϕ) = 2P0(ϕ≤−10∂αϕ

T
≤−10∂

αϕ>−10) + P0(ϕ≤−10∂αϕ
T
>−10∂

αϕ>−10) + error

(2.4.3)

and

P0Ln(ϕ∂αϕ
T∂αϕ) = 2P0((Lnϕ)≤−10∂αϕ

T
≤−10∂

αϕ>−10)
+ 2P0(ϕ≤−10∂α(Lnϕ)T

≤−10∂
αϕ>−10) (2.4.4)

+ 2P0(ϕ≤−10∂αϕ
T
≤−10∂

α(Lnϕ)>−10)
+ P0((Lnϕ)≤−10∂αϕ

T
>−10∂

αϕ>−10)
+ P0(ϕ≤−10∂α(Lnϕ)T

>−10∂
αϕ>−10)

+ P0(ϕ≤−10∂αϕ
T
>−10∂

α(Lnϕ)>−10)
+ error (2.4.5)

for n = 1, 2, 3.

Proof. We will only show (2.4.5), (2.4.3) being similar. We start with the following
observation, using that Ln commutes with the wave operator and satisfies the Leibniz
rule:

Ln(∂αϕ
T∂αϕ) = 1

2Ln(□(ϕTϕ) − 2ϕT□ϕ) = 2∂α(Lnϕ)T∂αϕ

Applying this property and the Leibniz rule on the whole nonlinearity we have

P0Ln(ϕ∂αϕ
T∂αϕ) = P0((Lnϕ)∂αϕ

T∂αϕ) + 2P0(ϕ∂α(Lnϕ)T∂αϕ)

Henceforth we restrict our attention to the first term, the other term being treated
identically. We also drop the subscript on Ln.

Decomposing each factor of ϕ into low and high frequencies, and noting that the term
vanishes when all three factors are at low frequency, we write

P0((Lϕ)∂αϕ
T∂αϕ) =2P0((Lϕ)>−10∂αϕ

T
>−10∂

αϕ≤−10) (2.4.6)
+ P0((Lϕ)>−10∂αϕ

T
≤−10∂

αϕ≤−10) (2.4.7)
+ P0((Lϕ)>−10∂αϕ

T
>−10∂

αϕ>−10) (2.4.8)
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+ 2P0((Lϕ)≤−10∂αϕ
T
≤−10∂

αϕ>−10) (2.4.9)
+ P0((Lϕ)≤−10∂αϕ

T
>−10∂

αϕ>−10) (2.4.10)

Of these terms, (2.4.9) and (2.4.10) appear in (2.4.5) so we have to show that (2.4.6) =
(2.4.7) = (2.4.8) = error.

• (2.4.6), (high)∇(high)∇(low):
We have

∥⟨Ω⟩P0((Lϕ)>−10∂αϕ
T
>−10∂

αϕ≤−10)∥1,2

≲ ∥⟨Ω⟩(Lϕ)>−10∥2+,∞−∥⟨Ω⟩∂αϕ>−10∥∞−,2+∥⟨Ω⟩∂αϕ≤−10∥2+,∞−

where we used the Leibniz rule to spread the angular derivatives across the 3 terms,
followed by the monotonicity of the angular Sobolev spaces. Using the definition of
the S-norm and the local constancy of the frequency envelope we therefore see that

∥⟨Ω⟩(2.4.6)∥1,2 ≲

 ∑
j>−10

2−( 1
2 + 1

M
)j∥Pjϕ

L∥Sj

 ∑
k>−10

2−( 1
2 − 2

M
)k∥Pkϕ∥Sk


·

 ∑
l≤−10

2( 1
2 − 1

M
)l∥Plϕ∥Sl


≲ C3

0ϵ
2c0

• (2.4.7), (high)∇(low)∇(low):
We similarly estimate

∥⟨Ω⟩P0((Lϕ)>−10∂αϕ
T
≤−10∂

αϕ≤−10)∥1,2

≲ ∥⟨Ω⟩(Lϕ)>−10∥∞−,2+∥⟨Ω⟩∂αϕ≤−10∥2+,∞−∥⟨Ω⟩∂αϕ≤−10∥2+,∞−

≲ C3
0ϵ

2c0

• (2.4.8), (high)∇(high)∇(high):
This term cannot be handled in the standard Strichartz spaces. Observe that when
⟨Ω⟩ spreads over the three terms according to the Leibniz rule, in each case there
will be at least one differentiated term which is not hit by an angular derivative.
This term can then be placed into a non-standard Strichartz space. For example,
when ⟨Ω⟩ falls on the first differentiated factor we have

∥P0((Lϕ)>−10⟨Ω⟩∂αϕ
T
>−10∂

αϕ>−10)∥1,2

≲ ∥(Lϕ)>−10∥ 18
7 ,∞∥⟨Ω⟩∂αϕ>−10∥9, 10

3
∥∂αϕ>−10∥2,5

≲
∑

j,k,l>−10
2− 7

18 j∥Pjϕ
L∥Sj · 2− 1

90 k∥ϕk∥Sk
· 2− 1

10 l∥ϕl∥Sl

≲ C3
0c

2
0ϵ
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Thanks to this proposition we can rewrite the frequency-localised equation as

□ψ0 = − 2ϕ≤−10∂αϕ
T
≤−10∂

αψ0 − 2[P0(ϕ≤−10∂αϕ
T
≤−10∂

αϕ>−10) − ϕ≤−10∂αϕ
T
≤−10∂

αψ0]
− P0(ϕ≤−10∂αϕ

T
>−10∂

αϕ>−10) + P0(HWM(ϕ)) + error (2.4.11)

and

□ψn = −2(Lnϕ)≤−10∂αϕ
T
≤−10∂

αψ0

− 2ϕ≤−10∂α(Lnϕ)T
≤−10∂

αψ0

− 2ϕ≤−10∂αϕ
T
≤−10∂

αψn

− 2[P0((Lnϕ)≤−10∂αϕ
T
≤−10∂

αϕ>−10) − (Lnϕ)≤−10∂αϕ
T
≤−10∂

αψ0]
− 2[P0(ϕ≤−10∂α(Lnϕ)T

≤−10∂
αϕ>−10) − ϕ≤−10∂α(Lnϕ)T

≤−10∂
αψ0]

− 2[P0(ϕ≤−10∂αϕ
T
≤−10∂

α(Lnϕ)>−10) − ϕ≤−10∂αϕ
T
≤−10∂

αψn]
− P0((Lnϕ)≤−10∂αϕ

T
>−10∂

αϕ>−10)
− P0(ϕ≤−10∂α(Lnϕ)T

>−10∂
αϕ>−10)

− P0(ϕ≤−10∂αϕ
T
>−10∂

α(Lnϕ)>−10)
+ P0Ln(HWM(ϕ)) + error (2.4.12)

for n = 1, 2, 3. We have now clearly identified the troublesome frequency interactions
in the wave maps source term. In the next section we will show that the half-wave
maps terms are acceptable, and in Section 2.6 we will discard the second and third
terms (or groups of terms) via normal transformations. Lastly in Sections 2.7 and 2.8 we
will show that the remaining (low)∇(low)∇(high) term can be gauged away using Tao’s
approximate parallel transport.

2.5 The half-wave maps contributions are negligible

We decompose the half-wave maps forcing into two terms:

HWM(ϕ) = HWM1(ϕ) +HWM2(ϕ)

with
HWM1(ϕ) := Πϕ⊥ [((−∆)1/2ϕ)(ϕ · (−∆)1/2ϕ)]

and
HWM2(ϕ) := ϕ× [(−∆)1/2(ϕ× (−∆)1/2ϕ) − (ϕ× (−∆)ϕ)]

As discussed in the introduction, we are able to discard of these terms entirely due to their
geometric structures. We largely use techniques from [KK21], with a novel ingredient for
handling the (low)∇(lowest)∇(high) frequency interactions (see Lemma 2.5.3).
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Before preceding to the estimates, we present some lemmas which will be used frequently
in the sequel. Denote

Lk(uk1 , vk2) :=
∫
R3

∫
R3
mk(ξ, η)eix·(ξ+η)χk1(ξ)û(ξ)χk2(η)v̂(η)dξdη (2.5.1)

for mk any smooth multiplier satisfying the pointwise bounds

|mk(ξ, η)| ≲ 2k, |(2k1∇ξ)i(2k2∇η)jmk(ξ, η)| ≲i,j 2k

on the support of χk1(ξ)χk2(η). Note that such a multiplier can be expanded as a Fourier
series with rapidly decaying coefficients on the support of χk1(ξ)χk2(η):

mk(ξ, η) =
∑

a,b∈Z3

c
(k)
a,be

−i(2−k1 a·ξ+2−k2 b·η) with |c(k)
a,b | ≲N 2k⟨a⟩−N ⟨b⟩−N for any N ∈ N.

(2.5.2)

We can therefore, at least formally, write

Lk(uk1 , vk2) =
∑

a,b∈Z3

c
(k)
a,buk1(x− 2−k1a)vk2(x− 2−k2b) (2.5.3)

Operators of this form arise in studying cancellations in HWM2(ϕ), and an important
property is given by the following

Lemma 2.5.1 (Lemma 3.1, [KS17]). Let Lk be as above. Then if ∥ · ∥Z , ∥ · ∥X , ∥ · ∥Y

are translation invariant norms with the property that

∥u · v∥Z ≤ ∥u∥X∥v∥Y

it holds
∥Lk(uk1 , vk2)∥Z ≲ 2k∥uk1∥X∥vk2∥Y

In particular this lemma tells us we can (and should) think of Lj(ϕj , ϕk) as ∂ϕj · ϕk.

Due to the generally nonlocal nature of these operators, they interact non-trivially with
the non-translation invariant commuting vector fields. In fact for k, k1, k2 ∈ Z, n = 1, 2, 3,
i, j = 1, 2, 3 it holds

Ln(Lk(uk1 , vk2)) = Lk(Lnuk1 , vk2)+Lk(uk1 , Lnvk2)+Lk−k1(∂tuk1 , uk2)+Lk−k2(uk1 , ∂tuk2)
(2.5.4)

and

Ωij(Lk(uk1 , vk2)) = Lk(Ωijuk1 , vk2) + Lk(uk1 ,Ωijvk2) + Lk(uk1 , vk2) (2.5.5)

The Lk in these expressions need not all correspond to the same multiplier mk.

Lastly, we note the following basic facts which follow from the commutation relations
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between Ω, L and Pk. For any (p, q) ∈ Q and a ∈ R it holds9

∥⟨Ω⟩1−δ(p,q)L(uk(· + a))∥p,q ≲ ⟨2ka⟩22−( 1
p

+ 3
q

)k∥P∼ku
L∥S∼k

(2.5.6)

and if further q ̸= ∞ we also have10

∥⟨Ω⟩1−δ(p,q)L(−∆)1/2uk∥p,q ≲ 2(1− 1
p

− 3
q

)k∥P∼ku
L∥S∼k

We now come to the most important lemma of this chapter, which is the key ingredient
for handling the (low)∇(lowest)∇(high) terms in 3 dimensions. For notation used in the
statement we refer the reader to Section 2.2.3.

Lemma 2.5.2 (Angular Separation Estimate). Fix ρ ≤ −C1. Then for any λ, k ∈ Z,
ρ+ C1 ≤ r ≤ 0, l = 0, . . . , N it holds

∥φλ(x)σβ
ρ (x)η(r,l)

r (D)ϕk∥Lq
x
≲ 2−(λ+k+2r)(∥ϕk∥Lq

x
+ max

i,j
∥Ωijϕk∥Lq

x
)

for any 1 ≤ q ≤ ∞.

The intuition for this estimate was discussed in the introduction, and leads us to expect a
preferable loss of 2−(λ+j+r). Unfortunately, we were not quite able to achieve this. This
comes from the Ωij being non-translation invariant.

Proof. We may assume without loss of generality that αr,l = e1, and by scaling it suffices
to consider k = 0. We may further assume that β lies in the x − y plane so that
|x̂1ξ̂2 − x̂2ξ̂1| ≳ 2r for any x̂, ξ̂ ∈ S2 in the supports of σβ

ρ , η
(r,l)
r respectively.

Write
φλ(x)σβ

ρ (x)η(r,l)
r (D)ϕ0 =

∫
ξ
eix·ξm(x, ξ) · (x1ξ2 − x2ξ1)ϕ̂0(ξ)dξ

for
m(x, ξ) := φλ(x)σβ

ρ (x)χ̃0(ξ)η(r,l)
r (ξ)(x1ξ2 − x2ξ1)−1

Expand m as a Fourier series in ξ. Since αr,l = e1 we have suppm ⊂ {ξ1 ∼ 1, |ξ2|, |ξ3| ≲
2r} so

m(x, ξ) = φλ(x)σβ
ρ (x)

∑
p∈Z3

cp(x)e2πi(ξ1p1+2−rξ2p2+2−rξ3p3)

9This may be interpreted as saying that translation does not affect the norm provided we translate on
scales at most comparable to the natural oscillation length of uk.

10The restriction to q < ∞ comes from the need to bound the Riesz transform appearing in [L, (−∆)1/2].
In practice this is not important since there is usually enough flexibility in the estimates to lower q using
Bernstein’s inequality.
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where

cp(x) ≃ 2−2r
∫

|ξ1|∼1
|ξ2|,|ξ3|≲2r

χ̃0(ξ)η(r,l)
r (ξ)(x1ξ2 − x2ξ1)−1e−2πi(ξ1p1+2−rξ2p2+2−rξ3p3)dξ

We want to integrate by parts so need bounds on the derivatives of the integrand. A
calculation yields

|∇γ
ξη

(r,l)
r (ξ)| ≲γ 2−(γ2+γ3)r

for all γ ∈ N3, ξ ∈ supp(χ̃0) ∩ supp(η(r,l)
r ).

Furthermore, for x, ξ in the support of m, we have |x2| ≤ |x|∥x̂× αr,l∥ ≲ 2λ+r and so

|∂γ1
ξ1
∂γ2

ξ2
(x1ξ2 − x2ξ1)−1| =|x1ξ2 − x2ξ1|−(γ1+γ2+1)|x2|γ1 |x1|γ2

≲2−(λ+r)(γ1+γ2+1)2(λ+r)γ12λγ2 = 2−(λ+r)2−rγ2

It follows that

|∇γ
ξ (χ̃0(ξ)η(r,l)

r (ξ)(x1ξ2 − x2ξ1)−1)|

≲
∑

γ(1)+γ(2)+γ(3)=γ

|∇γ(1)

ξ χ̃0(ξ) · ∇γ(2)

ξ η(r,l)
r (ξ) · ∇γ(3)

ξ ((x1ξ2 − x2ξ2)−1)|

≲
∑

γ(1)+γ(2)+γ(3)=γ,

γ
(3)
3 =0

1 · 2−(γ(2)
2 +γ

(2)
3 )r · 2−(λ+r)2−γ

(3)
2 r

≲ 2−(λ+r) ∑
γ(1)+γ(2)+γ(3)=γ,

γ
(3)
3 =0

2−(γ(2)
2 +γ

(3)
2 +γ

(2)
3 )r

For r ≤ 0, the right hand side of this expression is largest when γ
(2)
2 + γ

(3)
2 = γ2 and

γ
(2)
3 = γ3, leading to

|∇γ
ξ (χ̃0(ξ)η(r,l)

r (ξ)(x1ξ2 − x2ξ1)−1)| ≲ 2−(λ+r)2−(γ2+γ3)r

Integrating by parts in the expression for cp(x) we therefore obtain

|cp(x)| ≲ 2−2r

pγ1
1 (2−rp2)γ2(2−rp3)γ3

∫
|ξ1|∼1

|ξ2|,|ξ3|≲2r

2−(λ+r)2−(γ2+γ3)rdξ ≲
2−(λ+r)

⟨p⟩|γ|

With this bound we calculate, for any N ∈ N,

∥µ2(x)φλ(x)σβ
ρ (x)η(r,l)

r (D)ϕ0∥Lq
x
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≲N

∑
p

2−(λ+r)

⟨p⟩N
∥
∫

ξ
ei((x1+2πp1)ξ1+(x2+2π2−rp2)ξ2+(x3+2π2−rp3)ξ3)(x1ξ2 − x2ξ1)ϕ̂0(ξ)dξ∥Lq

x

≲N

∑
p

2−(λ+r)

⟨p⟩N
∥(x1∂2 − x2∂1)(ϕ0(x1 + 2πp1, x2 + 2−r2πp2, x3 + 2−r2πp3))∥Lq

x

≲N

∑
p

2−(λ+r)

⟨p⟩N
(∥(x1∂2 − x2∂1)ϕ0∥Lq

x
+ 2−r|p|∥∇ϕ0∥Lq

x
)

≲N

∑
p

2−(λ+2r)

⟨p⟩N−1 (∥Ω1,2ϕ0∥Lq
x

+ ∥ϕ0∥Lq
x
)

Choosing N sufficiently large and summing over p gives the desired result.

As a consequence of this lemma we can bound certain trilinear terms as follows.

Lemma 2.5.3. Let m, j, k ∈ Z and fix M sufficiently large. Then for any (scalar)
functions ϕ(1)

j , ϕ(2)
k , ϕ(3)

m we have the following estimates:

1. If j ≲ k, j ≲ m we have

∥ϕ(1)
j · ϕ(2)

k · ϕ(3)
m ∥1,2

≲ 2−j/M ∥ϕ(1)
j ∥ 2M

M−1 ,∞(23k/2M ∥⟨Ω⟩ϕ(2)
k ∥ 2M

M−1 ,2M + 23k M−1
4M ∥ϕ(2)

k ∥ 2M
M−1 , 4M

M−1
)

· (∥ϕ(3)
m ∥∞,2 + 2j−m∥Lϕ(3)

m ∥∞,2 + 2−m∥∂tϕ
(3)
m ∥∞,2)

2. If j ≲ m we have

∥ϕ(1)
j · ϕ(2)

k · ϕ(3)
m ∥1,2

≲ 2−j/M (23j/2M ∥⟨Ω⟩ϕ(1)
j ∥ 2M

M−1 ,2M + 23j M−1
4M ∥ϕ(1)

j ∥ 2M
M−1 , 4M

M−1
)∥ϕ(2)

k ∥ 2M
M−1 ,∞

· (∥ϕ(3)
m ∥∞,2 + 2j−m∥Lϕ(3)

m ∥∞,2 + 2−m∥∂tϕ
(3)
m ∥∞,2)

3. If j ≲ k we have

∥ϕ(1)
j · ϕ(2)

k · ϕ(3)
m ∥1,2

≲ 2−j/M 23k/2M ∥ϕ(1)
j ∥ 2M

M−1 ,∞

· (∥⟨Ω⟩ϕ(2)
k ∥ 2M

M−1 ,2M + 2j−k∥⟨Ω⟩Lϕ(2)
k ∥ 2M

M−1 ,2M + 2−k∥⟨Ω⟩∂tϕ
(2)
k ∥ 2M

M−1 ,2M )∥ϕ(3)
m ∥∞,2

+ 2−j/M 23k M−1
4M ∥ϕ(1)

j ∥ 2M
M−1 ,∞

· (∥ϕ(2)
k ∥ 2M

M−1 , 4M
M−1

+ 2j−k∥Lϕ(2)
k ∥ 2M

M−1 , 4M
M−1

+ 2−k∥∂tϕ
(2)
k ∥ 2M

M−1 , 4M
M−1

)∥ϕ(3)
m ∥∞,2

4. If j ≲ k we have

∥ϕ(1)
j · ϕ(2)

k · ϕ(3)
m ∥1,2
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≲ 2−j/M 23j/2M ∥⟨Ω⟩ϕ(1)
j ∥ 2M

M−1 ,2M

· (∥ϕ(2)
k ∥ 2M

M−1 ,∞ + 2j−k∥Lϕ(2)
k ∥ 2M

M−1 ,∞ + 2−k∥∂tϕ
(2)
k ∥ 2M

M−1 ,∞)∥ϕ(3)
m ∥∞,2

+ 2−j/M 23j M−1
4M ∥ϕ(1)

j ∥ 2M
M−1 , 4M

M−1

· (∥ϕ(2)
k ∥ 2M

M−1 ,∞ + 2j−k∥Lϕ(2)
k ∥ 2M

M−1 ,∞ + 2−k∥∂tϕ
(2)
k ∥ 2M

M−1 ,∞)∥ϕ(3)
m ∥∞,2

We note that since the above holds for arbitrary scalar functions, in our setting the same
will hold for vector functions independent of the type of multiplication used (dot product,
cross product,...) and the order of the terms.

Before going into the proof, let us shed some light on the relevance of this lemma. It will
be applied to terms of the form∑

j≤k≤−10
∥L⟨Ω⟩(ϕk ∇ϕj · ∇ϕ∼0)∥1,2 (2.5.7)

which are beyond the reach of the standard Strichartz estimates. For example, when L

and ⟨Ω⟩ both fall on ∇ϕj we use point 1 of the above lemma to find∑
j≤k≤−10

∥ϕk L⟨Ω⟩∇ϕj · ∇ϕ∼0∥1,2

≲
∑

j≤k≤−10
2−j/M ∥L⟨Ω⟩∇ϕj∥ 2M

M−1 ,∞(23k/2M ∥⟨Ω⟩ϕk∥ 2M
M−1 ,2M + 23k M−1

4M ∥ϕk∥ 2M
M−1 , 4M

M−1
)

· (∥∇ϕ∼0∥∞,2 + 2j∥L∇ϕ∼0∥∞,2 + ∥∂t∇ϕ∼0∥∞,2)

≲
∑

j≤k≤−10
2( 1

2 − 1
2M

)(j−k)C3
0cjckc0 ≲ C

3
0ϵ

2c0 (2.5.8)

where we were able to place ϕk into Sk in both cases since it only appears in a non-standard
Strichartz space when not accompanied by an angular derivative.

The same argument works for any combination in which ⟨Ω⟩ falls on ϕj or ϕ∼0, and L

on ϕk or ϕj . If ⟨Ω⟩ falls on ϕk, and L still doesn’t hit ϕ∼0, we obtain the same result
using point 2 of the lemma. Points 3 and 4 are for when L hits ϕ∼0 and ⟨Ω⟩ avoids or
hits ϕk respectively.

Due to the non-local nature of our equation, frequency interactions of the type discussed
will appear in many different guises, which is why we give the lemma in such generality.

Proof of Lemma 2.5.3. We focus on point 1, noting the adaptations needed for the other
cases at the end.

Using the notation introduced in Section 2.2 we first split the term over regions where
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|x| is large or small compared to the natural oscillations of ϕ(1)
j :

∥ϕ(1)
j · ϕ(2)

k · ϕ(3)
m ∥1,2 ≲ ∥φ<−j(x)(ϕ(1)

j · ϕ(2)
k · ϕ(3)

m )∥1,2︸ ︷︷ ︸
(A)

+ ∥φ≥−j(x)(ϕ(1)
j · ϕ(2)

k · ϕ(3)
m )∥1,2︸ ︷︷ ︸

(B)

Starting with (A), we further split the norm depending on the size of |t|:

(A) ≲ ∥φ<−j(x)φ<−j(t)(ϕ(1)
j · ϕ(2)

k · ϕ(3)
m )∥1,2︸ ︷︷ ︸

(A.I)

+ ∥φ<−j(x)φ≥−j(t)(ϕ(1)
j · ϕ(2)

k · ϕ(3)
m )∥1,2︸ ︷︷ ︸

(A.II)

To reduce notation, we will often omit the space/time cut-offs. Starting with (A.I), we
use Hölder in the time variable to obtain

(A.I) ≲ ∥ϕ(1)
j ∥2,∞∥ϕ(2)

k ∥2,∞∥ϕ(3)
m ∥∞,2 ≲ 2−j/M ∥ϕ(1)

j ∥ 2M
M−1 ,∞∥ϕ(2)

k ∥ 2M
M−1 ,∞∥ϕ(3)

m ∥∞,2

Using Bernstein’s inequality on ϕ(2)
k and the monotonicity of the angular Sobolev spaces

we see that this term is as required.

We now study (A.II). To counteract the loss coming from the use of Hölder’s inequality
in time we use a trick that will come up frequently in the sequel: since ϕ(3)

m has not yet
been acted on by any Lorentz boost we can write

ϕ(3)
m =t−1∆−1∂nLnϕ

(3)
m − ∆−1∂n[(t−1xn)∂tϕ

(3)
m ] (2.5.9)

with the implicit sum over n = 1, 2, 3. A simple computation using that the spatial
localisation passes through the Fourier multipliers up to exponentially decaying tails
(since m ≳ j) yields

∥φ<−j(x)φk1(t)ϕ(3)
m ∥∞,2 ≲ 2−k1−m∥Lϕ(3)

m ∥∞,2 + 2−k1−j−m∥∂tϕ
(3)
m ∥∞,2 (2.5.10)

Therefore

(A.II) ≲
∑

k1≥−j

∥ϕ(1)
j ∥2,∞∥ϕ(2)

k ∥2,∞∥φ<−j(x)φk1(t)ϕ(3)
m ∥∞,2

≲
∑

k1≥−j

2k1/M ∥ϕ(1)
j ∥ 2M

M−1 ,∞∥ϕ(2)
k ∥ 2M

M−1 ,∞(2−k1−m∥Lϕ(3)
m ∥∞,2 + 2−k1−j−m∥∂tϕ

(3)
m ∥∞,2)

≲ 2−j/M ∥ϕ(1)
j ∥ 2M

M−1 ,∞∥ϕ(2)
k ∥ 2M

M−1 ,∞(2j−m∥Lϕ(3)
m ∥∞,2 + 2−m∥∂tϕ

(3)
m ∥∞,2)

which is as required.

We now turn to
(B) = ∥φ≥−j(x)(ϕ(1)

j · ϕ(2)
k · ϕ(3)

m )∥1,2
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It is here that we need to invoke the angular multipliers. Write

(B) ≤
∑

k1≥−j

∑
k2∈Z

∥φk1(x)φk2(t)(ϕ(1)
j · ϕ(2)

k · ϕ(3)
m )∥1,2︸ ︷︷ ︸

(B)k1,k2

Fix k1 ≥ −j. Let (σβ
−(j+k1)/3)β∈Sj,k1

be a partition of unity on S2 as in (2.2.7) (denoting
Sj,k1 := S−(j+k1)/3). Then for fixed k1, k2 we can split (B)k1,k2 into a square-sum

(B)k1,k2 ≲

∥∥∥∥∥∥∥
 ∑

β∈Sj,k1

∥σβ
−(j+k1)/3(x)(ϕ(1)

j · ϕ(2)
k · ϕ(3)

m )∥2
L2

x(|x|∼2k1 )

 1
2
∥∥∥∥∥∥∥

L1
t (|t|∼2k2 )

Now, for each β ∈ Sj,k1 , use the Fourier multipliers introduced in (2.2.8) to write

ϕ
(2)
k =ηβ

−(j+k1)/3(D)ϕ(2)
k +

N∑
l=1

∑
−(j+k1)/3≪r≤0

η(r,l)
r (D)ϕ(2)

k (2.5.11)

Let’s start with the first term, where the angular localisations in Fourier space and
physical space are forced to be close. We find∥∥∥∥∥∥∥

 ∑
β∈Sj,k1

∥σβ
−(j+k1)/3(x)(ϕ(1)

j · ηβ
−(j+k1)/3(D)ϕ(2)

k · ϕ(3)
m )∥2

L2
x(|x|∼2k1 )

 1
2
∥∥∥∥∥∥∥

L1
t (|t|∼2k2 )

≲

∥∥∥∥∥∥∥
 ∑

β∈Sj,k1

(∥ϕ(1)
j ∥∞∥ηβ

−(j+k1)/3(D)ϕ(2)
k ∥∞∥σβ

−(j+k1)/3(x)ϕ(3)
m ∥2)2

 1
2
∥∥∥∥∥∥∥

L1
t (|t|∼2k2 )

(2.5.12)

We then use Bernstein’s inequality on the middle term to benefit from the close angular
localisation, and thereby bound the above by

∥ϕ(1)
j ∥2,∞

∥∥∥∥∥∥∥
 ∑

β∈Sj,k1

(2(3k−2(j+k1)/3)( M−1
4M

)∥ηβ
−(j+k1)/3(D)ϕ(2)

k ∥ 4M
M−1

∥σβ
−(j+k1)/3(x)ϕ(3)

m ∥2)2

 1
2
∥∥∥∥∥∥∥

2

≲ ∥ϕ(1)
j ∥2,∞ · 2(3k−2(j+k1)/3)( M−1

4M
)∥ϕ(2)

k ∥2, 4M
M−1

· ∥ϕ(3)
m ∥∞,2

≲ 2k2/M 2(3k−2(j+k1)/3)( M−1
4M

)∥ϕ(1)
j ∥ 2M

M−1 ,∞∥ϕ(2)
k ∥ 2M

M−1 , 4M
M−1

∥ϕ(3)
m ∥∞,2 (2.5.13)

where we used that the operator ηβ
−(j+k1)/3(D) is bounded and square summed over the

σβ
−(j+k1)/3.

Now, fixing M sufficiently large this gives an acceptable bound in the range k2 ≤ k1:
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∑
k1≥−j,
k2≤k1

∥∥∥∥∥∥∥
 ∑

β∈Sj,k1

∥σβ
−(j+k1)/3(x)(ϕ(1)

j · ηβ
−(j+k1)/3(D)ϕ(2)

k · ϕ(3)
m )∥2

L2
x(|x|∼2k1 )

 1
2
∥∥∥∥∥∥∥

L1
t (|t|∼2k2 )

≲ 2−j/M 23k M−1
4M ∥ϕ(1)

j ∥ 2M
M−1 ,∞∥ϕ(2)

k ∥ 2M
M−1 , 4M

M−1
∥ϕ(3)

m ∥∞,2

For k2 > k1, we obtain decay in t via an estimate analogous to (2.5.10),

∥φk1(x)φk2(t)ϕ(3)
m ∥∞,2 ≲ 2−k2−m∥Lϕ(3)

m ∥∞,2 + 2k1−k2−m∥∂tϕ
(3)
m ∥∞,2 (2.5.14)

and the desired result follows.

We now turn to the second term in (2.5.11), the “far-angle case”. We use the angular
separation estimate, Lemma 2.5.2, followed by Bernstein’s inequality and the Riesz
estimate for angular derivatives (which only holds for finite exponents) to bound

∥φk1(x)σβ
−(j+k1)/3(x)η(r,l)

r (D)ϕ(2)
k ∥∞ ≲ 2−(k1+k+2r)(∥ϕ(2)

k ∥∞ + max
i,j

∥Ωijϕ
(2)
k ∥∞)

≲ 2−(k1+k+2r)23k/2M ∥⟨Ω⟩ϕ(2)
k ∥2M

Therefore
N∑

l=1

∑
−(j+k1)/3≪r

∥σβ
−(j+k1)/3(x)(ϕ(1)

j · η(r,l)
r (D)ϕ(2)

k · ϕ(3)
m )∥L2

x(|x|∼2k1 )

≲ 2−(k1+k)22(j+k1)/323k/2M ∥ϕ(1)
j ∥∞∥⟨Ω⟩ϕ(2)

k ∥2M ∥σβ
−(j+k1)/3(x)ϕ(3)

m ∥2 (2.5.15)

Lastly the L1
(|t|∼2k2 ) norm of the square-sum of (2.5.15) over β ∈ Sj,k1 is bounded by

2k2/M 2−(k1+k)22(j+k1)/323k/2M ∥ϕ(1)
j ∥ 2M

M−1 ,∞∥⟨Ω⟩ϕ(2)
k ∥ 2M

M−1 ,2M ∥ϕ(3)
m ∥∞,2 (2.5.16)

Summed over k2 ≤ k1 and k1 ≥ −j this gives

2−j/M 2j−k23k/2M ∥ϕ(1)
j ∥ 2M

M−1 ,∞∥⟨Ω⟩ϕ(2)
k ∥ 2M

M−1 ,2M ∥ϕ(3)
m ∥∞,2

which is acceptable since j ≲ k. In the case of large t we again apply (2.5.14) before
summing over k2 > k1.

To prove point 2 of the Lemma, we perform the same argument but carry out the angular
decomposition in Fourier space on ϕ(1)

j instead of ϕ(2)
k . In the far-angle case we no longer

gain a factor of 2j−k so the restriction j ≲ k is not necessary. For point 3, we do not
change the angular decomposition but get the gain in |t|−1 from ϕ

(2)
k rather than ϕ

(3)
m ,

using the estimate

∥φk1(x)φk2(t)ϕ(2)
k ∥2,∞ ≲ 2−k2−k∥Lϕ(2)

k ∥2,∞ + 2k1−k2−k∥∂tϕ
(2)
k ∥2,∞
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for k + k1 ≳ 0. For point 4 we use both of the adaptations described above.

Due to some error terms which appear as a result of the commutation relations (2.2.1)-
(2.2.3), we will also need the following form of Lemma 2.5.3.

Corollary 2.5.4. Let Kj be a convolution operator given by a Schwarz kernel kj(x) :=
23kk(2jx). Then for m, r, s ≳ j it holds

1. ∥Kj(ϕ(1)
r ϕ(2)

s )ϕ(3)
m ∥1,2

≲ 2−j/M (23j M−1
4M 2

21
4M

(r−j)∥ϕ(1)
r ∥ 2M

M−1 , 4M
M−1

+ 23r/2M 2j−r∥⟨Ω⟩ϕ(1)
r ∥ 2M

M−1 ,2M )

· ∥ϕ(2)
s ∥ 2M

M−1 ,∞(∥ϕ(3)
m ∥∞,2 + 2j−m∥Lϕ(3)

m ∥∞,2 + 2−m∥∂tϕ
(3)
m ∥∞,2)

2. ∥Kj(ϕ(1)
r ϕ(2)

s )ϕ(3)
m ∥1,2

≲ 2−j/M (23j M−1
4M 2

21
4M

(r−j)∥ϕ(1)
r ∥ 2M

M−1 , 4M
M−1

+ 23r/2M 2j−r∥⟨Ω⟩ϕ(1)
r ∥ 2M

M−1 ,2M )

· (∥ϕ(2)
s ∥ 2M

M−1 ,∞ + 2j−s∥Lϕ(2)
s ∥ 2M

M−1 ,∞ + 2−s∥∂tϕ
(2)
s ∥ 2M

M−1 ,∞)∥ϕ(3)
m ∥∞,2

The important thing to note here is the gain in powers of 2j rather than 2r (up to a small
amount of leakage).

