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Abstract

This thesis concerns the well-posedness of nonlinear dispersive equations in the low
regularity setting. We will present two results on global existence for such equations
with data at or below the scaling regularity.

In chapter 1 we take a probabilistic perspective to study the energy-critical nonlinear
Schrodinger equation in dimensions d > 6. We prove that the Cauchy problem is
almost surely globally well-posed with scattering for super-critical initial data in H*(R?)

4d—1 d>+6d—4 RSN fps
whenever s > max{ SRd=T) Rd-1){d +2)}. The randomisation is based on a decomposition

of the data in physical space, frequency space and the angular variable. This extends
previously known results in dimension 4 and the main difficulty in the generalisation to
high dimensions is the non-smoothness of the nonlinearity. The work of this chapter is
taken from the publication [Mar23].

Chapter 2 concerns the half-wave maps equation, a nonlocal geometric equation arising
in the continuum dynamics of Haldane-Shashtry and Calogero-Moser spin systems. We
will prove that in three dimensions the equation is “weakly” globally well-posed (in the
sense of [Tao0la]) for angularly regular data which is small in a critical Besov space,
partially generalising known results in dimensions d > 4. The main difficulty in moving
to three dimensions is the loss of a key L?L2° Strichartz estimate. We overcome this by
using Sterbenz’s improved Strichartz estimates [Ste05] in conjunction with commuting
vector fields to develop trilinear estimates in weighted Strichartz spaces which avoid the
use of the L? L% endpoint. This work is taken from [Mar24].

Keywords: Dispersive partial differential equations, well-posedness, global existence, random

initial data, nonlinear Schrédinger equation, half-wave maps equation.
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Résumé

Cette these concerne le caractere bien-posé des équations dispersives non linéaires a
régularité faible. Nous présentons deux résultats sur l'existence globale pour de telles
équations avec des données a régularité critique ou sur-critique.

Dans le chapitre 1, nous prenons une perspective probabiliste pour étudier I’équation
de Schrédinger non linéaire a énergie critique en dimension d > 6. Nous démontrons

que le probléeme de Cauchy est presque sirement bien posé avec scattering pour des
4d—1 d’>+6d—4 }. La

(2d—-1)° (2d—1)(d+2) /"

randomisation se base sur une décomposition & la fois en espace physique, en fréquence

données initiales sur-critiques dans H*(R?) pourvu que s > max{

et en variable angulaire. Ceci étend des résultats connus en dimension 4 et la principale
difficulté dans la généralisation aux hautes dimensions est la nature non lisse de la
non-linéarité. Le travail de ce chapitre est tiré de la publication [Mar23].

Le chapitre 2 concerne le « half-wave maps equation », une équation non-locale géo-
métrique qui survient dans la dynamique du continuum des systéemes de type Haldane-
Shashtry et Calogero-Moser. Nous prouvons qu’en dimension trois, l’équation est «
faiblement » bien posée (dans le sens de [Tao0Ola]) pour des données initiales angulai-
rement régulieres qui sont petites dans un espace de Besov critique, ce qui généralise
partiellement des résultats connus en dimension d > 4. La principale difficulté du passage
A trois dimensions est la perte de 1'essentielle estimation de Strichartz en L?LS°. Nous
surmontons ce probléme en utilisant les estimations de Strichartz améliorées de Sterbenz
[Ste05] conjointement avec des champs de vecteurs commutant. Ceci nous permet de
développer des estimations trilinéaires dans des espaces de Strichartz avec poids en
évitant I'usage de 'espace L?LS°. Ce travail est tiré de [Mar24].

Mots-clés : Equations aux dérivées partielles dispersives, bien posé, existence globale, données
initiales aléatoires, équation de Schrédinger non linéaire, half-wave maps.
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Introduction

This thesis concerns the existence of solutions to nonlinear dispersive equations at low
regularity. A classical example of such an equation is the nonlinear Schrodinger equation

10 + A)u = p-1
(0 + AJu = o uful (p>1,0==+1, u:RxR! 5 C). (NLS)
u(0,x) = up(x)
which will be the focus of the first chapter of this thesis, where we will discuss the work
contained in [Mar23]. The second chapter will concern the more recently introduced
half-wave maps equation and the result in [Mar24].

We begin this introduction with a discussion of the general principles and background
concerning well-posedness of nonlinear dispersive equations. For the sake of concreteness,
we will restrict our attention to (NLS), as many of the principles that apply to this
equation are also relevant to the half-wave maps equation. Later in the introduction
(Sections 0.0.1 and 0.0.2), we will present more specific background on the main topics of
this thesis, leaving detailed descriptions of the results and outlines of the arguments to
the relevant chapters.

We refer to Section 0.1.1 for standard notation and definitions used in this introduction.
The main concern of this thesis is the question of global existence of solutions, i.e.
o For which classes of initial data uy do solutions to (NLS) exist for all time?

This question is non-vacuous, as can be seen by the physically motivated example of the
three dimensional focusing cubic NLS (i.e. d =3, p =3, ¢ = —1),! which is known to
have solutions which blow up in finite time for arbitrarily smooth initial data [Gla77].

Before developing this discussion further, we should clarify what is meant by a solution
of (NLS). Since we will mainly be interested in low regularity solutions, which may
not even afford the two derivatives required for the equation to make sense classically,
we adopt the following more general concept of solution for initial data belonging to a
Sobolev space H*(R?).

'Here, “focusing” refers to the choice ¢ = —1 in the nonlinearity. The choice o = 41 corresponds to
the “defocusing” equation.
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Definition 1 (Solution). Let s € R, 0 € I C R. For ug € H*(R?), u € C’glOCH;(I X

R4 N X s called a strong solution of (NLS) if it solves the Duhamel formula
. t .
u(t) = e ug — Z/ e =92 (g ululP71) (s)ds forallteI.
0

Here X is some function space which ensures that the nonlinearity ululP~' and the
Duhamel integral make sense as distributions. The operator €® denotes the solution
operator for the free (linear) Schrodinger equation.

Before we consider global solutions, let us first understand for which classes of initial
data we expect to have local solutions. We will seek well-posed solutions in the following
sense.

Definition 2 (Well-posedness). Let s € R. We say that (NLS) is locally well-posed in
H*(RY) if

1. Existence: For any ug € H*(R?), there exists an interval 0 € I C R and a strong
solution u € C(I, H*(R?)) to (NLS) with data ug.

2. Uniqueness: There exists a space X as in the previous definition such that u is the
unique solution to (NLS) in the space C(I, H*(R%)) N X.

3. Continuous dependence: If ug — ug in H*(R%), then the corresponding solutions

ug converge to u in C(I, H*(RY)).

This issue of well-posedness turns out to be intimately related to the scaling symmetry
of the equation. For (NLS), one may verify that for any solution u, the rescaled function

up(t,x) := )\%u()\Qt, Az)

remains a solution for any A # 0. This rescaling leaves the homogeneous Sobolev space

invariant in the sense that

[0, )l rse = [[ux(0, )| e

It was shown in the seminal work of Cazenave and Weissler [CW90], that (NLS) is locally
well-posed in H® whenever s € [max{s.,0},n/2) and the nonlinearity is sufficiently
regular.?-3 In this thesis we will primarily be concerned with low regularity solutions in
the regime s. > 0, so the threshold will generally be interpreted as s > s..

2In particular, we require that either p be an odd integer so that the nonlinearity u|u\“’71 is a
polynomial, or else |s] < p — 1. The assumption s < n/2 can also often be discarded, see for example
Proposition 3.8 [Tao06].

3The continuity of the data-solution map shown in [CFH11].
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In the subcritical case, s > s., the arguments of [CW90] show that we in fact have the
following lower bound on the time of existence of the solution:

2

"y B
T Zsap lluoll ., p= s s (0.0.1)

In particular, if the local solution only exists up to some maximal time 77y, we must have

li )| s = . 0.0.2
Jim )] 7. = +o (0.0.2)
The proof of local well-posedness involves a contraction mapping (also known as Picard
iteration) argument in Strichartz spaces.* This is based on the principle that over small
time scales the nonlinear forcing can be treated as a perturbation to the underlying linear
equation.

In low regularity spaces H® with s < max{s,, 0}, various ill-posedness results are known.
In the focusing case, 0 = —1, the existence of finite-time blow-up solutions implies by
rescaling that one can obtain data converging to 0 in H® which blow up in arbitrarily
short time. Even without the focusing assumption, it was shown in [CCT03] that the
solution map wug — ug(t) fails to be uniformly continuous at ug = 0. For further examples
of ill-posedness see for instance [KPVO01, AC09] and the appendix of [BGT05].

We now turn to the question of global well-posedness, for which the theory is far less
complete. Observe first that in the critical case s = s., the lower bound (0.0.1) might
lead us to expect that for small initial data (|lugl|zs. < 1) all solutions should be global.
This is indeed a direct consequence of the contraction mapping argument of [CW90] and
we say that there is “small data-global well-posedness” in the critical space H .

In Chapter 2, we will use an approach along these lines to construct global solutions to
the half-wave maps equation with small initial data. See Section 0.0.2 for further details.

When it comes to constructing global solutions for large data, iterative arguments are
less fruitful. Indeed, it is clear that in such cases the nonlinearity cannot be viewed as
perturbative over large time scales. However, we can sometimes exploit conservation laws
to obtain global control on solutions. For example, the nonlinear Schréodinger equation
admits the conserved mass

M(t) = /Rd lu(t, ) 2dz,

and it follows from (0.0.2) that (NLS) admits global solutions for arbitrary L? data
provided the equation is mass-subcritical, i.e. s. < 0. In the case s, > 0 with the focusing

choice of nonlinearity, we have already seen that finite time blow-up is possible for large
data [Gla77].

To understand the situation for s, > 0 in the defocusing case, we introduce a second

4See Section 0.1.3.
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conserved quantity, the energy
E@%zl/WM@@PM+UI./m@xWHML
2 p+1

Restricting henceforth to o = +1, the energy controls the H' norm and it again follows
from (0.0.2) that (NLS) admits global solutions for arbitrary H! data provided the
equation is energy-subcritical, i.e. s, < 1. For H® data below the energy space, i.e.
Se < s < 1, global wellposedness is still sometimes achievable using Bourgain’s “high-low”
method [Bou98|. This involves exploiting a nonlinear smoothing effect on the high

frequency portion of the solution to show that
u — e ug € Cioe(R, H'(RY)),

Since €2 preserves the regularity of wg, this prevents u from blowing up in the H®
norm and leads to global wellposedness.® Results for higher regularity solutions are often
possible by persistence of regularity (see Proposition 3.11, [Tao06]).

We next consider energy-critical equations (s, = 1), for which

_d+2

P=0"y

In this case the lower bound (0.0.1) fails in H!, and conservation laws are insufficient to
deduce global well-posedness. Nonetheless, following initial results for radial data due to
Bourgain [Bou99] and Grillakis [Gri00], the global existence of finite energy solutions to
the defocusing NLS was established by Colliander-Keel-Staffilani-Takaoka-Tao [CKS108§]
in dimension three. The problem in four dimensions and higher was settled by Ryckman
and Visan [RV07] and Visan [Vis07] respectively.

In addition to global well-posedness, the results [CKS*08, RV07, Vis07] also yield precise
information on the asymptotic behaviour of solutions in terms of scattering: there exist
states ux € H! such that

lim [lu(t) — e®®usl g = 0. (0.0.3)

t—*+o0

Lastly, for energy-supercritical equations (s. > 1), the issue of global well-posedness
is least tractable due to the lack of relevant conserved quantities. For certain (still
defocusing) equations in this regime, finite time blow up was shown relatively recently in
the celebrated work [MRRS22].%

50f course, if s. < 0 one could also use the L? conservation and obtain global solutions in L2. One
could then deduce global existence in H* for some 0 < s < 1 by persistence of regularity for a smooth
nonlinearity.

5We also draw attention to the works [SY20, Sy21] establishing almost sure global well-posedness for
certain energy supercritical nonlinear Schrodinger equations with energy subcritical initial data (s > 1)
in the periodic setting. Probabilistic results of this type are discussed in detail in the next section.

4



Introduction

This concludes the general part of the introduction, bringing us reasonably up to speed on
the state of the “deterministic” theory of (NLS). Similar theories relating well-posedness
to the invariances of the equation and conserved quantities are also available for other
semilinear dispersive equations, such as the nonlinear wave [LS95, Sog08] and KdV
[KPV96, Bou93| equations. In the next two sections we will give additional background
relevant to the main chapters of this thesis. The first section concerns the extension of
the above results for NLS into the low-regularity supercritical setting by probabilistic
methods, and the second concerns the analogous theory for the recently introduced
“half-wave maps” equation.

0.0.1 Swupercritical Cauchy theory for NLS: a probabilistic approach.

In the first chapter of this thesis we consider whether the well-posedness theory discussed
above can be improved for generic initial data. For instance,

 For data chosen at random from a supercritical Sobolev space (s < s.), can we still
expect local (globall?) solutions?

e In spaces where conservation laws are not available, might we still find global
solutions for “most” initial data?

Note that a positive answer to the first question above would be in contrast to the
ill-posedness shown in [CCT03, KPV01, AC09, BGTO05], while a positive result for the
second question would be an extension of the developments in [Bou98].

The study of (NLS) from a “probabilisitic” perspective was pioneered by Lebowitz-Rose-
Speer [LRS88] in their work on invariant measures. These measures are supported on
low regularity Sobolev spaces and so provide a means of interpreting such spaces as
probability spaces. Moreover, the flow of (NLS) can be seen to be volume-preserving
with respect to these “Gibbs measures” (akin to Liouville’s theorem for finite dimensional
Hamiltonian systems), which can serve as a useful substitute for conservation laws when
considering global results. This was first observed by Bourgain [Bou94], who used the
invariance to prove almost sure global well-posedness of (NLS) below the energy space
in the 1-D periodic setting.” In [Bou96] he also showed almost sure well-posedness for
supercritical initial data by taking advantage of improved integrability estimates for
the randomised free evolution. However, the latter results are only valid for a modified
“Wick-ordered” NLS.

The notion of an invariant measure is clearly highly valuable, however there are often
significant barriers to constructing one. On the one hand, in high dimensions the Gibbs
measure proposed in [LRS88] is supported on functions of such low regularity that there

"On the torus, one has similar heuristics for the well-posedness of (NLS), however the reality is more
complicated due to the lack of dispersion.
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are issues even defining it.® On the other hand, the construction relies on the existence
of an orthonormal basis of eigenfunctions of the Laplacian. Since our primary interest is
in the Euclidean domain R?, such a construction cannot easily be applied and we must
seek other methods of randomising the initial data.’

A commonly used randomisation procedure is the so-called Wiener randomisation, which
naturally generalises the construction in [LRS88|. For a compact domain this method
is due to Burg-Tzvetkov [BT08] (in the context of the nonlinear wave equation) and
allows for the construction of a large family of measures on any Sobolev space H?, albeit
non-invariant.1® See [BT13] for more details on the interpretation of these measures
and their measure-theoretic properties. Here we will present the analogous procedure
in the Euclidean setting, introduced by Lithrmann-Mendelson [LM14] and Bényi-Oh-
Pocovnicu [BOP14] based on a similar randomisation in [ZF12]. In the periodic case,
the randomisation relies on the discrete Fourier decomposition of the initial data, so the
first step is to define an analogous decomposition in the Euclidean setting. We introduce
smooth, radial cut-offs ¥ : R — [0,1] equal to 1 on {z € R?: |z| < v/d} and vanishing
for || > 2v/d, then define'!

vyla) = )

_ : d
o > kezd Y(z — k) bz,

Observe that the v; form a partition of unity on R? and denote by P; the Fourier
multiplier

Pjug == F (4 () F(uo)(-)) = up = Y, Pjuo.
jezd

The next ingredient is a family of independent identically distributed Gaussian random
variables (g;); : € — R of mean zero on a probability space (£, A, P).}? We then consider
the probability measure s, on H*(R%) induced by the random function

Q3w Z 9j(w)Pjug =: ug. (0.0.4)
jezd

One may verify that u§ € H®(R?)\H*t¢(R?) almost surely for any € > 0, so the
randomisation does not regularise on the level of Sobolev spaces (see Lemma B.1,

8Under a radial assumption, Gibbs measures were constructed in higher (three) dimensions in
[Tzv06, Tzv07, BTOT7].

9An invariant measure was constructed for (NLS) on the real line in [CdS15], however the probabilistic
techniques are more involved than in the periodic setting. See also [dS14] concerning the Klein-Gordon
equation. Invariant measures have also been constructed for the nonlinear Schrédinger equation with
an external potential, for which an orthonormal basis of eigenfunctions can be found. The results can
sometimes be mapped back to (NLS) by transformations, see for instance [BTT13, Den10, PRT14] and
[dS13] for a similar procedure in the context of the nonlinear wave equation.

OTmportantly, we can construct these measures on spaces of arbitrary regularity, whereas the invariant
measures of [LRS88, Bou94, Bou96] force the regularity we must work in.

"The factor of v/d is just to ensure that every point of R? is in the support of some ;.

121t is possible to consider more general families of random variables, see for instance [BT13].
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[BTO08]). Contrary to the periodic case, the measure p,, does not have dense support in
H*(R%), however it still allows us to generate results for large sets of initial data.

The key property of the above randomisation procedure is that, while it does not improve
the regularity of the evolution 4
it does improve the integrability. This is based on Bernstein’s inequality

ug (which almost surely retains the regularity of ug)

| Pjullpa < || Pjull e (c0>gqg>p>1).

Note there is no loss of derivatives in this estimate due to our working on unit scales.
To see the significance of this, we remark that many probabilistic well-posedness results
rely on decomposing the desired solution u* (with random data u§) into the rough free
A @ — Ay¥. Then v¥ must satisfy

evolution e"“ug and the nonlinear portion v* := u

(10 + A = o (V¥ + eBug) o 4 etAyg P! 0.05)
v2(0,) =0 a

(in the case of (NLS)). By showing that e®“u$ has improved integrability properties
(compared to those attainable by standard Strichartz estimates), it can often be shown
by direct iteration that (0.0.5) is well-posed in a subcritical Sobolev space, often H', even
when wug is very rough. This idea is closely related to the high-low argument of [Bou98|.

In Chapter 1, we will present an almost-sure global well-posedness and scattering result
for a class of energy critical nonlinear Schrodinger equations with supercritical data,
using a careful refinement of the randomisation above (see Section 1.1.2). It is therefore
important to understand how randomising initial data can lead to improved global results
in the absence of an invariant measure.

Unless stated otherwise, henceforth all results discussed concern defocusing equations on
the Euclidean space with respect to the Wiener randomisation (0.0.4). When we say a
result holds “almost surely in H*”, we mean

“For all ug € H® the result holds almost surely with respect to the measure pi,, on H?,
i.e. with data ug for almost every w € Q.”

One natural approach for obtaining global results is to use Bourgain’s high-low method
in the probabilistic setting. This involves treating the smoother low frequency part of the
solution deterministically, and appealing to probabilistic methods to show almost-sure
smoothing for the high frequency portion. This approach was first used in [CO12] to prove
almost sure global well-posedness of the (Wick-ordered) cubic NLS in mass-supercritical
Sobolev spaces H* with —% < s < 0. This result is on the torus with respect to a natural
probability measure on the negative Sobolev spaces.'® The same method was applied in

13The argument of [CO12] is valid in both the focusing and defocusing settings, since when working in
negative Sobolev spaces we rely on the conserved mass rather than energy.
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the Euclidean setting in [LM14] for a range of energy-subcritical wave equations, proving
almost sure global well-posedness in a range of scaling supercritical Sobolev spaces. In
this energy subcritical setting, global well-posedness can also be achieved by finding
probabilistic a priori energy bounds on the nonlinear evolution v* (see (0.0.5)), as in
[BT13, LM16]. See also [SX16].

As in the deterministic case, the issue of probabilistic global well-posedness is more
delicate for energy-critical equations. The first result in this direction for NLS appeared
in [BOP15a], where Bényi-Oh-Pocovnicu proved conditional almost-sure global well-
posedness for the 4-D energy critical NLS with supercritical data. The condition is an
a priori energy bound for the nonlinear evolution v*, which is needed to treat (0.0.5)
as a perturbation of the usual energy critical NLS in H! (and then appealing to the
deterministic results for that equation). In [OOP17] such energy estimates were obtained,
yielding almost-sure global well-posedness in dimensions 5 and 6 (where there is the
additional challenge of handling a non-polynomial nonlinearity). See also in [Poc17, OP16]
for results on the nonlinear wave equation (NLW) and [OP17] for analogous results in
the periodic setting.'4

The results discussed above all relied on the deterministic theory for the energy-critical
NLS, for which finite energy solutions are also known to scatter at large times. It is
therefore reasonable to ask whether some supercritical data might also lead to almost-sure
scattering. The results of the previous paragraph do not imply this since the a priori
energy bounds involved have explicit time dependence, which is a known obstruction
to scattering. We note however that for small initial data, scattering on large sets in
supercritical Sobolev spaces was shown in [LM14, Pocl7].

The first large data probabilistic scattering result for an energy critical equation was
obtained by Dodson-Lithrmann-Mendelson in [DLM20] for the 4-D cubic NLW with
“radial data”.'® The proof again relies on energy critical perturbation theory, with the key
addition of a Morawetz estimate adapted to the forced equation (0.0.5) to find a global
energy bound via a “double bootstrap” argument.'® The use of this estimate requires
almost sure spatial decay on the randomised free evolution, which was obtained for radial
data by means of a radially averaged Sobolev estimate,

[N

3 .
2|7 | D [P f()f Ss 1 llms, ma) (s >0, [ radial).

=
I< L3 (R4)

One may compare this to the usual radial Sobolev estimate, || ’x‘%f”Lgo @&y Sl (R4

We remark that global results for NLW are generally simpler due to the smoothing effect of the wave
propagator and the presence of time derivatives in the conserved energy, which significantly simplifies
estimates of the energy increment.

15This means that the data 1o generating the measure (0.0.4) are radial, however this does not imply
that the measure p,, is supported on radial functions.

Note that Morawetz estimates also play an important role in the deterministic scattering theory of
(NLS).

8
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and observe the important distinction that even when f is radial the square sum
1
(Yjeza |Pjf(x)[*)2 may not be.

The methods of [DLM20] were adapted to the energy-critical NLS in [KMV19] (still in
four dimensions with radial data), invoking local smoothing estimates and a modified
Morawetz inequality to obtain improved integrability for the derivatives of v* and e“Aub".
The regularity threshold for almost sure scattering was then lowered from % to % in
[DLM19] by working in lateral function spaces, previously introduced in the context of

the derivative nonlinear Schrédinger equation and Schrédinger maps problems.

In [Spi2l1], Spitz removed the radial assumption by using a modified randomisation
procedure involving a decomposition into spherical harmonics and on unit scales in
physical space, see Section 1.1.2. This randomisation allows access to a much wider
range of spacetime bounds for the free evolution and its derivatives without appealing to
Morawetz or local smoothing estimates.

The goal of Chapter 1 is to extend the results of [Spi2l] to energy-critical equations in
high dimensions with non-algebraic nonlinearities. The work is taken from [Mar23].

0.0.2 Small Data Global Regularity for the Half~-Wave Maps Equation.

We now introduce the second major topic of this thesis, namely the well-posedness of the
half-wave maps equation,

(¢: R x R — §?). (HWM)

Ohp = ¢ x (—A)/2¢
¢<07 ) = ¢0

This is a geometric equation, where we view the sphere S? as embedded into R? so
that the cross product on the right hand side makes sense (note in particular that then
O L TyS?). The operator (—A)'/? is defined (for sufficiently regular functions) via its
action in Fourier space,

F((—=0)29)(€) = €| F(#)(£),

and may be interpreted as a nonlocal spatial derivative.

(HWM) is a relatively recently introduced equation [ZS15]|, and even the local well-
posedness theory is not yet fully developed. The equation admits the scaling invariance

u(t,z) ~  u(At, Ax)

from which we deduce the critical exponent is s, = d/2. The equation also admits the
positive definite conserved quantities

Mass: M(t) = /d lu(t, z)|?dx
R
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Energy: B(t) = /R (A rut, ) d

Given the previous discussions on (NLS), we are thus led to search for local well-posedness
in H* with s > d/2, and small data-global well-posedness in H??2_ The energy space is
now H'/2 so the equation is energy-critical in dimension 1, and supercritical in all higher
dimensions. In particular, we expect global results to be challenging for d > 2.

The half-wave maps equation was first derived in one dimension [ZS15] upon taking the
classical then continuum limit of a Haldane-Shashtry spin chain. See also [GL18]. The
equation was further shown in [LS20] to arise in the continuum limit of the completely
integrable (classical) Calegero-Moser spin systems. It is therefore unsurprising that the
one-dimensional equation is completely integrable in the sense that it admits a Lax Pair
[GL18], and in this setting there has been significant interest in special solutions of the
equation. Indeed, soliton solutions were first studied numerically and analytically in
[ZS15], with further investigations of multi-solitons in [BKL20, Mat22] and a complete
classification of the finite-energy travelling solitary waves in [LS18].

When it comes to the question of well-posedness, the one-dimensional problem turns
out to be the most delicate. One way to see this is from the wave-like structure of the
equation (see (0.0.6) below), which is less useful in one dimension where waves do not
disperse and standard techniques cannot be applied (see Section 0.1.3). So far, results
on the existence of solutions in one dimension include [Liu23] establishing the global
existence of weak solutions with large data in H' N HY/2, and the more recent work
[Ohl23] concerning the global existence of a particular family of rational solutions.

We now discuss the known well-posedness results for (HWM) in high dimensions, starting
with the observation of Krieger and Sire [KS17] that the quasilinear half-wave maps
equation can reduced to the semilinear problem!”

O¢ = (07 —A)p=—¢ 9°¢ - Oud)
+ I, [(—A)20) (¢ - (—A)29)]
+¢ x [(—A)2(¢ x (=A)2¢) — (¢ x (—A)¢)] (0.0.6)

upon differentiating in time.'® Here II,1 denotes the projection onto the orthogonal
complement of ¢ and we sum over a = 0,...,3 with respect to the Minkowski metric so
that

0%¢ - 0ad = ~|0ugl” + Va0l
The passage from (HWM) to (0.0.6) relies heavily on the property ¢ - ¢ = 1.

The formulation (0.0.6) shows that (HWM) is intimately linked to the wave maps

Despite the presence of the Laplacian in the nonlinearity of (0.0.6), the equation behaves like a
semilinear equation due to the cancellation structure of the final term.

8Tn passing from (HWM) to the second order equation (0.0.6) we fix the initial velocity 9:¢(0,-) =
b0 X (=A)" 2.

10



Introduction

equation,
Ho = —¢ 0% - 09
(¢7 8t¢)(0? ) = (¢0a ¢1)

which has been the subject of intense study during late 1990s and early 2000s. In
particular, the local and small data-global well-posedness of (WM) is well understood.
In preparation for our discussion on half-wave maps, we start by reviewing the relevant
results for wave maps below. Henceforth we use the notation ¢[t] := (¢(t), d:¢(t)).

(WM)

Interlude on the Theory of Wave Maps.

In the scaling subcritical case, s > d/2, the wave maps equation is known to be locally
well-posed in both the Sobolev and Besov spaces. This was first proved in dimension 3 by
Klainerman-Machedon in [KM96b] and then extended to all dimensions greater than or
equal to 2 by Klainerman-Selberg in [KS97], the special one dimensional result appearing
in [MNT10].19:20 Tt is important to note that these results are specific to the nonlinearity
of (WM). Indeed, Lindblad [Lin93] showed ill-posedness of the 3-D quadratic derivative
nonlinear wave equation

O¢ = (8:¢)? (0.0.7)

in H>=¢ x H'~¢ for any € > 0, even though the equation scales in the same way as
(WM).2t

The particular structure of (WM) which allows for improved wellposedness is the presence
of the “null form”

0606 = 5(0(6-6) ~ 26 019, 008)

which relates the nonlinearity to the linear operator of the equation and kills off resonant
interactions. This plays a fundamental role in the analysis of the wave maps equation,
and is exploited in [KM96b, KS97] via the identity (0.0.8) by iterating in the X*? spaces,
dating back to Bourgain [Bou93| (see Section 2.10).

The scale-invariant case s = d/2 is far more delicate. In fact, the equation is known to
be ill-posed in the critical Sobolev space H%? insofar as the solution operator not being
uniformly continuous. This was shown in [DGO04] via a family of solutions contained in
geodesics on the target manifold S? (see also [Tao00] for the case d = 1). Nonetheless,
Tataru showed in [Tat98, Tat01] that small data-global wellposedness holds in the critical

Besov space B(Q{/f provided d > 2 (again the null structure plays an important role

19The references cited concern the Sobolev case, however it is possible to adapt them to the Besov case
(see Section 2.10).

29The one-dimensional case is special owing to the fact that the 1-D wave equation is not dispersive.
Unlike for (HWM), however, the one dimensional wave maps equation is not energy-critical. Rather the
conserved energy for (WM) scales like H' and the equation is energy-critical in dimension 2.

2'In three dimensions, the space H?T¢ x H'"€ is the minimum regularity attainable by appealing only
to Strichartz estimates. See section 0.1.3.
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here).?2 The Besov space (defined in (2.1.15)) is a stronger version of the Sobolev space
satisfying the embedding
By? s L=®(RY)

which just fails for %2, This is particularly useful when dealing with geometric problems
such as (WM) since it renders the problem local with respect to the target manifold. Of
Tataru’s results [Tat98, Tat01], the high dimensional case (d > 4) is simpler, proved via
a contraction mapping argument in modified versions of the X*¢ spaces. This method
breaks down in low dimensions and the argument for d = 2, 3 in [Tat01] relies on the
construction of intricate function spaces involving a decomposition in Fourier space with
respect to angular sectors on the characteristic lightcone.

Despite the ill-posedness results, Tao was still able to prove a certain notion of “weak
wellposedness” for wave maps in the critical Sobolev space H%/2 (see [Tao0la, Tao01b]
for d > 5 and d = 2, 3, 4 respectively). Precisely, he proved that for any ¢[0] € H* x H*™1,
s > d/2, the subcritical local solution ¢[t] provided by [KM96b, KS97] can be continued
globally provided that the critical norm of the data is sufficiently small:

[6[0]l| grasz  grasz—1 < € < 1. (0.0.9)

Moreover, for |s — d/2| < 1 he obtained the uniform bounds

D[t Loo (; mrs xmrs—1y S NPION | s s s —1-

It follows that all smooth, compactly supported initial data which are sufficiently small
in HY2 x %21 lead to a global solution, however in accordance with the ill-posedness
results there is no claim of continuous dependence.??

Tao’s argument is based on a methodical study of the frequency interactions in the
nonlinearity with two key novel ingredients. Since the lack of uniform continuity implies
that Picard iteration will surely fail, Tao introduced a new bootstrap argument based on
the concept of frequency envelopes. This new technology provides a means of tracking
the transfer of energy among different frequencies in order to maintain control of the
solution in the more regular H® norms, leading to global existence. The second new
ingredient is a co-ordinate transformation on the sphere which eliminates certain difficult
frequency interactions. In the high dimensional case d > 5 this transformation allows
Tao to close the argument using only Strichartz spaces, rather than spaces adapted to
the null structure as in [KM96b, KS97, Tat98, Tat01]. In low dimensions d = 2, 3,4 the
argument is significantly more involved and the null structure again plays an essential
role. The methods of [Tao0la] play an important role in the argument in Chapter 2.

This concludes our interlude on the wave maps equation, and we now return to our main

22In one dimension, there is again a failure of uniform continuity for the solution operator in the critical
Besov space [Tao00].
2See [Tat05] for a weaker notion of continuous dependence for critical wave maps.
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discussion on half-wave maps. To this point, the well-posedness theory of (HWM) in high
dimensions is limited to the scaling-critical case.?* This was first investigated by Krieger
and Sire [KS17] who proved small data-global wellposedness in the critical Besov space
for d > 5. This was extended to four dimensions in [KK21]. The key idea of Krieger and
Sire was to use the reformulation (0.0.6) to study (HWM) as a semilinear wave equation.
Naturally, the high dimensional results of Tataru for critical wave maps [Tat98] played an
important role in their analysis. Note that beyond the explicit connection to wave maps
via the first forcing term, the entire nonlinearity of (0.0.6) is heuristically of wave-maps
type
PNV,

provided one can account for the action of the nonlinear projection operator and cancel-
lations in the nonlocal derivatives. The difficulty is that the new forcing terms lack the
null structure that was so crucial in the analysis of (WM). It turns out that this can be
compensated by the in fact stronger geometric structure of these terms, which in essence
comes down to the property

¢- V=0 (0.0.10)

for functions into the sphere. By rewriting this identity in terms of frequency cancellations,
Krieger-Sire were able to handle the half-wave maps contributions to the nonlinearity of
(0.0.6) entirely in Strichartz spaces, incorporating the methods from [Tat98] to handle
the wave maps terms. A delicate Fourier analysis was required to exploit (0.0.10) in the
context of the nonlocal derivatives.

In the critical Sobolev space, Liu [Liu21] showed weak well-posedness in the sense of
[TaoOla] by incorporating the methods of [KS17] into Tao’s argument. We also mention
that the issue of uniqueness was addressed in [EFS22], and the half-wave maps equation
into manifolds other than the sphere has been studied in [GL18, Liu21], both in the
context of hyperbolic space.

In Chapter 2, we extend the results of [KS17, KK21] to three dimensions under an
additional assumption of angular regularity on the initial data. As for the wave maps
equation, (HWM) is increasingly complicated in lower dimensions and in passing from
four to three dimensions we in particular lose the key endpoint L7 L° Strichartz estimate.
To overcome this, we adapt the methods of [Tao0la] and [KS17] by exploiting improved
Strichartz estimates for functions with angular regularity [Ste05] and incorporating the
full range of commuting vector fields for the wave operator. A more detailed discussion
of our methods can be found in the introduction of Chapter 2. This work is taken from
the preprint [Mar24] (submitted to Ars Inveniendi Analytica).

24The subcritical case s > d/2 is discussed in Section 2.10 in Chapter 2. Due to the loss of regularity
in passing from the first order half-wave maps equation to the second order equation (0.0.6), a standard
subcritical well-posedness result was not achieved.
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0.1 Preliminaries

0.1.1 Notation

In this section we present some of the general notation used throughout this thesis.
Topic-specific notation is defined in the respective chapters.

Throughout, Cy, ... 4, denotes a constant depending only on the parameters oy, ..., o,
whose precise value may change line-to-line. We write X <o, q, Y to mean X <
Coi,anY and X ~, Y tomean X S, Y and YV S, X

Unless stated otherwise, whenever p € [1,00], p’ € [1, 00| denotes its conjugate exponent
such that

+
p p

We will frequently work in the Lebesgue spaces L with norms

Iz =ty = ([ 15 az) ™

and for spacetime functions f : R x R? — C we also use the mixed spaces L} L% where

”fHLng(Ide) = Hf”Lng(I) = Hpr,q[I} = H||f||Lg(Rd)||Lf(1)-

For the Fourier transform we use the notation
FNQ =1 = [ e @)
which allows use to define the inhomogeneous Sobolev spaces H?, s € R, by
1 llzzs = 11CE+ 122 F )l 2

Whenever we say that a function space is “defined by the norm | - ||”, we mean that the
space is the closure of the Schwarz functions with respect to the given norm. In this vein
we define the homogeneous Sobolev spaces H® via

£ 175 = EFFEN z2-

This is well-defined as a space of distributions if and only if s < d/2.2°

Next we introduce the free evolution operators for the Schréodinger and wave equations.
Denote

: 12 A 1 . a2 A
A f = F e M f(¢)) = @y /]R e e el f(6)de (0.1.1)

25In contrast, the critical homogeneous Besov spaces we will work with in Chapter 2 do embed into
distributions.
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the free solution to the linear Schrédinger equation (i0; + A)u = 0 with sufficiently
regular data u(0,z) = f(z). For the wave equation we denote

sin(t|V])

Wi(f,9) = cos(t|V|)f + v Y (0.1.2)
the free solution to Du = 0 with data (u, d:u)(0,x) = (f(z), g(x)). We interpret the right

hand side above using the Euler formulae and the definitions

Hit|V] o =1y itle] freyy L iw-etit|] 7
IS = Ff() = g [ e fe)ae (0.1.3)

eEit| V|

with a similar formula for T

g. We will sometimes write v/—A instead of |V].

0.1.2 The Littlewood-Paley decomposition

Littlewood-Paley theory is a core tool in modern harmonic analysis. Let x : R? — [0, 1]
be a smooth function supported in {|¢| < 2} and equal to 1 on {|¢| < 1}. For M € 2% set

xm (€)== x(§/M) — x(26/M) (0.1.4)

so that y is supported in {& < |¢| < 2M} and

> xm() =1

Me2Z

for all € # 0. For any f € S'(R%) define the Littlewood-Paley multiplier

Py fi=F xar - f). (0.1.5)
We will also write Xar for - 104(n/ar)|<c XN and Puyf or fuar for F (X f) whenever
C' is any fixed constant up to 100. Similarly, f<ys := >y fv and so on.
A key property of these multipliers is that they are uniformly bounded on all LP spaces:

1PN flice Sp 1fllze (1<p<o0)

Moreover, if we define Fourier multipliers |V|* by

VI f = F (11 F(€)

we have
V1PN fll o ray ~p.d NI PNl Lo ray (1<p<o0).

In the case s = 1, we also have the key Riesz estimate which allows us to exchange

15
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nonlocal derivatives for true derivatives,

IIVIPN fllo ey ~pa VPN Fl o re) (1<p<oo)

In fact, the Riesz estimate holds even in the absence of the projection Py provided we
restrict the range to 1 < p < o0.

We end this section with the following fundamental inequality relating the norm of a
function to that of its Littlewood-Paley square sum.

Lemma 0.1.1 (Littlewood-Paley Inequality [LP31, Ste70a]). For any 1 < p < oo it
holds

2

Hf”Lp(]Rd) ~p,d Z ’PNf\Q

Z
Ne2 Lp®Y)

Warning: In Chapter 2, in order to be consistent with other papers on the topic we
adopt the different notation Py f to mean Por f with k € Z.

0.1.3 Strichartz estimates for wave and Schrédinger equations

In this section we present the key dispersive estimates for the Schrodinger and wave
equations. By dispersive, we mean that the equations admit wave-like solutions travelling
at different velocities depending on the wavenumber.26 For example, considering (0.1.1)-
(0.1.3) we find the plane wave solutions

Schrodinger: il k—tlk|?) _ Jilk|(z-k—t|k])

Wave: pi(@kEtk]) _ ilk|(a-k+t)

for fixed k € R?. We see that in the Schrodinger case different waves even travel at
different speeds, |k|, however in the wave case they only travel in different directions,
making this is a somewhat degenerate case of dispersion.

The dispersion leads to pointwise decay of solutions with sufficiently decaying initial data
(so that plane wave solutions are precluded). The estimates below can be proved using
the theory of oscillatory integrals:

Schrodinger: 1™ fllzee Sa lt17211 £l (0.1.6)
Wave: = NP 150 Sa lH 2Py (0.1.7)
Note the stronger decay for the Schrédinger equation, and the necessary inclusion of the

Littlewood-Paley projection for the wave estimate. We have stronger decay in higher
dimensions where there are “more directions for the waves to disperse”. Interpolating the

26The wavenumber k indicates the direction, k, and wavelength 27 /|k| of a wave.
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decay estimates above with the Plancherel identities

A .
2 Pifllz = 1P1fll L2 1=V fll L2 = [1£1l.2
one can deduce decay estimates in all L spaces, 2 < p < oo.

We now turn to the time-averaged Strichartz estimates. These are obtained from the
estimates above using functional analytic techniques involving a T'T™ argument and the
Hardy-Littlewood-Sobolev inequality. We obtain estimates for solutions to inhomogeneous
equations via Duhamel’s formula, which in the Schrédinger case reads as

t .
u= [ A F(s)ds
to

for the solution to the inhomogeneous equation (i0; + A)u = F, u(0) = 0.

Theorem 0.1.2 (Strichartz estimates for the Schréodinger equation). Let d > 1. We call
2 < gq,r < oo a Schridinger-admissible pair if

2 d d

6 + ; = 57 (Qa T d) 7é (Qa 0032)' (018)

Let (q,7) and (G, 7) be Schrodinger-admissible pairs and denote by ¢ and 7 the conjugate
exponents of ¢ and 7. Let ICR be a time interval containing to. It holds

Hei(tftO)AfHLng(lde) Sdrg 1l 2rey (0.1.9)
—isA
F < 7 IE . ar. 1.1
H/Ie (S)dS L2(Rd) ~d,F,q H HL‘tI Lg (IXRd) (0 O)
t
i(tfs)AF d < o 7 2 | 0.1.11
[ 2 psyas enpcoensy S48 VPl (0.1.11)

For the wave equation, we only have estimates in dimensions d > 2.

Theorem 0.1.3 (Strichartz estimates for the wave equation). Let d > 2. We call
2 < q,r < oo a wave-admissible pair if

2 n-—1 n—1
<

6+ . 5 (q,7,d) # (2,00,3).
Set i1 d
d = - — — — —
s(d,q,r) i

Let (q,r) and (q,7) be wave-admissible pairs satisfying the scaling condition
s(p, g, d) +5(q,p,d) =1
and denote ¢, 7' the conjugate exponents of G, 7. Let ICR be a time interval containing
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to. For N € 2% it holds

eF Py |y () Sama 1PNl s et (0.1.12)

If moreover q, § # 0o, we may remove the projection Py in the estimate above, and there
is the inhomogeneous estimate

’ /t sin((t — s)\V!)F(S)dS

(0.1.13)
0 V|
In the two main chapters of this thesis we will consider different settings in which the

<grara |Fl o
LIL5(IxRY) Sdran | HL?'LQ’(I xR?)

above estimates can be improved. In the first chapter this will be by randomisation, and
in the second chapter for functions with angular regularity.

