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ABSTRACT

In the past few years, Machine Learning (ML) techniques have ushered in
a paradigm shift, allowing the harnessing of ever more abundant sources
of data to automate complex tasks. The technical workhorse behind these
important breakthroughs arguably lies in the use of artificial neural networks
to learn informative and actionable representations of data, from data. While
the number of empirical successes accrues, a solid theoretical comprehension
of the unreasonable effectiveness of ML methods in learning from high-
dimensional data still proves largely elusive. This is the question addressed
in this thesis, through the study of solvable models in high dimensions, sat-
isfying the dual requirement of (a) capturing the key features of practical
ML tasks while (b) remaining amenable to mathematical analysis. Borrowing
ideas from statistical physics, this thesis presents sharp asymptotic incursions
into a selection of central aspects of modern ML.

The remarkable versatility of ML models lies in their ability to extract
informative features from data. The first part of the thesis delves into analyz-
ing which structural characteristics of these features condition the learning
of ML methods. Specifically, it highlights how, in several settings, a theory
formulated in terms of two statistical descriptors can tightly capture the
learning curves of simple real tasks. For kernel methods in particular, this
insight enables one to relate the error scaling laws to the structure of the
features.

The second part then refines the focus to study which features are ex-
tracted in multi-layer neural networks, both (a) when untrained and (b) when
trained in the framework of Bayesian learning, or after one large gradient
step. In particular, it delineates cases in which Gaussian universality holds
and limits the network expressivity, and cases in which neural networks
succeed in learning non-trivial features.

Finally, supervised learning tasks with fully-connected architectures con-
stitute but a small part of the zoology of modern ML tasks. The last part
of the thesis opens up the sharp asymptotic explorations to some modern
aspects of the discipline, in particular transport-based generative models,
and dot-product attention mechanisms.

Keywords – Machine Learning, Statistical Physics, High-dimensional asymp-
totics, Deep Neural Networks, Random Features, Gaussian Universality, Kernels,
Attention mechanisms, Generative models.
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RÉSUMÉ

Les techniques d’Apprentissage Machine (AM) permettent d’exploiter des
données toujours plus abondantes afin d’automatiser des tâches complexes.
Elles reposent en grande partie sur l’utilisation de réseaux de neurones artifi-
ciels pour extraire des représentations informatives des données. Alors que
le nombre de succès empiriques accroît, une compréhension théorique de la
surprenante capacité des méthodes d’AM à apprendre à partir de données
en hautes dimensions demeure élusive. C’est la question abordée dans cette
thèse, à travers l’étude de modèles simplifiés en hautes dimensions, reflétant
les caractéristiques clés des tâches d’AM , tout en demeurant analysables
mathématiquement. S’inspirant d’idées de physique statistique, cette thèse
présente des études asymptotiques de certains aspects clés de l’AM moderne.

La remarquable polyvalence des modèles d’AM réside dans leur capacité à
construire des repésentations informatives des données. La première partie
de cette thèse explore quels aspects structuraux de ces représentations con-
ditionnent l’apprentissage des méthodes d’AM. En particulier, elle montre
comment une théorie bâtie à partir de deux descripteurs statistiques seule-
ment peut décrire quantitativement les performances des méthodes d’AM
dans certains cas réels. Pour les méthodes à noyau en particulier, cette théorie
permet de relier le taux de décroissance de l’erreur de généralisation à la
structure des représentations.

La deuxième partie étudie quelles représentations sont extraites dans les
réseaux neuronaux profonds, (a) à l’initialisation et (b) après entraînement,
dans le cadre de l’apprentissage bayésien, ou après un unique pas de gradient.
En particulier, elle délimite les cas où l’universalité gaussienne prévaut et
limite l’expressivité des réseaux, et les cas où les réseaux sont en mesure
d’apprendre des représentations non triviales.

Ces cas ne constituent cependant qu’une partie de la zoologie des appli-
cations de l’AM modernes. La dernière partie de la thèse couvre certains
aspects modernes de la discipline, en particulier les modèles génératifs et les
mécanismes d’attention.

Mots-clés – Apprentissage automatique, Physique statistique, Hautes di-
mensions, Réseaux neuronaux profonds, Représentations aléatoires, Universalité
gaussienne, Méthodes à noyaux, Mécanismes d’attention, Modèles génératifs.
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FOREWORD

Recent years have witnessed a shift in paradigm, driven by the use of Machine
Learning (ML) techniques to harness ever more abundant sources of data
to automate complex tasks. Artificial Intelligence (AI) is now increasingly
ubiquitous, permeating various aspects of our daily lives – communication,
entertainment, work, even creative undertakings. The workhorse behind
this technical upheaval arguably lies in the use of Artificial Neural Net-
works (ANN) to extract and learn informative representations of data, from
data. The extracted representations – also called features– allow for simple
downstream processing, using simple algorithms like linear or logistic re-
gression, ultimately allowing the transfer and application of the learnt task
to fresh data.

On the other hand, the tremendous practical success enjoyed by ML empir-
ics stands in sharp contrast with the currently relatively sparse theoretical
comprehension thereof. Prominent among the challenges faced by ML theory
research is the need to analyze high-dimensional, non-linear, non-convex op-
timization problems. Given these difficulties, a reasonable research agenda
consists of first seeking a sharp theoretical understanding of exactly solv-
able models– namely simplified mathematical models satisfying the dual
requirement of (a) retaining key features of practical ML problems, while (b)
remaining amenable to full mathematical treatment. This perspective has led
to a rich body of works, investigating the asymptotic properties of ANNs in
the particularly relevant data-intensive, high-dimensional limit. Particularly
instrumental in these investigations are ideas inspired by statistical physics
(Mézard et al., 2009; Zdeborová et al., 2016; Gabrié, 2020), which, by iden-
tifying the relevant statistics that govern the training, offer a particularly
concise and insightful description of the learning. This viewpoint constitutes
the broader framework of this thesis.

ORGANIZAT ION OF THE MANUSCR IPT

Part I sets up the necessary contextual and technical framework on high-
dimensional ML and statistical physics approaches thereto. Chapter 1 delin-
eates themotivations behind the thesis, and offers a concise and self-contained
presentation of some of the technical tools employed. Chapter 2 discusses
some perspectives on future research directions in the field, beyond the re-
sults discussed in this thesis. The rest of the dissertation then delves into
three interconnected aspects of high-dimensional ML.

xviii
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Part II first explores how the structure of data –or representations thereof–
impacts the learning of linear methods, Deep Neural Networks (DNN)s or
kernel methods. It highlights how for several tasks, including for some real
setups, a small set of feature statistics suffice to provide a tight characteriza-
tion of the test error which quantitatively captures the learning curves, and
how scaling laws can be deduced therefrom.

In many cases, the features are shaped by the propagation of the data
through the intermediate layers of a multi-layer, fully-connected DNN, which
is the object of Part III. The purpose of Part III is to characterize the learning
of (a) deep networks at initialization and then (b) trained networks, either
via gradient-based or Bayesian learning methods.

The past decade has witnessed the popularization and success of novel
learning paradigms, beyond the intensely studied exemplar of supervised
learning with fully-connected, feed-forward DNNs. With these new methods
come novel training procedures (for instance, generative models couple a
transport problem to the training of a DNN), and novel architectures (e.g.
attention layers). Part IV contributes to initiating the extension of statistical
physics analyses of ML to these modern aspects, and offers studies of the
learning of a flow-based generative model and of a dot-product attention
mechanism, at finite sample complexities.

CONTRIBUT IONS

This thesis results from a collection of 10 published or pre-published works.

1. ‘Learning curves of generic features maps for realistic datasets with a
teacher-studentmodel’. Loureiro, Gerbelot, Cui, Goldt, Krzakala,Mézard,
and Zdeborová (2021)
Published in Advances in Neural Information Processing Systems 34 pp.
18137–18151; invited to the special Machine Learning issue of Journal
of Statistical Mechanics: Theory and Experiment, 11 pp. 114001. Pre-
sented in Chap. 3.

Summary: Teacher-Student (T-S) models provide a framework in
which the typical-case performance of high-dimensional supervised
learning can be described in closed form. The assumptions of Gaussian
independent and identically distributed (i.i.d) input data underlying the
canonical teacher-student model may, however, be perceived as too
restrictive to capture the behaviour of realistic data sets. We introduce
a Gaussian covariate generalisation of the model where the teacher and
student can act on different spaces, generated with fixed, but generic
feature maps. While still solvable in a closed form, this generalization
is able to capture the learning curves for a broad range of realistic data
sets, thus redeeming the potential of the teacher-student framework.
First, we prove a rigorous formula for the asymptotic training loss and



contributions xx

generalisation error for the Gaussian Covariate Model (GCM). Second,
we present a number of situations where the learning curve of the
model captures the one of a realistic data set learned with kernel re-
gression and classification, with out-of-the-box feature maps such as
random projections or scattering transforms, or with pre-learned ones
- such as the features learned by training multi-layer neural networks.

Contributions: I contributed to parts of the replica derivation of the
main results, and to parts of the numerical experiments.

2. ‘Generalization error rates in kernel regression: The crossover from the
noiseless to noisy regime’. Cui, Loureiro, Krzakala, and Zdeborová (2021)
Published in Advances in Neural Information Processing Systems 34 pp.
10131–10143; invited to the special Machine Learning issue of Journal
of Statistical Mechanics: Theory and Experiment, 11 pp. 114004. Pre-
sented in Chap. 4.

Summary: We consider Kernel Ridge Regression (KRR) under the Gaus-
sian design. Exponents for the decay of the excess generalization error
of KRR have been reported in various works under the assumption
of power-law decay of eigenvalues of the features covariance. These
decays were, however, provided for sizeably different setups, namely
in the noiseless case with constant regularization and in the noisy
optimally regularized case. Intermediary settings have been left sub-
stantially uncharted. We unify and extend this line of work, providing
characterization of all regimes and excess error decay rates that can
be observed in terms of the interplay of noise and regularization. In
particular, we show the existence of a transition in the noisy setting
between the noiseless exponents to its noisy values as the sample com-
plexity is increased. Finally, we illustrate how this crossover can also
be observed on real data sets.

Contributions: I conducted the full theoretical analysis and imple-
mented the corresponding numerical experiments.

3. ‘Error scaling laws for kernel classification under source and capacity
conditions’. Cui, Loureiro, Krzakala, and Zdeborová (2023b)
Published in Machine Learning: Science and Technology 4 3 p. 035033.
Presented in Chap. 5.

Summary: We consider the problem of kernel classification. While
worst-case bounds on the decay rate of the prediction error with the
number of samples are known for some classifiers, they often fail to
accurately describe the learning curves of real data sets. We consider
the important class of data sets satisfying the standard source and
capacity conditions, comprising a number of real data sets as we show
numerically. Under the Gaussian design, we derive the decay rates for
the misclassification (prediction) error as a function of the source and
capacity coefficients. We do so for two standard kernel classification
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settings, namely margin-maximizing Support Vector Machines (SVM)
and ridge classification, and contrast the two methods. We find that
our rates tightly describe the learning curves for this class of data
sets, and are also observed on real data. Our results can also be seen
as an explicit prediction of the exponents of a scaling law for kernel
classification that is accurate on some real datasets.

Contributions: I conducted the full theoretical analysis and imple-
mented the corresponding numerical experiments.

4. ‘Deterministic equivalent and error universality of deep random features
learning’. Schröder, Cui, Dmitriev, and Loureiro (2023)
Published in International Conference onMachine Learning 40 pp. 30285–
30320. Presented in Chap. 6.

Summary: We the problem of learning a random Gaussian ANN func-
tion using a Fully-connected Neural Network (FNN) with frozen inter-
mediate layers and trainable readout layer – namely deep Random
Features (dRF) models. This problem can be seen as a natural gen-
eralization of the widely studied random features model to deeper
architectures. First, we prove Gaussian universality of the test error in
a ridge regression setting where the learner and target networks share
the same intermediate layers, and provide a sharp asymptotic formula
for it. Establishing this result requires proving a deterministic equiva-
lent for traces of the dRF sample covariance matrices which can be of
independent interest. Second, we conjecture the asymptotic Gaussian
universality of the test error in the more general setting of arbitrary
convex losses and generic learner/target architectures. We provide
extensive numerical evidence for this conjecture, which requires the
derivation of closed-form expressions for the layer-wise post-activation
population covariances. In light of our results, we investigate the in-
terplay between architecture design and implicit regularization.

Contributions: I contributed to the conception of the project, which
was partly motivated by my derivation of the linearization formula
for population covariances in deep random neural networks. I also
proposed the tight generalization error characterization in the generic
case, designed and conducted the investigation of architectural bias,
and performed the numerical experiments.

5. ‘Asymptotics of Learningwith Deep Structured (Random) Features’. Schröder,
Dmitriev, Cui, and Loureiro (2024)
Published in International Conference on Machine Learning 41. Pre-
sented in Chap. 7.

Summary: For a large class of feature maps we provide a tight asymp-
totic characterisation of the test error associated with learning the
readout layer, in the high-dimensional limit where the input dimension,
hidden layer widths, and number of training samples are proportionally
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large. This characterization is formulated in terms of the population
covariance of the features. Our work is partially motivated by the prob-
lem of learning with Gaussian rainbow ANNs, namely deep non-linear
fully-connected networks with random but structured weights, whose
row-wise covariances are further allowed to depend on the weights
of previous layers. For such networks we also derive a closed-form
formula for the feature covariance in terms of the weight matrices. We
further find that in some cases our results can capture feature maps
learned by deep, finite-width ANNs trained under gradient descent.

Contributions: I contributed to the initial heuristic derivation of the
linearization formulae and sharp characterization of the test error in
the uncorrelated case, and contributed to the numerical experiments.

6. ‘Bayes-optimal learning of deep random networks of extensive-width’.
Cui, Krzakala, and Zdeborová (2023a)
Published in International Conference on Machine Learning 40 6468–
6521, (Oral). Presented in Chap. 8.

Summary: We consider the problem of learning a target function
corresponding to a deep, extensive-width, non-linear DNN with ran-
dom Gaussian weights. We consider the asymptotic limit where the
number of samples, the input dimension and the network width are
proportionally large and propose a closed-form expression for the
Bayes-optimal test error, for regression and classification tasks. We
further compute closed-form expressions for the test errors of ridge re-
gression, kernel and random features regression. We find, in particular,
that optimally regularized ridge regression, as well as kernel regression,
achieve Bayes-optimal performances, while the logistic loss yields a
near-optimal test error for classification. We further show numerically
that when the number of samples grows faster than the dimension,
ridge and kernel methods become suboptimal, while ANNs achieve test
error close to zero from quadratically many samples.

Contributions: I conceived the project, and conducted the full theo-
retical analysis and corresponding numerical experiments.

7. ‘Asymptotics of feature learning in two-layer networks after one gradient-
step’. Cui, Pesce, Dandi, Krzakala, Lu, Zdeborová, and Loureiro (2024d)
Published in International Conference on Machine Learning 41. Pre-
sented in Chap. 9.

Summary: We investigate the problem of how two-layer neural net-
works learn features from data, and improve over the kernel regime,
after being trained with a single gradient descent step. Leveraging a
connection from (Ba et al., 2022) with a non-linear spiked matrix model
and recent progress on Gaussian universality (Dandi et al., 2023), we
provide an exact asymptotic description of the generalization error in
the high-dimensional limit where the number of samples n , the width p
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and the input dimension d grow at a proportional rate. We characterize
exactly how adapting to the data is crucial for the network to efficiently
learn non-linear functions in the direction of the gradient – where at
initialization it can only express linear functions in this regime. To our
knowledge, our results provides the first tight description of the impact
of feature learning in the generalization of two-layer neural networks
in the large learning rate regime η = Θd(d), beyond perturbative finite
width corrections of the conjugate and neural tangent kernels.

Contributions: I conducted the full theoretical analysis and a number
of the corresponding numerical experiments.

8. ‘High-dimensional asymptotics of denoising autoencoders’. Cui and Zde-
borová (2024c)
Published in Advances in Neural Information Processing Systems 36
(Spotlight). Presented in Chap. 10.

Summary: We address the problem of denoising data from a Gaus-
sian mixture using a two-layer non-linear Auto-Encoder (AE) with tied
weights and a skip connection. We consider the high-dimensional limit
where the number of training samples and the input dimension jointly
tend to infinity while the number of hidden units remains bounded.
We provide closed-form expressions for the denoising Mean Squared
Error (MSE). Building on this result, we quantitatively characterize the
advantage of the considered architecture over the AE without the skip
connection that relates closely to principal component analysis. We
further show that our results accurately capture the learning curves
on a range of real data sets.

Contributions: I contributed to the design of the theoretical model,
and conducted the full theoretical analysis and corresponding numeri-
cal experiments.

9. ‘Analysis of learning a flow-based generative model from limited sample
complexity’. Cui, Krzakala, Vanden-Eijnden, and Zdeborová (2024b)
Published in International Conference on Learning Representations 12.
Presented in Chap. 11.

Summary: We study the problem of training a flow-based genera-
tive model, parametrized by a two-layer AE, to sample from a high-
dimensional Gaussian mixture. We provide a sharp end-to-end analysis
of the problem. First, we provide a tight closed-form characterization
of the learnt velocity field, when parametrized by a shallow Denoising
Auto-Encoder (DAE) trained on a finite number n of samples from the
target distribution. Building on this analysis, we provide a sharp de-
scription of the corresponding generative flow, which pushes the base
Gaussian density forward to an approximation of the target density. In
particular, we provide closed-form formulae for the distance between
the mean of the generated mixture and the mean of the target mixture,
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which we show decays as Θn(1/n). Finally, this rate is shown to be in
fact Bayes-optimal.

Contributions: I contributed to the design of the theoretical model,
and conducted the full theoretical analysis and corresponding numeri-
cal experiments.

10. ‘A phase transition between positional and semantic learning in a solvable
model of dot-product attention’. Cui, Behrens, Krzakala, and Zdeborová
(2024a)
Published in arXiv preprint arXiv:2402.03902. Presented in Chap. 12.

Summary: We investigate how a dot-product attention layer learns
a positional attention matrix (with tokens attending to each other
based on their respective positions) and a semantic attention matrix
(with tokens attending to each other based on their meaning). For an
algorithmic task, we experimentally show how the same simple archi-
tecture can learn to implement a solution using either the positional
or semantic mechanism. On the theoretical side, we study the learning
of a non-linear self-attention layer with trainable tied and low-rank
query and key matrices. In the asymptotic limit of high-dimensional
data and a comparably large number of training samples, we provide a
closed-form characterization of the global minimum of the non-convex
empirical loss landscape. We show that this minimum corresponds to
either a positional or a semantic mechanism and evidence an emergent
phase transition from the former to the latter with increasing sample
complexity. Finally, we compare the dot-product attention layer to
linear positional baseline, and show that it outperforms the latter using
the semantic mechanism provided it has access to sufficient data.

Contributions: I conceived the project, and conducted the full theo-
retical analysis of the exactly solvable model.

The two following works, which explore the sub-branch of ML theory known
as Active Learning (AL), have also been completed in the framework of the
PhD, but will not be the object of further discussion in the present thesis.

11. ‘Large deviations in the perceptron model and consequences for active
learning’. Cui, Saglietti, and Zdeborová (2020)
Published in Mathematical and Scientific Machine Learning 1, pp. 390–
430 and Machine Learning: Science and Technology 2 4 pp. 045001.

Summary: AL is a branch of machine learning that deals with problems
where unlabeled data is abundant yet obtaining labels is expensive. The
learning algorithm has the possibility of querying a limited number
of samples to obtain the corresponding labels, subsequently used for
supervised learning. We consider the task of choosing the subset of
samples to be labeled from a fixed finite pool of samples. We assume
the pool of samples to be a random matrix and the ground truth labels
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to be generated by a single-layer teacher random neural network. We
employ replica methods to analyze the large deviations for the accuracy
achieved after supervised learning on a subset of the original pool.
These large deviations then provide optimal achievable performance
boundaries for any AL algorithm. We show that the optimal learning
performance can be efficiently approached by simple message-passing
AL algorithms. We also provide a comparison with the performance of
some other popular AL strategies.

Contributions: I conducted the full theoretical analysis and a part of
the numerical experiments.

12. ‘Large deviations of semisupervised learning in the stochastic blockmodel’.
Cui, Saglietti, and Zdeborová (2022)
Published in Physical Review E 105 3 p. 034108.

Summary: In semisupervised community detection, the membership
of a set of revealed nodes is known in addition to the graph structure
and can be leveraged to achieve better inference accuracies. While
previous works investigated the case where the revealed nodes are
selected at random, this paper focuses on correlated subsets leading to
atypically high accuracies. In the framework of the dense stochastic
block model, we employ statistical physics methods to derive a large
deviation analysis of the number of these rare subsets, as characterized
by their free energy. We find theoretical evidence of a non-monotonic
relationship between reconstruction accuracy and the free energy as-
sociated to the posterior measure of the inference problem. We further
discuss possible implications for AL applications in community detec-
tion.

Contributions: I conducted the full theoretical analysis and a part of
the numerical experiments.
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1
IN TRODUCT ION

This first chapter offers a concise overview of the basic concepts in machine
learning theory, and a companion rendition of common statistical physics
analyses of ML models. A more exhaustive introduction to ML can be found
for instance in (Goodfellow et al., 2016; Mohri et al., 2018).

1.1 BAS IC CONCEPTS IN ML

1.1.1 why ml theory?
Why theory in ML?
"Comfort:We knew it
worked, but it’s nice
to have a proof;
Insight: Aha! So
that’s why it works!;
Innovation: At last,
a mathematically
proven idea that
applies to data;
Suggestion:
Something like this
might work with
data." (Breiman, 1995)

ML is, above all, a collection of techniques and tools in the statistical process-
ing of large quantities of data. It thus constitutes a branch of engineering
that has, as such, historically progressed empirically, by trial and error. With
the unremitting pace of practical advances and the increasing ubiquity of
ML tools in all fields – including sensitive ones such as health – such an
approach is no longer sustainable, and calls for a more principled basis for
the development of ML. A thorough mathematical theory of ML is, to that
end, a requisite – both to ensure a safe use of current tools, and to guide and
inspire the development of novel methods.

Section 1.1.2 provides a concise introduction toML as amathematical object
of study, highlighting in particular how it can be formulated as a random
optimization problem in high dimensions. Section 1.2 then illustrates, on a
simple case study, how such problems can be analyzed using ideas borrowed
from statistical physics.

1.1.2 the ml pipeline

ML is a discipline concerned with automating complex tasks – by which it is
understood tasks that admit no direct simple mathematical formulation –,
through the statistical processing of data. In its barest form, the ML pipeline
consists of approximating a mapping f⋆ : X →Y from the input data xxx∈X

to its target value (label) f⋆(xxx) ∈ Y . In practice, for example, the input/label In the particular case
of f⋆(xxx) = xxx, the ML

tasks are qualified as
self-supervised. In
other cases, we speak
of supervised tasks.

pair xxx, f⋆(xxx) can be a sentence and its translation, an image and its resolution-
enhanced version, an image and its caption, or a pair of physical attributes.
Because f⋆ admits in most settings no known closed-form mathematical
or algorithmic formulation which can be readily coded and implemented
by a computer, the ML pipeline rather aims at approximately implementing

4
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the target function f⋆. To that end, ML techniques seek to leverage an in-
formative representation (feature map) ϕ : X →Z , which transforms and
processes the original data point xxx into a more informative set of features
ϕ(xxx), and subsequently approximating the target f⋆ typically as a linear
combination fw = www⊤ϕ(xxx), with the weights vector www collecting the corre-
sponding coefficients. On an intuitive level, the features ϕ(xxx) should thus
regroup the important characteristics and attributes of the data point xxx in
the context of the task.

The choice of the feature transformationϕ is, for some applications, natural.
Consider for instance the case of images, for which wavelet transforms offer
a concise and informative representation, capturing the information encoded
at multiple scales (Mallat, 2016). In practice, on the other hand, there could The parametric

family of functions
{ fw,θ}w,θ is called
the hypothesis class
in learning theory.

exist more efficient feature extraction maps ϕ ; further, in some other cases,
as for natural language data, there exists no natural off-the-shelf transform
candidate. It thus proves convenient to also seek an efficient representation
ϕ inside a parametric family {ϕθ}θ . Allowing the feature extractor ϕθ to
be trainable (learnable) is the driving paradigm behind modern successes of
Deep Learning (DL) techniques. The learning problem thus consists in finding DL is the branch of

ML which leverages
DNNs as an
hypothesis class.

the best function fŵ,θ̂ among the parametric family { fw,θ = www⊤ϕθ (·)}w,θ . In
the context of DL, the vector www is referred to as the readout weights, and we
shall sometimes refer to the feature map parameters θ as the internal weights
of the model. The selected values of these parameters ŵww, θ̂ are usually called
the trained –or learnt– weights.

To find satisfactory weights,ML techniques first seek to find a good approx-
imation of the target f⋆ on a set of points D = {xxxµ , f⋆(xµ)}n

µ=1 for which
the target value is known. The set D is called the training set, and is used Popular choices for

the loss function
include the square
loss
ℓ(y,z) = 1/2(y− z)2,
the hinge loss
ℓ(y,z) = (0,1−yz)+ .
Typically regularizers
include the ℓ2
regularization
g(z) = λ/2∥z∥2,
where λ is then
referred to as the
regularization
strength.

as an empirical proxy for the true data distribution Px. Mathematically, this
procedure boils down to minimizing a notion of distance between the para-
metric function fw,θ and the target f⋆ at all points of D , which is referred to
as the empirical risk (or loss)

R(www,θ ) =
n

∑
µ=1

ℓ ( f⋆(xxxµ), fwww,θ (xxxµ))+ g (www,θ ) . (1)

ℓ(·) is a function that generically increases when its two arguments are
dissimilar; g(·) is a –typically convex– regularizer, which penalizes too large
weight parameters. Satisfactory values for the model weights can then be
selected as minimizers of the risk (1)

ŵww, θ̂ = argmin
www,θ

R(www,θ ). (2)
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In practice, this Empirical Risk Minimization (ERM) is numerically carried
out using first-order Gradient-Descent (GD) based methods. The quality of
the minimization (2) is measured by the training error

εt =
1
n

n

∑
µ=1

ℓtr.
(

f⋆(xxxµ), fŵ,θ̂ (xxx
µ)
)

, (3)

for some metric ℓtr.(·), which quantifies the distance between the target
f⋆ and the fitted parametric function fŵww,θ̂ on the points of the train set D .
Typically, in regression settings where the target f⋆ takes continuous values
– e.g. Y = R –, a popular choice is the squared error ℓtr.(y,z) = 1/2(y−
z)2. In classification settings – e.g. Y = {−1,+1}–, a natural choice is the
misclassification error ℓtr.(y,z) = 1−δy,sign(z), which measures the fraction
of misclassified training samples. At the end of the training, the statistician
thus has access to an approximate implementation fŵ,θ̂ of the target map f⋆,
which can be in turn readily applied to fresh data. The discrepancy between
the true target and its learnt approximation is quantified by the test error

εg = Exxx∼Px [ℓts.
(

f⋆(xxx), fŵ,θ̂ (xxx)
)
], (4)

for some choice of metric ℓts.. The test error (4) constitutes a central metric
in ML to evaluate the generalization ability of the learning models.

1.1.3 some ml models

Choosing – and parametrizing– a suitable feature transformation ϕ is thus
the centerpiece of the ML pipeline. The development of the field has thus
unsurprisingly gone hand-in-hand with a swift expansion of the zoology of
possible feature map options. In this subsection, we offer a selected digest of
some choices relevant to the present thesis, starting first from off-the-shelf
fixed transforms, and secondly tunable ANN feature maps.

1.1.3.a off-the-shelf feature maps

No feature map– The simplest case is when the input xxx is used as is,
with no further transformation, namely ϕ(xxx) = xxx. The corresponding models
fw(xxx) = www⊤xxx are commonly regrouped under the umbrella of linear models
in ML, and include canonical algorithms such as

Linear methods can
also be viewed as
single-layer ANNs.

• Ridge regression ℓ(y,z) = 1/2(y− z)2,g(www) = λ/2∥www∥2,

• Logistic regression ℓ(y,z) = ln(1+ e−yz),

• Hinge regression ℓ(y,z) = (1− yz)+.

Because of their simplicity and their convexity, linear methods are very easy
to train. A key limitation however lies in that they can only implement linear
functions of the data, and thus suffer from poor expressivity. In other words,
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they do not provide a versatile enough framework to approximate complex
targets f⋆.

By the
Moore–Aronszajn
theorem, any
symmetric, positive
semi-definite kernel
K can be simply
written as a scalar
product in some
Hilbert space H ,
called the RKHS of K.

Kernel feature maps– Kernel methods constitute another centerpiece
of traditional ML. Given a kernel K : X ×X →R, the Moore–Aronszajn
theorem ensures that the bilinear operation it defines can be rewritten in
scalar product form

K(xxx1,xxx2) = ⟨ϕ(xxx1),ϕ(xxx2)⟩H (5)

where the kernel feature map ϕ : X → H maps the data in non-linear
fashion to a typically large (or infinite) dimensional Reproducing Kernel
Hilbert Space (RKHS) space H . Despite their relative simplicity, kernels
thus provide a versatile framework to learn using non-linear features, while
remaining in the realm of convex optimization. Furthermore, representer
theorems such as (Kimeldorf et al., 1971) imply that kernel methods can be
efficiently trained, even as they tap into the expressivity of an infinite feature
space.

Random Features – The closely related class of Random Features (RF)
models were first introduced in (Rahimi et al., 2007b) as an efficient way
to approximate kernel methods. They can alternatively be seen as FNN at
initialization. Mathematically, a depth L RF feature map is defined as the
composition of maps

ϕ = ψL ◦ · · · ◦ψ1 (6)

where the ℓ−th layer ψℓ is the map

ψℓ(xxxℓ−1) = σℓ(Wℓxxxℓ−1). (7)

In (7), σℓ(·) is a non-linear function, and Wℓ, referred to as the ℓ− th layer
weights, is a fixed –not trained– random matrix. The first dimension of Wℓ

defines the width of the ℓ−th hidden layer. Aside from their connection to
kernel methods, RF models provide stylized proxies for FNNs, and thus afford
an ideal theoretical sandbox to analytically probe some properties of the
latter.

1.1.3.b tunable feature maps

While ready-to-use feature maps provide computationally efficient pathways
to enhance the model expressivity, the features they extract are not tailored
to the data and task, and may prove sub-optimal. On the other hand, trainable
maps such as DNN feature maps are themselves parametric and thus allow
for additional tunability and versatility.

Conventional
graphical
representation of a
2−layer FNN.

Fully-connected feed-forward networks– Historically, the first in-
stance of ANN is provided by the work of (Rosenblatt, 1958) on the perceptron –
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namely, a single-layer neural network in modern nomenclature. DNNs (LeCun
et al., 2015) build expressive feature maps by essentially stacking perceptron
neurons into layers, and subsequently stacking several layers to construct
deep architectures. A depth L feed-forward FNN is thus defined as the compo-
sition of maps

ϕW1,...,WL = ψ
(L)
WL
◦ · · · ◦ψ

(1)
W1

(8)

where the ℓ−th layer ψ
(ℓ)
Wℓ

is defined as

ψ
(ℓ)
Wℓ

(xxxℓ−1) = σℓ(Wℓxxxℓ−1). (9)

Here, the weights W1, ...,WL are importantly learnable parameters. While
FNNs are typically well suited to process vector data X = Rd , Convolutional
Neural Networks (CNN) architectures (Fukushima, 1980) are specifically de-
signed to extract features from image data, leveraging convolutional and
downsampling layers to take into account invariances inherent to this type
of data.

Autoencoders – AEs represent specific instances of DNNs designed for
self-supervised tasks, typically when Y = X . In its simplest two-layer in-
stance, an AE fw,θ (xxx) = wwwϕθ (xxx) is the succession of an encoder feature map
ϕθ : Rd →Rb and a decoder layer with weights www ∈Rd×b. Typically, an AE

Graphical
representation of a
2−layer AE with two
hidden units.

displays a bottleneck structure, with the hidden layer width b being small.
This enforces that the encoder learns a concise low-dimensional representa-
tion of the data, which can subsequently be mapped back into the original
space by the decoder. Because AEs learn compact, thus a priori robust, latent
representations, they are popular choices in denoising applications (Vincent
et al., 2010). AEs, and related modern denoiser architectures such as U-nets
(Ronneberger et al., 2015a), have further enjoyed a recent regain in interest
as they find themselves at the heart of diffusion-based generative models
(Sohl-Dickstein et al., 2015; Ho et al., 2020a).

Transformers – Transformers (Vaswani et al., 2017) offer an efficient way
of extracting features from sequential data – such as language. Given an
input xxx ∈RL×d of length L, a transformer feature map usually corresponds
to a composition of a FNN and an attention layer, defined as the map

ϕWQ,WK ,WV = softmax
(

xxxWQW⊤K xxx⊤
)

xxxWv, (10)

parametrized by the three trainable matrices WQ,WK ,WV . As for FNNs, the WQ,WK ,WV are
respectively known as
the query, key and
value matrices.

value matrix WV acts at the level of the token representations to build more
informative features therefrom. Simultaneously, the L×L attention score
matrix contextualizes each token, by mixing the sequence in an input-aware
fashion. Crucially, transformer architectures are scalable, requiring less train-
ing time than recurrent network architectures such as Long Short-Term
Memory (LSTM) (Bahdanau et al., 2014).
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1.1.4 two conundrums in high dimensions

Despite the evident successes of day-to-day DL empirics, the field still lacks a
solid theoretical foundation. In fact, fundamental questions regarding the un-
reasonable effectiveness of statistical models such as DNNs in approximating
complex, typically high-dimensional functions have remained unanswered
for decades. The interrogations raised by (Breiman, 1995) in the 90s –Why
don’t heavily parametrized neural networks overfit the data? [...] Why doesn’t
backpropagation head for poor local minima? – still remain of striking rele-
vance in modern ML theory.

1.1.4.a puzzle 1 – the curse of dimensionality

Approximating a function in d dimension generically requires an exponential
number logn≍ d of samples. This intuitive limitation of learning in large-
dimensional spaces is often referred to as the curse of dimensionality. More
even: there exist data sets for which training even a three-layer architecture is
NP-complete (Blum et al., 1988). Learning high-dimensional functions is thus
generically a computationally hard task. Yet, this intuition is blatantly belied,
in daily DL practice, by the observed effectiveness of DNNs in performing such
tasks. From whence the discrepency? Among the many possible explanations
is the fact that real data sets are structured (Hein et al., 2005; Mallat, 2016),
and there thus exists a lower-dimensional embedding that retains most of
the information contained in the data, whilst emancipating the statistical
model from the curse of high-dimensional learning. As we further discuss

The U-shaped curve
associated to the
bias-variance
tradeoff.

Double descent.

in section 1.2 and Chapter 2, considering typical, realistic data structures –
as opposed to worst-case – is therefore a first requisite towards reaching an
answer to this first high-dimensional puzzle.

1.1.4.b puzzle 2 –benign overparametrization

A statistical model which does not have a sufficient number of parameters
underfits the data. Conversely, a model with too many parameters will overfit
the dataset and consequently also yield poor generalization. The bias-variance
tradeoff thus prescribes to balance the number of parameters P of the model,
in order to locate the minimum of the generically observed U-shaped test er-
ror curve in conventional statistics. DNNs, however, defy this piece of classical
statistical wisdom. In fact, they often generalize better beyond the interpo-
lation threshold, in heavily overparametrized regimes (Geman et al., 1992).
Rather than a U-shaped curve, the learning curves of complex architectures The interpolation

regime designates the
regime in which the
DNN achieves zero
training error.

typically thus take the form of a double-descent curve (Belkin et al., 2019;
Geiger et al., 2020). That heavily parametrized DNNs do not overfit, while
they are expressive enough to fit even random labels (Zhang et al., 2021),
constitutes another fundamental – and largely open– puzzle in DL theory.

These puzzles make the compelling case that a thorough investigation of
the learning of DNNs in overparametrized, high-dimensional regimes war-
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rants tight and typical-case explorations – questions that fall in the orbit of
statistical physics.

1.2 STAT I ST ICAL PHYS ICS OF ML

1.2.1 statistical physics in the ml
researchscape

The birth of statistical physics can be traced back to the seminal works of
Maxwell, Gibbs and Boltzmann in the 19th century, which were concerned
with the study of emergent collective behaviours arising from the micro-
scopic interaction of large assemblies of particles. More formally, the statisti-
cal physicist aims at a concise description of high-dimensional probability
measures arising from large systems in interaction, in terms of a compact set
of macroscopic observables. Connecting to the previous section, learning in
ML systems is also a result of the complex interactions between a large num-
ber of variables –namely the parameters of the learning model– as they are
jointly optimized to minimize the ERM loss. Perhaps then unsurprisingly, ML,
as a field concerned with random optimization problems in high dimensions,
naturally falls in the orbit of statistical physics techniques.

Historically, some
important objects of
study in statistical
physics include gases,
and interacting spin
systems as stylized
models of magnetism
or glasses.

Statistical physics ideas were first successfully applied to sharply charac-
terize the learning curve of perceptron models by Gardner (Gardner et al.,
1988; Gardner et al., 1989), giving the initial impulse to a long and rich line of
works (Seung et al., 1992; Györgyi et al., 1990; Schwarze, 1993; Sompolinsky
et al., 1990) (see (Mézard et al., 2009; Zdeborová et al., 2016; Gabrié, 2020)
for reviews). These early works made it patent that the worst case, Probably
Approximately Correct (PAC) viewpoint on ML (Valiant, 1984), then predom-
inant in computer science, was too coarse to capture some aspects of the
learning in high-dimensional models. While these bounds describe a con-
tinuous and smooth improvement of the generalization with the number
of training samples, abrupt phase transitions to perfect generalization were
found and highlighted. Such observations made the compelling case that
distribution-free, worst-case analyses could sometimes prove insufficient,
and that a theory of ML also required tight, typical-case analyses.

As a part of theoretical physics, statistical physics analyses ofML are almost
always model-driven, taking as a triple starting point:

(a) A specific data distribution;

(b) A specific target function generating the labels in supervised settings;

(c) A specific learning model and training procedure;

and aiming at tightly computing – down to the constant – the typical gener-
alization learning curves of the model. Such exactly solvable models should
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be simple enough to be amenable to mathematical scrutiny, while capturing
key aspects of practical ML tasks. This perspective and approach now well
supersede the boundaries of statistical physics, sparking works in e.g. mathe-
matical optimization (Thrampoulidis et al., 2014; Thrampoulidis et al., 2018;
Oymak et al., 2013) or random matrix theory (Louart et al., 2018b; Liao et al.,
2020; Xiao et al., 2022). Together with statistical physics-inspired analyses
(Seung et al., 1992; Sompolinsky et al., 1990; Barbier et al., 2019b; Aubin et al.,
2018b; Aubin et al., 2020a), these lines of research are sometimes gathered
under the umbrella of exact asymptotics in ML theory.

In the rest of this introduction, we provide a self-contained technical
illustration of some of these ideas, borrowed from statistical physics, which
mainly constitute the technical backbone of the present manuscript.

1.2.2 a case study: learning a seqence
generalized linear model

To illustrate some of the ideas and techniques employed in most of the
works gathered in this thesis, we present in the following a concise and
self-contained asymptotic analysis of a ML problem in a T-S setting – namely
the learning of a variant of a Generalized Linear Model (GLM) acting on se-
quential data, which we subsequently refer to as a Sequence GLM (seq-GLM).
The analysis of ERM for linear methods was first detailed in (Aubin et al., The teacher in

statistical physics is
also referred to as the
oracle in computer
science. The
denomination T-S

most often refers to
settings where the
target function is
linear, or of ANN
form.

2020a), for non-sequential isotropic inputs and common loss functions. We
propose in this section a rendition in a more generic case, closer to the setting
of (Cui et al., 2024a).

Consider the ERM loss over www ∈Rd×r

ŵ = argmin
www

[
n

∑
µ=1

ℓ

(
xxxµwww⋆√

d
,
xxxµwww√

d
,
www⊤www

d
,cµ

)
+

λ

2
∥www∥2

]
, (11)

where www⋆ ∈ Rd×t parametrizes the target function and ℓ : RL×t ×RL×r×
Rr×r ×R→ R+ is a –not necessarily convex– function. We assume the
training data xxxµ ∈RL×d are i.i.d as stacks of L independent rows (tokens),
drawn from a Gaussian mixture

xxxℓ,cℓ ∼
Kℓ

∑
k=1

ρℓ,kδcℓ,kN (µµµℓ,k,Σℓ,k), (12)

with the random variable cℓ indicating the cluster assignment. This setting
can serve as a simple model for several data distributions of interest:

• For L = 1, it simply models a single vector input xxx = xxx1, which is
relevant for the study of e.g. simple linear models (see Part II) or FNNs
(Part III). In this case, the seq-GLM coincides with a usual GLM.
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• For L > 1, it models length-L sequences with uncorrelated tokens
embedded in dimension d, which can serve as a model for inputs for
an attention layer (see Chapter 12);

• for L = 2 and when the second row corresponds to white noise x2 ∼
N (0,Id), it models an input with a signal xxx1 component and a cor-
rupting noise xxx2, relevant for the study of denoising and generative
tasks (see Chapters 10 and 11).

Finally, note that the function ℓ in (11) is a compact and generic way to
write the final loss function directly in terms of the overlaps between the
parameters www,www⋆ and the data xxx. In particular, model specifications such as
the activation functions are kept implicit, and subsumed within ℓ. Finally,
the main object we seek to characterize is the average test error (4)

εg = εg = Exxxℓtst.

(
xxxwww⋆√

d
,

xxxŵww√
d

,
ŵww⊤ŵww

d
,c
)

. (13)

The ERM problem (11) is a high-dimensional, non-linear, non-convex opti-
mization problem and thus challenging on several levels. The next subsections
highlights how the the minimizers of the empirical risk R(www) (11) can be
tightly characterized, deploying ideas borrowed from statistical physics, in
the joint asymptotic limit where the number of samples n and the dimen-
sion d jointly tend to infinity d,n→ ∞, while staying comparably large
α ≡ n/d = Θd(1). All other dimensions of the problem L,r, t , as well as the α is called the sample

complexity.norm of the means ∥µµµℓ,k∥, are on the hand assumed to remain Θd(1). This
particular asymptotic limit was considered in a stream of works – e.g. (Aubin
et al., 2018b; Maillard et al., 2020a; Donoho et al., 2009; Gardner et al., 1988;
Gardner et al., 1989; El Karoui et al., 2010; Goldt et al., 2020c; Seung et al.,
1992; Sompolinsky et al., 1990) – and is often referred to as the proportional
regime.

1.2.3 the replica method

The replica method (Parisi, 1979a; Parisi, 1983b) (see also (Mézard et al., 2009)
for a review) starts from the simple observation that for any test function
(observable) φ (ŵww) of the trained weights ŵww – such as the test error (13)–, one
can write In statistical physics,

Pβ is called a
Boltzmann
distribution. It
discribes the
equilibrium
distribution of the
particles wi when
their interaction
energy is given by
R(www).

EDφ (ŵ) = lim
β→∞

ED
1
Z

∫
dwwwe−βR(www)

φ (www), (14)

where we introduced the partition function (normalization factor)

Z =
∫

dwwwe−βR(www). (15)

Characterizing the average EDφ (ŵ) is thus tantamount to studying the
family of β− parametrized measures Pβ (www) = e−βR(www)/Z, for different values
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of the inverse temperature β > 0. To that end, it is natural to focus on studying
the cumulant-generating function

f = − lim
β→∞

1
βd

ED lnZ. (16)

In statistical physics, f is called the free energy. Analytically evaluating the
logarithm of a random variable Z is, however, usually a complex enterprise.
The replica method builds on the simplifying identity

ED lnZ = lim
s→0

EDZs−1
s

(17)

to map it back to the simpler computation of the moment Zs, for a parameter
s→ 0. Note that Zs corresponds to the partition function (normalization)
of the product measure of s copies (the eponymous replicas) of the original
problem. The centerpiece of the replica method then lies in the computation
of EDZs, which we detail below.

The replicated partition function Zs reads

EDZs =
∫ s

∏
a=1

dwwwae
−β

s
∑

a=1
λ∥wwwa∥2 n

∏
µ=1

Exe
−β

s
∑

a=1
ℓ

(
xxxwww⋆√

d
, xxxwwwa√

d
, ∥wwwa∥2

d ,c
)

=
∫ s

∏
a=1

dwwwae
−β

s
∑

a=1
λ∥wwwa∥2 n

∏
µ=1

Ec

[
Ex|ce

−β
s
∑

a=1
ℓ

(
xxxwww⋆√

d
, xxxwwwa√

d
, www⊤a wwwa

d ,c
)]
(18)

To simplify the expression, let us introduce the random variables

ha ≡ (xxx−µµµc)wwwa√
d

∈RL×r, h⋆ ≡ (xxx−µµµc)www⋆√
d

∈RL×t . (19)

and the parameters

mc
a ≡

µµµcwwwa√
d
∈RL×r, mc

⋆ ≡
µµµcwww⋆√

d
∈RL×t , (20)

with rows mℓ
a,mℓ

⋆. The variables (19) are Gaussian with statistics

Ex|c[h
a
ℓ(h

b
κ)
⊤] = δℓκ

www⊤a Σℓ,cℓwwwb

d
≡ qℓ,cℓab , (21)

Ex|c[h
⋆
ℓ(h

⋆
κ)
⊤] = δℓκ

www⊤⋆ Σℓ,cℓwww⋆

d
≡ ρℓ,cℓ , (22)

Ex|c[h
a
ℓ(h

⋆
κ)
⊤] = δℓκ

www⊤a Σℓ,cℓwww⋆

d
≡ θ

ℓ,cℓ
a . (23)

Let us also define

va =
www⊤a wwwa

d
. (24)
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Therefore, the replicated partition function (18) can be rewritten as

EDZs =
∫

∏
a

dvadv̂a

L

∏
ℓ=1

Kℓ

∏
k=1

s

∏
a=1

dmℓ,k
a dm̂ℓ,k

a dθ
ℓ,k
a dθ̂

ℓ,k
a

s

∏
a≤b

dqℓ,kab dq̂ℓ,kab

e
−d ∑

a
∑
ℓ

∑
k
[m̂ℓ,k⊤

a mℓ,k
a +Tr(θ ℓ,k

a θ̂ ℓ,k⊤
a )]−d ∑

ℓ
∑
k

∑
1≤a≤b≤s

Tr(qℓ,kab q̂ℓ,k⊤ab )−d ∑
a

Tr[vav̂a]︸ ︷︷ ︸
esdβ Ψt∫ s

∏
a=1

dwwwae
s
∑

a=1
−βλ∥wwwa∥2+Tr[v̂awww⊤a wwwa]

e
+∑

a
∑
ℓ

∑
k
(
√

dm̂ℓ,k⊤
a www⊤a µµµℓ,k+Tr[θ̂ ℓ,k

a www⊤⋆ Σℓ,kwwwa])+ ∑
1≤a≤b≤s

∑
ℓ

∑
k

Tr[q̂ℓ,kab www⊤b Σℓ,kwwwa]︸ ︷︷ ︸
esdβ Ψw[

EcEh⋆,{ha}s
a=1|ce

−β
s
∑

a=1
ℓ(h⋆+mc

⋆,ha+mc
a,va,c)

]αd

︸ ︷︷ ︸
esαdβ Ψy

. (25)

We decomposed the replicated free entropy into the trace, entropic and
energetic potentials Ψt ,Ψw,Ψy, which we shall study in turn in the following.
Importantly, note that all exponents are scaling with d→ ∞. Therefore the
integral in (25) can be computed using a Laplace saddle-point approximation,
and reduces to an extremization problem.

1.2.3.a replica-symmetric ansatz

We have thus rephrased the analysis of the average (14) as an optimization
problem over the order parameters {qℓ,kab ,θ ℓ,k

a ,mℓ,k
a ,va}, and the associated

conjugate variables. While conceptually simpler, this optimization still bears
over 2L(s2 + 1)+ 2s variables. Besides, one needs to further deal with the
analytical continuation s→ 0. In order to make progress, one can look for the
extremizer of the exponent of (25) in a specific form. A particular prescription
is the Replica Symmetry (RS) ansatz (Parisi, 1983b; Parisi, 1979a)

qℓ,kab = (rℓ,k−qℓ,k)δab + qℓ,k, (26)
mℓ,k

a = mℓ,k, (27)
θ
ℓ,k
a = θℓ,k, (28)

va = v, (29)
q̂ℓ,kab = − (r̂ℓ,k/2+ q̂ℓ,k)+ q̂ℓ,k, (30)
m̂ℓ,k

a = m̂ℓ,k, (31)
θ̂
ℓ,k
a = θ̂ℓ,k, (32)

v̂a = −
1
2

v̂. (33)

In words, the RS ansatz assumes that the overlaps between any two distinct
replicas are identical, and that all replicas further share the same overlap with
the target weights. The RS ansatz (26) is in particular always correct for convex
problems (Zdeborová et al., 2016). One is now in a position to sequentially
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simplify the expressions of the potentials Ψt ,Ψw,Ψy. Crucially, motivated
by the definition of these quantities, we assume that rℓ,k,qℓ,k,v, r̂ℓ,k, q̂ℓ,k, v̂ are
symmetric matrices.

1.2.3.b trace potential

To leading order in s, under the RS ansatz (26), the trace potential Ψt can be
compactly written as

β Ψt =−∑
ℓ

∑
k

(
m̂⊤ℓ,kmℓ,k+Tr

[
θℓ,kθ̂⊤ℓ,k+

(Vℓ,k+qℓ,k)(V̂ℓ,k−q̂ℓ,k)
⊤

2 +
qℓ,kq̂⊤ℓ,k

2

])
+

1
2

Tr[vv̂], (34)

where we introduced the variance order parameters

Vℓ,k ≡ rℓ,k−qℓ,k, V̂ℓ,k ≡ r̂ℓ,k + q̂ℓ,k. (35)

1.2.3.c entropic potential

The entropic potential
Ψw measures the
volume in weight
space corresponding
to the overlaps
qℓ,mℓ,θℓ.

We now turn to the entropic potential Ψw, which can be expressed as

eβ sdΨw =
∫ s

∏
a=1

dwwwae
s
∑

a=1
−β

λ

2 ∥wwwa∥2+Tr[v̂www⊤a wwwa]

e
∑
a

∑
ℓ

∑
k
(
√

dm̂ℓ,k⊤
a www⊤a µµµℓ,k+Tr[θ̂ ℓ,k

a www⊤⋆ Σℓ,kwwwa])+ ∑
1≤a≤b≤s

∑
ℓ

∑
k

Tr[q̂ℓ,kab www⊤b Σℓ,kwwwa]

= EΞ

[∫
dwwweH(www,Ξ)

]s

. (36)

The expectation bears over a tensor Ξ ∈RL×r×d with i.i.d standard Gaussian
entries, and we introduced the shorthand

H(www,Ξ)

≡−βg(www)− 1
2

www⊙

[
v̂⊗Id +∑

ℓ
∑
k

V̂ℓ,k⊗Σℓ,k

]
⊙www

+

(
∑
ℓ

∑
k

√
dm̂ℓ,kµµµ

⊤
ℓ,k + θ̂ℓ,kwww⊤⋆ Σℓ,k +Ξℓ,k⊙ (q̂ℓ,k⊗Σℓ,k)

1
2

)
⊙www. (37)

Therefore,

β Ψw =
1
d

∫
EΞ ln

[∫
dwwweH(www,Ξ)

]
. (38)

For a matrix ξξξ ∈ Rr×d and tensors AAA,BBB ∈ Rr×d ⊗Rr×d , we denoted (ξξξ ⊙
AAA)kl = ∑i j ξξξ

i jAAAi j,kl and (AAA⊙BBB)i j,kl = ∑rs AAAi j,rsBBBrs,kl .
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1.2.3.d energetic potential

The computation of the energetic potential Ψy requires more lengthy, albeit
straightforward, steps. For the sake of the conciseness of the presentation,
we do not exhaustively reproduce all of them here and refer the interested
reader to e.g. Appendix IV.2.1 of (Aubin et al., 2020a). We only report here
the last steps:

β Ψy

= Ec

∫
RL×t

dY EΞ

L

∏
ℓ=1

e
− 1

2

(
yℓ−θ⊤ℓ,cℓ

q
1
2
ℓ,cℓ

ξℓ

)⊤
(ρℓ,cℓ−θ⊤ℓ,cℓ

q−1
ℓ,cℓ

θℓ,cℓ )
−1
(

yℓ−θ⊤ℓ,cℓ
q

1
2
ℓ,cℓ

ξℓ

)
√
det
(

2π(ρℓ,cℓ−θ⊤ℓ,cℓq
−1
ℓ,cℓ

θℓ,cℓ)
)

︸ ︷︷ ︸
≡Ec,Y ,Ξ

× ln

∫
RL×r

dX
L

∏
ℓ=1

e
− 1

2

(
xℓ−q

1
2
ℓ,cℓ

ξℓ

)⊤
V−1
ℓ,cℓ

(
xℓ−q

1
2
ℓ,cℓ

ξℓ

)
√
det (2πVℓ,cℓ)

e−βℓ(Y+mc
⋆,X+mc,v,c)

 .

(39)

The expectation again bears over a tensor Ξ ∈ RL×r×d with i.i.d standard
Gaussian entries.

The energetic
potential Ψy
measures the average
loss corresponding to
the overlaps
qℓ,mℓ,θℓ.

1.2.3.e zero-temperature limit

We now take the limit β → ∞. Rescaling

βV̂ℓ,k← V̂ℓ,k,
1
β

Vℓ,k←Vℓ,k, β m̂ℓ,k← m̂ℓ,k,

β θ̂ℓ,k← θ̂ℓ,k, β
2q̂ℓ,k← q̂ℓ,k, β v̂← v̂ (40)

the entropic potential Ψw (38) then reduces to

Ψw =
1

2d
EΞ Tr

[
V̌−1⊙

(
∑
ℓ

∑
k

√
dm̂ℓ,kµµµ⊤ℓ,k+θ̂ℓ,kwww⊤⋆ Σℓ,k+Ξℓ,k⊙(q̂ℓ,k⊗Σℓ,k)

1
2

)⊗2]
− 1

d
EΞMg(Ξ), (41)

where we defined the entropic Moreau enveloppe

Mg(Ξ)

≡ inf
www

[
1
2

∥∥∥∥V̌ 1/2

(
www−V̌−1

(
∑
ℓ

∑
k

√
dm̂ℓ,kµµµ⊤ℓ,k+θ̂ℓ,kwww⊤⋆ Σℓ,k+Ξℓ,k⊙(q̂ℓ,k⊗Σℓ,k)

1
2

))∥∥∥∥2

+λ

2 ∥www∥
2

]
.

(42)

and used the shorthand

V̌ ≡ v̂⊗Id +∑
ℓ

∑
k

V̂ℓ,k⊗Σℓ,k. (43)
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The energetic potential Ψy (39) can be similarly recast into a more compact
form

Ψy = −Ec,Y ,ΞM (c,Y ,Ξ), (44)

where the Moreau envelope is defined as

M (c,Y ,Ξ)

= inf
X

{
1
2

L

∑
ℓ=1

Tr
[
V−1
ℓ,cℓ

(
xℓ−q

1/2
ℓ,cℓ

ξℓ−mℓ,cℓ

)⊗2
]
+ ℓ (Y +mc

⋆,X ,v,c)

}
.

(45)

1.2.3.f replica free energy

The RS free energy

f = − lim
β→∞

1
βd

ED lnZ = −Ψt −Ψw−αΨy (46)

can finally be written as the solution of the low-dimensional optimization
problem

f = −extr Φ (47)

where the extremization bears on the variables qℓ,k,Vℓ,k,mℓ,k,θℓ,k,v, q̂ℓ,k,V̂ℓ,k, m̂ℓ,k, θ̂ℓ,k, v̂
and the free entropy Φ reads

Φ

= ∑
ℓ

∑
k

(
1
2

Tr
[
qℓ,kV̂⊤ℓ,k−Vℓ,kq̂⊤ℓ,k

]
−Tr

[
θℓ,kθ̂

⊤
ℓ,k

]
− m̂⊤ℓ,kmℓ,k

)
+

1
2

Tr[vv̂]

(48)

+
1

2d
EΞTr

[(
v̂⊗Id+∑

ℓ
∑
k

V̂ℓ,k⊗Σℓ,k

)−1

⊙
(

∑
ℓ

∑
k

√
dm̂ℓ,kµµµ⊤ℓ,k+θ̂ℓ,kwww⊤⋆ Σℓ,k+Ξℓ,k⊙(q̂ℓ,k⊗Σℓ,k)

1
2

)⊗2]
− 1

d
EΞMg(Ξ)−αEc,Y ,ΞM (c,Y ,Ξ).

Note that these equations are not yet fully asymptotic, in the sense that
they still involve a high-dimensional optimization problem in the form of
the entropic Moreau envelope (42). For many regularizers g(·) of interest
however, proxg admits a simple fully asymptotic closed-form expression. We
first need the additional assumption:

Assumption 1.2.1. The set of matrices {{Σℓ,k}Kℓ
k=1}L

ℓ=1 admits a common
set of eingenvectors {eeei}d

i=1. We denote {λℓ,ki }d
i=1 the eigenvalues of Σℓ,k. The

eigenvalues {λℓ,ki }ℓ,k,i and the projection of the cluster means {µµµℓ,k}ℓ,k and
the teacher columns {(www⋆)i}t

i=1 on these eigenvectors are assumed to admit
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a well-defined joint distribution ν as d→ ∞ – namely, for γ = (γℓ,k)ℓ,k, π =

(π1, ...,πt) ∈Rt and τ = (τℓ,k)ℓ,k:

1
d

d

∑
i=1

L

∏
ℓ=1

Kℓ

∏
k=1

δ

(
λℓ,ki − γℓ,k

)
δ

(√
deee⊤i µµµℓ,k− τℓ,k

) t

∏
j=1

δ

(
eee⊤i (www⋆) j−π j

)
d→∞−−−→ ν (γ ,τ ,π) . (49)

This assumption is
satisfied e.g. when all
covariances Σℓ are
jointly diagonalizable
(or equal), and www⋆, µµµℓ

are i.i.d (or just
independent)
Gaussian vectors,
which is the setting in
a large number of
past studies of ML

with statistical
physics ideas, see e.g.
(Zdeborová et al.,
2016; Gabrié, 2020)
for reviews.

The Saddle Point (SP) equations, expressing the extremization conditions,
can then be written as

q̂ℓ,k = αEcδcℓ,kEΞ,YV−1
ℓ,k

(
proxc

ℓ−q
1
2
ℓ,kξℓ−mℓ,k

)⊗2

V−1
ℓ,k

V̂ℓ,k = θ̂ℓ,kθ⊤ℓ,kq−1
ℓ,k −αEcδcℓ,kEΞ,YV−1

ℓ,k

(
proxc

ℓ−q
1
2
ℓ,kξℓ−mℓ,k

)
ξ⊤ℓ q−

1
2

ℓ,k

m̂ℓ,k = αEcδcℓ,kEΞ,YV−1
ℓ,k

(
proxc

ℓ−q
1
2
ℓ,kξℓ−mℓ,k

)
θ̂ℓ,k = αEcδcℓ,kEΞ,YV−1

ℓ,k

(
proxc

ℓ−q
1
2
ℓ,kξℓ−mℓ,k

)
(

yℓ−θ⊤ℓ,kq−
1/2

ℓ,k ξℓ

)⊤(
ρℓ,k−θ⊤ℓ,kq−1

ℓ,k θℓ,k

)−1

v̂ = 2αEcEΞ,Y ∂3ℓ(Y +mc
⋆,proxc,v,c)

(50)



qℓ,k =
∫

dν(γ ,τ ,π)γℓ,k

(
λIr + v̂+∑

κ

∑
j

γκ , jV̂κ , j

)−1

[(
∑
κ

∑
j

m̂κ , jτκ , j + γκ , jθ̂κ , jπ

)⊗2

+∑
κ

∑
j

γκ , jq̂κ , j

]
(

λIr + v̂+∑
κ

∑
j

γκ , jV̂κ , j

)−1

Vℓ,k =
∫

dν(γ ,τ ,π)γℓ,k

(
λIr + v̂+∑

κ

∑
j

γκ , jV̂κ , j

)−1

mℓ,k =
∫

dν(γ ,τ ,π)τℓ,k

(
λIr + v̂+∑

κ

∑
j

γκ , jV̂κ , j

)−1

(
∑
κ

∑
j

m̂κ , jτκ , j + γκ , jθ̂κ , jπ

)
θℓ,k =

∫
dν(γ ,τ ,π)γℓ,k

(
λIr + v̂+∑

κ

∑
j

γκ , jV̂κ , j

)−1

(
∑
κ

∑
j

m̂κ , jτκ , j + γκ , jθ̂κ , jπ

)
π⊤

v =
∫

dν(γ ,τ ,π)
(

λIr + v̂+∑
κ

∑
j

γκ , jV̂κ , j

)−1

[(
∑
κ

∑
j

m̂κ , jτκ , j + γκ , jθ̂κ , jπ

)⊗2

+∑
κ

∑
j

γκ , jq̂κ , j

]
(

λIr + v̂+∑
κ

∑
j

γκ , jV̂κ , j

)−1

(51)
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How to interpret the parameters qℓ,k,mℓ,k,θℓ,k? Consider the summary statis-
tics

q̌ℓ,k(ŵww) =
ŵww⊤Σℓ,kŵww

d
, m̌ℓ,k(ŵww) =

µµµ⊤ℓ,kŵww
√

d
, θ̌ℓ,k(ŵww) =

ŵww⊤Σℓ,kwww⋆

d
, (52)

of the trained weights ŵww. The average value of any test function φ (ŵww) ≡
φ ({q̌ℓ,k(ŵww), m̌ℓ,k(ŵww), θ̌ℓ,k(ŵww)}ℓ,k) of these statistics can be rewritten similarly
to (14) as

EDφ (ŵww) = lim
β→∞

ED
1
Z

∫
dwwwe−βR(www)

φ (www)

= lim
β→∞,s→0

∫
dwwwe−βR(www)

φ (www)Zs−1

= lim
β→∞,s→0

∫ s

∏
a=1

dwwwae−βR(wwwa)
φ (www1)

= lim
β→∞,s→0

∫ L

∏
ℓ=1

Kℓ

∏
k=1

s

∏
a=1

dmℓ,k
a dm̂ℓ,k

a dθ
ℓ,k
a dθ̂

ℓ,k
a

s

∏
a≤b

dqℓ,kab dq̂ℓ,kab φ ({qℓ,k11 ,mℓ,k
1 ,θ ℓ,k

1 }ℓ,k)e
sdβ (Ψt+Ψw+Ψy)

≍ lim
β→∞,s→0

φ ({qℓ,k,mℓ,k,θℓ,k}ℓ,k)e−sβd f

= φ ({qℓ,k,mℓ,k,θℓ,k}ℓ,k), (53)

where the last equality results from first taking the s→ 0 limit. In words, the
average of any function of the summary statistics q̌ℓ,k(ŵww), m̌ℓ,k(ŵww), θ̌ℓ,k(ŵww)
(52), and in particular the average of the summary statistics themselves, is
asymptotically given by (a function of) the quantities qℓ,k,mℓ,k,θℓ,k character-
ized by the SP equations (50). The replica method thus provides a powerful
framework to tightly describe the minimizer ŵww of the ERM problem (11), in
terms of a set of summary statistics.

