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Abstract

In this thesis we will present and analyze randomized algorithms for numerical linear alge-
bra problems. An important theme in this thesis is randomized low-rank approximation.
In particular, we will study randomized low-rank approximation of matrix functions, the
use of randomized low-rank approximation for trace estimation, and randomized low-rank
approximation of self-adjoint non-negative trace class operators.

Chapters 3 to 5 will be concerned with low-rank approximations of matrix functions. We
will present two methods to compute low-rank approximations of matrix functions. In
Chapter 4 we will analyze a method called funNyström, which uses a low-rank approx-
imation to A to obtain a low-rank approximation to f(A), where f is a non-negative
operator monotone function. In particular, we will show that a near-optimal Nyström
low-rank approximation can be used to construct a near-optimal funNyström low-rank
approximation. In Chapter 5 we will consider a block-Krylov subspace method to com-
pute randomized low-rank approximations of general matrix-functions. We will provide
probabilistic error bounds for the method.

Chapters 6 to 8 will be concerned with trace estimation. In Chapter 7 we will present an
adaptive version of the Hutch++ algorithm. This algorithm takes an error tolerance as
input, and returns an estimate of the trace within the error tolerance with a controllable
failure probability, while minimizing the number of matrix-vector products with the
matrix. In Chapter 8 we present a single pass version of the Hutch++ algorithm. This
algorithm uses the Nyström approximation instead of the randomized SVD in the low-rank
approximation phase of Hutch++, and we prove that it satisfies a similar complexity
guarantee as Hutch++.

Chapter 9 will be concerned with an infinite-dimensional generalization of the Nyström ap-
proximation to compute randomized low-rank approximations to self-adjoint non-negative
trace class operators. We will provide an error bound for the finite-dimensional Nyström
approximation when it is implemented with non-standard Gaussian random vectors. We
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Abstract

then use these bounds to prove an error bound for an infinite-dimensional generalization
of the Nyström approximation.

Key words: Low-rank approximation, randomized numerical linear algebra, matrix
functions, trace estimation, Hilbert-Schmidt operators, trace class operators.
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Zusammenfassung

In dieser Arbeit werden wir randomisierte Algorithmen für Probleme der numerischen
linearen Algebra vorstellen und analysieren. Ein wichtiges Thema in dieser Arbeit
ist die randomisierte Approximation mit niedrigem Rang. Insbesondere werden wir
randomisierte Niedrigrangapproximationen von Matrixfunktionen, die Verwendung ran-
domisierter Low-Rank-Approximation für die Schätzung der Spur einer Matrix und
randomisierte Niedrigrangapproximationen von selbstadjungierte nichtnegative Spurk-
lassenoperatoren untersuchen.

Kapiteln 3 bis 5 werden sich mit Niedrigrangapproximationen von Matrixfunktionen
beschäftigen. Wir werden zwei Methoden zur Berechnung von Low-Rank-Approximationen
von Matrixfunktionen vorstellen. In Kapitel 4 werden wir eine Methode namens fun-
Nyström analysieren, die eine Niedrigrangapproximation von A verwendet, um eine
Niedrigrangapproximation von f(A) zu erhalten, wobei f eine nicht negative operator-
monotone Matrixfunktion ist. Insbesondere wird gezeigt, dass eine nahezu optimale
Nyström-Approximation verwendet werden kann, um eine nahezu optimale funNyström-
Approximation zu konstruieren. In Kapitel 5 wird ein Block-Krylov-Unterraum-Verfahren
zur Berechnung von randomisierten Niedrigrangapproximationen von allgemeinen Ma-
trixfunktionen betrachtet. Wir werden probabilistische Fehlerabschätzungen für diese
Methode bereitstellen.

Kapiteln 6 bis 8 befassen sich mit der der Schätzung von Spuren von Matrizen. In
Kapitel 7 wird eine adaptive Version des Hutch++ Algorithmus vorgestellt. Dieser
Algorithmus nimmt eine Fehlertoleranz als Eingabe und liefert eine Schätzung der Spur
innerhalb der Fehlertoleranz mit einer kontrollierbaren Fehlerwahrscheinlichkeit, während
er gleichzeitig die Anzahl der Matrix-Vektor-Produkte mit der Matrix minimiert. In
Kapitel 8 stellen wir eine Single-Pass-Version des Hutch++-Algorithmus vor. Dieser
Algorithmus verwendet die Nyström-Approximation anstelle der randomisierten SVD in
der Phase der Niedrigrangapproximation von Hutch++ und wir beweisen, dass er eine
ähnliche Komplexität wie Hutch++ garantiert.
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Zusammenfassung

Kapitel 9 befasst sich mit einer unendlich dimensionalen Verallgemeinerung der Nyström-
Approximation, um randomisierte Low-Rank-Approximationen für selbstadjungierte
nichtnegative Spurklassenoperatoren zu berechnen. Wir werden eine Fehlerabschätzung
für die endlich dimensionale Nyström-Approximation angeben, für den Fall, dass diese
mit nich standard normal-verteilen Gaußschen Zufallsvectoren implementiert ist. An-
schließend verwenden wir diese Schranken, um den Fehler einer unendlich dimensionalen
Verallgemeinerung der Nyström-Approximation abzuschätzen.

Stichwörter: Niedrigrangapproximation, randomisierte numerische lineare Algebra, Ma-
trixfunktionen, Spurenschätzung, Hilbert-Schmidt-Operatoren, Spurklasseoperator.
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Notation

• SPSD is an abbreviation for symmetric positive semi-definite;

• I denotes the identity matrix;

• A(k) denotes an optimal low-rank approximation of a matrix A in any unitarily
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• PY denotes the orthogonal projector onto range(Y );

• AT and A∗ denote the transpose and Hermitian adjoint of a matrix A;

• A∗ denotes the adjoint of an operator A;

• ∥ · ∥(s) denotes the Schatten s-norm;
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• A† denotes the Moore-Penrose pseudoinverse of a matrix A;

• N (0, 1) denotes the standard Gaussian distribution;

• N (0,K) denotes the distribution of Gaussian random vectors with mean 0 and
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1 Introduction

This thesis explores the use of randomized low-rank approximation to compute approxi-
mations to matrix functions, as a variance reduction technique for Monte-Carlo estimators
in trace estimation, and to compute approximations to non-negative self-adjoint trace
class operators. In this chapter, we will briefly outline low-rank approximation and the
problems considered in this thesis.

Nearly any algorithm that is designed to solve a real world problem will rely on matrix
computations to be efficient. Matrices are versatile mathematical objects, that allow
practitioners to represent data, operators, coordinates, functions, and many more math-
ematical objects. For a matrix A ∈ Rm×n, low-rank approximation is concerned with
finding a low-rank matrix B ∈ Rm×n so that

B ≈ A.

Nearly all matrices that appear in applications will be analytically full rank, but many
will be numerically low rank [156], i.e., A can be well-approximated with a low-rank
matrix B. Such matrices appear in genomics [30, 62, 64, 164], discretizations of partial
differential equations [33, 72], movie preferences [22], statistical machine learning [65],
multiscale physics [75], and many more. The advantages of low-rank approximations are
two-fold. Firstly, low-rank approximations yield advantages in terms of storage. Storing
a dense matrix requires O(mn) units of memory, wheras storing a rank k matrix requires
O((m+ n)k) units of memory. Secondly, low-rank approximations yield advantages in
terms of computational efficiency. For example, computing a matrix-vector product with
a dense matrix requires O(mn) operations, whereas computing a matrix-vector product
with a rank k matrix requires O((m+n)k) operations. When k ≪ min{m,n}, this yields
a dramatic reduction in terms of storage and computational cost, especially in today’s
applications when m and n are very large.

Classical deterministic algorithms, employing for example Golub-Kahan bidiagonalization,
aim at obtaining optimal low-rank approximations through the truncated singular value
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Chapter 1: Introduction

decomposition [149, Lecture 31]. These algorithms are accurate, but generally costs
O(mn2) operations, assuming m ≥ n. They are consequently prohibitively expensive for
large scale matrices. In today’s applications, high accuracy is not always required and
the matrices that appear are generally too large for classical deterministic algorithms.
On the other hand, randomized low-rank approximation algorithms are very fast and
return near-optimal low-rank approximations with high probability. These algorithms are
therefore suitable for the large-scale matrices that appear in today’s applications.

The randomized SVD is the prototypical randomized low-rank approximation algorithm,
and due to its simplicity and strong theoretical guarantees it has been extremely successful.
It builds on the observation that one can exactly recover the SVD of a rank k matrix
with only k matrix-vector products. Therefore, if A is very close to a rank k matrix, one
should be able to nearly recover the SVD of A with only k matrix-vector products. If A
is dense, this algorithm requires only O(mnk) operations to obtain an approximation to
A. This compares favorably to the O(mn2) operations required by classical deterministic
algorithms. The landmark paper by Halko, Martinsson, and Tropp [79] presented and
analysed the randomized SVD and theoretically guaranteed that it will nearly recover
matrices that admit accurate low-rank approximations.

In this thesis we will explore how randomized low-rank approximation can be used
to approximate matrix functions, as a variance reduction technique for Monte-Carlo
estimators in trace estimation, and how it can be used to approximate non-negative
self-adjoint trace class operators. In the next subsections we will give a brief introduction
to these three applications.

1.1 Randomized low-rank approximation of matrix func-
tions

Matrix functions appear in numerous areas of applied mathematics, including differential
equations [82, 85], statistics [127], network science [54, 55], machine learning [65, 168],
quantum mechanics [141, 160] and many more. Matrix functions are generalizations of
analytic scalar functions to matrices [84], and common examples include the inverse, the
matrix square-root, and the matrix exponential.

Having access to a good low-rank approximation to a matrix function is beneficial as a
variance reduction technique in trace estimation [111] and when one needs to compute
repeated matrix-vector products with the matrix function. However, standard randomized
low-rank approximation methods assume that we have access to the matrix of interest
through (exact) matrix-vector products, which is usually not the case for matrix functions.
In practice, we have access to the matrix A and not the matrix function f(A). In this
thesis we will present two algorithms that compute a low-rank approximation to a matrix
function f(A) using only matrix-vector products with A. More details will be given in
Chapters 3 to 5.
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1.2 Trace estimation

Trace estimation is concerned with estimating the trace of a matrix implicitly given
through matrix-vector products. This task arises in a wide variety of applications,
such as triangle counting in graphs [8], Frobenius norm estimation [31, 74], quantum
chromodynamics [146], computing the Estrada index of a graph [120, 54], computing
the log-determinant [2, 41, 138, 159, 168] and many more [155]. Early methods rely on
Monte-Carlo estimation, which, due to its slow convergence, required many matrix-vector
products with the matrix to obtain a good estimate of the trace. Meyer, Musco, Musco,
and Woodruff [111] showed that randomized low-rank approximation can be used to
reduce the variance of the Monte-Carlo estimator, and consequently reduce the number
of matrix-vector products with the matrix of interest. In this thesis we will explore two
improved variants of the algorithm presented in [111]. More details will be given in
Chapters 6 to 8.

1.3 Randomized low-rank approximation of non-negative
self-adjoint trace class operators

Hilbert-Schmidt operators constitute a special class of compact operators between two
Hilbert spaces [89]. Loosely speaking, they are infinite-dimensional analogs of matrices
with a sufficiently fast singular value decay. They frequently appear in, for example,
partial differential equations [29] and Gaussian process regression [53, 65, 119, 157, 162,
163]. Boullé and Townsend generalized the randomized SVD to Hilbert-Schmidt operators
[28, 29], and in this thesis we will present and analyze an infinite-dimensional analog of
the Nyström approximation [68] applied to self-adjoint non-negative trace class operators.
More details will be given in Chapter 9.

Organization of thesis

We begin with providing preliminaries of randomized low-rank approximation in Chapter 2.
We present the randomized SVD and the Nyström approximation, both of which will
play central roles in this thesis.

Chapters 3 to 5 are concerned with matrix functions. In Chapter 3 we begin with giving
a brief overview of matrix functions and their applications. In Chapter 4 we present
funNyström, which is a method to compute low-rank approximations to a certain class
of matrix functions: operator monotone functions. This chapter is based on the work in
[124, 125]. In Chapter 5 we describe and analyze a Krylov subspace method to compute
low-rank approximations to general matrix functions. This chapter is based on the work
in [122].

Chapters 6 to 8 are concerned with trace estimation. In Chapter 6 we begin with giving
a brief overview of trace estimation and its applications. In Chapter 7 we present A-
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Hutch++, which is an adaptive method to approximate the trace of a matrix up to a
prescribed accuracy. In Chapter 8 we describe and analyze Nyström++, which is a single
pass algorithm to estimate the trace of a matrix. These chapters are based on the work
in [123].

In Chapter 9 we present and analyse an infinite dimensional analog of the Nyström
approximation to compute low-rank approximations of self-adjoint non-negative trace
class operators. This chapter is based on the work in [121].

In Chapter 10 serves as the conclusion of this thesis and provides an outlook for future
research directions.
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2 Preliminaries on randomized low-
rank approximation

In this chapter we present the notation and preliminary results regarding deterministic
and randomized low-rank approximation.

In Section 2.1, we introduce the singular value decomposition (SVD) and how it can be
used to obtain optimal low-rank approximations. We establish the notation for low-rank
approximation that will serve as the framework for the subsequent chapters.

In Section 2.2, we explain how randomization can be used to compute near-optimal
low-rank approximations. Here, we introduce the randomized SVD and present important
theoretical guarantees, which will provide a foundation for many of the theoretical results
in this thesis.

Subsequently, in Section 2.3 we will recall the Nyström approximation for computing
low-rank approximations to symmetric positive semi-definite (SPSD) matrices. We will
explain why the Nyström approximation is preferable over the randomized SVD for
approximating SPSD matrices. We conclude with showing how the theoretical guarantees
for the randomized SVD can be used to establish theoretical guarantees for the Nyström
approximation.

2.1 Low-rank approximation of matrices

In this section we establish a few useful results and the notation for low-rank approximation
of matrices. Consider A ∈ Rm×n, where we assume without loss of generality that m ≥ n.
Low-rank approximation is concerned with finding a low-rank matrix B that is a good
approximation to the matrix A. For our discussion, it will be useful to recall the singular
value decomposition.

Theorem 2.1 (Singular Value Decomposition, [149, Theorem 4.1]). Every matrix A ∈
Rm×n admits a decomposition A = UΣV T , where U ∈ Rm×n and V ∈ Rn×n are
matrices with orthonormal columns and Σ ∈ Rn×n is a diagonal matrix containing the
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Chapter 2: Preliminaries on randomized low-rank approximation

singular values σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 on its diagonal.

With the concept of the SVD established, we state the definition of a unitarily invariant
norm and introduce an important example known as Schatten norms.

Definition 2.1 (Unitarily invariant norms and Schatten norms). A norm ∥ · ∥ is said to
be unitarily invariant if for any matrix A with SVD A = UΣV T we have ∥A∥ = ∥Σ∥.
Furthermore, for s ∈ [1,∞] the Schatten-s norm of A is defined as

∥A∥(s) =
(

n∑
i=1

σsi

)1/s

.

We write ∥A∥∗ = ∥A∥(1), ∥A∥F = ∥A∥(2), and ∥A∥2 = ∥A∥(∞) = σ1 to denote the
nuclear, Frobenius, and operator norm, respectively.

The singular value decomposition is central to low-rank approximation in unitarily
invariant norms, since it allows us to construct optimal low-rank approximations. In
particular, the famous Eckart-Young-Mirsky Theorem asserts that the truncated SVD
provides an optimal low-rank approximation in any unitarily invariant norm.

Theorem 2.2 (Eckart-Young-Mirsky Theorem, [50, 113, 140]). Let A ∈ Rm×n with SVD

A = UΣV T =
[
U1 U2

] [Σ1

Σ2

][
V T
1

V T
2

]
, (2.1)

where Σ1 = diag(σ1, . . . , σk) and U1 ∈ Rm×k and V1 ∈ Rn×k contain the dominant k left
and right singular vectors, respectively. Define

A(k) := U1Σ1V
T
1 = U1U

T
1 A, (2.2)

Then for any unitarily invariant norm ∥ · ∥ we have

∥A−A(k)∥ = ∥Σ2∥ = min
B:rank(B)≤k

∥A−B∥. (2.3)

Theorem 2.2 implies that that we can obtain an optimal rank k approximation to A
by keeping only the dominant k singular vectors and singular values. Unfortunately,
computing A(k) in (2.2) generally costs O(mn2) operations [149, Lecture 31], which
becomes prohibitively expensive for the large scale matrices that frequently appear in
today’s applications.

However, in cases when A admits an accurate low-rank approximation, which, in view
of (2.3), implies that the singular values σk+1 ≥ σk+2 ≥ · · · ≥ σn are small, it is usually
preferable to find a near-optimal low-rank approximation that is significantly cheaper
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Chapter 2: Preliminaries on randomized low-rank approximation

to compute. For this task, randomized low-rank approximation has proven to be highly
successful, as we will discuss in the subsequent section.

2.2 The randomized singular value decomposition

The randomized SVD is a simple and extremely successful method to obtain cheap, yet
accurate, low-rank approximations of matrices that have a rapid singular value decay [79,
100]. The basic idea is to find a matrix Y whose range contains a good approximation to
the range of A. In this case, if

PY = Y Y †,

denotes the orthogonal projection onto range(Y ), where † denotes the Moore-Penrose
pseudoinverse, then PYA ≈ A. In its original form, the randomized SVD samples a
random matrix Ω and forms the product AΩ. When A admits an accurate low-rank
approximation, then the range of AΩ is a very good approximation to the range of A,
with high probability. Therefore, we expect PAΩA ≈ A. The algorithm is outlined in
Algorithm 1.

Algorithm 1 The randomized SVD
input: A ∈ Rm×n. Target rank k. Oversampling parameter p.
output: Rank k + p approximation to A in factored form ÛΣ̂V̂ T .
1: Sample a random n× (k + p) sketch matrix Ω.
2: Y = AΩ.
3: Compute an orthonormal basis Q for range(Y ).
4: X = QTA.
5: Compute the SVD of X =W Σ̂V̂ T .
6: Û = QW
7: return PAΩA = QQTA = QX = ÛΣ̂V̂ T .

Remark 2.1. We note that the low-rank approximation returned by Algorithm 1 has rank
k + p instead of k. The oversampling parameter p improves the statistical performance of
the algorithm, and can in practice be set to p = 5 or p = 10 [79]. When an exact rank k
approximation is desired, one can simply return (PAΩA)(k) as a rank k approximation to
A. We provide a more detailed discussion in Section 2.2.1.

Under some mild assumptions on the sketch matrix, one can derive deterministic error
bounds for the error ∥A− PAΩA∥ in the operator and Frobenius norm; similar bounds
for general Schatten norms are proved in [137].

Theorem 2.3 ([79, Theorem 9.1]). Let A ∈ Rm×n have an SVD as partitioned in (2.1)
and let Ω be a sketch matrix. Define

Ω1 = V
T
1 Ω, Ω2 = V

T
2 Ω, (2.4)
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and assume that rank(Ω1) = k. Then, for ξ ∈ {2,F} we have

∥A− PAΩA∥2ξ ≤ ∥Σ2∥2ξ + ∥Σ2Ω2Ω
†
1∥2ξ .

Theorem 2.3 allows us to derive statistical bounds on the error, since it is sufficient to
derive bounds on ∥Σ2Ω2Ω

†
1∥. In the special case when Ω is a standard Gaussian random

matrix, i.e. each entry of Ω is drawn independently from N (0, 1), deriving bounds for
∥Σ2Ω2Ω

†
1∥ is particularly easy. From the unitary invariance of random Gaussian vectors,

we know that Ω1 and Ω2 are independent standard Gaussian random matrices; see [79,
Proof of Theorem 10.5]. With this fact in mind, we can derive probabilistic bounds by
first conditioning on Ω1, which has no effect on the distribution of Ω2. For example, we
have the following well-known results; see [79, Sections 10.2-10.3].

Lemma 2.4. Let Ω1 ∈ Rk×(k+p) and Ω
(n−k)×(k+p)
2 are independent standard Gaussian

random matrices and D be any matrix with n− k columns. Then, if p ≥ 2 we have

E∥DΩ2Ω
†
1∥2F =

k

p− 1
∥D∥2F.

If k ≥ 2 and p ≥ 4, then for all u, t ≥ 1 we have

∥DΩ2Ω
†
1∥F ≤ t

√
3k

p+ 1
∥D∥F + ut

e
√
k + p

p+ 1
∥D∥2,

with probability at least 1− 2t−p − e−u2/2. In particular, if Ω ∈ Rn×(k+p) is a standard
Gaussian random matrix, then these bounds hold for Ω1 and Ω2 defined in (2.4).

This allows us to prove the following result for the Frobenius norm error; similar results
are true for the operator norm [79, Theorem 10.6, Theorem 10.8].

Theorem 2.5 ([79, Theorem 10.5, Theorem 10.7]). Let A ∈ Rm×n and let Ω be a random
n× (k + p) standard Gaussian matrix. If p ≥ 2 we have

E∥A− PAΩA∥2F ≤
(
1 +

k

p− 1

)
∥Σ2∥2F.

Furthermore, if k ≥ 2 and p ≥ 4, then for all u, t ≥ 1 we have

∥A− PAΩA∥F ≤
(
1 + t

√
3k

p+ 1

)
∥Σ2∥F + ut

e
√
k + p

p+ 1
∥Σ2∥2,

with probability at least 1− 2t−p − e−u2/2.

Other distributions, such as Rademacher and SRFT matrices have also been studied, but
they generally obey weaker guarantees; see e.g. [79, 136].
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2.2.1 Truncating back

As previously noted, the low-rank approximation returned by Algorithm 1 has a rank
higher than the target rank k. An exact rank k approximation may in some cases be
desirable. As mentioned in Remark 2.1, one simple remedy is to return the best rank k
approximation (PAΩA)(k) to PAΩA and it comes at no additional cost. In fact, one can
show that ∥A− (PAΩ)(k)∥F satisfies similar bounds as in Theorem 2.3.

Theorem 2.6. Consider the setting of Theorem 2.3. Then,

∥A− (PAΩA)(k)∥2F ≤ ∥Σ2∥2F + ∥Σ2Ω2Ω
†
1∥2F. (2.5)

Proof. The proof follows from first applying [76, Equation (3.6)] and then [137, Equation
(14)] with q = 0.

Deriving statistical bounds for (2.5) can be done in an identical fashion as done for
Theorem 2.5. We have the following immediate corollary of Theorem 2.6.

Theorem 2.7. Consider the setting of Theorem 2.5. If p ≥ 2 we have

E∥A− (PAΩA)(k)∥2F ≤
(
1 +

k

p− 1

)
∥Σ2∥2F.

Furthermore, if k ≥ 2 and p ≥ 4, then for all u, t ≥ 1 we have

∥A− (PAΩA)(k)∥F ≤
(
1 + t

√
3k

p+ 1

)
∥Σ2∥F + ut

e
√
k + p

p+ 1
∥Σ2∥2,

with probability at least 1− 2t−p − e−u2/2.

Unfortunately, the same argument to prove Theorem 2.6 does not carry over to show a
similar bound in other norms. The proof relies on the [76, Theorem 3.5], which states
that for any matrix Q we have

min
B:rank(B)≤k

∥A−QB∥F = ∥A− (PQA)(k)∥F,

which is not true in other norms; see [93] for a counter example in the operator norm.
Bounds in other norms exists, see e.g. [79, Theorem 9.3], but they are generally
weaker.

2.2.2 Symmetric matrices

WhenA ∈ Rn×n is symmetric it is usually preferable to obtain an eigenvalue decomposition
instead of an SVD [79, Section 5.3]. For symmetric matrices, instead of an SVD we will
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consider an eigenvalue decomposition

A = UΛUT =
[
U1 U2

] [Λ1

Λ2

][
UT

1

UT
2

]
, (2.6)

where Λ1 = diag(λ1, . . . , λk) contain the largest magnitude eigenvalues and U1 ∈ Rn×k

the corresponding orthonormal eigenvectors. Hence, an optimal low-rank approximation
to A in a unitarily invariant norm is A(k) = U1Λ1U

T
1 . When A is SPSD the eigenvalue

decomposition is an SVD. To preserve the symmetry of the low-rank approximation of A
we can project A from the left and right and obtain the approximation

A ≈ PAΩAPAΩ = QQTAQQT , (2.7)

where Q is an orthonormal basis for range(AΩ). Obtaining an eigenvalue decomposition
of QQTAQQT can be done first by computing an eigenvalue decomposition of the
smaller matrix QTAQ = W Λ̂W T . The eigenvalue decomposition of QQTAQQT

is therefore (QW )Λ̂(QW )T . The approximation (2.7) satisfies similar bounds as in
Theorem 2.3 and Theorem 2.6. We will provide such bounds in a more general setting in
Chapter 5. The pseudocode for the this version of the randomized SVD will be presented
in Section 5.1.

2.2.3 Beyond the randomized SVD

Before proceeding, we emphasize that many variants of Algorithm 1 have been studied
in the literature. For example, when A is symmetric, to obtain a better low-rank
approximation one can replaceQ in Algorithm 1 with an orthonormal basis for range(AqΩ)

for some q ≥ 0, which comes at the cost of more matrix-vector products with A.
Performing q subspace iterations on A will make Q more closely aligned with the
dominant singular vectors, which, in view of (2.2), makes QQTA closer an optimal
low-rank approximation; this has been discussed in [79, Section 4.5] and [76, 150]. One
has to be careful with how one obtains the orthonormal basis Q for range(AqΩ), as a
naive implementation can be numerically unstable. Algorithm 2 provides a numerically
stable way of computing an orthonormal basis for range(AqΩ).

Algorithm 2 Subspace iteration
input: Symmetric A ∈ Rn×n. Number of subspace iterations q ≥ 0. Sketch matrix Ω.
output: Orthonormal basis for range(AqΩ)

1: Compute a thin QR decomposition of Ω = QR.
2: for qcount = 1, . . . , q do
3: X = AQ
4: Compute a thin QR decomposition of X = QR.
5: end for
6: return Q.
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Once an orthonormal basis Q for range(AqΩ) is obtained, one can show that the ap-
proximation PAqΩAPAqΩ = QQTAQQT satisfies a similar bound as Theorem 2.3 and
Theorem 2.6.

Theorem 2.8. Let A ∈ Rn×n be symmetric and have an eigenvalue decomposition as
partitioned in (2.6) and let Ω be a sketch matrix. Define

Ω1 = U
T
1 Ω, Ω2 = U

T
2 Ω, (2.8)

and assume that rank(Ω1) = k. Then,

∥A− PAqΩAPAqΩ∥2F ≤∥A− (PAqΩAPAqΩ)(k)∥2F ≤

∥Λ2∥2F + 5

∣∣∣∣λk+1

λk

∣∣∣∣2(q−1)

∥Λ2Ω2Ω
†
1∥2F.

Theorem 2.8 is an immediate corollary of a more general result that will be proven in
Chapter 5; see Remark 5.1. Furthermore, to obtain statistical bounds one only require
bounds for ∥Λ2Ω2Ω

†
1∥2F, which are given in Lemma 2.4 when Ω is a standard Gaussian

matrix.

Intuitively, the reason why subspace iteration improves the low-rank approximation is
because the polynomial xq is small on the small eigenvalues of A and large on the large
eigenvalues of A. Hence, the polynomial xq effectively denoises the contribution from the
small eigenvalues. However, there are potentially much better polynomials that achieve
this task. For example, scaled and shifted Chebyshev polynomials are usually much
better at denoising the contribution from the small eigenvalues of A, since Chebyshev
polynomials are very small on [−1, 1] and grow very quickly outside this interval; a fact
that has been frequently used to analyse Krylov subspace methods in the context of
eigenvalue problems [71, 96, 101]. Therefore, in order to obtain even better low-rank
approximations, one can allow Q to be an orthonormal basis for a block-Krylov subspace
range

([
Ω AΩ · · · Aq−1Ω

])
, which contains range(g(A)Ω) for any polynomial g of

degree at most q − 1. Q can be obtained using the block Lanczos algorithm, which
will be outlined in Chapter 3. The use of Krylov subspace methods in the context of
low-rank approximation has been studied in [109, 115, 150], all of which make heavy
use of properties of scaled and shifted Chebyshev polynomials. For example, one can
show the following result, which is very similar to [150, Theorem 9.2], but it allows for
truncation and a two-sided projection.

Theorem 2.9. Consider the setting of Theorem 2.8 and let K =
[
Ω AΩ · · · AqΩ

]
.
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Then, if γ =
|λk|−|λk+1|
|λk|+|λk+1|

∥A− PKAPK∥2F ≤∥A− (PKAPK)(k)∥2F ≤
∥Λ2∥2F + 20e−4(q−1)

√
γ∥Λ2Ω2Ω

†
1∥2F.

Remark 2.2. The matrix K in Theorem 2.9 is never explicitly formed. In practice, one
uses the block-Lanczos algorithm to construct an orthonormal basis Q for range(K) and
the matrix QTAQ; see Section 3.3.

Once again, Theorem 2.9 is an immediate corollary of a more general result that will be
proven in Chapter 5; see Theorem 5.9 for the proof. Furthermore, as discussed before,
to obtain statistical bounds one only require bounds on ∥Λ2Ω2Ω

†
1∥2F, which are given in

Lemma 2.4 when Ω is a standard Gaussian matrix.

2.3 The Nyström approximation

For SPSD matrices, it is usually preferable to use the Nyström approximation instead of
the randomized SVD. One can show that with the same computational cost, the Nyström
approximation can always return a more accurate approximation to A compared to the
randomized SVD; more details will be given in Chapter 4. The Nyström approximation
will play a central role in this thesis, and will be discussed in Chapters 4, 8 and 9. For
a SPSD matrix A ∈ Rn×n, the Nyström approximation with respect to a matrix Q is
defined as [104, Section 14]

A ≈ Â := AQ(QTAQ)†QTA = ÛΛ̂ÛT , (2.9)

where ÛΛ̂ÛT is the eigenvalue decomposition of Â and can be obtained using Algorithm 3.

Algorithm 3 Nyström approximation
input: SPSD A ∈ Rn×n. Matrix Q ∈ Rn×ℓ.
output: Nyström approximation to A in factored form Â = ÛΛ̂ÛT .
1: Compute a matrix C so that QTAQ = CTC.
2: Set B = AQC†

3: Compute the SVD of B = ÛΣW T . Set Λ̂ = Σ2

4: return Û , Λ̂.

Remark 2.3. In our numerical experiments, we let C be a square-root of QTAQ obtained
by an eigenvalue decomposition, or we let C be the Cholesky factor of QTAQ. However,
in exact arithmetic, any C satisfying QTAQ = CTC suffices, even a rectangular C.
Furthermore, the Nyström approximation can be prone to numerical issues due to the
appearance of the pseudo-inverse in line 2. To mitigate numerical issues when QTAQ
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in line 1 is highly ill-conditioned, in our implementation we use different regularization
techniques. The first regularization technique is to compute the ϵ-pseudoinverse of QTAQ

where ϵ = 5 · 10−16 · ∥QTAQ∥2. The second alternative is to compute the Nyström
approximation of the shifted matrix A + ϵ∥AQ∥2I, where ϵ is the machine precision.
Then in the final step we shift back Λ → max{Λ − ϵ∥AQ∥2I, 0}. The latter technique
has been described in detail in [104, Algorithm 16]. Both techniques work well in practice.

The Nyström approximation of A defined in (2.9) depends only on range(Q) [151,
Proposition A.2], and we may therefore assume that Q has orthonormal columns. In the
ideal case when Q spans the dominant eigenvectors to A the Nyström approximation
(2.9) returns an optimal low-rank approximation. So, the goal is to efficiently find Q that
approximately spans these vectors. For example, Q might be chosen to be an orthonormal
basis for range(AqΩ) or a Krylov subspace range

([
Ω AΩ . . . AqΩ

])
for some q ≥ 0

and random sketching matrix Ω. However, in its original form, Q consisted of a carefully
chosen subset of columns of the identity matrix. This form of Nyström approximation
frequently appears in applications involving kernel matrices; see [12, 32, 38, 40, 46, 116,
163, 167]. Analyses for various choices of Q can be found in [68, 124, 150, 151].

There is a close relationship between the randomized SVD and the Nyström approximation.
First note that since A is SPSD it has a unique square root. Hence, by the definition of
orthogonal projectors we can write

Â = A1/2PA1/2QA
1/2 = (PA1/2QA

1/2)T (PA1/2QA
1/2); (2.10)

see e.g. [68, Equation (4)]. Thus,

A− Â = A1/2(I − PA1/2Q)A1/2. (2.11)

Hence, for any Schatten norm ∥ · ∥(s) we have

∥A− Â∥(s) = ∥A1/2(I − PA1/2Q)A1/2∥(s) = ∥A1/2 − PA1/2QA
1/2∥2(2s).

Consequently, bounds for the randomized SVD in ∥ · ∥(2s) can be turned into bounds
for the Nyström approximation in ∥ · ∥(s). In particular, we have the following theorem,
which was proven in [68, 150, 151].

Theorem 2.10. Let A ∈ Rn×n be SPSD and let Q be an orthonormal basis for the range
of a random n× (k + p) standard Gaussian matrix. If p ≥ 2 we have

E∥A− Â∥∗ ≤
(
1 +

k

p− 1

)
∥Λ2∥∗.

Bounds for other norms exist, see e.g. [68], and will also be covered in Chapter 4 and
Chapter 9.
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Chapter 2: Preliminaries on randomized low-rank approximation

2.3.1 Truncating back

As discussed for the randomized SVD, if k is the target rank Q often has more than
k columns. This means that Â has a higher rank than k. In order to recover an
exactly rank k approximation, we would return the best rank k approximation to Â,
denoted as Â(k), instead of Â itself. The matrix Â(k) can be computed efficiently using
Algorithm 3 by truncating the eigenvalue decomposition of Â. As with the randomized
SVD, the truncated version of the Nyström approximation satisfies similar guarantees as
the untruncated Nyström approximation. In particular, we have the following theorem,
which is proven in a very similar fashion to Theorem 2.6.

Theorem 2.11 ([151, Theorem 4.1]). Consider the setting of Theorem 2.10. If p ≥ 2 we
have

E∥A− Â(k)∥∗ ≤
(
1 +

k

p− 1

)
∥Λ2∥∗.
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3 An introduction to low-rank approx-
imation of matrix functions

This chapters serves as an introduction to low-rank approximation of matrix functions.
We begin with recalling the definition of matrix functions.

Definition 3.1 (Matrix function of a symmetric matrix A). Given a symmetric matrix
A ∈ Rn×n with eigenvalue decomposition A = UΛUT , and a scalar function f defined
on the eigenvalues of A. Then, the matrix function f(A) is defined as

f(A) := Uf(Λ)UT ,

where f(Λ) = diag(f(λ1), . . . , f(λn)).

This definition extends to non-symmetric matrices. However, in this thesis we will be
concerned with matrix functions of symmetric matrices, and we therefore omit a discussion
on the non-symmetric case. We refer to the famous book by Nicholas Higham for a more
detailed discussion [84].

Matrix functions are ubiquitous in applied mathematics. Consequently, a lot of research
has been devoted to computing matrix functions, approximating matrix-vector products
with matrix functions, and estimating quantities associated with matrix functions. In
the next two sections we outline a few different examples when low-rank approximations
to matrix functions can bring computational advantages. In Section 3.1, we present two
applications when low-rank approximation can be beneficial in approximating matrix-
vector products with f(A). In Section 3.2, we briefly present six examples of when
low-rank approximation can be beneficial in trace and diagonal estimation of f(A). In
Section 3.3, we will outline the challenges with computing low-rank approximations to
matrix functions.
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Chapter 3: An introduction to low-rank approximation of matrix functions

3.1 Computing matrix-vector products with matrix func-
tions

Many applications involve computing matrix-vector products with a matrix-function
f(A). Explicitly computing f(A) generally requires O(n3) operations using standard
algorithms [70] and becomes prohibitively expensive for large n. However, approximating
matrix-vector products using Krylov subspace methods [69, 78, 84] generally costs O(n2d)

operations, where d is a parameter controlling the accuracy; a more detailed outline of
Krylov subspace methods will be given Section 3.3. Unfortunately, in some cases the
Krylov subspace method may converge slowly, resulting in a large d. When f(A) admits
an accurate rank k approximation B = ÛΣ̂V̂ T , where Σ̂ ∈ Rk×k, one can cheaply and
accurately approximate matrix-vector products with f(A) using the approximation

f(A)x ≈ Bx = Û
[
Σ̂
(
V̂ Tx

)]
,

which, costs only O(nk) operations. This compares favorably to the O(n2d) operations
required by Krylov subspace methods, even for moderate d. Below we will give two ex-
amples of when computing low-rank approximations to matrix-functions can dramatically
reduce the computational cost of computing matrix-vector products with f(A).