0.1.4 Spherical harmonics

In this section we describe some basic properties of the spherical harmonics which will be
of use to us in the coming chapters. We refer to Chapter IV of [SW16] for further details.

For each k£ > 0 we denote by Ej, the space of (surface) spherical harmonics of degree
k, that is to say the kth eigenspace of the spherical Laplacian Agp, with corresponding
eigenvalue —k(k +d — 2). Agpp is the angular component of the usual Laplacian, so that

o, -10f
or? r  Or

1
Af = + ﬁAsphf

in spherical coordinates. For example, in dimension three we have

1 0%f 1 a<sin98f>

Aspnf = sin? 0 0?2 + sin 6 50 o0

for co-ordinates (z1, z2,x3) = r(sinf cos ¢, sin 6 sin ¢, sin §). We also have the expression

Agpn= Y

i,j=1,...d
i<j

where ;; are the angular derivatives
Qij = xiaj - a;j&

One may also characterise Ej, as the restrictions to the unit sphere of homogeneous
harmonic polynomials of degree k.

18
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Each FEj. is a finite dimensional vector space of dimension

d+k—1 d+k—3
Ny = - .

The spaces (Ej)r>0 are mutually orthogonal and span L?(S?~!) so we may construct an
orthonormal Hilbert basis

B = (br)keNi=1,..,N;

for L?(S41), with each biy € Ey. In particular, for any f € L? (RY) and almost every
r > 0 we may uniquely express

ZZCM )bk, (0 cp (T / f(r,0)bg(0)do

k>0 1=1
It follows that cx; € L?(r?~1dr) and
N
HfH%Q(Rd) = Z Z ||Ckvl‘|%2(7‘d_1dr)
k>0 1=1

An interesting and important property of the spherical harmonics is that they are invariant
under the action of the Fourier transform, that is to say that for each k > 0 there is a
map Ty : L2(r?tdr) — L?(r?ldr) such that

F(e(r)bra(0)) (o, w) = Ti(c)(p)bri(w)-

Here we use coordinates x = rf in physical space and £ = pw in Fourier space, with
6, w € S, Precisely,

(Tye)(r) = (2m)5i* —***j/ Ty (rs)stds (0.1.14)
with v(k) := H2E=2 anq

— (r/2)" 1 s 2t _
Ju(r) == - (2#27“) - (l) /—16 (1—s?) ds (n>-—1/2)

2

the Bessel function of the first kind.

Since the operators e #2 and eV —2 are given by radial multipliers we find in particular
that the spaces Fj are preserved by the linear evolutions of the Schrédinger and wave
equations, i.e.

A (c(r)bra(0)) = T (e Thu(€)) (1) bra (0)
eiitlvl( (r )bkl<9)) Tk e +it|- |Tk(0))(7’)bk,l<9) (0.1.15)
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Warning: Again for consistency with other works we use different notation for the
spherical harmonics in Chapter 2. Precisely we write YlZ 1>0,i=1,...,N;) in place
Of blﬂ;.
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Energy-Critical NLS in d > 6.
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Chapter 1. Almost Sure Scattering of the Energy-Critical NLS in d > 6.

The content of this chapter is taken from [Mar23|, published in Communications on Pure
and Applied Analysis, with minor modifications for consistency with the rest of the thesis.

1.1 Introduction

We consider the defocusing energy-critical nonlinear Schrodinger equation (NLS) in
dimension d > 6

{(i@t + Ayu = ulu| 72 (0<s<1) (1.1.1)

u(0) = f € H*(RY)

Here “defocusing” refers to the plus sign in front of the nonlinearity and “energy-critical”
refers to the fact that the conserved energy
1

B(u(t) = ; /Rd Vu(®)Pde+ <= [ ()| 22 da (1.1.2)

is invariant with respect to the scaling symmetry u(t, z) — )\%u()\Qt, Az). Since the
energy scales like the H' norm of u, we say the equation has scaling regularity 1.

As discussed in the main introduction, it was shown in [Vis07] that equation (1.1.1) is
globally well-posed with scattering for initial data in the energy space H?', however for
s < 1 this is not in general true [CCT03]. The goal of this chapter is to investigate
the global wellposedness of (1.1.1) below the critical regularity s = 1 by randomising
the initial data, generalising known results in dimension four [KMV19, DLM20, Spi21]
to high dimensions d > 6. We show that for all s € (s4,1), where s4 is a constant
depending only on the dimension, the equation is almost surely globally well-posed with
respect to a particular randomisation in H*(R?). We moreover establish almost sure
scattering in H*(R%) both forwards and backwards in time. The randomisation is based
on a decomposition of the initial data in physical space, Fourier space and the angular
variable as in [Spi2l].

The main difficulty we encounter in moving to high dimensions is the non-smoothness of
the nonlinearity u]u|ﬁ To deal with this, we use an adapted version of the work of
Tao-Visan [TV05] in Section 1.5 to study the stability of the energy-critical NLS which is
needed to prove a conditional scattering result, since in high dimensions the nonlinearity
is not twice differentiable and standard stability techniques are insufficient. We also
prove local wellposedness via a regularisation argument (Section 1.4), allowing us to work
with higher regularity solutions when proving the scattering condition is satisfied. This
is necessary due to the lack of persistence of regularity for the high dimensional equation
(1.1.1). The regularisation we use effectively renders the nonlinearity energy-subcritical,
allowing us to use persistence of H? regularity as in [Caz03]. This is sufficient to perform
computations involving the energy in Section 1.6.

The many-fold randomisation procedure we consider in this work was introduced by Spitz

22
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in [Spi21], however each sub-randomisation had previously been used with success. In
particular, the randomisation with respect to a unit-scale frequency decomposition, also
known as the Wiener randomisation (0.0.4), has been extensively applied to nonlinear
Schrédinger and wave equations, among others, since its simultaneous introduction by
Lithrmann-Mendelson [LM14] and Bényi-Oh-Pocovnicu [BOP15a, BOP15b], see also
[ZF12]. Randomisation in the angular variable was introduced by Burq-Krieger in [BK21]
in the context of a wave maps type equation, and randomisation in physical space has
had applications to the final state problem of the NLS and other dispersive equations, see
for example [NY18, Murl9]. The randomisation we use also involves a dyadic frequency
decomposition, however unlike its unit-scale counterpart, randomisation with respect to
this decomposition alone has not proved useful since it does not entail any improved
integrability.

1.1.1 Main Result

We now state our main result. We will define the randomisation of the initial data
fully in the next section, however loosely speaking, for any function f € H*(R?), its
randomisation over a probability space (2, .4, P) is an H*-valued random variable

Q2w f9e HYRY.

Theorem 1.1.1. Let d > 6, sq := max{ 3(A‘2dd:11), (265_*1()3‘(1;32)} <s<1. Let f € H*(R%)

and f¥ denote the randomisation of f (defined in Section 1.1.2). Then there exists X.CS
with P(X) = 1 such that for every w € X there exists a unique global solution

u(t) € 2 f¥ + C(R; HY(RY))

to the defocusing energy-critical nonlinear Schrédinger equation with initial data f

(1.1.3)

(@8 + A)u = ulu| 7=
u(0) = f*

Moreover, this solution scatters both forwards and backwards in time, i.e. there exist uL,
u_ € H*(R?) such that

- N _
i (Ju(t) = e P utl| g gay = 0

Observe that sg = (fof% if and only if d < 10.

Remark 1.1.2. By a solution to equation (1.1.1), we mean a solution to the Duhamel
formulation of the equation

) t 4
u(t) = e f — z/ !9 (y|u|T=2)(s)ds
0
in an appropriate function space.
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Chapter 1. Almost Sure Scattering of the Energy-Critical NLS in d > 6.

Remark 1.1.3. In Theorem 1.1.1 uniqueness holds in the sense that upon writing the
solution v in the form

u(t) = e < 4+ u(t) (1.1.4)

with v € C(R; H(R%))( W (I), where the space W (I) will be defined shortly (see Section
1.3), the function v is unique.

Remark 1.1.4. By writing a solution u of (1.1.3) in the form (1.1.4) we find that v
must satisfy the forced equation

o(0) — 0 (1.1.5)

{(iat + A = (F +v)|F + 0|72
with F' = 2 f* and vg = 0. Thus, it is sufficient to study the wellposedness of (1.1.5)
in H'(R%) under some appropriate conditions on F'.

Before going into further details we briefly outline the structure of this chapter. In
Sections 1.1.2 and 1.1.3 we will introduce the randomisation procedure for f“ and the
regularisation that we will use for the nonlinearity.

After discussing some preliminaries in Section 1.2 we will establish (deterministic) local

wellposedness of (1.1.5) in the critical space H' in Section 1.4, under certain conditions

on F = e f¥  via a regularisation argument in the space W with norm

HU”W(I) = ||Vl 1) 2dar2)
L, 77 [ @+ (IxRd)

t

This is the norm used by Tao and Visan to study the energy-critical NLS in [TV05].
The argument will also require the forcing, F, to lie in W (I). Setting F = ¢® f* this
represents a gain in derivatives which we obtain via a randomisation-improved radially
averaged Strichartz estimate as in [Spi2l] (see Section 1.7).

We remark that W is not the optimal space to work in to establish local wellposedness
of (1.1.5). Indeed, the requirement that e f¥ also lies in W represents a gain of

(d—1)(d—2)
(2d —1)(d+2)
A f@  However, when used at its endpoint the randomisation-improved
radially averaged Strichartz estimate allows us to gain up to % derivatives and our

derivatives on e

method can be extended to obtain almost sure local wellposedness for

o d-1 _ d
20—1 2d—1

1 <s<1

We are not able to acheive twice this gain as in [Spi21] due to the non-algebraic nature of
the nonlinearity which prevents a more precise analysis of the equation on dyadic scales.
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1.1 Introduction

In Section 1.5 we prove a conditional scattering result. The local wellposedness theory of
Section 1.4 is accompanied by a scattering criterion: if the solution to (1.1.5) satisfies

HUHW(I*) < 0

on its maximal interval of existence I'* then the solution is global and scatters as t — 4o0.
In this section we show that this condition is satisfied provided the energy of v is uniformly
bounded on I*. To this end we develop a perturbation theory in the space W to compare
solutions of (1.1.5) with those of the “usual” NLS (1.1.3), since by [Vis07] we already
have a bound on those solutions in W in terms of their energy. Since for d > 6 the
nonlinearity is not twice differentiable, we cannot develop the perturbation theory in the
standard way and instead adapt the work in [T'V05] on the stability of high dimensional
energy-critical Schrédinger equations.

In this section we again work in the space W and again this is not optimal. Improving the
result for this section would require further notation and not improve the final restriction
on s in Theorem 1.1.1, so we do not present the optimal case.

In Section 1.6 we prove the uniform-in-time energy bound mentioned above, placing
the forcing term in spaces with low time integrability as in [Spi21]. We argue via the
regularised solutions, since the true solution does not have sufficient regularity to perform
the necessary computations (in particular, an explicit differentiation of the energy).

Finally in Section 1.7 we show that F“ := "2 f¥ indeed satisfies all the conditions
needed to run the arguments above (almost surely). This follows the same arguments as
in [Spi21]. In particular, the randomisation with respect to the angular variable allows
us to (almost surely) gain derivatives on the free evolution via improved radial Strichartz
estimates (see Proposition 1.7.3), and we no longer need to exploit local smoothing effects
as in [DLM19]. The unit-scale randomisation in the physical variable allows us to prove
estimates on the gradient of F' in spaces of type L} LE by appealing to the temporal decay
of the Schrédinger semi-group (Proposition 1.7.10). This allows us to bound the energy
increment in Section 1.6 without appealing to Morawetz estimates. These additions are
what enables us to avoid a radial assumption as in [DLM19, KMV19].

1.1.2 Randomisation Procedure

We now describe how to construct the random variable f“ appearing in the main theorem.

Decomposition in Fourier space, physical space, and the angular variable.
In what follows, let f € L2(R%).

We first introduce the physical space decomposition. Let ¢ : RY — [0,1] be a smooth,
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Chapter 1. Almost Sure Scattering of the Energy-Critical NLS in d > 6.

radially symmetric function with p(z) = 1 for |z| < v/d and ¢(x) = 0 for |z| > 2V/d.

p(z —1)
Y kezd (T — k)

0i(z) 1= (1.1.6)

so that o; has support in {z : |z —i| < 2/d}. We then have the unit scale decomposition

of f in physical space,
f= ¢ilz)f(z)
A

Note that this representation holds in both the L? and the pointwise sense.

We next apply an angular decomposition to each component ;f using the spherical
harmonics defined in Section 0.1.4. First decompose @;f on dyadic scales in Fourier
space, using the Littlewood-Paley multipliers defined in (0.1.5):

wif = Y Pulpif)

Me2Z

It is convenient to rescale Py/(y;f) to unit frequency by setting

9" = (Pu(pif)) (M)

Now recall that there is an orthonormal Hilbert basis

B = (bi)ken,i=1,....N,,

of L2(S%1) consisting of spherical harmonics. By Theorem 6 of [BL13] (see also Theorem
1 of [BL14] and Theorem 1.1 of [BK21]), there exists a choice of such basis, which we
call a good basis, such that for any ¢ € [2, 00), it holds

ku,l”Lq(Sd—l) < Cyd (1.1.7)

for some constant C, 4 depending only on the indicated parameters and independent of
k,l. Fix a good basis as described and decompose

oo Ng
= chl )or1 (0
k=01=1
with each é%z supported in [ ,2] (by orthogonality). Then using that the spherical

harmonics are invariant under the Fourier transform, and in particular the formula
(0.1.14), we have

s Nk d—2 d
oM (1) = (2m) L F G ) (=r0) = 33 apr— 5 ( /0 %@)Jy(k)(rs)szds) bea(0)

k=01=1

for ay, = (271)7% %, using that by ;(—0) = (—1)¥by1(0). It is useful to observe at this point
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that

oo Ng

M,
”gzjw‘@,?(Rd) = E E ||Ck7lZH%2(pd—1dp) (118)
k=01=1

Scaling this back to frequency M we obtain

oo Ny

Puleif)r0) = 3% ap(Mr)= % ( /O - é%’i(s)Jy(k)(Mrs)sgds> bea(8)  (1.19)

k=01[=1

The final step is to include a unit-scale frequency decomposition. To this end we introduce
the operators

Pif = F (9 F(€)) (1.1.10)

where 1;(§) := ¢;(§) is as in the physical space decomposition. We make this change of
notation in order to clarify the distinction between the decompositions in physical and
frequency space. Incorporating these projections into (1.1.9) we obtain

oo Ng 00 )
Pu(eiN0) =3 3N apM~ 5P, {r‘if ( /O afk‘ﬁv’(s)Jy(k)(Mrs)sids> bk,l(e)]
jezd k=01=1

from which

f(ro) = Z Z i %akM_d;QPj [’l“_dEQ (/OOO é%’i(s)Jy(k)(Mrs)sgds> bk,l(e)}

Me2Z 574 k=0 =1

with convergence in L?(R%).

Randomisation with respect to the decomposition.
We now introduce a family
(XM e Me2® i jez keNyle{l,...,Ny})
of independent, mean-zero, real-valued random variables on a probability space (€2, .4, P)

with respective distributions (/‘%,k,l :M € 2%i,j € 7%k € No,l € {1,...,N;}) for
which there exists a ¢ > 0 such that

/ erM%k i(z) < e’
R 2 b

forally € R, M € 2%, i,j € Z% k € Ny, 1 € {1,..., N }. This is satisfied by independent
identically distributed Gaussians for example. We can then define the randomisation
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oo Nk )
DD DI NELT
Me2Z4,je7 k=0 1=1

d—2 d—2 o0 i d
= >y X%k’l(w)akM*TPj [7“2 (/0 é]kwl (s)J,,(k)(Mrs)wds) ka(H)} (1.1.11)
Mi,g.k,l

which is well-defined in L?(, L%(R%)).

Remark 1.1.5. In fact, for f € H*(R?), the randomisation f* also lies in H*(R?) almost
surely. In particular, it holds

LN s mayl 2200) Sa 1 s (may

This can be seen using the fundamental large deviation estimate of Burq and Tvetkov (see
Section 1.7), combined with the orthogonality of the decompositions in frequency space
and into spherical harmonics, and Corollary 3.3 of [Spi21] to handle the intertwining
of the physical space decomposition and the H® norm. In what follows, we implicitly
restrict to a subset ¥ C Q of probability one such that f* € H*(R?) for every w € X.

Remark 1.1.6. It is important to note that the above randomisation does not in general
improve the regularity of the data. In particular, choose the probability space (€2, .4, P)
to be the product of spaces (£2;,.4;,P;)i=1,2,3 and the random variables to be given by

Xi],\;[‘,k,l(w) = Xj(wl)X%(wz)Xi(wg), w = (wl,wg,wg) €O x Q9 x Q3

with the X;, X % , X; independent identically distributed Bernoulli random variables on
Q1, Q9, Q3 respectively taking values +1 with equal probability % Then one can show
that, for 0 < s < 1, f ¢ H*(R?) implies that f* ¢ H*(R?) for almost every w € Q. See
Appendix 1.B for further details.

1.1.3 Regularisation of the Nonlinearity

We shall study solutions to (1.1.1) via a regularisation of the nonlinearity g(u) := u|u]$,
allowing us to work with H? solutions when performing calculations involving the energy
later on. This step is not necessary in the lower 4 dimensional settings of [DLM19] and
[Spi21] when the nonlinearity in (1.1.1) is algebraic and persistence of regularity allows
us to directly construct a solution in H' as a limit of solutions in H?2.

Denote p = %, sop—1= ﬁ. For each n € N define

In(w) = ugl,(Jul?)
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for p,(z) = Pl (x/n?). Here o1 € C*°((0,00)) N C([0,0)) with ¢1(0) = 0 and

p—1
rz for0<ax<1
L) = - 1.1.12
i (a) {2 o (1.1.12)
in such a way that ¢ (z) < a:prl for all £ > 0. Thus
p—1
xz 2 for 0 < <n?
' (z) = - 1.1.13
#nl) {(271)1"1 for x > (2n)? ( )
and g, (u) = g(u) whenever |u| < n. Since ¢f is compactly supported, we also see that
p—3
lon(@)| < lzf 72
Consider the regularised NLS
(80 + A)un = gu(un) (1.1.14)
un(0) = upp € H2(RY)

By Theorem 4.8.1 of [Caz03] we see that (1.1.14) admits a local solution in C(I, H?(R%))N
CY(I, L*(R%)) on some neighbourhood I of 0. Here

CY(I,L2(RY) := {f € C(I, L3 (RY)) : ,f € C(I, L3 (RI))} (1.1.15)

where 0; f is defined as the vector-valued distribution such that

Jowm s sde =~ [vwos. i
I I

for all p € D(I), with the above integrals evaluated in the Bochner sense.

Theorem 5.3.1 of [Caz03] then shows that this solution exists in H? for as long as it
exists in H!, which is for all time since solutions of (1.1.14) have conserved energy

1 1
Bulwn) =5 [ Vuafdo+3 [ pulfun)de

We thus see that (1.1.14) admits global solutions in C(R, H2(R%)) N C(R, L2(R?)).

As discussed in Remark 1.1.4, in this work we will actually study the wellposedness of
the forced equation (1.1.5) in H'(R?), with the forcing term given by the free evolution
of the randomised data: F = €™ f¢. Thus to obtain H? solutions to (1.1.5), we must
also regularise the forcing.
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Set F, = P<, F' = eitAPSnf“’, where

Pgnfw = Z PMfw

Me2Z
M<2n

Then by Lemma 4.8.2 of [Caz03], F,, € C(R, H*(R?)) N C}(R, L?(R%)). Observe that for
any 1 < a,b < oo it holds

1 Fnll Lo @) Sabd I1F | Lars )

Fix vg € H'(R?). Setting u,, := v, + F, and Un,0 = P<p(vo + f¢) in (1.1.14), we thus
obtain unique global solutions to the forced NLS

(iat + A)vn = gn(Fn + Un)
v, (0) = v 0 € HA(RY)

in C(R, H3(R?)) N CY(R, L?(RY)). Here v, := P<pvg — vo in HY(RY).

We will show in Section 1.4 that the solutions v, converge locally to solutions of the
non-regularised equation (1.1.5).

1.2 Notation and Preliminaries

1.2.1 Notation

In addition to the notation introduced in Section 0.1.1, we will also need the homogeneous
£? Besov spaces with

N

Wl o) = (Z N”IIPNing(szd))

Ne2Z

as well as the mixed spacetime Besov spaces with

3
‘LfHB;HQ(I)::: ( j{: fverfﬁVf\%fzg(Ide))

Ne2z

Since we shall always be considering the ¢? Besov-type spaces we will sometimes omit
the subscript “2”, writing only By (I).

Throughout this chapter it is always assumed that d > 6, and we will often use the

notation p = % € (1,2) without comment.
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1.2.2 Properties of the Nonlinearity

4
Denote g(u) := u|u|?2. We record here some properties of g for future reference. As

d
well as the trivial bound |g(u)| < \u|d%r§, we have the gradient bounds |g,(u)| Sg \u|ﬁ,

lgz(u)] Sq |u|72. Here g, gz denote the complex derivatives:

1 09 .0g 1,90¢g

g:(r +iy) = 0.9(x +iy) = (5= —i50), gz(z +iy) = (5= +

20z Zay 2 0z

for z = x + iy, z,y € R. We also have the difference bound
4 4
|g(ur) — g(u2)| Sa (Jur| T2 + [ug| 72 |u1 — up

which follows from the identity
1
gl -+ ) = glun) = [ [gs(ur +0uz)us + g2(u + Ol
On the other hand, the chain rule

Vy(u(z)) = g=(u(x))Vu(z) + gz(u(z)) Vu(z)

with the bound! .
|gz(u1) - gz(u2) gd |U1 - U2’ﬂ

(and the analogous statement for gz), implies that

_4 _4
(Vg(u1) = Vg(uz)| Sa lur — w272 [V | + |ug| 772 [Vuy — Vug|

Zay

29,

(1.2.1)

(1.2.2)

(1.2.3)

(1.2.4)

(1.2.5)

Moreover, the above bounds all also hold for g, with bounds independent of n.

1.2.3 Deterministic Estimates

We first recall some basic estimates related to the Littlewood-Paley inequality (0.1.1),
which allows us to easily transfer between the Besov and standard Lebesgue spaces.

Combined with the triangle inequality it yields

1
2
HN@@SW(E:W%M%@>

Ne2Z

(1.2.6)

!Note this bound holds since d > 6. For d < 6 we have Lipschitz continuity of g., gz, making some

aspects of the problem simpler to study.
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for any 2 < p < 00, 2 < g < co. We also have the dual estimate

1
2
(Z ”PNfH%ng) Sed | Fllzrrs (1.2.7)

Ne2Z

for1<p<21<qg<2.

1.3 Function Spaces

We now define the function spaces in which we shall place the solution and the forcing in
order to obtain local wellposedness.

Let I be an open time interval. We will place the solution v to the forced NLS into the
space defined by the norm

lvllw ) = lvllvy + IVollva
where
lvllvry == HUHQ;d_+22>72c;<2d:42> l
We will also denote ””HW(I) = ”VUHVU).

To prove local wellposedness it will be sufficient to place the forcing term F into the

same space W. However to obtain the conditional scattering result in Section 1.5 we will

need F to lie in the stronger space?

L4
R(I) := W(I)N B;i;g(dﬁ (I) (1.3.1)

which is necessary in order to apply the theory developed in [TV05] to study the stability
of the forced equation.

_4
Again we will also denote R(I) :=W(I)NB**2 ., (I).

d+2,=—=

2

Observe that the above norms are continuous in their endpoints and are “time-divisible
in the sense that for each of the spaces S(I) just introduced there exists a finite constant
a(S) > 0 such that

o
J oY
oS
(Z rvusﬁfj)) < [llsqry
j=1

whenever [ is the disjoint union of consecutive intervals (I j)le. In particular, a(W) =

a(W)=a(V) = % and a(R) = a(R) = d + 2 (see, for example, [DLM19]).

2Here we use the classical definition || - |xny = || - |x + 1 - ||v-

32



1.4 Local wellposedness

We deduce that whenever ||v||g) < oo for S any of W, W,V,R or R, we may partition
I into J consecutive intervals (I j)}‘]=1 with disjoint interiors such that

vl <€

a(S)
J<2 (HUHS(I))
€

We end this section with the observation that for F, = P<,F the regularised forcing

for each j =1,...,J and

term as in Section 1.1.3 it holds || Fy||s(r) Sa || Fl|s(r) and
I Fn — Fllsy — 0

as n — oo for S any of the function spaces W, W, R, R or V.

1.4 Local wellposedness

In this section we will prove the deterministic local wellposedness of the problem

{(i8t+A)v= (F + 0)|F +v|7 (1.4.1)

v(ty) = vo € HY(R?)

in H' under appropriate conditions on the forcing term F. We will construct solutions
via the regularised equation

(1.4.2)

(10r + A)vy, = gn(Fy + vp)
Un(to) = Un,0 S HQ(Rd)

for g, as in Section 1.1.3.

1.4.1 Linear and Nonlinear Estimates

Let I C R be an interval containing tg. First observe the following inhomogeneous
estimate, which is a direct application of the Strichartz inequality (0.1.2):

i(t—to

A
| ef(t—t0) vollyi ) S llvoll g

Then by the inhomogeneous Strichartz estimate (0.1.11) followed by the chain rule (1.2.3)
we have

t
HV/t =98 (u)(s)ds
0

4
< llu| =2 Vull, 24
d,q, _2d_
q,r[I] e 2,33l

for any Strichartz pair (¢,7). Moreover, using Holder’s inequality and the Sobolev
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2d(d+2) 2(d+2)

embedding W' e+ (RY) < L™= (R?) we observe that

4 =
|2 uzlly 20y Sa llur gy luzllva (1.4.3)

which in particular gives

/ LB g () (5)ds

to

4
S MulT2Vully 20 Sa llully
W) 2, sl W(I)
for all u € W(I), recalling p = 2.

1.4.2 Proof of Local wellposedness and Scattering Condition

Theorem 1.4.1. There exists eg(d) > 0 such that the following holds. Let vy € H'(R?)

2d

and F € WNLPLI2(R). Let I >t be a sufficiently small time interval such that
e gl + [l < e (1.4.4)

for some 0 < € < eg(d). Then there exists a unique solution v € C(I, H*(R?)) N W (I) to
(1.4.1) which satisfies
ol < de

This solution extends to a mazimal interval of existence I* := (T_,Ty) in this space.
Moreover,

1if Ty < oo, then ||vlly g 7,y )) = 0©

2. if T = oo and |[vllyiy (4 1, y) < 00, then the solution v scatters forwards in time,
i.e. there exists vy € H'(RY) with

. A o
tliglOHv(t) e"“vpllgn =0

The analogous statements hold for T_.

On compact subintervals I of I*, v is obtained as a limit in LIL"(I) of solutions v, to
the regularised equation (1.4.2), for any Strichartz pair (q,r).

Proof. Denote by v, the unique solution in C'(I, H?(R%)) N C*(I, L?(R%)) to (1.4.2) with
initial data v, 0 = P<pvo. We will show that (vy,)y is Cauchy in V(I). Observe that for
any Strichartz pair (¢,r) and any [ > n, we have

l|vn, — Ul”q,r[]] gqﬂ‘,dHUmO - 'Ul,OHLQ(Rd) + Hgn(Fn + vn) — gn(F1 + Ul)Hz%[j]

+llgn(Fr+ 1) = g(Fy+ 0l 2e ) + 9B+ 00) = gu(Fy+ w)lly 2
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1.4 Local wellposedness

We bound each of these terms separately. Firstly, by (1.2.1) applied to g, and the
nonlinear estimate (1.4.3) we have, for any ui, us € W(I),

1
g (ur) = gn(u2)ly, 2 11y Salllun iy ) + ||u2|\p Plur = usllv
and the analogous bound for g. Next, since g,(u) = g(u) for |u| < n, we may bound

[ gn(u) — 9(“)”27%[1] 5d|||u|pﬂ|u|>n”2 241

5d||U||W(, 1 - Ly >nll 2as2) 2

Nd”u”W(I ||]l|u|>n” d(d+2) [I]Hu||2(d+2) 2d_ [U

p—1 1 2d_ T d-2_
,§d||u|]W(I) Sup —5-— /Rd |u| -2 dx HEGR) HUHOQ%[I]

tel nd 2
d§+4
SalI|FTn @ Pt lull7 )||u|§opil ]

Thus since | > n, using that F,, = P<,F and Hl(Rd) s LPYH(R?), we have

v = villgrin) Sqrdllvno — violl L2 Rd)

1 -1 -1
- (onllsy oy + ol by + Iy + 1R ) lon = v+ Fu = Fillvy

W(I
+ |17 4(||vz|!p ) FIEIG ) Wl oo i gy + 1150 S agmy)

(1.4.5)
To proceed, we need a bound on [vp||yj(;)- By the nonlinear estimates we have, for any
toel' CI,

onllyiary <4 (00 = v0) gy + 1€ D2 wollyrry + Calllonly gy + 1Fully )

<2¢+ Callvnll?y

for n sufficiently large, €(d) sufficiently small. Taking e(d) smaller still, a standard
continuity argument shows that ||vpl|yj,(;) < 4e.

Lastly we observe that
[oll e racry Sa lvmolln + Noly ey + 1Bl Sa ol +¢ (1.4.6)
so the v, are uniformly bounded in H' on I, say by C(vg, €, d).

Putting the above estimates into (1.4.5) along with the assumption (1.4.4), we see that
(vn)n is Cauchy in L{L" for any Strichartz pair (¢,r). In particular (v,), has a limit
v € V(I), which still satisfies [[v[|yj; ;) < 4€ and solves equation (1.4.1).
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Chapter 1. Almost Sure Scattering of the Energy-Critical NLS in d > 6.

By standard arguments, one may extend v to a maximal interval of existence (7_,7% ),
such that it is the unique solution to (1.4.1) in C([a, 8]; HEX(R?)) M W ([a, B]) for any
T - <a<ty<pB<Ty.

We next prove the blow up criterion. We work forwards in time since the result in
the negative time direction is proved in the same way. Suppose that T} < oo and
VIl 10,1, )) < o0 Consider a sequence t, T Note that

. . tn . t
ettty (1) = ! 1008y — z/ =98 g(F 4+ v)ds = v(t) + z/ =98 g(F + v)ds
to tn

Thus by the continuity of the W norm, we find

e 0 i, ) + I v,

, P P . €
SHUHW([tmT+)) + Cd(||v||W([tn,T+)) + HF|’W([tn,T+))) + ||F||W([tn,T+)) < 9 (147)
for n sufficiently large. Then since F, e!(‘"t")2y(t,,) € W(R) we find 1 > 0 such that

e %0 vt 1y I Iy < €

Therefore by the local wellposedness result we can extend the solution to 7'y + n, which
is a contradiction.

Finally, we turn to scattering. Suppose that T, = oo and HU||W([ < 00. Define

t0,00))
. oo .
vy = e 0By — z/ e BB g(F +v)ds
to

Then for any ¢ > g, the dual Strichartz estimate (0.1.10) gives

o) = 0l g = | [ I29(F + 0)(5)ds
t

H1(RY)

<allv —0ast— o0

p p
ooy T I i (.00

since [[v][yir 19,00y < 00 and [|F |11 00y) < 00- Thus vy € H'(R%) and the solution v
scatters to vy as t — +o00.

Lastly, the fact that v is the limit of (vy,), on compact subintervals of (7_, 7% ) follows by
induction of the existence proof over subintervals on which ||v|};; and || F||;, are small,
using (1.4.7) to obtain (1.4.4) on each interval. The number of such intervals required is
controlled due to the time-divisibility of the TW-norm. O

Remark 1.4.2. Observe that by applying Strichartz’s inequality at dyadic scales followed
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1.5 Conditional Scattering

by the dual estimate (1.2.7) we obtain

1 1
2 2 2
( > NQHPNUH?I,T[J]) S ( > ”PNUOH%H) + ( > HPNVQ(FJFU)H;C;&M)

NeoZ Ne2Z Ne2Z
< : F
ool g1 + IVg(F +0)l5 2y < o0

for any Strichartz pair (q,r), I CC I*.

1.5 Conditional Scattering

In this section we will prove the following theorem, giving a sufficient condition for
scattering of the solution to the forced NLS

(1.5.1)

(0, + A = |F + v| 72 (F + v)
v(ty) = vo € HY(R?)

studied in the previous section.

2d_
Theorem 1.5.1. (Conditional Scattering) Let vo € H'(R?), F € RNLFLI(R) (see
the definition in 1.3.1). Let v(t) be the solution to (1.5.1) defined on its mazimal interval
of existence I*. Suppose moreover that

M :=sup E(v(t)) < oo
tel*

Then I* =R, i.e. v(t) is globally defined, and it holds that
vl gy < CM, | gy @) (1.5.2)

As a result, the solution v scatters in H as t — +o0.

Throughout this section v will refer to the solution to (1.5.1) obtained in Theorem 1.4.1,
defined on its maximal interval of existence [* := (T_,T,). We first present a lemma
bounding the W (R) norm of solutions to the unforced defocusing equation

¥@+AM:WMW 153)

u(to) = U € Hl(Rd)

Lemma 1.5.2. There exists a non-decreasing function K : [0,00) — [0,00) with the
following property. Let ug € Hl(Rd) and tg € R. Then there exists a unique global
solution u € C(R; H'(R?)) to the defocusing energy-critical NLS (1.5.8) satisfying

el ey < K (E(u))
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Chapter 1. Almost Sure Scattering of the Energy-Critical NLS in d > 6.

where . i 9
— 2d
E = — 2 PR d—2
(w) =5 [ Vuolde+ = [ Juol 3

Proof. The existence of a global solution follows from the work of Visan [Vis07]. Combin-
ing Theorem 1.1 and Lemma 3.1 of [Vis07] with the conservation of energy for solutions
to (1.5.3),% we infer the existence of a non-decreasing function K : [0, 00) — [0, 00) such
that the solution u € C(R; H'(R%)) to (1.5.3) satisfies

[ull g1 (g xray < K (E(uo))

1
where [|ul| g1 gygay = sup (ZNGQZ NQHPNqur[R])Q, with the supremum taken over
all Strichartz admissible pairs (g,7). Since this norm controls the W-norm (by the
Littlewood-Paley inequality) we have the result. O

Given the blow-up criterion proved in Theorem 1.4.1, to prove global existence and
scattering of v it is sufficient to show that

1]l 7y < 00 (1.5.4)

With this in mind, and in light of Lemma 1.5.2, we will develop a suitable perturbation
theory to compare solutions of (1.5.1) with those of (1.5.3) in W.

We start with a lemma concerning short-time perturbations.

Lemma 1.5.3. (Short-time perturbations) Let ICR be a compact time interval containing
to and let ug,vo € H'(RY) with

||u0HH1(Rd)a ||U0\|H1(Rd) <FE

for some E > 0. Let u solve the defocusing NLS (1.5.3) with initial data u(to) = .

2d

Let F € RNLPLI?(R). Then there exists a constant eo(E,d) € (0,1) such that if we
further suppose

lullyir(ry < €0 (1.5.5)
1
, 3
(Z HPNez(t—to)A(uO — vO)H%V(I)) <e (156)
N
||FHR(1) <€ (1.5.7)

3Conservation of energy for solutions to (1.5.3) is well-known. Nonetheless we remark that, as in the
next section of this chapter, the formal calculations used to prove it can for example be justified via the
regularisation (1.1.14), using the stability theory in Theorem 1.3 of [TV05] to show that solutions of the
regularised problem converge locally uniformly to solutions of (1.5.3) in HL.
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1.5 Conditional Scattering

for some 0 < € < €y, then there exists a unique solution v : I x R* — C solving the forced
equation (1.5.1) with v(tg) = vy satisfying

7
lv = ullyir(p) < Cape@2? (1.5.8)
28
IV19(F +v) — ()]l 22 ) < Care@ 27 (1.5.9)
for a constant Cq1 > 1 depending only on the dimension d.
Proof. In view of the local existence theory, it suffices to prove (1.5.8) and (1.5.9) as

a priori estimates. In what follows all spacetime norms are taken over I x R%. Define
w := v — u, which solves

(i@t—l—A)w:\u+w+F\$(u+w+F)—]u\ﬁuonIde (15.10)

w(to) =Ty — U o
with ||w(to)|| ;1 S E. We have

lwllyiy Sa e 2 w(to)lly, + I VIg(u +w + F) = g(w)]l,, 20 (1.5.11)

a3
where by (1.2.5)
IVIg(u+w+ F) = g(u)]ll 20
4 4 4 4
< a3 a3 a3 a2
SallF17=2V |y 20 + w72V Ely 20 + [|F172Vully 20 + [[[w]™=2Vull, 20

4 4 4 4
d—2 d—2 d—2 )
HET=2Vwlly 20 +[[lw] T2 Vwlly 20+ [[lu]T=2VE]y 20+ [[[u] =2 V]l 24

4
Then using the nonlinear bound H|u1\$VuQH27d% <d HulHI‘fi;QHuQHW, assumptions

(1.5.5)-(1.5.7) and Young’s inequality we have

IVig(u +w+ F) = g(u)]lly, 20
d+2 4 4 4

4 4 _4
Sd€? e eg + ey e+ e 2 |lwlly + €5 [Jwlly + el|w]
d+2
|

a2 =Y
+ llwllfy” + (w2 Vu
4 A 4
Sae™? + ey lwlhy + w2 Vully 20 + [Jw]

a—2
e

2d
2,343
d+2

d—2
- (1.5.12)

taking €o(d) < 1.

It is tempting to also expand the remaining term in W and run a continuity argument,
4

however this will produce the term eOHwHI‘f? on the right hand side which is an issue
for d > 6 since the power ﬁ is less than 1. We therefore make use of auxiliary spaces
X and Y introduced by Visan and Tao in [TV05]. These spaces invoke only ﬁ < %
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Chapter 1. Almost Sure Scattering of the Energy-Critical NLS in d > 6.

derivatives instead of a whole derivative as in W making it possible to run a standard
continuity argument in X. Once we have a bound on ||w||x we can use it in (1.5.12) to
bound [jw||; .

The spaces X and Y are defined by the following norms:

NI

1llx = (ZNd+2||PNfud+22<d+2>>

N|=

|hlly == <Z Nd+2 ”PNhH dy2 2(d+2)>

N 3 7 d+4

Note that the space X scales in the same way as W. Observe also that | F||x < || F|| .

To see that w belongs to X we observe the following relation between X and W: By
Bernstein’s inequality we have

1
2

1lx Sa (Z NP, stasn )
—4

22d(d+2) 2(d+2) Qd(2d+2)
We now interpolate the L¢T2 L& 244 norm between L, 2 L,*** and L{°L2 yielding

da—4

d
HPNf||d+2 2d(d+2) ~ ”PNf||2(d+2) 2d(d+2 ||PNf| 55,3
d—2 7 4244

and apply Hoélder’s inequality for sequences to get

2 d—4
2(d—2) 2(d—2)
I fllx Sa (Z N?| |PNfH2(d+2> 2d<d+2)> <Z NQHPNngo,Q)

—2 7 4244 N

d—
2(d—

Sd<Z!\PNf\I€V>d <ZHPNf||LooH1> ’ (1.5.13)
N

Thus by Remark 1.4.2, w indeed belongs to X.

We can use this to bound the remaining term in (1.5.12). Indeed, by the Littlewood-Paley
inequality followed by Bernstein’s inequality we have
4

H]w|d 2Vu||2 2d <||wHX2HVU||2(d2 1) 2d(d2-4)
—12 ’d3—2d2—4d+24

2(d?—4) 2d(d?—4)

P17 Bod?—idL3 1) is a Strichartz pair, we can use the nonlinear estimate

where, since (
to bound

a+2 d+2

H Cu\|2(d2,4) 2d(d2—4) A<Jd HUOHH 1(Rd HUHd_ Nd E+ 60 <d E
(Re) %%
d2—12 ’d3—2d2—4d+24
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1.5 Conditional Scattering

for eo(F, d) sufficiently small.

Substituting this into (1.5.12) and combining the result with (1.5.11) we have

a+2

: 4 A 4 a+2
lwllyir Sa |~ % wto)llyi + €72 + ¢ 2 wllyy + Ellwllx® + Jwlli,*  (1.5.14)

So we must show that ||w]||x is small. This will require two estimates both proved in
[TV05], see also [LZ11]. The first (Lemma 3.2, [TV05]) is a Strichartz-type estimate
between X and Y: ‘

and the second (Lemma 3.3, [TV05]) is the nonlinear estimate

t
/ A F(5)ds

to

Sa | Flly (1.5.15)
X

lg=(o)ully Sa ol flulx (1.5.16)
(with a similar estimate for gz).
Using (1.5.15) and the fact that w satisfies equation (1.5.10) we immediately obtain
lwllx Sa lle™ 2 w(to)|[x + lg(u +w + F) = g(u)|ly (1.5.17)

First consider the free evolution term. By (1.5.13) we see

1

d—4
‘ ' p) 2(d—2)
et % w(to) | x S (Z HPNe“f—tO)Aw(to)H%-V) (Z \szw@o)ll%n)
N N
2 d—
<ged2Fd—2

~

I

We now move onto the second term in (1.5.17). Using (1.2.2), Minkowski’s inequality
and the nonlinear estimate (1.5.16) we have

1 4
lg(u+w + F) — g(u)lly S/O lu+ O(F + w)llj3,* |1 F + wl|xd6
i i i
—2 —2 —2
Sallulliy™ + 1ENG" + vl ) A + [lwllx)
4 4 4
Saleg ™ + ™2 4 [vll ) (e + flwllx)
where we used that ||F[[;;, + [ F||x = [|F||; < € in the last line.