1.2.3.g test error

We remind the expression for the average test error associated to the trained
seq-GLM:

εg = Exxxℓtst.

(
xxxwww⋆√

d
,

xxxŵww√
d

,
ŵww⊤ŵww

d
,c
)

. (54)

Explicating this expression in terms of the correlated Gaussian variables
xxxŵww,xxxwww⋆ allows to derive the following compact asymptotic characterization:

εg = Ec,X ,Y ℓts. (Y ,X ,v,c) , (55)
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ℎ1(𝒘) … ℎ𝑛(𝒘)

𝑤1 𝑤2 … 𝑤𝑑…

𝑔(𝑤1) 𝑔(𝑤2) 𝑔(𝑤𝑑)… …

Figure 1: Graphical model associated to themeasurePβ (15).We used the shorthands
hµ (www) ≡ exp(βℓ(xxxµ www⋆/

√
d, xxxµ www/

√
d, www⊤www/d,cµ )),g(wi) = exp(β λ/2∥wi∥2).

Iterative schemes such as GAMP (2) (Bayati et al., 2011a; Rangan et al.,
2016) can be used to estimate marginals from such distributions.

where, conditioned on the class assignments c, the average bears on X ∈
RL×r,Y ∈RL×t with independent rows with statistics

(xℓ,yℓ) ∼N

[(
mℓ,cℓ

m⋆
ℓ,cℓ

)
,

(
qℓ,cℓ θℓ,cℓ

θ⊤ℓ,cℓ ρℓ,cℓ

)]
, (56)

where the summary statistics qℓ,cℓ ,θℓ,cℓ ,ρℓ,cℓ are characterized by (50).

1.2.4 an algorithmic perspective

The precedent section 1.2.3.a showed how the learning of a seq-GLM, could be
asymptotically characterized in terms of a set of low-dimensional equations
(50). In this section, we complement this discussion by providing an alter-
native algorithmic viewpoint on the SP equations (50). More precisely, we
will first show that (50) describe the fixed points of an iterative Generalized
Approximate Message Passing (GAMP) algorithm. Furthermore, the set of
fixed point of GAMP will be shown to coincide with critical (zero gradient)
points of the empirical ERM landscape. As a result, it follows that aside from
the global minimizer, the other solutions of (50) may describe non-global
critical points of the empirical landscape. Finally, note that under Assumption
1.2.1, one can assume without loss of generality all covariances Σℓ,k to be
diagonal.

1.2.4.a gamp algorithm

Themeasure Pβ (15) associated to the ERM problem (11) can be represented as
a graphical model, see Fig. 1. For such classes of distributions,message-passing
algorithms provide a versatile framework to evaluate the marginal ŵww (here
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the trained weights), for any given sample of the train set D . We refer the
interested reader to (Mézard et al., 2009; Zdeborová et al., 2016; Gabrié, 2019)
for introductions and reviews. For the measure Pβ (15), the corresponding
relaxed Belief Propagation (rBP) algorithm reads, in the sought-after β → ∞

limit:

Algorithm 1 rBP
Inputs : {Xℓ ∈Rn×d}L

ℓ=1,yyy ∈Rn×L×t

Initialize ∀1≤ µ ≤ n, 1≤ i≤ d, ŵ0
i→µ

= 0r, ĉ0
i→µ

= Ir,{ f 0
ℓµ→i = 0r}L

ℓ=1

for t ≤ tmax do
∀1≤ ℓ,κ ≤ L,1≤ µ ≤ n,1≤ i≤ d, (V t

µ→i)ℓκ = 1
d ∑

j ̸=i
(xµ

ℓ j)(x
µ

κ j)ĉ
t
j→µ

1≤ µ ≤ n,1≤ i≤ d, Γt
µ→i =

1
d ∑

j ̸=i
ŵt

j→µ
(ŵt

j→µ
)⊤

∀1≤ ℓ,1≤ µ ≤ n,1≤ i≤ d, ω t
ℓ,µ→i =

1√
d ∑

j ̸=i
xµ

ℓ, jŵ
t
j→µ

∀1≤ ℓ,1≤ µ ≤ n,1≤ i≤ d,
f t
ℓ,µ→i =

[
(V t

µ→i)
−1
(

prox(yµ ,ω t
µ→i,V

t
µ→i,Γ

t
µ→i,c

µ)−ω t
µ→i

)]
ℓ

∀1≤ µ ≤ n,1≤ i≤ d,
η t

µ→i = ∂3ℓ
(

yµ ,prox(yµ ,ω t
µ→i,V

t
µ→i,Γ

t
µ→i,c

µ),Γt
µ→i,c

µ

)
∀1≤ ℓ,κ ≤ L,1≤ µ ≤ n,1≤ i≤ d, gt

µ→i = ∇ω f t
µ→i

∀1≤ µ ≤ n,1≤ i≤ d, At
i→µ

= − 1
d

L
∑

ℓ,κ=1
∑

ν ̸=µ

(xν
ℓi)(x

ν
κi)g

t
ℓκ ,ν→i

∀1≤ µ ≤ n,1≤ i≤ d, Ct
i→µ

= 2
d ∑

ν ̸=µ

η t
ν→i

∀1≤ µ ≤ n,1≤ i≤ d, bt
i→µ

= 1√
d

L
∑
ℓ=1

∑
ν ̸=µ

xν
ℓi f t

ℓ,ν→i

∀1≤ µ ≤ n,1≤ i≤ d, ŵt+1
i→µ

= (λIr +Ct
i→µ

+At
i→µ

)−1bt
i→µ

∀1≤ µ ≤ n,1≤ i≤ d, ĉt+1
i→µ

= (λIr +Ct
i→µ

+At
i→µ

)−1

end for

return Estimator ŵww

We noted, for 1 ≤ ℓ ≤ L, Xℓ ∈ Rn×d the matrix of stacked row xxxℓ ∈ Rd ,
and xµ

ℓi the µ , i−th element thereof. Above, V t
µ→i ∈ RrL×rL is viewed as a

matrix and ω t
µ→i ∈ RLr is viewed as a block vector of size L× r, so that

(ω t
µ→i)ℓ ∈Rr for 1≤ ℓ≤ L. We also introduced the resolvent

prox(y,ω ,V ,Γ,c) ≡ arginf
X∈RLr

{
1
2
(X−ω)V−1(X−ω)+ ℓ(y,X ,Γ,c)

}
.

(57)

Finally, we remind that yµ = xxxµ www⋆/
√

d ∈RL×t . The rBP iterations can be sim-
plified into the GAMP equations
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Algorithm 2 GAMP
Inputs : {Xℓ ∈Rn×d}L

ℓ=1,yyy ∈Rn×L×t

Initialize ∀1≤ µ ≤ n, 1≤ i≤ d, ŵ0
i = 0r, ĉ0

i = Ir,{ f 0
ℓµ

= 0r}L
ℓ=1

for t ≤ tmax do
∀1≤ ℓ,κ ≤ L,1≤ µ ≤ n, (V t

µ)ℓκ = 1
d ∑

i
(xµ

ℓi)(x
µ

κi)ĉ
t
i

Γt = 1
d ∑

i
ŵt

i(ŵ
t
i)
⊤

∀1≤ ℓ,1≤ µ ≤ n, ω t
ℓ,µ = 1√

d ∑
i

xµ

ℓ,iŵ
t
i−∑

κ

(V t
µ)ℓκ fκµ

∀1≤ ℓ,1≤ µ ≤ n, f t
ℓ,µ =

[
(V t

µ)
−1
(

prox(yµ ,ω t
µ ,V t

µ ,Γt ,cµ)−ω t
µ→i

)]
ℓ

∀1≤ µ ≤ n, η t
µ = ∂3ℓ

(
yµ ,prox(yµ ,ω t

µ ,V t
µ ,Γt ,cµ),Γt

µ ,cµ
)

∀1≤ ℓ,κ ≤ L,1≤ µ ≤ n, gt
µ = ∇ω f t

µ

1≤ i≤ d, At
i = − 1

d

L
∑

ℓ,κ=1
∑
µ

(xµ

ℓi)(x
µ

κi)g
t
ℓκ ,µ

Ct = 2
d ∑

µ

η t
µ

1≤ i≤ d, bt
i =

1√
d

L
∑
ℓ=1

∑
µ

xµ

ℓi f t
ℓ,µ +At

iŵ
t
i

∀1≤ µ ≤ n,1≤ i≤ d, ŵt+1
i = (λIr +Ct +At

i)
−1bt

i
∀1≤ µ ≤ n,1≤ i≤ d, ĉt+1

i = (λIr +Ct +At
i)
−1

end for

return Estimator ŵww

The rBP (1) and GAMP (2) algorithms are in fact asymptotically equivalent,
see e.g. (Zdeborová et al., 2016) for an overview. In the next paragraphs, we
will show that the equations (50) describe the fixed points of the rBP and
GAMP algorithms.

1.2.4.b state evolution

In this section we show that the dynamics of GAMP (2) can be fully tracked
by the same summary statistics appearing in the replica SP equations (50). In
particular, the equations (50) describe the statistics of the GAMP fixed points.
To see this, it is convenient to rather take as a starting point the equivalent
rBP equations (1). In the following, we examine each of the variables V t

µ→i, For example, ωωωt
ℓ,µ is

defined as
1/
√

d ∑
j

xµ

ℓ jŵww j→µ ,

namely with the
index j = i included
in the summation.

ω t
µ→i, f t

µ→i, gt
µ→i, At

i→µ
, bt

i→µ
, ŵt

i→µ
, ĉt

i→µ
involved in the rBP iterations, and

ascertain their probability distribution. As a convention, we note ·µ the
version of a variable ·µ→i where the summation also encompasses the index i,
and ·i the version of a variable ·i→µ where the summation also encompasses
the index µ . Note that in all cases above the two variables ·µ , ·µ→i or ·i, ·i→µ

differ by at most Θd(1/
√

d).
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Concentration of (V t
µ→i)ℓκ , (Γ

t
µ→i)ℓκ We first show that the variables

V t
µ→i concentrate to a deterministic value:

(V t
µ→i)ℓκ =

1
d ∑

j ̸=i
(xµ

ℓ j)(x
µ

κ j)ĉ
t
j→µ

=
1
d ∑

j ̸=i
(x̃µ

ℓ ) j(x̃
µ

κ ) jĉt
j→µ︸ ︷︷ ︸

δℓκ Θd(1)+(1−δℓκ )Θd(1/
√

d)

+
1
d ∑

j ̸=i
(x̃µ

ℓ ) j(µκ ,cµ

κ
) jĉt

j→µ +(ℓ↔ κ)︸ ︷︷ ︸
Θd(1/d)

+
1
d ∑

j ̸=i
(µℓ,cµ

ℓ
) j(µκ ,cµ

κ
) jĉt

j→µ︸ ︷︷ ︸
Θd(1/d)

= δℓκ
1
d ∑

j
(Σℓ,cℓ) j jĉt

j ≡V t
ℓ,cµ

ℓ
, (58)

where we denoted x̃xxℓ = xxxℓ− µµµℓ the centered data, and we introduced the
summary statistic V t

ℓ,cℓ . By the same token, (Γt
µ→i)ℓκ concentrates to

Γt
µ→i =

1
d ∑

i
ŵt

i(ŵ
t
i)
⊤ ≡ vt , (59)

where we introduced the summary statistic vt

Distribution of ω t
ℓ,µ→i We now move to examine the probability distri-

bution of ω t
ℓ,µ→i. Let us first introduce the auxiliary random variable

ỹµ ,ℓ =
1√
d

∑
i
(x̃µ

ℓ )iw⋆
i = yµℓ−m⋆

ℓ,cµ

ℓ
, (60)

Further, remark that it is reasonable to expect the random variables ŵt
j→µ

involved in the sum defining ω t
ℓ,µ→i in the rBP updates (1) to be asymptotically

weakly correlated – this is in fact a standard assumption in the derivation
and analysis of AMP algorithms, see (Zdeborová et al., 2016). As a sum of
asymptotically independent variables, ω t

ℓ,µ→i is thus Gaussian-distributed ac-
cording to the CLT. We can now ascertain the joint distribution of ỹµ ,ℓ,ω t

ℓ,µ→i.
These variables have mean

E[ω t
ℓ,µ→i] =

µµµ⊤
ℓ,cµ

ℓ

ŵwwt

√
d
≡ mt

ℓ,cµ

ℓ
, (61)
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and respective variance

E[(ω t
ℓ,µ→i−mt

ℓ,cµ

ℓ
)(ω t

κ ,ν→ j−mt
κ ,cµ

κ

)⊤] = δµνδℓκ
1
d ∑

i, j
ŵt

i(Σℓ,cµ

ℓ
)i j(ŵt

j)
⊤

≡ δµνδℓκqt
ℓ,cµ

ℓ
, (62)

E[ỹµℓỹ⊤νκ ] = δµνδℓκ
1
d ∑

i, j
w⋆

i (Σℓ,cµ

ℓ
)i j(w⋆

j)
⊤ ≡ δµνδℓκρℓ,cµ

ℓ
, (63)

E[(ω t
κ ,ν→ j−mt

κ ,cµ

κ

)ỹ⊤µℓ] = δµνδℓκ
1
d ∑

i, j
(Σℓ,cµ

ℓ
)i jŵt

j(w
⋆
i )
⊤ ≡ δµνδℓκθ

t
ℓ,cµ

ℓ
.

(64)

We introduced the summary statistics qt
ℓ,k,ρℓ,k,θ t

ℓ,k,mt
ℓ,k.

Distribution of bt
i→µ

Let us now study the distribution of bt
i→µ

. Expand-
ing the resolvent inside the summand yields

bt
i→µ =

1√
d

∑
ℓ

∑
ν ̸=µ

(xν
ℓ )i f t

ℓ,ν→i

=
1√
d

∑
ℓ

∑
ν ̸=µ

((x̃ν
ℓ )i +(µℓ,cν

ℓ
)i)

(
1+ 1/

√
d ∑

γ

(x̃ν
γ )i(w⋆

i ·∇yγ
)

)
[
(V t

ν→i)
−1 (prox(yν→i,ω t

ν→i,V
t
ν→i,Γ

t
ν→i,cν)−ω

t
ν→i)

]
ℓ

=
1√
d

∑
ℓ

∑
ν ̸=µ

((x̃ν
ℓ )i +(µℓ,cν

ℓ
)i)

(
1+ 1/

√
d ∑

γ

(x̃ν
γ )i(w⋆

i ·∇yγ
)

)
(V t

ℓ,cν
ℓ
)−1 (prox(yν→i,ω t

ν→i,V
t
ν→i,Γ

t
ν→i,cν)−ω

t
ν→i)ℓ (65)

We denoted yµ→i ≡ yµ − xµ

i w⋆
i , and used in the last line the block-diagonal

structure of V t
ν→i that follows from (58). As for ω t

ℓ,µ→i, it follows from the
CLT that bt

i→µ
asymptotically follows a Gaussian distribution with mean

E[bt
i→µ ]

= ∑
ℓ

∑
k
(
√

dµℓ,k)i αEcδcℓ ,kEyc ,Ξc (V t
ℓ,k)
−1[prox(yc,mt

c+Ξc,V t
c ,vt ,c)ℓ−(mt

ℓ,k+Ξc
ℓ)]︸ ︷︷ ︸

≡m̂t
ℓ,k

+∑
ℓ

∑
k
(Σℓ,k)ii αEcδcℓ ,kEyc ,Ξc (V t

ℓ,k)
−1∇yℓ [prox(yc,mt

c+Ξc,V t
c ,vt ,c)ℓ−(mt

ℓ,k+Ξc
ℓ)]︸ ︷︷ ︸

≡θ̂ t
ℓ,k

w⋆
i ,

(66)

where the expectations bear over Ξc ∈ RL×r with colored Gaussian rows
(qt

ℓ,cℓ)
1/2ξℓ, where ξℓ ∼N (0r,Ir), and y ∈RL×t with rows yc

ℓ ∼N (m⋆
ℓ,cℓ +

(θ t
ℓ,cℓ)

⊤(qt
ℓ,cℓ)

−1/2ξℓ,ρℓ,cℓ−(θ t
ℓ,cℓ)

⊤(qt
ℓ,cℓ)

−1θ t
ℓ,cℓ).We further denoted byV t ∈
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RrL×rL the block-diagonal matrix with blocks V t
ℓ . The variance of bt

i→µ
can

similarly be evaluated as

V[bt
i ,b

t
j]

= δi j ∑
ℓ

∑
k
(Σℓ,k)ii

αEcδcℓ,kEyc,Ξc(V t
ℓ,k)
−1 [prox(yc,mt

c +Ξc,V t
c ,vt ,c)ℓ− (mt

ℓ,k +Ξc
ℓ)
]⊗2

(V t
ℓ,k)
−1︸ ︷︷ ︸

≡q̂t
ℓ,k

.

(67)

We introduced the summary statistics q̂t
ℓ,k, m̂t

ℓ,k, θ̂ t
ℓ,k.

Concentration of At
i→µ

,Ct
i→µ

Finally, like V t
µ→i, At

i→µ
concentrates to a

deterministic value

At
i→µ

= ∑
ℓ

∑
k
(Σℓ,k)ii−αEcδcℓ,k

(
Eyc,Ξc(V t

ℓ,k)
−1

∇ωℓ
prox(yc,mt

c +Ξc,V t
c ,vt ,c)ℓ−1

)︸ ︷︷ ︸
≡V̂ t

ℓ,k

(68)

We introduced the summary statistics V̂ t
ℓ,cℓ .Similarly, Ct

i→µ
concentrates to

Ct
i→µ = 2αEcEyc,Ξc∂3ℓ (yc,prox(yc,mt

c +Ξc,V t
c ,vt ,c),V t

c ) ≡ v̂t (69)

All the variables involved in the rBP iterations are thus either Gaussian-
distributed or deterministic, making it possible to concisely capture their
asymptotic dynamicswith a small set of summary statistics qt

ℓ,k,θ t
ℓ,k,mt

ℓ,k,V t
ℓ,k,vt ,

q̂t
ℓ,k, m̂t

ℓ,k, θ̂ t
ℓ,k,V̂ t

ℓ,k, v̂t . In the following paragraph, we derive the update equa-
tions obeyed by these statistics, and show that they coincide with a time-
indexed version of the SP equations (50) previously derived from the replica
method. In particular, the set of self-consistent equations (50) is satisfied at
convergence by the infinite-time iterates q∞

ℓ,k,θ ∞
ℓ,k,m∞

ℓ,k,V ∞
ℓ,k,v∞, q̂∞

ℓ,k, m̂∞
ℓ,k, θ̂ ∞

ℓ,k,V̂ ∞
ℓ,k, v̂∞.

Recovering equations (50) Wrapping up, we now massage these equa-
tions to recover equations (50) derived from the replica method, as discussed
in section 1.2.3.a. Starting from V t

ℓ,k (58):

V t
ℓ,k =

1
d ∑

i
(Σℓ,k)ii

(
λIr + v̂t +∑

κ

∑
j

V̂ t−1
κ , j (Σκ , j)ii

)−1

=
∫

dν(γ ,τ)γℓ,k

(
λIr + v̂t +∑

κ

∑
j

V̂ t−1
κ , j γκ , j

)−1

. (70)
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Next, for vt (62):

vt =
1
d ∑

i

(
λIr + v̂t +∑

κ

∑
j

V̂ t−1
κ , j (Σκ , j)ii

)−1

(∑
κ

∑
j

√
d(µκ , j)im̂t−1

κ , j +(Σκ , j)iiθ̂
t−1
κ , j w⋆

i

)⊗2

+∑
κ

∑
j
(Σκ , j)iiq̂t−1

κ , j


(

λIr + v̂t +∑
κ

∑
j

V̂ t−1
κ , j (Σκ , j)ii

)−1

=
∫

dν(γ ,τ ,π)

(
λIr + v̂t +∑

κ

∑
j

V̂ t−1
κ , j γκ , j

)−1

[(
∑
κ

∑
j
(τκ , jm̂t−1

κ , j +γκ , j θ̂
t−1
κ , j π

)⊗2

+∑
κ

∑
j

γκ , j q̂t−1
κ , j

]
(

λIr + v̂t +∑
κ

∑
j

V̂ t−1
κ , j γκ , j

)−1

. (71)

Next, for qt
ℓ,k (62):

qt
ℓ,k =

1
d ∑

i
(Σℓ,k)ii

(
λIr + v̂t +∑

κ

∑
j

V̂ t−1
κ , j (Σκ , j)ii

)−1

(∑
κ

∑
j

√
d(µκ , j)im̂t−1

κ , j +(Σκ , j)iiθ̂
t−1
κ , j w⋆

i

)⊗2

+∑
κ

∑
j
(Σκ , j)iiq̂t−1

κ , j


(

λIr + v̂t +∑
κ

∑
j

V̂ t−1
κ , j (Σκ , j)ii

)−1

=
∫

dν(γ ,τ ,π)γℓk

(
λIr + v̂t +∑

κ

∑
j

V̂ t−1
κ , j γκ , j

)−1

[(
∑
κ

∑
j
(τκ , jm̂t−1

κ , j +γκ , j θ̂
t−1
κ , j π

)⊗2

+∑
κ

∑
j

γκ , j q̂t−1
κ , j

]
(

λIr + v̂t +∑
κ

∑
j

V̂ t−1
κ , j γκ , j

)−1

. (72)
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For θ t
ℓ,k(62):

θ
t
ℓ,k =

1
d ∑

i
(Σℓ,k)ii

(
λIr + v̂t +∑

κ

∑
j

V̂ t−1
κ , j γκ , j

)−1

(
∑
κ

∑
j
(
√

d(µκ , j)im̂t−1
κ , j +(Σκ , j)iiθ̂

t−1
κ , j w⋆

i

)
(w⋆

i )
⊤

=
∫

dν(γ ,τ ,π)γℓ,k

(
λIr + v̂t +∑

κ

∑
j

V̂ t−1
κ , j γκ , j

)−1

(
∑
κ

∑
j
(τκ , jm̂t−1

κ , j + γκ , jθ̂
t−1
κ , j π

)
π
⊤. (73)

For mt
ℓ,k (61):

mt
ℓ,k =

1
d ∑

i
(
√

dµℓ,k)i

(
λIr + v̂t +∑

κ

∑
j

V̂ t−1
κ , j γκ , j

)−1

(
∑
κ

∑
j
(
√

d(µκ , j)im̂t−1
κ , j +(Σκ , j)iiθ̂

t−1
κ , j w⋆

i

)

=
∫

dν(γ ,τ ,π)τℓ,k

(
λIr + v̂t +∑

κ

∑
j

V̂ t−1
κ , j γκ , j

)−1

(
∑
κ

∑
j
(τκ , jm̂t−1

κ , j + γκ , jθ̂
t−1
κ , j π

)
. (74)

For m̂t
ℓ,k (66):

m̂t
ℓ = αEcδcℓ,kEy,Ξ(V t

ℓ,k)
−1
[
proxc

ℓ− (qt
ℓ,k)

1/2
ξℓ−mt

ℓ,k

]
, (75)

while for θ̂ t
ℓ,k (66):

θ̂
t
ℓ,k = αEcδcℓ,kEy,Ξ(V t

ℓ,k)
−1

∇yℓ

[
proxc

ℓ− (qt
ℓ,k)

1/2
ξℓ−mt

ℓ,k

]
= αEcδcℓ,kEy,Ξ(V t

ℓ,k)
−1
[
proxc

ℓ− (qt
ℓ,k)

1/2
ξℓ−mt

ℓ,k

]
(

yℓ−m⋆
ℓ,k− (θ t

ℓ,k)
⊤(qt

ℓ,k)
−1/2

ξℓ

)⊤(
ρℓ,k− (θ t

ℓ,k)
⊤(qt

ℓ,k)
−1

θ
t
ℓ,k

)−1
.

(76)

Now turning to q̂t
ℓ,k:

q̂t
ℓ,k = αEcδcℓ,kEy,Ξ

[
(V t

ℓ,k)
−1
[
proxc

ℓ− (qt
ℓ,k)

1/2
ξℓ−mt

ℓ,k

]⊗2
(V t

ℓ,k)
−1
]

.

(77)



1.2 statistical physics of ml 28

For v̂t :

v̂t = 2αEcEy,Ξ∂3ℓ (yc,proxc,V t
c ,vt ,c) ≡ v̂t (78)

Finally, for V̂ t
ℓ,k (68):

V̂ t
ℓ,k = −αEcδcℓ,kEy,Ξ(V t

ℓ,k)
−1 [∇ωℓ

proxc
ℓ−1]

= −αEcδcℓ,kEy,Ξ(V t
ℓ,k)
−1
[
∇ξℓ

(proxc
ℓ− (qt

ℓ,k)
1/2

ξℓ−mt
ℓ,k)(q

t
ℓ,k)
−1/2
]

= αEcδcℓ,kEy,Ξ

[
(V t

ℓ,k)
−1(proxc

ℓ− (qt
ℓ,k)

1/2
ξℓ−mt

ℓ,k).

.

[
(yℓ−m⋆

ℓ,k−(θ t
ℓ,k)
⊤(qt

ℓ,k)
−1/2ξℓ,k)

⊤

(
ρℓ,k− (θ t

ℓ,k)
⊤(qt

ℓ,k)
−1

θ
t
ℓ,k

)−1
(θ t

ℓ,k)
⊤(qt

ℓ,k)
−1/2−ξ

⊤
ℓ,k

]
(qt

ℓ,k)
−1/2

]
= θ̂

t
ℓ,k(θ

t
ℓ,k)
⊤(qt

ℓ,k)
−1

−αEcδcℓ,kEy,Ξ(V t
ℓ,k)
−1(proxc

ℓ− (qt
ℓ,k)

1/2
ξℓ−mt

ℓ,k)ξ
⊤
ℓ (qt

ℓ,k)
−1/2.
(79)

This concludes the derivation of the update equations satisfied by the set
of summary statistics qt

ℓ,k,θ t
ℓ,k,mt

ℓ,k,V t
ℓ,k, q̂t

ℓ,k, m̂t
ℓ,k, θ̂ t

ℓ,k,V̂ t
ℓ,k, called the SE equa-

tions. These equations concisely describe the macroscopic asymptotic be-
haviour of the rBP (equivalently GAMP) iterates, thus abstracting away the
precise dynamics of the Θd(d2) variablesV t

µ→i,ω t
µ→i, f t

µ→i, gt
µ→i,At

i→µ
, bt

i→µ
,

ŵt
i→µ

, ĉt
i→µ

. This reductionist viewpoint is, much like the replica approach
of section 1.2.3.a, very characteristic of statistical physics.
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Summary : State evolution equations We now regroup the State Evo-
lution (SE) equations derived in the previous paragraph:

V t
ℓ,k =

∫
dν(γ ,τ)γℓ,k

(
λIr + v̂t +∑

κ

∑
j
V̂ t−1

κ , j γκ , j

)−1

qt
ℓ,k =

∫
dν(γ ,τ ,π)γℓ,k

(
λIr + v̂t +∑

κ

∑
j
V̂ t−1

κ , j γκ , j

)−1

[(
∑
κ

∑
j
(τκ , jm̂t−1

κ , j + γκ , jθ̂
t−1
κ , j π

)⊗2

+∑
κ

∑
j

γκ , jq̂t−1
κ , j

]
(

λIr + v̂t +∑
κ

∑
j
V̂ t−1

κ , j γκ , j

)−1

θ t
ℓ,k =

∫
dν(γ ,τ ,π)γℓ,k

(
λIr + v̂t +∑

κ

∑
j
V̂ t−1

κ , j γκ , j

)−1

(
∑
κ

∑
j
(τκ , jm̂t−1

κ , j + γκ , jθ̂
t−1
κ , j π

)
π⊤

mt
ℓ,k =

∫
dν(γ ,τ ,π)τℓ,k

(
λIr + v̂t +∑

κ

∑
j
V̂ t−1

κ , j γκ , j

)−1

(
∑
κ

∑
j
(τκ , jm̂t−1

κ , j + γκ , jθ̂
t−1
κ , j π

)
vt =

∫
dν(γ ,τ ,π)

(
λIr + v̂t +∑

κ

∑
j
V̂ t−1

κ , j γκ , j

)−1

[(
∑
κ

∑
j
(τκ , jm̂t−1

κ , j + γκ , jθ̂
t−1
κ , j π

)⊗2

+∑
κ

∑
j

γκ , jq̂t−1
κ , j

]
(

λIr + v̂t +∑
κ

∑
j
V̂ t−1

κ , j γκ , j

)−1

(80)



V̂ t
ℓ,k = θ̂ t

ℓ,k(θ
t
ℓ,k)
⊤(qt

ℓ,k)
−1

−αEcδcℓ,kEy,Ξ(V t
ℓ,k)
−1(proxc

ℓ− (qt
ℓ,k)

1/2ξℓ−mt
ℓ,k)ξ

⊤
ℓ (qt

ℓ,k)
−1/2

q̂t
ℓ,k = αEcδcℓ,kEy,Ξ

[
(V t

ℓ,k)
−1
[
proxc

ℓ− (qt
ℓ,k)

1/2ξℓ−mt
ℓ,k

]⊗2
(V t

ℓ,k)
−1
]

θ̂ t
ℓ,k = αEcδcℓ,kEy,Ξ(V t

ℓ,k)
−1
[
proxc

ℓ− (qt
ℓ,k)

1/2ξℓ−mt
ℓ,k

]
(
yℓ−m⋆

ℓ,k− (θ t
ℓ,k)
⊤(qt

ℓ,k)
−1/2ξℓ

)⊤ (
ρℓ,k− (θ t

ℓ,k)
⊤(qt

ℓ,k)
−1θ t

ℓ,k

)−1

m̂t
ℓ,k = αEcδcℓ,kEy,Ξ(V t

ℓ,k)
−1
[
proxc

ℓ− (qt
ℓ,k)

1/2ξℓ−mt
ℓ,k

]
v̂t = 2αEcEy,Ξ∂3ℓ (yc,proxc,V t

c ,vt ,c)
(81)

which exactly recovers the replica SP equations (50) derived in section 1.2.3.a,
with the difference that in the dynamical SE equations (80), the summary
statistics bear time indices. This subsection has thus established that the
equations (50) describe the summary statistics capturing the dynamics of
GAMP iterations (2), provided the relevant time indices are included. In partic-
ular, the equations (50) – without time indices – describe the fixed points of
GAMP. The next subsection finally shows that critical (zero-gradient) points
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of the empirical landscape (11), i.e. fixed points of GD, also correspond to
fixed points of GAMP, and are thus solutions of the replica SP equations (50).

1.2.4.c fixed points of gamp are fixed points of gd

In this subsection, we show that critical (zero gradient) points of the empirical
ERM landscape (11) coincide with fixed points of GAMP (2), as asymptotically
described by the replica equations (50) derived in section 1.2.3.a. Let us first
observe that the zero-gradient condition on the empirical loss ∂wikR(www) = 0
can be expounded as

n

∑
µ=1

L

∑
ℓ=1

xµ

ℓi∂zℓkℓ(yµ ,zµ ,Γ,cµ)+
2
d

n

∑
µ=1

r

∑
j=1

wi j∂Γi jℓ(yµ ,zµ ,Γ,cµ)+λwik = 0.

(82)

In (82), we directly considered the case of a ℓ2 regularizer, and denoted
zµ ≡ xxxµ www/

√
d, which we shall conveniently view as a vector in RLr. Finally,

we remind the notation yµ = xxxµ www⋆/
√

d. Let us introduce a family {V µ

ℓκ}µ ,ℓ,κ

of Rr×r positive definite matrices, and Vµ ∈RLr×Lr the block-diagonal with
blocks {V µ

ℓκ}ℓ,κ . We are now in a position to introduce the variable ωµ ∈RLr

as

ωµ ,ℓ = Vµ∇zℓ(yµ ,zµ ,Γ,cµ)+ zµ . (83)

The relationship between ωµ ,zµ can be equivalently rewritten with a resol-
vent as

zµ = argmin
x∈RLr

[
1
2
(x−ωµ)

⊤V−1
µ (x−ωµ)+ ℓ(yµ ,x,Γ,cµ)

]
≡ prox(yµ ,ωµ ,Vµ ,Γ,cµ). (84)

These manipulations let us introduce the variables ωµ ,Vµ , which as we later
show will match the corresponding variables in the GAMP algorithm 2. Let
us now choose a family positive definite symmetric matrix {A ∈Rr×r}d

i=1,
and introduce the variables bi ∈Rr as

bi = λwi +Cwi +Aiwi, (85)

or equivalently

wi = (λIr +C+Ai)
−1bi. (86)

We defined

C =
2
d

n

∑
µ=1

∂Γℓ(yµ ,zµ ,Γ,cµ). (87)
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The zero gradient condition (82) and the definition of the variable zµ can
then be rewritten as the system of equations

n
∑

µ=1

L
∑
ℓ=1

xµ

ℓi

[
V−1

µ (ωµ −prox(yµ ,ωµ ,Vµ ,Γ,cµ))
]
ℓ

+λ (λIr +C+Ai)−1bi,

prox(yµ ,ωµ ,Vµ ,Γ,cµ)ℓ =
d
∑

i=1
xµ

ℓi(λIr +C+Ai)−1bi.

(88)

Let us introduce the variables fµ ∈RLr and ŵi ∈Rr as

fℓ,µ =
[
V−1

µ (prox(yµ ,ωµ ,Vµ ,Γ,cµ)−ωµ)
]
ℓ
, ŵi = (λIr +C+Ai)

−1bi.
(89)

The equations (88) can then be rewritten as
n
∑

µ=1

L
∑
ℓ=1

xµ

ℓi fµ ,ℓ = bi−Aiŵi,

ωµ =
d
∑

i=1
xµ

ℓiŵi−
L
∑

κ=1
(Vµ)ℓκ fµ ,κ .

(90)

which correspond to the fixed-point equations of GAMP (Algorithm 2). Thus,
critical points of the empirical landscape (11) are also fixed points of GAMP.
To summarize, we have shown that equations (50) describe the zero-gradient
points of the ERM landscape (11), i.e. fixed points of GD.

1.2.5 summary

This section detailed the asymptotic analysis of the simple, yet rather general,
example of learning with a seq-GLM in a T-S setting. In subsection 1.2.3.a,
we demonstrated how, using the replica method from statistical physics, a
sharp characterization of the minimizer of the ERM could be reached in terms
of a sufficient set of finite-dimensional summary statistics. These statistics
are solutions of a system of self-consistent SP equations (50). The analysis
thus importantly enables the reduction of the original high-dimensional
optimization problem into a set of equations in finite dimensions. Subsection
1.2.4.b then provided an algorithmic viewpoint on the SP equations as the fixed
point conditions of a GAMP algorithm. Furthermore, critical points of the ERM
landscape – i.e. fixed points of GD – were further shown coincide with fixed
points of GAMP, implying that the set of solutions of the SP equations is also
descriptive of such critical points. The study of the set of finite-dimensional
SP equations thus offers an informative and insightful perspective on the
ERM landscape, and affords a particularly powerful framework to analyze ML
learning tasks in high dimensions. Similar techniques as those illustrated in
this section underlie most of the analyses presented in this thesis.



2
PERSPECT I VES

This chapter, the last of this first introductory part, gathers an overview of re-
cent progress – including those reported in this thesis – and envisioned future
directions in the field of statistical physics of high-dimensionalML. Its purpose
is to propose and delineate future research axes beyond current knowledge.
We however deliberately choose to place it here, at the beginning of the thesis,
rather than as a conclusive chapter, so that the reader may, as they read the
thesis, understand the reported results in the light of this broader perspective.

A USER GUIDE TO SOLVABLE HIGH
DIMENS IONAL MODELS

Statistical physics of ML, as a field, makes use of the study of exactly solvable
models – namely simplified models capturing the essential aspects of a ML
task while remaining amenable to analysis– as a gateway towards better
theoretical comprehension of ML empirics. The aim of such a line of research
is arguably twofold:

Purpose: to reach a better understanding of randomnon-convex high-dimensional
optimizations that naturally arise in ML settings, as mathematical prob-
lems. This aspect is of primal and theoretical interest.

Ambition: to construct an effective theory of ML descriptive and predictive of real,
practical ML tasks, with the long-reaching ambition of constituting an
actionable theory able to guide ML practice.

These two goals in fact align to a large extent, in the sense that pursuing
either warrants the same thing – developing more complex, and realistic,
models. In the following, we highlight three important levers that can be
actioned to construct such models, which we believe constitute possible axes
for the development of the research effort in the field. We detail how the
work reported in the thesis fits in each of these axes, and further discuss
possible future steps.

2.1 THREE LEVERS

2.1.1 the first lever: models

Broadly construed, DL theory could be defined as the study of parametric
families of feature extractors, and more particularly ANNs. In an asymptotic

32
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FNN

DAE

Attention

Figure 2: Graphical representation of some existing or possible models in asymp-
totic ML theories for FNNs (top), AEs (middle), or attention mechanisms
(bottom). Each row corresponds to a different asymptotic limit for the ANN
architecture. From left to right: single hidden unit models, models with a
finite number of hidden units, infinite-width models, and extensive-width
models.
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theory, an ANN model is specified by the relative scaling of its width p with
respect to the input dimension d and the number of training samples n. For a
given family of models, a whole spectrum of different asymptotic limits can
thus be studied, yielding distinct theoretical models with diverse phenomenol-
ogy. Some examples are represented in Fig 2, with each row corresponding
to a family of ANN –FNNs, AEs, attention mechanisms– and each column
to a different scaling limit – p = 0, p = Θd(1), p≫ d, p = Θd(d)–. The Naturally, other

scalings of p,d are of
equal theoretical
interest, as considered
e.g. in (Camilli et al.,
2023).

plurality of asymptotic limits of interest for a given type of ANN is perhaps
most apparent for FNNs, which have been the object of sustained theoretical
scrutiny over the past decades. The learning of simple models with no hidden
units (GLMs) or a finite number thereof p = Θd(1) has been well character-
ized in a series of works (Gardner et al., 1988; Gardner et al., 1989; Györgyi
et al., 1990; Seung et al., 1992; Sompolinsky et al., 1990; Barbier et al., 2019b;
Aubin et al., 2020a; Aubin et al., 2018b; Schwarze, 1993; Saad et al., 1995)
(see (Gabrié, 2019; Zdeborová et al., 2016) for reviews). Recent years have
further witnessed a realization by the community that, on the opposite end
of the spectrum, infinite-width networks are also amenable to relatively easy
analytical characterization due to their connection to kernel methods (Jacot
et al., 2018a; Chizat et al., 2019a; Geiger et al., 2019; Mei et al., 2019a). Part III
of the present thesis rather puts emphasis on the intermediate extensive-width
limit p = Θd(d) (rightmost in Fig. 2) – a regime which should allow to probe
the learning of overparametrized models, while not reducing to some kernel
limit. The extension of the zoology of existing limits represented in Fig. 2
along its horizontal axis, namely studying more scaling regimes, is a natural
first actionable lever toward building more complex and expressive models
of ANNs. With a large number of finite width studies set in the so-called pro-
portional regime n = Θd(d), perhaps one salient aspect of such an endeavour
should consist in considering other scalings of the number of samples n, in
particular polynomial scalings n = Θd(dk) with k > 1, as initiated e.g. in
(Xiao et al., 2022) in the infinite-width case. Considering more data-intensive
regimes should open the door to richer learning regimes, as exmplified in
Chapter 8.

To broaden the family of asymptotically solvable models, the zoology of
Fig. 2 should also be extended its vertical direction – by diversifying the types
of analyzable ANN families. While supervised tasks with FNN architectures
have hitherto been the primary focal point of ML theory, the fast pace of
recent practical breakthroughs in DL has arguably shifted the emphasis to
considering other parametric families, such as denoiser-type networks or
attention mechanisms. This constitutes the second direction of this first axis,
and should be concurrently pursued. Part IV of the present thesis extends
the study of narrow architectures p = Θd(1) to AE and attention models.
Again, as for FNNs, a whole spectrum of asymptotic limits can be considered
for a given model. Let us cite for illustration the work of (Nguyen, 2021),
which initiates the study of infinite-width limits in AEs. In fact, the bottom
right sector of Fig. 2 is arguably a still largely uncharted research territory,
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1)

2)

Partially learntdRF Sequential End-to-end

trainable

frozen

Figure 3: For a given model, different training protocols may be considered, allowing
for different learning phenomenologies. In particular, some layers of the
networks may be frozen and left untrained. From left to right : dRF; par-
tially trained ANN considered e.g. in (Chen et al., 2022b); two-step training,
covered e.g. in Chapter 9; full end-to-end training.

and populating it with exactly solvable model should be an important step
towards the construction of a theory truly representative of the diversity of
modern ML practice.

In the related context
of statistical inference,
deep random ANN

priors have been
considered in e.g.
(Gabrié et al., 2018a;
Manoel et al., 2017a).

Finally, ANNs are by design modular in nature. The models of Fig. 2 can be
combined into composite models. Themost natural such composition consists
in stacking them intomultilayer, deep architectures. Gaining a firm analytical
grasp on the learning of such deep models is a crucial pursuit of DL theory.
Some key theoretical insights for FNNs such as the mean-field training limit
(Rotskoff et al., 2022; Mei et al., 2018; Chizat et al., 2018) are hitherto limited
to shallow architectures. Chapters 6, 7 and 8 inscribe themselves in this
endeavour of pushing the theoretical understanding to deeper architectures. On a technical level,

the hardness of the
problem lies in the
fact that there are
Θd(d2) learnable
parameters (see e.g.
(Maillard et al., 2022)
for a discussion),
while the standard
theoretical toolbox of
statistical physics (see
e.g. section 1.2) can,
so far, only address
Θd(d) trainable
parameters.

2.1.2 the second lever: training
procedures

While the extensive width limit (rightmost column of Fig. 2) represents a
promising direction to model finite-width, yet expressive FNNs, the analysis
of fully trained networks in this regime is a notoriously challenging open
question. In the face of this hurdle, an alternative research route consists in
considering simplified partial training procedures, and incrementally nudg-
ing the theoretical understanding forward towards eventually analyzing the
complete end-to-end training. This constitutes the second actionable lever
in the construction of realistic ANN models. Fig. 3 gathers some examples
of simplified training procedures. One popular simplification consists in al-
lowing only for a trainable readout layer, while freezing the intermediate
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Figure 4: Towards more realistic data distributions. From left to right, unimodal
isotropic Gaussian density, colored Gaussian density, colored Gaussian
mixture density, and t-distributed Stochastic Neighbour Embedding (tSNE)
(Van der Maaten et al., 2008) visualization of the MNIST train set (LeCun
et al., 1998a).

weights at initialization (corresponding to dRF models (Rahimi et al., 2007b),
see Chapter 6), or after some amount of training (see e.g. (Ba et al., 2022a;
Damian et al., 2022; Abbe et al., 2023; Berthier et al., 2023) and Chapters 7,
9). These sequential training protocols allow to consider the training of the
readout and intermediate weights in isolation, and thus ease the technical
study thereof. Future works in this direction should aim either at (a) reducing
the number of frozen weights, in an effort to tend towards a fully trainable
model (rightmost in Fig. 3) or (b) training the weights as much as possible be-
fore freezing. An example of a step in the direction of (b) consists in freezing
the intermediate weights only after a number of gradient steps have been
performed. Chapter 9, which presents an analysis in the case of a single step,
would for instance benefit from being extended to cover multiple steps.

A second viable route would be to consider alternative learning paradigms
to ERM, such as Bayesian learning. A series of works (Li et al., 2021c; Ariosto
et al., 2022a; Zavatone-Veth et al., 2022a), and (Cui et al., 2023a) which is the
object of Chapter 8, have studied the proportional, extensive-width limit of
Bayesian FNNs. While these work succeed in formulating a theory of fully
trained Bayesian FNNs, as evidenced in Chapter 8, such networks are expected
to be more expressive in polynomial regimes n≫ d, which remain largely
uncharted. The exploration thereof constitutes a challenging, yet important,
aspect of the second lever.

2.1.3 the third lever: realistic data
models

In the building of a model of a ML task, the modeling of the data distribution
poses a singular challenge. In contrast to ANNs, which are by design mathe-
matical constructs and can thus be formally modelled straightforwardly, it is
to a large extent unclear how to model the distribution of real data. What
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indeed is the probability distribution of e.g. images of cats and dogs? Of
natural language? Satisfyingly answering these interrogations is to a large
extent an open question in ML theory. As of the end of the 2010s, a sizeable
part of the research effort in sharp asymptotic studies of ML methods was in
fact set under the assumption of isotropic, unimodal Gaussian data (Aubin
et al., 2018a; Aubin et al., 2020a; Barbier et al., 2019b; Zdeborová et al., 2016),
or random orthogonal design (Kabashima, 2008; Shinzato et al., 2008a; Shin-
zato et al., 2008b). Overcoming those somewhat restrictive assumptions to
consider colored (or bimodal) Gaussian densities was an endeavour initiated
in e.g. (Mignacco et al., 2020a; Goldt et al., 2020a; D’Ascoli et al., 2021a). Fur-
ther morphing these simple densities into more realistic distributions, along
the steps represented in Fig. 4, is an essential step towards building realistic
models which can ultimately be descriptive of day-to-day ML practice. This
constitutes the third, and last, actionable lever.

A natural route is to consider simple data distributions capturing key struc-
tural features of the real data distributions. This endeavour is in part carried
out in Chapters 3 and 10, which discuss how theoretical characterizations
formulated under the assumption of Gaussian (mixture) data densities can in
a number of cases capture the learning curves of tasks on real data, provided
the second-order statistics of the surrogate Gaussian distribution match those
of the real dataset. In Chapters 4 and 5, in the context of kernel learning,
we further show that in some real settings, the error rates only depend on
two scalar structural descriptors, and are thus amenable to full analytical
characterization. These observations signal a form of universality : namely,
only a limited number of structural characteristics of the distribution actu-
ally matter for the learning, and can thus be captured by simple, surrogate
analytical distributions.

The main theoretical challenge thus lies in ascertaining, for a given model,
which statistical or structural descriptors are relevant for the learning. As dis-
cussed above, a stream of recent works in the proportional regime n = Θd(d)
–including some presented in this thesis– has evidenced empirically (Loureiro
et al., 2021b; Goldt et al., 2020a) or rigorously (Hu et al., 2022a; Mei et al.,
2022c; Goldt et al., 2020b) that, in some settings, these descriptors simply
coincide with the first two moments of the density. In other words, these
setups fall under Gaussian universality. On the other hand, Chapter 8 shows
that DNNs are able to learn more complex statistical features in polynomial
regimes n≫ d, suggesting that higher-order statistics should become rele-
vant in these limits. Further, even in the proportional regime, works such
as (Chung et al., 2018) demonstrate that in some cases the relevant univer-
sality class is not Gaussian, but rather based on more complex geometric
descriptors. Chapter 9 discusses another instance where simple Gaussian
universality does not directly hold in the proportional regime, and needs to
be refined. Ascertaining the universality class –if any– of any given model
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defined by levers 2.1.2 and 2.1.1 thus represents the third, and arguably most
fundamental, axis of the research endeavour.

CONCLUS ION : ON BU ILD ING MODELS
IN HIGH DIMENS IONS

The three axes 2.1.2, 2.1.1 and 2.1.3 outline research directions for a –hopefully–
methodological, albeit not systematic, exploration and probing of high-
dimensional machine learning with solvable models. The works gathered in
this thesis chart some parts of the thus delineated research agenda. The route
to a solvable, tight, and ultimately actionable ML theory, however, is long,
and extends beyond this manuscript, into exciting future researchscapes.
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DATA STRUCTURE



OUTL INE AND
MOTIVAT IONS

How to account for the unreasonable effectiveness of DNN in learning from
high-dimensional data? The seminal work of (Blum et al., 1988) teaches us
that in the worst case, learning can be NP hard. The successes of day-to-day
DL practice, on the other hand, clearly signal that real data sets do not share
this complexity, and must be somehow simpler. In fact, real data distributions
are typically structured, and the information encoded therein therefore admits
a more concise, simpler description. A central challenge in ML theory thus
lies in understanding which structural information encoded in the data, or a
representation thereof, is identified and exploited by learning algorithms. For
instance, in the context of computer vision, the informative features are
known to lie in a space whose dimensionality is much smaller than that of
the image embedding (Hein et al., 2005).

Considering more
complex and realistic
models of data
structure is key
towards building a
theory of ML

descriptive of
practical tasks, see
Chapter 2 in Part I.

On the other hand, as of the end of the past decade, a sizeable portion of the
asymptotic theoretical explorations of ML tasks (Barbier et al., 2019b; Donoho
et al., 2011; Maillard et al., 2020a; Aubin et al., 2018b; Gabrié, 2020; Gardner et
al., 1989; Watkin et al., 1993; Seung et al., 1992; Hosaka et al., 2002; Mignacco
et al., 2020a; Aubin et al., 2020a; Sompolinsky et al., 1990), stemming from
the seminal work of (Gardner et al., 1989) in the 80’s, shared the assumption
of unstructured data xxxµ , assumed to be i.i.d from a high-dimensional isotropic
Gaussian distributionN (0,Id). A sizeable theoretical effort has been devoted
in recent years to the study of more structured colored Gaussian (mixture)
densities (Mignacco et al., 2020b; D’Ascoli et al., 2021a; Goldt et al., 2020a). As
discussed in the introductory Chapter 2, this endeavour needs to be taken one
step further to cover realistic data distribution, with the long-term objective
of tending to a ML theory descriptive of real, practical tasks. The first part of
this thesis presents some contributions in this direction.

realistic features

Which structural or statistical characteristics of data are picked up, learnt,
and exploited by ML methods? Chapter 3 first empirically finds that, in a
number of cases, when the number of training samples n is comparably large
to the dimension of the features ϕ(xxx), the test and train errors largely de-
pend on only second-order statistics of the features distribution. Such cases
encompass some real datasets, data generated from Generative Adversarial
Network (GAN)s, and FNN features. Because of this Gaussian universality,
these ML tasks display the same learning metrics as an equivalent T-S GCM

40
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with matching second-order statistics, and can be precisely asymptotically
characterized. Chapter 3 thus offers a powerful and versatile framework to
begin to apprehend the effect of realistic features structure on the learning,
and thus opens the door to building effective asymptotic theories for sim-
ple real tasks. The subsequent Chapters 4 and 5 examine one such case of
particular interest – namely kernel methods.

kernel features

Kernel methods are a mainstay in the ML toolbox, as they allow to leverage
expressive non-linear features without leaving the realm of convex optimiza-
tion. A recent regain in interest has further been fueled by the theoretical
realization that kernels also coincide with some infinite-width limits of DNNs
(Neal, 1996b; Williams, 1996a; Jacot et al., 2018a; Chizat et al., 2018; Geiger
et al., 2019). A central question in the theoretical study of kernels – further
motivated by recent theoretical interest in error scaling laws (Hestness et al.,
2017; Kaplan et al., 2020; Rosenfeld et al., 2019; Henighan et al., 2020)– is to
ascertain the rate of decay of the test error with the number of training samples,
and further, how this rate depends on the data structure.

In the context of KRR, a long line of work has been devoted to this question,
dating back to the seminal works of (Caponnetto et al., 2005; Caponnetto
et al., 2007). These works have evidenced that, for a sizeable class of data
sets, the error rates could be concisely characterized in terms of only two
structural descriptors, namely the relative decay of the kernel eigenvalues
(a.k.a the capacity), and of the target decomposition in the eigenbasis (a.k.a
the source). As of the end of the past decade however, this body of works
was rather disparate, and several expressions for the error decay rates could
be found in the literature, with no clear explanation for the discrepancies.
Chapter 4 leverages the framework of Chapter 3 to provide a unifying and
exhaustive characterization of all observable regimes in KRR, whenever the
data structure can be captured by these two descriptors. Importantly, this
includes a number of real datasets. Chapter 5 addresses the more complex
case of classification, and presents the first tight rates for such tasks, again
encompassing a number of real setups.
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3
REAL I ST IC LEARNING
CURVES FROM
STRUCTURED FEATURES

T-S models are a popular framework to study the high-dimensional asymp-
totic performance of learning problems with synthetic data, and have been
the subject of intense investigations spanning three decades (Seung et al.,
1992; Watkin et al., 1993; Engel et al., 2001; Donoho et al., 2009; El Karoui
et al., 2013; Zdeborová et al., 2016; Donoho et al., 2016). In the wake of under-
standing the limitations of classical statistical learning approaches (Zhang
et al., 2017; Belkin et al., 2019; Belkin et al., 2020), this direction is witnessing
a renewal of interest (Mei et al., 2019b; Hastie et al., 2022; Belkin et al., 2020;
Candès et al., 2020; Aubin et al., 2020a; Salehi et al., 2020). However, this
framework is often assuming the input data to be Gaussian i.i.d., which is
arguably too simplistic to be able to capture properties of realistic data. In
this paper, we redeem this line of work by defining a Gaussian covariate
model where the teacher and student act on different Gaussian correlated
spaces with arbitrary covariance. We derive a rigorous asymptotic solution of
this model generalizing the formulas found in the above mentioned classical
works.

We then put forward a theory, supported by universality arguments and
numerical experiments, that this model captures learning curves, i.e. the
dependence of the training and test errors on the number of samples, for a
generic class of feature maps applied to realistic datasets. These maps can
be deterministic, random, or even learnt from the data. This analysis thus
gives a unified framework to describe the learning curves of, for example,
kernel regression and classification, the analysis of feature maps – random
projections (Rahimi et al., 2008), neural tangent kernels (Jacot et al., 2018a),
scattering transforms (Andreux et al., 2020) – as well as the analysis of transfer
learning performance on data generated by a GAN (Goodfellow et al., 2014).
We also discuss limits of applicability of our results, by showing concrete
situations where the learning curves of the Gaussian covariate model differ
from the actual ones.

45
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Model definition — The Gaussian covariate T-S model is defined via two
vectors uuu ∈Rp and vvv ∈Rd , with correlation matrices Ψ ∈Rp×p,Ω ∈Rd×d

and Φ ∈Rp×d , from which we draw n independent samples:[
uuuµ

vvvµ

]
∈Rp+d ∼

i.i.d.
N

(
0,

[
Ψ Φ

Φ⊤ Ω

])
, µ = 1, · · · ,n. (91)

The labels yµ are generated by a teacher function that is only using the
vectors uuuµ :

yµ = f0

(
1
√

p
θθθ
⊤
0 uuuµ

)
, (92)

where f0 : R→R is a function that may include randomness such as, for in-
stance, an additive Gaussian noise, and θθθ 0 ∈Rp is a vector of teacher-weights
with finite norm which can be either random or deterministic. Learning is
performed by the student with weights www via empirical risk minimization
that has access only to the features vvvµ :

ŵww = argminwww∈Rd

[
n

∑
µ=1

g
(

www⊤vvvµ

√
d

,yµ

)
+ r(www)

]
, (93)

where r and g are proper, convex, lower-semicontinuous functions of www ∈Rd

(e.g. g can be a logistic or a square loss and r a ℓp (p=1,2) regularization).
The key quantities we want to compute in this model are the averaged training
and generalisation errors for the estimator www,

Etrain.(www) ≡
1
n

n

∑
µ=1

g
(

www⊤vvvµ

√
d

,yµ

)
(94)

Egen.(www) ≡E

[
ĝ
(

f̂
(

vvv⊤newwww√
d

)
, f0

(
uuu⊤newθθθ 0√

p

))]
. (95)

where g is the loss function in eq. (93), f̂ is a prediction function (e.g. f̂ = sign
for a classification task), ĝ is a performance measure (e.g. ĝ(ŷ,y) = (ŷ− y)2

for regression or ĝ(ŷ,y) = P(ŷ ̸= y) for classification) and (uuunew,vvvnew) is a
fresh sample from the joint distribution of uuu and vvv.

Our two main technical contributions are:

(C1) In Theorems 3.1.1 & 3.1.2, we give a rigorous closed-form characteri-
sation of the properties of the estimator ŵww for the Gaussian covariate
model (91), and the corresponding training and generalisation errors
in the high-dimensional limit. We prove our result using Gaussian
comparison inequalities (Gordon, 1985);

(C2) We show how the same expression can be obtained using the replica
method from statistical physics (Mézard et al., 1987). This is of ad-
ditional interest given the wide range of applications of the replica
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Figure 5: Top: Given a data set {xxxµ}n
µ=1, teacher uuu = ϕϕϕ t(xxx) and student maps

vvv = ϕϕϕ t(xxx), we assume [uuu,vvv] to be jointly Gaussian random variables and
apply the results of the Gaussian covariate model (91). Bottom: Illustration
on real data, here ridge regression on even vs odd MNIST digits, with
regularisation λ = 10−2. Full line is theory, points are simulations. We
show the performance with no feature map (blue), random feature map
with σ = erf & Gaussian projection (orange), the scattering transform with
parameters J = 3,L = 8 (Andreux et al., 2020) (green), and of the limiting
kernel of the random map (Williams, 1996b) (red). The covariance Ω is
empirically estimated from the full data set, while the other quantities
appearing in the Theorem 3.1.1 are expressed directly as a function of the
labels, see Section 3.2.4. Simulations are averaged over 10 independent
runs.

approach in machine learning and computer science (Mézard et al.,
2009). In particular, this allows to put on a rigorous basis many results
previously derived with the replica method.

Towards realistic data — In the second part of our paper, we argue that
the above Gaussian covariate model (91) is generic enough to capture the
learning behaviour of a broad range of realistic data. Let {xxxµ}n

µ=1 denote a
data set with n independent samples on X ⊂RD. Based on this input, the
features uuu,vvv are given by (potentially) elaborated transformations of xxx, i.e.

uuu = ϕϕϕ t(xxx) ∈Rp and vvv = ϕϕϕs(xxx) ∈Rd (96)

for given centred feature maps ϕϕϕ t : X →Rp and ϕϕϕs : X →Rd , see Fig. 5.
Uncentered features can be taken into account by shifting the covariances,
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but we focus on the centred case to lighten notation.

The Gaussian covariate model (91) is exact in the case where xxx are Gaussian
variables and the feature maps (ϕϕϕs,ϕϕϕs) preserve the Gaussianity, for example
linear features. In particular, this is the case for uuu=vvv=xxx, which is the widely-
studied vanilla T-S model (Gardner et al., 1989). The interest of the model (91)
is that it also captures a range of cases in which the feature maps ϕϕϕ t and
ϕϕϕs are deterministic, or even learnt from the data. The covariance matrices
Ψ, Φ, and Ω then represent different aspects of the data-generative process
and learning model. The student (93) then corresponds to the last layer of
the learning model. These observation can be distilled into the following
conjecture:

Conjecture 3.0.1. (Gaussian equivalent model) For a wide class of data distri-
butions {xxxµ}n

µ=1, and features maps uuu = ϕϕϕ t(xxx),vvv = ϕϕϕs(xxx), the generalisation
and training errors of estimator (93) are asymptotically captured by the equiva-
lent Gaussian model (91), where [uuu,vvv] are jointly Gaussian variables, and thus
by the closed-form expressions of Theorem 3.1.1.

The second part of our main contributions are:

(C3) In Sec. 3.2.3 we show that the theoretical predictions from (C1) cap-
tures the learning curves in non-trivial cases, e.g. when input data
are generated using a trained generative adversarial network, while
extracting both the feature maps from a neural network trained on
real data.

(C4) In Sec. 3.2.4, we show empirically that for ridge regression the asymp-
totic formula of Theorem 3.1.1 can be applied directly to real data sets,
even though the Gaussian hypothesis is not satisfied. This universality-
like property is a consequence of Theorem 3.2.1 and is illustrated in
Fig. 5 (right) where the real learning curve of several features maps
learning the odd-versus-even digit task on MNIST is compared to the
theoretical prediction.