3.1.1 Differential equations

One notable example of an application to matrix functions is differential equations; see
e.g [48, 82]. Consider the following ordinary differential equation (ODE)

u̇(t) = Au(t)

u(0) = u0,
(3.1)

where A ∈ Rn×n and u0 ∈ Rn. The ODE (3.1) may arise from, for example, a discretiza-
tion of a partial differential equation ut = Lu, where A represents the discretization
of the (space-)differential operator L and u denotes the discretization in space of the
solution u = u(x, t). It is well-known that the solution to (3.1) is

u(t) = exp(tA)u0; (3.2)

see e.g. [87]. Because the relative eigenvalue gaps of exp(tA) can be much larger than
the relative eigenvalue gaps of A, in some cases, exp(tA) admits an accurate relative
low-rank approximation, even if A does not admit an accurate low-rank approximation.
For example, consider the following parabolic differential equation, which is inspired by
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Chapter 3: An introduction to low-rank approximation of matrix functions

the numerical experiments in [5, 49, 138]

ut = κ∆u+ λu in [0, 1]2 × [0, 2]

u(·, 0) = θ in [0, 1]2

u = 0 on Γ1

∂u

∂n
= 0 on Γ2,

(3.3)

for κ, λ > 0 and Γ2 = {(x, 1) ∈ R2 : x ∈ [0, 1]} and Γ1 = ∂[0, 1]2 \ Γ2. Discretizing (3.3)
in space using finite differences on 40× 40 equispaced grid yields an ODE of the form
(3.1) and can be solved using (3.2). In fact, in this case the first 100 singular values of
exp(tA) decay exponentially; for κ = 0.01 and λ = 1 the ith singular value of exp(tA) is
approximately 0.876t(i−1)∥ exp(tA)∥2 for i ≤ 100. Therefore, exp(tA) admits an accurate
relative low-rank approximation for sufficiently large t. Hence, unless t is too small, we
can compute an accurate low-rank approximation to exp(tA) and efficiently solve (3.3)
by approximating (3.2) using our low-rank approximation.

3.1.2 Sampling from elliptical distributions

Computing matrix-vector products with matrix functions also arises in statistics. For
example, sampling from non-standard Gaussian distributions N (µ,A) [114] is a task
that arises when sampling from (discretized) Gaussian processes. It is well-known that if
ω ∼ N (0, I) and C is a matrix so that CCT = A, then µ+Cω ∼ N (µ,A). Hence, a
possible choice is C = A1/2. Once again, one can approximate matrix-vector products
with A1/2 using Krylov subspace methods, such as the Lanczos method [84, Chapter 13].
As the error of Lanczos is linked to polynomial approximations of f [135, Proposition 6.3],
one may observe slow convergence when f(x) =

√
x and A has eigenvalues close to 0. To

avoid this, one could resort to rational approximations such as rational Krylov subspace
methods [78] or quadrature methods [127], but these methods require the solution of
a (shifted) linear system with A in every iteration, which comes with challenges on its
own. On the other hand, as previously mentioned, if we have access to an accurate
SPSD low-rank approximation B1/2 to A1/2, we can cheaply approximate matrix-vector
products with A1/2 by computing matrix-vector products with B1/2. In fact, for accurate
low-rank approximations one can show that one has a small mean-squared error: if
ω ∼ N (0, I), ψ = µ +A1/2ω ∼ N (µ,A), and ψ̂ = µ +B1/2ω ∼ N (µ,B) then the
mean-squared error equals

E∥ψ − ψ̂∥22 = ∥A1/2 −B1/2∥2F, (3.4)

which is small for accurate low-rank approximation B1/2. The same technique can be used
to sample from a general elliptical distribution [106]; for a general elliptical distribution
the mean-squared error equals c∥A1/2 −B1/2∥2F where c is a constant depending on the
elliptical distribution.
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Furthermore, for accurate approximationsB1/2 one also has a small Wasserstein 2-distance
[158]. To see this, first recall for two probability distributions ν1 and ν2 the Wasserstein
distance is defined as

W2(ν1, ν2)
2 = inf

X1∼ν1,X2∼ν2
E∥X1 −X2∥22.

Therefore, if ν1 = N (µ,A) and ν2 = N (µ,B) we have

W2(ν1, ν2)
2 ≤ E∥ψ − ψ̂∥22 = ∥A1/2 −B1/2∥2F,

where ψ and ψ̂ are as in (3.4). Hence, W2(ν1, ν2) is small if B1/2 is an accurate low-rank
approximations to A1/2. In fact, one can show stronger results for general elliptical
distributions; see Theorem 4.11. The matrix square-root will be discussed further in
Chapter 4.

3.2 Trace and diagonal estimation of matrix functions

Quite a few applications of matrix functions only require quantities associated with f(A)

instead of the full matrix function. Notable examples include the trace tr(f(A)) and
the diagonal elements of f(A), which can be estimated with Monte Carlo methods [16,
44, 20, 41, 80, 154, 155]. In recent years, there has been increased attention to the use
of randomized low-rank approximation techniques in this context, for estimating these
quantities [99, 138] or as a variance reduction technique for Monte Carlo methods [36, 92,
111, 123]. We will provide a more detailed discussion on trace estimation in Chapter 6.
Below we outline a few examples when approximating tr(f(A)) or the diagonal entries of
f(A) are important. As will be discussed in Chapter 6, this is a task that greatly benefits
from low-rank approximation.

3.2.1 Nuclear norm

The matrix square root also appears when estimating the nuclear norm ∥X∥∗ of a
matrix [154, 155]. Because of the relation

∥X∥∗ = tr(A1/2), where A =XTX,

nuclear norm estimation is equivalent to performing trace estimation on A1/2.

3.2.2 Statistical learning

The matrix function log(I +A) frequently appears in statistical learning [65, 168] and in
Bayesian inverse problems [138]. In these applications one typically aims at estimating
log det(I +A) = tr (log(I +A)).
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3.2.3 Effective dimension

The effective dimension deff(µ), also called statistical dimension, is defined as

deff(µ) = tr(fµ(A)), fµ(x) =
x

x+ µ
, µ > 0.

This quantity appears in kernel learning [4, 9, 10] and inverse problems [107]. The effective
dimension can once again be estimated using trace estimation. Another important quantity
is the diagonal of fµ(A); its entries are called the Ridge leverage scores.

3.2.4 Triangle counting

Given the adjacency matrix A for a graph, then 1
6 tr(A

3) is equal to the number of
triangles in the graph. Counting the number of triangles in a graph is an important task
in data mining applications [8], and can be done using trace estimation.

3.2.5 The matrix exponential

Estimating tr(exp(A)) is a task that appears in several applications. In mathematical
biology, for an undirected graph with adjacency matrix A, the Estrada index is defined
as tr(exp(A)). The Estrada index is a measure of the degree of protein folding [54] and
it frequently appears in network analysis [55]. Furthermore, estimating the partition
function Z(β) = tr(exp(−βA)) is an important task in quantum mechanics [141]. In
addition, the diagonal entries of exp(A) is important in measuring the centrality of the
nodes in a graph and it is called the exponential subgraph centrality [7, 23, 24, 43].

3.2.6 The inverse

Estimating the diagonal entries of the matrix inverse A−1 is important in uncertainty
quantification [21, 130]. Furthermore, the diagonal entries of the inverse are also a measure
of centrality of the nodes in a graph and is called the resolvent subgraph centrality [7, 23,
24].

3.3 Challenges with computing low-rank approximations of
matrix functions

As established, low-rank approximations of f(A) are useful. However, most existing
algorithms for computing them require at least some access to the matrix f(A), for
example in the form of matrix-vector products. This is true of the randomized SVD and
the Nyström approximation introduced in Chapter 2. Since in general we cannot directly
compute matrix-vector products with f(A) we need to resort to approximating them.
This can be done, for example, with the (block-)Lanczos method [84, 69] or rational
Krylov subspace methods [78]. Given a n × b matrix Ω, the block-Lanczos algorithm
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(Algorithm 4) can be used to iteratively obtain an orthonormal basis for the Krylov
subspace

Kd(A,Ω) = range
([

Ω AΩ · · · Ad−1Ω
])
.

In particular, using at most db matrix vector products with A, the algorithm produces a
basis Qd and a block-tridiagonal matrix Td

Qd =
[
V0 V1 · · · Vd−1

]
, Td = QT

dAQd = tridiag

 RT
1 · · · RT

d−1

M1 · · · · · · Md

R1 · · · Rd−1

 , (3.5)

where R0 is a quantity also output by the algorithm and is given by the decomposition
Ω = V0R0, where V0 is an orthonormal basis for range(Ω).

Algorithm 4 Block-Lanczos Algorithm
input: Symmetric A ∈ Rn×n. Matrix Ω ∈ Rn×b. Number of iterations d.
output: Orthonormal basis Qd for Kd(A,Ω), and block tridiagonal Td.
1: Compute an orthonormal basis V0 for range(Ω) and R0 = V

T
0 Ω.

2: for i = 1, . . . , d do
3: Y = AVi−1 − Vi−2R

T
i−1 ▷ Y = AVi−1 if i = 1

4: Mi = V
T
i−1Y

5: Y = Y − Vi−1Mi

6: Y = Y −∑i−1
j=0 VjV

T
j Y ▷ reorthogonalize (repeat as needed)

7: Compute an orthonormal basis Vi for range(Y ) and Ri = V
T
i Y .

8: end for
9: return Qd =

[
V0 V1 · · · Vd−1

]
and the block-tridiagonal matrix Td = QT

dAQd

as in (3.5).

The block-Lanczos algorithm can be used to approximate matrix-vector products and
quadratic forms with f(A) using the approximations

Qdf(Td):,1:bR0 ≈ f(A)Ω, (3.6)

RT
0 f(Td)1:b,1:bR0 ≈ ΩT f(A)Ω, (3.7)

where we f(Td):,1:b is the submatrix consisting of the first b columns and f(Td)1:b,1:b is
the submatrix consisting of the first b rows and columns.1 If f is a low-degree polynomial,
then the approximations (3.6) and (3.7) are exact.2

Lemma 3.1 ([37, Lemma 2.1]). The approximation (3.6) is exact if f is a polynomial of
degree at most d− 1, and the approximation (3.7) is exact if f is a polynomial of degree
at most 2d− 1.

1(3.6) and (3.7) are written out under the assumption that Ω has rank b. If rank(Ω) = r < b, then
the index set 1 : b should be replaced with 1 : r in both (3.6) and (3.7).

2In fact, a stronger result for multipolynomials holds, see [58, Theorem 2.7].
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Consequently, (3.6) and (3.7) are good approximations if f is well approximated by
polynomials. In particular, one can obtain bounds in terms of the best polynomial
approximation to f on [λmin, λmax]; see e.g. [134, Lemma 4.1]. Such a bound will be
given in Lemma 5.5.

However, as previously mentioned, such methods may converge slowly for "difficult"
functions and therefore require many matrix-vector products with A to accurately
approximate matrix-vectors products with f(A). Therefore, we will investigate alternative
methods to more efficiently compute low-rank approximations of matrix functions.

3.4 Contributions

In Chapter 4 we will study a method called funNyström, which computes a low-rank
approximation of a special class of matrix-functions called operator monotone. This
method does not require any matrix-vector products with f(A). Instead, it constructs a
low-rank approximation to f(A) immediately from a low-rank approximation to A.

In Chapter 5 we will investigate an alternative method for general matrix-functions.
This method is effectively a more efficient version of the randomized SVD applied to
a matrix-function with matrix-vector products approximated using the block-Lanczos
method. This algorithm, which was initially presented in the context of trace estimation
by Chen and Hallman [37], is derived by taking into account that matrix-vector products
with f(A) are computed using a Krylov subspace method. From such introspection,
one can derive a significantly more efficient version of the randomized SVD. One of our
contribution is to provide an analysis of the method.
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4 funNyström: Low-rank approxima-
tion of operator monotone matrix
functions
In this chapter we present and analyze funNyström, a method to compute low-rank
approximations of operator monotone matrix functions. Throughout this chapter we
consider a SPSD matrix A with eigenvalue decomposition, and equivalently an SVD, as
partitioned in (2.6) where the eigenvalues are ordered as λ1 ≥ λ2 ≥ . . . λn ≥ 0. In this
chapter, Â usually denotes an approximation to A so that A ⪰ Â ⪰ 0. In particular, Â
could be a Nyström approximation of the form (2.9) since it satisfies A ⪰ Â ⪰ 0 as a
consequence of (2.11). By λ̂i we denote the ith eigenvalue of Â.

This chapter is outlined as follows: In Section 4.1 we introduce operator monotone matrix
functions and the funNyström approximation. Sections 4.2 to 4.5 are concerned with the
theoretical results. We conclude with the numerical experiments in Section 4.6.

This chapter is based on the work in [124, 125]. The Sections 4.2.4, 4.4 and 4.5 contain a
few new results that are not presented in [124, 125].

4.1 Operator monotone functions and the funNyström ap-
proximation

As discussed in Chapter 3, Krylov subspace methods to compute matrix-vector products
with f(A) may converge slowly and therefore require many matrix-vector products with
A to accurately approximate matrix-vectors products with f(A). Consequently, the cost
of obtaining a low-rank approximation to f(A) can be significantly higher than obtaining
a low-rank approximation to A.

However, for non-negative monotonically increasing functions of SPSD matrices it is pos-
sible to obtain a low-rank approximation of f(A) directly from a low-rank approximation
of A. This is a key observation that potentially allows us to completely bypass the need
for performing matrix-vector products with f(A). The following basic lemma provides a
first result in this direction, for the special case of best low-rank approximations (with
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respect to a unitarily invariant norm).

Lemma 4.1. Consider a SPSD matrix A ∈ Rn×n with eigenvalue decomposition parti-
tioned as (2.6) and a best rank k approximation A(k) = U1Λ1U

T
1 . Then, for monotonically

increasing f : [0,∞) 7→ [0,∞) it holds that f(A(k))(k) = U1f(Λ1)U
T
1 is a best rank-k

approximation of f(A).

Proof. By the spectral decomposition of A, we can write A = U1Λ1U
T
1 +U2Λ2U

T
2 , with

diagonal Λ2 and orthonormal U2. Because the first term is a best low-rank approximation
A(k), none of the eigenvalues of Λ2 is larger than any of the eigenvalues of Λ1. Because of
monotonicity, the same statement holds for the relation between the eigenvalues of f(Λ2)

and f(Λ1). Using the spectral decomposition f(A) = U1f(Λ1)U
T
1 +U2f(Λ2)U

T
2 , this

implies that U1f(Λ1)U
T
1 is an optimal low-rank approximation to f(A). Furthermore,

note that f(A(k)) = U1f(Λ1)U
T
1 + f(0)(I −U1U

T
1 ) and since for any i = 1, . . . , k we

have f(λi) ≥ f(0) ≥ 0 we know that f(A(k))(k) = U1f(Λ1)U
T
1 .

The result of Lemma 4.1 is constrained to best rank-k approximations and does not extend
to the quasi-optimal rank-k approximations Â(k) of A usually returned by (randomized)
numerical algorithms. One still hopes that if Â(k) is a near-optimal rank k approximation
to A, then f(Â)(k) remains a near-optimal rank k approximation to f(A). A similar
idea was used in [138], which analyzes approximations of the form tr(log(I + Â)) ≈
tr(log(I +A)); see also [99]. In this chapter, we will present and analyze funNyström,
a simple and effective method to compute low-rank approximations of a special class
of functions known as operator monotone functions. Formally, we define an operator
monotone function as follows.

Definition 4.1 (Operator monotone matrix function [25, p.112]). A function f is called
operator monotone if B ⪰ C for symmetric B,C ∈ Rn×n implies f(B) ⪰ f(C), where
B ⪰ C means that B −C is SPSD; see [88, Definition 7.7.1].

Trivially, any operator monotone function is monotonically increasing, but the converse
is not true. For example, the functions exp(x) and x2 are monotonically increasing on
[0,∞), but not operator monotone. Examples of operator monotone functions include√
x, log(1+x) and x

x+λ for λ > 0 [25, Section V.1] and were discussed in Chapter 3.

In Section 4.2 we will show that if Â is a matrix satisfying A ⪰ Â ⪰ 0 and its rank
k truncation Â(k) = Û1Λ̂1Û

T
1 is a near-optimal low-rank approximation to A, then

for any positive, continuous operator monotone function, f(Â)(k) = Û1f(Λ̂1)Û
T
1 is a

near-optimal low-rank approximation to f(A), independently of how Â was computed. In
particular, we show that if for some ε ≥ 0

∥A− Â(k)∥ ≤ (1 + ε)∥A−A(k)∥,
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then for any operator monotone function f : [0,∞) → [0,∞) we have

∥f(A)− f(Â)(k)∥ ≤ (1 + ε)∥f(A)− f(A)(k)∥, (4.1)

where ∥ · ∥ is the nuclear, Frobenius, or operator norm. Importantly, as discussed in
the introduction to this chapter, any Nyström approximation of the form (2.9) satisfies
A ⪰ Â ⪰ 0, so our guarantees extend to all possible Nyström approximations to
A, no matter how it is obtained. Therefore, the approximation f(Â)(k) is called the
funNyström approximation. If Â is the Nyström approximation as defined in (2.9),
then the funNyström approximation can be computed using Algorithm 5. A strength
of our results is that any guarantee for the Nyström approximation can immediately be
turned into a guarantee for the funNyström approximation; more details will be given
in Section 4.4. Furthermore, a major advantage of funNyström is that it only requires
access to A and not with f(A), and can therefore be significantly cheaper than naively
implementing the Nyström approximation directly to f(A) with matrix-vector products
approximated using, for example, the (block-)Lanczos method.

In addition, to facilitate the application of these theorems, we present sufficient conditions
for an orthonormal basis Q to produce a near-optimal Nyström approximation of the
form (2.9). In particular, we show that if Q ∈ Rn×ℓ, where ℓ ≥ k, is an orthonormal basis
satisfying

∥A− (QQTA)(k)∥ ≤ (1 + ε)∥A−A(k)∥, (4.2)

then a Nyström approximation Â = AQ(QTAQ)†QTA satisfies

∥A− Â(k)∥ ≤ (1 + ε)∥A−A(k)∥,

where ∥ · ∥ is the nuclear or Frobenius norm; for the operator norm we show that such
result is impossible. Similar guarantees are proven in [150], but they are constrained
to the case when Q has exactly k columns. In contrast, our results allow Q to have
more than k columns. Guarantees of the form (4.2) are common in the literature; see
e.g. [14, 15, 91, 109, 115]. These results allow us to translate these existing results
into guarantees for the Nyström approximation. Then, by using guarantees of the form
(4.1), these existing results for Q translate all the way into results for the funNyström
approximation; more details are given in Section 4.4. In particular, this means that if
Q satisfies (4.2), then Algorithm 5 returns a low-rank approximation of f(A) satisfying
(4.1) if ∥ · ∥ = ∥ · ∥∗ or ∥ · ∥ = ∥ · ∥F.

4.2 Good Nyström approximations imply good funNyström
approximations

In this section we prove that near optimal Nyström approximations imply near optimal
funNyström approximations for the nuclear, Frobenius, and operator norms. We also
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Algorithm 5 funNyström approximation
input: SPSD A ∈ Rn×n. Matrix Q ∈ Rn×ℓ. Target rank k.
output: Rank k funNyström approximation to f(A) in factored form f(Â)(k) =

Û1f(Λ̂1)Û
T
1 .

1: Use Algorithm 3 to compute the Nyström approximation Â = ÛΛ̂ÛT

2: Perform a rank k truncation Â(k) = Û1Λ̂1Û
T
1 , where Λ̂1 ∈ Rk×k.

3: return f(Â)(k) = Û1f(Λ̂1)Û
T
1 .

prove analogous guarantees for eigenvalue estimation and for approximations of elliptical
distributions in the Wasserstein distance. We begin with establishing a few useful
lemmas. We start by recalling some basic properties of operator monotone and concave
functions.

Lemma 4.2. Let f : [0,∞) → [0,∞) be a continuous operator monotone function. Then,

(i) f is concave;

(ii) f ∈ C∞(0,∞).

Proof. (i) This is due to [25, Theorem V.2.5]. (ii) This is due to [25, p.134-135].

By the above, the following fact about concave functions also extends to continuous
operator monotone functions.

Lemma 4.3. Let f : [0,∞) → [0,∞) be a concave function. Then,

(i) f(x)
x is decreasing for x > 0;

(ii) f(tx) ≤ tf(x) for t ≥ 1;

(iii) f(tx) ≥ tf(x) for 0 ≤ t ≤ 1.

(iv) For t ≥ 0, the function f(x)− f(x− t) is decreasing.

Proof. (i): f is concave if and only if the function

R(x1, x2) =
f(x2)− f(x1)

x2 − x1
(4.3)

is decreasing in x2 for any fixed x1 (or vice versa). Hence, since f(0) ≥ 0 we have that
f(x)
x = R(0, x) + f(0)

x is decreasing, as required.

(ii): For any fixed x we know that the function hx(t) = f(tx) is concave. Hence, by (i)
we know that hx(t)

t is decreasing. Therefore, if t ≥ 1 we have f(tx)
t = hx(t)

t ≤ hx(1)
1 = f(x),
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which yields the desired result.

(iii): Proven in an analogous way to (ii) but using hx(t)
t ≥ hx(1)

1 if t ≤ 1.

(iv): Since R(x1, x2) in (4.3) is decreasing in x1 for any fixed x2 and vice versa we have
for any x ≥ y ≥ t

f(y)− f(y − t)

t
= R(y − t, y) ≥ R(x− t, y) ≥ R(x− t, x) =

f(x)− f(x− t)

t
,

which yields the desired result.

The following lemma provides an upper bound for the Schatten norm difference of two
ordered SPSD matrices. In particular, it bounds ∥B − C∥s(s) by the difference of the
Schatten norms of B and C. The latter is easier to analyze because it allows us to
separate the eigenvalues of B and C. This will be especially useful for proving results for
the nuclear and Frobenius norm.

Lemma 4.4. Let B ⪰ C ⪰ 0, then for s ≥ 1

∥B −C∥(s) ≤
(
∥B∥s(s) − ∥C∥s(s)

)1/s
.

When s = 1 the inequality becomes an equality.

Proof. By a result by McCarthy [105, Lemma 2.6] we know that if X,Y ⪰ 0,

tr((X + Y )s) ≥ tr(Xs) + tr(Y s).

Setting X = B −C and Y = C yields the desired inequality. When s = 1, using the
fact that B ⪰ C ⪰ 0, we find that, as required,

∥B −C∥∗ = tr(B −C) = tr(B)− tr(C) = ∥B∥∗ − ∥C∥∗.

4.2.1 Frobenius and nuclear norm guarantees

In this section we prove two results. First, we prove the following nuclear norm re-
sult.

Theorem 4.5. Suppose that, for ε ≥ 0, A ⪰ Â ⪰ 0 satisfy

∥A− Â(k)∥∗ ≤ (1 + ε)∥A−A(k)∥∗.

Then for any continuous operator monotone function f : [0,∞) → [0,∞),

∥f(A)− f(Â)(k)∥∗ ≤ (1 + ε)∥f(A)− f(A)(k)∥∗.
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Additionally, we prove an analogous guarantee for the Frobenius norm.

Theorem 4.6. Suppose that, for ε ≥ 0, A ⪰ Â ⪰ 0 satisfy

∥A∥2F − ∥Â(k)∥2F ≤ (1 + ε)∥A−A(k)∥2F.

Then for any continuous operator monotone function f : [0,∞) → [0,∞),

∥f(A)− f(Â)(k)∥2F ≤ (1 + ε)∥f(A)− f(A)(k)∥2F.

We note that, by Lemma 4.4, ∥A∥2F − ∥Â(k)∥2F ≤ (1 + ε)∥A − A(k)∥2F is a stronger
assumption than ∥A− Â(k)∥2F ≤ (1+ ε)∥A−A(k)∥2F. I.e., Theorem 4.6 requires assuming
more than that Â(k) is a near optimal low-rank approximation toA in the Frobenius norm.
However, the assumption is still reasonable because, as we show in Section 4.3, many
standard low-rank algorithms return results that satisfy this stronger guarantee.

We prove Theorems 4.5 and 4.6 as special cases of a single general theorem about Schatten
norms. In particular, by Lemma 4.4 we know that ∥A∥∗ − ∥Â∥∗ = ∥A − Â∥∗, so the
following theorem about Schatten norms immediately implies both Theorems 4.5 and 4.6
by taking s = 1 and s = 2, respectively.

Theorem 4.7. Fix s ∈ [1,∞). Suppose that, for ε ≥ 0, A ⪰ Â ⪰ 0 satisfy

∥A∥s(s) − ∥Â(k)∥s(s) ≤ (1 + ε)∥A−A(k)∥s(s)

Then for any continuous operator monotone function f : [0,∞) → [0,∞),

∥f(A)− f(Â)(k)∥s(s) ≤ (1 + ε)∥f(A)− f(A)(k)∥s(s).

Remark 4.1. Before we give the proof, we will rule out some pathological cases. Note that
if rank(A) ≤ k then by the assumption in Theorem 4.7 we have A = Â(k) by Lemma 4.4
and the result trivially holds. Now if rank(A) > k and rank(f(A)) ≤ k we have λk+1 > 0,
but f(λk+1) = 0. By monotonicity and non-negativity of f we have f(x) = 0 for any
t ∈ [0, λk+1]. Now for any x ≥ λk+1 > 0 we can write x = tλk+1 for some t ≥ 1. Thus,
by Lemma 4.3 (ii) we have f(x) = f(tλk+1) ≤ tf(λk+1) = 0. We can therefore conclude
f ≡ 0. Therefore, the only interesting cases are when rank(A), rank(f(A)) > k, which
we will assume throughout this section.

Proof of Theorem 4.7. Let λi and λ̂i denote the ith largest eigenvalues of A and Â,
respectively. Our assumption on Â implies that

k∑
i=1

(λsi − λ̂si ) ≤ ε
n∑

i=k+1

λsi . (4.4)

28



Chapter 4: funNyström

By Weyl’s monotonicity principle, A ⪰ Â implies that λi ≥ λ̂i [88, Corollary 7.7.4 (c)].
Let us define (1− δi) =

(
λ̂i
λi

)s
for δi ∈ [0, 1] for i = 1, . . . , k. Hence, (4.4) implies that

k∑
i=1

δiλ
s
i ≤ ε

n∑
i=k+1

λsi . (4.5)

By Lemma 4.3 (iii), we know that f(λ̂i)s ≥ (1− δi)f(λi)
s, and so

k∑
i=1

(f(λi)
s − f(λ̂i)

s) ≤
k∑

i=1

δif(λi)
s. (4.6)

Lemma 4.3 (i) also shows that, for all i = 1, . . . , k and j = k + 1, . . . , n, λj

λi
≤ f(λj)

f(λi)
. So,

we have,

λsj
δiλsi

≤ f(λj)
s

δif(λi)s

⇒

n∑
j=k+1

λsj

δiλsi
≤

n∑
j=k+1

f(λj)
s

δif(λi)s

⇒ δiλ
s
i

n∑
j=k+1

λsj

≥ δif(λi)
s

n∑
j=k+1

f(λj)s
(4.7)

Combining (4.7) with (4.6) and (4.5) gives

k∑
i=1

(f(λi)
s − f(λ̂i)

s) ≤
k∑

i=1

δif(λi)
s ≤

k∑
i=1

δiλ
s
i

n∑
j=k+1

λsj

n∑
j=k+1

f(λj)
s ≤ ε

n∑
i=k+1

f(λi)
s. (4.8)

Hence, (4.8) implies that

∥f(A)∥s(s) − ∥f(Â)(k)∥s(s) ≤ (1 + ε)∥f(A)− f(A)(k)∥s(s).

We have f(A) ⪰ f(Â)(k) ⪰ 0 since f is operator monotone. The desired inequality
follows from applying Lemma 4.4.

4.2.2 Operator norm guarantees

We next present an analogue to Theorems 4.5 and 4.6 for the operator norm. Our operator
norm result is actually more general since we do not require access to an approximation Â
satisfying Â ⪯ A. The result applies to any B such that ∥A−B∥2 ≤ (1+ε)∥A−A(k)∥2.
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We do not even require that B is rank k.

Theorem 4.8. Suppose that, for ε ≥ 0, A,B ⪰ 0 satisfy

∥A−B∥2 ≤ (1 + ε)∥A−A(k)∥2.

Let r = rank(B). For any continuous operator monotone function f : [0,∞) → [0,∞),

∥f(A)− f(B)(r)∥2 ≤ (1 + ε)∥f(A)− f(A)(k)∥2.

Proof. First assume that f(0) = 0. As a consequence of this assumption, we have
f(B)(r) = f(B). We leverage [25, Theorem X.1.1] about operator monotone functions,
which says that ∥f(A)− f(B)∥2 ≤ f(∥A−B∥2). Then, recalling from Lemma 4.2 that
f is increasing and concave, we have that

∥f(A)− f(B)∥2 ≤ f(∥A−B∥2) ([25, Theorem X.1.1])

≤ f((1 + ε)λk+1)

≤ (1 + ε)f(λk+1) (Lemma 4.3 (ii))

= (1 + ε)∥f(A)− f(A)(k)∥2,

which yields the desired inequality for the case when f(0) = 0. We now consider the
general case when f(0) ≥ 0. Write f(x) = g(x) + f(0), where g(x) is a continuous
operator monotone function satisfying g(0) = 0. Let PB be the orthogonal projector onto
range(B). We have that f(B)(r) = g(B) + f(0)PB, so

f(A)− f(B)(r) = g(A)− g(B) + f(0)(I − PB).

So by the triangle inequality we have and by the result for operator monotone functions
satisfying g(0) = 0 we have

∥f(A)− f(B)(r)∥2 = ∥g(A)− g(B)∥2 + f(0)∥(I − PB)∥2 ≤
(1 + ε)g(λk+1) + f(0) ≤ (1 + ε)(g(λk+1) + f(0)) = (1 + ε)f(λk) =

(1 + ε)∥f(A)− f(A)(k)∥2,

as required.

4.2.3 Eigenvalue guarantees

We next establish guarantees for eigenvalue estimation. In particular, we show that if the
eigenvalues of a SPSD matrix Â are good approximations to the eigenvalues of A, then
the eigenvalues of f(Â) are even better approximations to the eigenvalues of f(A). This
result could be combined with results that prove eigenvalue approximation guarantees for
algorithms including subspace iteration and block Krylov subspace methods [115].
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Theorem 4.9. Suppose that, for ε ∈ [0, 1], we have estimates λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂k ≥ 0 of
the k largest eigenvalues of A satisfying

0 ≤ λi − λ̂i ≤ ελk+1 for i = 1, . . . , k.

Then for any non-decreasing concave function f : [0,∞) → [0,∞),

0 ≤ f(λi)− f(λ̂i) ≤ εf(λk+1) for i = 1, . . . , k.

Proof. Note that by Lemma 4.3 (iv) the function

g(t) = f(t)− f(t− ελk+1)

is decreasing. Hence, for i = 1, . . . , k we have

0 ≤ f(λi)− f(λ̂i) (f is non-decreasing)

≤ f(λi)− f(λi − ελk+1) (f is non-decreasing)

≤ f(λk+1)− f((1− ε)λk+1) (g(λi) ≤ g(λk+1) since λi ≥ λk+1)

≤ εf(λk+1), (Lemma 4.3 (iii))

as required.

The assumption in Theorem 4.9 can be weakened to the case when we have small relative
errors

0 ≤ λi − λ̂i ≤ ελi. (4.9)

By the monotonicity of f and Lemma 4.3 (iii), we have that (4.9) implies

f(λi)− f(λ̂i) ≤ f(λi)− f((1− ε)λi) ≤ εf(λi).

Hence, we also have the following result.

Theorem 4.10. Suppose that, for ε ∈ [0, 1], we have estimates λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂k ≥ 0

of the k largest eigenvalues of A satisfying

0 ≤ λi − λ̂i ≤ ελi for i = 1, . . . , k.

Then for any non-decreasing concave function f : [0,∞) → [0,∞),

0 ≤ f(λi)− f(λ̂i) ≤ εf(λi) for i = 1, . . . , k.
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4.2.4 Wasserstein distance guarantees

As mentioned in Chapter 3, an application of low-rank approximations to the square-root
is that we can cheaply sample from multivariate Gaussian distributions with covariance
matrix A. For this reason, we would like a guarantee on how close our approximation is to
the original distribution. For example, if we want to approximate samples from N (0,A)

by sampling from N (0, Â(k)), where Â(k) is a good rank k approximation to A, we would
like to guarantee that the distribution N (0, Â(k)) is "close" to the original distribution
N (0,A). An important measure of the difference between probability distributions is
the Wasserstein distance. In this section we present a guarantee for using the Nyström
approximation to approximate elliptical distributions in the Wasserstein distance. We
proceed with the definition of the Wasserstein 2-distance for probability distrubutions of
random vectors.

Definition 4.2 (Wasserstein 2-distance [158]). Consider two probability distributions ν
and γ on (Rn,B), where B denotes the Borel σ-algebra on Rn. Then, the Wasserstein
2-distance between ν and γ is defined as

W2(ν, γ) = inf
X∼ν,Y ∼γ

(
E∥X − Y ∥22

)1/2
.

We will consider the Wasserstein distance between a family of distributions known as
elliptical distributions [34], formally defined as follows.

Definition 4.3 (Elliptical distributions). A random vector ω of length n is said to
elliptical if it has the same distribution as µ+RA1/2u, where R is a positive univariate
random variable, A is a SPSD matrix, and u is a uniform random vector on the sphere
that is independent of R. Furthermore, by scaling A if necessary we may assume without
loss of generality that ER2 = n so that E

[
(ω − µ)(ω − µ)T

]
= A. If R ∼ D we write

ω ∼ ED(µ,A).

With the concept of elliptical distributions established, we are ready to state and prove a
theorem about optimal low-rank approximations in the Wasserstein 2-distance.

Theorem 4.11. Suppose that, for ε ≥ 0, A ⪰ Â ⪰ 0 satisfy

∥A− Â(k)∥∗ ≤ (1 + ε)∥A−A(k)∥∗.

Then we have

W2(ED(µ,A), ED(µ, Â(k)))
2 ≤ (1 + ε) min

B⪰0:rank(B)≤k
W2(ED(µ,A), ED(µ,B))2,

where
min

B⪰0:rank(B)≤k
W2(ED(µ,A), ED(µ,B))2 = ∥A−A(k)∥∗.
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Before we proceed with the proof of Theorem 4.11, we acknowledge [95, Lemma 2.2],
which also proved that good approximations to the covariance kernel A yields good
approximations to N (0,A) in the Wasserstein distance. However, our result is more
general since it applies to any elliptical distribution and it shows that near-optimal
low-rank approximations imply near-optimal approximations in the Wasserstein distance.
We will now proceed with the proof.

Proof. Throughout the proof we denote by λi(B) the ith eigenvalue of a general SPSD
matrix B. First note for a SPSD matrix B we have by a result by Gelbrich [66, Theorem
2.1 and p.193]

W2(ED(µ,A), ED(µ,B))2 = tr(A) + tr(B)− 2∥A1/2B1/2∥∗.

By a singular value inequality we have [103, p.342]

∥A1/2B1/2∥∗ ≤
n∑

i=1

λ
1/2
i λi(B)1/2.

Recall that λi denotes the ith eigenvalue of A. Now, if rank(B) ≤ k we know that
λi(B) = 0 for i ≥ k. Hence, we get

tr(A) + tr(B)− 2∥A1/2B1/2∥∗ ≥
k∑

i=1

(λ
1/2
i − λi(B)1/2)2 +

n∑
i=k+1

λi ≥
n∑

i=k+1

λi.

Thus, W2(ED(µ,A), ED(µ,B))2 ≥
n∑

i=k+1

λi for any SPSD B with rank(B) ≤ k and one

can verify that the lower bound can be achieved by putting B = A(k). Hence,

min
B⪰0:rank(B)≤k

W2(ED(µ,A), ED(µ,B))2 = ∥A−A(k)∥∗.

Now note that by [95, Lemma 2.2] we have

W2(ED(µ,A), ED(µ,B))2 ≤ tr(A− Â(k)) = ∥A− Â(k)∥∗ ≤ (1 + ε)∥A−A(k)∥∗ =
(1 + ε) min

B⪰0:rank(B)≤k
W2(ED(µ,A), ED(µ,B))2,

as required.

4.3 Good projections imply good Nyström approximations

In this section we show that if Q is an orthonormal basis so that (QQTA)(k) is a
good rank k approximation to A, then Â(k) is a better rank k approximation to A,
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where Â = AQ(QTAQ)†QTA is the Nyström approximation to A. Existing low-rank
approximation literature commonly provides guarantees for the error ∥A− (QQTA)(k)∥,
where Q is the output of some algorithm, see e.g. [14, 15, 76, 91, 109, 115].1 Hence,
this result allows us to transform many known low-rank approximation guarantees into
low-rank approximation guarantees for the rank k truncated Nyström approximation
Â(k). Further, by the results in Section 4.2 we therefore extend these guarantees to the
funNyström approximation.