To bound ||v]]};,, we first use that vg is close to ug and that u satisfies the standard NLS
(1.5.3) to bound the linear part:

i(t—to i(t—to)A(

vo — uo)|lyir + [|€/70 2 ug ]|y
a2
d—2
Sae + llully + llully;,

€= 2 014 Salle
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Chapter 1. Almost Sure Scattering of the Energy-Critical NLS in d > 6.

<d€o

~

We can thus apply the local wellposedness theory to infer that, on the interval I,
[ollyir Sa €o

Returning to (1.5.17) we thus have

4

_4 4 _4
+(eg "+ €2 465 ) (e+ Jwllx)
_.I_

B

|
[NIFS

_2

[wl[x Sae®2
2
<d€d72

~

d—4

_4
= tetewlx

Thus choosing ¢y sufficiently small depending on d and E we conclude

d—
lwl|lx SqeT?ET

S

Now that we have bounded ||w||x, we can return to (1.5.14) to bound |Jw||;;;. We have

. 4 _4 _4 da+2

lwllyy Salle’™"%w(to) |y, + €72 + €f 2wy, + Ellwl 52 + w5
4 A 2 d-4 4 442

Sae + €72 +e5  lwlly, + E(eT2 E=2) 72 4 |[w|| 5

S 1 %
Sa€ T 4wl + [l

for €9(F,d) sufficiently small. The result (1.5.8) now follows from a standard continuity
argument.

Lastly, we show (1.5.9). By (1.5.12)

22 4 25 2 o
I9I9(F + ) = g(u)lly 21, Sae™ + 6wl + ull ol + ol

4 i3 i
Sac®2 + [[wlly + [[wlly™ + [lwllg

using the bounds assumed on |lu|/;;; and || F||};;. Substituting in the bound just obtained
for [Jwl|};; gives the result. O

We now extend this result by removing the smallness assumption on u in the case when
u and v have the same initial data.

Lemma 1.5.4. (Long-time perturbations) Let ICR be a compact time interval with
to € I and let vo € H'(RY) with
E('U()) < E

Let u € C(I, H'(R%)) be the solution to the defocusing NLS (1.5.3) with initial data
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1.5 Conditional Scattering

u(ty) = vo and
sy < K

for some K > 0. Then there exists e1(E,K,d) € (0,1) such that for any F € R(I)
sufficiently small in the sense that

HFHR([) < e,

there exists a unique solution v : I x R* — C to the forced equation (1.5.1) with initial
data v(ty) = vo and it holds
lv — UHW(I) <1 (1.5.18)

Proof. Without loss of generality assume t3 = inf I. As in the previous proposition it
suffices to prove the bound as an a priori estimate. In order to make use of the short-time
perturbation theory, we will induct over intervals on which the W (I)-norm of u is small.
To this end we partition I into consecutive intervals with disjoint interiors (I j)}'Izl such
that )

ully ;) < €0(2(2E)2, d) (1.5.19)

for each j = 1,..., J, where ¢ is as in Lemma 1.5.3. By the time-divisibility properties of
W we are able to do this with

2(d+2)
K d—2
J S <1 (1.5.20)
€0(2(2F)2,d)
Denote [; = [tj_1,t;]. We must check that the conditions of Lemma 1.5.3 are satisfied
on this interval.
We first make two observations. Using Strichartz’s inequality (0.1.10) we have
b i(tj—s)A
Jo(t5) = wltllin e = | [ e I2Tlg(F +0) = glw))(s)ds
to L2(]Rd)
<AL VIo(F + ) ~ gl 20 4, (15.21)

Secondly, by the Strichartz estimates (0.1.9) and (0.1.10) followed by the embedding
(1.2.7) we obtain

D=

(Z]P eit=t )A (J) _u(tj))H%/V(jo))
N
=2 Py [g(F +v) — g(u)](s)

1
2 2
— ds
2(d+2) 2d(d+2
: Jr2)7 d<2:4>[1.7+1}
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Chapter 1. Almost Sure Scattering of the Energy-Critical NLS in d > 6.

2
< Aas (; N2 Pylg(F +v) - g<u>]<s>||§,d%[to,m>

< AgallVIg(F +v) = g(w)]lly, 20

vdrztosts]

(1.5.22)

Set Ay :=max{1, A4, A’d72}.

We now prove a technical claim that will be useful for the inductive step. In the rest

of this proof we denote o := 25— and Cy := AqiCq1 > 1, with Cg; the constant from

(d—2)
Lemma 1.5.3.

Claim 1. We may take €1 (F, K,d) > 0 sufficiently small such that the following holds:

Define a sequence (e(j))jill by

J
e(1) = (E, K, d), €(j+1)=Cq) e(k)* for1<j<J
k=1

Then for all 1 < j < J+1 it holds

e < () < (20T e’ < minfeo(2(2E)3, d), (2E) %)

Proof of claim. The cases j = 1, 2 are easily verified (since o < 1). Suppose that the
claim holds for all 1 < j < k for some k < J. Then by definition

k-1 k! k

e(k+1) =e€(k) + Cge(k)® <2C4e(k)* < (2C3)2w=0"" €}
as required. That €(k) > €; is clear since the sequence is increasing, and for 1 < k < J,
J— ’
ek +1) <2C)Zv=" " < min{eo(2(2E)3, d), (2E)3}

for €; sufficiently small depending on F, K and d. O

We now prove a second claim in which we reduce the long time perturbation result to
the short time result on the intervals ;. In the rest of this proof we will take € (£, K, d)
as in the above claim.

Claim 2. Under the assumptions of the lemma, for all 1 < j < J it holds

1
Hv(tj—l) HHl(Rd) < 2(2E)>2

1
2

(Z [ Py ulty ) - v<tj_1>>|r%~vuj>> < ej) < co(2(2E)2,d)
N

I9I9(F +v) = g(u)ll 22 1) < Care(7)°
7

Ju = vllyiy g,y < Caed) =2”
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1.5 Conditional Scattering

for €(j) as in the previous claim.

Proof of claim. Recall that for each j =1, ..., J it holds

1
[ullyi ;) < €(2(2E)>,d)
1
”FHR(IJ-) < e <e(2(2E)2,d)
1
[ultj-)ll g < (2E)>

where we used that u has conserved energy.

For j = 1, we have u(tg) = v(tg) = vo so we can immediately apply Lemma 1.5.3 to
obtain (using €(1) = €1)

IV 09(F +v) — 9]y sy < Carel)°
and ,
Hu — UHW(h) < Cd,l‘f(l) (d—2)2

Now suppose that the claim holds for all 1 < j < k for some k < J — 1. Then by (1.5.21)
we have

k

lu(te) = o)l ey <Aa D IIVI9(E + ) = g@)llly, 224,
k'=1

k
<Ag Y CareK)® = e(k+1) < (2E)?
k'=1

and so [[v(tg)|| g1 (gey < 2(2E)%. Similarly using (1.5.22) we see that

1

bl k
(z | Pret=2 (o(ty,) — u(tk>>||§~v(,k+1)> <Ay S IVIg(F +v) = g()]lly 20 1,
N

Yd+2
E=1 *

<e(k+1) < e(2(2E)?, d)

Thus since also ||F||R(Ik+1) <€ <e(k+1), we can apply Lemma 1.5.3 on I to obtain

7
e — UHW(IkH) = Cd,le(k +1) (d-2)2

and
IVlg(F +v) = g@)lly 2 p, ) < Canelk +1)°

rd42 R

This completes the proof of the claim. O
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Chapter 1. Almost Sure Scattering of the Energy-Critical NLS in d > 6.

We now sum the bounds over all the sub-intervals and use that o < ﬁ to obtain

J
lu = vllyirry < Can D e()* <e(J+1) <1
)

Using the perturbation theory developed we are now able to prove the conditional
scattering result.

Proof of Theorem 1.5.1. By the local wellposedness theory, it remains to prove that
ol gy < COL | gy )

Consider first [tg, 7). Partition [tg,T}) into J consecutive intervals I; such that
1Fllagr,) < (M, K(M), d)

where K is the non-decreasing function from Lemma 1.5.2 and € is the constant from
Lemma 1.5.4. Due to the time divisibility of the R-norm, we can do this with

YL T
~ \a (M, K(M),d)

Denote I; = [tj_1,t;] for 1 < j < J. On each I; we compare v with the solution
u; to the usual defocusing NLS (1.5.3) with initial data u(t;—1) = v(tj_1), satisfying
E(u(tj—1)) < M by assumption. By Lemma 1.5.2 we know that such a solution u; exists
globally in time and satisfies

g lhircry < sl ey < K (M)
We can therefore apply Lemma 1.5.4 on each I; to see that v satisfies
1ol ) < o= ujllyi g,y + gl < K(M) +1

Summing the estimates over the intervals I; and arguing in the same way on (7_, o]
implies the result. O

1.6 Energy bound

In this section we prove that the solution v to the forced NLS (1.5.1) does indeed satisfy
a uniform in time energy bound on its maximal interval of existence I* = (T, T ), under
assumptions on F which we shall prove to hold almost surely for F = ®® f¥ in the next
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1.6 Energy bound

section. The precise result is the following.

Theorem 1.6.1. Let vy € H'(R?), to = 0. Denote by v € CYHL (VW (I*) the unique
2d

solution to (1.5.1) obtained in Theorem 1.4.1, for a forcing term F € RN LPLI? (R)
which solves the linear Schrédinger equation (id; + A)F = 0 with L? initial data and

satisfies
2d

FeLt gt

2d(2d—1) 2d(d—2)

VF c L2L£d 3 o mLtLQdQ 7d+4+do ﬂLtLg}i 4 mLtd 2 40Ld(d 6)+160 (R)

for some o(d) sufficiently small. Then it holds

2(d— 2) 2(d+2)

sup B(o(0) < (1+ B(w) + 1P %, o+ 17155 )
> 2 2
xDCallFIE sy oy + IV oo g + IV sy
—2
FIVEI g+ IVFITET i ) (16)

d—2—40°d(d—6)+160

for some Cy > 0.

This will follow from an analogous theorem for the regularised solutions v, to

(1.6.2)

(iat + A)Un = gn(Fn + Un)
v (0) = vy 0 € H?(RY)

with g, (u) = up),(Juf?), Fr, = P<,F and v, 0 = P<,vo, as in Section 1.1.3.

Theorem 1.6.2. Suppose that F' satisfies the assumptions of Theorem 1.6.1. Let v, be
the unique global solution to (1.6.2) in C(R, H*(R%)) (N CY(R, L*>(R%)). Then it holds

2(d— 2) 2(d+2)

sup By, (v, (1)) < (1+ E(vn0) + [|Fll 2~ 2 g +|IF|IS 24 )
teR o0, oo,

1
.eXP(Cd(HF”i + ||VF||§7%[R] + ||VF||2 2d(2d—1)

2d
d—4o (R] 2d2 7d+4+do

[R]

+IVEly, oy + IVFI 75T o 2a(d2)

T A s e |

) (1.6.3)

R]

for some Cyq > 0. Here
1 2 1 2
Ealon®)i=5 [ 1VonPdo+5 [ onlloa)da
2 Jrd 2 Jra
Before proving this theorem, we show how it can be used to deduce Theorem 1.6.1.

Proof of Theorem 1.6.1 given Theorem 1.6.2. Fix a compact subinterval 0 € I C I*.
Observe that E(vy,0) — E(vp). Therefore, denoting M,, the quantity on the right hand
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Chapter 1. Almost Sure Scattering of the Energy-Critical NLS in d > 6.

side of inequality (1.6.3) and M the right hand side of (1.6.1), we have M,, — M.

Consider the sequence vy, ,, := vn]1|vn|§n. For every t € I we have

p+1
[vnm (D155 (Rd) = |on ()P da < - /Rd en([on(t)]*)dz < (p+ 1) sup My
nl

lon|<n

and so for each ¢t € I there exists a subsequence (vp; ,;); weakly converging to v in
LPH(RY), from which we deduce

. . .p+1
o0l s < i o

L onslon, (O )da
R

for every t € I. Similarly, we have ||v(t)||? < liminf; ||y, H?-{l, so

H1(R4)

E(u(t)) < liminf By, (v, (t)) < liminf M, = M
J J

d

We now prove Theorem 1.6.2. The idea of the proof is to work on small intervals on
which F' is small and use a bootstrap argument to control the energy increment there.
By only placing F' into spaces with finite time exponents we are able to iterate this
finitely many times to obtain a bound over the whole interval. In early papers on this
topic [KMV19, DLM19, DLM20], a double bootstrap method was used, simultaneously
controlling the solution in weighted LP spaces via Morawetz inequalities. Thanks to a
randomised L}-estimate introduced by Spitz in [Spi21] (see Section 1.7.2), this is not
necessary here and we can directly bound the energy increment by placing F' into spaces
of low time-integrability.

Proof of Theorem 1.6.2. In this proof we will often use the notation p instead of %, SO

any implicit constants depending on p in fact depend only on d. We will show the bound
holds on the compact interval [0, 7] for any 7" > 0. Since the bound does not depend
on T, this clearly extends to [0,00), and the argument in the reverse time direction is
analogous.

Define the norm

10z == El 1 _2a +[|VElly sae +[[VF, _2uean

2, 2d2 —7d+4+do

+ ||VF||1 2 +|IVF| 4 2d(d—2)

d—2—40’d(d—6)+160

on any time interval. Partition [0,7] into J consecutive subintervals I; := [t;_1,1;],
j=1,...,J such that
1Pl ziz;) <

for each 5 = 1,...,J and some n < 1 to be determined which depends only on the
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1.6 Energy bound

dimension d. Note that by the time-divisibility properties of the Z norm, it is possible to
do this with

1

< 7 ;
J Sa ||F||%7$[R] + ”VFH?,M%%[R]

d—2

FIVEN 20y + IVFITST s (1.6.4)

d—2—40’d(d—6)+160 [R]

HIVEI2 _sapa

’2d2 —7d+4+do [R]

For each j =1,...,J define

Ay, (t;) =1+ sup Ey(va(t))
tE[tjfl,tj]

In the following calculations all spacetime norms above are taken over [t;_1,t] x R, Since
v, € CYR, L2(RY)) M C(R, H*(R?)) one may differentiate E,(v,(t)) to obtain

O, En(va(t)) = —Re /R (v, — gl ([va]?))
which is well-defined since dv,, Av, € L?(R?). Integrating this over [t;_j,t] and

performing a calculation similar to that in [KMV19, DLM19] (see Appendix 1.A for
details), we obtain

| En(vn(t)) = En(vn(tj-1))]

1
< 5 [tsupt] H‘Pn(|Fn + Un|2) - Son(|vn|2) - 9071(|Fn|2)”LI(Rd) (1'6‘5)
j—1,
+IVE, - V(gn(Fp + vn) — gn(F))ll11 (1.6.6)

First consider (1.6.5). Observe that

“Pn(’Fn + Un|2) - ‘Pn(lvnlz) - @N(|Fn,2)‘ S/p |En|Plon| + [ Fnllvn P

uniformly in n. Hence by Young’s inequality we have

[en 1 +va®) = @nllval’) = enllFaP)|

2
5 2
Sa Ollonll3 pi1 + Codl Full2ob i + Coall Falls? , 1
2
5= 2
Sa 04w, () + Cs.al Fallaopa + Coal Fall3d p1a

for any 6 > 0, since [|vn |2, 11 S HU"“%;”H%'
We now turn to (1.6.6). This time we use (1.2.5) to bound

(1.6.6) Salllvn P~V Eal*[l1,1 + llon P~ Vo [V Eu] 11 + [1FalP~H VE| [ Vol 11
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Chapter 1. Almost Sure Scattering of the Energy-Critical NLS in d > 6.

We can control these terms as follows, using that A, , (t;) > 1:

lfon P~V FalP 1 <NonllZp sV Fully,_saza [V Full, _saaasy

’2d2 —7d+4+do
Sy DIV Elz, e IV Fally paan
vn P~ [V oul IV Eulll1 <lval% gt | Vonlloo 2| VFally 2
vd—4
Sad; o (GIIVElly 2

F P~V E[Vonlllg < Vonlloo 2l Fn I 12d IVERl as_ 20u2

d—4o —2—40’d(d—6)+160
<Ay, ()| Fn Hp Yos IVFll a2 a2
vd—do d—2—40°d(d—6)+160

Noting that the spaces into which F}, has been placed here are exactly those which make
up the Z-norm, we can bound each term by CyqA¢, , (t;)n, and so by (1.6.5)-(1.6.6) it
holds

Ar; 1 () Sa 1+ En(vn(tj—1)) + 04 (t) + Csal Fn Hoop+1 t] ]

oop+1[tj 1t ]+nAt ( )

Choosing ¢(d) and n(d) sufficiently small and using that ||F,||qp S || Fllap for1 < a,b < oo
(and likewise for VE},), we thus have

Ar;, (t) < Cg(1+ Ep(vn(tj-1)) + HFHOO,,H ® T+ |!F||00p+1 R))
for some constant C; > 1.

Iterating the results on the consecutive intervals (/;) 3] 1, We obtain

2

Ay () < 203 (1+ En(0a(0)) + 1FIZ 7 oy + IFIZE 4 m)
forall j =1,...,J, from which
2

Ao(T) < 263)7 (1 + E(vn0) + IIFI 30 1w + ”F”oop+1 )

where we used that Ey,(v,0) < E(vp0). Combining this with (1.6.4) yields the result. [

1.7 Almost sure bounds for the forcing term

In this section we show that the randomised linear evolution F*“ := "4 fv

almost surely
satisfies the conditions required for wellposedness and scattering provided the initial
data f lies in a Sobolev space of sufficiently high regularity. In particular, we prove the

following theorem:
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1.7 Almost sure bounds for the forcing term

Theorem 1.7.1. Let max{ 3(42%7_11), (szl??;fz)} <s<1and fe HRY. Let f* denote

the randomisation of f as in (1.1.11) and F¥ := e f*. Then when o(d) is sufficiently

small we have .
1

2d 1 2d
FY e L®LI Ly L (N R(R)
4d—2 2d(2d—1) 2d 2d(d—2)

_4d—2 _zalga—l) 2d_ d—2
VEY € L% ‘%d73fa m L%Ligd277d+4+do ﬂ L% 574 m Ltd7274o- de(d76)+160 (R)

for almost every w € ().

When combined with the results of the previous section, this completes the proof of
Theorem 1.1.1.

The proof of the bounds in the above theorem is split into subsections according to the
method used to obtain the almost sure bound. Throughout, we shall make repeated use
of the following important generalisation of Khintchine’s inequality due to Burq and
Tzvetkov [BTO08], formulated here as in [BT08].

Lemma 1.7.2. (Large Deviation Estimate, Lemma 3.1 [BT08]) Let (gi)ren be a sequence
of independent, real-valued, zero-mean random variables on a probability space (2, A, P)
with distributions (pg )k satisfying

/ e dug(x) < e’ VyeR
R

with the constant ¢ > 0 independent of k,~vy. Then there is a constant C' > 0 such that

> crgk

keN

<oVE (z rckP)Q

keN

LA(Q)

for all (cx)x € £2(N) and 3 € [2,00).

1.7.1 Bounds using randomisation-improved Strichartz.

In this section we will prove that under the conditions of Theorem 1.7.1, we have

2d_ 1 _2d
FY e LPLT MLy L (N R(R) (1.7.1)
and
4d—2 2d(2d—1) 2d(d—2)
VFY ¢ LEL2377 () L2240 Tdrarde () [2[H0H07 (R) (1.7.2)

almost surely. Note that it is not claimed in the Theorem that VF“ lies in the final space
listed above, but we need it in order to deduce one of the other bounds by interpolation.

These results rely on the following proposition allowing us to gain derivatives on the
randomised free evolution, adapted from [Spi2l1]. Throughout this section, f“ always
refers to the randomisation of f as in (1.1.11) and all spacetime norms are over R x R%,
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Chapter 1. Almost Sure Scattering of the Energy-Critical NLS in d > 6.

The key estimate for this section then reads as follows.

Proposition 1.7.3 (See Proposition 3.4(ii), [Spi21]). Let (q,po) € [2,00) satisfy

(1] < (d - ;) <; - plo) and (q,p0) # <2, ;13::23) (1.7.3)

Let p € [po,00). Then for any f € H*(R?) with s > 0, it holds

it A
HeZt wa ﬁBS-‘r%-‘-%—% de(va:pO \/B”fHHS(Rd)

wq,p,2

forall g € [1,00).

Observe that the maximum derivative gain by this estimate occurs at the non-allowed
4d—2

» 59=3), where we would gain

endpoint (2

2 d

q Do

d—1
2d -1

4
;=

derivatives.

Since the proof of Proposition 1.7.3 is very similar to the d = 4 case in [Spi21], we omit
it here, however we remark that it relies crucially on a Strichartz estimate in radially
averaged spaces due to Guo [Guol6].

The bounds on F“ without any derivatives are then implied by the following corollary:

Corollary 1.7.4. Let q € [2,00), p € [2,00) satisfy

2 d d
<= 1.74
PR (1.7.4)

Let f € L*(RY), f* its randomisation. Then for almost every w € Q it holds

Heimfw”Lng <00

Proof. Let g > 2. By the Littlewood-Paley inequality we have

2
itA it A it A
le* Fllgspary < (E || Pe waLng> = [le* waLngpz
N .

L?

Since (g, p) satisfy (1.7.4), there exists 2 < pyg < p such that (¢, pg) is a Strichartz pair,

i.e.

2,4 d_,

g po 2
Since every Strichartz pair satisfies (1.7.3), we are able to immediately apply Proposition
1.7.3 with s = 0 to obtain the result. ]
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1.7 Almost sure bounds for the forcing term

1 2d
It is then immediate that, for o(d) sufficiently small, F* € L7 Li~*" almost surely.

2d_
To show that F € L° Lz *(R) for almost every w requires an endpoint case of Proposition
1.7.3 allowing for ¢ = co. We prove this as in [KMV19].

Lemma 1.7.5. Let s > %, f € H3(RY), f« its randomisation. Then for almost every
w € Q it holds o
e e L Li? (RY)

Proof. Let I C R with |I| = J to be determined. Let tg, t € I. Then for any N € 2% we
have

IPNe™ fl 20 <|IPne™ ()| 20+ [0 PNE" A aa
Li~? (RY) Li~2 (RY) LILE2 (D)

and averaging this over tg € I we find
it A -1 it A it A
| Pye fw”y%(w) SOTNPNE Ny 2y + 18P e 2N 2y

_d=2 ; dt2 ;
<5~ m ||PNe”Af“||d%’%[R] + 8728 || 0p Py [ 2 2a gy

d—2'd—2
—d=2 itA t2 .9 itA
SO 2 |[Pye’ JMH%,%[R] + 624 N7||Pye’ JMH%,%[R]

FICI
SNT | Pne f2]| 20 2a gy

choosing 6 = N~2 in the last line.

Averaging over w we thus obtain, via the Littlewood-Paley inequality,

N

et 7<)

A pwi 2
< <;HPN€ f ||oo,d2_d2[R]>

2d
d—2
Lg cht)o Lac (R) Lﬁ
w

=

=2 7 W
S <Z<N T || Pyet f HdMQ,dde)Q)

N Ll
="l a2
LB ) o
d-2'3-22
Applying Proposition 1.7.3 with s = %, q=p= d%dQ and pg = % we see that
this is bounded by v/B||f|| ms- O

For the remaining bounds of (1.7.1)-(1.7.2), we prove another corollary of Proposition
1.7.3 to handle the terms involving VF“.

Corollary 1.7.6. Let g,p € [2,00) satisfy (1.7.3), s > 1 — (%) % € (0,1). Then for
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Chapter 1. Almost Sure Scattering of the Energy-Critical NLS in d > 6.

any f € H¥(RY), f¥ its randomisation, we have
Hveimfw”LgLI; <00

for almost every w € ).

~1
Proof. Setting py = <% — % . %) € (2,00) for ¢ # 2, and pg = 23?% for ¢ = 2,

where ¢ is a small constant, the pair (g, po) satisfies (1.7.3) and

2+d_d_{(2‘211)2forq¢2

d—1 )
q bo 2 2d7_1—§2d7_1f0r(:I22

Applying Proposition 1.7.3 in combination with the Littlewood-Paley inequality for these
parameters yields the result, provided §(d, p, s) is sufficiently small. O

Applying this corollary with ¢ = 2 we immediately obtain that

dd—2 2d(2d—1) 2d(d—2)

VFW c L2 2d—3—0 m LtL2d2 7d+4+do m L2 W(R)
completing the proof of (1.7.1)-(1.7.2) since s > 1 — (5‘2;_11).

To conclude this section, we show that |[F“[|gg) < co almost everywhere.

Proposition 1.7.7. Let s > @fﬁ%. Then for almost every w € Q we have

F“ e R(R)

Proof. Recall

1y = 1PNl 2gen 2agen gy + IVEZ 2 saen gy + 17N ot

a2, 2d2) ®)
For the first terms, we apply Corollaries 1.7.4 and 1.7.6 with ¢ = %, p = 2‘2(2‘1;“42),
which forces the lower bound
- d?+6d—4
8 e —
(2d —1)(d+2)
For the final term, apply Proposition 1.7.3 with ¢ = d + 2, p = Q(djm and pg =
d—1)(d .
W € [2, p] to obtain
w <
170, e S VBl
W d+2, 2(d;2) 2
d
foranys>%and621. O
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1.7 Almost sure bounds for the forcing term

1.7.2 Randomised L} estimate

In this section we will prove that, under the conditions of Theorem 1.7.1, we have

d—2 2d(d—2)

2d ‘
VF® € LiLF* (N L72% Li9 9797 (R) (1.7.5)

2d(d—2)
almost surely. Since we have already proved that VF“ € L?L;l(d_ﬁ)ﬂﬁg (R) almost surely,
for the third bound it is sufficient to prove that

2d(d—2)

VF* € L} Ly 97 (R) (1.7.6)

We thus only need to find estimates in Lebesgue spaces with time exponent 1. Key to
such bounds are the following propositions which are generalisations of results of Spitz
[Spi21] to high dimensions. The proofs are the same as in the dimension 4 case so we do
not present them here, however we remark that it is for these results that the physical
space part of the randomisation of f is necessary.

The first result exploits the decay properties of the Schrodinger semi-group to achieve
bounds in spaces with low time integrability away from ¢ = 0:

Proposition 1.7.8 (Proposition 3.6, [Spi2l]). Let s > 0 and consider q € [1,00),
p € [2,00) 0 > 0 such that

Let f € H*(R?) and £ be its randomisation as in (1.1.11). Then it holds
||t(7€itAfw||LEL§BZ<’2([LOO)) Sdgpo \/BHfHHS(Rd)

forall B > 1.

The gain in derivatives needed for (1.7.5) is obtained by interpolating this with the
improved Strichartz estimate of Proposition 1.7.3 to obtain the following:

Proposition 1.7.9 (Proposition 3.7, [Spi21]). Let s > fHtL-. Then for any f € H*(RY),
f“ its randomisation, it holds

||V€itAfw||Lth1Lgo(R) Ss,d \FBHfHHS(Rd)

forall B > 1.

To prove (1.7.5), we need a more general version of this proposition allowing for a larger
range of exponents in the a-variable. The proof is a modification of the proof in [Spi21]
of the previous result.

Proposition 1.7.10. Let s > %, B > 1. Then for any f € H*(RY), f its
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Chapter 1. Almost Sure Scattering of the Energy-Critical NLS in d > 6.

randomisation, it holds
IV £ 1 11 1 gy Ssar VBIF o (me) (1L7.7)

for any 7 2d <r<oo.

Proof. We will prove the case r = d . This is sufficient by interpolation with Proposition
1.7.9.

Observe that we may decompose the left hand side of (1.7.7) as

itA rw < [|HtA fw :
Ve £ . d%( )N e f HLthlBIA 2(R)
wHt HT d—

it A A it A
SHeZt waL'BLlBl ( 1,1) + Hen waLBLlBl (—oo,—l] + Helt waLthlBlM 2[1,00)
7 m7

We first consider the term over (—1,1). By Holder’s inequality we have

itA pw ) < itA pw ) WitA pw .
He f HLEJL%BZQ%AL’?(*LD ~d ”6 / ||L5L33%72(,171) ~d ||€ / HLng(})szﬁéé)(_l’l)
where
d—1 0 d d 0 d
0) = - = d o) = —
BO) =501 " 33d-1 a Y0 =37t 3301

for some 0 < 0(d, s) < 1 to be determined.

We may now apply Proposition 1.7.3 with ¢ = 2, py = 2;%7335, p= % to obtain

it A
Helt waLBLlBl ( 1,1) <d \FHfHHV(ts) ~d \FHfHHS

for d(s,d) sufficiently small.

Next consider the term over [1,00). By Holder’s inequality for sequences we have

1

2
[ i I <ZN2HPN€”Af“H2dm> < e F % iy |l [ e
d—12 N -4 d 4 )2 %72

for aw € [0,1), v € [0,122) to be determined.

Combining this with Holder’s inequality in time, we have

. 145
HeZtAfw||L§Lt1312d [1,00) So ||t |’eZtAwaa1+w e FN1M 17%
42 m*2 BLdQ 8
d—1" NI 12[1,00)

o6



1.7 Almost sure bounds for the forcing term

Salle™ 1% HW1 THA e el

LBLZB 2 [1,00)

- (1.7.8)

L5L2Bl+"/ [ ,00
5,2

We will bound the first term of (1.7.8) using the randomisation-improved Strichartz
estimate from Proposition 1.7.3, and the second term using Proposition 1.7.8. Fix

2 d—1
— d - 47
“73 an TT30@d-1)

(chosen to optimise the gain in derivatives in what follows). Applying Proposition 1.7.3
with ¢ = 2, pg = 23?535 and p = dZszL we obtain, for §(d) and v(¢) as before,

WA pw ) < itA pw ]
||€ f HLngB};iLQ[LOO) ~d ||€ f HLgB;}%%;“‘;)[Lm)

Sas VBl gvives
Sas VB fllas
4d—1

since v+ v(J) = Soda-n T 2 2d 1 < s for ¢ sufficiently small.

For the second term we apply Proposition 1.7.8 with ¢ =2, p = d2—_d4, o= 2(1;:‘;) = gi—gg

to find

Htiz(llti) eitAwa
Br2Fg
L,L;B

[

oy )SﬁHfHHs

T I«
2d 5 b
d—4>

since 1 — 2L = A=1_ 4 O(§) < s for § sufficiently small. Returning to (1.7.8) we have
1 302d=1)

[e%

it A
Helt waLgL%Blw [1,00) gd \/BHfHHS
a-1?

Treating the term over (—oo, —1] in the same way we obtain the desired result. O
The bounds (1.7.5) (via (1.7.6)) are now immediate, observing that r = % is

greater than d2—_d4 for o(d) sufficiently small.
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Appendix

1.A Calculation of energy increment (1.6.5)-(1.6.6)

Proposition 1.A.1. Let v, € CY(R, L?)NC(R, H?) solve (1.6.2) for some F,, satisfying
the conditions of Theorem 1.6.1. Then for any T1, Ty € R it holds

T

Bu(un(T2)) = Bu(wn(T1) = =3 | [ (1P +0u12) = eullonl®) = pulIFl)da]

T o
—Im / VE, - V(gn(Fn+vp) — gn(Fy))dzdt
Jr, Jrd

Before proving this proposition, we recall without proof the following useful fact:

Let X be a Banach space. Then any f € C'(R, X) is in fact Fréchet differentiable from
R to X with Fréchet derivative d;f(t,-) (see, for example, Section 1.3 [Caz03]).*

We will also use the following result to differentiate the nonlinearity:

Lemma 1.A.2. Let i € C%(C,C) with bounded second derivatives. Suppose also
Y(w) € LY(RY) for all w € L*(R?). Then the map

H:w »—>/ Y(w(x))dx
R4
is Fréchet differentiable from L%(R?) to R with derivative

DH|w(h) = /R (hdtp(w) + Fstb(w))da

Applying this lemma with ¢(2) = ¢, (]2|?) and using the chain rule we observe that for
any v € CH(R, L?(R%)) it holds

@/ en(lvf?)dz = 2Re/ v gn(v)da (1.A.1)
R4 R4

1CY(R, X) is defined anaologously to 1.1.15.
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Chapter 1. Almost Sure Scattering of the Energy-Critical NLS in d > 6.

We can now prove Proposition 1.A.1.

Proof of Proposition 1.A.1. We split the energy into a kinetic and a potential term:
1 1 )
KE(v) = ~(Vo, V) 12 and Go(u) = f/ on([ul?)de
2 2 Jrd
The map KE is (Fréchet) differentiable from H'(R?) to R, thus if we further suppose

that v € C1(R, H') we have

iKE( (1)) :Re/ VoV (ow)dx = —Re/ O Avdx
dt Rd R4

and the same formula holds for v, € C1(R, L2(R%)) N C(R, H?(RY)) by approximation.
Likewise, by (1.A.1), we have

d

“Gu(on(t) = Re /]R T (v)de

Combining these results and using that v, satisfies equation (1.6.2) we obtain
Ts
En(un(T2)) = En(on(T1) = Re [ [ 0al~Avn + galvn)dodt
T JR
Ty '
=— Re/ / O gn(Fr + vn) — gn(vp)]dxdt
=— Re/ / (0y(Fyy + vp) gn(EFn + v) — 80ngn(vy) — 8y Fpgn(Fy))dxdt

+ Re/ / O F (gn(Fy + vyn) — gn(Fy))dzdt
7 JRA

It then remains to use (1.A.1) to rewrite the first integral above, and 0, F,, = iAF,, for
the second, to obtain

En(on(T3)) = En(va(T1))

=5 [0 [ enlB ) = ullon) — enl P

+Tm / AT (gn(F + vn) — gn(Fo))dadt
T JR4
1 2 2 2 2
= =3 | L, ollBut vaf®) = uloal®) = on| Fa)do

2 Ty

To _
—Im / VFEF, - v(gn(Fn+vn) _gn(Fn))dmdt
T R4

where we used the fundamental theorem of calculus and integrated by parts to obtain
the final equality. O
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1.B Justification of Remark 1.1.6

1.B Justification of Remark 1.1.6

Here we will outline the proof of the following statement claimed in Remark 1.1.6.

Lemma 1.B.1. Let 0 < s < 1. Let f € L*(R%) and f denote its randomisation (1.1.11).
Then if the probability space (2, A,P) and the random variables X%’,k,l : Q) — R are as
described in Remark 1.1.6, we have that f ¢ H*(R?) implies < ¢ H*(R?) for almost
every w € (2.

We will follow the method of [BT08] (Appendix B), using the almost-orthogonality of
the projections P; to estimate

w2
/ eI dP (w1, wo, ws)
Q1 xQax03
M,i
S/ / e_CZj X5 @ORIP; 3 1 ars Xin (w2) Xo(ws) Fic,y H%SdP(Wl)dP(w%w?))
QaxQ3 J O

M M,i 2
< / ¢ Cl 2um Xina(w2) 20, Xilws) fi s dP (w2, w3)
QQ><Q3

where we used that the random variables X; take values in {£1}.

We can treat the integral over {22 similarly to find

/ G_waHiISdP(wl,wg,wg)g/ e—C“ZiXi(UJ?,)SOif“%{sd]P)(wg)
leﬂgxﬂg QB

In order to repeat the argument on {23 and complete the proof, it remains to prove
11 Ssia D lpif s Ssa 1D Xi(ws)eif I (1B.1)
i i
We will only prove the second inequality, the first being similar. Denote f; := X;(w)f =
+f and write

H‘Pz’f“eﬁ;(&% = H‘Pz’fz‘”efH;(Rd) < HPSMoSOifz‘”ng;(Rd) + ”P>MoSOz‘fz'H£§H;(Rd)

for some My > 1. We first handle the low frequency contributions using the almost-
orthogonality of the (p;);:

[1P<ao@ifillerry S (Mo)*lleifilleerz S (Mo)®|l > ifillre
i

For the high frequency contributions we have to study the commutators [Py, ¢;]. We
have

M>Mqy~i

| Psat@ifillems SIMPPyoifille  p2p2
17T 0 x
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SIMPeiPufile, | ez + M1, @il fille, 212

M>Mqgp~ i~z

(A)
2+ (4)

SIPostg 3 @ifillag + 1M 3 s, Pulfilles, 2 +(A)
7

)

M>Mg

SIM Y wiPufilla
%

(B)
N Z%’fi“Hg + (A) + (B)
so it remains to bound (A) and (B).

Let’s study (A) first. Since the (X;); take values in {£1} we have that |[Par, @il fi| =
|[Par, il f s0

(4) = ||MS[PMa90@}f||é§J>M 212
SIMC (P @iifla, o2 + 1M 0Py Y @iflle, e (1B2)

jilj—il>8vd

for ¢; = Zj:|j—i\<8\/8 ¢j, so that ¢;¢o; = 1. To handle the first term, we will use the
bound -

1[Par. pilgllz Sa M~ IVeillcllgllz Sa Mgl (1.B.3)

which follows from writing the frequency projection as a convolution operator. For the
second term we will use a slightly stronger form of Lemma 3.2 from [Spi21], holding for
any D >0, |i — j| > 8Vd:

lei gl Sap M~Pli = 517" lleigll2 (1.B.4)
With these results in hand, we are able to bound (A). Using (1.B.3) on the first term
and the triangle inequality followed by (1.B.4) on the second term we obtain

(A) SIM* T Giflle, oz +IM* Pl =517 P0if

f L2
M>Mqg™i M>Mqgy™i jili— 1|>8\/E 96
S M7 fll2 + Mg™P ‘ i = 317"l e =1™ D/Q%fHﬂ
j:lj—i|>8Vd |>8\/3 z
by the Cauchy-Schwarz inequality. For D sufficiently large, |||i — j|~/2|| © is

jilj—i|>8vd
finite and we may swap the sums over ¢ and j in the second term to obtain

(A) MM 2 + Mg PNli = 41725 fll e

i:|i— ]\>8\F x
-1
SM |1 fll 2 may
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We now turn to

(B) = IM* Y [P, il fill 2

7

M> My

This time write
‘We have

ez < (A) S Mg fll2

M>Mqgy™i

16> il Pars il fills, 2 SIMPGiPA, @il filles,
7

since the @; are bounded. On the other hand, using that f; = X;(w)f, we have

1M (= @) Pueifils, 2 =Y S wiPueiflle, iz

( ( Jili— z|>8\f
=120 MPu( Y @l 1
J i:li—j]>8vd
Slles - M? Py ( Z %)f”eﬁbM L2
itJi—j|>8vd

by the almost-orthogonality of the projections ¢;. Using the triangle inequality followed
by the estimate (1.B.4), we can bound the previous line by

M5 Pli— 41 Poiflle . e L2

M>Mq™7 "] — j‘>8f

SMgPlli =41~ %fl!ml

irli—j|> B\f
<MDl — |~D/2 s a=DJ2,
SMGPNE =3 i oifle sl
SMP i = 51770 fll 2 12 S Mgl

vgij—i|>8Vd "

since D, My > 1. This completes the estimate for (B).

Combining the estimates we have just found with the bound on the low frequency
contributions we conclude that

H‘PifHé?H;(Rd) S(Mo)*|| Z‘szz”L? Re) T | Z(PlleHs Rd) T Mg~ l”f”LQ(]Rd)

Bl ZX ‘szHHs Ry + Mg~ IH%fHe?Iﬂ (Rd)

Now, since [|¢ifllpzr2ray S l0iflleeps ey and s < 1, if we take Mo sufficiently large
(depending only on s and d) we may move this term to the left hand side to obtain

1
<Z ||<Pif||?{s(11gd)> Ssd | ZX SszHHS Rd)
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which completes the proof of the second inequality in (1.B.1).
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Global Solutions to the 3D

Half-Wave Maps Equation with
Angular Regularity.
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Chapter 2. Global Solutions to the 3D Half-Wave Maps Equation with
Angular Regularity.

The work of this chapter is taken from the preprint [Mar24], submitted to Ars Inveniendi
Analytica.

2.1 Introduction

This chapter concerns the global existence of solutions to the three dimensional half-wave

maps equation

O = ¢ x (—A)L/2

i =¢x (=A)7%¢ (¢: R x R® = §?) (2.1.1)
¢(07 ) = ¢0

/

)

2, partially generalising known results in higher dimensions

/

(see Theorem 2.1.1 for the precise statement). The space Bgf is critical in the sense that
it is invariant with respect to the scaling

in the critical Besov space Bg’

o(t,x) = Pa(t, x) = p(NE, \x).

As discussed in the main introduction (Section 0.0.2), the half-wave maps equation is
known to be globally well-posed for small critical Besov data in high dimensions, thanks
to Krieger-Sire [KS17] for d > 5 and Krieger-Kiesenhofer [KK21] for d = 4. We recall
the formulation of (2.1.1) as a semilinear wave equation (Section 2, [KS17]),

(07 — A)p = —¢ 0%¢" Dap
+ 1,0 [((—A)20) (- (—A)29)]
+6 x [(—A) (¢ x (-A)2¢) — (¢ x (—A)¢)] (2.1.2)

where the first term in the forcing corresponds to that of the wave maps equation, and
the whole nonlinearity can (very loosely speaking) be written as

PVPVo.

We will now briefly discuss the difficulties in extending the methods of Krieger and Sire
to three dimensions. Krieger and Sire used dyadic versions of the X*¢ spaces to handle
the wave maps term in (2.1.2), in an argument relying heavily on the null structure.
When it comes to the new half-wave maps terms, it was observed that there is enough
geometric structure (see (2.1.13)) to close the argument in the Strichartz spaces LV LY,
where 2 d—1 _d-1
];+T§T7 d>2, (d,p,q) # (3,2,00).