3.0.1 related work —

Rigorous results for T-S models–: The Gaussian covariate model (91)
contains the vanilla T-S model as a special case where one takes uuu and vvv
identical, with unique covariance matrix Ω. This special case has been ex-
tensively studied in the statistical physics community using the heuristic
replica method (Gardner et al., 1989; Opper et al., 1996; Seung et al., 1992;
Watkin et al., 1993; Engel et al., 2001). Many recent rigorous results for such
models can be rederived as a special case of our formula, e.g. refs. (Mei et al.,
2019b; Hastie et al., 2022; Ghorbani et al., 2020b; Belkin et al., 2020; Candès
et al., 2020; Thrampoulidis et al., 2018; Montanari et al., 2019; Aubin et al.,
2020a; Salehi et al., 2020; Celentano et al., 2020). Numerous of these results
are based on the same proof technique as we employed here: the Gordon’s
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Gaussian min-max inequalities (Gordon, 1985; Stojnic, 2013a; Oymak et al.,
2013). The asymptotic analysis of kernel ridge regression (Bordelon et al.,
2020), of margin-based classification (Huang et al., 2020) also follow from our
theorem. Other examples include models of the double descent phenomenon
(Mitra, 2019). Closer to our work is the recent work of (Dhifallah et al., 2020)
on the random feature model. For ridge regression, there are also precise
predictions thanks to random matrix theory (Dobriban et al., 2018a; Hastie
et al., 2022; Wu et al., 2020a; Liao et al., 2020; Liu et al., 2020; Bartlett et al.,
2020a; Jacot et al., 2020b). A related set of results was obtained in (Gerbe-
lot et al., 2020) for orthogonal random matrix models. The main technical
novelty of our proof is the handling of a generic loss and regularisation, not
only ridge, representing convex empirical risk minimization, for both classifi-
cation and regression, with the generic correlation structure of the model (91).

Gaussian equivalence– A similar Gaussian conjecture has been discussed
in a series of recent works, and some authors proved partial results in this
direction (Hastie et al., 2022; Hu et al., 2022b; Mei et al., 2019b; Montanari et
al., 2019; Gerace et al., 2020b; Goldt et al., 2020a; Goldt et al., 2021b; Dhifallah
et al., 2020). Ref. (Goldt et al., 2021b) analyses a special case of the Gaussian
model (corresponding to ϕϕϕ t = id here), and proves a Gaussian equivalence
theorem (GET) for feature maps ϕϕϕs given by single-layer neural networks
with fixed weights. They also show that for Gaussian data xxx ∼N (000, ID),
feature maps of the form vvv = σ(Wxxx) (with some technical restriction on the
weights) led to the jointly-Gaussian property for the two scalars (vvv ·www,uuu ·θθθ 0)

for almost any vector www. However, their stringent assumptions on random
teacher weights limited the scope of applications to unrealistic label models.
A related line of work discussed similar universality through the lens of
random matrix theory (El Karoui et al., 2010; Pennington et al., 2017; Louart
et al., 2018a). In particular, Seddik et al. (Seddik et al., 2020) showed that, in
our notations, vectors [uuu,vvv] obtained from Gaussian inputs xxx ∼N (000, ID)
with Lipschitz feature maps satisfy a concentration property. In this case,
again, one can expect the two scalars (vvv ·www,uuu ·θθθ 0) to be jointly Gaussian with
high-probability on www. Remarkably, in the case of random feature maps, (Hu
et al., 2022b) could go beyond this central-limit-like behavior and established
the universality of the Gaussian covariate model (91) for the actual learned
weights ŵww.

3.1 MAIN TECHNICAL RESULTS

Our main technical result is a closed-form expression for the asymptotic
training and generalisation errors (94) of the Gaussian covariate model intro-
duced above. We start by presenting our result in the most relevant setting
for the applications of interest in Section 3.2, which is the case of the ℓ2

regularization. Next, we briefly present our result in larger generality, which
includes non-asymptotic results for non-separable losses and regularizations.
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We start by defining key quantities that we will use to characterize the
estimator ŵww. Let Ω = S⊤diag(ωi)S be the spectral decomposition of Ω. Let:

ρ ≡ 1
d

θθθ
⊤
0 Ψθθθ 0 ∈R, θ̄θθ ≡ SΦ⊤θθθ 0√

ρ
∈Rd (97)

and define the joint empirical density µ̂d between (ωi, θ̄i):

µ̂d(ω , θ̄ ) ≡ 1
d

d

∑
i=1

δ (ω−ωi)δ (θ̄ − θ̄i). (98)

Note that Φ⊤θθθ 0 is the projection of the teacher weights on the student space,
and therefore θ̄θθ is the rotated projection on the basis of the student covariance,
rescaled by the teacher variance. Together with the student eigenvalues ωi,
these are relevant statistics of themodel, encoded here in the joint distribution
µ̂d .

Assumptions — Consider the high-dimensional limit in which the number
of samples n and the dimensions p,d go to infinity with fixed ratios:

α ≡ n
d

, and γ ≡ p
d

. (99)

Assume that the covariance matrices Ψ,Ω are positive-definite and that
the Schur complement of the block covariance in equation (91) is positive
semi-definite. Additionally, the spectral distributions of the matrices Φ,Ψ
and Ω converge to distributions such that the limiting joint distribution
µ is well-defined, and their maximum singular values are bounded with
high probability as n, p,d → ∞. Finally, regularity assumptions are made
on the loss and regularization functions mainly to ensure feasibility of the
minimization problem. We assume that the cost function r+g is coercive, i.e.
lim∥www∥2→+∞(r+g)(www) = +∞ and that the following scaling condition holds
: for all n,d ∈N,zzz ∈Rn and any constant c > 0, there exist a finite, positive
constant C, such that, for any standard normal random vectors hhh ∈Rd and
ggg ∈Rn:

∥zzz∥2 ⩽ c
√

n =⇒ sup
xxx∈∂g(zzz)

∥xxx∥2 ⩽C
√

n,

1
d

E [r(hhh)] <+∞,
1
n

E [g(ggg)] <+∞ (100)

We are now in a position to state our result.

Theorem 3.1.1. (Closed-form asymptotics for ℓ2 regularization) In the asymp-
totic limit defined above, the training and generalisation errors (94) of the
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estimator ŵww ∈Rd solving the empirical risk minimisation problem in eq. (93)
with ℓ2 regularization r(www) = λ

2 ||www||
2
2 verify:

Etrain.(ŵww)
P−−−→

d→∞

Es,h∼N (0,1)

[
g

(
proxV⋆g(., f0(

√
ρs))

(
m⋆√

ρ
s+

√
q⋆−m⋆2

ρ h

)
, f0(
√

ρs)

)]
Egen.(ŵww)

P−−−→
d→∞

E(ν ,λ )
[
ĝ
(

f̂ (λ ), f0(ν)
)]

(101)

where prox stands for the proximal operator defined as

proxV g(.,y)(x) = argminz{g(z,y)+
1

2V
(x− z)2} (102)

and where (ν ,λ ) are jointly Gaussian scalar variables:

(ν ,λ ) ∼N

(
0,

[
ρ m⋆

m⋆ q⋆

])
, (103)

and the overlap parameters (V ⋆,q⋆,m⋆) are prescribed by the unique fixed point
of the following set of self-consistent equations:

V = E(ω ,θ̄ )∼µ

[
ω

λ+V̂ ω

]
m = m̂√

γ
E(ω ,θ̄ )∼µ

[
θ̄ 2

λ+V̂ ω

]
q = E(ω ,θ̄ )∼µ

[
m̂2θ̄ 2ω+q̂ω2

(λ+V̂ ω)
2

]


V̂ = α

V (1−Es,h∼N (0,1)[ f ′g(V ,m,q)])

m̂ = 1√
ργ

α

V Es,h∼N (0,1)

[
s fg(V ,m,q)− m√

ρ
f ′g(V ,m,q)

]
q̂ = α

V 2 Es,h∼N (0,1)

[(
m√
ρ

s+
√

q−m2

ρ
h− fg(V ,m,q)

)2
] (104)

where we defined the scalar random functions

fg(V ,m,q) = proxV g(., f0(
√

ρs))(ρ−1/2ms+
√

q−ρ−1m2h)

and f ′g(V ,m,h) = prox′V g(., f0(
√

ρs))(ρ
−1/2ms+

√
q−ρ−1m2h) as the first deriva-

tive of the proximal operator.

Proof : This result is a consequence of Theorem 3.1.2.

The parameters of the model (θθθ 0,Ω,Φ,Ψ) only appear trough ρ , eq. (97),
and the asymptotic limit µ of the joint distribution eq. (98) and ( f0, f̂ ,g,λ ).
One can easily iterate the above equations to find their fixed point, and
extract (q∗,m∗) which appear in the expressions for the training and gener-
alisation errors (E ⋆

train,E ⋆
gen), see eq. (94). Note that (q⋆,m⋆) have an intuitive

interpretation in terms of the estimator ŵww ∈Rd :

q⋆ ≡ 1
d

ŵww⊤Ωŵww, m⋆ ≡ 1√
d p

θθθ
⊤
0 Φŵww (105)
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Or in words: m⋆ is the correlation between the estimator projected in the
teacher space, while q⋆ is the reweighted norm of the estimator by the covari-
ance Ω. The parameterV ∗ also has a concrete interpretation : it parametrizes
the deformation that must be applied to a Gaussian field specified by the so-
lution of the fixed point equations to obtain the asymptotic behaviour of ẑ. It
prescribes the degree of non-linearity given to the linear output by the chosen
loss function. This is coherent with the robust regression viewpoint, where
one introduces non-square losses to deal with the potential non-linearity of
the generative model. V̂ ∗ plays a similar role for the estimator ŵ through the
proximal operator of the regularisation. Two cases are of particular relevance
for the experiments that follow. The first is the case of ridge regression, in
which f0(x) = f̂ (x) and both the loss g and the performance measure ĝ are
taken to be themean-squared error mse(y, ŷ) = 1

2 (y− ŷ)2, and the asymptotic
errors are given by the simple closed-form expression:

E ⋆
gen = ρ + q⋆−2m⋆, E ⋆

train =
E ⋆

gen

(1+V ⋆)2 , (106)

The second case of interest is the one of a binary classification task, for which
f0(x) = f̂ (x) = sign(x), and we choose the performance measure to be the
classification error ĝ(y, ŷ) = P(y ̸= ŷ). In the same notation as before, the
asymptotic generalisation error in this case reads:

E ⋆
gen =

1
π

cos−1
(

m⋆

√
ρq⋆

)
, (107)

while the training error E ⋆
train depends on the choice of g - which we will take

to be the logistic loss g(y,x) = log (1+ e−xy) in all of the binary classification
experiments.

As mentioned above, this paper includes stronger technical results includ-
ing finite size corrections and precise characterization of the distribution
of the estimator ŵww, for generic, non-separable loss and regularization g and
r. This type of distributional statement is encountered for special cases of
the model in related works such as (Miolane et al., 2018; Celentano et al.,
2020; Montanari et al., 2019). Define V ∈Rn×d as the matrix of concatenated
samples used by the student. Informally, in high-dimension, the estimator ŵww
and ẑzz = 1√

d
V ŵww roughly behave as non-linear transforms of Gaussian ran-

dom variables centered around the teacher vector θθθ 0 (or its projection on the
covariance spaces) as follows:

www∗ = Ω−1/2prox 1
V̂∗ r(Ω−1/2.)

(
1

V̂ ∗
(m̂∗ttt +

√
q̂∗ggg)

)
,

zzz∗ = proxV ∗g(.,zzz)

(
m∗
√

ρ
sss+

√
q∗− (m∗)2

ρ
hhh

)
.

where sss,hhh∼N (0, In) and ggg∼N (0, Id) are random vectors independent of
the other quantities, ttt =Ω−1/2Φ⊤θθθ 0, yyy= fff 0 (

√
ρsss), and (V ∗,V̂ ∗,q∗, q̂∗,m∗, m̂∗)
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is the unique solution to the fixed point equations. The formal concentration
of measure result can then be stated in the following way:

Theorem3.1.2. (Non-asymptotic version, generic loss and regularization)( informal)
Consider any optimal solution ŵww to 93. Then, there exist constants C,c,c′ > 0
such that, for any Lipschitz function φ1 : Rd → R, and separable, pseudo-
Lipschitz function φ2 : Rn→R and any 0 < ε < c′:

P

(∣∣∣∣φ1

(
ŵww√
d

)
−Eφ1

(
www∗√

d

)∣∣∣∣⩾ ε

)
⩽

C
ε2 e−cnε4

P

(∣∣∣∣φ2

(
ẑzz√
n

)
−Eφ2

(
zzz∗√

n

)∣∣∣∣⩾ ε

)
⩽

C
ε2 e−cnε4

.

Note that in this form, the dimensions n, p,d still appear explicitly, as we
are characterizing the convergence of the estimator’s distribution for large but
finite dimension. The clearer, one-dimensional statements are recovered by
taking the n, p,d→∞ limit with separable functions and an ℓ2 regularization.
Other simplified formulas can also be obtained from our general result in
the case of an ℓ1 penalty, but since this breaks rotational invariance, they do
look more involved than the ℓ2 case. From Theorem 3.1.2, one can deduce
the expressions of a number of observables, represented by the test functions
φ1,φ2, characterizing the performance of ŵww, for instance the training and
generalization error.

3.2 APPL ICAT IONS OF THE GAUSS IAN
MODEL

We now discuss how the theorems above are applied to characterise the
learning curves for a range of concrete cases. We present a number of cases –
some rather surprising – for which Conjecture 3.0.1 seems valid, and point
out some where it is not.

3.2.1 random kitchen sink with gaussian
data

If we choose RF maps ϕϕϕs(xxx) = σ (Fxxx) for a random matrix F and a chosen
scalar function σ acting component-wise, we obtain the random kitchen
sink model (Rahimi et al., 2008). This model has seen a surge of interest
recently, and a sharp asymptotic analysis was provided in the particular case
of uncorrelated Gaussian data xxx ∼N (000, ID) and ϕϕϕ t(xxx) = xxx in (Mei et al.,
2019b; Hastie et al., 2022) for ridge regression and generalised by (Gerace
et al., 2020b; Hu et al., 2022b) for generic convex losses. Both results can be
framed as a Gaussian covariate model with:

Ψ = Ip, Φ = κ1F⊤, Ω = κ
2
0 111d111⊤d +κ

2
1
FF⊤

d
+κ

2
⋆ Id , (108)
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Figure 6: Learning in kernel space: Teacher and student live in the same (Hilbert)
feature space vvv = uuu ∈Rd with d≫ n, and the performance only depends
on the relative decay between the student spectrum ωi = d i−2 (the capac-
ity) and the teacher weights in feature space θ 2

0iωi = d i−a (the source).
Top: a task with sign teacher (in kernel space), fitted with a max-margin
support vector machine (logistic regression with vanishing regularisation
(Rosset et al., 2003)). Bottom: a task with linear teacher (in kernel space)
fitted via kernel ridge regression with vanishing regularisation. Points are
simulation that matches the theory (lines). Simulations are averaged over
10 independent runs.

where 111d ∈Rd is the all-one vector and the constants (κ0,κ1,κ⋆) are related
to the non-linearity σ :

κ0= Ez∼N (0,1) [σ(z)] ,

κ1= Ez∼N (0,1) [zσ(z)] ,

κ⋆=
√

Ez∼N (0,1) [σ(z)2]−κ2
0 −κ2

1 . (109)

In this case, the averages over µ in eq. (104) can be directly expressed in
terms of the Stieltjes transform associated with the spectral density of FF⊤.
Note, however, that our present framework can accommodate more involved
random sinks models, such as when the teacher features are also a RFmodel or
multi-layer random architectures. Deep RF are the object of further in-depth
discussion in Chapters 6 and 7 in Part III.

3.2.2 kernel methods with gaussian data

Another direct application of our formalism is to kernel methods, which
shall be the object of more detailed discussion in Chapters 4 and 5. Kernel
methods admit a dual representation in terms of optimization over feature
space (Scholkopf et al., 2018). The connection is given by Mercer’s theo-
rem, which provides an eigen-decomposition of the kernel and of the target
function in the feature basis, effectively mapping kernel regression to a T-S
problem on feature space. The classical way of studying the performance
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of kernel methods (Steinwart et al., 2009; Caponnetto et al., 2007) is then
to directly analyse the performance of convex learning in this space. In our
notation, the teacher and student feature maps are equal, and we thus set
p = d,Ψ = Φ = Ω = diag(ωi) where ωi are the eigenvalues of the kernel
and we take the teacher weights θθθ 0 to be the decomposition of the target
function in the kernel feature basis.

There are many results in classical learning theory on this problem for the
case of ridge regression (where the teacher is usually called "the source" and
the eigenvalues of the kernel matrix the "capacity", see e.g. (Steinwart et al.,
2009; Pillaud-Vivien et al., 2018)). However, these are worst case approaches,
where no assumption is made on the true distribution of the data. In contrast,
here we follow a typical case analysis, assuming Gaussianity in feature space.
Through Theorem 3.1.1, this allows us to go beyond the restriction of the
ridge loss. An example for logistic loss is in Fig. 6.

For the particular case of kernel ridge regression, Th. 3.1.1 provides a
rigorous proof of the formula conjectured in (Bordelon et al., 2020). Hard-
margin Support Vector Machines (SVMs) have also been studied using the
heuristic replica method from statistical physics in (Dietrich et al., 1999a;
Opper et al., 2001a). In our framework, this corresponds to the hinge loss
g(x,y) = max(0,1− yx) when λ → 0+. Our theorem thus puts also these
works on rigorous grounds, and extends them to more general losses and
regularization. We refer the interested reader to Chapters 4 and 5 for further
in-depth discussion.

3.2.3 gan-generated data and learned
teachers

To approach more realistic data sets, we now consider the case in which the
input data xxx ∈X is given by a GAN xxx = G (zzz), where zzz is a Gaussian i.i.d.
latent vector. Therefore, the covariates [uuu,vvv] are the result of the following
Markov chain:

zzz 7→
G

xxx ∈X 7→
ϕϕϕ t

uuu ∈Rp, zzz 7→
G

xxx ∈X 7→
ϕϕϕs

vvv ∈Rd . (110)

With a model for the covariates, the missing ingredient is the teacher weights
θθθ 0 ∈Rp, which determine the label assignment: y = f0(uuu⊤θθθ 0). In the experi-
ments that follow, we fit the teacher weights from the original data set in which
the generative model G was trained. Different choices for the fitting yield
different teacher weights, and the quality of label assignment can be accessed
by the performance of the fit on the test set. The set (ϕϕϕ t ,ϕϕϕs,G ,θθθ 0) defines the
data generative process. For predicting the learning curves from the iterative
eqs. (104) we need to sample from the spectral measure µ , which amounts
to estimating the population covariances (Ψ,Φ,Ω). This is done from the
generative process in eq. (110) with a Monte Carlo sampling algorithm.
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Figure 7: Left: generalisation classification error (top) and (unregularised) training
loss (bottom) vs the sample complexity α = n/d for logistic regression on a
learned feature map trained on Deep Convolutional Generative Adversarial
Network (dcGAN)-generated CIFAR10-like images labelled by a teacher
fully-connected neural network, with vanishing ℓ2 regularisation. The
different curves compare featured maps at different epochs of training. The
theoretical predictions based on the Gaussian covariate model (full lines)
are in very good agreement with the actual performance (points). Right:
Test classification error (top) and (unregularised) training loss, (bottom) for
logistic regression as a function of the number of samples n for an animal
vs not-animal binary classification task with ℓ2 regularization λ = 10−2,
comparing real CIFAR10 grey-scale images (blue) with dcGAN-generated
CIFAR10-like gray-scale images (red). The real-data learning curve was
estimated, just as in Figs. 8 from the population covariances on the full
data set, and it is not in agreement with the theory in this case. On the very
right we depict the histograms of the variable 1√

d
vvv⊤ŵww for a fixed number

of samples n = 2d = 2048 and the respective theoretical predictions (solid
line). Simulations are averaged over 10 independent runs.

Fig. 7 shows an example of the learning curves resulting from the pipeline
discussed above in a logistic regression task on data generated by a GAN
trained on CIFAR10 images. More concretely, we used a pre-trained five-layer
deep convolutional GAN (dcGAN) from (Radford et al., 2016), which maps
100 dimensional i.i.d. Gaussian noise into k = 32×32×3 realistic looking
CIFAR10-like images: G : zzz ∈R100 7→ xxx ∈R32×32×3. To generate labels, we
trained a simple fully-connected four-layer neural network on the real CI-
FAR10 data set, on a odd (y = +1) vs. even (y = −1) task, achieving ∼ 75%
classification accuracy on the test set. The teacher weights θθθ 0 ∈Rp were
taken from the last layer of the network, and the teacher feature map ϕϕϕ t from
the three previous layers. For the student model, we trained a completely
independent fully connected 3-layer neural network on the dcGAN-generated
CIFAR10-like images and took snapshots of the feature maps ϕϕϕ i

s induced by
the 2-first layers during the first i ∈ {0,5,50,200} epochs of training. Finally,
once

(
G ,ϕϕϕ t ,ϕϕϕ

i
s,θθθ 0

)
have been fixed, we estimated the covariances (Ψ,Φ,Ω)

with a Monte Carlo algorithm.

Fig. 7 depicts the resulting learning curves obtained by training the last
layer of the student. Interestingly, the performance of the feature map at
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epoch 0 (random initialisation) beats the performance of the learned fea-
tures during early phases of training in this experiment. Another interesting
behaviour is given by the separability threshold of the learned features, i.e.
the number of samples for which the training loss becomes larger than 0 in
logistic regression. At epoch 50 the learned features are separable at lower
sample complexity α = n/d than at epoch 200 - even though in the later the
training and generalisation performances are better.

3.2.4 learning from real data sets

Applying T-S to a real data set — Given that the learning curves of realistic-
looking inputs can be captured by the Gaussian covariate model, it is fair to
ask whether the same might be true for real data sets. To test this idea, we
first need to cast the real data set into the T-S formalism, and then compute
the covariancematrices Ω,Ψ,Φ and teacher vector θθθ 0 required bymodel (91).

Let {xxxµ ,yµ}ntot
µ=1 denote a real data set, e.g. MNIST or Fashion-MNIST for

concreteness, where ntot = 7×104, xxxµ ∈RD with D = 784. Without loss of
generality, we can assume the data is centred. To generate the teacher, let
uuuµ = ϕϕϕ t(xxx

µ) ∈Rp be a feature map such that data is invertible in feature
space, i.e. that yµ = θθθ

⊤
0 uuuµ for some teacher weights θθθ 0 ∈Rp, which should

be computed from the samples. Similarly, let vvvµ = ϕϕϕs(xxx
µ) ∈Rd be a feature

map we are interested in studying. Then, we can estimate the population
covariances (Ψ,Φ,Ω) empirically from the entire data set as:

Ψ =
ntot

∑
µ=1

uuuµuuuµ⊤

ntot
, Φ =

ntot

∑
µ=1

uuuµvvvµ⊤

ntot
, Ω =

ntot

∑
µ=1

vvvµvvvµ⊤

ntot
. (111)

At this point, we have all we need to run the self-consistent equations (104).
The issue with this approach is that there is not a unique teacher map ϕϕϕ t
and teacher vector θθθ 0 that fit the true labels. However, we can show that all
interpolating linear teachers are equivalent:

Theorem 3.2.1. (Universality of linear teachers) For any teacher feature map
ϕϕϕ t , and for any θθθ 0 that interpolates the data so that yµ = θθθ

⊤
0 uuuµ ∀µ , the asymp-

totic predictions of model (91) are equivalent.
Proof. It follows from the fact that the teacher weights and covariances only
appear in eq. (104) through ρ = 1

p θθθ
⊤
0 Ψθθθ 0 and the projection Φ⊤θθθ 0. Using

the estimation (111) and the assumption that it exists yµ = θθθ
⊤
0 uuuµ , one can

write these quantities directly from the labels yµ :

ρ =
1

ntot

ntot

∑
µ=1

(yµ)2 , Φ⊤θθθ 0 =
1

ntot

ntot

∑
µ=1

yµvvvµ . (112)

For linear interpolating teachers, results are thus independent of the choice
of the teacher.
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Figure 8: Test and training mean-squared errors eqs. (106) as a function of the num-
ber of samples n for ridge regression. The Fashion-MNIST data set, with
vanishing regularisation λ = 10−5. In this plot, the student feature map ϕϕϕs
is a 3-layer fully-connected neural network with d = 2352 hidden neurons
trained on the full data set with the square loss. Different curves correspond
to the feature map obtained at different stages of training. Simulations are
averaged over 10 independent runs.

Although this result might seen surprising at first sight, it is quite intuitive.
Indeed, the information about the teacher model only enters the Gaussian
covariate model (91) through the statistics of uuu⊤θθθ 0. For a linear teacher
f0(x) = x, this is precisely given by the labels.

Ridge Regression with linear teachers — We now test the prediction
of model (91) on real data sets, and show that it is surprisingly effective in
predicting the learning curves, at least for the ridge regression task. We have
trained a 3-layer fully connected neural network with ReLU activations on the
full Fashion-MNIST data set to distinguish clothing used above vs. below the
waist (Xiao et al., 2017). The student feature map ϕϕϕs : R784→Rd is obtained
by removing the last layer. In Fig. 8 we show the test and training errors of
the ridge estimator on a sub-sample of n < ntot on the Fashion-MNIST images.
We observe remarkable agreement between the learning curve obtained from
simulations and the theoretical prediction by the matching Gaussian covari-
ate model. Note that for the square loss and for λ ≪ 1, the worst performance
peak is located at the point in which the linear system becomes invertible.
Curiously, Fig. 8 shows that the fully-connected network progressively
learns a low-rank representation of the data as training proceeds. This can
be directly verified by counting the number of zero eigenvalues of Ω, which
go from a full-rank matrix to a matrix of rank 380 after 200 epochs of training.

Fig. 5 (right) shows a similar experiment on the MNIST data set, but for
different out-of-the-box feature maps, such as random features and the scat-
tering transform (Bruna et al., 2013), and we chose the number of random
features d = 1953 to match the number of features from the scattering trans-
form. Note the characteristic double-descent behaviour (Opper et al., 1996;
Spigler et al., 2019; Belkin et al., 2019), and the accurate prediction of the
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peak where the interpolation transition occurs. For both Figs. 8 and 5, for
a number of samples n closer to ntot we start to see deviations between the
real learning curve and the theory. This is to be expected since in the T-S
framework the student can, in principle, express the same function as the
teacher if it recovers its weights exactly. Recovering the teacher weights
becomes possible with a large training set. In that case, its test error will be
zero. However, in our setup the test error on real data remains finite even if
more training data is added, leading to the discrepancy between T-S learning
curve and real data.

Why is the Gaussian model so effective for describing learning with data
that are not Gaussian? The point is that ridge regression is sensitive only
to second order statistics, and not to the full distribution of the data. It is
a classical property that the training and generalisation errors are only a
function of the spectrum of the empirical and population covariances, and
of their products. Random matrix theory teaches us that such quantities are
very robust, and their asymptotic behaviour is universal for a broad class
of distributions of [uuu,vvv] (Bai et al., 2008b; Ledoit et al., 2011; El Karoui et al.,
2009; Louart et al., 2018a). The asymptotic behavior of kernel matrices has
indeed been the subject of intense scrutiny (El Karoui et al., 2010; Cheng
et al., 2013; Pennington et al., 2017; Mei et al., 2019b; Fan et al., 2019; Seddik
et al., 2020). Indeed, a universality result akin to Theorem 3.2.1 was noted in
(Jacot et al., 2020b) in the specific case of kernel methods. We thus expect the
validity of model (91) for ridge regression, with a linear teacher, to go way
beyond the Gaussian assumption.

Beyond ridge regression — The same strategy fails beyond ridge regres-
sion and mean-squared test error. This suggests a limit in the application
of model (91) to real (non-Gaussian) data to the universal linear teacher. To
illustrate this, consider the setting of Figs. 8, and compare the model predic-
tions for the binary classification error instead of the ℓ2 one. There is a clear
mismatch between the simulated performance and prediction given by the
theory due to the fact that the classification error does not depends only on
the first two moments.

We present an additional experiment in Fig. 7. We compare the learning
curves of logistic regression on a classification task on the real CIFAR10
images with the real labels versus the one on dcGAN-generated CIFAR10-like
images and teacher generated labels from Sec. 3.2.3. While the Gaussian
theory captures well the behaviour of the later, it fails on the former. A
histogram of the distribution of the product uuu⊤ŵww for a fixed number of
samples illustrates well the deviation from the prediction of the theory with
the real case, in particular on the tails of the distribution. The difference
between GAN generated data (that fits the Gaussian theory) and real data is
clear. Given that for classification problems there exists a number of choices of
"sign" teachers and feature maps that give the exact same labels as in the data
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set, an interesting open question is: is there a teacher that allows to reproduce
the learning curves more accurately? This question is left for future works.



Part II B.

KERNEL FEATURES







4
SCAL ING LAWS FOR
KERNEL REGRESS ION

Kernel methods are among the most popular models in machine learning.
Despite their relative simplicity, they define a powerful framework in which
non-linear features can be exploited without leaving the realm of convex
optimisation. Kernel methods in machine learning have a long and rich litera-
ture dating back to the 60s (Nadaraya, 1964; Watson, 1964), but have recently
made it back to the spotlight as a proxy for studying neural networks in
different regimes, e.g. the infinite width limit (Neal, 1996b; Williams, 1996a;
Jacot et al., 2018a; Lee et al., 2018a) and the lazy regime of training (Chizat
et al., 2019b). Despite being defined in terms of a non-parametric optimisation
problem, kernel methods can be mathematically understood as a standard
parametric linear problem in a (possibly infinite) Hilbert space spanned by
the kernel eigenvectors (a.k.a features). This dual picture fully characterizes
the asymptotic performance of kernels in terms of a trade-off between two
key quantities: the relative decay of the eigenvalues of the kernel (a.k.a. its
capacity) and the coefficients of the target function when expressed in feature
space (a.k.a. the source). Indeed, a sizeable body of work has been devoted
to understanding the decay rates of the excess error as a function of these
two relative decays, and investigated whether these rates are attained by
algorithms such as Stochastic Gradient-Descent (SGD) (Pillaud-Vivien et al.,
2018; Berthier et al., 2020).

Rigorous optimal rates for the excess generalization error in KRR are well-
known since the seminal works of (Caponnetto et al., 2005; Steinwart et al.,
2009). However, recent interesting works (Spigler et al., 2020; Bordelon et al.,
2020) surprisingly reported very different - and actually better - rates sup-
ported by numerical evidences. These papers appeared to either not comment
on this discrepancy (Bordelon et al., 2020), or to attribute this apparent con-
tradiction to a difference between typical and worse-case analysis (Spigler
et al., 2020). As we shall see, the key difference between these works stems
instead from the fact that most of classical works considered noisy data and
fine-tuned regularization, while (Spigler et al., 2020; Bordelon et al., 2020)
focused on noiseless data sets. This observation raises a number of questions:
is there a connection between both sets of exponents? Are Gaussian design
exponents actually different from worst-case ones? What about intermediary
setups (for instance noisy labels with generic regularization, noiseless labels
with varying regularization) and regimes (intermediary sample complexities)?
How does infinitesimal noise differ from no noise at all?

64
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Main contributions — In this manuscript, we answer all the above ques-
tions, and redeem the apparent contradiction by reconsidering the Gaussian
design analysis. We provide a unifying picture of the decay rates for the
excess generalization error, along a more exhaustive characterization of the
regimes in which each is observed, evidencing the interplay of the role of
regularization, noise and sample complexity. We show in particular that
typical-case analysis with a Gaussian design is actually in perfect agreement
with the statistical learning worst-case data-agnostic approach. We also show
how the optimal excess error decay can transition from the recently reported
noiseless value to its well known noisy value as the number of samples is
increased. We illustrate this crossover from the noiseless regime to the noisy
regime also in a variety of KRR experiments on real data.

Related work — The analysis for kernel methods and ridge regression is
a classical topic in statistical learning theory (Caponnetto et al., 2005; Capon-
netto et al., 2007; Steinwart et al., 2009; Fischer et al., 2020; Lin et al., 2018;
Bartlett et al., 2020b; Lin et al., 2018). In this classical setting, decay exponents
for optimally regularized noisy linear regression on features with power-law
co-variance spectrum have been provided. Interestingly, it has been shown
that such optimal rates can be obtained in practice by SGD, without explicit
regularization, with single-pass (Polyak et al., 1992; Nemirovskij et al., 1983)
or multi-pass (Pillaud-Vivien et al., 2018), as well as by randomized algo-
rithms (Jun et al., 2019). Closed-form bounds for the prediction error have
been provided in a number of worst-case analyses (Jun et al., 2019; Lin et al.,
2018).

The recent line of work on the noiseless setting includes contributions from
statistical learning theory (Berthier et al., 2020; Varre et al., 2021) and statisti-
cal physics (Spigler et al., 2020; Bordelon et al., 2020). This much more recent
second line of work proved decay rates for a given, constant regularization.
An example of noise-induced crossover is furthermore mentioned in (Berthier
et al., 2020). The interplay between noisy and noiseless regimes has also been
investigated in the related Gaussian Process literature (Kanagawa et al., 2018).

The study of ridge regression with Gaussian design is also a classical topic.
Ref. (Dicker et al., 2016) considered a model in which the covariates are
isotropic Gaussian in Rp, and computed the exact asymptotic generalization
error in the high-dimensional asymptotic regime p,n→∞ with dimension-to-
sample-complexity ratio p/n fixed. This result was generalised to arbitrary
co-variances (Hsu et al., 2012; Dobriban et al., 2018a) using fundamental
results from random matrix theory (Ledoit et al., 2011). Non-asymptotic rates
of convergence for a related problems were given in Chapter 3. Previous
results also existed in the statistical physics literature, e.g. (Dietrich et al.,
1999b; Opper et al., 1996; Opper et al., 2001b; Kabashima, 2008). Gaussian
models for regression have seen a surge of popularity recently, and have
been used in particular to study over-parametrization and the double-descent
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phenomenon, e.g. in (Advani et al., 2020; Belkin et al., 2020; Hastie et al., 2022;
Mei et al., 2019b; Gerace et al., 2020b; Ghorbani et al., 2019b; Kobak et al.,
2020; Wu et al., 2020a; Bartlett et al., 2020b; Richards et al., 2021; Liao et al.,
2020; Jacot et al., 2020b; Ghorbani et al., 2020b; Liu et al., 2020).

4.1 SET T ING

Consider a data set D = {xµ ,yµ}n
µ=1 with n independent samples from a

probability measure ν on X ×Y , where X ⊂Rd is the input and Y ⊂R

the response space. Let K be a kernel and H denote its associated RKHS. KRR
corresponds to the following non-parametric minimisation problem:

min
f∈H

1
n

n

∑
µ=1

( f (xµ)− yµ)2 +λ || f ||2H . (113)

where || · ||H is the norm associated with the scalar product in H , and
λ ≥ 0 is the regularisation. The convenience of KRR is that it admits a dual
representation in terms of a standard parametric problem. Indeed, the kernel
K can be diagonalized in an orthonormal basis {φk}∞

k=1 of L2(X ):∫
X

νx(dx′)K(x,x′)φk(x′) = ηkφk(x) (114)

where {ηk}∞
k=1 are the corresponding (non-negative) kernel eigenvalues

and νx is the marginal distribution over X . Note that the kernel {φk}∞
k=1

eigenvectors form an orthonormal basis of L2(X ). It is convenient to define
the re-scaled basis of kernel features ψk(x) =

√
ηkφk(x) and to work in matrix

notation in feature space: define φ (x)≡ {φk(x)}p
k=1 (with p possibly infinite)

ψ(x) = Σ
1
2 φ (x)

Ex∼νx

[
φ (x)φ (x)⊤

]
= 1p ,

Ex′∼νx [K(x,x′)φ (x′)] = Σφ (x) , (115)

whereΣ≡Ex∼νx

[
ψ(x)ψ(x)⊤

]
= diag(η1,η2, ...,ηp) is the features co-variance

(a diagonal operator in feature space). In this notation, the RKHS H can be
formally written as H = { f = ψ⊤θ : θ ∈Rp, ||θ ||2 < ∞}, i.e. the space of
functions for which the coefficients in the feature basis are square summable.
With this notation, we can rewrite eq. (116) in feature space as a standard
parametric problem for the following empirical risk:

R̂n(w) =
1
n

n

∑
µ=1

(
w⊤ψ(xµ)− yµ

)2
+λ w⊤w. (116)

Our main results concern the typical averaged performance of the KRR esti-
mator, as measured by the typical prediction (out-of-sample) error

εg = EDE(x,y)∼ν( f̂ (x)− y)2 , (117)
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where the first average is over the data D = {xµ ,yµ} and the second over a
fresh sample (x,y) ∼ ν .

In what follows we assume the labels yµ ∈ Y were generated, up to an
independent additive Gaussian noise with variance σ2, by a target function
f ⋆ (not necessarily belonging to H ):

yµ d
= f ⋆(xµ)+σN (0,1), (118)

and we denote by θ ⋆ the coefficients of the target function in the features
basis f ⋆(x) = ψ(x)⊤θ ⋆. As we will characterize below, whether the target
function f ⋆ belongs or not to H depends on the relative decay coefficients
θ ⋆ with respect to the eigenvalues of the kernel. We often refer to θ ⋆ as the
teacher. While the present results and discussion are provided for additive A large capacity α

characterizes an
effectively
low-dimensional
features distribution

A small α conversely
signals a high
dimensional
distribution

A large source r
means the teacher
vector is well aligned
with the main
direction of the
distribution

A small r
characterizes a
harder to recover
target

gaussian noise for simplicity, our method are not restricted to this particular
noise, and a more complete extension of the results for other noise settings
is left for future work.

We are then interested in the evolution of the excess error εg−σ2 as the
number of samples n is increased.

Capacity and source coefficients — Motivated by the discussion above,
we focus on ridge regression in an infinite dimensional (p→ ∞) space H

with Gaussian design uµ def
= ψ(xµ)

d
= N (0,Σ) with (without loss of general-

ity) diagonal co-variance Σ = diag(η1,η2, ...). We expect however the results
of this manuscript to be universal for a large class of distribution beyond the
Gaussian one. In particular, we anticipate the gaussianity assumption should
be amenable to being relaxed to sub-gaussians (Tsigler et al., 2020) or even
any concentrated distribution (Talagrand, 1994; Louart et al., 2018b).

Following the statistical learning terminology, we introduce two parame-
ters α > 1,r ≥ 0, herefrom referred to as the capacity and source conditions
(Caponnetto et al., 2007), to parametrize the difficulty of the target function
and the learning capacity of the kernel

tr Σ
1
α < ∞, ||Σ

1
2−r

θ
⋆||H < ∞. (119)

As in (Dobriban et al., 2018a; Spigler et al., 2020; Bordelon et al., 2020; Berthier
et al., 2020), we consider the particular case where both the spectrum of Σ
and the teacher components θ ⋆

k have exactly a power-law form satisfying
the limiting source/capacity conditions (119):

ηk = k−α , θ
⋆
k = k−

1+α(2r−1)
2 . (120)

The power law ansatz (120) is empirically observed to be a rather good
approximation for some real simple datasets and kernels. The parameters α ,r
introduced in (120) control the complexity of the data the teacher respectively.
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Figure 9: Different decays for the excess generalization error εg−σ2 for different
values of n and different decays ℓ of the regularization λ ∼ n−ℓ, at given
noise variance σ . The red solid line represents the noise-induced crossover
line, separating the effectively noiseless regime (green and blue) on its
left from the effectively noisy regime (red and orange) on its right. Any
KRR experiment at fixed regularization decay ℓ (corresponding to drawing
a horizontal line at ordinate ℓ) crosses the crossover line if ℓ > α/(1+
2αmin(r,1)). The corresponding learning curve will accordingly exhibit
a crossover from a fast decay (noiseless regime) to a slow decay (noisy
regime).

A large α can be loosely seen as characterizing a effectively low dimensional
(and therefore easy to fit) data distribution. By the same token, a large r
signals a good alignment of the teacher with the important directions in the
data covariance, and therefore an a priori simpler learning task.

The regularization λ is allowed to vary with n according to a power-
law λ = n−ℓ. This very general form allows us to encompass both the zero
regularization case (corresponding to ℓ= ∞) and the case where λ = λ ⋆ is
optimized, with some optimal decay rate ℓ⋆. Note that this power law form
implies that λ is assumed positive. While this is indeed the assumption of
(Caponnetto et al., 2005; Caponnetto et al., 2007) with which we intend to
make contact, (Wu et al., 2020a) have shown that the optimal λ may in some
settings be negative. Some numerical experiments suggest that removing
the positivity constraint on λ while optimizing does not affect the results
presented in this manuscript. A more detailed investigation is left to future
work.

4.2 MAIN RESULTS

Depending on the regularization decay strength ℓ, capacity α , source r and
noise variance σ2, four regimes can be observed. The derivation of these de-



4.2 main results 69

cays from the asymptotic solution of the Gaussian design problem is sketched
in Section 4.3, and here we concentrate on the key results. The different ob-
servable decays for the excess error εg−σ2 are summarized in Fig. 9, and
are given by:

• If ℓ≥ α (weak regularization λ = n−ℓ),

εg−σ
2 = O

(
max

(
σ

2,n−2αmin(r,1)
))

. (121)

The excess error transitions from a fast decay 2αmin(r,1) (green region
in Fig. 9 and green dashed line in Fig. 10) to a plateau (red region in
Fig. 9 and red dashed line in Fig. 10) with no decay as n increases. This
corresponds to a crossover from the green region to the red region in
the phase diagram Fig. 9.

• If ℓ≤ α (strong regularization λ = n−ℓ) ,

εg−σ
2 = O

(
max

(
σ

2,n1−2ℓmin(r,1)− ℓ
α

)
n

ℓ−α

α

)
. (122)

The excess error transitions from a fast decay 2ℓmin(r,1) (blue region
in Fig. 9) to a slower decay (α− ℓ)/α (orange region in Fig. 9) as n is
increased and the effect of the additive noise kicks in, see Fig. 11. The
crossover disappears for too slow decays l ≤ α/(1+ 2αmin(r,1)), as
the regularization λ is always sufficiently large to completely mitigate
the effect of the noise. This corresponds to the max in (122) being
realized by its second argument for all n.

Given these four different regimes as depicted in Fig. 9, one may wonder
about the optimal learning solution when the regularization is fine tuned to
its best value. To answer this question, we further define the asymptotically
optimal regularization decay ℓ⋆ as the value leading to fastest decay of the
typical excess error εg−σ2. We find that two different optimal rates exist,
depending on the quantity of data available.

• If n≪ n∗1 ≈ σ
− 1

αmin(r,1) , any ℓ⋆ ∈ (α ,∞) yields excess error decay

ε
⋆
g −σ

2 ∼ n−2αmin(r,1) . (123)

• If n≫ n∗2 ≈ σ
−max

(
2, 1

αmin(r,1)

)
,

ε
⋆
g −σ

2 ∼ n
1

1+2αmin(r,1)−1 , by choosing λ
⋆ ∼ n−

α

1+2αmin(r,1) .
(124)

The optimal decay for the excess error ε⋆
g −σ2 thus transitions from a fast

decay 2αmin(r,1) when n≪ n∗1 – corresponding to, effectively, the optimal
rates expected in a "noiseless" situation – to a slower decay 2αmin(r,1)/(1+
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2αmin(r,1)) when n≫ n∗2 corresponding to the classical "noisy" optimal
rate, depicted with the purple point in Fig. 9. This is illustrated in Fig. 12
where the two rates are observed in succession for the same data as the
number of points is increased.
We can now finally clarify the apparent discrepancy in the recent literature Benign overfitting

can be illustrated by
the following 1d
analogy. When
learning a function
(light blue lines) from
a small number of
training data (red
points), high-variance
features (in this
illustration slow
frequencies) are
learnt well, whereas
the less relevant
features (higher
frequencies) are used
to overfit the noise.
This is the analog of
the green regime.

With more samples,
higher frequencies
start to be learnt, but
have to be
disentangled from the
noise, making the
learning task harder :
this is the analog of
the red regime.

discussed in the introduction. The exponent recently reported in (Spigler et
al., 2020; Bordelon et al., 2020) actually corresponds to the "noiseless" regime.
In contrast, the rate described in (124) is the classical result (Caponnetto
et al., 2005) for the non-saturated case r < 1 for generic data. We see here
that the same rate is also achieved with Gaussian design, and that there are
no differences between fixed and Gaussian design as long as the capacity
and source condition are matching. We unveiled, however, the existence of
two possible sets of optimal rate exponents depending on the number of data
samples.

All setups (effectively non-regularized KRR (121), effectively regularized KRR
(122) or optimally regularized KRR (123), (124)) can therefore exhibit a crossover
from an effectively noiseless regime (green or blue in Fig. 9), to an effectively
noisy regime (red, orange in Fig. 9) depending on the quantity of data avail-
able. We stress that while the noise is indeed present in the green and blue
"noiseless" regimes, its presence is effectively not felt, and noiseless rates
are observed. In fact, if the noise is small, one will not observed the classical
noisy rates unless an astronomical amount of data is available. This can
be intuitively understood as follows: for small sample size n, low-variance
dimensions are used to overfit the noise, while the spiked subspace of large-
variance dimensions is well fitted. In noiseless regions, the excess error is
thus characterized by a fast decay. This phenomenon, where the noise vari-
ance is diluted over the dimensions of lesser importance, is connected to the
benign overfitting discussed by (Bartlett et al., 2020b) and (Tsigler et al., 2020).
Benign overfitting is possible due to the decaying structure of the co-variance
spectrum (120). As more samples are accessed, further decrease of the excess
error requires good generalization also over the low-variance subspace, and
the overfitting of the noise results in a slower decay.

While our analysis is for the optimal full-batch learning, we note that a
similar crossover in the case of SGD in the effectively non-regularized case
(from green to red) has been discussed in (Berthier et al., 2020; Varre et al.,
2021). It would be interesting to further explore how SGD can behave in the
different regimes discussed here.

When λ = λ0n−ℓ for a prefactor λ0 that is allowed to be very small, a
regularization-induced crossover, similar to the one reported in (Bordelon
et al., 2020), can also be observed on top of the noise-induced crossover which
is the focus of the present work.
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Figure 10: Kernel ridge regression on synthetic data sets with capacity α and source
coefficient r i.e. the idealized gaussian setting (120), with no regularization
λ = 0. Solid lines correspond to the theoretical prediction of eq. (126)
using the GCM package associated with Chapter 3. Points are simulations
conducted using the python scikit-learn KernelRidge pack-
age (Pedregosa et al., 2011a), where the feature space dimension has been
cut off to p = 104 for the simulations, and to 105 for the theoretical curves.
Dashed lines represent the slopes predicted by eq. (121), with the color
(red and green) in correspondence to the regime from Fig. 9.
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Figure 11: Kernel ridge regression on synthetic data sets with capacity α and source
coefficient r, with regularization λ = n−ℓ. Solid lines correspond to
the theoretical prediction of eq. (126) using the GCM package associ-
ated with Chapter 3. Points are simulations conducted using the python
scikit-learn KernelRidge package (Pedregosa et al., 2011a),
where the feature space dimension has been cut off to p = 104 for the
simulations, and to 105 for the theoretical curves. Dashed lines represent
the slopes predicted by eq. (122), with the color (blue and orange) in cor-
respondence to the regime from Fig. 9.
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Figure 12: Kernel ridge regression on synthetic data sets with capacity α and source
coefficient r. The regularization λ is chosen as the one minimizing the
theoretical prediction for the excess generalization error, deduced from
eq. (126) using the GCM package associated with Chapter 3. Solid lines
correspond to the theoretical prediction of eq. (126). Points are simula-
tions conducted with the python scikit-learn KernelRidge
package (Pedregosa et al., 2011a), where the feature space dimension
has been cut off to p = 104 for the simulations, and to 105 for the
theoretical curves. In simulations, the best λ ⋆ was determined using
python scikit-learn GridSearchCV cross validation package
(Pedregosa et al., 2011a). Note that because cross validation is not adapted
to small training sets, a few discrepancies are observed for smaller n.
Dashed lines represent the slopes predicted by theory, with the colors in
correspondence to the regimes in Fig. 9, purple for the purple point in
Fig. 9. Top: excess error. Bottom: optimal λ ⋆. Note the noiseless case has
λ ∗ = 0.
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4.3 SKETCH OF THE DER I VAT ION

We provide in this section the main ideas underlying the derivation of the
main results exposed in section 4.2 and summarized in Fig. 9.

Closed-form solution for Gaussian design — Closed-form, rigorous
solution of the risk of ridge regression with Gaussian data of arbitrary co-
variance in the high-dimensional asymptotic regime have been studied in
(Dobriban et al., 2018a) (Wu et al., 2020a; Richards et al., 2021). We shall use
here the equivalent notations of Chapter 3, who have the advantage of having
rigorous non-asymptotic rates guarantees. Using these characterizations as a
starting point, we shall sketch how the crossover phenomena (121) (122)(123)
and (124), which are the main contribution of this paper, can be derived.
Within the framework of Chapter 3, with high-probability when n, p are
large the excess prediction error is expressed as

εg−σ
2 = ρ−2m⋆+ q⋆, (125)

with ρ = θ ⋆⊤Σθ ⋆, and (m⋆,q⋆) are the unique fixed-points of the following
self-consistent equations:

V̂ =
n
p

1+V

q̂ = n
p

ρ+q−2m+σ2

(1+V )2

q = p
p
∑

k=1

q̂η2
k +θ ⋆2

k η2
k m̂2

(nλ+pV̂ ηk)2

m = pV̂
p
∑

k=1

θ ⋆2
k η2

k
nλ+pV̂ ηk

V = 1
p

p
∑

k=1

pηk
nλ+pV̂ ηk

. (126)

We recall the reader that λ > 0 is the regularisation strength and {ηk}p
k=1

are the kernel eigenvalues. The next step is thus to insert the power-law
decay (120) for the eigenvalues into (126), and to take the limit n, p→ ∞.
We note, however, that this last step is not completely justified rigorously.
Indeed, (Dobriban et al., 2018a) assumes p/n = O(1) as n, p→ ∞ while here
we first send p→ ∞ and then take the large n limit, thus working effectively
with p/n→ 0. While the non-asymptotic rates guarantees of Chapter 3 are
reassuring in this respect, a finer control of the limit would be needed for a
fully rigorous justification. Nevertheless, we observed in our experiments
that the agreement between theory and numerical simulations for the excess
prediction error (117) is perfect (see Figs. 10, 11 and 12). In the large n limit,
one can finally close the equation for the excess prediction error into

εg−σ
2 =

∞

∑
k=1

k−1−2rα

(1+nz−1k−α )2

1− n
z2

∞

∑
k=1

k−2α

(1+nz−1k−α )2

+σ
2

n
z2

∞

∑
k=1

k−2α

(1+nz−1k−α )2

1− n
z2

∞

∑
k=1

k−2α

(1+nz−1k−α )2

. (127)
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with z being a solution of

z≈ nλ +
( z

n

)1− 1
α

∫
∞

( z
n )

1/α

dx
1+ xα

. (128)

We note that this equation was observed with heuristic arguments from statis-
tical physics (using the non-rigorous cavity method) in (Canatar et al., 2021a).

The different regimes of excess generalization error rates discussed in Sec-
tion 4.2 are derived from this self-consistent equation. Note that the excess
error (127) decomposes over a sum of two contributions, respectively ac-
counting for the sample variance and the noise-induced variance. In contrast
to a typical bias-variance decomposition, the effect of the bias introduced in
the task for non-vanishing λ is subsumed in both terms.

Derivation of the four regimes — If the second term in (128) dominates,
then z∼ n1−α , which is self consistent if ℓ≥ α . This is the effectively non-
regularized regime, where the regularization λ is not sensed, and corresponds
to the green and red regimes in the phase diagram in Fig. 9. This scaling
of z can then be used to estimate the asymptotic behaviour of the sample
and noise induced variance in the decomposition on the excess error (127),
yielding

εg−σ
2 = O(n−2αmin(r,1))+σ

2O(1), (129)

which can be rewritten more compactly as (121). Therefore, for small sample
sizes the sample variance drives the decay of the excess prediction error,
while for larger samples sizes the noise variance dominates and causes the
error to plateau. The crossover happens when both variance terms in (129)
are balanced, around

n∼ σ
− 1

αmin(r,1) , (130)

which corresponds to the vertical part of the crossover line in Fig. 9.

If the first term nλ dominates in (128), then z∼ nλ , which is consistent
provided that ℓ < α . This is the effectively regularized regime (blue, orange
regions in Fig. 9). The two variances in (127) are found to asymptotically
behave like

εg−σ
2 = O(n−2ℓmin(r,1))+σ

2O(n
ℓ−α

α ), (131)

which can be rewritten more compactly as (122). If the decay of the noise
variance term (α− ℓ)/α is faster than the 2ℓmin(r,1) decay of the sample
variance term, then the latter always dominates and no crossover is observed.
This is the case for ℓ < α/(1+2αmin(r,1)). If on the contrary the decay of



4.4 illustration on simple real data sets 75

the noise variance term is the slowest, then this term dominates at larger n,
with a crossover when both terms in (131) are balanced, around

n∼ σ

2
1− ℓ

α (1+2αmin(r,1)) (132)

Eqs. (129) and (131) are respectively equivalent to (121) and (122), and com-
pletely define the four regimes observable in Fig. 9. Equations (132) and (130)
give the expression for the crossover line in Fig. 9.

Asymptotically optimal regularization — Determining the asymptot-
ically optimal ℓ⋆ is a matter of finding the ℓ leading to fastest excess error
decay. We focus on the far left part and the far right part of the phase diagram
Fig. 9.

In the n≫ n⋆2 ≈ σ
−max

(
2, 1

αmin(r,1)

)
limit where the crossover line confounds

itself with its ℓ= α/(1+2αmin(r,1)) asymptot, this is tantamount to solv-
ing the maximization problem

ℓ⋆ = argmax
ℓ

(
2ℓmin(r,1)10<ℓ< α

(1+2αmin(r,1))
+ α−ℓ

α
1 α

(1+2αmin(r,1))<ℓ<α
+0×1α<ℓ

)
(133)

which admits as solution (124). In the n≪ n⋆1 ≈ σ
− 1

αmin(r,1) range, the maxi-
mization of the excess error decay reads

ℓ⋆ = argmax
ℓ

(2ℓmin(r,1)10<ℓ<α + 2αmin(r,1)1α<ℓ) , (134)

and admits as solution (123).

4.4 I L LUSTRAT ION ON S IMPLE REAL
DATA SETS

The MNIST dataset.

The Fashion MNIST
dataset.

In this section we show that the derived decay rates can indeed be observed
in real data sets with labels artificially corrupted by additive Gaussian noise.
For real data, the decay model in eq. (120) is idealized, and in practice there
is no firm reason to expect a power-law decay. However, we do find that
for some of the data sets and kernels we investigated, the power law fit is
reasonable and can be used to estimate the exponents α and r. For those
cases, we compare the theoretically predicted exponents, eqs. (121), (122),
(123) and (124) with the empirically measured learning curve, and obtain
a very good agreement. We stress that the decay rates are not obtained by
fitting the learning curves, but rather by fitting the exponents α and r from
the data. We also observe the crossover from the noiseless (blue, green in
Fig. 9) to the noisy (orange, red in Fig. 9) regime given by the theory.
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Figure 13: Excess error for MNIST odd versus even (above) and Fashion MNIST
t-shirt versus coat (below) with labels corrupted by noise of variance σ2.
The kernel used is indicated in the title. Solid lines with points come from
numerical experiments with zero regularization. Dashed lines are the
slopes −2αr (as r < 1) or 0, predicted by the theory from the empirical
values of α ,r measured from the Gram matrix spectrum and the teacher
for each data set, see Table 1. Colors of the dashed lines (green & red)
indicate the regimes in Fig. 9.

Here we illustrate this with the learning curves for the following three
data sets:

• MNIST even versus odd, a data set of 7×104 28×28 images of hand-
written digits. Even (odd) digits were assigned label y = 1+σN (0,1)
(y = −1+σN (0,1)).

• FashionMNIST t-shirts versus coats, a data set of 14702 28×28 images
of clothes from an online shopping platform (Xiao et al., 2017). T-shirts
(coats) were assigned label y = 1+σN (0,1) (y = −1+σN (0,1)).

• Superconductivity (Hamidieh, 2018), a data set of 81 attributes of 21263
superconducting materials. The target yµ corresponds to the critical
temperature of the material, corrupted by additive Gaussian noise.

Learning curves are illustrated for a Radial Basis Function (RBF) kernel
K(x,x′) = e−

γ

2 ||x−x′||2 with parameter γ = 10−4 and a degree 5 polynomial
kernel K(x,x′) = (1 + γ⟨x,x′⟩)5 with parameter γ = 10−3. In Fig. 13 the
regularization λ was set to 0, while in Fig. 14 λ was optimized for each
sample size n using the python scikit-learn GridSearchCV package
(Pedregosa et al., 2011a). KRR was carried out using the scikit-learn
KernelRidge package (Pedregosa et al., 2011a). The values of α ,r were
independently measured for each data set, and the estimated values summa-
rized in Table 1. From these values the theoretical decays (121), (123) and
(124) were computed, and compared with the simulations with very good
agreement. Since for real data the power-law form (120) does not exactly
hold, the estimates for α ,r slightly vary depending on how the power-law
is fitted. Overall this variability does not hurt the good agreement with the
simulated learning curves in Fig. 13 and 14.

When λ = 0 (Fig. 13) the characteristic plateau for large label noises is
observed for both MNIST & Fashion MNIST. For polynomial kernel regres-
sion on Fashion MNIST (Fig. 13 right), the crossover between noiseless (slope
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Figure 14: Excess error for MNIST odd versus even, and Fashion MNIST t-shirt
versus coat, and the critical temperature regression. The kernel used
is indicated in the title. Solid lines with dots come from numeri-
cal experiments with the regularization optimized using the python
scikit-learnGridSearchCV package (Pedregosa et al., 2011a).
Dashed lines are the slopes predicted by the theory, from the empirical
values of α ,r measured from the Gram matrix spectrum and the teacher
for each data set, see Table 1. Colors of the dashed lines indicate the
regime in Fig. 9.
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Dataset Kernel α r

Fashion MNIST K(x,x′) = (1+ 10−3⟨x,x′⟩)5 1.3 0.13

MNIST K(x,x′) = (1+ 10−3⟨x,x′⟩)5 1.2 0.15

MNIST K(x,x′) = exp(−10−4||x− x′||2/2) 1.65 0.097

Superconductivity K(x,x′) = exp(−10−4||x− x′||2/2) 2.7 0.046

Table 1: Values of the source and capacity coefficients (119) as estimated from the
data sets.

−2αr as r < 1) and noisy (slope 0) regimes is apparent on the same learning
curve at noise levels σ = 0.5,1. For MNIST, the σ = 0 (σ = 1) curve is in the
noiseless (noisy) regime for larger n, while at intermediary noise σ = 0.5, and
small n for σ = 1, the curve is in the crossover regime between noiseless and
noisy, consequently displaying in-between decay. Our results for the decays
for σ = 0 agree with simulations for RBF regression on MNIST provided in
(Spigler et al., 2020).

For optimal regularization λ = λ ⋆ (Fig. 14), as the measured r < 1 we have
exponents −2rα for the noiseless regime and −2rα/(1+ 2rα) for noisy.
Since the measured value of 2rα is rather small the difference between the
two rates is less prominent. Nevertheless, it seems that in our experiments
the noisy regime is observed for polynomial and RBF kernels on MNIST and
σ = 0.5,1. For Superconductivity, the green and purple decay have close
values and it is difficult to clearly identify the regime. For Fashion MNIST
only the noiseless rate is observable in the considered noise range and sample
range.

CONCLUS ION

To conclude, we unify hitherto disparate lines of work, and give a compre-
hensive study of observable regimes, along the associated decay rates for
the excess error, for kernel ridge regression with features having power-law
co-variance spectrum. We show that the effect of the noise only kicks in at
larger sample complexity, meaning, in particular, that the KRR transitions
from a noiseless regime with fast error decay to a noisy regime with slower
decay. This crossover is shown to happen for zero, decaying and optimized
regularization, and is observed on a variety of real data sets corrupted with
label noise.





5
SCAL ING LAWS FOR
KERNEL CLASS I F ICAT ION

A recent line of work (Hestness et al., 2017; Kaplan et al., 2020; Rosenfeld
et al., 2019; Henighan et al., 2020) has empirically evidenced that the test error
of neural networks often obey scaling laws with the number of parameters
of the model, training set size, or other model parameters. Because of their
implications in terms of relating performance and model size, these findings
have been the object of sustained theoretical attention. Authors of (Sharma et
al., 2022) relate the decay rate of the test loss with the number of parameters
to the intrinsic dimension of the data. This idea is refined by (Bahri et al.,
2021) for the case of regression tasks, building on the observation that in a
number of settings, the covariance of the learnt features exhibits a power-
law spectrum, whose rate of decay controls the scaling of the error. This
investigation is actually very closely related to another large body of works.
In fact, the study of a power-law features spectrum (and of a target function
whose components in the corresponding eigenbasis also decay as a power-
law) has a long history in the kernel literature, dating back to the seminal
works of (Caponnetto et al., 2007; Caponnetto et al., 2005). The corresponding
rates governing the power-laws are respectively known as the capacity and
source coefficients, and the scaling of the test error with the training set size
can be entirely characterized in terms of these two numbers. While the study
of kernel ridge regression (Caponnetto et al., 2007; Caponnetto et al., 2005;
Lin et al., 2018; Jun et al., 2019; Liu et al., 2020; Pillaud-Vivien et al., 2018;
Berthier et al., 2020; Varre et al., 2021; Cui et al., 2021) therefore offers a rich
viewpoint on the question of neural scaling laws with the training set size,
little is so far known for kernel classification. Since ascertaining the test error
decay under source and capacity conditions would automatically translate
into neural scaling laws in classification tasks – similarly to (Bahri et al., 2021)
for regression – this is a question of sizeable interest addressed in the present
work.

related works

Neural scaling laws — A number of works (Hestness et al., 2017; Ka-
plan et al., 2020; Rosenfeld et al., 2019; Henighan et al., 2020) have provided
empirical evidence of scaling laws in neural networks, with the number of
parameters, training samples, compute, or other observables. These findings
motivated theoretical investigations of the underlying mechanisms. Authors
of (Sharma et al., 2022) show how the scaling of the test loss with the number

80



scaling laws for kernel classification 81

of parameters is related to the intrinsic dimension of the data. This dimension
is further tied in with the kernel spectrum by (Bahri et al., 2021), a work
that leverages the kernel ridge regression viewpoint to translate, in turn, the
decay of the spectrum to test error rates. Authors of (Maloney et al., 2022)
similarly study a simple toy model where the power-law data is processed
through a random features layer. Finally, (Hutter, 2021) investigate a toy
model of scalar integer data in the context of classification, and ascertain the
corresponding scaling law. Relating in classification settings the rate of decay
of the kernel spectrum to the test error, like (Bahri et al., 2021) for regression,
is still an open question.