The proof of this corollary relies on the following simple proposition, which says that
angular localisation passes through convolution up to exponentially decaying tails.

Proposition 2.5.5. Let 1 ≤ q ≤ p ≤ ∞. Let Kj be as in the corollary. Then the
following commutator estimates hold for any N ∈ N.

1. Let l > k1 + 5. Then ∥φk1 ·Kj(φlF )∥Lp
x
≲N 2−(l+j)N 23( 1

q
− 1

p
)j∥F∥Lq

x
.

2. ∥φk1 ·Kj(φ<k1−5F )∥Lp
x
≲N 2−(k1+j)N 23( 1

q
− 1

p
)j∥F∥Lq

x
.

3. Let r ≥ −(j + k1)/3 + C1. Then

∥σβ

− (j+k1)
3

φk1 ·Kj(η(r,l)
r φ̃k1F )∥Lp

x
≲N 2−(j+k1+r)N 23( 1

q
− 1

p
)j∥F∥Lp

x
.

Proof of Proposition 2.5.5. Estimates (1) and (2) are standard, so we focus on (3). Write[
σβ

− (j+k1)
3

φk1 ·Kj(η(r,l)
r φ̃k1F )

]
(x) = σβ

− (j+k1)
3

(x)φk1(x)
∫

y
kj(y)(η(r,l)

r φ̃k1F )(x− y)dy

Observe that from the restrictions

|x| ∼ 2k1 , |x̂× β| ≲ 2−(j+k1)/3, |x− y| ∼ 2k1 , | ̂(x− y) × β| ∼ 2r,
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we find that |y| ≳ 2k1+r. Indeed,

2r ≃ | ̂(x− y) × β| ≃ 2−k1 |(x− y) × β| ≲ 2−k1(|x× β| + |y × β|)
≲ 2−(j+k1)/3 + 2−k1 |y||ŷ × β|

Since r ≫ −(j + k1)/3 this implies that |y| ≳ 2k1+r/|ŷ × β| ≳ 2k1+r (since |ŷ × β| ≲ 1).
Therefore, for c such that 1 + 1

p = 1
c + 1

q , it holds

∥σβ

− (j+k1)
3

φk1 ·Kj(η(r,l)
r φ̃k1F )∥Lp

x

≲

∥∥∥∥∥
∫

|y|≳2k1+r
kj(y)η(r,l)

r (x− y)φ̃k1(x− y)F (x− y)dy
∥∥∥∥∥

Lp
x

≲ ∥1|y|≳2k1+rkj(y)∥Lc
x
∥η(r,l)

r φ̃k1F∥Lq
x

≲ 2−(j+k1+r)N 23j( 1
q

− 1
p

)∥η(r,l)
r φ̃k1F∥Lq

x

Proof of Corollary 2.5.4. We show only point (1), the adaptations for (2) being as in the
previous proof. As in the proof of Lemma 2.5.3 we decompose

∥Kj(ϕ(1)
a ϕ

(2)
b )ϕ(3)

m ∥1,2 ≲ ∥ · ∥L1
t L2

x(|x|≲2−j) + ∥ · ∥L1
t L2

x(|x|≫2−j) =: (A) + (B)

Here (A) can be treated similarly to in the lemma, so we focus on (B). Further decompose

(B) ≤
∑

k1≫−j

∑
k2∈Z

∥ · ∥L1
t L2

x(|x|∼2k1 ,|t|∼2k2 )

Performing an angular decomposition in the physical variable as in the previous proof
and moving the spatial localisation inside the convolution, we have

∥ · ∥L1
t L2

x(|x|∼2k1 ,|t|∼2k2 )

≲

∥∥∥∥∥∥∥
 ∑

β∈Sj,k1

∥∥∥σβ
−(j+k1)/3(x)φk1(x) ·Kj(ϕ(1)

a ϕ
(2)
b )ϕ(3)

m

∥∥∥2

L2
x

 1
2
∥∥∥∥∥∥∥

L1
t (|t|∼2k2 )

≲

∥∥∥∥∥∥∥
∑

β

∥∥∥(σβ
−(j+k1)/3 φk1)(x) ·Kj(φ[k1−5,k1+5] ϕ

(1)
a ϕ

(2)
b )ϕ(3)

m

∥∥∥2

L2
x

 1
2
∥∥∥∥∥∥∥

L1
t (|t|∼2k2 )

+

∥∥∥∥∥∥∥
∑

β

∥∥∥(σβ
−(j+k1)/3 φk1)(x) ·Kj(φ<k1−5 ϕ

(1)
a ϕ

(2)
b )ϕ(3)

m

∥∥∥2

L2
x

 1
2
∥∥∥∥∥∥∥

L1
t (|t|∼2k2 )
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+

∥∥∥∥∥∥∥
∑

β

∥∥∥(σβ
−(j+k1)/3 φk1)(x) ·Kj(φ>k1+5 ϕ

(1)
a ϕ

(2)
b )ϕ(3)

m

∥∥∥2

L2
x

 1
2
∥∥∥∥∥∥∥

L1
t (|t|∼2k2 )

The second and third terms above are error terms bounded using Proposition 2.5.5. For
instance for the third term we can use Point 1 of Proposition 2.5.5 to find

∑
l>k1+5

∥∥∥∥∥∥∥
∑

β

∥∥∥(σβ
−(j+k1)/3 φk1)(x) ·Kj(φl ϕ

(1)
a ϕ

(2)
b )ϕ(3)

m

∥∥∥2

L2
x

 1
2
∥∥∥∥∥∥∥

L1
t (|t|∼2k2 )

≲
∑

l>k1+5

∥∥∥∥∥∥∥
∑

β

∥σβ
−(j+k1)/3ϕ

(3)
m ∥2

L2
x
∥φk1Kj(φl ϕ

(1)
a ϕ

(2)
b )∥2

L∞
x

 1
2
∥∥∥∥∥∥∥

L1
t (|t|∼2k2 )

≲
∑

l>k1+5
2k2/M 2−(l+j)N 23j( M−1

4M
)∥ϕ(3)

m ∥∞,2∥ϕ(1)
a ϕ

(2)
b ∥ M

M−1 , 4M
M−1

≲ 2k2/M 2−(k1+j)N 23j( M−1
4M

)∥ϕ(1)
a ∥ 2M

M−1 , 4M
M−1

∥ϕ(2)
b ∥ 2M

M−1 ,∞∥ϕ(3)
m ∥∞,2

This is as required when summed over k2 ≤ k1, k1 ≫ −j (since a ≳ j). When k2 > k1,
we again use (2.5.14).

For the first term we still have to exchange the angular localisation and the convolution.
Denoting φ[k1−5,k1+5] =: φ̃k1 , we have (leaving the restriction to |t| ∼ 2k2 implicit.)∥∥∥∥∥∥∥
∑

β

∥∥∥(σβ
−(j+k1)/3 φk1)(x) ·Kj(φ̃k1 ϕ

(1)
a ϕ

(2)
b )ϕ(3)

m

∥∥∥2

L2
x

 1
2
∥∥∥∥∥∥∥

L1
t (|t|∼2k2 )

≲

∥∥∥∥∥∥∥
∑

β

∥∥∥(σβ
−(j+k1)/3 φk1)(x) ·Kj(ηβ

−(j+k1)/3(x)φ̃k1(x)ϕ(1)
a ϕ

(2)
b )ϕ(3)

m

∥∥∥2

L2
x

 1
2
∥∥∥∥∥∥∥

L1
t

+
∑

r≫−(j+k1)/3
l=1,...,N

∥∥∥∥∥∥∥
∑

β

∥∥∥(σβ
−(j+k1)/3 φk1)(x) ·Kj(η(r,l)

r (x)φ̃k1(x)ϕ(1)
a ϕ

(2)
b )ϕ(3)

m

∥∥∥2

L2
x

 1
2
∥∥∥∥∥∥∥

L1
t

Note that here the multipliers η are acting on the space variable. Here the second term
is an error and again treated using Proposition 2.5.5, while for the main term we use the
close/far angle decomposition from the previous proof on ϕ(1) to reduce to∥∥∥∥∥∥∥
∑

β

∥∥∥(σβ
−(j+k1)/3 φk1)(x)Kj((ηβ

−(j+k1)/3φ̃k1)(x) · η̃β
−(j+k1)/3(D)ϕ(1)

a · ϕ(2)
b )ϕ(3)

m

∥∥∥2

L2
x

 1
2
∥∥∥∥∥∥∥

L1
t

(C-A)
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+
∑
r,l

∥∥∥∥∥∥∥
∑

β

∥∥∥(σβ
−(j+k1)/3 φk1)(x)Kj((ηβ

−(j+k1)/3φ̃k1)(x) · η̃(r,l)
r (D)ϕ(1)

a · ϕ(2)
b )ϕ(3)

m

∥∥∥2

L2
x

 1
2
∥∥∥∥∥∥∥

L1
t

(F-A)

where η̃β
−(j+k1)/3 +∑r,l η̃

(r,l)
r (r ≫ −(j+k1)/3, l = 1, . . . , N) is an angular decomposition

as in Proposition 2.2.6 with ηβ
−(j+k1)/3 playing the role of σβ

−(j+k1)/3. For the close-angle
term we proceed almost as in the proof of Lemma 2.5.3, however we must be careful
applying Bernstein’s inequality. We first apply Bernstein in the form of Young’s inequality
on the convolution Kj then directly on the term η̃β

−(j+k1)/3(D)ϕ(1)
a to find

(C-A) ≲

∥∥∥∥∥∥∥
∑

β

(∥σβ
−(j+k1)/3ϕ

(3)
m ∥2 23j M−8

4M ∥η̃β
−(j+k1)/3(D)ϕ(1)

a · ϕ(2)
b ∥ 4M

M−8
)2

 1
2
∥∥∥∥∥∥∥

L1
t

≲ 2k2/M 23j M−8
4M 2(3a−2(j+k1)/3) 7

4M ∥ϕ(1)
a ∥ 2M

M−1 , 4M
M−1

∥ϕ(2)
b ∥ 2M

M−1 ,∞∥ϕ(3)
m ∥∞,2

Summing first over k2 ≤ k1 this may be summed over k1 ≫ −j (due to our careful
application of Bernstein) yielding

2−j/M 23j M−1
4M 23(a−j) 7

4M ∥ϕ(1)
a ∥ 2M

M−1 , 4M
M−1

∥ϕ(2)
b ∥ 2M

M−1 ,∞∥ϕ(3)
m ∥∞,2

as required. We make the usual adaptation involving (2.5.14) in the case k2 > k1.

For the far-angle term, we apply the angular separation lemma, Lemma 2.5.2, to bound

(F-A) ≲
∑
r,l

∥∥∥∥∥∥∥
∑

β

(∥σβ
−(j+k1)/3ϕ

(3)
m ∥2∥(ηβ

−(j+k1)/3φ̃k1)(x)η̃(r,l)
r (D)ϕ(1)

a ∥∞∥ϕ(2)
b ∥∞)2

 1
2
∥∥∥∥∥∥∥

L1
t

≲ 2k2/M
∑
r,l

2−(a+k1+2r)23a/2M ∥⟨Ω⟩ϕ(1)
a ∥ 2M

M−1 ,2M ∥ϕ(2)
b ∥ 2M

M−1 ,∞∥ϕ(3)
m ∥∞,2

≲ 2k2/M 2−(a+k1)22(j+k1)/323a/2M ∥⟨Ω⟩ϕ(1)
a ∥ 2M

M−1 ,2M ∥ϕ(2)
b ∥ 2M

M−1 ,∞∥ϕ(3)
m ∥∞,2

which yields

2−j/M 2j−a23a/2M ∥⟨Ω⟩ϕ(1)
a ∥ 2M

M−1 ,2M ∥ϕ(2)
b ∥ 2M

M−1 ,∞∥ϕ(3)
m ∥∞,2

when summed over k2 ≤ k1, k1 ≫ −j, and

2−j/M 2j−a23a/2M ∥⟨Ω⟩ϕ(1)
a ∥ 2M

M−1 ,2M ∥ϕ(2)
b ∥ 2M

M−1 ,∞(2j−m∥Lϕ(3)
m ∥∞,2 + 2−m∥∂tϕ

(3)
m ∥∞,2)

for k2 > k1 after applying (2.5.14).
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Chapter 2. Global Solutions to the 3D Half-Wave Maps Equation with
Angular Regularity.

2.5.1 Showing that P0(HWM1(ϕ)) = error

The goal of this subsection is the following

Proposition 2.5.6. We have

P0L(HWM1(ϕ)) = error

First note the following Moser-type estimate:

Lemma 2.5.7. Let g : R3 → R3 be a smooth function with bounded derivatives up to
order 4. Then for any k ∈ Z it holds

max
(p,q)∈Q

2( 1
p

+ 3
q

)k∥Pk⟨Ω⟩1−δ(p,q)Lg(ϕ)∥p,q ≲Q C(∥ϕL∥S)

and
max

(p,q)∈Q
2( 1

p
+ 3

q
−1)k∥Pk⟨Ω⟩1−δ(p,q)∂tg(ϕ)∥p,q ≲Q C(∥ϕ∥S)

for Q as in the definition of S and C(·) a polynomial.

Proof. In the absence of any vector fields, we have the following standard estimate
assuming only bounded derivatives up to second order:

∥Pkg(ϕ)∥p,q ≲p,q 2−( 1
p

+ 3
q

)k∥ϕ∥2
S(1 + ∥ϕ∥S) (2.5.17)

This is proved in Appendix 2.B.

To incorporate the vector fields we apply the chain rule (omitting the angular derivative
for a radially admissible pair) to find

PkΩijLng(ϕ) = Pk(ΩijLnϕ · g′(ϕ)) + Pk(Lnϕ · Ωijϕ · g′′(ϕ)) (2.5.18)

Then since g′ satisfies the hypotheses for (2.5.17) we have

∥Pk(ΩijLnϕ · g′(ϕ))∥p,q ≲ ∥P<k−10ΩijLnϕ∥∞,∞∥P∼kg
′(ϕ)∥p,q + ∥P≥k−10ΩijLnϕ∥p,q∥g′∥∞

≲ ∥ϕL∥S · 2−( 1
p

+ 3
q

)k∥ϕ∥S(1 + ∥ϕ∥S) + 2−( 1
p

+ 3
q

)k∥ϕL∥S

which is acceptable. A similar argument works for the remaining term in (2.5.18) and
the second estimate of the statement can be proved similarly.

From this lemma we can deduce the following result which effectively allows us to ignore
the projection when estimating Pk(Πϕ⊥((−∆)1/2ϕ)):
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2.5 The half-wave maps contributions are negligible

Lemma 2.5.8. Let ϕ such that ∥ϕL∥S ≤ 1. Then there exists a constant CQ > 0 such
that

max
(p,q)∈Q

2( 1
p

+ 3
q

−1)k∥⟨Ω⟩1−δ(p,q)LPk(Πϕ⊥((−∆)1/2ϕ))∥p,q ≲Q
∑

k1∈Z
2−CQ|k−k1|∥Pk1ϕ

L∥Sk1

Under the same conditions we also have

max
(p,q)∈Q

2( 1
p

+ 3
q

−2)k∥∂t⟨Ω⟩1−δ(p,q)Pk(Πϕ⊥((−∆)1/2ϕ))∥p,q ≲Q
∑

k1∈Z
2−CQ|k−k1|∥ϕk1∥Sk1

Our final preparation for the proof of Proposition 2.5.6 is the following lemma, a variant
of Lemma 4.3 [Tao01a], which allows us to apply the geometric identity (GeId) in a more
general setting:

Lemma 2.5.9. Let r ∈ Z, p, q ≥ 1 with p−1 = p−1
1 + p−1

2 and q−1 = q−1
1 + q−1

2 . It holds

u(x) · Prv(x) − Pr(u · v)(x) = 2−r
∫

y

∫ 1

θ=0
(χ̌r(y)(2ry)T )∇u(x− θy)v(x− y)dydθ

from which

∥u · Prv − Pr(u · v)∥q ≲ 2−r∥∇u∥q1∥v∥q2

and more generally

∥⟨Ω⟩L[u · Prv − Pr(u · v)]∥q ≲ 2−r∥⟨Ω⟩∇t,xu
L∥q1∥⟨Ω⟩vL∥q2 + 2−2r∥⟨Ω⟩∇u∥q1∥⟨Ω⟩∂tv∥q2

These statements also hold for Pr as in Section 2.2.1.

Henceforth we will use the following shorthand, adding to that introduced in (2.4.2):

(2+,∞) := ( 2M
M − 1 ,∞), ∥⟨Ω⟩Pkϕ

L∥2+,∞ ≲ 2−( 1
2 − 1

2M
)k∥Pkϕ

L∥Sk

(2+, 4+) := ( 2M
M − 1 ,

4M
M − 1), ∥⟨Ω⟩Pkϕ

L∥2+,4+ ≲ 2−( 1
2 − 1

2M
)k2−3 M−1

4M
k∥Pkϕ

L∥Sk

(2.5.19)

Proof of Proposition 2.5.6. First note that it is sufficient to find some δ > λ > 0 such
that

∥⟨Ω⟩P0L[Pm(Πϕ⊥((−∆)1/2ϕ)) (ϕ · (−∆)1/2ϕ)]∥1,2 ≲ C
3
0ϵ

22−δ|m| ∑
k∈Z

2−λ|k−m|ck (2.5.20)

for every m ∈ Z, provided we then fix σ < λ.
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Chapter 2. Global Solutions to the 3D Half-Wave Maps Equation with
Angular Regularity.

We start by studying (2.5.20) with m > −10. Further decompose

∥⟨Ω⟩P0L[Pm(Πϕ⊥((−∆)1/2ϕ)) (ϕ · (−∆)1/2ϕ)]∥1,2

≲ ∥⟨Ω⟩L[Pm(Πϕ⊥((−∆)1/2ϕ))
∑
k∈Z

(ϕk · (−∆)1/2ϕ<k+10)]∥1,2 (2.5.21)

+ ∥⟨Ω⟩L[Pm(Πϕ⊥((−∆)1/2ϕ))
∑
j∈Z

(ϕ≤j−10 · (−∆)1/2ϕj)]∥1,2 (2.5.22)

We first study (2.5.21). For the sum over k ≥ −10 we use Lemma 2.5.8 to see that∑
k≥−10

∥⟨Ω⟩L[Pm(Πϕ⊥((−∆)1/2ϕ)) (ϕk · (−∆)1/2ϕ<k+10)]∥1,2

≲ ∥⟨Ω⟩L(Pm(Πϕ⊥((−∆)1/2ϕ)))∥∞−,2+
∑

k≥−10
∥⟨Ω⟩Lϕk∥2+,∞−∥⟨Ω⟩L(−∆)1/2ϕ<k+10∥2+,∞−

≲ 2−( 1
2 − 2

M
)mC3

0ϵ
2∑

k1

2−λ|m−k1|ck1

for some λ > 0.

The case k < −10 is handled by a direct application of Lemma 2.5.3. For example if ⟨Ω⟩
and L both fall on ϕk we have by point 2 of said lemma that∑

k<−10
∥Pm(Πϕ⊥((−∆)1/2ϕ)) (⟨Ω⟩Lϕk · (−∆)1/2ϕ<k+10)∥1,2

≲
∑

k<−10

∑
j<k+10

2( 1
2 − 1

2M
)(j−k)C2

0cjck(∥Pm(Πϕ⊥((−∆)1/2ϕ))∥∞,2

+ 2j−m∥LPm(Πϕ⊥((−∆)1/2ϕ))∥∞,2 + 2−m∥∂tPm(Πϕ⊥((−∆)1/2ϕ))∥∞,2)

which, again thanks to Lemma 2.5.8, is bounded by

C3
0ϵ

22−m/2∑
k1

2−λ|m−k1|ck1

for some λ > 0. When ⟨Ω⟩ and L distribute in other combinations, we apply the other
parts of Lemma 2.5.3.

We now turn to (2.5.22), in which there are no derivatives falling on the lowest frequency
factor. To handle this delicate situation we use the geometric relation (GeId). As an
example we consider only the case where L and Ω both fall on the product ϕ≤j−10 ·
(−∆)1/2ϕj . This case presents the most technical difficulties from interchanging L with
the nonlocal derivative (−∆)1/2 and the frequency projections. We have

∥Pm(Πϕ⊥((−∆)1/2ϕ))
∑
j∈Z

⟨Ω⟩L(ϕ≤j−10 · (−∆)1/2ϕj)∥1,2
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≤
∑
j∈Z

∥Pm(Πϕ⊥((−∆)1/2ϕ)) ⟨Ω⟩L(ϕ≤j−10 · (−∆)1/2ϕj − (−∆)1/2(ϕ≤j−10 · ϕj))∥1,2

(2.5.23)
+ ∥Pm(Πϕ⊥((−∆)1/2ϕ)) ⟨Ω⟩L(−∆)1/2(ϕ≤j−10 · ϕj − Pj(ϕ≤j−10 · ϕ>j−10))∥1,2

(2.5.24)
+ ∥Pm(Πϕ⊥((−∆)1/2ϕ)) ⟨Ω⟩L(−∆)1/2Pj(ϕ≤j−10 · ϕ>j−10)∥1,2 (2.5.25)

The idea for handling these terms is that the first two effectively see a derivative moved
onto the low frequency factor, and for the third we can apply (GeId). We start by
rewriting (2.5.23) as∑

j∈Z

∑
k≤j−10

∥Pm(Πϕ⊥((−∆)1/2ϕ)) ⟨Ω⟩LLk(ϕk, ϕj)∥1,2

which is similar to (2.5.21). Indeed when j ≥ −10 we can bound this using the same
estimates as for (2.5.21) combined with identities (2.5.4)-(2.5.5) and Lemma 2.5.1. In
the case j < −10 we need a small adaptation before applying Lemma 2.5.3 due to the
nonlocal operator Lk. As in (2.5.3) we expand the corresponding multiplier mk as a
Fourier series to write

Lk(ϕk, ϕj) =
∑
a,b

c
(k)
a,bϕk(x− 2−ka) · ϕj(x− 2−jb)

Since we are applying Lemma 2.5.3 we must then pay attention to where the vector
derivatives fall on this expression. For example if both fall on the low frequency term ϕk

we have to bound∑
j≤−10

k≤j−10

∑
a,b

|c(k)
a,b |∥Pm(Πϕ⊥((−∆)1/2ϕ)) ⟨Ω⟩L(ϕk(x− 2−ka)) · ϕj(x− 2−jb)∥1,2 (2.5.26)

Then by point 1 of the Lemma we have

∥Pm(Πϕ⊥((−∆)1/2ϕ)) ⟨Ω⟩L(ϕk(x− 2−ka)) · ϕj(x− 2−jb)∥1,2

≲ 2−k/M ∥⟨Ω⟩L(ϕk(x− 2−ka))∥2+,∞

· (23j/2M ∥⟨Ω⟩(ϕj(x− 2−jb))∥2+,∞− + 23j M−1
4M ∥ϕj∥2+,4+)

· (∥Pm(Πϕ⊥((−∆)1/2ϕ))∥∞,2 + . . .)

≲ 2−k2( 1
2 − 1

2M
)(k−j)⟨a⟩2⟨b⟩2C3

0cjck · 2−m/2∑
k1

2−λ|m−k1|ck1

where we used (2.5.6) to achieve the final line. This is acceptable when summed as in
(2.5.26).

For (2.5.24) we first consider j > −10, using the commutation relations [Ω, L] ≃ L,
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Angular Regularity.

[L, (−∆)1/2] ≃ R∂t and [Ω, R] ≃ R to find∑
j>−10

∥Pm(Πϕ⊥((−∆)1/2ϕ)) ⟨Ω⟩L(−∆)1/2(ϕ≤j−10 · ϕj − Pj(ϕ≤j−10 · ϕ>j−10))∥1,2

≲
∑

j>−10
∥Pm(Πϕ⊥((−∆)1/2ϕ)) (−∆)1/2⟨Ω⟩L(ϕ≤j−10 · ϕj − Pj(ϕ≤j−10 · ϕ>j−10))∥1,2

(2.5.27)
+ ∥Pm(Πϕ⊥((−∆)1/2ϕ)) R⟨Ω⟩∂t(ϕ≤j−10 · ϕj − Pj(ϕ≤j−10 · ϕ>j−10))∥1,2 (2.5.28)

These terms can both be handled using Lemma 2.5.9. For (2.5.27) we have

(2.5.27)
≲

∑
j>−10

∥Pm(Πϕ⊥((−∆)1/2ϕ))∥∞−,2+

· ∥(−∆)1/2⟨Ω⟩L(ϕ≤j−10 · ϕj − Pj(ϕ≤j−10 · ϕ∼j))∥ M
M−1 ,M

≲
∑

j>−10
∥Pm(Πϕ⊥((−∆)1/2ϕ))∥∞−,2+ · 2j(2−j∥⟨Ω⟩∇t,xLϕ≤j−10∥2+,∞−∥⟨Ω⟩Lϕ∼j∥2+,∞−

+ 2−2j∥⟨Ω⟩∇ϕ≤j−10∥2+,∞−∥⟨Ω⟩∂tϕ∼j∥2+,∞−)

≲
∑

j>−10
2−( 1

2 − 2
M

)m

∑
k1

2−λ|m−k1|C0ck1

 · 2−2j/MC2
0ϵ

2

which is acceptable. (2.5.28) is similar.

For (2.5.24) with j ≤ −10 we will use Lemma 2.5.3 but must incorporate the cancellation
structure via Lemma 2.5.9. We write, for Φj(ξ) := |2−jξ|χ̃0(2−jξ), χ̃0 as in Section 2.1.1,

(−∆)1/2(ϕ≤j−10 · ϕj − Pj(ϕ≤j−10 · ϕ>j−10))

=
∫

z,y,θ
Φ̌j(y)(2jzχ̌j(z))∇ϕ≤j−10(x− y − θz) · ϕ∼j(x− y − z)dydθdz

Thus by Lemma 2.5.3, using the notation ⟨Ω⟩x and Lx to emphasise that these fields act
with respect to the x variable only, we have∑

j≤−10
∥Pm(Πϕ⊥((−∆)1/2ϕ)) ⟨Ω⟩L(−∆)1/2(ϕ≤j−10 · ϕj − Pj(ϕ≤j−10 · ϕ>j−10))∥1,2

≲
∑

j≤−10

∫
z,y,θ

dydθdz|Φ̌j(y)(2jzχ̌j(z))|

· ∥Pm(Πϕ⊥((−∆)1/2ϕ))(x) ⟨Ω⟩xLx[∇ϕ≤j−10(x− y − θz)] · ϕ∼j(x− y − z)∥L1
t L2

x

+ similar terms

≲
∑

j≤−10
k≤j−10

∫
z,y,θ

dydθdz|Φ̌j(y)(2jzχ̌j(z))| · 2−k/M ∥⟨Ω⟩xLx(∇ϕk(x− y − θz))∥2+,∞
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· (23j/2M ∥⟨Ω⟩x(ϕ∼j(x− y − z))∥2+,∞− + 23j M−1
4M ∥ϕ∼j∥2+,4+)

· (∥Pm(Πϕ⊥((−∆)1/2ϕ))∥∞,2 + . . .)
+ similar terms

Then using (2.5.6) we bound this by

∑
j≤−10

k≤j−10

2−m/22( 1
2 − 1

2M
)(k−j)C3

0cjck

∑
k1

2−λ|m−k1|ck1


·
∫

z,y,θ
|Φ̌j(y)(2jzχ̌j(z))|⟨2k(y + θz)⟩2⟨2j(y + z)⟩2dydθdz

Thanks to the scaling of Φ̌j and χ̌j , both of which are rapidly decaying, we see that the
integral above is O(1) and this term is acceptable.

To complete the case m > −10 we need to study (2.5.25). Applying (GeId) and
commuting ⟨Ω⟩L through (−∆)1/2Pj we have∑

j∈Z
∥Pm(Πϕ⊥((−∆)1/2ϕ)) ⟨Ω⟩L(−∆)1/2Pj(ϕ≤j−10 · ϕ>j−10)∥1,2

≲
∑
j∈Z

∥Pm(Πϕ⊥((−∆)1/2ϕ)) (−∆)1/2Pj⟨Ω⟩L(ϕ>j−10 · ϕ>j−10)∥1,2 (2.5.29)

+ ∥Pm(Πϕ⊥((−∆)1/2ϕ)) RPj⟨Ω⟩∂t(ϕ>j−10 · ϕ>j−10)∥1,2 (2.5.30)
+ ∥Pm(Πϕ⊥((−∆)1/2ϕ)) (−∆)1/2(2−j∂tPj)⟨Ω⟩(ϕ>j−10 · ϕ>j−10)∥1,2 (2.5.31)

This is easiest to handle when j ≥ −10. For instance the sum of (2.5.29) over j ≥ −10
is bounded by∑

j≥−10
∥Pm(Πϕ⊥((−∆)1/2ϕ))∥∞−,2+ · 2j∥⟨Ω⟩Lϕ>j−10∥2+,∞−∥⟨Ω⟩Lϕ>j−10∥2+,∞−

which is fine. The commutator terms (2.5.30) and (2.5.31) correspond to (high)∇(high)-
∇(high) interactions and can be treated like (2.4.8).

For j < −10 we use Corollary 2.5.4 with Kj = 2−j(−∆)1/2Pj . For (2.5.29) we have∑
j<−10

∥Pm(Πϕ⊥((−∆)1/2ϕ)) (−∆)1/2Pj⟨Ω⟩L(ϕ>j−10 · ϕ>j−10)∥1,2

≲
∑

j<−10
∥Pm(Πϕ⊥((−∆)1/2ϕ)) (−∆)1/2Pj(Lϕ>j−10 · ⟨Ω⟩Lϕ>j−10)∥1,2

≲
∑

j<−10
r,s>j−10

2j2−j/M
(
23j M−1

4M 2
21

4M
(r−j)∥Lϕ∼r∥2+,4+ + 23r/2M 2j−r∥⟨Ω⟩Lϕ∼r∥2+,∞−

)

· ∥⟨Ω⟩Lϕ∼s∥2+,∞(∥Pm(Πϕ⊥((−∆)1/2ϕ))∥∞,2 + . . .)
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≲ C3
0ϵ2−m/2

 ∑
j<−10
r>j−10

(2( 1
2 − 1

2M
+3 M−1

4M
− 21

4M
)(j−r) + 2( 1

2 − 1
2M

+1− 3
2M

)(j−r))cr


·

∑
k1

2−λ|m−k1|ck1


which is acceptable. (2.5.30) and (2.5.31) can be treated in the same way, using the
additional information that Pj localises the two factors of ϕ>j−10 to comparable frequen-
cies (r ∼ s) in order to handle the high frequency time derivative which appears. This
completes the case m > −10.

The case m ≤ −10 is actually easier to handle and we do not need to invoke Lemma 2.5.3,
since the geometry rules out any (low)∇(low)∇(high) interactions. When the lone factor
of ϕ appears at high frequency (≥ 2−10), we refer to (2.4.6) and (2.4.7) of Proposition
2.4.1 for the cases when (−∆)1/2ϕ appears at high or low frequency respectively. It thus
remains to study the case when ϕ is at very low frequency. Here we have

∥P0⟨Ω⟩L[Pm(Πϕ⊥((−∆)1/2ϕ)) (ϕ≤−10 · (−∆)1/2ϕ>−10)]∥1,2 (2.5.32)
≤ ∥P0⟨Ω⟩L[Pm(Πϕ⊥((−∆)1/2ϕ)) (ϕ≤−10 · (−∆)1/2ϕ>−10 − (−∆)1/2(ϕ≤−10 · ϕ>−10))]∥1,2

+ ∥P0⟨Ω⟩L[Pm(Πϕ⊥((−∆)1/2ϕ)) (−∆)1/2(ϕ≤−10 · ϕ>−10)]∥1,2 (2.5.33)

The first term above is of the form∑
j≤−10

∑
k>−10

∥P0⟨Ω⟩L[Pm(Πϕ⊥((−∆)1/2ϕ)) Lj(ϕj , ϕk))]∥1,2

which can be handled like (2.4.7) from Proposition 2.4.1 (or directly when |j − k| ∼ 0).

For the second term in (2.5.33) we use (GeId) to replace the low frequency term with a
high one. We may also insert a projection P̃0 before the (−∆)1/2 since m is very small
and the whole term is restricted to frequency ∼ 20. We thus bound

∥P0⟨Ω⟩L[Pm(Πϕ⊥((−∆)1/2ϕ)) (−∆)1/2(ϕ≤−10 · ϕ>−10)]∥1,2

≲ ∥⟨Ω⟩LPm(Πϕ⊥((−∆)1/2ϕ)) (−∆)1/2⟨Ω⟩L(ϕ>−10 · ϕ>−10)∥1,2

+ ∥⟨Ω⟩Pm(Πϕ⊥((−∆)1/2ϕ)) P̃0R(∂tϕ>−10 · ⟨Ω⟩ϕ>−10)]∥1,2

+ ∥⟨Ω⟩Pm(Πϕ⊥((−∆)1/2ϕ)) P̃0R(ϕ>−10 · ⟨Ω⟩∂tϕ>−10)]∥1,2

The first of these lines is straightforwardly bounded by

2( 1
2 − 1

M
)m

∑
k1∈Z

2−λ|m−k1|C0ck1

 ∥⟨Ω⟩Lϕ>−10∥2+,∞−∥⟨Ω⟩Lϕ>−10∥∞−,2+
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For the second and third we must again invoke Corollary 2.5.4 to see, for example,

∥⟨Ω⟩Pm(Πϕ⊥((−∆)1/2ϕ)) P̃0R(∂tϕ>−10 · ⟨Ω⟩ϕ>−10)]∥1,2

≲
∑

r∼s>−10
(2

21
4M

r∥∂tϕr∥2+,4+ + 23r/2M 2−r∥⟨Ω⟩∂tϕr∥2+,∞−)∥⟨Ω⟩ϕs∥2+,∞

· (∥⟨Ω⟩Pm(Πϕ⊥((−∆)1/2ϕ))∥∞,2 + . . .)