We point out that whenever Q has exactly k columns, many of the results in this section
would follow from [150, Lemma 5.2], which shows that ∥A− Â∥ ≤ ∥A−QQTA∥ for any
unitarily invariant norm ∥ · ∥. However, often Q has more than k columns, e.g. when Q
is an orthonormal basis for a Krylov subspace, and we want to establish guarantees when
we truncate Â back to rank k. Truncation is desirable when the low-rank approximation
is needed for downstream applications like data visualization or k-means clustering
[128].

We show that ∥A − Â(k)∥ ≤ ∥A − (QQTA)(k)∥ for the nuclear and Frobenius norms.
Perhaps surprisingly, the inequality is false in the operator norm and we provide a
counterexample. Lastly, we also provide an analogous guarantee for estimating the
eigenvalues of A. Before doing so, we repeat (2.10), which is a standard fact about
Nyström approximation used throughout this section.

Lemma 4.12 ([68, Equation (4)]). For any Q ∈ Rn×ℓ, the Nyström approximation
satisfies Â = AQ(QTAQ)†QTA = A1/2PA1/2QA

1/2.

4.3.1 Frobenius norm guarantees

We first prove the following result on Frobenius norm low-rank approximation.

Theorem 4.13. Let A ⪰ 0 and let Q be an orthonormal basis so that, for ε ≥ 0,

∥A− (QQTA)(k)∥2F ≤ (1 + ε)∥A−A(k)∥2F. (4.10)

Then if Â = AQ(QTAQ)†QTA we have

∥A∥2F − ∥Â(k)∥2F ≤ (1 + ε)∥A−A(k)∥2F.

Theorem 4.13 establishes that the condition needed for Theorem 4.6 can be achieved with
many low-rank approximation algorithms, including e.g. block Krylov subspace methods,
sketching methods, and sampling methods [14, 15, 39, 109, 115, 139, 165]. Further, by

1We recall that (QQTA)(k) = Q(QTA)(k) and (QQTAQQT )(k) = Q(QTAQ)(k)Q
T . Both

Q(QTA)(k) and Q(QTAQ)(k)Q
T are preferable for computational purposes since we only have to

compute the best rank k approximation of a smaller matrix. However, in the following sections we use
(QQTA)(k) and (QQTAQQT )(k), since it simplifies our notation.
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Lemma 4.4 we know that ∥A− Â(k)∥2F ≤ ∥A∥2F − ∥Â(k)∥2F, which shows that if (4.10) is
satisfied then ∥A− Â(k)∥2F ≤ (1 + ε)∥A−A(k)∥2F. That is, Â(k) is a near-optimal rank k
approximation.

We begin by recalling a fact about the best rank k approximation to A constrained to
range(Q).

Lemma 4.14. Let Q be an orthonormal basis. Then,

∥B −Q(QTB)(k)∥2F = min
C:rank(C)≤k

∥B −QC∥2F, (4.11)

and
∥B −Q(QTBQ)(k)Q

T ∥2F = min
C:rank(C)≤k

∥B −QCQT ∥2F. (4.12)

Proof. (4.11) was proven in [76, Theorem 3.5] and (4.12) is proven in a similar fashion:
Let C be any matrix so that rank(C) ≤ k. Notice that

⟨B −QQTBQQT ,QQTBQQT −QCQT ⟩ = 0

Therefore, using the Pythagorean theorem we obtain

∥B −QCQT ∥2F = ∥B −QQTBQQT +QQTBQQT −QCQT ∥2F =

∥B −QQBQQT ∥2F + ∥QTBQ−C∥2F.

Thus, to minimize ∥B −QCQT ∥2F we should choose C = (QTBQ)(k).

With Lemma 4.14 at hand, we can show that error of the rank k truncated Nyström
approximation is sandwiched between the error of two projection based rank k approxi-
mations.

Lemma 4.15. Let Q be an orthonormal basis and let Â = AQ(QTAQ)†QTA and
suppose A ⪰ 0. Then the following holds

∥A− (PAQA)(k)∥2F ≤ ∥A− (PAQAPAQ)(k)∥2F ≤ ∥A− Â(k)∥2F ≤
∥A∥2F − ∥Â(k)∥2F = ∥A− (PA1/2QAPA1/2Q)(k)∥2F ≤ ∥A− (PQA)(k)∥2F.

Proof. The first inequality is immediate from (4.11) since (PAQAPAQ)(k) is a rank k

approximation whose range is contained in range(AQ). By a similar argument, the
second inequality is immediate from (4.12) since Â(k) is a rank k approximation whose
range and co-range is contained in range(AQ). The third inequality is a consequence of
Lemma 4.4 for s = 2 since A ⪰ Â(k) ⪰ 0.

To prove the equality, note that by Lemma 4.12 Â = A1/2PA1/2QA
1/2 = (PA1/2QA

1/2)T (PA1/2QA
1/2).
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Hence, Â(k) = (PA1/2QA
1/2)T(k)(PA1/2QA

1/2)(k). Then observe that there always exists
an orthogonal projection P so that range(P ) ⊆ range(A1/2Q) and

Â(k) = (PPA1/2QA
1/2)T (PPA1/2QA

1/2) = (PA1/2)T (PA1/2).

Hence,

∥A∥2F − ∥Â(k)∥2F = ∥A∥2F − ∥(PA1/2)T (PA1/2)∥2F = ∥A∥2F − ∥PAP ∥2F
= ∥A− PAP ∥2F.

Finally, noting that PAP = (PA1/2QAPA1/2Q)(k) yields the desired equality.

For the last inequality in Lemma 4.15, we let P̄ be an orthogonal projection so that
range(P̄ ) ⊆ range(Q) and P̄A = (PQA)(k). Note that A1/2P̄A1/2 is a rank k approxi-
mation to A whose range and co-range are both contained in range(A1/2Q). By (4.12)
we have that, as required,

∥A− (PA1/2QAPA1/2Q)(k)∥2F ≤ ∥A−A1/2P̄A1/2∥2F =

∥(I − P̄ )A(I − P̄ )∥2F ≤ ∥(I − P̄ )A∥2F = ∥A− (PQA)(k)∥2F.

Proof of Theorem 4.13. The proof of our main result in this section follows immediately
from Lemma 4.15. In particular, we have since

∥A∥2F − ∥Â(k)∥2F ≤ ∥A− (PQA)(k)∥2F = ∥A− (QQTA)(k)∥2F.

Remark 4.2. We remark on a few additional consequence of Lemma 4.15 that may be of
independent interest.

1. The lemma implies that ∥A − (PAQA)(k)∥2F ≤ ∥A − (PQA)(k)∥2F and that ∥A −
(PAQAPAQ)(k)∥2F ≤ ∥A− (PQAPQ)(k)∥2F. Hence, if we approximate A via either
a one-sided or two-sided projection onto AQ, the error is always better than if we
simply project onto Q. In other words, we establish an intuitive fact: that subspace
iteration monotonically improves Frobenius norm low-rank approximation error. Via
a change of basis, a similar result is true for rectangular matrices. One can show
that ∥A− (P(AAT )q/2QA)(k)∥2F ≤ ∥A− (PQA)(k)∥2F for any positive integer q.

2. If one has obtained an orthonormal basisQ with ℓ columns so that ∥A−(PQA)(k)∥F ≤
ϵ then ∥A − (PAQAPAQ)(k)∥F ≤ ϵ. This implies that a relative error low-rank
approximation guarantee for one-sided projection translates to a guarantee for two-
sided projection, at the cost of at most ℓ extra matrix-vector products with A to
form AQ.

3. Given a basis Q, we require ℓ matrix-vector multiplications with A to either form
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the one-sided projection (QQTA)(k) or to form the rank k truncated Nyström
approximation Â(k) where Â = AQ(QTAQ)†QTA. However, truncated Nyström
approximation always provides better error in the Frobenius norm, so should be
preferred.

4.3.2 Nuclear norm guarantees

In this section we establish similar guarantees as in the previous section, but for the
nuclear norm. Specifically, we prove the following theorem.

Theorem 4.16. Let A ⪰ 0 and let Q be an orthonormal basis so that, for ε ≥ 0,

∥A− (QQTA)(k)∥∗ ≤ (1 + ε)∥A−A(k)∥∗.

Then if Â = AQ(QTAQ)†QTA we have

∥A− Â(k)∥∗ ≤ (1 + ε)∥A−A(k)∥∗.

Proof. Since A ⪰ Â(k) ⪰ 0 we know that

∥A− Â(k)∥∗ = tr(A− Â(k)).

Then, since Â(k) = (PA1/2QA
1/2)T(k)(PA1/2QA

1/2)(k) by Lemma 4.12, we have

tr(A− Â(k)) = ∥A1/2∥2F − ∥(PA1/2QA
1/2)(k)∥2F = ∥A1/2 − (PA1/2QA

1/2)(k)∥2F.

Choose an orthogonal projector P so that range(P ) ⊆ range(Q) and PA = (QQTA)(k).
Finally, by Lemma 4.15 and Lemma 4.14 we have

∥A1/2 − (PA1/2QA
1/2)(k)∥2F ≤ ∥A1/2 − (PQA

1/2)(k)∥2F ≤
∥A1/2 − PA1/2∥F = tr(A)− tr(PAP ) = tr(A)− tr(PA) ≤
∥A− (QQTA)(k)∥∗ ≤ (1 + ε)∥A−A(k)∥∗,

which yields the desired inequality.

4.3.3 Operator norm guarantees

In this section we consider the operator norm. When Q has exactly k columns, [150]
establishes the following guarantee.

Theorem 4.17 ([150, Lemma 5.2]). Let A ⪰ 0 and let Q ∈ Rn×k be an orthonormal
basis so that, for some ε ≥ 0,

∥A−QQTA∥2 ≤ (1 + ε)∥A−A(k)∥2.
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Then if Â = AQ(QTAQ)†QTA we have

∥A− Â∥2 ≤ (1 + ε)∥A−A(k)∥2.

Ideally, we would extend this guarantee to the case when Q has ℓ > k columns, as in
Theorems 4.13 and 4.16 for the Frobenius and nuclear norms. I.e., we might hope to prove
that ∥A− (QQTA)(k)∥2 ≤ (1+ε)∥A−A(k)∥2 implies ∥A− Â(k)∥2 ≤ (1+ε)∥A−A(k)∥2.
Interestingly, however, we show that doing so is impossible. In particular, consider the
following counterexample.

A =


9.627 1.538 −0.717 1.418 −0.309

1.538 8.084 1.904 −1.868 0.573

−0.717 1.904 1.353 −1.538 −1.300

1.418 −1.868 −1.538 2.534 0.169

−0.309 0.573 −1.300 0.169 6.055

 , Q =


1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

 . (4.13)

For these matrices, ∥A− (QQTA)(2)∥2 ≈ (1 + 2.59× 10−8)∥A−A(2)∥2 whereas ∥A−
Â(2)∥2 ≈ (1 + 5.75× 10−3)∥A−A(2)∥2, so (QQTA)(k) is a better rank k approximation
to A compared to Â(k). As guaranteed by Theorem 4.17, we do at least have that
3.75 ≈ ∥A− Â∥2 < ∥A−QQTA∥2 ≈ 6.24. Via the same counterexample, we also have
the following remark.

Remark 4.3. In Section 4.3.1 we showed that Frobenius norm low-rank approximation
error decreases monotonically in the number of subspace iterations (see Remark 4.2). The
same is not true in the operator norm. To see this, let A and Q be as in (4.13). We can
check that

∥A− (PQA)(2)∥2 ≈ 6.449 < 6.455 ≈ ∥A− (PAQA)(2)∥2.

4.3.4 Eigenvalue guarantee

Now we provide a guarantee for eigenvalue estimation. Specifically, if we have a basis Q
so that top k singular values of QQTA are estimates of the eigenvalues of A, then the
eigenvalues of the Nyström approximation Â = AQ(QTAQ)†QTA can only be better
estimates.

Theorem 4.18. Let A ⪰ 0 and let Q be an orthonormal basis so that λi − εi ≤
σi(Q

TA) ≤ λi for i = 1, ..., k and for ε1, . . . , εk ≥ 0. Then if λ̂i is the ith eigenvalue of
Â = AQ(QTAQ)†QTA, we have λi − εi ≤ λ̂i ≤ λi for i = 1, ..., k.

Proof. Notice that, by Lemma 4.12, we have

QT Â = (QTA1/2PA1/2Q)A1/2 = QTA.
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Therefore, by applying a standard singular value inequality [88, p.452] we have

λ̂i = σi(Â) ≥ σi(Q
T Â) = σi(Q

TA) ≥ λi − εi.

We complete the proof by noting that λ̂i ≤ λi because Â ⪯ A [88, Corollary 7.7.4 (c)].

4.4 Explicit bounds

We will now demonstrate corollaries of our results from Sections 4.2 and 4.3. In particular,
we will show how one can obtain explicit error bounds for the funNyström approximation
immediately from existing results for the Nyström approximation. Furthermore, we
will also demonstrate how one can obtain guarantees for the funNyström approximation
immediately from guarantees for the error ||A− (QQTA)(k)∥, where Q is an orthonormal
basis.

We begin with stating and proving the following result, which is very similar to [151,
Theorem 4.1].

Theorem 4.19. Let A ⪰ 0 and let γ = λk+1/λk denote the kth spectral gap of A. Let Q
be an orthonormal basis for range(AqΩ), where q ≥ 0 and Ω is a n×(k+p) random matrix
whose entries are independent identically distributed (i.i.d.) N (0, 1) random variables. If
Â is defined as in (2.9) and p ≥ 2, then we have

E∥A− Â(k)∥∗ ≤
(
1 + γ2q

k

p− 1

)
∥A−A(k)∥∗.

Proof. Let Ψ = AqΩ. Since Â depends only on range(Q), we know that Â =

AΨ
(
ΨTAΨ

)†
ΨTA. First assume that rank(A) ≤ k. Then range(Ψ) = range(A)

almost surely, so A = Â(k) and the bound trivially holds. Now assume rank(A) > k. By
[151, Proof of Theorem 4.1] we have

∥A− Â(k)∥∗ ≤ ∥A−A(k)∥∗ + ∥(I − PA1/2Ψ)A
1/2
(k) ∥

2
F.

Let Ψ1 = UT
1 Ψ and Ψ2 = UT

2 Ψ. Since Ω is a standard Gaussian and rank(A) > k

we know Ψ1 has rank k almost surely. Hence, by [137, Theorem 7] we get ∥(I −
PA1/2Ψ)A

1/2
(k) ∥2F ≤ ∥Λ1/2

2 Ψ2Ψ
†
1∥2F, where Λ2 contains the smallest n− k eigenvalues of A

as in (2.6). Note that Ψ2 = Λq
2Ω2 and Ψ†

1 = Ω†
1Λ

−q
1 , where we define Ω1 = UT

1 Ω and
Ω2 = U

T
2 Ω as in (2.8). Hence, by strong submultiplicativity we have ∥Λ1/2

2 Ψ2Ψ
†
1∥2F ≤

γ2q∥Λ1/2
2 Ω2Ω

†
1∥2F. Note that by unitary invariance Ω1 and Ω2 are independent standard

Gaussian random matrices. Taking expectation and applying Lemma 2.4 yields the
desired result.

By applying Theorem 4.5 and Theorem 4.19 we get the following immediate corol-
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lary.

Corollary 4.20. Consider the setting of Theorem 4.19. Then for any continuous operator
monotone function f : [0,∞) → [0,∞), we have

E∥f(A)− f(Â)(k)∥∗ ≤
(
1 + γ2q

k

p− 1

)
∥f(A)− f(A)(k)∥∗.

Proof. By Remark 4.1 we can assume ∥A −A(k)∥∗, ∥f(A) − f(A)(k)∥∗ > 0. By Theo-
rem 4.5 we have

∥f(A)− f(Â)(k)∥∗
∥f(A)− f(A)(k)∥∗

≤
∥A− Â(k)∥∗
∥A−A(k)∥∗

.

Taking expectation and applying Theorem 4.19 yields the desired result.

Note also that in an identical fashion one can use Theorem 4.19 and Theorem 4.11 to
derive a bound on EW2(ED(µ,A), ED(µ, Â(k)))

2. We omit a detailed discussion.

One can derive similar bounds for the Frobenius norm. Consider the following bound.

Theorem 4.21. Let A ⪰ 0 and let γ =
λk+1

λk
denote the kth spectral gap of A. Let Q

be an orthonormal basis for range (AqΩ), where q ≥ 1 and Ω is a n × (k + p) random
matrix whose entries are i.i.d. N (0, 1) random variables. If Â is defined as in (2.9) and
p ≥ 2, then we have

E∥A− Â(k)∥2F ≤ E
[
∥A∥2F − ∥Â(k)∥2F

]
≤
(
1 + γ2q−1 5k

p− 1

)
∥A−A(k)∥2F.

Proof. Letting Y = Aq+1/2Ω, Lemma 4.15 states that ∥A−Â(k)∥2F ≤ ∥A∥2F−∥Â(k)∥2F ≤
∥A− (PYAPY )(k)∥2F.

Partition A as in (2.6) and Ω as in (2.8). Setting

Z = UTY Ω†
1Λ

−(q+1/2)
1 =

[
I

F

]
, F = Λ

q+1/2
2 Ω2Ω

†
1Λ

−(q+1/2)
1 .

we note that range(UZ) ⊆ range(Y ) and by (4.12) we know

∥A− Â(k)∥2F ≤ ∥A− (PYAPY )(k)∥2F ≤ ∥A− PUZAPUZ∥2F
= ∥Λ− PZΛPZ∥2F
= ∥(I − PZ)Λ∥2F + ∥(I − PZ)ΛPZ∥2F, (4.14)

where we used the unitary invariance of the Frobenius norm and that UTPUZU = PZ

[79, Proposition 8.4].
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For treating the first term in the sum (4.14), we recall from [79, Proposition 8.2] that

I − PZ =

[
I − (I + F TF )−1 −(I + F TF )−1F T

−F (I + F TF )−1 I − F (I + F TF )−1F T

]
,

I − (I + F TF )−1 ⪯ F TF , (4.15)

I − F (I + F TF )−1F T ⪯ I.

Hence,
∥(I − PZ)Λ∥2F = tr(Λ(I − PZ)Λ) ≤ ∥FΛ1∥2F + ∥Λ2∥2F. (4.16)

Utilizing q ≥ 1 we obtain

∥FΛ1∥F ≤ ∥Λq−1/2
2 ∥2∥Λ−(q−1/2)

1 ∥2∥Λ2Ω2Ω
†
1∥F

≤γq−1/2∥Λ2Ω2Ω
†
1∥F,

where the second inequality relies on q ≥ 1. Plugging this inequality into (4.16) yields

∥(I − PZ)Λ∥2F ≤ ∥Λ2∥2F + γ2q−1∥Λ2Ω2Ω
†
1∥2F. (4.17)

For treating the second term in the sum (4.14), we decompose Λ into

Λ̃1 =

[
Λ1

0

]
, Λ̃2 =

[
0

Λ2

]
,

which gives

∥(I − PZ)ΛPZ∥F ≤ ∥(I − PZ)Λ̃1PZ∥F + ∥(I − PZ)Λ̃2PZ∥F
≤ ∥(I − PZ)Λ̃1∥F + ∥Λ̃2PZ∥F.

Replacing Λ by Λ̃1 in (4.17) shows ∥(I − PZ)Λ̃1∥F ≤ γq−1/2∥Λ2Ω2Ω
†
1∥F. It turns out

that the second term ∥Λ̃2PZ∥F = ∥PZΛ̃2∥F obeys the same bound:

∥PZΛ̃2∥2F = tr(Λ2F (I + F TF )−1F TΛ2)

≤ tr(Λ2FF
TΛ2) = ∥Λ2F ∥2F ≤ γ2(q−1/2)γ2∥Λ2Ω2Ω

†
1∥2F

≤γ2(q−1/2)∥Λ2Ω2Ω
†
1∥2F,

where we used (I + F TF )−1 ⪯ I and the monotonicity of f . Overall one obtains

∥(I − PZ)ΛPZ∥F ≤ 2γq−1/2∥Λ2Ω2Ω
†
1∥F.

Plugging this inequality and inequality (4.17) into (4.14) yields the following structural
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bound

∥A− Â(k)∥2F ≤ ∥A∥2F − ∥Â(k)∥2F ≤ ∥A−A(k)∥2F + 5γ2q−1∥Λ2Ω2Ω
†
1∥2F.

Applying expectation and using Lemma 2.4 gives E∥Λ2Ω2Ω
†
1∥2F = k

p−1∥A−A(k)∥2F, which
yields the desired result.

Once again, using an entirely identical argument as in the proof of Corollary 4.20 we can
combine Theorem 4.21 and Theorem 4.6 to obtain the following bound on the funNyström
approximation.

Corollary 4.22. Consider the setting of Theorem 4.21. Then for any continuous operator
monotone function f : [0,∞) → [0,∞), we have

E∥f(A)− f(Â)(k)∥2F ≤
(
1 + γ2q−1 5k

p− 1

)
∥f(A)− f(A)(k)∥2F.

Alternatively, one can combine the results from Section 4.2 and Section 4.3 to translate
bounds for ∥A − (QQTA)(k)∥ into a bound for the funNyström approximation where
Â = AQ(QTAQ)†QTA. Consider the following two known result.

Theorem 4.23 ([14, Theorem 4.2]). Let A ∈ Rn×n and ε ∈ (0, 1). There is an algorithm
which performs O(k log(n/ε)

ε1/3
) matrix vector products with A and returns an orthonormal

matrix Q ∈ Rn×k such that with probability at least 0.9

∥A−QQTA∥∗ ≤ (1 + ε)∥A−A(k)∥∗.

Theorem 4.24 ([115, Theorems 11-12]). Let A ⪰ 0 be SPSD and ε ∈ (0, 1). Then [115,
Algorithm 2] performs ℓ = O

(
k log(n)

ε1/2

)
matrix vector products with A and returns an

orthonormal matrix Q ∈ Rn×ℓ such that with probability at least 0.99 we have

∥A− (QQTA)(k)∥F ≤ (1 + ε)∥A−A(k)∥F, (4.18)

and for i = 1, . . . , k we have

|λ2i − λi(Q
TAATQ)| ≤ ελ2k+1 (4.19)

where λi(QTAATQ) is the ith eigenvalue of QTAATQ.

By using Theorems 4.5, 4.6, 4.9, 4.13, 4.16 and 4.18, we get the following corollaries.

Corollary 4.25. Let A ⪰ 0 and ε ∈ (0, 1). Let f : [0,∞) → [0,∞) be a continuous
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operator monotone function. There is an algorithm which performs O(k log(n/ε)

ε1/3
) matrix-

vector products with A and returns an orthonormal basis Q ∈ Rn×k so that the rank k
Nyström approximation Â = AQ(QTAQ)†QTA satisfies with probability at least 0.9

∥f(A)− f(Â)(k)∥∗ ≤ (1 + ε)∥f(A)− f(A)(k)∥∗.

Corollary 4.26. Let A ⪰ 0 and ε ∈ (0, 1). Let f : [0,∞) → [0,∞) be a continuous
operator monotone function. Then [115, Algorithm 2] performs ℓ = O

(
k log(n)

ε1/2

)
matrix

vector products with A and returns an orthonormal matrix Q ∈ Rn×ℓ such that Â =

AQ(QTAQ)†QTA satisfies with probability at least 0.99

∥f(A)− f(Â)(k)∥F ≤ (1 + ε)∥f(A)− f(A)(k)∥F, (4.20)

and for i = 1, . . . , k we have

|f(λi)− f(λ̂i)| ≤ εf(λk+1) (4.21)

Proof. We focus on the proof of Corollary 4.26, since the proof of Corollary 4.25 is
analogous. We begin with showing (4.20). Conditioned on the inequality (4.18) we know
by Theorem 4.13 that we have (∥A∥2F−∥Â(k)∥2F)1/2 ≤ (1+ ε)∥A−A(k)∥F. Consequently,
by Theorem 4.6 we also have (4.20). Since (4.18) happens with probability at least 0.99,
we know that (4.20) happens with probability at least 0.99.

We proceed with showing (4.21). Conditioned on the inequality (4.19) we know by
Theorem 4.9 that we have |λi − σi(Q

TA)| ≤ ελk+1. By Theorem 4.18 we know that this
implies |λi − λ̂i| ≤ ελk+1. Finally, by Theorem 4.9 we have (4.21). Since (4.19) happens
with probability at least 0.99, we know that (4.21) happens with probability at least
0.99.

4.5 General unitarily invariant norms

In this section we will present an expectation bound for ∥f(A) − f(Â)∥, where Â
denotes a Nyström approximation as defined in (2.9) where Q is an orthonormal basis
for range(AqΩ) and ∥ · ∥ denotes any unitarily invariant norm; see Definition 2.1. We
begin with two useful results that hold in any unitarily invariant norms.

Lemma 4.27. Consider n× n SPSD matrices B,C satisfying B ⪰ C. Then

(i) ∥B∥ ≥ ∥C∥;

(ii) ∥f(B)∥ ≥ ∥f(C)∥ for any increasing function f : [0,∞) → [0,∞);

(iii) ∥f(B)− f(C)∥ ≤ ∥f(B −C)∥, for any operator monotone function f : [0,∞) →
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[0,∞).

Proof. (i) Let λi(B) and λi(C) denote the ith largest eigenvalues ofB and C, respectively.
By [88, Corollary 7.7.4 (c)], λi(B) ≥ λi(C) ≥ 0 for i = 1, . . . , n. By Fan’s dominance
theorem [25, Theorem IV.2.2], this implies ∥B∥ ≥ ∥C∥.

(ii) Because of the monotonicity and non-negativity of f , λi(f(B)) ≥ λi(f(C)) ≥ 0 and
hence the arguments from (i) apply.

(iii) This is a consequence of a result by Ando [6, Theorem 1].

Lemma 4.28 ([98, Theorem 2.1]). Let f : [0,∞) → [0,∞) be concave. Then given a

partitioned SPSD matrix

[
B X

XT C

]
with square B and C, one has

∥∥∥∥∥f
([

B X

XT C

])∥∥∥∥∥ ≤ ∥f(B)∥+ ∥f(C)∥.

With these two lemmas available, we proceed with proving a structural bound that hold
in any unitarily invariant norm.

Lemma 4.29. Let A ⪰ 0 have eigenvalue partitioned as (2.6). Let Q be an orthonormal
basis for range(AqΩ), for q ≥ 0, and define Â as in (2.9). Partition Ω as in (2.8) and
assume that rank(Ω1) = k. Let F = Λ

q+1/2
2 Ω2Ω

†
1Λ

−(q+1/2)
1 . Then, for any continuous

operator monotone function f : [0,∞) → [0,∞) we have

∥f(A)− f(Â)∥ ≤ ∥f(Λ2)∥+ ∥f(Λ1/2
1 F TFΛ

1/2
1 )∥.

Proof. From (2.10) it follows that

A− Â = A1/2(I − PY )A1/2 = UΛ1/2(I − P
Ỹ
)Λ1/2UT ,

where we set Y = Aq+1/2Ω and Ỹ = UTY . Combined with Lemma 4.27, this gives

∥f(A)− f(Â)∥ ≤ ∥f(A− Â)∥ = ∥f(Λ1/2(I − P
Ỹ
)Λ1/2)∥.

As in the proof of Theorem 4.21, we set Z = Ỹ Ω†
1Λ

−(q+1/2)
1 =

[
I

F

]
. Using range(Z) ⊆

range(Ỹ ), we obtain I −PZ ⪰ I −P
Ỹ

⪰ 0 and, in turn, Λ1/2(I −PZ)Λ
1/2 ⪰ Λ1/2(I −

P
Ỹ
)Λ1/2 ⪰ 0. Using Lemma 4.27 (ii), this gives

∥f(Λ1/2(I − P
Ỹ
)Λ1/2)∥ ≤ ∥f(Λ1/2(I − PZ)Λ

1/2)∥. (4.22)
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Exploiting the 2 × 2 block structure (4.15) of the SPSD matrix I − PZ and applying
Lemma 4.28 yields

∥f(Λ1/2(I − PZ)Λ
1/2)∥

≤∥f(Λ1/2
1 (I − (I + F TF )−1)Λ

1/2
1 )∥+ ∥f(Λ1/2

2 (I − F (I + F TF )−1F T )Λ
1/2
2 )∥.

The proof is completed using the inequalities

∥f(Λ1/2
1 (I − (I + F TF )−1)Λ

1/2
1 )∥ ≤ ∥f(Λ1/2

1 F TFΛ
1/2
1 )∥

∥f(Λ1/2
2 (I − F (I + F TF )−1F T )Λ

1/2
2 )∥ ≤ ∥f(Λ2)∥,

which are derived from the inequalities in (4.15) with the same arguments used for (4.22).

In order to obtain the expectation bound we make use of the following result established
in [56, Proof of Proposition 2.2].

Lemma 4.30. Let Ω1 ∈ Rk×(k+p) and Ω2 ∈ R(n−k)×(k+p) be independent random matrices
whose entries are i.i.d. N (0, 1) random variables. If D is a matrix, then if p ≥ 2

E∥DΩ2Ω
†
1∥22 ≤

2k

p− 1
∥D∥22 +

2e2(k + p)

p2 − 1
∥D∥2F (4.23)

With the structural bound at hand, we are ready to present an expectation bound in
any unitarily invariant norm. For conciseness we only state an expectation bound. From
the proof of Theorem 4.31, it follows that a deviation bound can be obtained from a
deviation bound on the quantity ∥Λ1/2

2 Ω2Ω
†
1∥2; see, e.g., [79, Theorem 10.8] for such a

bound.

Theorem 4.31. Let A ⪰ 0 have eigenvalue partitioned as (2.6) and let γ =
λk+1

λk
denote

the kth spectral gap of A. Let Q be an orthonormal basis for range (AqΩ), where q ≥ 0

and Ω is a n× (k + p) random matrix whose entries are i.i.d. N (0, 1) random variables.
If Â is the Nyström approximation as defined in (2.9) and p ≥ 2, then for any operator
monotone function f : [0,∞) → [0,∞) we have

E∥f(A)− f(Â)∥ ≤∥f(Λ2)∥+

Ck

(∥∥∥∥f (γ2q 2k

p− 1
Λ2

)∥∥∥∥
2

+

∥∥∥∥f (γ2q 2e2(k + p)

p2 − 1
Λ2

)∥∥∥∥
∗

)
,

where Ck is the equivalence constant so that ∥B∥ ≤ Ck∥B∥2 for any B ∈ Rk×k.
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Proof. Note that

∥f(Λ1/2
1 F TFΛ

1/2
1 )∥ ≤ Ck∥f(Λ1/2

1 F TFΛ
1/2
1 )∥2 =

Ckf(∥Λ1/2
1 F TFΛ

1/2
1 ∥2) ≤ Ckf

(
γ2q∥Λ1/2

2 Ω2Ω
†
1∥22
)
.

Using Jensen’s inequality we obtain

E∥f(A)− f(Â)∥ ≤∥f(Λ2)∥2 + CkEf
(
γ2q∥Λ1/2

2 Ω2Ω
†
1∥22
)

≤∥f(Λ2)∥2 + Ckf
(
γ2qE∥Λ1/2

2 Ω2Ω
†
1∥22
)
.

Bounding E∥Λ1/2
2 Ω2Ω

†
1∥22 via (4.23) and using the subadditivity of f on [0,∞) as well as

the relations ∥Λ1/2
2 ∥22 = ∥Λ2∥2 and ∥Λ1/2

2 ∥2F = ∥Λ2∥∗ we obtain

f
(
γ2qE∥Λ1/2

2 Ω2Ω
†
1∥22
)
≤ f

(
γ2q
(

2k

p− 1
∥Λ2∥2 +

2e2(k + p)

p2 − 1
∥Λ2∥∗

))
≤f
(
γ2q

2k

p− 1
∥Λ2∥2

)
+ f

(
γ2q

2e2(k + p)

p2 − 1
∥Λ2∥∗

)
.

Noting that f
(
γ2q 2k

p−1∥Λ2∥2
)
=
∥∥∥f (γ2q 2k

p−1Λ2

)∥∥∥
2

and using once again the subadditiv-
ity of f we have

f

(
γ2q

2e2(k + p)

p2 − 1
∥Λ2∥∗

)
≤
∥∥∥∥f (γ2q 2e2(k + p)

p2 − 1
Λ2

)∥∥∥∥
∗
,

which completes the proof.

4.6 Numerical experiments

In this section we numerically verify the theoretical results in Sections 4.2 and 4.3. We
also demonstrate the strong performance of funNyström. All experiments have been
performed in MATLAB (version 2020a) on a MacBook Pro with a 2.3 GHz Intel Core
i7 processor with 4 cores. Scripts to reproduce all figures in Section 4.6.2 are available
at https://github.com/davpersson/funNystrom-v2 and scripts to reproduce the figures
in Sections 4.6.3 to 4.6.5 are available at https://github.com/davpersson/funNystrom.
In our implementation we let C in Algorithm 3 be the square root of QTAQ obtained
by diagonalization. Furthermore, to deal with potential numerical issues due to the
appearance of the pseudo-inverse in the Nyström approximation, we compute the ϵ-
pseudoinverse of QTAQ, where ϵ = 5 · 10−16 · ∥QTAQ∥2.

4.6.1 Test matrices

In the following, we describe the test matrices used in our experiments.
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Synthetic matrices

We consider synthetic matrices with prescribed algebraic and exponential eigenvalue
decays. Let Λalg and Λexp be diagonal matrices with diagonal entries

(Λalg)ii = Ci−c, (Λexp)ii = Cγi, i = 1, . . . , n,

for parameters s, c > 0 and γ ∈ (0, 1). Letting U denote the orthogonal matrix generated
by the MATLAB-command gallery(’orthog’,n), we set

Aalg = UΛalgU
T , Aexp = UΛexpU

T . (4.24)

We also consider the following matrix Adisc ∈ R1000×1000, which is a discretization of a
function and is defined by

(Adisc)ij =

((
i

1000

)10

+

(
j

1000

)10
) 1

10

, (4.25)

where (Adisc)ij denotes the (i, j)-entry of Adisc. This example is inspired by the numerical
experiments on column subset selection in [40].

Gaussian process covariance kernels

We consider two classes of matrices that arise from the discretization of the squared
exponential and Matérn Gaussian process covariance kernels [142]. For this purpose, we
generate n = 5000 i.i.d. data points x1, . . . , x5000 ∼ N (0, 1) and set

ASE ∈ Rn×n, (ASE)ij = exp
(
−|xi − xj |2/(2ℓ2)

)
, (4.26)

AMat ∈ Rn×n, (AMat)ij =
π1/2 (α|xi − xj |)ν Kν(α|xi − xj |)

2ν−1Γ(ν + 1/2))α2ν
, (4.27)

for i, j = 1, . . . , n, and parameters ℓ, α, ν > 0. Note that Kν is the modified Bessel
function of the second kind. Computing tr (log(I +A)), where A is a matrix arising
from discretizing a covariance kernel, is an important task in Bayesian optimization and
maximum likelihood estimation for Gaussian processes [65, 161].

Bayesian inverse problem

Motivated by the numerical experiments in [5, 49, 138], this test matrix arises from
a Bayesian inverse problem. Recall the parabolic differential equation presented in
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(3.3)

ut = κ∆u+ λu in [0, 1]2 × [0, 2]

u(·, 0) = θ in [0, 1]2

u = 0 on Γ1

∂u

∂n
= 0 on Γ2

(4.28)

for κ, λ > 0 and Γ2 = {(x, 1) ∈ R2 : x ∈ [0, 1]} and Γ1 = ∂D \ Γ2. We place 49 sensors at
(i/8, j/8) ∈ [0, 1]2 for i, j = 1, . . . , 7 to take measurements of u at these sensor locations at
times t = 1, 1.5, 2. We gather all 3× 49 = 147 measurements in a vector d ∈ R147.

Recall that discretizing (4.28) in space using finite differences on 40× 40 equispaced grid
yields an ordinary differential equation of the form

u̇(t) = Au(t) for t ∈ [0, 2],

u(0) = θ.
(4.29)

The solution to (4.29) is u(t) = exp(tA)θ. Let umeasure ∈ R147 contain the values of u
corresponding to sensor locations at times t = 1, 1.5, 2. Then, by linearity, we can write
umeasure = Cθ for a matrix C.

Assume that θ ∼ N(θoriginal,Σoriginal), the discretization error is negligible, and that the
measurements d are distorted by some noise ε ∼ N (0,Σnoise) so that

d = umeasure + ε.

It is well known that the posterior distribution of θ is given by θ|d ∼ N(θpost,Σpost)

with

θpost = Σpost(C
TΣ−1

noised+Σ−1
originalθoriginal), Σpost = (CTΣ−1

noiseC +Σ−1
original)

−1;

see [145]. Now let
Apde = Σ

1/2
originalC

TΣ−1
noiseCΣ

1/2
original. (4.30)

Then, tr(log(I +Apde)) is related to the expected information gain from the posterior
distribution relative to the prior distribution [5]. For fine discretization grids, the matrix
C, and thus Apde, cannot be formed explicitly. Instead, one only implicitly performs
matrix-vector products with Apde via solving (4.29).