Source and capacity conditions — The source and capacity conditions
are standard regularity assumptions in the theoretical study of kernel meth-
ods, as they allow to subsume a large class of learning setups, c.f. (Marteau-
Ferey et al., 2019; Pillaud-Vivien et al., 2018; Caponnetto et al., 2005; Capon-
netto et al., 2007; Cui et al., 2021; Berthier et al., 2020). We also refer the
interested reader to Chapter 4 for further discussion in the setting of KRR.

Kernel ridge regression — The error rates for kernel ridge regression
have been extensively and rigorously characterized in terms of the source/ca-
pacity coefficients in the seminal work of (Caponnetto et al., 2005; Caponnetto
et al., 2007), with a sizeable body of work being subsequently devoted thereto
(Steinwart et al., 2009; Lin et al., 2018; Jun et al., 2019; Liu et al., 2020; Pillaud-
Vivien et al., 2018; Berthier et al., 2020; Varre et al., 2021). In particular, in (Cui
et al., 2021) it was shown that rates derived under worst-case assumptions
(Lin et al., 2018; Jun et al., 2019; Caponnetto et al., 2005; Caponnetto et al.,
2007; Bartlett et al., 2020b) are identical to the typical rates computed under
the standard Gaussian design (Dobriban et al., 2018a; Dicker et al., 2016; Hsu
et al., 2012) assumption. Crucially, it was observed that many real data-sets
satisfy the source/capacity conditions, and display learning rates in very
good agreement to the theoretical values (Cui et al., 2021).

Worst-case analyses for SVM — The worst-case bounds for SVM classi-
fication – see e.g. (Steinwart et al., 2008; Schölkopf et al., 2002) for general
introductions thereto– are known from the seminal works of (Steinwart
et al., 2008; Steinwart et al., 2007; Audibert et al., 2007). However, it is not
known how tightly the corresponding rates hold for a given realistic data
distributions, not even for synthetic Gaussian data. We show that, contrary
to the case of ridge regression, for classification the worst case bounds are
not tight for Gaussian data. This effectively hinders the ability to predict and
understand the error rates for relevant classes of data-sets, and in particular
the class of data described by source/capacity conditions, which as mentioned
above includes many real data-sets (Cui et al., 2021), see Chapter 4. The key
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goal of this work is to fill this gap by leveraging the analysis of the learning
curves for the GCM (Loureiro et al., 2021b) presented in Chapter 3 specified
to data satisfying the capacity and source conditions.

main contribution

In this work, we investigate the decay rate of the misclassification (general-
ization) error for noiseless kernel classification, under the Gaussian design
and source/capacity regularity assumptions with capacity coefficient α and
source coefficient r. Building on the analytic framework of (Loureiro et al.,
2021b), we consider the two most widely used classifiers: margin-maximizing
SVMs and ridge classifiers. We derive in Section 5.2 the error rate (describing
the decay of the prediction error with the number of samples) for margin-
maximizing SVM :

ε
SVM
g ∼ n

− αmin(r, 1
2 )

1+αmin(r, 1
2 ) .

As a consequence, we conclude that the worst-case rates (Steinwart et al.,
2007; Steinwart et al., 2008; Audibert et al., 2007) are indeed loose and fail to
describe this class of data. This fact alone is not at all surprising. However,
it becomes remarkable in the light of the fact that for ridge regression, as
discussed in Chapter 4, the worst case bounds and the typical case rates do
agree (Cui et al., 2021).

We contrast the SVM rate with the rate for optimally regularized ridge
classification, which we establish in Section 5.3 to be

ε
ridge
g ∼ n−

αmin(r,1)
1+2αmin(r,1) .

We argue in the light of these findings that the SVM always displays faster
rates than the ridge classifier for the classification task considered.

Finally, we observe that some real data-sets fall in the same universality
class as the considered setting, in the sense that, as illustrated in Section
5.4, their error rates are in very good agreement with the ones above. This
work is thus a key step for theoretically predicting the error rates of kernel
classification for a broad range of real data-sets.
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5.1 SET T ING

5.1.1 kernel classification

Consider a data-set D = {(xµ ,yµ)}n
µ=1 with n independent samples from a

probability measure ν on X ×{−1,+1}, with X ⊂ Rd . We will assume
that the labels can be expressed as

yµ = sign( f ⋆(xµ)) (135)

for some non-stochastic target function f ⋆ : X →R. Note that the noiseless
setting considered here is out of the validity domain of many worst case
analyses, whose bounds become void without noise (Audibert et al., 2007),
whereas a number of real learning settings are well described by a noiseless
setup, see section 5.4. Learning to classify D in the direct space X for
a linear f ⋆ has been the object of extensive studies. In the present work,
we focus on the case where f ⋆ more generically belongs to the space of
square-integrable functions L2(X ). To classify D , a natural method is then
to perform kernel classification in a p- dimensional RKHS H associated to a
kernel K, by minimizing the regularized empirical risk:

R̂n( f ) =
1
n

n

∑
µ=1

ℓ( f (xµ),yµ)+λ || f ||2H . (136)

The function ℓ(·) is a loss function and λ is the strength of the ℓ2 regular-
ization term. In this paper we shall more specifically consider the losses
ℓ(z,y) = max(0,1− yz) (hinge classification) and ℓ(z,y) = (y− z)2 (ridge
classification), and the case of an infinite dimensional RKHS (p = ∞). The risk
(136) admits a dual rewriting in terms of a standard parametric risk. To see
this, diagonalize K in an orthogonal basis of kernel features {ψk(·)}p

k=1 of
L2(X ), with corresponding eigenvalues {ωk}p

k=1:∫
X

ν(dx′)K(x,x′)ψk(x′) = ωkψk(x). (137)

It is convenient to normalize the eigenfunctions to∫
X

ν(dx)ψk(x)2 = ωk, (138)

so that the kernel K can be rewritten in simple scalar product form K(x,x′) =
ψ(x)⊤ψ(x′), where we named ψ(x) the p-dimensional vector with compo-
nents {ψk(x)}p

k=1.

Furthermore, note that the covariance Σ of the data in feature space with
this choice of feature map is simply diagonal

Σ = Ex∼ν(ψ(x)ψ(x)⊤) = diag(ω1, · · · ,ωp). (139)
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Any function f ∈H can then be expressed as f (·) = w⊤ψ(·) for a vector
w with square summable components. Using this parametrization, the risk
(136) can be rewritten as

R̂n(w) =
1
n

n

∑
µ=1

ℓ(w⊤ψ(xµ),yµ)+λw⊤w. (140)

Throughout this manuscript we will refer to the components of the target
function in the features basis as the teacher θ ⋆, so that

f ⋆(·) = θ
⋆⊤

ψ(·).

Note that any f ⋆ ∈ L2(X ) can be formally written in this form with a cer-
tain θ ⋆ (allowing for non square-summable components if f ⋆ ∈ L2(X )\H ).
Similarly, the minimizer ŵ of the parametric risk (140) is related to the argmin
f̂ of (136) by f̂ (·) = ŵ⊤ψ(·), and will be referred to as the estimator in the fol-
lowing. We make two further assumptions : first, we work under the Gaussian
design, and assume the features ψ(x) to follow a Gaussian distribution with
covariance Σ, i.e. ψ(x)∼N (0,Σ). Note that this assumption might appear
constraining , as the distribution of the data in feature space strongly depends
on its distribution in the original space, and the feature map associated to
the kernel. In fact, for a large class of data distributions and standard kernels,
the Gaussian design assumption does not hold. However, rates derived under
Gaussian design can hold more broadly. For instance, the rates established in
Chapter 4 under Gaussian design were later proven by (Jin et al., 2021) under
weaker conditions on the features. We will moreover discuss in Section 5.4
several settings in which our theoretical rates are in good agreement with
rates observed for real data.

Second, as in Chapter 4, we assume that the regularization strength λ decays
as a power-law of the number of samples n with an exponent ℓ: λ = n−ℓ. Note
that this form of regularization is natural, since the need for regularizing
is lesser for larger training sets. Furthermore, this allows to investigate the
classical question of the asymptotically optimal regularization (Caponnetto
et al., 2005; Caponnetto et al., 2007; Cui et al., 2021), i.e. the decay ℓ of the
regularization yielding fastest decrease of the prediction error.

5.1.2 source and capacity conditions

Under the above assumptions of Gaussian design with features covariance Σ
and existence of a teacher θ ⋆ that generates the labels using eq. (135) we can
now study the error rates. In statistical learning theory one often uses the
source and capacity conditions, which assume the existence of two parameters
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α > 1,r ≥ 0 (hereafter referred to as the capacity coefficient and the source
coefficient respectively) so that

trΣ
1
α < ∞, θ

⋆⊤Σ1−2r
θ
⋆ < ∞. (141)

As in (Dobriban et al., 2018a; Spigler et al., 2020; Bordelon et al., 2020; Berthier
et al., 2020; Cui et al., 2021), we will consider the particular case where both
the spectrum of Σ and the teacher components θ ⋆

k have exactly a power-law
form satisfying the limiting source/capacity conditions (141):

ωk = k−α , θ
⋆
k = k−

1+α(2r−1)
2 . (142)

The power-law forms (142) have been empirically found in (Cui et al., 2021)
in the context of kernel regression to be a reasonable approximation for a
number of real data-sets including MNIST (LeCun et al., 1998a) and Fashion
MNIST (Xiao et al., 2017) and a number of standard kernels such as polyno-
mial kernels and radial basis functions. Similar observations were also made
in the present work and are discussed in section 5.4.

We remind from Chapter 4 that the capacity parameter α and source
parameter r capture the complexity of the data-set in feature space – i.e. after
the data is transformed through the kernel feature map into {ψ(xµ),yµ}n

µ=1.
A large α , for example, signals that the spectrum of the data covariance Σ
displays a fast decay, implying that the data effectively lies along a small
number of directions, and has a low effective dimension. Conversely, a small
capacity α means that the data is effectively large dimensional, and therefore
a priori harder to learn. Similarly, a large r signals a good alignment of the
teacher θ ⋆ with the main directions of the data, and a priori an easier learning
task. In terms of the target function f ⋆, larger r correspond to smoother f ⋆.
Note that r > 1/2 implies that f ⋆ ∈H , while r≤ 1/2 implies f ⋆ ∈ L2(X )\H .
Finally, note that while (Marteau-Ferey et al., 2019) suggested an alternative
definition for the source and capacity coefficients in the case of non-square
loss functions, their redefinition is not directly applicable for the hinge loss.

5.1.3 misclassification error

The performance of learning the data-set D using kernel classification (140)
is quantified by the misclassification (generalization) error

εg =
1
2
− 1

2
EDEx,y∼ν

(
y sign(ŵ⊤ψ(x))

)
, (143)

where ŵ is the minimizer of the risk (140). The error (143) corresponds to
the probability for the predicted label sign(ŵ⊤ψ(x)) of a test sample x to
be incorrect. The rate at which the error (143) decays with the number of
samples n in D depends on the complexity of the data-set, as captured by
the source and capacity coefficients α ,r eq. (142). To compute this rate, we
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build upon the work of (Loureiro et al., 2021b) who, following a long body of
work in the statistical physics literature (Mézard et al., 1987; Dietrich et al.,
1999c; Engel et al., 2001; Mézard et al., 2009; Bordelon et al., 2020; Advani
et al., 2020), provided and proved a mathematically rigorous closed form
asymptotic characterization of the misclassification error as

εg =
1
π

arccos (
√

η) , η =
m2

ρq
, (144)

where ρ is the squared L2(X ) norm of the target function f ⋆, i.e. ρ =∫
X ν(dx) f ⋆(x)2 = θ ⋆⊤Σθ ⋆, andm,q are the solution of a set of self-consistent
equations, which are later detailed and analyzed in Section 5.2 for margin-
maximizing SVMs and section 5.3 for ridge classifiers. The order parameters
m,q are known as themagnetization and the self-overlap in statistical physics
and respectively correspond to the target/estimator and estimator/estimator
L2(X ) correlations:

m = ED

∫
X

ν(dx) f ⋆(x) f̂ (x) = ED

(
ŵ⊤Σθ

⋆
)

,

q = ED

∫
X

ν(dx) f̂ (x)2 = ED

(
ŵ⊤Σŵ

)
. (145)

It follows from these interpretations that η has to be thought of as the cosine-
similarity between the teacher θ ⋆ and the estimator ŵ, with perfect alignment
(η = 1) resulting in minimal error εg = 0 from (143).

Note that while this characterization has formally been proven in (Loureiro
et al., 2021b) in the asymptotic proportional n, p→ ∞, n/p = O(1) limit, we
are presently using it in the n≪ p = ∞ limit, thereby effectively working at
n/p = 0+. The non-asymptotic rate guarantees of (Loureiro et al., 2021b) are
nevertheless encouraging in this respect, although a finer control of the limit
would be warranted to put the present analysis on fully rigorous grounds.
Further, (Cui et al., 2021) also build on (Loureiro et al., 2021b) in the n/p = 0+

limit, and display solid numerics-backed results, later rigorously proven by
(Jin et al., 2021). We thus conjecture that this limit can be taken as well safely
in our case. Finally, we mention that a recent line of works (Li et al., 2021c;
Ariosto et al., 2022a; Seroussi et al., 2023a; Cui et al., 2023a) has explored the
connections between kernel regression and Bayesian learning for networks in
the n/p = O(1) limit, where p is in this case the width of the network. While
the high-dimensional limit is indeed related to the one originally discussed in
(Loureiro et al., 2021b), which we relax here to n/p = 0+, the main object of
(Li et al., 2021c; Ariosto et al., 2022a; Seroussi et al., 2023a) was not to study
kernel regression per se, but to show how observables in Bayesian regression
could be expressed in terms of well-chosen kernels. In the present work, we
focus on analyzing kernel classification in the n/p = 0+ regime.
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Figure 15: Misclassification error εg for max-margin classification on synthetic Gaus-
sian features, as specified in (142), for different source/capacity coefficients
α ,r. In blue, the solution of the closed set of eqs. (147) used in the char-
acterization (143) for the misclassification error, using the GCM package
(Loureiro et al., 2021b). The dimension p was cut-off at 104. Red dots cor-
responds to simulations using the scikit-learn SVC(Pedregosa
et al., 2011b) package run for vanishing regularization λ = 10−4 and
averaged over 40 instances, for p = 104. The green dashed line indicates
the power-law rate (149) derived in this work. The light blue dotted line
indicates the classical worst-case min (1/2, α/(3+α)) rate for SVM classi-
fication (Theorem 2.3 in (Steinwart et al., 2008)) in the cases where the
theorem readily applies (r > 1/2).

5.2 MAX-MARGIN CLASS I F ICAT ION

5.2.1 self-consistent eqations

In this section we study regression using Support Vector Machines. The risk
(140) then reads for the hinge loss

R̂n(w) =
1
n

n

∑
µ=1

max
(

0,1− yµw⊤ψ(xµ)
)
+λw⊤w. (146)

In the following, we shall focus more specifically on the max-margin limit
with λ = 0+. In fact, zero regularization is asymptotically optimal for the
data following eq. (142) when the target function is characterized by a source
r ≤ 1/2, i.e. f ⋆ ∈ L2(X ) \H . We heuristically expect margin maximization
to be a fortiori optimal also for easier and smoother teachers f ⋆ ∈H . For
the risk (146) at λ = 0+, the self-consistent equations defining m,q in (145)
read
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∞
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n
z

∞
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1+ n

z ωk
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1

n2

z2

∞
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θ ⋆2
k ω3
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(1+ n
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∞
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2π
√

ρ

(√
2π(1+erf( 1√

2q(1−η)
))+2e

− 1
2q(1−η)

√
q(1−η)

)
1√
q∫

−∞

dx e−
1
2 x2
√

2π

[
1+erf(

√
η

2(1−η)
x)
] ,

r̂2 =

1√
q∫

−∞

dx e−
1
2 x2
√

2π

[
1+erf(

√
η

2(1−η)
x)
]
(1−√qx)2

1√
q∫

−∞

dx e−
1
2 x2
√

2π

[
1+erf(

√
η

2(1−η)
x)
]

2 ,

z =
z
n

∞

∑
k=1

ωk
z
n +ωk

1√
q∫

−∞

dx e−
1
2 x2
√

2π

[
1+erf(

√
η

2(1−η)
x)
] .

(147)

Here r̂1 should be thought of as the ratio between the norms of the estima-
tor ŵ and the teacher θ ⋆, while z can be loosely interpreted as an effective
regularization.

5.2.2 decay rates for max-margin

From the investigation of the eqs. (147), the following scalings are found to
hold between the order parameters:

m∼√q∼ r̂1 ∼ n
( z

n

) 1
α ∼ n

αmin(r, 1
2 )

1+αmin(r, 1
2 ) . (148)

Note that the mutual scaling between m, q also follows intuitively from the
interpretation of these order parameters – as the overlap of ŵ with the ground
truth and itself respectively – see the discussion around eqs. (145) and (147).
Since the width of the margin is generically expected to shrink with the
number of samples (as more training data are likely to be sampled close to
the separating hyperplane), the increase of the norm of ŵ (as captured by
q, r̂1) with n is also intuitive. Finally, an analysis of the subleading corrections
to m and q, leads to

εg ∼ n
− αmin(r, 1

2 )

1+αmin(r, 1
2 ) . (149)

The error rate (149) stands in very good agreement with numerical simu-
lations on artificial Gaussian features generated using the model specifica-
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tion (142), see Fig. 15. Two observations can further be made on the decay
rate (149). First, the rate is as expected an increasing function of α (low-
dimensionality of the features) and r (smoothness of the target f ⋆). Second,
for a source r > 1/2 (corresponding to a target f ⋆ ∈H ), the rate saturates,
suggesting that all functions in H are all equally easy to classify, while for
rougher target f ⋆ ∈ L2(X )\H the specific roughness of the target function,
as captured by its source coefficient r, matters and conditions the rate of
decay of the error.

Finally, we refer to the Appendix of (Cui et al., 2023c) for a discussion the
more general case where the label distribution (135) includes data noise, and
show that the rates display a crossover from the noiseless value (149) to a
noisy value, much like what was reported for kernel ridge regression (Cui
et al., 2021).

For SVM and ridge
classification on
MNIST, two rates are
observed in succession
with the sample
complexity, like for
KRR (see Chapter 4).
The noisy rate seems
to be α/1+α.

5.2.3 comparison to classical rates

To the best of the authors’ knowledge, there currently exists little work ad-
dressing the error rates for datasets satisfying source and capacity conditions
(141). The closest result is the worst-case bound of (Steinwart et al., 2008)
for SVM classification, which can be adapted to the present setting provided
f ⋆ ∈H (r > 1/2). This yields an upper bound of min (1/2, α/(3+α)) for the
error rate for max-margin classification, which is always slower than (149).
This rate (Steinwart et al., 2008) is plotted for comparison in Fig. 15 against
numerical simulations and is visibly off, failing to capture the learning curves.
It is to be expected that the worst case rates will be loose when compared to
rate that assume a specific data distribution. What makes our result inter-
esting is the comparison with the more commonly studied ridge regression
where, as discussed already in the introduction, the worst case rates actually
match those derived for Gaussian data, see (Cui et al., 2021) and the corre-
sponding discussion in Chapter 4.

Importantly, the rates from (Steinwart et al., 2008) only hold for capacity
r > 1/2, while real datasets are typically characterized by sources r < 1/2 (see
for instance Fig. 18). The present work therefore fills an important gap in
the literature in providing rates (149) which accurately capture the learning
curves of datasets satisfying source and capacity conditions. Also note that
while (Vecchia et al., 2021) report α/(1+α) rates under Gaussianity assump-
tions, they rely on very stringent assumptions which are too strong and
unfulfilled in our setting.
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5.3 RIDGE CLASS I F ICAT ION

5.3.1 self-consistent eqations

Another standard classification method is the ridge classifier, which corre-
sponds to minimizing

R̂n(w) =
1
n

n

∑
µ=1

(
yµ −w⊤ψ(xµ)

)2
+λw⊤w. (150)

As previously discussed in section 5.1, we consider a decaying regularization
λ = n−ℓ. The self-consistent equations characterizing the quantities (q,m),
read for the ridge risk (150)
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(151)

Like (147), eqs. (151) have been formally proven in the proportional n, p→
∞, n/p = O(1) limit in (Loureiro et al., 2021b), but are expected to hold
also in the present n≪ p = ∞ setting (Cui et al., 2021; Jin et al., 2021). Note
that comparing to (147), eqs. (151) correspond to a constant student/teacher
norm ratio r̂1 = 2/(πρ) and to a simple r̂2 = 1+q−2m

√
2/(πρ). r̂2 moreover

admits a very intuitive interpretation as the prediction mean squared error
(MSE) between the true label y = sign(θ ⋆⊤ψ(x)) and the pre-activation
linear predictor ŵ⊤ψ(x), i.e. r̂2 = Eψ(x)

(
sign(θ ⋆⊤ψ(x))−ŵ⊤ψ(x)

)2 .

5.3.2 decay rates for ridge classification

Similarly to (Bordelon et al., 2020; Cui et al., 2021), an analysis of the eqs. (151)
reveals that, depending on how the rate of decay ℓ of the regularization
compares to the capacity α , two regimes (called effectively regularized and
effectively un-regularized in Chapter 4 in the context of KRR) can be found:

Effectively regularized regime – ℓ≤ α . In this regime, an analysis of
the corrections to the self-overlap q and magnetization m shows that the
misclassification error scales like

εg ∼ n−
1
2 min(2ℓmin(r,1), α−ℓ

α ). (152)
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Figure 16: Misclassification error εg for ridge classification on synthetic Gaussian
features, as specified in (142), for different source/capacity coefficients
α ,r, in the effectively regularized regime ℓ≤ α (top) and unregularized
regime ℓ > α (bottom). In blue, the solution of the eqs. (147) used in
the characterization (143) for the misclassification error, using the GCM
package (Loureiro et al., 2021b). The dimension p was cut-off at 104. Red
dots corresponds to simulations averaged over 40 instances, for p = 104.
The green dashed lines indicate the power-laws (152) (top) and (153)
(bottom) derived in this work. The slight increase of the error for larger
n in the unregularized regime (bottom) is due to finite size effects of the
simulations ran at p = 104 < ∞. Physically, it corresponds to the onset of
the ascent preceding the second descent that is present for finite p.

The rate (152) compares very well to numerical simulations, see Fig. 16. Note
that the saturation for ridge happens for r = 1, rather than r = 1/2 as for
max-margin classification (see discussion in section 5.2): very smooth targets
f ⋆ characterized by a source r ≥ 1 are all equally easily classified by ridge.
For rougher teachers f ⋆ characterized by r ≤ 1 however, the rate of decay
of the error (152) depends on the specific roughness of the target, even if, in
contrast to max-margin, the latter belongs to H (r > 1/2). Two important
observations should further be made on the rates (152):

• If the regularization remains small (fast decayα >ℓ> α/(1+ 2αmin(r,1))),
the decay (152) is determined only by the data capacity α , while the
source r plays no role. As a matter of fact, with insufficient regular-
ization, the limiting factor to the learning is the tendency to overfit,
which depends on the effective dimension of the data as captured by
the capacity α .

• For larger regularizations (slow decays ℓ < α/(1+ 2αmin(r,1))), the limit-
ing factor becomes the complexity of the teacher θ ⋆, as captured by
the source r.
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Effectively un-regularized regime – ℓ >α . The error plateaus and stays
of order 1:

εg = O(1). (153)

This pleateau actually corresponds to the first plateau in a double descent
curve, with the second descent never happening since p = ∞. Intuitively, this
phenomenon is attributable to the ridge classifier overfitting the labels using
the small-variance directions of the data (142).

Interestingly, all the rates (153) and (152) correspond exactly (up to a factor
1/2) to those reported in (Cui et al., 2021) for the MSE of ridge regression,
where they are respectively called the red, blue and orange exponents. Notably,
the plateau (153) at low regularizations and the (α− ℓ)/α exponent in (152) only
appeared in (Cui et al., 2021) for noisy cases in which the labels are corrupted
by an additive noise. The fact that they hold in the present noiseless study
very temptingly suggests that model mis-specification (trying to interpolate
binary labels using a linear model) effectively plays the role of a large noise.

5.3.3 optimal rates

Optimally regularized ridge classification In practice, the strength of
the regularization λ is a tunable parameter. A natural question to ask is then
the one of the asymptotically optimal regularization, that is the regularization
decay rate ℓ⋆ leading to fastest decay rates for the misclassification error.
From the expressions of (152) (which hold provided ℓ < α) and (153) (which
holds provided ℓ > α), the value of ℓ maximizing the error rate is found to
be

ℓ⋆ =
α

1+ 2αmin(r,1)
, (154)

and the corresponding error rate for ε⋆
g = εg(λ ⋆ = n−ℓ

⋆
) is

ε
⋆
g ∼ n−

αmin(r,1)
1+2αmin(r,1) , (155)

see the red dashed lines in Fig. 17. Coincidentally, the optimal rate (155) is
up to a factor 1/2 identical to the classical optimal rate known for the rather
distinct problem of the MSE of kernel ridge regression on noisy data (Capon-
netto et al., 2005; Caponnetto et al., 2007). Like the max-margin exponent
(149), the optimal error rate for ridge (155) is an increasing function of both
the capacity α and the source r, i.e. of the easiness of the learning task.
Note that in contrast to max-margin classification which is insensitive to the
specifics of the target function f ⋆, provided it is in H , ridge is sensitive to
the source (smoothness) r of f ⋆ up to r = 1.
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Figure 17: (red) Misclassification error εg for ridge classification on synthetic Gaus-
sian features, as specified in (142), for different source/capacity coefficients
α ,r, for optimal regularization λ ⋆. The dimension p was cut-off at 104 and
the regularization λ numerically tuned to minimize the error εg for avery
n. Red dots correspond to simulations averaged over 40 instances, for
p = 104. Optimization over λ was performed using cross validation, with
the help of the python scikit-learn GridSearchCV package.
The red dashed line represents the power-law (155). In blue, the learning
curves for max-margin for the same data-set are plotted for reference,
along the corresponding power law (149) (blue) and the loose classical
min (1/2, α/(3+α)) rate (Steinwart et al., 2008) (light blue), see Section 5.2.

Comparison to max-margin A comparison of the max-margin rate
aSVM = αmin(r, 1

2 )/(1+αmin(r, 1
2 )) (149) and the optimal ridge exponent ar =

αmin(r,1)/(1+ 2αmin(r,1)) (155) reveals that for any α > 1,r ≥ 0, aSVM−ar > 0.
In other words, the margin-maximizing SVM displays faster rates than the
ridge classifier for the class of data studied (142), see Fig. 17.

We finally briefly comment on support vector proliferation. (Muthukumar
et al., 2021; Hsu et al., 2020; Ardeshir et al., 2021) showed that in some settings
almost every training sample in D becomes a support vector for the SVM. In
such settings, the estimators ŵ (and hence the error εg) consequently coincide
for the ridge classifier and the margin-maximizing SVM. In the present setting
however, the result aSVM−ar > 0 establishes that for features with a power-
law decaying spectrum (142), there is no such support vector proliferation.
Note that this result does not follow immediately fromTheorem 3 in (Ardeshir
et al., 2021). In fact, the spiked covariance (142), with only a small number of
important (large variance) directions and a tail of unimportant (low-variance)
directions does effectively not offer enough overparametrization (Bartlett
et al., 2020b; Hsu et al., 2020) for support vector proliferation, and the support
consists only of the subset of the training set with weakest alignment with
the spike.
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5.4 REMARKS FOR REAL DATA- SETS
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Figure 18: Dots: Misclassification error εg of kernel classification on CIFAR 10 with
a polynomial kernel (top left) and an RBF kernel (top right), on Fashion
MNIST with an RBF kernel (bottom left), onMNIST with an RBF kernel (bot-
tom right), for max-margin SVM (blue) and optimally regularized ridge clas-
sification (red), using respectively the python scikit-learn SVC
and KernelRidge packages. Dashed lines: Theoretical decay rates for
the error εg (149) (blue) (155) (red), computed from empirically estimated
capacity α and source r coefficients (see section (5.4) for details). The
measure coefficients are summarized in Table 2.

The CIFAR 10 dataset.The source and capacity condition (142) provide a simple framework to
study a large class of structured data-sets. While idealized, we observe, like in
Chapter 4, that many real data-sets seem to fall under this category of data-
sets, and hence display learning curves which are to a good degree described
by the rates (149) for SVM and (155) for ridge classification. We present here
three examples of such data-sets : a data-set of 104 randomly sampled CIFAR
10 (Krizhevsky et al., 2009) images of animals (labelled +1) and means of
transport (labelled −1), a data-set of 14000 FashionMNIST (Xiao et al., 2017)
images of t-shirts (labelled +1) and coats (labelled −1), and a data-set of
14702 MNIST (LeCun et al., 1998a) images of 8s (labelled+1) and 1s (labelled
−1). On the one hand, the learning curves for max-margin classification and
optimally regularized ridge classification were obtained using the python
scikit-learn SVC, KernelRidge packages. On the other hand, the
spectrum {ωk}k of the data covariance Σ in feature space was computed, and
a teacher θ ⋆ providing perfect classification of the data-set was fitted using
margin-maximizing SVM. Then, the capacity and source coefficients α , r (142)
were estimated for the data-set by fitting {ωk}k and {θ ⋆

k }k by power laws,
and the theoretical rates (149) and (155) computed therefrom. The results of
the simulations are presented in Figure 18 and compared to the theoretical
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Dataset Kernel α r aSVM ar

CIFAR 10 polynomial 1.51 0.07 0.095 0.086
CIFAR 10 RBF 1.005 0.07 0.067 0.063
Fashion
MNIST

RBF 1.72 0.23 0.28 0.22

MNIST RBF 1.65 0.39 0.39 0.28

Table 2: Values of the source and capacity coefficients (141) as estimated from the
data sets, and the corresponding theoretical error rates for SVM (149) and
ridge (155).

rates (149)(155) computed from the empirically evaluated source and capacity
coefficients for a RBF kernel and a polynomial kernel of degree 5, with overall
very good agreement. We do not compare here with the worst case bounds
because the observed values of r < 1/2 in which case we remind the known
results do not apply.

5.5 CONCLUS ION

We compute the generalization error rates as a function of the source and
capacity coefficients for two standard kernel classification methods, margin-
maximizing SVM and ridge classification, and show that SVM classification
consistently displays faster rates. Our results establish that known worst-
case upper bound rates for SVM classification fail to tightly capture the rates
of the class of data described by source/capacity conditions. We illustrate
empirically that a number of real data-sets fall under this class, and display
error rates which are to a very good degree described by the ones derived in
this work.



Part III

MULT I - LAYER NETWORKS



OUTL INE AND
MOTIVAT IONS

Part II explored the effect of the structure of the features on learning. In
daily DL practice, these features are most often learned and extracted by DNN
architectures, which have proven a versatile and powerful framework to
learn informative representations of data, from data. In the simplest instance
of a FNN, these features are shaped by the successive propagation of the input
data through the intermediate layers of the network, as it gets processed
at each layer by structured weights and non-linear transformations. To be
able to leverage on the insights of Part II, one thus needs to understand how
the structure of the features is mathematically related to the structure of
the DNN weights. On the other hand, the definition of the trained weights
as the minimizers of a high-dimensional, non-convex and non-linear ERM
optimization problem renders their theoretical characterization considerably
challenging.

From top to bottom:
The GLM, the
committee machine,
the extensive-width
network – object of
Part III–, and the
infinite-width
network, for depth
L = 2.

As of the end of the past decade, a large majority of exact asymptotic
studies – e.g. (Maillard et al., 2020a; Barbier et al., 2019b; Aubin et al., 2020a;
Zdeborová et al., 2016; Seung et al., 1992; Sompolinsky et al., 1990; Gardner
et al., 1989)– addressed GLMs with no hidden layer, or narrow two-layer
networks with a small od(1) number of hidden units (Aubin et al., 2018b;
Schwarze, 1993). At the other end of the spectrum, DNNs with hidden layers
of infinite width constitute another theoretically rather well-understood limit,
thanks to their connection to kernel methods (Neal, 1996b; Williams, 1996b;
Jacot et al., 2018b; Geiger et al., 2019; Chizat et al., 2018). However, due to
their proximity with (generalized) linear methods and consequently rather
limited expressivity, these models do not suffice to build an in-depth theoreti-
cal understanding of learning in DNNs. In particular, an investigation of finite
– but not narrow– width DNNs is crucial. A particularly natural such limit is
the extensive-width regime, corresponding to FNNs with widths p,d = Θn(n)
comparable to the number of samples. These models should allow to probe
the behaviour of overparametrized networks, while not reducing to a simple
kernel limit.

Part III presents contributions to the analysis of deep (multilayer) FNNs in
the extensive-width limit, starting from dRF networks with trainable readout
and otherwise frozen random weights (Chapters 6 and 7), then networks
with trainable intermediate weights (Chapters 8 and 9).

97
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untrained networks

Recent advances have been made in the extensive-width regime for shallow
RFs, corresponding to two-layer FNNs with a frozen, unstructured first layer
weight matrix. The learning of such networks has been sharply characterized
in theoretically controlled settings in a stream of works (Gerace et al., 2020b;
Hu et al., 2022b; Mei et al., 2022d; Goldt et al., 2020c; Dhifallah et al., 2020).
In particular, these analyses leverage the key insight that, as Gaussian inputs
xxx are mixed by the random, frozen first layer weights, they propagate into
features ϕ(xxx) whose projection at readout retains asymptotically Gaussian
statistics due to (a variant of) the Central Limit Theorem (CLT). This univer-
sality notably implies that, in terms of many learning metrics of interest,
the non-linear RF is equivalent to a noisy, linear network with matching
architecture. This equivalent view makes it clear that RFs can only implement
linear methods in such regimes.

The first subpart extends this line of work to multilayer architectures.
Chapter 6 addresses like these previous works the case of unstructured,
isotropic weights, and evidences the presence of a similar Gaussian universal-
ity. It shows how, strikingly, a deep, non-linear dRF is equivalent to a shallow,
linear network. This equivalent view offers a bridge between deep architec-
tures and conceptually easier linear methods, and yields insights into how the
architectural design of the former translates into effective biases for the latter.

Naturally, unstructured dRFs offer a model of limited realism for DNNs,
whose weights display non-trivial structure after training. Chapter 7 partly
palliates to this shortcoming, by considering random network ensembles
with row-wise structured Gaussian weights, which were empirically found
in (Guth et al., 2023) to offer a good proxy for trained networks in a number
of instances. Chapter 7 provides a sharp asymptotic characterization of the dRFs with row-wise

colored Gaussian
weights were called
Gaussian rainbow
networks in (Guth
et al., 2023)

learning of such colored dRF models in the extensive-width limit, and shows
how this characterization can capture the learning curves of some DNNs
trained with gradient-based methods, provided the weights statistics are
matched. In this sense, Chapter 7 can be viewed as a refinement of Chapter 3,
as it builds an effective theory of learning in DNNs taking as a starting point
the weights –rather than the features– statistics.

bayesian networks
Bayes-optimal means
that the priors used in
the Bayesian learning
correspond to the
ground-truth prior
associated with the
ensemble the target is
sampled from.

The first two Chapters 6 and 7 addressed the learning of the readout weights
of untrained DNNs, namely dRF models. The second subpart of Part III goes a
step further to analyze DNNs with trained intermediary weights. Chapter 8
first considers the problem of learning a target given by a dRF function, in
the framework of Bayes-optimal Bayesian learning, in the extensive-width
regime. Strikingly, a form of Gaussian universality holds also when the
weights are thus trained, and the Bayes-optimal test error of the dRF target
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coincides with that of its equivalent single-layer GLM introduced in Chap-
ters 6 and 7. In particular, this implies that in such cases linear methods
are information-theoretically optimal. Chapter 8 finally provides empirical
evidence that this is no longer true in more data-intensive regimes n≫ d,
where gradient-trained DNNs manage to perfectly learn dRF targets, far out-
performing linear methods.

networks after one gradient step

The previous Chapters evidenced that a number of settings in the extensive-
width limit fall under the umbrella of Gaussian universality – where DNNs
have effectively linear, thus scarce, expressivity. Informally, the presence of
Gaussian universality signals that the weights are not sufficiently structured
to implement informative features. While this is naturally the case for the
random weights of (d)RF models (Chapters 6 and 6), Chapter 8 shows that
universality can also hold when weights are learnt. When then can feature
learning be observed in the extensive-width regime? One such setting is
when the first layer weights of a two-layer FNN are trained with a single,
but importantly large gradient step, on a GLM target. This constitutes the
object of Chapter 9. After one gradient step, the weights develop a large
spike aligned with the target weights, which allows the network to express
non-linear functions in the direction of the spike, thereby breaking the curse
of Gaussian universality (Ba et al., 2022a; Moniri et al., 2023; Cui et al., 2024c).
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RANDOM FEATURES









6
DEEP RANDOM FEATURES

Despite the incredible practical progress in the applications of deep neural
networks to almost all fields of knowledge, our current theoretical under-
standing thereof is still to a large extent incomplete. Recent progress on
the theoretical front stemmed from the investigation of simplified settings,
which despite their limitations are often able to capture some of the key
properties of "real life" neural networks. A notable example is the recent
stream of works on RF, originally introduced by (Rahimi et al., 2007a) as a
computationally efficient approximation technique for kernel methods, but
more recently studied as a surrogate model for two-layers neural networks in
the lazy regime (Chizat et al., 2019c; Pennington et al., 2019; Mei et al., 2019c;
Gerace et al., 2020a). RFs are a particular instance of random neural networks,
whose statistical properties have been investigated in a sizeable body of
works (Lee et al., 2018b; G. Matthews et al., 2018; Fan et al., 2020; Zavatone-
Veth et al., 2021; Noci et al., 2021). The problem of training the readout layer
of such networks has been addressed in the shallow (one hidden layer) case
by (Mei et al., 2019c; Gerace et al., 2020a), who provide sharp asymptotic
characterizations for the test error. A similar study in the generic deep case is,
however, still missing. In this manuscript, we bridge this gap by considering
the problem of learning the last layer of a deep, fully-connected random
neural network, hereafter referred to as the dRF model. More precisely, our
main contributions in this manuscript are:

• In 6.2, we state Theorem 6.2.4, which proves an asymptotic determinis-
tic equivalent for the traces of the product of deterministic matrices
with both conjugate kernel and sample covariance matrix of the layer-
wise post-activations.

• As a consequence of Thm. 6.2.4, in 6.3 we derive a sharp asymptotic
formula for the test error of the dRF model in the particular case where
the target and learner networks share the same intermediate layers,
and when the readout layer is trained with the squared loss. This
result establishes the Gaussian equivalence of the test error for ridge
regression in this setting.

• Finally, we conjecture (and provide strong numerical evidence for)
the Gaussian universality of the dRF model for general convex losses,
and generic target/learner network architectures. More specifically,
we provide exact asymptotic formulas for the test error that leverage
recent progress in high-dimensional statistics (Loureiro et al., 2021b)
and a closed-form formula for the population covariance of network
activations appearing in (Cui et al., 2023a). These formulas show that in
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terms of second-order statistics, the dRF is equivalent to a linear network
with noisy layers. We discuss how this effective noise translates into a
depth-induced implicit regularization in 6.4.

related work

RF were first introduced by (Rahimi et al., 2007a). The asymptotic spectral
density of the single-layer conjugate kernel was characterized in (Liao et al.,
2018; Pennington et al., 2019; Benigni et al., 2021). Sharp asymptotics for the
test error of the RFs model appeared in (Mei et al., 2019c; Mei et al., 2022b)
for ridge regression, (Gerace et al., 2020a; Dhifallah et al., 2022) for general
convex losses and (Liang et al., 2022; Bosch et al., 2022) for other penalties.
The implicit regularization of RFs was discussed in (Jacot et al., 2020a). The
RFs model has been studied in many different contexts as a proxy for un-
derstanding overparametrisation, e.g. in uncertainty quantification (Clarté
et al., 2022), ensembling (Loureiro et al., 2022), bias-variance decomposition
(D’Ascoli et al., 2020; Adlam et al., 2020b), the training dynamics (Bodin et al.,
2021; Bordelon et al., 2022; Paquette et al., 2022), but also to highlight the
limitations of lazy training (Ghorbani et al., 2019c; Ghorbani et al., 2021;
Yehudai et al., 2019; Refinetti et al., 2021b);

Deep random networks were shown to converge to Gaussian processes in (Lee
et al., 2018b; G. Matthews et al., 2018). They were also studied in the context
of inference in (Manoel et al., 2017b; Gabrié et al., 2018b), and as generative
priors to inverse problems in (Aubin et al., 2019; Hand et al., 2018; Aubin et al.,
2020b). The distribution of outputs of deep random nets was characterized in
(Zavatone-Veth et al., 2021; Noci et al., 2021). Close to our work is (Fan et al.,
2020), which provide exact formulas for the asymptotic spectral density and
Stieltjes transform of the NTK and conjugate kernel in the proportional limit.
Our formulas for the sample and population covariance are complementary
to theirs. The test error of deep networks has been recently studied in (Li
et al., 2021b; Hanin et al., 2019; Pacelli et al., 2023; Zavatone-Veth et al., 2022a)
through the lens of Bayesian learning;

Gaussian universality of the test error for the RFs model was shown in (Mei
et al., 2019c), conjectured to hold for general losses in (Gerace et al., 2020a)
and was proven in (Goldt et al., 2021a; Hu et al., 2020). Gaussian universality
has also been shown to hold for other classes of features, such as two-layer
NTK (Montanari et al., 2022b). (Bordelon et al., 2022; Jacot et al., 2020a; Cui
et al., 2021; Cui et al., 2023c) further heuristically showed that Gaussian
universality is also observed for a large class of kernel features. (Loureiro
et al., 2021b) provided numerical evidence for Gaussian universality of more
general feature maps, including pre-trained deep features.

Deterministic equivalents of sample covariance matrices have first been es-
tablished in (Marchenko et al., 1967) for separable covariances, generalizing
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the seminal work (Marchenko et al., 1967) on the free convolution of spectra
in an anisotropic sense. More recently these results have been extended to
non-separable covariances, first in tracial (Bai et al., 2008c), and then also in
anisotropic sense (Louart et al., 2018a; Chouard, 2022).

Shortly after the first version of this work appeared on arXiv, we have learned
about (Bosch et al., 2023a) which overlaps with some parts of our work. In
particular, they show universality for strongly convex risks for the deep ran-
dom features model in the well-specified setting, proving part of Conjecture
6.3.2.

6.1 SET T ING & PREL IM INARIES

Let (xxxµ ,yµ) ∈Rd×Y , µ ∈ [n] := {1, · · · ,n}, denote some training data, with
xxxµ ∼ N (0d ,Ω0) independently and yµ = f⋆(xxxµ) a (potentially random)
target function. This work is concerned with characterising the learning
performance of generalised linear estimation:

ŷ = σ

(
θ⊤ϕ(xxx)√

k

)
, (156)

with dRF:

ϕ(xxx) := (ϕL ◦ϕL−1 ◦ · · · ◦ϕ2 ◦ϕ1)︸ ︷︷ ︸
L

(xxx), (157)

where the post-activations are given by:

ϕℓ(h) = σℓ

(
1√
kℓ−1

Wℓ ·h
)

, ℓ ∈ [L]. (158)

The weights {Wℓ ∈Rkℓ×kℓ−1}ℓ∈[L] are assumed to be independently drawn
Gaussian matrices with i.i.d. entries (Wℓ)i j ∼N (0,∆ℓ) ∀1≤ i≤ kℓ, 1≤ j≤
kℓ−1. To alleviate notation, sometimes it will be convenient to denote kL = k.
Only the readout weights θ ∈Rk in (156) are trained according to the usual
regularized ERM procedure:

θ̂ = argmin
θ∈Rk

[
n

∑
µ=1

ℓ(yµ ,θ⊤ϕ(xxxµ))+
λ

2
||θ ||2

]
, (159)

where ℓ : Y ×R→ R+ is a loss function, which we assume convex, and
λ > 0 sets the regularization strength.

To assess the training and test performances of the empirical risk minimizer
(159), we let g : Y ×R → R+ be any performance metric (e.g. the loss
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function itself or, in the case of classification, the probability ofmisclassifying),
and define the test error:

εg(θ̂ ) := E
[
g(y, θ̂⊤ϕ(xxx))

]
(160)

Our main goal in this work is to provide a sharp characterization of (160) in
the proportional asymptotic regime n,d,kℓ −→∞ at fixed O(1) ratios α := n/d

and γℓ := kℓ/d, for all layer index ℓ ∈ [L]. This requires a precise characteriza-
tion of the sample and population covariances and the Gram matrices of the
post-activations.

6.1.1 background on sample covariance
matrices

Marchenko-Pastur and free probability: We briefly introduce basic
nomenclature on sample covariance matrices. For a random vector x ∈Rd

with mean zero Ex = 0 and covariance Σ := Exx⊤ ∈Rd×d , we call the ma-
trix Σ := X X ⊤/n ∈Rd×d obtained from n independent copies x1, . . . ,xn

of x written in matrix form as X := (x1, . . . ,xn) the sample covariance ma-
trix corresponding to the population covariance matrix Σ. The Gram matrix
Σ := X ⊤X /n ∈ Rn×n has the same non-zero eigenvalues as the sample
covariance matrix but unrelated eigenvectors. The systematic mathematical
study of sample covariance and Gram matrices has a long history dating
back to (Wishart, 1928). While in the “classical” statistical limit n→ ∞ with
d being fixed the sample covariance matrix converges to the population
covariance matrix Σ→ Σ, in the proportional regime d ∼ n≫ 1 the non-
trivial asymptotic relationship between the spectra of Σ and Σ has first been
obtained in the seminal paper (Marchenko et al., 1967): the empirical spectral
density µ(Σ) := d−1

∑λ∈Spec(Σ) δλ of Σ is approximately equal to the free
multiplicative convolution of µ(Σ) and a Marchenko-Pastur distribution µc

MP
of aspect ratio c = d/n,

µ(Σ) ≈ µ(Σ)⊠µ
d/n
MP . (161)

Here the free multiplicative convolution µ ⊠ µc
MP may be defined as the

unique distribution ν whose Stieltjes transformm=mν(z) :=
∫
(x−z)−1 dν(x)

satisfies the scalar self-consistent equation

zm =
z

1− c− czm
mµ

(
z

1− c− czm

)
. (162)

The spectral asymptotics (161) originally were obtained in the case of Gaus-
sian X or, more generally, for separable correlations X =

√
ΣY for some

i.i.d. matrix Y ∈Rd×n. These results were later extended (Bai et al., 2008c) to
the general case under essentially optimal assumptions on concentrations of
quadratic forms x⊤Ax around their expectation TrAΣ.
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Deterministic equivalents: It has only been recognisedmuch later (Burda
et al., 2004; Knowles et al., 2017) that the relationship (161) between the asymp-
totic spectra of Σ and Σ,Σ actually extends to eigenvectors as well, and that
the resolvents G(z) := (Σ−z)−1, G(z) := (Σ−z)−1 are asymptotically equal
to deterministic equivalents

M(z) := −(Σm(z)+ Id)
−1

z
, M(z) := m(z)In, (163)

also in an anisotropic rather than just a tracial sense, highlighting that despite
the simple relationship between their averaged traces

m(z) := mµ(Σ)⊠µc
MP
(z), m(z) =

c−1
z

+ cm(z),

the sample covariance and Gram matrices carry rather different non-spectral
information. The anisoptric concentration of resolvents (or in physics ter-
minology, the self-averaging) has again first been obtained in the Gaussian
or separable cases (Burda et al., 2004; Knowles et al., 2017). The extension
to general sample covariance matrices was only achieved much more re-
cently (Louart et al., 2018a; Chouard, 2022) under Lipschitz concentration
assumptions. In this work we specifically use the deterministic equivalent for
sample covariance matrices with general covariance from (Chouard, 2022)
and extend it to cover Gram matrices.

Application to the deep random features model: In this work we
apply the general theory of anisotropic deterministic equivalents to the deep
random features model. As discussed in Section 6.3, to prove error universal-
ity even for the simple ridge regression case, it is not enough to only consider
the spectral convergence of the matrices, and a stronger result is warranted.
The application of non-linear activation functions makes the model neither
Gaussian nor separable, hence our analysis relies on the deterministic equiva-
lents from (Chouard, 2022) and our extension to Grammatrices, which appear
naturally in the explicit error derivations.

6.1.2 notation

We will adopt the following notation:

• For A ∈Rn×n we denote ⟨A⟩ := 1/nTr (A).

• For matrices A ∈Rn×m we denote the operator norm (with respect to
the ℓ2-vector norm) by ∥A∥, the max-norm by ∥A∥max := maxi j

∣∣Ai j
∣∣,

and the Frobenius norm by ∥A∥2
F := ∑i j

∣∣Ai j
∣∣2.

• For any distribution µ we denote the push-forward under the map
λ 7→ aλ + b by a⊗ µ ⊕ b in order to avoid confusion with e.g. the
convex combination aµ1 +(1−a)µ2 of measures µ1, µ2.
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• We say that a sequence of random variables (Xn)n is stochastically
dominated by another sequence (Yn)n if for all small ε > 0 and large
D < ∞ it holds that P(Xn > nεYn) ≤ n−D for large enough n, and in
this case write Xn ≺ Yn.

6.2 DETERMIN I ST IC EQU IVALENTS

Consider the sequence of variances defined by the recursion (recall that ∆ℓ

is the variance of the entries of Wℓ)

rℓ+1 = ∆ℓ+1Eξ∼N (0,rℓ)
[
σℓ(ξ )

2] (164)

with initial condition r1 := ∆1⟨Ω0⟩ and coefficients

κ
ℓ
1 =

1
rℓ

Eξ∼N (0,rℓ) [ξ σℓ(ξ )] ,

κ
ℓ
∗ =

√
Eξ∼N (0,rℓ) [σℓ(ξ )2]− rℓ

(
κℓ

1

)2. (165)

6.2.1 rigorous results on the multi-layer
sample covariance and gram matrices

Our main result on the anisotropic deterministic equivalent of dRFs follows
from iterating the following proposition.We consider a datamatrixX0 ∈Rd×n

whose Gram matrix concentrates as∥∥∥∥X⊤0 X0

d
− r1I

∥∥∥∥
max
≺ 1√

n
,
∥∥∥∥ X0√

d

∥∥∥∥≺ 1 (166)

for some positive constant r1. The Assumption (166) for instance is satisfied
if the columns xxx of X0 are independent with mean Exxx = 0 and covariance
Exxxxxx⊤ = Ω0 ∈ Rd×d (together with some mild assumptions on the fourth
moments), in which case r1 = ⟨Ω0⟩ is the normalised trace of the covariance.
We then consider X1 := σ1(W1X0/

√
d) assuming the entries of W1 ∈Rk1×d

are iid. N (0,1) elements, and σ1 satisfies Eξ∼N (0,1)σ1(
√

r1ξ ) = 0 in the
proportional n∼ d ∼ k1 regime. Upon changing σ1 there is no loss in gener-
ality in assuming ∆1 = 1 which we do for notational convenience.

Proposition 6.2.1 (Deterministic equivalent for RF). For any deterministic A
and Lipschitz-continuous activation function σ1, under the assumptions above,
we have that, for any z ∈ C\R+∣∣∣∣〈A

[(X⊤1 X1

k1
− z
)−1
−M(z)

]〉∣∣∣∣≺ ⟨AA∗⟩1/2

δ 9√n
,
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and ∣∣∣∣〈A
(X1X⊤1

k1
− z
)−1
〉
−⟨A⟩m(z)

∣∣∣∣≺ ⟨AA∗⟩1/2

δ 9√n
,

where δ := dist(z,R+),

−zM(z) :=
(

m(z)Σlin + I
)−1

,

Σlin := (κ1
1 )

2 X⊤0 X0

d
+(κ1

∗ )
2I,

(167)

and

m(z) := m
µ(Σlin)⊠µ

n/k1
MP

(z), m(z) =
n− k1

nz
+

n
k1

m(z).

Furthermore, Assumption (166) holds true with X0,r1 replaced by X1,r2, respec-
tively, and we have that dist(−1/m(z),R+) ≥ dist(z,R+).

Remark 6.2.2. Proposition relies on the recent work of Chouard (Chouard, 2022)
on deterministic equivalents of sample-covariance matrices. The main novelty
here is twofold. First, we extend Chouard’s result on the sample covariance
matrix X⊤1 X1 to the Gram matrix X1X⊤1 . Second, we replace the population
covariance matrix:

ΣX0 := Ew∼N (0,I)σ

(X⊤0 w√
d

)
σ

(w⊤X0√
d

)
≈ (κ1

1 )
2 X⊤0 X0

d
+(κ1

∗ )
2I =: Σlin.

Note that both extensions are crucial for our main result on the test error since
the latter naturally depends on the Gram matrix XlX⊤l and the iteration of 6.2.1
only becomes viable after linearisation.

Remark 6.2.3. The tracial version of 6.2.1 has appeared multiple times in the
literature, e.g. (Bai et al., 2008c). It implies that the spectrum µ1 of X⊤1 X1/k1 is
approximately given by the free multiplicative convolution

µ1 ≈ µ

(
(κ1

1 )
2 X⊤0 X0

d
+(κ1

∗ )
2I
)
⊠µ

n/k1
MP

=
(

µ

(
(κ1

1 )
2 X⊤0 X0

d

)
⊞δ(κ1

∗ )
2

)
⊠µ

n/k1
MP ,

(168)

where “≈” means that some metric between the two probability measures is
small, e.g. the Kolmogorov-Smirnov distance. Since the relation between con-
vergence of Stieltjes transforms and and metric convergence of measures is fairly
standard (see e.g. (Bai, 1993, Theorem 2.1) we refrain from elaborating on this
technical point. In case c ≤ 1, i.e. when µc

MP has no atom at 0, it was shown
in (Benaych-Georges, 2010) that√

µ ⊠µc
MP ⊞c

√
µ ′⊠µc

MP =
√
(µ ⊞µ ′)⊠µc

MP (169)
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which allows to simplify (168). Here ⊞c is the rectangular free convolution
which models the distribution of singular values of the addition of two free
rectangular random matrices, and the square-root is to be understood as the
push-forward of the square-root map. Applying (169) to (168) yields

√
µ1 ≈

(
κ

1
1 ⊗
√

µ0 ⊠µ
n/k1
MP

)
⊞n/k1 κ

1
∗ ⊗
√

µ
n/k1
MP , (170)

suggesting that the non-zero singular values of X1/
√

k can be modeled by the
non-zero singular values of the Gaussian equivalent model:

c′W ′X0 + c′′W ′′ (171)

for some suitably chosen constants c′,c′′ and independent Gaussian matrices
W ′,W ′′.

The last assertion of 6.2.1 allows to iterate over an arbitrary (but finite)
number of layers. Indeed, after one layer we have(X⊤1 X1

k1
− z1

)−1
≈
(
−m(z1)z1Σlin− z1

)−1

= c1

(X⊤0 X0

k0
− z0

)−1
,

(172)

using the definitions from 6.2.4 for c1,z0 below. Here “≈” should be under-
stood in the sense of 6.2.4.

Theorem 6.2.4. (Deterministic equivalent for dRF) For any deterministic A and
Lipschitz-continuous activation functionsσ1, . . . ,σℓ satisfyingEξ σm(

√
rmξ ) =

0 (with ξ ∼N (0,1)), under the Assumption (166) above, we have that for any
zℓ ∈ C\R+∣∣∣∣〈A

(X⊤ℓ Xℓ

kℓ
− zℓ

)−1
〉
− c1 · · ·cℓm0⟨A⟩

∣∣∣∣≺ ⟨AA∗⟩1/2

δ 9
ℓ

√
n

and that∣∣∣∣〈A
(XℓX⊤ℓ

kℓ
− zℓ

)−1
〉
−mℓ⟨A⟩

∣∣∣∣≺ ⟨AA∗⟩1/2

δ 9
ℓ

√
n

,

where δℓ := dist(zℓ,R+), and we recursively define

Σℓ−1
lin := (κℓ

1)
2 X⊤ℓ−1Xℓ−1

kℓ−1
+(κℓ

∗)
2I,

mℓ :=
n− kℓ

nzℓ
+

n
kℓ

m
µ(Σℓ−1

lin )⊠µ
n/kℓ
MP

(zℓ)

− 1
cℓ

:= mℓzℓ(κℓ
1)

2, zℓ−1 := cℓzℓ−
(

κℓ
∗

κℓ
1

)2

(173)
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for ℓ≥ 1 and finally

m0 :=
d−n
nz0

+
d2

n2 m
µ(Ω0)⊠µ

d/n
MP

(d
n

z0

)
. (174)

Remark 6.2.5. The same iteration argument and the tracial version of 6.2.4
has appeared before in (Fan et al., 2020). The main difference to our present
work is the anisotropic nature of our estimate which allows to test both sample
covariance, as well as Gram resolvent against arbitrary deterministic matrices.
As we will discuss in the next section, this is crucial in order to provide closed-
form asymptotics for the test error of the deep random features model.

6.2.2 closed-formed formula for the
population covariance

In Propostion 6.2.1 and Theorem 6.2.4 we iteratively considered X⊤ℓ Xℓ/kℓ as
a sample-covariance matrix with population covariance

EWℓ

X⊤ℓ Xℓ

kℓ
= Ewσℓ

(X⊤ℓ−1w
√

kℓ−1

)
σℓ

(w⊤Xℓ−1√
kℓ−1

)
≈ Σℓ

lin

and from this obtained formulas for the deterministic equivalents for both
X⊤ℓ Xℓ and XℓX⊤ℓ . A more natural approach would be to consider XℓX⊤ℓ /n as
a sample covariance matrix with population covariance

Ωℓ := EX0

XℓX⊤ℓ
n

, (175)

noting that the matrix Xℓ conditioned onW1, . . . ,Wℓ has independent columns.
A heuristic closed-form formula for the population covariance which is
conjectured to be exact was recently derived in (Cui et al., 2023a), which will
be the object of further discussion in Chapter 8. We now discuss this result.
Consider the sequence of matrices {Ωlin

ℓ }ℓ defined by the recursion

Ωlin
ℓ+1 = κ

(ℓ+1)2
1

Wℓ+1Ωlin
ℓ W⊤ℓ+1

kℓ
+κ

(ℓ+1)2
∗ Ikℓ+1 . (176)

with Ωlin
0 := Ω0. Informally, Ωlin

ℓ provides an asymptotic approximation
of Ωℓ in the sense that the normalized distance ||Ωlin

ℓ −Ωℓ||F/
√

d is of order
O(1/

√
d). Besides, the recursion (176) implies that Ωlin

ℓ can be expressed as a
sum of products of Gaussian matrices (and transposes thereof), and affords a
straightforward way to derive an analytical expression its asymptotic spectral
distribution.

It is an interesting question whether an approximate formula for the
population covariance matrix like the one in 176 can be obtained indirectly
via 6.2.4. There is extensive literature on this inverse problem, i.e. how to
infer spectral properties of the population covariance spectrum from the
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sample covariance spectrum, e.g. (El Karoui, 2008a) but we leave this avenue
to future work.

6.2.3 consistency of 6.2.4 and the
approximate population covariance

What we can note, however, is that 176 is consistent with 6.2.4. We demon-
strate this in case of equal dimensions n = d = k1 = · · ·= kℓ to avoid unnec-
essary technicalities due to the zero eigenvalues. We define

µℓ := µ

(X⊤ℓ Xℓ

kℓ

)
= µℓ := µ

(XℓX⊤ℓ
n

)
(177)

and recall that 6.2.1 implies that

µℓ ≈ ((κℓ
1)

2⊗µℓ−1⊕ (κℓ
∗)

2)⊠µMP. (178)

On the other hand (161) applied to the sample covariance matrix XℓX⊤ℓ /n
with population covariance Ωℓ ≈Ωlin

ℓ implies that

µℓ ≈ µ(Ωlin
ℓ )⊠µMP

= µ

(
(κℓ

1)
2WℓΩlin

ℓ−1W⊤ℓ
kℓ−1

+(κℓ
∗)

2Ikℓ

)
⊠µMP

≈
(
(κℓ

1)⊗µ(Ωlin
ℓ−1)⊠µMP⊕ (κℓ

∗)
2
)
⊠µMP

≈
(
(κℓ

1)⊗µℓ−1⊕ (κℓ
∗)

2
)
⊠µMP,

(179)

demonstrating that both approaches lead to the same recursion. Here in the
third step we applied (161) to the sample covariance matrix

√
Ωlin

ℓ−1W⊤ℓ , and
in the fourth step used the first approximation for ℓ replaced by ℓ−1.

6.3 GAUSS IAN UNIVERSAL I T Y OF THE
TEST ERROR

In the second part of this work, we discuss how the results on the asymptotic
spectrum of the empirical and population covariances of the features can be
used to provide sharp expressions for the test and training errors (160) when
the labels are generated by a deep random neural network:

f⋆(xxxµ) = σ
⋆

(
θ⊤⋆ ϕ⋆(xxxµ)√

k⋆

)
. (180)
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The feature map ϕ⋆ denotes the composition ϕ⋆
L⋆ ◦ ...◦ϕ⋆

1 of the L⋆+1 layers:

ϕ
⋆
ℓ (xxx) = σ

⋆
ℓ

(
1√
k⋆ℓ−1

W ⋆
ℓ · xxx

)
,

and θ⋆ ∈ Rk⋆ is the last layer weights. To alleviate notations, we denote
k⋆ := k⋆L. The weight matrices {W ⋆

ℓ }ℓ∈[L⋆] have i.i.d Gaussian entries sampled
from N (0,∆⋆

ℓ). Note that we do not require the sequence of activations
{σ⋆

ℓ }ℓ and widths {γ⋆ℓ := k⋆ℓ/d}ℓ to match with those of the learner dRF (157).
We address in succession

• The well-specified case where the target and learner networks share
the same intermediate layers (i.e. same architecture, activations and
weights) ϕ⋆

ℓ = ϕℓ, ℓ ∈ [L] with L⋆ = L, and the readout of the dRF is
trained using ridge regression. This is equivalent to the interesting
setting of ridge regression on a linear target, with features drawn
from a non-Gaussian distribution, resulting from the propagation of
Gaussian data through several non-linear layers.