Alas, this range becomes increasingly restrictive in lower dimensions, and already in
dimension 4 we lose the L7L2 space which was used frequently in [KS17]. This was
overcome in [KK21] using a refinement of the methods of [KS17] and the results were

extended to d = 4. In three dimensions, the range of available estimates becomes smaller
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2.1 Introduction

still, and in particular we lose the endpoint L?L° [Tao98]. This space plays an essential
role in the arguments of [KS17, KK21] and hence it is not clear how to generalise these
methods to d = 3. On the other hand, if we restrict to radial data, we may appeal to the
wider range of radially admissible Strichartz spaces, with

1 d—1 d-1

P q 2

We thus recover the LZLS° space and the methods of [KK21] can be straightforwardly
applied. The standard and radial Strichartz pairs are displayed in Figure 2.1.1.

Figure 2.1.1: The admissible Strichartz pairs (p, ¢) in d = 3. The dark gray region depicts
the standard admissible pairs, and the light gray region the extended range of radially
admissible pairs. The endpoint L?L° is radially but not standard admissible.

In this chapter we will make the weaker assumption that the data is not radial but merely
has some angular regularity. In this setting Sterbenz [Ste05] proved modified Strichartz
estimates in the full range of radially admissible spaces which we will exploit to obtain
the following “weak” small data-global wellposedness result. We introduce the notation

KSDull = flull + max [[€2;;u] (2.1.3)
for any norm || - || and the angular derivatives €2;;, see (2.1.7). Here and throughout,
1) (& Z)o(0]]| is taken to mean maxi 1 2.5 [(2)(zxVid[0]).

Theorem 2.1.1. Let ¢g : R? — S? be a smooth initial datum which is constant outside a
compact set. There exists 0 < € < 1 such that whenever

160l 72 + 1 (@w - Vol e < e (2.1.4)

the problem (2.1.1) admits a global smooth solution. Moreover for any s sufficiently close
to 3/2 it holds

Il 5, Ss {000l g | + {2 (2 - V)doll gy | (2.1.5)
for allt € R.
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The slightly unusual assumptions on the initial data come from our use of commuting
vector fields, to be discussed shortly.

We now give some more details on the proof of Theorem 2.1.1. As we have discussed, in
low dimensions the analysis of the wave maps equation becomes increasingly reliant on
the null structure, and the iteration argument of Tataru [Tat01] involves the development
of highly tailored function spaces. We therefore turn to Tao’s approach for studying
wave maps in the critical Sobolev space [Tao0la] which works entirely in the framework
of Strichartz spaces and does not rely so essentially on the null structure. The cost is
that we can only obtain a weak wellposedness result as in Theorem 2.1.1.

The argument of [Tao0la] relies on a carefully chosen coordinate transformation which
cancels out the most difficult frequency interactions in the nonlinearity. These are the
(lowest)V (low)V (high) interactions in which one of the differentiated factors appears at
low frequency, but not as low as the non-differentiated factor. Admitting this cancellation,
the principal difficulty of the present work is dealing with interactions of the form

(low)V (lowest) V (high). (2.1.6)

Tao controlled such interactions by placing the terms into L?L°, L?LS° and L{°L?
respectively, with no flexibility in the estimate. As we have mentioned, the space L?L°
is no longer available to us. To overcome this we incorporate into our function spaces a
range of commuting vector fields,

Ly = 2,0, + taa:n and Qij = xiawj - mjaazi (nv i,j =12, 3)7 (217)

first introduced in the context of global regularity for nonlinear wave equations in
[Kla85].! By incorporating these into the Strichartz norms, we are able to develop
spacetime estimates for terms of the form (2.1.6), gaining decay in time via the Lorentz
boosts and in space via the heuristic

1 1

P(z) =~ 5—Qd(z) ~ P ——

% Qijo(x)

~ Tenlle [sin(Z(ag &) 20 @19
Here x, £ denote the physical and Fourier variables respectively, and x;;, &;; their
projections onto the ¢ — j plane. Assuming ¢ has angular regularity and can absorb the
derivative (};;, we therefore gain decay in x whenever the Fourier and physical variables
have some angular separation (see Lemma 2.5.2). In practice, we implement this via a
simultaneous decomposition of the trilinear term (2.1.6) on angular caps in physical and
Fourier space. See Lemma 2.5.3 for the detailed argument.

We remark that it is the use of commuting vector fields which limits our result to Besov

'Unlike in [Kla85], our method does not rely on energy estimates so we are able to work at low
regularity. Note also that in three dimensions Klainerman’s vector field method requires the nonlinearity
to satisfy the null condition [Kla86], which is not satisfied by (2.1.2).
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2.1 Introduction

rather than Sobolev spaces. The issue is that we occasionally need bounds such as
1948l Lsenge s |1 Ln@llLeoree S 1,

which in the absence of the commuting vector fields would come for free from the fact
that the solution lies on the sphere.

Before discussing our methods further, we note here the paper [Ste07] of Sterbenz
regarding global regularity of the (4 + 1)-dimensional Yang-Mills equation in Lorentz
gauge, which also uses an angular regularity assumption to exploit the improved estimates
of [Ste05]. The argument there is based on measuring angular concentration phenomena
and avoids the use of the Lorentz boosts in order to recover estimates in X*-based
spaces. We also refer to [Hon22] for results on nonlinear wave equations and [HKO24] in
the context of a supercritical nonlinear Schrodinger equation.

We now give a brief outline of the main argument and structure of this chapter. We
will prove Theorem 2.1.1 via the following small data-global existence result for the
differentiated equation (2.1.2). Denote ¢[t] = (¢(t), Opp(t)).

Theorem 2.1.2. Let ¢[0] := (¢o, ¢1) : R — S? x T'S? be a smooth initial data pair
which is constant outside a compact set. There exists 0 < € < 1 such that whenever

KOOI g, s + 1) W)60] s, g < e (219
the equation (2.1.2) with data ¢[0] admits a global smooth solution ¢[t] with
1605, gt o QS0 s + 1 D000y g (2110)

If moreover ¢1 = ¢g X (—A)1/2¢0, the global solution solves the half-wave maps equation
(2.1.1).

Note that in the case ¢ = ¢ x (—A)/2¢, the smallness assumption on ¢; in (2.1.9) is
inherited from that on ¢g so this theorem implies Theorem 2.1.1.

The starting point for our proof is the following local existence result, whose proof is
postponed to Section 2.10 so as not to distract from the main argument.

Theorem 2.1.3. There exists v > 0 such that for any 3/2 < s < 3/2+ v the following
holds. Let ¢[0] € B3 x BS’_ll be a smooth initial data taking values in S* x TS?, equal to
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a constant p outside a compact set.?3 Suppose further that
9000 537, 5372 + 1@ - )80 o, sy < €

for some € sufficiently small. Then there exists T > 0 depending only on ||¢[0]]| gs  gs—1
2,1%P2 1

and a smooth solution ¢ € C([0,T], B 1)NC*([0,T7, Bgfll) to (2.1.2). Moreover, ¢(t) € S?
for allt € [0,T].

If we further have ¢1 = ¢y X (—A)1/2¢0, this solution solves the half-wave maps equation
(2.1.1) on its maximal interval of existence.

Remark 2.1.4. Note the unusual assumption of smallness in a critical norm. This
restriction appears somewhat artificial since it is only needed to keep the Picard iterates
away from the origin in order to control the projection operator Il,., which is only a
feature of the differentiated equation.

Returning to the main argument, we see from Theorem 2.1.3 that it suffices to find
uniform bounds on the solution in subcritical Besov spaces. Following Tao’s method of
frequency envelopes, we will show (in Section 2.3) that this reduces to proving a priori
estimates for the solution in a certain critical space S (defined in Section 2.2.2). Since
we are working in a scale invariant setting, it is sufficient to bound the solution at unit
frequency, Py¢ =: 1. Then by straightforward linear estimates (Section 2.2.2), we find
that it effectively remains to bound

H<Q>LD¢HLng
Accordingly we will write F' = error if ||[(Q)LF)|| pir2 s suitably small.

In Section 2.5 we will show that the nonlocal half-wave maps terms in equation (2.1.2)
are in fact entirely of the form error, as will be discussed further at the end of the
introduction, so it remains to consider the wave maps contributions to the nonlinearity.
We first (in Section 2.4) discard the frequency interactions in which the non-differentiated
factor of ¢ appears at high frequency, which can be dealt with via standard Strichartz
estimates. This reduces the equation to®

Oy = —Py(2¢<—100ad% _100%>—10 + d<—100a¢%_100“¢>—10) + error

(where we are now more precise about the meaning of a “low” and “high” frequency

2Since ¢ lies on S?, when we say e.g. ¢ € B35 1 we really mean that ¢ —p € B3 ; for p the limit of the
initial data at infinity, which is viewed as fixed throughout the chapter.

3This assumption is far stronger than necessary, and not preserved under the flow (since the equation
is nonlocal). A more suitable assumption for our purposes is actually that ¢[0], L,¢[0] and €;;¢[0]
lie in BS:l X B;:fl for every s’ > 1. This property is preserved by the flow (as can be seen by a
persistence-of-regularity type argument) and thus leads to a blow-up criterion.

4The actual definition of an error term is slightly modified in the main argument for technical reasons,
however the reader is advised to ignore this for the time being.

*With the whole term localised to unit frequency, (low)V (low)V(low) interactions are impossible.
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term). In Section 2.6 we discard the (low)V (high)V (high) interactions via a normal form
transformation using the null structure. We similarly pass the localisation Py through
the low frequency factors in the remaining forcing term and achieve

O = —2¢§_106a¢:£_108a¢ + error

for the transformed variable ®, so that only the (low)V (low)V (high) wave maps interac-
tions remain. We handle such terms using Tao’s gauge transformation in Sections 2.7
and 2.8. Precisely, we construct a matrix field U satisfying

OaU =~ —(¢p<_100a0%_10) U (2.1.11)

such that upon transforming ® to w := U~!®, the remaining forcing terms cancel out
and we find
Uw = error

We have to be a little careful since at this point we are working with ® rather than ,
however this issue is minor.

In showing (2.1.11) (Section 2.8), the (lowest)V(low)V (high) terms cancel out exactly,
and we finally have to deal with the terms of the form

(low)V (lowest)V (high),

for which we invoke the arguments involving commuting vector fields already discussed.

Remark 2.1.5. We are able to slightly simplify the gauge transformation from [Tao0la]
due to our working in Besov spaces. In particular, we do not need to antisymmetrise the
equation in order to obtain almost-orthogonality of the transformation matrix, which is
instead automatically a perturbation of the identity.

It remains to discuss how to control the nonlocal terms appearing in the half-wave maps
equation. This is the content of Section 2.5. The main difference from the wave maps
terms arises in studying interactions which are (morally speaking) of type

(low)V (high)V (high) or (lowest) V (low)V (high) (2.1.12)

The analogous wave maps source terms were discarded by the normal form and gauge
transformations respectively, both of which relied on the structure of the nonlinearity so
can no longer be applied. To compensate this we use that the remaining terms of (2.1.2)
involve interactions which are loosely speaking of the form

¢-Vo, (2.1.13)

which vanishes for functions on the sphere. As in [KS17], we exploit this cancellation via
the following identity which allows us to flip the low frequency factors in (2.1.12) to high
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frequency, and thus appeal to Strichartz-based methods:

Pe(d<k—10- d>k-10) = *%Pk@bzk—lo “Q>k—10) (Geld)

This is a straightforward consequence of the property Py(¢-¢) = Pr(1) = 0. Besides this,
the half-wave maps terms present various technical complications due to the nonlocal
nature of the operator (—A)Y/2. This is a particular issue when working with the
commuting vector fields which are non-translation invariant.

2.1.1 Notation

We emphasise again that we adopt a different notation from the previous chapter and
denote

Pitp = ¢, := F ' (xu(€)4(€)) (2.1.14)
where xj corresponds to the function yor from (0.1.4). Again yx(§) = Z?I]?_c X;(€),

Pop = ot = F 1 ((€)9(€)) and so on. To reduce notation, we will often abusively
write j < k to mean j < k — C, of course this really means 2/ < 2*. We have similar
interpretations for j ~ k, 7 < k etc..

Our argument is based in the homogeneous ¢! Besov spaces with norm

ol s, = 2" lIdnllrz (2.1.15)

keZ

or in the subcritical case (for the proof of local wellposedness) the inhomogeneous spaces

IliBs, = > 2"l ékll2 + [ P<odll 2

k>0

In addition to the usual Littlewood-Paley cut-offs we will also need dyadic cut-offs in
physical space which we denote ) (x), A € Z (again this inconsistent with the notation of
the previous chapter). Here p)(x) = xa(x) but we adopt a different notation in order to
emphasise that the cut-offs are acting in different spaces. We will also use notation such
as P>x = > y>y v, and denote ¢y (t) for the analogous cut-offs in the time variable.

Throughout M should always be interpreted as a very large constant.

2.2 Preliminaries

2.2.1 Angular Derivatives and Commuting Vector Fields

In our argument the Lorentz boosts, L,, and the angular derivative operators, £2;;,
defined in (2.1.7) will play a key role. Observe that these operators obey the Leibniz

rule. We will also need the Riesz transforms R,, defined by F(R,)(§) = %]-" (9)(€)
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2.2 Preliminaries

(n =1,2,3), which we recall are bounded on L? for 1 < p < oc.

One may readily verify that the operators L,, and €);; commute with the wave operator
[, and satisfy the relations

[L,8] =8, (L, (—A)Y?) = Ro,, [L,Q] =L (2.2.1)
and
[, R] = R, [Q,0] =0 (2.2.2)

Here L, R, 2, and 9 denote linear combinations of the identity with the operators
(Ln)n=123, (Rn)n=1,2,3, (£j)i =123, (Oa)a=0,1,2,3 respectively. Note that 2 commutes
with any radial Fourier multiplier such as (—A)/2, thanks to the property F (Qi50) =
Qi F ().

Unfortunately, there is a non-trivial commutation relation between the L, and the
Littlewood-Paley operators Pj, which will be a source of some irritation in what follows.
Precisely, let P; denote a generic operator corresponding to a (not necessarily radial)
smooth multiplier x(P)(277¢), with suppx(") C suppy. It holds

(L, Pj] = 2770, P; and [Q,P;] =P; (2.2.3)
for potentially different operators P; of the same form on the right hand side.
We now introduce the angular Sobolev spaces which will play an important role in our
proof, using the construction in [Ste05].

For a function f on R3, we define fractional angular derivatives |Q2|* as follows. First

decompose f into a sum of spherical harmonics:%
0) =33 )Y (6), i) = [, 1007 i(0)a0 (224)
1=0 i=1

Since the spherical harmonics are eigenfunctions of the spherical Laplacian Agpy,
AgpnY]" = =11 + 1)Y/, 1>0,i=0,...,N,

it follows that a suitable definition of |Q2|®f is given by

co N
Q1 F(r,0) o= 32 3 [0+ 1) ()Y (0)
1=01=1
so that |Q> = —Agp. Note that this vanishes whenever f is a radial function.

SRecall that we use the different notation (Y;');=1,...~, for an orthonormal basis of the space of
spherical harmonics of degree [.
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Furthermore, since the decomposition into spherical harmonics is preserved by the wave
evolution (see (0.1.15)), it also follows that the fractional angular derivatives commute
with the free evolution operators:

QA f) = VRl )

By incorporating angular regularity into our function spaces, we are able to make use of
the following generalised Strichartz estimate which follows from the work of [Ste05].

Theorem 2.2.1 (n = 3 Strichartz estimates with angular regularity). Let (p,q) be a
pair which is radially admissible but not standard wave admissible:

1 2 1 1 1
—-+-<1, —+->
P q P q 2

Suppose further that p # 2. Then for all n > 0 sufficiently small it holds

3

- 51 3y,
1= YA P f | prpa Sy 275D ([Pf 2 + QPO P 2)

for any function f such that the right hand side is finite. Here
2 2
s(p,q) == -+ - —1+e€p,qn)
p q

where €(p,q;m) — 0 as n — 0. Note that s(p,q) < % for (p,q) as given and n sufficiently
small.

Proof. By scaling it suffices to consider k = 0. We use the notation of [Ste05] and direct
the reader to that work for further details. In particular, let 6 : [0,00) — [0, 1] be a smooth
function equal to 1 on [1,2] and vanishing outside [1/2, 4], and set Oy (1) := 6(N 1) for
N € 2N, For the decomposition of f as in (2.2.4) we then denote

oo N

Iv =30 On (i)Y ) (2:25)

1=01=1

Let n > 0. By Proposition 3.4 in [Ste05] we find
. 1
le** 7APofNHL§L;n Sn N2 Pofwllze

for some 7, \, 4 as n — 0. A three-way interpolation of this result with the standard

Strichartz estimate
Hei”“APofNHLﬁLW S [1Pofn 2
t

x

and the energy estimate
eV =2Pofnlleers < Pofwllzz
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yields
||ei“\/IPofN||Lng Sy NP Poflra ~ (|19 PD Py f |l 2

provided we choose n sufficiently small to ensure that the pair (p, q) is covered by the
interpolation.

The radial part of the evolution is covered by the radial Strichartz estimate (Theorem
1.3, [Ste05)): denoting fo := c)(r)YLY(0) = c3(r), the radial part of f, we have

| =2 Py follzzra S 1Pofolliz

The result then follows from the Littlewood-Paley-Stein theorem for the sphere (Theorem
2 [Str72], see also [Ste70b].), upon observing that the angular frequency localisation
(2.2.5) commutes with the operator Pye™V =4, O

In practice, we will only work with integer-order angular derivatives so as to use the
Leibniz properties discussed previously. For this we must be able to exchange fractional
angular derivatives for true derivatives, which is possible thanks to the following result:

Lemma 2.2.2 (Riesz estimate for angular Sobolev spaces (Theorem 3.5.3, [DX13])). Let
1 <p<oo. Then

max [|€i; |z ~ 12F ]z

for any f such that the right hand side is finite.

We also use the following monotonicity property for the angular Sobolev spaces, which
can be proved for example using the decay of the corresponding multiplier (see Corollary
1, [Str72]).

Lemma 2.2.3 (Monotonicity of Angular Sobolev Spaces). Let 1 < p < oo, s > s’ > 0.
It holds

/
QU™ flle Se—s QU Fll 22

Combined with Theorem 2.2.1 the previous two lemmas yield the following (defining (€2)
as in (2.1.3)).

Corollary 2.2.4. Let Q be any finite set of radially admissible pairs (p,q) with p # 2.
Then it holds

2.2.2 Function Spaces and Linear Estimates

Our function spaces are an adaptation of the usual Besov-type Strichartz spaces. Hence-
forth @ will denote a fixed set of radially admissible exponents as in Corollary 2.2.4 to
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be determined throughout the proof, but certainly containing (0o, 2). We then define the

norm
18l sqor) = D Ikl se o)
keZ
with
H¢k||sk ([o, 1) _(m)aé(g2( +7_1 ”< >1_5(p7q)Vt,xpk(bHLfL%([O,T]><]R3)
Here”

0 1f 1411
(p,q) = K
1 0therw1se
We will also work with the vector fields L,, introduced in Section 2.2.1, however rather
than incorporating these into the norm we will directly apply them to the solution we
are working with.® Define

¢ 1

L. L9 | L

ot =Lo= |17 L= (2.2.6)
L3¢ L

SO

3_1Dk _
12"l 0,y = max (52%2( F R PO, PeLd 1 1 (0 17y

with the convention Lg := 1.

We have the following linear estimate which is a straightforward application of Corollary
2.2.4:

Theorem 2.2.5 (Linear Estimate). Let ¢ satisfy the linear wave equation O¢ = F with
initial data ¢[0] = (¢(0,-), 0:p(0,-)) on the interval [0,T]. It holds

68l5ett0:m S IV PUBIO] sz cirnre + NPl 172 0 77.m
and as a corollary

1 Ped™ ||, (f0.7)
S D) Pid[Ol] 32 e + 1K) Pr( - V)@[0]| 372, grise + [{2) Pi( - Bp(0))|] 12

+ ||< >Pk‘F ||L1H1/2 [0 T}XRB)

where FL is as in (2.2.6).

"Note that a more natural choice would be §(p, ¢) = max{% + % —1+¢(p,q;m),0}, however we opt for
the weaker norm above so as to encounter only full angular derivatives. Presumably it would be possible
to to work with fractional angular derivatives by introducing a paradifferential calculus in the angular
variable, see for instance [HKO24, Hon22].

8This is for technical reasons to handle the non-trivial commutator [Ln, P
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2.2 Preliminaries

2.2.3 Angular Multipliers

To conclude this section, we introduce the angular multipliers which will play a key role
in the main estimates of this work (see Lemma 2.5.2). For fixed p < 0, we introduce a
smooth partition of unity on the sphere, (ag )ges,» given by

o277z x Bl
Ypes,o(27P||2 x B')

ol (z) := (2.2.7)

for o € C2° supported on [0,101/100] and equal to 1 on [0,1]. S, is a set of ~ 272/ points
on the sphere such that for every & € S? there exists 8 € S, such that || x S]] < 2°. We
choose our functions in such a way as to ensure the almost-orthogonality relation

1
3
lullzz = | D2 lop(@)u(@)|s
BES,

holds uniformly in p < 0.

For each p sufficiently small, 8 € S,, we also introduce a Whitney-type decomposition of
the sphere in Fourier space. This consists of functions 777(74’1) cutting off to discs of radius
~ 2" at distance ~ 2" from 3, made precise in the following proposition. These cut-offs

are turned into operators by defining, for example,

0" (D)g(z) == F ("D (€)(€))(x)

Proposition 2.2.6. There exist absolute constants C1,Co,Cs,Cyq, N > 0 such that the
following holds. For any p < —Ch, B € S, there is a partition of unity consisting of

functions
775 and n™ (p+C1 <r<0,l=1, ...,N) (2.2.8)

with the following properties:

1. There are points o) € S* andfunctwns npﬁ, "77" of the form nﬁ(f) = 0(2*(p+02)\|é><

Bl) and 7 7 ”(g) o(27=)||E x apy||) for o as before such that
58 ~(r,0)
0 = % and ™) = 777(1
Mp + Do + > 7

We allow for a different constant Cs when r = 0.

2. |lapy x B|| = 2" and ||& x £|| = 2" whenever & € supp(c ) and € € supp(ny r ’)) for
all (r,1).

3. supp(n’ ") 0 supp(n™!

forallr > p+ Cjy.

(T,l))

) =0 for all [r —r'| > Cy and supp(nf) N supp(n; 0



Chapter 2. Global Solutions to the 3D Half-Wave Maps Equation with
Angular Regularity.

Proof (sketch). We may without loss of generality fix § = es3, the unit vector in the
z-direction. For r = 0 we then choose N equally spaced points (ag;)iv, on the equator
{z =0} and C sufficiently large such that the functions

n(CTH€ x anall)
cover the set {€ € S? : |€3] < 3/4}. It then remains to find a partition of unity on

{€ € $% : |&] > 3/4}. By diffeomorphism to the unit disc, it suffices to find functions

~(r0)

r ) with the required properties on B(0, 1), which is straightforward. ]
We then have the following lemma concerning the boundedness of these multipliers. We
omit the proof which is similar to that of Lemma 2.5.2.

Lemma 2.2.7. Let 1 < g<oo. Foranyj€c€Z, p<—Cy, B€S,, p+C1 <r <0 and
l=1,...,N it holds

172, ¢, (DYPill o, [0 (D)oo Sq Pl

2.3 Reduction to main proposition

We will work with frequency envelopes to reduce our critical global result to the subcritical
local result of Theorem 2.1.3 (proved in Section 2.10). This section is largely based on
Section 3 of [Tao0lal.

In what follows we fix ¢ € (0,1) (which will need to be taken sufficiently small),
s €(3/2,3/2+0) and 0 < € < 1 which may depend on 0. We also need the following
definition from [Tao0la].

Definition 3 (Frequency envelope). We call ¢ = (cx)rez € ¢ a frequency envelope if
el S €

and
2_U|k_k/|6k/ 5 Ch S 20’|k—k/|ck/

We say that (f,g) lies underneath the envelope c if
||Pk(f7g)”H3/2><H1/2 <cg

for all k € Z.

Our first step in proving Theorem 2.1.2 is to make the following reduction, saying that
the frequency profile of the solution stays roughly constant along the evolution.

Proposition 2.3.1 (Main Proposition). Let 0 < T < oo, ¢ be a frequency envelope and
¢ a smooth solution to (2.1.2) on [0,T] x R with initial data [0] satisfying the smallness
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2.3 Reduction to main proposition

condition
() Ped[0][] gg3/2. 172 + K2) (2 - V) Pro[0]]] o prise < ci (2.3.1)
for all k. Let ¢* be as in (2.2.6). Then if € is sufficiently small it holds

1Ped™ || 5, (fo,77) < Cock (2.3.2)

for all k € Z, where Cy > 1 is an absolute constant. In particular, ¢[t] lies underneath
the frequency envelope Coc for all t € [0,T].

We quickly outline how Theorem 2.1.2 follows from this proposition (and Theorem 2.1.3).
Given data ¢[0] as in the statement with e sufficiently small, define a frequency envelope

ek = Y 27 RN P 810] | s o + () (@ - V) Py 310] | g/ rn/2)
JEZ

It is then clear that (2.3.1) holds, so we see from the proposition that the local solution
¢ :[0,T) x R® — S? of Theorem 2.1.3 satisfies

| Ped s, (1o, < Cock

for all k. It follows that for any s > 3/2 with |s — 3/2| < o we have

1Pl poo s 0,7 xr3) T 1 PROePl oo frs—1(j0,1) %)
< 2067328 Pugl| s, o.1))
< 2(5_3/2)k000k
S Co 3 207321 PR S[0] ] e g1 + 1Py (2 (@ - V)B[O] ] o g1
JEZ
for all k£ € Z, from which we see that
160005 g1 S Coll (@005 gt + IR F)O0] s )

for all ¢ € [0,T]. The low-frequency portion of ¢[t] is straightforward to bound using
energy estimates, however it is something of a distraction at this point so we postpone
this to Appendix 2.A.

In summary we obtain uniform bounds on the B3 ; X B;El norm of the solution. Since
Proposition 2.3.1 also shows that smallness in the critical space is (almost) conserved, it
follows from the local theory that the solution extends globally.

Using the same argument as in [Tao0la], we see that Proposition 2.3.1 can be further
reduced to the following statement, to whose proof the bulk of this chapter is dedicated.

Proposition 2.3.2 (Reduced Main Proposition). Let ¢ be a frequency envelope, 0 <
T < oo and ¢ be a smooth half-wave map on [0,T] x R3 such that ¢[0] satisfies (2.3.1).
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Chapter 2. Global Solutions to the 3D Half-Wave Maps Equation with
Angular Regularity.

Suppose that
1Ped"™ || 5, (10,77) < 2Cock (2.3.3)

for all k € Z. Then in fact
HPk¢L||Sk([0,T]) < Cocg (2.3.4)

for all k € Z (assuming that Cy is sufficiently large and € is sufficiently small).

2.4 Discarding some error terms

We now begin the first step in the proof of Proposition 2.3.2, where we will show that
some terms in the forcing of equation (2.1.2) can be ignored.

Fix ¢, T and ¢ satisfying the hypotheses of the proposition. We need to show (2.3.4). By
scaling invariance it suffices to prove that

19" 1 so(0,77) < Coco
for Yl := Py(¢"). We will use the notation ¥’ = (19, 1,2, ¥3) so that ¢, = Py(L,e).
Thanks to the linear estimate, it would be sufficient to show that
Q)T 134 S Cleoe

and take €(Cp) sufficiently small (the initial data term involving ¢ can be bounded
straightforwardly, see (2.6.3)). Unfortunately, it will not be possible to show this directly,
however after some transformations we will be able to achieve a similar form, as we shall
see in the coming sections.

This motivates the definition of an “error” term:

Definition 4 (Error terms). A function F = (Fp,...,F3) on [0,T] x R™ is said to be an
acceptable error if
K F |32 < Cieoe

In this case we write F' = error. We will also denote by error the components of such a
vector.

Applying Py to equation (2.1.2) we find
Oyl = PyL(—¢0a¢ 0%¢ + HW M (¢)) (2.4.1)
where

HWM(¢) =0 [((—A)26) (¢ (—=A)29) +dx [(—A) /2 (¢ x (—A)2p)— (¢ x (—A)p)]

Our first step is to remove the most simple frequency interactions from the wave-maps
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2.4 Discarding some error terms

source term. We introduce the following notation for some commonly used Strichartz
pairs, with M = oo— a large constant which 7, o and € will all depend on.

2M

1 1
(2+,00-) 1= (G=7:2M), ) Peo" v S 27 B38| PigE |,
o ) AP (2.4.2)
(00— 24) = (M, =), Q) Peo oomzv S 2B H8 | Pig s,

Proposition 2.4.1. We have

Po(¢0a¢” 0°¢) = 2Py(¢<— 10000 _190%0>—10) + Po(¢p<100a0L 190" ¢>—10) + error

(2.4.3)

and

PoLn (066" 0%¢) = 2Py((Ln)<—100ad% 190" ¢>—10)
+ 2Py (¢<-100a(Lnd) % 190" d>—10) (2.4.4)
+ 2Py (¢<—100a0% _100*(Lnd)>—10)
+ Po((Ln®)<—100a0% _100%¢>—10)
+ Po(¢<—100a(Lnd)%_100%d>-10)
+ Po(¢<-100a0%_100* (Lnd)>—10)
+ error (2.4.5)

formn=1,23.

Proof. We will only show (2.4.5), (2.4.3) being similar. We start with the following
observation, using that L, commutes with the wave operator and satisfies the Leibniz
rule:

1
Ln(0a0" 0°¢) = 5 La(0(0" ¢) = 20" 06) = 20a(Lne)" 09
Applying this property and the Leibniz rule on the whole nonlinearity we have

PoLn (000" 0%¢) = Po((Ln)Bad” 0%¢) + 2Py($0a(Lnd) T 0%0)

Henceforth we restrict our attention to the first term, the other term being treated
identically. We also drop the subscript on L,,.

Decomposing each factor of ¢ into low and high frequencies, and noting that the term
vanishes when all three factors are at low frequency, we write

P0(<L¢)8Q¢Taa¢) :2P0((L¢>>—108a Z_loaoC(ﬁg_lo) (2.4.6)
+ Po((Lo)>—100a0% _100%P<—10) (2.4.7)
+ Po((Lgb)>_108a 57103“%—10) (2'4-8)
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+ 2P0((L¢)§—108a¢£7108a¢>—10) (2.4.9)
+ Po((L)<-100a9% 190" $>—10) (2.4.10)

Of these terms, (2.4.9) and (2.4.10) appear in (2.4.5) so we have to show that (2.4.6) =
(2.4.7) = (2.4.8) = error.

e (2.4.6), (high)V(high)V (low):
We have

1{2) Po((Lp)>—100adt _100%d<—10) 1.2
S (L) > —10l|2+,00— (€)% P —10lco— 2+ [[{2) Oad<—102+ 00—

where we used the Leibniz rule to spread the angular derivatives across the 3 terms,
followed by the monotonicity of the angular Sobolev spaces. Using the definition of
the S-norm and the local constancy of the frequency envelope we therefore see that

1(92)(2.4.6) 12 S ( 3 2G| Pyt Hs) ( 3 2—<%-ff>’f|Pk¢||sk)

j>—10 k>—10

~(Z 2@‘&”“%”&)

1<—10

< 006 C

o (2.4.7), (high)V(low)V (low):

We similarly estimate

1{Q) Py (L) >-100ad% _100%D<—10) 1,2
S (@ >(L¢)>—10Hoo—,2+\|<Q>3a¢s—10H2+,oo—H<Q>3a¢s—10H2+,oo—
< C’ e2co

e (2.4.8), (high)V (high)V (high):
This term cannot be handled in the standard Strichartz spaces. Observe that when
(Q) spreads over the three terms according to the Leibniz rule, in each case there
will be at least one differentiated term which is not hit by an angular derivative.
This term can then be placed into a non-standard Strichartz space. For example,
when () falls on the first differentiated factor we have

| Po((Lp)>—10(2)0adl _100%D>—10) 1,2
S H(L¢)>—10||178,OOH<Q>8 10 [|0%>—10l2,5
T 1 1
< D 27| Pigtls, - 2 90| pp | 5, - 2710l 5,
Jk>—10
< Cicde
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2.5 The half-wave maps contributions are negligible

O]

Thanks to this proposition we can rewrite the frequency-localised equation as

Otho = — 2¢<100a¢% 1000 — 2[Po(d< 10000 _190%¢>10) — ¢<-100ad 190" ]
— Po(¢p<—100a9L _100%¢>_10) + Po(HW M ($)) + error (2.4.11)

and

Othn = =2(Lno) < 10009 1000

— 2¢<100a(Ln®) L1900
— 20<_100a0% 100Uy

— 2[Py((Ln®) <1009 _100%¢>—10) — (Lnd)<-100ad _100 0]
— 2[Py(<-100a(Ln®) L _100%¢>—10) — d<—100a(Lnd)Z 100" 0]
— 2[Po(¢<-100a0% 100 (Ln®)>—10) — p<—-100ad%_100"n]

— Po((Ln®) <1006 100”65 —10)
— Py(¢<-100a(Ln®)L_100%¢>_10)
— Po(¢<-100a0% 190" (Lnd)>—10)

+ PyL,(HW M(9)) + error (2.4.12)

for n = 1,2,3. We have now clearly identified the troublesome frequency interactions
in the wave maps source term. In the next section we will show that the half-wave
maps terms are acceptable, and in Section 2.6 we will discard the second and third
terms (or groups of terms) via normal transformations. Lastly in Sections 2.7 and 2.8 we
will show that the remaining (low)V (low)V (high) term can be gauged away using Tao’s
approximate parallel transport.

2.5 The half-wave maps contributions are negligible
We decompose the half-wave maps forcing into two terms:

HW M (¢) = HW M;(¢) + HW M(¢)
with
HW M, (¢) =, [(—~A)20)(¢ - (—A)"/29)]
and
HWMa(¢) := ¢ x [(=A)2(¢ x (=A)"/2¢) — (¢ x (~A)9)]

As discussed in the introduction, we are able to discard of these terms entirely due to their
geometric structures. We largely use techniques from [KK21], with a novel ingredient for
handling the (low)V (lowest)V (high) frequency interactions (see Lemma 2.5.3).
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Before preceding to the estimates, we present some lemmas which will be used frequently
in the sequel. Denote

Lo (uky, vgy) = /R3 /R3 mi(€,m)e™ Dy, (€)a(€) xy (m)D(n)dédn (2.5.1)
for my any smooth multiplier satisfying the pointwise bounds
mi(&,m)| S 2%, (2N Ve) (22 V) my (€ n)] i 2

on the support of xx, (€)X, (n). Note that such a multiplier can be expanded as a Fourier
series with rapidly decaying coefficients on the support of xg, (&)X, (1):

mi(&,m) = Z c((l]fge_i(rkla'&?ikzb'”) with |c((lk2| <n 2%(a) ™)~ for any N € N.

a,beZ3
(2.5.2)
We can therefore, at least formally, write
k — _
L (g, , V) = Z cg’gukl (z — 27" a)uy, (z — 27%2b) (2.5.3)

a,beZ3

Operators of this form arise in studying cancellations in HW Ms(¢), and an important
property is given by the following

Lemma 2.5.1 (Lemma 3.1, [KS17]). Let Ly be as above. Then if ||- |z, || - |lx, || - Iy
are translation invariant norms with the property that

lu-vllz < llullx[lvlly
it holds
1Lk (s k)| 2 S 28 Ny N o, [y
In particular this lemma tells us we can (and should) think of £;(¢;, k) as 0¢; - ¢x.

Due to the generally nonlocal nature of these operators, they interact non-trivially with
the non-translation invariant commuting vector fields. In fact for k, ki, ks € Z, n = 1,2, 3,
1,7 =1,2,3 it holds

L (Li(uky, viy)) = Li(Lntk, , Uiy ) +Li (ks LnVky ) +Li—ky (Ot , Uiy ) +Lb—ky (Uky , Oty
(2.5.4)
and

Qij (Lr(ury, vry)) = Li(Qijun,, Vky) + Li(uky, Qigvi,) + Li(ug,, Uk, ) (2.5.5)
The Lj in these expressions need not all correspond to the same multiplier my.

Lastly, we note the following basic facts which follow from the commutation relations
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2.5 The half-wave maps contributions are negligible

between , L and Py. For any (p,q) € Q and a € R it holds”

(1,3
T PD L (g (- + a))|pg S (2Fa)22” G ¥ Pl |5, (2.5.6)

~

and if further ¢ # oo we also have!'?

(1_l_§

Q) P L= AV 2| S 20757 % P s,

We now come to the most important lemma of this chapter, which is the key ingredient
for handling the (low)V (lowest)V (high) terms in 3 dimensions. For notation used in the
statement we refer the reader to Section 2.2.3.

Lemma 2.5.2 (Angular Separation Estimate). Fiz p < —C1. Then for any A\, k € Z,
p+C <r<0,1=0,...,N it holds

loa(@)as (@)ni™ (D)l pa S 27 AT (||| Lo + max 192 0rl L2)

for any 1 < q < oo.

The intuition for this estimate was discussed in the introduction, and leads us to expect a
preferable loss of 2-(AJ+7) Unfortunately, we were not quite able to achieve this. This
comes from the €2;; being non-translation invariant.

Proof. We may assume without loss of generality that a,.; = eq, and by scaling it suffices

to consider £k = 0. We may further assume that g lies in the = — y plane so that
)

\:%152 — ﬁgéﬂ > 2" for any Z, ¢ € $? in the supports of Jg, n,(nr’l respectively.
Write

ox(@)od (z)n{"D (D)o = /Ee”‘fm(x,{) (2182 — w2€1) @0 (&) dE
for

m(,€) = px()ay ()Xo ()" (€) (1162 — w21) !
Expand m as a Fourier series in €. Since «,; = e; we have suppm C {&1 ~ 1, &, [€3] S
2"} so
m(@,€) = eA(@)ay/(2) 3 cpa)e?EmezTamzThr
pEZ3

9This may be interpreted as saying that translation does not affect the norm provided we translate on
scales at most comparable to the natural oscillation length of uy.

9The restriction to ¢ < co comes from the need to bound the Riesz transform appearing in [L, (—A)l/Q}.
In practice this is not important since there is usually enough flexibility in the estimates to lower ¢ using
Bernstein’s inequality.

85



Chapter 2. Global Solutions to the 3D Half-Wave Maps Equation with
Angular Regularity.

where

cp() = 2_2T/ et X0(E)7r D (&) (2162 — wo&y) "L 2mHEIPIFLT E2p2t 27 o) ¢
|€2],/€5] 52"

We want to integrate by parts so need bounds on the derivatives of the integrand. A
calculation yields

|V7nﬁr’l) ©)] <, 9—(v2+y3)r
for all v € N3, ¢ € supp(Xo) N supp(nr r ))

Furthermore, for z, ¢ in the support of m, we have |za| < |z[[|2 X ay|| < 22" and so

|0, 03 (z162 — 2261) 7Y =|16n — woly |71V o 11|y 2

<2*(A+r)(71+’¥2+1)2(/\+r)fyl M2 _ 2*()‘4”’)2*7”’72

It follows that

IV (o(©n D (©) (1€ — w261) 7))

M) _ @ (g 3) _1
S > VI X0(€) - VI 0" (€) - VT ((w1& — wa&a) ™)
,\/(1)_’_7(2)_’_7(3):7
< 3 1. 9087+ 9=(tr)g—sPr
7(1)+7(2)+7(3):%
7P =0
3
< 2*(>\+T) Z 9~ (. (2)+7(3)+7§2))r
7(1)+»\/(2)+7(3):%
3
73 =0

For r < 0, the right hand side of this expression is largest when yé ) + 753) = 72 and
fy§2) = 73, leading to

IVZ(Xo(f)nﬁ’"’” () (1€ — a€1)H)| S 27 A= ()

Integrating by parts in the expression for ¢,(x) we therefore obtain

lep(2)] < 2% / —(A+r)9—(v2+73) rd¢ < 2
D ~ p (27 pe) 2 (27T ps)Y & |‘E|1£\;|Ji2T <p>h\

With this bound we calculate, for any N € N,

luz(2)r(@)op (2)n" (D)ol g
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2.5 The half-wave maps contributions are negligible

9—(A+r) . . _ R
N Z L | /ez((wl+27F1)1)§1+(I2Jr27r2 P2 (@ 2m2D3)E) (31 €5 — 29€1) o (€)dE | 1
—(A+r)
SN Z [(x102 — 2201)(¢o(w1 + 27p1, 2 + 27" 27pa, 23 + 27" 27p3)) || g
)\—i-r)
SN Z ([[(z102 — 2201)¢oll 2 + 27" [pll[Voll 1)
92— (A+2r)

SN Z TN T (I€2.2¢0ll 2 + ll¢ollLe)
Choosing N sufficiently large and summing over p gives the desired result. O

As a consequence of this lemma we can bound certain trilinear terms as follows.

