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Abstract

Snow plays a crucial role in processes regulating ecosystems, the climate, and human develop-

ment. Mountain snowpack in particular has great relevance for downstream communities.

Knowledge about the distribution and properties of the snowpack thus help in planning how

to live with this dynamic resource. Snow models employed to simulate mountain snowpack

cover a range of physical complexity, but all of them are incredibly dependent on accurate

input data. This input data must resolve relevant atmospheric processes at the scales at which

snow models are run, often down to 100 m or higher. Processes such as preferential deposi-

tion of precipitation, where near-surface flow features and microphysical processes enhance

precipitation at the ridge scale, should thus be accounted for. One of the best methods for

providing snow models with input data is dynamic downscaling, where meteorological input

data is calculated at the resolution of snow models using numerical weather prediction models.

This technique has many advantages over statistical downscaling, with the large caveat that

is it computationally unfeasible to perform over large areas or time scales. In this thesis, we

introduce an intermediate-complexity atmospheric model, HICAR, capable of running at the

resolution of most snowpack models. The HICAR model makes use of techniques developed

in the field of pollutant transport to efficiently solve for a 3D wind field at the hectometer scale.

The technique allows for direct modification of the wind field, enabling parameterizations

of steady-state eddy-like structures and thermally driven slope flows. Validation of HICAR’s

flow fields against non-hydrostatic atmospheric models, as well as observations, demonstrate

HICAR’s ability to resolve flow features relevant to snowpack modeling. These improvements

to the model flow field, in combination with improvements to the model’s physics, result in ac-

curate simulation of near-surface atmospheric variables. 2m air temperature, radiative inputs,

and precipitation outputs of the model are evaluated against observations from automated

weather stations and grided precipitation products. A process-level view of precipitation at

the 50m scale is presented using a state-of-the-art microphysics scheme. Results from this

evaluation reveal HICAR’s ability to simulate preferential deposition of snow, and alter the

understanding of the process to include the interaction of near-surface flow features with

microphysical process. Finally, the relevancy of the model for snowpack modeling is addressed.

HICAR is coupled with an intermediate complexity snow model, FSM2trans. This coupled

model, HICARsnow, is shown to resolve patterns of snow accumulation and ablation through-
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out the snow season. The ability of HICAR to simulate preferential deposition is shown to

improve the distribution of snow depth in complex terrain relative to snow model runs using

statistical downscaling of precipitation. Feedbacks from blowing snow sublimation on hu-

midity also limit the rate of blowing snow sublimation over the winter season for the two-way

coupled snow model compared to the snow model run with statistical downscaling. The arc

of this thesis shows that intermediate-complexity atmospheric modeling at the hectometer

scale is possible, that it is capable of resolving atmospheric variables relevant to land surface

models, and that this translates to better process representation within snow models.

Key words: Atmospheric Modeling, Snow-Atmosphere Modeling, Wind Fields, Preferential

Deposition, Evaluation, Intermediate-complexity Modeling, Complex Terrain, Wind LiDAR

Scans, Surface Energy- and Mass Balance
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Zusammenfassung

Schnee spielt eine wichtige Rolle in Prozessen, die Ökosysteme, das Klima und die mensch-

liche Entwicklung beeinflussen. Insbesondere die Schneedecke in den Bergen ist für die

Bevölkerung flussabwärts von großer Bedeutung. Eine Planung über den Umgang mit dieser

dynamischen Ressource ist nur mit dem Wissen über die Verteilung und Eigenschaften der

Schneedecke möglich. Schneemodelle, die zur Simulation von der Schneedecke in Bergen

verwendet werden, variieren in ihrer physikalischen Komplexität, sind jedoch alle stark von

genauen Input-Daten abhängig. Diese Daten müssen in der Lage sein atmosphärische Prozes-

se in Skalen aufzulösen, die für Schneemodelle häufig verwendet werden mit Auflösungen

von 100 m oder höher. Prozesse wie die bevorzugte Ablagerung von Niederschlag, bei dem

bodennahe Strömungsmerkmale und mikrophysikalische Prozesse den Niederschlag auf der

Kammskala verstärken, müssen daher berücksichtigt werden. Eine der besten Methoden zur

Bereitstellung von Input-Daten für Schneemodelle ist das dynamische Downscaling, bei dem

meteorologische Input-Daten mit der Auflösung von Schneemodellen mithilfe numerischer

Wettervorhersagemodelle berechnet werden. Diese Technik hat viele Vorteile gegenüber sta-

tistischem Downscaling, jedoch ist sie aufgrund des enormen Rechenaufwands für große

Gebiete oder Zeitskalen oft nicht realisierbar. In dieser Dissertation stellen wir ein Modell

mit mittlerer Komplexität vor, HICAR, das in der Lage ist, mit der Auflösung der meisten

Schneemodelle zu laufen. Das HICAR-Modell verwendet Techniken aus dem Bereich des

Schadstofftransports, um effizient ein 3D-Windfeld im Hektometer Maßstab zu lösen. Die Me-

thode ermöglicht eine direkte Modifikation des Windfelds und erlaubt Parametrisierungen von

stationären Wirbelstrukturen und thermisch getriebenen Hangwinden. Diese Verbesserungen

des Strömungsfelds, in Kombination mit Verbesserungen der Physik des Modells, führen zu

einer akkuraten Simulation bodennaher atmosphärischer Variablen. Die 2m Lufttempera-

tur, Strahlungseingänge und der Niederschlag des Modells werden mit Beobachtungen von

automatischen Wetterstationen und gerasterten Niederschlagsprodukten verglichen. Eine

prozessorientierte Betrachtung des Niederschlags mit einer Auflösung von 50 m wird unter

Verwendung eines hochmodernen Mikrophysik-Schemas vorgestellt. Die Ergebnisse dieser Be-

wertung zeigen die Fähigkeit von HICAR, die bevorzugte Ablagerung von Schnee zu simulieren,

während außerdem das Prozessverständnis durch dir Interaktion bodennaher Strömungs-

merkmale mit mikrophysikalischen Prozessen erweitert wird. Schließlich wird die Relevanz
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Zusammenfassung

des Modells für die Schneemodellierung gezeigt. HICAR wird mit einem Schneemodell mitt-

lerer Komplexität, FSM2trans, gekoppelt. Das gekoppelte Modell, HICARsnow, ist in der Lage,

Muster von Schneeakkumulation und -ablation während der Schneesaison zu simulieren. Die

Fähigkeit von HICAR, die bevorzugte Ablagerung von Schnee zu simulieren, verbessert die

Verteilung der Schneehöhe in komplexem Gelände im Vergleich zu Schneemodellläufen mit

statistischem Downscaling. Diese Dissertation zeigt, dass eine atmosphärische Modellierung

mittlerer Komplexität im Hektometer Maßstab möglich ist, dass sie in der Lage ist, atmosphäri-

sche Variablen relevant für Oberflächenmodelle aufzulösen, und dass sich dies in eine bessere

Darstellung von Prozessen in Schneemodellen übersetzen lässt.

Stichwörter: Atmosphärische Modellierung, Schnee-Atmosphären-Modellierung, Windfelder,

Preferential Deposition, Auswertung, Modellierung mittlerer Komplexität, komplexes Gelände,

Wind LiDAR Scans, Oberflächenenergie- und Massenbilanz
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1 Introduction

1.1 Background

Mountains have been termed the "water towers of the world", with 50% of the earth’s moun-

tainous regions playing an essential or supportive role in the hydrology of downstream com-

munities (Viviroli et al., 2007). This is due in part to mountain snowpack, with an estimated

17% of the world population relying on snow melt for their water supply (Barnett et al., 2005).

This comparison of mountain snowpack with human infrastructure reflects the concept of

"Ecosystem Services" (Costanza et al., 1997). Stated briefly, engineered structures built to

replace these natural water towers would be costly, and likely garish. While water towers

require the use of pumps to store water, the processes which form and distribute mountain

snowpack are entirely free of charge. Solar heating of the earth’s surface evaporates water,

converting it into a vapor which can then rise thousands of meters into the atmosphere. This

water then travels great distances until it encounters atmospheric conditions facilitating it’s

condensation and, eventually, precipitation. The volume of water involved in precipitation

events can be staggering, with some types of precipitation events earning the name "Atmo-

spheric Rivers", because they can transport more water than flows out of the Amazon river

(Zhu & Newell, 1998). When this water falls as snow, its entrance into the local hydrological

system is delayed. Instead, months of precipitation, in some locations up to 50% of the annual

precipitation(Sturm et al., 2017), become locked away until the spring. This allows ecosystems

to benefit from a steady supply of water even months later during warm, dry summer months.

When the release of water is steady, it has benefits for hydroelectric energy production, fish

populations, and downstream communities. When the release of water is sudden, it can lead

to catastrophic springtime flooding as weeks of stored precipitation enter the water cycle in a

matter of days (Henn et al., 2020). Forecasting of the releases from this natural reservoir are

thus crucial to allow downstream communities to plan with the natural variability in seasonal

snowpack. And understanding snow melt begins with understanding the processes acting on

the snowpack. These can be broadly grouped into accumulation processes, which determine

the spatial distribution of the snowpack at the end of the winter, and ablation processes, which

determine the timing and magnitude of snow melt.
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Chapter 1. Introduction

1.1.1 Accumulation Processes

The accumulation of snow on the ground is determined first by snowfall processes, and later

by redistribution processes which shape this initial distribution.

Snowfall Processes

Snowfall over complex terrain is influenced by processes occurring at a variety of scales.

Starting at the largest, orographic precipitation occurs when an air mass is forced to rise over

terrain. As a parcel of air ascends higher into the atmosphere, it finds itself under less pressure

from the kilometers of air above it. This reduced pressure allows the parcel to expand into

equilibrium with the relatively low pressure air at this elevation. As the air expands, it cools

adiabatically until condensation. This cooling reduces the amount of water vapor that an air

parcel can hold. If the cooling is strong enough, the parcel can no longer hold all of its water,

the excess condenses as cloud water. This is a simplified view of the process, with what follows

in cloud microphysics to be more complex still. Suffice to say, the lifting of air over mountains

generates precipitation patterns over scale lengths of the obstacle itself (Mott et al., 2018).