• The general case where the target and learner possess generically
distinct architectures, activations and weights, and a generic convex
loss.

In both cases, we provide a sharp asymptotic characterization of the test
error. Furthermore, we establish the equality of the latter with the test er-
ror of an equivalent learning problem on Gaussian samples with matching
population covariance, thereby showing the Gaussian universality of the test
error. In the well-specified case, our results are rigorous, and make use of
the deterministic equivalent provided by Theorem 6.2.4. In the fully generic
case, we formulate a conjecture, which we strongly support with finite-size
numerical experiments.

6.3.1 well-specified case

We first establish the Gaussian universality of the test error of dRFs in the
matched setting ϕ = ϕ⋆, for a readout layer trained using a square loss. This
corresponds to Y = R, ℓ(y, ŷ) = 1/2(y− ŷ)2. This case is particularly simple
since the empirical risk minimization problem (159) admits the following
closed form solution:

θ̂ = 1/
√

k(λ Ik + 1/kXLX⊤L )−1XLy (181)

where we recall the reader XL ∈ Rk×n is the matrix obtained by stacking
the last layer features column-wise and y ∈Rn is the vector of labels. For
a given target function, computing the test error boils down to a random



6.3 gaussian universality of the test error 116

matrix theory problem depending on variations of the trace of deterministic
matrices times the resolvent of the features sample covariance matrices :

εg(θ̂ ) = ∆
(〈

ΩL

(
λ Ik + 1/kXLX⊤L

)−1
〉
+ 1
)

−λ (λ −∆)∂λ

〈
ΩL

(
λ Ik + 1/kXLX⊤L

)−1
〉

(182)

Applying Theorem 6.2.4 yields the following corollary:

Corollary 6.3.1 (Ridge universality of matched target). Let λ > 0. In the
asymptotic limit n,d,kℓ −→ ∞ with fixed O(1) ratios α = n/d, γℓ := kℓ/d and
under the assumptions of Theorem 6.2.4, the asymptotic test error of the ridge
estimator (181) on the target (180) with L = L∗ and ϕ∗ℓ = ϕℓ and additive
Gaussian noise with variance ∆ > 0 is given by:

εg(θ̂ )
k→∞−−−→ ε

⋆
g = ∆ (⟨ΩL⟩mL(−λ )+ 1)

−λ (λ −∆)⟨ΩL⟩∂λ mL(−λ ) (183)

where mL can be recursively computed from (173) respectively. In particular,
this implies Gaussian universality of the asymptotic mean-squared error in
this model, since (183) exactly agrees with the asymptotic test error of ridge
regression on Gaussian data xxx∼N (0d ,ΩL) derived in (Dobriban et al., 2018b).

Note that, while it is not needed to establish the Gaussian equivalence of
ridge dRF regression in the well-specified case, the trace of the population
covariance ⟨ΩL⟩ can be explicitly computed from the closed-form formula
(176).

6.3.2 general case

Despite the major progress stemming from the application of the random
matrix theory toolbox to learning problems, the application of the latter has
been mostly limited to quadratic problems where a closed-form expression
of the estimators, such as (181), are available. Proving universality results
akin to Corollary 6.3.1 beyond quadratic problems is a challenging task,
which has recently been the subject of intense investigation. In the context
of generalized linear estimation (159), universality of the test error for the
L = 1 random features model under a generic convex loss function was
heuristically studied in (Gerace et al., 2020a), where the authors have shown
that the asymptotic formula for the test error obtained under the Gaussian
design assumption perfectly agreed with finite-size simulations with the
true features. This Gaussian universality of the test error was later proven
by (Hu et al., 2020) by combining a Lindeberg interpolation scheme with a
generalized central limit theorem. Our goal in the following is to provide an
analogous contribution as (Gerace et al., 2020a) to the case of multi-layer
random features. This result builds on a rigorous, closed-form formula for
the asymptotic test error of misspecified generalized linear estimation in the
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high-dimensional limit considered here, which was derived in (Loureiro et al.,
2021b).

We show that in the high-dimensional limit the asymptotic test error
for the model introduced in 6.1 is in the Gaussian universality class. More
precisely, the test error of this model is asymptotically equivalent to the test
error of an equivalent GCM consisting of doing generalized linear estimation
on a dataset Ď = {vµ , y̌µ}µ∈[n] with labels y̌µ = f⋆(1/

√
k⋆θ⊤⋆ uµ) and jointly

Gaussian covariates:

(u,v) ∼N

(
ΨL⋆ ΦL⋆L

Φ⊤L⋆L ΩL

)
(184)

where we recall ΩL is the variance of the model features (175) and Φ ∈Rk⋆×k

and Ψ ∈Rk⋆×k⋆ are the covariances between the model and target features
and the target variance respectively:

ΦL⋆L := E
[
ϕ
⋆(xxx)ϕ(xxx)⊤

]
, ΨL⋆ := E

[
ϕ
⋆(xxx)ϕ⋆(xxx)⊤

]
(185)

This result adds to a stream of recent universality results in high-dimensional
linear estimation (Loureiro et al., 2021b; Montanari et al., 2022b; Gerace et al.,
2022), and generalizes the random features universality of (Mei et al., 2022b;
Goldt et al., 2021a; Hu et al., 2020) to L > 1. It can be summarized in the
following conjecture:

Conjecture 6.3.2. In the high-dimensional limit n,d,kℓ −→ ∞ at fixed O(1)
ratios α := n/d and γℓ := kℓ/d, the test error of the empirical risk minimizer
(159) trained on D = {(xxxµ ,yµ)}µ∈[n] with covariates xxxµ ∼N (0d ,Ω0) and
labels from (180) is equal to the one of a Gaussian covariate model (184) with
matching second moments Ψ,Φ,Ω as defined in (175) and (185).

We go a step further and provide a sharp asymptotic expression for the
test error. Construct recursively the sequence of matrices

Ψlin
ℓ+1 =

(
κ
⋆(ℓ+1)
1

)2 W ⋆
ℓ+1Ψlin

ℓ W ⋆⊤
ℓ+1

k⋆ℓ
+
(

κ
⋆(ℓ+1)
∗

)2
Ik⋆ℓ+1

(186)

with the initial condition Ωlin
0 = Ψlin

0 := Ω0. Further define

Φlin
L⋆L =

(
1

∏
ℓ=L⋆

κ⋆ℓ
1 W ⋆

ℓ√
k⋆ℓ

)
·Ω0 ·

(
L

∏
ℓ=1

κℓ
1W⊤ℓ√

kℓ

)
. (187)

The sequence {κ⋆ℓ
1 ,κ⋆ℓ

∗ }L⋆

ℓ=1 is defined by (165) with σ⋆
ℓ ,∆⋆

ℓ . In the special
case L⋆ = 0, which corresponds to a single-index target function, the first
product in Φlin

L⋆L should be replaced by Id . This particular target architecture
is also known, in the case L = 1, as the hidden manifold model (Goldt et al.,
2020c; Gerace et al., 2020a) and affords a stylized model for structured data.
The present paper generalizes these studies to arbitrary depths L. One is then
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Figure 19: Learning curves εg(α), where α := n/d is the sample complexity, for ridge
regression (σ⋆ = id, ℓ(y,z) = 1/2(y−z)2, and g(y, ŷ) = (y− ŷ)2). Red dots
correspond to numerical simulations on the learning model (157) (180),
averaged over 20 runs, in dimension d = 500. The solid line correspond
to sharp asymptotic characterization provided by conjecture 6.3.3. (left)
2-layers target (L⋆ = 1, σ⋆

1 = sign, γ⋆1 = 1), (right) single-layer target
(L⋆ = 0). Both are learnt with a 2−hidden layers RF (157) with σ1,2(x) =
tanh(2x) activation, widths γ1 = 8 and γ2 = 1, and regularization λ =
0.001.

equipped to formulate the following, stronger, conjecture:

Conjecture 6.3.3. In the same limit as in Conjecture 6.3.2, the test error
of the empirical risk minimizer (159) trained on D = {(xxxµ ,yµ)}µ∈[n] with
covariates xxxµ ∼ N (0d ,Ω0) and labels from (180) is equal to the one of a
Gaussian covariate model (184) with the matrices Ψlin

L⋆ ,Ωlin
L ,Φlin

L⋆L (176),(187).

Conjecture 6.3.3 allows to give a fully analytical sharp asymptotic charac-
terization of the test error. Importantly, observe that it also affords compact
closed-form formulae for the population covariances ΩL,ΦL⋆L,ΨL⋆ . In par-
ticular the spectrum of Ψlin

L⋆ ,Ωlin
L can be analytically computed and compares

excellently with empirical numerical simulations. Figs. 19 and 20 present the
resulting theoretical curve and contrasts them to numerical simulations in
dimensions d = 1000, revealing an excellent agreement.
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Figure 20: Learning curves εg(α), where α := n/d is the sample complexity, for
logistic regression (σ⋆ = sign, ℓ(y,z) = ln(1+ e−yz) and metric g(y, ŷ) =
1−Θ(yŷ)). Red dots correspond to numerical simulations on the learning
model (157) (180), averaged over 20 runs in dimension d = 1200. The
solid line correspond to sharp asymptotic characterization provided by
conjecture 6.3.3. (left) single-layer target (L⋆ = 0), (right) two-layer target
(L⋆ = 1, σ⋆

1 = erf, γ⋆1 = 1) (180) hidden sign layer. Both are learnt with a
depth L= 2 dRF (157) with activationσ1,2(x) = tanh(2x), widths γ1 = γ2 =
5/3, and regularization λ = 0.05 (top) and σ1,2(x) = erf(x) and λ = 0.1
(bottom).
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Figure 21: Learning curves for ridge regression on a 1-hidden layer target func-
tion (γ⋆1 = 2, σ⋆

1 = sign) using a L−hidden layers learner with widths
γ1 = ... = γL = 4 and σ1,...,L = tanh activation (left) or σ1,...,L(x) =
1.1× sign(x)×min(2, |x|) clipped linear activation (right), for depths
1 ≤ L ≤ 6. The regularization is λ = 0.001. Solid lines represent theo-
retical curves evaluated from the sharp characterization of conjecture
6.3.3, while numerical simulations, averaged over 50 runs, are indicated
by dots. The linear peak can be observed at α = 1 (recall that α := n/d is
the sample complexity), while the non-linear peak occurs for α = γ = 4
(D’Ascoli et al., 2021b). Despite sharing the same architecture, the use of
different activations induces different implicit regularizations, leading to
the linear (resp. non-linear) peak being further suppressed as the depth
increases for the clipped linear activation (resp. tanh activation).

6.4 DEPTH- INDUCED IMPL IC I T
REGULARIZAT ION

An informal yet extremely insightful takeaway from Conjecture 6.3.3, and in
particular the closed-form expressions (176), is that the activations in a deep
non-linear dRF (157) share the same population statistics as the activations in
a deep noisy linear network, with layers

ϕ
lin
ℓ (xxx) = κ

ℓ
1

W⊤ℓ xxx√
kℓ−1

+κ
ℓ
∗ξℓ, (188)
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where ξℓ ∼N (0kℓ , Ikℓ) is a Gaussian noise term. It is immediate to see that
(188) lead to the same recursion as (176). This observation, which was made
in the concomitant work (Cui et al., 2023a), essentially allows to equivalently
think of the problem of learning using a dRF (157) as one of learning with
linear noisy network. Indeed, Conjecture 6.3.3 essentially suggests that the
asymptotic test error depends on the second-order statistics of the last layer
acrivations, shared between the dRF and the equivalent linear network. Finally,
it is worthy to stress that, while the learner dRF is deterministic conditional on
the weights {Wℓ}, the equivalent linear network (188) is intrinsically stochas-
tic in nature due to the effective noise injection ξℓ at each layer. Statistical
common sense dictates that this effective noise injection has a regularizing
effect, by introducing some randomness in the learning, and helps mitigat-
ing overfitting. Since the effective noise is a product of the propagation
through a non-linear layer, this suggest that adding random non linear layers
induces an implicit regularization. We explore this intuition in this last section.

Observe first that the equivalent noisy linear network (188) reduces to a
simple shallow noisy linear model

ŷlin
θ (xxx) = σ

(
1√
k

θ
⊤ (AL · xxx+ ξL)

)
(189)

where the effective weight matrix A is

AL :=
L

∏
ℓ=1

(
κ
ℓ
1

Wℓ√
kℓ−1

)
and the effective noise ξL is Gaussian with covariance CL

ξ

CL
ξ
=

L−1

∑
ℓ0=1

(κℓ0
∗ )

2
(

L
∏

ℓ=ℓ0+1

κℓ1W⊤ℓ√
kℓ−1

)⊤(
L
∏

ℓ=ℓ0+1

κℓ1W⊤ℓ√
kℓ−1

)
+(κL

∗ )
2Ik.

The signal-plus-noise structure of the equivalent linear features (189) has
profound consequences on the level of the learning curves of the model (157):

• When α = 1, there are as many training samples as the dimension
of the data d− dimensional submanifold ALxxx, resulting in a standard
interpolation peak. The noise part ξL induces an implicit regularization
which helps mitigate the overfitting.

• As α = γL, the number of training samples matches the dimension
kL of the noise, and the noise part is used to interpolate the training
samples, resulting in another peak. This second peak is referred to as
the non-linear peak by (D’Ascoli et al., 2021b).

Therefore, there exists an interplay between the two peaks, with higher noise
ξL both helping to mitigate the linear peak, and aggravating the non-linear
peak. The depth of the network plays a role in that it modulates the am-
plitudes of the signal part and the noise part, depending on the activation
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through the recursions (165).

We give two illustrations of the regularization effect of depth in Fig. 21.
Two activations are considered : σa = tanh (for which the noise level, as
measure by Tr (C)L

ξ
decreases with depth) , and a very weakly non-linear

activation σb(x) = 1.1×sign(x)×min(2, |x|), corresponding to a linear func-
tion clipped between −2.2 and 2.2 (for which Tr (C)L

ξ
increases with depth).

Note σb is the simplest activation function for which the increase of the noise
level with depth was observed. Note that, because for σa the effective noise
decreases with depth, the linear peak is aggravated for deeper networks,
while the non-linear peak is simultaneously suppressed. Conversely, for σb,
additional layers introduce more noise and cause a higher non-linear peak,
while the induced implicit regularization mitigates the linear peak.

6.5 CONCLUS ION

We study the problem of learning a deep random network target function
by training the readout layer of a deep network, with frozen random hidden
layers (deep Random Features). We first prove an asymptotic deterministic
equivalent for the conjugate kernel and sample covariance of the activations
in a deep Gaussian random networks. This result is leveraged to establish a
sharp asymptotic characterization of the test error in the specific case where
the learner and teacher networks share the same intermediate layers, and
the readout is learnt using a ridge loss. This proves the Gaussian universality
of the test error of ridge regression on non-linear features corresponding
to the last layer activations. In the fully generic case, we conjecture a sharp
asymptotic formula for the test error, for fully general target/learner architec-
tures and convex loss. The formulas suggest that the dRF behaves like a linear
noisy network, characterized by an implicit regularization. We explore the
consequences of this equivalence on the interplay between the architecture
of the dRF and its generalization ability.





7
COLORED DEEP RANDOM
FEATURES

Deep neural networks are the backbone of most successful machine learn-
ing algorithms in the past decade. Despite their ubiquity, a firm theoretical
understanding of the very basic mechanism behind their capacity to adapt
to different types of data and generalise across different tasks remains, to a
large extent, elusive. For instance, what is the relationship between the in-
ductive bias introduced by the network architecture and the representations
learned from the data, and how does it correlate with generalisation? Albeit
the lack of a complete picture, insights can be found in recent empirical and
theoretical works.

On the theoretical side, a substantial fraction of the literature has focused
on the study of deep networks at initialisation, motivated by the lazy training
regime of large-width networks with standard scaling. Besides the mathemat-
ical convenience, the study of random networks at initialisation have proven
to be a valuable theoretical testbed – allowing in particular to capture some
empirically observed behaviour, such as the double-decent (Belkin et al., 2019)
and benign overfitting (Bartlett et al., 2020b) phenomena. As such, proxys for
networks at initialisation, such as the RF model (Rahimi et al., 2007a) have
thus been the object of considerable theoretical attention, with their learning
being asymptotically characterized in the two-layer case (Goldt et al., 2021a;
Goldt et al., 2020c; Gerace et al., 2020a; Hu et al., 2020; Dhifallah et al., 2022;
Mei et al., 2019c; Mei et al., 2022b) and the deep case (Zavatone-Veth et al.,
2022a; Schröder et al., 2023a; Bosch et al., 2023a; Zavatone-Veth et al., 2023).
With the exception of (Gerace et al., 2020a) (limited to two-layer networks)
and (Zavatone-Veth et al., 2023) (limited to linear networks), all the analyses
for non-linear dRFs assume unstructured random weights. In sharp contrast,
the weights of trained neural networks are fundamentally structured - re-
stricting the scope of these results to networks at initialization.

Indeed, an active research direction consists of empirically investigating
how the statistics of the weights in trained neural networks encode the
learned information, and how this translates to properties of the predictor,
such as inductive biases (Thamm et al., 2022; Martin et al., 2021). Of par-
ticular relevance to our work is a recent observation by (Guth et al., 2023)
that a random (but structured) network with the weights sampled from an
ensemble with matching statistics can retain a comparable performance to
the original trained neural networks. In particular, for some tasks it was
shown that second order statistics suffices – defining a Gaussian rainbow

124



colored deep random features 125

network ensemble.

Our goal in this manuscript is to provide an exact asymptotic characteri-
zation of the properties of Gaussian rainbow networks, i.e. deep, non-linear
networks with structured random weights. Ourmain contributions are:

• We derive a tight asymptotic characterization of the test error achieved
by performing ridge regressionwith Lipschitz-continuous featuremaps,
in the high-dimensional limit where the dimension of the features and
the number of samples grow at proportional rate. This class of feature
maps encompasses as a particular case Gaussian rainbow network
features.

• The asymptotic characterization is formulated in terms of the pop-
ulation covariance of the features. For Gaussian rainbow networks,
we explicit a closed-form expression of this covariance, formulated
as in the unstructured case in Chapter 6 as a simple linear recursion
depending on the weight matrices of each layer. These formulae extend
similar results of Chapters 6 and 8 for independent and unstructured
weights to the case of structured –and potentially correlated– weights.

• We empirically find that our theoretical characterization captures well
the learning curves of some networks trained by gradient descent in
the lazy regime.

related works

Random features — RFs were introduced in (Rahimi et al., 2007a) as a
computationally efficient way of approximating large kernel matrices. In the
shallow case, the asymptotic spectral density of the conjugate kernel was
derived in (Liao et al., 2018; Pennington et al., 2019; Benigni et al., 2021). The
test error was on the other hand characterized in (Mei et al., 2019c; Mei et al.,
2022b) for ridge regression, and extended to generic convex losses by (Gerace
et al., 2020a; Goldt et al., 2021a; Dhifallah et al., 2022), and in (Liang et al.,
2022; Loureiro et al., 2021b; Bosch et al., 2022) for other penalties. RFs have
been studied as a model for networks in the lazy regime, see e.g. (Ghorbani
et al., 2019c; Ghorbani et al., 2021; Yehudai et al., 2019; Refinetti et al., 2021b);

Deep RFs – Recent work have addressed the problem of extending these
results to deeper architectures. In the case of linear networks, a sharp char-
acterization of the test error is provided in (Zavatone-Veth et al., 2022a) for
the case of unstructured weights and (Zavatone-Veth et al., 2023) in the case
of structured weights. For non-linear RFs, (Schröder et al., 2023a) provides
deterministic equivalents for the sample covariance matrices, and (Schröder
et al., 2023a; Bosch et al., 2023a) provide a tight characterization of the test
error. Deep random networks have been also studied in the context of Gaus-
sian processes by (Lee et al., 2018b; G. Matthews et al., 2018), Bayesian neural
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networks in (Cohen et al., 2021; Naveh et al., 2021a; Li et al., 2021b; Hanin
et al., 2019; Pacelli et al., 2023; Zavatone-Veth et al., 2022a) and inference
in (Manoel et al., 2017b; Gabrié et al., 2018b; Aubin et al., 2019; Hand et al.,
2018; Aubin et al., 2020b). The recent work of (Guth et al., 2023) provides
empirical evidence that for a given trained neural network, a resampled
network from an ensemble with matching statistics (rainbow networks) might
achieve comparable generalization performance, thereby partly bridging the
gap between random networks and trained networks.

7.1 SET T ING

Consider a supervised learning task with training data (xi,yi)i∈[n]. In this
manuscript, we are interested in studying the statistics of linear predictors
fwww(xxx) = 1√

p www⊤ϕ(xxx) for a class of fixed feature maps ϕ : Rd → Rp and
weights www ∈Rp trained via empirical risk minimization:

ŵwwλ = min
www∈Rp ∑

i∈[n]
(yi− fwww(xxxi))

2 +λ ||www||2. (190)

Of particular interest is the generalization error:

Egen(ŵwwλ ) = E (y− fŵwwλ
(xxx))2 (191)

where the expectation is over a fresh sample from the same distribution as
the training data. More precisely, our results will hold under the following
assumptions.

Assumption 7.1.1 (Labels). We assume that the labels yi are generated by
another feature map ϕ∗ : Rd →Rk as

yi =
1√
k

θ
⊤
∗ ϕ∗(xxxi)+ εi, (192)

where ε ∈Rn is an additive noise vector (independent of the covariates xxxi) of
zero mean and covariance Σ := Eεε⊤, and θ∗ ∈Rk is a deterministic weight
vector.

Assumption 7.1.2 (Data & Features). We assume that the covariates xxxi are
independent and come from a distribution such that

• the feature maps ϕ ,ϕ∗ are centered in the sense Eϕ(xxxi) = 0, Eϕ∗(xxxi) =

0,

• the feature covariances

Ω := Eϕ(xxxi)ϕ(xxxi)
⊤ ∈Rp×p,

Ψ := Eϕ∗(xxxi)ϕ∗(xxxi)
⊤ ∈Rk×k,

Φ := Eϕ(xxxi)ϕ∗(xxxi)
⊤ ∈Rp×k, (193)

have uniformly bounded spectral norm.
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• scalar Lipschitz functions of the feature matrices

X := (ϕ(xxx1), . . . ,ϕ(xxxn)) ∈Rp×n,

Z := (ϕ∗(xxx1), . . . ,ϕ∗(xxxn)) ∈Rk×n (194)

are uniformly sub-Gaussian.

Assumption 7.1.3 (Proportional regime). The number of samples n and the
feature dimensions p,k are all large and comparable, see 7.2.1 later.

Remark 7.1.4. We formulated 7.1.2 as a joint assumption on the covariates
distribution and the feature maps. A conceptually simpler but less general
condition would be to assume that

(ii’) the covariates xxxi are Gaussian with bounded covariance Ω0 := Exxxixxx⊤i

(iii’) the feature maps ϕ ,ϕ∗ are Lipschitz-continuous

instead of 7.1.2.

The setting above defines a quite broad class of problems, and the results
that follow in Section 7.2 will hold under these generic assumptions. The
main class of feature maps we are interested in are deep structured feature
models.

Definition 7.1.5 (Deep structured feature model). For any L ∈N and di-
mensions d, p1, . . . , pL = p, let ϕ1, . . . ,ϕL : R→ R be Lipschitz-continuous
activation functions |ϕl(a)−ϕl(b)|≲ |a−b| applied entrywise, and let W1 ∈
Rp1×d ,W2 ∈Rp2×p1 , . . . be deterministicweightmatriceswith uniformly bounded
spectral norms, ∥Wl∥≲ 1. We then call

ϕ(xxx) := ϕL (WLϕL−1 (· · ·W2ϕ1 (W1xxx))) . (195)

a deep structured feature model.

Note that 195 defines a Lipschitz-continuousmap1 ϕ : Rd→Rp,ϕ∗ : Rd→
Rk and therefore if both ϕ ,ϕ∗ are deep structured feature models (with
distinct parameters in general), then 7.1.2 is satisfied whenever the feature
maps ϕ ,ϕ∗ are centered2 with respect to Gaussian covariates xxxi. As hinted in
the introduction we will be particularly interested in one sub-class of 7.1.5
known as Gaussian rainbow networks.

Definition 7.1.6 (Gaussian rainbow ensemble). Borrowing the terminol-
ogy of (Guth et al., 2023), we define a fully-connected, L-layer Gaussian rain-
bow network as a random variant of 7.1.5 where for each ℓ the hidden-layer
weights Wℓ = ZℓC1/2

ℓ are random matrices with Zℓ ∈ Rpℓ+1×pℓ having zero
mean and i.i.d. variance 1/pℓ Gaussian entries andCℓ ∈Rpℓ×pℓ being uniformly
bounded covariance matrices, which we allow to depend on previous layer
weights Z1, . . . ,Zl−1.

1 ∥ϕ(Wxxx)−ϕ(Wxxx′)∥2 = ∑i
∣∣ϕ(w⊤i xxx)−ϕ(w⊤i xxx′)

∣∣2 ≲ ∑i
∣∣w⊤i (xxx− xxx′)

∣∣2 = ∥W (xxx− xxx′)∥2 ≲

∥xxx− xxx′∥2

2 It is sufficent that e.g. φl is odd, and xxxi is centered.
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Note that Gaussian rainbow networks above can be seen as a generalization
of the deep random features model studied in (Schröder et al., 2023a; Bosch
et al., 2023a; Fan et al., 2020) –see Chapter 6 –, with the crucial difference
that the weights are structured.

notations

For squarematricesA∈Rn×n we denote the averaged trace by ⟨A⟩ := n−1 TrA,
and for rectangular matrices A ∈ Rn×m we denote the Frobenius norm
by ∥A∥2

F := ∑i j
∣∣ai j
∣∣2, and the operator norm by ∥A∥. For families of non-

negative random variables X(n),Y (n) we say that X is stochastically domi-
nated by Y , and write X ≺Y , if for all ε ,D it holds that P(X(n)≥ nεY (n))≤
n−D for n sufficiently large.

7.2 TEST ERROR OF L IP SCHI TZ
FEATURE MODELS

Under Assumptions 7.1.1 and 7.1.2 the generalization error from (191) is given
by

Egen(λ ) =
θ⊤∗ Ψθ∗

k
+

θ⊤∗ ZX⊤GΩGXZ⊤θ∗
kp2 +

n
p

〈
X⊤GΩGXΣ

p

〉
−2

θ⊤∗ Φ⊤GXZ⊤θ∗
kp

, (196)

in terms of the resolvent G = G(λ ) := (XX⊤/p+λ )−1.

Our main result is a rigorous asymptotic expression for (196). To that end
define, m(λ ) to be the unique solution to the equation

1
m(λ )

= λ +

〈
Ω
(

I +
n
p

m(λ )Ω
)−1
〉

, (197)

and define

M(λ ) =
(

λ +
n
p

λm(λ )Ω
)−1

(198)

which is the deterministic equivalent of the resolvent, M(λ )≈G(λ ), see 7.2.3
later. The fact that (197) admits a unique solution m(λ ) > 0 which is con-
tinuous in λ follows directly from continuity and monotonicity. Moreover,
from

0≤
〈

Ω
(

I +
n
p

mΩ
)−1
〉
≤min

{
⟨Ω⟩, rankΩ

n
1
m

}



7.2 test error of lipschitz feature models 129

we obtain the bounds

max

{
1

λ + ⟨Ω⟩
,
1− rankΩ

n
λ

}
≤ m(λ ) ≤ 1

λ
. (199)

We also remark that m(λ ) depends on Ω only through its eigenvalues
ω1, . . . ,ωp, while M(λ ) depends on the eigenvectors. The asymptotic ex-
pression (201) for the generalization error derived below depends on the
eigenvalues of Ω, the overlap of the eigenvectors of Ω with the eigenvectors
of Φ, and the overlap of the eigenvectors of Ψ,Φ with θ∗.
Theorem 7.2.1. Under 7.1.1, 7.1.2 and 7.1.3 for fixed λ > 0 we have the
asymptotics

Egen(λ ) = E rmt
gen (λ )+O

(
1√
n

)
, (200)

in the proportional n∼ k ∼ p regime, where

E rmt
gen (λ ) :=

1
k

θ
⊤
∗

Ψ− n
p mλ Φ(M+λM2)Φ⊤

1− n
p (λm)2⟨ΩMΩM⟩

θ∗

+ ⟨Σ⟩
(λm)2 n

p⟨MΩMΩ⟩
1− n

p (λm)2⟨ΩMΩM⟩
. (201)

In the general case of comparable parameters we have the asymptotics with a
worse error of

1√
min{n, p,k}

(
1+

max{n, p,k}
min{n, p,k}

)
.

Remark 7.2.2 (Relation to previous results). We focus on the misspecified case
as this presents the main novelty of the present work. In the wellspecified case
Z = X our model essentially reduces to linear regression with data distribution
x = ϕ(xxx). There has been extensive research on the generalization error of linear
regression, see e.g. in (Bach, 2023; Dobriban et al., 2018b; Bartlett et al., 2021;
Cheng et al., 2022) and the references therein.

1. We confirmConjecture 1 of (Loureiro et al., 2021b) in Chapter 3 under 7.1.2.
The expression for the error term in 7.2.1 matches the expression presented
in Chapter 3 for a GCMT-S model.

2. Independently and concurrently to the current work (Latourelle-Vigeant
et al., 2023) (partially confirming a conjecture made in (Louart et al.,
2018c)) obtained similar results under different assumptions. Most impor-
tantly (Latourelle-Vigeant et al., 2023) considers one-layer unstructured
random feature models and computes the empirical generalization error
for a deterministic data set, while we consider general Lipschitz features
of random data, and compute the generalization error.

3. In the unstructured random feature model (Mei et al., 2022b; Adlam et
al., 2020a) obtained an expression for the generalization error under the
assumption that the target model is linear or rotationally invariant.
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The novelty of 7.2.1 compared to many of the previous works is, besides
the level of generality, two-fold:

1. We obtain a deterministic equivalent for the generalization error in-
volving the population covariance Φ and the sample covariance XZ⊤

in the general misspecified setting.

2. Our deterministic equivalent is anisotropic, allowing to evaluate(196)
for fixed targets θ∗ and structured noise covariance Σ ̸= I.

Some of the previous rigorous results on the generalization error of ridge
regression have been limited to the well-specified case, X = Z, since in this
particular case the second term of(196) can be simplified to

XX⊤

p
GΩG

XX⊤

p
= (1−λG)Ω(1−λG). (202)

When computing deterministic equivalents for terms as GΩG, some previous
results have relied on the “trick” of differentiating a generalized resolvent
matrix G(λ ,λ ′) := (XX⊤/p+λ ′Ω+λ )−1 with respect to λ ′. Our approach
is more robust and not limited to expressions which can be written as certain
derivatives.

To illustrate 2, the conventional approach in the literature to approximating
e.g. the third term on the right hand side of (196) in the case Σ = I would be
to use the cyclicity of the trace to obtain

1
p2 TrX⊤GΩGX =

1
p

TrG
XX⊤

p
GΩ

= ⟨GΩ⟩−λ ⟨G2Ω⟩.
(203)

Then upon using (197) and ⟨GΩ⟩ ≈ ⟨MΩ⟩, the first term of 203 can be
approximated by 1/(λm(λ ))−1, while for the second term it can be argued
that this approximation also holds in derivative sense to obtain

⟨G2Ω⟩= − d
dλ
⟨GΩ⟩ ≈ − d

dλ

1
λm(λ )

=
λm′(λ )+m(λ )

(λm(λ ))2

By differentiating (197), solving for m′ and simplifying, it can be checked
that this result agrees with the second term of (201) in the special case Σ = I.
However, it is clear that any approach which only relies on scalar deter-
ministic equivalents is inherently limited in the type of expressions which
can be evaluated. Instead, our approach involving anisotropic deterministic
equivalents has no inherent limitation on the structure of the expressions to
be evaluated.

An alternative to evaluating rational expressions of X ,Z, commonly used
in similar contexts, is the technique of linear pencils (Adlam et al., 2020a;
Latourelle-Vigeant et al., 2023). The idea here is to represent rational func-
tions of X ,Z as blocks of inverses of larger random matrices which depend
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linearly X ,Z. The downside of linear pencils is that even for simple rational
expressions the linearizations become complicated, sometimes even requiring
the use of computer algebra software for the analysis3 In comparison we
believe that our approach is more direct and flexible.

7.2.1 proof of 7.2.1

The main steps and ingredients for the proof of 7.2.1 consist of the following:

concentration: As a first step we establish concentration estimates for
Lipschitz functions of X ,Z and its columns. A key aspect is the con-
centration of quadratic forms in the columns xi := ϕ(xxxi) of X :∣∣∣x⊤i Axi−Ex⊤i Axi

∣∣∣= ∣∣∣x⊤i Axi−TrΩA
∣∣∣≺ ∥A∥F

which follows from the Hanson-Wright inequality (Adamczak, 2015).
The concentration step is very similar to analagous considerations in
previous works (Chouard, 2022; Louart et al., 2018d) but we present
it for completeness. The main property used extensively in the subse-
quent analysis is that traces of resolvents with deterministic observ-
ables concentrate as

|⟨A[G(λ )−EG(λ )]⟩| ≺ ⟨|A|
2⟩1/2

nλ 3/2 . (204)

anisotropic marchenko-pastur law: As a second step we prove an
anisotropic Marchenko-Pastur law for the resolvent G, of the form:

Theorem 7.2.3. For arbitrary deterministic matrices A we have the
high-probability bound

|⟨(G(λ )−M(λ )A⟩| ≺ ⟨|A|
2⟩

nλ 3 , (205)

in the proportional n∼ p regime.

Remark 7.2.4. Tracial Marchenko-Pastur laws (case A = I above) have
a long history, going back to (Marchenko et al., 1967) in the isotropic case
Ω = I, (Silverstein, 1995) in the general case with separable covariance
x =
√

Ωz and (Bai et al., 2008a) under quadratic form concentration
assumption. Anisotropic Marchenko-Pastur laws under various conditions
and with varying precision have been proven e.g. in (Rubio et al., 2011;
Chouard, 2022; Louart et al., 2018c; Knowles et al., 2017).

3 For instance (Adlam et al., 2020a) used block matrices with up to 16×16 blocks in order to
evaluate the asymptotic test error.
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For the proof of 7.2.3 the resolvent G := (X⊤X/p+λ )−1 ∈Rn×n of
the Gram matrix X⊤X plays a key role. The main tool used in this step
are the commonly used leave-one-out identities, e.g.

Gxi = λGiiG−ixi, G−i :=
(
∑
j ̸=i

x jx⊤j
p

+λ

)−1
(206)

which allow to decouple the randomness due the i-th column from the
remaining randomness. Such identities are used repeatedly to derive
the approximation

EG≈
(n

p
λ ⟨EG⟩Ω+λ

)−1
(207)

in Frobenius norm, which, together with the relation 1− λ ⟨G⟩ =
p
n

(
1−λ ⟨G⟩

)
between the traces of G and G, yields a self-consistent

equation for ⟨G⟩. This self-consistent equation is an approximate ver-
sion of (197), justifying the definition of m. The stability of the self-
consistent equation then implies the averaged asymptotic equivalent

|m−⟨EG⟩|≲ 1
nλ 2 . (208)

and therefore by 207 finally

∥M−EG∥F ≲
1

n1/2λ 3 , (209)

which together with 204 implies 7.2.3.
Compared to most previous anisotropic deterministic equivalents as
in (Knowles et al., 2017) we measure the error of the approximation 205
with respect to the Frobenius of the observable A. As in the case of
unified local laws for Wigner matrices (Cipolloni et al., 2022) this idea
renders the separate handling of quadratic form bound unnecessary,
considerably streamlining the proof. To illustrate the difference note
that specializing A to be rank-one A = xy⊤ in

∣∣∣y⊤(G−M)x
∣∣∣= |Tr(G−M)A| ≺

 ∥A∥⟨|A|2⟩1/2

results in a trivial estimate ∥x∥∥y∥ in the case of the spectral norm,
and in the optimal estimate ∥x∥∥y∥/√p in the case of the Frobenius
norm.

anisotropic multi-resolvent eqivalents The main novelty of
the current work lies in an asymptotic evaluationof the expressions on
the right-hand-side of(196). A key property of the deterministic equiv-
alents is that the approximation is not invariant under multiplication.
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E.g. for the last term in(196) we have the approximations G≈M and
1
n XZ⊤ = 1

n ∑xiz⊤i ≈Φ, while for the product the correct deterministic
equivalent is

G
XZ⊤

n
≈ λmMΦ, (210)

i.e. the is an additional factor of mλ . In this case the additional factor
can be obtained from a direct application of the leave-one-out iden-
tity 206 to the product G XZ⊤

n , but the derivation of the multi-resolvent
equivalents requires more involved arguments. When expanding the
multi-resolvent expression ⟨GAGB⟩ we obtain an approximative self-
consistent equation of the form

⟨GAGB⟩ ≈⟨MAMB⟩

+
n
p
(mλ )2⟨MBMΩ⟩⟨GAGΩ⟩.

Using a stability analysis this yields a deterministic equivalent for the
special form ⟨GAGΩ⟩which then can be used for the general case. The
second term of(196) requires the most carefuly analysis due to the inter-
play of the multi-resolvent expression and the dependency among Z,X .

7.3 POP ULAT ION COVARIANCE FOR
RAINBOW NETWORKS

Theorem 7.2.1 characterizes the test error for learning using Lipschitz fea-
ture maps as a function of the three features population (cross-)covariances
Ω,Φ,Ψ. For the particular case where both the target and learner feature
maps are drawn from the Gaussian rainbow ensemble from 7.1.6, these popu-
lation covariances can be expressed in closed-form in terms of combinations
of products of the weights matrices. Consider two rainbow networks

ϕ(xxx) = ϕL(WLϕL−1(. . .ϕ1(W1xxx)))

ϕ∗(xxx) = ψL(VLψL−1(. . .ψ1(V1xxx)))
(211)

with depths L,L. The approach we introduce here is in theory capable of
obtaining linear or polynomial approximations to Ω,Φ,Ψ under very gen-
eral assumptions. However, for definiteness we focus on a class of correlated
rainbow networks in which, for all k ̸= j, the k-th row of Wℓ is independent
from the j-th row of Wℓ,Vℓ as this allows for particularly simple expressions
for the linearized covariances4. Note that we explicitly allow for weights to
be correlated across layers.

4 The identity matrices in 215 are a direct consequence of this assumption. In case of weight
matrices with varying row-norms or covariances across rows the resulting expression would
be considerably more complicated.
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Assumption 7.3.1 (Correlated rainbow networks). By symmetry we assume
without loss of generality L≤ L. Furthermore, we assume that

1. for ℓ≤ L≤ L all the internal widths pℓ of Wℓ,Vℓ agree,

2. for all ℓ≤ L, the dimensions scale proportionally, i.e. n∼ d ∼ pℓ,

3. for ℓ≤ L≤ L the rows wℓ,vℓ of Wℓ,Vℓ are mean-zero and i.i.d. with

Cℓ := pℓEwℓw⊤ℓ , Cℓ := pℓEvℓv⊤ℓ , Cℓ := pℓEwℓv⊤ℓ , (212)

4. for two (possibly identical) rows u,z, and for any matrix A, quadratic
forms admit concentration, with high probability (w.h.p).5

u⊤Az−Tr
(

AEzu⊤
)
≲ n−1/2, (213)

5. for all ℓ≤ L, operator norms of (cross-)covariance matrices admit uniform
bounds

∥Cℓ∥+ ∥Cℓ∥+ ∥Cℓ∥≲ 1. (214)

Under 7.3.1 the linearized population covariances can be defined recursively
as follows:

Definition 7.3.2 (Linearized population covariances). Define the sequence of
matrices Ωlin

ℓ ,Φlin
ℓ ,Ψlin

ℓ by the recursions

Ωlin
ℓ = (κ1

ℓ )
2WℓΩlin

ℓ−1W⊤ℓ +(κ∗ℓ )
2I (215)

Ψlin
ℓ = (κ̃1

ℓ )
2VℓΨlin

ℓ−1V⊤ℓ +(κ∗ℓ )
2I (216)

Φlin
ℓ = κ

1
ℓ κ̃

1
ℓWℓΦlin

ℓ−1V⊤ℓ +(κ∗ℓ )
2I, (217)

withΩlin
0 =Ψlin

0 =Φlin
0 =Ω0 the input covariance. The coefficients {κ1

ℓ , κ̃1
ℓ ,κ∗ℓ , κ̃∗ℓ }

are defined by the recursion

κ
1
ℓ := Eϕ

′
ℓ(Nℓ), κ

1
ℓ := Eψ

′
ℓ(Nℓ) (218)

and

κ
∗
ℓ =

√
E[ϕℓ(Nℓ)2]− rℓ(κ1

ℓ )
2

κ̃
∗
ℓ =

√
E[ψℓ(Nℓ)2]− r̃ℓ(κ̃1

ℓ )
2

κ
∗
ℓ =

√
E[ϕℓ(Nℓ)ψℓ(Nℓ)]− řℓκ1

ℓ κ1
ℓ ,

(219)

whereNℓ,Nℓ are jointlymean-zero GaussianwithEN2
ℓ = rℓ,EN2

ℓ = rℓ,ENℓNℓ =

rℓ, with

rℓ = Tr
[
CℓΩlin

ℓ−1
]
, rℓ = Tr

[
CℓΨlin

ℓ−1
]
, rℓ = Tr

[
C⊤ℓ Φlin

ℓ−1

]
.

5 This concentration holds in particular when rows u,z are Lipschitz concentrated with constant
O(n−1/2).
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Finally, for L̃≥ ℓ≥ L+ 1, define

Φlin
ℓ = κ

1
ℓ Φlin

ℓ−1W⊤ℓ , (220)

with still κ1
ℓ ,κ∗ℓ just as before, and Ψlin

ℓ with the same recursion (215).

Conjecture 7.3.3. The populations covariances Ω,Φ,Ψ involved in Theorem
7.2.1 can be asymptotically approximated with the last iterates of the linear
recursions of Definition 7.3.2, i.e.∥∥Ω−Ωlin

L

∥∥
F +

∥∥Ψ−Ψlin
L̃

∥∥
F +

∥∥Φ−Φlin
L̃

∥∥
F ≲ 1 (221)

Note that the linearization from 7.3.2 also provides good approximation to
the population covariances Ωℓ,Φℓ,Ψℓ of the post-activations at intermediate
layers ℓ. Themethod we use to rigorously derive the linearizations is in theory
applicable to any depths, however the estimates quickly become tedious. To
keep the present work at a manageable length we provide a rigorous proof
of concept only for the simplest multi-layer case.

Theorem 7.3.4. Under 7.3.1 with L = 1,L = 2 we have∥∥Ω1−Ωlin
1
∥∥

F +
∥∥Ψ1−Ψlin

1
∥∥

F +
∥∥Φ1−Φlin

1
∥∥

F ≲ 1∥∥Ψ2−Ψlin
2
∥∥

F +
∥∥Φ2−Φlin

2
∥∥

F ≲ 1

with high probability.

Remark 7.3.5 (Comparison). The approach we take here is somewhat different
from previous works (Schröder et al., 2023a; Fan et al., 2020; Chouard, 2023) on
(multi-layer) RF models. In these previous results, the deterministic equivalent
for the resolvent was obtained using primarily the randomness of the weights,
resulting in relatively stringent assumptions (Gaussianity and independence be-
tween layers). This layer-by-layer recursive approach resulted in a deterministic
equivalent for the resolvent which is consistent with a sample covariance ma-
trix with linearized population covariance. Here we take the direct approach of
considering feature models with arbitrary structured features, and then linearize
the population covariances in a separate step for RF.

7.3.1 proof of 7.3.4

WIn the proof, we crucially rely on the theory of Wiener chaos expansion
and Stein’s method (see (Nourdin et al., 2012)). Gaussian Wiener chaos is a
generalization of Hermite polynomial expansions, which previously have
been used for approximate linearization (Fan et al., 2020; Schröder et al.,
2023a) in similar contexts. The basic idea is to decompose random variables
F = F(xxx)which are functions of the Gaussian random vector xxx, into pairwise
uncorrelated components

F = EF + ∑
p≥1

Ip

(EDpF
p!

)
, (222)
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where Ip is a so called multiple integral (generalizing Hermite polynomials)
and Dp is the p-th Malliavin derivative. By applying this to the one-layer
quantities ϕ1(w⊤xxx),ψ1(u⊤xxx) we obtain, for instance

Eϕ1(w⊤xxx)ψ1(v⊤xxx)

= ∑
p≥1

1
p!

Eϕ
(p)
1 (w⊤xxx)Eψ

(p)
1 (u⊤xxx)⟨w,v⟩p,

(223)

which for independent w,v we can truncate after p = 1, giving rise to the
linearization.

For the multi-layer case we combine the chaos expansion with Stein’s
method in order to prove quantitative central limit theorems of the type

dW (F ,N) ≲ E
∣∣EF2−⟨DF ,−DL−1F⟩

∣∣ (224)

for the Wasserstein distance dW , where

F := w⊤ϕ1(Wxxx), N ∼N (0,EF2), (225)

and L−1 is the pseudo-inverse of the generator of the Ornstein–Uhlenbeck
semigroup.

7.3.2 discussion of theorem 7.3.4

The population covariances thus admit simple approximate closed-form ex-
pressions as linear combinations of products of relevant weight matrices.
These expressions generalize similar linearizations introduced in (Cui et al.,
2023a; Schröder et al., 2023a; Bosch et al., 2023a; Fan et al., 2020; Chouard,
2023) and discussed in Chapters 6 and 8 for the case of weights which are both
unstructured and independent, and iteratively build upon earlier results for
the two-layer case developed in (Mei et al., 2019c; Gerace et al., 2020a; Goldt
et al., 2021a; Hu et al., 2020). In fact, the expressions leveraged in these works
can be recovered as a special case for Cℓ = C̃ℓ = I (isotropic weights) and
Čℓ = 0 (independence). Importantly, note that possible correlation between
weights across different layers do not enter in the reported expressions. In
practice, we have observed in all probed settings the test error predicted by
Theorem 7.2.1, in conjunction with the linearization formulae for the features
covariance, to match well numerical experiments.

Figure 22 illustrates a setting where many types of weights correlations are
present. It represents the learning curves of a four-layer Gaussian rainbow
network with feature map tanh(W3 tanh(W2 tanh(W1xxx))), learning from a
two-layer target θ⊤∗ tanh(Wxxx). To illustrate our result, we consider both
target/student correlations C1 = 1/2I, and inter-layer correlations W1 =W2.
We furthermore took the covariance of the third layer to depend on the
weights of the first layer,C3 = (W1W⊤1 + 1/2I)−1. In order to have structured
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Figure 22: Test error for a target θ⊤∗ tanh(W∗x), when learning with
a four-layer Gaussian rainbow network with feature map
ϕ(x) = tanh(W3 tanh(W2 tanh(W1x))). All width were taken equal
to the input dimension d, and the regularization employed is λ = 10−4.
The student weights are correlated across layers, with W1 = W2, and
the covariance C3 of W3 depending on W1 as C3 = (W1W⊤1 + 1/2I)−1.
Target/student correlations are also present, with Č1 = 1/2I. The
covariances C1,C2,C̃1 were finally taken to have a spectrum with
power-law decay, parametrized by γ . Solid lines: theoretical prediction of
Theorem 7.2.1, in conjunction with the closed-form expression for the
features population covariance of Definition 7.3.2. Crosses : numerical
simulations in d = 1000. All experimental points were averaged over 20
instances, with error bars representing one standard deviation. Different
colors represent different values for the parameter γ , with small (large)
values indicating slow (fast) covariance eigenvalue decay.

weights, the covariancesC1,C1,C2 were chosen to have a power-law spectrum.
Note that despite the presence of such non-trivial correlations, the theoretical
prediction of Theorem 7.2.1 using the linearized closed-form formulae of Def.
7.3.2 for the features covariances (solid lines) captures compellingly the test
error evaluated in numerical experiment (crosses).

Finally, we note that akin to (Schröder et al., 2023a), as a consequence of the
simple linear recursions, it follows that the Gaussian rainbow network feature
map ϕ shares the same second moments, and thus by Theorem 7.2.1 the same
test error, as an equivalent linear stochastic network ϕ lin = ψL ◦ · · · ◦ψ1, with

ψℓ(x) = κ
1
ℓWℓx+κ

∗
ℓ ξℓ (226)

where ξℓ ∼N (0, I) a stochastic noise. This equivalent viewpoint has proven
fruitful in yielding insights on the implicit bias of RFs (Schröder et al., 2023a;
Jacot et al., 2020a) and on the fundamental limitations of DNN in the propor-
tional regime (Cui et al., 2023a). In the 7.4 we push this perspective further, by
heuristically finding that the linearization and Theorem 7.2.1 can also describe
deterministic networks trained with gradient descent in the lazy regime.
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Figure 23: Crosses : Test error when training the readout layer only of a tanh-
activated three-layer neural network at initialization (green) and after
training (blue), using the Pytorch implementation of the full-batch
Adam (Kingma et al., 2014a) optimizer, over 3000 epochs with leraning
rate 10−4 and n0 = 1400 samples, in dimension d = 1000. (red): ridge
regression. The data is sampled from an isotropic Gaussian distribution. In
all training procedures, an ℓ2 optimization was employed, and the strength
thereof optimized over using cross-validation. Solid lines represent the
theoretical prediction of Theorem 7.2.1, using the linearized formulae of
Definition 7.3.2 for the features population covariances Ω,Ψ,Φ. Crosses
represent numerical experiments. Each simulation point is averaged over
10 instances, with error bars representing one standard deviation.

7.4 L INEAR IZ ING TRAINED NEURAL
NETWORKS

The previous discussion addressed feature maps associated to random Gaus-
sian networks. However, note that the linearization itself only involves prod-
ucts of the weights matrices, and coefficient depending on weight covariances
which can straightforwardly be estimated therefrom. The linearization 7.3.2
can thus be readily heuristically evaluated for feature maps associated to
deterministic trained finite-width neural networks. As we discuss later in this
section, the resulting prediction for the test error captures well the learning
curves when re-training the readout weights of the network in a number
settings. Naturally, such settings correspond to lazy learning regimes (Jacot
et al., 2020a), where the network feature map is effectively linear, thus little
expressive. However, these trained feature map, albeit linear, can still encode
some inductive bias, as shown by (Ba et al., 2022b) for one gradient step in
the shallow case. In this section, we briefly explore these questions for fully
trained DNN, through the lens of our theoretical results.

Fig. 23 contrasts the test error achieved by linear regression (red), and
regression on the feature map associated to a three-layer student at initial-
ization (green) and after 3000 epochs of end-to-end training using full-batch
Adam (Kingma et al., 2014a) at learning rate 10−4 and weight decay 10−3

over n0 = 1400 training samples (blue). For all curves, the readout weights



7.4 linearizing trained neural networks 139

were trained using ridge regression, with regularization strength optimized
over using cross-validation. Solid curves indicate the theoretical predictions
of Thm. 7.2.1 leveraging the closed-form linearized formulae 7.3.2 for the
features covariance. Interestingly, even for the deterministic trained network
features, the formula captures the learning curve well. This observation
temptingly suggests to interpret the feature map ϕ(x) as the stochastic linear
map

ϕ
g(x) =Weff.x+C

1/2
eff.ξ (227)

where Weff. ∈Rp×d is proportional to the product of all the weight matrices
and ξ ∼N (0, I) is a stochastic noise colored by the covariance

Ceff. ≡
L−1

∑
ℓ=1

(
κ
∗
ℓ

L

∏
s=ℓ+1

κ
1
s

)2

ŴL . . .Ŵℓ+1Ŵ⊤ℓ+1 . . .Ŵ
⊤
L +(κ∗L)

2I. (228)

We denoted {Ŵℓ}1≤ℓ≤L the trained weights. Note that the effective linear net-
work (227) simply corresponds to the composition of the equivalent stochastic
linear layers (226). A very similar expression for the covariance of the effec-
tive structured noise (228) appeared in (Schröder et al., 2023a) for the random
case with unstructured and untrained random weights. The effective linear
model (227) affords a concise viewpoint on a deep finite-width non-linear
network trained in the lazy regime. On an intuitive level, during training, the
network effectively tunes the two matrices Weff.,Ceff. which parametrize the
effective model (227). The effective weights Weff. controls the (linear) repre-
sentation of the data, while the colored noise C

1/2
eff.ξ in (227) can be loosely

interpreted as inducing an effective regularization.

In fact, despite the fact that all three feature maps represented in Fig. 23
are effectively just linear feature maps, they can still encode very differ-
ent biases, yielding different phenomenology. In particular, remark that the
trained feature map (blue) is outperformed by mere ridge regression (red) at
large sample complexities, despite the former having been priorly trained
on n0 additional samples – suggesting the trained weights Weff.,Ceff. learned
some form of inductive bias which is helpful at small and moderate sample
complexities, but ultimately harmful for large sample complexities.
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8
BAYES -OPT IMAL
LEARNING OF A RANDOM
NETWORK

Learning with DNN has proven to be an extraordinarily versatile tool to
approximate (learn) non-trivial functions from data. Many fundamental theo-
retical questions, however, remain open. For instance, the determination, for
a given target function, of just how many training data samples are needed
in order to learn the target to a given precision? This is tantamount to deter-
mining the minimal error that can be achieved from a training set of a given
size.

While for a generic target function and generic training set this question
is very challenging, valuable insight can be accessed by studying simplified
settings with Gaussian input data and specific target functions with known
functional forms. Of particular interest is the rich class of functions given by
random neural networks. The lowest achievable test error is known to be
obtained through Bayesian inference of the parameters of the target function,
assuming (as we will) the distribution of the parameters is given. The Bayes-
optimal test error corresponds to the information-theoretically minimal test
error that any algorithm can achieve. In the context of Gaussian data, with
target functions being single-layer random neural networks the problem was
studied as early as in (Opper et al., 1991a; Seung et al., 1992; Watkin et al.,
1993; Schwarze, 1993). More recently, (Barbier et al., 2019a) provide a rigorous
characterization of the Bayes-optimal error in the asymptotic proportional
regime, where the number of samples is proportional to the input dimension
and both of them are large with a fixed ratio α . These results were then
extended in (Schwarze, 1993; Aubin et al., 2018a) to neural networks with
one narrow hidden layer, whose width remains of order one in the above
limit of large dimension and a proportional number of samples.

In practice, neural networks are trained using ERMmethods, and it is hence
also important to know whether those methods are able to achieve the Bayes-
optimal error. (Thrampoulidis et al., 2018; Montanari et al., 2019; Hastie et al.,
2022; Mei et al., 2019c; Aubin et al., 2020a; Loureiro et al., 2021b), between
others, addressed this question for Gaussian data, providing closed-form for-
mulas for the ERM test error for generalized linear models for target functions
corresponding to single-layer neural network with random weights from a
number of samples proportional to the dimension.

145
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Here, we pursue these lines of work and study a target function given
by a non-linear DNN with random weights, in the limit where the layers-
widths and the input dimension are comparably large, hereafter referred to
as the extensive-width regime. We call such target function the deep extensive-
width random network. We consider Gaussian input data. Our main question
is the characterization of the test error that can be achieved information-
theoretically from a given number of samples, as well as its reachability
with ERM approaches. While the assumptions of Gaussian input data and the
prescribed target function seem far from current machine-learning practice,
from a theoretical point of view, these questions remain challenging and
widely open even in such a simplified setting (even for a single hidden layer).
It is hard to imagine that we could obtain a plausible theory of deep learning
without being able to answer such questions first.

Main contributions For the target function corresponding to the deep
extensive-width random network and random Gaussian input data we obtain
the following results:

• We conjecture a closed-form characterization for the asymptotic Bayes-
optimal error, for regression and classification tasks, in the proportional
regime where the number of samples n scales linearly with the input
dimension d.

• A fundamental step in our derivation, of independent interest, is the
deep (Bayes) Gaussian Equivalence Property (GEP) , which specifies
the Gaussian statistics of the output of deep networks whose weights
are Gaussian, or sampled from the Bayes posterior. We show how the
GEP follows from Bayes theory and the asymptotic concentration of
random variables in the proportional regime.

• We contrast the Bayes-optimal test error to test errors achieved by sim-
ple ERMmethods. For regression, ridge and kernel regression are found
to achieve the Bayes-optimal mean-squared error, provided they are
optimally regularized. An explicit formula for optimal regularization
is provided. These results establish that it is impossible to learn more
than a linear estimator of the target extensive-width network from
linearly many samples. In the case of classification, logistic and ridge
classification are found to yield test errors close (but not equal) to the
Bayes error.

• We provide a numerical exploration of the regime where the number
of samples n tends to infinity faster than linearly with the input dimen-
sion d, in which the deep (Bayes) GEPs can no longer be employed. We
show that ridge and kernel methods then cease to be optimal, while
gradient-trained neural networks manage to almost perfectly learn the
target, evidencing the superiority of neural nets.
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8.0.1 related works

Bayesian learning of neural networks It is well known that Bayesian
learning using networks of infinite width (i.e. width much larger than the
number of samples and the input dimension) is equivalent to kernel re-
gression (Neal, 1996b; Lee et al., 2018c; Lee et al., 2019; G. Matthews et al.,
2018; Hron et al., 2020). A theoretical analysis for extensive-width, however,
proved for a long time a challenging endeavor. (Yaida, 2019; Roberts et al.,
2021; Zavatone-Veth et al., 2022b) computed (perturbative) first-order cor-
rections to the mean test error with respect to the infinite width limit, but
only accommodate a finite number of training samples. The recent work
of (Zavatone-Veth et al., 2022a; Hanin et al., 2022) respectively provide an
asymptotic and non-asymptotic study of Bayesian learning, but are limited
to linear activations. (Li et al., 2021a) and (Ariosto et al., 2022b) conjecture
that in the proportional regime, i.e. n∼ d, the estimator yielded by extensive-
width networks with ReLU or sign activations is still given by the associated
Gaussian Process (GP) kernel, with the width only rescaling the variance
term in the test error. We note that these works rely on a heuristic Gaussian-
ity assumption and provide expressions depending explicitly on the entire
dataset. Here instead we address specifically the Bayes-optimal performance
for a random network target function and Gaussian inputs, which allows us
to provide closed-form scalar formulae and leverage the principled GEP to
characterize the statistics. Finally, while all the previously cited work study
the case of Bayesian regression with a square log likelihood, the present work
also covers classification settings.

Replica method in ML The replica method has been applied in a sizeable
body of work to access asymptotic characterizations of the test error (Bayes
or ERM) in a variety of setups (Seung et al., 1992; Watkin et al., 1993). While
being heuristic, its predictions have been proven rigorously in many cases,
e.g. (Talagrand, 2006; Barbier et al., 2019a). This toolbox has been successfully
deployed to analyze architectures with one trainable layer, including gener-
alized linear models (cui2021large; Advani et al., 2016; Aubin et al., 2020a;
Maillard et al., 2020b; Loureiro et al., 2021b), narrow networks with frozen
readout (Aubin et al., 2018a), RF (Gerace et al., 2020a) and kernel methods
(Canatar et al., 2021b; Cui et al., 2021; Cui et al., 2023c). Recently (Zavatone-
Veth et al., 2022a) studied the multiple layers case, in the framework of linear
networks. Here we go a step further and analyze deep non-linear networks.

The proportional regime The proportional n∼ d regime has been in-
vestigated for shallow networks in a sizeable body of work, leveraging tools
like the convex gaussian minimax theorem (Thrampoulidis et al., 2018; Aubin
et al., 2020a; Loureiro et al., 2021b; Montanari et al., 2019), random matrix
theory (El Karoui, 2008b; Pennington et al., 2019; Louart et al., 2018b) or
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approximate message-passing (Aubin et al., 2018a; Gabrié, 2019), in addition
to the replica method.

Gaussian Equivalence The equivalence between the asymptotic test
error of simple ERM algorithms with that of the associated problem where the
data samples are replaced by Gaussian covariates with matching population
covariance has been observed in many situations, starting with the seminal
work (El Karoui, 2008b) on kernel matrices. In particular, (Goldt et al., 2021a;
Goldt et al., 2022b; Montanari et al., 2022b; Hu et al., 2020) have proven a
Gaussian Equivalence principle that shows that, in the proportional regime,
one can often replace projected data with Gaussian ones. Such equivalences
were used, for instance, in Chapter 3 to characterize the ERM test error in
a variety of setups, in terms solely of the population covariances of the
target/learner networks. Concomitant works (Schröder et al., 2023b; Bosch
et al., 2023b) characterize the Gaussian universality of the test error of deep
learners with fixed random weights and trainable readout.

8.1 SET T ING

We consider the problem of learning from a train set D = {xxxµ ,yµ}n
µ=1, with

n independently sampled Gaussian covariates xxxµ ∈Rd ∼N (0,Σ). The co-
variance Σ is assumed to admit a well-defined limiting spectral distribution
µ as d→ ∞ with finite non-zero first and second moments. The labels yµ are
assumed to be generated by a L-layers DNN with random weights. Denoting
ξ ∼N (0,∆) a Gaussian additive output noise, we have

yµ = f⋆
[ 1√

kL
a⊤⋆ (ϕ

⋆
L ◦ · · · ◦ϕ

⋆
2 ◦ϕ

⋆
1 )︸ ︷︷ ︸

L

(xxxµ)+ ξ

]
, (229)

with layers ϕ
⋆
ℓ (xxx) = σℓ

(
1√
kℓ−1

W ⋆
ℓ · xxx

)
.