Lemma 2.5.3. Let m,j,k € Z and fir M sufficiently large. Then for any (scalar)

functions gbgl), qb,(f), gbsz) we have the following estimates:
1. If j Sk, 7 < m we have

65 - 67 - 6112
SR L PG R [ S PV s [ P

M—-1"M-1

([ Nloo2 + 27 mHL% loo.2 + 271016 | c,2)

2. If j < m we have
1 2
65 - 617 - 62 .2
s . 1 s M—1 1 2
< 27 M @M@ | aar gy + 2990 [957]] 2nt an |6 | 2

(16 Nlos2 + 2™ 1L llos2 + 271085 l1o0,2)

3. If j < k we have

Hqg(.l). G
< 92— ]/M23k/2M||¢(1)|| oM

M—1°°

(U 20w or + 2 FIRDILG | aas oy +27F (D07 | 2t 20165 0.2

+ 27 M V) o

1’

. / ]—k —k (2) (3)
(Ilos” [ 20 anr 42 1Ly 22 anr + 2700y || 2ne ana )|y [|oo,2
4. If 7 < k we have

168 - 62 - 6]

1,2
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< 27IMPBPMQ) 6D | aus

2 j— 2 — 2
U2z o + 2 HIZGD a0+ 2710857 | ar NS 1

+27j/M23j%||¢§1)” oM 4AM
M-1'M-1

2 j— 2 — 2
U2z o + 2 HIZGY e o+ 2710857 a6 1

We note that since the above holds for arbitrary scalar functions, in our setting the same
will hold for vector functions independent of the type of multiplication used (dot product,
cross product,...) and the order of the terms.

Before going into the proof, let us shed some light on the relevance of this lemma. It will
be applied to terms of the form

Z | L) (o Véj - Voo)l1,2 (2.5.7)

j<k<—10

which are beyond the reach of the standard Strichartz estimates. For example, when L
and (§2) both fall on V¢; we use point 1 of the above lemma to find

S o LIV - Voroll1z

J<k<-10
-7 k M1
S A P [ PN VSRS J PN P
j<k<—10
(IVonolloo2 + ZIILVGollo2 + 105V dolloo,2)
S, Z 2(%7ﬁ)(j7k)cgcj‘ck60 S CgGQCO (258)
J<k<-10

where we were able to place ¢y, into Si in both cases since it only appears in a non-standard
Strichartz space when not accompanied by an angular derivative.

The same argument works for any combination in which () falls on ¢; or ¢, and L
on ¢y or ¢;. If () falls on ¢y, and L still doesn’t hit ¢, we obtain the same result
using point 2 of the lemma. Points 3 and 4 are for when L hits ¢ and () avoids or
hits ¢ respectively.

Due to the non-local nature of our equation, frequency interactions of the type discussed
will appear in many different guises, which is why we give the lemma in such generality.

Proof of Lemma 2.5.3. We focus on point 1, noting the adaptations needed for the other
cases at the end.

Using the notation introduced in Section 2.2 we first split the term over regions where
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2.5 The half-wave maps contributions are negligible

|z| is large or small compared to the natural oscillations of qﬁg-l):

165 - 62 - 6D [112 S loas(@) (8 - 682 - 6D 12+ s (@) (@S - 67 - 6D 1.2
(A) (B)

Starting with (A), we further split the norm depending on the size of |¢|:

(4) S lloai(@pai (S - 32 - 612+ l9<j (@i () (S - 7 - 6D |12
(A.D) (A.IT)

To reduce notation, we will often omit the space/time cut-offs. Starting with (A.I), we
use Holder in the time variable to obtain

(2) 3
XY TR

(AL) S 160 200162 2,006 ooz < 279/ 61

Using Bernstein’s inequality on ¢,(€2) and the monotonicity of the angular Sobolev spaces
we see that this term is as required.

We now study (A.II). To counteract the loss coming from the use of Hélder’s inequality
in time we use a trick that will come up frequently in the sequel: since (;Sq(g) has not yet
been acted on by any Lorentz boost we can write

o) =t A0, LoD — AT10 (4 20 040D (2:5.9)

with the implicit sum over n = 1,2,3. A simple computation using that the spatial
localisation passes through the Fourier multipliers up to exponentially decaying tails
(since m 2 j) yields

lo<—j(@)er (D llooz S 27T ILGD lloo2 + 2777010 oo, (2.5.10)

Therefore
1 2
AID S Y (163 20001632 200l <5 (2) 0y () 10,2
k1>—j
S 2 M o 622 27T ILED ooz + 27500 o)
k1>—j - -
i 1 2 i—m —-m
S 26 a2 2ne (277 LD oo,z + 27 0160 loo,2)

which is as required.

We now turn to

(B) = llps—j(@)(8" - ¢ - 6|11 2
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Angular Regularity.

It is here that we need to invoke the angular multipliers. Write

< 3 S lem @) )@ - 6 - )1

k:1>—] ko €7
(B)kl,kg

Fix k1 > —j. Let (o” o )/3)565J s, Pe a partition of unity on S? as in (2.2.7) (denoting
Sjk1 = S_(j+ky)/3)- Then for fixed k1, ko we can split (B)g, k, into a square-sum

2
(B)ky ks S ( > ||a€(j+kl)/3<x><¢>§”'<z>§f)-¢;§>>uig(z|~2kl))

€S,
PeS L} (lt]~2"2)

Now, for each 3 € S 1, , use the Fourier multipliers introduced in (2.2.8) to write

2 2 r 2
% =1 ks (DI + Z > D (25.11)
I=1 —(j+k1)/3<r<0

Let’s start with the first term, where the angular localisations in Fourier space and
physical space are forced to be close. We find

1

2

( S 107 Gy @68 0 (D) ,i?)‘¢£2>>||igc(wkl>>
BES; ky LI(Jtj~2k2)
!
< ( > <H¢§”\\m\\né(j+k1)/3<z>>¢,?>Hoouafi(jw/g(:c)qb;?W)
BES; k, LY (Jt]~2%2)
(2.5.12)

We then use Bernstein’s inequality on the middle term to benefit from the close angular
localisation, and thereby bound the above by

1

2
1 Y M—-1 2
H¢§ )HZOO ( Z (2(3k 2(j+k1)/3) (37 )Hnﬁj(j—f—k1)/3<D)¢l(c)HffflHaé(j—i-kl)/?)(x)(bg)”ﬂz)
2

BES; kq

195 .00 - 204720 HRACTD 62, aar -0

52’“2/M2(3’f—2(j+k1>/3 ”iMl>||¢(1)||7ooH¢k l2ar s (1663 o2 (2.5.13)

HooZ

where we used that the operator nf (j+k1) /3(D) is bounded and square summed over the

B

T (j+k1)/3°

Now, fixing M sufficiently large this gives an acceptable bound in the range ko < ki:
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2.5 The half-wave maps contributions are negligible

1
2

8 1 B @), (3)\2
k>z ( ; HU_(]‘+/§1)/3(95)(¢J‘ '77_(j+k1)/3(D)¢k '(bgn))HquINQh))
w2 I \IESik LY ([t|~2k2)
M—1 1 2
¢l 2ae N6 | 2 ans (196 loo,2

For ko > k1, we obtain decay in ¢ via an estimate analogous to (2.5.10),

@k (2)ry (D ooz S 272 LD |low,2 + 25 7527|046 || 2 (2.5.14)
and the desired result follows.

We now turn to the second term in (2.5.11), the “far-angle case”. We use the angular
separation estimate, Lemma 2.5.2, followed by Bernstein’s inequality and the Riesz
estimate for angular derivatives (which only holds for finite exponents) to bound

ok @07 i 3 @O DS oo 27 F (162 o + max 935047 o)

< 2—(k1+k+2r)23k:/2MH <Q>¢l(f) ll2as

Therefore

N

S0 10 s @@ T D)6E AN 1 gy
I=1 —(j+k1)/3<r

_ ; 1 2
<2 (k1+k)22(J+k1)/323k/2M”¢§ )”OO”<Q>¢§§ )||2M”U€(j+k1)/3(x)¢g)H2 (2.5.15)
Lastly the L%\t|~2k2) norm of the square-sum of (2.5.15) over 3 € S, is bounded by

ohe/Mo=(hatk) g2tk Sg3k/2M || W | by (DS | 231 50168 w02 (2.5.16)

M-1’ M-1’

Summed over ko < k1 and k1 > —j this gives

y i 1 2
27IM i~k 2MY | aur IS 2at 50,1667 loo,2
which is acceptable since j < k. In the case of large ¢ we again apply (2.5.14) before
summing over ko > k1.

To prove point 2 of the Lemma, we perform the same argument but carry out the angular
decomposition in Fourier space on ¢§~1) instead of qﬁ,(f). In the far-angle case we no longer
gain a factor of 277% so the restriction j < k is not necessary. For point 3, we do not
change the angular decomposition but get the gain in |t|~! from qbgf) rather than qﬁﬁ?,
using the estimate

1k, (2)ks () 2,00 S 272 LS 12,00 + 251752710, (12,00
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Chapter 2. Global Solutions to the 3D Half-Wave Maps Equation with
Angular Regularity.

for k 4+ k1 2 0. For point 4 we use both of the adaptations described above. O

Due to some error terms which appear as a result of the commutation relations (2.2.1)-
(2.2.3), we will also need the following form of Lemma 2.5.3.

Corollary 2.5.4. Let K; be a convolution operator given by a Schwarz kernel kj(x) :=
23%k(27x). Then for m,r,s 2> j it holds

15;(6062) 6 1.2
S 2 M (@35 9 D¢ e aae +2%7/2M 2|9V
M

1M1 r H%,?M)

NP N2 (165 oo,z + 27 I LS 02 + 2770653 [|oc.2)

2 1K (6062) 691,
S 2 M@ B DO e + 27T @00 e )

1" M—1

(8] 2ae_ g + 29 SHL¢> Nz oo 427100 PN 23 )65 lloc,2

The important thing to note here is the gain in powers of 27 rather than 2" (up to a small
amount of leakage).

The proof of this corollary relies on the following simple proposition, which says that
angular localisation passes through convolution up to exponentially decaying tails.

Proposition 2.5.5. Let 1 < ¢ < p < oco. Let K; be as in the corollary. Then the
following commutator estimates hold for any N € N.

1. Letl > k1 +5. Then ||‘10k1 (QOZF)HLP <N 2~ (H—])NQ ]HF”L‘]

2. ok - K (0t —sF) | pp Sy 27k IN 3G Y|

3. Letr > —(j+k1)/3+ C1. Then

l ki+r)N
16” i Pt - KD G F)ll g S 27 OFRIN G B
3

Proof of Proposition 2.5.5. Estimates (1) and (2) are standard, so we focus on (3). Write

05 (g+k1>90k1 : ( (rt )SOlﬂ )| (x) = 05(j+k1>($)50k1(33)/ykj( (Tl)Splﬁ F)(z —y)dy
3
Observe that from the restrictions

@l ~ 20, e x B S2UTRIA e oyl~oh @y x B~ 2,
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2.5 The half-wave maps contributions are negligible

we find that |y| > 28177, Indeed,

2"~ |(z —y) x Bl ~27M |z —y) x B] S 271 (ja x B| + |y x B])
S 27Uk o=k g % B

Since r > —(j + k1)/3 this implies that |y| > 28177 /|§ x 8] = 2F177 (since |7 x 8] < 1).
Therefore, for ¢ such that 1 + % = % + %, it holds

(rD &

107 Gy P - K (0D Bk )|l 12
3

S

/I |>ok1+r ki ()™ (@ — y) @, (z — y) F(z — y)dy
)

LE
N
STy zata by () g 08 B, Fl o

< 2 UHRINGY G DG, P

Proof of Corollary 2.5.4. We show only point (1), the adaptations for (2) being as in the
previous proof. As in the proof of Lemma 2.5.3 we decompose

1K (8065 6D N2 S it pz (uica—ay + - 2212 ey = (A) + (B)

Here (A) can be treated similarly to in the lemma, so we focus on (B). Further decompose

B)< D X I lpraqaper jgnere)

k1>—7 ko€Z

Performing an angular decomposition in the physical variable as in the previous proof
and moving the spatial localisation inside the convolution, we have

I 23 22l ezt

2
< ( S 0 iny s @en (@) K (6D 6 66 L%)
ﬁGSj,kl Ltl(‘t|~2k2

;
) Ly ([t|~2%2)
1
2
Lg)
Ly ([t|~2k2)

)

AN

(ZH  ernys @)@ Kt 5) 6

(ZH iy 0 (@) - Kok 6061) 6|
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Chapter 2. Global Solutions to the 3D Half-Wave Maps Equation with
Angular Regularity.
1
2
2
L (Jt|~2+2)

The second and third terms above are error terms bounded using Proposition 2.5.5. For
instance for the third term we can use Point 1 of Proposition 2.5.5 to find

2
L3

sy (Zua G813 low K (o1 60 2>>u%go)

(Z H(Ué(j-‘rkl)/f} k) (@) - K (k45 000y
B

N|=

(Z H —(j+k1)/3 90k1)( ) Kj((pl ¢gl)¢l()2))¢(

l>k +5
! LY(Jt|~2k2)

D=

I>k1+5

Li([t~2~2)

< Z ok2/Mo— (HJ)N23J g H¢ HooQH(b(l gbb | v am

M—1M—-1
I>k1+5

§2k2/M2 (k1+])N23J A41\711 ”gb ” oM 4M ||¢l(;2)|| 2M H¢
M 1

—1"M-1

S?Hoo2

This is as required when summed over ko < ki, k1 > —j (since a 2 7). When ko > ki,
we again use (2.5.14).

For the first term we still have to exchange the angular localisation and the convolution.
Denoting ¢, —5 k,+5 =: Pk, we have (leaving the restriction to [t ~ 2k2 implicit. )

);

(zH 2 amys 0 @) - KG0  s5(@)8h () 6D

ZH(aé(]‘Hﬂ)/s k) (@) - K (Bry 08 )¢>
B

Ly (|t|~2*2)
1

"

+ ) (ZH ey )@ - (0D (@)@, () 66
T>>l*(j+kjb)/3

Note that here the multipliers 1 are acting on the space variable. Here the second term
is an error and again treated using Proposition 2.5.5, while for the main term we use the
close/far angle decomposition from the previous proof on #W) to reduce to

1

)2
Ly

(C-A)

B B ~ =B
%ij(M/g o) @K1 4y 3P0 @) T 3 (D)0
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2.5 The half-wave maps contributions are negligible

1

3
2
L3
Li

(F-A)

(Z [0 Gty 3 1) @B 10580 @) - DY - 637 07|

T7

where ﬁé(j+k1)/3 + 2 ﬁv(ﬂr’l) (r>—(j+k)/3,1=1,...,N) is an angular decomposition

as in Proposition 2.2.6 with 77?(341«1)/3 playing the role of Uf(jJrkl)/g. For the close-angle
term we proceed almost as in the proof of Lemma 2.5.3, however we must be careful
applying Bernstein’s inequality. We first apply Bernstein in the form of Young’s inequality
on the convolution K; then directly on the term ﬁé(ﬁkl)/g(D)(ﬁgl) to find

1

<)
}

M-8 —92(j T 2
< 20/M ¥ 920 aT ¢ anr ans (|67 2 165 oo,2

—1"M-1

M-8 _ 2
(C-A) S (§<rroé(j+kl)/3¢£2>\|223ﬂ L RN ) SRl PP

Summing first over ky < ky this may be summed over k; > —j (due to our careful
application of Bernstein) yielding

9— J/M23J s 23(“ J 4M||¢(1 ||]\241Ml’]éM ||¢b | =

sl oo

as required. We make the usual adaptation involving (2.5.14) in the case k2 > k;.

For the far-angle term, we apply the angular separation lemma, Lemma 2.5.2, to bound

1
2

(F-A) S (Z 167 iy s DM 1 ey 50 @)D (D) oo 657 1 00) )
Tl B

Ly

< 28/ YD o R 2V ) 6Oy (68 2

M—-1

ol e

Tl

< 2ba/Mo(ethn) g2t [3930/2M ) 6 ) | A%MW | 23 168 oo,

which yields

—7 j—ao3a 2
27IMP= M SO ant orlld” N ane N ooz

when summed over ko < ki, k1 > —j, and

27IMP =B PM I ¢ ane o llég” | 2ae (2T ILGD ooz + 2700 [1c.2)

for ko > k; after applying (2.5.14). O
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Chapter 2. Global Solutions to the 3D Half-Wave Maps Equation with
Angular Regularity.

2.5.1 Showing that Py(HW M(¢)) = error

The goal of this subsection is the following
Proposition 2.5.6. We have

PoL(HW M;(¢)) = error

First note the following Moser-type estimate:

Lemma 2.5.7. Let g : R? — R? be a smooth function with bounded derivatives up to
order 4. Then for any k € Z it holds

xSV RR) 09 Lg(9)] S CCI6 s

and

1,3
o 253N AO) 00 0(6) |, So Clllls)

for Q as in the definition of S and C(-) a polynomial.

Proof. In the absence of any vector fields, we have the following standard estimate
assuming only bounded derivatives up to second order:

1Pg(D)lpg Spa 27T 1012(1+ [16lls) (2.5.17)

This is proved in Appendix 2.B.

To incorporate the vector fields we apply the chain rule (omitting the angular derivative
for a radially admissible pair) to find

PeSijLng(9) = Pe(QijLnd - '(9)) + Pu(Ln¢ - Qi - ¢" () (2.5.18)

Then since ¢’ satisfies the hypotheses for (2.5.17) we have

1P L - g'(0))lp, ! n¢|!oooo||P~k:9( )||pq+||P>k: 105 Ln®llp.gll9lloc

Slletlls -2~ M lglls(1 + lls) +27F M6 s

which is acceptable. A similar argument works for the remaining term in (2.5.18) and
the second estimate of the statement can be proved similarly. O

From this lemma we can deduce the following result which effectively allows us to ignore
the projection when estimating Py (I, ((—A)/2¢)):
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2.5 The half-wave maps contributions are negligible

Lemma 2.5.8. Let ¢ such that ||¢%||s < 1. Then there exists a constant Cg > 0 such
that

2 k — _ _
max_ 26 DRI COLP (T, (—A)26)) g So S0 27CekRl|p g s,
(p,g)€Q hez

Under the same conditions we also have

1
max_ 205070 )9,(Q) D BTy ((-2)%6)) pg So Y- 277 Ml s,
(P.a)€Q kel

Our final preparation for the proof of Proposition 2.5.6 is the following lemma, a variant
of Lemma 4.3 [Tao0la], which allows us to apply the geometric identity (Geld) in a more
general setting:

Lemma 2.5.9. Letr € Z, p,q > 1 with p~' = pfl 4—p271 and g~ = qfl + q{l. It holds

u(z) - Pro(z) — Pr(u - =2 //9 0 VYVu(z — 0y)v(z — y)dydd
from which
[u- Pro = Pr(u-v)llg S 27" [[Vullg [[0]lg
and more generally
K Lu - Pov = Pr(u-0)]llg S 277 () Vieau® [lg: [K2)0" gy + 272 () Vaull, [1(2) el g

These statements also hold for P, as in Section 2.2.1.

Henceforth we will use the following shorthand, adding to that introduced in (2.4.2):

2M 1.1
(2+,00) i= (57—71:)s  HQPed 400 S 27 T4 P 5,
2M 4M 11
@+ 44) = (1 377 NP laras € 27Ga k2 35K Pl s,

(2.5.19)

Proof of Proposition 2.5.6. First note that it is sufficient to find some § > A > 0 such
that

() PoL[Pn (T (=2)29)) (¢~ (=28)?9)]|h2 S Cie?2~0m S~ 272k mley (2.5.20)
keZ

for every m € Z, provided we then fix o < .
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Angular Regularity.

We start by studying (2.5.20) with m > —10. Further decompose

() PoL[Pn (T (=2)1/20)) (¢~ (=A)1/?9)]

1,2
S Q) LPn ([yr (—A)726)) D (k- (—A)pcrsr0)]llr2 (2.5.21)
keZ
Q) LIPm (T (—A)'20)) D (d<j10- (—A)?¢)]|l1.2 (2.5.22)
jez

We first study (2.5.21). For the sum over k > —10 we use Lemma 2.5.8 to see that

> I LPo(ye (=A)20)) (¢ - (=) 2$<ki10)]l,2

k>—10

S MO L(Pn @y (=) 200 loo—2+ D DLkl 24,00- NN L(=2)"2jet10]l2-+,00-
k>-10
< 27(57%)#@03 2 27)\\m7k1\
~ 06 Z Ckl
k1

for some A\ > 0.

The case k < —10 is handled by a direct application of Lemma 2.5.3. For example if (£2)
and L both fall on ¢, we have by point 2 of said lemma that

> 1Py (=2)12)) ()L - (=8)diro) 2

k<—10

< S S 267U NG (| P (T (—A)26)) o2
k<—10 j<k+10

+ 27| LP (e () 26)) o2 + 27 ™[04 P (g ((—A)26)) [l 00,2)
which, again thanks to Lemma 2.5.8, is bounded by

C36227m/2 Z 27)\\m7k1|ck1
k1

for some A > 0. When (2) and L distribute in other combinations, we apply the other
parts of Lemma 2.5.3.

We now turn to (2.5.22), in which there are no derivatives falling on the lowest frequency
factor. To handle this delicate situation we use the geometric relation (Geld). As an
example we consider only the case where L and €2 both fall on the product ¢<;_1¢ -
(—A)Y/2¢;. This case presents the most technical difficulties from interchanging L with

1/2

the nonlocal derivative (—A)*/# and the frequency projections. We have

1P (g (—2)26)) D A L(d<j-10 - (=A)/?4;)

JET

1,2
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2.5 The half-wave maps contributions are negligible

< Y IPn(ee (=2)20)) () L(d<j-10 - (=) 25 — (=2)*(¢<j-10 - 67)) 1.2

JEZ
(2.5.23)
+ [ P (e ((—A)26)) (QL(—A)2(p<j—10 - ¢5 — Pi(d<j10 - b>j-10))|l1.2
(2.5.24)
+ | P (I ((—A)28)) (QL(=A) 2 Pi(p<j—10 - d>j-10)]1.2 (2.5.25)

The idea for handling these terms is that the first two effectively see a derivative moved
onto the low frequency factor, and for the third we can apply (Geld). We start by
rewriting (2.5.23) as

ST 1Pn(y (—A)YV26) () LLL (¢, 65)]1.2

JEZ k<j—10

which is similar to (2.5.21). Indeed when j > —10 we can bound this using the same
estimates as for (2.5.21) combined with identities (2.5.4)-(2.5.5) and Lemma 2.5.1. In
the case j < —10 we need a small adaptation before applying Lemma 2.5.3 due to the
nonlocal operator Lj. As in (2.5.3) we expand the corresponding multiplier my, as a
Fourier series to write

Lip(dn, b5) anm *a) - ¢;(x — 277b)

Since we are applying Lemma 2.5.3 we must then pay attention to where the vector
derivatives fall on this expression. For example if both fall on the low frequency term ¢y
we have to bound

> DIy (~2)120) (@) L(gk(e — 27Fa)) - 65 (2 = 27b) 12 (2.5.26)
7<—10 a,b
E<j—10

Then by point 1 of the Lemma we have

| P (T2 ((—A)26)) (L2 — 27%a)) - ¢5(x — 277b) |12

S 27 Lok (x — 27%a)) |2+ 00

C@3PM Q) (5 — 2770)) 12400 + 290 [15]124.a1)
(1P (T (—A)26) o2 + - )

< 272G ) =) ()2 ()2 Clejep - 272 Y 2 Mkl

k1

where we used (2.5.6) to achieve the final line. This is acceptable when summed as in
(2.5.26).

For (2.5.24) we first consider j > —10, using the commutation relations [Q, L] ~ L,
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(L, (—A)'/?] ~ RO; and [, R] ~ R to find
ST 1Py (—A)Y26)) (QL(—A)2(¢<j—10 - &5 — Pj(d<j—10 d>j-10))l12
§>—10

S 1Py (—A)26)) (—A)Y2HQ) L(d<j—10 - ¢j — Pj(d<j—10" d>j-10))l1.2

§j>—10
(2.5.27)

+ [P (Tga ((—A)?8)) R(QD(d<j—10 - &5 — Pj(d<j10- ¢>j-10))[l1,2 (2.5.28)
These terms can both be handled using Lemma 2.5.9. For (2.5.27) we have

(2.5.27)
> Py ((—2)729))[loo— 2+

j>—10
N2 L($<j-10 - 65 = Pi(d<j-10- b)) | Ly

S Y 1Py (—A)20)) oo 24 - 27 (277 {2 Vi 2 Lb< 10l 124,00 ) L [l 24 00
j>—10

+ 27 [(2) Vi 1012+ 00— [[{2)Brbmjllat00-)

Z o= (5—3p)m (Z 2_>‘m_leock1) -2_2j/MCge2

j>—10 k1
which is acceptable. (2.5.28) is similar.

For (2.5.24) with j < —10 we will use Lemma 2.5.3 but must incorporate the cancellation
structure via Lemma 2.5.9. We write, for ®;(£) := [277¢|x0(277€), Xo as in Section 2.1.1,

(=) (p<j10 - 85 — Pj(d<j10 - ¢>j-10))
= / , i)j(y)(ZjZ)Zj(z))nggj,m(x —y—02) ¢~j(x —y — 2)dydfdz
2.y,

Thus by Lemma 2.5.3, using the notation (2), and L, to emphasise that these fields act
with respect to the x variable only, we have

ST P (I ((—A)26)) (QL(—A)*(¢<j10 - d5 — Pj(d<j—10 - $>j-10))

j<—10

S Y [ oz )
_7< 10 29,0
(1P (T (=8)20))(2) ()2 La[Vsjr0(z — y = 02)] - dj(z — y = 2)| 1112
+ similar terms

S X[ o)X )] 2L (Ve — 2] s

j< 10
k<j—10
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2.5 The half-wave maps contributions are negligible

@M, (D (3 =y = 2)) o400 + 25T [|6mjllag a4)
(1 Py (= 28)2¢)) ooz + - )

+ similar terms

Then using (2.5.6) we bound this by

Z 27m/22(%fr}w)(kfj)cgcjck (Z 2)\|Mk1|ckl)

j<—10 k1
k<j—10

R I+ 02)* 2+ 2)) b

Thanks to the scaling of éj and x;, both of which are rapidly decaying, we see that the
integral above is O(1) and this term is acceptable.

To complete the case m > —10 we need to study (2.5.25). Applying (Geld) and
commuting (Q)L through (—A)Y2P; we have

D 1P (I ((—2)126)) () L(=A)2Pi(¢<j-10 - $>j-10)

1,2
jez
<> ||Pm(H¢L((—A)1/2¢)) (—A) 2P L(¢sj-10 - ¢j-10) |12 (2.5.29)
jez
+ || P (T ((—A)%8)) RPH{()0(¢-10 - ¢>-10) 1.2 (2.5.30)

+ | Pr(Ty ((—A)20)) (—A)Y2(2790,P)(Q)(d>j-10 - d>j—10)[l12  (2.5.31)

This is easiest to handle when j > —10. For instance the sum of (2.5.29) over j > —10
is bounded by

> 1P (—2)20) loo— 2+ - 27 I{) L j—10ll2+ 00— (D L 10| 2+,00-
j>-10

which is fine. The commutator terms (2.5.30) and (2.5.31) correspond to (high)V (high)-
V(high) interactions and can be treated like (2.4.8).

For j < —10 we use Corollary 2.5.4 with K; = 277(—A)/2P;. For (2.5.29) we have

> P (e ((—A)20)) (—A)2P{Q) L(¢sj-10 - ¢>j-10) 1.2
j<—10

S D0 1Py ((=2)2¢)) (=) 2Pi(Lésj10 - () Lsj-10)

1,2

j<—10

S > 22 (2 2 D Lo ar + 25T () L2400 )
j<—10
r,s>j5—10

D L 24,00 (| P (s (—2)2) ooy + - )
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<Gl 2| Y (G B AU 4 oGm0

j<—10
r>j—10

. Z Q—A\m—kl\ckl
k1

which is acceptable. (2.5.30) and (2.5.31) can be treated in the same way, using the
additional information that P; localises the two factors of ¢~ ;_19 to comparable frequen-
cies (r ~ s) in order to handle the high frequency time derivative which appears. This

T

completes the case m > —10.

The case m < —10 is actually easier to handle and we do not need to invoke Lemma 2.5.3,
since the geometry rules out any (low)V(low)V (high) interactions. When the lone factor
of ¢ appears at high frequency (> 2710), we refer to (2.4.6) and (2.4.7) of Proposition
2.4.1 for the cases when (—A)l/ 2¢ appears at high or low frequency respectively. It thus
remains to study the case when ¢ is at very low frequency. Here we have

[ Po{Q) L[ Pra (T (—A)28)) (d<—10 - (—A) 2P _10)]]11.2 (2.5.32)
< | Po(Q) L[Pr (T2 (—A)20)) (d<—10 - (—A) 26510 — (=A)*(d<—10 - d>—10))][l1.2
+ || Po(Q) L[ P (T (=) 20)) (—=A) 2 (p<—10 - p>—10)][11.2 (2.5.33)

The first term above is of the form

Yo D IPLIPa (e (—A)20)) Li(5, 61))]ll1.2

j<—10k>—10

which can be handled like (2.4.7) from Proposition 2.4.1 (or directly when [j — k| ~ 0).

For the second term in (2.5.33) we use (Geld) to replace the low frequency term with a
high one. We may also insert a projection Py before the (—A)/2 since m is very small
and the whole term is restricted to frequency ~ 2°. We thus bound

1Py () L P (T (—=A)'20)) (=) *(¢<—10 - 65-10)] 11,2

§H<Q>LPm(H¢l((—A)1/2¢))( AV L(¢s—10 - p>—10)l1,2
(—A)2¢)) PyR(9r¢>—-10 - (V) d>—10)]l|1,2
(—A)29)) PyR(¢>—10 - (2)0ed>—10)]||1,2

The first of these lines is straightforwardly bounded by

2z 730 (Z g-Am=kilCyey, ) L 10lla+ 00 () Lo 10lloo— 2+

k1€Z
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For the second and third we must again invoke Corollary 2.5.4 to see, for example,

Q) P (T 1 (—A)20)) PyR(Dpp>—10 - () d>—10)]11
<Y @O ot ar + 257227 Q)i 124,00 )12 s |24 00

re~s>—10
(4 P (g ((—2)29)) o2 + - - )
< C3e.27m/? (Z Q_Am_klckl) Z (2(4M =355 )" 4 2—(1—ﬁ)r)cr

k1 r>—10

which is acceptable for M sufficiently large. The third term can be treated identically
and this completes the proof. O

2.5.2 Showing that Py(HW Msy(¢)) = error

In this section we will prove that the remaining nonlocal terms in the forcing are
acceptable. We will use the notation

X 5@,1) Y

to mean that X < C, ;Y where C,; grows at most polynomially in a, b. This is specific
to both this section and the letters a, b.

Proposition 2.5.10. We have

PyL(HW Ms(¢)) = error

Proof. We decompose

HWMy(¢) = > ¢ x [(=A)2(¢r x (—A)2¢) — (¢5 x (—~A)9)]

kEZ

and study the regions k < —10, k € [—10, 10] and k& > 10 separately.

e k < —10: We make the decomposition

1Py () LLp x [(—A) 2 (¢ x (—=A)/2¢) — (¢r x (=A)9)]]]11.2

< || Po{Q)Llp<r—10 x [(—A)2(¢p x (=A)%¢) — (¢r x (—A)$)]]||1,2 (2.5.34)
+ [ Po{ ) L[pge—r0,-15) % [(—=A)2(¢r x (—2)20) — (¢ x (=A))]]1.2 (2.5.35)
+[Po{) Ll 15 x [(—=A) 2 (¢r x (—A)20) — (¢ x (=A))]]]11.2 (2.5.36)
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The last term above is the easiest to handle, splitting

(2.5.36) < [{Q)L[d>—15 x [(—A) 2 (¢g x (=A) 2G5 p410) — (61 X (—A)dspr10)]][]1,2
+ Q) Ll 15 x [(=A)2(¢r x (—A)2p<pi10) — (dr X (—A)p<kr10)]]1.2

The first term here can be handled like (2.4.6) upon writing

(_A)1/2(¢k X (_A)1/2¢>k+10) - (¢k X ( )¢>k+10 Z £k+] ¢k,¢]) (2.5.37)

7>k+10

and using (2.5.4)-(2.5.5), while the second term can be handled like (2.4.7).

Next consider (2.5.35). This term is of the form (low)V (lowest)V (high), so we will
rely heavily on Lemma 2.5.3. Since the outer projection Py almost passes through
the operators (2) and L, the third factor of ¢ is restricted to ¢.. Then using (2.5.2)
to write the commutator expression L (¢, (—A)Y2p0) = Li(dr, d~0) as a Fourier
series, we find

—-15

(2535) S D 2 IR QLIS (x) x [ér(x — 27%a) x duolw = )]}l

j=k—10 a,b

Then for instance if the derivatives (€2)L both fall on ¢; we can apply point 2 of
Lemma 2.5.3 and bound

—15
> ZC D) Lej(x) x [pr(x —27%a) x puo(z — b)][112
j=k—10 a,b
Z S B2 M Q) L o o0
7j=k—10 a,b
- (232M)1(Q) (g (2 — 27%a)) ot 0 + 257 [|Gg o)
(16~0lloo2 + 1L(Sm0(@ = D)oo,z + |emo]l02)
—15
v > SNy NG mm) I Coe; - (a)Coey - (B)Coco
j=k—10 a,b
, —15 L1\
SCOCQ Z 2(2 QM)( ])cjck
j=k—10

which is acceptable when summed over k£ < —10.

To complete the case k& < —10 it remains to study (2.5.34). Here there are no
derivatives falling on the lowest frequency term, so we must use that ¢ lies on the
sphere. Observe that the third factor of ¢ is restricted to frequency ~ 2° by the outer
projection and write

(—A) 2 (g x (=A)2p0) — b1 X (—A)po = Li(Dk, Do)
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to find

(25.34) <) |C |H Q) L{p<r—10(x) X [pp(z — 27%a) x ¢po(z —b)]][12  (2.5.38)

a,b

We then invoke the vector identity
X (bxc)=bla-c)—c(b-a) (2.5.39)
to rewrite
Q) Lp<k-10() x [¢r(z — 27" a) x dro(z = B)]][l1.2

< () Ll (z — 27%a) per—10(x) - dmo(z — b)][l1.2
+ Q) L[po(z — b) der—10(z) - dr(x — 2 Fa)]||12 (2.5.40)

Let’s start with the first term. In order to use (Geld) we need the two terms in the
dot product to be evaluated at the same point, so write

1
b<k—10(7) = d<—10(7 — b) + /O b Vor_10(x — 0b)do

Putting the integral expression into (2.5.40) we get a term of the form (high)V (low)V (low)
which is easily handled. Indeed, borrowing the factor of 2% from cgkb, we may write

2K Q) L[pp(z — 27%0a) (/1 b-Véep_10(z — 0b)dh) - do(z — b)]||1.2

S 2k/ () Lk (2 = 27%a)) |24 00— [{N LIV d<k—10(2 = 05))[|2+,00-
) L(pno(@ — b)) [loo—,2+d0
Sap C3 Y / cjenco22 ) UTR) (270520

j<k—10

which is acceptable when summed as in (2.5.38) and over k£ < —10.

We then come to

25| {Q) Llgr(z — 27%a) (¢p<k—-10 - dn0) (@ — b)]||1.2
< 2 Lge(x — 27 a) (Ppe—10,-10) - ¢~0) (2 — b)][|12
+ 25| {Q) Lok (x — 27%a) (<10 - d~o) (2 — b)][l1.2 (2.5.41)

The first of these terms can be handled by a straightforward application of Lemma
2.5.3. For the second we use (Geld) to bound

25| () L{gk(z — 27 %a) (d<—10 - d0) (@ — b)]]l1.2
S 2K Ligr(z — 27Fa) (¢< 10 - o — Pro(d<—10 - D~0)) (@ — D)][|1.2
+ 25| () L (z — 27%a) Puo(¢>—10 - d>—10)(x — D)][l1.2
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The first line is easy to handle using Lemma 2.5.9 to move a derivative onto the low
frequency term, so it remains to consider the second line. From the estimate

25| (Q) L[k (z — 27%a) Puo(¢>—10 - d>—10)(z — b)][|12
< 2D L(br(x — 275 a))ll2+.00- () L(Pro($>-10 - d>-10)( = 0))l| 2r 2ar

M+1°M—

it remains to show that

[{Q2) L(Po(d>—-10 - ¢>—10)(x = b))|| 21 201 <p Caé? (2.5.42)

M+1°M—

First permuting the vector derivatives and the translation by b we find

K2 L(Pro(d>—10 - d>—10)( = D))l 20 2ar S [[(Q) LL0(P>—10 - >—10) | 202 20

MF1>M—1 M+1'M-—1

+ () Poo (0> —10 - ¢>—10)|| 202 2 2u

MFy1 M1

(2.5.43)

For the first term we commute (2)L and Py to see

H<Q)LP~0(¢>—10'¢>—10)H% o S | Poo () L(d>—10 - ¢>—10) || 2 2

T M—1 M1 M—

+||P~0<Q>at(¢> 10 - Q>— 10)” 2M 2M

M+1’M—

S Q) Lds—10]|2+,00— [ (22 >L¢>—10Hoo—,2+
+ [[{2) 0t —10 00— 2+ [ (D) P> 10| 2+ 00—

which is as required. This calculation also covered the second term in (2.5.43) so
(2.5.42) is shown, completing the study of (2.5.41).

It remains to study the second term in (2.5.40). Again we write

1
bcr10(x) = pep_10(z — 27%a) + 27" - /0 Véer_10(x —27%ah)df (2.5.44)

For the term involving the integral we have

)Ll oe ~ D)2 a- [ Focrole 2 a)dt) - ou(e — 2 s
<02 [ N Lip-ole BV 1o(e — 27 4a8) - ou(x — 27 Ha)] 1.0

Remembering that we can absorb the 27 into c((lkg from (2.5.38), we see that this can

be treated directly using Lemma 2.5.3 after splitting () L over the three factors.

For the remaining part of ¢.,_19 we use the geometry to bound

() Lpo(z — b) (d<k—10 - ¢1)(x — 2 %a)] |12
S Q) Lidmo(z — b) (d<k—10 * Pk — Prld<k—10 - d51-10))(x — 2 %a)]|l12  (2.5.45)
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+ [{2) L[pno(x — b) Pe(dk-10 - ¢2k—10)(z — 27"a)]

1,2 (2.5.46)

)

First consider (2.5.46). We consider only the more difficult case where (Q)L falls on
the Pj. By a series of calculations as in (2.5.43), we reduce to studying terms of the
form

[p~o(x — ) (Pr{2) L(¢2k—10 - d=k—10))(x — 27 a) 1.2

and

27| po(@ — b) (Pl Q)0 (dk-10 - dk—10)) (T — 2 Fa) |12

We restrict our attention to the more delicate second term, as the first can be treated
similarly. Considering for example the case in which the angular and time derivative
fall on different factors, we use Corollary 2.5.4 to bound

27| g0 (2 — b)(Pr(Odsk—10 - (Qb>k—10))(x — 2 %a)|1 2
27 3 deo(@ — b+ 27 Fa)Pr(Oidr - (Q)05) ()]

1,2
r,s>k—10
_ _ M-1 21 (. _
<27 ST 2 WM 2B 0,0, g 4y + 28725 PV () Dubr |24 00— )
re~s>k—10

A Dsll2+.00([D~0lloo,2 + 2| L(¢no (2 = b+ 27a))[loo2 + [tPmolloo,2)

SJW—I 21 1

Sap 2 FCheco S (20T~ () 4 o(i=ap) ()
r>k-10

(k)

which is acceptable when multiplied by Cah and summed over a,b and k£ < —10. Note
that here the gain of 2% before the factor L(¢~o(x — b+ 27%a)) was necessary in order
to cancel out the loss from the translation by 2¥a.

For (2.5.45) we expand

1
G<ti—10"0k—Pr(P<k—10-0>k—10) = 27’“/0 /(Qky)v(k(y))v(ﬁdc—lo(x_gy)¢~k(x_y)dyd9

Yy

It therefore remains to bound

_ k ~
>2 k!Cfl,Z!/ dydf |25y Xk (y))|
a7b y70

Q) Lpmo(z = b)Vdap—10(z — 277 — 0y)pi(z — 27" a — y)]|l1.2

which can be handled using Lemma 2.5.3.

e k> 10: We study

D P L[D x [(=2)2(¢r x (=2)2¢5) — (1 x (=2)¢)]]l|1.2

JEZ
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If the third factor of ¢ is restricted to j < k — 10, then the first ¢ is restricted to ¢x
by the outer projection Py. The term is therefore of type (high)V (high)V(low) and
may be treated as (2.4.6) upon writing

(=) (pp, x (=A)20;) — (b1 x (=A);) = Li(or, (D))

and appealing to the identities (2.5.4)-(2.5.5).

When j > k + 10, again the first factor is restricted to ¢~; and this may be treated
similarly.

It thus remains to study 7 ~ k. Here there is nothing to be gained by cancellation so
we split the term up into its two parts:

1P (L[ x [(—=A)2 (1 x (=)' 26p) = (61 X (—=A)$r)]
< [P (@) LI x (=) 2(gg x (=2)2pp)]ll1,2+ [ Po( L[S x (dr x (=A)dmi)] 11,2
(A) (B)

1,2

(2.5.47)

We first study (A). This term presents some more complications due to its nonlocal
expression, however it also has the advantage that when the remaining ¢ is at low

1/2

frequency, the outer derivative (—A)*/¢ is acting at frequency ~ 1. First split ¢ into

low and high frequencies:
(4) < |IPo(2) Llg<—10 x (=) (9 x (=A) 1))
(A)<-10

+ [ Po() Lps—10 % (=A% (¢ x (=A)"2p )] 1.2

(4)>-10

1,2

Here (A)s_1p is of type (high)V(high)V(high) so can be handled like (2.4.8) using
the radially admissible Strichartz spaces.