Moving down to finer resolutions, interactions between local terrain maxima (ridges, peaks)

and the flow field lead to a similar process of cloud formation. These near-surface clouds

may result in precipitation on their own, leading to elevation-gradients in snowfall, or they

may act as a feeder cloud (Bergeron, 1965). Feeder clouds exist as part of the seeder-feeder

mechanism, where some precipitating cloud aloft "seeds" clouds below with hydrometeors.

As hydrometeors pass through feeder clouds below, the saturated atmosphere leads to riming

or vapor growth of the hydrometeors, increasing the transport of mass to the surface and

improving precipitation efficiency (Houze & Medina, 2005).

Lastly, preferential deposition acts at the scale of individual slopes to alter snowfall patterns

(Lehning et al., 2008). Preferential deposition was originally introduced to describe the alter-

ation of hydrometeor fall speeds by near-surface vertical winds, but has expanded to include

interactions between the mean flow aloft and microphysical processes. In this process, the

peak in precipitation from a seeder-feeder cloud may be shifted downwind by the flow (Mott

et al., 2014; Zängl, 2008). Preferential deposition has been observed both in maps of snow

depth(Lehning et al., 2008), radar observations of precipitation (Mott et al., 2014), and numeri-

cal studies of the process (Comola et al., 2019; Z. Wang & Huang, 2017). A more comprehensive

review of the literature around preferential deposition is provided in section 4.1.

All of the processes described here are germane to the formation of snowfall in winter over

complex terrain, and do not address all of the processes affecting precipitation patterns in

mountains.
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1.1 Background

Redistribution Processes

Redistribution processes act on the pattern of snow set up by snowfall events. They include

wind-driven redistribution and gravitational redistribution. Wind-driven redistribution can

be separated further into three processes: creep, saltation, and suspension. Creep occurs

when individual grains of snow are rolled along the surface by wind. This process contributes

little to the total transport of mass via wind-redistribution. Saltation involves the ejection

of snow particles from the surface by wind (Doorschot & Lehning, 2002). Once ejected, the

particles are blown downwind by the near-surface flow, smashing into the snow surface

typically under a meter away. This impact can eject further snow particles, and the process

repeats itself, resulting in a net transport of snow (Melo et al., 2023). And, lastly, transport

via suspension occurs when snow in the saltation layer is ejected high enough to become

entrained in the turbulent surface layer. Once here, snow particles can travel large distances in

this cloud of suspended snow. The transport of snow depends both on the surface conditions

of the snowpack, and on the wind speeds present (Filhol & Sturm, 2015; Gallée et al., 2001).

Surface crusts caused by rain or sun increase the threshold friction velocity needed to result in

ejection of snow particles from the snowpack. Wind transport itself also results in firmer snow

surfaces, where the fragmentation of wind-transported snow results in finer particles which

pack together more easily (Comola et al., 2017; Sommer et al., 2017). Once wind speeds exceed

this threshold friction velocity, transport initiates, with a non-linear relationship between

wind speeds and transport rates (Melo et al., 2022; Sturm & Stuefer, 2013). While transport

via suspension can have the highest rate of transport, for small-scale terrain features and

obstacles in flat terrain where wind speeds are lower, saltation can comprise most of the

wind-redistribution over a season (Gossart et al., 2017; Wever et al., 2023). During wind-

redistribution, snow may also sublimate in the presence of dry air, which can result in saltation

or suspension becoming a net ablative process (G. Liston & Sturm, 2004).

Gravitational redistribution is perhaps best known as avalanching, where large sections of the

snowpack detach and rumble down slope in a single event (Sovilla et al., 2006). Other forms of

gravitational redistribution include sloughing, where excess snow on steep terrain features

is shed (Bernhardt & Schulz, 2010; Sommer et al., 2015), and cornice fall, where hardened,

wind-transported snow which juts out from ridges breaks off and falls down slope.

1.1.2 Ablation Processes

Ablation processes are those which remove snow from the snowpack. This can occur through

direct removal of mass, either via sublimation, or via wind scour and avalanching. Because

wind scour and avalanching simply move snow elsewhere, we define these as redistribution

processes above. Sublimation, however, removes mass directly from the snowpack. Ablation

can also occur through melt. Thus, most ablation processes are those with add energy to the

snowpack. This means positive alterations to the energy balance equation of the snowpack:
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d H

d t
= SW in(1−α)+LW in +LW out +QSH +QLH +Qp +G (1.1)

Here, d H
d t represents changes to the snowpack enthalpy through time. This is related to various

fluxes, where LW in and LW out represent incoming and outgoing longwave, respectively, QSH

is fluxes from turbulent sensible heat exchange, QLH is fluxes from turbulent latent heat

exchange, Qp is heat advected with precipitation, and G is the ground heat flux. Lastly,

SW in(1−α) is the net shortwave radiation absorbed by the snow. It is expressed more explicitly

here than the other terms to highlight the strong dependency of this term on α, the snow pack

albedo.

1.1.3 Snow Modeling

In the past decade, direct observation of the mountain snowpack has been made possible

through the use of airborne Light Detection And Ranging (LiDAR) technology (Deems et al.,

2013; Painter et al., 2016). Terrestrial LiDAR scanning of the snowpack is also possible, offering

much more temporal flexibility at the cost of reduced spatial extent (Grünewald et al., 2010;

Mott et al., 2010a, 2011; Sommer et al., 2015; Voordendag, Goger, Klug, et al., 2023). This

technology has a high spatial resolution capable of mapping the mountain snowpack at the

basin scale with a horizontal resolution below 10 m. However, the technology is limited in its

temporal resolution, let alone the significant cost of each flight or sensor. For these reasons,

direct observation of mountain snowpack remains impractical for forecasting purposes, and

estimates of the snowpack state are required. Numerical simulations, where the state of the

snowpack is simulated using physical equations and computers, is promising for locations

where comprehensive snowpack mapping is either unfeasible due to cost or extent, or for

periods between comprehensive surveys. Additionally, some numerical models allow for snow-

pack properties such as the internal energy content, density, and structure of the snowpack to

be estimated, whereas LiDAR-based observations only observe snow depth.

The simplest form of snow models are temperature-index models, which estimate snow melt

rates from air temperature. This simplistic formulation finds success despite the greater

physical importance of radiation due to the influence of radiation on ambient air temperature

(Ohmura, 2001). Temperature-index models are often employed in glacier or hydrologic

models where the precise timing of melt and a spatially distributed model structure are of

lesser importance. However, temperature-index models are generally inaccurate over short

time periods, or in resolving complex melt patterns arising from an interaction of topography

and radiation (Hock, 2003). Bulk snowpack models exist one step up the ladder of complexity,

where the energy balance (EB) of the snowpack is solved for. Still, the entirety of the snowpack

and its properties are represented with bulk values (Ek et al., 2003). A further improvement are

multi-layer snowpack models, which consider an arbitrary number of layers in the snowpack,

allowing for a finer representation of heterogeneous snowpack properties (Anderson, 1976;
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Figure 1.1: Comparison of the Upper Dischma Catchment outside of Davos, represented using
either 50 m topography (right side) or 1000 m topography (left side).

Essery, 2015). And, lastly, there are microphysical snowpack models (Lehning et al., 2006a;

Vionnet et al., 2012). Similar to multi-layer EB snow models, these models solve for the total

snowpack energy balance and resolve the stratigraphy of the snowpack. Additionally, these

models consider more physical processes affecting the snowpack than multi-layer EB models,

including heat flow through the snowpack, the evolution of the snowpack microstructure, and

snow settling based on the microstructure.

From a hydrologic perspective, the goal for any one of these snow model varieties is to de-

termine how much snow is melting and when it is melting. Of course, the melt that occurs

in spring is dependent on the amount of and the distribution of snow in a catchment. Luce

et al., 1998 found that representing drifting snow, which contributes to the pattern of snow

at peak SWE, was as important for modeling runoff from a sparsely vegetated, continental

basin as representing spatial variation in radiation input. This finding supports the broader

argument that capturing the distribution of snow around peak accumulation is as important

for modeling snow melt as capturing the spatial variation in melt rates (Egli et al., 2012).

Other studies have identified a scale break in the spatial auto-correlation of snow depth

around 20-40 m, implying that statistically significant heterogeneities in snowpack begin

at these scales Deems et al., 2006; Mott et al., 2011. The authors of these studies note that

this scale break varies according to the dominant processes at a site, and the heterogeneity

of the topography. Figure 1.1 shows what model topography looks like at a 1000 m vs 50 m

resolution. Clearly, the representation of processes such as terrain shading or blowing snow

on such a smoothed grid will be different than what is possible on the higher resolution grid

(Magnusson et al., 2019). All of which is to say that in order to simulate releases of water from

snow dominated catchments, the processes affecting the snowpack at the hectometer scale

(section 1.1.1) must be accounted for.

To quantify many of the processes introduced in section 1.1.1, snow models rely on meteoro-

logical forcing data. This data is provided as input to the models, which they use to update

their internal state through time. Across the range of snow model complexities, uncertainty
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in input data has been identified as a significant source of error in snow models (Magnusson

et al., 2015; Schlögl et al., 2016; Voordendag et al., 2021). An accurate estimation of snow

albedo is rendered inadequate if input shortwave radiation has a significant bias. Precipitation

is singled out in particular, with Raleigh et al., 2015 and Magnusson et al., 2015 showing that

typical biases in precipitation amounts contribute as much to model uncertainty at peak

accumulation as variation in model process representation. Snow models themselves do not

represent the various snowfall processes, and thus require input data to account for these

processes. Unfortunately, observations of precipitation in mountainous terrain at the spatial

scales needed for snow modeling have proved intractable (Germann et al., 2022). A recent anal-

ysis of various precipitation products in complex terrain has also suggested that model output

now rivals observational capabilities in these areas (J. Lundquist et al., 2019). In lieu of accu-

rate, specialized observations of meteorological forcing data, various techniques have been

developed to generate such data. These techniques are collectively termed "downscaling".