(σℓ)
L
ℓ=1 is a sequence of activation functions, which are assumed to be odd

for simplifying technical reasons. The readout function f⋆(·) will be taken to
be the identity function for regression, and the sign function for classification.
The width of the ℓ-th layer is denoted kℓ, and the associated weight matrix
is W ⋆

ℓ ∈Rkℓ×kℓ−1 , with elements sampled i.i.d from N (0,∆ℓ). Similarly, the
readout weight vector a⋆ is sampled from N (0,∆aIkL).

We wish to characterize the Bayes-optimal test errors when learning on
data produced by the target function (229). We consider that all the hyper-
parameters L,kℓ,σℓ,∆a,∆ℓ,∆ of the architecture (229) are known, but the
weights a⋆,{W ⋆

ℓ }L
ℓ=1 are not known to the learner.

Throughout Sec. 8.2 to 8.3, we consider the proportional regime: the high-
dimensional asymptotic limit where ∀ℓ, n,d,kℓ→∞ with fixed O(1) ratios
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α ≡ n/d and γ⋆ℓ ≡ kℓ/d. The parameters L,∆ℓ,∆a,∆ are assumed to be O(1).
The quadratic regime n ∼ d2 ∼ k2

ℓ is numerically explored in Sec. 8.4. It is
known that learning a target of large width k (resp. using a network of large
width) with a finite number of samples n =Ok(1) simplifies drastically to the
problem of learning a Gaussian process (resp. kernel regression) (Neal, 1996b;
Lee et al., 2018c; G. Matthews et al., 2018). We consider here widths {kℓ}L

ℓ=1
at most comparable, and not very large compared to, the input dimension
d and the number of samples n, which makes for a non-trivial, and much
richer, learning problem.

8.2 BAYES -OPT IMAL ERROR

The Bayes-optimal error for data generated using the target function (229) is
achieved by sampling the weights a,{Wℓ}ℓ from a posterior measure involv-
ing a neural network of matching architecture. We thus define

ŷ(xxx) =
1√
kL

a⊤ (ϕL ◦ϕL−1 ◦ · · · ◦ϕ2 ◦ϕ1)︸ ︷︷ ︸
L

(xxx), (230)

with layers ϕℓ(xxx) = σℓ

(
1√
kℓ−1

Wℓ · xxx
)

. (231)

The Bayes-optimal MSE is then

ε
BO
g,reg=ED ,{W ⋆

ℓ }L
ℓ=1,a⋆Exxx,y

[(
y−⟨ŷ(xxx)⟩a,{Wℓ}L

ℓ=1∼P

)2
]

(232)

where xxx,y should be understood as a test sample. The Bayes-optimal classifi-
cation error (defined as the probability to wrongly classify a test sample) is
given by

ε
BO
g,class = ED ,{W ⋆

ℓ }L
ℓ=1,a⋆Pxxx,y

[
y ̸= sign

(
⟨sign(ŷ(xxx))⟩a,{Wℓ}L

ℓ=1∼P

)]
.

(233)

In (232,233), the learner network is averaged over the posterior

P
[
a,{Wℓ}L

ℓ=1|D
]

∝ e
− ||a||

2
2∆a
−∑

ℓ

||Wℓ||
2
F

2∆ℓ

n

∏
µ=1

∫ dξ e−
1

2∆ ξ 2

√
2π∆

δ [yµ − f⋆(ŷ(xxxµ)+ ξ )] .

(234)

The Bayes errors (232) and (233) provide information-theoretic lower bounds
on the test error for learning the target (229), in the sense that no learning
algorithm can reach better performance when learning from the dataset D .

Accessing numerically the Bayes errors (232) and (233) requires sampling
an O(d2)-dimensional distribution, a difficult task. It is on the other hand
possible to theoretically derive closed-form formulas using the replica method
(Parisi, 1979b; Mézard et al., 2009) that allows characterizing the Bayes error
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in terms of the moments of independent instances of ŷ(xxx) (the eponymous
replicas) drawn from the posterior eq. (234). In the replica calculation, one
averages over the randomness in the model and in order to be able to carry
out such averages in a closed form, the GEP described in the next section is
crucial.

8.2.1 the bayesian gaussian eqivalence
property

A seminal step in our analytical approach is the property that we can replace
the statistics of the output ŷ(xxx) with respect to the randomness of the input
xxx by Gaussian, with a covariance depending linearly on the covariance of the
weight matrices Wl . In fact, (Li et al., 2021a; Ariosto et al., 2022b) do rely on a
related Gaussianity assumption, which (Ariosto et al., 2022b) heuristically
justify for L = 1 using the Breuer-Major theorem, for generic datasets. Since
in the present work, we consider the specific Bayes-optimal setting, we are in
a position to state a more principled conjecture which follows from the GEP
(Goldt et al., 2020c) and the Nishimori identities (Nishimori, 2001; Iba, 1998).

Conjecture 8.2.1. (Shallow Bayes GEP) Consider xxx a random Gaussian vec-
tor. Then for L=1, in the extensive-width asymptotic limit d,k1→∞ with fixed
O(1) ratio γ1 = k1/d, any finite number of replicas ŷ1(xxx;W 1

1 ,a1), ..., ŷs(xxx;W s
1 ,as)

independently drawn from the Bayes posterior (234) are jointly Gaussian. Fur-
thermore, their correlation reads Exxxŷa(xxx)ŷb(xxx) = aa⊤Ωab

1 ab/k1 where Ωab
1 is the

population covariance of the last layer post-activations Exxxϕa
1 (xxx)ϕ

b
1 (xxx)

⊤ that
reads

Ωab
1 =

(
κ
(1)
1

)2 W a
1 ΣW b⊤

1
d

+ δa,b

(
κ
(1)
∗

)2
Ik1 , (235)

where κ
(1)
1 = Ez [zσ1(z)]/r1 and (κ

(1)
∗ )2 = Ez

[
σ1(z)2

]
− r1(κ

(1)
1 )2, with r1 =

∆1 TrΩ1/d and z∼N (0,r1).

We now explain how Conjecture 8.2.1 is motivated. In the proportional
regime, for a = b, conditional on the matrix W1, the Gaussian Equivalence
Theorem of (Goldt et al., 2021a; Hu et al., 2020; Montanari et al., 2022b) prove
indeed that the model (230) for L = 1 shares the same second-order post-
activation statistics as the noisy linear network ŷ = aT (κ

(1)
1

W1xxx/
√

d +κ
(1)
∗ Z)

(with Z a random Gaussian variable), thus leading to the covariance (235).
This so-called one-dimensional Central Limit Theorem (1dCLT) (Goldt et al.,
2021a; Hu et al., 2020; Montanari et al., 2022b) holds under some strict as-
sumptions on the weight matrixW1, that are satisfied in particular for random
matrices with independent entries.

In the Bayesian setting one needs to integrate over the posterior distri-
bution of the matrix W1, learned from the data. For Conjecture 8.2.1 to be
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valid, the conditions of the 1dCLT must be satisfied w.h.p over the learned
matrices, which is by no means a trivial requirement. This is where the prop-
erties of Bayes-optimal inference come in handy: indeed, a classic property
of Bayesian learning (often called the Nishimori property (Nishimori, 2001;
Iba, 1998; Zdeborová et al., 2015)) is that the statistics of weights drawn from
the Bayes posterior is exactly the same as the one of the target network
weights. This is a direct consequence of the Bayes formula (see e.g. section
1.2.3. in (Zdeborová et al., 2015)). As a consequence, the learned matrices are
following Gaussian statistics as well (given this is the statistics of the target
ones by definition), and thus respect the conditions of the 1dCLT.

When considering different replicas (a ̸= b), the Nishimori conditions
ensure that one of the two replicas can be taken, without loss of generality,
to be the target weight W ⋆

1 . Since W1 is learnt and therefore generically
correlated with the target weights W ⋆

1 , the assessment of the covariance Ωab
1

is a challenging task. However, the results of (Aubin et al., 2018a) suggest
that W1 is asymptotically uncorrelated with W ⋆

1 for sample complexities
α ≲ k1. Since we consider here α = O(1)≪ k1, this motivates the following
conjecture:

Conjecture 8.2.2. (Non-specialization) for L = 1, in the asymptotic limit
n,d,k1→ ∞ with fixed O(1) ratio γ1 = k1/d and α = n/d, let W1 be sampled
from the Bayes posterior (234). Then with high probability W1 has vanishing
overlap with W ⋆

1 , i.e.

1
d

max
1≤i, j≤k1

(
W ⋆

1 ΣW⊤1
)

i, j
= O (1/

√
d) . (236)

8.2.2 implies that the second term in the right-hand side of (235) is only
present for a = b.

8.2.2 deep (bayesian) gaussian eqivalence
property

We next discuss how these results generalize to deep networks (L≥ 2). While
a sizeable body of work has been devoted to the distribution induced by
the random weights for fixed inputs (Lee et al., 2018c; G. Matthews et al.,
2018; Hanin et al., 2022; Hanin, 2022; Yaida, 2019), little is known, in the deep
case, for the distribution induced by the input distribution, for fixed weights.
While there is no proof of the equivalence of the 1dCLT of (Goldt et al., 2021a;
Hu et al., 2022c) for L≥2, numerical evidence of the following conjecture
can be found in (Cui et al., 2023a):

Conjecture 8.2.3. The output ŷ(xxx) of a deep random network, conditional
on its Gaussian weights {Wℓ}L

ℓ=1,a, in the extensive-width limit d→ ∞ and
∀ℓ,kℓ→ ∞ with fixed ratios γℓ = kℓ/d, is asymptotically Gaussian with respect
to xxx.
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Conjecture 8.2.3 thus extends the first part of 8.2.1 to the deep setting.
This intuitively follows from the fact that higher order cumulants of the
post-activations at intermediary layers are asymptotically suppressed (as
shown in (Fischer et al., 2022)) and thus approximately Gaussian – allowing
one to iterate 8.2.1. A closed-form expression for the variance of ŷ(xxx), which
like the shallow case 8.2.1 is amenable to being interpreted in terms of an
equivalent noisy network, can be reached using linearization arguments like
in Chapter 7. We defer the discussion of the latter to the subsection 8.2.3.
Finally, the Nishimori property again ensures that conjecture 8.2.3 transfers
to weights sampled from the Bayes posterior (234). Defining the following
recursion on {rℓ}L

ℓ=1, {κ
(ℓ)
1 }L

ℓ=1 and {κ
(ℓ)
∗ }L

ℓ=1:

rℓ+1 = ∆ℓ+1Ez∼N (0,rℓ)
[
σℓ(z)2] ,

κ
(ℓ)
1 =

1
rℓ

Ez∼N (0,rℓ) [zσℓ(z)] ,

κ
(ℓ)
∗ =

√
Ez∼N (0,rℓ) [σℓ(z)2]− rℓ

(
κ
(ℓ)
1

)2
, (237)

with r1 ≡ ∆1Tr (Σ)/d, the deep version of (8.2.1) and 8.2.2 reads:

Conjecture 8.2.4. (Deep Bayes GEP) in the extensive width asymptotic limit
d→∞ and ∀ℓ,kℓ→∞ with fixed ratios γℓ= kℓ/d, let ŷ1(xxx), ..., ŷs(xxx) be any finite
number of replicas independently drawn from the Bayes posterior eq. (234).
Then ŷ1(xxx), ..., ŷs(xxx) are jointly Gaussian with correlation Exxxŷa(xxx)ŷb(xxx) =
aa⊤Ωab

L ab/k1, where the population covariance Ωab
L ≡ Exxx(ϕa

L ◦ ...ϕa
1 (xxx))(ϕ

b
L ◦

...ϕb
1 (xxx))

⊤ is given by

Ωab
ℓ =

(
κ
(ℓ)
1

)2W a
ℓ Ωab

ℓ−1W b⊤
ℓ

kℓ−1
+ δab

(
κ
(ℓ)
∗
)2

Ikℓ . (238)

Finally, defining Ωa⋆
ℓ ≡ Exxx(ϕa

ℓ ◦ ...ϕa
1 (xxx))(ϕ

⋆
ℓ ◦ ...ϕ⋆

1 (xxx))
⊤ for any a, there is

no specialization, i.e. with high probability

1
d

max
1≤i, j≤kℓ

(
W a

ℓ Ωa⋆
ℓ−1(W

⋆
ℓ )
⊤
)

i, j
= O (1/

√
d) . (239)

In (238), Ωab
0 ≡ Σ. We precise that 8.2.4 holds for any sequence of acti-

vations {σℓ}L
ℓ=1 satisfying ∀ℓ, Ez∼N (0,rℓ) [σℓ(z)] = 0. This is in particular

always true for odd activations. We adopt in this work the latter (stronger)
assumption for the sake of definiteness and clarity. An important note is
that the population covariance between post-activations at any two layers
1 ≤ ℓ,ℓ′ ≤ L (not just ℓ = ℓ′ = L) can be generically computed. Because
the post-activations result from the propagation of the Gaussian variable xxx
through several non-linear layers, this computation is non-trivial for L≥ 2
and of independent interest.
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Figure 24: (solid lines) Theoretical predition for the BayesMSE (240), for a one-hidden
layer rectangular neural network (γ1 = 1) with shifted ReLU activation
σ1(·) = (·)+− 1/√2π. (red crosses) Monte Carlo simulations using the
Gibbs sampling algorithm of (Piccioli et al., 2023). The MSE was estimated
over the last 15000 iterations of the algorithm, after 15000 initial ther-
malization steps. Error bars represent a single standard deviation over
N = 20 instances of the target network. The simulations were performed
in dimension d = 1000.

8.2.3 bayes-optimal errors

Conjectures 8.2.1 and 8.2.4 allow to characterize the Bayes error in terms of
the sole second-order statistic q = ED ,W ⋆

1 ,a⋆⟨Exxxŷa(xxx)ŷb(xxx)⟩P. q is known as
the self overlap in the statistical physics literature. The replica computation
then proceeds in a rather standard way, provided one employs the so-called RS

ansatz, which is always correct in Bayes-optimal settings (see e.g. (Zdeborová
et al., 2015)). One finally reaches the following characterizations :

For regression, the Bayes-optimal MSE reads

ε
BO
g,reg=

L

∏
ℓ=1

(
κ
(ℓ)
1

)2
(
∆a
(∫

zdµ(z)
) L

∏
ℓ=1

∆ℓ−q
)
+ εr (240)

with the self-overlap q satisfying the equation

q =
1
2

∫ α
L
∏
ℓ=1

(
κ
(ℓ)
1

)2
z2∆2

a

L
∏
ℓ=1

∆2
ℓ

εBO
g,reg +α

L
∏
ℓ=1

(
κ
(ℓ)
1

)2
z∆a

L
∏
ℓ=1

∆ℓ

dµ(z). (241)

We have denoted the residual error

εr≡
L−1

∑
ℓ0=1

(
κ
(ℓ0)
∗
)2∆a

L

∏
ℓ=ℓ0+1

(
κ
(ℓ)
1

)2∆ℓ+
(
κ
(L)
∗
)2∆a+∆. (242)
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For classification, the Bayes-optimal error reads
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where the self-overlap q satisfies the system of equations
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As previously discussed, numerically sampling the Bayes posterior (234) is
a hard task. However, for regression in the shallow L = 1 case and a shifted
ReLU activation σ1(·) = (·)+− 1/√2π (with the shift ensuring the condition
Ez∼N (0,r1) [σ1(z)] = 0 discussed below Conjecture 8.2.4 is satisfied), the
recent work of (Piccioli et al., 2023) provides an efficient implementation of a
Gibbs sampler. We use this algorithm to run simulations for this particular
target network, which can be observed in Fig. 24 to agree well with the
theoretical prediction (240).

Equivalent shallow network Remarkably, the Bayes errors (240) and
(243) are equal to the Bayes errors of a simple single-layer target function
with random weights

yeq(xxx) = f⋆

(√
ρθθθ
⊤xxx√

d
+
√

εrξ

)
, (244)

where ξ ∼N (0,1) and θθθ is a Gaussianweight vectorwith independent Gaus-
sian entries of unit variance. We have defined the effective signal strength

ρ ≡ ∆a

L

∏
ℓ=1

(
κ
(ℓ)
1

)2
∆ℓ.

To gain intuition on this equivalence, observe that the deep Bayes GEP 8.2.4
applied to a single replica implies that the deep non-linear network (229) is
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characterized by the same second-order activations statistics as a network
with noisy linear layers

ϕ
eq.
ℓ (xxx) = κ

(ℓ)
1

1√
kℓ−1

W ⋆
ℓ · xxx+κ

(ℓ)
∗ N (0,Ikℓ). (245)

In turn, this deep noisy network reduces equivalently to the shallow network
(244). Interestingly, note that while the multilayer target (229) is determinis-
tic for a given instance of the weights, the equivalent target (244) displays
a stochastic output noise ξ . This noise subsumes the effect of the higher
order terms introduced by the non-linearities, which are not learnt in the
proportional regime (Mei et al., 2022b).

Fig. 25 shows the Bayes MSE, eq. (240), for networks with tanh activation,
with L = 1,2 hidden layers. This is contrasted to the MSE achieved by an
expressive ANN with twice the target width, optimized end-to-end with full
batch gradient descent. Fig. 27 presents the same experiment in the classifi-
cation setting. As expected, even this expressive learning algorithm cannot
achieve a lower error than the information-theoretic lower bounds (240),
(243).

8.3 ERM WI TH L INEAR METHODS

Eqs. (240) and (243) provide the information-theoretic minimal error for deep
extensive-width targets (229). However, (Barbier et al., 2019a; Aubin et al.,
2018a) evidenced that the Bayes error is not always attainable, in practice,
by known polynomial time algorithms. In this section, we investigate the
performance of some standard ERM methods. We provide a tight asymptotic
characterization of the test error of each algorithm and show that for regres-
sion the Bayes error is, in fact, also achievable algorithmically. We address in
succession: ridge regression, RF regression, kernel regression, logistic regres-
sion and ridge classification.

We give, for each of the considered ERM algorithms, a sharp asymptotic
characterization of the associated test error. The fact that the deep non-linear
target (229) shares the same Bayes error as the equivalent shallow model
(244) suggests that the test error of ERM methods should also be identical.
Applying Theorem 1 of Chapter 8 on the equivalent shallow target (244) thus
leads to the formulas provided here. This heuristic line of reasoning is put
on a firm basis in some settings in the concomitant work of (Schröder et al.,
2023b), where the formulas characterizing the performance of the considered
ERM methods are derived.
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Figure 25: Targets (229) with L = 1 (top) and L = 2 (bottom) hidden layers , with
σ1,2(x) = tanh(2x) activation, widths k1,2 = 700, and ∆a = ∆1,2 = 1, ∆ =
0, in dimension d = 500. The Bayes-optimal MSE (240) (dashed black)
is contrasted to the replica predictions and simulations for optimally
regularized ridge regression (247) (red), optimally regularized random
features (251) with σ(x) = tanh(2x) non-linearity (blue), and optimally
regularized kernel regression (252) with σ(x) = tanh(2x) non-linearity
(orange). Green dots represent simulations for a one (top) and two (bottom)
hidden layers neural network of width 1500, optimized with full-batch GD,
learning rate η = 8.10−3 and weight decay λ = 0.1. Dashed grey lines
represent the residual error εr (242). Error bars represent one standard
deviation over 30 trials.

8.3.1 ridge regression

We first consider ridge regression, corresponding to the minimization of the
risk

R(w) =
n

∑
µ=1

(
yµ − w · xxxµ

√
d

)2

+
λ

2
||w||2, (246)

with a ℓ2 regularization term of strength λ . The associated test error can be
computed by combining the deep GEP (237) and the theorem of Chapter 3, as

εg =ρ

∫
zdµ(z)+ q−2

L

∏
ℓ=1

κ
(ℓ)
1 m+ εr, (247)
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Figure 26: Arccosine kernel regression on a two-layers target of width k1 = 700,
∆a = ∆1 = 1, ∆ = 0, with σ1(x) = tanh(2x) activation, in dimension
d = 500. Different curves correspond to different regularizations λ =
0.5,0.1 and the optimal λ ⋆ ≈−0.24 (253). Solid lines correspond to the
replica predictions (252). The learning curve for the optimal negative
regularizer λ ⋆ (red) superimposes with the Bayes-optimal MSE (240). Error
bars represent one standard deviation over 30 trials.

where m,q,V are the solutions of the system of equations
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Ridge regression is Bayes-optimal The optimal regularization λ ⋆ lead-
ing to minimal test error can be found to admit the compact expression

λ
⋆ =

εr

ρ
. (249)

The expression (249) mirrors the result of (Sahraee-Ardakan et al., 2022) for
GP targets. Eq. (249) intuitively corresponds to requiring that the regulariza-
tion λ used in the ERM (246) should be equal to the true noise-to-signal ratio
of the equivalent target (244).

For λ = λ ⋆, the equation (248) reduces to (240), implying that optimally
regularized ridge regression achieves the Bayes-optimal MSE. The solution of
(247), (248), (249), with the corresponding numerical simulations, is plotted in
Fig. 25, and can indeed be seen to exactly fall on the Bayes-optimal baseline
(240). This implies that in the proportional high-dimensional limit n ∼ d,
no algorithm can learn more accurately the non-linear function (229) than
optimally regularized linear regression. This echoes the claims of (Sahraee-
Ardakan et al., 2022) when the target is a GP.
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8.3.2 random features

RF learning (Rahimi et al., 2007a) was initially introduced as a means to speed
up kernel methods. They correspond to the ERM

R(w)=
n

∑
µ=1

(
yµ − 1√

k
w ·σ

(F · xxxµ

√
d

))2

+
λ

2
||w||2, (250)

where σ is a nonlinearity with associated GEP coefficients (237) κ1,κ∗, and
F ∈Rk×d is the random feature matrix, assumed in the following to possess
i.i.d Gaussian entries. RF learning corresponds formally to ridge regression
in a k−dimensional space, often taken larger than the d− dimensional input
space to allow for overparametrization. Again, we consider the proportional
regime n,d,k → ∞ and introduce the width/dimension ratio γ ≡ k/d. In
the following, for simplicity, we restrict ourselves to the case of isotropic
covariates Σ = Id . Sharp asymptotics for the test error of such models have
been provided in (Mei et al., 2019c; Gerace et al., 2020a) for single-layer
targets. We tie those results in with (237) in the case of the deep random
target (229). The asymptotic test error is given again by (247), where q,m
satisfy
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g(z) is the Stieljes transform of theMarchenko-Pastur distributionwith aspect
ratio γ . The solution of (251) is plotted in Fig. 25, with the regularization λ

being numerically optimized over, and is observed to yield higher MSE than
the optimal (240). Intuitively, this is because from (244) the target function
(229) effectively acts as a linear function on the original space, while the RF
transformation σ(F ·) (250) introduces a mismatch between the original basis
where the target acts and the features basis in which the linear regression
readout is carried out. This mismatch can be shown to be benign only in the
infinite overparametrization (infinite width) γ → ∞ limit, has discussed in
the next subsection.
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8.3.3 kernels

In the γ→∞ limit, RF learning (250) becomes equivalent to kernel regression
(Neal, 1996b; Lee et al., 2018c). The saddle-point equations (251) characterizing
the generalization error (247) then reduce to
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Kernel regression is Bayes-optimal The regularization λ minimizing
the test error (247) for kernel regression (252) can be shown as in the ridge
case to admit the simple expression

λ
⋆ = κ

2
1

(
εr

ρ
− κ2

∗
κ2

1

)
. (253)

Again, the expression (253) also admits a very intuitive interpretation. An
informal takeaway from (Mei et al., 2022b; Hu et al., 2022c) is indeed that in
the linear n∼ d regime, kernel regression can be seen as effectively imple-
menting ridge regression with an implicit ℓ2 regularization equal to λ +κ2

∗/κ2
1 .

Requiring this implicit regularization to match the true target noise-to-signal
ratio (244) naturally leads to (253). The test error (247) evaluated at the solu-
tion of (252), at the optimal regularization (253), is plotted in Fig. 25, and can
be seen to exactly superimpose with the Bayes-optimal baseline (240).

When the activation σ of the kernel is very non-linear (as quantified by the
ratio κ2

∗/κ2
1 ) and implements too strong an implicit regularization (Wu et al.,

2020b; Hastie et al., 2022) compared to the actual target noise, the optimal
regularization (253) can be negative. This negative ridge phenomenon can
for example be observed when learning a target 2−layer network with tanh
activation with a kernel using the more non-linear sign activation, see Fig. 26.
Note that even in such cases where the optimal explicit regularization λ is
negative, the risk remains convex due to the implicit ℓ2 regularization.

8.3.4 logistic and ridge classification

This last subsection addresses ERM in the classification setting. We consider
two standard classification methods, namely logistic regression and ridge
classification. They correspond to ERM on the risk

R(w) =
n

∑
µ=1
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yµ ,
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d
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+

λ

2
||w||2 (254)
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Figure 27: Learning curves for classification, with a three-layers target (229) with
tanh(2·) activation and width k1,2 = 700, ∆a = ∆1,2 = 1, ∆ = 0, in dimen-
sion d = 500. The black dashed line represents the Bayes-optimal error
(243). The theoretical learning curves for optimally regularized logistic
regression (ridge classification) are shown in red (blue), alongside the
corresponding numerical simulations. Green dots show the test error of a
three layers fully connected network trained end-to-end with full-batch
Adam, learning rate 0.003 and weight decay 0.01, after 2000 epochs. Error
bars represent one standard deviation over 30 trials. (inset) Zoom in on the
theoretical learning curves for logistic regression (red) and ridge classifi-
cation (blue), with the Bayes-optimal baseline (243) subtracted. Logistic
regression and ridge classification can be seen to be very close, but not
equal, to the Bayes-optimal baseline (up to 10−4 and 10−3 respectively).

with ℓ(y,z) = ln(1+ e−yz) and ℓ(y,z) = 1/2(y− z)2 respectively. For simplic-
ity, we assume the noiseless ∆ = 0 setting. An asymptotic expression for the
test error of logistic regression can again be reached. These theoretical predic-
tions are plotted in Fig. 27, and contrasted to the Bayes-optimal baseline (243).
At odds with the regression case, the learning curves of logistic regression
and ridge classification do not exactly superimpose with the Bayes-optimal
baseline but lie extremely close. Fig. 27 shows that for a σ(x) = tanh(2x)
activation the difference is of order of 10−4 (for logistic regression) and 10−3

(for ridge classification). Such a gap has also been observed by (Aubin et al.,
2020a) for targets without hidden layer.

8.4 BEYOND THE PROPORT IONAL
REG IME

Section 8.3 establishes that ridge regression and kernel regression are Bayes-
optimal in the linear n∼ d regime for the target (229). These conclusions and
the ones of (Sahraee-Ardakan et al., 2022) in the context of GP targets, and
are reminiscent on a high level of the empirical observations of (Arora et al.,
2020) that DNN can only marginally outperform kernel methods for small
train sets on several benchmark real datasets. Note that the study (Lee et al.,
2020) also employs networks with comparable width to the dataset size and
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Figure 28: MSE of regression on a ReLU (top) erf(2x) (bottom) 2−layers target of
width k1 = 20, ∆a = ∆1 = 1, ∆ = 0, in dimension d = 30. Dots represent
simulations for optimally regularized ridge regression (orange), optimally
regularized arccosine (top), and arcsine (bottom) kernel (green). Dashed
lines represent the theoretical predictions for the MSE of the kernel in
polynomial regimes of (Hu et al., 2020). Purple dots indicate the MSE of
a 2−layers fully connected neural network of width k = 30 trained end-
to-end using Adam (purple), batch size n/3 and learning rate η = 3.10−3,
over 2000 epochs. Error bars represent one standard deviation over 10
trials.For a quadratic number of samples n∼ d2 the network learns the
target perfectly (up to errors of order 10−5) while kernel regression only
learns a quadratic approximation of the target and yieldsMSEs larger by an
order of 103. Ridge regression can only learn the best linear approximation
and leads to even higher MSE.

dimension, and reaches similar conclusions.

In fact, the information-theoretic optimality of linear/kernel ERM methods
is essentially due to the fact that a proportional number of samples n∼ d is
not enough to learn features beyond linear approximations. The conclusions
drawn in other scaling regimes are anticipated to be very different. In particu-
lar, beyond the linear n∼ d regime, the test error should pick up, and depend
on, non-Gaussian asymptotic corrections to the GEP (Goldt et al., 2021a),
Bayes GEP 8.2.1, and deep Bayes GEP 8.2.4. Besides, information-theoretic
intuition suggests that since the target (229) is parametrized by O(d2) real
numbers, a quadratic number of samples n ∼ d2 is needed, and sufficient,
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to learn it perfectly. In other words, one expects the Bayes-optimal error to
vanish in the quadratic regime. This means in particular that kernel methods
(which are known to learn at best a quadratic approximation of the target in
this scaling regime (Misiakiewicz, 2022; Xiao et al., 2022; Hu et al., 2022c)),
and ridge regression (which learns a linear approximation) will cease to be
optimal. In this section, this intuition is further explored numerically.

Fig. 28 contrasts the MSE of an Adam-optimized neural network, optimally
regularized ridge regression, and optimally regularized arcosine kernel re-
gression, in the n∼ d2 regime, for a ReLU network target with one hidden
layer. For completeness, we also plot the theoretical predictions for the test
error for kernel regression derived in (Hu et al., 2022c). While ridge (kernel)
regression can only learn the best linear (quadratic) approximation of the
non-linear target, the neural network manages to learn the target almost per-
fectly (up to anMSE ofO(10−5)). These results show the superiority of neural
networks over kernel methods in the quadratic regime for the multi-layer
target (229), and complement similar superiority results (see e.g. (Ghorbani
et al., 2019a; Ghorbani et al., 2021)) for single-layer targets.

CONCLUS ION

We investigate the problem of learning a deep, non-linear, extensive-width
random neural network. We propose asymptotic expressions for the Bayes-
optimal error and the test error of linear / kernel ERM methods, for classi-
fication and regression. The technical backbone of the derivations is the
deep Bayes GEP conjecture 8.2.4, and novel closed-form formulae for second-
order population statistics of network post-activations. The conclusion is
that kernel methods are optimal in this regime. We showed, however, that the
situation is drastically different in the quadratic sample regime, and evidence
the onset of feature learning leading to a vanishing test error for neural
nets, while kernel methods can learn only quadratic approximation and thus
become suboptimal. This marks a clear separation in the power of neural
nets with respect to kernels as soon as n∼ d2.

From a theoretical standpoint, a quantitative analysis of the learning curve
for the quadratic regime is challenging. In particular, Gaussian universality
results such as (Goldt et al., 2021a; Hu et al., 2020; Mei et al., 2019c), cease
to hold outside of the proportional regime and would need to be extended.
Building a theory for extensive-width networks in these superlinear sample
regimes could unveil rich behavior and properties, and constitutes in the
authors’s point of view a crucial challenge in machine learning theory.





9
FEATURE LEARNING
AFTER ONE
GRADIEN T - STEP

A common deep learning intuition behind the unreasonable effectiveness
of neural networks is their capacity to effectively adapt to the training data
which makes them superior to kernel methods. While kernel methods and
their finite width approximations are known to be data hungry (see e.g. (Ad-
lam et al., 2023)), neural networks have proven themselves to be flexible and
efficient in practice. Their adaptivity and capacity to learn features from data
is behind the success in efficiently solving problems from image classification
to text generation. A large part of our current theoretical understanding of
neural networks stems from the investigation of their lazy regime where
features are not learned during training. This includes a set of works that falls
under the umbrella of GP (Neal, 1996a; Lee et al., 2018d), the Neural Tangent
Kernel (NTK) (Jacot et al., 2018a) and the Lazy regime (Chizat et al., 2019a).
A crucial question in the theoretical machine learning community is thus
to characterize the advantages of two-layer neural networks beyond these
convex optimization approaches.

Different theoretical works have offered sharp separation results between
kernel and feature learning regimes (see e.g. (Ghorbani et al., 2019c; Refinetti
et al., 2021a; Damian et al., 2022; Abbe et al., 2023)). In particular, (Ba et al.,
2022a; Damian et al., 2022), and later (Dandi et al., 2023a), discussed the
advantage of neural networks when training with only one single step of
large-batch gradient descent with a large learning rate. Specifically, (Ba et al.,
2022a) highlighted that the weight matrix after the first training step can be
decomposed in a bulk plus a rank-one spike, effectively mapping the learned
features to a spiked Random Features (sRF) model, defined in eq. (260). This
observation has fueled many further studies on the effect of spiked structure,
see e.g. (Dandi et al., 2023a; Ba et al., 2023; Mousavi-Hosseini et al., 2023;
Moniri et al., 2023).

In this paper, we follow this line of work, and provide an exact high-
dimensional description of the test error achieved by a two-layer network
for after a single, large, gradient step. To our knowledge, our work provides
the first sharp asymptotic treatment of a model where feature learning is
accounted for in the high-dimensional, non-perturbative large learning rate
regime η = Θd(d), quantitatively illustrating the benefits of feature learning
over the lazy regime.

164
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Ourmain contributions in this paper are the following:

• Exact asymptotics for two-layer networks after one gradient
step –We provide a sharp asymptotic characterization of the test error,
alongside a set of summary statistics, for two-layers neural networks
with first layer weights trained with a large learning rate gradient step.
The derivation leverages the replica method from statistical physics
(Parisi, 1979a; Parisi, 1983b), and provides a set of scalar self-consistent
equations for the generalization error.

• Conditional Gaussian Equivalence – Building upon (Dandi et al.,
2023a), we show (and provide strong numerical evidence to support)
that the learning properties of the sRF model are asymptotically equiv-
alent to a simple conditional Gaussian model in the high-dimensional
proportional regime. The conditional Gaussian distribution is charac-
terized by the projections of the input data on the spike in the weight
matrix. This mapping constitutes the extension of related theoretical
results that unveiled a similar Gaussian equivalence property for the
training and generalization error for non-spiked vanilla RFs (Goldt
et al., 2022a; Goldt et al., 2020c; Gerace et al., 2020a; Hu et al., 2022b;
Dhifallah et al., 2022; Mei et al., 2022c; Cui et al., 2023a; Schröder et al.,
2023a; Bosch et al., 2023a; Dandi et al., 2023b).

• Feature learning –We provide an extensive discussion on how feature
learning leads to a drastic improvement on the generalization perfor-
mance over random features in a data limited regime, demonstrating a
clear and quantitative separation with respect to kernel method and
random feature models. In particular, we derive both upper and lower
bounds on the generalization error and discuss under which conditions
they are tight.

9.1 SET T ING , MOT I VAT ION AND
RELATED WORK

We study fully-connected two-layer networks

fW ,aaa(xxx) =
1
√

p

p

∑
i=1

aiσ(www⊤i xxx) , (255)

and their capacity to learn a single-index target function of isotropic Gaussian
covariates:

f⋆(x) = σ⋆(θθθ
⊤xxx/
√

d), xxx∼N (0, Id) (256)
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from finite batch D = {(xxxµ ,yµ)n
µ=1} of n independently drawn training

samples. We consider a layer-wise training procedure where the first layer
weights W ∈Rp×d are trained for a single gradient step:

www(1)
i = www(0)

i −ηgggi (257)

gggi =
1
√

p

n0

∑
µ=1

(yµ − fW (0),aaa(0)(xxx
µ))a(0)i σ

′(www(0)
i · xxx

µ)xxxµ

on a subset D0 ⊂D of size n0, where (W (0),aaa(0)) denote the initial weights
and η >0 the learning rate. For simplicity, we assume aaa(0)= 111p/√p (uniform
initialization) and www(0)

i with unit norm ∥www(0)
i ∥=1 and weak correlation www(0)

i ·
www(0)

j = Od(polylog(d)/
√

d) for i ̸= j (e.g. uniformly drawn from the unit sphere
Sd−1). Given the updated weights W (1), we train the read-out layer on the
remaining data D1=D \D0:

âaaλ =argmin
aaa∈Rp

1
2

n1

∑
µ=1

(
yµ − fW (1),aaa(xxx

µ)
)2
+

λ

2
∥aaa∥2. (258)

with λ ∈ R+ being a regularization parameter. Note that the layer-wise
training procedure considered here is commonly studied in the theoretical
machine learning literature (Ba et al., 2022a; Damian et al., 2022; Abbe et al.,
2023; Berthier et al., 2023; Dandi et al., 2023a; Moniri et al., 2023) due to its
mathematical tractability.

Our main goal in the following is to provide a tight asymptotic characteri-
zation of the generalization error:

εg = ED ,xxx

(
f⋆(xxx)− fW (1),âaaλ

(xxx)
)2

. (259)

in the high-dimensional proportional limit where n0,n1,d, p,η→∞ at fixed
ratios α0= n0/d, α = n1/d,β = p/d, η̃ =η/d.

motivation

Driven by the lazy-training regime of learning of large-width networks
(Chizat et al., 2019a), a large body of literature has been dedicated to the
particular case where the first layer weights are fixed at initialization W (0)

(η = 0), also known as the RF model (Rahimi et al., 2007b). In particular,
(Ghorbani et al., 2019c; Ghorbani et al., 2020a; Mei et al., 2022a) have shown
that with n1 = Θd(d) samples fW (0),âaaλ

can only approximate, at best, a linear
function of xxxµ , with the non-linear part playing a role akin to additive label
noise. This is a strong limitation: RF network requires polynomials number
of data and neurons to fit a simple polynomial (Mei et al., 2022a; Xiao et al.,
2022). It is one of our motivation here to discuss how, with a single gradient
steps, these limitations are lifted.
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Figure 29: Numerical estimation of the function f (xθ ) = Ex[ f
W (1),âaa

λ
|θθθ⊤xxx/

√
d = xθ ]

implemented by the trained network (255) in the direction spanned by
the weights θθθ of the target function. The activations are σ = σ⋆ = tanh,
and simulations were run in dimensions d = p = 2000, for a learning
rate η = 2.5p, and a readout regularization λ = 0.01. The readout was
trained with n1 = 2d samples. Different colors corresponds to different
sample complexities α0 ≡ n0/d used to implement the gradient step on
the first layer weights, with α0 = 0 corresponding to not implementing
the step.

Behind the scenes in this effective linearity of RF is a GEP (Goldt et al.,
2022a; Mei et al., 2022c; Hu et al., 2022b; Montanari et al., 2022a; Dandi
et al., 2023b), which states that in this regime the random feature map
ϕ = σ(W (0)xxx) is statistically equivalent to a rescaled stochastic linear map
ϕg(xxx)≍ µ0111+µ1W (0)xxx+µ⋆zzz, with zzz∼N (0, Ip). Related linearizations are
the object of further in-depth discussion in the previous Chapters of Part
III. This surprising universality result allows to go beyond lower bounds for
the generalization performance, making the problem amenable to a tight
high-dimensional characterization of all relevant statistics in these models
(Mei et al., 2022c; Gerace et al., 2020a; Dhifallah et al., 2022).

Figure 29 illustrates this fundamental limitation of RF models contrasted
with the function f (xθ )=Exxx[ fW (1),â)λ (xxx)|θθθ⊤xxx/

√
d = xθ ], along the direction

of the target θθθ , implemented by the network fW (1),aaa trained with a single
gradient step (eq. (257)). Varying the amounts of data n0=α0d used in the
first gradient step, the function f (xθ ) moves from a linear approximation of
σ⋆ in the RF limit (α0=0), to an accurate non-linear one (α0=2.5).

Learning a non-linear approximation of σ⋆ in the high-dimensional pro-
portional regime therefore requires learning features. (Ba et al., 2022a) have
proven that with η = Θd(1), the GEP holds even after a few gradient steps,
corroborating a fact empirically observed by (Loureiro et al., 2021b). Indeed,
they have shown that η = Θd(d) is sufficient to go beyond a linear approx-
imation of f⋆ in this regime. (Moniri et al., 2023) considered intermediate
scalings of step-size η = Θd(ds) for 1/2<s<1, which allows the network to
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fit target functions along θθθ having finite degree. In this intermediate regime,
the feature matrix can be approximated through a finite-number of spikes
corresponding to increasing degree of functions along θθθ . Instead, we con-
sider the full-scaling of η = Θd(d), where such a finite-spike approximation
is insufficient and the network can fit arbitrary functions along θθθ . (Dandi
et al., 2023a) proved that even if the target depends on multiple directions
(multi-index model), only a (non-linear) function of a single direction θθθ can
be learned with a single gradient step and η = Θd(d). This observation
justifies the focus on single-index functions (256) on the regime of interest.

further related works

Random features— Random Features (RFs) were first introduced as a com-
putationally efficient approximation to kernel methods (Rahimi et al., 2007b).
Recently, they have enjoyed renewed interest also as models of two-layer neu-
ral networks in the lazy regime. Tight asymptotics for the random features
model have been derived by (Goldt et al., 2020c; Goldt et al., 2022a; Gerace
et al., 2020a; Mei et al., 2022c; Hu et al., 2022b; Dhifallah et al., 2022) in the
two-layer case, and were extended to deep networks in (Schröder et al., 2023a;
Bosch et al., 2023a) in the deep case. Importantly, with the exception of (Gerace
et al., 2020a) who considered rotationally invariant weights and (Zavatone-
Veth et al., 2023) for the case of deep linear random features, all these work
assumed unstructured weights. In sharp contrast, gradient-trained neural
networks have fundamentally structured weights. In the present manuscript,
we consider such a case, when the weights are given by a bulk random matrix
plus a rank-one spike emerging after a single large gradient step.

Feature learning regime – Perturbative feature learning corrections to
the large-width lazy regime have been extensively studied in the literature
(Yaida, 2020; Hanin et al., 2020; Dyer et al., 2020; Seroussi et al., 2023b; Naveh
et al., 2021b; Bordelon et al., 2023). Our work radically contrasts with this
line, since we exactly account for feature learning in the first step, non-
perturbatively (note the gradient in (257) has a norm comparable with the
initial weights). Beyond the lazy regime, a major recent development has
been the understanding that the training dynamics of two-layer neural net-
works with small learning rate can be mapped to a Wasserstein gradient
flow, known as the mean-field regime (Mei et al., 2018; Chizat et al., 2018;
Rotskoff et al., 2022; Sirignano et al., 2020). Over the past few years, this flow
was investigated under different classes of generative data models, such as
staircase functions (Abbe et al., 2021; Abbe et al., 2022; Abbe et al., 2023),
single-index (Berthier et al., 2023; Arnaboldi et al., 2023a) and multi-index
models (Arnaboldi et al., 2023b), symmetric targets (Hajjar et al., 2023) and
Gaussian mixture models (Refinetti et al., 2021b; Ben Arous et al., 2022).
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9.2 MAIN TECHNICAL RESULTS

Our main technical results are a tight asymptotic characterization of the test
error achieved by two-layer networks trained with a single large gradient
step followed by a ridge regression on the readout weights. These results are
enabled through the mapping to first an equivalent sRF model in subsection
9.2.1, which can in turn be mapped to a equivalent Gaussian model in subsec-
tion 9.2.2. Subsection 9.2.3 finally states the tight asymptotic characterization
of the test error.

9.2.1 asymptotics of the first layer
weights after one (large) gradient
step

The first step is to derive an explicit asymptotic expression for the hidden-
layer weights W (1) after one (large) gradient step. In the following, we show
that the learning problem introduced in Section 9.1 is equivalent to a sRF
model, which we first define.

Definition 9.2.1 (sRF model). We define a sRF model with bulk variance c,
spike strength r as the two-layer neural network

gF ,aaa(x) =
1
√

p
aaa⊤σ (Fx) (260)

with trainable readout aaa and frozen random first layer weights:

F =W + r
uuuvvv⊤√

d
. (261)

whereW is a random matrix with rows independently sampled from Sd−1(
√

c),
and uuu ∈ Sd−1(

√
p),vvv ∈ Sd−1(

√
d). We further say that a sRF has alignment γ

with θθθ when vvv is uniformly sampled uniformly sampled among vectors with
norm

√
d satisfying vvv⊤θθθ/d = γ .

The next result shows that after a large gradient step, our problem is
asymptotically equivalent to a particular sRF model with spikes uuu = 111p and vvv
that correlated to the target weights θθθ . We give a tight characterization of
the parameters c,r,γ .

Result 9.2.2 (Equivalence to a sRF model). Consider two-layer networks
with first-layer weights trained with a single gradient step of learning rate η

from initial conditions aaa(0) = 111p/√p and www(0)
i with unit norm ∥www(0)

i ∥= 1 and
weak correlation www(0)

i ·www
(0)
j = Od(1/

√
d) for i ̸= j (eq. (257)). In the asymptotic

limit n0,n,d, p→ ∞, with α0 = n0/d,α = n/d,β = p/d, η̃ = η/d = Θd(1), the
test error achieved by performing ridge regression on the readout weights aaa
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of the network after the gradient step (258) is identical to that achieved by an
equivalent sRF model with parameters

c = 1+
η̃2h2

1ȟ2
1h⋆2

α0β 2 (262)

r =
η̃h1

β

(
h⋆2
α0

+ h⋆2
1

)1/2

(263)

γ =
h⋆1(

h⋆2
α0
+ h⋆2

1

)1/2
(264)

where:

h1 = Ez[zσ(z)], h⋆1 = Ez[zσ⋆(z)],

ȟ2
1 = Ez[(σ

′(z)−h1)
2], h⋆2 = Ez[σ⋆(z)2], (265)

with z∼N (0,1).

The derivation of Result (9.2.2) leverages the decomposition from (Ba et al.,
2022a) of the gradient gggi = ruivvv/d +∆ into a rank-one term and a correction
term. Note that above we have assumed a uniform initialization for the
readout layer. This can be relaxed in the equivalence above, for instance for
aaa(0) taking a finite number of values, leading to finite-rank term instead of a
single spike.

9.2.2 conditional gaussian eqivalence

The sharp characterization of the test performance, which we state in Re-
sult 9.2.5 in the following subsection, is enabled by further mapping the sRF
model to an exactly solvable (conditional) Gaussian model. We adapt the
rigorous result in (Dandi et al., 2023a) (Theorem 4) by constructing explic-
itly the equivalent stochastic feature map, that we believe is of independent
interest.

Result 9.2.3 (Conditional Gaussian Equivalence). Consider the sRF model
with weights F = W + ruuuvvv⊤/

√
d, with uuu = 111p and parameters c,r,γ , and the

corresponding feature map given by

ϕϕϕ(xxx) = σ (Fxxx) (266)

Define the equivalent stochastic feature map

ϕϕϕ
g(xxx) d

= µ0(κ)111p + µ1(κ)Wxxx+ µ2(κ)N (0,Ip), (267)
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where κ ≡ vvv⊤xxx/
√

d. We introduced the coefficients µ0(κ), µ1(κ), µ2(κ) defined
as

µ0(κ) = Ezσ(z+ rκ)

µ1(κ) =
1
c

Ezzσ(z+ rκ)

µ2(κ) =
√

Ezσ
2(z+ rκ)− c(µ1(κ))2− (µ0(κ))2,

(268)

with expectations bearing over z∼N (0,c). The test error εg achieved by ridge
regression

âaaλ = argmin
aaa∈Rp

1
2

n1

∑
µ=1

(
yµ − 1

√
p

aaa⊤φ (xxx)
)2

+
λ

2
∥aaa∥2. (269)

is asymptotically identical for φ = ϕ and φ = ϕg.

Result 9.2.3 extends the similar linearizations provided e.g. in (Goldt et al.,
2020c; Hu et al., 2022b; Cui et al., 2023a) for unstructured RFs to sRFs (261),
and we refer to Chapters 6, 7 and 8 for further discussions. Informally, the
quantity κ in the stochastic feature map (267) represents the projection of
the input on the spike defining the sRF κ = xxx⊤vvv/

√
d. The equivalent network

1/
√

daaa⊤ϕϕϕg(x) obtained by replacing ϕϕϕ by the equivalent ϕϕϕg is a linear com-
bination of terms such as µ0(κ), µ1(κ)κ , µ1(κ)aaa⊤W (Π⊥xxx), plus noise. On
an intuitive level, this makes it apparent that sRFs can thus express non-linear
functions of the component κ along the spike vvv, but only linear functions
of the component Π⊥xxx orthogonal thereto. This feature learning correction
to the linear regime is visually exemplified in Fig. 29. In the next subsection,
we make this discussion more quantitative by providing a tight asymptotic
characterization of the test error achieved by two-layer networks trained
with a single large gradient step followed by a ridge regression on the readout
weights.

9.2.3 tight asymptotic characterization
of the test error

Finally, we leverage on the sequential mappings of Result 9.2.2 and Result
9.2.3 to offer sharp asymptotic guarantees on the test error achieved after
training the readout weights using eq. (258).

Assumption 9.2.4. Denote by {eeei}p
i=1 ({ fff i}d

i=1) the left (resp. right) singular
vectors of W . We further note {λ ℓ

i }
p
i=1 the squared singular values of W . The

squared singular values {λ ℓ
i }

p
i=1 and the projection of the teacher vector θθθ and
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the spike v on the eigenvectors { fff⊤i vvv}i,ℓ,{ fff⊤i Π⊥θθθ}i,ℓ are assumed to admit a
well-defined joint distribution ν as d→ ∞.

1
p

min(p,d)

∑
i=1

δ (λi−ρ)δ

(
fff⊤i v− τ

)
δ

(
fff⊤i Π⊥θθθ −π

)
d→∞−−−→ ν(ρ ,τ ,π).

Result 9.2.5 (Test error asymptotics). Consider the ERM problem (258) associ-
ated with the training of the readout weights aaa, and assume 9.2.4 to hold. Define
Π⊥ ≡ Id− vv⊤/d the projection to the subspace orthogonal to the spike vvv. In the
asymptotic limit d, p,n→ ∞ with α = n/d,β = p/d = Θd(1), the summary
statistics

q1 =
âaa⊤W Π⊥W⊤âaa

p
, q2 =

âaa⊤âaa
p

, m =
111⊤p âaa
√

p
,

ζ =
âaa⊤Wvvv√

d p
, ψ =

âaa⊤W Π⊥θθθ√
d p

, ρ
2 =

θθθ
⊤Π⊥θθθ

d
(270)

concentrate in probability to the solutions of the system of equations

q1 =
∫

dν(ρ ,τ ,π)ρ (q̂1ρ+q̂2+ζ̂ 2ρτ2+ψ̂2ρπ2)

(λ+V̂1ρ+V̂2)
2

−β ζ̂ 2 I(V̂1,V̂2)2

(1−βV̂1I(V̂1,V̂2))
2

−ζ̂ 2
∫

dν(ρ ,τ ,π) τ2ρ2

(λ+V̂1ρ+V̂2)
2

[
(1−βV̂1I(V̂1,V̂2))

2−1
]

(1−βV̂1I(V̂1,V̂2))
2

q2 =
∫

dν(ρ ,τ ,π) (
q̂1ρ+q̂2+ζ̂ 2ρτ2+ψ̂2ρπ2)

(λ+V̂1ρ+V̂2)
2

−ζ̂ 2∫dν(ρ ,τ ,π) τ2ρ

(λ+V̂1ρ+V̂2)2

[
1− 1

(1−βV̂1I(V̂1,V̂2))
2

]
V1 =

∫
dν(ρ ,τ ,π)ρ 1

λ+V̂1ρ+V̂2

V2 =
∫

dν(ρ ,τ ,π) 1
λ+V̂1ρ+V̂2

m = 1

Eκ

[
µ0(κ)

2

1+V (κ)

]Eκ ,y

[
µ0(κ)(σ⋆(κ ,y)−µ1(κ)κζ )

1+V (κ)

]
ζ = ζ̂

√
β
∫

dν(ρ ,τ ,π)ρτ2 1
λ+V̂1ρ+V̂2

+β
3/2ζ̂V̂1

I(V̂1,V̂2)2

1−βV̂1I(V̂1,V̂2)

ψ = ψ̂
√

β
∫

dν(ρ ,τ ,π)ρπ2 1
λ+V̂1ρ+V̂2

, (271)



9.2 main technical results 173



V̂1 =
α

β
Eκ

ρµ1(κ)2

1+V (κ)

q̂1 =
α

β
Eκ ,yµ1(κ)2 b(κ ,y)2+ρq(κ)−µ1(κ)2ψ2

(1+V (κ))2

V̂2 =
α

β
Eκ

ρµ2(κ)2

1+V (κ)

q̂2 =
α

β
Eκ ,yµ2(κ)2 b(κ ,y)2+ρq(κ)−µ1(κ)2ψ2

(1+V (κ))2

ζ̂ = α√
β

Eκ ,yκµ1(κ)
b(κ ,y)

1+V (κ)

ψ̂ = α√
β

Eκ ,y
yµ1(κ)b(κ ,y)+ψµ1(κ)2

1+V (κ)

(272)

and

ρ
2 = 1− γ

2. (273)

We introduced the shorthands

b(y,κ) ≡ σ⋆(γκ +
√

1− γ2y)−µ0(κ)m−κµ1(κ)ζ−µ1(κ)ψy (274)
V (κ) ≡ µ1(κ)

2V1 + µ2(κ)
2V2 (275)

q(κ) ≡ µ1(κ)
2q1 + µ2(κ)

2q2, (276)

I(V̂1,V̂2) =
∫

dν(ρ ,τ ,π)
τ2ρ

V̂1ρ + V̂2 +λ
(277)

In (271), the expectations over κ ,y bear over standard Gaussian variables. We
remind that the quantities r,c,γ are characterized in Result 9.2.2.
Finally, the test error (259) admits the sharp characterization

εg = Eκ ,y

[(
σ⋆(γκ+

√
1−γ2y)−µ0(κ)m−µ1(κ)κζ− µ1(κ)ψ√

ρ
y
)2

+q(κ)− µ1(κ)
2ψ2

ρ

]
(278)

where expectations bear over standard Gaussian variables.

Result 9.2.5 thus rephrases the high-dimensional learning problem (258)
in terms of a finite set of scalar summary statistics which can be efficiently
evaluated, yielding excellent agreement with finite d numerical simulations,
see Figs. 30-32. While we state Result 9.2.5 for the square loss and ℓ2 regular-
ization for clarity, a sharp characterization can be derived for any generic
convex loss ℓ. While we have used the (non-rigorous) replica method to
derive these equations, an interesting avenue of future research is to provide
a rigorous probabilistic proof. A possible way to address the problem is to
apply Gordon’s Gaussian min-max inequalities (Gordon, 1988; Thrampoulidis
et al., 2014; Stojnic, 2013b; Stojnic, 2013c)), and generalized the approach
used for pure random features (Hu et al., 2022b; Loureiro et al., 2021b). This
is, however, beyond the scope of this manuscript.
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Figure 30: Test error achieved by a two-layer network with activation σ whose first
layer has been trained following the protocol detailed in section 9.1 on a
single-index target with activation σ⋆. (Left) Activations σ = σ⋆ = tanh,
learning rate η̃ = 1, readout regularization λ = 0.01. (Right) Activations
σ = tanh,σ⋆ = sin, learning rate η̃ = 3, readout regularization λ = 0.1.
The dashed black line represents the lowest achievable MSE for kernel/-
linear methods, namely h⋆2− (h⋆1)

2 (Ba et al., 2022a). In both plots, solid
lines correspond to the theoretical Result 9.2.5, and crosses correspond
numerical experiments in d = 3000 (left) and d = 2000 (right). All points
were averaged over 5 instances. Different colours represent different ini-
tial sample complexities α0 = n0/d used for the first gradient step.

9.3 DI SCUSS ION OF MAIN RESULTS

While the self-consistent equations in Result 9.2.5 might appear cumbersome,
they offer valuable insight into the mechanism behind feature learning in
two-layer neural networks trained with gradient descent. In this section, we
discuss and highlight some of these insights.

9.3.1 spiked random features vs random
features

The asymptotic characterization 9.2.5 encompasses, as a special case, usual
RFs (when setting the spike strength r to zero). More precisely, for zero spike
strength r = 0 in (261), sRFs coincide with RFs, as the coefficients (268) lose
their κ dependence, reducing to usual Hermite coefficients. The equivalent
feature map ϕϕϕg then reduces to the Gaussian equivalent feature map em-
ployed in e.g. (Goldt et al., 2020c; Hu et al., 2022b; Schröder et al., 2023a).
Importantly, while the equivalent feature map for unspiked RFs is linear in
the input xxx, the equivalent feature map ϕϕϕg (267) of Result 9.2.3 is non-linear
in the component κ of the input xxx.

sRFmodels, which are equivalent to two-layer networks after a single large
gradient step through Result 9.2.2, offer an ideal playground to test the in-
tertwined influence of the spike/target correlation and the test performance
of the model. Fig. 32 (left) presents the learning curves of (s)RFs for varying
spike strengths r. As is intuitive, larger spikes allow the sRF to more easily
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express non-linear function in the direction of the spike, and thus lead to
relatively smaller test errors. Furthermore, note that even rather small spike
strengths r = 0.2 already yield test errors which are sizably lower than vanilla
(unspiked) RFs (r = 0), hinting at the qualitative difference between sRF and
RFmodels discussed in section 9.1 and Fig. 29. This is in qualitative agreement
with the result of (Moniri et al., 2023), who studied the intermediate scaling
regime where the learning rate η = Θd(ds)with s∈ (1/2,1), and have shown
that in this regime a polynomial approximation of σ⋆ is learned.

The plot shows a compelling agreement between the theoretical predictions
(continuous line) and numerical simulations. Fig. 32 (right) represents the
theoretical closed-form expression for the test error (278) for different values
of the spike/target alignment γ , for a single-index target sign(θθθ⊤xxx), with
good agreement with numerical experiments. Higher alignments γ lead to
overall lower test errors escaping the linear curse of Gaussian models.

9.3.2 beating kernels in a single step

A key parameter in our formulas is γ = vvv⊤θθθ/d ∈ [0,1], the correlation be-
tween the effective gradient spike and the target weights. From its asymp-
totic expression eq. 262 in Result 9.2.2, this is an increasing function of
α0 = n0/d, the number of samples in the first step. As shown in Fig. 30 (left)
for σ = σ⋆ = tanh, larger sample complexities in the representation learn-
ing step α0 allow for better feature learning when implementing a gradient
step on the first layer, enabling a lower test error after the readout layer is
retrained. As expected, the lowest error is achieved when α0→ ∞, in which
case the spike vvv is perfectly aligned with the target weights θθθ and γ = 1, as
can be seen from (262).

Figure 30 (right) presents similar curves for another target activation
σ⋆ = sin, including the test error achieved by the network at initialization
(α0 = 0), which corresponds to a usual RF model. The latter is well above
the lowest MSE achievable by a linear estimator (plotted as a dashed black
line), namely the projection of the teacher function on Hermite polynomials
∥P>1 f⋆∥2

2. This performance corresponds to the kernel one when the num-
ber of samples scales proportionally with the input dimension (Ghorbani
et al., 2020a); using the notations of Result 9.2.2 the best linear MSE is readily
written as h⋆2− (h⋆1)

2. In sharp contrast, networks with trained first layers
(α0 > 0) can learn non-linear functions of the inputs and outperform this
baseline.
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Figure 31: (c = 1,r = 0.9 and γ = 1) Illustration of the functions realizing the upper
bound (279) (orange) and lower bound (280) (blue), for σ = tanh, for a
target σ⋆ = sin (dashed black).

9.3.3 what can be learned with a single
step?

While training a two-layer network with large gradient steps allows it to
escape the linear limitations of, e.g. RF models, it generically only learns the
target up to small test error, yet not perfectly. In fact, a closer examination of
the sharp asymptotic expression (278) for εg in Result 9.2.5 reveals that even
for large initial batches α0→ ∞ (and thus perfect spike/target alignments
γ = 1), at fixed learning rate strength η̃ and sample complexity α > 0, the
test error optimized over the regularization λ is upper bounded as

inf
λ≥0

εg ≤ inf
b1

Eκ [σ⋆(κ)−b1µ0(κ)]
2 , (279)

and lower bounded by:

inf
λ≥0

εg≥ inf
b1,b2

Eκ [σ⋆(κ)−b1µ0(κ)−b2µ1(κ)κ ]
2 . (280)

The upper bound (279) is the equivalent of Lemma 6 of (Ba et al., 2022a) in
our case of uniform readout initialization aaa(0) = 111p/√p, and is achieved for
λ → ∞. The lower bound (280), however, shows that the test error cannot be
lower than the Gaussian-weighted L2 distance between the target function
σ⋆ and span(µ0, µ̃1), where µ̃1(κ) ≡ κµ1(κ), and the best approximation
would be reached for the projection of the target thereon. Fig. 31 illustrates
what functions realize the upper (279) and lower bounds (280), and how they
compare with the target σ⋆. Finally, note that in the vanilla RF limit r = 0, the
functions µ0(κ), µ1(κ) reduce to constants independent of κ , constraining
the class of functions that can be learned to that of linear functions.

Finally, let us mention that while this discussion was made at fixed learning
rate η̃ for clarity, the latter is in practice a tunable hyper-parameter, and
the functions µ0, µ1 depend thereupon via the spike strength r (268). One
can thus refine – and lower– the bounds (279) and (280) over the functions
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Figure 32: Test error for a sRF with activation σ learning from a single-index model
σ⋆(θθθ

⊤xxx/
√

d), with regularization λ = 0.1. (Left) σ = sin,σ⋆ = sign. Dif-
ferent colours corrwespond to different spike strengths r (261), with r = 0
corresponding to the vanilla RF model. (Right) σ = σ⋆ = tanh. Different
colours correspond to different overlaps γ ≡ θθθ

⊤vvv/d between the target
weights θθθ and the spike vvv. Solid lines: theoretical characterization of
Result 9.2.5. Crosses : numerical simulations in dimensions d= p=2000.
Each point is averaged over 10 instances of the problem.

µ0, µ1, which can take values in the realizable set M = {(µ0(r), µ1(r)}r≥0

(emphasizing the dependence on r via equation (268)) as η̃ is varied:

inf
λ≥0,η̃≥0

εg ≤ inf
b1∈R,ν0∈M

Eκ [σ⋆(κ)−b1ν0(κ)]
2 , (281)

inf
λ≥0,η̃≥0

εg ≥ inf
b1,b2∈R,

(ν0,ν1)∈M

Eκ [σ⋆(κ)−b1ν0(κ)−b2ν1(κ)κ ]
2 .