(A)<_10 is of the form (low)V (high)V (high) so must be handled using the geometry.
In this case it is especially important to keep track of how the vector derivatives are
falling as the commutator terms can rapidly cause a build up of derivatives if treated
too crudely.

To clarify the calculations we then fix a particular Q;; and L,, (the inhomogeneous
parts of () and L are easier to handle) and make a very precise decomposition. Note
that we are free to switch the order of {};; and L, up to a term of the same form.
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Writing ]—:’0(—A)1/ 2 = Py, a radial operator, and using the Leibniz rule, we have

PoLnSijlp<—10 % (=) (¢ x (1))

= Py[LnQijd<—10 x Po(dr x (=A)2¢.1)] (A1)
+ Po[Lnd<—10 X Po(Qijdr x (—=A)2p)]
+ Py[Lndp<—10 X Po(dr x (—A)2Q;6.1)]
+ Py[Qijp< 10 X Po(Lndp x (—A)?¢.1)]
+ Polp<—10 X Po(LaSijdr x (—A) )] (A2)
+ Pyl<—10 X Po(Lndr x (—A)2Qi56.1)]
+ Po[Qijp<—10 x Po(r X Ln(—A)"2¢ )]
+ Po[p<—10 x Po(Qjor X Ln(—A)"2¢ )] (A3)
+ Po[p<—10 x Pol(or X LnSij(—A) 2 )]
+ PolQuij<—10 X Po(dn x (—A) 2]
+ Polp<—10 x PYO:(Qujd x (—A)2¢p)] (A4)
+ Pold<—10 x Pior(d x (—A)2Qu;6.k)]

In the above P is another operator of the type described in Section 2.2.1, which may
not be radial.

We start by considering the group (A4) which is the most difficult since there is an
additional derivative falling on the high frequency terms. Consider first the case where
Oy falls on ¢p. Writing the operator P} as an explicit convolution by some Ky, we
have for the first line

Qijd<_10 ¥ P(/)(atd)k X (=A)2¢p)
= Qyb<_10(a / Ko(y) (i (x — y) x (—A)726. (2 — y))dy

= | Ko)oudn(e —) Qi< 10(w) - (~8)pae —y)dy (2.5.48)
/ Ko(y) ()26 1z — ) Qjo<10(x) - dedi( — y)dy (2.5.49)
We must then split
Qijd<—10(z) = (Qijp<-10)(z —y) +y- /9120 V(Qijd<—10)(z — Oy)do

Putting the integral term into (2.5.48) we find

[ Kowainta =) (- [ TSio10)le — 00)d0) - (~2)" -4tz — y)dy
Yy 0=0

1.2

1
S [ [ 1Kol 1006150 1925010l o I(=2)"26 il 50y
Yy
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which is acceptable when summed over k& > 10 since the factor of |y| is absorbed by
the kernel Ky. The same argument works for (2.5.49), and for the corresponding terms
in the second and third lines of (A4).

For (2.5.48) it therefore remains to consider
/’Co(y)[at¢k Qijo<—10- (=) pi] (@ — y)dy
Y
The corresponding terms from the second and third lines of (A4) are

/’Cﬁ(y)[Qz’jat¢k d<_10- (=AY 2p 1) (x — y)dy (2.5.50)
y
and

/y’CO(y)[at¢k p<—10 (—A)2Qi0 k) (x — y)dy (2.5.51)

and we have to bound the sum of these in L} L2.

In order to use (Geld) we rewrite ¢<_10 = d<r—10 — #—10,k—10]- Then for the high
frequency part we can again use a bound as for (2.4.8) to see e.g.

10k Qijdr 10510 - (—A) k]2 < ||5t¢1c||9,§”Qz'jd’[—m,k—m]||g,oo||(*A)1/2¢~kH2,5

which is acceptable. The same argument works for (2.5.50) and (2.5.51).

For the low frequency part ¢<i_10 we want to use (Geld). We have

Ar Qijd<k—10- (—A) 24

= Oy, (Qij¢§k—10 : (_A)l/QQka: - (_A)l/Q(QijQﬁgk_lg . (bwk)) (2.5.52)
+ 0r (—A)Y2(Qijd<k10 - Dok — Pok(Qijd<h—10 - d>k—10)) (2.5.53)
+ 8in (—A)Y2 P (Qjd<i—10 - >k-10) (2.5.54)

For the first line we use Lemma 2.5.1 to bound

12552) 125 Y. 10 Li(Qjdj, dok)

1,2
j<k—10
S D Z10rllzrco- 1905ll2+4 0o |kl 2+
j<k—10

and for the second line Lemma 2.5.9 to find

1(2.5.53) (11,2 < 10:0k ll2+,00— 2727 V0 <t— 10| 24,00 |65 k- 10| s0— 24

Both of these bounds are acceptable, and we can treat the corresponding parts of
(2.5.50) and (2.5.51) in the same way.

We at last come to the interesting part, (2.5.54). We want to use (Geld), but are
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obstructed by the presence of the €2;;. The solution is to combine this term with the
corresponding part of (2.5.51). We have

Odr (A P (Qjd<r10 - db-10) + O (—A)2Pok(d<i10 - Qij>k-10)
= Oir, (—A)Y2Q4 Pop(d<p_10 - P>h_10)

1
= —§8t¢>k (—A)2Q4 P ($—10 - d>k—10)
We then bound
10:dk (—A)Y2Qi5 Po(dsk10 - D>k—10)||1,2
< 27)19u k] |2 00— [|Q2ij B> k—10]|2-4,00— || B> k— 10| s0— 2+

which is acceptable. The corresponding term in (2.5.50) can be handled similarly on
its own.

The term (2.5.49) can be handled in the same way, using the Leibniz rule on the
time-derivative in place of Lemma 2.5.1.

To complete the study of (A4) we have to consider the case where the time derivative
falls on (—A)Y/2¢..;, instead of ¢,. In this case the argument carries through identically
until it comes to handling the term analogous to (2.5.54),

O (—A)Y2P 4 (jb<i_10 - rdsi10)

with similar contributions

Qijon (—A)Y2Poy(d<k-10 - Oedsk-10) (2.5.55)

and

o (—A)Y2Poi(d<k-10 - 0 Qijd>k—10) (2.5.56)

from the second and third lines of (A4). First note that if the derivative were instead
on ¢<—10 we would be fine in all three cases, for instance

6% (—A)Y2Pop(QijOrd<i—10 - Poh_10)]1.2
S bkl 24 00— 25110 Osd<k—10 | 24,00 || >k —10 ]| c0— 2+

It therefore remains to study

O (—A) 2P0y (Qjd<i—10 - d>k—10)
Qijor (—A)YV2Podi(d<r 10 - d>k_10)
S (—A)2P0y(p<r—10 - ijdsr—10)
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Combining the first and last terms and using (Geld) we bound

6k (—AVY2Pdi(Qijd<k—10 - dk_10) + Sk (—A)YV2P8i(d<r 10 - Qijdsk_10)]12
= |6 (—A)Y20,94 Por(psh_10 - dk_10) 1.2
< 2810k [l 2 00— 1| O {2 D= e—10] | oo 2 || {2) D> k—10 |24 ,00—

which is acceptable when summed over k > 10. The middle term can be dealt with in
the same way on its own. This completes the analysis for (A4).

The groups (A1), (A2) and (A3) must be treated simultaneously in order to preserve
the structure for (Geld). In all cases, we can work as for (A4) up to the decomposition
(2.5.52)-(2.5.54). At this point for (A1) we will be studying

O LnQijo<i—10 - (—A) 2
Qijbr Lnd<k_10- (—A) %k
Ok Lnd<h10- (—A)Y2Q6.1

for the first, second and third lines respectively. For (A2) we will have
Lnor Qjo<r10- (—A) 20y,

LoQujon d<i10- (—A)Y ¢
Lnor d<i—10- (—A)2Qi01,

and for (A3)
Ok Qjd<i_10- Ln(—0)Y2p

Qijon d<k10- Ln(—A)Y20
O d<k10 - LnQj (=A%

(as well as a second set of easier terms from the expansion of the cross product).
Adding these nine terms together and reversing the Leibniz rule on €;; and L,, this
comes to

LoQijlon d<h10- (—A)Y 20 4]

which we can split up as

LnSjlon (D<o (A 2h0p — (—A)2(p<t—10 - dt))]
+ Lo Qij[6 (—A) 3 (d<h10 - ok — Pok(d<io10 - dk-10))]
+ LnSQujlon (—A)Y2Poy(d<k-10 - dk-10)] (2.5.57)
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The first term is of the form

Z QijLn [¢k£] (¢j’ ¢~k)]

j<k—10
which can be treated using (2.5.4)-(2.5.5) and placing ¢ and ¢; into L7 L, and
b into LT L2T.

For the second term, we use Lemma 2.5.9 to write, for example when L,,€2;; falls on
the difference term

bk LS (—A)Y* (<10 - ok — Pk (d<k—10 - S>k—10))

S H¢ka/‘fl,2M

L -2 [ ) Vorro(e — n)omn(e ~ )iy

1,2

s 2M 2M
M+1"M-—1
SJ 2_162_(%4_%)]{’,0001C
12 [[Lafis (- A) Tt r0( — 0)6n(a — )| Ly s dudt
y,0 M+1°M—1

where

2M 2M

[ L9245 (— ) 2196 10(w = ) dnle = )] o

< 2YIL(Q) (Vd<r-10(2 = 09) 24,00- IL(Q) (Dt (@ = 1)) oo 2+
+ [0V d<r—10( = 0Y)) ll2+ 00— () (D (2 — y)) o2+
+ [ (Vé<r-10(x = 0y))ll2+,00-[{2) (k2 = Y))lloo— 2+

all of which are acceptable using (2.5.6), because |y| behaves like 27% in the integral.

The third term of (2.5.57) can be treated using (Geld) and the commutation relation
between L, and (—A)Y/2P_;. We place ¢, into LZT L~ one of the high frequency

factors into L?T L~ and the other into L~ L2t in particular the one accompanied

by a d; when this arises from [L,, (—A)Y/2P_].

To conclude the case k > 10, it remains to consider (B). When ¢ appears at high
frequency this term is again easily handled like (2.4.8). In the low frequency case,
¢<_10, the term can be treated analogously to the group (A4) which also contains
two high frequency derivatives, but with significant simplifications.

k € [—10,10]: This time we consider

1P L[6 x (=) (g0 x (=A)"20) = (60 x (=2)9)]l112

This term is easiest to handle when the outer factor of ¢ is at high frequency. Indeed
we have

1Po () L[d>—10 X ((=A)"*(dno x (=2)20) = (dn0 X (=2)9))] 1.2
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S I LB —10 % (=) (dao X (—A)2h<20) — (P X (—A)d<20))]
+ (L[5 —10 x (—A)7*(dap x (=A)2P220) — (0 X (—A)d520))]

1,2

1,2

Upon carefully commuting ()L through the operators (—A)'/2, we can bound the
first line above by placing ¢~ _19 into Lt2+L§°_, ¢~0 into L?‘Lff and ¢.99 also into
LT L™, without needing to use the cancellation structure. For the second line we
do need the cancellation, since we cannot handle two derivatives falling on a high
frequency factor, so bound this by

ST Q) L]p>—10 X Lo(po, (—A)20))]]

§>20

1,2

which can be dealt with by placing ¢~ _19 and ¢~ into Lf‘LLgO_ and ¢; into LfO*LEC*.

The case ¢<_10 is more delicate. Note that in this case the final factor of ¢ is also
restricted to frequency < 1. First suppose it is at frequency ~ 1. Write

Po((—A)2(6m0 x (=) 20) = (¢0 X (—A)P0)) = Lo(Pno, Do)

Then using (2.5.3) we have

1Po(2) Ld<—10 X (=A)Y2(no X (—=A)?60) = (60 X (=A)$~0))][I1.2
<SSR LI 10(2) X (d0(z — @) X dolz — ))][l12
a,b

< S 1) Lipo(z — a) d<—10(x) - oz — b)]||1,2 + similar term
a,b

We can then replace ¢<_10(x) with ¢<_j0(x — b) up to an integral term of the form
(high)V (high)V(low). Using Lemma 2.5.9 we can then exchange ¢<_19 - ¢~ for
Po(dp<—10 " ¢>-10) = Po(¢>-10 - #>—10), and bound

Q) L{p~o(z — a) Po(¢>—10 - ¢>—10)(z = b)]|l1.2
Sab 1{2) Lo~ol2+,00—
(U L(p>—10 - d>—10)|| 222 200 + [{Q)(Orp>—10 - P>—10)]| 200 201 )

M+1"M-—-1 M+1>M—-1

which can be handled by placing one of the high frequency factors (the differentiated
one in the second case) into L{°~ L2t and the other into the other into LT L.

We now consider the case where the third factor of ¢ is at low frequency, say < 2720,
We start by writing

(—=2)2 (6o X (=2)205) = (D0 X (=A)5) = L;(dm0 ;)
for j < —20. Then we have
1Py L[p<—10 % (=A)?(ho X (—=A)?h<20) = (¢m0 X (=A)P<—20))]]l1,2
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< 3 Y I PR Ldo(x — a) d<—10(x) - dj(z — 277B)]||1,2 (2.5.58)

]< 20 a,b

+ 30 S IR LI (2 — 277b) d<10(x) - dnolz — a)]l12 (2.5.59)
j<—20 a,b

We will study the first line above, the second being similar (in fact significantly easier).
In order to use (Geld), we split ¢<_19 into ¢pj_109,—10] + $<j—10. The first component
here is handled by a straightforward application of Lemma 2.5.3, so we are left to

study

> Z\C ol Po{Q) Lipo(z — a) d<jr0(z) - ¢j(z —277D)] |12

7<—20 a,b

We first replace ¢<j_10(x) with ¢<;j_10(z —277b) up to an acceptable integrable term
of the form (low)V(lowest)V (high). We are then left with

> S 1P Lipmo(z = a) ($<j-10 - &5)(@ — 2770)] 1

7<—20 a,b

Similarly to before, we can replace ¢;_10-¢; with Pj(¢<j—_10-¢>;—10) up to the term

2 [ bl ) )

H) L{pno(z — a) Vocj—10(z =277 — By) - ¢oj(z — 2776 — y)]|

1,2

which is also of type (low)V (lowest)V (high) and can be handled using Lemma 2.5.3.
We can then finally invoke (Geld) to bound

>y |C MIPoHARQ) Lp~o(z — a) Pi(d<j-10- d>j-10)(x — 277b)]||1.2

j<—20 a,b

DD Z!cab!HPo Lipo(z —a) Pj(¢r - ¢s)(x —279D)][12  (2.5.60)

res>j—10 j<—20 a,b

This term can be handled using Corollary 2.5.4. For example, when (Q2) and L both
fall on P;, we have (up to some terms which are symmetric in 7 and s)

2 [ pmo(a — a) (DL(Pi(¢r - s)(z — 2790)|1
b [[6mo(x — a+279D) P (e, - 65) (a )H
+ gm0z — a+277b)P; (B, - (Q)s) ()12
+ 2| pno(x — a+279B)P;((Q L, - 6s)()l|1.2
+ 2| pro(x — a+279B)P; (Lo, - (Q)6s) ()12
< 279/M 3R 23 0|6 o e Q) Debr 2,00 Coco
+ 27993935/ 2M Q) 6 24 oo () D1y | 2+.00Coco
+ 279/M R 238 D) By by |4 4 I1{) B | 2400 Coco
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+ 27j/M2j7T23T/2M” <Q>at¢rH2+7oo— | <Q>¢8H2+,OOCOCO
4 2/ (same terms with L instead of ;)

3M1

S @R A0 4 200U Clege ey

which is acceptable when summed as in (2.5.60). This concludes the study of (2.5.58).

O]

2.6 Normal Forms

The goal of this section is to perform a series of normal transformations to reduce the
second and third terms on the right hand side of equation (2.4.11) to error.

2.6.1 Low-high-high term
To handle the third term, we make the transformation
1,1 A1(1)2 1,3
- 1 A7+ AT+ AT
W dt =gt 4 oAy o (A)=| 0 D
Ai”l +A§,,2 +A§”3
with
AY := Py(p<—106L _19¢>-10)
AT = Py((Lno)<-106%_196>-10)

AP? = Py(p<—10(Lnd) L _196>-10)
AT = Po(p<—100%_10(Ln)>—10)

We start by showing that this transformation is bounded in the following sense:

Proposition 2.6.1. For (A1) as above, it holds

I(AD)]s < Cieco

and

KD (A0 gra/2 172 S <o

Proof. By Bernstein’s inequality we have
[N man H<Q>176(p’q)Vt,mP0(¢§—10¢£flo¢>—1o)||p,q
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< mex Q) Vi a(d<—100L _100>—10)llp.2

When the derivative falls on a high frequency term we have, noting that p # 2 for
(pq) € Q,

{2 (¢<—10Vewd _1005-10)llp.2 S 1{)P<—10llo0,00 /{0 V005100021 (2) f> 10
g C[2)6C()

‘p7oo

and in the same way

) (Ve.ad<-106% 100>-10)llp2 S {2) Veed<-10ll00,00 (26> - 10|00 2| {2) 510
S, CSGCO

‘p7m

The argument for the remaining A?’i (n,i=1,2,3) is identical.
We now show the bound on the initial data. Recall the smallness assumption (2.3.1):

() PrdOl| ga/2 5 g2 + {0 (2 - V) P [0]]] ga/2 5 172 < i (2.6.1)

It immediately follows that

K (ADO) ] 272 < {2 P<—10(0) |0 | {2) &> -10(0) oo [[{2) ¢ —10(0) |2 < o
with a similar argument for the initial velocity.

The terms involving L are slightly more complicated. The initial bound in H3/2 presents

no particular difficulties, however to study the initial velocity we have to iterate the
. . n.l . .

equation. We consider only A}"" as an example, in which case we have

QAT (O /2 S IHQYB(Lnd) <—10(0)] o0 {2) 35 -10(0) | oo [ (1) $—10(0) 2
+ [{2) (L1 ) <-10(0) [0 [1{2) Ot —10(0) [[2[ () #>-10(0) [| o
< Q) (Lnd)<—10(0) |0 + €2co (2.6.2)

where we used

M) (L) <-1000)lloc S D 22((Q) Pr(n0e(0)) 2

k<-10

S D K V) Pedp(0)ll 12 S €
k<-10

To bound the term involving 0;(L,¢) we need to refer back to the equation. Indeed, the
necessary bound will follow and the proof will be complete given the following claim.

Claim 3. Let k € Z. It holds
(2) P (- O¢) (0) 22 < 2%/ %ecy, (2.6.3)
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for alln =1,2,3. It follows that

(2)0: Py (Ln@) (0|2 S () Pl + 0,)(0)[l2 S 27*/%¢y

Proof of claim 3. By scaling it suffices to consider k = 0.

We start with the wave maps source terms, placing high frequency factors are placed
into L? and others into L™. If a high frequency derivative is forced into L>, we let it
absorb the multiplier z,, which scales like an inverse derivative. Explicitly, we have

1{Q2) Py (2 (60" 909)(0)) || 12

S Q) (@ (00 DL _190ad>—10)(0)]| 2
+ () (@n (60965 _100ad>-10) (0)]| 12
+ () (2 (00" DL _ 100ad<—10)(0)]| 2

< Q) Podp(0)[| o[ (2)0%P<—10(0) 0o 1 {2) (2100 > —10(0) ) [|2
+ [[{Q2) Pop(0) [l oo [1{2) 0% 5 —10(0) [|2]| {2) (2100 > —10(0)) ||
+ [I{2) Po(21,.9~0(0)) |2]1{2) 0% < ~10(0) [0 [ {€2) O P < ~10(0) [ 0

S €co

The first half-wave maps terms, HW M;(¢), can be treated similarly. To study HW M,
we decompose

(2 >Po($n'HWM2(¢))(0)||Lg
S S I Po(n - 6 x (—A)2(dr x (—=A)205) — b1 x Ag;)])(0) ]l 12

J,keZ
Note that if j > k or k> j we can write
(=) (0r % (=8)20;) — dn x AG; = Ly (dn, 85)

In this symmetric form we see that it suffices to consider j > k. Starting with £ > —10
we use the Fourier expansion (2.5.3) and find

D I Po(wn - (¢ X Lju(dr: 6)))(0)]|2

E>—10
>k
<Y Y SN @0 - b % (Sl —27Fa) x dj(x —2790)) | 2
Ic> 10ab€Z3
I>k
k _ o
<3 Y ST 6(0) 11 (2) (D1 — 27%))(0) oo {2 (@ - 65(x — 277))(0)l2
k> 10ab€Z3
i>k
< Z 2j+k'ck-275j/2cj < eco
k>-10
I>k

118



2.6 Normal Forms

The case k < —10 can be handled similarly upon further localising the outer factor of ¢
to low and high frequencies.

It remains to study the case j ~ k. When this frequency is low we have

> (R Poln - [&x (=) (dr x (=A)pk) = ¢ x Adi)])(0)]l 22

k<—10
~ 3 Q) Po(wn - [0 x (—A)2 (b1 x (=A)?6k) — dr X Adi)])(0)]| 2
k<-10
Y K2 (@n - ¢~0)(0)l2 - 27 [{2)D1(0) oo {2) bk (0) oo S €
k<—10

and when it is high we have

S QP - [ x (—A)2 (1 x (=AY 29 k) — di x Api)])(0)]] 12

k>-10

S Y P x a(=2)2 (g1 x (=2)26.1))(0)] 2

St
+ () Po(@ x ((xndr) x Adr)(0)]| L2

1/2

Interchanging the z,, and (—A)"/* up to a term involving a Riesz transform this is seen

to be acceptable upon placing ¢ and ¢, into L> and the remaining factor into L2. This
completes the proof of the claim. O

We now show that this transformation reduces the equations to the form

O = —2¢<_100a9% 100 %0o
- Q[PO(d’gfloaa(b:g—waa@%—lo) - ﬁbgfloaacf)g_lo@aqﬁo] + error (2.6.4)

and

Otpn = =2(Lné)<—100a9% 1000
— 2¢<_100a(Ln®) %1000
— 2¢<_100a0% 100" ¥n
— 2[Py((Ln®)<-100ad% _100%0>—10) — (Ln®)<—100ad% _190“t0]
— 2[Py(<-100a(Lnd) L _100%¢>—10) — d<—100a(Lnd)Z 100" 0]
— 2[Py(¢<-100a0% 100 (Ln®)>—10) — p<—100ad%_100"n]
+ error (2.6.5)

Indeed, clearly .
Dbo = Db + §POD(¢§—10¢£—10¢>—10>
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where

PoO(¢<—100L _190>—10) =Po(Odp<—10 ¢ _196>-10) (
+ 4Py (0%P<—10 Oad® _10¢>—10) (2.6.7
+ 2Py (p<—10 (O¢p>—10)" ¢>_10) (
+ 2Py (¢p<—10 9°¢L _100ad>—-10)) (

We then need to show that (2.6.6) = (2.6.7) = (2.6.8) = error, since (2.6.9) cancels the
(LHH) term in the equation for )y, (2.4.11). Arguing similarly for ,, we see that (2.6.4)
and (2.6.5) follow from the following proposition.

Proposition 2.6.2. Denote
Al (90(1)7 ()0( ) (3)) = PU(D90(<) 10 (90(>) 10) 90(>3)_10)
Tz(SO(l),SO( )790( )) = P0(3a80(<) 10 Oa (‘P(>2) 10) 80(>3) 10)
Ty(pM, 0@, 0®) == Ry(p) 15 (@) 1) %) 1)
Then it holds
T (cp( ), 0@ (3)) T2(<p(1)7¢(2),¢(3)) - T3(80(1)790(2)790(3)) — error
for any of

(D, 0@ o) € (8,0, 0), (Lnd, &, D), (6, L, 0), (6, b, L) }

Proof. For simplicity, we will only prove the statement for (¢, ¢, ¢) and the other cases
follow in the same way.'! Let’s start with 77. We have

() Poy(Bp<—100% _100>—-10)[1.,2
S D 00<10ll24,00— {2 &> 10l 00— 2+ [1{2) d> 10|12+, 00—

so it suffices to show the following:

Claim 4. It holds .
H<Q>PkD¢H%,2M S 22730k ey, (2.6.10)

Proof of claim. It again suffices to consider k£ = 0. By the usual frequency decomposition
and Bernstein’s inequality we have

H<Q>PO(¢8Q¢T‘%¢)H 2M oM S S () Po(¢ 8a¢< 100a¢>—- 10)|| 2M_ 2 (2.6.11)

"The only difference when including the factors of L, comes in estimating the half-wave maps terms
upon iterating the equation. Here one must simply pay a little attention when exchanging L with the
operators (—A)Y? and P;, however this causes no problems thanks to the commutation relations of
Section 2.2.1.
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+”<Q>PO(¢(‘)0‘¢ _100a®>—-10)|| 2 201 (2.6.12)

M—-1>M+1

1) Pol@0d*GE 100abc10)| 2as oy (26.13)

Always placing the lone ¢ into L5 we have
(2.6.11) < () 0%b<—10]l 2 [{2)Pad>-10[loc2 S Cic
Likewise

(2.6.12) S [[(9)0%P>—10ll sae_aar [{(2)ad>—10] arr anr S Cies

and lastly

(26.13) < [{Q)droll 212 {20 S<—10ll00,00 [ {2 Bad<-10]l00,00 S Cie

The first half-wave maps terms can be treated in the same way and the remaining such
terms can be handled analogously upon incorporating the modifications as in the proof
of Claim 3.

For Ty we have

1{Q2) Po(8% < —1000d _106>—10)||1.2
S IO < 10|24 ,00— [ {2) Oa > — 10/l co— 24 () D> —10]| 24 00— < Cici

Lastly, for T5 we must expand the wave operator within the overall expression. Starting
with the wave maps source terms we have

1{2) Po(¢<—10P>—10(¢0ad” 0“¢)" ¢ _10)||1,2

S D ) Po(d< 10 Pr(90adb 100" Sk-10)" Dt) |12 (2.6.14)
k>—10

+[(2) Po(¢< 10 Pr($0adL 100 Bk —10)" dt)[|1.2 (2.6.15)

+[[(2) Po(¢< 10 Pr( 9k Oa L 100" d<k—10)" dnt)[|1,2 (2.6.16)

which can be treated like (2.4.6), (2.4.8) and (2.4.7) respectively. The HW M (¢) terms
are analogous. For HW Ms we have

> Q) Po(d<—10P(HW Ma ()" o) [1.2
k>—10

S DT ST (Pl x (—A) 2 (¢ x (—=A)2¢) — ¢ x Ap)T - deie) 1.2

k> 10 1,j
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First consider j > [, [ > k — 10, comparable to (2.6.15). Using the expansion (2.5.5) we
have

ST P x (A2 x (—=A)2¢5) — by x Ap))T - b) |12

k>—101>k—10
>l

~ 33T QP X Lowi(f18)T - (D br) 1.2

k>—101>k—-10
J>l1

S D0 D 2D dulle,opsllsll,

k> 101>k—-10
J>l1

(D) Dkell18/7,00

+ 27| |25 () 65 (0 0nkll1s/7.00

<Ceco

as required. When [ < k — 10 the term behaves like (2.6.14) and we have

ST PR x (—A) 2 (1 x (—A)2¢5) — ¢y x Ag)) T+ bok) 11,2
k>— 101<jk>>110

S X 2 2Dz o ()5 lloo- 2+ 1 Dtz o S Cie o

k> 101<k~-10
J>1

The case [ > j can be treated in the same way. When j ~ [ < k — 10 we are in the
regimen of (2.6.16) and have

ST K (Pule x (A2 (gr x (—A)26) — ¢y x Ad)T - doi) |12

k>—-101<k—-10

S YD 22Dzt e (D Dmill2t o ) Enklloc— 24 S Cie e

k;> 10 I<k—10

and finally if j ~ [ > k — 10 we refer to (2.6.15) and find

ST (Pl x (—A)2(dr x (=) 2p) — ¢ x Apa))T - deke) 12

k>—101>k—10

S DD 22U dmillo ol onillzs () mkllis/re0 S Coeico

k>—101>k—-10

which completes the proof. O

2.6.2 Low-low-high error term

Write

Po(p<—100a0% 100" $>—10) — d<—100ad% 1000

122



2.6 Normal Forms

ol
= =P [ [ X" Valo 0@ = 09)0udE 1o(x = 05)0° dnoe — y)dody (2:6.17)
Yy

This splits into two terms by Leibniz’s rule: one where the derivative V, falls on the
non-differentiated term, and one where it falls on the d,¢<_19. The first such term is
unproblematic:

1
Py / / XoW)y" Vad<_10(x — 0y )0adZ _1o(z — 0y)0*pmo(x — y)dOdy
0 Jy

1,2

1
5/0 /’Z/)Eo(y)!\|Vm¢§—1o||2+,oo—Haaqﬁg—loHﬂ,oo—||3a¢~o\|oo_,2+dyd9508’6260
)
so that

O = —2¢<_100a0% 1000
+ 2P /01 /y)vm(y)dek_lo(x — 6y) anaqﬁgflo(x — 0Y)0q o (x — y)dOdy + error
(2.6.18)
and similar for the ¢,,. This motivates our second transformation
A
Pl ®F = PF — (Ag)  for  Ag = Ay A.;Q Ay
Ag,l I Ag’Q n Ag,:}

with

ol
A3i= Py [ [ Ko@) o< 0la = 05)a6% (e = 0)6~0(x — y)dbdy
Y

1
Mgt = By [ [ S0 (Lud)<-ro(a = 09)Va6E (e = 0)-ole — y)dbdy
Yy
1
837 = Py [ [ Ko@)y b<o10(e = 09)Va(Lud)E 1ol = 0)onole = y)dbdy
Yy
!
3% = By [ [ Koy 6<-10(e = 09) V0L 10w = 09)(Lud)olw = y)dbdy
Yy

Henceforth we drop the Py since it does not affect the calculations.
As usual write ®F = (P, &1, Py, ®3) and start by noting the boundedness of the
transformation, the proof of which is very similar to Proposition 2.6.1 and so omitted.

Proposition 2.6.3. It holds
1(A2) ][5, < Cieco

and moreover
[0 (A2)[0] || ga/2 172 < co
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This time we show that the transformation reduces the equations to the form
O0®¢ = —2¢<_100a¢% 1000 + error (2.6.19)
and

0@, = —2(Lno)<-100ad% _100"t0
— 2¢<_100a(Ln®) X _100%0
— 2¢§_108a¢£7108a1/1n + error (2.6.20)

Observe that
1
0(A9) =0 (/0 /y)VCO(y)yTﬁbS—lO(x — 0y)VaL_1o(x — 0y)po(a — y)dedy)
1
= /0 /%o(y)yTﬂégqo(x — 0y)VadL_1o(z — 0y)do(z — y)dody  (2.6.21)
Y
1
+ [ ] Yol é<nole = 09)OV6E 1ol — 090l — y)dody  (2:6.22)
0 Jy
1
[ [ Xy b<-10(w — 09) VoL sola — 0y)Ddno(a — y)dody  (26.23)
0 Jy

1
2 / / Koy 9%b<_10(x — 04)0a V6L _1o(z — Oy)dmo(x — y)dody
0 Jy

(2.6.24)
1
+2 /0 / KoW)yT 0%<_10(x — 0y)Vadl_1o(x — 04)admo(x — y)dody
Yy
(2.6.25)
1
£2 [ [ o)y 6<-10(@ = 09)0°9 165 1o(x = 09)udn(a — y)dody
Y
(2.6.26)

and similar expressions for the AL, The final term (2.6.26) cancels with the integral
expression in equation (2.6.18), so we must show the following;:

Proposition 2.6.4. We have

(2.6.21) = ... = (2.6.25) = error
and the same holds when any one factor of ¢ in the expressions (2.6.21),...,(2.6.25) is
replaced by L,¢ (n=1,2,3).
Proof. We will neglect the angular and vector derivatives in what follows in order to
reduce notation. We also drop the transpose symbols.

Let’s start with (2.6.21). Using the estimate (2.6.10) on (¢ and the L' boundedness of
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the kernel Xo(y)y we have

1(2.6.21)|l1.2 < [0d<—10ll2+,00— | Vad<—10ll2+,00— | Snolloo—,2+ S Cieco

which is acceptable. For (2.6.22) we again have to iterate the equation. For the wave
maps source terms we have

Xo Y (p<—10 - Vo P<_10(¢000%9))(x — 0y)d~o(x — y)dOdy

1,2
1
S Z / /Xo(y)y (p<—10 " VaPi(#0ap<k-100"9>k—10))(x — 0y)dpo(z — y)dbdy
k<—10 M0 Jy 1,2
(2.6.27)
1
[ 0oy (<0 VaPu(@0a021-1006-10))(w = Oy)émolw — y)dbdy
0 Jy 1,2
(2.6.28)
/ Y (d<-10 - Vo Pe(dakOab<i—100% d<i—10))(x — Oy)dpo(x — y)dbdy
y 1,2
(2.6.29)

Placing all the low frequency factors of ¢ into L3 we bound the above by

> 25100t <i-10ll24 00— 10% D5 k—10/loo— 21 | o~0ll 21,00
k<—10
+ 27| 0ad> k102,510 ¢ k—10ll9,10/3 /| P~0ll18/7 00

+ 288t lloo,00 | Oad <10 |24+.00- 0% <10 /l2+ 00— | ol o2+
S CgECO

The half-wave maps terms are treated analogously using methods as in the proof of
Proposition 2.6.2.

We now turn to (2.6.23). Considering the wave maps portion of [¢ we have

Xo Y (p<—10Vap<—10)(x — Oy) Puo(PpO0ad>—-100" P> _10)(x — y)dbdy

1,2

Xo Y (Pp<—10Vap<—10)(x — 0y) Puo(POntp<—100" > _10)(x — y)dOdy

1,2

Xo Y (p<-10Vap<—10) (7 — 0y) Puo(pOat<—100“d<10)(z — y)dOdy

1,2
S ||ngb§,10||178700||8a¢>,10||275||8a¢>,10\|9%

+ | Vad<—10ll24,00— | 0aP<—10|| 24,00 [|0% @>—10]| 00—, 2+
+ V< —10ll00,00 | P~0llco— 2+ 10aP< 10124 00— [|0%P< 10|24 00—
5 CS’ECO
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Again half-wave maps terms are analogous.
Lastly,

1(2.6.24) 1,2 < [0%d<—10]l2+,00— [ 0a Vad<—10]|2+,00— | #~0loo—, 24+ < Cieco

while

1(2.6.25) |12 < 10%P<—10|2+,00— | Vad<—10/l2+ 00— | 0a Pt oo— 24 S Cieco

We can now recast the equations in an even more distilled form. Denote

Aq = =< 100a0% 105 Al = —((Ln®)<-100a0% 19 + d<—100a(Lnd) % 1)

Then writing A7 for the block vector (AL, A%, A3) and I3 the block 3 x 3 identity matrix
(so a 9 x 9 matrix), we arrive at

A 0
L _ « o, L
0o~ =2 (AZ Aa13> 0%~ + error (2.6.30)
with
18515, < [[v"||s, + Ciyeco < Coco (2.6.31)

Henceforth we will use the notation
A 0
L ._ a
st (4 )

2.7 The gauge transformation

In this section, we perform a nonlinear transformation to cancel out the remaining
nontrivial term in the equation above. Our construction is a simplification of that in
[Tao0la] (possible due to our working in Besov rather than Sobolev spaces).

Fix a large integer N depending on T. Define the matrix field U by

U:=L+ Y U
—N<k<-10

Here 1, is the block 4 x 4 identity matrix and the Uy are defined inductively by

U, = _¢<k¢£ 0 U,
T\ APk (Lnd) + (Lnd)<ndl)  —b<kdt T3]
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and

U :=14 + Z Uy
—N<k'<k

This U is constructed so as to almost satisfy 9,U = AZU and so cancel out the
troublesome frequency interactions remaining in our equation. This will be discussed in
the next section.

One may verify inductively that U, has frequency support on {|£| < 2*}, so U has
frequency support on {|¢| < 1}. Moreover U is of the form

U 0
U= <U” U13>

for a 3 x 3 matrix U and a block vector U™ = (U', U2, U?) with each U’ a 3 x 3 matrix.
The same lower triangular structure of couse holds for Uy, U, and U™, the existence
of which is shown in the following proposition.

Proposition 2.7.1. For Cy > 1 fized, €(Cy) sufficiently small, the matrix U is a
perturbation of the identity,

{2)(U = 1a) o005 [{€2)0:(U = 1) [loc,00 S Coe (2.7.1)

and is invertible with

1{€2) Ulloo,c0, [K2) (U™ lloo,00 S 1 (2.7.2)

Moreover, for any admissible pair (p,q) € Q with 1 — % — % > o > 0, we have
13D, Q)P D0, (U g Sy Coe (2.7.3)
for each a=0,...,3. More precisely,
L PDI, Uk llpg Spa 2077~ 0% Coexe (2.7.4)

for all =N < K < —10.

Proof. We first show (2.7.2). We will show by induction that

for all —-N < K < —9. Since U = U._g this proves the first part of (2.7.2). When
K = —N this is clearly true, so suppose it holds for all k£ below some fixed K > —N.
Then for any —N < k < K we have, for ¢” as in (2.2.6),

{2 Uklloo,co S 1(€2) Pakd® lls0,00l1{2) Pt ™ loc,00 [ {2 Ukl .00 S Coc (2.7.5)
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It follows that

||<Q>U<K||oo,oo 5 1+ Z C()C]c 5 2
—N<k<K

for €(Cp) sufficiently small. Note that the first part of (2.7.1) is also a consequence of
(2.7.5), and it follows that U is invertible with

U lsso0 = L+ (L = U) + (14 = U)* + . loo,o0 S 2
for €(Cp) sufficiently small as required.

Using the relation U~'U = I, we can express the angular derivatives of U~! in terms
of those of U:
Q,;(Uh=-UutQuut!

from which
{2 (U™ [lso,00 S {2 Ulloo,e0 S 1

completing the proof of (2.7.2).
We now turn to (2.7.3). Note that this immediately implies the second part of (2.7.1),

and also that the second part of (2.7.3) follows from the first thanks to the identity
0, (U H=-U"1.9,U-U L

We will show by induction that
H<Q>176(p’q)8aU<K”p,q ,S 2ﬁKC’OCK (276)

for all -N < K < —9. Here f=fyg=1—— 2.
For K = —N, the claim is trivial. Now suppose that K > —N and the claim has been
proven for all smaller k. By differentiating the formula defining U _1 we have (neglecting

the factor of (Q)!=9(9) which plays no role)

100U k—1llpg SHOabZ k1llpgllok 1lloocolUcrc—1lloo,00
+ 1162 k1 lloc,0010a @K1 llp,al U< —1llo0,00

+ 162k -1lloocoll Ok -1 lloo.00l|0aUsr-1llpg S 2% Cock

and the claim follows. O

We can now use this proposition to transform our equation (2.6.30) into a form in which
the only non-trivial term in the forcing cancels. We make the transformation ®% = Uw?,
SO

0ol = (OU)w! + 20, U0%0" + UOw!

Setting this equal to the right hand side of equation (2.6.30) and multiplying on the left
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2.7 The gauge transformation

by U~! we obtain
Owl = 20719, U0w! — ALoayl)y — U= (OU)U—eL + UL (error)

Note that U~!(error) = error by (2.7.2), so we don’t need to worry about the final term
above.

In order to make use of the fact that 9,U ~ ALU, we go back a step and use that
oL = ¢ + 1(A1) — (As) to decompose w! as

1
wl = Ul + ZUHA) - U HAy)
—_—— 2 —

L — L
w w
1 w2L 3

In particular, since 90%y" = (9°U)w! + Udw!, we can write

Owl = 20719, U — ALU)9*w + 20 TAL(0°U)wf — 20719, U0% (wh + wk)
- U Hau)utet + error

The remainder of this section will be dedicated to showing that the second, third and
fourth terms above are all of the form error. The remaining term will be studied in
Section 2.8.

Proposition 2.7.2.
U tAL(0U)wl = error (2.7.7)
and

U190, U0%(wk + wk) = error (2.7.8)

Proof. Again using (2.7.2) we may neglect the U~!. We will also work entirely in
standard Strichartz spaces so neglect the angular derivatives.

To bound (2.7.7) note that by definition of AL we have

L L L
IAE 23t ar S 162 soloecollOadL ol 2as g S Coe
Hence by (2.7.3) it holds

[AL@ U™ 12 S (AL sss o070l sas o 197113y 200 S Cibco

as required.

We now turn to (2.7.8). Let’s start with wl. Heuristically, we can write wl =~
U71P0(¢é—10(¢£710)T¢£—10)- Therefore

10, 00wk 112 $10.U0%(U™) Po(@L 1065 19)76% 10)l. (2.7.9)
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+ 02U U™ Po0™ (9% _19(0% _10) 0% _10) 1.2 (2.7.10)

where

— L L L
(27.9) S 10201 211 50y 10° (U™ ow e 164 _tolloeo 0% _soll 211 sry 165 _sollyy 2ae < Cieeo

On the other hand, for (2.7.10) we have

(2.7.10) 102U U Po(0*0% _19(¢% _10) 6% 10)ll1.2
+ 1|0, U U71P0(¢éflo(aa¢£flo)T L o0)le

5”80&U|’00700H8a¢é—10"%,QM”d)g—lo”%,2MH¢£—1OHM,%

L L L
+ HaaUH%,QMHQSg—wHoo,oo||aa¢>—1oHM,%H¢>—10H 2M_ oy

M-1°
SCS’EQCQ

Next we study

S
s
12
|
S
o\H
-

o)y dL_1o(x — 0y)VadZ _1o(x — 0y) ¢Lo(x — y)dody

We have

1 v
0" UD(U) [ [ oy 0k ol = 00)VE ol —09) ool — y)ibdy
Y

1,2
SN0V 281 501106 (U™H) low.00 162 10 lloc.00 | VOZ 10l 221 507 16%0]I g, 200
which is acceptable. On the other hand,
oo, [ oty 0ot — ) Va0 ot — )" 6L (w — y)dody|
10U 2as_ yagl10arolloell VOL 10ll 21 g 6%ll s 2
107U 2 o195 1o llo000l1 00V 8210l 2as_ppgll8Eolyy 2as
1070 2sr_parll 6% solloco 1 V6L toll 22 g 0a0%ollar 210
which is also acceptable. O

Proposition 2.7.3.
U l(Ou)utel =error

Proof. We still ignore the U™!, however in this case we cannot simply neglect the angular
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derivatives. We will show inductively that
() (OU U012 < 25/M CFecy
for all —-N < K < -9, for M sufficiently large.