Statistical Downscaling

Before downscaling, data used for force distributed snow models often comes in two forms:

gridded data from numerical weather prediction (NWP) models (section 1.1.4) or point data

from observations. Point data exists as observations from sensors deployed in the environment

to measure meteorological variables relevant to snow modeling. These point data must then

be distributed in space, such that each grid point of a distributed snow simulation receives

some value. Statistical downscaling can have the most success for variables which vary broadly

as a function of elevation, such as air temperature, pressure, or precipitation. In these cases,

lapse-rates can be used as a first-order approximation, and are still often employed in snow

hydrological modeling (Mott et al., 2023; Pomeroy et al., 2022). If a sensor network is dense

enough, these forms of point-data interpolation can be successful, but scenarios such as

cold-air-pooling in valleys or preferential deposition at the slope scale pose difficulties for

point-data interpolation. Sensor networks also often have poor coverage of higher elevation

areas of a domain, where terrain is steeper and atmospheric conditions are harsher(Frei,

2014; Matthews et al., 2020). This leads to a lack of information at high-elevation areas, and

extrapolation to these elevations, with corresponding assumptions, is needed (Mott et al.,

2023). The second form of statistical downscaling involves using gridded output from NWP

models. These data are already somewhat distributed, but need to be further refined to the

snow model grid. Gridded NWP output is rarely at the same resolution of distributed snow

models for reasons discussed later in section 1.1.4. Using gridded NWP model output may offer

a denser set of initial data to downscale from, but may include intrinsic errors since it is model

output, and not observations. Some of the most successful statistical downscaling approaches

combine both point observations and distributed output from NWP models (Magnusson et al.,

2014). Some variables such as temperature or humidity are also better suited for statistical

downscaling than others. This is related to the spatial variability and importance of each

variable. For example, air temperature is generally more spatially homogeneous than wind

speed near ridge crests, and a 10% bias in humidity has a more mild impact on spring snow
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melt than a 10% bias in shortwave radiation. In particular for wind speeds, there is a growing

consensus in the literature that statistic downscaling methods are insufficient for modeling

snow-transport via wind (Marsh et al., 2020; Musselman et al., 2015; D. S. Reynolds et al.,

2021). To improve the accuracy of downscaled forcing data, a second downscaling technique,

dynamic downscaling, can be employed.

Dynamic Downscaling

Dynamic downscaling relies on the use of physical models to produce estimates of meteoro-

logical forcing data. This often takes the form of running numerical weather prediction (NWP)

models at the desired resolution of the forcing data. Dynamic downscaling is often used in

the climate modeling community, and in this way refers to the use of regional climate models

(RCMs) to downscale GCMs (Giorgi & Gutowski, 2015). Dynamic downscaling in general refers

to resolving meteorological variables for a target fine-resolution grid in a physically consistent

manner, ensuring that inter-variable dependencies are accounted for (Boé et al., 2007; Kruyt

et al., 2022). Hence, changes to the wind field resulting from higher resolution topography lead

to corresponding changes to the precipitation field. The clouds which produce this precipita-

tion will block incoming shortwave radiation at the surface, changing the surface temperature

field in the process. These complex interactions are difficult to account for with statistical

downscaling alone. One demonstrative example of this is precipitation phase partitioning.

Most snow models partition precipitation into either solid or liquid precipitation based on

surface temperature measurements (Harder & Pomeroy, 2014). During surface inversions, sur-

face temperatures may indicate solid precipitation, while liquid precipitation falling aloft does

not freeze when passing through a shallow surface inversion. Such a situation is avoided with

dynamic downscaling, which should resolve the relevant microphysics that result in liquid

precipitation at the surface. Some phase-partitioning methods have been developed which

mix the statistic and dynamic downscaling, using more information about the 3D atmosphere

to downscaling precipitation than surface temperature alone (Vionnet et al., 2022). While

attractive, dynamic downscaling has remained limited in its application. To better understand

why dynamic downscaling may succeed in supplying more accurate forcing data and why

it has been limited in its use as of yet, we explore high-resolution NWP models in the next

section.

1.1.4 High-resolution NWP Modeling

Dynamic downscaling is just one usage of powerful, modern NWP models. To better under-

stand the potential and limitations of dynamic downscaling for snow models, an overview of

NWP models is warranted. Broadly speaking, NWP models consist of two parts: dynamics and

physics.
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Dynamics

Dynamics are here defined as processes relating to the solution for a 3D pressure field, the

resultant solution of a 3D wind field, and an advection scheme that calculates the transport

of certain quantities. The motions of the atmosphere are considered by invoking Newton’s

second law and considering how a fluid parcel reacts to forces upon it. This treatment leads to

the familiar Navier-Stokes equations, which are solved to calculate the temporal derivative

of each component of the three-dimensional wind vector. The Navier-Stokes equations are

expressed in their incompressible form as:

δu

δt
+ (u•∇)u =− 1

ρ
∇p +ν∇2u+F (1.2)

In this equation, bolded terms represent three-dimensional vectors. u is the wind vector, t

is the model time, ρ is the density of air, p is the pressure field, ν is the kinematic viscosity,

and F are any external forces acting on the fluid, such as gravity or Coriolis forces. The first

term represents the rate of change of each component of the wind vector, the second term

represents the flux through a grid cell, the third term shows forces introduced by pressure

gradients in the fluid, the fourth term represents internal frictional forces in the fluid, and

the fifth term accounts for external forces acting on the fluid. This equation is then solved

by using either a Reynolds Averaged Navier-Stokes (RANS) form of the equation or using a

Large Eddy Simulation (LES). RANS solvers work by taking a time-average of the wind vectors,

decomposing each component into a mean component and a fluctuating component which

averages to 0 over the chosen time interval. This allows for the Navier-Stokes equations to be

solved stably on larger grid resolutions and resolves steady structures in the flow. LES solvers

perform a similar averaging, this time in space, allowing for a consideration of sub-grid scale

turbulence. Both types of solutions to the Navier-Stokes equations are used throughout fields

concerned with environmental flows. The necessary iterative solution to the Navier-Stokes

equations is computationally intensive and contributes a significant portion to the overall run

time of NWP models.

For the sake of this thesis, we will briefly focus on the pressure gradient expressed in this

equation. The Navier-Stokes equation is solved to obtain a temporal derivative, which is used

to update each velocity component. In this way, the Navier-Stokes equations give a numerical

approximation through time for the continuous function of wind velocities. To ensure stability

of this integration through time, the time step is limited to make the change to the velocity

field at each time step small. As the horizontal resolution of a model grid increases, steeper

topographic features may be better represented. This means that, for terrain-following grids,

two lateral faces of a grid cell will occupy different elevations over a relatively short distance.

Assuming that vertical pressure variations are larger than horizontal pressure variations in

the atmosphere, this result implies larger horizontal pressure gradients on the computational

grid when higher horizontal resolutions are used. But, we just noted that the integration
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time step is limited by the magnitude of the pressure gradient. This results in a modeling

choice: does one use the true topography and accept smaller integration time steps to allow

for convergence, or does one smooth the topography to allow for larger integration time steps.

This dependency of the model time step on resolution will be further expanded upon in the

later sub-section "NWP Model Run Times".

Physics Parameterizations

The second main part of NWP models, physics parameterizations, represent processes oc-

curring in the atmosphere, as well as the land surface. These physical parameterizations

are sorted according to which processes they seek to represent, trading variables to facilitate

interactions between, say, radiative energy input and a thermal response from the land surface.

Four parameterizations of relevance to this thesis are the radiation, microphysics, planetary

boundary layer (PBL), and land surface model (LSM) schemes. The prior schemes are listed

in order of average computational demand, with some variation to be expected between

parameterizations of different complexity.

Microphysics Schemes

Microphysics schemes parameterize interactions involving water species in the atmosphere

which lead to precipitation. Simulations examining precipitation patterns in complex terrain

thus depend heavily on the accuracy of the microphysics scheme used. For atmospheric

modeling with the WRF model in the Rocky Mountains and the Alps, Liu et al., 2011 and

Gerber et al., 2018 have noted that the Morrison microphysics scheme (Morrison et al., 2005)

performs better than other popular microphysics schemes when predicting winter snowfall.

The Morrison microphysics scheme belongs to a class of microphysics schemes referred to as

two-moment schemes. This means that for certain types of condensed water, or hydrometeors,

the microphysics scheme tracks two physical properties, or moments. For example, cloud

water is represented by a single value in the Morrison scheme, namely how much mass for

a given model grid volume is comprised of cloud water. For snow particles, however, the

Morrison microphysics scheme tracks the number of particles per grid volume, in addition to

the amount of mass. This two-moment approach allows for hydrometeors and their properties

to be considered in more detail. Is there a large mass of snow distributed among many

particles, or concentrated into relatively fewer particles? One can imagine that snow particles

in the former case should have lower densities, and thus slower fall speeds, than the later case.

Two-moment schemes then use this information to diagnose additional particle properties

given an assumed relationship between number concentration and mass concentration.

Modeling studies using two-moment microphysics schemes at the hectometer resolution or

finer have found that such schemes simulate ridge-scale differences in precipitation patterns.

Vionnet et al., 2017 showed that microphysical processes affect snowfall patterns at a 50 m

resolution, finding that riming of snowflakes caused by updrafts resulted in enhanced down-
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wind precipitation. Gerber et al., 2019 reached similar conclusions, namely that microphysical

processes could contribute up to two-thirds of the larger process of preferential deposition.

The findings of these modeling studies are in agreement with observations of precipitation

patterns in complex terrain (Lehning et al., 2008; Mott et al., 2014).