In other words, by tuning the learning rate η̃ – and thus the spike strength
r–, one gains the freedom to choose the "best" subspace span(µ0(r), µ1(r)),
i.e. the one allowing to approximate the target σ⋆ best.

Finally, as discussed in (Ba et al., 2022a), observe that for σ = σ⋆ = erf,
the upper bound in (281) is zero provided one tunes the learning rate to
η̃ =

√
3β/h1, and perfect learning is therefore achievable.

9.3.4 more variability means better
feature learning

The discussion of subsection 9.3.3 thus affords an insightful perspective on
the learning of two-layer neural networks in terms of approximating the
target activation σ⋆ in a two-dimensional functional space. Interestingly,
introducing variability in the readout layer at initialization leads to an even
richer functional basis, and hence greater expressivity of the network. When
aaa(0) is no longer proportional to 111p, but is rather initialized from a distri-
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bution over a finite vocabulary V of size |V |> 1–e.g. V = {−1,0,+1}– the
equivalent feature map takes the form:

ϕϕϕ
g(xxx) =


µ0(u1κ)

µ0(u2κ)

...
µ0(upκ)

+


µ1(u1κ)

µ1(u2κ)

...
µ1(upκ)

⊙Wxxx+


µ2(u1κ)

µ2(u2κ)

...
µ2(upκ)

⊙ξξξ (282)

where ⊙ denotes element-wise multiplication, ξξξ ∼N (0,Ip), and uuu ̸∝ 111p

has entries which can now take a finite number of different values. The
coefficients of the equivalent map (282) are thus neuron-dependent and thus
afford a richer functional basis {µ0(ω·), µ̃1(ω·)}ω∈V , thereby allowing the
network to express a larger class of functions. As a matter of fact, the func-
tional space spanned by these functions is generically of dimension 2|V | for
non-uniform readout initializations aaa(0), compared to just 2 in the uniform
readout case. A sharp asymptotic characterization of the test error for the
case of non-uniform readout initialization can also be reached along similar
lines as Result 9.2.5.

We briefly discuss the limiting case of interest λ ,α0, η̃ → ∞, for which
the equivalent feature map ϕϕϕg(xxx) (282) reduces to its first term (µ0(uiκ))

p
i=1.

Further observe that µ0(uiκ) can be viewed as a one-dimensional neuron
acting on the one-dimensional input variable κ with a random weight ui.
Standard results on approximation errors for random feature mappings of
finite-dimensional inputs (Rahimi et al., 2007b) imply that a large class
of functions can be approximated from the network features ϕϕϕg(xxx), pro-
vided the vocabulary size |V | is large enough. Similar random features
approximations have been leveraged in (Ba et al., 2022a; Ba et al., 2023;
Damian et al., 2022). The equivalent feature map (282) provides an intu-
itive picture on how such random feature mappings of low-dimensional
inputs can naturally emerge in the setting of the learning of a two-layer
network.

Finally, note that the bounds (279) and (280) can be readily generalised to
non-uniform readout initializations, provided one replaces in the discussion of
subsection 9.3.3 the two-dimensional functional basis span(µ0, µ̃1) in the case
of uniform initialization by the richer functional space span({µ0(ω·), µ̃1(ω·)}ω∈V )

for non-uniform initialization. For instance, the lower bound (280) thus
involves in the non-uniform case the distance between the target σ⋆ and
span({µ0(ω·), µ̃1(ω·)}ω∈V ).

CONCLUS ION

We provided a tight asymptotic description of the learning of a two-layer
neural network after training its first layer with a large, single, gradient step,
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in the limit where the number of samples, the hidden layer width, and the
input dimension are proportionally large. Our results sharply characterize
the feature maps learned from the data, and how it achieves a test error which
non-perturbatively improves over the kernel regime. Crucially, the trained
network can efficiently approximate non-linear functions in the direction of
the gradient – sizeably improving upon the network at initialization, which
can only express linear functions. We further discuss bounds for the test
error and which functions are learnable after a single gradient step. Finally,
extensive numerical support is provided to illustrate our findings. To our
knowledge, our work provides the first exact asymptotic result in the non-
perturbative η = Θd(d) regime for feature learning.

We believe the present work opens exciting research avenues, paving the
way towards a tight theoretical understanding of feature learning in gradient-
trained networks. Prominent among these research directions is the extension
of our results to readout initialization with generic (not necessarily finite)
support. to a finite number of gradient steps, and ultimately fully trained
networks.



Part IV

ASPECTS OF MODERN ML



OUTL INE AND
MOTIVAT IONS

Parts II and III focused on the study of supervised tasks with FNN architec-
tures. While such settings have historically been the principal focal point
of theoretical effort in ML research, they represent but a small part of the
modern zoology ofML tasks and architectures. In fact, partly prompted by the
need to match the fast pace of empirical breakthroughs, the emphasis in ML
theory is increasingly shifting towards other learning paradigms. On the one
hand, diffusion and flow-based models (Ho et al., 2020a; Sohl-Dickstein et al.,
2015) introduced a new framework for the sampling of complex distribu-
tions, offering efficient alternatives to GAN-based methods. The training and
downstream deployment of such models follow a slightly different pattern
from vanilla supervised learning, as we discuss further in Chapter 11, and
thus represent unique technical challenges for theoretical analyses. Secondly,
recent years have witnessed quick-paced progress in the learning of language
data. Transformer architectures (Vaswani et al., 2017) have in particular taken
center stage as powerful and computationally efficient feature extractors for
sequential data. The rapid diversification of ML practice warrants matching
developments at the level ofML theory. Part IV presents tight asymptotic anal-
yses – to our awareness the first– of the learning of a flow-based generative
model and a non-linear attention layer from limited data.

In diffusion models, a
ANN- parametrized
velocity field
transports an simple
base distribution
(bottom) to a complex
target density (top).

flow-based generative models

The first two Chapters of Part IV investigate the learning of flow-based gener-
ative models. These models allow to sample from realistic data distributions,
or approximations thereof, by transporting an easy-to-sample base density
into an approximation of the target density. The velocity field associated to
this transport map is typically parametrized by an ANN, trained to denoise a
series of increasingly noisier versions of the training data.

Chapter 10 first focuses on analyzing this building block in isolation, and
discusses self-supervised denoising tasks with denoiser ANNs. It more pre-
cisely considers the learning of the simplest instance of such networks, the
DAE, when trained to denoise data sampled from a high-dimensional Gaus-
sian mixture density. Chapter 11 builds upon these insights to analyze the
performance of a DAE-parametrized flow-based generative model in generat-
ing samples from a bimodal Gaussian mixture, when learning from n training
points. It provides a tight description of the learning and transport processes,
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and shows how the model learns to generate an approximation of the target
distribution with a Θn(1/n) error.

dot-product attention

The information encoded in sequential data such as language is embedded in
the tokens themselves (a.k.a their semantics) and their respective ordering
within the sequence (a.k.a their positions). Attention layers (Vaswani et al.,
2017) are a priori able to implement both semantic and positional mecha-
nisms, i.e. to extract either type of information from a sequence. Under what
condition do transformers learn to implement one mechanism or the other,
and to which relative extents? Chapter 12 investigates this question in a
theoretically controlled setting, namely that of supervised learning with a
single attention head parametrized by low-rank matrices. Two local minima
are found in the ERM loss landscape, respectively corresponding to positional
and semantic mechanisms, with the former (resp. latter) being global at small
(resp. large) sample complexities. The analysis reveals a first-order phase
transition between the learning of the two mechanisms.





10
SELF - SUPERV I SED
LEARNING WI TH
AUTO-ENCODERS

Machine learning techniques have a long history of success in denoising
tasks. The recent breakthrough of diffusion-based generation (Song et al.,
2021; Ho et al., 2020b) has further revived the interest in denoising networks,
demonstrating how they can also be leveraged, beyond denoising, for gener-
ative tasks. However, this rapidly expanding range of applications stands in
sharp contrast to the relatively scarce theoretical understanding of denoising
neural networks, even for the simplest instance thereof – namely DAEs (Vin-
cent et al., 2010).

Theoretical studies of autoencoders have hitherto almost exclusively fo-
cused on data compression tasks using Reconstruction Auto-Encoder (RAE)s,
where the goal is to learn a concise latent representation of the data. A ma-
jority of this body of work addresses linear autoencoders (Oftadeh et al.,
2020; Kunin et al., 2019; Bao et al., 2020; Gidel et al., 2019). The authors of
(Refinetti et al., 2022; Shevchenko et al., 2022) analyze the gradient-based
training of non-linear autoencoders with online stochastic gradient descent
or in population, thus implicitly assuming the availability of an infinite num-
ber of training samples. Furthermore, two-layer RAEs were shown to learn
to essentially perform Principal Component Analysis (PCA) (Eckart et al.,
1936; Bourlard et al., 1988; Baldi et al., 1989), i.e. to learn a linear model. Ref.
(Nguyen, 2021) shows that this is also true for infinite-width architectures.
Learning in DAEs has been the object of theoretical investigations only in the
linear case (Pretorius et al., 2018), while the case of non-linear DAEs remains
theoretically largely unexplored.

main contributions

The present work considers the problem of denoising data sampled from a
Gaussian mixture by learning a two-layer DAE with a skip connection and
tied weights via empirical risk minimization. Throughout the manuscript, we
consider the high-dimensional limit where the number of training samples n
and the dimension d are large (n,d→ ∞) while remaining comparable, i.e.
α ≡ n/d = Θ(1). Our main contributions are:
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• Leveraging the replica method, we provide sharp, closed-form formulae
for the MSE for DAEs, as a function of the sample complexity α and
the problem parameters. We also provide a sharp characterization for
other learning metrics including the weights norms, skip connection
strength, and cosine similarity between the weights and the cluster
means. These formulae encompass as a corollary the case of RAEs. We
show that these formulae also describe quantitatively rather well the
denoising MSE for real data sets, including MNIST (LeCun et al., 1998b)
and FashionMNIST (Xiao et al., 2017).

• We find that PCA denoising (namely denoising by projecting the noisy
data along the principal component of the training samples) is widely
sub-optimal compared to the DAE, leading to a MSE superior by a dif-
ference of Θ(d), thereby establishing that DAEs do not simply learn to
perform PCA.

• Building on the formulae, we quantify the role of each component
of the DAE architecture (skip connection and the bottleneck network)
in its overall performance. We find that the two components have
complementary effects in the denoising process –namely preserving
the data nuances and removing the noise– and discuss how the training
of the DAE results from a tradeoff between these effects.

related works

Theory of autoencoders – Various aspects of RAEs have been studied,
for example, memorization (Radhakrishnan et al., 2019), or latent space align-
ment (Jain et al., 2021). However, the largest body of work has been dedicated
to the analysis of gradient-based algorithms when training RAEs. Ref. (Kunin
et al., 2019) established that minimizing the training loss leads to learning
the principal components of the data. Authors of (Bourlard et al., 1988; Baldi
et al., 1989) have analyzed how a linear RAE learns these components dur-
ing training. These studies were later extended to non-linear networks by
(Nguyen et al., 2019b; Refinetti et al., 2022; Shevchenko et al., 2022), at the
sacrifice of further assuming an infinite number of training samples to be
available –either by considering online stochastic gradient descent, or the
population loss. Refs. (Nguyen et al., 2019a; Nguyen, 2021) are able to address
a finite sample complexity, but in exchange, have to consider infinite-width
architectures, which (Nguyen, 2021) further shows, also tend to a large extent
to learn to perform PCA.

Exact asymptotics from the replica method – The replica method
(Parisi, 1979b; Parisi, 1983a; Zdeborová et al., 2015; Gabrié, 2019) has proven
a very valuable gateway to access sharp asymptotic characterizations of
learningmetrics for high-dimensional machine learning problems. Past works
have addressed –among others– single-(Gardner et al., 1988; Opper et al.,
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1991b; Barbier et al., 2019a; Aubin et al., 2020a) andmulti-indexmodels (Aubin
et al., 2018a), or kernel methods (Dietrich et al., 1999b; Bordelon et al., 2020;
Gerace et al., 2020a; Cui et al., 2023c). While the approach has traditionally
addressed convex problems, for which its prediction can be proven e.g. using
the convex Gordon minimax theorem (Thrampoulidis et al., 2018), the replica
method allows to average over all the global minimizers of the loss, and
therefore also accommodates non-convex settings. Refs. (Zavatone-Veth et
al., 2022a; Cui et al., 2023b) are two recent examples of its application to
non-convex losses. In the present manuscript, we leverage this versatility to
study the minimization of the empirical risk of DAEs, whose non-convexity
represents a considerable hurdle to many other types of analyses.

10.1 SET T ING

Data model We consider the problem of denoising data xxx ∈Rd corrupted
by Gaussian white noise of variance ∆,

x̃xx =
√

1−∆xxx+
√

∆ξξξ ,

where we denoted x̃xx the noisy data point, and ξξξ ∼N (0,Id) the additive
noise. The rescaling of the clean data point by a factor

√
1−∆ is a practical

choice that entails no loss of generality, and allows to easily interpolate
between the noiseless case (∆ = 0) and the case where the signal-to-noise
ratio vanishes (∆ = 1). Furthermore, it allows us to seamlessly connect with
works on diffusion-based generative models, where the rescaling naturally
follows from the way the data is corrupted by an Ornstein-Uhlenbeck process
(Song et al., 2021; Ho et al., 2020b). In the present work, we assume the clean
data xxx to be drawn from a Gaussian mixture distribution P with K clusters

xxx∼
K

∑
k=1

ρkN (µµµk,Σk). (283)

The k−th cluster is thus centered around µµµk ∈Rd , has covariance Σk ⪰ 0,
and relative weight ρk.

DAE model An algorithmic way to retrieve the clean data xxx from the
noisy data x̃xx is to build a neural network taking the latter as an input and
yielding the former as an output. A particularly natural choice for such a
network is an autoencoder architecture (Vincent et al., 2010). The intuition is
that the narrow hidden layer of an autoencoder forces the network to learn
a succinct latent representation of the data, which is robust against noise
corruption of the input. In this work, we analyze a two-layer DAE. We further
assume that the weights are tied. Additionally, mirroring modern denoising
architectures like U-nets (Ronneberger et al., 2015b) or (Mao et al., 2016; Tong
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et al., 2017; Kim et al., 2016a; Kim et al., 2016b), we also allow for a (trainable)
skip-connection:

fb,www(x̃xx) = b× x̃xx+
www⊤√

d
σ

(
wwwx̃xx√

d

)
. (284)

The DAE (284) is therefore parametrized by the scalar skip connection
DAE architecture, for
p = 2.

strength b ∈ R and the weights www ∈ Rp×d , with p the width of the DAE
hidden layer. The normalization of the weight www by

√
d in (284) is the natural

choice which ensures for high dimensional settings d≫ 1 that the argument
of the non-linearity σ(·) stays Θ(1). Like (Refinetti et al., 2022), we focus
on the case with p≪ d. The assumption of weight-tying affords a more
concise theoretical characterization and thus clearer discussions. Note that it
is also a strategy with substantial practical history, dating back to (Vincent
et al., 2010), as it prevents the DAE from functioning in the linear region
of its non-linearity σ(·). This choice of architecture is also motivated by a
particular case of Tweedie’s formula (Efron, 2011), which will be the object
of further discussion in Section 10.3.

We also consider two other simple architectures

uvvv(x̃xx) =
vvv⊤√

d
σ

(
vvvx̃xx√

d

)
, rc(x̃xx) = c× x̃xx, (285)

which correspond to the building blocks of the complete DAE architecture fb,www

(284) (hereafter referred to as the full DAE). Note that indeed fb,www = rb + uwww.
The part uvvv(·) is aDAEwithout skip connection (hereafter called the bottleneck
network component), while rc(·) correspond to a simple single-parameter
trainable rescaling of the input (hereafter called the rescaling component).

To train the DAE (284), we assume the availability of a training set D =

{x̃xxµ ,xxxµ}n
µ=1, with n clean samples xxxµ drawn i.i.d from P (283) and the corre-

sponding noisy samples x̃xxµ = xxxµ +ξξξ
µ (with the noises ξξξ

µ assumed mutually
independent). The DAE is trained to recover the clean samples xxxµ from the
noisy samples x̃xxµ by minimizing the empirical risk 1

R̂(b,www) =
n

∑
µ=1
∥xxxµ − fb,www(x̃xxµ)∥2 + g(www), (286)

where g : Rp×d →R+ is an arbitrary convex regularizing function. We de-
note by b̂, ŵww the minimizers of the empirical risk (286) and by f̂ ≡ fb̂,ŵww the
corresponding trained DAE (284). For future discussion, we also consider
training independently the components (285) via ERM, by which we mean

1 Observe that if K = 1,
∥∥xxxµ − fb,www(x̃xxµ )

∥∥2
= d(1 − b

√
1−∆)2 Tr[Σ1] + d∆ +

1/d∥www∥2σ(wwwx̃xx/
√

d)2 − 2wwwxxx/
√

d)σ(wwwx̃xx/
√

d) ≡ ℓ(∥www∥2/d, Xwww/
√

d), which is a slight general-
ization of the seq-GLM analyzed in the introductory Chapter 2, where the loss can further
depend on the weight norm ∥www∥. We noted the sequence X ∈R2×d as the concatenation of
the rows xxx,ξξξ .
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replacing fb,www by uvvv or rc in (286). We similarly denote v̂vv (resp. ĉ) the learnt
weight of the bottleneck network (resp. rescaling) component and û ≡ uv̂vv

(resp. r̂≡ rĉ). Note that generically, v̂vv ̸= ŵww and ĉ ̸= b̂, and therefore f̂ ̸= û+ r̂,
since b̂, ŵww result from their joint optimization as parts of the full DAE fb,www,
while ĉ (or v̂vv) are optimized independently. As we discuss in Section 10.3,
training the sole rescaling rc does not afford an expressive enough denoiser,
while an independently learnt bottleneck network component uvvv essentially
only learns to implement PCA. However, when jointly trained as components
of the full DAE fb,www (284), the resulting denoiser f̂ is a genuinely non-linear
model which yields a much lower test error than PCA, and learns to leverage
flexibly its two components to balance the preservation of the data nuances
and the removal of the noise.

Learning metrics The performance of the DAE (284) trained with the loss
(286) is quantified by its reconstruction (denoising) test MSE, defined as

mse f̂ ≡EDExxx∼PEξξξ∼N (0,Id)

∥∥∥xxx− fb̂,ŵww

(√
1−∆xxx+

√
∆ξξξ

)∥∥∥2
. (287)

The expectations run over a fresh test sample xxx sampled from the Gaussian
mixture P (283), and a new additive noise ξξξ corrupting it. Note that an
expectation over the train set D is also included to make mse f̂ a metric that
does not depend on the particular realization of the train set. The denoising
test MSEs mseû,mser̂ are defined similarly as the denoising test errors of
the independently learnt components (285). Aside from the denoising MSE
(287), another question of interest is how much the DAE manages to learn the
structure of the data distribution, as described by the cluster means µµµk. This
is measured by the cosine similarity matrix θθθ ∈Rp×K , where for i ∈ J1, pK
and k ∈ J1,KK,

θik ≡ED

[
ŵww⊤i µµµk

∥ŵwwi∥∥µµµk∥

]
. (288)

In other words, θik measures the alignment of the i−th row ŵwwi of the trained
weight matrix ŵww with the mean of the k−th cluster µµµk.

High-dimensional limit We analyze the optimization problem (286) in
the high-dimensional limit where the input dimension d and number of
training samples n jointly tend to infinity, while their ratio α = n/d stays
Θ(1). The hidden layer width p, the noise level ∆, the number of clusters K
and the norm of the cluster means ∥µµµk∥ are also assumed to remain Θ(1).
This corresponds to a rich limit, where the number of parameters of the
DAE is not large compared to the number of samples like in (Nguyen et al.,
2019a; Nguyen, 2021), and therefore cannot trivially fit the train set, or simply
memorize it (Radhakrishnan et al., 2019). Conversely, the number of samples
n is not infinite like in (Refinetti et al., 2022; Shevchenko et al., 2022; Nguyen
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et al., 2019b), and therefore importantly allows to study the effect of a finite
train set on the representation learnt by the DAE.

10.2 ASYMPTOT IC FORMULAE FOR DAES

We now state the main result of the present work, namely the closed-form
asymptotic formulae for the learning metrics mse f̂ (287) and θ (288) for a DAE
(284) learnt with the empirical loss (286), derived using the replica method
in its RS formulation.
Assumption 10.2.1. The covariances {Σ}K

k=1 admit a common set of eigen-
vectors {eeei}d

i=1. We further note {λ k
i }d

i=1 the eigenvalues of Σk. The eigenvalues
{λ k

i }d
i=1 and the projection of the cluster means on the eigenvectors {eee⊤i µµµk}i,k

are assumed to admit a well-defined joint distribution ν as d→ ∞ – namely,
for γ = (γ1, ...,γK) ∈RK and τ = (τ1, ...,τK) ∈RK :

1
d

d

∑
i=1

K

∏
k=1

δ

(
λ

k
i − γk

)
δ

(√
deee⊤i µµµk− τk

)
d→∞−−−→ ν (γ ,τ) . (289)

Moreover, the marginals νγ (resp. ντ ) are assumed to have a well-defined first
(resp. second) moment.

Assumption 10.2.2. g(·) is a ℓ2 regularizer with strength λ , i.e. g(·) =
λ/2∥·∥2

F .

Result 10.2.3. (Closed-form asymptotics for DAEs trained with empir-
ical risk minimization) Under Assumptions 10.2.1 and 10.2.2, in the high-
dimensional limit n,d → ∞ with fixed ratio α , the denoising test MSE mse f̂
(287) admits the expression

mse f̂ −mse◦ =
K

∑
k=1

ρkEz Tr
[
qσ (

√
1−∆mk+

√
∆q(1−∆)qkz)

⊗2
]

(290)

−2
K

∑
k=1

ρkEu,v

[
σ

(√
1−∆mk+

√
qk(1−∆)u+

√
∆qv

)⊤
((1−b̂

√
1−∆)(mk+

√
qku)−b̂

√
∆qv)

]
+ o(1),

where the averages bear over independent Gaussian variables z,u,v∼N (0,Ip).
We denoted

mse◦ = d∆b̂2 +
(

1−
√

1−∆b̂
)2 [ K

∑
k=1

ρk(
∫

dντ (τ)τ2
k +d

∫
dνγ (γ)γk)

]
. (291)

The learnt skip connection strength b̂ is

b̂ =

(
K
∑

k=1
ρk
∫

dνγ(γ)γk

)√
1−∆(

K
∑

k=1
ρk
∫

dνγ(γ)γk

)
(1−∆)

+∆+ o(1). (292)
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The cosine similarity θ (288) admits the compact formula for i ∈ J1, pK and
k ∈ J1,KK

θik =
(mk)i√

qii
∫

dντ(τ)τ2
k

, (293)

where we have introduced the summary statistics

q = lim
d→∞

ED

[
ŵwwŵww⊤

d

]
, qk = lim

d→∞

ED

[
ŵwwΣkŵww⊤

d

]
, mk = lim

d→∞

ED

[
ŵwwµµµk√

d

]
.

(294)

Thus q,qk ∈Rp×p, mk ∈Rp. The summary statistics q,qk,mk can be determined
as solutions of the system of equations
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
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In (295), q̂k,V̂k,V̂ ,V ∈Rp×p and m̂k ∈Rp, and the averages bear over finite-
dimensional i.i.d Gaussians ξ ,η ∼N (0,Ip). Finally, proxk

x,proxk
y are given as

the solutions of the finite-dimensional optimization

proxk
x, proxk

y =

arginf
x,y∈Rp

{
Tr

[
V−1

k

(
y−q

1
2
k η−mk

)⊗2
]
+

1
∆

Tr
[
V−1

(
x−
√

∆q
1
2 ξ

)⊗2
]

+Tr
[
qσ(
√

1−∆y+ x)⊗2
]
−2σ(

√
1−∆y+ x)⊤((1−

√
1−∆b̂)y−b̂x)

}
.

(296)

In fact, Assumptions 10.2.1 and 10.2.2 are not strictly necessary, and can
be simultaneously relaxed to address arbitrary convex regularizer g(·) and
generically non-commuting {Σk}K

k=1 – but at the price of more intricate
formulae. For this reason, we choose to discuss here Result 10.2.3, following
the same lines as the computation detailed in the introductory Part I. Result
10.2.3 encompasses as special cases the asymptotic characterization of the
components r̂, û (285):

Corollary 10.2.4. (MSE of components) The test MSE of r̂ (285) is given by
mser̂ = mse◦ (291). Furthermore, the learnt value of its single parameter ĉ is
given by (292). The test MSE, cosine similarity and summary statistics of the
bottleneck network û (285) follow from Result 10.2.3 by setting b̂ = 0.

The implications of Corollary 10.2.4 shall be further discussed in Section
10.3. Finally, remark that in the noiseless limit ∆ = 0, the denoising task
reduces to a reconstruction task, with the autoencoder being tasked with
reproducing the clean data as an output when taking the same clean sample
as an input. Therefore Result 10.2.3 also includes RAEs (by definition, without
skip connection) as a special case.

Corollary 10.2.5. (RAEs) In the n,d→ ∞ limit, the MSE, cosine similarity and
summary statistics for an RAE follow from Result 10.2.3 by setting x = 0 in (296),
removing the first term in the brackets in the equation of V̂ (295) and taking
the limit ∆, q̂, b̂→ 0.

Corollary 10.2.5 will be the object of further discussion in Section 10.3.
Note that Corollary 10.2.5 provides a characterization of RAEs as a function of
the sample complexity α , where previous studies on non-linear RAEs rely on
the assumption of an infinite number of available training samples (Nguyen,
2021; Refinetti et al., 2022; Shevchenko et al., 2022).

Equations (292) and (294) of Result 10.2.3 thus characterize the statistics of
the learnt parameters b̂, ŵww of the trained DAE (284). These summary statistics
are, in turn, sufficient to fully characterize the learning metrics (287) and (288)
via equations (290) and (293). We thus have reduced the high-dimensional
optimization (286) and the high-dimensional average over the train set D
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Figure 33: α = 1,K = 2,ρ1,2 = 1/2,Σ1,2 = 0.09×Id , p = 1,λ = 0.1,σ(·) = tanh(·);
the cluster mean µµµ1 = −µµµ2 was taken as a random Gaussian vector of
norm 1. (left) In blue, the difference in MSE between the full DAE f̂ (284)
and the rescaling component r̂ (285). Solid lines correspond to the sharp
asymptotic characterization of Result 10.2.3. Dots represent numerical
simulations for d = 700, training the DAE using the Pytorch imple-
mentation of full-batch Adam, with learning rate η = 0.05 over 2000
epochs, averaged over N = 10 instances. Error bars represent one stan-
dard deviation. For completeness, the MSE of the oracle denoiser is given
as a baseline in green, see Section 10.3. The performance of a linear DAE
(σ(x) = x) is represented in dashed red. (right) Cosine similarity θ (288)
(green), squared weight norm ∥ŵww∥2

F/d (red) and skip connection strength
b̂ (blue). Solid lines correspond to the formulae (293)(294) and (292) of
Result 10.2.3; dots are numerical simulations. For completeness, the cosine
similarity of the first principal component of the clean train data {xxxµ}n

µ=1
is plotted in dashed black.

involved in the definition of the metrics (287) and (288) to a simpler system
of equations over 4+ 6K variables (295) which can be solved numerically.
It is important to note that all the summary statistics involved in (295) are
finite-dimensional as d→ ∞, and therefore Result 10.2.3 is a fully asymptotic
characterization, in the sense that it does not involve any high-dimensional
object. In the next paragraphs, we give two examples of applications of Result
10.2.3, to a simple binary isotropic mixture, and to real data sets.

Example 1: Isotropic homoscedastic mixture We give as a first ex-
ample the case of a synthetic binary Gaussian mixture with K = 2, µµµ1 =

−µµµ2,Σ1,2 = 0.09×Id ,ρ1,2 = 1/2, using a DAEwith σ = tanh and p = 1. Since
this simple case exhibits the key phenomenology discussed in the present
work, we refer to it in future discussions. The MSE mse f̂ (290) evaluated from
the solutions of the self-consistent equations (295) is plotted as the solid blue
line in Fig. 33 (left) and compared to numerical simulations corresponding
to training the DAE (284) with the Pytorch implementation of the Adam
optimizer (Kingma et al., 2014b) (blue dots), for sample complexity α = 1 and
ℓ2 regularization (weight decay) λ = 0.1. The agreement between the theory
and simulation is compelling. The green solid line and corresponding green
dots in Fig. 33 (right) correspond to the replica prediction (293) and simula-
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Figure 34: Difference in MSE between the full DAE (284) and the rescaling component
(285) for the MNIST data set (middle), of which for simplicity only 1s
and 7s were kept, and FashionMNIST (right), of which only boots and
shoes were kept. In blue, the theoretical predictions resulting from using
Result 10.2.3 with the empirically estimated covariances and means. In
red, numerical simulations of a DAE (p = 1, σ = tanh) trained with n =
784 training points, using the Pytorch implementation of full-batch
Adam, with learning rate η = 0.05 and weight decay λ = 0.1 over 2000
epochs, averaged overN = 10 instances. Error bars represent one standard
deviation. (left) illustration of the denoised images: (top left) original
image, (top right) noisy image, (bottom left) DAE f̂ (284), (bottom right)
rescaling r̂ (285).

tions for the cosine similarity θ (288), and again display very good agreement.

A particularly striking observation is that due to the non-convexity of
the loss (286), there is a priori no guarantee that an Adam-optimized DAE
should find a global minimum, as described by the Result 10.2.3, rather than a
local minimum. The compelling agreement between theory and simulations
in Fig. 33 temptingly suggests that the loss landscape of DAEs (284) trained
with the loss (286) for the data model (283) should in some way be benign.
Authors of (Baldi et al., 1989) have shown, for linear RAEs, that there exists a
unique global and local minimum for the square loss and no regularizer. Ref.
(Pretorius et al., 2018) offers further insight for a linear DAE in dimension
d = 1, and shows that, aside from the global minima, the loss landscape only
includes an unstable saddle point from which the dynamics easily escapes.
Extending these works and intuitions to non-linear DAEs is an exciting re-
search topic for future work.

Example 2: MNIST, FashionMNIST It is reasonable to ask whether Re-
sult 10.2.3 is restricted to Gaussian mixtures (283). The answer is negative – in
fact, Result 10.2.3 also describes well a number of real data distributions. We
provide such an example for FashionMNIST (Xiao et al., 2017) (from which,
for simplicity, we only kept boots and shoes) and MNIST (LeCun et al., 1998b)
(1s and 7s), in Fig. 34. For each data set, samples sharing the same label were
considered to belong to the same cluster. The mean and covariance thereof
were estimated numerically, and combined with Result 10.2.3. The result-
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ing denoising MSE predictions mse f̂ are plotted as solid lines in Fig. 34, and
agree very well with numerical simulations of DAEs optimized over the real
data sets using the Pytorch implementation of Adam (Kingma et al., 2014b).

The observation that the MSEs of real data sets are to such degree of ac-
curacy captured by the equivalent Gaussian mixture strongly hints at the
presence of Gaussian universality (Goldt et al., 2020b). This opens a gateway
to future research, as Gaussian universality has hitherto been exclusively
addressed in classification and regression (rather than denoising) settings,
see e.g. (Goldt et al., 2020b; Hu et al., 2020; Montanari et al., 2022b). Denoising
tasks further constitute a particularly intriguing setting for universality re-
sults, as Gaussian universality would signify that only second-order statistics
of the data can be reconstructed using a shallow autoencoder.

10.3 THE ROLE AND IMPORTANCE OF
THE SK IP CONNECT ION .

Result 10.2.3 for the full DAE f̂ (284) and Corollary 10.2.4 for its components
r̂, û (285) allow to disentangle the contribution of each part, and thus to pin-
point their respective roles in the DAE architecture. We sequentially present
a comparison of f̂ with r̂, and f̂ with û. We remind that f̂ , r̂ and û result
from independent optimizations over the same train set D , and that while
fb,www = uwww + hb, f̂ ̸= û+ r̂.

In its simplest
formulation,
Tweedie’s formula
states that when
x̃xx∼N (xxx,Id),
E[xxx|x̃xx] = x̃xx+ s(x̃xx),
where the score
corresponds to
s(·) = d/dz lnP, with
P the probability
density of x̃. Similar
results are at the
heart of
denoising-driven
generative models,
see also Chapter 11.

Full DAE and the rescaling component We start this section by observ-
ing that for noise levels ∆ below a certain threshold, the full DAE f̂ yields
better MSE than the learnt rescaling r̂, as can be seen by the negative value
of mse f̂ −mser̂ in Fig. 33 and Fig. 34. The improvement is more sizeable at
intermediate noise levels ∆, and is observed for a growing region of ∆ as
the sample complexity α increases, see Fig. 35 (a). This lower MSE further
translates into visible qualitative changes in the result of denoising. As can
be seen from Fig. 34 (left), the full DAE f̂ (284) (bottom left) yields denoised
images with sensibly higher definition and overall contrast, while a simple
rescaling r̂ (bottom right) leads to a still largely blurred image.

We provide one more comparison: for the isotropic binary mixture (see
Fig. 33), the DAE test error mse f̂ in fact approaches the information-theoretic
lowest achievableMSE mse⋆ as the sample complexity α increases. To see this,
note that mse⋆ is given by the application of Tweedie’s formula (Efron, 2011),
that requires perfect knowledge of the cluster means µµµk and covariances Σk

– it is, therefore, an oracle denoiser.

As can be observed from Fig. 35 (a), the DAE MSE (284) approaches the
oracle test error mse⋆ as the number of available training samples n grows,
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Figure 35: (left) Solid lines: difference in MSE between the full DAE f̂ (284), with
σ = tanh, p = 1, and the rescaling r̂ (285). Dashed: the same curve for the
oracle denoiser. Different colours represent different sample complexities
α (solid lines). (right) Difference in MSE between the bottleneck network
û (285) and the complete DAE f̂ (284). In blue, the theoretical prediction
(297); in red, numerical simulations for the bottleneck network (285) (σ =
tanh, p = 1) trained with the Pytorch implementation of full-batch
Adam, with learning rate η = 0.05 and weight decay λ = 0.1 over 2000
epochs, averaged over N = 5 instances, for d = 700. In green, the MSE
(minus the MSE of the complete DAE (284)) achieved by PCA. Error bars
represent one standard deviation. The model and parameters are the same
as in Fig. 33.

(a) (b) (c) (d) (e) (f)

Figure 36: Illustration of the denoised image for the various networks and
algorithms. (a) original image (b) noisy image, for

√
∆ = 0.2 (c) trained

rescaling r̂ (285) (d) full DAE f̂ (284) (e) bottleneck network û (285) (f)
PCA. The DAE and training parameters are the same as Fig. 34.

and is already sensibly close to the optimal value for α = 8.

DAEs with(out) skip connection We now turn our attention to com-
paring the full DAE f̂ (284) to the bottleneck network component û (285). It
follows from Result 10.2.3 and Corollary 10.2.4 that û (285) leads to a higher
MSE than the full DAE f̂ (284), with the gap being Θ(d). More precisely,

1
d

(
mseû−mse f̂

)
=

(∫
dνγ(γ)

K
∑

k=1
ρkγk

)2

(1−∆)(∫
dνγ(γ)

K
∑

k=1
ρkγk

)
(1−∆)

+∆. (297)

The theoretical prediction (297) compares excellently with numerical simu-
lations; see Fig. 35 (right). Strikingly, we find that PCA denoising yields an
MSE almost indistinguishable from û, see Fig. 35, strongly suggesting that û
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essentially learns, also in the denoising setting, to project the noisy data x̃xx
along the principal components of the training set. The last two images of
Fig. 36 respectively correspond to û and PCA, which can indeed be observed
to lead to visually near-identical results. This echoes the findings of (Eckart
et al., 1936; Bourlard et al., 1988; Refinetti et al., 2022; Shevchenko et al., 2022;
Nguyen, 2021) in the case of RAEs that bottleneck networks are limited by the
PCA reconstruction performance – a conclusion that we can also recover from
Corollary 10.2.5. Crucially however, it also means that compared to the full
DAE f̂ (284), PCA is sizeably suboptimal, since msePCA≈mseû = mse f̂ +Θ(d).

This last observation has an important consequence: in contrast to pre-
viously studied RAEs (Eckart et al., 1936; Baldi et al., 1989; Bourlard et al.,
1988; Shevchenko et al., 2022; Nguyen, 2021), the full DAE f̂ does not simply
learn to perform PCA. In contrast to bottleneck RAE networks (Refinetti et al.,
2022; Shevchenko et al., 2022; Nguyen, 2021), the non-linear DAE hence does
not reduce to a linear model after training. The non-linearity is important
to improve the denoising MSE, see Fig. 33. We stress this finding: trained
alone, the bottleneck network û only learns to perform PCA; trained jointly
with the rescaling component as part of the full DAE fb,www (284), it learns a
richer, non-linear representation. The full DAE (284) thus offers a genuinely
non-linear learning model and opens exciting research avenues for the theory
of autoencoders, beyond linear (or effectively linear) cases. In the next para-
graph, we explore further the interaction between the rescaling component
and the bottleneck network.

A tradeoff between the rescaling and the bottleneck network Result
(10.2.3), alongside Corollary (10.2.4) and the discussion in Section 10.3 pro-
vide a firm theoretical basis for the well-known empirical intuition (discussed
e.g. in (Mao et al., 2016)) that skip-connections allow to better propagate
information from the input to the output of the DAE, thereby contributing to
preserving intrinsic characteristics of the input. This effect is clearly illus-
trated in Fig. 36, where the resulting denoised image of an MNIST 7 by r̂, f̂ , û
and PCA are presented. While the bottleneck network û perfectly eliminates
the background noise and produces an image with a very good resolution,
it essentially collapses the image to the cluster mean, and yields, like PCA,
the average MNIST 7. As a consequence, the denoised image bears little
resemblance with the original image – in particular, the horizontal bar of the
7 is lost in the process. Conversely, the rescaling r̂ preserves the nuances of
the original image, but the result is still largely blurred and displays overall
poor contrast. Finally, the complete DAE (284) manages to preserve the char-
acteristic features of the original data, while enhancing the image resolution
by slightly overlaying the average 7 thereupon.

The optimization of the DAE (286) is therefore described by a tradeoff
between two competing effects – namely the preservation of the input nu-
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ances by the skip connection, and the enhancement of the resolution/noise
removal by the bottleneck network. This allows us to discuss the curious
non-monotonicity of the cosine similarity θ as a function of the noise level
∆, see Fig. 33 (left). While it may at first seem curious that the DAE seem-
ingly does not manage to learn the data structure better for low ∆ than for
intermediate ∆ (where the cosine similarity θ is observed to be higher), this
is actually due to the afore-dicussed tradeoff. Indeed, for small ∆, the data
is still substantially clean, and there is therefore no incentive to enhance
the contrast by using the cluster means –which are consequently not learnt.
This phase is thus characterized by a large skip connection strength b̂, and
small cosine similarity θ and weight norm ∥ŵww∥F . Conversely, at high noise
levels ∆, the nuances of the data are already lost because of the noise. Hence
the DAE does not rely on the skip connection component (whence the small
values of b̂), and the only way to produce reasonably denoised data is to
collapse to the cluster mean using the network component (whence a large
∥ŵww∥F ).

CONCLUS ION

We consider the problem of denoising a high-dimensional Gaussian mixture,
by training a DAE via empirical risk minimization, in the limit where the
number of training samples and the dimension are proportionally large. We
provide a sharp asymptotic characterization of a number of summary statis-
tics of the trained DAE weight, average MSE, and cosine similarity with the
cluster means. These results contain as a corollary the case of RAEs. Building
on these findings, we isolate the role of the skip connection and the bottle-
neck network in the DAE architecture and characterize the tradeoff between
those two components in terms of preservation of the data nuances and noise
removal – thereby providing some theoretical insight into a longstanding
practical intuition in machine learning.

We believe the present work also opens exciting research avenues. First,
our real data experiments hint at the presence of Gaussian universality. While
this topic has gathered considerable attention in recent years, only classifi-
cation/regression supervised learning tasks have been hitherto addressed.
Which aspects of universality carry over to denoising tasks, and how they
differ from the current understanding of supervised regression/classification,
is an important question. Second, the DAE with skip connection (284) pro-
vides an autoencoder model which does not just simply learn the principal
components of the training set. It, therefore, affords a genuinely non-linear
network model where richer learning settings can be investigated.
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FLOW-BASED GENERAT I VE
MODELS

Flow and diffusion-based generativemodels have introduced a shift in paradigm
for density estimation and sampling problems, leading to state-of-the art
algorithms e.g. in image generation (Rombach et al., 2022; Ramesh et al., 2022;
Saharia et al., 2022). Instrumental in these advances was the realization that
the sampling problem could be recast as a transport process from a simple
–typically Gaussian– base distribution to the target density. Furthermore, the
velocity field governing the flow can be characterized as the minimizer of
a quadratic loss function, which can be estimated from data by (a) approxi-
mating the loss by its empirical estimate using available training data and
(b) parametrizing the velocity field using a denoiser neural network. These
ideas have been fruitfully implemented as part of a number of frameworks,
including score-based diffusion models (Song et al., 2019; Song et al., 2020;
Karras et al., 2022; Ho et al., 2020b), and stochastic interpolation (Albergo
et al., 2022; Albergo et al., 2023; Lipman et al., 2022; Liu et al., 2022). A tight
analytical understanding of the learning of generative models from limited
data, and the resulting generative process, is however still largely missing.
This constitutes the research question addressed in the present manuscript.

A line of recent analytical works (Benton et al., 2023; Chen et al., 2022a;
Chen et al., 2023a; Chen et al., 2023c; Chen et al., 2023d; Wibisono et al.,
2022; Lee et al., 2022; Lee et al., 2023; Li et al., 2023a; De Bortoli et al., 2021;
De Bortoli, 2022; Pidstrigach, 2022; Block et al., 2020) have mainly focused
on the study of the transport problem, and provide rigorous convergence
guarantees, taking as a starting point the assumption of an L2−accurate
estimate of the velocity or score. They hence bypass the investigation of
the learning problem –and in particular the question of ascertaining the
sample complexity needed to obtain such an accurate estimate. More im-
portantly, the study of the effect of learning from a limited sample com-
plexity (and thus e.g. of possible network overfitting and memorization)
on the generated density, is furthermore left unaddressed. On the other
hand, very recent works (Cui et al., 2024b; Shah et al., 2023) have charac-
terized the learning of DAEs (Vincent et al., 2010; Vincent, 2011) in high
dimensions on Gaussian mixture densities, see Chapter 10. Neither work
however studies the consequences on the generative process. Bridging that
gap, recent works have offered a joint analysis of the learning and genera-
tive processes. (Oko et al., 2023; Chen et al., 2023b; Yuan et al., 2023) derive
rigorous bounds at finite sample complexity, under the assumption of data
with a low-dimensional structure. Closer to our manuscript, a concurrent

199
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work (Mei et al., 2023) bounds the Kullback-Leibler distance between the
generated and target densities, when parametrizing the flow using a ResNet,
for high-dimensional graphical models. On the other hand, these bounds
do not go to zero as the sample complexity increases, and are a priori not
tight.

The present manuscript aims at complementing and furthering this last
body of works, by providing a tight end-to-end analysis of a flow-based
generative model – starting from the study of the high-dimensional learning
problem with a finite number of samples, and subsequently elucidating the
implications thereof on the generative process.

Main contributions– We study the problem of estimating and sampling
a Gaussian mixture using a flow-based generative model, in the framework of
stochastic interpolation (Albergo et al., 2022; Albergo et al., 2023; Lipman et al.,
2022; Liu et al., 2022). We consider the case where a non-linear two-layer DAE
with one hidden unit is used to parametrize the velocity field of the associated
flow, and is trained with a finite training set. In the high-dimensional limit,

• We provide a sharp asymptotic closed-form characterization of the
learnt velocity field, as a function of the target Gaussian mixture pa-
rameters, the stochastic interpolation schedule, and the number of
training samples n.

• We characterize the associated flow by providing a tight characteriza-
tion of a small number of summary statistics, tracking the dynamics of
a sample from the Gaussian base distribution as it is transported by
the learnt velocity field.

• We show that even with a finite number of training samples, the learnt
generative model allows to sample from a mixture whose mean asymp-
totically approaches the mean of the target mixture as Θn(1/n) in
squared distance, with this rate being tight.

• Finally, we show that this rate is in fact Bayes-optimal.

related works

Diffusion and flow-based generative models Score-based diffusion
models (Song et al., 2019; Song et al., 2020; Karras et al., 2022; Ho et al., 2020b)
build on the idea that any density can be mapped to a Gaussian density by
degrading samples through an Ornstein-Uhlenbeck process. Sampling from
the original density can then be carried out by time-reversing the correspond-
ing stochastic transport, provided the score is known – or estimated. These
ideas were subsequently refined in (Albergo et al., 2022; Albergo et al., 2023;
Lipman et al., 2022; Liu et al., 2022), which provide a flexible framework to
bridge between two arbitrary densities in finite time.



flow-based generative models 201

Convergence bounds In the wake of the practical successes of flow and
diffusion-based generative models, significant theoretical effort has been
devoted to studying the convergence of such methods, by bounding appro-
priate distances between the generated and the target densities. A common
assumption of (Benton et al., 2023; Chen et al., 2022a; Chen et al., 2023a; Chen
et al., 2023c; Chen et al., 2023d; Wibisono et al., 2022; Lee et al., 2022; Lee et al.,
2023; Li et al., 2023a; De Bortoli et al., 2021; De Bortoli, 2022; Pidstrigach,
2022; Block et al., 2020) is the availability of a good estimate for the score,
i.e. an estimate whose average (population) squared distance with the true
score is bounded by a small constant ε . Under this assumption, Chen et al.
(2022a) and Lee et al. (2022) obtain rigorous control on the Wasserstein and
total variation distances with very mild assumptions on the target density.
(Ghio et al., 2023) explore the connections between algorithmic hardness of
the score/flow approximation and the hardness of sampling in a number of
graphical models.

Asymptotics for DAE learning The backbone of flow and diffusion-
based generative models is the parametrization of the score or velocity by
a denoiser-type network, whose most standard realization is arguably the
DAE (Vincent et al., 2010; Vincent, 2011). Very recent works have provided a
detailed analysis of its learning on denoising tasks, for data sampled from
Gaussianmixtures. (Cui et al., 2024b) sharply characterize how aDAE can learn
the mixture parameters with n = Θd(d) training samples when the cluster
separation is Θd(1). Closer to our work, for arbitrary cluster separation, Shah
et al. (2023) rigorously show that a DAE trained with gradient descent on the
denoising diffusion probabilistic model loss (Ho et al., 2020b) can recover
the cluster means with a polynomial number of samples. While these works
complement the aforediscussed convergence studies in that they analyze the
effect of a finite number of samples, neither explores the flow associated to
the learnt score.

Network-parametrizedmodels Tying together these two body of works,
a very recent line of research has addressed the problem of bounding, at
finite sample complexity, appropriate distances between the generated and
target densities, assuming a network-based parametrization. (Oko et al., 2023)
provide such bounds when parametrizing the score using a class of ReLU
networks. These bounds however suffer from the curse of dimensionality.
(Oko et al., 2023; Yuan et al., 2023; Chen et al., 2023b) surmount this hurdle
by assuming a target density with low-dimensional structure. On a heuristic
level, (Biroli et al., 2023) estimate the order of magnitude of the sample
complexity needed to sample from a high-dimensional Curie-Weiss model.
Finally, a work concurrent to ours (Mei et al., 2023) derives rigorous bounds
for a number of high-dimensional graphical models. On the other hand, these
bounds are a priori not tight, and do not go to zero as the sample complexity
becomes large. The present manuscript aims at furthering this line of work,
and provides a sharp analysis of a high-dimensional flow-based generative
model.
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11.1 SET T ING

We start by giving a concise overview of the problem of sampling from
a target density ρ1 over Rd in the framework of stochastic interpolation
(Albergo et al., 2022; Albergo et al., 2023).

Recasting sampling as an optimization problem Samples from ρ1

can be generated by drawing a sample from an easy-to-sample base density
ρ0 –henceforth taken to be a standard Gaussian density ρ0 = N (0,Id)–,
and evolving it according to the flow described by the Ordinary Differential
Equation (ODE)

d
dt

XXX t = bbb(XXX t , t), (298)

for t ∈ [0,1]. Specifically, as shown in (Albergo et al., 2023), if XXX t=0 ∼ ρ0,
then the final sample XXX t=1 has probability density ρ1, if the velocity field
bbb(xxx, t) governing the flow (298) is given by

bbb(xxx, t) = E[α̇(t)xxx0 + β̇ (t)xxx1|xxxt = xxx], (299)

where we denoted xxxt ≡ α(t)xxx0 + β (t)xxx1 and the conditional expectation
bears over xxx1 ∼ ρ1, xxx0 ∼ ρ0, with xxx0 ⊥ xxx1. The result holds for any fixed
choice of schedule functions α ,β ∈ C 2([0,1]) satisfying α(0) = β (1) =
1,α(1) = β (0) = 0, and α(t)2 + β (t)2 > 0 for all t ∈ [0,1]. In addition to
the velocity field bbb(xxx, t), it is convenient to consider the field fff (xxx, t), related
to bbb(xxx, t) by the simple relation

bbb(xxx, t) =
(

β̇ (t)− α̇(t)
α(t)

β (t)
)

fff (xxx, t)+
α̇(t)
α(t)

xxx. (300)

Note that fff (xxx, t) can be alternatively expressed as E[xxx1|xxxt = xxx], and thus
admits a natural interpretation as a denoising function, tasked with recover-
ing the target value xxx1 from the interpolated (noisy) sample xxxt . The denoiser
fff (xxx, t) can furthermore characterized as the minimizer of the objective

R[ fff ] =
1∫

0

E∥ fff (xxxt , t)− xxx1∥2 dt. (301)

The loss (301) is a simple sequence of quadractic denoising objectives.

Learning the velocity from data There are several technical hurdles
in carrying out the minimization (301). First, since the analytical form of ρ1

is generically unknown, the population risk has to be approximated by its
empirical version, provided a dataset D = {xxxµ

1 ,xxxµ

0 }n
µ=1 of n training samples

xxxµ

1 (xxxµ

0 ) independently drawn from ρ1 (ρ0) is available. Second, the mini-
mization in (301) bears over a time-dependent vector field fff . To make the
optimization tractable, the latter can be parametrized at each time step t by
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a separate neural network fff θt
(·) with trainable parameters θt . Under those

approximations, the population risk (301) thus becomes

R̂({θt}t∈[0,1]) =

1∫
0

n

∑
µ=1

∥∥ fff θt
(xxxµ

t )− xxxµ

1

∥∥2 dt. (302)

Remark that in practice, the time t can enter as an input of the neural network,
and only one network then needs to be trained. In the present manuscript
however, for technical reasons, we instead consider the case where a separate
network is trained for each time step t . Besides, note that since the base density
ρ0 is a priori easy to sample from, one could in theory augment the dataset
D with several samples from ρ0 for each available xxxµ

1 . For conciseness, we do
not examine such an augmentation technique in the present manuscript, and
leave a precise investigation thereof to future work. Denoting by {θ̂t}t∈[0,1]

the minimizer of (302), the learnt velocity field b̂bb is related to the trained
denoiser fff

θ̂t
by (301) as

b̂bb(xxx, t) =
(

β̇ (t)− α̇(t)
α(t)

β (t)
)

fff
θ̂t
(xxx)+

α̇(t)
α(t)

xxx. (303)

The sampling can finally be carried out by using b̂bb as a proxy for the unknown
bbb in (298):

d
dt

XXX t = b̂bb(XXX t , t) (304)

Note that the solution XXX1 at time t = 1 of the ODE (304) has a law ρ̂1 ̸=
ρ1 due to the two approximations in going from the population function-
space objective (301) to the empirical parametric proxy (302). The present
manuscript presents a sharp analysis of the learning problem (302) and the
resulting flow (304) for a solvable model, which we detail below.

Data model We consider the case of a target density ρ1 given by a binary
isotropic and homoscedastic Gaussian mixture

ρ1 =
1
2
N (µµµ ,σ2Id)+

1
2
N (−µµµ ,σ2Id). (305)

Each cluster is thus centered around its mean ±µµµ and has variance σ2. For
definiteness, we consider here a balanced mixture, where the two clusters
have equal relative probabilities. Note that a sample xxxµ

1 can then be decom-
posed as xxxµ

1 = sµ µµµ + zzzµ , with sµ ∼ U ({−1,+1}) and zzzµ ∼ N (0,σ2Id).
Finally, note that the closed-form expression for the exact velocity field bbb
(298) associated to the density ρ1 is actually known (see e.g. (Efron, 2011;
Albergo et al., 2023)). This manuscript explores the question whether a neural
network can learn a good approximate b̂bb thereof without any knowledge of
the density ρ1, and only from a finite number of samples drawn therefrom.
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Network architecture We consider the case where the denoising function
fff (301) is parametrized with a two-layer non-linear DAE with one hidden
neuron, and –taking inspiration from modern practical architectures such as
U-nets (Ronneberger et al., 2015a)– a trainable skip connection:

fff wwwt ,ct
(xxx) = ct × xxx+wwwt ×ϕ(www⊤t xxx), (306)

where ϕ is assumed to tend to 1 (resp.−1) as its argument tends to+∞ (resp
−∞). Sign, tanh and erf are simple examples of such an activation function.
The trainable parameters are therefore ct ∈R,wwwt ∈Rd . Note that (306) is a
special case of the architecture studied in Chapter 10. It differs from the very
similar network considered in Shah et al. (2023) in that it covers a slightly
broader range of activation functions (Shah et al. (2023) address the case
ϕ = tanh), and in that the skip connection istrainable –rather than fixed–.
Since we consider the case where a separate network is trained at every time
step, the empirical risk (302) decouples over the time index t . The parameters
wwwt ,ct of the DAE (306) should therefore minimize

R̂t(wwwt ,ct) =
n

∑
µ=1
∥ fff ct ,wwwt

(xxxµ

t )− xxxµ

1 ∥
2+

λ

2
∥wwwt∥2, (307)

where for generality we also allowed for the presence of a ℓ2 regularization
of strength λ . We remind that xxxµ

t = α(t)xxxµ

0 +β (t)xxxµ

1 , with {xxx
µ

1 }n
µ=1 (resp.

{xxxµ

0 }n
µ=1) n training samples independently drawn from the target density ρ1

(305) (resp. the base density ρ0 = N (0,Id)), collected in the training set D .

Asymptotic limit We consider in this manuscript the asymptotic limit
d→ ∞, with n, ∥µµµ∥2/d,σ = Θd(1). For definiteness, in the following, we set
∥µµµ∥2/d = 1. Note that Chapter 10 considered the different limit ∥µµµ∥= Θd(1).
Shah et al. (2023) on the other hand address a larger range of asymptotic
limits, including the present one, but does not provide tight characterizations,
nor an analysis of the generative process.

11.2 LEARNING

In this section, we first provide sharp closed-form characterizations of the
minimizers ĉt , ŵwwt of the objective R̂t (307). The next section discusses how
these formulae can be leveraged to access a tight characterization of the
associated flow.

Result 11.2.1. (Sharp characterization of minimizers of (307)) For any
given activation ϕ satisfying ϕ(x) x→±∞−−−−→±1 and any t ∈ [0,1], in the limit
d→ ∞, n, ∥µµµ∥2/d,σ = Θd(1), the skip connection strength ĉt minimizing (307)
is given by

ĉt =
β (t)(λ (1+σ2)+ (n−1)σ2)

α(t)2(λ + n−1)+β (t)2(λ (1+σ2)+ (n−1)σ2)
. (308)
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Figure 37: n = 4,σ = 0.9,λ = 0.1,α(t) = 1− t,β (t) = t,ϕ = tanh . Solid lines: the-
oretical predictions of Result 11.2.1: squared norm of the DAE weight
vector ∥ŵwwt∥2 (red), skip connection strength ĉt (blue) cosine similarity
between the weight vector ŵwwt and the target cluster mean µµµ , ŵwwt∠µµµ ≡
ŵww⊤t µµµ/∥µµµ∥∥ŵwwt∥ (green), components mt ,q

ξ

t of ŵwwt along the vectors
µµµemp.,ξξξ (purple, pink, orange). Dots: numerical simulations in dimen-
sion d = 5×104, corresponding to training the DAE (306) on the risk (307)
using the Pytorch implementation of full-batch Adam, with learning
rate 0.0001 over 4×104 epochs and weight decay λ = 0.1. The experi-
mental points correspond to a single instance of the model.

Furthermore, the learnt weight vector ŵwwt is asymptotically contained in span(µµµemp.,ξξξ )
(in the sense that its projection on the orthogonal space span(µµµemp.,ξξξ ) has
asymptotically vanishing norm), where

ξξξ ≡
n

∑
µ=1

sµxxxµ

0 , µµµemp. =
1
n

n

∑
µ=1

sµxµ

1 . (309)

In other words, µµµemp. is the empirical mean of the training samples. We remind
that sµ =±1 was defined below (305) and indicates the cluster the µ−th sample
xxxµ

1 belongs to. The components of ŵwwt along each of these three vectors is described
by the summary statistics

mt =
µµµ⊤emp.ŵwwt

d(1+ σ2/n)
, qξ

t =
ŵww⊤t ξξξ

nd
, (310)

which concentrate as d→ ∞ to the quantities characterized by the closed-form
formulaemt =

n
λ+n

α(t)2(λ+n−1)
α(t)2(λ+n−1)+β (t)2(λ (1+σ2)+(n−1)σ2)

qξ

t = −α(t)
λ+n

β (t)(λ (1+σ2)+(n−1)σ2)
α(t)2(λ+n−1)+β (t)2(λ (1+σ2)+(n−1)σ2)

. (311)

The derivation of Result 11.2.1 involves a heuristic partition function com-
putation, borrowing ideas from statistical physics. The theoretical predictions
for the skip connection strength ĉt and the component mt ,q

ξ

t of the weight
vector ŵwwt are plotted as solid lines in Fig. 37, and display good agreement
with numerical simulations, corresponding to training the DAE (306) on the
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risk (307) using the Pytorch (Paszke et al., 2019b) implementation of the
Adam optimizer (Kingma et al., 2014a).

A notable consequence of (310) is that the weight vector ŵwwt is contained at
all times t in the two-dimensional subspace spanned by the empirical cluster
mean µµµemp. and the vectors ξξξ (309) – in other words, the learnt weights
align to some extent with the empirical mean, but still possess a non-zero
component along ξξξ , which is orthogonal thereto. ξξξ subsumes the aggregated
effect of the base vectors {xxxµ

0 }n
µ=1 used in the train set. Rather remarkably,

the training samples thus only enter in the characterization of ŵwwt through
the form of simple sums (309). Since the vector ξξξ is associated to the training
samples, the fact that the learnt vector ŵwwt has non-zero components along ξξξ

hence signals a form of overfitting and memorization. Interestingly, Fig. 37
shows that the extent of this overfitting is non-monotonic in time, as |qξ

t |
first increases then decreases. Finally, note that this effect is as expected
mitigated as the number of training samples n increases. From (311), for large
n, mt = Θn(1) while the components qξ

t is suppressed as Θn(1/n). Finally,
Result 11.2.1 and equation (303) can be straightforwardly combined to yield
a sharp characterization of the learnt estimate b̂bb of the velocity field bbb (298).
This characterization can be in turn leveraged to build a tight description of
the generative flow (304). This is the object of the following section.

11.3 GENERAT I VE PROCESS

While Corollary 11.2.1, together with the definition (303), provides a concise
characterization of the velocity field b̂bb, the sampling problem (304) remains
formulated as a high-dimensional, and therefore hard to analyze, transport
process. The following result shows that the dynamics of a sample XXX t fol-
lowing the differential equation (304) can nevertheless be succinctly tracked
using a finite number of scalar summary statistics.

Result 11.3.1. (Summary statistics) Let XXX t be a solution of the ordinary
differential equation (304) with initial condition XXX0. For a given t , the projection
of XXX t on span(µµµemp.,ξξξ is characterized by the summary statistics

Mt ≡
XXX⊤t µµµemp.

d(1+ σ2/n)
, Qξ

t ≡
XXX⊤t ξξξ

nd
. (312)

With probability asymptotically 1/2 the summary statistics Mt ,Q
ξ

t (312) con-
centrate for all t to the solution of the ordinary differential equations

d
dt Mt =

(
β̇ (t)ĉt +

α̇(t)
α(t) (1− ĉtβ (t))

)
Mt +

(
β̇ (t)− α̇(t)

α(t)β (t)
)

mt

d
dt Qξ

t =
(

β̇ (t)ĉt +
α̇(t)
α(t) (1− ĉtβ (t))

)
Qξ

t +
(

β̇ (t)− α̇(t)
α(t)β (t)

)
qξ

t

,

(313)
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with initial condition M0 = Qξ

0 = 0, and with probability asymptotically 1/2

they concentrate to minus the solution of (313). Furthermore, the orthogonal
component XXX⊥t ∈ span(µµµemp.,ξξξ )

⊥ obeys the simple linear differential equation

d
dt

XXX⊥t =

(
β̇ (t)ĉt +

α̇(t)
α(t)

(1− ĉtβ (t))
)

XXX⊥t . (314)

Finally, the statistic Qt ≡ ∥XXX t∥2/d is given with high probability by

Qt = M2
t (1+ σ

2/n)+ n(Qξ

t )
2 + e

2
t∫

0

(
β̇ (t)ĉt+

α̇(t)
α(t) (1−ĉt β (t))

)
dt

. (315)

Taking a closer look at (313), it might seem at first from equations (313) that
there is a singularity for t = 1 since α(1) = 0 in the denominator. Remark
however that both 1−β (t)ĉt (308) and mt (311) are actually proportional to
α(t)2, and therefore (313) is in fact also well defined for t = 1. In practice,
the numerical implementation of a generative flow like (304) often involves a
discretization thereof, given a discretization scheme {tk}N

k=0 of [0,1], where
t0 = 0 and tN = 1:

XXX tk+1 = XXX tk + b̂bb(XXX tk , tk)(tk+1− tk). (316)

The evolution of the summary statistics introduced in Result 11.3.1 can be
rephrased in more actionable form to track the discretized flow (316).