4.6.2 Verifying theoretical results

We will now verify the theoretical results proven in Section 4.2 and Section 4.3. In all
our experiments, we begin with computing an orthonormal basis Q with ℓ ≥ k columns.
We will outline three different algorithms for doing so. Next, using the orthonormal
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basis Q, we construct a Nyström approximation Â as defined in (2.9) and the projection
based approximation QQTA. Note that once Q is computed, constructing the two
approximations comes at the same computational cost. Then, we truncate Â and
QQTA to rank k to obtain Â(k) and (QQTA)(k). Finally, we compare the following
quantities

εprojection =
∥A− (QQTA)(k)∥

∥A−A(k)∥
− 1;

εNyström =
∥A− Â(k)∥
∥A−A(k)∥

− 1;

εfunNyström =
∥f(A)− f(Â(k))∥
∥f(A)− f(A(k))∥

− 1,

where ∥ · ∥ = ∥ · ∥∗, ∥ · ∥F or ∥ · ∥2. For comparing accuracy in estimating eigenvalues we
use the alternative metrics:

εprojection = max
i=1,...,k

{
λi − σi(Q

TA)

λi

}
;

εNyström = max
i=1,...,k

{
λi − λ̂i
λi

}
;

εfunNyström = max
i=1,...,k

{
f(λi)− f(λ̂i)

f(λi)

}
.

Our theory suggests that, for the Frobenius norm, nuclear norm, or for eigenvalue
estimation, εprojection ≥ εNyström ≥ εfunNyström. For the operator norm, we expect the
second inequality to hold, but we have shown a counterexample to the first in Section 4.3.3.
However, in our experiments we generally observe that εprojection ≥ εNyström even when
∥ · ∥ = ∥ · ∥2.

Column subset selection

In this experiment we compute the orthonormal basis Q using the randomly pivoted
Cholesky algorithm [38, Algorithm 2.1]. In this setting, Q =

[
ei1 . . . eiℓ

]
where

{i1, . . . , iℓ} ⊆ {1, . . . , n} is an index set returned by the algorithm, and ei is the ith

standard basis vector. We set k = 10 and ℓ = k + q for q = 0, . . . , 6. We let A = Adisc

be defined as in Section 4.6.1. We set the matrix function to be f(x) = x
x+1 , which is

operator monotone. The results are presented in Figure 4.1, which shows that εprojection ≥
εNyström ≥ εfunNyström for all norms and q we consider, which confirms our theoretical
results.

49



Chapter 4: funNyström

(a) Nuclear norm (b) Frobenius norm

(c) Operator norm (d) Eigenvalue estimates

Figure 4.1: Comparing εprojection, εNyström, and εfunNyström for column subset selection
applied to Adisc defined in (4.25) and f(x) = x

x+1 . Note that εprojection is significantly
worse than the εNyström and εfunNyström since the orthogonal projection QQT zeros out
all except ℓ rows of A. In contrast, the Nyström approximation Â = A1/2PA1/2QA

1/2

effectively performs half a step of subspace iteration on Q, giving a better approximation.
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(a) Nuclear norm (b) Frobenius norm

(c) Operator norm (d) Eigenvalue estimates

Figure 4.2: Comparing εprojection, εNyström, and εfunNyström for Krylov iteration applied
Aalg defined in (4.24) with n = 3000, C = c = 1 and f(x) = log(1 + x).

Krylov subspace iteration

In this experiment we set Q to be an orthonormal basis for the Krylov subspace
range(

[
Ω AΩ . . . AqΩ

]
) where Ω is a random 3000 × k matrix whose entries are

i.i.d. N (0, 1) random variables. Recall that Q can be constructed using Algorithm 4.
We set k = 10 and vary q = 0, 1, . . . , 6. We set A = Aalg with n = 3000, C = c = 1.
We set the matrix function to be f(x) = log(1 + x), which is operator monotone. The
results are presented in Figure 4.2. Again, for all norms and all choices of q, we see that
εprojection ≥ εNyström ≥ εfunNyström.

Subspace iteration

Finally, we set Q to be an orthonormal basis for range(AqΩ) where Ω is a random
3000 × k matrix whose entries are i.i.d. N (0, 1) random variables. We set k = 10

and vary q = 0, 1, . . . , 6. We set A = Aexp with n = 3000, C = 1, γ = e−1. We set
the matrix function to be f(x) = x1/2, which is operator monotone. The results are

51



Chapter 4: funNyström

(a) Nuclear norm (b) Frobenius norm

(c) Operator norm (d) Eigenvalue estimates

Figure 4.3: Comparing εprojection, εNyström, and εfunNyström for subspace iteration applied
to Aexp defined in (4.24) with n = 3000, C = 1, γ = e−1 and f(x) = x1/2.

presented in Figure 4.3. Once again, for all norms and all choices of q, we see that
εprojection ≥ εNyström ≥ εfunNyström.

4.6.3 Comparing number of matrix vector products

In this section we compare the funNyström approximation f(Â)(k) where Â is defined as
in (2.9) with Q ∈ Rn×k is an orthonormal basis for range(Aq−1Ω), for some q ≥ 1.2 We
compare the approximation f(Â)(k) returned by funNyström with the following references.
Applying Nyström directly to f(A) with an n× k Gaussian random matrix Ω yields the

2Usually we let Q be an orthonormal basis for range(AqΩ) for some q ≥ 0 and Ω with, say, k
columns. Constructing the Nyström approximation as defined in (2.9) with this Q would require (q+1)k
matrix-vector products with A. In the following sections we instead say that Q is an orthonormal basis
for range(Aq−1Ω), where q ≥ 1. Now, constructing the Nyström approximation as defined in (2.9) with
this Q would require qk matrix-vector products with A. We make this change since it simplifies counting
the number of matrix-vector products with A.
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rank-k approximation

B̂q,k = f(A)qΩ(ΩT f(A)2q−1Ω)†(f(A)qΩ)T . (4.31)

This assumes that matrix-vector products with f(A) are carried out exactly. If each
matrix-vector product with f(A) needed in (4.31) is approximated using d iterations
of the Lanczos method, one obtains a different approximation, which will be denoted
by B̂(d)

q,k . In our implementation, B(d)
q,k is constructed by running k separate Lanczos

iterations (Algorithm 4) for each column in Ω.

Recall that computing f(Â)(k) requires qk matrix-vector products with A. In contrast,
the approximation B̂(d)

q,k – obtained via applying Nyström to f(A) – requires dqk matrix-
vector products with A. The choice of d, the number of Lanczos iterations, needs to
be chosen in dependence of q, k such that the impact on the overall accuracy remains
negligible. For the purpose of our numerical comparison, we have precomputed the
matrix B̂q,k obtained without the additional Lanczos approximation and choose d such
that

∥f(A)− B̂(d)
q,k∥ ≤ 1.1 · ∥f(A)− B̂q,k∥. (4.32)

In practice, B̂q,k is not available and one needs to employ heuristic and potentially less
reliable criteria. In our implementation we increase d by 5 until (4.32) is satisfied.

Given an approximationB of f(A), we will measure the relative error ∥f(A)−B∥/∥f(A)∥
for some norm ∥ · ∥. The results obtained for q = 1 are reported in Figure 4.4. Clearly,
funNyström needs fewer matrix-vector products; the difference can be up to three orders
of magnitude.

4.6.4 Comparing accuracy

In Figure 4.5, we compare the approximation error of the funNyström approximation
with the (significantly more expensive) approximation B̂q,k. It can be observed that
funNyström is never worse than B̂q,k, and sometimes even better. This suggests that even
when matrix-vector products with f(A) can be performed very efficiently, funNyström
may still be the preferred choice.

4.6.5 Fast computation of matrix-vector products

In this section we show that funNyström can be used to compute fast matrix-vector
products with f(A). We let f(x) = x1/2 and A = Aexp defined in (4.24) with C = 1, γ =

e−1 and n = 10000. We let Φ ∈ Rn×N be the matrix containing the first N columns of
the identity matrix. Hence, computing A1/2Φ requires N matrix-vector products with
A1/2. We compare the computation times of the following two methods for approximating
A1/2Φ:
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(a) Aalg defined in (4.24) with n = 5000, C = 1,
c = 3 and f(x) = x1/2.
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(b) Aexp defined in (4.24) with n = 5000, C =
10, γ = e−1/10 and f(x) = x

x+1 .
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(c) ASE defined in (4.26) with ℓ2 = 0.1 and
f(x) = log(1 + x).
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(d) Apde defined in (4.30) with κ = 0.01, λ = 1,
Σnoise = I and f(x) = log(1 + x).

Figure 4.4: Number of matrix-vector products with A vs. attained accuracy for low-rank
approximations of f(A) from funNyström approximation (blue) and B̂(d)

1,k (red).
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(a) Aalg defined in (4.24) with C = 1, c = 3 and
f(x) = x1/2.
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(b) Aexp defined in (4.24) with C = 1, γ = e−
1
10

and f(x) = x
x+0.01 .
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(c) AMat defined in (4.27) with α = 1, ν = 3/2
and f(x) = x1/2.
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(d) AMat defined in (4.27) with α = 1, ν = 5/2
and f(x) = x

x+0.01 .

Figure 4.5: Error vs. prescribed rank of the approximation for the funNyström approxi-
mation applied to A (blue) and B̂q,k, the Nyström approximation applied to f(A) (red),
for q = 1, 2.
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Figure 4.6: Number of matrix-vector products N vs. speed-up factor
TLanczos(N)/Tlow-rank(N).

1. Approximating A1/2Φ using the Lanczos method with d iterations. This comes
at a computational cost of O(dn2N). The implementation we use for the Lanczos
method is the same implementation used for the numerical expriments in [111],
which approximates the N matrix-vector products with A1/2 simultaneously by vec-
torizing all computations, rather than approximating the N matrix-vector products
subsequently. This significantly speeds up the computation.

2. Computing Â1/2 using funNyström and approximate Â1/2Φ ≈ A1/2Φ. If Â is the
Nyström approximation defined in (2.9) with Q being an orthonormal basis for
range(Aq−1Ω) for q ≥ 1 and a random standard Gaussian n × k matrix Ω, this
comes at a computational cost of O(qkn2 + nkN).

If we let TLanczos(N) and Tlow-rank(N) be wall-clock time to approximate N matrix-vector
products with A1/2 using the Lanczos method and low-rank approximation respectively,
the speed-up factor will be

TLanczos(N)

Tlow-rank(N)
= O

(
dn2N

qkn2 + nkN

)
= O(N),

if we keep d, q and k constant and assume N ≪ n.

In our numerical experiments we set k = 14, q = 1, d = 21. This choice of parameters
yields a similar relative error ∥A1/2Φ−Y ∥F/∥A1/2Φ∥F ≈ 0.01 for both methods and for
all N , where Y is the approximation to A1/2Φ. We set N = 10, 20, . . . , 100. The results
are presented in Figure 4.6, which confirm the O(N) speed-up factor.

4.6.6 Application to trace estimation

When an n × n matrix B admits an excellent rank-k approximation B̂(k) for k ≪ n,
it is sensible to approximate tr(B) by tr(B̂(k)). Setting B = f(A), this motivates the
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approximation
tr(f(A)) ≈ tr(f(Â) = f(λ̂1) + · · ·+ f(λ̂k+p), (4.33)

where Â = ÛΛ̂ÛT = AQ(QTAQ)†QTA denotes the funNyström approximation for
some orthonormal basis Q ∈ Rn×(k+p). Using that f(A) ⪰ f(Â) we get

tr(f(A))− tr(f(Â) = ∥f(A)− f(Â)∥∗.

Hence, Corollary 4.20 yields probabilistic bounds for the error of this trace approxima-
tion.

It is instructive to compare our results with the bounds from [138] for the special case
f(x) = log(1 + x). In particular, Theorem 1 from [138] states that

E
[
tr (log(I +A))− tr

(
log(I +QTAQ)

)]
≤ tr (log(I +Λ2)) + tr

(
log(I + γ2q−1KΛ2)

)
,

(4.34)

where Q is an orthonormal basis for range(AqΩ), and

K =
e2(k + p)

(p+ 1)(p− 1)

(
1

2π(p+ 1)

) 2
p+1

(
√
n− k +

√
k + p+

√
2)2.

Constructing QTAQ requires a total of (q + 1)(k + p) matrix-vector products with A.
On the other hand, within the same budget one obtains the more accurate low-rank
approximation Â = AQ(QTAQ)†QTA. This also translates into tighter probabilistic
bounds for trace estimation. To see this, note that Theorem 4.20 gives

E
[
tr
(
log(I +A)

)
− tr

(
log(I + Â)

)]
≤
(
1 +

γ2qk

p− 1

)
tr (log(I +Λ2)) .

The difference between (4.34) and this bound satisfies

n∑
i=k+1

[
log(1 + γ2q−1Cλi)−

γ2qk log(1 + λi)

p− 1

]
≈ γ2q−1

n∑
i=k+1

(
K − γk

p− 1

)
λi

for λk+1 ≈ 0.3 Because K ≥ 0.55kn
(p+1)(p−1) and usually n≫ p, this shows that we obtain a

much tighter bound for our method compared to [138]. Similarly, it can be shown that
our deviation bounds are tighter than those in [138]. Similar bounds for f(x) = x

x+1 exist
in [83, Theorem A.1]. By an identical argument we can show that our bounds are tighter
than those in [83].

In Figure 4.7 we compare our approach, funNystrom combined with (4.33), with the
method presented in [138] to approximate tr(log(I +A)). For the method in [138] we let
Q be an orthonormal basis for range(AΩ) where Ω is a random standard Gaussian matrix

3We use log(1 + x) ≈ x for small x.
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(a) Aalg defined in (4.24) with n =
5000, C = 100 and c = 2.
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(b) Aexp defined in (4.24) with n =
5000, C = 100 and γ = 0.9.

Figure 4.7: Approximation of tr(log(I +A)) using the funNyström approximation (blue)
and the method presented in [138] (red). The x-axis represents the number of matrix-
vector products performed with A to obtain the approximation, and the y-axis represents
the relative error of the approximation.

with m/2 columns. For the funNyström approximation we let Q be an orthonormal
basis for the range(Φ), where Φ is random standard Gaussian matrix with m columns.
We make this choice since we have observed that increasing the rank of the low-rank
approximation often yields a more accurate low-rank approximation than increasing the
number of subspace iterations q. A budget of m matrix-vector products allows one to
choose k+p = m in the funNyström approximation while one can only choose k+p = m/2

in the method from [138]. This explains the better performance of funNystrom observed
in Figure 4.7; a similar observation has been made in [123, Section 3].
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5 Randomized block-Krylov subspace
methods for low-rank approxima-
tion of matrix functions
Recall that the funNyström approximation presented in Chapter 4 can only be used for
non-negative monotonically increasing functions, and the theory is only valid non-negative
operator monotone functions. However, many matrix functions are not monotonically
increasing and still admit accurate low-rank approximations. One such example is
exp(−βA), which is numerically low-rank for large enough β. In this section we will
consider an alternative algorithm that can compute low-rank approximations of general
matrix functions of a symmetric matrix A.

We proceed with highlighting an important difference in notation in this chapter compared
to the other chapters in this thesis. We will consider a function f and a symmetric matrix
A with eigenvalue decomposition partitioned as

A = UΛUT =
[
Uf,1 Uf,2

] [Λf,1

Λf,2

][
UT

f,1

UT
f,2

]
,

Λf,1 = diag(λf,1, λf,2, · · · , λf,k),
Λf,2 = diag(λf,k+1, λf,k+2, · · · , λf,n),

(5.1)

where the eigenvalues are ordered so that

|f(λf,1)| ≥ |f(λf,2)| ≥ . . . ≥ |f(λf,n)|.

This ordering of the eigenvalues and eigenvectors will be particularly useful for stating the
theoretical results in this chapter. In particular, with this ordering we have the following
equality for any unitarily invariant norm ∥ · ∥

min
B:rank(B)≤k

∥f(A)−B∥ = ∥f(A)−Uf,1f(Λf,1)U
T
f,1∥ = ∥f(Λf,2)∥.

In addition, we would also like to define the following variations of (2.4): for a sketching
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matrix Ω ∈ Rn×(k+p), we define

Ωf,1 = U
T
f,1Ω, Ωf,2 = U

T
f,2Ω. (5.2)

In Section 5.1 we will present the randomized SVD applied to matrix functions and
present an alternative and more efficient algorithm. This algorithm was initially presented
by Chen and Hallman in the context of trace estimation [37]. One of our contributions
is to provide an analysis of the method. The work [37] used the term Krylov-aware to
describe the algorithm. Inspired by this, we call this low-rank approximation method
Krylov-aware low-rank approximation. In Section 5.2 we present an error analysis of the
algorithm. Finally, in Section 5.3 we present the numerical experiments, which confirms
the excellent performance of the algorithm.

This chapter is based on the work in [122].

5.1 Krylov aware low-rank approximation

We now describe and motivate the algorithm that we will analyse. In Section 5.1.1 we
outline how one would naively implement the randomized SVD for a matrix function f(A).
Next, in Section 5.1.2 we present the Krylov-aware low-rank approximation algorithm and
why this method allows us to gain efficiencies. As previously mentioned, this algorithm
was initially proposed by Chen and Hallman [37].

5.1.1 The randomized SVD for matrix functions

Recall from Section 2.2.2 that it is sometimes preferable for symmetric matrices to
return a symmetric low-rank approximation as presented in (2.7). Algorithm 6 is a
modification of Algorithm 1 applied to a symmetric matrix and returns a symmetric
low-rank approximation. The algorithm returns either the rank k + p ≥ k approximation
QXQT or the rank k approximation QX(k)Q

T , depending on the needs of the user.

Algorithm 6 Symmetric Randomized SVD
input: Symmetric B ∈ Rn×n. Target rank k. Oversampling parameter p.
output: Low-rank approximation to B in factored form QXQT = ÛΛ̂ÛT or
QX(k)Q

T = Û1Λ̂1Û
T
1 .

1: Sample a random n× (k + p) sketch matrix Ω.
2: Y = BΩ.
3: Compute an orthonormal basis Q for range(Y ).
4: Compute X = QTBQ.
5: Compute the eigenvalue decomposition of X =W Λ̂W T .
6: Û = QW
7: return PBΩBPBΩ = QXQT = ÛΛ̂ÛT or (PBΩBPBΩ)(k) = QX(k)Q

T =

Û1Λ̂1Û
T
1 .
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The dominant cost of Algorithm 6 is the number of matrix-vector products with B. Note
that Algorithm 6 requires 2(k + p) matrix-vector products with B: (k + p) matrix-vector
products in line 2 and (k + p) matrix-vector products in line 4. When Algorithm 6 is
applied to a matrix function B = f(A) these matrix-vector products cannot be performed
exactly, but need to be approximated using, for example, the block Lanczos method
as done in (3.6). Algorithm 7 implements the randomized SVD applied to f(A) with
approximate matrix-vector products using d and r iterations of the block Lanczos method.
The cost is now (d+ r)(k + p) matrix-vector products with A, where d and r should be
set sufficiently large so that the approximations (3.6) and (3.7) are accurate.

Algorithm 7 Randomized SVD on a matrix function f(A)

input: Symmetric matrix A ∈ Rn×n. Target rank k. Oversampling parameter p. Matrix
function f : R → R. Accuracy parameters d and r.
output: Low-rank approximation to f(A) in factored form QXQT = ÛΛ̂ÛT or
QX(k)Q

T = Û1Λ̂1Û
T
1 .

1: Sample a random n× (k + p) sketch matrix Ω.
2: Run Algorithm 4 for d iterations to obtain an orthonormal basis Qd for Kd(A,Ω), a

block tridiagonal matrix Td and an upper triangular matrix R0.
3: Compute the approximation Y = Qdf(Td):,1:(k+p)R0 ≈ f(A)Ω.
4: Compute an orthonormal basis Q for range(Y ).
5: Run Algorithm 4 for r iterations with starting block Q to obtain a block tridiagonal

matrix T̃r.
6: Compute the approximation X = f(T̃r)1:(k+p),1:(k+p) ≈ QT f(A)Q.
7: Compute the eigenvalue decomposition of X =W Λ̂W T .
8: Û = QW
9: return QXQT = ÛΛ̂ÛT or QX(k)Q

T = Û1Λ̂1Û
T
1 .

5.1.2 Krylov aware low-rank approximation

A key observation in [37] was that range(Q) ⊆ range(Qd), where Q and Qd are as in
Algorithm 7. Therefore, by Lemma 4.14 one has

∥f(A)−QdQ
T
d f(A)QdQ

T
d ∥F ≤ ∥f(A)−QQT f(A)QQT ∥F,

∥f(A)−Qd(Q
T
d f(A)Qd)(k)Q

T
d ∥F ≤ ∥f(A)−Q(QT f(A)Q)(k)Q

T ∥F.

Hence, assuming that the quadratic form QT
d f(A)Qd can be computed accurately, the

naive implementation of the randomized SVD outlined in Algorithm 7 will yield a worse
error than using QdQ

T
d f(A)QdQ

T
d as an approximation to f(A).

Since Qd could have as many as d(k + p) columns, an apparent downside to using Qd to
construct a low-rank approximation to f(A) is that computing f(A)Qd might require
rd(k + p) matrix-vector products with A if we run r iterations of the block Lanczos
method. The key observation which allows Krylov-aware algorithms to be implemented
efficiently is the following result.
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Lemma 5.1 ([37, Section 3]). Suppose that Qd is the output of Algorithm 4 with starting
block Ω and d iterations. Then, running r + 1 iterations of Algorithm 4 with starting
block Qd yields the same output as running d+ r iterations of Algorithm 4 with starting
block Ω.

This observation enables us to approximate QT
d f(A)Qd with just r(k + p) additional

matrix-vector products withA, even thoughQd has many more than k+p columns. Hence,
approximating QT

d f(A)Qd is essentially as costly, in terms of the number of matrix-vector
products with A, as approximating QT f(A)Q as done in line 6 of Algorithm 7.

We can now present the Krylov-aware low-rank approximation algorithm; see Algorithm 8.
The total number of matrix-vector products with A is (d + r)(k + p), the same as
Algorithm 7. However, as noted above, Algorithm 8 uses a better projection space. We
further note that the function f in Algorithm 8 does not need to be fixed; one can
compute a low-rank approximation for many different functions f at minimal additional
cost.

Algorithm 8 Krylov aware low-rank approximation
input: Symmetric A ∈ Rn×n. Target rank k. Oversampling parameter p. Matrix
function f : R → R. Number of iterations q = d+ r.
output: Low-rank approximation to f(A) in factor form QdXQ

T
d = ÛΛ̂ÛT or

QdX(k)Q
T
d = Û1Λ̂1Û

T
1 .

1: Sample a random n× (k + p) sketch matrix Ω.
2: Run Algorithm 4 for q = d + r iterations to obtain an orthonormal basis Qd for

Kd(A,Ω) and a block tridiagonal matrix Tq.
3: Compute X = f(Tq)1:nd,1:nd

where nd = dim (Kd(A,Ω)). ▷ ≈ QT
d f(A)Qd

4: Compute the eigenvalue decomposition of X =W Λ̂W T .
5: Û = QdW .
6: return QdXQ

T
d = ÛΛ̂ÛT or QdX(k)Q

T
d = Û1Λ̂1Û

T
1 .

5.2 Error bounds

In this section we will establish Frobenius norm error bounds for Algorithm 8. In
Section 5.2.1 we derive error bounds for approximations of f(A) when projections
QQT f(A)QQT cannot be computed exactly. In Section 5.2.2 we provide structural
bounds for the errors ∥f(A)−QdQ

T
d f(A)QdQ

T
d ∥F and ∥f(A)−Qd(Q

T
d f(A)Qd)(k)Q

T
d ∥F

that hold with probability 1, and in Section 5.2.3 we derive the corresponding probabilistic
bounds. Next, we combine the results from Sections 5.2.1 to 5.2.3 to derive error bounds
for Algorithm 8. Finally, in Sections 5.2.5 and 5.2.6 we apply our results to the matrix
exponential and the identity function.
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5.2.1 Error bounds for inexact projections

In this section we will derive error bounds for ∥f(A)−QXQT ∥F and ∥f(A)−QX(k)Q
T ∥F

where Q is any orthonormal basis and X is any matrix. By Lemma 4.14 we know that
the optimal choice of X is X = QT f(A)Q. However, since QT f(A)Q can only be
approximated we need to show that the errors ∥f(A)−QQT f(A)QQT ∥F and ∥f(A)−
Q(QT f(A)Q)(k)Q

T ∥F are robust against perturbations in QT f(A)Q. Theorem 5.2
provides such a result.

Theorem 5.2. Given an orthonormal basis Q and a matrix X of the same size as the
matrix QT f(A)Q. Then,

∥f(A)−QXQT ∥2F = ∥f(A)−QQT f(A)QQT ∥2F + ∥QT f(A)Q−X∥2F, (5.3)

and

∥f(A)−QX(k)Q
T ∥F ≤ ∥f(A)−Q(QT f(A)Q)(k)Q

T ∥F + 2∥QT f(A)Q−X∥F. (5.4)

Proof. (5.3) was proven in the proof of Lemma 4.14, but we repeat the proof for com-
pleteness. Note that for any matrix B we have ⟨f(A) −QQT f(A)QQT ,QBQ⟩ = 0.
Hence, by the Pythagorean theorem, we have

∥f(A)−QXQT ∥2F = ∥f(A)−QQT f(A)QQT +Q(QT f(A)Q−X)QT ∥2F
= ∥f(A)−QQT f(A)QQT ∥2F + ∥QT f(A)Q−X∥2F,

as required.

We now proceed with proving (5.4) using a similar argument to [153, Proof of Theorem 5.1].
Define C = f(A)−QQT f(A)QQT +QXQT . Note that ∥C − f(A)∥F = ∥QT f(A)Q−
X∥F and QTCQ =X. Hence,

∥f(A)−QX(k)Q
T ∥F = ∥f(A)−Q(QTCQ)(k)Q

T ∥F
≤∥f(A)−C∥F + ∥C −Q(QTCQ)(k)Q

T ∥F
=∥QT f(A)Q−X∥F + ∥C −Q(QTCQ)(k)Q

T ∥F
≤∥QT f(A)Q−X∥F + ∥C −Q(QT f(A)Q)(k)Q

T ∥F (Lemma 4.14)

≤2∥QT f(A)Q−X∥F + ∥f(A)−Q(QT f(A)Q)(k)Q
T ∥F,

as required.

5.2.2 Structural bounds

In this section we derive a structural bound for ∥f(A)−QdQ
T
d f(A)QdQ

T
d ∥F and ∥f(A)−

Qd(Q
T
d f(A)Qd)(k)Q

T
d ∥F that is true for any sketch matrix Ω as long as Ωf,1 defined in
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(5.2) has rank k. This bound will allow us to obtain probabilistic bounds.

Introduce the quantity

EΩ(d; f) = min
g∈Pd−1

[
∥g(Λf,2)Ωf,2Ω

†
f,1∥2F max

i=1,...,k

∣∣∣∣f(λf,i)g(λf,i)

∣∣∣∣2
]
, (5.5)

which relates to how well a polynomial can be large (relative to f) on the eigenvalues
λf,1, . . . , λf,k and small on the remaining eigenvalues.

Lemma 5.3. Consider A ∈ Rn×n as defined in (5.1). Assuming Ωf,1 in (5.2) has rank
k, for all functions f : R 7→ R, we have

∥f(A)−QdQ
T
d f(A)QdQ

T
d ∥2F

≤ ∥f(A)−Qd(Q
T
d f(A)Qd)(k)Q

T
d ∥2F

≤ ∥f(Λf,2)∥2F + 5EΩ(d; f).
(5.6)

Proof. The first inequality is immediate due to the fact that QdQ
T
d f(A)QdQ

T
d is the

nearest matrix to f(A) in the Frobenius norm whose range and co-range is contained in
range(Qd) (Lemma 4.14).

We proceed with proving the second inequality. Choose any g ∈ Pd−1. Note that if
we choose g so that g(λf,i) = 0 for some i = 1, . . . , k then the right hand side of (5.6)
is infinite and the bound trivially holds. Hence, we may assume that g(λf,i) ̸= 0 for
i = 1, . . . , k. Consequently, g(Λf,1) is non-singular. Define Z = g(A)ΩΩ†

f,1g(Λf,1)
−1 and

let P̃ be the orthogonal projector onto range(Z) ⊆ range(Qs). Note that rank(Z) ≤ k

and Qd(Q
T
d f(A)Qd)(k)Q

T
d is the best rank k approximation to f(A) whose range and

co-range is contained in range(Qd) (Lemma 4.14). Hence,

∥f(A)−Qd(Q
T
d f(A)Qd)(k)Q

T
d ∥2F ≤ ∥f(A)− P̃ f(A)P̃ ∥2F.

Now define P̂ = UT P̃U , which is the orthogonal projector onto range(UTZ). By the
unitary invariance of the Frobenius norm we have

∥f(A)− P̃ f(A)P̃ ∥2F = ∥f(Λ)− P̂ f(Λ)P̂ ∥2F.

Furthermore,

∥f(Λ)− P̂ f(Λ)P̂ ∥2F = ∥(I − P̂ )f(Λ)∥2F + ∥P̂ f(Λ)(I − P̂ )∥2F. (5.7)

We are going to bound the two terms on the right hand side of (5.7) separately, as done
in Theorem 4.21. We begin with bounding the first term in (5.7). Our analysis is similar
to the proof of [79, Theorem 9.1].

64



Chapter 5: Krylov-aware low-rank approximation

Note that since rank(Ωf,1) = k we have Ωf,1Ω
†
f,1 = I. Hence,

UTZ = UT g(A)ΩΩ†
f,1g(Λf,1)

−1 =

[
I

g(Λf,2)Ωf,2Ω
†
f,1g(Λf,1)

−1

]
:=

[
I

F

]
.

Hence,

I − P̂ =

[
I − (I + F TF )−1 −(I + F TF )−1F T

−F (I + F TF )−1 I − F (I + F TF )−1F T

]

⪯
[

F TF −(I + F TF )−1F T

−F (I + F TF )−1 I

]
, (5.8)

where the inequality is due to [79, Proposition 8.2]. Consequently, using (5.8) we have

∥(I − P̂ )f(Λ)∥2F = tr(f(Λ)(I − P̂ )f(Λ))

≤ ∥F f(Λf,1)∥2F + ∥f(Λf,2)∥2F
≤ ∥f(Λf,2)∥2F + ∥g(Λf,2)Ωf,2Ω

†
f,1∥2F∥g(Λf,1)

−1f(Λf,1)∥22

= ∥f(Λf,2)∥2F + ∥g(Λf,2)Ωf,2Ω
†
f,1∥2F max

i=1,...,k

∣∣∣∣f(λf,i)g(λf,i)

∣∣∣∣2 . (5.9)

We proceed with bounding the second term in (5.7). By the triangle inequality we have

∥P̂ f(Λ)(I − P̂ )∥F ≤
∥∥∥∥∥
[
0

f(Λf,2)

]
P̂

∥∥∥∥∥
F

+

∥∥∥∥∥(I − P̂ )

[
f(Λf,1)

0

]∥∥∥∥∥
F

.

Using a similar argument as in (5.9) we have∥∥∥∥∥(I − P̂ )

[
f(Λf,1)

0

]∥∥∥∥∥
F

≤ ∥g(Λf,2)Ωf,2Ω
†
f,1∥F max

i=1,...,k

∣∣∣∣f(λf,i)g(λf,i)

∣∣∣∣ , (5.10)

and since F (I + F TF )−1F T ⪯ FF T we have∥∥∥∥∥
[
0

f(Λf,2)

]
P̂

∥∥∥∥∥
2

F

= tr

([
0

f(Λf,2)

]
P̂

[
0

f(Λf,2)

])
= tr(f(Λf,2)F (I + F TF )−1F T f(Λf,2))

≤ tr(f(Λf,2)FF
T f(Λf,2)) = ∥f(Λf,2)F ∥F

≤ ∥f(Λf,2)∥22∥g(Λf,1)
−1∥22∥g(Λf,2)Ωf,2Ω

†
f,1∥2F

≤ ∥g(Λf,2)Ωf,2Ω
†
f,1∥2F max

i=1,...,k

∣∣∣∣f(λf,i)g(λf,i)

∣∣∣∣2 . (5.11)

Inserting the bounds (5.9), (5.10), and (5.11) into (5.7) and optimizing over Pd−1 yields
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the desired inequality.

Remark 5.1. Note that the proof of Lemma 5.3 allows us to prove Theorem 2.8 by

choosing g(x) = xq and using that ∥Λq
2Ω2Ω

†
1∥2F max

i=1,...,k

∣∣∣ λi

λq
i

∣∣∣2 ≤ ∣∣∣λk+1

λk

∣∣∣2(q−1)
∥Λ2Ω2Ω

†
1∥2F.

5.2.3 Probabilistic bounds

With the structural bound available, we are ready to derive the probabilistic bounds
for ∥f(A) −QdQ

T
d f(A)QdQ

T
d ∥F and ∥f(A) −Qd(Q

T
d f(A)Qd)(k)Q

T
d ∥F. Note that by

Lemma 5.3 it is sufficient to derive a probabilistic bound for EΩ(d; f) defined in (5.5).

We will bound EΩ(d; f) in terms of a deterministic quantity

E(d; f) = min
g∈Pd−1

[
∥g(Λf,2)∥2F max

i=1,...,k

∣∣∣∣f(λf,i)g(λf,i)

∣∣∣∣2
]
, (5.12)

which also relates to how well a polynomial can be large (relative to f) on the eigenvalues
λf,1, . . . , λf,k where f has the largest magnitude and small on the remaining eigenvalues,
but does not depend on the randomness used by the algorithm.

Lemma 5.4. If Ω is a random n× (k+p) matrix whose entries are i.i.d. N (0, 1) random
variables, and Ωf,1 and Ωf,2 are defined as in (5.2), then with EΩ(d; f) and E(d; f) as
defined in (5.5) and (5.12),

(i) for any u, t ≥ 0, with probability at least 1− e−(u−2)/4 −
√
πk
(
t
e

)−(p+1)/2 we have

EΩ(d; f) ≤
utk

p+ 1
E(d; f);

(ii) if p ≥ 2 we have

E[EΩ(d; f)] ≤
k

p− 1
E(d; f).

Proof. (i): For any polynomial g ∈ Pd−1 by [150, Proposition 8.6] we have with probability
at least 1− e−(u−2)/4 −

√
πk
(
t
e

)−(p+1)/2

[
∥g(Λf,2)Ωf,2Ω

†
f,1∥2F max

i=1,...,k

∣∣∣∣f(λf,i)g(λf,i)

∣∣∣∣2
]
≤ utk

p+ 1

[
∥g(Λf,2)∥2F max

i=1,...,k

∣∣∣∣f(λf,i)g(λf,i)

∣∣∣∣2
]
.

The inequality is respected if we minimize both sides over all polynomials.
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(ii): This is proven in an identical fashion utilizing the expectation bound in [150,
Proposition 8.6].

Before proceeding, we note that if E and F are disjoint sets containing λf,k+1, . . . , λf,n
and λf,1, . . . , λf,k respectively, we can upper bound (5.12) by

E(d; f) ≤ n∥f(A)∥22 min
g∈Pd−1

 supx∈E
|g(x)|2

inf
x∈F

|g(x)|2

 := n∥f(A)∥22Z̃2
d−1(E,F ), (5.13)

where Z̃d−1(E,F ) is similar to the Zolotarev number of E and F [19, 77], but the ratio
is minimized over polynomials instead of rational functions. We could proceed with
bounding Z̃(E,F ). However, due to the appearance of n in (5.13) we expect that such a
bound would be loose and we therefore omit a more detailed discussion.

5.2.4 Error bounds for Krylov aware low-rank approximation

With Theorem 5.2, Lemma 5.3, and Lemma 5.4 we can now derive a probabilistic error
bound for the approximation returned by Algorithm 8. We focus on the truncated
approximation, as deriving a bound for the untruncated approximation can be done in
an entirely identical fashion.

We begin with a result that is an immediate consequence of Lemma 5.1. The proof is
very similar to the proof of [134, Lemma 4.1].

Lemma 5.5. Let λmax and λmin denote the largest and smallest eigenvalue of A. Let
q = d+ r and let Tq and Qd be computed using Algorithm 4. Then,

∥QT
d f(A)Qd − f(Tq)1:nd,1:nd

∥F ≤ 2
√
(k + p)d inf

g∈P2r+1

∥f(x)− g(x)∥L∞([λmin,λmax]).