While an improvement over single-moment schemes, the assumed mass-diameter relation-

ships of two-moment schemes do not fully represent how the properties of frozen hydrometors

change. As an example of this, we can consider the shape of frozen hydrometeors, sometimes

referred to as "habit". As ice particles change their shape habit, important properties such as

riming efficiency or fall speed will also change. Microphysics schemes that do not account for

a spectrum of particle shapes must discretize the distribution into sorted ice particle classes.

These classes then use fixed parameters to determine particle density or fall speed, resulting

in large sensitivity to which parameter values are chosen (McFarquhar et al., 2006). Thus,

adaptive habit (AHAB) microphysics schemes have been introduced, which effectively add

additional moments for frozen hydrometeor types, allowing for changes to particle shape to

be considered. These schemes improve the representation of particle fall speed and mass

evolution relative to two-moment schemes (Jensen et al., 2017; Morrison & Milbrandt, 2015).

Studies of high-resolution precipitation patterns have as of yet not employed AHAB schemes

in their study of solid precipitation, leaving open the question of whether the added process

representation of AHAB schemes warrants their complexity at high resolutions.

Land Surface Models

LSMs compute the state of the land surface and any surface-atmosphere exchanges. This is

where the representation of snow in NWP models is handled. When NWP models are used for

estimating changes to global temperatures under climate change, the representation of snow

plays a crucial role. Incoming shortwave radiation heats the earth’s surface, and this energy

is then remitted in the longwave spectrum. Longwave radiation is what ultimately becomes

"trapped" by greenhouse gases, contributing to a warming trend. Thus, the absorption of

radiative energy by the land surface contributes directly to the signal of rising global tempera-

tures. The land surface albedo determines how much of the incoming shortwave radiation is

absorbed, and how much is reflected back to the atmosphere as shortwave radiation (Eq. 1.1).

Typical natural land surface types have albedos ranging from 0.08 for some coniferous forests,

to 0.4 for sand. Fresh snow, with an albedo around 0.8, has one of the highest albedos for

naturally occurring land covers in the earth system. This means that simulating the presence

and properties of snow is of crucial importance for climate change studies.

A snow model intercomparison project designed to identify shortcomings in snow models

implemented in General Circulation Models (GCMs) was performed by Krinner et al., 2018.

One of the most distinct conclusions from this and prior intercomparison studies was to use

multi-layer EB snow models instead of single-layer bulk models in GCMs. As a result, most

operational weather models and climate models have recently adopted multi-layer EB snow

models (Arduini et al., 2019; Sharma et al., 2023). However, the range of parameterizations
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and parameter values present in these intermediate complexity snow models still leads to

significant scatter between them, particularly in warmer snow climates or during spring

melt (Essery et al., 2009; Nijssen et al., 2003). What’s more, most of these evaluations have

occurred at stations where adequate, high-quality forcing data is present (Ménard et al., 2019).

This is critical for evaluating snow models, but using point-scale simulations means that

re-distribution processes cannot be validated. This point is of lesser interest to GCMs though,

which cannot run at the spatial resolutions where redistribution affects snow distribution.

So, while these developments in coupling intermediate complexity snow models to GCMs

have improved forecasts (Arduini et al., 2019), these models remain incapable of simulating

blowing or drifting snow. For that, more involved coupling strategies are required.

Coupled Snow-Atmosphere Models

In an attempt to represent snow redistribution processes in existing NWP models, snow

models developed for use in the world of snow physics/snow hydrology have been coupled

to atmospheric models. In this way, we define coupled snow-atmosphere models to be the

coupling of an atmospheric model with a snow model of an at least intermediate complexity,

where a multi-layer snowpack and snow redistribution are represented. Such approaches have

coupled NWP models with snow-physics models, the most complex form of snow models

(Sharma et al., 2023; Vionnet et al., 2014). Other approaches have sought to augment existing

snow models in NWPs with better process representations (Saigger et al., 2023; Xie et al., 2019).

Studies using these coupled snow-atmosphere models at horizontal resolutions relevant for

snow hydrology (i.e. <= 100 m) have been conducted, focusing on the ability of such models

to represent wind-blown snow and internal snowpack properties such as temperature and

density (Sharma et al., 2023; Vionnet et al., 2014; Voordendag, Goger, Prinz, et al., 2023). These

studies have demonstrated the potential of coupled snow-atmosphere models to represent

blowing snow processes at the scale of single storms. This process representation, combined

with the ability of NWP models to represent preferential deposition, have shown the ability

of these models to generally simulate accumulation patterns in complex terrain. What lacks

is a quantification of how much these processes contribute to snow depth patterns at the

seasonal scale, and whether such approaches improve the representation of seasonal snow

cover relative to statistical downscaling.

NWP Model Run times

The various studies on high-resolution snow-atmosphere models discussed above have

demonstrated the utility of NWP models in predicting meteorological variables relevant to

snow modeling at these scales. Importantly, no studies employing NWP models in complex

terrain and at the basin scale, run at resolutions below 100 m, have been conducted for longer

than 7 days. This constraint on spatial and temporal extent arises from the computational

demand of such models. This section details some of the factors leading to this computational

demand.
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All NWP models include prognostic and diagnostic variables. Prognostic variables are solved

for by taking an initial state and evolving them through time by calculating rates and integrat-

ing them through time. This integration is performed numerically, requiring some finite time

step between the initial and final times. Diagnostic variables, by contrast, are diagnosed from

information at the current time, and therefore require no numerical integration to solve for.

The size of the time step determines how often a variable’s state must be updated per unit

of model time, and this calculation of the updated variable state is what requires significant

computation. For example, a model time step of 6 seconds may mean calculating rates 600

times per model hour, while a time step of 60 seconds means calculating rates 60 times per

model hour. Thus, the computational cost of a simulation is related to the size of a model time

step.

Unfortunately, time steps cannot be chosen arbitrarily, and instead have an upper limit on

their values. This upper limit is chosen such that the numerical integration technique chosen

converges to a stable solution, and is often influenced by the model grid resolution. For

example, if an explicit time-stepping integration method is chosen, the model time step is

roughly linearly and inversely proportional to the model grid resolution. This means that

increasing the grid resolution one order of magnitude results in an increase in time step of at

least one order of magnitude.

The second consideration behind model run times is the increase in computational elements.

Simulating the same domain at a 100 m horizontal resolution as a 1 km horizontal resolution

involves a 100-fold increase in the number of model elements, since the number of elements

in each of the lateral dimensions increases 10-fold. This ignores additional vertical grid

refinements necessary to avoid large horizontal pressure derivatives along the model grid (K. A.

Lundquist et al., 2012; Schär et al., 2002). So, increasing the horizontal resolution by one order

of magnitude increases the number of computations to be performed by at least two orders

of magnitude. Taken all together, decreases to the model physics time step and the nature of

discretization cause an increase in computational time of at least three orders of magnitude

for each order of magnitude decrease in horizontal resolution. This is one main reason why

kilometer-scale operational weather forecasts are common, but dynamic downscaling at the

hectometer scale is not.

1.1.5 Intermediate-Complexity Atmospheric Models

Atmospheric models also have some continuum of physical rigor and computational intensity,

where certain modeling strategies are chosen based on the questions asked and the resources

available. In some sense, this concept has been around as long as NWP models, with the

first (GCMs) neglecting any topography in order to run on the high-performance computers

(HPCs) of the 1950s (Phillips, 1956). Other approaches to describing the state of the atmo-

sphere without incurring significant computational costs have sought analytic solutions to

atmospheric variables. Instead of solving for atmospheric dynamics numerically, as in section
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1.1.4, analytic solutions may exist for some states which reasonably approximate the true

state of the flow. Linear mountain wave theory, introduced by Smith, 1979, is one of the most

famous example of such analytic approaches. Linear mountain wave theory gives reasonable

estimates of mountain waves forced by topography at the kilometer scale, provided that the

atmosphere is in a steady state and that the Boussinesq approximation is valid. This reflects a

common caveat of intermediate-complexity modeling: some assumptions are made which

allow for processes to be neglected, resulting in idealized models. Traditional NWP models

also make assumptions in their formulations, for example that LES models resolve all of the

turbulence down to their resolutions. Still, the assumption of a state state atmosphere clearly

limits the applications of some intermediate complexity approaches.

Smith and Barstad, 2004 expanded on the theory of Smith, 1979 further, including a simplistic

microphysics scheme and a simple advection scheme to model orographic precipitation as

caused by linear mountain waves. The concept of intermediate complexity atmospheric

models was further expanded upon by E. Gutmann et al., 2016 with the Intermediate Com-

plexity Atmospheric Research (ICAR) model. This model contains many similarities to the

model introduced by Smith and Barstad, 2004. ICAR also uses linear mountain wave theory

to predict perturbations to the horizontal components of velocity, but then combines this

with a kinematic closure of divergence (O’brien, 1970), allowing for a mass-conserving wind

field. A first-order upwind advection scheme was employed for calculating the transport of

prognostic variables. Lastly, in contrast to Smith and Barstad, 2004 who followed a similar

setup, E. Gutmann et al., 2016 added the Thompson microphysics scheme (Thompson et al.,

2016). After all of these considered reductions in model complexity, an atmospheric model

with up to 800x speed up relative to the WRF model was obtained (E. Gutmann et al., 2016).

Horak et al., 2019 compared results from 4 km ICAR simulations over the south island of New

Zealand to station measurements distributed through the mountain range. The authors found

that ICAR improved precipitation estimates at the stations located in the mountain range rela-

tive to reanalysis data used to force the model. ICAR performance declined at coastal stations,

however, reflecting the model’s theoretical foundation in predicting orographic precipitation.

Kruyt et al., 2022 also showed good agreement between ICAR and WRF precipitation fields at a

250 m resolution. However, in this study ICAR was forced with hydrometeors from the driving

model (a non-hydrostatic NWP model) at the high-resolution boundaries. Such a setup makes

it difficult to determine what patterns result from interactions of ICAR’s dynamics and physics,

and what is simply fallout of the forced hydrometeors.