Remark 11.3.2. (Summary statistics for the discrete flow) Let {XXX tk}N
k=0

be a solution of the discretized learnt flow (304), for an arbitrary discretization
scheme {tk}N

k=0 of [0,1], where t0 = 0 and tN = 1, with initial conditionXXX t0 ∼ ρ0.
The summary statistics introduced in Result 11.3.1 are then equal to the solutions
of the recursions

Mtk+1 = Mtk + δ tk
(

β̇ (tk)ĉtk +
α̇(tk)
α(tk)

(1− ĉtk β (tk))
)

Mtk

+δ tk
(

β̇ (tk)− α̇(tk)
α(tk)

β (tk)
)

mtk

Qξ

tk+1
= Qξ

tk + δ tk
(

β̇ (tk)ĉtk +
α̇(tk)
α(tk)

(1− ĉtk β (tk))
)

Qξ

tk

+δ tk
(

β̇ (tk)− α̇(tk)
α(tk)

β (tk)
)

qξ

tk

, (317)

with probability 1/2, and to the opposite theoreof with probability 1/2. In
(317), the initial conditions are understood as Mt0 = Qξ

t0 = 0, and we have
denoted δ tk ≡ tk+1− tk for clarity. Furthermore, the orthogonal component
XXX⊥tk ∈ span(µµµemp.,ξξξ )

⊥ obeys the simple linear recursion

XXX⊥tk+1
=

[
1+ δ tk

(
β̇ (tk)ĉtk +

α̇(tk)
α(tk)

(1− ĉtk β (tk))
)]

XXX⊥tk . (318)
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Finally, the statistic Qtk ≡ ∥XXX tk∥2/d is given with high probability by

Qtk = M2
tk(1+ σ

2/n)+ n(Qξ

tk)
2 +

k

∏
ℓ=0

[
1+
(

β̇ (tℓ)ĉtℓ+
α̇(tℓ)
α(tℓ)

(1−ĉtℓβ (tℓ))
)

δ tℓ

]2
.

(319)

Equations (317),(318) and (319) of Remark 11.3.2 are consistent discretiza-
tions of the continuous flows (313),(314) and (315) of Result 11.3.1 respectively,
and converge thereto in the limit of small discretization steps maxk δ tk→ 0.
An important consequence of Result 11.3.1 is that the transport of a sample
XXX0 ∼ ρ0 by (304) factorizes into the low-dimensional deterministic evolution
of its projection on the low-rank subspace span(µµµemp.,ξξξ ), as tracked by the
two summary statistics Mt ,Q

ξ

t , and the simple linear dynamics of its pro-
jection on the orthogonal space span(µµµemp.,ξξξ )

⊥. Result 11.3.1 thus reduces
the high-dimensional flow (304) into a set of two scalar ordinary differen-
tial equations (313) and a simple homogeneous linear differential equation
(314). The theoretical predictions of Result (11.3.1) and Remark 11.3.2 for the
summary statistics Mt ,Q

ξ

t ,Qt are plotted in Fig. 38, and display convincing
agreement with numerical simulations, corresponding to discretizing the
flow (304) in N = 100 time steps, and training a separate network for each
step as described in Section 11.1. A PCA visualization of the flow is further
provided in Fig. 38 (middle).

Leveraging the simple characterization of Result 11.3.1, one is now in a
position to characterize the generated distribution ρ̂1, which is the density
effectively sampled by the generative model. In particular, Result 11.3.1 es-
tablishes that the distribution ρ̂1 is Gaussian over span(µµµemp.,ξξξ )

⊥ – since
XXX⊥0 is Gaussian and the flow is linear–, while the density in span(µµµemp.,ξξξ )
concentrates along the vector µ̂µµ described by the components (313). The
density ρ̂1 is thus described by a mixture of two clusters, Gaussian along
d− 2 directions, centered around ±µ̂µµ . The following corollary provides a
sharp characterization of the squared distance between the mean µ̂µµ of the
generated density ρ̂1 and the true mean µµµ of the target density ρ1.

Corollary 11.3.3. (Mean squared error of the mean estimate) Let µ̂µµ be
the cluster mean of the density ρ̂1 generated by the (continuous) learnt flow
(304). In the asymptotic limit described by Result 11.2.1, the squared distance
between µ̂µµ and the true mean µµµ is given by

1
d
∥µ̂µµ−µµµ∥2= M2

1 + n(Qξ

1 )
2 + nσ

2(Qη

1 )
2 + 1−2M1, (320)

with M1,Qξ

1 ,Qη

1 being the solutions of the ordinary differential equations (313)
evaluated at time t = 1. Furthermore, the cosine similarity between µ̂µµ and the
true mean µµµ is given by

µ̂µµ∠µµµ =
M1√
Q1

. (321)
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Figure 38: In all three plots, λ = 0.1,α(t) = 1− t,β (t) = t,ϕ = sign. (left) σ =

1.5,n = 8. Temporal evolution of the summary statistics Mt ,Q
ξ

t ,Qt ,XXX t∠µµµ

(312). Solid lines correspond to the theoretical prediction of (312) in Result
11.3.1, while dashed lines correspond to numerical simulations of the
generative model, by discretizing the differential equation (304) with step
size δ t = 0.01, and training a separate DAE for each time step using Adam
with learning rate 0.01 for 2000 epochs. All experiments were conducted
in dimension d = 5000, and a single run is represented. (middle) σ =
2,n = 16. Projection of the distribution of XXX t (304) in span(µµµemp.,ξξξ ),
transported by the velocity field b̂bb (303) learnt from data. The point clouds
correspond to numerical simulations. The dashed line corresponds to the
theoretical prediction of the means of the cluster, as given by equation
(313) of Result 11.3.1. The target Gaussian mixture ρ1 is represented in red.
The base zero-mean Gaussian density ρ0 (dark blue) is split by the flow
(304) into two clusters, which approach the target clusters (red) as time
accrues . (right) σ = 2. PCA visualization of the generated density ρ̂1, by
training the generative model on n samples, for n∈ {4,8,16,32,64}. Point
clouds represent numerical simulations of the generative model. Crosses
represent the theoretical predictions of Result 11.3.1 for the means of the
clusters of ρ̂1, as given by equation (313) of Result 11.3.1 for t = 1. As
the number of training samples n increases, the generated clusters of ρ̂1
approach the target clusters of ρ1, represented in red.
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Figure 39: α(t) = 1− t,β (t) = t,ϕ = sign. Cosine asimilarity (left) and mean
squared distance (right) between the mean µ̂µµ of the generated mixture ρ̂1
and the mean µµµ of the target density ρ1, as a function of the number of
training samples n, for various variances σ of ρ1. Solid lines represent the
theoretical characterization of Corollary 11.3.3. Crosses represent numer-
ical simulations of the generative model, by discretizing the differential
equation (304) with step size δ t = 0.01, and training a separate DAE for
each time step using the Pytorch implementation of the full-batch
Adam optimizer, with learning rate 0.04 and weight decay λ = 0.1 for
6000 epochs. All experiments were conducted in dimension d = 5×104,
and a single run is represented. Dashed lines indicate the performance
of the Bayes-optimal estimator µ̂µµ

⋆, as theoretically characterized in Re-
mark 11.4.1. Dots indicate the performance of the PCA estimator, which is
found as in Cui et al. (2024b) to yield performances nearly identical to the
Bayes-optimal estimator.

Finally, both the MSE 1/d∥µ̂µµ−µµµ∥2 (320) and the cosine asimilarity 1− µ̂µµ∠µµµ

(321) decay as Θn(1/n) for large number of samples n.

The theoretical predictions of the learning metrics (320) and (321) are
plotted in Fig. 39 as a function of the number of samples, along with the
corresponding numerical simulations, and display a clear Θn(1/n) decay,
signalling the convergence of the generated density ρ̂1 to the true target
density ρ1 as the sample complexity accrues. A PCA visualization of this
convergence is further presented in Fig.38 (right). Intuitively, this is because
the DAE learns the empirical means up to a Θn(1/n) component along ξξξ , and
that the empirical means itself converges to the true mean with rate Θn(1/n).

11.4 BAYES -OPT IMAL BASEL INE

Corollary 11.3.3 completes the study of the performance of theDAE-parametrized
generative model. It is natural to wonder whether one can improve on the
Θn(1/n) rate that it achieves. A useful baseline to compare with is the Bayes-
optimal estimator µ̂µµ

⋆, yielded by Bayesian inference when in addition to the
dataset D = {xxxµ

1 }n
µ=1, the form of the distribution (305) and the variance σ

are known, but not the mean µµµ –which for definiteness and without loss of
generality will be assumed in this section to be have been drawn at random
from N (0,Id). The following remark provides a tight characterization of
the MSE achieved by this estimator.
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Remark 11.4.1. (Bayes-optimal estimator of the clustermean) The Bayes-
optimal estimator µ̂µµ

⋆ of µµµ assuming knowledge of the functional form of the
target density (305), the cluster variance σ , and the training set D , is defined
as the minimizer of the average squared error

µ̂µµ
⋆ = arginf

ν

E
µµµ∼N (0,Id),D∼ρ

⊗n
1
∥ν(D)−µµµ∥2. (322)

In the asymptotic limit of Result 11.2.1, the Bayes-optimal estimator µ̂µµ
⋆(D) is

parallel to the empirical mean µµµemp.. Its component m⋆ ≡ µµµ⊤emp. µ̂µµ
⋆(D)/d(1+ σ2/n)

concentrate asymptotically to

m⋆ =
n

n+σ2 , (323)

Finally, with high probability, the Bayes-optimal MSE reads

1
d
∥µ̂µµ⋆(D)−µµµ∥2=

σ2

n+σ2 . (324)

In particular, (324) implies that the optimal MSE decays as Θn(1/n).

Remark 11.4.1 thus establishes that the Bayes-optimal MSE decays as
Θn(1/n) with the number of available training samples. Note that while the
Bayes-optimal estimator is colinear to the empirical mean, it is differs there-
from by a non-trivial multiplicative factor. On the other hand, the Θn(1/n)

rate is intuitively due to the Θn(1/n) convergence of the empirical mean to
the true mean. Contrasting to Corollary 11.3.3 for the MSE associated to the
mean µ̂µµ of the density ρ̂1 learnt by the generative model, it follows that the
latter achieves the Bayes-optimal learning rate. The Bayes-optimal MSE (324)
predicted by Remark 11.4.1 is plotted in dashed lines in Fig. 39, alongside the
MSE achieved by the generative model (see Corollary 11.3.3). The common 1/n

decay rate is also plotted in dashed black for comparison. Finally, we observe
that the estimate of µµµ inferred by PCA, plotted as dots in Fig. 39, leads to a
cosine similarity which is very close to the Bayes-optimal one, echoing the
findings of Chapter 10 in another asymptotic limit. We however stress an
important distinction between the generative model analyzed in previous
sections and the Bayes and PCA estimators dicussed in the present section.
The generative model is tasked with estimating the full distribution ρ1 only
from data, while being completely agnostic thereof. In contrast, PCA and
Bayesian inference only offer an estimate of the cluster mean, and require an
exact oracle knowledge of its functional form (305) and the cluster variance σ .
They do not, therefore, constitute generative models and are only discussed
in the present section as insightful baselines.

It is a rather striking finding that the DAE (306) succeeds in approximately
sampling from ρ1(305) when trained on but n = Θd(1) samples –instead of
simply generating back memorized training samples–, and further displays
information-theoretically optimal learning rates. The answer to this puzzle,
lies in the fact that the architecture (306) is very close to the functional
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form of the exact velocity field b (298), and is therefore implicitly biased
towards learning the latter – while also not being expressive enough to too
detrimentally overfit. A thorough exploration of the inductive bias for more
complex architectures is an important and fascinating entreprise, which falls
out of the scope of the present manuscript and is left for future work.

CONCLUS ION

We conduct a tight end-to-end asymptotic analysis of estimating and sampling
a binary Gaussian mixture using a flow-based generative model, when the
flow is parametrized by a shallow auto-encoder. We provide sharp closed-
form characterizations for the trained weights of the network, the learnt
velocity field, a number of summary statistics tracking the generative flow,
and the distance between the mean of the generated mixture and the mean
of the target mixture. The latter is found to display a Θn(1/n) decay rate,
where n is the number of samples, which is further shown to be the Bayes-
optimal rate. In contrast to most studies of flow-based generative models
in high dimensions, the learning and sampling processes are jointly and
sharply analyzed in the present manuscript, which affords the possibility to
explicitly investigate the effect of a limited sample complexity at the level of
the generated density.





12
DOT -PRODUCT
AT TENT ION

Recent years have seen an upheaval in our ability to learn and implement
complex tasks from textual data. Central in these advances is the use of
self-attention layers (Vaswani et al., 2017), which provide an efficient method
of extracting information from sentences – both the information encoded in
the ordering (i.e. positions) of the words, and that encoded in the meaning (i.e.
semantics) of the words. In theory, attention mechanisms are able to leverage
both types of information, by having tokens attend to each other based on
their respective positions (called positional attention in (Jelassi et al., 2022))
and/or respective meanings (henceforth referred to as semantic attention).

We aim to expand the up-to-now rather scarce theoretical understanding
of learning with attention layers. Seminal open questions include: To what
extent do transformers learn semantic or positional attention matrices? How
does this depend on the amount of available data, the task, or the type of
embedding? The present manuscript explores these questions, by proposing
and analysing a solvable model of dot-product attention that can learn to
implement both positional and semantic attention mechanisms from data. In
particular our contributions are:

• We first illustrate how, for the histogram task, two qualitatively differ-
ent solutions exist in the same loss landscape of a simple transformer,
respectively corresponding to positional and semantic attention.

• We then move on to describe a model with a single self-attention layer
with tied, low-rank query and keymatrices. OnGaussian input data and
realizable outputs, we show that this model exhibits a phase transition
in terms of sample complexity between a semantic and positional
mechanism.

• For this model, in the asymptotic limit where the embedding dimension
d of the tokens and the number n of training samples are proportionally
large, we provide a tight closed-form characterization of the test error
and training loss achieved at the minima of the non-convex empiri-
cal loss. Using this high-dimensional characterization, we locate the
positional-semantic phase transition, thus providing the first theoreti-
cal result about the emergence of sharp phase transitions in a model
of dot-product attention.

• We contrast the performance of the dot-product attention layer with
that of a linear attention layer, which can only implement positional

214
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mechanisms, and how the former outperforms the latter once it learns
the semantic mechanism.

12.0.1 related work

Theory of attention Attention models have been the object of sizeable
theoretical scrutiny in recent years, with a growing body of work investigat-
ing various aspects such as their expressivity (Fu et al., 2023; Edelman et al.,
2022; Hahn, 2020), inductive bias (Sahiner et al., 2022; Tarzanagh et al., 2023b;
Tarzanagh et al., 2023a), training dynamics (Jelassi et al., 2022; Boix-Adsera
et al., 2023; Li et al., 2023b; Tian et al., 2023), and in-context learning (Bai et al.,
2023; Guo et al., 2023; Li et al., 2023c; Zhang et al., 2023). Geshkovski et al.
(2023) and Fu et al. (2023) analyze models with frozen non-trainable queries
and keys, while Jelassi et al. (2022) similarly studies the learning of the value
matrix and positional encodings only, fixing keys and queries to identity. The
works of (Sahiner et al., 2022; Zhang et al., 2023) address trainable queries
and keys for linear or ReLu-activated attention mechanisms. Li et al. (2023b)
and Edelman et al. (2022) provide error bounds for non-linear models, with
trainable queries and keys. Because these studies are not tight, they do not al-
low to capture sharp changes in the behaviour of attention mechanisms such
as phase transitions. A first tight analysis was provided in (Rende et al., 2023),
in the context of learning a high-dimensional graphical model with factored
attention, leveraging its formal equivalence to a linear and convex learning
problem. The present manuscript conducts a tight analysis of the non-convex
learning of a non-linear attention model with trainable tied queries and keys,
thereby allowing the description of sharp phase transitions in the behaviour
and performance of the model.

Positional encodings To combine the positional and semantic informa-
tion in textual or general sequential data, a plethora of models and input
encodings have been explored. Many approaches are based on autoregres-
sive models, e.g. recurrent architectures (Elman, 1990), where the positional
information is provided implicitly by the order in which the input is pro-
cessed. While some transformers can leverage implicit positional information
through causal masks in training (Haviv et al., 2022; Sinha et al., 2022; Kazem-
nejad et al., 2023), in principle a dot product attention layer requires an
explicit encoding of positional information as it views the input sequence in
parallel, as a bag of words (Vaswani et al., 2017). Several works experimentally
explore different types of positional encodings with the goal of improving
the downstream task performance (Shaw et al., 2018; Ruoss et al., 2023). In
this work, we provide a tractable model to quantify the generalization error
of a single layer of attention in the presence of positional encodings.

Mechanistic interpretability Recently, there has been an effort to reverse
engineer the algorithms learned by a neural network for a specific task (Weiss
et al., 2021; Olsson et al., 2022; Von Oswald et al., 2023) to uncover their
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Figure 40: Several solutions exist for the histogram task. (A) The sequence
[D,B,D] is processed by a single layer of dot-product attention. After em-
bedding each token into learned vectors [tD, tB, tD] ∈R3×d , the absolute
positional encodings [p1, p2, p3] are added to give the inputs to the atten-
tion layer. The colored elements Ai j represent the values of the attention
matrix, as generated using the key and query matrices Q and K and after
applying softmax. (B) A schematic loss landscape containing two stable
solutions. (C) Elements of attention matrices for the histogram task for
local minima in the loss landscape. We generated a dataset of sequences
by sampling each token of the sequence i.i.d. from the uniform distribu-
tion over all tokens. Models were trained with their respective frozen
initialization using n = 35,000 samples and the Adam optimizer. Top Row:
The attention matrix of the positional solution is largely independent of
the specific input sequence. Bottom Row: The attention matrices from the
semantic solution vary based on the input token. Red squares highlight
the elements of Ai j where xi = x j .

limitations and generalization abilities. It has been shown that a transformer
may implement two qualitatively different algorithms for modular addition
(Zhong et al., 2023). In a similar spirit, our work provides examples of two
tasks for which an attention layer can implement two qualitatively different
solutions, based on either the positions or semantics of the inputs. While
many works in mechanistic interpretability rely on a careful introspection
and interpretation of the learned model to come to that conclusion, our
second example allows for a theoretical analysis.

12.1 TWO SOLUT IONS FOR THE
HI STOGRAM TASK

In this section, we demonstrate that for a simple counting task two qualita-
tively different solutions exist in the loss landscape of a simple transformer
using a dot-product attention layer with positional encodings. One solution
corresponds to a dot-product attention matrix which is largely independent
of the tokens making up the input sequence, and another strongly varies
based on the tokens (and thus the semantic content of the input). Both solu-
tions achieve a close to 100% test accuracy.

The training task is a sequence-to-sequence counting task, referred to
as the histogram task in (Weiss et al., 2021). Given an input sequence xxx =
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[x1,x2, · · · ,xL] of length L of tokens from a fixed alphabet, the goal is to
return a sequence yyy = [y1,y2, · · · ,yL], where each token yi is the number
of occurrences of the token xi in xxx. In Fig. 40 (A), we show an example
where we consider sequences where the tokens are from the fixed alphabet
X = {A,B,C, · · ·} of size |X |= 15. When the input data is limited to length In this setting, for

instance, the sequence
xxx = [A,B,B,C,A,B]
should be mapped to
its histogram
sequence
yyy = [2,3,3,1,2,3].

L, the output elements yi thus take values up to the maximum count L.

We encode the input using token embeddings and absolute positional en-
codings which are trained jointly with the model weights. As an architecture
we consider a small transformer made up of a single layer of dot-product
attention, followed by a fully connected hidden layer and with learned em-
beddings for both tokens and positions. For each output position, it generates
logits for the L possible classes of the output alphabet; training is done using
the cross-entropy loss.

We conduct experiments where we set two different sections of the models’
weights to zero at the initialization of training –removing either the model’s
access to positional or semantic information and keeping the weights frozen
throughout training with the Adam optimizer. After convergence, we check
that the resulting configurations of weights are stable in the unconstrained
loss landscape, i.e. without frozen weights. More precisely, we ascertain that
these weights only change marginally when further trained with SGD on the
unconstrained loss, and that the qualitative behaviour of the attention layer
is retained. Our experiments demonstrate that the loss landscape of the trans-
former has at least two qualitatively different local minimizers (or close to
minimizers), subsequently referred to as the semantic and positional solution.

We inspect the learnt attention matrix for different input sequences in
Fig. 40 (C). The positional solution corresponds to a learnt attention matrix
whose i, j−th component only depend on the positions i, j, and little on
the tokens occupying these positions. The attention matrix is thus almost
independent of the input sequence. In fact, the attention matrix is similar
to the identity. In this case, the attention layer simply serves to aggregate
the other tokens uniformly, and the fully connected layer learns the counting.

In contrast, the attention matrix learnt at the semantic solution displays
larger i, j−th component if the tokens at position i and j are identical. In
other words, identical tokens attend more to each other. This mechanism
hence does not rely on the positions, but rather on the semantic content of
the tokens. Both solutions and associated attention matrices thus correspond
to feasible algorithms which ultimately allow the transformer to solve the
downstream task.

Our experimental exploration gives compelling evidence that different
stable solutions exist in the empirical loss landscape of simple transformers,
which correspond to different algorithmic solutions to a given task. However,
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it remains an interpretation of an experiment and does not allow for a precise
characterization of their behaviour or of the conditions under which they are
established. In the remainder of this work, we turn to a simpler model of the
attention layer, which presents similar phenomenology yet can be analyzed
theoretically. More precisely, in Section 12.2, we provide a tight character-
ization of the global minimum of the empirical loss, and show in Section 12.4
that it corresponds to a semantic or positional mechanism, depending on the
amount of training data and the task with a phase transition between them.

12.2 T IED LOW-RANK AT TENT ION
MODEL

This section introduces a simple model of supervised learning with an at-
tention layer parametrized by learnable, tied and low-rank query and key
matrices.

Input data model We consider a model of embedded sentences with
uncorrelated (1-gram) words. More precisely, a sentence xxx ∈RL×d , where L
is the sentence length and d represents the embedding dimension, consists
of L tokens {xxxℓ}1≤ℓ≤L independently drawn from a Gaussian distribution
xxxℓ ∼N (0,Σℓ) with covariance Σℓ ∈Rd×d . In the following, we denote the
probability distribution of xxx as px. Note that while this sentence model does
not involve in itself statistical correlations between tokens, the task (target
function) will entail interactions between different tokens.

Target function The target (teacher) is assumed to be of the form

y(x) = T

[
1√
d

xxxQQQ⋆

]
xxx (325)

for T : RL×t → RL×L, and xxxℓ ∈ Rd is the ℓ−the word, i.e. the ℓ−th row of
the sentence xxx ∈ RL×d . The term T [1/

√
dxxxQQQ⋆] ∈ RL×L in (325) should be

interpreted as the target attention matrix, which mixes the tokens of the
input xxx, with and is parametrized by the matrix QQQ⋆ ∈Rd×rt ,

Tied attention We consider the learning of the target (325) using a para-
metric family of attention matrices

fQ(x) = S

[
1√
d
(xxx+ ppp)QQQ

]
(xxx+ ppp). (326)

In (326), ppp ∈RL×d is a fixed matrix, corresponding to positional encodings,
and QQQ ∈Rd×rs is a trainable matrix. We denote subsequently pppℓ ∈Rd the
ℓ−th row of ppp. Like the target (325), the parametric function (326) takes the
form of a data-dependent attention matrix S [1/√d(xxx+ ppp)QQQ] ∈RL×L mixing
the tokens of the input xxx. Note that, compared to the usual attention mech-
anism (Vaswani et al., 2017), (326) corresponds to setting the value matrix
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to identity, and – since (326) is parametrized by a single matrix QQQ- tying the
key and query matrices.

Empirical risk minimization We study the learning of the attention
layer (326), when a training set is D = {xxxµ ,y(xxxµ)}n

µ=1 with n independently
sampled sentences {xxxµ}n

µ=1 is available. The target (325) can be learnt by
carrying out an empirical risk minimization:

Q̂QQ = argmin
QQQ∈Rd×r

[
n

∑
µ=1

1
2d
∥y(xxxµ)− fQ(xxxµ)∥2 +

λ

2
∥QQQ∥2

]
. (327)

The performance of the resulting trained model fQ̂QQ is measured at test time
by the MSE

εg ≡
1

dL
Exxx∼px

∥∥∥y(xxx)− fQ̂QQ(xxx)
∥∥∥2

. (328)

12.3 CLOSED - FORM
CHARACTER IZAT ION OF THE
TRAIN ING

High-dimensional limit We analyze the learning problem (327) in the
limit where the embedding dimension d and the number of training samples
n jointly tend to infinity, while their ratio α = n/d (henceforth referred to as
the sample complexity) stays of order Θd(1). We further assume the sentence
length L, the ranks rs,rt of the weights QQQ,QQQ⋆, and the norm of the positional
embeddings ∥ppp∥, to be Θd(1). We consider this limit as it permits a closed-
form characterization presented in the next section. At the same time, this
asymptotic limit exhibits rich learning phenomenology closely related to the
experimental observations reported in Section 12.1, and which we further
explore in Section (12.4).

The main technical result of the present work is a closed-formed char-
acterization of the test MSE (328) and training loss (327) achieved in the
high-dimensional limit when training the model (326) via the empirical risk
minimization of (327).

Assumption 12.3.1. The covariances {Σℓℓℓ}L
ℓ=1 admit a common set of eigen-

vectors {eeei}d
i=1. We further note {λℓi}d

i=1 the eigenvalues of Σℓ. The eigenvalues
{λℓi}d

i=1 and the projection of the positional embedding pppℓ and the teacher
rows QQQ⋆

j on the eigenvectors {eee⊤i pppℓ}i,ℓ, {eee⊤i QQQ⋆
j}i, j are assumed to admit a well-

defined joint distribution ν as d→ ∞ – namely, for γ = (γ1, ...,γL) ∈RL,π =

(π1, ...,πt) ∈Rt and τ = (τ1, ...,τL) ∈RL:

1
d

d

∑
i=1

K

∏
k=1

t

∏
j=1

δ

(
λℓi − γℓ

)
δ

(√
deee⊤i pppℓ− τℓ

)
δ

(
eee⊤i QQQ⋆

j −π j

)
d→∞−−−→ ν (γ ,τ) .

(329)
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Moreover, the marginals νγ (resp. ντ ) are assumed to have a well-defined first
(resp. second) moment.

Result 12.3.2. Under Assumption 12.3.1, in the limit n,d→∞, ∥pppℓ∥, n/d,L,rs,rt =

Θd(1), the summary statistics

ρℓ ≡
QQQ⊤⋆ ΣℓQQQ⋆

d
∈Rrt×rt , qℓ ≡

Q̂QQ
⊤

ΣℓQ̂QQ
d

∈Rrs×rs ,

mℓ ≡
Q̂QQ
⊤

pppℓ
d
∈Rrs , θℓ ≡

Q̂QQ
⊤

ΣℓQQQ⋆

d
∈Rrs×rt (330)

concentrate in probability, and are solutions of the set of finite-dimensional
self-consistent equations

qℓ =
∫

dν(γ ,τ ,π)γℓ

(
λIr +

L
∑

κ=1
γκV̂κ

)−1

(
L
∑

κ=1
γκ q̂κ +

(
L
∑

κ=1
m̂κτκ + γκ θ̂κ ·π

)⊗2
)(

λIr +
L
∑

κ=1
γκV̂κ

)−1

Vℓ =
∫

dν(γ ,τ ,π)γℓ

(
λIr +

L
∑

κ=1
γκV̂κ

)−1

mℓ =
∫

dν(γ ,τ ,π)τℓ

(
λIr +

L
∑

κ=1
γκV̂κ

)−1

(
L
∑

κ=1
m̂κτκ + γκ θ̂κ ·π

)
θℓ =

∫
dν(γ ,τ ,π)γℓ

(
λIr +

L
∑

κ=1
γκV̂κ

)−1

(
L
∑

κ=1
m̂κτκ + γκ θ̂κ ·π

)
π⊤.

(331)



q̂ℓ = αEΞ,UV−1
ℓ

(
prox(Ξ,U)ℓ−q

1
2
ℓ ξℓ−mℓ

)⊗2

V−1
ℓ

V̂ℓ=θ̂ℓθ
⊤
ℓ q−1

ℓ −αEΞ,UV−1
ℓ

(
prox(Ξ,U)ℓ−q

1
2
ℓ ξℓ−mℓ

)
ξ⊤ℓ q−

1
2

ℓ

m̂ℓ = αEΞ,UV−1
ℓ

(
prox(Ξ,U)ℓ−q

1
2
ℓ ξℓ−mℓ

)
θ̂ℓ = αEΞ,UV−1

ℓ

(
prox(Ξ,U)ℓ−q

1
2
ℓ ξℓ−mℓ

)
(

uℓ−ξ⊤ℓ q−
1/2

ℓ θℓ

)⊤ (
ρℓ−θ⊤ℓ q−1

ℓ θℓ

)−1

(332)

In (331),U = {uℓ}L
ℓ=1 andΞ= {ξℓ}L

ℓ=1, with uℓ∼N (ξ⊤ℓ q−
1/2

ℓ θℓ,ρℓ−θ⊤ℓ q−1
ℓ θℓ)

and ξℓ ∼N (0,Ir), and ·⊗2 denotes the outer product of a vector with itself.



12.3 closed-form characterization of the training 221

Finally, the resolvents {prox(Ξ,U)ℓ}L
ℓ=1 are defined as the minimizers of the

Moreau envelope

M (Ξ,U) =

inf
z1,...,zL

1
2

{
L

∑
ℓ=1

Tr
[
V−1
ℓ

(
xℓ−q

1/2
ℓ ξℓ−mℓ

)⊗2
]
+Tr

[
S(Z)ρΣS(Z)⊤

]
−2Tr

[
T(U)ρΣS(Z)⊤

]}
. (333)

We noted Z ∈RL×rs (resp. U ∈RL×rt the matrix whose rows are zℓ (resp. uℓ).
In (333),

ρΣ ≡ diag

[(∫
dν(γ ,τ)γℓ

)L

ℓ=1

]
∈RL×L. (334)

In the same limit, the test error (328) converges in probability to

εg =Eh Tr
[
S[h]ρΣS[h]⊤

]
+Eh⋆ Tr

[
T[h⋆]ρΣT[h⋆]⊤

]
−2Eh,h⋆ Tr

[
S[h]ρΣT[h⋆]⊤

]
. (335)

where the average bears on h ∈RL×rs ,h⋆ ∈RL×rt with independent rows with
statistics

(hℓ,h⋆ℓ) ∼N

[(
mℓ

0

)
,

(
qℓ θℓ

θ⊤ℓ ρℓ

)]
(336)

Finally, the training loss εt converges in probability to

εt =αEY ,ΞM − 1
2

L

∑
ℓ=1

Tr[q̂ℓVℓ]

+
λ

2

∫
dν(γ ,τ)Tr

[(
λ+

L
∑
ℓ=1

γℓV̂ℓ

)−1
(

L
∑
ℓ=1

γℓq̂ℓ+
(

L
∑
ℓ=1

τℓm̂ℓ+θ̂ℓ·π
)⊗2

)]
.

(337)

The derivation of Result 12.3.2 is exploiting a mapping of the model (326)
to a (variant of) a GLM (Nelder et al., 1972; McCullagh, 2019). The summary
statistics characterized by the equations (331) (often called SE (Javanmard
et al., 2013) in this context) asymptotically describe the fixed points of a
GAMP algorithm (Rangan et al., 2016). The stable fixed points of GAMP in turn
correspond to critical (zero-gradient) points of the non-convex empirical loss
landscape (327). Therefore, while Result (12.3.2) is stated as a characteriza-
tion of the global minimum of (327), which is the main concern of the present
work, solutions of (331) also describe local minima.

This strategy to study asymptotics of high-dimensional problem has been
used in many recent work, see e.g. (Bayati et al., 2011b; Donoho et al., 2016;
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Emami et al., 2020; Loureiro et al., 2021a; Gerbelot et al., 2022). We note,
however, that we importantly assume the point-wise convergence of GAMP.
While we believe that this point can be rigorously justified, it would require
a considerable amount of work —in particular, the usual rigorous tools used
in recent works fall short because of the non-convexity of the loss— and we
leave this point for further studies. Again, we mention that while Result 12.3.2
is presented for an ℓ2 regularization of the empirical loss (327) for clarity,
similar results can be reached for generic convex regularizers, following the
lines of the analysis presented in the introductory Part I. In the following
section, we explore the phenomenology uncovered from the study of the
equations (331) of Result 12.3.2, for the special case of dot-product attention.

12.4 POS I T IONAL -TO - SEMANT IC PHASE
TRANS I T ION

12.4.1 rank one dot-product attention

In the following, we turn to a special case of tied low-rank attention (326),
which exhibits a similar phenomenology as the histogram task empirically
probed in Section 12.1 – namely a dot-product attention layer:

S

[
1√
d
(xxx+ ppp)QQQ

]
= softmax

(
1
d
(xxx+ ppp)QQQQQQ⊤(xxx+ ppp)⊤

)
. (338)

As in (326), we allow for positional encodings ppp in the dot-product attention
parametrization (338). We further consider a specific case of target attention
matrix (325) of the form

T

[
1√
d

xxxQQQ⋆

]
= (1−ω)softmax

(
1
d

xxxQQQ⋆QQQ⊤⋆ xxx⊤
)
+ωA· (339)

with A ∈ RL×L a fixed matrix. In (339), the parameter ω ∈ [0,1] tunes the
relative strength of the dot-product term and the fixed matrix term, and
interpolates between a fully positional and a fully semantic task:

• For ω = 0, the target reduces to the first dot-product term, and is purely
semantic, in that the i, j−th element of the scorematrix softmax(1/dxxxQQQ⋆QQQ⊤⋆ xxx⊤)
only depends on the tokens xxxi,xxx j and not explicitely on their respective
placements i, j inside the sentence. To learn satisfyingly the target, the
learning model thus has to learn a semantic attention matrix.

• For ω = 1, the target reduces to the second fixed term A in (339). The
attention matrix A associated thereto is purely positional, in the sense
that Ai j is a function of i, j but not of xxxi,xxx j. To complete the learning
task, a positional mechanism thus needs to be learnt.

The parameter ω thus allows to tune the extent to which the task requires
the model to implement semantic attention (small ωs) or rather positional
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Figure 41: Mixed positional/semantic teacher for ω = 0.3. Setting is rs = rt =
1,L = 2,A = ((0.6,0.4), (0.4,0.6)),Σ1 = Σ2 = 0.25Id , ppp1 = 1d = −ppp2
and QQQ⋆ ∼N (0,Id). (left) Solid lines: difference in training loss ∆εt be-
tween the semantic and positional solutions of (331) in Result 12.3.2.
Markers: difference in training loss at convergence achieved by train-
ing the model (326) using gradient descent initialized resp. at QQQ⋆ and at
ppp1. Marker color according to phase diagram in Fig. 42. (middle) (blue)
overlap θ between the learnt weights Q̂QQ and the target weights QQQ⋆ (red)
overlap m between the learnt weights Q̂QQ and the positional embedding
p1. Solid lines represent the theoretical characterization of these two
summary statistics provided by Result 12.3.2. Only the solution of (331)
corresponding to the lowest found training loss is represented (respec-
tively the positional solution for α < αc and the semantic solution for
α > αc). Markers represent experimental measures of these quantities,
for gradient descent at convergence. Gradient descent was initialized at
p1 for α < αc and at QQQ⋆ for α > αc. (right) Test MSE. Solid lines repre-
sent the theoretical characterization of Result 12.3.2. Only the solution
corresponding to minimal training loss is represented. Markers indicate
the MSE experimentally reached by the model (326) trained using gradient
descent, initialized at p1 for α < αc and at QQQ⋆ for α > αc. The yellow
line represents the MSE achieved by the dense linear baseline (340), as an-
alytically characterized by Result 12.4.1. All experiments were performed
in d = 1,000 with the Pytorch implementation of full-batch gradient
descent, for T = 5,000 epochs and learning rate η = 0.15. All points are
averaged over 24 instances of the problem each.
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attention (large ωs).

In the following, for definiteness, we further assume rs = rt = 1 and
set QQQ⋆ to be a fixed random Gaussian vector drawn from N (0,Id), and
choose the positional encodings ppp1 = −ppp2 = 1d . Finally, for simplicity, we
consider sentences with two tokens L = 2 and isotropic token covariances
Σ1 = Σ2 = σ2

1d .

12.4.2 semantic and positional mechanisms

The summary statistics θℓ,mℓ describing the global minimizer of the empiri-
cal loss minimization (327) of the dot-product attention (338) on the target
(339) are captured alongside the corresponding test error (328) and training
loss (327), by Result 12.3.2. The solution of the system of equations (331) is
not unique, and different stable fixed points describe different corresponding
critical points of the non-convex empirical loss landscape (327). In practice,
we notably find two solutions of (331), corresponding to two different mech-
anisms implemented by the dot-product attention (338) when approximating
the target (339):

• Positional solution– One solution of (331) correspond to vanishing
overlap θ = 0 between the trained weights Q̂QQ and the semantic target
weights QQQ⋆, and non-zero m> 0 between the trained weights Q̂QQ and the
positional embedding ppp1 = −ppp2. Consequently, the argument of the
dot-product attention Q̂QQ(xxx+ ppp) has a sizeable token-independent –thus
positional– contribution Q̂QQppp, alongside a token-dependent semantic
part Q̂QQxxx. Because of the positional term, the elements of the resulting
learnt attention attention matrix softmax(1/d(xxx+ ppp)Q̂QQQ̂QQ

⊤
(xxx+ ppp)⊤)

implement a partly positional mechanism.

• Semantic solution– Another solution of the system of equations (331)
is associated to vanishing overlap m = 0 between the learnt weights
Q̂QQ and the positional embeddings, and finite overlap θ > 0 with the
target weights QQQ⋆. Therefore the resulting learnt attention matrix
softmax(1/d(xxx+ ppp)Q̂QQQ̂QQ

⊤
(xxx+ ppp)⊤)≈ softmax(1/dxxxQ̂QQQ̂QQ

⊤
xxx⊤) is largely

semantic.

While the system of self-consistent equations (331) may admit other solutions,
we did not find solutions with lower training loss than the two aforedescribed
fixed points. Which of these solution corresponds to the global minimum
– and thus the solution of the optimization (327)– depends on the sample
complexity α and the positional/semantic parameter ω (339), as we describe
in the following subsection.
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12.4.3 positional-to-semantic phase
transition

For a fixed parameter ω in (339), an analysis of equations (331) reveals that
for a sizeable range of ω , in the probed setups, there exists a threshold αc for
the sample complexity so that

• For α < αc, the global minimum of (327) corresponds to a positional
mechanism, and is described by the positional solution of (331) of
Result 12.3.2 with θ = 0,m > 0.

• For α > αc, the global minimum of (327) corresponds to a seman-
tic mechanism, and is described by the semantic solution of (331) of
Result 12.3.2 with θ > 0,m = 0.

For α < αc, the
positional minimum
(green) is lower in
training loss.

For α > αc, the
semantic minimum
(red) becomes global.

The dot-product attention thus displays a phase transition in sample complex-
ity from a positional mechanism to a semantic mechanism, implementing the
simpler positional mechanism when having access to small amounts of data,
and only learning the semantic content of the target (339) when presented
sufficient data. The critical sample complexity αc generically grows with
the positionality ω of the target function (339), as the semantic content –
i.e. the first term of (339)– is less apparent for larger ω , and thus require
larger amounts of data to be identified and approximated by the dot-product
attention (338). An example for ω = 0.3 is given in Fig. 41.

Algorithmically, the positional minimum can be reached for α < αc by
gradient descent by initializing the weights QQQ of the attention (338) close
to the positional embedding ppp1. By the same token, the semantic minimum
can be reached by gradient descent from an initialization at the teacher
weights QQQ⋆ (339). Henceforth, we refer with a slight abuse to the minimum
experimentally reached from a positional (resp. semantic) initialization as the
positional (resp. semantic) minimum, even when it is not global. Finally, note
importantly that the semantic initialization is informed by nature, in that it
necessitates the knowledge of the target parameters QQQ⋆. A precise analysis
of the dynamics of gradient descent from an agnostic (random) initialization,
and ascertaining whether the optimizer reaches the global minimum, is an
interesting question which falls out of the scope of the present manuscript
– whose aim is rather to provide a characterization of the global minimum
alone.

The difference in training loss ∆εt between the positional and semantic
solutions of (331) is represented in Fig. 42, alongside the difference in train-
ing loss at convergence experimentally reached by gradient descent from a
positional (QQQ = ppp1) and semantic (QQQ = QQQ⋆) initializations. For small (resp.
large) sample complexity α < αc (resp. α > αc), the training loss of the posi-
tional (resp. semantic) minimum is lower, and thus corresponds to the global
minimum.
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Figure 42: Phase transition between semantic and positional training loss. andrs =
rt = 1,L = 2,A = ((0.6,0.4), (0.4,0.6)),Σ1 = Σ2 = 0.25Id , ppp1 = 1 =
−ppp2 and QQQ⋆ ∼ N (0,Id). The color map represents the difference in
training loss at convergence when training the model (326) using the
Pytorch implementation of full-batch gradient descent, respectively
from an initialization at p1 and an initialization at QQQ⋆. The green dashed
lines represents the theoretical prediction for the threshold αc(ω) above
which the semantic solution of (331) in Result 12.3.2 has lower loss than
the positional solution. Experiments were performed as in Fig. 41.

The analytical equations (331) are observed to capture well the difference
in training loss between both minima (global and local) across the whole
range of probed sample complexities, see Fig. 41. Finally, Fig. 41 (middle,
right) presents the theoretical predictions of Result 12.3.2 for the weight-
s/target and weights/embedding overlaps θ ,m and the generalization MSE
εg achieved at the global minimum of the loss landscape (327). These ana-
lytical characterizations are compared with experimental estimates of the
same metrics obtained by optimizing (327) with the Pytorch (Paszke et al.,
2019a) implementation of gradient descent, from a positional (resp. semantic)
initialization for α < αc (resp. α > αc), displaying overall good agreement.
The dot-product attention (338) thus implements a semantic mechanism

when learning from sufficient amounts of data. The learning of the semantic
mechanism by the dot-product attention at sample complexities α > αc

corresponds to a noticeable drop in the generalization MSE as can be observed
in Fig. 41, right. But just how essential is the learning of semantic mechanism
in the ability of the dot-product attention to generalize well? We explore this
question in the following subsection, by comparing the dot-product attention
(338) to a purely positional attention model.

12.4.4 purely positional baseline

In this subsection, for the same target (339), we contrast the dot-product
attention model (338), analyzed in the previous subsections, to the baseline
given by a linear attention layer:

fW (xxx) =W · xxx, (340)
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Figure 43: Phase transition between semantic and positional training loss. rs = rt =
1,L= 2,A= ((0.6,0.4), (0.4,0.6)),Σ1 = Σ2 = 0.25Id , ppp1 = 1=−ppp2 and
QQQ⋆ ∼N (0,Id). The color map represents the difference in test MSE at
convergence when training the model (338) using the Pytorch imple-
mentation of full-batch gradient descent initialized at QQQ⋆, and the dense
linear baseline (340). The red dashed lines indicate the theoretical pre-
diction –following from Result 12.3.2 and Result 340– for the threshold
sample complexity αl above which the dot-product attention (326) out-
performs the baseline (340). For comparison, the positional-to-semantic
threshold αc(ω) is reminded in green. Experiments were performed as in
Fig. 41.

with a trainable weights matrix W ∈RL×L. As for the dot-product attention
(338), we consider the case where the weights Ŵ are learnt by minimizing
the empirical risk

Ŵ = argmin
W∈RL×L

n

∑
µ=1
∥y(xxxµ)− fW (xxxµ)∥2 (341)

The model (340) is a natural counterpart to the dot-product architecture
(338). In (340), the attention matrix is parametrized by a single fully-trainable
matrixW , instead of being parametrized as a dot-product attention as in (338).
A seminal difference in the two parametrizations is that while the elements
of softmax(1/dxxxQQQQQQ⊤xxx⊤) can depend on the input tokens xxx, and therefore
express semantic information, the elements Wi j of W can only depend on
the positions i, j. The model (340) can thus only implement positional mecha-
nisms, while the dot-product attention (338) can implement both linear and
semantic mechanisms, as discussed above. Finally, observe that the model
(340) is closely related to the one analyzed by (Rende et al., 2023) in another
asymptotic limit. The following result characterizes the test error achieved
by the purely positional model (340):

Result 12.4.1. In the same asymptotic limit as Result (12.3.2), the learnt
weights Ŵ trained by minimizing the empirical risk (341) coincide with the
minimizer of the population square risk, and thus admit the compact expression

Ŵ = ExxxT

[
1√
d

xxxQQQ⋆

]
= EhT[h] (342)
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where the average bears over a finite-dimensional matrix h ∈RL×t with inde-
pendent rows hℓ with statistics hℓ ∼N (0,ρℓ), where ρℓ was defined in (330) in
Result (12.3.2). We remind that T [1/

√
dxxxQQQ⋆] corresponds to the target score ma-

trix (325). Finally, the test MSE 1/dLExxx∥y(xxx)− fŴ (xxx)∥2 achieved by the trained
dense linear model fŴ (340) admits the asymptotic characterization

ε
lin
g =

1
L

Tr
[
ŴρΣŴ⊤

]
+

1
L

Eh Tr
[
T[h]ρΣT[h]⊤

]
− 2

L
Eh Tr

[
ŴρΣT[h]⊤

]
.

(343)

The MSE achieved by the baseline (340) when learning the target (339) is
plotted in Fig. 41 (right) as the orange solid line, alongside theMSE achieved by
the dot-product attention (338) discussed in previous subsections. Remarkably,
in the setup of Fig. 41, in the positional regime α < αc when the dot-product
attention relies on a positional mechanism θ = 0,m > 0 to approximate
the target, the dot-product attention (338) is outperformed by the purely
positional attention (340) εg > ε lin

g . In contrast, in the semantic regime α >αc

where the dot-product attention learns the semantic mechanism, there exists
a sample complexity αl ≥ αc above which εg < ε lin

g , i.e. the dot-product
attention (338) outperforms the dense linear baseline (340). This threshold
value αl is plotted for various positionality strengths ω in Fig. 43, alongside
the positional-to-semantic threshold αc. Interestingly, we observe αl ≥ αc in
all probed settings, temptingly suggesting the natural interpretation that the
dot-product attention needs to learn the semantic mechanism first (at α = αc)
in order to then be able to outperform the best positional approximation
fŴ (at α = αl). This highlights the importance of the semantic mechanism,
enabled by the dot-product parametrization (338), in learning targets with
semantic content such as (339).

CONCLUS ION

We explored the interplay between positional and semantic attention, both
through an empirical example and the prism of tied low-rank self-attention in
high dimensions. In the empirical setting we showed how a simple algorith-
mic counting task can be solved using a positional or semantic mechanism in
the attention layer. For a different task, in a theoretically controlled setting,
we characterized the global optimum of the empirical loss, when learning
a target attention layer. This global optimum was found to correspond to
either a positional or a semantic mechanism, with a phase transition be-
tween the two mechanisms occurring as the sample complexity increases.
We believe the present asymptotic analysis of the inner workings of attention
mechanisms opens up exciting research directions. Considering untied query
and key matrices, appending a readout network after the attention layer,
or addressing more practical training procedures such as masked language
modelling, are some possible extensions which will hopefully pave the way
towards a satisfactory theoretical comprehension of attention mechanisms.
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Journal of Statistics, Series A (1961-2002) 26.4 (1964), pp. 359–372 (cit. on
p. 64).

[409] Gail Weiss, Yoav Goldberg, and Eran Yahav. ‘Thinking Like Transformers.’
In: Proceedings of the 38th International Conference on Machine Learning.
Ed. by Marina Meila and Tong Zhang. Vol. 139. Proceedings of Machine
Learning Research. PMLR, 18–24 Jul 2021, pp. 11080–11090 (cit. on pp. 215,
216).

[410] Andre Wibisono and Kaylee Yingxi Yang. ‘Convergence in KL divergence of
the inexact Langevin algorithm with application to score-based generative
models.’ In: arXiv preprint arXiv:2211.01512 (2022) (cit. on pp. 199, 201).

[411] Christopher K. I. Williams. ‘Computing with Infinite Networks.’ In: Proceed-
ings of the 9th International Conference on Neural Information Processing
Systems. NIPS’96. Denver, Colorado: MIT Press, 1996, pp. 295–301 (cit. on
pp. 41, 64).

[412] Christopher K. I. Williams. ‘Computing with Infinite Networks.’ In: Proceed-
ings of the 9th International Conference on Neural Information Processing
Systems. NIPS’96. Denver, Colorado: MIT Press, 1996, pp. 295–301 (cit. on
pp. 47, 97).

[413] John Wishart. ‘The generalised product moment distribution in samples
from a normal multivariate population.’ In: Biometrika (1928), pp. 32–52
(cit. on p. 108).

[414] DennyWu and Ji Xu. ‘On the OptimalWeighted ℓ2 Regularization in Overpa-
rameterized Linear Regression.’ In:Advances in Neural Information Processing
Systems. Vol. 33. 2020 (cit. on pp. 49, 66, 68, 73).

[415] Denny Wu and Ji Xu. ‘On the Optimal Weighted ℓ2 Regularization in Over-
parameterized Linear Regression.’ In: Advances in Neural Information Pro-
cessing Systems. Vol. 33. Curran Associates, Inc., 2020, pp. 10112–10123 (cit.
on p. 159).



bibliography 253

[416] H. Xiao, K. Rasul, and Roland Vollgraf. ‘Fashion-MNIST: a Novel Image
Dataset for BenchmarkingMachine LearningAlgorithms.’ In:ArXiv abs/1708.07747
(2017) (cit. on pp. 58, 76, 85, 94, 185, 193).

[417] Lechao Xiao, Hong Hu, Theodor Misiakiewicz, Yue Lu, and Jeffrey Penning-
ton. ‘Precise Learning Curves and Higher-Order Scalings for Dot-product
Kernel Regression.’ In: Advances in Neural Information Processing Systems
35 (2022), pp. 4558–4570 (cit. on pp. 11, 34, 162, 166).

[418] Sho Yaida. ‘Non-Gaussian processes and neural networks at finite widths.’
In: Mathematical and Scientific Machine Learning. 2019 (cit. on pp. 147, 151).

[419] Sho Yaida. ‘Non-Gaussian processes and neural networks at finite widths.’
In: Proceedings of The First Mathematical and Scientific Machine Learning
Conference. Ed. by Jianfeng Lu and Rachel Ward. Vol. 107. Proceedings of
Machine Learning Research. PMLR, 20–24 Jul 2020, pp. 165–192 (cit. on
p. 168).

[420] Gilad Yehudai and Ohad Shamir. ‘On the Power and Limitations of Random
Features for Understanding Neural Networks.’ In: Advances in Neural In-
formation Processing Systems. Vol. 32. Curran Associates, Inc., 2019 (cit. on
pp. 106, 125).

[421] Hui Yuan, KaixuanHuang, ChengzhuoNi,MinshuoChen, andMengdiWang.
‘Reward-Directed Conditional Diffusion: Provable Distribution Estimation
and Reward Improvement.’ In: arXiv preprint arXiv:2307.07055 (2023) (cit. on
pp. 199, 201).

[422] Jacob Zavatone-Veth and Cengiz Pehlevan. ‘Exact marginal prior distribu-
tions of finite Bayesian neural networks.’ In: Neural Information Processing
Systems. 2021 (cit. on pp. 105, 106).

[423] Jacob Zavatone-Veth and Cengiz Pehlevan. ‘Learning curves for deep struc-
tured Gaussian feature models.’ In: arXiv preprint arXiv:2303.00564 (2023)
(cit. on pp. 124, 125, 168).

[424] Jacob Zavatone-Veth, Cengiz Pehlevan, and William L. Tong. ‘Contrasting
random and learned features in deep Bayesian linear regression.’ In: Phys.
Rev. E 105.6 (2022) (cit. on pp. 36, 106, 124–126, 147, 186).

[425] Jacob Zavatone-Veth et al. ‘Asymptotics of representation learning in finite
Bayesian neural networks.’ In: J. Stat. Mech. Theory Exp. 2022.11 (2022) (cit.
on p. 147).

[426] Lenka Zdeborová and Florent Krzakala. ‘Statistical physics of inference:
Thresholds and algorithms.’ In: Advances in Physics 65.5 (2016), pp. 453–552
(cit. on pp. xviii, 10, 14, 18, 21–23, 34, 37, 45, 97).

[427] Lenka Zdeborová and Florent Krzakala. ‘Statistical physics of inference:
thresholds and algorithms.’ In: Advances in Physics 65 (2015), pp. 453–552
(cit. on pp. 151, 153, 185).

[428] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. ‘Understanding
deep learning requires rethinking generalization.’ In: ICLR. 2017 (cit. on
p. 45).

[429] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol
Vinyals. ‘Understanding deep learning (still) requires rethinking general-
ization.’ In: Communications of the ACM 64.3 (2021), pp. 107–115 (cit. on
p. 9).

[430] Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. ‘Trained Transformers Learn
Linear Models In-Context.’ In: arXiv preprint arXiv:2306.09927 (2023) (cit. on
p. 215).

[431] Ziqian Zhong, Ziming Liu, Max Tegmark, and Jacob Andreas. The Clock and
the Pizza: Two Stories in Mechanistic Explanation of Neural Networks. 2023.
arXiv: 2306.17844 [cs.LG] (cit. on p. 216).

https://arxiv.org/false/2306.17844


RESUME

For a full up-to-date resume please visit https://hugocui.github.io/ .

education

2020-2024 EPFL, Lausanne, Switzerland
PhD student, Statistical Physics of Computation laboratory (SPOC),
advised by Lenka Zdeborová.

2019 IPhT, Paris, France
Master thesis, advised by Lenka Zdeborová.

2017-2019 ENS, Paris, France
Master’s degree, Theoretical Physics (International Center for Funda-
mental Physics)

2016-2017 ENS, Paris, France
Bachelor’s degree, Physics

talks

• LemanTh 2024, invited speaker

• EurOPT 2024, invited speaker

• ICLR 2021, poster

• Youth in high dimensions 2024 ICTP, invited speaker

• NeurIPS 2023 workshop on diffusion models, poster

• NeurIPS 2023, spotlight poster

• 5th International Workshop on neural scaling laws, invited speaker

• ICML 2023, oral

• Cargèse summer school 2023, Machine learning and statisical physics
back together, contributed talk

• ITS seminar, CUNY, invited speaker

• les Houches 2023 workshop, Towards an understanding of artificial
and biological networks, poster

• Youth in high dimensions 2023 ICTP, poster

• EPFL-RIKEN young rising stars joint workshop, invited speaker

• Learning: Optimization and Stochastics Summer Research Institute,
invited speaker

• Learning and Optimization, CIRM conference, contributed talk

• 4th IMAConference on themathematical challenges of big Data, Oxford,
poster

254

https://hugocui.github.io/


bibliography 255

• Workshop on the theory of overparameterizedmachine learning (TOPML
2022), contributed talk

• Advanced Course on Data and Learning Summer School (ACDL 2022),
poster and talk, best presentation award

• Fundamental problems in statistical physics summer school, poster

• Cargèse 2021 summer school, Glassy systems and interdisciplinary
applications, poster

• NeurIPS 2021, poster

• Fundamentals of Learning and AI Research (FLAIR), EPFL, invited
speaker

• MSML 2020, contributed talk

teaching

2023 Machine learning for physicists, TA, Masters, EPFL

2021-2022 Statistical physics of computation, TA, Masters, EPFL

2022 Statistical physics II, TA, Bachelors, EPFL

2021 Physics for earth sciences, TA, Bachelors, Unil

2021 Physics I, TA, Bachelors, EPFL

2023 Supervision of Nolan Sandgathe (Master thesis)

2021 Supervision of Oscar Bouverot-Dupuis (Master internship)

distinctions

• G-research PhD prize in Mathematics and Data Science 2024, EPFL,3rd

prize

• Famelab 2021 science communication competition, Switzerland national
winner and international finalist

• ENS entrance national competitive exam 2016, ranked 1st .

• Laureate of two thematic awards (bronze medal at the International
Chemistry Olympiads, 2nd prize at French Chemistry Olympiads) from
the French Académie des Sciences, 2014.



Ph.D dissertation of Hugo Cui
Topics in Statistical Physics of High-Dimensional Machine Learning © May 6
2024

supervisors:
Lenka Zdeborová
location:
Institute of Physics
EPFL, Lausanne, Switzerland

time frame:
September 1, 2020 — May 6, 2024




	Acknowledgements
	Table of contents
	List of abbreviations
	List of symbols
	Foreword
	Organization of the manuscript
	Contributions

	List of publications
	 INTRODUCTION
	1 Introduction
	1.1 Basic concepts in ML
	1.1.1 Why ML theory?
	1.1.2 The ML pipeline
	1.1.3 Some ML models
	1.1.4 Two conundrums in high dimensions

	1.2 Statistical physics of ML
	1.2.1 Statistical physics in the ML researchscape
	1.2.2 A case study: learning a sequence generalized linear model
	1.2.3 The replica method
	1.2.4 An algorithmic perspective
	1.2.5 Summary


	2 Perspectives
	2.1 Three levers
	2.1.1 The first lever: Models
	2.1.2 The second lever: training procedures
	2.1.3 The third lever: Realistic data models



	 DATA STRUCTURE
	BrickRedII  A.   Features structure
	3 Realistic learning curves from structured features
	3.0.1 Related work —
	3.1 Main technical results
	3.2 Applications of the Gaussian model
	3.2.1 Random kitchen sink with Gaussian data
	3.2.2 Kernel methods with Gaussian data
	3.2.3 GAN-generated data and learned teachers
	3.2.4 Learning from real data sets



	BrickRedII  B.   Kernel features
	4 Scaling laws for Kernel regression
	4.1 Setting
	4.2 Main results
	4.3 Sketch of the derivation
	4.4 Illustration on simple real data sets

	5 Scaling laws for Kernel classification
	5.1 Setting
	5.1.1 Kernel classification
	5.1.2 Source and capacity conditions
	5.1.3 Misclassification error

	5.2 Max-margin classification
	5.2.1 Self-consistent equations
	5.2.2 Decay rates for max-margin
	5.2.3 Comparison to classical rates

	5.3 Ridge classification
	5.3.1 Self-consistent equations
	5.3.2 Decay rates for ridge classification
	5.3.3 Optimal rates

	5.4 Remarks for real data-sets
	5.5 Conclusion


	 MULTI-LAYER NETWORKS
	BrickRedIII  A.   Random Features
	6 Deep Random Features
	6.1 Setting & preliminaries
	6.1.1 Background on sample covariance matrices
	6.1.2 Notation

	6.2 Deterministic equivalents
	6.2.1 Rigorous results on the multi-layer sample covariance and Gram matrices
	6.2.2 Closed-formed formula for the population covariance
	6.2.3 Consistency of 6.2.4 and the approximate population covariance

	6.3 Gaussian universality of the test error
	6.3.1 Well-specified case
	6.3.2 General case

	6.4 Depth-induced implicit regularization
	6.5 Conclusion

	7 Colored Deep Random Features
	7.1 Setting
	7.2 Test error of Lipschitz feature models
	7.2.1 Proof of 7.2.1

	7.3 Population covariance for rainbow networks
	7.3.1 Proof of 7.3.4
	7.3.2 Discussion of Theorem 7.3.4

	7.4 Linearizing trained neural networks 


	BrickRedIII  b.   Trained Features
	8 Bayes-optimal learning of a random network
	8.0.1 Related works
	8.1 Setting
	8.2 Bayes-optimal Error
	8.2.1 The Bayesian Gaussian Equivalence Property
	8.2.2 Deep (Bayesian) Gaussian Equivalence Property
	8.2.3 Bayes-optimal errors

	8.3 ERM with Linear Methods
	8.3.1 Ridge regression
	8.3.2 Random Features
	8.3.3 Kernels
	8.3.4 Logistic and ridge classification

	8.4 Beyond the Proportional Regime

	9 Feature learning after one gradient-step
	9.1 Setting, motivation and related work
	9.2 Main technical results
	9.2.1 Asymptotics of the first layer weights after one (large) gradient step
	9.2.2 Conditional Gaussian equivalence
	9.2.3 Tight asymptotic characterization of the test error

	9.3 Discussion of main results
	9.3.1 Spiked Random Features vs Random Features
	9.3.2 Beating kernels in a single step
	9.3.3 What can be learned with a single step?
	9.3.4 More variability means better feature learning



	 ASPECTS OF MODERN ML
	10 Self-supervised learning with auto-encoders
	10.1 Setting
	10.2 Asymptotic formulae for DAEs
	10.3 The role and importance of the skip connection.

	11 Flow-based generative models
	11.1 Setting
	11.2 Learning
	11.3 generative process
	11.4 Bayes-optimal baseline

	12 Dot-product attention
	12.0.1 Related work
	12.1 Two Solutions for the Histogram Task
	12.2 Tied low-rank attention model
	12.3 Closed-form characterization of the training
	12.4 Positional-to-semantic phase transition
	12.4.1 Rank one dot-product attention
	12.4.2 Semantic and positional mechanisms
	12.4.3 Positional-to-semantic phase transition
	12.4.4 Purely positional baseline



	 Bibliography
	