The claim is trivial for K = —N, so suppose it is true up to K —1 > —N. Observe that

OUg 1 =02 10k 10Uk 1 + oL 0ok _ Uk
+ 00tk 10% 1 Uck_1 + 0adZ i 10%0% 1 Uk
+ Ot e _10% _10°Ucg 1 + ¢E e 1000%_10°U_ gy (2.7.11)

The last three terms are the easiest to handle. For instance, using (2.6.31) to bound &
we have

{2 (OadE _10%0F 1 Ucr—1- U101

e[S R PSP 1o S [POVRO (2 S s

2
< 20=mK e,

which is more than we need. The last 2 terms of (2.7.11) can be bounded in the same
way.

We now study the terms of (2.7.11) involving the wave operator. The first one will be
bounded using the induction hypothesis so let’s start with the second term. We have to
bound

2M H<Q)CI)LH 2M_ 9 r

2M
M+1'M—1 M—1°

() (PE je_1 0% 1 Ucr—1 - Ur0H) |12 < [(Q(Tdk_1) ||

We then need the following claim.

Claim 5.
2M 5 Qk/McgécK

Q)(Do%

1O Ok 1)l 2w o
Proof of claim. By scaling, it suffices to prove the claim for K = 1, so study % (see
(2.4.1)). First consider the wave maps part of (). The action of L does not play an
important role here, so for simplicity we only study [¢. Using Bernstein’s inequality to
lower the exponent for the high frequency interactions, we have

() Po(60°6" 00 )| 2as asr S I Po($0"6% 10006510 || 2oz, 2

M+1"M—-1
2M

+ ||<Q>PO(¢8O‘¢£7108@¢>_10)H%71\471
+ H<Q>PO(¢aa¢£_1oaa¢§710)Hﬂ 2M

M+1>M-1

S0P~ 10| ane _amr ||0“D> 10| am _anmr
M—1"M+1 M43’ M+1

+ () 0%< 10l anr _ans [[(2)0%G> 10| ans _ans
M+3°M-—3 I+1

M—1'M+
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+ [[{(0)0%P< 10/l ans _ans [[{2)Oap<—10|| ars _anm
M+1°

M—-1 M4+1>M-—1
< Clecy

provided M is sufficiently large and o sufficiently small. The half-wave maps terms can
be treated similarly. O

We therefore have
) ($E 5 10¢% 1 Uck—1- U L) 1o < 2KM e
Similarly,

QN(O¢E 10k 1 Uck-1- U @N) 12 < Y 27™MCFecy S 25™M e
J<K-1

and lastly by the induction hypothesis we have

K2 (@2 g —16% 1TU<k-1- U1 @5) |12 S {001 lloo,c0 {2 (OU<x—1 - U™ @F)

< Cye - 2K/MC§€CO < QK/MC'S’G%O

l12

Therefore, letting D denote the sum of the implicit constants above and using (2.7.11),
we have

Q) (@OU<k - U5 12 < [(Q(OU<x 1 - U512+ D - 25 G
< 2K/M2ecy(27VM + DCye)

Hence choosing € < (DCp)~! completes the induction. O

Combining these two propositions with the equation previously obtained for w’, we

arrive at
Ow® = —2U1(9,U — ALU)0wl + error

2.8 The (very low-low-high) cancellation
In this section, we will show that
U Y0,U — ALU)o“wl = error, (2.8.1)

finally doing away with the difficult (lowest)V (low)V (high) frequency interactions in the
wave maps source term.

As usual we may neglect the U~!. The first step in proving (2.8.1) is to use the telescoping
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identity

Y. (Af<Usk — AL 4 U<k) =AU — Ag oy
—N<k<-10

where

AL = AL = ~O<kOatigy 0
a,< o, <k+ _(d)Skaa(Ln(Zs)gk + (Ln¢)§k8a¢£k) _¢§k8a¢£k I3

(so AL = A§’<_10) to write

0, U — ALy = > 0.U,— (AL U — AL LU

—N<k<-10

—AL__ v (282

We first show that the Aég_ N bart is acceptable:

Lemma 2.8.1.
A£7<_N80‘w1L = error

Proof. We have

IKN(AL < nO*wi)ll2 S KD AL < N ll1.0l[(2)0wT [|oc,2

Then
KD AG <N ll1,00 S TIPE N lloo,00 {2 DadE _ylloo,00 S 27N TCoe
and by the identity
0wk = U tol — U (oru)u 1yl (2.8.3)
also
1{2)0%w] [|oo.2 S Coco (2.8.4)
The result is now immediate upon taking N (T, Cy) sufficiently large. O

Next we study the sum in (2.8.2). It is here that we observe the critical cancellation of
the ¢10%¢7 terms. Indeed, as in [Tao0la] we may write

8 Uk: — - a¢<k¢£ 0 A
“ _(8Oc¢<k(Ln¢)g + aa(Ln¢)<k¢£) _8a¢<k¢£ IS <
_¢<kao¢¢£ 0
" <—<¢<kaa<Ln¢>£ + (Lnd)<kBadT) —b<tdad] 13> Uk
+ —9<kdi 0 9o U (2.8.5)
—(p<k(Ln®)f + (Lnd)<kdf) —d<idils)
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and

L —¢<kaa¢k 0
AviUsh — AaaUsr = ( (6<xa(Lud)] + (Lnd) <kDadT) —¢<kaa¢£lg> Uk
¢kaa<z><k 0 )U )

— (k00 (Lnd) L), + (Lnd)k0adly) —@r0adl Is) ~ =

_¢<k804¢<k 0 Uk
—(¢<kOo(Lnd) L) + (Ln)<k0adLy) —d<k0adl, I3
(2.8.6)

Crucially, the second line in (2.8.5) and the first line in (2.8.6) cancel and we are left
with

9aUr — (AL U<k — AL . Up)

_ ( — o<k} 0 )U )
_(8a¢<k(Ln¢)£ + aa(Ln¢)<k¢Z) _8a¢<k¢£ IS <

+ _¢<k¢£ 0 8 U &
~(¢h(Ln®)f + (Lnd)<kdf) —d<rdf Is) °7

o _d)kaocqbgk 0 U k
_(gbkaa(LnQS)gk + (Lnd))kaa gk) _gbkaa(bgk I3 <

B —p<kBadly, 0 U
—(0<kOa(Ln®) L) + (Lnd)<k0adL)) —d<rOadl, I3 ’

(2.8.1) is therefore implied by the following result.

Lemma 2.8.2.

o ( (Dadrr(L a¢<k¢k< L) <k6f) aa¢><2¢;§ 13> Ui 9*wi = error (287)
_N<k< . ( (6n(L ¢<k¢(’“ L) ndT) ¢<k2£ I3> 0aU - 0°wl = error  (28.8)
—N<Zk; 10 ( (6100 (Lng) L qikkaa¢(<kn¢)k3a¢£k) ¢kaa((;£k: IS) Ucy, 0wy = error (2.8.9)
7N<Zk; 10 ( (P<k0a( n¢¢j:8a?<:¢)<k3a¢£k) ¢<k5a0¢:£k 13> U, 0wy = error
(2.8.10)
Proof.

1. Proof of (2.8.7), (2.8.9). These two inequalities are to all intents and purposes the
same, so we consider only (2.8.7). Recall that 0%w! = U9yl — U—1(9*U) U Iyl
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where U~1! has the form

Ul (* 0
% %

and Uy, has the same structure. We first study the part of 9®w! involving 9%¢’.

Write
_ U, 0
U..uU
<k <U2 U113>

Then expanding the matrix product we have

aa¢<k¢)£ 0

—19a,,L
<<8a¢<k(Ln¢)£+aa(Ln¢)<k¢£) aa¢<k¢£ I3> Yo

_ bk d] U 0 0o
(Oad<r(Ln@)f + Oa(Lnd)<kdf)U1 + Dad<kdf Uz Dad<rdf Ur 13 ) \ 00
Further expanding this product, it remains to study the following:

(a
(b
(c
(d

Oad<kdf Uid* P, i =1,2.
Oad<i(Lnd)} U10%Y
Oa(Ln®) < U10%
Oad<kdf U109y

~— — —

For the rest of this proof we will treat all functions as scalars, even though they
are really vector or matrix fields, by working componentwise. This reduction is
possible since none of the arguments that follow rely on any geometric structure
and in particular Lemma 2.5.3 held for scalar functions (see remark at end of said
lemma). In this spirit, since all the (Q)U; are bounded in LgS, (by Proposition 2.7.1)
we may ignore these terms in the above expressions. What’s left is treated by direct
application of Lemma 2.5.3.

Starting with (a), we easily reduce to the following three terms:

[(2)(0ad<kPr0*V)[l1,2 S {2 Dad< - bk - 01,2 (2.8.11)
+ [[Oad<r - (0 r - 0|12 (2.8.12)
+ |0ad<k - Ok - ()0%Y||1,2 (2.8.13)

For (2.8.11) we apply point 1 of Lemma 2.5.3 as in (2.5.8) (recalling that 1 is at unit
frequency) to see

() Bate - b1 - °Ull1o S S 267200 R Cejer(Coco + [|0:0° ] oo.2)

<k

and we have to do just a little work to bound ||0;0%%||~ 2 in the case o = 0. We use
the equation to find

1079 ll0,2 < 1A% ]|os,2 + [{2)DPos|loo,2
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where for example

1Po(¢0%¢" 0a6)l|so2 < I1Po(d0*¢L_100ad>—10)lls01 + [1Po($0 L _100ad>—10)lls02
+ | Po (0% L _190ad<—10)[|s0,2
S 10%0>—10l00,2[10%P> 10l 00,2 + 10%P<—10]l00,00 10“ P> 10| 00,2
+ 10%¢<—1000,4l|0% <10l 0,4
< Coeo (2.8.14)

Bounding the half-wave maps terms similarly we find

||<Q>8ad)<k: ’ ¢l~c : 5o‘¢||1,2 ,S Z ﬂé_ﬁ)(j_k)cgcjckc()
i<k

which is acceptable when summed over k < —10.

(2.8.13) can be handled in the same way and for (2.8.12) we use Point 2 of Lemma
2.5.3. (b) and (c) can be treated identically to (a), and (d) is similar upon using
points 3 and 4 of Lemma 2.5.3 rather than 1 and 2 respectively.

The remaining part (U~10*UU~ )l of 9% can be treated in the same way, since
U~19*UU! has the same block structure as U, U™ and ¢* is at unit frequency
so behaves like %)L,

2. Proof of (2.8.8). Expanding 0w as before and restricting to the term U9’ for
simplicity, we have to consider

<t 0

—1qa, L
H<Q>[<(¢<k<Ln¢>£+<Ln¢><k¢{> ¢<k¢£lg) %aU<kU M}

1,2

)

Generally speaking, the argument for this term is similar to the previous one, using
Lemma 2.5.3 and the lower triangular structure of the matrices involved to limit the
interactions. For the sake of presentation, we will only consider the top left component
of the expression above,

() ($<k Pt OaUk U 0Y) |12

We will also restrict to the case where the angular derivative falls on ¢, the other
cases bring similar. Note that by placing ¢ and U~! into L7, it suffices to consider

1) bk, - OuUci - 0% |12

(working componentwise). We proceed by induction. Set

R(j) == [{(Q) bk - 0aUcj - 0“Yl12

Claim 6. For all —N < j <k it holds
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Proof of claim. The claim is trivial for j = —N so suppose it is true up to some fixed
—N < j < k. By definition of U; we have

R(j) < R(j —1) + [k - djo10T 10aUcio1 - 0Y|12 (2.8.15)
+ [[{Q2) bk - ¢<j—1aa¢?_1U<j—l ~0"Y||12 (2.8.16)
+ {0k - ad<j1¢]1U<j1 - 0*¢12 (2.8.17)

For (2.8.15) we pull out ||¢<J'—1¢JI;1”L?°$ to find
(2.8.15) < Cocj1 R(j — 1)

using the induction hypothesis.

For (2.8.16) we place U<;—1 and ¢<;_1 into Lg5, and apply part 2 of Lemma 2.5.3 in
conjunction with (2.8.14) to bound

()¢ - p<jm10a0) 1Ucjo1 - 0“Pl12 S [{Q) Bk - Dathj—1 - 0%
S 2(%*ﬁ)(j*k)08’cjckc()

1,2

Similarly, for (2.8.17) we have

() g - Datp<j10] 1Ucj1 - 0%Ull12 S Cocj > (k- Oathr - 0%¥|12

1<j—1
11
rgCon Z 2(§7W)(lfk)cgclck60
I<j—1

1 1 .
S 2(5_W)(]_k)08’cjckco

We deduce that, for some constant D > 0,
R(j)<(1+D-Coe)R(j — 1)+ D - 220N CBcicpeq
and the claim follows upon taking €(Cy) sufficiently small. O

With this claim in hand, we have

S Mk 0aUck - 09l S Y. Cicie
—N<k<-10 —N<k<-10

which is as required.

. Proof of (2.8.10). This is another straightforward application of Lemma 2.5.3. We
again focus only on the top left component of the term, that is

$<kOadLy - Uy - 0%w

Expand
Uy == —p<udt Uck
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o0

7. to reduce to
)

and place ¢, U< and the other ¢<; appearing in the term into L
bounding

Z 1{2) (Oap<k - @1 - 0%w1)]1,2

—N<k<—10

Upon expanding 0%w; = U~10%) + U~10*UU 14 as before, one sees that this can
be treated via a direct application of Lemma 2.5.3 as in part (1) of this proof.

2.9 Putting it all together
We have succeeded in reducing our equation to
Ow” = error

for w! defined through ® = Uw’. In order to exploit the linear estimate, we need to
check that we still have the correct smallness on the initial data.

Proposition 2.9.1. Let ¢[0] satisfy assumption (2.3.1). Then
I2) Pow™ (0]l a2 12 S o0

Proof. By (2.7.2) and (2.7.3) it suffices to show the corresponding bound on ®*, which
by Propositions 2.6.1 and 2.6.3 further reduces to

K201 /2 grase < o

In the absence of L the bound is immediate. Then for n € {1,2,3} we have

1K2) Po(Ln@) O[] gr3/2 12
S 12 Po(2n0:(0)) | 2 + 10 Po (207 (0)) | 2 + [(2) Po(82,#(0)) | 2
S co + () Po(2a0¢(0)) ] 2

which is acceptable thanks to (2.6.3). O
Remember that our actual goal is to bound ¥’. By Propositions 2.6.1 and 2.6.3 we see
that

19 lse S 11250150 + 1(AD s, + 1(A2)][5, S [Uw” s, + Ceco (2.9.1)
where by (2.7.2) and (2.7.3),

~

L L -0 L L
[UwF sy S 0Py + e [{62)1 00w = w5,
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Using the linear estimate, Theorem 2.2.5, we are now almost done, modulo the fact that
w! is not quite at unit frequency. To get around this, use that w” ~ ®¥ by writing

wl = ol — (U - 1,)w”

where &L = ]50(<I>L). Then since SO is equivalent to Sy at unit frequency, we can use
Theorem 2.2.5 to bound

[ Bow™[l5, < (2w 0]l jg3/2 172 + Cicoe S co
upon taking €(Cp) sufficiently small. On the other hand by Proposition 2.7.1 we have

11 = Po)w*|l5, < (U~ L)w?|

5, < Coellw™| 5,

We have thus found [w’|| Gy Scot Coe||lw?|| 5, and taking €(Cp) sufficiently small deduce
that
< ¢

L
lw”[lg, S
Plugging this into (2.9.1) completes the proof of Proposition 2.3.2, and hence of the

global existence of ¢.

2.10 Proof of local wellposedness

This section is devoted to the proof of Theorem 2.1.3. The argument is a combination of
the scheme from [KS17] with standard methods for studying subcritical wave maps (see
for instance [KS97, KM96a, Sel99, GG16]), however we run into various technical issues
which lengthen the presentation. In the first subsection, we prove the local wellposedness
of the differentiated half-wave maps equation (2.1.2), and in the second subsection we
prove that this solution indeed solves the original half-wave maps equation for compatible
initial data.

Throughout this section, p € S? is fixed.

2.10.1 Local Wellposedness of the Differentiated Equation (2.1.2).

We start by outlining the argument. We will work in the subcritical function space X7 0
defined by the norm?!?

161l xs0 = > lnllxso = D Il + LN CUIr] = L€l F () (7€)l 2

k>0 k>0

12As before we say ¢ in X;? when ¢ € p+ X% and write Il .0 to meant |[¢p — pl| s.6. We have a
1 1

similar statement for B3 ;.
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for 3/2+v >s>3/2,0>1/2and s —3/2 > 60— 1/2. Here F denotes the spacetime
Fourier transform, and henceforth we denote ¢¢ := F _I(X(f)(;ﬁ(ﬁ)) the low frequency
portion of ¢, for x as in Section 2.1.1. Note that Xf’e controls the Besov norm (see, for
example, Proposition 2.7, [GG16]):

1ol ms, + 110 o gyt S 19l o0

The iteration argument, inspired by the scheme of [KS17], is then as follows.

1. Set ¢(© = p, the limit of the initial data at infinity.

2. Construct ¢(1) as the local solution to the wave maps equation by iteration in the
space Xf’e. This solution lies on the sphere, satisfies || (1) | =0 < 2C||6[0] HB; \xB3 !
1 s s

(which may be large), and has minimal time of existence depending only on
0]|| s s—1. By standard persistence of regularity arguments, it can be seen
B3 1 %xB3

that ¢(!) is smooth.

3. Suppose that for all 1 < j < J we have found smooth ¢(7) € Xls’e solving

{D¢(j) — DG ) 1 H¢(j)(HWM(¢(J'*1)))
710] = ¢[0]

on some interval [0, 7(]|¢[0]]| B3 35_11)] which lies on the sphere and satisfies

169 s0 < 2C16[00l 5 gy (G = 1 is dome).

4. Construct ¢/) as the local solution to

() = —pDNagapNg ¢ + 11, (J-1)
{w OO0 + T (HW M (6771)) 2.101)
¢!1)[0] = ¢[0]
on the same time interval with Hﬁb(‘])foﬁ < QCH¢[0]H35 xBI Here
5, (6) =6 = (¢ 9(6))9(9) (2.10.2)

for g a smooth, compactly supported version of ¢/||¢|| equal to that function for
|4|| =~ 1 but vanishing in a neighbourhood of the origin. We make this modification
since the subcritical argument assumes no smallness on ¢(/) and there is nothing
to stop it crossing the origin, at which point the projection operator is non-smooth.

Note that we must evaluate the half-wave maps terms in ¢(/~1) rather than ¢(/)
in order to control this part of the forcing, since we do not yet know that ¢() lies
on the sphere.

5. To close the iteration we must show that ¢(/) lies on the sphere. We can only show
this for the true projection II o) (by the same argument as in [KS17]), as opposed
L
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2.10 Proof of local wellposedness

to the modified version above. We therefore need ||¢(/) — p||s < 1 so that the two
projections coincide, and this follows from the assumed smallness of the data in the

J) we use the main

critical space. In particular, after constructing each iterate ¢
argument of this chapter (Sections 2.3-2.8) to show that the iterate remains small

in the critical space, and so in p + Ly as required.'?

6. Having constructed the sequence #), we take the limit J — oo in Xf’e to
obtain a solution ¢ € Xf’e solving the half-wave maps equation on the interval
[0,T(|[¢[0]]| gs «ps-1)]- The higher regularity of the solution follows by standard

2,1 2,1

arguments.

To carry out the above argument, we must establish the necessary estimates for the
iteration steps (2), (4) and (6). The following linear estimate shows that we must control
the forcing in the space X; 7~

Lemma 2.10.1 (Linear Estimate, see e.g. Theorems 2.9 and 2.10, [GG16]). Fiz ¢[0] =
(¢o, ¢1) € B34 X BSEl and define the solution operator

sin((t — s)vV—A)
VA

NF%=p+Mﬂ<S¢me—A F@WQ

for
sin t\/ A)

and n: R — [0,1] a smooth, compactly supported cut—oﬁfunction equal to 1 on [—1,1].
Hence ®(F') solves the wave equation with data ¢[0] and forcing F' on the interval [—T,T].
It holds

S—p([0))(t) := cos(tv'=A)(¢o — p) + — ="

[8(F) e < 16100155 st + IFLye-rms

Subcritical Multilinear Estimates

The following proposition contains the multilinear estimates needed for the iteration
argument. We note that the result for the wave maps source terms is considered standard,
however we were unable to find a proof in the literature including the necessary gain in
T¢, so we provide a proof for completeness.

Using this proposition in conjunction with the linear estimate Lemma 2.10.1 in the
scheme outlined at the beginning of this section, the proof of local wellposedness is
complete. Henceforth denote s =3/2+ 5,0 =1/2+6 for 0 < ¢ < <.

13Two very minor adaptations are required in Sections 2.3-2.8 to handle the current situation. Firstly,
(2.10.1) involves both #) and ¢/~ however this causes no issues since the wave maps and half-
wave maps source terms are treated wholly independently in the main argument, and we may assume
iteratively that (2.3.2) already holds for »/~Y. The second adaptation is that the terms HW M- are
now accompanied by a projection which must be taken into account in the steps where one iterates the
equation (e.g. in Section 2.6), however this is easily seen to be unproblematic using Moser estimates.
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Proposition 2.10.2. Fiz 0 < T < 1 and set np(t) := n(T~t) for n as in Lemma 2.10.1.
For ¢, ¢ € Xf’a, define (suppressing the dependence on ¢),

WM(¢) = —¢p9"¢0ad (2.10.3)
HWM,(¢) =TT5. ((—A)"/%¢) (¢ (—A)"/%¢) (2.10.4)
HWMy(¢) =T3¢ x (—A)/2(¢ x (=A)'2¢) — ¢ x (—A)g)] (2.10.5)

with ﬁqﬁ (¢) as in (2.10.2). Then there exists e(s',0') > 0 and a function C'(Hg?)HXf,e)

growing polynomially in ||q5||Xs,e such that for T any of the trilinear terms (2.10.3)-(2.10.5)
1
it holds
[ T(D) xs-10-1 S OISl y5.0) T(1 + ||¢||X;76)H¢H§(f,e (2.10.6)

We also have the difference estimates

e (T(6) = T(6®)) | r-r.0
S C(Hﬁf;(l)ﬂxfﬁa ||<5(2)|’vaﬁ)TE(||¢(1) - ¢(2)||Xf,e(1 + max ||¢(j)HXf’9) max ”¢(j)||Xf’9

7(1 7(2 j ) (|2
#1160 = 6 ro (14 max 99 o) max |99 %..0)

for all i and a similar function C.

We restrict to proving the multilinear estimates (2.10.6), the difference estimates being
similar. We will constantly use the following well-known transferred Strichartz estimate,
see for example Proposition 26 [Bur20] for a proof.

Lemma 2.10.3 (Strichartz embedding). Let p,q > 2, % + % < %, (p,q) # (2,00). Then
for any 6 >1/2, s =3/2+ s > 3/2 it holds

| Prob

(L4341
pa Spa 27T Pl (2.10.7)

for all k > 0.

It follows that the norm S° defined as the Z}CZO sum over

143 144k
Iwllsy = max 2% a9 T conllpg,  Ildollsg == max ([ Veaollpg + lld0llceco
(p,q) (p,9),
%+%<1—s’

is controlled by the X7 ¥ norm whenever the maxima are taken over a finite number of
standard Strichartz pairs (taking slight care including the V; at high modulations):

19klls; S lokllxse,  llPollsy <1+ llollxso

The restriction on (p,q) in the low frequency case results from the fact that (2.10.7)
holds only at frequencies localised away from the origin, while the 1 appears from the
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2.10 Proof of local wellposedness

constant p which is implicit in the X*¢ norm.

We start by recording the following key bilinear estimates. Such estimates first appeared
in [KS97], however the reader may consult Theorems 2.11 and 2.12 of [GG16] for a
textbook proof of (1)-(2). For the third estimate see Lemma 2.11, [Tao06].

Lemma 2.10.4 (Bilinear estimates). Let s' > 6’ > 0. Then the following hold [KS97]:

Lo le- @lixso S llellxsolldllxse

2. e - Fllxs—ro-1 S llollxsoll Fllxs-1.0-2

Moreover, for s € R, —% <0< %, it holds

H77T90||X§,§ Sﬂ? H90||X5,§

uniformly in T € (0,1).

We also need estimates to control the projection from the half-wave maps terms in the
X9 spaces. We introduce the notation

QuF == F~ (x(ll7] = EINF(F)(7,€))

which decomposes the modulation of a function on dyadic scales. We again use
QoF = F~ Y (x(||7| = |&])F(F)(r,€)) to cover the low modulations. Observe the following
modulation Bernstein-type estimate:

1

1_1 1_ 1y,
pa S2°C7R0TDI PQiglle: (g >2) (MB)

1Q; Prel

Lemma 2.10.5 (Subcritical projection estimate). Fiz 0 < s’ < 1/4 and let ¢, ¢ € S*.
Let g : R3 — R3 be smooth with bounded derivatives and (p,q) an admissible pair. There
exists a constant C(||¢||ss) growing polynomially in ||¢||ss such that for any k > 0 we
have

1Pg(®)llpa + 271 Puds(9(8) lpa S C(IG]155) 2 Gtk (2.10.8)

and

~ ~ _1_3_g —olk—
| Pe(T ((=2)26) g S C(I@lls )2 7o 70" 37 27kl Py glls,  (2.10.9)
k120

for some o(s',p,q) > 0. The second estimate (2.10.9) also holds for k = 0.
We omit the proof of this Lemma which is analogous to that in the critical case, see

Lemmas 2.5.7 and 2.5.8. From these estimates we can deduce similar bounds in the X5
spaces, discussed further in Appendix 2.B.
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Lemma 2.10.6. Let 0 < s’ < 1/4, ¢, ¢ € X3, Then for (j,k) # (0,0) we have the
Moser inequality

1P:Qjg(9)l| xs0 S C(II@IIX;»O) (2.10.10)

and the projection estimate
1PeQ; (T30 (—A)2¢)|| xe0

< (18] ye0) (2k S 2 g o o+ Gy 2 3 27Ol '||¢k/|Xs,e) (2.10.11)

k>0 k'Z3

which also holds for (j, k) = (0,0). Here §;s1, =1 if j > k + 20 and 0 otherwise, and
C(H(ﬁHXs,e) is a constant which grows polynomially in HgEHXs,e.
1 1

Furthermore, the projections are continuous on Xls_l"g_l: for j, k>0 it holds

1PeQTl50 Fl o101 S C(Héuxls,g) SO oo lr k=N PLQuF | xo 101 (2.10.12)
r>01>0

Remark 2.10.7. The continuity property (2.10.12) allows us to neglect the outer
projection Hq;l appearing in HW My when proving (2.10.6). Henceforth, we therefore
redefine

HW My(¢) := & x ((—=A)'72(6 x (=0)!/20) — ¢ x (~A)9)
To prove Proposition 2.10.2 we will use the frequency decompositions

nr-WM(g) == > 07 (68, 0%k, 0adrs),
k1 k2 k320 W Mp, kg kg (6)

nr - HW M (¢) = Z nr (Pkg (ﬁ(Z)J_(_A)l/Z(Zs) (¢k1 ’ <_A)1/2¢k3))7
k1,k2,k3>0

HW M1,k kg, ks (0)

and

mr- HWMa(6) = 3 o (dn % [(C8)2(0 x (—8)261,) — 6u, x (~A)g, )
k1,k2,k3>0 HW Mg, ko k3 (9)

We will first deal with all but the (low)V (high)V (high) interactions, for which we can
get by using Strichartz estimates, the gain in 7' coming from Hoélder’s inequality. For
this we need the following straightforward bound which tells us that multiplication by a
time cut-off does not affect the geometry of the interactions in a serious way.

Lemma 2.10.8. Let 2 <p <oo,l>0. Then it holds
t _
|20zl Sy THPETYN
for any N > 0. Here Pl(t) is the projection to temporal frequency ~ 2'.
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Most of the frequency interactions are then handled in the following proposition.

Proposition 2.10.9. Fix T > 0. Set
S, = {(k‘l, k27k3) S NSZO .ok > 1, ok >1, k1 < max{kg, kg} — 10}
Then there exist € > 0 such that for any ¢, ¢ € Xf’e it holds

[ 1T T ke ks (D) =101 S C|@ll2.0) T+ [[0l] s.0) D110
1 1 1
(k1,k2,k3)¢Sx

for T € {WM,HW My, HW My} and C(||¢|| ys.0) as in Lemma 2.10.11.
1

Proof. Throughout this proof any implicit constants may depend polynomially on ||¢|| o0

1
We will only prove the estimates for the wave maps terms, WM, the other terms being
entirely analogous using Lemma 2.10.6 and the fact that

1(=2)2(dky X (=2) 1) = dky X (=) llpg S 2" | Bl | Dl e

for all ko, k3 > 0 (see Lemma 2.5.1) and conjugate triples p~! = pl_l +p2_1, —

0 +al
Fix k& > 0 and consider
S N Prr - WMy gy g ()| o101
(k1,k2,k3) ¢S«

We start with the case k1 > max{ks, k3} — 10. Note that in this case the whole term is
restricted to frequency P<j, so we must have k1 2 k. We then consider different cases
for the modulation.

o P, Q<p,: Using that & < kp followed by the modulation-Bernstein estimate and
Holder’s inequality we have

| Pu@Q<p, (N7 k1 O Py OaPies ) || xrs-1.6-1
< 267Dk N 20032372 i g || by oo, 2

ISk

0% B | 201 o 1Oaomy |l 221

1 _ / _ 1, 1
Tar 207Dk 97K |1 gy (| xno - 202720 002D g o | Dy N 0
TwM?2

(28’ —0'— Lk
E=Z50M oy | o0 | B | o0 I P 00

We may then take, for example, ﬁ =6, s > 6 so bound this by
T2 2 =00 =R =00 | g || a0 | Dy Nl 0 | Bk | 0

which is summable over ko k3 < k1 — 10, k; = k, k > 0 as required.
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o Y sk P<k, Qi: In this case one of the four factors must be at modulation (or frequency
in the case of 77) at least comparable to 2!. We study each option separately.

L. (P>n7) ¢py 0% PryOa Pry: Here we use Lemma 2.10.8 to see that

> 1PQUPY 01 bk, 0% D1y O i) | xo- .01

>k
!/ all t
S 3 2P s b oo, 2107 S| 2at 1107 Bkl oo,
>k
S R R Y PR A i I P
>k

207508316y e
We may then take, e.g., N = s + 6 + ﬁ and 1/2M = s’ + 26’ to bound this by

T = =09~k /2Mg=skig(s =)k g(=s0k1| g 1oy [l ges || D [l e

S T2 2R R =2 R 6y o Dol s | hs L0
which is acceptable.
2. N7 (Q>1Pk,)0% Pk Oadrs: This time we place Q>;¢x, directly into X9 to find

> PeQi(nr(Q210%k, ) 0% Oky Oa iy ) || 51,01

>k
< Y ol )lllﬁTllMllelﬁbkl||%,2\|3a¢k2||oo,oo\|5’a¢1c3\|oo,oo
>k
STYM N ol M =095l e - 20782 g e - 20785 g [ e

>k

1 9
< THYMAGT=20R o [| x| Py | o0 | B 0
which is acceptable choosing 1/M = 26'.
3. N7 Oy (Q10% D1y ) O Piey

> N1PeQi(nr b1y (Q210% Giy) Daiy )| xcs—1.0-1

>k
S 0 2 Mz ar B oo, Q210 Bl 2ar 5 10% B loc.oo
>k
’ ’ 1 _ Y
STYM ST 26005 o [y [l xeo) - 207707 g [ oo - 2075083 | o ] a0
>k
1
S TYMAGE =R (51 o+ (0]l x00 ) 1D | xo.0 | B [l x50 (2.10.13)

which is acceptable choosing e.g. 1/M = 6.
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4. NPk, 0%k, (Q>10a0k;): as above.

This completes the study of the case k1 > max{kq, k3} — 10.

We next turn to the case k; < max{ks, k3s} —10. WLOG ko > k3. This time the whole
term is at frequency < 2*2 and we must have k < ky. We first study the case where the
whole term has large modulation,

> 1Pk, Qu(nr 6, 0% Gy Oy )| xs-1.0-1

I>ko

Again, one of the factors must have modulation of order at least 2!, so we have four cases
to consider.

* Yk, P<k, Qi

1. Pgl)n;p: In this case we again use Lemma 2.10.8 to see that

> I PQuUPY) 1) ey 0% by DB | o101

~

I>ko
/ / t
S 3 2 NPt B oo oo 0 68 2109k | 2as
I>ko
S 30 2l TN UM () Nl kgt =R (5 o+ gy e ks 0
I>ko

[ dns [l xs0

1 1
S T2 720w 202 o || x| By | o | Dk [ xc00

where we again used N = ﬁ + s + 60 and k3 < kg. Choosing M such that
s' 4+ 0 < 5k < 25’ we obtain the result.

2. Q>1¢x,: This is a direct application of Hélder’s inequality. Placing all three factors
of ¢ into Strichartz spaces we have

> I1PeQu(nr(Qz1¢%,)0% Gy Oais ) || xcs-1.0-1

I>ko
<) ol )lllﬁTllMlle@leAgﬂjQ,oollaa¢k2||oo,2 0% Pry || 0,00
I>ko
5 Tl/M Z 2(s/+9/)l . 23k1/22(ﬁ70)l2fsl”¢k1 HXS’H . 2(178)]?2 H¢k2 ||X37‘9

I>ko
2075953 g [

L _ 94"
S TYM2GE=208 (o (| o | B 0 | Bks | x 20

which is acceptable for e.g. 1/M = 26’
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3. Q10%Gpy:

> 1PeQi(nr ¢k, (Q210% Py ) OaBiey) || x5-1.0-1

>ko

/ !
SO 25O g gl By lloo,o0 | Q210 Py I 2ar_ 510 Pisloo 00
I>ko

’ ’ 1 -
S TYM Z (s +0L. (Ok1,0 + |k |l xs0) - 2070t s)lH(ZSkgHXSﬂ
I>ko

207088 g | o

1
S TGI8 (8, 0 4 1wy | x50 | D | o0 | B o0

which is acceptable for -+ < ¢.

M
4. Q>10a0k;:

> I1PeQu(7 6k, 0% bk (Q2100 P ) xo-1.0-1

I>ko

S D0 2 a8k lloo, 0107 By oo 2| Q218 Bk | 20t
>k

STUM S 9 (Gt (g o) - 2072 o e
>ko

) 23k3/22(ﬁ70)12(175)l|

1
SJ Tl/M2(M k2 (5k1,0 + H(WM HXSvG)”(ZSkQHXSvGHgbl%”XS’e

| P | x50

which is acceptable for - < s'.

o P<j,Q<p, : It remains to study the term with overall modulation restricted to S 2k,

We consider the cases 2F27 < 1 and 2F2T > 1 separately. The latter case we further
split into 25T < 1 and 2%7T > 1.

1. 2k2T < 1: Here we use the modulation Bernstein estimate followed by Bernstein’s
inequality to bound (for k& < ko)

| PeQ <ty (N7 Pky O Dbty O Pies) || xs-1.0-1
= Z 2(8_1)1@2(9_1”21/2||"7T||1 H¢1ﬁ ||00,00||aa¢k2 ||oo,2”aa¢k3 ||00,oo

I<ks

ST Y 2 Dkagllgl=)kag(=sDks (5, b (g, [| o0 ) || Dk | 00 || Pk | x 00
1<ks

S T2 (8 0+ by llxce) |0k [0 | B | x 0

We then use that &', 6§’ are very small and separate 200 =s)k2 into 9(43(8'=s")kag3(6'=s k2
Since 2F2 < T~ this allows us to bound the previous line by

1o pr 1epr_ ot
S T2 702208 (61 o 4 1| 6n, | xn0) |0k Nl o0 | Dk N 00
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which is acceptable since s’ > 6.

2. 2k2T > 1, 2MT < 1: In this case we start by using (MB) to lower the time exponent
from 2 to 1+, then place all three factors of ¢ into Strichartz spaces:

HPkQ<k2<77T¢]€18a¢k2 Ot(bks)HXs 1,61

< 207Dk 37 o0 DloG =30 | 20| Pk [|oo,00[| 0% Py [loo 2| O bbs | 222
N

E RS NS BT R
ST 22 3w =R (5 o+ (|, [ x00) | ks | xo0 16 [ x50

where we chose 1/M > ¢ and summed over [ > 0. In order to gain some decay in k
we need to split into two further sub-cases. Henceforth assume s’ + 60" > 2/M > 26’

(a) ko ~ k: In this case, we simply bound 2% < T~ to find

| PrQ <o (7 Phey O% Py O Pk ) || xs—1.0-1
i1
ST 7 (0ky 0 + |6k [ xs.0) [ Pra L x50 (| s | x50

which is acceptable.

(b) ko > k. Since k1 < ko — 10, we must in this case have k3 ~ ko. We find

||PkQSk2(nT¢klaad)k2 aqbks)”XS 1,6-1
< T3 a2 om0k =5 =00ks (5, o g, | xco.0) || By | x| ks | xco0

S TR0 3273 R (G ot (16 |0 | 0o [ Bl x0

where we used that 272 =00k ~=3('=0k2 fo1 the final inequality.

The remaining case ki < max{ko, k3} — 10, 2¥2T, 28T > corresponds to a triple in S,
so the proof for WM is complete. O

To handle the remaining (low)V (high)V (high) interactions we must incorporate the
structures in the different terms. For the wave maps source terms we will use the
following lemma, proved in Appendix 2.C.

Lemma 2.10.10. Set s =3/2+ 5,0 =1/2+0 forv>s >0 >0. Let ko, ks > 0. It
holds

ks * Fig llxcs—r0-1 < 275 ™02k} | 1] o] iy | xpo-1.0-1 (2.10.14)
and

—s' min{ko.k 2 3
16 - o ymo < 275 itk | o) oo 4 (2.10.15)

The remaining interactions are then handled in the following proposition.
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Proposition 2.10.11. Let (ki k, k3) € S.. Then for any ¢, ¢ € Xf’e it holds

[ Tier ks (D) =101 S C(||¢||X579)TEH¢H§(;,9
(k1,k2,k3) €Sy

for T € {WM,HWM,, HW M>} and C’(HQEHXS,e) a constant as in the previous proposi-
1

tion.

Proof. We start with WM, again taking ke > k3 without loss of generality, so that
k1 < ko — 10 and 2k2T, 2k3T > 1. Use the null structure to write

8a¢k‘2 : aa¢k3 = %[D(gbkg : ¢k‘3) - ¢k2 : D¢k3 - ngk‘g : ¢k3]

First consider |[n7(¢k, O(dr, - Prs))ll ys-1.0-1. Note that we may neglect the cut-off nr
1

thanks to Lemma 2.10.4. By point 2 of Lemma 2.10.4 followed by the definition of the

X5 space and Lemma 2.10.10 we have

| P (0, (Pt - Dy )l xxs—1.0-1 S [Py | x50 D@y~ Phes) || xxs—1,0-1
S b llxcsio | Pns - Drsll xcs0

—s'k
S 277 0 [lxcso llns | xcs 0l drs [l x50

If ky =~ k we bound this by T ||, || xs.0||@ks | x=.0 || Pl xs.0 Which is acceptable, and if
ko > k, we know (since k1 < k) that ks = ko so we can bound this by

7572075 s =R)2| 1 | o0 | By Nl x 00 | D |0
which is also fine.

Similarly for ||¢g, ¢k, - Ok, || xs-1,0-1 we use Lemma 2.10.10 to bound

o
1 Pe( S, D1y - D) | o101 S 2757 | gy Nl xco.0 | Dy | 0.0 || By | 5.0

which is acceptable for the same reasons. The remaining term is similar.

For HW M, and HW M, we don’t actually need to use that 2k2T 2k3T > 1 and we
can get the gain we need from Holder’s inequality. Let’s start with HW M; in the case
ks > ko, so k1 < k3 —10. Note that the high modulation case ||7| — ||| > k3 was handled
in the previous proof, so we only have to consider low modulations. Since k3 is the
highest frequency the output is restricted to 2% < 2% so for fixed ks, k3 we have

I > QeigPr(nr - HW Mk, gy oy (6)) || xs-1.0-1
k1<ks—10

< 7 2000k Py (g Py (T (—A)Y26) (Scky—10 - (=) 261, l2,2

1<ks

150
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< Y0 2060 QP (g Py (T (—A)'26) (dchy—10 - (—A) 2,

1<ks

— (=A)2 Py (ary—10 - D2ks-10)) |22
+ > 20760k |y Py Py (TT50 (—A) 2 0) (= A) 2 Pry (b k10 - ks -10)) 122

1<ks

The first term above sees a derivative moved onto the low frequency factor ¢<x,_10 (see
Lemmas 2.5.1 and 2.5.9), so is easier to handle. For the third line we use the geometric
identity (Geld) to swap the low frequency factor for a high one and find

> 20Dk @ Py (1 Py (T (— A)26) (= A)? Py ($ks—10 - D2ha—10)) 2.2

1<ks
< 37 2000 ks A )y i (T () /20) | e
1<ks
'21{33”¢>k3710H2M 20 H¢>k3710”M oM
Tl/M2( —s")(ka— k3)22( —s") (k3 )22(M75 )kH(bHQ Z 92— olka— k\HQSkl”Xse

k'>0

where we chose M such that §’ < M~ < s’. This can be summed over ky < ks, k3 2k
and k£ > 0 as required.