Proof. By Lemmas 3.1 and 5.1 we know that for any polynomial g ∈ P2r+1 we have
QT

d g(A)Qd = g(Tq)1:nd,1:nd
, where nd is the number of columns in Qd. Therefore, since

∥Qd∥F ≤ √
nd ≤

√
(k + p)d and ∥Qd∥2 ≤ 1 we have

∥QT
d f(A)Qd − f(Tq)1:nd,1:nd

∥F
= ∥QT

d f(A)Qd − g(Tq)1:nd,1:nd
+ g(Tq)1:nd,1:nd

− f(Tq)1:nd,1:nd
∥F

≤ ∥QT
d f(A)Qd −QT

d g(A)Qd∥F + ∥(g(Tq)− f(Tq))1:nd,1:nd
∥F

≤
√
(k + p)d (∥f(A)− g(A)∥2 + ∥g(Tq)− f(Tq)∥2)

≤ 2
√
(k + p)d∥f(x)− g(x)∥L∞([λmin,λmax]),

where the last inequality is due to the fact that the spectrum of Tq is contained in
[λmin, λmax]. Optimizing over g ∈ P2r+1 gives the result.
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We note that for block-size k + p > 1, the Krylov subspace is not equivalent to
∪{range(g(A)Ω) : g ∈ Pd−1}, and bounds based on best approximation may be pes-
simistic due to this fact. In fact, deriving stronger bounds is an active area of research;
see e.g. [35, 57, 58, 60, 61, 86]. However, in this thesis we will stick with this simple and
well known bound.

We proceed with proving the following error bound for Algorithm 8.

Theorem 5.6. Consider A ∈ Rn×n as defined in (5.1) and let λmax and λmin be the largest
and smallest eigenvalue of A respectively. Let QdX(k)Q

T
d be the rank k approximation

returned by Algorithm 8 where Ω is a random matrix with i.i.d. N (0, 1) entries. Then,
with E(d; f) as defined in (5.12)

(i) with probability at least 1− e−(u−2)/4 −
√
πk
(
t
e

)−(p+1)/2,

∥f(A)−QdX(k)Q
T
d ∥F ≤4

√
(k + p)d inf

g∈P2r+1

∥f(x)− g(x)∥L∞([λmin,λmax])

+

√
∥f(Λf,2)∥2F +

5utk

p+ 1
E(d; f);

(ii) if p ≥ 2 that

E∥f(A)−QdX(k)Q
T
d ∥F ≤4

√
(k + p)d inf

g∈P2r+1

∥f(x)− g(x)∥L∞([λmin,λmax])+√
∥f(Λf,2)∥2F +

5k

p− 1
E(d; f).

Proof. (i): By applying Theorem 5.2, Lemma 5.3, and Lemma 5.5 we obtain the following
structural bound

∥f(A)−QdX(k)Q
T
d ∥F ≤4

√
(k + p)d inf

g∈P2r+1

∥f(x)− g(x)∥L∞([λmin,λmax])+√
∥f(Λf,2)∥2F + 5EΩ(d; f).

(5.14)

Applying Lemma 5.4 (i) yields the desired bound.

(ii): By applying the Cauchy-Schwarz inequality to (5.14) and Lemma 5.4 (ii) yields the
desired inequality.

We proceed with commenting on the three terms appearing in the bounds in Theorem 5.6.
As noted above, 4

√
(k + p)d inf

g∈P2r+1

∥f(x)− g(x)∥L∞([λmin,λmax]) has to do with how well

quadratic forms involving matrix functions are approximated by the Lanczos method.
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Note that if we know that ∥f(Tq)1:nd,1:nd
−QT

d f(A)Qd∥F ≤ ϵ almost surely then this
term can be replaced with 2ϵ. The ∥f(Λf,2)∥F term tells us that the error can never
be below the optimal rank k approximation error. Finally, E(d; f) tells us that Qd is a
good orthonormal basis for low-rank approximation if there is a polynomial of degree at
most d− 1 that is very large on the eigenvalues λf,1, . . . , λf,k and is very small on the
eigenvalues λf,k+1, . . . , λf,n, which effectively denoises the contribution from the small
eigenvalues of f(A). A similar intuition was used in [115, 150] when f(x) = x.

5.2.5 Simplified bounds for the matrix exponential

By constructing particular polynomials of degree < d, we can obtain more explicit bounds
that depend only on how accurately f(x) can be approximated by polynomials. These
bounds are reminiscent of standard bounds that might be obtained if we could do exact
products with f(A), except that they have small error terms accounting for the fact that
f(x) might not be a polynomial. We will provide such bounds for exp(A). For simplicity,
we focus on expectation bounds. However, using an almost identical argument, one can
obtain the corresponding tailbounds.

We begin with the following result, which shows that by Theorem 5.6 can recover the
bounds of the randomized SVD [79, Theorem 10.5].

Corollary 5.7. Consider the setting of Theorem 5.6 with f(x) = exp(x). Let A have
eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn. Then, if p ≥ 2, β = λmax − λmin = λ1 − λn, and d > eβ

we have

E∥ exp(A)−QdX(k)Q
T
d ∥F ≤√

(k + p)dβ2r+2

24r+1(2r + 2)!
∥ exp(A)∥2 +

√
1 +

1

(1− βd

d! )
2

5k

p− 1
∥ exp(Λf,2)∥F.

Proof. First note that by a standard Chebyshev interpolation bound [144, Lecture 20]

inf
g∈P2r+1

∥ exp(x)− p(x)∥L∞([λmin,λmax]) ≤
β2r+r

24r+3(2r + 2)!
∥ exp(A)∥2.

Hence,

4
√

(k + p)d inf
g∈P2r+1

∥f(x)− p(x)∥L∞([λmin,λmax]) ≤ 4
√

(k + p)d
β2r+2

(2r + 2)!
∥ exp(A)∥2.

We proceed with bounding E(d; exp(x)). Let g(x) =
d−1∑
i=0

(x−λmin)
i

i! . Then for x ∈
[λmin, λmax] we have 0 ≤ g(x) ≤ exp(x−λmin). Consequently, ∥g(Λf,2)∥F ≤ ∥ exp(Λf,2)∥F exp(−λmin).
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Furthermore, for x ∈ [λmin, λmax] we have

0 ≤ exp(x− λmin)− g(x) =
∞∑
i=d

(x− λmin)
i

i!
≤ (x− λmin)

d

d!
exp(x− λmin) ≤

βd

d!
exp(x− λmin).

Note that by the assumption on d and a Stirling approximation d! ≥
√
2πd

(
d
e

)d [131] we
have βd

d! < 1. Hence,

max
i=1,...,k

∣∣∣∣exp(λi)g(λi)

∣∣∣∣ = exp(λmin) max
i=1,...,k

∣∣∣∣exp(λi − λmin)

g(λi)

∣∣∣∣ = exp(λmin)

1− βd

d!

. (5.15)

Therefore, E(d; exp(x)) is bounded above by

E(d; exp(x)) ≤ 1

(1− βd

d! )
2
∥ exp(Λf,2)∥2F. (5.16)

Plugging the inequalities (5.15) and (5.16) into Theorem 5.6 yields the desired inequality.

In the proof of Corollary 5.7 we upper bounded E(d; exp(x)) by choosing the truncated
Taylor series of the exponential. However, there are other polynomials that can achieve a
significantly tighter upper bound of E(d; exp(x)). For example, we can choose a scaled
and shifted Chebyshev polynomial to obtain the following bound, which shows that as d
and r grow larger the low-rank approximation returned by Algorithm 8 converges to an
optimal low-rank approximation.

Corollary 5.8. Consider the setting of Theorem 5.6 with f(x) = exp(x). Let A have
eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn. Then, if p ≥ 2, β = λmax − λmin = λ1 − λn, and
γ =

λk−λk+1

λk+λk+1−2λmin
we have

E∥ exp(A)−QdX(k)Q
T
d ∥F ≤√

(k + p)dβ2r+2

24r+1(2r + 2)!
∥ exp(A)∥2 +

√
1 + e2β−4(d−2)

√
γ 20k

p− 1
∥ exp(Λf,2)∥F.

Proof. Bounding 4
√
(k + p)d inf

g∈P2r+1

∥ exp(x)− g(x)∥L∞([λmin,λmax]) is done identical to as

done in Corollary 5.7. We proceed with bounding E(d; exp(x)) by choosing the polynomial
g(x) = (1+x−λmin)Td−2

(
x−λmin

λk+1−λmin

)
, where Td−2 is the Chebyshev polynomial of degree

d − 2. Hence, recalling the definition (5.12) of E(d; exp(x)), since 0 ≤ 1 + x ≤ ex for
x ≥ 0,

∥g(Λf,2)∥F ≤ ∥ exp(Λf,2 − λminI)∥F
∥∥∥∥Td−2

(
Λf,2 − λminI

λk+1 − λmin

)∥∥∥∥
2

.
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Hence, using that |Td−2(x)| ≤ 1 for x ∈ [−1, 1],

E(d; exp(x)) ≤ ∥g(Λf,2)∥2F max
i=1,...,k

∣∣∣∣ eλi

g(λi)

∣∣∣∣2
≤ ∥ exp(Λf,2 − λminI)∥2F max

i=1,...,k
e2λmin

∣∣∣∣eλi−λmin

g(λi)

∣∣∣∣2
= ∥ exp(Λf,2)∥2F max

i=1,...,k

∣∣∣∣eλi−λmin

g(λi)

∣∣∣∣2 . (5.17)

Finally, using that ex

1+x ≤ ex for x ≥ 0,that Td−2(x) is increasing for x ≥ 1, and [150,
Lemma 9.3] we have

max
i=1,...,k

∣∣∣∣eλi−λmin

g(λi)

∣∣∣∣2 ≤ max
i=1,...,k

∣∣∣∣∣∣ eλi−λmin

Td−2

(
x−λmin

λk+1−λmin

)
∣∣∣∣∣∣
2

≤ e2β

Td−2

(
λk−λmin

λk+1−λmin

)2 ≤ 4e2β−4(d−2)
√
γ ,

Plugging this inequality into (5.17) and then (5.17) into Theorem 5.6 yields the desired
inequality.

5.2.6 Simplified bounds for the identity function

By applying our results to the function f(x) = x, one can derive bounds for low-rank
approximation of a symmetric matrix A. These bounds are reminiscent of the bounds in
[150, Theorem 9.2], but they allow for a symmetric and truncated low-rank approximation,
and the bounds can therefore be of independent interest. In particular, we have the
following result when f(x) = x.

Theorem 5.9 (Theorem 2.9 restated). Consider the setting of Theorem 5.6 with f(x) = x

and r = 0. Let the eigenvalues of A be ordered so that |λ1| ≥ |λ2| ≥ . . . ≥ |λn|. Let
γ =

|λk|−|λk+1|
|λk|+|λk+1| . Then,

(i) with probability at least 1− e−(u−2)/4 −
√
πk
(
t
e

)−(p+1)/2,

∥A−Qd(Q
T
dAQd)(k)Q

T
d ∥F ≤

√
1 + e−4(d−2)

√
γ 20utk

p+ 1
∥Λ2∥F;
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(ii) if p ≥ 2 that

E∥A−Qd(Q
T
dAQd)(k)Q

T
d ∥F ≤

√
1 + e−4(d−2)

√
γ 20k

p− 1
∥Λ2∥F.

Proof. First note that the polynomial approximation term in Theorem 5.6 is 0. Moreover,
in this case we have Λf,2 = Λ2, where Λ2 is as in (2.6). Hence, by Theorem 5.6 it is
sufficient to show that

min
g∈Pd−1

[
∥g(Λ2)∥2F max

i=1,...,k

∣∣∣∣ λi
g(λi)

∣∣∣∣2
]
≤ 4e−4(d−2)

√
γ∥Λ2∥2F. (5.18)

Let g(x) = xTd−2(x/|λk+1|), where Td−2 is the Chebyshev polynomial of degree d − 2.
We have

min
g∈Pd−1

[
∥g(Λ2)∥2F max

i=1,...,k

∣∣∣∣ λi
g(λi)

∣∣∣∣2
]
≤ ∥g(Λ2)∥2F max

i=1,...,k

∣∣∣∣ λi
g(λi)

∣∣∣∣2 . (5.19)

Note that since g(x) is even or odd we have |g(x)| = |g(|x|)|. Hence,

∥g(Λ2)∥2F = ∥g(|Λ2|)∥2F ≤ ∥Λ2∥2F∥Td−2(|Λ2|/|λk+1|)∥22 ≤ ∥Λ2∥2F, (5.20)

where |Λ2| denotes the matrix where we take the absolute values of the diagonal of Λ2

and where we used that |Td−2(x)| ≤ 1 for x ∈ [−1, 1] [150, Lemma 9.3]. Furthermore,

max
i=1,...,k

∣∣∣∣ λi
g(λi)

∣∣∣∣2 = ∣∣∣∣ 1

Td−2(|λk|/|λk+1|)

∣∣∣∣2 ≤ 4e−4(d−2)
√
γ , (5.21)

where we used that Td−2(x) is increasing for x ≥ 1 and [150, p.46]. Combining (5.19),
(5.20), and (5.21) yields (5.18), as required.

5.3 Numerical experiments

In this section we compare the Krylov aware low-rank approximation (Algorithm 8)
and Algorithm 1 (assuming exact matrix-vector products with f(A)) and Algorithm 7
(inexact matrix-vector products with f(A)). All experiments have been performed in
MATLAB (version 2020a) and scripts to reproduce the figures are available at https:
//github.com/davpersson/Krylov_aware_LRA.git.

5.3.1 Test matrices

We begin with outlining the test matrices and matrix functions used in our examples.
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Exponential integrator

Consider the parabolic differential equation outlined in (3.3)

ut = κ∆u+ λu in [0, 1]2 × [0, 2]

u(·, 0) = θ in [0, 1]2

u = 0 on Γ1

∂u

∂n
= 0 on Γ2

for κ, λ > 0 and Γ2 = {(x, 1) ∈ R2 : x ∈ [0, 1]} and Γ1 = ∂D \ Γ2. As mentioned in
Section 5.3.1, discretizing in space using finite differences on a 100× 100 grid we obtain
an ordinary differential equation of the form (3.1)

u̇(t) = Au(t) for t ≥ 0,

u(0) = θ,

for symmetric matrix A ∈ R9900×9900. It is well known that the solution to (4.29) is given
by u(t) = exp(tA)θ. Suppose that we want to compute the solution for t ≥ 1. One can
verify that exp(A) admits a good rank 60 approximation

∥ exp(A)− (exp(A))(60)∥F
∥ exp(A)∥F

≈ 4× 10−4.

Hence, we can use Algorithm 8 to compute Qs and Tq and use them to efficiently construct
a rank 60 approximation to exp(tL) for any t with almost no additional cost.

In the experiments we set κ = 0.01 and λ = 1.

Estrada index

Recall as outlined in Section 3.2.5 or an (undirected) graph with adjacency matrix A
the Estrada index is defined as tr(exp(A)). It is used to measure the degree of protein
folding [54]. One can estimate the Estrada index of a network by the Hutch++ algorithm
or its variations [37, 52, 111, 123], which requires computing a low-rank approximation
of exp(A). Motivated by the numerical experiments in [111] we let A be the adjacency
matrix of Roget’s Thesaurus semantic graph [118].

Quantum spin system

We use an example from [52, Section 4.3]; a similar example is found in [37]. We want to
approximate exp(−βA) where

A = −
N−1∑
i=1

ZiZi+1 − h
N∑
i=1

Xi ∈ Rn×n, (5.22)
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where
Xi = I2i−1 ⊗X ⊗ I2N−i , Zi = I2i−1 ⊗Z ⊗ I2N−i

where X and Z are the Pauli operators

X =

[
0 1

1 0

]
, Z =

[
1 0

0 −1

]
.

Estimating the partition function Z(β) = tr(exp(−βA)) is an important task in quantum
mechanics [126], which once again can benefit from computing a low-rank approximation
of exp(−βA).

In the experiments we set N = 14 so that n = 214, β = 0.3, and h = 10.

Synthetic example for the matrix logarithm

We generate a symmetric matrix A ∈ R5000×5000 with eigenvalues λf,i = exp( 1
i2
) for

i = 1, . . . , n. We let f(x) = log(x) so that the eigenvalues of f(A) are f(λf,i) = 1
i2

for
i = 1, . . . , n.

5.3.2 Comparing relative errors

In this section we compare the error returned by Algorithm 6 (with truncation), Algo-
rithm 7, and Algorithm 8. If C is a low-rank approximation returned by one of the
algorithms then we compare the relative error

∥f(A)−C∥F
∥f(A)∥F

. (5.23)

In all experiments we set the parameters in Algorithm 8 and Algorithm 7 to be p = 0

or p = 5 and d = r so that the total number of matrix vector products with A is
2(k+p)d. We run Algorithm 6 on f(A) with exact matrix-vector products, which cannot
be done in practice. Hence, the results from this algorithm are only used as a reference
for Algorithm 8 and Algorithm 7. The results are presented in Figure 5.1 for p = 0

and Figure 5.2 for p = 5. All results confirm that Algorithm 8 returns a more accurate
approximation than Algorithm 7, and can even be more accurate than Algorithm 1. Note
that for (5.22) the error for the untruncated version of the approximation returned by
Algorithm 8 stagnates. This is because the error from the approximation of the quadratic
form dominates the error. In this case, r should be chosen larger than d.

74



Chapter 5: Krylov-aware low-rank approximation

30 32 34 36 38 40 42 44 46 48 50
10

-5

10
-4

10
-3

10
-2

10
-1

Optimal

Krylov aware (untruncated)

Krylov aware (truncated)

randSVD

exact randSVD

(a) Exponential integrator

5 10 15 20

10
-2

10
-1

Optimal

Krylov aware (untruncated)

Krylov aware (truncated)

randSVD

exact randSVD

(b) Estrada index

10 11 12 13 14 15 16 17 18 19 20
10

-4

10
-3

10
-2

10
-1

Optimal

Krylov aware (untruncated)

Krylov aware (truncated)

randSVD

exact randSVD

(c) Quantum spin system

1 2 3 4 5

10
-3

10
-2

10
-1

10
0

Optimal

Krylov aware (untruncated)

Krylov aware (truncated)

randSVD

exact randSVD

(d) Synthetic example for the matrix logarithm

Figure 5.1: Comparing (5.23) for the the approximations returned by Algorithm 8 without
truncation (untruncated), Algorithm 8 with truncation back to rank k (truncated),
Algorithm 7, and Algorithm 6. The black line shows the optimal rank k approximation
relative Frobenius norm error. The rank parameter k is visible as titles in the figures. In
all experiments we set the oversampling parameter p = 0. All examples are outlined in
Section 5.3.1.
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Figure 5.2: Comparing (5.23) for the the approximations returned by Algorithm 8 without
truncation (untruncated), Algorithm 8 with truncation back to rank k (truncated),
Algorithm 7, and Algorithm 6. The black line shows the optimal rank k approximation
relative Frobenius norm error. The rank parameter k is visible as titles in the figures. In
all experiments we set the oversampling parameter p = 5. All examples are outlined in
Section 5.3.1.
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6 An introduction to trace estimation

In this chapter we will give an introduction to trace estimation. We will outline its applica-
tions, present the stochastic trace estimator, and present the Hutch++ algorithm.

Computing or estimating the trace of a large symmetric matrix A ∈ Rn×n,

tr(A) :=

n∑
i=1

Aii,

is an important problem that arises in a wide variety of applications, such as triangle
counting in graphs [8], Frobenius norm estimation [31, 74], quantum chromodynamics [146],
computing the Estrada index of a graph [120, 54], computing the log-determinant [2, 41,
138, 159, 168] and many more [155].

Computing tr(A) is of course a trivial task if the matrix A is explicitly available to us.
However, the difficulty arises when we do not have explicit access to the entries of A,
but can only access A through matrix-vector products x 7→ Ax. This appears when, for
example, A is a function of another matrix C, such as A = exp(C), A = log(λI +C),
A = C−1 or A = C3. Computing A (or even only its diagonal entries) explicitly in these
situations is typically too expensive and may require up to O(n3) operations, as discussed
in Chapter 3. On the other hand, computing (approximate) matrix-vector products Ax
is tractable using, for example, Lanczos methods [84, 86], as discussed in Section 3.3.
One can of course exactly recover tr(A) by computing n matrix-vector products with A.
However, computing O(n) matrix-vector products is usually too expensive, and we want
to obtain an estimate of the trace using significantly fewer matrix-vector products.

In Section 6.1 we will introduce the stochastic trace estimator, which is an unbiased
Monte-Carlo estimator of tr(A). Then, in Section 6.2 we will present the Hutch++
algorithm, which combines the stochastic trace estimator with randomized low-rank
approximation to achieve a faster convergence of the estimator.
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6.1 The stochastic trace estimator

The stochastic trace estimator, sometimes called the Girard-Hutchinson estimator [67,
90], builds on the following observation: if ω is a random vector of length n satisfying
EωωT = I then

EωTAω = tr(A).

Therefore, sampling m such quadratic forms and computing the sample mean yields the
following unbiased estimator of the trace:

trm(A) :=
1

m

m∑
i=1

ωT
i Aωi =

1

m
tr
(
ΩTAΩ

)
≈ tr(A), (6.1)

where Ω =
[
ω1 · · · ωm

]
contains m independent copies of ω. Common choices for the

random vector ω are standard Gaussians; the entries in ω are independent identically
distributed (i.i.d.) samples from N (0, 1), Rademacher vectors; the entries in ω are
independently chosen to be −1 or +1 with equal probability, and spherical random vectors:
the vector ω is drawn uniformly from a sphere of radius

√
n. Among random vectors

whose entries are i.i.d., Rademacher vectors achieves the smallest variance. Furthermore,
uniform random vectors achieve the smallest variance among spherical distributions. See
[51] for a more detailed discussion. However, for simplicity, in this thesis, we choose ω to
be standard Gaussian. In this case, the variance of trm(A) is given by

Var(trm(A)) =
2

m
∥A∥2F. (6.2)

Under the assumption that A is symmetric positive semi-definite, one can derive bounds
on m that guarantee a small relative error with high probability:

P (|trm(A)− tr(A)| ≤ ε tr(A)) ≥ 1− δ; (6.3)

see, e.g., [11, 74, 132, 133]. When A is indefinite, aiming for such a relative bound is
unrealistic, as can be easily seen for a non-zero matrix A with tr(A) = 0. Instead, one
aims at deriving bounds on m that guarantee a small absolute error:

P (| trm(A)− tr(A)| ≤ ε) ≥ 1− δ. (6.4)

It is well known that the number of samples needed to attain (6.3) or (6.4) grows at a
rate proportional to ε−2 as ε→ 0, which is confirmed by the following tailbound.

Theorem 6.1 ([41, Theorem 1]). Let A be a symmetric matrix. Then for any ε ≥ 0 we
have

P (| trm(A)− tr(A)| ≥ ε) ≤ 2 exp

(
− mε2

4∥A∥2F + 4ε∥A∥2

)
.
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Algorithm 9 Hutch++
input: Symmetric A ∈ Rn×n. Number of matrix-vector products m ∈ N (multiple of 3).
output: An approximation to tr(A) : trh++

m (A).
1: Sample Ω ∈ Rn×m

3 with i.i.d. N (0, 1) or Rademacher entries.
2: Compute Y = AΩ.
3: Get an orthonormal basis Q ∈ Rn×m

3 for range(Y ).
4: Sample Ψ ∈ Rn×m

3 with i.i.d. N (0, 1) or Rademacher entries.
5: return trh++

m (A) = tr(QTAQ) + 3
m tr(ΨT (I −QQT )A(I −QQT )Ψ)

Hence, if A is SPSD, Theorem 6.1 implies that if

m = 4ε−2

( ∥A∥2F
tr(A)2

+ ε
∥A∥2
tr(A)

)
log(2δ−1) ≤ 4ε−2(1 + ε) log(2δ−1),

then (6.3) is satisfied. For small ε, the ε−2 becomes very large. Therefore, the number
of required samples grows quickly as ε→ 0. To reduce the number of samples (and, in
turn, the number of matrix-vector products), different variance reduction techniques were
studied [63, 102, 111, 166], which we will outline in the subsequent section.

6.2 The Hutch++ algorithm

Variance reduction techniques for trace estimation usually aim at finding a decomposi-
tion

tr(A) = tr(A1) + tr(A2), (6.5)

such that tr(A1) can be computed explicitly and the stochastic estimator for tr(A2) has
reduced variance, which – in view of (6.2) – means that A2 has reduced Frobenius norm.
Among these techniques is the Hutch++ algorithm presented in [111]. In Hutch++, the
matrix A1 in (6.5) is chosen to be a low-rank approximation of A obtained with the
randomized SVD (Algorithm 1), and A2 = A−A1. The resulting method is presented
in Algorithm 9. Hutch++ consists of two phases. The first phase is concerned with
obtaining a low-rank approximation A ≈ QQTA and exploits the cyclic property of
the trace: tr(QQTA) = tr(QTAQ). It uses 2m

3 matrix-vector products with A: AΩ

in line 2 of Algorithm 9 and AQ to compute tr(QTAQ) in line 5. The second phase
is concerned with estimating tr(A − QQTA) = tr((I − QQT )A(I − QQT )) via the
stochastic trace estimator (6.1). It uses the remaining m

3 matrix-vector products with
A to compute A((I − QQT )Ψ) in line 5 of Algorithm 9. A major breakthrough in
[111] was that Hutch++ guarantees an ε-relative error, as in (6.3), with only O(ε−1)

matrix-vector products, provided that A is SPSD. This compares favorably with the
O
(
ε−2
)

matrix-vector products that are required when using stochastic trace estimation
alone.

Theorem 6.2 ([111, Theorem 1.1]). Suppose that A ∈ Rn×n is SPSD. If Algorithm 9 is
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implemented with m = O
(
ε−1
√
log(δ−1) + log(δ−1)

)
matrix-vector products then∣∣∣trh++

m (A)− tr(A)
∣∣∣ ≤ ε tr(A).

holds with probability at least 1− δ.

Before proceeding, we point out that alternatives to Algorithm 9 have been studied
before [111] was published. For example, Lin Lin [102] proposed to use the Nyström
approximation instead of the randomized SVD in Algorithm 9; we will consider this
algorithm in Chapter 8. However, the authors in [111] were the first to prove a O(ε−1)

upper bound on the required matrix-vector products with A. Other trace estimation
techniques have also been studied. For example, the authors in [138] proposed to use a
low-rank approximation B to A and to use the approximation tr(B) ≈ tr(A). However,
this method only works well whenever A has a rapid eigenvalue decay. Furthermore,
the authors in [52] presented the XTrace algorithm. This algorithm is a version of the
Hutch++ algorithm that uses all random vectors for both trace estimation and low-
rank approximation. This makes the resulting estimator a symmetric function of the
random test vectors, which is a requirement for a minimum variance unbiased estimator
if the random test vectors are exchangeable.1 Chapters 7 and 8 are based on [123], and
because [52] was published after [123] we omit a more detailed discussion on the XTrace
algorithm.

6.3 Contributions

6.3.1 Adaptive trace estimation

The effectiveness of the two phases of Hutch++ depends on the singular values of A.
When A admits an accurate low-rank approximation (e.g., when its singular values decay
quickly), it would be sufficient to perform the approximation tr(A) ≈ tr(A1), as suggested
by [138] and skip the second phase of Hutch++. On the other hand, when all singular
values of A are nearly equal, the variance reduction achieved during the first phase of
Hutch++ is insignificant and all effort should be spent on the second phase, the stochastic
trace estimator (6.1). One can easily perceive a situation where it is preferable to spend
maybe not all but most of the matrix-vector products on the stochastic trace estimator.
Algorithm 9 does not recognize such situations; the number of matrix-vector products is
fixed a priori and distributed in a prescribed fashion among the two phases.

Furthermore, the results in [111] are of significant theoretical importance, but since the
O(ε−1) bound comes without explicit constants it gives practitioners little indication of
how many matrix-vector products to use when estimating the trace of a given matrix A.
One can work out the constants, for example by using results in [79] if Gaussian random

1A set of random vectors ω1, . . . ,ωm is said to be exchangeable if the family (ω1, . . . ,ωm) has the
same distribution as the family (ωπ(1), . . . ,ωπ(m)), where π is any permutation.
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vectors are used, and conclude that, for fixed failure probability δ, m = C/ε matrix-vector
products are sufficient to get an estimate of the trace with a relative error at most ε with
high probability, where C is a constant depending only on δ. However, this bound is in
some cases a significant overestimation of the number of required matrix-vector products.
To see this, consider the case when A has rapidly decaying singular values. In this case
it would be sufficient to perform the approximation tr(A) ≈ tr(A1), with potentially
much fewer matrix-vector products than suggested by the C/ε bound. On the other hand,
when all singular values of A are nearly equal, the standard deviation of the stochastic
trace estimator, which is proportional to ∥A∥F, is much smaller than tr(A). Therefore,
the relative error of the estimate produced by the stochastic trace estimator with only a
few matrix-vector products, potentially much fewer than suggested by the C/ε bound,
will give a sufficiently accurate estimate of the trace with high probability.2

In Chapter 7, we develop an adaptive version of Hutch++ to address the above mentioned
issues. This algorithm takes an input tolerance ε and a tolerated failure probability δ,
and outputs an estimate of the trace with an error bounded by ε with probability at least
1− δ, while splitting the matrix-vector products in a near-optimal way among the two
phases.

6.3.2 A single pass algorithm

Another aspect we address in this work is that the Hutch++ algorithm requires several
passes over the matrix A; in Algorithm 9 the matrix-vector products carried out in line
5 depend on earlier ones. In the streaming model it is desirable to design an algorithm
that requires only one pass over A and if the matrix of interest is modified by a linear
update A + E one does not have to revisit A to update the output of the algorithm.
Such a single pass property also increases parallelism. A single pass trace estimation
algorithm was presented in [111] and we will call it Single Pass Hutch++ in this thesis.
For a symmetric positive semidefinite matrix this algorithm comes with nearly the same
theoretical guarantees as Hutch++, but performs worse in practice. In the case of a
symmetric positive semidefinite matrix we develop a variation of Hutch++, Nyström++,
utilizing the Nyström approximation defined in Chapter 2. Nyström++ requires only
one pass over A and satisfies, up to constants, the theoretical guarantees of Hutch++.
This new variation of Hutch++ significantly outperforms Single Pass Hutch++ and often
outperforms Hutch++.

Remark 6.1. Note that the word adaptive is used differently in [111], where Hutch++
itself is already called adaptive because the matrix-vector products AQ depend on (and thus
adapt to) the previously computed AΩ. In this work, we follow the convention where the
term adaptive refers to an algorithm that adapts to a desired error bound. The Single Pass

2To see this, recall that the standard deviation of the stochastic trace estimator with m samples
equals

√
2/m∥A∥F . This can be much smaller than ε tr(A) with m potentially much smaller than C/ε,

provided ε is not too small.
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Hutch++ mentioned above is called NA-Hutch++ (non-adaptive variant of Hutch++)
in [111].
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7 A-Hutch++: An adaptive trace
estimation algorithm

In this chapter, we develop an adaptive version of Hutch++ to address the issues mentioned
in Section 6.3.1. In Section 7.1, we start with developing a prototype algorithm which
given a prescribed tolerance ε and failure probability δ outputs an estimate of the trace
of A, denoted tradap(A), such that

| tradap(A)− tr(A)| ≤ ε

holds, provably, with probability at least 1− δ. At the same time, our algorithm attempts
to minimize the overall number of matrix-vector products by distributing them between
the two phases in a near-optimal fashion. Then, in Section 7.2, we modify the prototype
algorithm to develop a more efficient adaptive trace estimation algorithm, which will
be A-Hutch++. Note, however, that the potential for improving Hutch++ is limited,
in [111] the O(ε−1) bound mentioned above is proven to be optimal up to a log(ε−1)

factor. In Section 7.3 we present the numerical experiments. In practice, we observe that
our adaptive version of Hutch++ is never worse than the original Hutch++ and often
outperforms it. Possibly more importantly, the output of our prototype algorithm comes
with a probabilistic guarantee on the error of the estimate of tr(A) without requiring the
user to know a priori how many matrix-vector products are needed. Our algorithm does
not assume that A is positive definite, which is why we focus on estimating tr(A) up to
a given absolute error as in (6.4).

This chapter is based on the work in [123].

7.1 Derivation of adaptive Hutch++

The aim of this section is to develop adaptive variants of Hutch++ (Algorithm 9). In
a first step, we derive a prototype algorithm that aims at minimizing the number of
matrix-vector products and comes with a guaranteed bound on the failure probability.
The latter requires to estimate the variance or, equivalently (see (6.2)), the Frobenius
norm, and this estimate needs additional matrix-vector products. Our final algorithm
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A-Hutch++ reuses these matrix-vector products for trace estimation and chooses the
number of them in an adaptive fashion. In turn, this creates dependencies that complicate
the analysis but do not lead to observed failure probabilities that are above the prescribed
failure probability.

The first phase of Algorithm 9 requires 2r matrix-vector products with A to obtain a
rank-r approximation Q(r)Q(r)TA, where we have added a superscript to emphasize the
dependence on r. Let M(r) be the number of matrix-vector products with A in the
second phase such that the stochastic trace estimator of

A
(r)
rest := (I −Q(r)Q(r)T )A(I −Q(r)Q(r)T )

attains a prescribed accuracy and success probability. Then the total number of matrix-
vector products with A is

m(r) = 2r +M(r). (7.1)

We aim at minimizing m(r) in order to obtain a near-optimal distribution of matrix-vector
products between the two phases.1 For this purpose, we first derive a suitable expression
for M(r).

7.1.1 Analysis of trace estimation

The tightest tail bound available in the literature for the stochastic trace estimator
trm(B) for a symmetric matrix B is Theorem 6.1. In most situations of interest, the term
involving ∥B∥2 will be insignificant. The following lemma is a variation of Theorem 6.1
that suppresses this term for sufficiently large m, similar to [111, Lemma 2.1].

Lemma 7.1. Let ρ(B) =
∥B∥2F
∥B∥22

denote the stable rank of B. Given υ > 0 assume that

m ≥ 4(1+υ) log(2/δ)
υ2ρ(B)

. Then the inequality

| trm(B)− tr(B)| ≤ 2
√
1 + υ

√
log (2/δ)

m
∥B∥F (7.2)

holds with probability at least 1− δ.

Proof. Inserting the right-hand side of (7.2), ε := 2
√
1 + υ

√
log(2/δ)

m ∥B∥F , into Theo-

1In practice we perform randomized low-rank approximations. Consequently, A(r)
rest is random and

therefore the function m is a random variable. Hence, it can be ambiguous what it means to minimize
m. To clarify this, first note that we always assume r ≤ n, where A is n× n, since when r = n we are
able to exactly compute tr(A). Therefore, we will never sample more than n random vectors to obtain
a low-rank approximation. Thus, let Ω ∈ Rn×n be the random matrix from which we can construct
Q(1),Q(2), . . . ,Q(n). Conditioned on Ω the function m becomes deterministic and has a minimum, which
is what we aim to find. We will describe a heuristic strategy to find the minimum in Section 7.1.2.
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rem 6.1 one obtains the desired result:

P (| trm(B)− tr(B)| ≥ ε) ≤ 2 exp

− (1 + υ) log(2/δ)∥B∥F
∥B∥F + 2

√
1 + υ

√
log(2/δ)

m ∥B∥2


≤ 2 exp

(
−(1 + υ) log(2/δ)∥B∥F

(1 + υ)∥B∥F

)
= δ,

where the second inequality utilizes

υ∥B∥F ≥ 2
√
1 + υ

√
log(2/δ)

m
∥B∥2,

a consequence of the assumption on m.

Let
C(ε, δ) := 4(1 + υ)ε−2 log(2/δ). (7.3)

By Lemma 7.1, for sufficiently small ε, C(ε, δ)∥B∥2F samples are sufficient to achieve
| trm(B)−tr(B)| ≤ ε with probability at least 1−δ. In practice one cannot assume to know,
or be able to compute, the stable rank appearing in the condition m ≥ 4(1+υ) log(2/δ)

υ2ρ(B)
.

Since the stable rank is always larger than 1, requiring m ≥ 4(1+υ) log(2/δ)
υ2 would be

sufficient to ensure that m ≥ 4(1+υ) log(2/δ)
υ2ρ(B)

. However, in practice we set υ = 0 and

completely omit the side condition m ≥ 4(1+υ) log(2/δ)
υ2ρ(B)

. While not justified by Lemma 7.1,
we observe no significant loss in the success probabilities of our algorithm, see Section
7.3.1.

7.1.2 Finding the minimum of m(r)

Applying the results above to B = A
(r)
rest implies that a suitable choice for the function

m(r) in (7.1) is given by
m(r) = 2r + C(ε, δ)∥A(r)

rest∥2F. (7.4)

In the idealistic scenario that Q(r) contains the dominant r singular vectors, we have
∥A(r)

rest∥2F = σ2r+1 + · · · + σ2n. This implies that the differences m(r) − m(r − 1) =

2− C(ε, δ)σ2r+1 are monotonically increasing and switch sign at most once. In turn, r∗ is
a global minimum whenever it is a local minimum, that is, m(r∗ ± 1) ≥ m(r∗). Since
Q(r) only approximates the space spanned by the dominant r singular vectors of A, these
relations are not guaranteed to hold. In practice, we have observed m(r∗ ± 1) ≥ m(r∗) to
remain a reliable criterion; see Figure 7.1 for an example.