≲ C3
0ϵ · 2−m/2

∑
k1

2−λ|m−k1|ck1

 ∑
r>−10

(2( 21
4M

−3 M−1
4M

+ 1
M

)r + 2−(1− 1
M

)r)cr

which is acceptable for M sufficiently large. The third term can be treated identically
and this completes the proof.

2.5.2 Showing that P0(HWM2(ϕ)) = error

In this section we will prove that the remaining nonlocal terms in the forcing are
acceptable. We will use the notation

X ≲a,b Y

to mean that X ≤ Ca,bY where Ca,b grows at most polynomially in a, b. This is specific
to both this section and the letters a, b.

Proposition 2.5.10. We have

P0L(HWM2(ϕ)) = error

Proof. We decompose

HWM2(ϕ) =
∑
k∈Z

ϕ× [(−∆)1/2(ϕk × (−∆)1/2ϕ) − (ϕk × (−∆)ϕ)]

and study the regions k < −10, k ∈ [−10, 10] and k > 10 separately.

• k < −10: We make the decomposition

∥P0⟨Ω⟩L[ϕ× [(−∆)1/2(ϕk × (−∆)1/2ϕ) − (ϕk × (−∆)ϕ)]]∥1,2

≤ ∥P0⟨Ω⟩L[ϕ<k−10 × [(−∆)1/2(ϕk × (−∆)1/2ϕ) − (ϕk × (−∆)ϕ)]]∥1,2 (2.5.34)
+ ∥P0⟨Ω⟩L[ϕ[k−10,−15] × [(−∆)1/2(ϕk × (−∆)1/2ϕ) − (ϕk × (−∆)ϕ)]]∥1,2 (2.5.35)
+ ∥P0⟨Ω⟩L[ϕ≥−15 × [(−∆)1/2(ϕk × (−∆)1/2ϕ) − (ϕk × (−∆)ϕ)]]∥1,2 (2.5.36)
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The last term above is the easiest to handle, splitting

(2.5.36) ≲ ∥⟨Ω⟩L[ϕ≥−15 × [(−∆)1/2(ϕk × (−∆)1/2ϕ>k+10) − (ϕk × (−∆)ϕ>k+10)]]∥1,2

+ ∥⟨Ω⟩L[ϕ≥−15 × [(−∆)1/2(ϕk × (−∆)1/2ϕ≤k+10) − (ϕk × (−∆)ϕ≤k+10)]]∥1,2

The first term here can be handled like (2.4.6) upon writing

(−∆)1/2(ϕk × (−∆)1/2ϕ>k+10) − (ϕk × (−∆)ϕ>k+10) =
∑

j>k+10
Lk+j(ϕk, ϕj) (2.5.37)

and using (2.5.4)-(2.5.5), while the second term can be handled like (2.4.7).

Next consider (2.5.35). This term is of the form (low)∇(lowest)∇(high), so we will
rely heavily on Lemma 2.5.3. Since the outer projection P0 almost passes through
the operators ⟨Ω⟩ and L, the third factor of ϕ is restricted to ϕ∼0. Then using (2.5.2)
to write the commutator expression Lk(ϕk, (−∆)1/2ϕ∼0) = Lk(ϕk, ϕ∼0) as a Fourier
series, we find

(2.5.35) ≲
−15∑

j=k−10

∑
a,b

|c(k)
a,b |∥⟨Ω⟩L[ϕj(x) × [ϕk(x− 2−ka) × ϕ∼0(x− b)]]∥1,2

Then for instance if the derivatives ⟨Ω⟩L both fall on ϕj we can apply point 2 of
Lemma 2.5.3 and bound

−15∑
j=k−10

∑
a,b

c
(k)
a,b∥⟨Ω⟩Lϕj(x) × [ϕk(x− 2−ka) × ϕ∼0(x− b)]∥1,2

≲
−15∑

j=k−10

∑
a,b

c
(k)
a,b2−k/M ∥⟨Ω⟩Lϕj∥2+,∞

· (23k/2M ∥⟨Ω⟩(ϕk(x− 2−ka))∥2+,∞− + 23k M−1
4M ∥ϕk∥2+,4+)

· (∥ϕ∼0∥∞,2 + ∥L(ϕ∼0(x− b))∥∞,2 + ∥∂tϕ∼0∥∞,2)

≲N

−15∑
j=k−10

∑
a,b

⟨a⟩−N ⟨b⟩−N 2( 1
2 − 1

2M
)(k−j)C0cj · ⟨a⟩C0ck · ⟨b⟩C0c0

≲ C3
0c0

−15∑
j=k−10

2( 1
2 − 1

2M
)(k−j)cjck

which is acceptable when summed over k < −10.

To complete the case k < −10 it remains to study (2.5.34). Here there are no
derivatives falling on the lowest frequency term, so we must use that ϕ lies on the
sphere. Observe that the third factor of ϕ is restricted to frequency ∼ 20 by the outer
projection and write

(−∆)1/2(ϕk × (−∆)1/2ϕ∼0) − ϕk × (−∆)ϕ∼0 = Lk(ϕk, ϕ∼0)
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to find

(2.5.34) ≤
∑
a,b

|c(k)
a,b |∥⟨Ω⟩L[ϕ<k−10(x) × [ϕk(x− 2−ka) × ϕ∼0(x− b)]]∥1,2 (2.5.38)

We then invoke the vector identity

a× (b× c) = b(a · c) − c(b · a) (2.5.39)

to rewrite

∥⟨Ω⟩L[ϕ<k−10(x) × [ϕk(x− 2−ka) × ϕ∼0(x− b)]]∥1,2

≤ ∥⟨Ω⟩L[ϕk(x− 2−ka) ϕ<k−10(x) · ϕ∼0(x− b)]∥1,2

+ ∥⟨Ω⟩L[ϕ∼0(x− b) ϕ<k−10(x) · ϕk(x− 2−ka)]∥1,2 (2.5.40)

Let’s start with the first term. In order to use (GeId) we need the two terms in the
dot product to be evaluated at the same point, so write

ϕ<k−10(x) = ϕ<k−10(x− b) +
∫ 1

0
b · ∇ϕ<k−10(x− θb)dθ

Putting the integral expression into (2.5.40) we get a term of the form (high)∇(low)∇(low)
which is easily handled. Indeed, borrowing the factor of 2k from c

(k)
a,b , we may write

2k∥⟨Ω⟩L[ϕk(x− 2−ka) (
∫ 1

0
b · ∇ϕ<k−10(x− θb)dθ) · ϕ∼0(x− b)]∥1,2

≲b 2k
∫ 1

0
∥⟨Ω⟩L(ϕk(x− 2−ka))∥2+,∞−∥⟨Ω⟩L(∇ϕ<k−10(x− θb))∥2+,∞−

· ∥⟨Ω⟩L(ϕ∼0(x− b))∥∞−,2+dθ

≲a,b C
3
0
∑

j<k−10

∫ 1

0
cjckc02( 1

2 − 1
M

)(j+k)⟨2jθb⟩2dθ

which is acceptable when summed as in (2.5.38) and over k < −10.
We then come to

2k∥⟨Ω⟩L[ϕk(x− 2−ka)(ϕ<k−10 · ϕ∼0)(x− b)]∥1,2

≲ 2k∥⟨Ω⟩L[ϕk(x− 2−ka)(ϕ[k−10,−10] · ϕ∼0)(x− b)]∥1,2

+ 2k∥⟨Ω⟩L[ϕk(x− 2−ka)(ϕ≤−10 · ϕ∼0)(x− b)]∥1,2 (2.5.41)

The first of these terms can be handled by a straightforward application of Lemma
2.5.3. For the second we use (GeId) to bound

2k∥⟨Ω⟩L[ϕk(x− 2−ka)(ϕ≤−10 · ϕ∼0)(x− b)]∥1,2

≲ 2k∥⟨Ω⟩L[ϕk(x− 2−ka)(ϕ≤−10 · ϕ∼0 − P∼0(ϕ≤−10 · ϕ∼0))(x− b)]∥1,2

+ 2k∥⟨Ω⟩L[ϕk(x− 2−ka)P∼0(ϕ>−10 · ϕ>−10)(x− b)]∥1,2
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The first line is easy to handle using Lemma 2.5.9 to move a derivative onto the low
frequency term, so it remains to consider the second line. From the estimate

2k∥⟨Ω⟩L[ϕk(x− 2−ka)P∼0(ϕ>−10 · ϕ>−10)(x− b)]∥1,2

≲ 2k∥⟨Ω⟩L(ϕk(x− 2−ka))∥2+,∞−∥⟨Ω⟩L(P∼0(ϕ>−10 · ϕ>−10)(x− b))∥ 2M
M+1 , 2M

M−1

it remains to show that

∥⟨Ω⟩L(P∼0(ϕ>−10 · ϕ>−10)(x− b))∥ 2M
M+1 , 2M

M−1
≲b C

2
0ϵ

2 (2.5.42)

First permuting the vector derivatives and the translation by b we find

∥⟨Ω⟩L(P∼0(ϕ>−10 · ϕ>−10)(x− b))∥ 2M
M+1 , 2M

M−1
≲b ∥⟨Ω⟩LP∼0(ϕ>−10 · ϕ>−10)∥ 2M

M+1 , 2M
M−1

+ ∥⟨Ω⟩P∼0(∂tϕ>−10 · ϕ>−10)∥ 2M
M+1 , 2M

M−1

(2.5.43)

For the first term we commute ⟨Ω⟩L and P0 to see

∥⟨Ω⟩LP∼0(ϕ>−10 · ϕ>−10)∥ 2M
M+1 , 2M

M−1
≲ ∥P∼0⟨Ω⟩L(ϕ>−10 · ϕ>−10)∥ 2M

M+1 , 2M
M−1

+ ∥P∼0⟨Ω⟩∂t(ϕ>−10 · ϕ>−10)∥ 2M
M+1 , 2M

M−1

≲ ∥⟨Ω⟩Lϕ>−10∥2+,∞−∥⟨Ω⟩Lϕ>−10∥∞−,2+

+ ∥⟨Ω⟩∂tϕ>−10∥∞−,2+∥⟨Ω⟩ϕ>−10∥2+,∞−

which is as required. This calculation also covered the second term in (2.5.43) so
(2.5.42) is shown, completing the study of (2.5.41).

It remains to study the second term in (2.5.40). Again we write

ϕ<k−10(x) = ϕ<k−10(x− 2−ka) + 2−ka ·
∫ 1

0
∇ϕ<k−10(x− 2−kaθ)dθ (2.5.44)

For the term involving the integral we have

∥⟨Ω⟩L[ϕ∼0(x− b)(2−ka ·
∫ 1

0
∇ϕ<k−10(x− 2−kaθ)dθ) · ϕk(x− 2−ka)]∥1,2

≲a 2−k
∫ 1

0
∥⟨Ω⟩L[ϕ∼0(x− b)∇ϕ<k−10(x− 2−kaθ) · ϕk(x− 2−ka)]∥1,2dθ

Remembering that we can absorb the 2−k into c(k)
a,b from (2.5.38), we see that this can

be treated directly using Lemma 2.5.3 after splitting ⟨Ω⟩L over the three factors.

For the remaining part of ϕ<k−10 we use the geometry to bound

∥⟨Ω⟩L[ϕ∼0(x− b)(ϕ<k−10 · ϕk)(x− 2−ka)]∥1,2

≲ ∥⟨Ω⟩L[ϕ∼0(x− b)(ϕ<k−10 · ϕk − Pk(ϕ<k−10 · ϕ≥k−10))(x− 2−ka)]∥1,2 (2.5.45)
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+ ∥⟨Ω⟩L[ϕ∼0(x− b)Pk(ϕ≥k−10 · ϕ≥k−10)(x− 2−ka)]∥1,2 (2.5.46)

First consider (2.5.46). We consider only the more difficult case where ⟨Ω⟩L falls on
the Pk. By a series of calculations as in (2.5.43), we reduce to studying terms of the
form

∥ϕ∼0(x− b)(Pk⟨Ω⟩L(ϕ≥k−10 · ϕ≥k−10))(x− 2−ka)∥1,2

and

2−k∥ϕ∼0(x− b)(Pk⟨Ω⟩∂t(ϕ≥k−10 · ϕ≥k−10))(x− 2−ka)∥1,2

We restrict our attention to the more delicate second term, as the first can be treated
similarly. Considering for example the case in which the angular and time derivative
fall on different factors, we use Corollary 2.5.4 to bound

2−k∥ϕ∼0(x− b)(Pk(∂tϕ≥k−10 · ⟨Ω⟩ϕ≥k−10))(x− 2−ka)∥1,2

≲ 2−k
∑

r,s≥k−10
∥ϕ∼0(x− b+ 2−ka)Pk(∂tϕr · ⟨Ω⟩ϕs)(x)]∥1,2

≲ 2−k
∑

r∼s≥k−10
2−k/M (23k M−1

4M 2
21

4M
(r−k)∥∂tϕr∥2+,4+ + 2k−r23r/2M ∥⟨Ω⟩∂tϕr∥2+,∞−)

· ∥⟨Ω⟩ϕs∥2+,∞(∥ϕ∼0∥∞,2 + 2k∥L(ϕ∼0(x− b+ 2−ka))∥∞,2 + ∥∂tϕ∼0∥∞,2)

≲a,b 2−kC3
0ϵc0

∑
r≥k−10

(2(3 M−1
4M

− 21
4M

− 1
M

)(k−r) + 2(1− 1
M

)(k−r))cr

which is acceptable when multiplied by c(k)
a,b and summed over a, b and k < −10. Note

that here the gain of 2k before the factor L(ϕ∼0(x− b+ 2−ka)) was necessary in order
to cancel out the loss from the translation by 2ka.

For (2.5.45) we expand

ϕ<k−10·ϕk−Pk(ϕ<k−10·ϕ≥k−10) = 2−k
∫ 1

0

∫
y
(2kyχ̌k(y))∇ϕ<k−10(x−θy)ϕ∼k(x−y)dydθ

It therefore remains to bound∑
a,b

2−k|c(k)
a,b |

∫
y,θ
dydθ |2kyχ̌k(y)|

· ∥⟨Ω⟩L[ϕ∼0(x− b)∇ϕ<k−10(x− 2−ka− θy)ϕ∼k(x− 2−ka− y)]∥1,2

which can be handled using Lemma 2.5.3.

• k > 10: We study∑
j∈Z

∥P0⟨Ω⟩L[ϕ× [(−∆)1/2(ϕk × (−∆)1/2ϕj) − (ϕk × (−∆)ϕj)]]∥1,2
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If the third factor of ϕ is restricted to j < k − 10, then the first ϕ is restricted to ϕ∼k

by the outer projection P0. The term is therefore of type (high)∇(high)∇(low) and
may be treated as (2.4.6) upon writing

(−∆)1/2(ϕk × (−∆)1/2ϕj) − (ϕk × (−∆)ϕj) = Lk(ϕk, (−∆)1/2ϕj)

and appealing to the identities (2.5.4)-(2.5.5).

When j > k + 10, again the first factor is restricted to ϕ∼j and this may be treated
similarly.

It thus remains to study j ∼ k. Here there is nothing to be gained by cancellation so
we split the term up into its two parts:

∥P0⟨Ω⟩L[ϕ× [(−∆)1/2(ϕk × (−∆)1/2ϕ∼k) − (ϕk × (−∆)ϕ∼k)]]∥1,2

≤ ∥P0⟨Ω⟩L[ϕ× (−∆)1/2(ϕk × (−∆)1/2ϕ∼k)]∥1,2︸ ︷︷ ︸
(A)

+ ∥P0⟨Ω⟩L[ϕ× (ϕk × (−∆)ϕ∼k)]∥1,2︸ ︷︷ ︸
(B)

(2.5.47)

We first study (A). This term presents some more complications due to its nonlocal
expression, however it also has the advantage that when the remaining ϕ is at low
frequency, the outer derivative (−∆)1/2 is acting at frequency ∼ 1. First split ϕ into
low and high frequencies:

(A) ≤ ∥P0⟨Ω⟩L[ϕ≤−10 × (−∆)1/2(ϕk × (−∆)1/2ϕ∼k)]∥1,2︸ ︷︷ ︸
(A)≤−10

+ ∥P0⟨Ω⟩L[ϕ>−10 × (−∆)1/2(ϕk × (−∆)1/2ϕ∼k)]∥1,2︸ ︷︷ ︸
(A)>−10

Here (A)>−10 is of type (high)∇(high)∇(high) so can be handled like (2.4.8) using
the radially admissible Strichartz spaces.

(A)≤−10 is of the form (low)∇(high)∇(high) so must be handled using the geometry.
In this case it is especially important to keep track of how the vector derivatives are
falling as the commutator terms can rapidly cause a build up of derivatives if treated
too crudely.

To clarify the calculations we then fix a particular Ωij and Ln (the inhomogeneous
parts of ⟨Ω⟩ and L are easier to handle) and make a very precise decomposition. Note
that we are free to switch the order of Ωij and Ln up to a term of the same form.
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Writing P̃0(−∆)1/2 = P0, a radial operator, and using the Leibniz rule, we have

P0LnΩij [ϕ≤−10 × (−∆)1/2(ϕk × (−∆)1/2ϕ∼k)]
= P0[LnΩijϕ≤−10 × P0(ϕk × (−∆)1/2ϕ∼k)]

+ P0[Lnϕ≤−10 × P0(Ωijϕk × (−∆)1/2ϕ∼k)]
+ P0[Lnϕ≤−10 × P0(ϕk × (−∆)1/2Ωijϕ∼k)]
+ P0[Ωijϕ≤−10 × P0(Lnϕk × (−∆)1/2ϕ∼k)]
+ P0[ϕ≤−10 × P0(LnΩijϕk × (−∆)1/2ϕ∼k)]
+ P0[ϕ≤−10 × P0(Lnϕk × (−∆)1/2Ωijϕ∼k)]
+ P0[Ωijϕ≤−10 × P0(ϕk × Ln(−∆)1/2ϕ∼k)]
+ P0[ϕ≤−10 × P0(Ωijϕk × Ln(−∆)1/2ϕ∼k)]
+ P0[ϕ≤−10 × P0(ϕk × LnΩij(−∆)1/2ϕ∼k)]
+ P0[Ωijϕ≤−10 × P ′

0∂t(ϕk × (−∆)1/2ϕ∼k)]
+ P0[ϕ≤−10 × P ′

0∂t(Ωijϕk × (−∆)1/2ϕ∼k)]
+ P0[ϕ≤−10 × P ′

0∂t(ϕk × (−∆)1/2Ωijϕ∼k)]


(A1)

 (A2)

 (A3)

 (A4)

In the above P ′
0 is another operator of the type described in Section 2.2.1, which may

not be radial.

We start by considering the group (A4) which is the most difficult since there is an
additional derivative falling on the high frequency terms. Consider first the case where
∂t falls on ϕk. Writing the operator P ′

0 as an explicit convolution by some K0, we
have for the first line

Ωijϕ≤−10 × P ′
0(∂tϕk × (−∆)1/2ϕ∼k)

= Ωijϕ≤−10(x) ×
∫

y
K0(y)(∂tϕk(x− y) × (−∆)1/2ϕ∼k(x− y))dy

=
∫

y
K0(y)∂tϕk(x− y) Ωijϕ≤−10(x) · (−∆)1/2ϕ∼k(x− y)dy (2.5.48)

−
∫

y
K0(y)(−∆)1/2ϕ∼k(x− y) Ωijϕ≤−10(x) · ∂tϕk(x− y)dy (2.5.49)

We must then split

Ωijϕ≤−10(x) = (Ωijϕ≤−10)(x− y) + y ·
∫ 1

θ=0
∇(Ωijϕ≤−10)(x− θy)dθ

Putting the integral term into (2.5.48) we find∥∥∥∥∫
y

K0(y)∂tϕk(x− y) (y ·
∫ 1

θ=0
∇(Ωijϕ≤−10)(x− θy)dθ) · (−∆)1/2ϕ∼k(x− y)dy

∥∥∥∥
1,2

≲
∫

y

∫ 1

0
|K0(y)||y|∥∂tϕk∥9, 10

3
∥∇Ωijϕ≤−10∥ 18

7 ,∞∥(−∆)1/2ϕ∼k∥2,5dθdy
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which is acceptable when summed over k > 10 since the factor of |y| is absorbed by
the kernel K0. The same argument works for (2.5.49), and for the corresponding terms
in the second and third lines of (A4).

For (2.5.48) it therefore remains to consider∫
y

K0(y)[∂tϕk Ωijϕ≤−10 · (−∆)1/2ϕ∼k](x− y)dy

The corresponding terms from the second and third lines of (A4) are∫
y

K0(y)[Ωij∂tϕk ϕ≤−10 · (−∆)1/2ϕ∼k](x− y)dy (2.5.50)

and ∫
y

K0(y)[∂tϕk ϕ≤−10 · (−∆)1/2Ωijϕ∼k](x− y)dy (2.5.51)

and we have to bound the sum of these in L1
tL

2
x.

In order to use (GeId) we rewrite ϕ≤−10 = ϕ≤k−10 − ϕ[−10,k−10]. Then for the high
frequency part we can again use a bound as for (2.4.8) to see e.g.

∥∂tϕk Ωijϕ[−10,k−10] · (−∆)1/2ϕ∼k∥1,2 ≲ ∥∂tϕk∥9, 10
3

∥Ωijϕ[−10,k−10]∥ 18
7 ,∞∥(−∆)1/2ϕ∼k∥2,5

which is acceptable. The same argument works for (2.5.50) and (2.5.51).

For the low frequency part ϕ≤k−10 we want to use (GeId). We have

∂tϕk Ωijϕ≤k−10 · (−∆)1/2ϕ∼k

= ∂tϕk (Ωijϕ≤k−10 · (−∆)1/2ϕ∼k − (−∆)1/2(Ωijϕ≤k−10 · ϕ∼k)) (2.5.52)
+ ∂tϕk (−∆)1/2(Ωijϕ≤k−10 · ϕ∼k − P∼k(Ωijϕ≤k−10 · ϕ>k−10)) (2.5.53)
+ ∂tϕk (−∆)1/2P∼k(Ωijϕ≤k−10 · ϕ>k−10) (2.5.54)

For the first line we use Lemma 2.5.1 to bound

∥(2.5.52)∥1,2 ≲
∑

j≤k−10
∥∂tϕk Lj(Ωijϕj , ϕ∼k)∥1,2

≲
∑

j≤k−10
2j∥∂tϕk∥2+,∞−∥Ωijϕj∥2+,∞−∥ϕ∼k∥∞−,2+

and for the second line Lemma 2.5.9 to find

∥(2.5.53)∥1,2 ≲ ∥∂tϕk∥2+,∞−2k2−k∥∇Ωijϕ≤k−10∥2+,∞−∥ϕ>k−10∥∞−,2+

Both of these bounds are acceptable, and we can treat the corresponding parts of
(2.5.50) and (2.5.51) in the same way.

We at last come to the interesting part, (2.5.54). We want to use (GeId), but are
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obstructed by the presence of the Ωij . The solution is to combine this term with the
corresponding part of (2.5.51). We have

∂tϕk (−∆)1/2P∼k(Ωijϕ≤k−10 · ϕ>k−10) + ∂tϕk (−∆)1/2P∼k(ϕ≤k−10 · Ωijϕ>k−10)
= ∂tϕk (−∆)1/2ΩijP∼k(ϕ≤k−10 · ϕ>k−10)

= −1
2∂tϕk (−∆)1/2ΩijP∼k(ϕ>k−10 · ϕ>k−10)

We then bound

∥∂tϕk (−∆)1/2ΩijP∼k(ϕ>k−10 · ϕ>k−10)∥1,2

≲ 2k∥∂tϕk∥2+,∞−∥Ωijϕ>k−10∥2+,∞−∥ϕ>k−10∥∞−,2+

which is acceptable. The corresponding term in (2.5.50) can be handled similarly on
its own.

The term (2.5.49) can be handled in the same way, using the Leibniz rule on the
time-derivative in place of Lemma 2.5.1.

To complete the study of (A4) we have to consider the case where the time derivative
falls on (−∆)1/2ϕ∼k instead of ϕk. In this case the argument carries through identically
until it comes to handling the term analogous to (2.5.54),

ϕk (−∆)1/2P∼k(Ωijϕ≤k−10 · ∂tϕ>k−10)

with similar contributions

Ωijϕk (−∆)1/2P∼k(ϕ≤k−10 · ∂tϕ>k−10) (2.5.55)

and

ϕk (−∆)1/2P∼k(ϕ≤k−10 · ∂tΩijϕ>k−10) (2.5.56)

from the second and third lines of (A4). First note that if the derivative were instead
on ϕ≤k−10 we would be fine in all three cases, for instance

∥ϕk (−∆)1/2P∼k(Ωij∂tϕ≤k−10 · ϕ>k−10)∥1,2

≲ ∥ϕk∥2+,∞−2k∥Ωij∂tϕ≤k−10∥2+,∞−∥ϕ>k−10∥∞−,2+

It therefore remains to study

ϕk (−∆)1/2P∼k∂t(Ωijϕ≤k−10 · ϕ>k−10)
Ωijϕk (−∆)1/2P∼k∂t(ϕ≤k−10 · ϕ>k−10)
ϕk (−∆)1/2P∼k∂t(ϕ≤k−10 · Ωijϕ>k−10)
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Combining the first and last terms and using (GeId) we bound

∥ϕk (−∆)1/2P∼k∂t(Ωijϕ≤k−10 · ϕ>k−10) + ϕk (−∆)1/2P∼k∂t(ϕ≤k−10 · Ωijϕ>k−10)∥1,2

= ∥ϕk (−∆)1/2∂tΩijP∼k(ϕ>k−10 · ϕ>k−10)∥1,2

≲ 2k∥ϕk∥2+,∞−∥∂t⟨Ω⟩ϕ>k−10∥∞−,2+∥⟨Ω⟩ϕ>k−10∥2+,∞−

which is acceptable when summed over k > 10. The middle term can be dealt with in
the same way on its own. This completes the analysis for (A4).

The groups (A1), (A2) and (A3) must be treated simultaneously in order to preserve
the structure for (GeId). In all cases, we can work as for (A4) up to the decomposition
(2.5.52)-(2.5.54). At this point for (A1) we will be studying

ϕk LnΩijϕ≤k−10 · (−∆)1/2ϕ∼k

Ωijϕk Lnϕ≤k−10 · (−∆)1/2ϕ∼k

ϕk Lnϕ≤k−10 · (−∆)1/2Ωijϕ∼k

for the first, second and third lines respectively. For (A2) we will have

Lnϕk Ωijϕ≤k−10 · (−∆)1/2ϕ∼k

LnΩijϕk ϕ≤k−10 · (−∆)1/2ϕ∼k

Lnϕk ϕ≤k−10 · (−∆)1/2Ωijϕ∼k

and for (A3)

ϕk Ωijϕ≤k−10 · Ln(−∆)1/2ϕ∼k

Ωijϕk ϕ≤k−10 · Ln(−∆)1/2ϕ∼k

ϕk ϕ≤k−10 · LnΩij(−∆)1/2ϕ∼k

(as well as a second set of easier terms from the expansion of the cross product).
Adding these nine terms together and reversing the Leibniz rule on Ωij and Ln this
comes to

LnΩij [ϕk ϕ≤k−10 · (−∆)1/2ϕ∼k]

which we can split up as

LnΩij [ϕk (ϕ≤k−10 · (−∆)1/2ϕ∼k − (−∆)1/2(ϕ≤k−10 · ϕ∼k))]
+ LnΩij [ϕk (−∆)1/2(ϕ≤k−10 · ϕ∼k − P∼k(ϕ≤k−10 · ϕ>k−10))]
+ LnΩij [ϕk (−∆)1/2P∼k(ϕ≤k−10 · ϕ>k−10)] (2.5.57)
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The first term is of the form ∑
j≤k−10

ΩijLn[ϕkLj(ϕj , ϕ∼k)]

which can be treated using (2.5.4)-(2.5.5) and placing ϕk and ϕj into L2+
t L∞−

x , and
ϕ∼k into L∞−

t L2+
x .

For the second term, we use Lemma 2.5.9 to write, for example when LnΩij falls on
the difference term

∥ϕk LnΩij(−∆)1/2(ϕ≤k−10 · ϕ∼k − P∼k(ϕ≤k−10 · ϕ>k−10))∥1,2

≲ ∥ϕk∥ 2M
M−1 ,2M

·
∥∥∥∥2−kLnΩij(−∆)1/2

∫
y,θ

(2kyχ̌k(y))∇ϕ≤k−10(x− θy)ϕ∼k(x− y)dydθ
∥∥∥∥

2M
M+1 , 2M

M−1

≲ 2−k2−( 1
2 + 1

M
)kC0ck

·
∫

y,θ
|2kyχ̌k(y)|

∥∥∥LnΩij(−∆)1/2[∇ϕ≤k−10(x− θy)ϕ∼k(x− y)]
∥∥∥ 2M

M+1 , 2M
M−1

dydθ

where ∥∥∥LnΩij(−∆)1/2[∇ϕ≤k−10(x− θy)ϕ∼k(x− y)]
∥∥∥ 2M

M+1 , 2M
M−1

≲ 2k∥L⟨Ω⟩(∇ϕ≤k−10(x− θy))∥2+,∞−∥L⟨Ω⟩(ϕ∼k(x− y))∥∞−,2+

+ ∥⟨Ω⟩(∂t∇ϕ≤k−10(x− θy))∥2+,∞−∥⟨Ω⟩(ϕ∼k(x− y))∥∞−,2+

+ ∥⟨Ω⟩(∇ϕ≤k−10(x− θy))∥2+,∞−∥⟨Ω⟩(∂tϕ∼k(x− y))∥∞−,2+

all of which are acceptable using (2.5.6), because |y| behaves like 2−k in the integral.
The third term of (2.5.57) can be treated using (GeId) and the commutation relation
between Ln and (−∆)1/2P∼k. We place ϕk into L2+

t L∞−
x , one of the high frequency

factors into L2+
t L∞−

x and the other into L∞−
t L2+

x , in particular the one accompanied
by a ∂t when this arises from [Ln, (−∆)1/2P∼k].
To conclude the case k > 10, it remains to consider (B). When ϕ appears at high
frequency this term is again easily handled like (2.4.8). In the low frequency case,
ϕ≤−10, the term can be treated analogously to the group (A4) which also contains
two high frequency derivatives, but with significant simplifications.

• k ∈ [−10, 10]: This time we consider

∥P0⟨Ω⟩L[ϕ× ((−∆)1/2(ϕ∼0 × (−∆)1/2ϕ) − (ϕ∼0 × (−∆)ϕ))]∥1,2

This term is easiest to handle when the outer factor of ϕ is at high frequency. Indeed
we have

∥P0⟨Ω⟩L[ϕ>−10 × ((−∆)1/2(ϕ∼0 × (−∆)1/2ϕ) − (ϕ∼0 × (−∆)ϕ))]∥1,2
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≲ ∥⟨Ω⟩L[ϕ>−10 × ((−∆)1/2(ϕ∼0 × (−∆)1/2ϕ≤20) − (ϕ∼0 × (−∆)ϕ≤20))]∥1,2

+ ∥⟨Ω⟩L[ϕ>−10 × ((−∆)1/2(ϕ∼0 × (−∆)1/2ϕ>20) − (ϕ∼0 × (−∆)ϕ>20))]∥1,2

Upon carefully commuting ⟨Ω⟩L through the operators (−∆)1/2, we can bound the
first line above by placing ϕ>−10 into L2+

t L∞−
x , ϕ∼0 into L∞−

t L2+
x and ϕ<20 also into

L2+
t L∞−

x , without needing to use the cancellation structure. For the second line we
do need the cancellation, since we cannot handle two derivatives falling on a high
frequency factor, so bound this by∑

j>20
∥⟨Ω⟩L[ϕ>−10 × L0(ϕ∼0, (−∆)1/2ϕj)]∥1,2

which can be dealt with by placing ϕ>−10 and ϕ∼0 into L2+
t L∞−

x and ϕj into L∞−
t L2+

x .

The case ϕ≤−10 is more delicate. Note that in this case the final factor of ϕ is also
restricted to frequency ≲ 1. First suppose it is at frequency ∼ 1. Write

P̃0((−∆)1/2(ϕ∼0 × (−∆)1/2ϕ∼0) − (ϕ∼0 × (−∆)ϕ∼0)) = L0(ϕ∼0, ϕ∼0)

Then using (2.5.3) we have

∥P0⟨Ω⟩L[ϕ≤−10 × ((−∆)1/2(ϕ∼0 × (−∆)1/2ϕ∼0) − (ϕ∼0 × (−∆)ϕ∼0))]∥1,2

≲
∑
a,b

|c(0)
a,b|∥⟨Ω⟩L[ϕ≤−10(x) × (ϕ∼0(x− a) × ϕ∼0(x− b))]∥1,2

≲
∑
a,b

|c(0)
a,b|∥⟨Ω⟩L[ϕ∼0(x− a) ϕ≤−10(x) · ϕ∼0(x− b)]∥1,2 + similar term

We can then replace ϕ≤−10(x) with ϕ≤−10(x− b) up to an integral term of the form
(high)∇(high)∇(low). Using Lemma 2.5.9 we can then exchange ϕ≤−10 · ϕ∼0 for
P̃0(ϕ≤−10 · ϕ>−10) ≃ P̃0(ϕ>−10 · ϕ>−10), and bound

∥⟨Ω⟩L[ϕ∼0(x− a) P̃0(ϕ>−10 · ϕ>−10)(x− b)]∥1,2

≲a,b ∥⟨Ω⟩Lϕ∼0∥2+,∞−

· (∥⟨Ω⟩L(ϕ>−10 · ϕ>−10)∥ 2M
M+1 , 2M

M−1
+ ∥⟨Ω⟩(∂tϕ>−10 · ϕ>−10)∥ 2M

M+1 , 2M
M−1

)

which can be handled by placing one of the high frequency factors (the differentiated
one in the second case) into L∞−

t L2+
x and the other into the other into L2+

t L∞−
x .