The authors of Horak et al., 2019 returned to the model in a subsequent study, seeking to

validate ICAR’s representation of precipitation processes. Horak et al., 2021 found that esti-

mates of precipitation across a ridge were sensitive to the height of the model’s highest level,

and to the type of boundary condition enforced there. Efforts were made to correct for this

sensitivity to the upper boundary condition of ICAR by Horak et al., 2021, but it likely arose

from large vertical winds at the model top typical of approaches using the kinematic closure

of the continuity equation Goodin et al., 1980. Horak et al., 2021 also found that ICAR had
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difficulties in capturing the trend in precipitation patterns across an isolated ridge at the 4 km

resolution. For their setup, precipitation peaks occurred on either the windward or leeward

side for the ICAR or WRF models respectively. Overall, Horak et al., 2021 predicted that their

model changes in pursuit of improved process representation would likely degrade the results

of Horak et al., 2019. In commenting on the earlier study, Horak et al., 2021 concluded that

"the seemingly correct results were produced for the wrong reasons". Taken together, the ICAR

model proposed an exciting paradigm for atmospheric models, but required more work to be

reliable for precipitation estimates in complex terrain.

The paradigm put forward by E. Gutmann et al., 2016 contains two ideas worth capitalizing

upon. The first is the inclusion of physics parameterizations identical to those used in tradi-

tional NWP models. The second is the reliance on conventional NWP output. If NWP models

resolve dynamics at a particular resolution, then further perturbations to their 3D wind field

at higher resolutions should in the least consider processes emerging in this scale gap. This

perturbation approach may not conserve momentum, but later processing of the perturbed

field can ensure mass consistency. Unfortunately, ICAR only included perturbations to the

3D wind field arising from linear mountain wave theory, which is not the dominant influence

on the wind field at the hectometer scale in the presence of steep terrain. To move ICAR to

hectometer resolutions, a better incorporation of terrain-induced modifications to the wind

field was needed.

Variational Wind Solvers

To solver for wind fields at the hectometer resolution, diagnostic wind solvers may be em-

ployed. The concept of diagnostic, mass-conserving wind solvers has existed for decades

(Sasaki, 1958), and has a colorful history in the literature. These solvers work by taking some

initial 3D wind field and eliminating any divergence present in the wind field. This adjustment

step happens under the constraint that adjustments to the original wind vectors should be

minimized. The full problem results in an optimization problem, which is then solved using

techniques from variational calculus, hence the name. Sherman, 1978 provided one of the first

widely used implementations of this method, developing the MATHEW wind model. MATHEW

obtained its initial wind field by interpolating between sparse measurements of the 3D wind

field. After Sherman, 1978, various other studies sought to adjust the technique, adding

considerations for atmospheric stability and terrain-following coordinates (Moussiopoulos

et al., 1988; Ross et al., 1988). Evaluations of this technique against wind tunnel data and

ridge-top meteorological stations have consistently shown its ability to simulate flow blocking

and speed up over topographic features (Finardi et al., 1993; Forthofer et al., 2014; Ross & Fox,

1991; Wagenbrenner et al., 2016). In addition to being derived from point data, the initial field

can also be obtained by interpolating from coarser resolution, distributed wind fields. In this

way, divergence is introduced into the initial wind field by interpolating the coarse resolution

wind field to the finer grid. Unresolved topographic features at the coarse resolution now

appear at the finer resolution, introducing divergence at the lower boundary. The review of
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Homicz, 2002 provides an excellent overview of the history of this technique.

Most of the implementations of the Sasaki, 1958 approach mentioned above were used in the

field of air quality modeling. Forthofer et al., 2014 first applied the technique to the field of

wildland fire management, developing the model WindNinja. The WindNinja model was then

used in a number of snow modeling studies to generate surface wind fields for forcing blowing

snow models (Marsh et al., 2020; Quéno et al., 2023; D. S. Reynolds et al., 2021; Vionnet et al.,

2021).

These studies, particularly recent applications of the variational technique to snow modeling,

motivate using this variational approach in an intermediate complexity atmospheric model.

Some applications for snow modeling have used an approach of generating libraries of wind

fields for different atmospheric situations, and then selecting fixed wind fields which match

observed atmospheric conditions at a given time (Groot Zwaaftink et al., 2013a; Marsh et al.,

2023; Raderschall et al., 2008; Vionnet et al., 2021). This approach has yielded successes

but is less transferable to 3D dynamic downscaling due to the difficulty in categorizing the

variety of 3D atmospheric states. Other approaches to calculating surface wind fields have

developed parameterizations which approximate reduced wind speeds from flow-separation

or leeside eddies (Winstral & Marks, 2002), or buoyancy driven flows (Oerlemans & Griso-

gono, 2002; Prandtl, 1942). The relationship between static terrain descriptors, which can be

calculated prior to model run time, and surface flow fields has also been shown (Dujardin

& Lehning, 2022). These parameterizations may also be combined with the diagnostic wind

solver discussed above, but the resultant effect on the 3D flow field remains unknown.

1.2 Objectives and Outline

The preceding overview of NWP models and other methods to generate input for snow models

highlights their respective strengths and weaknesses. Long model run times have prohibited

studies using coupled snow-atmosphere models at the hectometer scale from running over

entire seasons. This ability would make dynamic downscaling feasible for forcing operational

snow models, improving one of the largest sources of error in such models: input data. Recent

research into intermediate complexity atmospheric modeling at the kilometer scale shows that

such an approach can significantly reduce model run time without significantly degrading

model performance. This begs the question of if such an approach could be extended to

higher resolutions. Existing studies forcing snow models with diagnostic wind solvers based

on variational calculus have shown promising results, but the ability of these solvers to replace

the dynamic core of an NWP has not yet been demonstrated.

This thesis aims to address this opportunity through the following chapters:

• In Chapter 2, a novel intermediate complexity atmospheric model capable of resolving

flow features at the 50 m scale is presented. This model extends the ICAR model intro-
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duced in the previous chapter, addressing model structural issues that plagued earlier

studies. The development of the model focuses on the implementation of a wind solver

based on the variational calculus technique, as well as direct modifications to introduce

eddy-like features into the flow. Additional changes to the model numerics are detailed,

resulting in precipitation fields in complex terrain that are in agreement with existing

distributed precipitation products.

• Chapter 3 presents an evaluation of the HICAR model presented in Chapter 2. This

evaluation employs observations of temperature, wind, and incoming radiation to

compare the HICAR model against the operational forecast over Switzerland. A Doppler

wind LiDAR is also deployed, allowing us to compare HICAR’s representation of flow

structures in snow-covered, complex terrain to observations. Results from Chapter 3

motivate the improvement of the snow model used by HICAR, particularly to better

simulate surface air temperatures.

• Chapter 4 responds to Chapter 3, coupling HICAR with the FSM2trans snow model.

The resulting coupled model, referred to as HICARsnow, verifies the results of previous

studies where HICAR was used to force FSM2trans. Precipitation patterns in complex

terrain are examined at the slope scale, with a process-level validation of HICAR’s ability

to represent preferential deposition. Output from HICAR suggests that preferential

deposition involves the interplay between near-surface flow features and microphysical

processes. Modeled snow depth distributions are compared to LiDAR snow depth obser-

vations, evaluating how well HICARsnow can capture snow heterogeneity. The chapter

also explores the effects on the atmosphere resulting from the refined representation of

snow processes.
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2 The High-resolution Intermediate
Complexity Atmospheric Research
(HICAR v1.1) Model Enables Fast Dy-
namic Downscaling to the Hectometer
Scale
This chapter corresponds to the postprint version of the article published as:

Reynolds, D., Gutmann, E., Kruyt, B., Haugeneder, M., Jonas, T., Gerber, F., Lehning, M., and

Mott, R.: The High-resolution Intermediate Complexity Atmospheric Research (HICAR v1.1)

model enables fast dynamic downscaling to the hectometer scale, Geosci. Model Dev., 16,

5049–5068, https://doi.org/10.5194/gmd-16-5049-2023, 2023.

Abstract High resolution (< 1km) atmospheric modeling is increasingly used to study pre-

cipitation distributions in complex terrain and cryosphere-atmospheric processes. While

this approach has yielded insightful results, studies over annual time-scales or at the spatial

extents of watersheds remain unrealistic due to the computational costs of running most

atmospheric models. In this paper we introduce a High-resolution variant of the Intermediate

Complexity Atmospheric Research (ICAR) model, HICAR. We detail the model development

that enabled HICAR simulations at the hectometer scale, including changes to the advection

scheme and the wind solver. The latter uses near surface terrain parameters which allow

HICAR to simulate complex topographic flow features. These model improvements clearly

influence precipitation distributions at the ridge scale (50m), suggesting that HICAR can ap-

proximate processes dependent on particle-flow interactions such as preferential deposition.

A 250 m HICAR simulation over most of the Swiss Alps also shows monthly precipitation

patterns similar to two different gridded precipitation products which assimilate available

observations. Benchmarking runs show that HICAR uses 594x fewer computational resources

than the WRF atmospheric model. This gain in efficiency makes dynamic downscaling ac-

cessible to ecohydrological research, where downscaled data is often required at hectometer

resolution for whole basins at seasonal time scales. These results motivate further devel-

opment of HICAR, including refinement of parameterizations used in the wind solver, and

coupling of the model with an intermediate complexity snow model.

17



Chapter 2. The HICAR Model

2.1 Introduction

Atmospheric models have seen remarkable improvements over the past decades, spurred on

by their importance to society. Their usage within science ranges from climate and weather

predictions to downscaling atmospheric variables as input to further geophysical models.