Evaluating m(r) involves the quantity ∥A(r)
rest∥2F, which is too expensive to evaluate. Using
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Figure 7.1: In this example we let A = UΛUT ∈ R1000×1000 where U is a random
orthogonal matrix and Λ is a diagonal matrix with Λii = 1/i2. The x-axis shows the
rank r, and the y-axis is the function m(r) defined in (7.4) with δ = 0.01, ε = 0.05 tr(A)
and υ = 0. The function has its minimum at r∗ = 7.

the symmetry of A and the unitary invariance of the Frobenius norm we get

∥A(r)
rest∥2F = ∥A∥2F + ∥Q(r)TAQ(r)∥2F − 2∥AQ(r)∥2F. (7.5)

In turn, m(r) and the function

m̃(r) := 2r + C(ε, δ)
(
∥Q(r)TAQ(r)∥2F − 2∥AQ(r)∥2F

)
(7.6)

have the same minimum. The latter can be cheaply computed by recursive updating,
without any additional matrix-vector products with A.

To summarize, we adapt the randomized SVD to build Q(r) column-by-column, similar
to as described in [79, Section 4.4], and stop the loop whenever a minimum of m̃(r)

is detected. By the heuristics discussed above, it is safe to stop at r = r∗ when
m̃(r∗) > m̃(r∗ − 1) > m̃(r∗ − 2).

7.1.3 Estimating the Frobenius norm of the remainder

Having found an approximate minimum r∗ of m̃(r) and computed Q ≡ Q(r∗), it remains
to apply stochastic trace estimation to Arest ≡ A

(r∗)
rest . By Lemma 7.1 it suffices to use

M ≥ C(ε, δ)∥Arest∥2F samples. Because computing ∥Arest∥F is too expensive, we need to
resort (once more) to a stochastic estimator utilizing only matrix-vector products. The
following result is essential for that purpose.

Lemma 7.2. Let Ω be a random n× k matrix whose entries are i.i.d. N (0, 1) random
variables and let B ∈ Rn×n. For any α ∈ (0, 1) it holds that

P
(
1

k
∥BΩ∥2F < α∥B∥2F

)
≤ P(X < α) =

γ(k/2, αk/2)

Γ(k/2)
,
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Figure 7.2: For different choices of δ, this plot demonstrates the relationship between k
and the largest choice of α such that γ(k/2,αk/2)

Γ(k/2) ≤ δ.

where X ∼ Γ(k/2, k/2) (gamma distribution with shape and rate parameter k/2), γ(s, x) :=∫ x
0 t

s−1e−tdt is the lower incomplete gamma function and Γ(s) is the standard gamma
function.

Proof. It is well known that

1

k
∥BΩ∥2F =

1

k

n∑
j=1

σ2jZj ,

where Zj , j = 1, . . . , n, denote i.i.d. χ2
k random variables; see, e.g., [74, Section 2]. Setting

Xj :=
1
kZj ∼ Γ(k/2, k/2) and λj =

σ2
j

∥B∥2F
for j = 1, . . . , n we rewrite

P
(
1

k
∥BΩ∥2F < α∥B∥2F

)
= P

(
n∑

j=1

λjXj < α

)
.

By [133, Theorem 2.2] the right-hand side is bounded for every α ∈ (0, 1) by P (X1 < α),
which completes the proof.

Lemma 7.2 states that if γ(k/2,αk/2)
Γ(k/2) ≤ δ then 1

kα∥BΩ∥2F > ∥B∥2F with probability at least
1− δ. Hence, using M := ⌈C(ε, δ) · 1

kα∥ArestΩ∥2F⌉ samples ensures an error of at most ε
with low failure probability. See Figure 7.2 for the relationship between k, α and δ.

7.1.4 A prototype algorithm

Combining the results presented above we obtain the prototype algorithm presented
in Algorithm 10. To reduce the number of passes over the matrix A the algorithm
can be implemented in a block-wise fashion, which can in turn lead to a reduction
of wall-clock time. For block-size b = 1 we use the heuristic stopping criteria for the
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low-rank approximation described above. For larger block-sizes it is sufficient to use
m(r∗ − b) < m(r∗) as a stopping criteria. A simple probabilistic analysis yields the

Algorithm 10 Prototype algorithm
input: Symmetric A ∈ Rn×n. Error tolerance ε > 0. Failure probability δ ∈ (0, 1).
Parameter υ > 0. Block-size b.
output: An approximation to tr(A) : tradap(A).
1: Y (b) = AΩ(b) where Ω(b) ∈ Rn×b has i.i.d. N (0, 1) entries.
2: Obtain orthonormal basis Q̂(b) for range

(
Y (b)

)
.

3: Q(1) = Q̂(1)

4: trest1 = tr
(
Q̂(1)T

(
AQ̂(1)

))
5: Compute m̃(b).
6: r = b
7: while A minimum of m̃(r) not detected do
8: Y (r+b) = AΩ(r+b) where Ω(r+b) ∈ Rn×b has i.i.d. N (0, 1) entries.
9: Q̃(r+b) = (I −Q(r)Q(r)T )Y (r+b)

10: Obtain orthonormal basis Q̂(r+b) for range
(
Q̃(r+b)

)
.

11: Q(r+b) =
[
Q(r) Q̂(r+b)

]
12: trest1 = trest1 + tr

(
Q̂(r+b)T

(
AQ̂(r+b)

))
13: Update m̃(r + b) recursively.
14: r = r + b
15: end while
16: Let Q = Q(r) and Arest = (I −QQT )A(I −QQT ). ▷ Arest is never formed

explicitly.
17: Choose (k, α) ∈ N× (0, 1) such that γ(k/2,αk/2)

Γ(k/2) ≤ δ.

18: M = max
{

4(1+υ) log(2/δ)
υ2 , ⌈C(ε, δ) · 1

kα∥ArestΨ∥2F⌉
}

where Ψ ∈ Rn×k has i.i.d.
N (0, 1) entries .

19: trest2 = trM (Arest)
20: return tradap(A) = trest1 + trest2

following result on the success probability of Algorithm 10:

Lemma 7.3. The output of Algorithm 10 satisfies | tradap(A)−tr(A)| ≤ ε with probability
at least 1− 2δ.

Proof. For the moment, let us consider Q fixed and, hence, Arest deterministic. For a
fixed arbitrary integer N let us consider the event

SN := {| trN (Arest)− tr(Arest)| ≤ ε} .

Let M be the random variable defined in line 18 of Algorithm 10. Therefore, SM is the
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event that the estimate of tr(Arest) from Algorithm 10 has an error at most ε. That is,

SM = {| trM (Arest)− tr(Arest)| ≤ ε} =
⋃
N≥1

[SN ∩ {M = N}] .

The analysis of P(SM ) is complicated by the fact that the integer M defined in line 18 of
Algorithm 10 is also random. Letting

M1 := max

{
4(1 + υ) log(2/δ)

υ2ρ(Arest)
, C(ε, δ)∥Arest∥2F

}
,

we know from Lemma 7.2 that P(M ≥M1) ≥ 1− δ and from (7.3) that P(SN ) ≥ 1− δ

for N ≥ M1. Moreover, it is important to remark that the events SN and M = N

are independent. In particular, this implies P(SM |M = N) = P(SN ). Combining these
observations yields

P(SM ) ≥ P(SM ∩ {M ≥M1})
=

∑
N≥M1

P(SM ∩ {M = N}) =
∑

N≥M1

P(SM |M = N)P(M = N)

=
∑

N≥M1

P(SN )P(M = N) ≥ (1− δ)
∑

N≥M1

P(M = N)

= (1− δ)P(M ≥M1) ≥ (1− δ)2 ≥ 1− 2δ,

which holds independently of Q and thus completes the proof.

7.2 A-Hutch++

To turn Algorithm 10 into a practical method, we need to address the choice of the pair
(k, α) in line 17 and apply further modification to increase its efficiency by reusing the
matrix vector products in the Frobenius norm estimation in line 18 in the trace estimation
in line 19 of Algorithm 10.

For fixed k, it makes sense to choose α as large as possible because M decreases with
increasing α; see line 18. Thus, we set

αk := sup

{
α ∈ (0, 1) :

γ (k/2, αk/2)

Γ (k/2)
≤ δ

}
. (7.7)

Lemma 7.4. The sequence {αk}k∈N defined by (7.7) increases monotonically and con-
verges to 1.
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Proof. Letting X := 1
k

k∑
i=1

Xi ∼ Γ(k/2, k/2) for i.i.d. χ2
1 random variables Xi, we set

pk(α) := P (X ≤ α) =
γ (k/2, αk/2)

Γ (k/2)
.

By [133, Theorem 2.1] pk+1(α) ≤ pk(α) for every α ∈ (0, 1]. Furthermore, by continuity
of pk in α and monotonicity of pk(α) in k we have

δ = pk(αk) = pk+1(αk+1) ≤ pk(αk+1).

Thus, by monotonicity of pk in α we have αk ≤ αk+1, which proves the monotonicity of
the sequence {αk}k∈N.

To show αk → 1 as k → +∞, let αε := 1−ε > 0 for fixed arbitrary 0 < ε < 1. By the law
of large numbers, pk(αε) → 0 and by the argument above this convergence is monotonic.
Let kε,δ = min{k ∈ N : pk(αε) ≤ δ}. Let k ≥ kε,δ. Then, δ ≥ pkε,δ(αε) ≥ pk(αε). Thus,
for all k ≥ kε,δ we have 1 ≥ αk ≥ αε ≥ 1− ε, as required.

Furthermore, define the following random sequence Mk:

Mk := C(ε, δ) · 1

kαk
∥ArestΨ

(k)∥2F, Ψ(k) =
[
Ψ(k−1) ψ(k)

]
, ψ(k) ∼ N(0, I). (7.8)

By the law of large numbers we have Mk → C(ε, δ)∥Arest∥2F almost surely as k → +∞. If
we reuse the matrix-vector products from line 18 in line 19 the total number of performed
matrix vector products in the second phase of Algorithm 10 is

max {k, ⌈Mk⌉} . (7.9)

Because of the monotonicity of αk, and as seen in Figure 7.3, Mk is expected to decrease
in k. Hence, in order to minimize (7.9) we choose k such that k = ⌈Mk⌉. Thus, we
evaluate Mk inside a while loop and stop the while loop once we detect k > Mk for
the first time. At this point we reuse the computation ArestΨ

(k) to estimate tr(Arest).
The resulting algorithm is presented in Algorithm 11. As with the prototype algorithm,
Algorithm 11 can also be implemented to perform matrix-vector products in a block-wise
fashion.

Due to the lack of independence between the Frobenius norm estimation and the stochastic
trace estimation, the proof of Lemma 7.3 does not extend to Algorithm 11. In turn, this
algorithm does not come with the same type of success guarantee. However, as presented
in Section 7.3.1 the empirical failure probabilities remain well below the prescribed failure
probability.
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Figure 7.3: In this example we let A = UΛUT ∈ R1000×1000 where U is a random
orthogonal matrix and Λ is a diagonal matrix with Λii = 1/i1.5. We run Algorithm 10
with ε = 0.01 tr(A), δ = 0.05 and υ = 0 to obtain Arest defined in line 16. The x-axis
shows the number of matrix-vector products with Arest. The red line shows the evolution
of the sequence Mk defined in (7.8), the blue line shows the linear line k against k and
the black line is the number of matrix-vector products with Arest to guarantee an error
less than ε with probability at least 1− δ. We stop the while loop in Algorithm 11 once
the red and blue line cross.

Algorithm 11 A-Hutch++
input: Symmetric A ∈ Rn×n. Error tolerance ε > 0. Failure probability δ ∈ (0, 1).
Block-size b.
output: An approximation to tr(A) : tradap(A).
1: Perform lines 1–16 in Algorithm 10 to get Q, trest1 and Arest.
2: Initialize Ψ(0) =

[]
and C(0) =

[]
.

3: Initialize M0 = ∞ and k = 0.
4: while Mk > k do
5: k = k + b

6: αk = sup

{
α ∈ (0, 1) :

γ( k
2
,α k

2 )
Γ( k

2 )
≤ δ

}
7: Generate a random matrix Ψ̂(k) ∈ Rn×b and append Ψ(k) =

[
Ψ(k−b) Ψ̂(k)

]
.

8: Compute Ĉ(k) = ArestΨ̂
(k) and append C(k) =

[
C(k−b) Ĉ(k)

]
.

9: Over-estimate ∥Arest∥2F with estFrobk = 1
kαk

∥C(k)∥2F.
10: Define Mk = C(ε, δ)estFrobk.
11: end while
12: return tradap(A) = trest1 + 1

k tr(Ψ(k)TC(k))
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7.3 Numerical experiments

All numerical experiments in this paper have been performed in Matlab, version R2020a;
our implementation of Algorithm 11 is available at https://github.com/davpersson/
A-Hutch- together with the scripts to reproduce all figures and tables in this paper.

For a variety of matrices from [13, 59, 111, 138], we compare the newly proposed A-
Hutch++ algorithm with Hutch++. In A-Hutch++ we fix δ = 0.05 in all our experiments
and we let ε = | tr(A)|

2t for t = 2, 3, . . . , 10, except in Figure 7.7b where we let t = 3, 4, . . . , 11.
The error of the estimate produced by A-Hutch++ implemented in a block-wise fashion
is essentially identical to the unblocked version of A-Hutch++, i.e. b = 1, as long as the
block-size is small compared to the number of required matrix-vector products. Therefore,
for simplicity, we set the block-size to b = 1 in all experiments. Furthermore, as discussed
in Section 7.1.1 we set υ = 0 and omit the side condition on m. For each considered matrix,
for each value of ε, we first run Algorithm 11 and count the number of matrix-vector
products that have been used to obtain the estimate, then we run Algorithm 9 with the
same number of matrix-vector products. For each value of ε we repeat this 100 times
and plot the average relative error on the y-axis and the average required matrix-vector
products on the x-axis. In each figure, the blue line is the average relative error from
A-Hutch++, the red line is the average relative error from Hutch++, with the same
number of matrix vector products, and the black dashed line is the ε that was used as
the input tolerance of A-Hutch++. For matrices with slow eigenvalue decay we have also
included the average relative error from the Hutchinson estimator (6.1), see the green
line in Figures 7.4a, 7.4b, 7.7b and 7.8a. The shaded blue area shows the 10th to 90th

percentiles2 of the results from A-Hutch++, and the shaded red area shows the 10th to
90th percentiles of the results from Hutch++, see e.g. Figure 7.4.

In the numerical experiments we observe that A-Hutch++ performs better compared to
Hutch++ for matrices with slower singular value decay; see e.g. Figure 7.4a, in which
A-Hutch++ achieves an average relative error of 0.001827 using an average of 74.41
matrix-vector products (6th blue point in the figure). In comparison, Hutch++ achieves
an average relative error of 0.001804 using an average of 237.7 matrix-vector products
(7th red point in the figure). Hence, in these cases the adaptivity does improve the
performance compared to Hutch++. For faster singular value decay the two algorithms
perform similarly. However, in no case does Hutch++ perform noticeably better compared
to A-Hutch++.

2We show the 90% percentile because, if we did not reuse the matrix-vector products of the Frobenius
norm estimation for the Hutchinson trace estimator, Lemma 7.3 would ensure a failure probability of at
most 2δ = 10%.
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(a) c = 0.1 (b) c = 0.5

(c) c = 1 (d) c = 3

Figure 7.4: Comparison of A-Hutch++ and Hutch++ for the estimation of the trace of
the synthetic matrices with algebraic decay from Section 7.3.1.

7.3.1 Synthetic matrices

We create matrices with algebraically decaying singular values as in (4.24) with n =

5000, C = 1 and c ∈ {0.1, 0.5, 1, 3} and whose eigenvectors are drawn uniformly from
random orthogonal matrices. The results are shown in Figure 7.4.

Furthermore, using these example matrices we also estimated the failure probability
of A-Hutch++. Table 7.1 demonstrates the empirical failure probabilities from 100000
repeats of A-Hutch++ for different input pairs (ε, δ). In all cases the empirical failure
probabilities remain well below the prescribed failure probability.

In addition, to demonstrate that A-Hutch++ allocates more matrix-vector products to
the Hutchinson estimator for matrices with slow eigenvalue decay and vice versa for
matrices with fast eigenvalue decay, we also include a table displaying the distribution of
the matrix-vector products between the two phases. See Table 7.2.
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ε
δ

0.1 0.05 0.01

0.1 tr(A) 0 0 0
0.01 tr(A) 0.00285 0.00076 0.00005
0.005 tr(A) 0.00686 0.00244 0.00015

(a) c = 0.1

ε
δ

0.1 0.05 0.01

0.1 tr(A) 0 0 0
0.01 tr(A) 0.00484 0.00126 0.00010
0.005 tr(A) 0.00855 0.00331 0.00032

(b) c = 0.5

ε
δ

0.1 0.05 0.01

0.1 tr(A) 0.00026 0.00002 0
0.01 tr(A) 0.00607 0.00186 0.00018
0.005 tr(A) 0.00804 0.00250 0.00030

(c) c = 1

ε
δ

0.1 0.05 0.01

0.1 tr(A) 0 0 0
0.01 tr(A) 0.00002 0 0
0.005 tr(A) 0.00006 0 0

(d) c = 3

Table 7.1: Empirical failure probabilities from 100000 repeats of applying A-Hutch++ on
the synthetic matrices described in Section 7.3.1.
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t Total Low rank approx. Hutchinson est. Ratio
2 8.00 6.00 2.00 0.25
3 9.00 6.00 3.00 0.33
4 11.00 6.00 5.00 0.45
5 16.00 6.00 10.00 0.63
6 29.04 6.00 23.04 0.79
7 74.41 6.00 68.41 0.92
8 237.66 6.00 231.66 0.97
9 858.13 6.00 852.13 0.99
10 3302.76 6.00 3296.76 1.00

(a) c = 0.1

t Total Low rank approx. Hutchinson est. Ratio
2 9.00 6.00 3.00 0.33
3 10.01 6.00 4.01 0.40
4 13.06 6.00 7.06 0.54
5 21.21 6.00 15.21 0.72
6 46.94 6.02 40.92 0.87
7 138.24 10.14 128.10 0.93
8 424.31 49.18 375.13 0.88
9 1287.60 206.96 1080.64 0.84
10 3688.39 914.18 2774.21 0.75

(b) c = 0.5

t Total Low rank approx. Hutchinson est. Ratio
2 12.86 6.16 6.70 0.52
3 21.07 8.86 12.21 0.58
4 36.02 15.08 20.94 0.58
5 65.15 27.68 37.47 0.58
6 120.04 52.84 67.20 0.56
7 228.02 101.18 126.84 0.56
8 436.75 199.14 237.61 0.54
9 843.98 396.32 447.66 0.53
10 1630.29 793.36 836.93 0.51

(c) c = 1
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t Total Low rank approx. Hutchinson est. Ratio
2 10.66 8.20 2.46 0.23
3 12.24 8.88 3.36 0.27
4 14.24 10.76 3.48 0.24
5 17.16 12.44 4.72 0.28
6 20.91 15.22 5.69 0.27
7 24.70 18.28 6.42 0.26
8 30.28 22.50 7.78 0.26
9 36.57 27.68 8.89 0.24
10 45.14 34.50 10.64 0.24

(d) c = 3

Table 7.2: The average distribution of matrix-vector products between the low rank
approximation phase and stochastic trace esimation phase of A-Hutch++ applied on
the synthetic matrices with algebraic decay and input tolerance ε = 2−t tr(A) for t =
2, 3, . . . , 10. A-Hutch++ requires at least 6 matrix-vector products to detect a minimum
of the function m̃(r) in (7.6).

7.3.2 Triangle counting

As discussed in Section 3.2, for an undirected graph with adjacency matrix C, the number
of triangles in the graph is equal to 1

6 tr(C
3); counting triangles arises for instance in

data mining applications [8]. We apply A-Hutch++ and Hutch++ to A = C3, where C
is the adjacency matrix of the following graphs:

• a Wikipedia vote network3 of size 7115 (tr(C3) = 3650334);

• an arXiv collaboration network4 of size 5242 (tr(C3) = 289560).

Note that one matrix-vector product with A corresponds to three matrix-vector products
with C. The numerical results are shown in Figure 7.5.

7.3.3 Estrada index

As discussed in Section 3.2, for an undirected graph with adjacency matrix C, the Estrada
index is defined as tr(exp(C)) and its applications include measuring the degree of protein
protein folding [54] and network analysis [55]. As in [111], we estimate the Estrada index
of Roget’s Thesaurus semantic graph adjacency matrix5. We approximate matrix-vector
products with A = exp(C) using 30 iterations of the Lanczos method [84, Chapter 13.2],
after which the error from the approximated matrix-vector product is negligible. The
results are shown in Figure 7.6.

3Accessed from https://snap.stanford.edu/data/wiki-Vote.html
4Accessed from https://snap.stanford.edu/data/ca-GrQc.html
5Accessed from http://vlado.fmf.uni-lj.si/pub/networks/data/
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(a) Wikipedia vote network (b) Arxiv GR-QC

Figure 7.5: Comparison of A-Hutch++ and Hutch++ for the triangle counting examples
from Section 7.3.2.

Figure 7.6: Comparison of A-Hutch++ and Hutch++ for the estimation of the Estrada
index of the matrix from Section 7.3.3.
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(a) Estimating the log-determinant of the matrix
from [138].

(b) Estimating the log-determinant of the matrix
Thermomech TC.

Figure 7.7: Comparison of A-Hutch++ and Hutch++ for the log determinant estimation
of the matrices from Section 7.3.4.

7.3.4 Log-determinant

The computation of the log-determinant of a symmetric positive definite matrix, which
arises for instance in statistical learning [2] and Markov random fields models [159], can
be addressed by trace estimation exploiting the relation

log det(C) = tr(log(C)).

In our setting we apply A-Hutch++ and Hutch++ to A = log(C) for the following
symmetric positive definite matrices C:

• C = I +
40∑
j=1

10
j2
xjx

T
j +

300∑
j=41

1
j2
xjx

T
j where x1, · · · ,x300 ∈ R5000 are generated in

Matlab using sprandn(5000,1,0.025). This example comes from [138, 143]. C
has an eigenvalue gap at index 40. Matrix-vector products with A = log(C) are
approximated using 25 iterations of Lanczos method.

• C is the Thermomech TC matrix6 from the SuiteSparse Matrix Collection [42].
Matrix-vector products with A = log(C) are approximated using 35 iterations of
Lanczos method.

The numerical results are shown in Figure 7.7.

7.3.5 Trace of inverses

We consider A = C−1 for the following choices of C:
6Accessed from https://sparse.tamu.edu/Botonakis/thermomech_TC
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(a) Inverse of tridiag(−1, 4,−1).
(b) Inverse of the matrix generated from discretiz-
ing Poisson’s equation.

Figure 7.8: Comparison of A-Hutch++ and Hutch++ for the estimation of the trace of
the inverse of the matrices described in Section 7.3.5.

• C = tridiag(−1, 4,−1) is a 10000 × 10000 tridiagonal matrix with 4 along the
diagonal and −1 along the upper and lower subdiagonal (taken from [59]);

• C a block tridiagonal matrix of size k2 × k2 generated from discretizing Poisson’s
equation with the 5-point operator on a k× k mesh, with k = 100 (taken from [13]).

Matrix-vector products with A = C−1 are computed using backslash in Matlab. The
results are shown in Figure 7.8.
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8 Nyström++: A single pass trace
estimation algorithm

As explained in the Section 6.3.2, Hutch++ requires at least two passes over the matrix
A. In [111], Algorithm 12 was presented, and its analysis was improved in [92]. It requires
only one pass over the input matrix, when computing the matrix vector products in line 3,
and we thus call it Single Pass Hutch++. It also fits the streaming model because an

Algorithm 12 Single Pass Hutch++
input: Symmetric positive semi-definite A ∈ Rn×n. Number of matrix-vector products
m ∈ N.
output: An approximation to tr(A) : trsph++

m (A)

1: Fix positive constants c1, c2 and c3 such that c1 < c2 and c1 + c2 + c3 = 1.
2: Sample Ω ∈ Rd×c1m,Ψ ∈ Rd×c2m,Φ ∈ Rd×c3m with i.i.d. N (0, 1) or Rademacher

entries.
3: Compute

[
X Y Z

]
= A

[
Ω Ψ Φ

]
.

4: return trsph++
m (A) = tr((ΩTY )†(XTY )) + 1

c3m
(tr(ΦTZ)− tr(ΦTY (ΩTY )†XTΦ))

update A+E of the input matrix trivially translated into an update of the matrix-vector
products, without having to revisit A. It is similar to Hutch++ since it consists of a
randomized low-rank approximation phase and a stochastic trace estimation phase. The
low rank approximation phase is performed by computing the low rank approximation
AΨ(ΩTAΨ)†(AΩ)T = Y (ΩTY )†XT , where X,Y and Z are as in line 3 of Single
Pass Hutch++. The trace of the low rank approximation equals tr((ΩTY )†(XTY )) via
the cyclic property of the trace. In the stochastic trace estimation phase the trace of
A − Y (ΩTY )†XT is estimated, which is done by the stochastic trace estimator (6.1).
Single Pass Hutch++ satisfies similar guarantees as Hutch++, but is observed to produce
a less accurate trace estimate than Hutch++ with the same number of matrix-vector
products. More formally, the following result was proved.

Theorem 8.1 ([92, Theorem 1.1]). If Single Pass Hutch++ is implemented with m =
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O
(
ε−1
√

log(δ−1) + log(δ−1)
)

matrix-vector products then∣∣∣trsph++
m (A)− tr(A)

∣∣∣ ≤ ε tr(A)

holds with probability at least 1− δ.

On the other hand, the numerical experiments in [92] demonstrated that due to the single
pass property, which allows for performing matrix-vector products in parallel, Single Pass
Hutch++ outperforms Hutch++ in terms of wall-clock time.1

For SPSD A one can obtain a version of Hutch++ by utilizing the Nyström approximation
AΩ(ΩTAΩ)†ΩTA, where Ω is a random matrix; see (2.9).2 We call this algorithm
Nyström++, see Algorithm 13. The idea of using the Nyström approximation in the
context of trace estimation had previously been presented in [102, Section 4] in a broader
context, but no analysis was presented. A version of Hutch++ using a similar low-rank
approximation was also mentioned in [112]. Furthermore, Nyström++ also fits the
streaming model. Another possible advantage of Nyström++ over Hutch++ is that while
the Nyström approximation is less accurate than the randomized SVD, one can spend
more matrix-vector products for both attaining a low-rank approximation of A and on
estimating the trace of A −AΩ(ΩTAΩ)†ΩTA. Recall that the trace of the Nyström

Algorithm 13 Nyström++
input: Symmetric positive semi-definite A ∈ Rn×n. Number of matrix-vector products
m ∈ N (multiple of 2).
output: An approximation to tr(A) : trn++

m (A).
1: Sample Ω ∈ Rn×m

2 ,Φ ∈ Rn×m
2 with i.i.d. N(0, 1) entries.

2: Compute
[
X Y

]
= A

[
Ω Φ

]
.

3: return trn++
m (A) = tr((ΩTX)†(XTX)) + 2

m(tr(ΦTY )− tr(ΦTX(ΩTX)†XTΦ))

approximation X(ΩTX)†XT equals tr
(
(ΩTX)†(XTX)

)
via the cyclic property of the

trace.

8.1 Analysis of Nyström++

In the following, we show that Algorithm 13 enjoys the same theoretical guarantees as
Algorithm 9 [111, Theorem 1.1]. We begin with a result on the Frobenius norm error of
the Nyström approximation.

1One needs to be careful how to implement the low-rank approximation in Single Pass Hutch++, since
it is prone to numerical instabilities due to the pseudoinverse of ΩTY . In our implementation we follow
the suggestion given in [117, Section 5.1]. We compute a thin QR-decomposition of (ΩTY )T = QR and
let S = Y Q and Z = XR−1. Then Y (ΩTY )†XT = SZT .

2Recall that the Nyström approximation depends only on the range of Ω; see Section 2.3. Therefore,
the Nyström approximation remains unchanged if we replace the orthonormal basis Q with Ω, as long as
range(Ω) = range(Q).
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Lemma 8.2. Let A ∈ Rn×n be SPSD and let Ω be a n× 2k random matrix whose entries
are i.i.d. N (0, 1) random variables with k ≥ 5. Then

∥A−AΩ(ΩTAΩ)†ΩTA∥F ≤ 499√
k
tr(A)

holds with probability at least 1− 6e−k.

Proof. Let A have eigenvalue decomposition partitioned as (2.6) and define Ω1 = U
T
1 Ω

and Ω2 = U
T
2 Ω. By Lemma 4.29 we have

∥A−AΩ(ΩTAΩ)†ΩTA∥F ≤∥Λ2∥F + ∥Λ1/2
2 Ω2Ω

†
1∥2(4) ≤

∥Λ2∥F + ∥Λ1/2
2 Ω2Ω

†
1∥2∥Λ

1/2
2 Ω2Ω

†
1∥F.

By proceeding as in the beginning of the proof of [68, Lemma 7] with probability at least
1− 3e−k we have3

∥Λ1/2
2 Ω2Ω

†
1∥2 ≤ ∥Λ1/2

2 ∥2
(√

3k

k + 1
e+

2e2k

k + 1

)
+ ∥Λ1/2

2 ∥F
e2
√
2k

k + 1

≤
√

∥Λ2∥2(υ1 + υ2) +
√
∥Λ2∥∗

υ3√
k

(8.1)

by letting υ1 :=
√
3e, υ2 := 2e2 and υ3 :=

√
2e2. Similarly, we have with probability at

least 1− 3e−k

∥Λ1/2
2 Ω2Ω

†
1∥F ≤ ∥Λ1/2

2 ∥F
√

3k

k + 1
e+ ∥Λ1/2

2 ∥2
2e2k

k + 1

≤
√
∥Λ2∥∗υ1 +

√
∥Λ2∥2υ2. (8.2)

By the union bound, both (8.1) and (8.2) hold simultaneously with probability at least
1− 6e−k.

Ω1 ∈ Rk×2k is a standard Gaussian matrix and therefore has full row rank almost surely.
We may therefore apply Lemma 4.29 combined with the bounds (8.1) and (8.2). Hence,

3In the setting of [68, Lemma 7], set the quantities p = k, t = e, u =
√
2k and D = Λ

1/2
2 to obtain (8.1)

and (8.2).
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with probability at least 1− 6e−k we have

∥A−AΩ(ΩTAΩ)†ΩTA∥F
≤∥Λ2∥F + ∥Λ1/2

2 Ω2Ω
†
1∥2∥Λ

1/2
2 Ω2Ω

†
1∥F

≤∥Λ2∥F +

(√
∥Λ2∥2(υ1 + υ2) +

√
∥Λ2∥∗

υ3√
k

)(√
∥Λ2∥∗υ1 +

√
∥Λ2∥2υ2

)
=∥Λ2∥F +

√
∥Λ2∥2∥Λ2∥∗υ̃1 + ∥Λ2∥2υ̃2 + ∥Λ2∥∗

υ̃3√
k

≤1 + υ̃1 + υ̃2 + υ̃3√
k

tr(A)

where we set

υ̃1 := (υ1 + υ2)υ1 +
υ2υ3√
k
, υ̃2 := (υ1 + υ2)υ2, υ̃3 := υ3υ1

and use the norm inequalities

∥Λ2∥2 ≤ ∥Λ2∥F ≤
√
∥Λ2∥2∥Λ2∥∗ ≤

1√
k
∥Λ∥∗ =

1√
k
tr(A)

∥Λ2∥∗ ≤ ∥Λ∥∗ = tr(A)

in the last step. The proof is completed by noting that 1 + υ̃1 + υ̃2 + υ̃3 ≤ 499.

We can now proceed to extend the main result on Hutch++ [111, Theorem 1.1] to
Nyström++.

Theorem 8.3. Suppose that Algorithm 13 (Nyström++) is executed with m = O
(
ε−1
√
log(δ−1)+

log(δ−1)
)

matrix-vector products and δ ∈ (0, 1/2)4. Then its output satisfies

| trn++
m (A)− tr(A)| ≤ ε tr(A)

with probability at least 1− δ.

Proof. We follow the proof of [111, Theorem 1.1]. Let us first recall that X = AΩ,
Y = AΦ for d × m/2 standard Gaussian random matrices Ω,Φ in Algorithm 13.
Throughout the proof, we assume that m ≥ c log(δ−1) for some (sufficiently large)
constant c.

4This condition on δ allows us to bound all log(pδ−1) terms that would otherwise appear in the proof
(see e.g. Lemma 7.1 where the term log(2δ−1) appears) from above with c log(δ−1) for some sufficiently
large constant c.
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By Lemma 8.2, there is a constant C1 such that

∥A−X(ΩTX)†XT ∥F ≤ C1m
−1/2 tr(A),

with probability at least 1− δ/2. By Lemma 7.1 there is a constant C2 such that

| tr(A−X(ΩTX)†XT )− trm/2(A−X(ΩTX)†XT )|
≤ C2m

−1/2
√
log(δ−1)∥A−X(ΩTX)†XT ∥F

with probability at least 1− δ/2. By the union bound it holds with probability at least
1− δ that

| trn++
m (A)− tr(A)| =

∣∣∣ tr(A−X(ΩTX)†XT )− trm/2(A−X(ΩTX)†XT )
∣∣∣

≤ C2m
−1/2

√
log(δ−1)∥A−X(ΩTX)†XT ∥F

≤ C1C2m
−1
√
log(δ−1) tr(A).

Hence, setting m = O
(
ε−1
√
log(δ−1) + log(δ−1)

)
implies the claim.

8.1.1 Adaptive Nyström++

It is natural to aim at designing an adaptive version of Nyström++. Following A-Hutch++
we would need to find the minimum of

m(r) = r + C(ε, δ)∥A−A(r)
n ∥2F,

where A(r)
n is the rank-r Nyström approximation. Such an adaptive version clearly does

not fit the streaming model. Moreover, we lose another advantage of Nyström++, that it
only needs to perform r matrix-vector products with A to get a rank-r approximation,
compared to 2r for the randomized SVD. Since we cannot compute ∥A − A(r)

n ∥2F we
would need to decompose this term as done in (7.5). This yields ∥A − A

(r)
n ∥2F =

∥A∥2F − 2 tr(AA
(r)
n ) + ∥A(r)

n ∥2F. However, evaluating the term −2 tr(AA
(r)
n ) + ∥A(r)

n ∥2F
depending on r requires additional matrix-vector products with A. In summary, there is
little advantage of using such an adaptive version of Nyström.

8.2 Numerical results

To deal with potential numerical instabilities due to the appearance of the pseudoinverse
in the Nyström approximation in line 3 of Algorithm 13, in our implementation we
use [104, Algorithm 16]. This algorithm computes an eigenvalue decomposition UΣUT of
the Nyström approximation of A+νI, where ν is a small shift, without explicitly forming
the Nyström approximation. Once the eigenvalue decomposition is obtained the algorithm
removes the shift by setting Λ = max {0,Σ− νI} and returns UΛUT , in factored form,
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as the stabilized Nyström approximation. The shift is set as ν =
√
neps(∥AΩ∥2), where

eps(x) returns the distance to the next larger double precision floating point number to
x ∈ R and Ω is as in Algorithm 13. For further details, we refer to [104, 151].

We compare Nyström++ with Hutch++ and Single Pass Hutch++. We consider m =

12 + 48k for k ∈ {0, 1, 2, . . . , 20} and for each value of m we run Hutch++, Single Pass
Hutch++ and Nyström++ 100 times each. We run the experiments on the matrices
from Section 7.3.1, Section 5.3.1, and Section 7.3.5. Moreover, we create two matrices
with exponential decay, i.e. A = UΛUT ∈ R5000×5000 where U is a random orthogonal
matrix and Λ is the diagonal matrix with entries Λii = γi for i = 1, . . . , 5000, where
γ is a parameter controlling the rate of the decay. We let γ = exp(−1/10) and γ =

exp(−1/100).

The results are displayed in Figures 8.1, 8.2, 8.3, and 8.4, respectively. In each figure, the
blue line is the average relative error from Nyström++, the red line is the average relative
error from Hutch++ and the green line is the average relative error from Single Pass
Hutch++. The shaded blue area shows the 10th to 90th percentiles of the results from
Nyström++, and the shaded red area shows the 10th to 90th percentiles of the results
from Hutch++.