We now consider the case where the third factor of ϕ is at low frequency, say ≤ 2−20.
We start by writing

(−∆)1/2(ϕ∼0 × (−∆)1/2ϕj) − (ϕ∼0 × (−∆)ϕj) = Lj(ϕ∼0, ϕj)

for j < −20. Then we have

∥P0⟨Ω⟩L[ϕ≤−10 × ((−∆)1/2(ϕ∼0 × (−∆)1/2ϕ<−20) − (ϕ∼0 × (−∆)ϕ<−20))]∥1,2
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≲
∑

j<−20

∑
a,b

|c(j)
a,b|∥P0⟨Ω⟩L[ϕ∼0(x− a) ϕ≤−10(x) · ϕj(x− 2−jb)]∥1,2 (2.5.58)

+
∑

j<−20

∑
a,b

|c(j)
a,b|∥P0⟨Ω⟩L[ϕj(x− 2−jb) ϕ≤−10(x) · ϕ∼0(x− a)]∥1,2 (2.5.59)

We will study the first line above, the second being similar (in fact significantly easier).
In order to use (GeId), we split ϕ≤−10 into ϕ[j−10,−10] + ϕ<j−10. The first component
here is handled by a straightforward application of Lemma 2.5.3, so we are left to
study ∑

j<−20

∑
a,b

|c(j)
a,b|∥P0⟨Ω⟩L[ϕ∼0(x− a) ϕ<j−10(x) · ϕj(x− 2−jb)]∥1,2

We first replace ϕ<j−10(x) with ϕ<j−10(x− 2−jb) up to an acceptable integrable term
of the form (low)∇(lowest)∇(high). We are then left with∑

j<−20

∑
a,b

|c(j)
a,b|∥P0⟨Ω⟩L[ϕ∼0(x− a) (ϕ<j−10 · ϕj)(x− 2−jb)]∥1,2

Similarly to before, we can replace ϕ<j−10 ·ϕj with Pj(ϕ<j−10 ·ϕ≥j−10) up to the term

2−j |c(j)
a,b|

∫
y,θ
dydθ|(2jy)T χ̌j(y)|

· ∥⟨Ω⟩L[ϕ∼0(x− a) ∇ϕ<j−10(x− 2−jb− θy) · ϕ∼j(x− 2−jb− y)]∥1,2

which is also of type (low)∇(lowest)∇(high) and can be handled using Lemma 2.5.3.
We can then finally invoke (GeId) to bound∑

j<−20

∑
a,b

|c(j)
a,b|∥P0⟨Ω⟩L[ϕ∼0(x− a) Pj(ϕ<j−10 · ϕ≥j−10)(x− 2−jb)]∥1,2

≲
∑

r∼s≥j−10

∑
j<−20

∑
a,b

|c(j)
a,b|∥P0⟨Ω⟩L[ϕ∼0(x− a) Pj(ϕr · ϕs)(x− 2−jb)]∥1,2 (2.5.60)

This term can be handled using Corollary 2.5.4. For example, when ⟨Ω⟩ and L both
fall on Pj , we have (up to some terms which are symmetric in r and s)

2j∥ϕ∼0(x− a) ⟨Ω⟩L(Pj(ϕr · ϕs)(x− 2−jb))∥1,2

≲b ∥ϕ∼0(x− a+ 2−jb)Pj(⟨Ω⟩∂tϕr · ϕs)(x)∥1,2

+ ∥ϕ∼0(x− a+ 2−jb)Pj(∂tϕr · ⟨Ω⟩ϕs)(x)∥1,2

+ 2j∥ϕ∼0(x− a+ 2−jb)Pj(⟨Ω⟩Lϕr · ϕs)(x)∥1,2

+ 2j∥ϕ∼0(x− a+ 2−jb)Pj(Lϕr · ⟨Ω⟩ϕs)(x)∥1,2

≲ 2−j/M 23j M−1
4M 2

21
4M

(s−j)∥ϕs∥2+,4+∥⟨Ω⟩∂tϕr∥2+,∞C0c0

+ 2−j/M 2j−s23s/2M ∥⟨Ω⟩ϕs∥2+,∞−∥⟨Ω⟩∂tϕr∥2+,∞C0c0

+ 2−j/M 23j M−1
4M 2

21
4M

(r−j)∥∂tϕr∥2+,4+∥⟨Ω⟩ϕs∥2+,∞C0c0

115



Chapter 2. Global Solutions to the 3D Half-Wave Maps Equation with
Angular Regularity.

+ 2−j/M 2j−r23r/2M ∥⟨Ω⟩∂tϕr∥2+,∞−∥⟨Ω⟩ϕs∥2+,∞C0c0

+ 2j(same terms with L instead of ∂t)

≲ (2[− 1
M

+3 M−1
4M

− 21
4M

](j−r) + 2(1− 1
M

)(j−r))C3
0c0crcs

which is acceptable when summed as in (2.5.60). This concludes the study of (2.5.58).

2.6 Normal Forms

The goal of this section is to perform a series of normal transformations to reduce the
second and third terms on the right hand side of equation (2.4.11) to error.

2.6.1 Low-high-high term

To handle the third term, we make the transformation

ψL 7→ ψ̃L := ψL + 1
2(∆1) for (∆1) =


∆0

1
∆1,1

1 + ∆1,2
1 + ∆1,3

1
...

∆3,1
1 + ∆3,2

1 + ∆3,3
1


with

∆0
1 := P0(ϕ≤−10ϕ

T
>−10ϕ>−10)

∆n,1
1 := P0((Lnϕ)≤−10ϕ

T
>−10ϕ>−10)

∆n,2
1 := P0(ϕ≤−10(Lnϕ)T

>−10ϕ>−10)
∆n,3

1 := P0(ϕ≤−10ϕ
T
>−10(Lnϕ)>−10)

We start by showing that this transformation is bounded in the following sense:

Proposition 2.6.1. For (∆1) as above, it holds

∥(∆1)∥S0 ≲ C
2
0ϵc0

and
∥⟨Ω⟩(∆1)[0]∥Ḣ3/2×Ḣ1/2 ≲ c0

Proof. By Bernstein’s inequality we have

∥∆0
1∥S0 ≃ max

Q
∥⟨Ω⟩1−δ(p,q)∇t,xP0(ϕ≤−10ϕ

T
>−10ϕ>−10)∥p,q

116



2.6 Normal Forms

≲ max
Q

∥⟨Ω⟩∇t,x(ϕ≤−10ϕ
T
>−10ϕ>−10)∥p,2

When the derivative falls on a high frequency term we have, noting that p ̸= 2 for
(p, q) ∈ Q,

∥⟨Ω⟩(ϕ≤−10∇t,xϕ
T
>−10ϕ>−10)∥p,2 ≲ ∥⟨Ω⟩ϕ≤−10∥∞,∞∥⟨Ω⟩∇t,xϕ>−10∥∞,2∥⟨Ω⟩ϕ>−10∥p,∞

≲ C2
0ϵc0

and in the same way

∥⟨Ω⟩(∇t,xϕ≤−10ϕ
T
>−10ϕ>−10)∥p,2 ≲ ∥⟨Ω⟩∇t,xϕ≤−10∥∞,∞∥⟨Ω⟩ϕ>−10∥∞,2∥⟨Ω⟩ϕ>−10∥p,∞

≲ C2
0ϵc0

The argument for the remaining ∆n,i
1 (n, i = 1, 2, 3) is identical.

We now show the bound on the initial data. Recall the smallness assumption (2.3.1):

∥⟨Ω⟩Pkϕ[0]∥Ḣ3/2×Ḣ1/2 + ∥⟨Ω⟩(x · ∇)Pkϕ[0]∥Ḣ3/2×Ḣ1/2 ≤ ck (2.6.1)

It immediately follows that

∥⟨Ω⟩(∆0
1)(0)∥Ḣ3/2 ≲ ∥⟨Ω⟩ϕ≤−10(0)∥∞∥⟨Ω⟩ϕ>−10(0)∥∞∥⟨Ω⟩ϕ>−10(0)∥2 ≪ c0

with a similar argument for the initial velocity.

The terms involving L are slightly more complicated. The initial bound in Ḣ3/2 presents
no particular difficulties, however to study the initial velocity we have to iterate the
equation. We consider only ∆n,1

1 as an example, in which case we have

∥⟨Ω⟩∂t(∆n,1
1 )(0)∥Ḣ1/2 ≲ ∥⟨Ω⟩∂t(Lnϕ)≤−10(0)∥∞∥⟨Ω⟩ϕ>−10(0)∥∞∥⟨Ω⟩ϕ>−10(0)∥2

+ ∥⟨Ω⟩(Lnϕ)≤−10(0)∥∞∥⟨Ω⟩∂tϕ>−10(0)∥2∥⟨Ω⟩ϕ>−10(0)∥∞

≲ ϵ2∥⟨Ω⟩∂t(Lnϕ)≤−10(0)∥∞ + ϵ2c0 (2.6.2)

where we used

∥⟨Ω⟩(Lnϕ)≤−10(0)∥∞ ≲
∑

k≤−10
23k/2∥⟨Ω⟩Pk(xn∂tϕ(0))∥2

≲
∑

k≤−10
∥⟨Ω⟩⟨x · ∇⟩Pk∂tϕ(0)∥Ḣ1/2 ≲ ϵ

To bound the term involving ∂t(Lnϕ) we need to refer back to the equation. Indeed, the
necessary bound will follow and the proof will be complete given the following claim.

Claim 3. Let k ∈ Z. It holds

∥⟨Ω⟩Pk(xn ·□ϕ)(0)∥L2
x
≲ 2−k/2ϵck (2.6.3)
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for all n = 1, 2, 3. It follows that

∥⟨Ω⟩∂tPk(Lnϕ)(0)∥2 ≲ ∥⟨Ω⟩Pk(xn∂
2
t + ∂xn)ϕ(0)∥2 ≲ 2−k/2ck

Proof of claim 3. By scaling it suffices to consider k = 0.

We start with the wave maps source terms, placing high frequency factors are placed
into L2 and others into L∞. If a high frequency derivative is forced into L∞, we let it
absorb the multiplier xn which scales like an inverse derivative. Explicitly, we have

∥⟨Ω⟩P0(xn(ϕ∂αϕT∂αϕ)(0))∥L2

≲ ∥⟨Ω⟩(xn(ϕ∂αϕT
≤−10∂αϕ>−10)(0)∥L2

+ ∥⟨Ω⟩(xn(ϕ∂αϕT
>−10∂αϕ>−10)(0)∥L2

+ ∥⟨Ω⟩(xn(ϕ∂αϕT
≤−10∂αϕ≤−10)(0)∥L2

≲ ∥⟨Ω⟩P0ϕ(0)∥∞∥⟨Ω⟩∂αϕ≤−10(0)∥∞∥⟨Ω⟩(xn∂αϕ>−10(0))∥2

+ ∥⟨Ω⟩P0ϕ(0)∥∞∥⟨Ω⟩∂αϕ>−10(0)∥2∥⟨Ω⟩(xn∂αϕ>−10(0))∥∞

+ ∥⟨Ω⟩P0(xnϕ∼0(0))∥2∥⟨Ω⟩∂αϕ≤−10(0)∥∞∥⟨Ω⟩∂αϕ≤−10(0)∥∞

≲ ϵc0

The first half-wave maps terms, HWM1(ϕ), can be treated similarly. To study HWM2
we decompose

∥⟨Ω⟩P0(xn ·HWM2(ϕ))(0)∥L2
x

≲
∑

j,k∈Z
∥⟨Ω⟩P0(xn · [ϕ× ((−∆)1/2(ϕk × (−∆)1/2ϕj) − ϕk × ∆ϕj)])(0)∥L2

x

Note that if j ≫ k or k ≫ j we can write

(−∆)1/2(ϕk × (−∆)1/2ϕj) − ϕk × ∆ϕj = Lk+j(ϕk, ϕj)

In this symmetric form we see that it suffices to consider j ≫ k. Starting with k ≥ −10
we use the Fourier expansion (2.5.3) and find∑
k≥−10

j≫k

∥⟨Ω⟩P0(xn · (ϕ× Lj+k(ϕk, ϕj)))(0)∥L2
x

≲
∑

k≥−10
j≫k

∑
a,b∈Z3

|c(k+j)
a,b |∥⟨Ω⟩(xn · ϕ× (ϕk(x− 2−ka) × ϕj(x− 2−jb)))∥L2

x

≲
∑

k≥−10
j≫k

∑
a,b∈Z3

|c(k+j)
a,b |∥⟨Ω⟩ϕ(0)∥∞∥⟨Ω⟩(ϕk(x− 2−ka))(0)∥∞∥⟨Ω⟩(xn · ϕj(x− 2−jb))(0)∥2

≲
∑

k≥−10
j≫k

2j+k · ck · 2−5j/2cj ≲ ϵc0
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The case k < −10 can be handled similarly upon further localising the outer factor of ϕ
to low and high frequencies.

It remains to study the case j ≃ k. When this frequency is low we have∑
k<−10

∥⟨Ω⟩P0(xn · [ϕ× ((−∆)1/2(ϕk × (−∆)1/2ϕ∼k) − ϕk × ∆ϕ∼k)])(0)∥L2
x

≃
∑

k<−10
∥⟨Ω⟩P0(xn · [ϕ∼0 × ((−∆)1/2(ϕk × (−∆)1/2ϕ∼k) − ϕk × ∆ϕ∼k)])(0)∥L2

x

≲
∑

k<−10
∥⟨Ω⟩(xn · ϕ∼0)(0)∥2 · 22k∥⟨Ω⟩ϕk(0)∥∞∥⟨Ω⟩ϕ∼k(0)∥∞ ≲ ϵ

2c0

and when it is high we have∑
k≥−10

∥⟨Ω⟩P0(xn · [ϕ× ((−∆)1/2(ϕk × (−∆)1/2ϕ∼k) − ϕk × ∆ϕ∼k)])(0)∥L2
x

≲
∑

k≥−10
∥⟨Ω⟩P0(ϕ× xn(−∆)1/2(ϕk × (−∆)1/2ϕ∼k))(0)∥L2

x

+ ∥⟨Ω⟩P0(ϕ× ((xnϕk) × ∆ϕ∼k)(0)∥L2
x

Interchanging the xn and (−∆)1/2 up to a term involving a Riesz transform this is seen
to be acceptable upon placing ϕ and ϕ∼k into L∞ and the remaining factor into L2. This
completes the proof of the claim.

We now show that this transformation reduces the equations to the form

□ψ̃0 = −2ϕ≤−10∂αϕ
T
≤−10∂

αψ0

− 2[P0(ϕ≤−10∂αϕ
T
≤−10∂

αϕ>−10) − ϕ≤−10∂αϕ
T
≤−10∂

αψ0] + error (2.6.4)

and

□ψ̃n = −2(Lnϕ)≤−10∂αϕ
T
≤−10∂

αψ0

− 2ϕ≤−10∂α(Lnϕ)T
≤−10∂

αψ0

− 2ϕ≤−10∂αϕ
T
≤−10∂

αψn

− 2[P0((Lnϕ)≤−10∂αϕ
T
≤−10∂

αϕ>−10) − (Lnϕ)≤−10∂αϕ
T
≤−10∂

αψ0]
− 2[P0(ϕ≤−10∂α(Lnϕ)T

≤−10∂
αϕ>−10) − ϕ≤−10∂α(Lnϕ)T

≤−10∂
αψ0]

− 2[P0(ϕ≤−10∂αϕ
T
≤−10∂

α(Lnϕ)>−10) − ϕ≤−10∂αϕ
T
≤−10∂

αψn]
+ error (2.6.5)

Indeed, clearly
□ψ̃0 = □ψ0 + 1

2P0□(ϕ≤−10ϕ
T
>−10ϕ>−10)
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where

P0□(ϕ≤−10ϕ
T
>−10ϕ>−10) =P0(□ϕ≤−10 ϕ

T
>−10ϕ>−10) (2.6.6)

+ 4P0(∂αϕ≤−10 ∂αϕ
T
>−10ϕ>−10) (2.6.7)

+ 2P0(ϕ≤−10 (□ϕ>−10)Tϕ>−10) (2.6.8)
+ 2P0(ϕ≤−10 ∂

αϕT
>−10∂αϕ>−10)) (2.6.9)

We then need to show that (2.6.6) = (2.6.7) = (2.6.8) = error, since (2.6.9) cancels the
(LHH) term in the equation for ψ0, (2.4.11). Arguing similarly for ψ̃n we see that (2.6.4)
and (2.6.5) follow from the following proposition.

Proposition 2.6.2. Denote

T1(φ(1), φ(2), φ(3)) := P0(□φ(1)
≤−10 (φ(2)

>−10)Tφ
(3)
>−10)

T2(φ(1), φ(2), φ(3)) := P0(∂αφ
(1)
≤−10 ∂α(φ(2)

>−10)Tφ
(3)
>−10)

T3(φ(1), φ(2), φ(3)) := P0(φ(1)
≤−10 (□φ(2)

>−10)Tφ
(3)
>−10)

Then it holds

T1(φ(1), φ(2), φ(3)) = T2(φ(1), φ(2), φ(3)) = T3(φ(1), φ(2), φ(3)) = error

for any of

(φ(1), φ(2), φ(3)) ∈ {(ϕ, ϕ, ϕ), (Lnϕ, ϕ, ϕ), (ϕ,Lnϕ, ϕ), (ϕ, ϕ, Lnϕ)}

Proof. For simplicity, we will only prove the statement for (ϕ, ϕ, ϕ) and the other cases
follow in the same way.11 Let’s start with T1. We have

∥⟨Ω⟩P0(□ϕ≤−10ϕ
T
>−10ϕ>−10)∥1,2

≲ ∥⟨Ω⟩□ϕ≤−10∥2+,∞−∥⟨Ω⟩ϕ>−10∥∞−,2+∥⟨Ω⟩ϕ>−10∥2+,∞−

so it suffices to show the following:

Claim 4. It holds
∥⟨Ω⟩Pk□ϕ∥ 2M

M−1 ,2M ≲ 2( 3
2 − 1

M
)kC0ck (2.6.10)

Proof of claim. It again suffices to consider k = 0. By the usual frequency decomposition
and Bernstein’s inequality we have

∥⟨Ω⟩P0(ϕ∂αϕT∂αϕ)∥ 2M
M−1 ,2M ≲ ∥⟨Ω⟩P0(ϕ∂αϕT

≤−10∂αϕ>−10)∥ 2M
M−1 ,2 (2.6.11)

11The only difference when including the factors of Ln comes in estimating the half-wave maps terms
upon iterating the equation. Here one must simply pay a little attention when exchanging L with the
operators (−∆)1/2 and Pj , however this causes no problems thanks to the commutation relations of
Section 2.2.1.
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+ ∥⟨Ω⟩P0(ϕ∂αϕT
>−10∂αϕ>−10)∥ 2M

M−1 , 2M
M+1

(2.6.12)

+ ∥⟨Ω⟩P0(ϕ∼0∂
αϕT

≤−10∂αϕ≤−10)∥ 2M
M−1 ,2M (2.6.13)

Always placing the lone ϕ into L∞
t,x we have

(2.6.11) ≲ ∥⟨Ω⟩∂αϕ≤−10∥ 2M
M−1 ,∞∥⟨Ω⟩∂αϕ>−10∥∞,2 ≲ C

2
0c

2
0

Likewise

(2.6.12) ≲ ∥⟨Ω⟩∂αϕ>−10∥ 4M
M−1 , 4M

M+1
∥⟨Ω⟩∂αϕ>−10∥ 4M

M−1 , 4M
M+1
≲ C2

0c
2
0

and lastly

(2.6.13) ≲ ∥⟨Ω⟩ϕ∼0∥ 2M
M−1 ,2M ∥⟨Ω⟩∂αϕ≤−10∥∞,∞∥⟨Ω⟩∂αϕ≤−10∥∞,∞ ≲ C

3
0c

3
0

The first half-wave maps terms can be treated in the same way and the remaining such
terms can be handled analogously upon incorporating the modifications as in the proof
of Claim 3.

For T2 we have

∥⟨Ω⟩P0(∂αϕ≤−10∂αϕ
T
>−10ϕ>−10)∥1,2

≲ ∥⟨Ω⟩∂αϕ≤−10∥2+,∞−∥⟨Ω⟩∂αϕ>−10∥∞−,2+∥⟨Ω⟩ϕ>−10∥2+,∞− ≲ C
3
0c

3
0

Lastly, for T3 we must expand the wave operator within the overall expression. Starting
with the wave maps source terms we have

∥⟨Ω⟩P0(ϕ≤−10P>−10(ϕ∂αϕ
T∂αϕ)Tϕ>−10)∥1,2

≲
∑

k>−10
∥⟨Ω⟩P0(ϕ≤−10Pk(ϕ∂αϕ

T
≤k−10∂

αϕ>k−10)Tϕ∼k)∥1,2 (2.6.14)

+∥⟨Ω⟩P0(ϕ≤−10Pk(ϕ∂αϕ
T
>k−10∂

αϕ>k−10)Tϕ∼k)∥1,2 (2.6.15)
+∥⟨Ω⟩P0(ϕ≤−10Pk(ϕ∼k∂αϕ

T
≤k−10∂

αϕ≤k−10)Tϕ∼k)∥1,2 (2.6.16)

which can be treated like (2.4.6), (2.4.8) and (2.4.7) respectively. The HWM1(ϕ) terms
are analogous. For HWM2 we have∑

k>−10
∥⟨Ω⟩P0(ϕ≤−10Pk(HWM2(ϕ))Tϕ∼k)∥1,2

≲
∑

k>−10

∑
l,j

∥⟨Ω⟩(Pk(ϕ× ((−∆)1/2(ϕl × (−∆)1/2ϕj) − ϕl × ∆ϕj))T · ϕ∼k)∥1,2
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First consider j ≫ l, l ≥ k − 10, comparable to (2.6.15). Using the expansion (2.5.5) we
have ∑

k>−10

∑
l≥k−10

j≫l

∥⟨Ω⟩(Pk(ϕ× ((−∆)1/2(ϕl × (−∆)1/2ϕj) − ϕl × ∆ϕj))T · ϕ∼k)∥1,2

≃
∑

k>−10

∑
l≥k−10

j≫l

∥⟨Ω⟩Pk(ϕ× Ll+j(ϕl, ϕj))T · ⟨Ω⟩ϕ∼k)∥1,2

≲
∑

k>−10

∑
l≥k−10

j≫l

2l+j∥⟨Ω⟩ϕl∥9,10/3∥ϕj∥2,5∥⟨Ω⟩ϕ∼k∥18/7,∞

+ 2l+j∥ϕl∥2,5∥⟨Ω⟩ϕj∥9,10/3∥⟨Ω⟩ϕ∼k∥18/7,∞

≲ C3
0ϵ

2c0

as required. When l < k − 10 the term behaves like (2.6.14) and we have∑
k>−10

∑
l<k−10

j≫l

∥⟨Ω⟩(Pk(ϕ× ((−∆)1/2(ϕl × (−∆)1/2ϕj) − ϕl × ∆ϕj))T · ϕ∼k)∥1,2

≲
∑

k>−10

∑
l<k−10

j≫l

2l+j∥⟨Ω⟩ϕl∥2+,∞−∥⟨Ω⟩ϕj∥∞−,2+∥⟨Ω⟩ϕ∼k∥2+,∞− ≲ C
3
0ϵ

2c0

The case l ≫ j can be treated in the same way. When j ≃ l < k − 10 we are in the
regimen of (2.6.16) and have∑

k>−10

∑
l<k−10

∥⟨Ω⟩(Pk(ϕ× ((−∆)1/2(ϕl × (−∆)1/2ϕ∼l) − ϕl × ∆ϕ∼l))T · ϕ∼k)∥1,2

≲
∑

k>−10

∑
l<k−10

22l∥⟨Ω⟩ϕl∥2+,∞−∥⟨Ω⟩ϕ∼l∥2+,∞−∥⟨Ω⟩ϕ∼k∥∞−,2+ ≲ C
3
0ϵ

2c0

and finally if j ≃ l ≥ k − 10 we refer to (2.6.15) and find∑
k>−10

∑
l≥k−10

∥⟨Ω⟩(Pk(ϕ× ((−∆)1/2(ϕl × (−∆)1/2ϕ∼l) − ϕl × ∆ϕ∼l))T · ϕ∼k)∥1,2

≲
∑

k>−10

∑
l≥k−10

22l∥⟨Ω⟩ϕ∼l∥9,10/3∥ϕ∼l∥2,5∥⟨Ω⟩ϕ∼k∥18/7,∞ ≲ C
3
0ϵ

2c0

which completes the proof.

2.6.2 Low-low-high error term

Write

P0(ϕ≤−10∂αϕ
T
≤−10∂

αϕ>−10) − ϕ≤−10∂αϕ
T
≤−10∂

αψ0
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= −P̃0

∫ 1

0

∫
y
χ̌0(y)yT ∇x(ϕ≤−10(x− θy)∂αϕ

T
≤−10(x− θy))∂αϕ∼0(x− y)dθdy (2.6.17)

This splits into two terms by Leibniz’s rule: one where the derivative ∇x falls on the
non-differentiated term, and one where it falls on the ∂αϕ≤−10. The first such term is
unproblematic:
∥∥∥∥P̃0

∫ 1

0

∫
y
χ̌0(y)yT ∇xϕ≤−10(x− θy )∂αϕ

T
≤−10(x− θy)∂αϕ∼0(x− y)dθdy

∥∥∥∥
1,2

≲
∫ 1

0

∫
y

|yχ̌0(y)| ∥∇xϕ≤−10∥2+,∞−∥∂αϕ≤−10∥2+,∞−∥∂αϕ∼0∥∞−,2+dydθ ≲ C
3
0ϵ

2c0

so that

□ψ̃0 = −2ϕ≤−10∂αϕ
T
≤−10∂

αψ0

+ 2P̃0

∫ 1

0

∫
y
χ̌0(y)yTϕ≤−10(x− θy) ∇x∂

αϕT
≤−10(x− θy)∂αϕ∼0(x− y)dθdy + error

(2.6.18)

and similar for the ψ̃n. This motivates our second transformation

ψ̃L 7→ ΦL := ψ̃L − (∆2) for ∆2 =


∆0

2
∆1,1

2 + ∆1,2
2 + ∆1,3

2
...

∆3,1
2 + ∆3,2

2 + ∆3,3
2


with

∆0
2 := P̃0

∫ 1

0

∫
y
χ̌0(y)yTϕ≤−10(x− θy)∇xϕ

T
≤−10(x− θy)ϕ∼0(x− y)dθdy

∆n,1
2 := P̃0

∫ 1

0

∫
y
χ̌0(y)yT (Lnϕ)≤−10(x− θy)∇xϕ

T
≤−10(x− θy)ϕ∼0(x− y)dθdy

∆n,2
2 := P̃0

∫ 1

0

∫
y
χ̌0(y)yTϕ≤−10(x− θy)∇x(Lnϕ)T

≤−10(x− θy)ϕ∼0(x− y)dθdy

∆n,3
2 := P̃0

∫ 1

0

∫
y
χ̌0(y)yTϕ≤−10(x− θy)∇xϕ

T
≤−10(x− θy)(Lnϕ)∼0(x− y)dθdy

Henceforth we drop the P̃0 since it does not affect the calculations.

As usual write ΦL = (Φ0,Φ1,Φ2,Φ3) and start by noting the boundedness of the
transformation, the proof of which is very similar to Proposition 2.6.1 and so omitted.

Proposition 2.6.3. It holds
∥(∆2)∥S0 ≲ C

2
0ϵc0

and moreover
∥⟨Ω⟩(∆2)[0]∥Ḣ3/2×Ḣ1/2 ≲ c0
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This time we show that the transformation reduces the equations to the form

□Φ0 = −2ϕ≤−10∂αϕ
T
≤−10∂

αψ0 + error (2.6.19)

and

□Φn = −2(Lnϕ)≤−10∂αϕ
T
≤−10∂

αψ0

− 2ϕ≤−10∂α(Lnϕ)T
≤−10∂

αψ0

− 2ϕ≤−10∂αϕ
T
≤−10∂

αψn + error (2.6.20)

Observe that

□(∆0
2) = □

(∫ 1

0

∫
y
χ̌0(y)yTϕ≤−10(x− θy)∇xϕ

T
≤−10(x− θy)ϕ∼0(x− y)dθdy

)
=
∫ 1

0

∫
y
χ̌0(y)yT□ϕ≤−10(x− θy)∇xϕ

T
≤−10(x− θy)ϕ∼0(x− y)dθdy (2.6.21)

+
∫ 1

0

∫
y
χ̌0(y)yTϕ≤−10(x− θy)□∇xϕ

T
≤−10(x− θy)ϕ∼0(x− y)dθdy (2.6.22)

+
∫ 1

0

∫
y
χ̌0(y)yTϕ≤−10(x− θy)∇xϕ

T
≤−10(x− θy)□ϕ∼0(x− y)dθdy (2.6.23)

+ 2
∫ 1

0

∫
y
χ̌0(y)yT∂αϕ≤−10(x− θy)∂α∇xϕ

T
≤−10(x− θy)ϕ∼0(x− y)dθdy

(2.6.24)

+ 2
∫ 1

0

∫
y
χ̌0(y)yT∂αϕ≤−10(x− θy)∇xϕ

T
≤−10(x− θy)∂αϕ∼0(x− y)dθdy

(2.6.25)

+ 2
∫ 1

0

∫
y
χ̌0(y)yTϕ≤−10(x− θy)∂α∇xϕ

T
≤−10(x− θy)∂αϕ∼0(x− y)dθdy

(2.6.26)

and similar expressions for the ∆n,i
2 . The final term (2.6.26) cancels with the integral

expression in equation (2.6.18), so we must show the following:

Proposition 2.6.4. We have

(2.6.21) = . . . = (2.6.25) = error

and the same holds when any one factor of ϕ in the expressions (2.6.21),. . .,(2.6.25) is
replaced by Lnϕ (n = 1, 2, 3).

Proof. We will neglect the angular and vector derivatives in what follows in order to
reduce notation. We also drop the transpose symbols.

Let’s start with (2.6.21). Using the estimate (2.6.10) on □ϕ and the L1 boundedness of
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the kernel χ̌0(y)y we have

∥(2.6.21)∥1,2 ≲ ∥□ϕ≤−10∥2+,∞−∥∇xϕ≤−10∥2+,∞−∥ϕ∼0∥∞−,2+ ≲ C
3
0ϵc0

which is acceptable. For (2.6.22) we again have to iterate the equation. For the wave
maps source terms we have∥∥∥∥∫ 1

0

∫
y
χ̌0(y)y (ϕ≤−10 · ∇xP≤−10(ϕ∂αϕ∂

αϕ))(x− θy)ϕ∼0(x− y)dθdy
∥∥∥∥

1,2

≲
∑

k≤−10

∥∥∥∥∫ 1

0

∫
y
χ̌0(y)y (ϕ≤−10 · ∇xPk(ϕ∂αϕ≤k−10∂

αϕ>k−10))(x− θy)ϕ∼0(x− y)dθdy
∥∥∥∥

1,2

(2.6.27)

+
∥∥∥∥∫ 1

0

∫
y
χ̌0(y)y (ϕ≤−10 · ∇xPk(ϕ∂αϕ>k−10∂

αϕ>k−10))(x− θy)ϕ∼0(x− y)dθdy
∥∥∥∥

1,2
(2.6.28)

+
∥∥∥∥∫ 1

0

∫
y
χ̌0(y)y (ϕ≤−10 · ∇xPk(ϕ∼k∂αϕ≤k−10∂

αϕ≤k−10))(x− θy)ϕ∼0(x− y)dθdy
∥∥∥∥

1,2
(2.6.29)

Placing all the low frequency factors of ϕ into L∞
t,x we bound the above by∑

k≤−10
2k∥∂αϕ≤k−10∥2+,∞−∥∂αϕ>k−10∥∞−,2+∥ϕ∼0∥2+,∞−

+ 2k∥∂αϕ>k−10∥2,5∥∂αϕ>k−10∥9,10/3∥ϕ∼0∥18/7,∞

+ 2k∥ϕ∼k∥∞,∞∥∂αϕ≤k−10∥2+,∞−∥∂αϕ≤k−10∥2+,∞−∥ϕ∼0∥∞−,2+

≲ C3
0ϵc0

The half-wave maps terms are treated analogously using methods as in the proof of
Proposition 2.6.2.

We now turn to (2.6.23). Considering the wave maps portion of □ϕ we have∥∥∥∥∫ 1

0

∫
y
χ̌0(y)y (ϕ≤−10∇xϕ≤−10)(x− θy)P∼0(ϕ∂αϕ>−10∂

αϕ>−10)(x− y)dθdy
∥∥∥∥

1,2

+
∥∥∥∥∫ 1

0

∫
y
χ̌0(y)y (ϕ≤−10∇xϕ≤−10)(x− θy)P∼0(ϕ∂αϕ≤−10∂

αϕ>−10)(x− y)dθdy
∥∥∥∥

1,2

+
∥∥∥∥∫ 1

0

∫
y
χ̌0(y)y (ϕ≤−10∇xϕ≤−10)(x− θy)P∼0(ϕ∂αϕ≤−10∂

αϕ≤−10)(x− y)dθdy
∥∥∥∥

1,2

≲ ∥∇xϕ≤−10∥ 18
7 ,∞∥∂αϕ>−10∥2,5∥∂αϕ>−10∥9, 10

3

+ ∥∇xϕ≤−10∥2+,∞−∥∂αϕ≤−10∥2+,∞−∥∂αϕ>−10∥∞−,2+

+ ∥∇xϕ≤−10∥∞,∞∥ϕ∼0∥∞−,2+∥∂αϕ≤−10∥2+,∞−∥∂αϕ≤−10∥2+,∞−

≲ C3
0ϵc0
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Again half-wave maps terms are analogous.