Specific applications have included generating forcing data over sparsely instrumented do-

mains (Khadka et al., 2022), downscaling global climate model output to study regional

impacts (Spinoni et al., 2018), and coupling with land surface models to better simulate land-

atmosphere feedbacks (Sharma et al., 2023). The concept intrinsic to all of these applications

is one of scale. As model resolution increases, processes which were previously parameterized

can be explicitly resolved, and the representation of the underlying terrain improves, allowing

for more accurate dynamics (Chow et al., 2019; Prein et al., 2013; Wyngaard, 2004).

High-resolution (< 1km) simulations of winter storms in complex terrain have been used to

augment our process-level understanding of particle-flow interactions such as preferential

deposition (Gerber et al., 2018; Lehning et al., 2008; Mott et al., 2010b; Vionnet et al., 2017).

Some of these simulations aimed at very high resolutions of 25 m and below and thus used

stationary wind fields (Raderschall et al., 2008) or a decomposition of wind field into a limited

number of dominating (stationary) patterns to enable simulations for the length of a storm

(Mott et al., 2010b) to a full season (Groot Zwaaftink et al., 2013b). Coupled glacier-atmosphere

models have been developed and run at a range of spatial scales, demonstrating an ability

to better simulate surface-atmosphere energy exchanges over glaciers (Collier et al., 2013;

Goger et al., 2022). And, coupled snow-atmosphere models have been developed which

explicitly resolve snow-atmosphere interactions (Sharma et al., 2023; Vionnet et al., 2014).

These studies have all demonstrated the ability of high-resolution atmospheric modeling

to improve estimates of precipitation, wind speeds, and surface-atmosphere interactions.

However, all of them have focused on limited spatial and temporal extents due to the huge

computational demand required of running modern atmospheric models at the hectometer

resolution. In one study performing 50m simulations of winter precipitation using the WRF

model, nearly 34,000 core hours were required to perform 1 day of simulation over a <100km2

domain (Kruyt et al., 2022). Any practical application of high-resolution atmospheric modeling

to questions concerning future climate scenarios or downscaling for land surface models is

currently limited by the computational demand of atmospheric models.

This issue is no news to the community, and idealized atmospheric models of orographic pre-

cipitation and mountain waves have been developed and employed in the past (Smith, 1979;

Smith & Barstad, 2004). Recently, the Intermediate Complexity Atmospheric Research (ICAR)

model was introduced in E. Gutmann et al., 2016 (hereafter G16) to provide an alternative

to highly idealized models and modern non-hydrostatic, compressible atmospheric models.

In their 2016 paper, Gutmann et al., demonstrated excellent agreement between ICAR and

WRF when simulating mountain waves and orographic precipitation over idealized terrain.

Further demonstration over real, complex terrain at a 4km resolution gave good agreement on

precipitation between the two models during the winter months. Most importantly, the ICAR
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simulations used 143x fewer computational resources than the WRF model. The ability of ICAR

to simulate orographic precipitation at the kilometer-scale has been replicated in other studies

(Horak et al., 2019). ICAR has since occupied a niche in modeling studies where downscaling

of long time series would otherwise be limited by computational resources. These results

motivate the design philosophy behind ICAR that dramatic reductions in computational time

may justify modest reductions in model accuracy for certain applications.

Such an approach is perfectly suited for high-resolution atmospheric modeling, where com-

putational demands severely limit the experimental design of studies. However, the dynamics

and physics of the base ICAR model, namely linear mountain wave theory and first-order

upwind advection, are not suitable when modeling at the hectometer scale. Here we introduce

a High-resolution variant of the ICAR model, HICAR, which adapts the ICAR model to be

suitable at resolutions below the kilometer scale. In section 2.2 of the paper, key parts of

HICAR’s model development are detailed, with a focus on the model’s wind solver, advection

scheme, and input/output (I/O) operations. In the third section, information is given about

other atmospheric models and gridded datasets used in this study, as well as details about

model simulation setups. These models and datasets are then compared in section 2.4, where

various demonstrations of the HICAR model provide a limited validation and are used to

discuss the model performance. Lastly, a synthesis of the paper and a concluding discussion

about the utility of the HICAR model is presented in section 2.5.

2.2 Model Development

In the original ICAR model, the 3-D wind field can either be generated through 3-D interpo-

lation between the coarse resolution forcing data and the high-resolution grid, or it can be

further modified using linear mountain wave theory (Smith, 1979). This modification alone

simulates the disturbance of the meso-scale flow field caused by mountain ranges, namely

the generation of mountain waves depending on the atmospheric stability. These effects are

the dominant influence of the terrain on the meso-scale flow from scales of 10s of kilometers

down to the kilometer scale, which is the scale range which ICAR was originally developed for.

Increasingly, output from kilometer-scale compressible, non-hydrostatic atmospheric models

run by regional weather forecasting offices are available (Benjamin et al., 2016; Seifert et al.,

2008; Seity et al., 2011). These models are expected to capture the dynamics approximated by

linear mountain wave theory. When using these models as forcing data for high-resolution

simulations with ICAR, it would thus be redundant to run with the linear theory solution. Left

with only an interpolated kilometer-scale wind field for a 3-D wind field, we found it necessary

to implement a new wind solver capable of capturing dynamics induced by the underlying

high-resolution terrain. These flow features should be necessary to simulate particle-flow

interactions which lead to heterogeneous snowfall patterns. In addition to changes to the wind

field, it was also necessary to modify the advection scheme of ICAR and the input/output (I/O)

routines. ICAR only offers the first order upwind advection scheme, which has been shown

to be highly diffusive, especially in complex terrain (Schär et al., 2002). When simulating
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Chapter 2. The HICAR Model

Figure 2.1: Schematic of major changes to HICAR’s runtime loop compared to figure 2.1 of
G16. The left side of the figure features the I/O loop handeled by I/O processes, while the right
side features the runtime loop of HICAR, with a focus on the steps discussed in sections 2.2.2
and 2.2.3. Blue colors correspond to I/O processes, green to steps of the wind solver, purple to
steps of the physics integration loop, and red to communication between I/O and compute
processes. Within the wind solver and physics loop, downward arrows are implied between
the steps where not indicated.

precipitation events, it is important that heterogeneities in moisture and temperature are

maintained and do not become too smooth. Finally, as model resolution and speed increased,

it became paramount to be able to efficiently read and write large volumes of data without

significantly affecting run time. The following two subsections focus on new options for the

wind solver in HICAR, while the last two focus on changes affecting the advection scheme and

model input/output (I/O)(Figure 2.1).

2.2.1 Direct Adjustment of Wind Field

Taking a cue from existing statistical models of surface winds in complex terrain (Dujardin

& Lehning, 2022; G. E. Liston & Elder, 2006b; Winstral & Marks, 2002; Winstral et al., 2017),

we first develop corrections to the interpolated wind field near the surface based on the

underlying terrain. This is done through terrain descriptors calculated at model initialization

and then applied to the wind field at runtime. Terrain descriptors represent some qualitative

information about the terrain quantitatively, such as if a particular location is sheltered from
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a particular wind direction. Parameterizations can then be developed using these values,

enabling non-local interactions between the topography and winds to be accounted for in a

computationally efficient manner.

Terrain Descriptors

Topographic Position Index (TPI)

When downscaling winds from coarse to high resolutions, the representation of the model

terrain can vary drastically. What appears as a small depression in the terrain at a 1km

resolution may actually be a steep valley when viewed at a 100m resolution. To find areas in

the high-resolution domain where large differences with the coarse Digital Elevation Model

(DEM) may affect wind fields, we use the Topographic Position Index (TPI, Jenness 2006, Weiss

2001). TPI is calculated as the difference in elevation between a given terrain element, and the

average terrain height within a given radius around that terrain element:

T PI = zhi − z̄radius (2.1)

Where zhi is the high-resolution elevation and z̄radius is the mean elevation of the high-

resolution grid within a given radius around zhi. We set the search radius to be 4 km. The

chosen search radius will depend upon the resolutions of the model and the forcing data

being used. In general, larger search radii lead to wider bands of positive and negative TPI,

while smaller radii select just the valley bottoms and tops of peaks, resulting in a more het-

erogeneous distribution of TPI (Weiss 2001). TPI has previously been used as a variable in

other wind downscaling schemes (Winstral et al., 2017), serving to highlight areas where winds

are expected to be higher, such as an exposed ridge. TPI was chosen as a terrain descriptor

instead of locally differencing the model and forcing DEMs because it gives a description of

exposure, which is a non-local concept. For example, a hill in a valley may have the same

elevation on the high-resolution grid as on the smoother, coarse-resolution forcing grid, and

the terrain difference would be 0. However, if this hill is in a valley, it is still relatively lower

than the surrounding terrain, and this would result in a negative TPI.

3D Sx

The Sx parameter was first introduced by Marks et al., 2002, quantifying the maximum slope

from a surface grid cell to a terrain element in the upwind direction. The Sx parameter

was thus interpreted as a proxy for how sheltered a surface grid cell was from incoming

winds, as the upwind terrain element was expected to disrupt the flow. Sx has since been

used in many parameterizations of surface wind (Grünewald et al., 2013; Marks et al., 2002;
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Winstral et al., 2013). Importantly, the Sx parameter gives directional information about

terrain-wind interactions, which supplements the omni-directional TPI. Here we extend the

original concept of Marks et al., 2002 into three dimensions, calculating Sx not just for the

surface grid cells, but for all model grid cells in the vertical dimension. The motivation behind

this is that the sheltering effects provided by an upwind terrain element will be felt above the

surface as well as on the ground. The procedure for calculating 3D Sx is similar to that for

2D Sx: it is the maximum upwind slope between a grid cell (this time allowed to be above

the surface) and the largest upwind terrain element. We add an important caveat that the

largest upwind terrain element must also have a positive TPI value. This is done under the

assumption that flow separation is more likely to occur for exposed terrain elements (positive

TPI). The following equation:

SxA,dmax (x, y, z) = max

(
t an−1

(
DE M(xv, yv)−Z (x, y, z)√

(xv −x)2 + (yv − y)2

))
(2.2)

gives the Sx value for a given azimuth angle A, calculated at a specific point (x,y ,z), using a

search radius of d max. DE M is the high-resolution DEM (2D) and Z is the grid cell height on the

mass grid (3D). (xv,yv) give the location of the terrain element for which Sx is being calculated

against. d max is a namelist variable which the user can define. A qualitative illustration of the

3D Sx parameter is given in Figure 2.2.