In all cases we observe that Single Pass Hutch++ is the weakest alternative. Moreover,
in many cases Hutch++ and Nyström++ have similar performances, and in some cases
Nyström++ outperforms Hutch++, see e.g. Figure 8.4.
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(a) c = 0.1 (b) c = 0.5

(c) c = 1 (d) c = 3

Figure 8.1: Comparison of Hutch++, Single Pass Hutch++ and Nyström++ for the
estimation of the trace of the synthetic matrices with algebraic decay described in
Section 7.3.1.

Figure 8.2: Comparison of Hutch++, Single Pass Hutch++ and Nyström++ for the
estimation of the Estrada index as described in Section 5.3.1.
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(a) Inverse of tridiag(−1, 4,−1).
(b) Inverse of the matrix generated from discretiz-
ing Poisson’s equation.

Figure 8.3: Comparison of Hutch++, Single Pass Hutch++ and Nyström++ for the
estimation of the trace of the inverse of the matrices described in Section 7.3.5.

(a) γ = exp(−1/10) (b) γ = exp(−1/100)

Figure 8.4: Comparison of Hutch++, Single Pass Hutch++ and Nyström++ for the
estimation of the trace of the synthetic matrices with exponential decay described in
Section 8.2.
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9 Randomized Nyström approxima-
tion of non-negative self-adjoint
trace class operators
This chapter is concerned with an infinite-dimensional generalization of the Nyström
approximation defined in Section 2.3. In Section 9.1 we motivate this work and explain
the difficulties of a generalization of the Nyström approximation to non-negative trace
class operators. In Section 9.2 we provide an analysis of the Nyström approximation

Â := AΩ(ΩTAΩ)†ΩTA ≈ A,

where the columns of Ω are drawn independently from a non-standard Gaussian distribu-
tion N (0,K) for a SPSD covariance matrix K. Recall that this form of the Nyström
approximation is equivalent to (2.9) provided range(Q) = range(Ω). With the analysis
of the finite-dimensional Nyström approximation at hand, we have the necessary tools to
analyze an infinite-dimensional generalization of the Nyström approximation, which will
be provided in Section 9.3. In Section 9.4 we present the numerical experiments.

This chapter is based on the work in [121].

9.1 Motivation

Recently, Boullé and Townsend [28, 29] generalized the randomized SVD from matrices to
Hilbert–Schmidt operators. Subsequent work [27, 26] employed this infinite-dimensional
generalization of the randomized SVD to learn Green’s functions associated with an
elliptic or parabolic partial differential equations (PDE) from a few solutions of the PDE.
This approach uses hierarchical low-rank techniques and exploits the fact that Green’s
functions are smooth away from the diagonal and therefore admit accurate off-diagonal
low-rank approximations [17, 18]. Other applications, like Gaussian process regression
and Support Vector Machines [53, 65, 119, 157, 162, 163], involve integral operators
that feature positive and globally smooth kernels. In turn, the operator is not only
self-adjoint and positive but it also allows for directly applying low-rank approximation,
without the need to resort to hierarchical techniques. Given existing results on matrices,
it would be sensible to use an infinite-dimensional extension of the randomized Nyström
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approximation in such situations.

A difficulty in the design and analysis of our extension is that existing results of the
finite-dimensional case (2.9) usually assume that the columns of Ω are drawn from a
standard Gaussian multivariate distribution N (0, I), which does not have a practically
meaningful infinite-dimensional analog. Following [29], the columns of Ω are replaced with
random fields drawn from a Gaussian process GP(0,K), which is an infinite-dimensional
analog of a non-standard multivariate Gaussian distribution. Therefore, to analyze the
infinite-dimensional generalization of the Nyström approximation, we will proceed through
an analysis of the finite-dimensional Nyström approximation (2.9) when the columns
of Ω are drawn from a non-standard Gaussian distribution N (0,K), for some general
symmetric positive semi-definite matrix K. Then, we use continuity arguments to obtain
bounds on the infinite-dimensional generalization of (2.9). As a byproduct of our analysis,
we improve the analysis of the infinite-dimensional analog of the randomized SVD. In
particular, unlike the bounds presented in [29], our improved bounds coincide with the
bounds presented by Halko, Martinsson, and Tropp in [79] in the finite-dimensional case
when K is chosen as the identity matrix.

9.2 The randomized Nyström approximation in finite dimen-
sions with correlated Gaussian sketches

9.2.1 Distribution of Gaussian sketches

In this section we will outline some notation and basic background materian on Gaussian
random vectors. We will consider a SPSD matrix A with eigenvalue, and equivalently
SVD, partitioned as in (2.6). For a n× (k + p) sketching matrix Ω we define

Ω1 = U
T
1 Ω, Ω2 = U

T
2 Ω, (9.1)

as done in (2.8). The columns of Ω will be drawn from N (0,K) for some SPSD covariance
matrix K. To analyze the distribution of (9.1) we partition the matrix K̃ = U∗KU
as

K̃ =

[
U∗

1KU1 U∗
1KU2

U∗
2KU1 U∗

2KU2

]
=:

[
K̃11 K̃∗

21

K̃21 K̃22

]
, K̃11 ∈ Rk×k. (9.2)

We assume that K̃11 is invertible, which allows us to define the Schur complement K̃22.1 =

K̃22 − K̃21K̃
−1
11 K̃

∗
21. By well-known properties of Gaussian random vectors [81, Theorem

5.2], ω ∼ N (0,K) implies U∗ω ∼ N (0, K̃) and, thus, the marginal distributions

ω1 := U
∗
1ω ∼ N (0, K̃11), ω2 = U

∗
2ω ∼ N (0, K̃22).

In particular, the columns of Ω1 are i.i.d. as N(0, K̃11) or, in other words, Ω1 = K̃
1/2
11 X

with the standard Gaussian matrix X ∈ Rk×(k+p). Because K̃11 is invertible, this shows
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that, with probability one, Ω1 has full rank and possesses a right inverse Ω†
1, which

satisfies Ω1Ω
†
1 = I. Finally, the conditional probability distribution of ω2 given ω1 = x1

is normal with mean K̃21K̃
−1
11 x1 and covariance matrix K̃22.1 [81, Theorem 5.3].

9.2.2 Nyström approximation with correlated Gaussian sketches

Similarly to the error analysis for the randomized SVD with correlated input vectors [28,
29], our error bounds for the Nyström approximation depend on prior information
contained in the representation (9.2) of K with respect to the eigenvectors of A. This is
measured through the following two quantities:

β
(ξ)
k =

∥Λ1/2
2 K̃22.1Λ

1/2
2 ∥ξ

∥Λ2∥ξ
∥K̃−1

11 ∥2, δ
(ξ)
k =

∥Λ1/2
2 K̃21K̃

−1
11 K̃

∗
21Λ

1/2
2 ∥ξ

∥Λ2∥ξ
∥K̃−1

11 ∥2, (9.3)

where ξ ∈ {F, 2, ∗} such that ∥ · ∥ξ dictates the choice of norm. The following theorem
states our main result concerning the approximation error of the Nyström approximation
in the Frobenius norm. Similar results for the spectral and nuclear norms are presented
in Theorems 9.3 and 9.4.

Theorem 9.1 (Frobenius norm). Let A be an n× n SPSD matrix, 2 ≤ k ≤ rank(A) be
a target rank, and p ≥ 4 an oversampling parameter. Let Ω be a random sketch matrix
whose columns are i.i.d. N (0,K) random vectors, where the covariance matrix K is
such that the matrix K̃11 defined in (9.2) is invertible. Then, the Nyström approximation
Â = AΩ(ΩTAΩ)†ΩTA satisfies

E[∥A− Â∥F] ≤
(
1 + 2δ

(F)
k + 2

√
c1β

(F)
k

)
∥Λ2∥F + 2

√
c2β

(∗)
k ∥Λ2∥∗, (9.4)

where c1 = O(k2/p2), c2 = O(k2/p2) are constants defined in (9.8) below. Let u, t ≥ 1,
then

∥A− Â∥F ≤ ∥Λ2∥F + 4
(
δ
(F)
k + t2(d1 + d3)β

(F)
k

)
∥Λ2∥F + 4t2d3β

(∗)
k ∥Λ2∥∗ (9.5)

+ 2t2u2d2β
(2)
k ∥Λ2∥2

holds with probability at least 1− 3t−p − e−u2/2. Here, d1 = O(k/p), d2 = O(k/p), and
d3 = O(k3/2/p) are constants defined in (9.11).

The proof of Theorem 9.1 is based on an existing structural bound:

∥A− Â∥ ≤ ∥Λ2∥+ ∥(Λ1/2
2 Ω2Ω

†
1)

∗Λ1/2
2 Ω2Ω

†
1∥, (9.6)

where Ω†
1 = Ω∗

1(Ω1Ω
∗
1)

−1 is the right inverse of Ω1, assuming that this matrix has full
rank, and ∥ · ∥ denotes any unitarily invariant norm. This bound follows from Lemma 4.29
with q = 1 and the identity function f : x 7→ x. Obtaining probabilistic bounds from (9.6)
requires the analysis of the term ∥(Λ1/2

2 Ω2Ω
†
1)

∗Λ1/2
2 Ω2Ω

†
1∥.
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Proof of (9.4). To prove inequality (9.4) of Theorem 9.1, we will make use of the Lq

norm of a random variable Z defined as Eq(Z) = E[|Z|q]1/q . After taking expectation
with respect to Ω and applying Hölder’s inequality, the second term in the bound (9.6)
for the Frobenius norm satisfies

E[∥(Λ1/2
2 Ω2Ω

†
1)

∗Λ1/2
2 Ω2Ω

†
1∥F] = E[∥Λ1/2

2 Ω2Ω
†
1∥2(4)] ≤

(
E4[∥Λ1/2

2 Ω2Ω
†
1∥(4)]

)2
.

To proceed from here, we recall that Section 9.2.1 provides the conditional distribution of
Ω2|Ω1 as Ω2|Ω1 ∼ K̃21K̃

−1
11 Ω1+K̃

1/2
22.1Ψ, where Ψ is a standard Gaussian matrix. Using

the triangle inequality for the L4 norm and Ω1Ω
†
1 = I (which holds with probability 1),

we obtain that

E4[∥Λ1/2
2 Ω2Ω

†
1∥(4)] = E4

Ω1,Ψ[∥Λ1/2
2 K̃21K̃

−1
11 Ω1Ω

†
1 +Λ

1/2
2 K̃

1/2
22.1ΨΩ†

1∥(4)]

≤ ∥Λ1/2
2 K̃21K̃

−1
11 ∥(4) +

(
EΩ1

[
EΨ

[
∥Λ1/2

2 K̃
1/2
22.1ΨΩ†

1∥4(4) | Ω1

]])1/4
,

(9.7)
To bound the second term, we first apply (A.1b),

EΨ

[
∥Λ1/2

2 K̃
1/2
22.1ΨΩ†

1∥4(4) | Ω1

]
= ∥Λ1/2

2 K̃
1/2
22.1∥4(4)

(
∥Ω†

1∥4(4)+∥Ω†
1∥4F
)
+∥Λ1/2

2 K̃
1/2
22.1∥4F∥Ω†

1∥4(4),

and then take expectation with respect to Ω1 using Lemma A.3:

EΩ1

[
EΨ

[
∥Λ1/2

2 K̃
1/2
22.1ΨΩ†

1∥4(4) | Ω1

]]
≤ c1∥K̃−1

11 ∥22∥Λ1/2
2 K̃

1/2
22.1∥4(4)+c2∥K̃−1

11 ∥22∥Λ1/2
2 K̃

1/2
22.1∥4F,

where
c1 = k

(p− 1)(k + 1) + 2

p(p− 1)(p− 3)
, and c2 = k

k + p− 1

p(p− 1)(p− 3)
. (9.8)

Inserting the inequality above into (9.7) and using ∥K̃−1/2
11 ∥2 = ∥K̃−1

11 ∥1/22 gives

E4[∥Λ1/2
2 Ω2Ω

†
1∥(4)] ≤(

∥Λ1/2
2 K̃21K̃

−1/2
11 ∥(4) +

(
c1∥Λ1/2

2 K̃
1/2
22.1∥4(4) + c2∥Λ1/2

2 K̃
1/2
22.1∥4F

)1/4)
∥K̃−1

11 ∥1/22 ,

Finally, inserting the covariance quality factors (see (9.3)) leads to the following inequality,(
E4[∥Λ1/2

2 Ω2Ω
†
1∥(4)]

)2
≤
(
2δ

(F)
k + 2

√
c1β

(F)
k

)
∥Λ2∥F + 2

√
c2β

(∗)
k ∥Λ2∥∗,

where we used (a + b)2 ≤ 2a2 + 2b2 and the subadditivity of the square-root. This
concludes the proof of (9.4).

We now proceed with the proof of the tailbound (9.5) of Theorem 9.1. We begin with a
concentration inequality on norms of shifted and rescaled Gaussian matrices.

Lemma 9.2. Let Ψ be a standard Gaussian matrix and let B,C, D be fixed matrices of
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matching sizes. Let s ≥ 2. Then

P
{
∥B +CΨD∥(s) ≥ E

[
∥B +CΨD∥(s)

]
+ ∥C∥2∥D∥2u

}
≤ e−u2/2.

holds for every u ≥ 1.

Proof. Given h(X) := ∥B +CXD∥(s), we have

|h(X)− h(Y )| ≤ ∥C(X − Y )D∥(s) ≤ ∥C∥2∥D∥2∥X − Y ∥(s) ≤ ∥C∥2∥D∥2∥X − Y ∥F,

where we used that the Frobenius norm is larger than any Schatten-s norm for s ≥ 2. In
other words, h is Lipschitz continuous with Lipschitz constant ∥C∥2∥D∥2. This allows us
to apply a concentration result for functions of Gaussian matrices [79, Proposition 10.3],
which yields the statement of the lemma.

Proof of (9.5). To obtain (9.5), it suffices to derive a tailbound for the term ∥Λ1/2
2 Ω2Ω

†
1∥2(4)

in the structural bound (9.6) (in the Frobenius norm). Using that Ω2|Ω1 ∼ K̃21K̃
−1
11 Ω1+

K̃
1/2
22.1Ψ with a standard Gaussian matrix Ψ, Lemma 9.2 yields the following tailbound

for ∥Λ1/2
2 Ω2Ω

†
1∥2(4) conditioned on Ω1:

P
{
∥Λ1/2

2 Ω2Ω
†
1∥(4) ≥ E

[
∥Λ1/2

2 Ω2Ω
†
1∥(4) | Ω1

]
+ ∥Λ1/2

2 K̃
1/2
22.1∥2∥Ω†

1∥2u | Ω1

}
≤ e−u2/2.

(9.9)
In analogy to (9.7), combining the triangular inequality for the Schatten-4 norm and
Jensen’s inequality yields

E
[
∥Λ1/2

2 Ω2Ω
†
1∥(4) | Ω1

]
≤ ∥Λ1/2

2 K̃21K̃
−1
11 ∥(4) + E4

Ψ

[
∥Λ1/2

2 K̃
1/2
22.1ΨΩ†

1∥(4) | Ω1

]
≤ ∥Λ1/2

2 K̃21K̃
−1
11 ∥(4) +

(
∥Λ1/2

2 K̃
1/2
22.1∥4(4)

(
∥Ω†

1∥4(4) + ∥Ω†
1∥4F
)
+ ∥Λ1/2

2 K̃
1/2
22.1∥4F∥Ω†

1∥4(4)
)1/4

.

Using, again, the inequality (a + b)2 ≤ 2(a2 + b2) and
√
a+ b ≤ √

a +
√
b and the

subadditivity of the square-root, we have

E
[
∥Λ1/2

2 Ω2Ω
†
1∥(4) | Ω1

]2
≤ 2∥Λ1/2

2 K̃21K̃
−1
11 ∥2(4) + 2∥Λ1/2

2 K̃
1/2
22.1∥2(4)(∥Ω

†
1∥2(4) + ∥Ω†

1∥2F)
(9.10)

+ 2∥Λ1/2
2 K̃

1/2
22.1∥2F∥Ω†

1∥2(4).

To control the norms of Ω†
1 in our bounds, we condition on the event Et that the following

three inequalities are satisfied:

∥Ω†
1∥2F ≤ d1∥K̃−1

11 ∥2t2, ∥Ω†
1∥22 ≤ d2∥K̃−1

11 ∥2t2, ∥Ω†
1∥2(4) ≤ d3∥K̃−1

11 ∥2t2,
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with the constants

d1 =
3k

p+ 1
, d2 = e2

k + p

(p+ 1)2
, d3 =

√
kd2. (9.11)

Lemma A.4 implies the following bound for P(Ec
t ):

P(Ec
t ) ≤ 2t−(p+1) + t−p ≤ 3t−p. (9.12)

Under the event Et, (9.10) becomes

E
[
∥Λ1/2

2 Ω2Ω
†
1∥(4) | Et

]2
≤ 2

(
δ
(F)
k + t2(d1 + d3)β

(F)
k

)
∥Λ2∥F + 2t2d3β

(∗)
k ∥Λ2∥∗. (9.13)

Conditioning (9.9) on Et and combining it with (9.13) yields

∥Λ1/2
2 Ω2Ω

†
1∥2(4) ≤ 4

(
δ
(F)
k + t2(d1 + d3)β

(F)
k

)
∥Λ2∥F+4t2d3β

(∗)
k ∥Λ2∥∗+2d2β

(2)
k ∥Λ2∥2u2t2,

with probability ≥ 1− e−u2/2. Similarly to the proof of [79, Theorem 10.8], by the union
bound we remove the conditioning by a union bound using (9.12) and conclude the proof
of (9.1).

The structural bound (9.6) for the Nyström method applies to any unitarily invariant
matrix norm. Using properties of Gaussian matrices from Appendix A, this allows us to
extend the analysis performed in the proof of Theorem 9.1 to the spectral and nuclear
norms.

Theorem 9.3 (Expectation bound in spectral and nuclear norms). Consider the setting
of Theorem 9.1 with an oversampling parameter p ≥ 2, it holds that

E[∥A− Â∥2] ≤
(
1 +

3k

p− 1
β
(2)
k + 3δ

(2)
k

)
∥Λ2∥2 +

3e2(k + p)

p2 − 1
β
(∗)
k ∥Λ2∥∗, (9.14a)

E[∥A− Â∥∗] ≤
(
1 +

k

p− 1
β
(∗)
k + δ

(∗)
k

)
∥Λ2∥∗. (9.14b)

Proof. We start by proving (9.14a) and use the structural bound (9.6) for the Nyström
method to obtain

E[∥A− Â∥2] ≤ ∥Λ2∥2 + E[∥Λ1/2
2 Ω2Ω

†
1∥22] = ∥Λ2∥2 + E2[∥Λ1/2

2 Ω2Ω
†
1∥2]2.

Similarly to the proof of Theorem 9.1, we use the conditional distribution of Ω2|Ω1 and
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the triangle inequality for the L2 norm twice, to get

E2
[
∥Λ1/2

2 Ω2Ω
†
1∥2
]
= E2

Ω1

[
E2
Ψ

[
∥Λ1/2

2 K̃21K̃
−1
11 Ω1Ω

†
1 +Λ

1/2
2 K̃

1/2
22.1ΨΩ†

1∥2 | Ω1

]]
≤ ∥Λ1/2

2 K̃21K̃
−1
11 ∥2 +

(
EΩ1

[
EΨ

[
∥Λ1/2

2 K̃
1/2
22.1ΨΩ†

1∥22 | Ω1

]])1/2
,

where Ψ is an (n− k)× (k + p) standard Gaussian matrix. Then (A.1c) leads to

EΨ

[
∥Λ1/2

2 K̃
1/2
22.1ΨΩ†

1∥22 | Ω1

]
≤
(
∥Λ1/2

2 K̃
1/2
22.1∥F∥Ω†

1∥2 + ∥Λ1/2
2 K̃

1/2
22.1∥2∥Ω†

1∥F
)2
.

After taking expectation with respect to Ω1 and using the triangle inequality for the L2

norm, we have(
EΩ1

[
EΨ

[
∥Λ1/2

2 K̃
1/2
22.1ΨΩ†

1∥22 | Ω1

]])1/2
≤ ∥Λ1/2

2 K̃
1/2
22.1∥F(EΩ1

[
∥Ω†

1∥22
]
)1/2

+ ∥Λ1/2
2 K̃

1/2
22.1∥2(EΩ1

[
∥Ω†

1∥2F
]
)1/2.

We then apply Lemma A.3 to obtain the following inequality

E2[∥Λ1/2
2 Ω2Ω

†
1∥2] ≤

∥K̃−1/2
11 ∥F√
p− 1

∥Λ1/2
2 K̃

1/2
22.1∥2 + ∥Λ1/2

2 K̃21K̃
−1
11 ∥2

+
e
√
k + p√
p2 − 1

∥K̃−1
11 ∥1/22 ∥Λ1/2

2 K̃
1/2
22.1∥F

≤
√

k

p− 1
β
(2)
k ∥Λ2∥2 +

√
δ
(2)
k ∥Λ2∥2 +

√
e2(k + p)

p2 − 1
β
(∗)
k ∥Λ2∥∗.

We conclude the proof of (9.14a) using the inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2).

The bound for the nuclear norm follows through a similar argument from the structural
bound (9.6) in the nuclear norm:

E[∥A− Â∥∗] ≤ ∥Λ2∥∗ + E[∥Λ1/2
2 Ω2Ω

†
1∥2F]

≤ ∥Λ2∥∗ + ∥Λ1/2
2 K̃21K̃

−1
11 ∥2F + ∥Λ1/2

2 K̃
1/2
22.1∥2F

tr(K̃−1
11 )

p− 1

≤
(
1 +

k

p− 1
β
(∗)
k + δ

(∗)
k

)
∥Λ2∥∗.

Theorem 9.4 (Tailbound in spectral and nuclear norms). Using the notation of theo-
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rem 9.1 with an oversampling parameter p ≥ 4, and u, t ≥ 1, it holds that

∥A− Â∥2 ≤
(
1 + 4δ

(2)
k + 4(d1 + d2u

2)t2β
(2)
k

)
∥Λ2∥2 + 4d2t

2β
(∗)
k ∥Λ2∥∗, (9.15a)

∥A− Â∥∗ ≤
(
1 + 2δ

(∗)
k + d1t

2β
(∗)
k

)
∥Λ2∥∗ + 2d2t

2u2β
(2)
k ∥Λ2∥2, (9.15b)

where each inequality holds with probability ≥ 1− 2t−p − eu
2/2.

Proof. We begin by deriving the tailbound (9.15a) in the spectral norm. Similar to the
proof of Equation (9.5), we process the second term of the structural bound (9.6) with
the concentration inequality of Lemma 9.2 in the spectral norm:

P
{
∥Λ1/2

2 Ω2Ω
†
1∥2 ≥ E

[
∥Λ1/2

2 Ω2Ω
†
1∥2 | Ω1

]
+ ∥Λ1/2

2 K̃
1/2
22.1∥2∥Ω†

1∥2u | Ω1

}
≤ e−u2/2.

(9.16)
Using Lemma A.2, it holds that

E
[
∥Λ1/2

2 Ω2Ω
†
1∥2 | Ω1

]
≤ ∥Λ1/2

2 K̃21K̃
−1
11 ∥2 + ∥Λ1/2

2 K̃
1/2
22.1∥F∥Ω†

1∥2 + ∥Λ1/2
2 K̃

1/2
22.1∥2∥Ω†

1∥F.

We then consider the probability event Et that the Frobenius and spectral norms of Ω†
1

are well controlled:

Et =

{
∥Ω†

1∥F ≤
√
d1∥K̃−1

11 ∥2t, ∥Ω†
1∥2 ≤

√
d2∥K̃−1

11 ∥2t
}
,

where P(Ec
t ) ≤ 2t−p by Lemma A.4. We conclude the proof of (9.15a) by conditioning

(9.16) on Et and using the inequality ∥x∥1 ≤
√
d∥x∥2 for x ∈ Rd to obtain:

∥Λ1/2
2 Ω2Ω

†
1∥22 ≤

(
4δ

(2)
k + 4(d1 + d2u

2)t2β
(2)
k

)
∥Λ2∥2 + 4d2t

2β
(∗)
k ∥Λ2∥∗,

with probability ≥ 1− 2t−p − e−u2/2.

The proof of the tail bound for the nuclear norm (9.15b) follows from a similar argument.

Remark 9.1 (Connection with the randomized SVD). Consider an arbitrary matrix
B ∈ Rm×n with singular value decomposition

B =
[
W1 W2

] [S1

S2

][
U∗

1

U∗
2

]
,

where W1 ∈ Rm×k,U1 ∈ Rn×k, and S1 ∈ Rk×k is a diagonal matrix containing the k
largest singular values of B. Letting Q be an orthonormal basis for range(BΩ), then
QQ∗B is the approximation attained by the (basic) randomized SVD. Setting A = B∗B
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and Â = AΩ(Ω∗AΩ)†Ω∗A we have for any s ≥ 1 that

∥B −QQ∗B∥2(2s) = ∥A− Â∥(s).

Hence, obtaining a bound for the randomized SVD applied to B is equivalent to obtaining
a bound for the Nyström approximation on A; similar observations have been made in [68,
150]. Therefore, one can apply the results obtained earlier in this section to derive error
bounds for the randomized SVD. As an example, Theorem 9.3 implies that

E∥B −QQ∗B∥2F ≤
(
1 +

k

p− 1
β̃k + δ̃k

)
∥S2∥2F,

where β̃k = tr(S2K̃22.1S2)∥K̃−1
11 ∥2/∥S2∥2F and δ̃k = tr(S2K̃21K̃

−1
11 K̃

∗
21S2)∥K̃−1

11 ∥2/∥S2∥2F.
This bound coincides with the standard randomized SVD bound [79, Theorem 10.5] when
K = I, unlike the bound proved in [28, Theorem 2].

9.3 The randomized Nyström approximation in infinite di-
mensions

This section presents an infinite-dimensional extension of the randomized Nyström
approximation. We begin by briefly introducing the concepts of quasimatrices, Hilbert–
Schmidt operators, and Gaussian processes, which will be useful to generalize of the
bounds of Section 9.2 to operators between function spaces.

9.3.1 Quasimatrices

For a bounded domain D ⊂ Rd, d ≥ 1, we consider the Hilbert space L2(D) of square-
integrable functions. Quasimatrices are a convenient way to represent and work with
collections of functions or more, generally, elements of infinite-dimensional vector spaces;
see, e.g., [148]. In particular, a function Y : Rm → L2(D) is expressed as the quasima-
trix

Y =
[
y1 · · · ym

]
, yi ∈ L2(D).

Similar to matrices, compositions of linear operators can be conveniently expressed
by extending the usual matrix multiplication rules to quasimatrices. The adjoint Y ∗ :

L2(D) → Rm can also be viewed as a quasimatrix with the m rows ⟨y1, ·⟩, · · · , ⟨ym, ·⟩ :
L2(D) → R, where ⟨·, ·⟩ denotes the standard inner product in L2(D). If Z : Rℓ → L2(D)

is another quasimatrix, then Y ∗Z yields the following m× ℓ matrix:

Y ∗Z =

 ⟨y1, z1⟩ · · · ⟨y1, zℓ⟩
...

. . .
...

⟨ym, z1⟩ · · · ⟨ym, zℓ⟩

 .
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9.3.2 Non-negative self-adjoint trace-class operators

We consider a non-negative self-adjoint trace-class operator A : L2(D) → L2(D), i.e.,
it holds that ⟨Af, f⟩ ≥ 0 and ⟨Af, g⟩ = ⟨f,Ag⟩ for every f, g ∈ L2(D), and the trace
norm [89, Definition 4.5.1] is finite:

∥A∥Tr :=
∞∑
j=1

⟨Aej , ej⟩ <∞,

for any orthonormal basis {ej}j of L2(D). Non-negative self-adjoint trace-class operators
are Hilbert–Schmidt operators [89, Theorem 4.5.2], and therefore admit an eigenvalue
decomposition of the form [89, Theorem 4.3.1]:

A =
∞∑
j=1
λj>0

λj⟨uj , ·⟩uj , (9.17)

where λ1 ≥ λ2 ≥ · · · ≥ 0 are the eigenvalues of A, and {uj}j are orthonormal eigen-
functions. The eigenvalues allow us to express the trace, Hilbert–Schmidt, and operator
norms of A as

∥A∥Tr =
∞∑
j=1

λj , ∥A∥HS =

( ∞∑
j=1

λ2j

)1/2

, ∥A∥op = λ1,

which are infinite-dimensional analogs of the nuclear, Frobenius, and spectral norms
discussed in Chapter 2.

Furthermore, we introduce the operator U : ℓ2 → L2(D) defined by Uf =
∑∞

i=1 fiui for
any f in ℓ2, the space of square-summable sequences (indexed by positive integers). Then,
for a given rank k ≥ 1, the quasimatrix U1 : Rk → L2(D) contains the first k eigenfunctions
of A, and the quasimatrix U2 : ℓ2 → L2(D) contains the remaining eigenfunctions.
Finally, we introduce the diagonal matrix and quasimatrices Λ1 = diag(λ1, . . . , λk) and
Λ2 = diag(λk+1, λk+2, . . .), respectively, which contain the eigenvalues of A in descending
order.

9.3.3 Gaussian processes

In this section we will give a brief outline of random elements in Hilbert spaces and
Gaussian processes.

Let ω be a measurable function from a probability space (S,S,P) to (H,B(H)), where H
is a separable Hilbert space with inner product ⟨·, ·⟩. If E∥ω∥ < ∞ then we can define
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the mean of ω as the Bochner integral

m = Eω =

∫
S
ωdP;

see [89, Definition 7.2.1]. An alternative way of defining the mean is to let m be the
unique representer in H that has the property ⟨m, g⟩ = E⟨ω, g⟩; see [89, Section 7.2]. We
will assume throughout this thesis that m = 0.

Assuming E∥ω∥2 <∞, the covariance operator is the self-adjoint non-negative trace class
operator K : H → H defined as the Bochner integral

K = Eω ⊗ ω =

∫
S
ω ⊗ ωdP,

where ω ⊗ ω denotes the operator given by f 7→ ⟨ω, f⟩ω for any f ∈ H. The existence
of K is guaranteed by the assumption E∥ω∥2 < ∞ and the separability of the Hilbert
space consisting of Hilbert Schmidt operators from H to H. The trace norm of K is
given by ∥K∥Tr = E∥ω∥2 < ∞. Since K is a self-adjoint operator it has a spectral

decomposition given by K =
∞∑
i=1

θiψi ⊗ ψi, where {ψi}i is a complete orthonormal system

so that Im(K) = span{ψi}i. Furthermore, we have ω ∈ span{ψi}i almost surely; see [89,
Theorem 7.2.5, Theorem 7.2.6].

In this thesis we will be concerned with random elements in the Hilbert space L2(D),
for some bounded set D ⊂ Rd, equipped with the standard inner product. In particular,
we are interested in Gaussian processes, which are continuous analogues non-standard
Gaussian distributions. Formally speaking, a Gaussian process is a stochastic process
ω = {ω(x) : x ∈ D} defined on some probability space (S,S,P). We assume that the
process is jointly measurably on B(D) × S. We say that the process has mean zero if
Eω(x) = 0 for all x ∈ D. The covariance between two instances of ω, ω(x) and ω(y), is
described by the symmetric positive semi-definite covariance function

K(x, y) = Cov(ω(x), ω(y)),

provided Eω(x)2 exists for all x ∈ D [89, Theorem 7.3.1]. The process is said to be
a Gaussian process if for any finite collection of points x1, . . . , xm ∈ D, the vector[
ω(x1) · · · ω(xm)

]⊤
follows a multivariate normal distribution with mean 0 ∈ Rm and

covariance matrix K = (K(xi, xj))1≤i,j≤m. In this case we write ω ∼ GP(0,K).

If we further assume that K : D ×D 7→ R is a continuous kernel by Mercer’s theorem it
admits the following eigenvalue decomposition [89, Theorem 4.6.5]:

K(x, y) =

∞∑
i=1

θiψi(x)ψi(y),

∫
D
K(x, y)ψi(y)dy = θiψi(x), x, y ∈ D.
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where the sum converges absolutely and uniformly on D [108]. Here, θ1 ≥ θ2 ≥ . . . ≥ 0

are the eigenvalues of the integral operator K induced by K:

K[f ](x) =

∫
D
K(x, y)f(y)dy, f ∈ L2(D), x ∈ D,

and {ψj}j are the corresponding orthonormal eigenfunctions of K in L2(D). In the
following, we assume that K is trace-class, i.e.,

∑∞
i=1 θi < ∞. Mean-zero processes

with such covariance kernels are mean-square continuous [89, Theorem 7.3.2]. For such
processes, the different definitions of the mean function and covariance operator given in
this section are equivalent [89, Theorem 7.4.3].

For any two functions f, g ∈ L2(D) we have that ⟨ω, f⟩ ∼ N (0, ⟨f,Kf⟩), ⟨ω, g⟩ ∼
N (0, ⟨g,Kg⟩), and Cov(⟨ω, f⟩, ⟨ω, g⟩) = ⟨g,Kf⟩ [89, Theorem 7.3.3 and Theorem 7.4.3].

Furthermore, by the Karhunen-Loève theorem we have that ω =
∞∑
i=1

⟨ω, ψi⟩ψi, where the

series converges uniformly in D in the mean-square sense; see [89, Theorem 7.3.5 and
Theorem 7.4.3]. The Karhunen–Loève expansion of ω is given by

ω = θ
1/2
1 ζ1ψ1 + θ

1/2
2 ζ2ψ2 + · · · , (9.18)

where ζ1, ζ2, . . . ∼ N (0, 1) are mutually independent; see [1, Chapter 3.2]. With probability
one, a realization of ω is in L2(D) [89, Theorem 7.2.5].

Recalling that {uj}j denote the eigenfunctions of A, see (9.17), we define the function
K̃ : N∗ × N∗ → R elementwise as

K̃(i, j) = ⟨ui,Kuj⟩ =
∞∑
k=1

θk⟨ψk, ui⟩⟨ψk, uj⟩, i, j ∈ N∗,

which is bounded by ∥K∥Tr using the Cauchy–Schwarz inequality. We also define the
following restrictions of K̃ to different sets of indices:

K̃11 = K̃J1,kK×J1,kK, K̃21 = K̃Jk+1,∞)×J1,kK, K̃22 = K̃Jk+1,∞)×Jk+1,∞).

Then, K̃11 defines a k × k matrix, which we assume to be of rank k in the rest of this
section. In terms of the quasimatrices U1, U2 containing the eigenfunctions defined as
above, we can write

K̃11 = U∗
1KU1, K̃21 = U∗

2KU1, K̃22 = U∗
2KU2, (9.19)

in analogy to (9.2).
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9.3.4 Infinite-dimensional extension of the Nyström approximation

We are now ready to present the infinite-dimensional extension of the Nyström approxima-
tion. Let k be a target rank, p be an oversampling parameter, and Ω =

[
ω1 · · · ωk+p

]
be a random quasimatrix with k + p columns, whose columns are i.i.d. from GP(0,K).
The Nyström approximation Â to A is defined as

Â := AΩ(Ω∗AΩ)†(AΩ)∗. (9.20)

Assuming that the realization of ωi is in L2(D), which holds with probability 1, the
Nyström approximation is an operator Â : L2(D) → L2(D) of rank at most k + p with
the explicit representation

Â[f ] =

k+p∑
i,j=1

Aωi

[
(Ω∗AΩ)†

]
ij
⟨ωj ,Af⟩

As in the finite-dimensional case, the error bounds for the infinite-dimensional analog of
the Nyström approximation depend on the prior information of eigenvectors contained in
K, which is measured by the following two quantities:

β
(ξ)
k =

∥Λ1/2
2 K̃22.1Λ

1/2
2 ∥ξ

∥Λ2∥ξ
∥K̃−1

11 ∥2, δ
(ξ)
k =

∥Λ1/2
2 K̃21K̃

−1
11 K̃

∗
21Λ

1/2
2 ∥ξ

∥Λ2∥ξ
∥K̃−1

11 ∥2, (9.21)

where ξ ∈ {HS,Tr, op}. These quantities are the infinite-dimensional analogs of (9.3).

For each 1 ≤ j ≤ k + p, we consider the stochastic process ωj = {⟨ui, ωj⟩, i ∈ N∗}
whose trajectories are in ℓ2, and denote by Ω = U∗Ω =

[
ω1 · · · ωk+p

]
the random

quasimatrix whose columns are i.i.d. from GP(0, K̃). Then, we introduce the random
k × (k + p) matrix Ω1 as

Ω1 := U∗
1Ω =

⟨u1, ω1⟩ · · · ⟨u1, ωk+p⟩
...

. . .
...

⟨uk, ω1⟩ · · · ⟨uk, ωk+p⟩

 , ωj ∼ GP(0,K), 1 ≤ j ≤ k + p,

whose columns are i.i.d. from N (0, K̃11) [29, Lemma 1]. Since we assume that rank(K̃11) =

k we know that Ω1 has full row-rank with probability one. Therefore, Ω1 has almost
surely a right inverse Ω†

1 = Ω∗
1(Ω1Ω

∗
1)

−1. We define Ω2 = U∗
2Ω similarly. Note that

the ith entry of the columns of Ω2 are distributed as N (0, (K̃22)ii) and the covariance
between the ith and jth entry is (K̃22)ij [29, Section 3.3].
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9.3.5 Structural bound

In this section, we prove an infinite-dimensional analog of the structural bound (9.6).
We begin by stating some basic but useful results on norms of finite sections of ℓ2

operators.