The case ko > kg is similar, with the exception that we must separately study k1 < k3 —10
and ki € [k3 — 10, k2 — 10] in order to apply (Geld).

Finally, we turn to HW M, again restricting to modulation < gmax{ka.ks}  We first
consider k3 > ko + 10, in which case we must have output frequency k ~ k3 and can
write HW Mo.jo, ko ks (@) = Gy X Ligthes (Phys Pk) for L as in (2.5.1). We therefore have

I > QeryPelnr - HW Mgty ey i ()| xo—1.0-1

k1<ks—10
_ _ wa(i_ L
< 3 20700 g ¢y 10 X Ly (Ohas Ok )| ae_y
I<ks B
STYM Y3 20w R R (g, (@ + 272a) dapy-10(@) - (@ + 2790 | ac
1<ks a,b

+ || 6ns (2 +277b) dpy—10(x) - dry (@ + 27’{2@)”%,2)
where we used (2.5.2) and (2.5.39) in the second inequality. We then write
1
Ghz—10(2) = bay—10(x +277b) — 27]{35/0 Vo <ky—10(z +27700)df

and use (Geld) to bound

161, (2 +27"2a) Sry—10(x) - Gny(x +27"0)]|_ar_,

M—-2>
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< (b)2~ (5= 57 +8)k2g—(2+25") k3||¢||2 0 (Z 9 +J&I+5’)(k’_k3)||¢k,||X5’9)

k'Zks

and similarly

[ frs (2 +277b) Gcrs—10(2) - Pry (@ +27%20a) | _a_,

M-2>
Cshao—(1— 2 125
< ()2 skao—(1—57+2s )k2”¢k3||)(f’9”¢“§(18’9
It follows that, choosing ¢ < M~! < &/,
I Y Qs Pr(nr - HW Moy kg s (6))l| o101
k1<ks—10
ke (1—2
< Tl/M Z ZQ (s— 1)l~cdck2b+k3< ><b>2 sk32 (-5 +2s )k2H¢HX59
I<ks a,b

: (Z 2“"“”“3\%”)(3,9)

k'Zks

< TVMRGE =k g2, ( > 2‘”’“’—k3'|r¢k/||xs,9)
1

k' > ks

which is acceptable when summed over ko > 0, k3 ~ k, £ > 0. The case ky > k3 + 10 can
be treated identically.

In the remaining case ko ~ k3, we again call upon the identity (Geld), however this time
there is nothing to be gained by cancellation and so one must instead split HW M into
its two components and treat each separately. The term involving

¢k2 X (_A)¢k3

is easier to handle as there are no nonlocal operators acting so one can directly apply
the vector product identity. For the term involving

(_A)1/2(¢k2 X (_A)1/2¢k3)7

we only need to use (Geld) when the frequency of this output output is comparable to
2% The details are left to the reader.

In combination with Remark 2.10.7, the previous two propositions complete the proof of
Proposition 2.10.2.
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2.10 Proof of local wellposedness

2.10.2 Local Wellposedness of the Half~-Wave Maps Equation (2.1.1).

It remains to show that the local solution to the differentiated equation in fact solves the
original problem (2.1.1) under the compatibility assumption ¢; = ¢g x (—A)2¢. We
use an energy argument as in [KS17].

Let ¢ be a smooth local solution to equation (2.1.2) with data (¢o, ¢1) as above. Set
X == x (-4)'2%

Our goal is to show X = 0. To this end, consider the energy type functional
s [ X
== x)|“dx
2 Jgrs ’

A calculation as in [KS17] shows

X = —p(X - (¢ x (=A)2p+ ) — X x (—A)2p — ¢ x (=A)/2X

from which

d

GEO == [ (00X (0 x (~8)20+ 6)- Xdz ~ [ (6 (~A)"2X) - Xdo

(2.10.16)

We immediately see that

Slglloo | X316 x (—2)26 + dilloo So X113

[ (00X (6x (=8)20 + 61) - X da

since ¢, Vi € X 50y LyS. For the second term, we subtract a term which is zero (by
Plancherel):

(6 % (~A)TX)] - Xdax

NI

[0 (=8)3x) - Xdo = [ (6% (=8)"2X) = (=)
RS RB

then bound
(¢ x (~A)/2X) = (~A)3 (¢ x (—A)IX)]|2
1
SO Lk, Xarro)llz 4+ | D 1£(d<ks—10, Xio) I3
k1>0 ko>0
with

L(Pky, Xky) =/ 12 (|n] 2 — 1€ + 02 )x, ()(E) X, () X (m)dedln

&m
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It is then straightforward that

S NL( Gy Xcrrr0)ll2 S D 28 [dny ool X N2 S 1 X I2
k120 k1>0

and applying Lemma 2.5.1 (using ‘|77|%(\77|% — €+ 77|%|)‘ < 1€]), we also have

[SI
I

S (Z IIV¢II§OIIXk2||§) So [1 X2

k22>0

(Z ||£(¢<k2—107Xk2)||%)

k22>0

We have therefore shown that

SE(1) S B()

and since the initial conditions imply that F(0) = 0, we conclude that E = 0 for all time.
This completes the proof.
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Appendix

2.A Control of the Low Frequencies

In this short appendix we show that the low frequency portion of ¢ cannot blow up. It
is recommended that the reader ignores this appendix until the end of the proof, since
some of the methods will by then be familiar.

By the energy estimate for the wave equation we find

[P<00:9 ooz p0,17) S 1P<0®l0]l] g1 2 + 1P<o03@ || L1 22 0,17)

By our assumptions on the initial data certainly ||P<q@[0]] 71, ;2 < co. For the nonho-
mogeneous term we use Holder’s inequality in time and Bernstein in space to find, for
instance,

”PSO(d’aa(waQb)”L,}Lg([o,T]) S T(“P§0(¢8a¢>103a¢>10)||LgoLglﬁ([o,T])
+ [ P<0(90a$<100” $>10) || L2 12 (j0,177)
+ [[P<o(#0a¢<100” ¢<10) || 5o 2 (j0.177))
S T([[9l0o,00 10aP>101l 00,2/ 0% P10l 00,2
+ [|#]lo0,00 [ Oa P<10 [l 00,00 [[ 0% P10l 00,2
+ [[#lloo,00 [ Oad <10l 00,4 /0% P<10]l00,4)

All of these terms are bounded by T'e? using the definition of S and the local constancy
of the frequency envelope. The half-wave maps source terms can be treated similarly
using arguments as in Section 2.6 (see for example Claim 3, Proposition 2.6.1).

This shows that the low frequency portion of d;¢ remains bounded for all time (even if
this bound is growing in 7). For the L? norm of the solution itself we can then use that
the data is certainly in L? (upon subtracting the constant p) and calculate the derivative

d
GIPas(®)lEs =2 [ Peos - Peodioda

< )P0l oo 2oy + € I1P<00el 70 12 10,7
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Choosing € = (2T)_1/ 2 and using the fundamental theorem of calculus this yields

1P<0l1F 20 120,77 < 2l 0|72 + 4T P<0did || T o0 12 (0.1

In combination with the bound already shown for [|P<o0¢®| e 12 (j0,77) this shows that
[ P<0®|| L2 12 j0,77) 2lso remains bounded on the interval [0, T'].

We remark that the control on || P<oé||z2 could also be obtained from the conserved mass

M(t) = /R 6 — pl2da (2.A.1)

of the half-wave maps equation, although the approach above is of course more general.

2.B Proof of Moser Estimates

In this appendix we prove the nonlinear Moser estimates which played a crucial in the
analysis of this chapter. We first prove the most straightforward such estimate, (2.5.17),
involving only Strichartz norms.

Lemma 2.B.1. Let g : R? — R have bounded derivatives up to second order, and (p,q)
be a standard Strichartz pair. Then it holds

(143
1Peg(®)lp.a Spa 2~ 0131 + 161 s)

Here S is the critical norm of Section 2.2.2.

Proof. First assume that 1 — % — % < 0. Differentiating at frequency 2* and using the
chain rule, we have

1Peg(0) lpqg S 27 "I P(V g (6))llp.q

S 27 M Pu(Vear—109'(8))lIp.g + 27 F 1 Pe(Vsi-109'(8))lIp.q (2.B.1)

where

— — _ _ 1.3V
27M| Pe(Vé5k-100'(8))lpg S 2 FIVEsk-10llpallglloe S 27720750 g1

is as required. For the low frequency term, we differentiate a second time to find

27 Pe(Voch-109 (0)lpg S 27| Pe(Vdah-10V "+ VPoig (6))llp.g

< Y 27 MRV VT Puk(Vocig” (0))) b
j<k—10

+ Q‘k\|Pk(V¢jV_1 . PNk;(V¢2jg”(¢)))Hp,q

S 2 275 V8la - 27 Ve<jllooos
j<k—10
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+ 277V lloco0 - 27 ¥ V5lpg

_ o_1_3y,
<272 S 2lTimayg)2
j<k—10

which is as required since p, ¢ > 2 implies 2 — % — % > 0.

If1-— % - % > 0, we can start from (2.B.1) and see that the low frequency term can now
be estimated directly. For the high frequency part we split V¢<p_19 into intermediate
and high frequencies then find 1 < r < ¢ such that % = é + % and apply Bernstein’s
inequality:

275 Pe(Vosr—109 (0)lpg S 2 FI1P(Vdg—104+109 (0))llpg

+ 27522 N (Vg (0))llpr
r>k+10

The first term can then be bounded upon placing V19 410) directly into LY L4, while
for the second term we use that g(¢) is now also restricted to frequency ~ 2" and use
the bound from the case 1 — % — % <0:

27F23%/2 N N Pu(VorPard (0))lpr S 2% 37 IV lpgl| Parg(6)[|oc,2
r>k+10 r>k+10
_1_3y, —_3p
S22 3 2075 g)ls - 272 glls (1 + [ 6lls)
r>k+10
which is as required once summed over 7. O

We next turn to Lemma 2.10.6, focusing only on the first and second points, (2.10.10)
and (2.10.11), the remaining estimate being similar. The proofs are similar in flavour to
that above, however it is often more suitable to differentiate in time rather than space.

Proof of (2.10.10). We study the different regimens of (j, k) separately. In this proof all
implicit constants may depend polynomially on [|@||ys.-
1

e k < j: We have to show that

1P:Q;jg(9)|22 <15 9~ (s+6)
160 g0

Note that since j > k we have P,Q); = Pijpit} and j > 0 so

1PeQ;9(D)l2.2 S 277 |1 Pu@; Q5,00 - g (D)]l|2,2 + 277 | PrQ;[Qc; 00 - ¢ (9)]|2,2
(4) (B)
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Here
(4) $277(1Qz;0:dll22 S 27727 CH 1|10 xo.0m100 S 27CF | 0
For (B) we differentiate in t a second time and find

(B) S 279 PQ;[Q«i0fd - g (B)ll22 + 27| PQ;[QuxiOrd - 0:d - g (8)]]l2,2
(B1) (B2)

We start with

(B1) $ 27 % || PuQ;[Q<r—1007¢ - ' (D)]l|2.2 + 27 ¥ || PeQ; Q10510070 - §'(d)]

2,2
For the lowest modulation case we have
Bl«r S Y. 279 PuQ;[Pat—10Q:076 - g' ()] ll2.2 (Bla)«k
1<k—10
+ 27| P Q;[P>1-10Q107 ¢ - ¢'(#)]l2.2) (B1b) <k

Now the real calculations begin. For the first of these terms we use that [ is far smaller
than the scales k or j so the factor of ¢’ must also be localised to P.yQ~;. It follows
that

(Bla)er S27% > |PQ;[Pci—10Qi07 ¢ - 9, PoQnj0: - 9" (0)]] 12,2

1<k—10
<270 N 27| Py 10Qi07 o000 Q21010 12.2119" () 0.0
1<k—10
+27% 3 |1PQi[P<-10Qi07 b - 8; ' PoQnj[Q<a6 - 6" (9)]] 2,2
1<k—10

The first line above can be bounded by

9—3j Z 2[27(S/+€/)]lH&HX&927(871+0)ZHQ>lat(l~5”X0,s—l+9 5 2[37(s+0)7(s/+9/)](k7j)27(s+0)j
I<k—10

as required. For the second line we further split Q<<18tq5 into low and high frequencies
to find

277 % |1 PeQy[Pa10@i07 9 - 8;  PaiQe| Qi1 - 6" ()22

1<k—10

S27Y Y [P 100} Bll2.2l PaiQ<a@idllcoce + 27 Y [[1Pei-10Qu0; Bl|2,00 | Psi Q<101 oo 2
1<k—10 1<k—10

< 9-3j Z (2[27(s+6‘)l]2(175’)l +23[/22[27(s+9)]12(173)l)
1<k—10

< 9l3—(s+0)](k=1)g~(s+6);
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This completes the study of (Bla)«y. We now turn to (B1b)«j. Write

(B1b)<r <275 3 || PeQ;[Porr10Q107 0 - 9'(9)]ll2,2
1<k-10

+27% % |PQi [Py 104110/ Qi07 0 - 9'(9)] 12,2
I<k—10

The easier of these terms is (2.B.2), which we write as follows:

(2B.2) S279 Y 3 | PQ;[BQud2é - Purg' (0)]]12,2
<k r>k
<279 Y |RQi [P Qidid - VT P [V - 9" ()] 22

<k
r>k

+27% 3 (|PQ [P Q07 - VT Py [V, - g(6)]][|22

<k
r>k

To study (2.B.4), we differentiate in ¢ a further time and obtain

(2'B'4) S 273]. Z HPkQJ [PrQlagfg ’ VﬁlPNT[V(Z~5<<T : PNTQH((Z;)H HZ?

<k
r>k

+279 3 | PQ; [P} d - VT P [V Oibr - Prrg”(9)]]]l22

<k
r>k

+279 ) P[P QO - VT Py Vo - 0:Prg" (9)]] 122

<k
>k

For (2.B.6) we use Bernstein at frequency 2" to see

(2B.6) $279 Y 22| B dlr 27 [Voerl 21yl Parg”(B) g

<k
r>k

5 9—3J Z 23k/2279’l2(375)r27r2(%7ﬁfs’)r27(g7ﬁ+s’)r

<k
r>k

< 2(1733’)(k7j)27(2+3s’)j

(2.B.2)

(2.B.3)

(2.B.4)

(2.B.5)

(2.B.6)

(2.B.7)

(2.B.8)

2M
M—-1

which is acceptable. The second term (2.B.7) can be treated in the same way. For

(2.B.8) we use Lemma 2.10.5 to bound

(2'B'8) § 27% Z HPkQ] [PTQlatZ(g : v71P~T[v$<<r : 3tP~rg”($)m|272

<k
r>k

279 Y PP Qoo - 27 IVhrl 2ar o fl18iPrg” (6) g

<k
r>k

< 937 Z 2319/22—0’12(2—5)7"2—7’2(%—ﬁ—s’)rz—(%—ﬁ—i—s')r

<k
r>k

2M

TM—1
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< 273j2(173s’)k

which is as required. We now turn to (2.B.5). If we restrict the sum to r 2 j the term
is easily handled:

279 3 | PQj P Qi é - VT Py [V, - " (D)2

i<k
r2j

S22 NP QO lors, s 27 1P (V2 9" (0Dt s
<k
rev)

<927% Z 93— i —0)lg3r/2M o(2—=s)r  g—To(3—77—s")r

<k
r2j

< 9- (2+2s’ ——)]

Here we used the bound

HPNT(V(ZEEWQ (¢ ))H 2M oM ~ Hv¢~r” 2M 2M+ Z 23r/2“v¢m“ 2M QMHPng (¢ )HOO,Q
m>r

to go from the second to the third line. Such decompositions will be used frequently
without comment in the sequel. Choosing M such that s’ — ﬁ > ¢, we see that the
sum over r 2 j is acceptable.

For the sum over r € [k + 10,7 — 10] we differentiate again and have

2% Y |PQPQi0S -V PV - g (@)]2a
<Lk
re[k+10,5—10]

29N |BQPQudiS VPV, g (D)2 @
re[k-ll—ﬁ)lfj—lo]

+27% 3 |RQi[PQidS -V PV - g (D)2 (ID)

<k
relk+10,j—10]

+279 3 IRQRQIFS -V PV, - 09" (9)]]22 (IID)

1<k
relk+10,j—10]

where

M2 Y IBQuda 2 21 Par(Vdze - 6" (0)) ] a5y S 2720

<k
re[k+10,5—10]

(summing over [ > 0, r < j) which is again acceptable for s’ — ﬁ > ¢’'. The bound for
(II) is similar. For (III) the bound is straightforward upon placing P,[V@~, - 0:g" (4)]
into LtJrL2 and separately considering the cases where the frequency of 0;g ((E) is
comparable to or much smaller than that of V.
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This completes the work on (2.B.2) so we now turn to (2.B.3):

(2B.3) $27% Y |PQj[Py-104-10Qi07 6 - g (8)] 2.2 (2.B.9)
1<k—10
+272% > HPij[P[k—lo,k-i-lo]Qlazﬁg ' (P)]l|2.2 (2.B.10)
1<k—10

For the first line we use that ¢’ (<Z~>) must be restricted to frequency ~ 2¥ and modulation
~ 27, which allows us to swap a 27 for a 2¥ by Moser’s inequality (2.10.8):

(2B.9) 2% |1PQ;[Py—10,4-10/Qi107¢ - Por@njg (9)]ll2,2

I<k
<27y HP[Z—l[),k—lo}Ql8t2¢~)”2M,% ‘2_j!\3tp~kg'(q3)!\%,zzw
1<k - B
3 Y (L g)o3a/2M o2 An(E— L )k
<27y Y 2 2027922z ar
<k A=l-10

< 9t 537 —28") (k=) 9— (2425~ 537)j

. . / 1 /
which is acceptable for s" — 557 > 6.

To complete the work on (B1b)«y it remains to study (2.B.10). We use that k < j
to see that ¢'(¢) must be at modulation ~ 2/ and so

(28.10) £ 2% Y [BQ PR - 0 PoQeiing ()
<Kk
2N | PosQidfdlny 2 27| Prdug (D) 2as
<k
Ak
<278 37 2l air ~0)ig3k/2M 9(2-s)ko (5~ 3y —5)A

1<k
A<k

< 9(1-28"+537) (k=5) g — (242"~ 337)j

2,2

which is acceptable for s’ — ﬁ > @’. This completes the study of (B1b)«, and so of
(B1) «k-

To finish the work on (B1), we therefore now have to study

j—10
(Bl)2, 277 > |PiQj[Pek—10Qi07 9 - ' (0)] 12,2 (Bla)>k
I=k—10
. jilo ~ ~
+27% 3" ||PiQj[Por-10Qi079 - §'(9)]l|2,2 (B1b)>
I=k—10

For (Bla)>j, we note that ¢’ (¢) must be at frequency ~ 2¥ and modulation ~ 27 and
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decompose
j—10
(Bla)z, 277 1PeQ;[Pek—10Qu8} - 8; ' PukQnjOiPerg' (9)]
a)>k S kM <k—1010; t Lk~ Otl<kg 2,2
I=k—10
S 279 | P07 ll2,2 - 277 | PekOig (9) ]l oo 00
1>k
< (1= —0)(k—5) g~ (2+'+0');
Then for (B1b)>), we note that if [ > k we can write
j=10 ) ) j—10 ) )
272 N PQj[Pok-10Qu07 0 - g (D)]ll22 S277 D (| PeQj[Porr10@i070 - ¢'(9)]ll2,2
I=k+10 I=k+10
(2.B.11)
+27% Y | PQ [P Qi d - g (9)]l2,2
I=k+10
(2.B.12)

where (2.B.11) can be treated in exactly the same way as (2.B.2), and for (2.B.12) we

observe that ¢'(¢) is restricted to P<Q~ig (0) = Pitj)»PSkQNjg’(qS) and so

j—10
(2B.12) 27 N ||PeQ;[Pur@i07d - 0 P<QnjOrg(9)]]]2,2
I=k+10

S 277 | Pek@idF 12,2/ P<rBig(9) [l oo,o0
>k

<, - o(1=8"=0")(k—j)9—(2+s'+6")j
~lols0

For the remaining part of (B1b)>; with [ ~ k we have

27| PuQ; [Por Qi d - g (D)]ll22 S 27 | PeQ;[Pak Q07 d - PQrjd (0)]]]2,2

(2.B.13)
+279 3 |PQ, [P Quk 036 - Prrg/ (D)2
r>k
(2.B.14)

where

(2.B.13) < 27Y|| P,Q; [Pk Q07 ¢ - 0, P<kQjOrd (9)][|2,2
S 27| P Q07 dll22 - 277 | P<i0tg ()| so,00
< 9350 (k—j)g~(s+6)ig—'j
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as required. For (2.B.14) we have

(2B.14) $27% Y |BQj[PQukd26 - Purg (9)]]22

r>j5—10
+27% 3 | PQ[Pr Qa7 - 0 ParQuOig (9)]]]2,2
r=k+10
S 2743232 P.Q 07 22| Parg (8)l]so,2
r2j
+27% 3" 232\ PQ 07 dll22 - 27|01 Prrg ()| o2
r>k
- —2j03k/2 —0ko(2—s)ro—sr —3503k/2 —0ko(2—s)ro(l—s)r
Sl oo 2772 > 27 0kgBmsirgTer 4 973ig3k/2 N " 9 =0kg 279y
1 r2j >k

< o0 (k=)o (s+0)j 4 o(3—s—0)(k—7)g—(s+0)j
Sl o0

which is acceptable. This completes the work on (B1).

(B2) can be treated similarly and this complete the study of j > k.

e j =~ k: This time we have to show

1PeQig(9)||22 S 27 (TOk

We have

1PeQuig(D)l22 S 27 M PLQur(Vdzr - ' (0)) 22 + 27| PeQrok (Vdcr - Porg(9))]

S 27 M1Qxk Vil + 27 | PeQuin(Qek Vdsk - ' (9))]|2.2
+ 27k‘|v¢<<kH%,QMHPN/&Q/(QZ’)HQM, 2M

M—1

< 27ko0=s=0k L 9 M BQ ok (Qer Vi - (D)) 22

_|_ 2—k‘2(%—%—5/)k2—(%—ﬁ+5,)k

2,2

The first and third terms here are as required, so it remains to study

27F| PQur(Qer Vi - 9 ()22 S 27| PeQun(Qeck Vénrk - P<pg (9))ll2,2 (2.B.15)
+ ) 27" PiQeik(Qek Vr - Purg(9))ll2.2

>k
(2.B.16)

where

_ ~ ~ k(i N (3_ 1y
(2B.16) S27F ) HV@H%,QM”PWQ/(@HQM,% < 9~ho(G=r =5 kg=(G—7+s)k
r>k
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is fine, and

(2B.15) < 27| PuQk[Q<k Vo - Pk Qg ()]]]2,2
+ 277 PLQ i [Qeck Vi - Pord (0)]]]2.2
< 27M|Qek Vo - 0 Pk Quic (01 6" (9)) 2.2
+27MQer Vo - VI PuQur (Vo g"(9)) |22
S 272’“(HV¢>~k||21\4,;ﬂj1 10eP<hll 221 ops + IV Onkll 201 oprl|Ocb5rllzny, 200 )

—2k (o 7 7 7 7
+ 27 (IVOnkllang, 22 IV O<hll 2aa ops + IVO~kll2ar op VO kllppg, 200 )
< 2—(2+2S/)k

e j < k: This time our goal is

1PeQig(0)|22 S 2%

We have
1PQs9(d) 122 S 2 * 1 PeQ; (Vb - Pk (6)) 2,2 (2.B.17)
+ 275 PiQj(Vonr - ' (9))ll22 (2.B.18)
+ 2783 |PQi(Vor - Paurg (9)) 2.2 (2.B.19)
>k

Here (2.B.17) and (2.B.19) can be handled as in the case j ~ k. For (2.B.18) we
separate

(2B.18) £ 27" PQ;(Qe; Voni - 9'(0))ll22 + 27| PeQj(Q2 Vi - ()

2,2
The second line here is straightforward to handle by placing V¢ into L?L2,

consider only the first term. Referring to the result for j > k to handle ¢’ we find

SO we

27| PQ;(QejVomr - 9 (9))l22 S 27| PrQi(QucjVdor - Q> P<id (0)) 2,2
+27M|PeQ;(Qej Vo - Poid (8)) 2,2
S27M1Q<;Vdrlloo2 Y 1QiPg (8)) 2,00

12j
r<J
+27MQuy Vo alloare 327 1B (V6 o (9D aae o
T2j
< 2—sk—9j
for s — ﬁ > ¢'. This completes the proof of the Moser estimate.
O
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2.B Proof of Moser Estimates

We are now in a position to prove the projection estimate.

Proof of (2.10.11). As before, we consider the different regimens of (j, k) separately.

e k < j: Here

1PQL5 (—2)29)lI o0 S 20kl xo0 + 207V PLQ((—2) 0 - g(6) 9(9))ll2.2
Then setting G(¢) := g(¢) - g(¢) we have

26| PQ;((—2)' % - G(9))|22

S 20405 N Qs (Pr(—2)?6 - Pur(G ()22 (4)
r>k

+ 27| BQ; Qi Per(= 1) 26 - G(9)) a2 (B)

+ 2009 PQ;(Ques Per(~2) %6 - G(G) 22 ©

The easiest of these terms is (B):

(B) S 2033 Qi (— > 2 llgr ] xoo

127 r<k r<k

For (C) we use the Moser estimate just proved to see that
(C) S 207 P Qi Pek(=2) 26 PukQui G(9))l2

(
< 26407 Q . Pt (= A) 2] oo 00| Pet Qi G(D) 12,2
S 207X om0 R) g, |y

r<k
Lastly, we turn to (A):
(A) S 2073 | PQi(Pr(=2) ¢ - PuG(9))l2.2 (A1)
rzjjqo
+2070 3| BQy (P (1) 26 - P G(9)) |22 (A.2)
r=k+10

For (A.1) we have

(A1) S 2400 Y 1P(=8)"201 gar, oag[Por GD)lany g2

r2j
< 20407 37 olam a0 G o+ g ||y
r2j
<293 207070 g | s

T2J
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which is acceptable. For (A.2) we separate the (—A)/2¢ into low and high modulations.
The high modulation part is easy:

j—10
24037 1PeQj(Qzi Pr(—2) %0 - PG (@)l
r=k+10
=10 .
<2605 N 9362 Qo P (—A) 2| 2| Pur G() | oo 2
r=k+10
S 207k 37 2R 16 o
r>k

For the low modulation part we observe that the factor G(¢) must have modulation
~ 27 s0 we have

j—10
26107 N || PQi Qi Pr(—2)26 - PG (D)) |12,2
r=k+10
- j-10 7
S 2N QP (1) lloe 2l Prr Qi GLB) 22
r=k+10
S 2(1—5,)k Z 2(1_5)(7‘_19)”@57‘”)(5,9
r>k

e k 2 j: In this case we have

25| Qs [(=2) 29 - G(9)]l2,2

< 25| PiQ;[Qz P (=) 2 - G(9)] |22
+ 27| PiQj Qi Por(= )20 - G()]22
+ 25| PQj [Pk (—2) 2 - G(9)] 122

< 2RI ST 9 00T

1Zj r2k
n 25k+9jHp<<k(_A)1/2q§”%72M“PZkG($)HZM,%
+ 249 PQj[Quej Por (=) 20 - G(9)]|2.2

SN 20 R g |y 4 25K IR GRSk $™ 0GR =0T g ||
r2k r<k

+ 2 PQ Qe Pos (1) - (@)

The first two terms above are acceptable so it remains to study the third. We first
consider the case where (—A)l/ 2¢ is at frequency > 2*. Here we have

244 P (Ques Por(—) 26 - G(3)] 22

S22 YT PQjIQ< Pr(—8) 26 - P G(9)] 22
>k
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< 2RI N Qe P (- A) 29|

211‘11172M“PNTG(¢)”2M,
r>k

2M
N —1

M

which is acceptable.

For the intermediate frequency case we have

25199 PQj[Qucj Pt (—2) ¢ - G(9)] 2,2

< 27| PQjQuei i (=2)? - PGz,
+ 2550 PuQj Qs Pak(—A) /20 - Py G(d)] 2

S 289 Quy Pk (=) 26| 2nt_ 0/ | Pk G () gy, 20

TM—1

+2°54%)| PLQ;[Qcj Par(—2) /¢ - Py, G(9)] |22

The first term here is acceptable, however for the second we need to study j ~ k and
j > k separately. If j ~ k we note that G(¢) must have modulation at least ~ 2¥ and
SO

2943 P Qs Qe Pt~ 1) Y2 - Pt G()]|l22
< 28 Qi Pt~ )26 . | Q21 Pk G () 2.2

which is acceptable.

In the case k > j we note that if G (g?)) in fact has frequency > 27 we are fine:

24| PLQj Qe Pak (=)0 - Py_10,1-10G(®)] 12,2
< 23k+9j”Q<<jPNk(—A)1/2¢H2M,%||P[j—10,k—1O]G(¢~5)HA2T1f1,2M

< 2810kl 0

while if it has extremely low frequency (< 27), then it must have modulation at least
comparable to 27:

250 PuQy Qs Pt~ )26 - Q2 Py G(3)] 22
S 28| Qe Pk (— )26 |ow | Q2 P G () 2,00
< 2%(16n I xcs0

This completes the proof of the nonlinear projection estimate.

2.C Proof of Lemma 2.10.10.

In this appendix we will constantly use the Strichartz estimate Lemma 2.10.3 and the
modulation-Bernstein estimate (MB). We start with the first statement in Lemma
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2.10.10. As usual, M = co— is taken to be a very large constant.

Proof of (2.10.14). First suppose |ko — k3| < 10, 50 @, - Fry = P<p, (0, - Fry). We first
consider the case when the whole term is at low modulation @<, and consider the
different possibilities for the modulation of Fj,.

. ngQngg(Csz . Q5k2Fk3): Using (MB) we have

”P<k2Q<k2 (@kz : Q<k2Fk3)||XS—1 -1
< N ol Dkp(@= D 2(5 Y| P, Qi - Qs Fra) | a5

M1
1<ks
1

1
,S Z 2(8_1)k22(9_1)l2(§_ﬁ)lHSOkQH]\31\11270<>HQ5]€2FI€3 2.9

1<k

< 27Ok 37 2 g e | o0

1<ky

S22 ol xe0 | Fllxsmr0-1

which is acceptable provided we choose ﬁ <.

o P<p,Q<py (Pry - @>ky Fiey): Here, since ka =~ k3, we note that for the output mod-
ulation to be at most ~ 2¥2. the modulation of the two inner factors must be
comparable. We therefore have

| P<p, @<ty (0 - Q>>k2Fk3)HxH o-1
<SS 26Dk DG 5D Py Qu(Qrripry - QrFry)|| e

M-1 ’
l<k2 r>ko

Z Z 2 s=1) k22 ||Q~r§0k2” 2M HQTF]%HZ’Z

1<ko r>k2

< Z Z o(s=Dk2o(0'—57)L . 2(%*9)7“2(%*5)’“2“90,62HXS’Q L 90=0ro(=9)ks || 3 1| o101
I<kg r>ko

S 2R g o | P [ 5101

provided again 5; < ¢
We next study the case in which the whole term is at high modulation.

o Disky P<iyQi(Q>10k, - Fi;): In this case the modulation of Fy, can be at most
comparable to that of ¢y,, i.e.

> 1Pk, Qu(Qz1005 + Fioy)llxcs—16-1 S Y Y 1Pty Qu(Qrpry - Qv Fiey )|l xs-1.0-1

I>ko ko r2l
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Using (MB) to place ¢y, into L?L2 and Fy, into L?LS° then applying Lemma
2.10.3 we bound this by

37N 260D 0, o 122 Q< Fiy ll2,00
I>ky 721

S Z Z 2(8—1)12(6—1)[2l/22—97‘2—57’ ||(;0k‘2 ||XS‘02(1—0)T2(1—8)]€3 23k3/2||Fk3 ||XS*179*1
ko r>1

S 27 FOR g o | P o101

o sk, P<ky Qu(Q<i—109k, - Fry): This time we use the L? structure of X5~ 10-1 to
square-sum over [, and use that Fj, must be at modulation comparable to [ to find

1Y Pey, Qu{Qai—109k; * Fiy) || xrs-1.0-1
I>ko

1
SO 1Pk, QuQei—10Pks - Qi Fiy) | 5cs-1.6-1)2
I>ks

03 2CHDY Q1 100k |0 00| @t Fis
I>ks

< (30 @D g 40207012079 Q By | o-1.0-1)?) 2
I>ko

1
|2,2)%)2

which is acceptable.

We now come to the case ko > k3 + 10, @g, - Fiy = Pk, (9ky - Fiy). Again we split into
different cases depending on the whether the term and its factors are at high or low
modulation.

o PiiyQ<hy(Pry - Q<poy Fry): This time we use (MB) to see

HP~k2Q§k2 (90k2 ’ QSk‘?,Fka)HXS—lﬂ—l
5 Z 2(sfl)k22(971+%fﬁ)luwk2 ”
1<ks
< 9(s=Dke Z 90" =)L . 2_(%+%+Sl)kzll<ﬁk2\\xs,9 _ 2(1—9)1332(1—5)1@3231%/1\4H},ﬂlﬁ)HXH’%1
1<ks

< 20 30R 2 ==k o || By | xe-1.0-1

]@JYQ ,MHQS]{?:ngg ”27%

which is acceptable provided we choose %/ < ﬁ < # and % <s+0.

o PopyQ<hy (Phy - Q>ks Fry): This time we have
[Prokes Q< (Phy ~ @b Fles ) [ xs=1.01
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— _ 1
<Y 26Dk M)lH(%H%’M\\Q]’stuz%
1<Sko j>k3

< Z Z Q(S_l)kQ2<0/_ﬁ>l2_(é+%+8/)k2||80k2||X579 '23k3/M2(1_9)j2(1_8)j||Fk‘3”X5*1»9*1
1<ks j>ks

< 202G =R o || oo | Fiy | o101

with M as in the previous case.

o Dk Py Qj(@k, - Q< jFry): Since the outer modulation far exceeds any of the
other scales involved in this expression, we see that ¢, must be restricted to
modulation at least comparable to 27. We then find

> Pk, Q5 (ks - Qi Fiey) |l xxs-1.0-1
I>ko

<N 26TDIQ son, [loo 21| Qe Fleg 2,00
J>ko

S 27 ORI o | P [ xo-1.0-1

where we used that kg < ks.

o Disky Poka @ i (Pky - Q~jFly): This case can be handled straightforwardly by again
square-summing over j and placing ¢y, into LfoL% and Fj, into Lngo.

o Disky PokyQj(Pry - Qs Fiy): Here we observe that oy, is restricted to modulation
comparable to that of Fj,, and find

> Pk, Q5 (ks - @ Fes) || xs-1.0-1

I>ko

<30 3 26405 Q o, [loo 21 Qr Fleg 12,00
J>ko r>j

< 30 Y o0 Dig sy || 02070293k 2 s
iI>kar>yg

which is acceptable. This concludes the case ko > k3 + 10.

Lastly, we consider k3 > kg + 10, so that g, - Fiy = Puks(@k, - Fisy)- In this case we have
to consider three cases for the outer modulation, depending on both ko and ks.

o D kp<i<ks Prks Qu(0hy - Q1 Fy,): Using observations on the modulation restrictions
as before we have

Z Z HPNk‘:’,Ql(‘pk‘Q ) Qij‘s)HXsflﬁfl

ko<lSks 3>1
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< N S 2RO o, (12,00 Q) Flg 122
ko<I<ks j>>1

< Z Z2(871)’632(071)121/223]62/2270]'278]’HSOkQHX8792(179)]'2(178)]€3HQ‘ij:;HXS—l,g—l
ko<I<ks j>>1

S 27O o | a0 || P | xo-1.0-1

. Zk2<<l§k3 Pok; Qi@ - Q<1 Fiy): Again square-summing we have

| Z ZPNIQQZ(SOIW ’ Qijs)”XS*LG*1

ko<ISks 51
_ 1
SCYD O 26 VR0 D 0 g ool Q) Figl|2,2)?) 2
ko<I<ks j<I1

which is readily seen to be acceptable.

2M

o Py Q<ioy (ks - Q<iy Fiy): In this case we place ¢y, into L * L3 and Fy, directly
into L7L?2 to bound

HPNk3Q§k2 (‘sz : Q>>k2Fk3)HXS—179—1
S 3 26DVl A=Atk g, 20-DR20-9 B o

1<k

o
< 27yl xo0 | Fiy [ 101

choosing ﬁ <.

o Pop;Q<iy (9hy - @>ky Fiy): This time we observe that ¢y, must be at modulation
at least of order 27 and bound

D 1Py Qi (Ohy - QiFiy )|l xps-1.0-1
J>ko

<30S 2t RN G o 12,00 1Q5 Fi 12,2
>k 1<ks

S 27O o || o || g [ 0101

o D isks Poks Qu(@ky - Q1 Fiy): This time we square-sum over [ and place Fy, directly
into L? L2 to find

H Z P~k3Ql(¢k2 ’ QZle3)HX5*119*1

I>ks
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_ _q —e_f)i 1
S 26N 27 k2 oy 002750 Q; Fiy [ s 1.0-1)?) 2
I>ks3 Jzl

which is acceptable upon applying the Cauchy-Schwarz inequality in j.

o D isks PoksQu(0ky - Qi Fy): For this final case we note that the entire term
vanishes unless ¢y, is at modulation at least ~ 2! and find

> 1 Poks Qu(ny - Qct Fey) || 5161

I>k3

<Y 26O op, 12,21 Qe Fiy ll o0
I>k3

<Y 2020 sl || e02 GO s
I>ks

S 27O g o | g [ o101
This completes the proof of (2.10.14). O

We are now ready to prove the second statement of the lemma, which is similar to the
first, however somewhat simpler due to symmetry reductions.

Proof of (2.10.15). Assume without loss of generality ko > k3. First suppose ko > ks+10
so the whole term is at frequency ~ 2¥2. We split into the following cases:

o Di<ks Pty Ql(Qzl‘P](fQ) : gplg?;)): Square summing over [ we have

2

IS Poa @@ - o) o0 S (Z (2722% Q10 |22

1<ks I<ks

Spl(ci,) ||OO,OO)2)

; (Z 2Nk e - 2 ks ||Xs,e>2)

ISks gzl

—s'k 2 3
S 278 o) ol e
where we used Cauchy-Schwarz for the final inequality.

o D i<hy Pk QZ(Q@gpg) . go,gi)): Using (MB) on ¢ this term can be bounded in

X0 by
2 3
S0 3 222 Que 2 aralleld N 2 o
1<ks 5l
S 303 220G wio )| 02 B R )
1<ks j<l
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0+l Nk 2 3
S 20 o oo gy o
which is acceptable upon choosing 1/M < s’ —§'.

When the outer modulation is > 253, one of the inner terms must be of at least comparable
modulation or the interaction is null.

o D hai<ho PNkQQl(Q>l_10g0,(€2) cp,(i)) In this case we use the bound

2 3 2 3
1Pk, Qu(@51-100%) - i) I x00 S S 27227 Q 07 22102 [l w00
Jjzl

—s'k 9
<27k 329091190 | 0 |02 [ 0
gzl

which is again acceptable when square-summed in [.

2 3 .
o Zk3<<l§k2 PNkQQl(Q@goéQ) . @,ES)): This time we bound

2 3 2 3
1Pk Q(Qurpl) - o) | xo0 S 2S’f22“||c2<<lgo;; oo, 2||Q>lso;3 l2.00

—s'kso0(1
S ||90k HxaeE S ||Q390k3 [ x50
Jzl

which is again acceptable.

When the outer modulation is very large > 22, we have a similar situation:

o Zl>>k2 PngQz(Q>Z—10<P;(i) : 901(;))1

1601
1Pk, Qu@s1-1008) - o) I x00 S D 2729 Q6012 22104l oo,00
Jzl

0)(
S 27 3 20D o llph, e
izl

which is acceptable.

o sk PNkQQz(Q«W;(i) : so,(f;)): Here

3 s 2 3
1Py Qu(Qeapl) - o) o0 S 2 l29lr\cz<<lso,£;uooooHQwL;

9
<27k N olet0) Hgok;|rxse|rc2]gok3 0
Jzl

It remains to consider the case |ka — k3| < 10. We first suppose that the outer modulation
is restricted to < 2F2:

(2)

3 Nk
| Pes Qo (04 i) 1m0 S 2210 | oas 10 1y, ns

P M—
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< o(s+0)k29—(5+ 57+ k2 HSOI(CZQ)HX&G Lo~ (G—Fr+s)ks H(pl(i)HXs,a

which is acceptable for s’ > 6'.
When the outer modulation is at 2! > 2*2 at least one of the terms must also be at

modulation at least ~ 2! or else the term is null. Since we are considering ko ~ k3 we

may assume WLOG it is the factor go,(;):

S 1Pk, Q@210 - o) xe0 S 3 2671Q2102 2.2l 0,00

I>ko I>ko
_d i 2 3
S 27 30 3 20D Qo | sl s
I>>ko j21
This was the final case and the proof is complete. O
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