Lastly,

∥(2.6.24)∥1,2 ≲ ∥∂αϕ≤−10∥2+,∞−∥∂α∇xϕ≤−10∥2+,∞−∥ϕ∼0∥∞−,2+ ≲ C
3
0ϵc0

while

∥(2.6.25)∥1,2 ≲ ∥∂αϕ≤−10∥2+,∞−∥∇xϕ≤−10∥2+,∞−∥∂αϕ∼0∥∞−,2+ ≲ C
3
0ϵc0

We can now recast the equations in an even more distilled form. Denote

Aα := −ϕ≤−10∂αϕ
T
≤−10; An

α := −((Lnϕ)≤−10∂αϕ
T
≤−10 + ϕ≤−10∂α(Lnϕ)T

≤−10)

Then writing An
α for the block vector (A1

α, A
2
α, A

3
α) and I3 the block 3 × 3 identity matrix

(so a 9 × 9 matrix), we arrive at

□ΦL = 2
(
Aα 0
An

α AαI3

)
∂αψL + error (2.6.30)

with

∥ΦL∥S0 ≤ ∥ψL∥S0 + C3
0ϵc0 ≲ C0c0 (2.6.31)

Henceforth we will use the notation

AL
α :=

(
Aα 0
An

α AαI3

)

2.7 The gauge transformation

In this section, we perform a nonlinear transformation to cancel out the remaining
nontrivial term in the equation above. Our construction is a simplification of that in
[Tao01a] (possible due to our working in Besov rather than Sobolev spaces).

Fix a large integer N depending on T. Define the matrix field U by

U := I4 +
∑

−N<k≤−10
Uk

Here I4 is the block 4 × 4 identity matrix and the Uk are defined inductively by

Uk :=
(

−ϕ<kϕ
T
k 0

−(ϕ<k(Lnϕ)T
k + (Lnϕ)<kϕ

T
k ) −ϕ<kϕ

T
k · I3

)
U<k
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and
U<k := I4 +

∑
−N<k′<k

Uk′

This U is constructed so as to almost satisfy ∂αU = AL
αU and so cancel out the

troublesome frequency interactions remaining in our equation. This will be discussed in
the next section.

One may verify inductively that U<k has frequency support on {|ξ| ≲ 2k}, so U has
frequency support on {|ξ| ≲ 1}. Moreover U is of the form

U =
(
U 0
Un UI3

)

for a 3 × 3 matrix U and a block vector Un = (U1, U2, U3) with each U i a 3 × 3 matrix.
The same lower triangular structure of couse holds for Uk, U<k and U−1, the existence
of which is shown in the following proposition.

Proposition 2.7.1. For C0 ≫ 1 fixed, ϵ(C0) sufficiently small, the matrix U is a
perturbation of the identity,

∥⟨Ω⟩(U − I4)∥∞,∞, ∥⟨Ω⟩∂t(U − I4)∥∞,∞ ≲ C0ϵ (2.7.1)

and is invertible with
∥⟨Ω⟩U∥∞,∞, ∥⟨Ω⟩(U−1)∥∞,∞ ≲ 1 (2.7.2)

Moreover, for any admissible pair (p, q) ∈ Q with 1 − 1
p − 3

q > σ > 0, we have

∥⟨Ω⟩1−δ(p,q)∂αU∥p,q, ∥⟨Ω⟩1−δ(p,q)∂α(U−1)∥p,q ≲p,q C0ϵ (2.7.3)

for each α = 0, . . . , 3. More precisely,

∥⟨Ω⟩1−δ(p,q)∂αUK∥p,q ≲p,q 2(1− 1
p

− 3
q

)K
C0cK (2.7.4)

for all −N < K ≤ −10.

Proof. We first show (2.7.2). We will show by induction that

∥⟨Ω⟩U<K∥∞,∞ ≤ 2

for all −N ≤ K ≤ −9. Since U = U<−9 this proves the first part of (2.7.2). When
K = −N this is clearly true, so suppose it holds for all k below some fixed K > −N .
Then for any −N < k < K we have, for ϕL as in (2.2.6),

∥⟨Ω⟩Uk∥∞,∞ ≲ ∥⟨Ω⟩P<kϕ
L∥∞,∞∥⟨Ω⟩Pkϕ

L∥∞,∞∥⟨Ω⟩U<k∥∞,∞ ≲ C0ck (2.7.5)
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It follows that
∥⟨Ω⟩U<K∥∞,∞ ≲ 1 +

∑
−N<k<K

C0ck ≲ 2

for ϵ(C0) sufficiently small. Note that the first part of (2.7.1) is also a consequence of
(2.7.5), and it follows that U is invertible with

∥U−1∥∞,∞ = ∥I4 + (I4 − U) + (I4 − U)2 + . . . ∥∞,∞ ≲ 2

for ϵ(C0) sufficiently small as required.

Using the relation U−1U = I4, we can express the angular derivatives of U−1 in terms
of those of U:

Ωij(U−1) = −U−1(ΩijU)U−1

from which
∥⟨Ω⟩(U−1)∥∞,∞ ≲ ∥⟨Ω⟩U∥∞,∞ ≲ 1

completing the proof of (2.7.2).

We now turn to (2.7.3). Note that this immediately implies the second part of (2.7.1),
and also that the second part of (2.7.3) follows from the first thanks to the identity
∂α(U−1) = −U−1 · ∂αU · U−1.

We will show by induction that

∥⟨Ω⟩1−δ(p,q)∂αU<K∥p,q ≲ 2βKC0cK (2.7.6)

for all −N ≤ K ≤ −9. Here β = βp,q = 1 − 1
p − 3

q .

For K = −N , the claim is trivial. Now suppose that K > −N and the claim has been
proven for all smaller k. By differentiating the formula defining UK−1 we have (neglecting
the factor of ⟨Ω⟩1−δ(p,q) which plays no role)

∥∂αUK−1∥p,q ≲∥∂αϕ
L
<K−1∥p,q∥ϕL

K−1∥∞,∞∥U<K−1∥∞,∞

+ ∥ϕL
<K−1∥∞,∞∥∂αϕ

L
K−1∥p,q∥U<K−1∥∞,∞

+ ∥ϕL
<K−1∥∞,∞∥ϕL

K−1∥∞,∞∥∂αU<K−1∥p,q ≲ 2βKC0cK

and the claim follows.

We can now use this proposition to transform our equation (2.6.30) into a form in which
the only non-trivial term in the forcing cancels. We make the transformation ΦL = UwL,
so

□ΦL = (□U)wL + 2∂αU∂αwL + U□wL

Setting this equal to the right hand side of equation (2.6.30) and multiplying on the left
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by U−1 we obtain

□wL = −2U−1(∂αU∂αwL − AL
α∂

αψL) − U−1(□U)U−1ΦL + U−1(error)

Note that U−1(error) = error by (2.7.2), so we don’t need to worry about the final term
above.

In order to make use of the fact that ∂αU ≃ AL
αU, we go back a step and use that

ΦL = ψL + 1
2(∆1) − (∆2) to decompose wL as

wL = U−1ψL︸ ︷︷ ︸
wL

1

+ 1
2U−1(∆1)︸ ︷︷ ︸

wL
2

− U−1(∆2)︸ ︷︷ ︸
wL

3

In particular, since ∂αψL = (∂αU)wL
1 + U∂αwL

1 , we can write

□wL = −2U−1(∂αU − AL
αU)∂αwL

1 + 2U−1AL
α(∂αU)wL

1 − 2U−1∂αU∂α(wL
2 + wL

3 )
− U−1(□U)U−1ΦL + error

The remainder of this section will be dedicated to showing that the second, third and
fourth terms above are all of the form error. The remaining term will be studied in
Section 2.8.

Proposition 2.7.2.
U−1AL

α(∂αU)wL
1 = error (2.7.7)

and
U−1∂αU∂α(wL

2 + wL
3 ) = error (2.7.8)

Proof. Again using (2.7.2) we may neglect the U−1. We will also work entirely in
standard Strichartz spaces so neglect the angular derivatives.

To bound (2.7.7) note that by definition of AL
α we have

∥AL
α∥ 2M

M−1 ,2M ≲ ∥ϕL
≤−10∥∞,∞∥∂αϕ

L
≤−10∥ 2M

M−1 ,2M ≲ C0ϵ

Hence by (2.7.3) it holds

∥AL
α(∂αU)U−1ψL∥1,2 ≲ ∥AL

α∥ 2M
M−1 ,2M ∥∂αU∥ 2M

M−1 ,2M ∥ψL∥M, 2M
M−2
≲ C3

0ϵ
2c0

as required.

We now turn to (2.7.8). Let’s start with wL
2 . Heuristically, we can write wL

2 ≃
U−1P0(ϕL

≤−10(ϕL
>−10)TϕL

>−10). Therefore

∥∂αU∂αwL
2 ∥1,2 ≲∥∂αU∂α(U−1) P0(ϕL

≤−10(ϕL
>−10)TϕL

>−10)∥1,2 (2.7.9)
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+ ∥∂αU U−1P0∂
α(ϕL

≤−10(ϕL
>−10)TϕL

>−10)∥1,2 (2.7.10)

where

(2.7.9) ≲ ∥∂αU∥ 2M
M−1 ,2M ∥∂α(U−1)∥∞,∞∥ϕL

≤−10∥∞,∞∥ϕL
>−10∥ 2M

M−1 ,2M ∥ϕL
>−10∥M, 2M

M−2
≲ C3

0ϵ
2c0

On the other hand, for (2.7.10) we have

(2.7.10) ≲∥∂αU U−1P0(∂αϕL
≤−10(ϕL

>−10)TϕL
>−10)∥1,2

+ ∥∂αU U−1P0(ϕL
≤−10(∂αϕL

>−10)TϕL
>−10)∥1,2

≲∥∂αU∥∞,∞∥∂αϕL
≤−10∥ 2M

M−1 ,2M ∥ϕL
>−10∥ 2M

M−1 ,2M ∥ϕL
>−10∥M, 2M

M−2

+ ∥∂αU∥ 2M
M−1 ,2M ∥ϕL

≤−10∥∞,∞∥∂αϕL
>−10∥M, 2M

M−2
∥ϕL

>−10∥ 2M
M−1 ,2M

≲C3
0ϵ

2c0

Next we study

wL
3 ≃ −U−1

∫ 1

0

∫
y
ψ̌0(y)yT ϕL

≤−10(x− θy)∇xϕ
L
≤−10(x− θy)TϕL

∼0(x− y)dθdy

We have∥∥∥∥∂αU∂α(U−1)
∫ 1

0

∫
y
ψ̌0(y)yT ϕL

≤−10(x− θy)∇xϕ
L
≤−10(x− θy)TϕL

∼0(x− y)dθdy
∥∥∥∥

1,2

≲∥∂αU∥ 2M
M−1 ,2M ∥∂α(U−1)∥∞,∞∥ϕL

≤−10∥∞,∞∥∇ϕL
≤−10∥ 2M

M−1 ,2M ∥ϕL
∼0∥M, 2M

M−2

which is acceptable. On the other hand,∥∥∥∥∂αU U−1∂α

∫ 1

0

∫
y
ψ̌0(y)yT ϕL

≤−10(x− θy)∇xϕ
L
≤−10(x− θy)TϕL

∼0(x− y)dθdy
∥∥∥∥

1,2

≲∥∂αU∥ 2M
M−1 ,2M ∥∂αϕ

L
≤−10∥∞,∞∥∇ϕL

≤−10∥ 2M
M−1 ,2M ∥ϕL

∼0∥M, 2M
M−2

+ ∥∂αU∥ 2M
M−1 ,2M ∥ϕL

≤−10∥∞,∞∥∂α∇ϕL
≤−10∥ 2M

M−1 ,2M ∥ϕL
∼0∥M, 2M

M−2

+ ∥∂αU∥ 2M
M−1 ,2M ∥ϕL

≤−10∥∞,∞∥∇ϕL
≤−10∥ 2M

M−1 ,2M ∥∂αϕ
L
∼0∥M, 2M

M−2

which is also acceptable.

Proposition 2.7.3.
U−1(□U)U−1ΦL = error

Proof. We still ignore the U−1, however in this case we cannot simply neglect the angular
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derivatives. We will show inductively that

∥⟨Ω⟩(□U<KU−1ΦL)∥1,2 ≤ 2K/MC2
0ϵc0

for all −N ≤ K ≤ −9, for M sufficiently large.

The claim is trivial for K = −N , so suppose it is true up to K − 1 ≥ −N . Observe that

□UK−1 ≃ϕL
<K−1ϕ

L
K−1□U<K−1 + ϕL

<K−1□ϕ
L
K−1U<K−1

+□ϕL
<K−1ϕ

L
K−1U<K−1 + ∂αϕ

L
<K−1∂

αϕL
K−1U<K−1

+ ∂αϕ
L
<K−1ϕ

L
K−1∂

αU<K−1 + ϕL
<K−1∂αϕ

L
K−1∂

αU<K−1 (2.7.11)

The last three terms are the easiest to handle. For instance, using (2.6.31) to bound Φ
we have

∥⟨Ω⟩(∂αϕ
L
<K−1∂

αϕL
K−1U<K−1 · U−1ΦL)∥1,2

≲ ∥⟨Ω⟩∂αϕ
L
<K−1∥ 2M

M−1 ,2M ∥⟨Ω⟩∂αϕL
K−1∥ 2M

M−1 ,2M ∥⟨Ω⟩ΦL∥M, 2M
M−2

≲ 2(1− 2
M

)KC3
0ϵ

2c0

which is more than we need. The last 2 terms of (2.7.11) can be bounded in the same
way.

We now study the terms of (2.7.11) involving the wave operator. The first one will be
bounded using the induction hypothesis so let’s start with the second term. We have to
bound

∥⟨Ω⟩(ϕL
<K−1□ϕ

L
K−1U<K−1 · U−1ΦL)∥1,2 ≲ ∥⟨Ω⟩(□ϕL

K−1)∥ 2M
M+1 , 2M

M−1
∥⟨Ω⟩ΦL∥ 2M

M−1 ,2M

We then need the following claim.

Claim 5.
∥⟨Ω⟩(□ϕL

K−1)∥ 2M
M+1 , 2M

M−1
≲ 2k/MC2

0ϵcK

Proof of claim. By scaling, it suffices to prove the claim for K = 1, so study □ψL (see
(2.4.1)). First consider the wave maps part of □ψL. The action of L does not play an
important role here, so for simplicity we only study □ϕ. Using Bernstein’s inequality to
lower the exponent for the high frequency interactions, we have

∥⟨Ω⟩P0(ϕ∂αϕT∂αϕ)∥ 2M
M+1 , 2M

M−1
≲ ∥⟨Ω⟩P0(ϕ∂αϕT

>−10∂αϕ>−10)∥ 2M
M+1 , 2M

M−1

+ ∥⟨Ω⟩P0(ϕ∂αϕT
≤−10∂αϕ>−10)∥ 2M

M+1 , 2M
M−1

+ ∥⟨Ω⟩P0(ϕ∂αϕT
≤−10∂αϕ≤−10)∥ 2M

M+1 , 2M
M−1

≲ ∥⟨Ω⟩∂αϕ>−10∥ 4M
M−1 , 4M

M+1
∥∂αϕ>−10∥ 4M

M+3 , 4M
M+1

+ ∥⟨Ω⟩∂αϕ≤−10∥ 4M
M+3 , 4M

M−3
∥⟨Ω⟩∂αϕ>−10∥ 4M

M−1 , 4M
M+1
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+ ∥⟨Ω⟩∂αϕ≤−10∥ 4M
M+1 , 4M

M−1
∥⟨Ω⟩∂αϕ≤−10∥ 4M

M+1 , 4M
M−1

≲ C2
0ϵc0

provided M is sufficiently large and σ sufficiently small. The half-wave maps terms can
be treated similarly.

We therefore have

∥⟨Ω⟩(ϕL
<K−1□ϕ

L
K−1U<K−1 · U−1ΦL)∥1,2 ≲ 2K/MC3

0ϵ
2c0

Similarly,

∥⟨Ω⟩(□ϕL
<K−1ϕ

L
K−1U<K−1 · U−1ΦL)∥1,2 ≲

∑
J<K−1

2J/MC2
0ϵc0 ≲ 2K/MC3

0ϵ
2c0

and lastly by the induction hypothesis we have

∥⟨Ω⟩(ϕL
<K−1ϕ

L
K−1□U<K−1 · U−1ΦL)∥1,2 ≲ ∥⟨Ω⟩ϕL

K−1∥∞,∞∥⟨Ω⟩(□U<K−1 · U−1ΦL)∥1,2

≲ C0ϵ · 2K/MC2
0ϵc0 ≲ 2K/MC3

0ϵ
2c0

Therefore, letting D denote the sum of the implicit constants above and using (2.7.11),
we have

∥⟨Ω⟩(□U<K · U−1ΦL)∥1,2 ≤ ∥⟨Ω⟩(□U<K−1 · U−1ΦL)∥1,2 +D · 2K/MC3
0ϵ

2c0

≤ 2K/MC2
0ϵc0(2−1/M +DC0ϵ)

Hence choosing ϵ ≪ (DC0)−1 completes the induction.

Combining these two propositions with the equation previously obtained for wL, we
arrive at

□wL = −2U−1(∂αU − AL
αU)∂αwL

1 + error

2.8 The (very low-low-high) cancellation

In this section, we will show that

U−1(∂αU − AL
αU)∂αwL

1 = error, (2.8.1)

finally doing away with the difficult (lowest)∇(low)∇(high) frequency interactions in the
wave maps source term.

As usual we may neglect the U−1. The first step in proving (2.8.1) is to use the telescoping
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identity ∑
−N<k≤−10

(AL
α,≤kU≤k − AL

α,<kU<k) =AL
αU − AL

α,≤−N

where

AL
α,≤k := AL

α,<k+1 :=
(

−ϕ≤k∂αϕ
T
≤k 0

−(ϕ≤k∂α(Lnϕ)T
≤k + (Lnϕ)≤k∂αϕ

T
≤k) −ϕ≤k∂αϕ

T
≤k I3

)

(so AL
α = AL

α,≤−10) to write

∂αU − AL
αU =

 ∑
−N<k≤−10

∂αUk − (AL
α,≤kU≤k − AL

α,<kU<k)

− AL
α,≤−N (2.8.2)

We first show that the AL
α,≤−N part is acceptable:

Lemma 2.8.1.
AL

α,≤−N∂
αwL

1 = error

Proof. We have

∥⟨Ω⟩(AL
α,≤−N∂

αwL
1 )∥1,2 ≲ ∥⟨Ω⟩AL

α,≤−N ∥1,∞∥⟨Ω⟩∂αwL
1 ∥∞,2

Then

∥⟨Ω⟩AL
α,≤−N ∥1,∞ ≲ T∥⟨Ω⟩ϕL

≤−N ∥∞,∞∥⟨Ω⟩∂αϕ
L
≤−N ∥∞,∞ ≲ 2−NTC0ϵ

and by the identity
∂αwL

1 = U−1∂αψL − U−1(∂αU)U−1ψL (2.8.3)

also
∥⟨Ω⟩∂αwL

1 ∥∞,2 ≲ C0c0 (2.8.4)

The result is now immediate upon taking N(T,C0) sufficiently large.

Next we study the sum in (2.8.2). It is here that we observe the critical cancellation of
the ϕ<k∂

αϕT
k terms. Indeed, as in [Tao01a] we may write

∂αUk =
(

−∂αϕ<kϕ
T
k 0

−(∂αϕ<k(Lnϕ)T
k + ∂α(Lnϕ)<kϕ

T
k ) −∂αϕ<kϕ

T
k I3

)
U<k

+
(

−ϕ<k∂αϕ
T
k 0

−(ϕ<k∂α(Lnϕ)T
k + (Lnϕ)<k∂αϕ

T
k ) −ϕ<k∂αϕ

T
k I3

)
U<k

+
(

−ϕ<kϕ
T
k 0

−(ϕ<k(Lnϕ)T
k + (Lnϕ)<kϕ

T
k ) −ϕ<kϕ

T
k I3

)
∂αU<k (2.8.5)
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and

AL
α,≤kU≤k − AL

α,<kU<k =
(

−ϕ<k∂αϕ
T
k 0

−(ϕ<k∂α(Lnϕ)T
k + (Lnϕ)<k∂αϕ

T
k ) −ϕ<k∂αϕ

T
k I3

)
U<k

+
(

−ϕk∂αϕ
T
≤k 0

−(ϕk∂α(Lnϕ)T
≤k + (Lnϕ)k∂αϕ

T
≤k) −ϕk∂αϕ

T
≤k I3

)
U<k

+
(

−ϕ≤k∂αϕ
T
≤k 0

−(ϕ≤k∂α(Lnϕ)T
≤k + (Lnϕ)≤k∂αϕ

T
≤k) −ϕ≤k∂αϕ

T
≤k I3

)
Uk

(2.8.6)

Crucially, the second line in (2.8.5) and the first line in (2.8.6) cancel and we are left
with

∂αUk − (AL
α,≤kU≤k − AL

α,<kU<k)

=
(

−∂αϕ<kϕ
T
k 0

−(∂αϕ<k(Lnϕ)T
k + ∂α(Lnϕ)<kϕ

T
k ) −∂αϕ<kϕ

T
k I3

)
U<k

+
(

−ϕ<kϕ
T
k 0

−(ϕ<k(Lnϕ)T
k + (Lnϕ)<kϕ

T
k ) −ϕ<kϕ

T
k I3

)
∂αU<k

−
(

−ϕk∂αϕ
T
≤k 0

−(ϕk∂α(Lnϕ)T
≤k + (Lnϕ)k∂αϕ

T
≤k) −ϕk∂αϕ

T
≤k I3

)
U<k

−
(

−ϕ≤k∂αϕ
T
≤k 0

−(ϕ≤k∂α(Lnϕ)T
≤k + (Lnϕ)≤k∂αϕ

T
≤k) −ϕ≤k∂αϕ

T
≤k I3

)
Uk

(2.8.1) is therefore implied by the following result.

Lemma 2.8.2.

∑
−N<k≤−10

(
∂αϕ<kϕ

T
k 0

(∂αϕ<k(Lnϕ)T
k + ∂α(Lnϕ)<kϕ

T
k ) ∂αϕ<kϕ

T
k I3

)
U<k ∂

αwL
1 = error (2.8.7)

∑
−N<k≤−10

(
ϕ<kϕ

T
k 0

(ϕ<k(Lnϕ)T
k + (Lnϕ)<kϕ

T
k ) ϕ<kϕ

T
k I3

)
∂αU<k ∂

αwL
1 = error (2.8.8)

∑
−N<k≤−10

(
ϕk∂αϕ

T
≤k 0

(ϕk∂α(Lnϕ)T
≤k + (Lnϕ)k∂αϕ

T
≤k) ϕk∂αϕ

T
≤k I3

)
U<k ∂

αwL
1 = error (2.8.9)

∑
−N<k≤−10

(
ϕ≤k∂αϕ

T
≤k 0

(ϕ≤k∂α(Lnϕ)T
≤k + (Lnϕ)≤k∂αϕ

T
≤k) ϕ≤k∂αϕ

T
≤k I3

)
Uk ∂

αwL
1 = error

(2.8.10)

Proof.

1. Proof of (2.8.7), (2.8.9). These two inequalities are to all intents and purposes the
same, so we consider only (2.8.7). Recall that ∂αwL

1 = U−1∂αψL − U−1(∂αU)U−1ψL
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where U−1 has the form
U−1 =

(
∗ 0
∗ ∗

)

and U<k has the same structure. We first study the part of ∂αwL
1 involving ∂αψL.

Write
U<kU−1 =

(
U1 0
U2 U1I3

)
Then expanding the matrix product we have(

∂αϕ<kϕ
T
k 0

(∂αϕ<k(Lnϕ)T
k + ∂α(Lnϕ)<kϕ

T
k ) ∂αϕ<kϕ

T
k I3

)
U<kU−1∂αψL

=
(

∂αϕ<kϕ
T
kU1 0

(∂αϕ<k(Lnϕ)T
k + ∂α(Lnϕ)<kϕ

T
k )U1 + ∂αϕ<kϕ

T
kU2 ∂αϕ<kϕ

T
kU1 I3

)(
∂αψ

∂αψL
n

)

Further expanding this product, it remains to study the following:

(a) ∂αϕ<kϕ
T
kUi∂

αψ, i = 1, 2.
(b) ∂αϕ<k(Lnϕ)T

kU1∂
αψ

(c) ∂α(Lnϕ)<kϕ
T
kU1∂

αψ

(d) ∂αϕ<kϕ
T
kU1∂

αψL
n

For the rest of this proof we will treat all functions as scalars, even though they
are really vector or matrix fields, by working componentwise. This reduction is
possible since none of the arguments that follow rely on any geometric structure
and in particular Lemma 2.5.3 held for scalar functions (see remark at end of said
lemma). In this spirit, since all the ⟨Ω⟩Ui are bounded in L∞

t,x (by Proposition 2.7.1)
we may ignore these terms in the above expressions. What’s left is treated by direct
application of Lemma 2.5.3.
Starting with (a), we easily reduce to the following three terms:

∥⟨Ω⟩(∂αϕ<kϕk∂
αψ)∥1,2 ≲ ∥⟨Ω⟩∂αϕ<k · ϕk · ∂αψ∥1,2 (2.8.11)

+ ∥∂αϕ<k · ⟨Ω⟩ϕk · ∂αψ∥1,2 (2.8.12)
+ ∥∂αϕ<k · ϕk · ⟨Ω⟩∂αψ∥1,2 (2.8.13)

For (2.8.11) we apply point 1 of Lemma 2.5.3 as in (2.5.8) (recalling that ψ is at unit
frequency) to see

∥⟨Ω⟩∂αϕ<k · ϕk · ∂αψ∥1,2 ≲
∑
j<k

2( 1
2 − 1

2M
)(j−k)C2

0cjck(C0c0 + ∥∂t∂
αψ∥∞,2)

and we have to do just a little work to bound ∥∂t∂
αψ∥∞,2 in the case α = 0. We use

the equation to find

∥∂2
t ψ∥∞,2 ≤ ∥∆ψ∥∞,2 + ∥⟨Ω⟩□P0ϕ∥∞,2
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where for example

∥P0(ϕ∂αϕT∂αϕ)∥∞,2 ≲ ∥P0(ϕ∂αϕT
>−10∂αϕ>−10)∥∞,1 + ∥P0(ϕ∂αϕT

≤−10∂αϕ>−10)∥∞,2

+ ∥P0(ϕ∂αϕT
≤−10∂αϕ≤−10)∥∞,2

≲ ∥∂αϕ>−10∥∞,2∥∂αϕ>−10∥∞,2 + ∥∂αϕ≤−10∥∞,∞∥∂αϕ>−10∥∞,2

+ ∥∂αϕ≤−10∥∞,4∥∂αϕ≤−10∥∞,4

≪ C0c0 (2.8.14)

Bounding the half-wave maps terms similarly we find

∥⟨Ω⟩∂αϕ<k · ϕk · ∂αψ∥1,2 ≲
∑
j<k

2( 1
2 − 1

2M
)(j−k)C3

0cjckc0

which is acceptable when summed over k ≤ −10.
(2.8.13) can be handled in the same way and for (2.8.12) we use Point 2 of Lemma
2.5.3. (b) and (c) can be treated identically to (a), and (d) is similar upon using
points 3 and 4 of Lemma 2.5.3 rather than 1 and 2 respectively.
The remaining part (U−1∂αUU−1)ψL of ∂αwL

1 can be treated in the same way, since
U−1∂αUU−1 has the same block structure as U<kU−1 and ψL is at unit frequency
so behaves like ∂αψL.

2. Proof of (2.8.8). Expanding ∂αwL
1 as before and restricting to the term U−1∂αψL for

simplicity, we have to consider∥∥∥∥∥⟨Ω⟩
[(

ϕ<kϕ
T
k 0

(ϕ<k(Lnϕ)T
k + (Lnϕ)<kϕ

T
k ) ϕ<kϕ

T
k I3

)
∂αU<kU−1∂αψL

]∥∥∥∥∥
1,2

Generally speaking, the argument for this term is similar to the previous one, using
Lemma 2.5.3 and the lower triangular structure of the matrices involved to limit the
interactions. For the sake of presentation, we will only consider the top left component
of the expression above,

∥⟨Ω⟩(ϕ<kϕ
T
k ∂αU<kU

−1∂αψ)∥1,2

We will also restrict to the case where the angular derivative falls on ϕk, the other
cases bring similar. Note that by placing ϕ<k and U−1 into L∞

t,x it suffices to consider

∥⟨Ω⟩ϕk · ∂αU<k · ∂αψ∥1,2

(working componentwise). We proceed by induction. Set

R(j) := ∥⟨Ω⟩ϕk · ∂αU<j · ∂αψ∥1,2

Claim 6. For all −N ≤ j ≤ k it holds

R(j) ≲ 2( 1
2 − 1

2M
)(j−k)C3

0cjckc0
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Proof of claim. The claim is trivial for j = −N so suppose it is true up to some fixed
−N < j ≤ k. By definition of Uj we have

R(j) ≤ R(j − 1) + ∥⟨Ω⟩ϕk · ϕ<j−1ϕ
T
j−1∂αU<j−1 · ∂αψ∥1,2 (2.8.15)

+ ∥⟨Ω⟩ϕk · ϕ<j−1∂αϕ
T
j−1U<j−1 · ∂αψ∥1,2 (2.8.16)

+ ∥⟨Ω⟩ϕk · ∂αϕ<j−1ϕ
T
j−1U<j−1 · ∂αψ∥1,2 (2.8.17)

For (2.8.15) we pull out ∥ϕ<j−1ϕ
T
j−1∥L∞

t,x
to find

(2.8.15) ≲ C0cj−1R(j − 1)

using the induction hypothesis.
For (2.8.16) we place U<j−1 and ϕ<j−1 into L∞

t,x and apply part 2 of Lemma 2.5.3 in
conjunction with (2.8.14) to bound

∥⟨Ω⟩ϕk · ϕ<j−1∂αϕ
T
j−1U<j−1 · ∂αψ∥1,2 ≲ ∥⟨Ω⟩ϕk · ∂αϕj−1 · ∂αψ∥1,2

≲ 2( 1
2 − 1

2M
)(j−k)C3

0cjckc0

Similarly, for (2.8.17) we have

∥⟨Ω⟩ϕk · ∂αϕ<j−1ϕ
T
j−1U<j−1 · ∂αψ∥1,2 ≲ C0cj

∑
l<j−1

∥⟨Ω⟩ϕk · ∂αϕl · ∂αψ∥1,2

≲ C0cj

∑
l<j−1

2( 1
2 − 1

2M
)(l−k)C3

0clckc0

≲ 2( 1
2 − 1

2M
)(j−k)C3

0cjckc0

We deduce that, for some constant D > 0,

R(j) ≤ (1 +D · C0ϵ)R(j − 1) +D · 2( 1
2 − 1

2M
)(j−k)C3

0cjckc0

and the claim follows upon taking ϵ(C0) sufficiently small.

With this claim in hand, we have∑
−N<k≤−10

∥⟨Ω⟩ϕk · ∂αU<k · ∂αψ∥1,2 ≲
∑

−N<k≤−10
C3

0c
2
kϵ

which is as required.

3. Proof of (2.8.10). This is another straightforward application of Lemma 2.5.3. We
again focus only on the top left component of the term, that is

ϕ≤k∂αϕ
T
≤k · Uk · ∂αw1

Expand
Uk := −ϕ<kϕ

T
kU<k
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and place ϕ<k, U<k and the other ϕ≤k appearing in the term into L∞
t,x to reduce to

bounding ∑
−N<k≤−10

∥⟨Ω⟩(∂αϕ≤k · ϕk · ∂αw1)∥1,2

Upon expanding ∂αw1 = U−1∂αψ + U−1∂αUU−1ψ as before, one sees that this can
be treated via a direct application of Lemma 2.5.3 as in part (1) of this proof.

2.9 Putting it all together

We have succeeded in reducing our equation to

□wL = error

for wL defined through ΦL = UwL. In order to exploit the linear estimate, we need to
check that we still have the correct smallness on the initial data.

Proposition 2.9.1. Let ϕ[0] satisfy assumption (2.3.1). Then

∥⟨Ω⟩P̃0w
L[0]∥Ḣ3/2×Ḣ1/2 ≲ c0

Proof. By (2.7.2) and (2.7.3) it suffices to show the corresponding bound on ΦL, which
by Propositions 2.6.1 and 2.6.3 further reduces to

∥⟨Ω⟩ψL[0]∥Ḣ3/2×Ḣ1/2 ≲ c0

In the absence of L the bound is immediate. Then for n ∈ {1, 2, 3} we have

∥⟨Ω⟩P0(Lnϕ)[0]∥Ḣ3/2×Ḣ1/2

≲ ∥⟨Ω⟩P0(xn∂tϕ(0))∥L2 + ∥⟨Ω⟩P0(xn∂
2
t ϕ(0))∥L2 + ∥⟨Ω⟩P0(∂xnϕ(0))∥L2

≲ c0 + ∥⟨Ω⟩P0(xn□ϕ(0))∥L2

which is acceptable thanks to (2.6.3).

Remember that our actual goal is to bound ψL. By Propositions 2.6.1 and 2.6.3 we see
that

∥ψL∥S0 ≲ ∥ΦL∥S0 + ∥(∆1)∥S0 + ∥(∆2)∥S0 ≲ ∥UwL∥S0 + C2
0ϵc0 (2.9.1)

where by (2.7.2) and (2.7.3),

∥UwL∥S0 ≲ ∥wL∥S0 + max
Q

∥⟨Ω⟩1−δ(p,q)wL∥p,q =: ∥wL∥S̃0
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Using the linear estimate, Theorem 2.2.5, we are now almost done, modulo the fact that
wL is not quite at unit frequency. To get around this, use that wL ≃ ΦL by writing

wL = ΦL − (U − I4)wL

where ΦL = P̃0(ΦL). Then since S̃0 is equivalent to S0 at unit frequency, we can use
Theorem 2.2.5 to bound

∥P̃0w
L∥S̃0

≲ ∥⟨Ω⟩wL[0]∥Ḣ3/2×Ḣ1/2 + C3
0c0ϵ ≲ c0

upon taking ϵ(C0) sufficiently small. On the other hand by Proposition 2.7.1 we have

∥(1 − P̃0)wL∥S̃0
≲ ∥(U − I4)wL∥S̃0

≲ C0ϵ∥wL∥S̃0

We have thus found ∥wL∥S̃0
≲ c0 +C0ϵ∥wL∥S̃0

and taking ϵ(C0) sufficiently small deduce
that

∥wL∥S̃0
≲ c0

Plugging this into (2.9.1) completes the proof of Proposition 2.3.2, and hence of the
global existence of ϕ.