Application of Terrain Descriptors

The two terrain descriptors, TPI and Sx, seek to highlight areas of the domain where direct

adjustment to the interpolated wind field are necessary. TPI indicates relative differences

between the high-resolution terrain and a low-resolution representation, which is to say areas

where the interpolated, high-resolution wind field are experiencing terrain features which

the forcing terrain’s lower resolution DEM may not resolve. Because TPI is non-directional,

we only consider adjustments to the wind speed, and consider to increase wind speeds at

areas of positive TPI (HICAR terrain higher than forcing terrain) and decrease them at areas

of negative TPI. Testing showed that the wind solver discussed in section 2.2.2 adequately

increases wind speeds over areas of positive TPI without a direct TPI-based adjustment, so

only adjustments in areas of negative TPI are performed. This can be explained conceptually

as reducing wind speeds in valleys deeper, and thus more removed from mesoscale wind

speeds, than the forcing terrain suggests. This correction is only considered within the first

200m above the surface and is gradually decreased up to this height. This height limit was

chosen empirically after testing multiple decay heights. Corrections based on TPI can thus be

formulated as:
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T PIcor = T PI

T PImax

ztop − z

ztop
, T PI < 0 (2.3)

where T PI is the surface TPI computed at each grid cell and z is the height of the grid cell

in question. T PImax is a scaling factor controlling the correction, and was set to 200 in our

simulations. ztop controls the height at which the correction goes to 0, in this case 200m.

Corrections based on the Sx parameter are considered for all grid cells with a negative Sx value.

For these cells, a threshold Sx angle, Sxthr esh , is calculated at the surface:

N =
√

g

θ

dθ

d z
(2.4)

Ri = N 2(
du
d z

)2 +
(

d v
d z

)2 (2.5)

Sxthr esh = 180◦mi n (max (0,Ri ) ,0.25) (2.6)

where N is the Brunt-Väisälä frequency, θ is potential temperature, and Ri is the Richardson

Number. All vertical gradients are calculated over the first 100m above the surface. This is

following the methodology of Menke et al., 2019 where the Richardson number used to classify

stable and unstable conditions for leeside re-circulation was calculated over the first 100m

above the surface. EQ #2.6 says that for Ri values greater than 0.25 [Stable], no sheltering

effects occur, and for negative Ri values [Unstable], the threshold Sx angle is 0°. Although

Sxthr esh is only calculated at the surface, it is used throughout the column to apply the

following corrections in 3D. This threshold angle is then used to calculate an Sx correction

factor

Sxcor r = Sx −Sxthr esh

φdef
(2.7)

Where Sx is the Sx angle for the given grid cell, Sxthr esh is the threshold angle calculated for

that column, and φdef, a scaling factor, is set to 30°. Sxcorr is then applied to the U and V wind

vectors by divvying up the correction according to the slope of the underlying topography.

This is shown conceptually in Figure 2.2, and follows the equation:
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SLOPE =
√(

d z

d x

)2

+
(

d z

d y

)2

(2.8)

Sxu,cor =−d z

d x

Sxcor

SLOPE 2

(
d z

d x
Um + d z

d y
Vm

)
(2.9)

Sxv,cor =−d z

d y

Sxcor

SLOPE 2

(
d z

d x
Um + d z

d y
Vm

)
(2.10)

Where U m and V m are the U and V velocities staggered to the mass-grid, and SLOPE is the

terrain slope. Vertical gradients shown here are calculated over the grid cell. The net effect

is to apply both a correction to the wind speed, and to rotate the wind vector about the

slope-tangent. Finally, the two correction factors for TPI and Sx are applied as such:

U =U −Sxu,cor r (2.11)

V =V −Sxv,cor r (2.12)

U =U (1+T PIcor ) (2.13)

V =V (1+T PIcor ) (2.14)

We note that parameter values and correction formulations used in this section are somewhat

arbitrary. The logic behind the corrections is explained above, and the exact values were

reached through a sparse sampling of the parameter space. The goal of the current study is

to demonstrate the potential of combining a pre-conditioning step, described in the current

section, with the diagnostic wind solver described in the following section. The effects of this

currently under-constrained approach to correcting the wind field is discussed further in Sec-

tion 2.4.1, and these corrections will be further refined in a future study by using observations

of the 3D wind field in complex terrain.

2.2.2 Mass-Conserving Wind Solver

After adjusting the wind field according to terrain descriptors, or after ingesting any arbitrary

wind field from forcing data, the resultant wind field is not guaranteed to be divergence-free.

Because ICAR is an incompressible atmospheric model, this would mean a violation of mass-

conservation. Thus, some further correction to the 3D wind field must be applied to ensure

mass-conservation. In the original ICAR model, this is ensured by calculating the divergence

for each model layer and prescribing the grid-relative vertical velocity at the top of each layer

such that divergence is eliminated. This is sometimes referred to as the "kinematic method"

of balancing the winds (Homicz, 2002; O’brien, 1970). Unfortunately, this method is known to

produce excessive vertical motion even for modest amounts of residual divergence (Goodin
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Figure 2.2: A conceptual outline of the Sx sheltering process. Areas where a correction should
be applied are first selected, as indicated in the upper row. Only terrain elements with a
positive TPI value are considered to be potential sheltering terrain elements. The smaller hill
on the left has no positive TPI values along its slopes, so it does not produce an area of reduced
wind speeds in the lee. The hill on the right does have a positive TPI value at its peak, so it is
considered for sheltering. The Sx values in the leeside of the peak are examined and compared
to the threshold Sx value, Sxthr esh , calculated in Eq. #2.6. Grid cells with Sx angles larger
than this threshold angle experience a correction to their U and V wind speeds, as detailed in
the second row of the figure. We consider that the maximum deflection of the leeside vector
would be a rotation about the elevation gradient of the grid cell. This maximum correction
is then applied to the initial vector with a correction factor, Sxcor r , as calculated in Eq. #2.7.
The resultant vector is thus a mixture between the initial vector and the maximum possible
correction.

et al., 1980). Figure 2.3 shows the strong vertical winds which are often observed in high-

resolution simulations using the ICAR model with the kinematic method for balancing the

3D wind field. The strong vertical winds observed in the ICAR simulations are due to a) large

grid distortions in complex terrain at high resolutions, b) the use of high-resolution forcing

data from a compressible atmospheric model, and c) the kinematic solution for vertical wind

itself (EQ #9 in G16). As the horizontal resolution is reduced, the magnitude and variations

of the vertical motions are reduced. As a result, simulations with the ICAR model at coarser

resolutions exhibit less strong vertical motion than shown here. However, such simulations

still exhibit increasing vertical motion as a function of height due to the use of the kinematic

solution for vertical velocity (O’brien, 1970). This results in excessively strong vertical motion

at the model top, and explains the sensitivity of ICAR to the height of the model top and choice

of upper boundary condition reported in Horak et al., 2019 and Horak et al., 2021.
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Figure 2.3: Comparison of vertical motion between ICAR and HICAR at 50m and 450m res-
olutions for an arbitrary simulation time step. ICAR is shown in the first row, HICAR in the
second.

This issue alone motivates the implementation of a new approach to balancing the 3D wind

field. When using the empirical adjustment of the 3D wind field described above, even more

divergence is introduced to the wind field, resulting in entirely nonphysical vertical velocities.

Clearly another technique for calculating vertical velocity is required for high-resolution

applications.

HICAR employs a method for calculating a mass-conserving wind field which is based on

a variational calculus technique. This technique has been developed over prior decades of

wind modeling and pollutant transport (Ross & Fox, 1991; Sasaki, 1958; Sherman, 1978), and

has been adapted into a variety of wind models (Forthofer et al., 2014; Moussiopoulos et al.,

1988). Wind Tunnel experiments and field observations have routinely demonstrated this

techniques ability to simulate speed up and deflection of flow around obstacles (Forthofer

et al., 2014; Ross & Fox, 1991; Wagenbrenner et al., 2016). The method works by solving an

optimization problem where two functions are reduced: the divergence of the wind field and

the total deviations of the solution wind field from the initial wind field.

Di v = dρu

d x
+ dρv

d y
+ dρẇ

d ż
(2.15)

Di f f = (ui −u)2 + (v i − v)2 +α(w i −w)2 (2.16)

Where u and v refer to the east- and north-ward wind speeds, w refers to the vertical wind
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speed, and ẇ refers to the contravariant, grid-relative wind speed. All of the x i variables

indicate initial values. The distinction between w and ẇ is necessary when the optimization

is performed on a grid with a vertical coordinate transformation such as sigma or SLEVE

coordinates (Gal-Chen & Somerville, 1975; Schär et al., 2002) and is further detailed in Ross

et al., 1988. An excellent overview of the maths used to solve this optimization problem

and a discussion of various considerations is given in Homicz, 2002 and a general review is

provided by Ratto et al., 1994. Because an initial guess is required for w i, HICAR allows the

user to specify vertical motion as an input variable. Otherwise, w i is taken to be 0, such that

vertical motion is minimized. In the above equations, the variable α is used to control the

relative weighting of changes to horizontal or vertical motion. This allows the solution to

account for effects of atmospheric stability if one makes α a function of atmospheric stability.