Lemma 9.5. Let B,C : ℓ2 → ℓ2 be non-negative self-adjoint trace-class operators such
that B −C is non-negative. For n ∈ N∗, consider the restriction BJ1,nK×J1,nK of B to its
first n rows and columns. Then, for ξ ∈ {Tr,HS, op}, we have

lim
n→∞

∥BJ1,nK×J1,nK∥ξ = ∥B∥ξ, (9.22a)

∥C∥ξ ≤ ∥B∥ξ ≤ ∥BJ1,nK×J1,nK∥ξ + ∥BJn+1,∞)×Jn+1,∞)∥ξ. (9.22b)

For ξ ∈ {HS,Tr}, the property (9.22a) follows from the absolute convergence of the
involved series. For ξ = op, the triangle inequality yields

|∥B∥op − ∥BJ1,nK×J1,nK∥op| ≤
√

∥B∥2HS − ∥BJ1,nK×J1,nK∥2HS → 0, as n→ ∞.

(9.22b) is an infinite-dimensional analog of Lemmas 4.27 and 4.28, which can be proven
using (9.22a). We can now proceed with an infinite-dimensional analog of the finite-
dimensional structural bound (9.6).

Lemma 9.6 (Infinite-dimensional structural bound). Let A : L2(D) → L2(D) be a
self-adjoint non-negative trace-class operator, k, p ≥ 1, and Ω : Rk+p → L2(D) be a
quasimatrix with k + p columns such that the matrix Ω1 = U∗

1Ω ∈ Rk×(k+p) is full rank.
Then,

∥A −AΩ(Ω∗AΩ)†(AΩ)∗∥ξ ≤ ∥Λ2∥ξ + ∥(Λ1/2
2 Ω2Ω

†
1)

∗Λ1/2
2 Ω2Ω

†
1∥ξ,

where ξ ∈ {op,HS,Tr}.

Proof. Let Ω = U∗Ω be defined as in Section 9.3.4 and PU = UU∗ : L2(D) → L2(D)

denote the orthogonal projection onto the range of A. Since A is a self-adjoint operator,
we have A = PUA = APU = PUAPU . Therefore,

∥A −AΩ(Ω∗AΩ)†(AΩ)∗∥ξ = ∥PUAPU − PUAPUΩ(Ω
∗PUAPUΩ)

†(PUAPUΩ)
∗∥ξ

= ∥U(U∗AU − U∗AUΩ(Ω∗U∗AUΩ)†(U∗AUΩ)∗)U∗∥ξ
= ∥U∗AU − U∗AUΩ(Ω∗U∗AUΩ)†(U∗AUΩ)∗∥ξ = ∥Λ−ΛΩ(Ω∗ΛΩ)†(ΛΩ)∗∥ξ,

where the third equality follows from the unitary invariance of the norms and the fourth
equality is due to the relation U∗AU = Λ. As in the finite-dimensional case, the rest of
the proof follows the argument of the proof of Lemma 4.29 for the operator monotone
function f : x 7→ x and q = 1, now using the fact that the inequalities in (9.22b) are
infinite-dimensional analogs of Lemmas 4.27 and 4.28 with f : x 7→ x and ∥·∥ := ∥·∥ξ.
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9.3.6 Probabilistic bounds

With the structural bound in place, we proceed to derive probabilistic bounds for the
infinite-dimensional Nyström approximation (9.20).

Theorem 9.7 (Infinite-dimensional Nyström approximation). Let A : L2(D) → L2(D)

be a non-negative self-adjoint trace-class operator, 2 ≤ k ≤ rank(A) be a target rank, and
p ≥ 4 be an oversampling parameter. Let Ω be a quasimatrix with k+p columns i.i.d. from
GP(0,K), with a kernel K such that the matrix K̃11 defined in (9.19) is invertible. Then,
the Nyström approximation Â : L2(D) → L2(D) defined in (9.20) satisfies

E[∥A − Â∥HS] ≤
(
1 + 2δ

(HS)
k + 2

√
c1β

(HS)
k

)
∥Λ2∥HS + 2

√
c2β

(Tr)
k ∥Λ2∥Tr, (9.23a)

E[∥A − Â∥op] ≤
(
1 +

3k

p− 1
β
(op)
k + 3δ

(op)
k

)
∥Λ2∥op +

3e2(k + p)

p2 − 1
β
(Tr)
k ∥Λ2∥Tr, (9.23b)

E[∥A − Â∥Tr] ≤
(
1 +

k

p− 1
β
(Tr)
k + δ

(Tr)
k

)
∥Λ2∥Tr, (9.23c)

where c1 = O(k2/p2), c2 = O(k2/p2) are the constants defined in (9.8). Let u, t ≥ 1, then

∥A − Â∥HS ≤ ∥Λ2∥HS + 4
(
δ
(HS)
k + t2(d1 + d3)β

(HS)
k

)
∥Λ2∥HS + 4t2d3β

(Tr)
k ∥Λ2∥Tr

(9.24a)

+ 2t2u2d2β
(2)
k ∥Λ2∥op,

∥A − Â∥op ≤
(
1 + 4δ

(op)
k + 4(d1 + d2u

2)t2β
(op)
k

)
∥Λ2∥op + 4d2t

2β
(Tr)
k ∥Λ2∥Tr, (9.24b)

∥A − Â∥Tr ≤
(
1 + 2δ

(Tr)
k + d1t

2β
(Tr)
k

)
∥Λ2∥Tr + 2d2t

2u2β
(op)
k ∥Λ2∥op, (9.24c)

with probability ≥ 1−3t−p−e−u2/2. Here, d1 = O(k/p), d2 = O(k/p), and d3 = O(k3/2/p)

are the constants defined in (9.11).

The proof of Theorem 9.7 occupies the rest of this section and follows from a continuity
argument on the generalization of the Nyström approximation to correlated Gaussian
vectors analyzed earlier in Section 9.2. Let n ≥ 1 and s ∈ [1,∞], we first define the
following random variables:

Xs,n = ∥(Λ1/2
2 )J1,nK×J1,nK(Ω2)J1,nK×J1,k+pKΩ

†
1∥(2s), Xs = ∥Λ1/2

2 Ω2Ω
†
1∥(2s), (9.25)

where ∥ · ∥(2s) denotes the Schatten-2s norm. We aim to show the convergence of Xs,n to
Xs as n→ ∞, and begin with a preliminary result on the finiteness of the expectation of
Xs.

Lemma 9.8 (Expectation of Xs). For s ∈ [1,∞], let Xs be the random variable defined
in (9.25). Then, if p ≥ 4, we have E2

Ω[Xs] <∞.
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Proof. We first notice that 2s ≥ 2 implies

∥Λ1/2
2 Ω2Ω

†
1∥2(2s) ≤ ∥Λ1/2

2 ∥2op∥Ω2∥2HS∥Ω†
1∥2F.

Noting that Ω1, Ω2 are not independent, we need to establish E[∥Ω2∥4HS] < ∞ and
E[∥Ω†

1∥4F] <∞ in order to conclude the result from Hölder’s inequality. First, Lemma A.3
ensures that E[∥Ω†

1∥4F] <∞ since Ω1 is a k× (k+ p) matrix whose columns are i.i.d. from
N (0, K̃11) [29, Lemma 1]. By the Karhunen–Loève expansion (9.18), an arbitrary column
ω of Ω satisfies

E
[
∥ω∥4L2(D)

]
=

∞∑
i,j=1

E[ζ2i ζ2j ]θiθj =
∑
i

E[ζ4i ]θ2i +
∑
i ̸=j

E[ζ2i ζ2j ]θiθj =

3
∑
i

θ2i +
∑
i ̸=j

θiθj ≤ 3∥K∥2Tr <∞.

In turn,

E∥Ω2∥4HS ≤ E∥Ω∥4HS ≤ E
(
∥ω1∥2L2(D)+ · · ·+ ∥ωk+p∥2L2(D)

)2
≤ (k+ p)2E

[
∥ω∥4L2(D)

]
<∞.

We proceed by showing that limn→∞ E2[Xs −Xs,n] = 0.

Lemma 9.9 (Convergence of Xs,n to Xs). For s ∈ [1,∞], let Xs, Xs,n be the random
variables defined in (9.25) for n ≥ 1. Then, if p ≥ 4, we have limn→∞ E2[Xs −Xs,n] = 0.

Proof. For n ≥ 1, we define the quasimatrix Ω
(n)
2 whose first n rows are equal to the first

n rows of Ω2 and the remaining rows are zero. Then,

Xs,n = ∥(Λ1/2
2 )J1,nK×J1,nK(Ω2)J1,nK×J1,k+pKΩ

†
1∥(2s) = ∥Λ1/2

2 Ω
(n)
2 Ω†

1∥(2s).

Combining the triangle inequality and sub-multiplicativity of the Schatten-s norm, and
using the fact that 2s ≥ 2, we have

(Xs −Xs,n)
2 ≤ ∥Λ1/2

2 ∥2op∥Ω†
1∥2F∥Ω2 −Ω

(n)
2 ∥2HS.

By Hölder’s inequality it suffices to show that limn→∞ E[∥Ω2 − Ω
(n)
2 ∥4HS] = 0, since

E[∥Ω†
1∥4F] <∞ by Lemma A.3. Let ωi and ω(n)

i denote the ith columns of Ω2 and Ω
(n)
2 ,
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respectively. Using the monotonicity and triangle inequality of Lp-norms, we have

E4[∥Ω2 −Ω
(n)
2 ∥HS] ≤ E4

[
k+p∑
i=1

∥ωi − ω(n)
i ∥2

]
≤

k+p∑
i=1

E4
[
∥ωi − ω(n)

i ∥2
]

= (k + p)E4
[
∥ω1 − ω(n)

1 ∥2
]
,

since the columns of Ω2 are identically distributed.

We are now going to verify that

lim
n→∞

E
[
∥ω1 − ω(n)

1 ∥42
]
= 0.

Following [29, Section 3.3], we know that the entries of ω1 satisfy (ω1)i ∼ N (0, (K̃22)ii)

for i ∈ N∗. Let Y =
∑∞

i=n+1(ω1)
2
i = ∥ω1 − ω(n)

1 ∥22. Combining the non-negativity of
the summands and the Fubini–Tonelli theorem, we can interchange the summation and
expectation to obtain

E
[
∥ω1 − ω(n)

1 ∥42
]
= E[Y 2] = E

[ ∞∑
i=n+1

(ω1)
2
iY

]
=

∞∑
i=n+1

E
[
(ω1)

2
iY
]

≤
∞∑

i=n+1

√
E[(ω1)4i ]

√
E[Y 2],

where the last inequality follows from the Cauchy–Schwarz inequality. Hence,

E
[
∥ω1 − ω(n)

1 ∥42
]
≤
( ∞∑

i=n+1

√
E[(ω1)4i ]

)2

= 3

( ∞∑
i=n+1

(K̃22)ii

)2

→ 0, as n→ ∞,

since tr(K̃22) ≤ tr(K) <∞.

Combining Lemmas 9.8 and 9.9, we obtain that limn→∞ E2[Xs,n] = E2[Xs]. Hence, if
we have a family of bounds E2[Xs,n] ≤ ys,n with ys,n → ys as n→ ∞, then E2[Xs] ≤ ys.
Furthermore, combining the continuous mapping theorem and the fact that L2 convergence
implies convergence in distribution, for any positive sequence zs,n → zs < ∞, we have
limn→∞ P(X2

s,n > zs,n) = P(X2
s > zs). We can now proceed with the proof of Theorem 9.7,

which uses results from Section 9.2 to derive expressions for ys,n and zs,n and show that,
for s ∈ {2,∞, 1}, they converge to the right-hand sides of (9.23) and (9.24).

Proof of Theorem 9.7. Let ∥Λ2∥HS+ y2, ∥Λ2∥op+ y∞, and ∥Λ2∥Tr+ y1 be the respective
right-hand sides in (9.23), and ∥Λ2∥HS + z2, ∥Λ2∥op + z∞, and ∥Λ2∥Tr + z1 be the
right-hand sides in (9.24). For s ∈ {2,∞, 1}, we aim to prove that E[X2

s ] ≤ ys and
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P(X2
s ≥ zs) ≤ 3t−p + e−u2/2. Following Theorem 9.1, we have

E[X2
2,n] ≤ 2∥(Λ1/2

2 )J1,nK×J1,nK(K̃21)J1,nK×J1,kKK̃
−1
11 (K̃21)

∗
J1,nK×J1,kK(Λ

1/2
2 )J1,nK×J1,nK∥F

+ 2
√
c1∥(Λ1/2

2 )J1,nK×J1,nK(K̃22.1)J1,nK×J1,nK(Σ
1/2
2 )J1,nK×J1,nK∥F

+ 2
√
c2∥(Σ1/2

2 )J1,nK×J1,nK(K̃22.1)J1,nK×J1,nK(Σ
1/2
2 )J1,nK×J1,nK∥∗ := y2,n,

and with probability greater than 1− 3−p − e−u2/2, we have

X2
2,n ≥ 4∥(Λ1/2

2 )J1,nK×J1,nK(K̃21)J1,nK×J1,kKK̃
−1
11 (K̃21)

∗
J1,nK×J1,kK(Λ

1/2
2 )J1,nK×J1,nK∥F

+ 4t2(d1 + d3)∥(Λ1/2
2 )J1,nK×J1,nK(K̃22.1)J1,nK×J1,nK(Λ

1/2
2 )J1,nK×J1,nK∥F

+ 4t2d3∥(Λ1/2
2 )J1,nK×J1,nK(K̃22.1)J1,nK×J1,nK(Λ

1/2
2 )J1,nK×J1,nK∥∗

+ 2t2u2d2∥(Λ1/2
2 )J1,nK×J1,nK(K̃22.1)J1,nK×J1,nK(Λ

1/2
2 )J1,nK×J1,nK∥2 := z2,n.

Following Theorems 9.3 and 9.4 we know that

E[X∞,n] ≤ y∞,n, E[X1,n] ≤ y1,n,

P (X∞,n > z∞,n) ≤ 3−p + e−u2/2, P (X1,n > z1,n) ≤ 3−p + e−u2/2,

where y∞,n, y1,n, z∞,n, and z1,n can be defined analogously to y2,n and z2,n using (9.14)
and (9.15). Moreover, Lemma 9.9 implies that limn→∞ E[X2

s,n] = E[X2
s ] and convergence

in distribution, which implies limn→∞ P(Xs,n > zs,n) = P(Xs > limn→∞ zs,n). Hence, it
is sufficient to show that limn→∞ ys,n = ys and limn→∞ zs,n = zs for s ∈ {2,∞, 1}. For
this purpose, it is sufficient to show that

lim
n→∞

∥(Λ1/2
2 )J1,nK×J1,nK(K̃22.1)J1,nK×J1,nK(Λ

1/2
2 )J1,nK×J1,nK∥ξ = ∥Λ1/2

2 K̃22.1Λ
1/2
2 ∥ξ,

lim
n→∞

∥(Λ1/2
2 )J1,nK×J1,nK(K̃21)J1,nK×J1,kKK̃

−1
11 (K̃21)

∗
J1,nK×J1,kK(Λ

1/2
2 )J1,nK×J1,nK∥ξ = (9.26)

∥Λ1/2
2 K̃21K̃

−1
11 K̃

∗
21Λ

1/2
2 ∥ξ,

for ξ ∈ {HS,Tr, op}, as inserting the definitions of β(ξ)k and δ(ξ)k would then give the result.
Note that since Λ2 is diagonal we have

(Λ
1/2
2 )J1,nK×J1,nK(K̃22.1)J1,nK×J1,nK(Λ

1/2
2 )J1,nK×J1,nK = (Λ

1/2
2 K̃22.1Λ

1/2
2 )J1,nK×J1,nK,

(Λ
1/2
2 )J1,nK×J1,nK(K̃21)J1,nK×J1,kKK̃

−1
11 (K̃21)

∗
J1,nK×J1,kK(Λ

1/2
2 )J1,nK×J1,nK =

(Λ
1/2
2 K̃21K̃

−1
11 K̃

∗
21Λ

1/2
2 )J1,nK×J1,nK.

Since Λ
1/2
2 K̃22.1Λ

1/2
2 and Λ

1/2
2 K̃21K̃

−1
11 K̃

∗
21Λ

1/2
2 are non-negative trace-class operators,

applying (9.22a) yields (9.26), as desired.
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9.4 Numerical experiments

In this section, we test the infinite-dimensional Nyström approximation proposed in this
work. Algorithm 14 presents the pseudocode of a suitable “implementation”, a variant of
[104, Algorithm 16] for non-negative self-adjoint trace-class operators.

Algorithm 14 Nyström approximation
input: Non-negative self-adjoint trace-class A : L2(D) → L2(D), covariance kernel
K : D ×D → R. Target rank k, oversampling parameter p.
output: Rank k + p Nyström approximation Â to A in factored form.
1: Draw a random quasimatrix Ω =

[
ω1 · · · ωk+p

]
with columns i.i.d. from GP(0,K).

2: Orthonormalize columns of Ω: Q = orth(Ω) =
[
q1 · · · qk+p

]
.

3: Apply operator A to Q: Y = AQ =
[
Aq1 · · · Aqk+p

]
.

4: ν = ϵ∥Y ∥HS where ϵ is equal to the machine precision.
5: Compute shifted Yν = Y + νΩ.
6: Compute Cholesky factorization of Ω∗Yν = RTR. ▷ First compute the symmetric

part of Ω∗Yν if needed.
7: Perform a triangular solve to compute B = YνR

−1.
8: Compute the Hilbert-Schmidt decomposition of B = ÛSV ∗.
9: Remove shift Λ̂ = max{S2 − νI, 0}, where the maximum is taken entry-wise.

10: return Â = ÛΛ̂Û∗ in factored form.

Some remarks:

• The orthonormalization in line 2 and the shift in line 5 improves the numerical
stability of the algorithm; see e.g. [151].

• In our implementation, we compute the Cholesky factorization of the symmetric
part of Ω∗Yν in line 6.

• In exact arithmetic with ν = 0 in line 4 the approximation returned by Algorithm 14
is mathematically equivalent to (9.20).

The purpose of our experiments is to validate Algorithm 14. For this purpose, we consider
an interval D = [a, b] and carry out all operations on functions on D (approximately)
using the Chebfun software package [47].

In all experiments, we choose the covariance kernel as a squared-exponential kernel

K(x, y) = exp

(
− 2(x− y)2

(b− a)2ℓ2

)
, x, y ∈ [a, b],

where we vary the length-scale parameter across three values: ℓ = 1, 0.1, 0.01. A smaller
value for ℓ results in smoother Gaussian processes that are more biased towards certain
spatial directions. Conversely, a larger value of ℓ results in rougher Gaussian processes
that are less spatially biased. We vary ℓ to investigate the effect of the smoothness of the
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Gaussian process on the result of the low-rank approximation.

9.4.1 A pretty function

In this example, we compute an approximation to the integral operator defined by the
kernel [147]

G(x, y) =
1

1 + 100(x2 − y2)2
, x, y ∈ [−1, 1]. (9.27)

We display the results in Figure 9.1. As can be seen from the figures, setting ℓ = 1

yields a poor approximation to the kernel, and ℓ = 0.01 is better to obtain high-accuracy
approximations.
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Figure 9.1: (a) Exact kernel defined by (9.27) along with convergence of the Nyström
approximation for different values of ℓ (b). (c)-(e) Rank-40 Nyström approximations of
the kernel for ℓ = 1, 0.1, 0.01, respectively.

9.4.2 Matérn Kernels

In this second example, we approximate the integral operator defined by the Matérn-
1/2, 3/2, and 5/2 kernels [129, Chapter 4]

G1/2(x, y) = exp(−|x− y|), x, y ∈ [−1, 1]; (9.28)

G3/2(x, y) = (1 +
√
3|x− y|) exp

(
−
√
3|x− y|

)
, x, y ∈ [−1, 1]; (9.29)

G5/2(x, y) =

(
1 +

√
5|x− y|+ 5

3
(x− y)2

)
exp

(
−
√
5|x− y|

)
, x, y ∈ [−1, 1]. (9.30)
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The Matérn class is an important class of covariance kernels, frequently appearing in
machine learning. The parameter ν = 1/2, 3/2, 5/2 determines the spectral decay of the
kernel and thus the smoothness of the Gaussian process, with higher ν implying faster
decay and smoother Gaussian processes. The results are presented in Figure 9.2 for
G1/2, G3/2, and G5/2, respectively.
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Figure 9.2: The contour plots show the exact kernel defined by (9.28)-(9.30) and the
approximated kernels using rank 100 Nyström approximations. The error plots show
the relative error in the Hilbert-Schmidt norm. Optimal denotes the best low-rank
approximation error.

9.4.3 Green’s function for an elliptic differential operator

In this example we consider the operator Aη so that u = Aηf solves the equation

−∆u(x) + ηu(x) = f(x), x ∈ [0, 2π]d,
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where η ≥ 0, with Direchlet boundary conditions. Let A0 have Hilbert-Schmidt decompo-
sition

[A0f ](x) =

∞∑
i=1

λiui(x)⟨ui, f⟩,

where ⟨·, ·⟩ denotes the standard L2([0, 2π]d) inner product. Then Aη has Hilbert-Schmidt
decomposition

[Aηf ](x) =

∞∑
i=1

gη(λi)ui(x)⟨ui, f⟩ = [gη(A0)f ](x), gη(λ) =
λ

ηλ+ 1
.

For each η ≥ 0 the function gη is operator monotone [25, Section V]. In Chapter 4
we showed that if Â is a near-optimal low-rank approximation to A, then g(Â0) is a
near-optimal low-rank approximation to g(A), for any non-negative continuous operator
monotone function g. Hence, to obtain a low-rank approximation to Aη we compute
a Nyström approximation Â0 to A0 and then approximate Aη with gη(Â0). In our
experiments, we set η = 1 and d = 1. In this case, the Green’s function is given by

G(x, y) = min(x, y)− xy

2π
. (9.31)

The results are displayed in Figure 9.3.
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Figure 9.3: The contour plots show the exact kernel defined by (9.31) and the approximated
kernels using rank 100 Nyström approximations. The error plots show the relative error
in the Hilbert-Schmidt norm. Optimal denotes the best low-rank approximation error.
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10 Conclusions and outlook

In Chapter 4 we presented funNyström: a simple and effective method to compute low-
rank approximations of non-negative operator monotone matrix functions. A significant
advantage of funNyström is that it does not require any access to the matrix function
f(A). Instead, it requires only that we are able to compute a Nyström approximation
to the matrix A, a task that usually is significantly cheaper. This dramatically reduces
the computational cost compared to methods that require access to the matrix function
f(A). We showed that any near-optimal Nyström approximation to A can be used to
compute a near-optimal funNyström approximation to f(A). Furthermore, we showed
that if Q ∈ Rn×ℓ is an orthonormal basis so that ∥A− (QQTA)(k)∥ ≤ (1+ ε)∥A−A(k)∥,
then if Â = AQ(QTAQ)†QTA we have ∥A − Â(k)∥ ≤ (1 + ε)∥A −A(k)∥, where ∥ · ∥
is the nuclear or Frobenius norm. Moreover, we showed that such a result is impossible
in the operator norm. We can use these results to immediately extend results in the
literature to obtain results for the funNyström approximation. We also provided bounds
for the funNyström approximation in general unitarily invariant norms.

A number of open questions remain. Firstly, we would like to weaken the assumption on
Theorem 4.6 so that we only require ∥A − Â(k)∥2F ≤ (1 + ε)∥A −A(k)∥2F. Secondly, it
would be desirable to extend our results to general non-negative monotonically increasing
functions. In particular, we would like to explore if it is possible to show that if Â is
a Nyström approximation (or another low-rank approximation) so that ∥A − Â(k)∥ ≤
(1+ε)∥A−A(k)∥ then ∥f(A)−f(Â)(k)∥ ≤ (1+Cfε)∥f(A)−f(A)(k)∥ for some constant
Cf depending only on f .

In Chapter 5 we analysed the Krylov-aware low-rank approximation method suggested by
Chen and Hallman in [37]. We proved that this method will return a good approximation
to f(A) if there is a low-degree polynomial that can denoise the small eigenvalues of
f(A). Furthermore, numerical experiments demonstrate that the Krylov-aware algorithm
is significantly more efficient than naively implementing the randomized SVD on f(A)

using approximate matrix-vector products.
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Figure 10.1: Comparing the subobtimality factor ε = ∥f(A)−B∥F
∥f(A)−f(A)(k)∥F − 1 for a rank

k approximations B. We consider the rank k approximations given by (10.1) with
q = 2s, the approximation returned by Algorithm 8 with s = r with (with truncation),
Algorithm 7, and Algorithm 1. The sketch matrix is chosen as a n× k standard Gaussian
random matrix. The rank parameter k is visible as titles in the figures.

A fundamental question remains: numerical experiments suggest that the approxima-
tion

f(A) ≈ Qqf(Tq)(k)Q
T
q , (10.1)

where Qq and Tq are as in Algorithm 4, is a more accurate low-rank approximation
compared to the one returned by Algorithm 8; see Figure 10.1. The approximation
in (10.1) corresponds to setting r = 0 in Algorithm 8 and our theory does not justify
this choice of r. Fortunately, our analysis from Chapter 5 is a stepping stone towards
an analysis of (10.1), since by Theorem 5.2 and Lemma 5.3 we only need a bound for
∥f(Tq)−QT

q f(A)Qq∥F to obtain a bound for ∥f(A)−Qqf(Tq)(k)Q
T
q ∥F.

In Chapter 7 we presented an adaptive version of Hutch++, A-Hutch++, that will
estimate the trace of a symmetric matrix A while attempting to minimize the number of
matrix-vector products withA used overall. This algorithm also comes with the advantage
that the user does not need to determine the number of matrix-vector products required
to output an estimate of the trace that is within the prescribed error tolerance.

An important question remains for future study. Recall that an important application
of trace estimation is to estimate the trace of a matrix function f(A). Approximating
matrix-vector products with f(A) requires repeated products with A, and it would
therefore be beneficial to develop an algorithm that estimates tr(f(A)), while minimizing
the number of matrix-vector products with A.
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In Chapter 8 we presented a version of Hutch++ utilizing the Nyström approximation,
which requires only one pass over the matrix. We proved that this algorithm satisfies
the same theoretical guarantees of Hutch++. While this algorithm offers a similar
performance as Hutch++, it performs significantly better than the previously proposed
single pass algorithm Single Pass Hutch++.

A future research direction is to develop other variants of the Hutch++ algorithm. For
example, [31, 110] studied the Hutchinson-Girard trace estimator in (6.1) where the
random test vectors are random Khatri-Rao products. Studying a version of Hutch++
using random Khatri-Rao products is of interest in applications where the matrix A
has a special structure that allows for very fast matrix-vector products with structured
vectors. Such matrices arise in, for example, stochastic automata networks [97] and
in low-rank tensor formats [73]. Developing a version of the Hutch++ algorithm with
random Khatri-Rao products would require a crisp analysis of the randomized SVD
(Algorithm 1) with these random test vectors. Such results would also be of independent
interest. A starting point to establish error bounds for the randomized SVD would be to
use the Johnson-Lindenstrauss property of random Kronecker vectors established in, for
example, [3].

In Chapter 9 we presented an infinite-dimensional analogue of the Nyström approximation
for non-negative self-adjoint trace class operators. We first established bounds for the finite
dimensional Nyström approximation when the columns of the sketch matrix Ω are drawn
independently from a non-standard Gaussian distribution N (0,K). Subsequently, through
a continuity argument we provided analogous bounds for the infinite-dimensional extension
of the Nyström approximation for non-negative trace class operators. Additionally,
in the process of analyzing the Nyström approximation for trace class operators, we
have also improved the existing bounds for the randomized SVD for Hilbert-Schmidt
operators.

An important issue remain for future study. Unfortunately, the Nyström approximation
presented in Chapter 9 cannot be used to approximate the off-diagonal parts of Green’s
functions of elliptic differential equations, since the off-diagonal parts of Green’s functions
are not even self-adjoint. Approximating Green’s functions of differential equations was
the motivating application for the development of the randomized SVD for Hilbert-
Schmidt operators. Therefore, it would be of interest to develop an infinite-dimensional
analogue of the generalized Nyström approximation [117, 152], which would be valid
for non-self-adjoint operators. A first step towards such generalization is to analyze
the finite-dimensional generalized Nyström approximation applied with non-standard
Gaussian random vectors. However, such analysis is complicated due to the fact that
the existing analysis of the generalized Nyström approximation makes heavy use of the
rotational invariance of the random test vectors, a property that is not satisfied by random
vectors drawn from non-standard Gaussian distributions.

133





A Properties of Gaussian matrices

The following lemma is a consequence of the symmetry of standard normal random
variables.

Lemma A.1. Let C ∈ Rm1×m2, D ∈ Rn1×n2 be two matrices, consider an m2 × n1
standard Gaussian matrix Ψ, and define Φ = CΨD. Then, EΨ[ΦΦ∗Φ] = 0.

Proof. First note that the expectation exists, since each entry of ΦΦ∗Φ is a linear combi-
nation of products of Gaussian random variables, which always has a finite expectation.
The distribution of Ψ and, in turn, Φ is symmetric, which gives

−EΨ[ΦΦ∗Φ] = EΨ[−ΦΦ∗Φ] = EΨ[(−Φ)(−Φ)∗(−Φ)] = EΨ[ΦΦ∗Φ],

implying the result of the lemma.

The following lemma summarizes results on the expected norms of scaled and shifted
Gaussian matrices for the Frobenius, Schatten-4, and spectral norms.

Lemma A.2 (Expected norm of shifted Gaussian matrices). Let C ∈ Rm1×m2 ,D ∈
Rn1×n2 , and B ∈ Rm1×n2 be three arbitrary matrices, and consider an m2 × n1 standard
Gaussian matrix Ψ. Then, the following relations hold:

E
[
∥B +CΨD∥2F

]
= ∥B∥2F + ∥C∥2F∥D∥2F, (A.1a)

E
[
∥CΨD∥4(4)

]
= ∥C∥4(4)∥D∥4(4) + ∥C∥4F∥D∥4(4) + ∥C∥4(4)∥D∥4F, (A.1b)

E
[
∥CΨD∥22

]
≤ (∥C∥F∥D∥2 + ∥C∥2∥D∥F)2 , (A.1c)

E
[
∥CΨD∥4F] = 2∥C∥4(4)∥D∥4(4) + ∥C∥4F∥D∥4F. (A.1d)

Proof. We introduce the matrix Φ = CΨD and begin by proving (A.1a). Using the

135



Appendix A: Properties of Gaussian matrices

linearity of trace and expectation we have:

E[∥B +Φ∥2F] = ∥B∥2F + E[∥Φ∥2F] + 2E[tr(B∗Φ)] = ∥B∥2F + ∥C∥2F∥D∥2F,

where we combined [79, Proposition 10.1] with the equality E[tr(B∗Φ)] = 0 since Ψ

has zero mean. A similar result is found in [45, Lemma 3.11]. The equality (A.1b) and
inequality (A.1c) can be found in [150, Lemma B.1] and [56, Proposition B.3], respectively.
We now conclude with the proof of (A.1d). Let E =D∗ ⊗C and ψ = vec(Ψ). Then,

E[∥CΨD∥4F] = E[(ψ∗E∗Eψ)2] = Var(ψ∗E∗Eψ) + (E[ψ∗E∗Eψ])2

= 2∥E∗E∥2F + tr(E∗E)2 = 2∥C∥4(4)∥D∥4(4) + ∥C∥4F∥D∥4F,

where we used a standard result that the variance of a quadratic form with Gaussian
random vectors is 2∥E∗E∥2F.

Lemma A.3. Let Ω1 ∈ Rk×(k+p) be a random matrix whose columns are i.i.d. N (0, K̃11)

random vectors and let B ∈ Rk×n be an arbitrary matrix. Then, the following relation
hold for k ≥ 1 and p ≥ 2:

E[∥Ω†
1B∥2F] =

tr(B∗K̃−1
11 B)

p− 1
=

∥B∗K̃−1/2
11 ∥2F

p− 1
, (A.2a)

Additionally, for p, k ≥ 2 we have:

E[∥Ω†
1∥22] ≤

e2(k + p)

(p− 1)(p+ 1)
∥K̃−1

11 ∥2. (A.3a)

Finally, for k ≥ 1 and p ≥ 4 we have

E[∥Ω†
1∥4(4)] =

(p− 1)∥K̃−1
11 ∥2F + tr(K̃−1

11 )2

p(p− 1)(p− 3)
≤ k

k + p− 1

p(p− 1)(p− 3)
∥K̃−1

11 ∥22, (A.4a)

E[∥Ω†
1∥4F] =

(p− 2) tr(K̃−1
11 )2 + 2∥K̃−1

11 ∥2F
p(p− 1)(p− 3)

≤ k
kp− 2k + 2

p(p− 1)(p− 3)
∥K̃−1

11 ∥22. (A.4b)

Proof. First, (A.2a) is proven in [45, Lemma 3.12] and (A.3a) follows from in [117, Lemma
3.1] and the fact E[∥Ω†

1∥22] ≤ E[∥Ψ†∥22]∥K−1
11 ∥2 where Ψ is a k×(k+p) standard Gaussian

matrix. We proceed to prove the equality in (A.4a) and introduce the random variable
X = Ω1Ω

∗
1 ∼ Wk(K̃11, k + p), such that

E
[
∥Ω†

1∥4(4)
]
= E

[
∥X−1∥2F

]
= E

[
tr(X−2)

]
=

∥K̃−1
11 ∥2F

p(p− 3)
+

tr(K̃−1
11 )2

p(p− 1)(p− 3)
,

where the last equality follows from [94, Theorem. 2.4.14]. The equality in (A.4b) follows
from the fact that E[∥Ω†

1∥4F] = E[tr(X−1)2] = E[tr
(
X−1 ⊗X−1

)
]. We then exploit a
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relation on E[X−1 ⊗X−1] [94, Theorem 2.4.14] to obtain

E
[
∥Ω†

1∥4F
]
=

(p− 2) tr(K̃−1
11 ⊗ K̃−1

11 ) + tr(vec(K̃−1
11 ) vec(K̃−1

11 )∗) + tr(Ck×k(K̃
−1
11 ⊗ K̃−1

11 ))

p(p− 1)(p− 3)

=
(p− 2) tr(K̃−1

11 )2 + 2∥K̃−1
11 ∥2F

p(p− 1)(p− 3)
,

where the second equality comes from the relation tr(Ck×k(K̃
−1
11 ⊗ K̃−1

11 )) = ∥K̃−1
11 ∥2F,

where Ck×k is the commutation matrix.1 Finally, the inequalities in (A.4a) and (A.4b)
follow from standard norm inequalities.

The next lemma is a generalization and a consequence of [79, Proposition 10.4], which
provides tailbounds on the Frobenius and spectral norms of pseudoinverted standard
Gaussian matrices.

Lemma A.4 (Norm bounds for a pseudoinverted scaled Gaussian matrix). Let Ω1 ∈
Rk×(k+p) be a random matrix whose columns are i.i.d. N (0, K̃11) random vectors. Then,
the following relations hold for p ≥ 4 and all t ≥ 1:

P

∥Ω†
1∥F >

√
3 tr(K̃−1

11 )

p+ 1
t

 ≤ t−p, (A.5a)

P

∥Ω†
1∥2 >

e

√
(k + p)∥K̃−1

11 ∥2
p+ 1

t

 ≤ t−(p+1), (A.5b)

P

∥Ω†
1∥(4) >

e

√
(k + p)∥K̃−1

11 ∥F
p+ 1

t

 ≤ t−(p+1). (A.5c)

Proof. Note that (A.5a) is a restatement of [29, Lemma 3]. Because Ω1 = K̃
1/2
11 Ψ, where

Ψ is a standard Gaussian matrix, it follows that ∥Ψ†K̃−1/2
11 ∥(s) ≤ ∥Ψ†∥2∥K̃−1/2

11 ∥(s) for
any Schatten-s norm. Moreover, the combination with [79, Proposition 10.4] implies

P

{
∥Ψ†∥2 >

e
√

(k + p)

p+ 1
t

}
≤ t−(p+1),

which yield the bounds (A.5b) and (A.5c) using ∥K̃−1/2
11 ∥22 = ∥K̃−1

11 ∥2 and ∥K̃−1/2
11 ∥2(4) =

∥K̃−1
11 ∥F, respectively.

1The commutation matrix Ck×k ∈ Rk2×k2

is a k × k block matrix, with blocks of size k × k. The
(i, j)-block of Ck×k is the matrix Eji with entries (Eji)kℓ = δjkδiℓ.
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