2.10 Proof of local wellposedness

This section is devoted to the proof of Theorem 2.1.3. The argument is a combination of
the scheme from [KS17] with standard methods for studying subcritical wave maps (see
for instance [KS97, KM96a, Sel99, GG16]), however we run into various technical issues
which lengthen the presentation. In the first subsection, we prove the local wellposedness
of the differentiated half-wave maps equation (2.1.2), and in the second subsection we
prove that this solution indeed solves the original half-wave maps equation for compatible
initial data.

Throughout this section, p ∈ S2 is fixed.

2.10.1 Local Wellposedness of the Differentiated Equation (2.1.2).

We start by outlining the argument. We will work in the subcritical function space Xs,θ
1

defined by the norm12

∥ϕ∥
Xs,θ

1
:=
∑
k≥0

∥ϕk∥Xs,θ :=
∑
k≥0

∥⟨|τ | + |ξ|⟩s⟨||τ | − |ξ||⟩θF̃(ϕk)(τ, ξ)∥L2
τ,ξ

12As before we say ϕ in Xs,θ
1 when ϕ ∈ p+Xs,θ

1 and write ∥ϕ∥
X

s,θ
1

to meant ∥ϕ− p∥
X

s,θ
1

. We have a
similar statement for Bs

2,1.
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for 3/2 + ν > s > 3/2, θ > 1/2 and s − 3/2 > θ − 1/2. Here F̃ denotes the spacetime
Fourier transform, and henceforth we denote ϕ0 := F−1(χ(ξ)ϕ̂(ξ)) the low frequency
portion of ϕ, for χ as in Section 2.1.1. Note that Xs,θ

1 controls the Besov norm (see, for
example, Proposition 2.7, [GG16]):

∥ϕ∥L∞
t Bs

2,1
+ ∥∂tϕ∥L∞

t Bs−1
2,1
≲ ∥ϕ∥

Xs,θ
1

The iteration argument, inspired by the scheme of [KS17], is then as follows.

1. Set ϕ(0) = p, the limit of the initial data at infinity.

2. Construct ϕ(1) as the local solution to the wave maps equation by iteration in the
space Xs,θ

1 . This solution lies on the sphere, satisfies ∥ϕ(1)∥
Xs,θ

1
≤ 2C∥ϕ[0]∥Bs

2,1×Bs−1
2,1

(which may be large), and has minimal time of existence depending only on
∥ϕ[0]∥Bs

2,1×Bs−1
2,1

. By standard persistence of regularity arguments, it can be seen
that ϕ(1) is smooth.

3. Suppose that for all 1 ≤ j < J we have found smooth ϕ(j) ∈ Xs,θ
1 solving□ϕ

(j) = −ϕ(j)∂αϕ(j)∂αϕ
(j) + Π

ϕ
(j)
⊥

(HWM(ϕ(j−1)))

ϕ(j)[0] = ϕ[0]

on some interval [0, T (∥ϕ[0]∥Bs
2,1×Bs−1

2,1
)] which lies on the sphere and satisfies

∥ϕ(j)∥
Xs,θ

1
≤ 2C∥ϕ[0]∥Bs

2,1×Bs−1
2,1

(j = 1 is done).

4. Construct ϕ(J) as the local solution to□ϕ
(J) = −ϕ(J)∂αϕ(J)∂αϕ

(J) + Π̃
ϕ

(J)
⊥

(HWM(ϕ(J−1)))

ϕ(J)[0] = ϕ[0]
(2.10.1)

on the same time interval with ∥ϕ(J)∥
Xs,θ

1
≤ 2C∥ϕ[0]∥Bs

2,1×Bs−1
2,1

. Here

Π̃ϕ̃⊥
(ϕ) := ϕ− (ϕ · g(ϕ̃))g(ϕ̃) (2.10.2)

for g a smooth, compactly supported version of ϕ̃/∥ϕ̃∥ equal to that function for
∥ϕ̃∥ ≃ 1 but vanishing in a neighbourhood of the origin. We make this modification
since the subcritical argument assumes no smallness on ϕ(J) and there is nothing
to stop it crossing the origin, at which point the projection operator is non-smooth.
Note that we must evaluate the half-wave maps terms in ϕ(J−1) rather than ϕ(J)

in order to control this part of the forcing, since we do not yet know that ϕ(J) lies
on the sphere.

5. To close the iteration we must show that ϕ(J) lies on the sphere. We can only show
this for the true projection Π

ϕ
(J)
⊥

(by the same argument as in [KS17]), as opposed
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to the modified version above. We therefore need ∥ϕ(J) − p∥∞ ≪ 1 so that the two
projections coincide, and this follows from the assumed smallness of the data in the
critical space. In particular, after constructing each iterate ϕ(J) we use the main
argument of this chapter (Sections 2.3-2.8) to show that the iterate remains small
in the critical space, and so in p+ L∞

t,x as required.13

6. Having constructed the sequence ϕ(J), we take the limit J → ∞ in Xs,θ
1 to

obtain a solution ϕ ∈ Xs,θ
1 solving the half-wave maps equation on the interval

[0, T (∥ϕ[0]∥Bs
2,1×Bs−1

2,1
)]. The higher regularity of the solution follows by standard

arguments.

To carry out the above argument, we must establish the necessary estimates for the
iteration steps (2), (4) and (6). The following linear estimate shows that we must control
the forcing in the space Xs−1,θ−1

1 .
Lemma 2.10.1 (Linear Estimate, see e.g. Theorems 2.9 and 2.10, [GG16]). Fix ϕ[0] =
(ϕ0, ϕ1) ∈ Bs

2,1 ×Bs−1
2,1 and define the solution operator

Φ(F ) := p+ η(t)
(
S−p(ϕ[0]) −

∫ t

0

sin((t− s)
√

−∆)√
−∆

F (s)ds
)

for

S−p(ϕ[0])(t) := cos(t
√

−∆)(ϕ0 − p) + sin(t
√

−∆)√
−∆

ϕ1

and η : R → [0, 1] a smooth, compactly supported cut-off function equal to 1 on [−1, 1].
Hence Φ(F ) solves the wave equation with data ϕ[0] and forcing F on the interval [−T, T ].
It holds

∥Φ(F )∥
Xs,θ

1
≲ ∥ϕ[0]∥Bs

2,1×Bs−1
2,1

+ ∥F∥
Xs−1,θ−1

1

Subcritical Multilinear Estimates

The following proposition contains the multilinear estimates needed for the iteration
argument. We note that the result for the wave maps source terms is considered standard,
however we were unable to find a proof in the literature including the necessary gain in
T ϵ, so we provide a proof for completeness.

Using this proposition in conjunction with the linear estimate Lemma 2.10.1 in the
scheme outlined at the beginning of this section, the proof of local wellposedness is
complete. Henceforth denote s = 3/2 + s′, θ = 1/2 + θ′ for 0 < θ′ < s′ < ν.

13Two very minor adaptations are required in Sections 2.3-2.8 to handle the current situation. Firstly,
(2.10.1) involves both ϕ(J) and ϕ(J−1), however this causes no issues since the wave maps and half-
wave maps source terms are treated wholly independently in the main argument, and we may assume
iteratively that (2.3.2) already holds for ϕ(J−1). The second adaptation is that the terms HWM2 are
now accompanied by a projection which must be taken into account in the steps where one iterates the
equation (e.g. in Section 2.6), however this is easily seen to be unproblematic using Moser estimates.
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Proposition 2.10.2. Fix 0 < T < 1 and set ηT (t) := η(T−1t) for η as in Lemma 2.10.1.
For ϕ, ϕ̃ ∈ Xs,θ

1 , define (suppressing the dependence on ϕ̃),

WM(ϕ) = −ϕ∂αϕ∂αϕ (2.10.3)
HWM1(ϕ) = Π̃ϕ̃⊥((−∆)1/2ϕ) (ϕ · (−∆)1/2ϕ) (2.10.4)

HWM2(ϕ) = Π̃ϕ̃⊥ [ϕ× ((−∆)1/2(ϕ× (−∆)1/2ϕ) − ϕ× (−∆)ϕ)] (2.10.5)

with Π̃ϕ̃⊥
(ϕ) as in (2.10.2). Then there exists ϵ(s′, θ′) > 0 and a function C(∥ϕ̃∥

Xs,θ
1

)
growing polynomially in ∥ϕ̃∥

Xs,θ
1

such that for T any of the trilinear terms (2.10.3)-(2.10.5)
it holds

∥ηT · T (ϕ)∥
Xs−1,θ−1

1
≲ C(∥ϕ̃∥

Xs,θ
1

)T ϵ(1 + ∥ϕ∥
Xs,θ

1
)∥ϕ∥2

Xs,θ
1

(2.10.6)

We also have the difference estimates

∥ηT (T (ϕ(1)) − T (ϕ(2)))∥
Xs−1,θ−1

1

≲ C(∥ϕ̃(1)∥
Xs,θ

1
, ∥ϕ̃(2)∥

Xs,θ
1

)T ϵ(∥ϕ(1) − ϕ(2)∥
Xs,θ

1
(1 + max

j
∥ϕ(j)∥

Xs,θ
1

) max
j

∥ϕ(j)∥
Xs,θ

1

+ ∥ϕ̃(1) − ϕ̃(2)∥
Xs,θ

1
(1 + max

j
∥ϕ(j)∥

Xs,θ
1

) max
j

∥ϕ(j)∥2
Xs,θ

1
)

for all i and a similar function C.

We restrict to proving the multilinear estimates (2.10.6), the difference estimates being
similar. We will constantly use the following well-known transferred Strichartz estimate,
see for example Proposition 26 [Bur20] for a proof.

Lemma 2.10.3 (Strichartz embedding). Let p, q ≥ 2, 1
p + 1

q ≤ 1
2 , (p, q) ̸= (2,∞). Then

for any θ > 1/2, s = 3/2 + s′ > 3/2 it holds

∥Pkϕ∥p,q ≲p,q 2−( 1
p

+ 3
q

+s′)k∥Pkϕ∥Xs,θ (2.10.7)

for all k > 0.

It follows that the norm Ss defined as the ℓ1k≥0 sum over

∥ϕk∥Ss
k

:= max
(p,q)

2( 1
p

+ 3
q

−1+s′)k∥∇t,xϕk∥p,q, ∥ϕ0∥Ss
0

:= max
(p,q),

1
p

+ 3
q

<1−s′

∥∇t,xϕ0∥p,q + ∥ϕ0∥∞,∞

is controlled by the Xs,θ
1 norm whenever the maxima are taken over a finite number of

standard Strichartz pairs (taking slight care including the ∇t at high modulations):

∥ϕk∥Ss
k
≲ ∥ϕk∥Xs,θ , ∥ϕ0∥Ss

0
≤ 1 + ∥ϕ0∥Xs,θ

The restriction on (p, q) in the low frequency case results from the fact that (2.10.7)
holds only at frequencies localised away from the origin, while the 1 appears from the
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2.10 Proof of local wellposedness

constant p which is implicit in the Xs,θ norm.

We start by recording the following key bilinear estimates. Such estimates first appeared
in [KS97], however the reader may consult Theorems 2.11 and 2.12 of [GG16] for a
textbook proof of (1)-(2). For the third estimate see Lemma 2.11, [Tao06].

Lemma 2.10.4 (Bilinear estimates). Let s′ > θ′ > 0. Then the following hold [KS97]:

1. ∥φ · ϕ∥Xs,θ ≲ ∥φ∥Xs,θ ∥ϕ∥Xs,θ

2. ∥φ · F∥Xs−1,θ−1 ≲ ∥φ∥Xs,θ ∥F∥Xs−1,θ−1

Moreover, for s̃ ∈ R, −1
2 < θ̃ < 1

2 , it holds

∥ηTφ∥X s̃,θ̃ ≲η ∥φ∥X s̃,θ̃

uniformly in T ∈ (0, 1).

We also need estimates to control the projection from the half-wave maps terms in the
Xs,θ spaces. We introduce the notation

QkF := F̃−1(χk(||τ | − |ξ||)F̃(F )(τ, ξ))

which decomposes the modulation of a function on dyadic scales. We again use
Q0F := F̃−1(χ(||τ |−|ξ||)F̃(F )(τ, ξ)) to cover the low modulations. Observe the following
modulation Bernstein-type estimate:

∥QjPkφ∥p,q ≲ 23( 1
2 − 1

q
)k2( 1

2 − 1
p

)j∥PkQjφ∥2,2 (p, q ≥ 2) (MB)

Lemma 2.10.5 (Subcritical projection estimate). Fix 0 < s′ < 1/4 and let ϕ, ϕ̃ ∈ Ss.
Let g : R3 → R3 be smooth with bounded derivatives and (p, q) an admissible pair. There
exists a constant C(∥ϕ∥Ss) growing polynomially in ∥ϕ∥Ss such that for any k > 0 we
have

∥Pkg(ϕ̃)∥p,q + 2−k∥Pk∂t(g(ϕ̃))∥p,q ≲ C(∥ϕ̃∥Ss)2−( 1
p

+ 3
q

+s′)k (2.10.8)

and

∥Pk(Π̃ϕ̃⊥((−∆)1/2ϕ))∥p,q ≲ C(∥ϕ̃∥Ss)2(1− 1
p

− 3
q

−s′)k ∑
k1≥0

2−σ|k−k1|∥Pk1ϕ∥Ss
k1

(2.10.9)

for some σ(s′, p, q) > 0. The second estimate (2.10.9) also holds for k = 0.

We omit the proof of this Lemma which is analogous to that in the critical case, see
Lemmas 2.5.7 and 2.5.8. From these estimates we can deduce similar bounds in the Xs,θ

spaces, discussed further in Appendix 2.B.
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Lemma 2.10.6. Let 0 < s′ < 1/4, ϕ, ϕ̃ ∈ Xs,θ
1 . Then for (j, k) ̸= (0, 0) we have the

Moser inequality
∥PkQjg(ϕ̃)∥Xs,θ ≲ C(∥ϕ̃∥

Xs,θ
1

) (2.10.10)

and the projection estimate

∥PkQj(Π̃ϕ̃⊥(−∆)1/2ϕ)∥Xs,θ

≲ C(∥ϕ̃∥
Xs,θ

1
)

2k
∑
k′≥0

2−σ|k−k′|∥ϕk′∥Xs,θ + δj≫k · 2j
∑
k′≳j

2−σ|j−k′|∥ϕk′∥Xs,θ

 (2.10.11)

which also holds for (j, k) = (0, 0). Here δj≫k = 1 if j ≥ k + 20 and 0 otherwise, and
C(∥ϕ̃∥

Xs,θ
1

) is a constant which grows polynomially in ∥ϕ̃∥
Xs,θ

1
.

Furthermore, the projections are continuous on Xs−1,θ−1
1 : for j, k ≥ 0 it holds

∥PkQjΠ̃ϕ̃⊥F∥Xs−1,θ−1 ≲ C(∥ϕ̃∥
Xs,θ

1
)
∑
r≥0

∑
l≥0

2−σ(|r−k|+|l−j|)∥PrQlF∥Xs−1,θ−1 (2.10.12)

Remark 2.10.7. The continuity property (2.10.12) allows us to neglect the outer
projection Π̃ϕ̃⊥ appearing in HWM2 when proving (2.10.6). Henceforth, we therefore
redefine

HWM2(ϕ) := ϕ× ((−∆)1/2(ϕ× (−∆)1/2ϕ) − ϕ× (−∆)ϕ)

To prove Proposition 2.10.2 we will use the frequency decompositions

ηT ·WM(ϕ) = −
∑

k1,k2,k3≥0
ηT (ϕk1∂

αϕk2∂αϕk3)︸ ︷︷ ︸
W Mk1,k2,k3 (ϕ)

,

ηT ·HWM1(ϕ) =
∑

k1,k2,k3≥0
ηT (Pk2(Π̃ϕ̃⊥(−∆)1/2ϕ) (ϕk1 · (−∆)1/2ϕk3))︸ ︷︷ ︸

HW M1;k1,k2,k3 (ϕ)

,

and

ηT ·HWM2(ϕ) =
∑

k1,k2,k3≥0
ηT (ϕk1 × [(−∆)1/2(ϕk2 × (−∆)1/2ϕk3) − ϕk2 × (−∆)ϕk3 ])︸ ︷︷ ︸

HW M2;k1,k2,k3 (ϕ)

We will first deal with all but the (low)∇(high)∇(high) interactions, for which we can
get by using Strichartz estimates, the gain in T coming from Hölder’s inequality. For
this we need the following straightforward bound which tells us that multiplication by a
time cut-off does not affect the geometry of the interactions in a serious way.

Lemma 2.10.8. Let 2 ≤ p ≤ ∞, l ≥ 0. Then it holds

∥P (t)
l ηT ∥Lp

t
≲η,N T 1/p(2lT )−N

for any N > 0. Here P (t)
l is the projection to temporal frequency ∼ 2l.
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2.10 Proof of local wellposedness

Most of the frequency interactions are then handled in the following proposition.

Proposition 2.10.9. Fix T > 0. Set

S∗ := {(k1, k2, k3) ∈ N3
≥0 : 2k2T > 1, 2k3T > 1, k1 < max{k2, k3} − 10}

Then there exist ϵ > 0 such that for any ϕ, ϕ̃ ∈ Xs,θ
1 it holds

∥
∑

(k1,k2,k3)/∈S∗

ηT · Tk1,k2,k3(ϕ)∥
Xs−1,θ−1

1
≲ C(∥ϕ̃∥

Xs,θ
1

)T ϵ(1 + ∥ϕ∥
Xs,θ

1
)∥ϕ∥2

Xs,θ
1

for T ∈ {WM,HWM1, HWM2} and C(∥ϕ̃∥
Xs,θ

1
) as in Lemma 2.10.11.

Proof. Throughout this proof any implicit constants may depend polynomially on ∥ϕ̃∥
Xs,θ

1
.

We will only prove the estimates for the wave maps terms, WM , the other terms being
entirely analogous using Lemma 2.10.6 and the fact that

∥(−∆)1/2(ϕk2 × (−∆)1/2ϕk3) − ϕk2 × (−∆)ϕk3∥p,q ≲ 2k2+k3∥ϕk2∥p1,q1∥ϕk3∥p2,q2

for all k2, k3 ≥ 0 (see Lemma 2.5.1) and conjugate triples p−1 = p−1
1 + p−1

2 , q−1 =
q−1

1 + q−1
2 .

Fix k ≥ 0 and consider ∑
(k1,k2,k3)/∈S∗

∥Pk(ηT ·WMk1,k2,k3(ϕ))∥Xs−1,θ−1

We start with the case k1 ≥ max{k2, k3} − 10. Note that in this case the whole term is
restricted to frequency P≲k1 so we must have k1 ≳ k. We then consider different cases
for the modulation.

• P≲k1Q≲k1 : Using that k ≲ k1 followed by the modulation-Bernstein estimate and
Hölder’s inequality we have

∥PkQ≲k1(ηTϕk1∂
αϕk2∂αϕk3)∥Xs−1,θ−1

≲ 2(s−1)k1
∑
j≲k1

2(θ−1)j2j/2∥ηT ∥M ∥ϕk1∥∞,2∥∂αϕk2∥ 2M
M−1 ,∞∥∂αϕk3∥ 2M

M−1 ,∞

≲ T
1

M 2(s−1)k12θ′k1 · 2−sk1∥ϕk1∥Xs,θ · 2( 1
2 + 1

2M
−s′)(k2+k3)∥ϕk2∥Xs,θ ∥ϕk3∥Xs,θ

≲ T
1

M 2−(2s′−θ′− 1
M

)k1∥ϕk1∥Xs,θ ∥ϕk2∥Xs,θ ∥ϕk3∥Xs,θ

We may then take, for example, 1
M = θ′, s′ > θ′ so bound this by

T θ′2−2(s′−θ′)(k1−k)2−2(s′−θ′)k∥ϕk1∥Xs,θ ∥ϕk2∥Xs,θ ∥ϕk3∥Xs,θ

which is summable over k2 k3 ≤ k1 − 10, k1 ≳ k, k ≥ 0 as required.
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• ∑
l≫k1 P≲k1Ql: In this case one of the four factors must be at modulation (or frequency

in the case of ηT ) at least comparable to 2l. We study each option separately.

1. (P≳lηT )ϕk1∂
αϕk2∂αϕk3 : Here we use Lemma 2.10.8 to see that∑

l≫k1

∥PkQl((P (t)
≳l ηT )ϕk1∂

αϕk2∂αϕk3)∥Xs−1,θ−1

≲
∑

l≫k1

2(s′+θ′)l∥P (t)
≳l ηT ∥M ∥ϕk1∥∞,2∥∂αϕk2∥ 2M

M−2 ,∞∥∂αϕk3∥∞,∞

≲
∑

l≫k1

2(s′+θ′)l · T 1/M (2lT )−N · 2−sk1∥ϕk1∥Xs,θ · 2( 1
2 + 1

M
−s′)k2∥ϕk2∥Xs,θ

· 2(1−s′)k3∥ϕk3∥Xs,θ

We may then take, e.g., N = s′ + θ′ + 1
2M and 1/2M = s′ + 2θ′ to bound this by

T
1

2M
−s′−θ′2−k1/2M 2−sk12( 1

2 + 1
M

−s′)k12(1−s′)k1∥ϕk1∥Xs,θ ∥ϕk2∥Xs,θ ∥ϕk3∥Xs,θ

≲ T θ′2−2(s′−θ′)(k1−k)2−2(s′−θ′)k∥ϕk1∥Xs,θ ∥ϕk2∥Xs,θ ∥ϕk3∥Xs,θ

which is acceptable.

2. ηT (Q≳lϕk1)∂αϕk2∂αϕk3 : This time we place Q≳lϕk1 directly into Xs,θ to find∑
l≫k1

∥PkQl(ηT (Q≳lϕk1)∂αϕk2∂αϕk3)∥Xs−1,θ−1

≲
∑

l≫k1

2(s′+θ′)l∥ηT ∥M ∥Q≳lϕk1∥ 2M
M−2 ,2∥∂αϕk2∥∞,∞∥∂αϕk3∥∞,∞

≲ T 1/M
∑

l≫k1

2(s′+θ′)l2l/M 2−θl2−sl∥ϕk1∥Xs,θ · 2(1−s′)k2∥ϕk2∥Xs,θ · 2(1−s′)k3∥ϕk3∥Xs,θ

≲ T 1/M 2( 1
M

−2s′)k1∥ϕk1∥Xs,θ ∥ϕk2∥Xs,θ ∥ϕk3∥Xs,θ

which is acceptable choosing 1/M = 2θ′.

3. ηT ϕk1(Q≳l∂
αϕk2)∂αϕk3 :∑

l≫k1

∥PkQl(ηT ϕk1(Q≳l∂
αϕk2)∂αϕk3)∥Xs−1,θ−1

≲
∑

l≫k1

2(s′+θ′)l∥ηT ∥M ∥ϕk1∥∞,∞∥Q≳l∂
αϕk2∥ 2M

M−2 ,2∥∂αϕk3∥∞,∞

≲ T 1/M
∑

l≫k1

2(s′+θ′)l(δk1,0 + ∥ϕk1∥Xs,θ ) · 2( 1
M

−θ+1−s)l∥ϕk2∥Xs,θ · 2(1−s′)k3∥ϕk3∥Xs,θ

≲ T 1/M 2( 1
M

−s′)k1(δk1,0 + ∥ϕ∥Xs,θ )∥ϕk2∥Xs,θ ∥ϕk3∥Xs,θ (2.10.13)

which is acceptable choosing e.g. 1/M = θ′.
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4. ηTϕk1∂
αϕk2(Q≳l∂αϕk3): as above.

This completes the study of the case k1 ≥ max{k2, k3} − 10.

We next turn to the case k1 < max{k2, k3} − 10. WLOG k2 ≥ k3. This time the whole
term is at frequency ≲ 2k2 and we must have k ≲ k2. We first study the case where the
whole term has large modulation,∑

l≫k2

∥P≲k2Ql(ηTϕk1∂
αϕk2∂αϕk3)∥Xs−1,θ−1

Again, one of the factors must have modulation of order at least 2l, so we have four cases
to consider.

• ∑
l≫k2 P≲k2Ql:

1. P (t)
≳l ηT : In this case we again use Lemma 2.10.8 to see that

∑
l≫k2

∥PkQl((P (t)
≳l ηT )ϕk1∂

αϕk2∂αϕk3)∥Xs−1,θ−1

≲
∑

l≫k2

2(s′+θ′)l∥P (t)
≳l ηT ∥M ∥ϕk1∥∞,∞∥∂αϕk2∥∞,2∥∂αϕk3∥ 2M

M−2 ,∞

≲
∑

l≫k2

2(s′+θ′)lT 1/M (2lT )−N 2(1−s)k22( 1
2 + 1

M
−s′)k3(δk1,0 + ∥ϕk1∥Xs,θ )∥ϕk2∥Xs,θ

· ∥ϕk3∥Xs,θ

≲ T
1

2M
−s′−θ′2( 1

2M
−2s′)k2∥ϕk1∥Xs,θ ∥ϕk2∥Xs,θ ∥ϕk3∥Xs,θ

where we again used N = 1
2M + s′ + θ′ and k3 ≤ k2. Choosing M such that

s′ + θ′ < 1
2M < 2s′ we obtain the result.

2. Q≳lϕk1 : This is a direct application of Hölder’s inequality. Placing all three factors
of ϕ into Strichartz spaces we have∑

l≫k2

∥PkQl(ηT (Q≳lϕk1)∂αϕk2∂αϕk3)∥Xs−1,θ−1

≲
∑

l≫k2

2(s′+θ′)l∥ηT ∥M ∥Q≳lϕk1∥ 2M
M−2 ,∞∥∂αϕk2∥∞,2∥∂αϕk3∥∞,∞

≲ T 1/M
∑

l≫k2

2(s′+θ′)l · 23k1/22( 1
M

−θ)l2−sl∥ϕk1∥Xs,θ · 2(1−s)k2∥ϕk2∥Xs,θ

· 2(1−s′)k3∥ϕk3∥Xs,θ

≲ T 1/M 2( 1
M

−2s′)k2∥ϕk1∥Xs,θ ∥ϕk2∥Xs,θ ∥ϕk3∥Xs,θ

which is acceptable for e.g. 1/M = 2θ′.
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3. Q≳l∂
αϕk2 :∑

l≫k2

∥PkQl(ηTϕk1(Q≳l∂
αϕk2)∂αϕk3)∥Xs−1,θ−1

≲
∑

l≫k2

2(s′+θ′)l∥ηT ∥M ∥ϕk1∥∞,∞∥Q≳l∂
αϕk2∥ 2M

M−2 ,2∥∂αϕk3∥∞,∞

≲ T 1/M
∑

l≫k2

2(s′+θ′)l · (δk1,0 + ∥ϕk1∥Xs,θ ) · 2( 1
M

−θ)l2(1−s)l∥ϕk2∥Xs,θ

· 2(1−s′)k3∥ϕk3∥Xs,θ

≲ T 1/M 2( 1
M

−s′)k2(δk1,0 + ∥ϕk1∥Xs,θ )∥ϕk2∥Xs,θ ∥ϕk3∥Xs,θ

which is acceptable for 1
M < s′.

4. Q≳l∂αϕk3 :∑
l≫k2

∥PkQl(ηTϕk1∂
αϕk2(Q≳l∂αϕk3))∥Xs−1,θ−1

≲
∑

l≫k2

2(s′+θ′)l∥ηT ∥M ∥ϕk1∥∞,∞∥∂αϕk2∥∞,2∥Q≳l∂
αϕk3∥ 2M

M−2 ,∞

≲ T 1/M
∑

l≫k2

2(s′+θ′)l · (δk1,0 + ∥ϕk1∥Xs,θ ) · 2(1−s)k2∥ϕk2∥Xs,θ

· 23k3/22( 1
M

−θ)l2(1−s)l∥ϕk3∥Xs,θ

≲ T 1/M 2( 1
M

−s′)k2(δk1,0 + ∥ϕk1∥Xs,θ )∥ϕk2∥Xs,θ ∥ϕk3∥Xs,θ

which is acceptable for 1
M < s′.

• P≲k2Q≲k2 : It remains to study the term with overall modulation restricted to ≲ 2k2 .
We consider the cases 2k2T ≤ 1 and 2k2T > 1 separately. The latter case we further
split into 2k3T ≤ 1 and 2k3T > 1.

1. 2k2T ≤ 1: Here we use the modulation Bernstein estimate followed by Bernstein’s
inequality to bound (for k ≲ k2)

∥PkQ≲k2(ηTϕk1∂
αϕk2∂αϕk3)∥Xs−1,θ−1

≲
∑
l≲k2

2(s−1)k22(θ−1)l2l/2∥ηT ∥1∥ϕk1∥∞,∞∥∂αϕk2∥∞,2∥∂αϕk3∥∞,∞

≲ T
∑
l≲k2

2(s−1)k22θ′l2(1−s)k22(1−s′)k3(δk1,0 + ∥ϕk1∥Xs,θ )∥ϕk2∥Xs,θ ∥ϕk3∥Xs,θ

≲ T2(1+θ′−s′)k2(δk1,0 + ∥ϕk1∥Xs,θ )∥ϕk2∥Xs,θ ∥ϕk3∥Xs,θ

We then use that s′, θ′ are very small and separate 2(1+θ′−s′)k2 into 2(1+ 1
2 (θ′−s′))k22 1

2 (θ′−s′)k2 .
Since 2k2 ≤ T−1 this allows us to bound the previous line by

≲ T
1
2 (s′−θ′)2

1
2 (θ′−s′)k2(δk1,0 + ∥ϕk1∥Xs,θ )∥ϕk2∥Xs,θ ∥ϕk3∥Xs,θ
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which is acceptable since s′ > θ′.

2. 2k2T > 1, 2k3T ≤ 1: In this case we start by using (MB) to lower the time exponent
from 2 to 1+, then place all three factors of ϕ into Strichartz spaces:

∥PkQ≲k2(ηTϕk1∂
αϕk2∂αϕk3)∥Xs−1,θ−1

≲ 2(s−1)k2
∑
l≲k2

2(θ−1)l2( 1
2 − 1

M
)l∥ηT ∥ 2M

M−1
∥ϕk1∥∞,∞∥∂αϕk2∥∞,2∥∂αϕk3∥ 2M

M−1 ,∞

≲ T
1
2 − 1

2M 2( 1
2 + 1

2M
−s′)k3(δk1,0 + ∥ϕk1∥Xs,θ )∥ϕk2∥Xs,θ ∥ϕk3∥Xs,θ

where we chose 1/M > θ′ and summed over l ≥ 0. In order to gain some decay in k
we need to split into two further sub-cases. Henceforth assume s′ + θ′ > 2/M > 2θ′.

(a) k2 ≃ k: In this case, we simply bound 2k3 ≤ T−1 to find

∥PkQ≲k2(ηTϕk1∂
αϕk2∂αϕk3)∥Xs−1,θ−1

≲ T s′− 1
M (δk1,0 + ∥ϕk1∥Xs,θ )∥ϕk2∥Xs,θ ∥ϕk3∥Xs,θ

which is acceptable.
(b) k2 ≫ k. Since k1 ≤ k2 − 10, we must in this case have k3 ≃ k2. We find

∥PkQ≲k2(ηTϕk1∂
αϕk2∂αϕk3)∥Xs−1,θ−1

≲ T
1
2 − 1

2M 2( 1
2 + 1

2M
− 1

2 (s′+θ′))k32− 1
2 (s′−θ′)k3(δk1,0 + ∥ϕk1∥Xs,θ )∥ϕk2∥Xs,θ ∥ϕk3∥Xs,θ

≲ T
1
2 (s′+θ′)− 1

M 2− 1
2 (s′−θ′)k2(δk1,0 + ∥ϕk1∥Xs,θ )∥ϕk2∥Xs,θ ∥ϕk3∥Xs,θ

where we used that 2− 1
2 (s′−θ′)k3 ≃− 1

2 (s′−θ′)k2 for the final inequality.

The remaining case k1 < max{k2, k3} − 10, 2k2T, 2k3T >, corresponds to a triple in S∗
so the proof for WM is complete.

To handle the remaining (low)∇(high)∇(high) interactions we must incorporate the
structures in the different terms. For the wave maps source terms we will use the
following lemma, proved in Appendix 2.C.

Lemma 2.10.10. Set s = 3/2 + s′, θ = 1/2 + θ′ for ν > s′ > θ′ > 0. Let k2, k3 ≥ 0. It
holds

∥φk2 · Fk3∥Xs−1,θ−1 ≲ 2−s′ min{k2,k3}∥φk2∥Xs,θ ∥Fk3∥Xs−1,θ−1 (2.10.14)

and
∥φ(2)

k2
· φ(3)

k3
∥Xs,θ ≲ 2−s′ min{k2,k3}∥φ(2)

k2
∥Xs,θ ∥φ(3)

k3
∥Xs,θ (2.10.15)

The remaining interactions are then handled in the following proposition.
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Proposition 2.10.11. Let (k1, k2, k3) ∈ S∗. Then for any ϕ, ϕ̃ ∈ Xs,θ
1 it holds

∥
∑

(k1,k2,k3)∈S∗

ηT · Tk1,k2,k3(ϕ)∥
Xs−1,θ−1

1
≲ C(∥ϕ̃∥

Xs,θ
1

)T ϵ∥ϕ∥3
Xs,θ

1

for T ∈ {WM,HWM1, HWM2} and C(∥ϕ̃∥
Xs,θ

1
) a constant as in the previous proposi-

tion.

Proof. We start with WM , again taking k2 ≥ k3 without loss of generality, so that
k1 < k2 − 10 and 2k2T, 2k3T > 1. Use the null structure to write

∂αϕk2 · ∂αϕk3 = 1
2[□(ϕk2 · ϕk3) − ϕk2 ·□ϕk3 −□ϕk2 · ϕk3 ]

First consider ∥ηT (ϕk1□(ϕk2 · ϕk3))∥
Xs−1,θ−1

1
. Note that we may neglect the cut-off ηT

thanks to Lemma 2.10.4. By point 2 of Lemma 2.10.4 followed by the definition of the
Xs,θ space and Lemma 2.10.10 we have

∥Pk(ϕk1□(ϕk2 · ϕk3))∥Xs−1,θ−1 ≲ ∥ϕk1∥Xs,θ ∥□(ϕk2 · ϕk3)∥Xs−1,θ−1

≲ ∥ϕk1∥Xs,θ ∥ϕk2 · ϕk3∥Xs,θ

≲ 2−s′k3∥ϕk1∥Xs,θ ∥ϕk2∥Xs,θ ∥ϕk3∥Xs,θ

If k2 ≃ k we bound this by T s′∥ϕk1∥Xs,θ ∥ϕk2∥Xs,θ ∥ϕk3∥Xs,θ which is acceptable, and if
k2 ≫ k, we know (since k1 ≪ k2) that k3 ≳ k2 so we can bound this by

T s′/22−s′(k3−k)/2∥ϕk1∥Xs,θ ∥ϕk2∥Xs,θ ∥ϕk3∥Xs,θ

which is also fine.

Similarly for ∥ϕk1ϕk2 ·□ϕk3∥Xs−1,θ−1 we use Lemma 2.10.10 to bound

∥Pk(ϕk1ϕk2 ·□ϕk3)∥Xs−1,θ−1 ≲ 2−s′k3∥ϕk1∥Xs,θ ∥ϕk2∥Xs,θ ∥ϕk3∥Xs,θ

which is acceptable for the same reasons. The remaining term is similar.

For HWM1 and HWM2 we don’t actually need to use that 2k2T , 2k3T > 1 and we
can get the gain we need from Hölder’s inequality. Let’s start with HWM1 in the case
k3 ≥ k2, so k1 < k3 −10. Note that the high modulation case ||τ |− |ξ|| ≫ k3 was handled
in the previous proof, so we only have to consider low modulations. Since k3 is the
highest frequency the output is restricted to 2k ≲ 2k3 , so for fixed k2, k3 we have

∥
∑

k1<k3−10
Q≲k3Pk(ηT ·HWM1;k1,k2,k3(ϕ))∥Xs−1,θ−1

≲
∑
l≲k3

2(θ−1)l2(s−1)k3∥QlPk(ηTPk2(Π̃ϕ̃⊥(−∆)1/2ϕ)(ϕ<k3−10 · (−∆)1/2ϕk3))∥2,2
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≲
∑
l≲k3

2(θ−1)l2(s−1)k3∥QlPk(ηTPk2(Π̃ϕ̃⊥(−∆)1/2ϕ)(ϕ<k3−10 · (−∆)1/2ϕk3

− (−∆)1/2Pk3(ϕ<k3−10 · ϕ≥k3−10))∥2,2

+
∑
l≲k3

2(θ−1)l2(s−1)k3∥QlPk(ηTPk2(Π̃ϕ̃⊥(−∆)1/2ϕ)(−∆)1/2Pk3(ϕ<k3−10 · ϕ≥k3−10))∥2,2

The first term above sees a derivative moved onto the low frequency factor ϕ<k3−10 (see
Lemmas 2.5.1 and 2.5.9), so is easier to handle. For the third line we use the geometric
identity (GeId) to swap the low frequency factor for a high one and find∑

l≲k3

2(θ−1)l2(s−1)k3∥QlPk(ηTPk2(Π̃ϕ̃⊥(−∆)1/2ϕ)(−∆)1/2Pk3(ϕ<k3−10 · ϕ≥k3−10))∥2,2

≲
∑
l≲k3

2(θ−1)l2(s−1)k32l( 1
2 − 1

M
)∥ηT ∥M ∥Pk2(Π̃ϕ̃⊥(−∆)1/2ϕ)∥ 2M

M−4 ,∞

· 2k3∥ϕ≥k3−10∥2M, 2M
M−1

∥ϕ≥k3−10∥ 2M
M−1 ,2M

≲ T 1/M 2( 1
2 + 2

M
−s′)(k2−k3)22( 1

M
−s′)(k3−k)22( 1

M
−s′)k∥ϕ∥2

Xs,θ
1

∑
k′≥0

2−σ|k2−k′|∥ϕk′∥Xs,θ

where we chose M such that θ′ < M−1 < s′. This can be summed over k2 ≤ k3, k3 ≳ k
and k ≥ 0 as required.

The case k2 > k3 is similar, with the exception that we must separately study k1 < k3 −10
and k1 ∈ [k3 − 10, k2 − 10] in order to apply (GeId).

Finally, we turn to HWM2, again restricting to modulation ≲ 2max{k2,k3}. We first
consider k3 ≥ k2 + 10, in which case we must have output frequency k ∼ k3 and can
write HWM2;k1,k2,k3(ϕ) = ϕk1 × Lk2+k3(ϕk2 , ϕk3) for L as in (2.5.1). We therefore have

∥
∑

k1<k3−10
Q≲k3Pk(ηT ·HWM2;k1,k2,k3(ϕ))∥Xs−1,θ−1

≲
∑
l≲k3

2(θ−1)l2(s−1)k32( 1
2 − 1

M
)l∥ηT ϕ<k3−10 × Lk2+k3(ϕk2 , ϕk3)∥ M

M−1 ,2

≲ T 1/M
∑
l≲k3

∑
a,b

2(θ′− 1
M

)l2(s−1)k3c
(k2+k3)
a,b (∥ϕk2(x+ 2−k2a) ϕ<k3−10(x) · ϕk3(x+ 2−k3b)∥ M

M−2 ,2

+ ∥ϕk3(x+ 2−k3b) ϕ<k3−10(x) · ϕk2(x+ 2−k2a)∥ M
M−2 ,2)

where we used (2.5.2) and (2.5.39) in the second inequality. We then write

ϕ<k3−10(x) = ϕ<k3−10(x+ 2−k3b) − 2−k3b

∫ 1

0
∇ϕ<k3−10(x+ 2−k3bθ)dθ

and use (GeId) to bound

∥ϕk2(x+ 2−k2a) ϕ<k3−10(x) · ϕk3(x+ 2−k3b)∥ M
M−2 ,2
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≲ ⟨b⟩2−( 1
2 − 2

M
+s′)k22−(2+2s′)k3∥ϕ∥2

Xs,θ
1

 ∑
k′≳k3

2−( 1
2 + 1

M
+s′)(k′−k3)∥ϕk′∥Xs,θ


and similarly

∥ϕk3(x+ 2−k3b) ϕ<k3−10(x) · ϕk2(x+ 2−k2a)∥ M
M−2 ,2

≲ ⟨a⟩2−sk32−(1− 2
M

+2s′)k2∥ϕk3∥
Xs,θ

1
∥ϕ∥2

Xs,θ
1

It follows that, choosing θ′ < M−1 < s′,

∥
∑

k1<k3−10
Q≲k3Pk(ηT ·HWM2;k1,k2,k3(ϕ))∥Xs−1,θ−1

≲ T 1/M
∑
l≲k3

∑
a,b

2(θ′− 1
M

)l2(s−1)k3ck2+k3
a,b ⟨a⟩⟨b⟩2−sk32−(1− 2

M
+2s′)k2∥ϕ∥2

Xs,θ
1

·

 ∑
k′≳k3

2−σ|k′−k3|∥ϕk′∥Xs,θ


≲ T 1/M 22( 1

M
−s′)k2∥ϕ∥2

Xs,θ
1

 ∑
k′≳k3

2−σ|k′−k3|∥ϕk′∥Xs,θ


which is acceptable when summed over k2 ≥ 0, k3 ∼ k, k ≥ 0. The case k2 ≥ k3 + 10 can
be treated identically.

In the remaining case k2 ≃ k3, we again call upon the identity (GeId), however this time
there is nothing to be gained by cancellation and so one must instead split HWM2 into
its two components and treat each separately. The term involving

ϕk2 × (−∆)ϕk3

is easier to handle as there are no nonlocal operators acting so one can directly apply
the vector product identity. For the term involving

(−∆)1/2(ϕk2 × (−∆)1/2ϕk3),

we only need to use (GeId) when the frequency of this output output is comparable to
2k. The details are left to the reader.

In combination with Remark 2.10.7, the previous two propositions complete the proof of
Proposition 2.10.2.
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2.10.2 Local Wellposedness of the Half-Wave Maps Equation (2.1.1).

It remains to show that the local solution to the differentiated equation in fact solves the
original problem (2.1.1) under the compatibility assumption ϕ1 = ϕ0 × (−∆)1/2ϕ0. We
use an energy argument as in [KS17].

Let ϕ be a smooth local solution to equation (2.1.2) with data (ϕ0, ϕ1) as above. Set

X := ϕt − ϕ× (−∆)1/2ϕ

Our goal is to show X ≡ 0. To this end, consider the energy type functional

Ẽ(t) = 1
2

∫
R3

|X(t, x)|2dx

A calculation as in [KS17] shows

∂tX = −ϕ(X · (ϕ× (−∆)1/2ϕ+ ϕt)) −X × (−∆)1/2ϕ− ϕ× (−∆)1/2X

from which

d

dt
Ẽ(t) = −

∫
R3

(ϕ(X · (ϕ× (−∆)1/2ϕ+ ϕt))) ·Xdx−
∫
R3

(ϕ× (−∆)1/2X) ·Xdx

(2.10.16)

We immediately see that∣∣∣∣∫
R3

(ϕ(X · (ϕ× (−∆)1/2ϕ+ ϕt))) ·X dx

∣∣∣∣ ≲∥ϕ∥∞∥X∥2
2∥ϕ× (−∆)1/2ϕ+ ϕt∥∞ ≲ϕ ∥X∥2

2

since ϕ, ∇t,xϕ ∈ Xs,θ ↪→ L∞
t,x. For the second term, we subtract a term which is zero (by

Plancherel):∫
R3

(ϕ× (−∆)
1
2X) ·Xdx =

∫
R3

[(ϕ× (−∆)1/2X) − (−∆)
1
4 (ϕ× (−∆)

1
4X)] ·Xdx

then bound

∥(ϕ× (−∆)1/2X) − (−∆)
1
4 (ϕ× (−∆)

1
4X)∥2

≲
∑

k1≥0
∥L(ϕk1 , X<k1+10)∥2 +

∑
k2≥0

∥L(ϕ<k2−10, Xk2)∥2
2

 1
2

with

L(ϕk1 , Xk2) =
∫

ξ,η
eix·(ξ+η)|η|

1
2 (|η|

1
2 − |ξ + η|

1
2 )χk1(ξ)ϕ̂(ξ)χk2(η)X̂(η)dξdη
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It is then straightforward that∑
k1≥0

∥L(ϕk1 , X<k1+10)∥2 ≲
∑

k1≥0
2k1∥ϕk1∥∞∥X∥2 ≲ϕ ∥X∥2

and applying Lemma 2.5.1 (using
∣∣∣|η|

1
2 (|η|

1
2 − |ξ + η|

1
2 |)
∣∣∣ ≲ |ξ|), we also have

∑
k2≥0

∥L(ϕ<k2−10, Xk2)∥2
2

 1
2

≲

∑
k2≥0

∥∇ϕ∥2
∞∥Xk2∥2

2

 1
2

≲ϕ ∥X∥2

We have therefore shown that
d

dt
Ẽ(t) ≲ϕ Ẽ(t)

and since the initial conditions imply that Ẽ(0) = 0, we conclude that Ẽ ≡ 0 for all time.
This completes the proof.
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Appendix

2.A Control of the Low Frequencies

In this short appendix we show that the low frequency portion of ϕ cannot blow up. It
is recommended that the reader ignores this appendix until the end of the proof, since
some of the methods will by then be familiar.

By the energy estimate for the wave equation we find

∥P≤0∂tϕ∥L∞
t L2

x([0,T ]) ≲ ∥P≤0ϕ[0]∥Ḣ1×L2 + ∥P≤0□ϕ∥L1
t L2

x([0,T ])

By our assumptions on the initial data certainly ∥P≤0ϕ[0]∥Ḣ1×L2 < ∞. For the nonho-
mogeneous term we use Hölder’s inequality in time and Bernstein in space to find, for
instance,

∥P≤0(ϕ∂αϕ∂
αϕ)∥L1

t L2
x([0,T ]) ≲ T (∥P≤0(ϕ∂αϕ>10∂

αϕ>10)∥L∞
t L1

x([0,T ])

+ ∥P≤0(ϕ∂αϕ≤10∂
αϕ>10)∥L∞

t L2
x([0,T ])

+ ∥P≤0(ϕ∂αϕ≤10∂
αϕ≤10)∥L∞

t L2
x([0,T ]))

≲ T (∥ϕ∥∞,∞∥∂αϕ>10∥∞,2∥∂αϕ>10∥∞,2

+ ∥ϕ∥∞,∞∥∂αϕ≤10∥∞,∞∥∂αϕ>10∥∞,2

+ ∥ϕ∥∞,∞∥∂αϕ≤10∥∞,4∥∂αϕ≤10∥∞,4)

All of these terms are bounded by Tϵ2 using the definition of S and the local constancy
of the frequency envelope. The half-wave maps source terms can be treated similarly
using arguments as in Section 2.6 (see for example Claim 3, Proposition 2.6.1).

This shows that the low frequency portion of ∂tϕ remains bounded for all time (even if
this bound is growing in T ). For the L2 norm of the solution itself we can then use that
the data is certainly in L2 (upon subtracting the constant p) and calculate the derivative

d

dt
∥P≤0ϕ(t)∥2

L2
x

= 2
∫
R3
P≤0ϕ · P≤0∂tϕdx

≤ ϵ2∥P≤0ϕ∥2
L∞

t L2
x([0,T ]) + ϵ−2∥P≤0∂tϕ∥2

L∞
t L2

x([0,T ])
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Choosing ϵ = (2T )−1/2 and using the fundamental theorem of calculus this yields

∥P≤0ϕ∥2
L∞

t L2
x([0,T ]) ≤ 2∥ϕ0∥2

L2
x

+ 4T 2∥P≤0∂tϕ∥2
L∞

t L2
x([0,T ])

In combination with the bound already shown for ∥P≤0∂tϕ∥L∞
t L2

x([0,T ]) this shows that
∥P≤0ϕ∥L∞

t L2
x([0,T ]) also remains bounded on the interval [0, T ].

We remark that the control on ∥P≤0ϕ∥L2
x

could also be obtained from the conserved mass

M(t) :=
∫
Rn

|ϕ− p|2dx (2.A.1)

of the half-wave maps equation, although the approach above is of course more general.

2.B Proof of Moser Estimates

In this appendix we prove the nonlinear Moser estimates which played a crucial in the
analysis of this chapter. We first prove the most straightforward such estimate, (2.5.17),
involving only Strichartz norms.

Lemma 2.B.1. Let g : R3 → R have bounded derivatives up to second order, and (p, q)
be a standard Strichartz pair. Then it holds

∥Pkg(ϕ)∥p,q ≲p,q 2−( 1
p

+ 3
q

)k∥ϕ∥2
S(1 + ∥ϕ∥S)

Here S is the critical norm of Section 2.2.2.

Proof. First assume that 1 − 1
p − 3

q ≤ 0. Differentiating at frequency 2k and using the
chain rule, we have

∥Pkg(ϕ)∥p,q ≲ 2−k∥Pk(∇ϕg′(ϕ))∥p,q

≲ 2−k∥Pk(∇ϕ<k−10g
′(ϕ))∥p,q + 2−k∥Pk(∇ϕ>k−10g

′(ϕ))∥p,q (2.B.1)

where

2−k∥Pk(∇ϕ>k−10g
′(ϕ))∥p,q ≲ 2−k∥∇ϕ>k−10∥p,q∥g′∥∞ ≲ 2−k2(1− 1

p
+ 3

q
)k∥ϕ∥S

is as required. For the low frequency term, we differentiate a second time to find

2−k∥Pk(∇ϕ<k−10g
′(ϕ))∥p,q ≲ 2−k∥Pk(∇ϕ<k−10∇−1 · ∇P∼kg

′(ϕ))∥p,q

≲
∑

j<k−10
2−k∥Pk(∇ϕj∇−1 · P∼k(∇ϕ<jg

′′(ϕ)))∥p,q

+ 2−k∥Pk(∇ϕj∇−1 · P∼k(∇ϕ≥jg
′′(ϕ)))∥p,q

≲
∑

j<k−10
2−k∥∇ϕj∥p,q · 2−k∥∇ϕ<j∥∞,∞
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+ 2−k∥∇ϕj∥∞,∞ · 2−k∥∇ϕ≥j∥p,q

≲ 2−2k
∑

j<k−10
2(2− 1

p
− 3

q
)j∥ϕ∥2

S

which is as required since p, q ≥ 2 implies 2 − 1
p − 3

q ≥ 0.

If 1 − 1
p − 3

q > 0, we can start from (2.B.1) and see that the low frequency term can now
be estimated directly. For the high frequency part we split ∇ϕ>k−10 into intermediate
and high frequencies then find 1 ≤ r ≤ q such that 1

r = 1
q + 1

2 and apply Bernstein’s
inequality:

2−k∥Pk(∇ϕ>k−10g
′(ϕ))∥p,q ≲ 2−k∥Pk(∇ϕ[k−10,k+10]g

′(ϕ))∥p,q

+ 2−k23k/2 ∑
r>k+10

∥Pk(∇ϕrg
′(ϕ))∥p,r

The first term can then be bounded upon placing ∇ϕ[k−10,k+10] directly into Lp
tL

q
x, while

for the second term we use that g(ϕ) is now also restricted to frequency ∼ 2r and use
the bound from the case 1 − 1

p − 3
q ≤ 0:

2−k23k/2 ∑
r>k+10

∥Pk(∇ϕrP∼rg
′(ϕ))∥p,r ≲ 2k/2 ∑

r>k+10
∥∇ϕr∥p,q∥P∼rg(ϕ)∥∞,2

≲ 2k/2 ∑
r>k+10

2(1− 1
p

− 3
q

)r∥ϕ∥S · 2−3r/2∥ϕ∥S(1 + ∥ϕ∥S)

which is as required once summed over r.

We next turn to Lemma 2.10.6, focusing only on the first and second points, (2.10.10)
and (2.10.11), the remaining estimate being similar. The proofs are similar in flavour to
that above, however it is often more suitable to differentiate in time rather than space.

Proof of (2.10.10). We study the different regimens of (j, k) separately. In this proof all
implicit constants may depend polynomially on ∥ϕ̃∥

Xs,θ
1

.

• k ≪ j: We have to show that

∥PkQjg(ϕ̃)∥2,2 ≲∥ϕ̃∥
X

s,θ
1

2−(s+θ)j

Note that since j ≫ k we have PkQj = PkQjP
(t)
∼j and j > 0 so

∥PkQjg(ϕ̃)∥2,2 ≲ 2−j∥PkQj [Q≳j∂tϕ̃ · g′(ϕ̃)]∥2,2︸ ︷︷ ︸
(A)

+ 2−j∥PkQj [Q≪j∂tϕ̃ · g′(ϕ̃)]∥2,2︸ ︷︷ ︸
(B)
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Here

(A) ≲ 2−j∥Q≳j∂tϕ̃∥2,2 ≲ 2−j2−(s+θ−1)j∥∂tϕ̃∥X0,s−1+θ ≲ 2−(s+θ)j∥ϕ̃∥Xs,θ

For (B) we differentiate in t a second time and find

(B) ≲ 2−2j∥PkQj [Q≪j∂
2
t ϕ̃ · g′(ϕ̃)]∥2,2︸ ︷︷ ︸

(B1)

+ 2−2j∥PkQj [Q≪j∂tϕ̃ · ∂tϕ̃ · g′′(ϕ̃)]∥2,2︸ ︷︷ ︸
(B2)

We start with

(B1) ≲ 2−2j∥PkQj [Q<k−10∂
2
t ϕ̃ · g′(ϕ̃)]∥2,2︸ ︷︷ ︸

(B1)≪k

+ 2−2j∥PkQj [Q[k−10,j−10]∂
2
t ϕ̃ · g′(ϕ̃)]∥2,2︸ ︷︷ ︸

(B1)≳k

For the lowest modulation case we have

(B1)≪k ≲
∑

l<k−10
(2−2j∥PkQj [P<l−10Ql∂

2
t ϕ̃ · g′(ϕ̃)]∥2,2 (B1a)≪k

+ 2−2j∥PkQj [P≥l−10Ql∂
2
t ϕ̃ · g′(ϕ̃)]∥2,2) (B1b)≪k

Now the real calculations begin. For the first of these terms we use that l is far smaller
than the scales k or j so the factor of g′ must also be localised to P∼kQ∼j . It follows
that

(B1a)≪k ≲ 2−2j
∑

l<k−10
∥PkQj [P<l−10Ql∂

2
t ϕ̃ · ∂−1

t P∼kQ∼j [∂tϕ̃ · g′′(ϕ̃)]]∥2,2

≲ 2−2j
∑

l<k−10
2−j∥P<l−10Ql∂

2
t ϕ̃∥∞,∞∥Q≳l∂tϕ̃∥2,2∥g′′(ϕ̃)∥∞,∞

+ 2−2j
∑

l<k−10
∥PkQj [P<l−10Ql∂

2
t ϕ̃ · ∂−1

t P∼kQ∼j [Q≪l∂tϕ̃ · g′′(ϕ̃)]]∥2,2

The first line above can be bounded by

2−3j
∑

l<k−10
2[2−(s′+θ′)]l∥ϕ̃∥Xs,θ 2−(s−1+θ)l∥Q≳l∂tϕ̃∥X0,s−1+θ ≲ 2[3−(s+θ)−(s′+θ′)](k−j)2−(s+θ)j

as required. For the second line we further split Q≪l∂tϕ̃ into low and high frequencies
to find

2−2j
∑

l<k−10
∥PkQj [P<l−10Ql∂

2
t ϕ̃ · ∂−1

t P∼kQ∼j [Q≪l∂tϕ̃ · g′′(ϕ̃)]]∥2,2

≲ 2−3j
∑

l<k−10
∥P<l−10Ql∂

2
t ϕ̃∥2,2∥P≲lQ≪l∂tϕ̃∥∞,∞ + 2−3j

∑
l<k−10

∥P<l−10Ql∂
2
t ϕ̃∥2,∞∥P≫lQ≪l∂tϕ̃∥∞,2

≲ 2−3j
∑

l<k−10

(
2[2−(s+θ)l]2(1−s′)l + 23l/22[2−(s+θ)]l2(1−s)l

)
≲ 2[3−(s+θ)](k−j)2−(s+θ)j
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This completes the study of (B1a)≪k. We now turn to (B1b)≪k. Write

(B1b)≪k ≤ 2−2j
∑

l<k−10
∥PkQj [P>k+10Ql∂

2
t ϕ̃ · g′(ϕ̃)]∥2,2 (2.B.2)

+ 2−2j
∑

l<k−10
∥PkQj [P[l−10,k+10]Ql∂

2
t ϕ̃ · g′(ϕ̃)]∥2,2 (2.B.3)

The easier of these terms is (2.B.2), which we write as follows:

(2.B.2) ≲ 2−2j
∑
l≪k

∑
r≫k

∥PkQj [PrQl∂
2
t ϕ̃ · P∼rg

′(ϕ̃)]∥2,2

≲ 2−2j
∑
l≪k
r≫k

∥PkQj [PrQl∂
2
t ϕ̃ · ∇−1P∼r[∇ϕ̃≪r · g′′(ϕ̃)]]∥2,2 (2.B.4)

+ 2−2j
∑
l≪k
r≫k

∥PkQj [PrQl∂
2
t ϕ̃ · ∇−1P∼r[∇ϕ̃≳r · g′′(ϕ̃)]]∥2,2 (2.B.5)

To study (2.B.4), we differentiate in t a further time and obtain

(2.B.4) ≲ 2−3j
∑
l≪k
r≫k

∥PkQj [PrQl∂
3
t ϕ̃ · ∇−1P∼r[∇ϕ̃≪r · P∼rg

′′(ϕ̃)]]∥2,2 (2.B.6)

+ 2−3j
∑
l≪k
r≫k

∥PkQj [PrQl∂
2
t ϕ̃ · ∇−1P∼r[∇∂tϕ̃≪r · P∼rg

′′(ϕ̃)]]∥2,2 (2.B.7)

+ 2−3j
∑
l≪k
r≫k

∥PkQj [PrQl∂
2
t ϕ̃ · ∇−1P∼r[∇ϕ̃≪r · ∂tP∼rg

′′(ϕ̃)]]∥2,2 (2.B.8)

For (2.B.6) we use Bernstein at frequency 2k to see

(2.B.6) ≲ 2−3j
∑
l≪k
r≫k

23k/2∥PrQl∂
3
t ϕ̃∥∞,2 · 2−r∥∇ϕ̃≪r∥ 2M

M−1 ,2M ∥P∼rg
′′(ϕ̃)∥2M, 2M

M−1

≲ 2−3j
∑
l≪k
r≫k

23k/22−θ′l2(3−s)r2−r2( 1
2 − 1

M
−s′)r2−( 3

2 − 1
M

+s′)r

≲ 2(1−3s′)(k−j)2−(2+3s′)j

which is acceptable. The second term (2.B.7) can be treated in the same way. For
(2.B.8) we use Lemma 2.10.5 to bound

(2.B.8) ≲ 2−3j
∑
l≪k
r≫k

∥PkQj [PrQl∂
2
t ϕ̃ · ∇−1P∼r[∇ϕ̃≪r · ∂tP∼rg

′′(ϕ̃)]]∥2,2

≲ 2−3j
∑
l≪k
r≫k

23k/2∥PrQl∂
2
t ϕ̃∥∞,2 · 2−r∥∇ϕ̃≪r∥ 2M

M−1 ,2M ∥∂tP∼rg
′′(ϕ̃)∥2M, 2M

M−1

≲ 2−3j
∑
l≪k
r≫k

23k/22−θ′l2(2−s)r2−r2( 1
2 − 1

M
−s′)r2−( 1

2 − 1
M

+s′)r
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≲ 2−3j2(1−3s′)k

which is as required. We now turn to (2.B.5). If we restrict the sum to r ≳ j the term
is easily handled:

2−2j
∑
l≪k
r≳j

∥PkQj [PrQl∂
2
t ϕ̃ · ∇−1P∼r[∇ϕ̃≳r · g′′(ϕ̃)]]∥2,2

≲ 2−2j
∑
l≪k
r≳j

∥PrQl∂
2
t ϕ̃∥2M, 2M

M−1
2−r∥P∼r(∇ϕ̃≳r · g′′(ϕ̃))∥ 2M

M−1 ,2M

≲ 2−2j
∑
l≪k
r≳j

2( 1
2 − 1

2M
−θ)l23r/2M 2(2−s)r · 2−r2( 1

2 − 1
M

−s′)r

≲ 2−(2+2s′− 1
2M

)j

Here we used the bound

∥P∼r(∇ϕ̃≳r · g′′(ϕ̃))∥ 2M
M−1 ,2M ≲ ∥∇ϕ̃∼r∥ 2M

M−1 ,2M +
∑

m≫r

23r/2∥∇ϕ̃m∥ 2M
M−1 ,2M ∥P∼mg

′′(ϕ̃)∥∞,2

to go from the second to the third line. Such decompositions will be used frequently
without comment in the sequel. Choosing M such that s′ − 1

2M ≥ θ′, we see that the
sum over r ≳ j is acceptable.

For the sum over r ∈ [k + 10, j − 10] we differentiate again and have

2−2j
∑
l≪k

r∈[k+10,j−10]

∥PkQj [PrQl∂
2
t ϕ̃ · ∇−1P∼r[∇ϕ̃≳r · g′′(ϕ̃)]]∥2,2

≲ 2−3j
∑
l≪k

r∈[k+10,j−10]

∥PkQj [PrQl∂
3
t ϕ̃ · ∇−1P∼r[∇ϕ̃≳r · g′′(ϕ̃)]]∥2,2 (I)

+ 2−3j
∑
l≪k

r∈[k+10,j−10]

∥PkQj [PrQl∂
2
t ϕ̃ · ∇−1P∼r[∇∂tϕ̃≳r · g′′(ϕ̃)]]∥2,2 (II)

+ 2−3j
∑
l≪k

r∈[k+10,j−10]

∥PkQj [PrQl∂
2
t ϕ̃ · ∇−1P∼r[∇ϕ̃≳r · ∂tg

′′(ϕ̃)]]∥2,2 (III)

where

(I) ≲ 2−3j
∑
l≪k

r∈[k+10,j−10]

∥PrQl∂
3
t ϕ̃∥2M, 2M

M−1
· 2−r∥P∼r(∇ϕ̃≳r · g′′(ϕ̃))∥ 2M

M−1 ,2M ≲ 2−(2+2s′− 1
2M

)j

(summing over l ≥ 0, r ≪ j) which is again acceptable for s′ − 1
2M ≥ θ′. The bound for

(II) is similar. For (III) the bound is straightforward upon placing P∼r[∇ϕ̃∼r ·∂tg
′′(ϕ̃)]

into L2+
t L2

x and separately considering the cases where the frequency of ∂tg
′′(ϕ̃) is

comparable to or much smaller than that of ∇ϕ̃.
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This completes the work on (2.B.2) so we now turn to (2.B.3):

(2.B.3) ≲ 2−2j
∑

l<k−10
∥PkQj [P[l−10,k−10]Ql∂

2
t ϕ̃ · g′(ϕ̃)]∥2,2 (2.B.9)

+ 2−2j
∑

l<k−10
∥PkQj [P[k−10,k+10]Ql∂

2
t ϕ̃ · g′(ϕ̃)]∥2,2 (2.B.10)

For the first line we use that g′(ϕ̃) must be restricted to frequency ∼ 2k and modulation
∼ 2j , which allows us to swap a 2j for a 2k by Moser’s inequality (2.10.8):

(2.B.9) ≲ 2−2j
∑
l≪k

∥PkQj [P[l−10,k−10]Ql∂
2
t ϕ̃ · P∼kQ∼jg

′(ϕ̃)]∥2,2

≲ 2−2j
∑
l≪k

∥P[l−10,k−10]Ql∂
2
t ϕ̃∥2M, 2M

M−1
· 2−j∥∂tP∼kg

′(ϕ̃)∥ 2M
M−1 ,2M

≲ 2−3j
∑
l≪k

k−10∑
λ=l−10

2( 1
2 − 1

2M
−θ)l23λ/2M 2(2−s)λ2( 1

2 − 1
M

−s′)k

≲ 2(1+ 1
2M

−2s′)(k−j)2−(2+2s′− 1
2M

)j

which is acceptable for s′ − 1
2M ≥ θ′.

To complete the work on (B1b)≪k it remains to study (2.B.10). We use that k ≪ j

to see that g′(ϕ̃) must be at modulation ∼ 2j and so

(2.B.10) ≲ 2−2j
∑
l≪k

∥PkQj [P∼kQl∂
2
t ϕ̃ · ∂−1

t P≲kQ∼j∂tg
′(ϕ̃)]∥2,2

≲ 2−2j
∑
l≪k
λ≲k

∥P∼kQl∂
2
t ϕ̃∥2M, 2M

M−1
2−j∥Pλ∂tg

′(ϕ̃)∥ 2M
M−1 ,2M

≲ 2−3j
∑
l≪k
λ≲k

2( 1
2 − 1

2M
−θ)l23k/2M 2(2−s)k2( 1

2 − 1
M

−s′)λ

≲ 2(1−2s′+ 1
2M

)(k−j)2−(2+2s′− 1
2M

)j

which is acceptable for s′ − 1
2M > θ′. This completes the study of (B1b)≪k, and so of

(B1)≪k.

To finish the work on (B1), we therefore now have to study

(B1)≳k ≲ 2−2j
j−10∑

l=k−10
∥PkQj [P<k−10Ql∂

2
t ϕ̃ · g′(ϕ̃)]∥2,2 (B1a)≳k

+ 2−2j
j−10∑

l=k−10
∥PkQj [P≥k−10Ql∂

2
t ϕ̃ · g′(ϕ̃)]∥2,2 (B1b)≳k

For (B1a)≳k we note that g′(ϕ̃) must be at frequency ∼ 2k and modulation ∼ 2j and
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decompose

(B1a)≳k ≲ 2−2j
j−10∑

l=k−10
∥PkQj [P<k−10Ql∂

2
t ϕ̃ · ∂−1

t P∼kQ∼j∂tP≲kg
′(ϕ̃)]∥2,2

≲ 2−2j
∑
l≳k

∥P≪kQl∂
2
t ϕ̃∥2,2 · 2−j∥P∼k∂tg

′(ϕ̃)∥∞,∞

≲ 2(1−s′−θ′)(k−j)2−(2+s′+θ′)j

Then for (B1b)≳k we note that if l ≫ k we can write

2−2j
j−10∑

l=k+10
∥PkQj [P≥k−10Ql∂

2
t ϕ̃ · g′(ϕ̃)]∥2,2 ≲ 2−2j

j−10∑
l=k+10

∥PkQj [P>k+10Ql∂
2
t ϕ̃ · g′(ϕ̃)]∥2,2

(2.B.11)

+ 2−2j
j−10∑

l=k+10
∥PkQj [P∼kQl∂

2
t ϕ̃ · g′(ϕ̃)]∥2,2

(2.B.12)

where (2.B.11) can be treated in exactly the same way as (2.B.2), and for (2.B.12) we
observe that g′(ϕ̃) is restricted to P≲kQ∼jg

′(ϕ̃) = P
(t)
∼jP≲kQ∼jg

′(ϕ̃) and so

(2.B.12) ≲ 2−2j
j−10∑

l=k+10
∥PkQj [P∼kQl∂

2
t ϕ̃ · ∂−1

t P≲kQ∼j∂tg(ϕ̃)]∥2,2

≲ 2−3j
∑
l≫k

∥P∼kQl∂
2
t ϕ̃∥2,2∥P≲k∂tg(ϕ̃)∥∞,∞

≲∥ϕ̃∥
X

s,θ
1

2(1−s′−θ′)(k−j)2−(2+s′+θ′)j

For the remaining part of (B1b)≳k with l ∼ k we have

2−2j∥PkQj [P≳kQ∼k∂
2
t ϕ̃ · g′(ϕ̃)]∥2,2 ≲ 2−2j∥PkQj [P∼kQ∼k∂

2
t ϕ̃ · P≲kQ∼jg

′(ϕ̃)]∥2,2

(2.B.13)
+ 2−2j

∑
r≫k

∥PkQj [PrQ∼k∂
2
t ϕ̃ · P∼rg

′(ϕ̃)]∥2,2

(2.B.14)

where

(2.B.13) ≲ 2−2j∥PkQj [P∼kQ∼k∂
2
t ϕ̃ · ∂−1

t P≲kQ∼j∂tg
′(ϕ̃)]∥2,2

≲ 2−2j∥P∼kQ∼k∂
2
t ϕ̃∥2,2 · 2−j∥P≲k∂tg

′(ϕ̃)∥∞,∞

≲ 2(3−s−θ−s′)(k−j)2−(s+θ)j2−s′j
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as required. For (2.B.14) we have

(2.B.14) ≲ 2−2j
∑

r≥j−10
∥PkQj [PrQ∼k∂

2
t ϕ̃ · P∼rg

′(ϕ̃)]∥2,2

+ 2−2j
j−10∑

r=k+10
∥PkQj [PrQ∼k∂

2
t ϕ̃ · ∂−1

t P∼rQ∼j∂tg
′(ϕ̃)]∥2,2

≲ 2−2j
∑
r≳j

23k/2∥PrQ∼k∂
2
t ϕ̃∥2,2∥P∼rg

′(ϕ̃)∥∞,2

+ 2−2j
∑
r≫k

23k/2∥PrQ∼k∂
2
t ϕ̃∥2,2 · 2−j∥∂tP∼rg

′(ϕ̃)∥∞,2

≲∥ϕ̃∥
X

s,θ
1

2−2j23k/2∑
r≳j

2−θk2(2−s)r2−sr + 2−3j23k/2 ∑
r≫k

2−θk2(2−s)r2(1−s)r

≲∥ϕ̃∥
X

s,θ
1

2(s−θ)(k−j)2−(s+θ)j + 2(3−s−θ)(k−j)2−(s+θ)j

which is acceptable. This completes the work on (B1).

(B2) can be treated similarly and this complete the study of j ≫ k.

• j ≃ k: This time we have to show

∥PkQjg(ϕ̃)∥2,2 ≲ 2−(s+θ)k

We have

∥PkQ∼kg(ϕ̃)∥2,2 ≲ 2−k∥PkQ∼k(∇ϕ̃≳k · g′(ϕ̃))∥2,2 + 2−k∥PkQ∼k(∇ϕ̃≪k · P∼kg
′(ϕ̃))∥2,2

≲ 2−k∥Q≳k∇ϕ̃≳k∥2,2 + 2−k∥PkQ∼k(Q≪k∇ϕ̃≳k · g′(ϕ̃))∥2,2

+ 2−k∥∇ϕ̃≪k∥ 2M
M−1 ,2M ∥P∼kg

′(ϕ̃)∥2M, 2M
M−1

≲ 2−k2(1−s−θ)k + 2−k∥PkQ∼k(Q≪k∇ϕ̃≳k · g′(ϕ̃))∥2,2

+ 2−k2( 1
2 − 1

M
−s′)k2−( 3

2 − 1
M

+s′)k

The first and third terms here are as required, so it remains to study

2−k∥PkQ∼k(Q≪k∇ϕ̃≳k · g′(ϕ̃))∥2,2 ≲ 2−k∥PkQ∼k(Q≪k∇ϕ̃∼k · P≲kg
′(ϕ̃))∥2,2 (2.B.15)

+
∑
r≫k

2−k∥PkQ∼k(Q≪k∇ϕ̃r · P∼rg
′(ϕ̃))∥2,2

(2.B.16)

where

(2.B.16) ≲ 2−k
∑
r≫k

∥∇ϕ̃r∥ 2M
M−1 ,2M ∥P∼rg

′(ϕ̃)∥2M, 2M
M−1
≲ 2−k2( 1

2 − 1
M

−s′)k2−( 3
2 − 1

M
+s′)k
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is fine, and

(2.B.15) ≲ 2−k∥PkQ∼k[Q≪k∇ϕ̃∼k · P≪kQ∼kg
′(ϕ̃)]∥2,2

+ 2−k∥PkQ∼k[Q≪k∇ϕ̃∼k · P∼kg
′(ϕ̃)]∥2,2

≲ 2−k∥Q≪k∇ϕ̃∼k · ∂−1
t P≪kQ∼k(∂tϕ̃ g

′′(ϕ̃))∥2,2

+ 2−k∥Q≪k∇ϕ̃∼k · ∇−1P∼kQ∼k(∇ϕ̃ g′′(ϕ̃))∥2,2

≲ 2−2k(∥∇ϕ̃∼k∥2M, 2M
M−1

∥∂tϕ̃≲k∥ 2M
M−1 ,2M + ∥∇ϕ̃∼k∥ 2M

M−1 ,2M ∥∂tϕ̃≫k∥2M, 2M
M−1

)

+ 2−2k(∥∇ϕ̃∼k∥2M, 2M
M−1

∥∇ϕ̃≲k∥ 2M
M−1 ,2M + ∥∇ϕ̃∼k∥ 2M

M−1 ,2M ∥∇ϕ̃≫k∥2M, 2M
M−1

)

≲ 2−(2+2s′)k

• j ≪ k: This time our goal is

∥PkQjg(ϕ̃)∥2,2 ≲ 2−sk−θj

We have

∥PkQjg(ϕ̃)∥2,2 ≲ 2−k∥PkQj(∇ϕ̃≪k · P∼kg
′(ϕ̃))∥2,2 (2.B.17)

+ 2−k∥PkQj(∇ϕ̃∼k · g′(ϕ̃))∥2,2 (2.B.18)
+ 2−k

∑
r≫k

∥PkQj(∇ϕ̃r · P∼rg
′(ϕ̃))∥2,2 (2.B.19)

Here (2.B.17) and (2.B.19) can be handled as in the case j ≃ k. For (2.B.18) we
separate

(2.B.18) ≲ 2−k∥PkQj(Q≪j∇ϕ̃∼k · g′(ϕ̃))∥2,2 + 2−k∥PkQj(Q≳j∇ϕ̃∼k · g′(ϕ̃))∥2,2

The second line here is straightforward to handle by placing ∇ϕ̃ into L2
tL

2
x, so we

consider only the first term. Referring to the result for j ≫ k to handle g′ we find

2−k∥PkQj(Q≪j∇ϕ̃∼k · g′(ϕ̃))∥2,2 ≲ 2−k∥PkQj(Q≪j∇ϕ̃∼k ·Q≳jP≪jg
′(ϕ̃))∥2,2

+ 2−k∥PkQj(Q≪j∇ϕ̃∼k · P≳jg
′(ϕ̃))∥2,2

≲ 2−k∥Q≪j∇ϕ̃∼k∥∞,2
∑
l≳j
r≪j

∥QlPrg
′(ϕ̃))∥2,∞

+ 2−k∥Q≪j∇ϕ̃∼k∥2M,2
∑
r≳j

2−r∥Pr(∇ϕ̃ g′′(ϕ̃))∥ 2M
M−1 ,∞

≲ 2−sk−θj

for s′ − 1
2M ≥ θ′. This completes the proof of the Moser estimate.
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We are now in a position to prove the projection estimate.

Proof of (2.10.11). As before, we consider the different regimens of (j, k) separately.

• k ≪ j: Here

∥PkQjΠ̃ϕ̃⊥((−∆)1/2ϕ)∥Xs,θ ≲ 2k∥ϕk∥Xs,θ + 2(s+θ)j∥PkQj((−∆)1/2ϕ · g(ϕ̃) g(ϕ̃))∥2,2

Then setting G(ϕ̃) := g(ϕ̃) · g(ϕ̃) we have

2(s+θ)j∥PkQj((−∆)1/2ϕ ·G(ϕ̃))∥2,2

≲ 2(s+θ)j ∑
r≫k

∥PkQj(Pr(−∆)1/2ϕ · P∼r(G(ϕ̃))∥2,2 (A)

+ 2(s+θ)j∥PkQj(Q≳jP≲k(−∆)1/2ϕ ·G(ϕ̃))∥2,2 (B)
+ 2(s+θ)j∥PkQj(Q≪jP≲k(−∆)1/2ϕ ·G(ϕ̃))∥2,2 (C)

The easiest of these terms is (B):

(B) ≲ 2(s+θ)j ∑
l≳j

∑
r≲k

∥QlPr(−∆)1/2ϕ∥2,2 ≲ 2k
∑
r≲k

2r−k∥ϕr∥Xs,θ

For (C) we use the Moser estimate just proved to see that

(C) ≲ 2(s+θ)j∥PkQj(Q≪jP≲k(−∆)1/2ϕ · P∼kQ∼jG(ϕ̃))∥2,2

≲ 2(s+θ)j∥Q≪jP≲k(−∆)1/2ϕ∥∞,∞∥P∼kQ∼jG(ϕ̃)∥2,2

≲ 2(1−s′)k ∑
r≲k

2(1−s′)(r−k)∥ϕr∥Xs,θ

Lastly, we turn to (A):

(A) ≲ 2(s+θ)j ∑
r≳j

∥PkQj(Pr(−∆)1/2ϕ · P∼rG(ϕ̃))∥2,2 (A.1)

+ 2(s+θ)j
j−10∑

r=k+10
∥PkQj(Pr(−∆)1/2ϕ · P∼rG(ϕ̃))∥2,2 (A.2)

For (A.1) we have

(A.1) ≲ 2(s+θ)j ∑
r≳j

∥Pr(−∆)1/2ϕ∥ 2M
M−1 ,2M ∥P∼rG(ϕ̃)∥2M, 2M

M−1

≲ 2(s+θ)j ∑
r≳j

2( 1
2 − 1

M
−s′)r2−( 3

2 − 1
M

+s′)r∥ϕr∥Xs,θ

≲ 2j
∑
r≳j

2(1−θ−s)(r−j)∥ϕr∥Xs,θ
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which is acceptable. For (A.2) we separate the (−∆)1/2ϕ into low and high modulations.
The high modulation part is easy:

2(s+θ)j
j−10∑

r=k+10
∥PkQj(Q≳jPr(−∆)1/2ϕ · P∼rG(ϕ̃))∥2,2

≲ 2(s+θ)j
j−10∑

r=k+10
23k/2∥Q≳jPr(−∆)1/2ϕ∥2,2∥P∼rG(ϕ̃)∥∞,2

≲ 2(1−s′)k ∑
r≫k

2(1−s)(r−k)∥ϕr∥Xs,θ

For the low modulation part we observe that the factor G(ϕ̃) must have modulation
∼ 2j , so we have

2(s+θ)j
j−10∑

r=k+10
∥PkQj(Q≪jPr(−∆)1/2ϕ · P∼rG(ϕ̃))∥2,2

≲ 2(s+θ)j
j−10∑

r=k+10
23k/2∥Q≪jPr(−∆)1/2ϕ∥∞,2∥P∼rQ∼jG(ϕ̃)∥2,2

≲ 2(1−s′)k ∑
r≫k

2(1−s)(r−k)∥ϕr∥Xs,θ

• k ≳ j: In this case we have

2sk+θj∥PkQj [(−∆)1/2ϕ ·G(ϕ̃)]∥2,2

≲ 2sk+θj∥PkQj [Q≳jP≳k(−∆)1/2ϕ ·G(ϕ̃)]∥2,2

+ 2sk+θj∥PkQj [Q≪jP≳k(−∆)1/2ϕ ·G(ϕ̃)]∥2,2

+ 2sk+θj∥PkQj [P≪k(−∆)1/2ϕ ·G(ϕ̃)]∥2,2

≲ 2sk+θj
∑
l≳j

∑
r≳k

2−θl2(1−s)r∥ϕr∥Xs,θ

+ 2sk+θj∥P≪k(−∆)1/2ϕ∥ 2M
M−1 ,2M ∥P≳kG(ϕ̃)∥2M, 2M

M−1

+ 2sk+θj∥PkQj [Q≪jP≳k(−∆)1/2ϕ ·G(ϕ̃)]∥2,2

≲ 2k
∑
r≳k

2(1−s)(r−k)∥ϕr∥Xs,θ + 2sk+θj2−( 3
2 − 1

M
+s′)k ∑

r≪k

2( 1
2 − 1

M
−s′)r∥ϕr∥Xs,θ

+ 2sk+θj∥PkQj [Q≪jP≳k(−∆)1/2ϕ ·G(ϕ̃)]∥2,2

The first two terms above are acceptable so it remains to study the third. We first
consider the case where (−∆)1/2ϕ is at frequency ≫ 2k. Here we have

2sk+θj∥PkQj [Q≪jP≫k(−∆)1/2ϕ ·G(ϕ̃)]∥2,2

≲ 2sk+θj
∑
r≫k

∥PkQj [Q≪jPr(−∆)1/2ϕ · P∼rG(ϕ̃)]∥2,2
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≲ 2sk+θj
∑
r≫k

∥Q≪jPr(−∆)1/2ϕ∥ 2M
M−1 ,2M ∥P∼rG(ϕ̃)∥2M, 2M

M−1

which is acceptable.

For the intermediate frequency case we have

2sk+θj∥PkQj [Q≪jP∼k(−∆)1/2ϕ ·G(ϕ̃)]∥2,2

≲ 2sk+θj∥PkQj [Q≪jP∼k(−∆)1/2ϕ · P∼kG(ϕ̃)]∥2,2

+ 2sk+θj∥PkQj [Q≪jP∼k(−∆)1/2ϕ · P≪kG(ϕ̃)]∥2,2

≲ 2sk+θj∥Q≪jP∼k(−∆)1/2ϕ∥ 2M
M−1 ,2M ∥P∼kG(ϕ̃)∥2M, 2M

M−1

+ 2sk+θj∥PkQj [Q≪jP∼k(−∆)1/2ϕ · P≪kG(ϕ̃)]∥2,2

The first term here is acceptable, however for the second we need to study j ≃ k and
j ≫ k separately. If j ≃ k we note that G(ϕ̃) must have modulation at least ∼ 2k and
so

2sk+θj∥PkQj [Q≪jP∼k(−∆)1/2ϕ · P≪kG(ϕ̃)]∥2,2

≲ 2(s+θ)k∥Q≪kP∼k(−∆)1/2ϕ∥∞,∞∥Q≳kP≪kG(ϕ̃)∥2,2

which is acceptable.

In the case k ≫ j we note that if G(ϕ̃) in fact has frequency ≳ 2j we are fine:

2sk+θj∥PkQj [Q≪jP∼k(−∆)1/2ϕ · P[j−10,k−10]G(ϕ̃)]∥2,2

≲ 2sk+θj∥Q≪jP∼k(−∆)1/2ϕ∥2M, 2M
M−1

∥P[j−10,k−10]G(ϕ̃)∥ 2M
M−1 ,2M

≲ 2k∥ϕk∥Xs,θ

while if it has extremely low frequency (≪ 2j), then it must have modulation at least
comparable to 2j :

2sk+θj∥PkQj [Q≪jP∼k(−∆)1/2ϕ ·Q≳jP≪jG(ϕ̃)]∥2,2

≲ 2sk+θj∥Q≪jP∼k(−∆)1/2ϕ∥∞,2∥Q≳jP≪jG(ϕ̃)∥2,∞

≲ 2k∥ϕk∥Xs,θ

This completes the proof of the nonlinear projection estimate.

2.C Proof of Lemma 2.10.10.

In this appendix we will constantly use the Strichartz estimate Lemma 2.10.3 and the
modulation-Bernstein estimate (MB). We start with the first statement in Lemma
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2.10.10. As usual, M = ∞− is taken to be a very large constant.

Proof of (2.10.14). First suppose |k2 − k3| ≤ 10, so φk2 · Fk3 = P≲k2(φk2 · Fk3). We first
consider the case when the whole term is at low modulation Q≲k2 and consider the
different possibilities for the modulation of Fk3 .

• P≲k2Q≲k2(φk2 ·Q≲k2Fk3): Using (MB) we have

∥P≲k2Q≲k2(φk2 ·Q≲k2Fk3)∥Xs−1,θ−1

≲
∑
l≲k2

2(s−1)k22(θ−1)l2( 1
2 − 1

M
)l∥P≲k2Ql(φk2 ·Q≲k2Fk3)∥ M

M−1 ,2

≲
∑
l≲k2

2(s−1)k22(θ−1)l2( 1
2 − 1

M
)l∥φk2∥ 2M

M−2 ,∞∥Q≲k2Fk3∥2,2

≲ 2−(θ′+s′− 1
M

)k2
∑
l≲k2

2(θ′− 1
M

)l∥φ∥Xs,θ ∥F∥Xs−1,θ−1

≲ 2−s′k2∥φ∥Xs,θ ∥F∥Xs−1,θ−1

which is acceptable provided we choose 1
M < θ′.

• P≲k2Q≲k2(φk2 ·Q≫k2Fk3): Here, since k2 ≃ k3, we note that for the output mod-
ulation to be at most ∼ 2k2 , the modulation of the two inner factors must be
comparable. We therefore have

∥P≲k2Q≲k2(φk2 ·Q≫k2Fk3)∥Xs−1,θ−1

≲
∑
l≲k2

∑
r≫k2

2(s−1)k22(θ−1)l2( 1
2 − 1

M
)l∥P≲k2Ql(Q∼rφk2 ·QrFk3)∥ M

M−1 ,2

≲
∑
l≲k2

∑
r≫k2

2(s−1)k22(θ′− 1
M

)l∥Q∼rφk2∥ 2M
M−2 ,∞∥QrFk3∥2,2

≲
∑
l≲k2

∑
r≫k2

2(s−1)k22(θ′− 1
M

)l · 2( 1
M

−θ)r2( 3
2 −s)k2∥φk2∥Xs,θ · 2(1−θ)r2(1−s)k3∥Fk3∥Xs−1,θ−1

≲ 2−(s′+θ′)k2∥φk2∥Xs,θ ∥Fk3∥Xs−1,θ−1

provided again 1
M < θ′.

We next study the case in which the whole term is at high modulation.

• ∑
l≫k2 P≲k2Ql(Q≳lφk2 · Fk3): In this case the modulation of Fk3 can be at most

comparable to that of φk2 , i.e.∑
l≫k2

∥P≲k2Ql(Q≳lφk2 · Fk3)∥Xs−1,θ−1 ≲
∑

l≫k2

∑
r≳l

∥P≲k2Ql(Qrφk2 ·Q≲rFk3)∥Xs−1,θ−1
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Using (MB) to place φk2 into L2
tL

2
x and Fk3 into L2

tL
∞
x then applying Lemma

2.10.3 we bound this by∑
l≫k2

∑
r≳l

2(s−1)l2(θ−1)l2l/2∥Qrφk2∥2,2∥Q≲rFk3∥2,∞

≲
∑

l≫k2

∑
r≳l

2(s−1)l2(θ−1)l2l/22−θr2−sr∥φk2∥Xs,θ 2(1−θ)r2(1−s)k323k3/2∥Fk3∥Xs−1,θ−1

≲ 2−(s′+θ′)k2∥φk2∥Xs,θ ∥Fk3∥Xs−1,θ−1

• ∑
l≫k2 P≲k2Ql(Q<l−10φk2 · Fk3): This time we use the L2 structure of Xs−1,θ−1 to

square-sum over l, and use that Fk3 must be at modulation comparable to l to find

∥
∑

l≫k2

P≲k2Ql(Q<l−10φk2 · Fk3)∥Xs−1,θ−1

≲ (
∑

l≫k2

∥P≲k2Ql(Q<l−10φk2 ·Q∼lFk3)∥2
Xs−1,θ−1)

1
2

≲ (
∑

l≫k2

(2(s+θ−2)l∥Q<l−10φk2∥∞,∞∥Q∼lFk3∥2,2)2)
1
2

≲ (
∑

l≫k2

(2(s+θ−2)l2−s′k2∥φk2∥Xs,θ 2(1−θ)l2(1−s)l∥Q∼lFk3∥Xs−1,θ−1)2)
1
2

which is acceptable.

We now come to the case k2 ≥ k3 + 10, φk2 · Fk3 = P∼k2(φk2 · Fk3). Again we split into
different cases depending on the whether the term and its factors are at high or low
modulation.

• P∼k2Q≲k2(φk2 ·Q≲k3Fk3): This time we use (MB) to see

∥P∼k2Q≲k2(φk2 ·Q≲k3Fk3)∥Xs−1,θ−1

≲
∑
l≲k2

2(s−1)k22(θ−1+ 1
2 − 1

M
)l∥φk2∥ 2M

M−2 ,M ∥Q≲k3Fk3∥2, 2M
M−2

≲ 2(s−1)k2
∑
l≲k2

2(θ′− 1
M

)l · 2−( 1
2 + 2

M
+s′)k2∥φk2∥Xs,θ · 2(1−θ)k32(1−s)k323k3/M ∥Fk3∥Xs−1,θ−1

≲ 2(θ′− 3
M

)k22( 3
M

−s′−θ′)k3∥φk2∥Xs,θ ∥Fk3∥Xs−1,θ−1

which is acceptable provided we choose θ′

3 < 1
M < θ′ and 3

M < s′ + θ′.

• P∼k2Q≲k2(φk2 ·Q≫k3Fk3): This time we have

∥P∼k2Q≲k2(φk2 ·Q≫k3Fk3)∥Xs−1,θ−1
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≲
∑
l≲k2

∑
j≫k3

2(s−1)k22(θ′− 1
M

)l∥φk2∥ 2M
M−2 ,M ∥QjFk3∥2, 2M

M−2

≲
∑
l≲k2

∑
j≫k3

2(s−1)k22(θ′− 1
M

)l2−( 1
2 + 2

M
+s′)k2∥φk2∥Xs,θ · 23k3/M 2(1−θ)j2(1−s)j∥Fk3∥Xs−1,θ−1

≲ 2(θ′− 3
M

)k22( 3
M

−s′−θ′)k3∥φk2∥Xs,θ ∥Fk3∥Xs−1,θ−1

with M as in the previous case.

• ∑
j≫k2 P∼k2Qj(φk2 ·Q≪jFk3): Since the outer modulation far exceeds any of the

other scales involved in this expression, we see that φk2 must be restricted to
modulation at least comparable to 2j . We then find∑

j≫k2

∥P∼k2Qj(φk2 ·Q≪jFk3)∥Xs−1,θ−1

≲
∑

j≫k2

2(s+θ−2)j∥Q≳jφk2∥∞,2∥Q≪jFk3∥2,∞

≲ 2−(s′+θ′)k2∥φk2∥Xs,θ ∥Fk3∥Xs−1,θ−1

where we used that k3 < k2.

• ∑
j≫k2 P∼k2Qj(φk2 ·Q∼jFk3): This case can be handled straightforwardly by again

square-summing over j and placing φk2 into L∞
t L

2
x and Fk3 into L2

tL
∞
x .

• ∑
j≫k2 P∼k2Qj(φk2 ·Q≫jFk3): Here we observe that φk2 is restricted to modulation

comparable to that of Fk3 , and find∑
j≫k2

∥P∼k2Qj(φk2 ·Q≫jFk3)∥Xs−1,θ−1

≲
∑

j≫k2

∑
r≫j

2(s+θ−2)j∥Q∼rφk2∥∞,2∥QrFk3∥2,∞

≲
∑

j≫k2

∑
r≫j

2(s+θ−2)j2−θ′r2−sr∥φk2∥Xs,θ 2(1−θ)r2(1−s)r23k3/2∥Fk3∥Xs−1,θ−1

which is acceptable. This concludes the case k2 ≥ k3 + 10.

Lastly, we consider k3 ≥ k2 + 10, so that φk2 ·Fk3 = P∼k3(φk2 ·Fk3). In this case we have
to consider three cases for the outer modulation, depending on both k2 and k3.

• ∑
k2≪l≲k3 P∼k3Ql(φk2 ·Q≫lFk3): Using observations on the modulation restrictions

as before we have∑
k2≪l≲k3

∑
j≫l

∥P∼k3Ql(φk2 ·QjFk3)∥Xs−1,θ−1
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≲
∑

k2≪l≲k3

∑
j≫l

2(s−1)k32(θ−1)l2l/2∥Q≳jφk2∥2,∞∥QjFk3∥2,2

≲
∑

k2≪l≲k3

∑
j≫l

2(s−1)k32(θ−1)l2l/223k2/22−θj2−sj∥φk2∥Xs,θ 2(1−θ)j2(1−s)k3∥QjFk3∥Xs−1,θ−1

≲ 2−(s′+θ′)k2∥φk2∥Xs,θ ∥Fk3∥Xs−1,θ−1

• ∑
k2≪l≲k3 P∼k3Ql(φk2 ·Q≲lFk3): Again square-summing we have

∥
∑

k2≪l≲k3

∑
j≲l

P∼k3Ql(φk2 ·QjFk3)∥Xs−1,θ−1

≲ (
∑

k2≪l≲k3

(
∑
j≲l

2(s−1)k32(θ−1)l∥φk2∥∞,∞∥QjFk3∥2,2)2)
1
2

which is readily seen to be acceptable.

• P∼k3Q≲k2(φk2 ·Q≲k2Fk3): In this case we place φk2 into L
2M

M−2
t L∞

x and Fk3 directly
into L2

tL
2
x to bound

∥P∼k3Q≲k2(φk2 ·Q≫k2Fk3)∥Xs−1,θ−1

≲
∑
l≲k2

2(s−1)k32(θ−1)l2( 1
2 − 1

M
)l2−( 1

2 − 1
M

+s′)k2∥φk2∥Xs,θ 2(1−θ)k22(1−s)k3∥Fk3∥Xs−1,θ−1

≲ 2−s′k2∥φk2∥Xs,θ ∥Fk3∥Xs−1,θ−1

choosing 1
M < θ′.

• P∼k3Q≲k2(φk2 ·Q≫k2Fk3): This time we observe that φk2 must be at modulation
at least of order 2j and bound∑

j≫k2

∥P∼k3Q≲k2(φk2 ·QjFk3)∥Xs−1,θ−1

≲
∑

j≫k2

∑
l≲k2

2(s−1)k32(θ−1)l2l/2∥Q≳jφk2∥2,∞∥QjFk3∥2,2

≲ 2−(θ′+s′)k2∥φk2∥Xs,θ ∥Fk3∥Xs−1,θ−1

• ∑
l≫k3 P∼k3Ql(φk2 ·Q≳lFk3): This time we square-sum over l and place Fk3 directly

into L2
tL

2
x to find

∥
∑

l≫k3

P∼k3Ql(φk2 ·Q≳lFk3)∥Xs−1,θ−1
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≲ (
∑

l≫k3

2(s+θ−2)l(
∑
j≳l

2−s′k2∥φk2∥Xs,θ 2(2−s−θ)j∥QjFk3∥Xs−1,θ−1)2)
1
2

which is acceptable upon applying the Cauchy-Schwarz inequality in j.

• ∑
l≫k3 P∼k3Ql(φk2 · Q≪lFk3): For this final case we note that the entire term

vanishes unless φk2 is at modulation at least ∼ 2l, and find∑
l≫k3

∥P∼k3Ql(φk2 ·Q≪lFk3)∥Xs−1,θ−1

≲
∑

l≫k3

2(s+θ−2)l∥Q≳lφk2∥2,2∥Q≪lFk3∥∞,∞

≲
∑

l≫k3

2(s+θ−2)l2−θl2−sl∥φk2∥Xs,θ 2( 3
2 −θ)l2(1−s′)k3∥Fk3∥Xs−1,θ−1

≲ 2−(s′+θ′)k3∥φk2∥Xs,θ ∥Fk3∥Xs−1,θ−1

This completes the proof of (2.10.14).

We are now ready to prove the second statement of the lemma, which is similar to the
first, however somewhat simpler due to symmetry reductions.

Proof of (2.10.15). Assume without loss of generality k2 ≥ k3. First suppose k2 ≥ k3 +10
so the whole term is at frequency ∼ 2k2 . We split into the following cases:

• ∑
l≲k3 P∼k2Ql(Q≳lφ

(2)
k2

· φ(3)
k3

): Square summing over l we have

∥
∑
l≲k3

P∼k2Ql(Q≳lφ
(2)
k2

· φ(3)
k3

)∥Xs,θ ≲

∑
l≲k3

(2sk22θl∥Q≳lφ
(2)
k2

∥2,2∥φ(3)
k3

∥∞,∞)2

 1
2

≲

∑
l≲k3

(
∑
j≳l

2θ(l−j)∥Qjφ
(2)
k2

∥Xs,θ · 2−s′k3∥φ(3)
k3

∥Xs,θ )2

 1
2

≲ 2−s′k3∥φ(2)
k2

∥Xs,θ ∥φ(3)
k3

∥Xs,θ

where we used Cauchy-Schwarz for the final inequality.

• ∑
l≲k3 P∼k2Ql(Q≪lφ

(2)
k2

· φ(3)
k3

): Using (MB) on φ(2) this term can be bounded in
Xs,θ by ∑

l≲k3

∑
j≪l

2sk22θl∥Qjφ
(2)
k2

∥M,2∥φ(3)
k3

∥ 2M
M−2 ,∞

≲
∑
l≲k3

∑
j≪l

2θl2( 1
2 − 1

M
)j2−θj∥φ(2)

k2
∥Xs,θ 2−( 1

2 − 1
M

+s′)k3∥φ(3)
k3

∥Xs,θ
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≲ 2(θ′+ 1
M

−s′)k3∥φ(2)
k2

∥Xs,θ ∥φ(3)
k3

∥Xs,θ

which is acceptable upon choosing 1/M < s′ − θ′.

When the outer modulation is ≫ 2k3 , one of the inner terms must be of at least comparable
modulation or the interaction is null.

• ∑
k3≪l≲k2 P∼k2Ql(Q>l−10φ

(2)
k2

· φ(3)
k3

): In this case we use the bound

∥P∼k2Ql(Q>l−10φ
(2)
k2

· φ(3)
k3

)∥Xs,θ ≲
∑
j≳l

2sk22θl∥Qjφ
(2)
k2

∥2,2∥φ(3)
k3

∥∞,∞

≲ 2−s′k3
∑
j≳l

2θ(l−j)∥Qjφ
(2)
k2

∥Xs,θ ∥φ(3)
k3

∥Xs,θ

which is again acceptable when square-summed in l.

• ∑
k3≪l≲k2 P∼k2Ql(Q≪lφ

(2)
k2

· φ(3)
k3

): This time we bound

∥P∼k2Ql(Q≪lφ
(2)
k2

· φ(3)
k3

)∥Xs,θ ≲ 2sk22θl∥Q≪lφ
(2)
k2

∥∞,2∥Q≳lφ
(3)
k3

∥2,∞

≲ ∥φ(2)
k2

∥Xs,θ

∑
j≳l

2−s′k32θ(l−j)∥Qjφ
(3)
k3

∥Xs,θ

which is again acceptable.

When the outer modulation is very large ≫ 2k2 , we have a similar situation:

• ∑
l≫k2 P∼k2Ql(Q>l−10φ

(2)
k2

· φ(3)
k3

):

∥P∼k2Ql(Q>l−10φ
(2)
k2

· φ(3)
k3

)∥Xs,θ ≲
∑
j≳l

2sl2θl∥Qjφ
(2)
k2

∥2,2∥φ(3)
k3

∥∞,∞

≲ 2−s′k3
∑
j≳l

2(s+θ)(l−j)∥Qjφ
(2)
k2

∥Xs,θ ∥φ(3)
k3

∥Xs,θ

which is acceptable.

• ∑
l≫k2 P∼k2Ql(Q≪lφ

(2)
k2

· φ(3)
k3

): Here

∥P∼k2Ql(Q≪lφ
(2)
k2

· φ(3)
k3

)∥Xs,θ ≲ 2sl2θl∥Q≪lφ
(2)
k2

∥∞,∞∥Q≳lφ
(3)
k3

∥2,2

≲ 2−s′k2
∑
j≳l

2(s+θ)(l−j)∥φ(2)
k2

∥Xs,θ ∥Qjφ
(3)
k3

∥Xs,θ

It remains to consider the case |k2 −k3| ≤ 10. We first suppose that the outer modulation
is restricted to ≲ 2k2 :

∥P≲k2Q≲k2(φ(2)
k2

· φ(3)
k3

)∥Xs,θ ≲ 2(s+θ)k2∥φ(2)
k2

∥ 2M
M−2 ,M ∥φ(3)

k3
∥M, 2M

M−2
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≲ 2(s+θ)k22−( 1
2 + 2

M
+s′)k2∥φ(2)

k2
∥Xs,θ · 2−( 3

2 − 2
M

+s′)k3∥φ(3)
k3

∥Xs,θ

which is acceptable for s′ > θ′.

When the outer modulation is at 2l ≫ 2k2 , at least one of the terms must also be at
modulation at least ∼ 2l or else the term is null. Since we are considering k2 ∼ k3 we
may assume WLOG it is the factor φ(2)

k2
:

∑
l≫k2

∥P≲k2Ql(Q≳lφ
(2)
k2

· φ(3)
k3

)∥Xs,θ ≲
∑

l≫k2

2(s+θ)l∥Q≳lφ
(2)
k2

∥2,2∥φ(3)
k3

∥∞,∞

≲ 2−s′k3
∑

l≫k2

∑
j≳l

2(s+θ)(l−j)∥Qjφ
(2)
k2

∥Xs,θ ∥φ(3)
k3

∥Xs,θ

This was the final case and the proof is complete.
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