For example, larger values of α increase the weighting of changes to w from its initial value

relative to changes of u and v from their initial values. This means that a better solution to

the minimization would be found by preferring changes to u and v over w when eliminating

divergence. The result of this is more deflection around terrain and less vertical motion, which

one would expect during stable atmospheric conditions. A demonstration of the effects of

different values of α is given in Figure 2.4, showing the wind field generated by the maximum

(1.0) and minimum (0.1) values that α is allowed to take. For the stable condition (α= 1.0)

we see surface wind speeds approaching 10 m s-1 over the ridge crest and blocking of flow

upwind of the ridge. Correspondingly, vertical motion is around +/- 2 m s-1 over the ridge. For

the unstable case (α= 0.1), there is comparatively little deflection of the flow field upwind of

the ridge, and little speed up over the ridge crest. Vertical motion is significantly enhanced in

the unstable case versus the stable case. As such, α can be used to select different solutions to

the optimization problem depending on atmospheric stability.

In our implementation, the α variable is calculated at each input time step and for each grid

cell according to the atmospheric stability at that location according to:

α=
√

1−0.5

p
1+4F r 4 −1

F r 4 (2.17)

F r = W S

L∗N
(2.18)

Where Fr is the Froude number, WS is the wind speed, L is the scale length, and N is the

Brunt-Väisälä frequency (BVF). Equation #2.17 comes from Moussiopoulos et al., 1988 and is

straight forward, but the calculation of the Froude number deserves further discussion. In

order to calculate α in 3D, the Froude number must also be calculated in 3D. To do this, WS, L,

and N are calculated for each grid cell. The scale length, L, is the height difference between

the grid cell height and the largest downwind terrain element, plus some constant to ensure a

minimum value for L. L is calculated for each grid cell and each wind direction at initialization

so that it can be easily looked up at run time. Some search radius must be imposed when
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Chapter 2. The HICAR Model

Figure 2.4: Demonstration of the two end-member solutions for HICAR’s wind solver under the
two extreme stability conditions. The plan view panels in the top row are centered on a ridge
cutting horizontally across the figure. A vertical transect across this ridge is shown in the lower
panels, with the location of the transect indicated in the upper panels by the white dotted line.
Surface wind flow lines are overlaid on a topographic base map in the upper panels, with flow
line color corresponding to wind speed. The left column of the figure displays the maximum
stable condition, while the right column shows the maximum unstable condition.

calculating L, which we set to 4km. Brunt-Väisälä frequency is then calculated by considering

the column of air above the grid cell for which it is calculated. If there is a downwind obstacle,

the column of air extends from the current grid cell height up to the altitude of the downwind

obstacle. If there is no obstacle, BVF is calculated using a difference over the current grid cell.

The effect of these considerations is a Froude number which describes the ease of lifting a

parcel of air over a given downwind obstacle. This approach of using a spatial-temporally

varying α differs from prior implementations of Sherman 1978’s technique, where either α was

set to be 1.0 (Forthofer et al., 2014) or where α varied in time but not in space (Moussiopoulos

et al., 1988). Thus our approach can handle complex situations where flow blocking varies as

a function of height, such that flow may be blocked at the foot of a mountain but rise over the

obstacle at higher altitudes. The computational demands of this technique are relatively small

in comparison to other components of HICAR (advection, microphysics), since most of its

calculations are performed once at initialization, and the solution of equations # 2.15 and 2.16

are only performed when ingesting new input data instead of at every physics time step.

28



2.2 Model Development

2.2.3 Advection and Physics Parameterizations

The original ICAR model offers a first-order upwind advection scheme. Although this scheme

is highly diffusive (Schär et al., 2002), it has the advantage of low computational demand,

making it suitable for ICAR’s original development purposes and target resolutions. For our

application at higher resolutions, and particularly with an interest for strongly heterogeneous

precipitation patterns at the ridge-scale, a less-diffusive advection scheme was required. The

issue of numerical diffusivity in complex terrain has been well documented (K. A. Lundquist

et al., 2012; Westerhuis et al., 2021). Higher order advection stencils (odd-ordered up to 5th

order) have thus been implemented in the HICAR model. These schemes, in combination with

the SLEVE coordinate system (Kruyt et al., 2022; Schär et al., 2002), reduce numerical diffusion

in HICAR simulations. To achieve larger physics time steps, a pseudo-Runge-Kutta-3 (RK3)

advection integration is added to HICAR (Wicker & Skamarock, 2002). Lastly, the use of RK3

time stepping required the addition of a monotonic flux-limiter for the standard advection

scheme (H. Wang et al., 2009).

Since the original publication of G16, numerous physics parameterizations have been added

to the model, and will be detailed in Kruyt et al., 2023, in prep.. Of importance to this paper,

the Noah land surface model (LSM) (Ek et al., 2003), Morrison microphysics scheme (Morrison

et al., 2005), RRTMG radiation scheme (Thompson et al., 2016), and the YSU PBL scheme

(Hong et al., 2006) have all been added to the model and will be used for the simulations which

follow in later sections.

2.2.4 Asynchronous I/O

As model efficiency increases, it is natural to push the model to run for larger domains and

larger time periods. Additionally, as the simulation resolution increases, forcing data of a

higher resolution is needed. The cumulative effect of these two points is that efficient, high-

resolution models must output and input large amounts of data (Prein et al., 2015). For

example, for the setup used in section 2.4.2, one day of simulation requires reading 11GB

of forcing data and outputting 14.5GB of data, depending on output variables selected. To

avoid blocking I/O operations on the runtime loop and to facilitate a many-programs one-file

access pattern, an asynchronous I/O strategy was adopted. This is shown in Figure 2.1 via

the blue elements on the left. Input and output is handled by a few processes which are

split from the simulation processes at initialization. These I/O processes then coordinate

their file access through parallel netCDF I/O, resulting in less demand on the file system and

eliminating the need for stitching together output files in post-processing. These changes

make the model faster by overlapping I/O with physics processes, and make it possible to

directly use simulation output to force one-way nested runs, as done in section 2.4.2.
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2.3 Model Setup and Datasets

2.3.1 COSMO Model

The Consortium for Small-scale Modeling (COSMO) model is run operationally by the Swiss

weather service, MeteoSwiss, over a domain encompassing Switzerland (www.cosmo-model.org).

COSMO is a non-hydrostatic, compressible atmospheric model capable of simulating the

state of the atmosphere over complex terrain such as the Swiss Alps. Predicted variables from

COSMO such as temperature, humidity, and wind speeds are made available by MeteoSwiss.

Output from the 1.1km and 2km resolution COSMO simulations, COSMO1 and COSMO2,

respectively, are used in this study. COSMO2 output is used to force the 1350m WRF, ICAR, and

HICAR simulations discussed in section 2.4.1 and 2.4.2, while COSMO1 output is used to force

the 250m HICAR simulation in 2.4.2 and 2.4.3, and the 450m HICAR simulation in section 2.4.4.

The HICAR simulations are forced with specific humidity, temperature, pressure, and the 3-D

wind field (U/V/W) from the COSMO model. All COSMO variables are bi-linearly interpolated

in 3D to the HICAR grid using latitude, longitude, and vertical height. Then, specific humidity

and temperature are forced at the boundaries, while pressure and winds are input for the full

3-D grid, with the winds being further modified using the downscaling scheme described in

section 2.2.

2.3.2 WRF Model

The Weather Research and Forecasting (WRF) model (Skamarock et al., 2008) is a non-

hydrostatic and compressible atmospheric model used widely in research and operational

forecasting (Benjamin et al., 2016). WRF has also been successfully run at very high resolutions

(50m) over the complex terrain of the alps (Gerber et al., 2018; Gerber et al., 2019; Goger

et al., 2022; Kruyt et al., 2022). For these reasons, we use WRF in this study to demonstrate

a "gold-standard" for atmospheric modeling in comparison to HICAR runs. All output from

the WRF model comes from prior simulations first presented in Gerber et al., 2018, and thus

guided the choice of spatio-temporal domain for some of the simulations presented in section

2.4. All WRF data presented is at a 50m horizontal resolution.

2.3.3 ICAR/HICAR Setup

Simulations using the ICAR and HICAR models, introduced in section 2.2, are presented

in section 2.4. The HICAR simulations utilize the YSU PBL scheme, the Noah land surface

model, RRTMG radiation scheme, and the Morrison two-moment microphysics scheme.

The surface scheme implemented follows that detailed in (F. Chen & Dudhia, 2001). The

Morrison microphysics scheme was chosen due to its demonstrated efficacy in forecasting

precipitation in complex terrain (Liu et al., 2011), and use in the WRF simulations of Gerber

et al., 2018. Only the wind fields from the ICAR simulations are analyzed, and because there is

no physics-dynamics coupling in either ICAR or HICAR, ICAR was not run with these physics
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parameterizations enabled.

HICAR has been developed as a variant of the ICAR model, as these models share a core

code base. The HICAR variant of ICAR can be turned on by passing "HICAR" to the variant

option of the namelist file. This switches on a number of namelist options, ensuring that

the configuration is optimized for high-resolution runs in complex terrains. Specifically, the

namelist options which designate a run with the HICAR model include: terrain-following

SLEVE coordinates, variational-calculus-based wind solver, and wind modifications based on

terrain-descriptors.

2.3.4 Spatio-temporal Domains

Sections 2.4.1 and 2.4.2, as well as the figures presented in section 2.2, use the same 50m

domain introduced in Gerber et al., 2018. It is roughly 10km x 10km square, with the 50m

horizontal resolution simulations covering a 24 hour period over the day of March 5th, 2016.

This domain covers the Upper Dischma valley outside of Davos, Switzerland. We adopt the

terminology "xx m simulation" to refer to the horizontal resolution of a simulation. The

50m HICAR and ICAR simulations for this run are nested within 150m, 450m, and 1350m

simulations of the same respective model, following the methodology of Gerber et al., 2018 for

their WRF runs. Importantly, ICAR/HICAR allows the use of a coarser vertical grid than WRF

(Horak et al., 2021). As a result, the WRF simulations use 40, 40, 60, and 90 vertical levels for

the 1350m, 450m, 150m, and 50m simulations, while ICAR/HICAR used only 20, 20, 60, and

60.

Sections 2.4.2 and 2.4.3 discuss results from a 250m simulation of HICAR covering most of the

Swiss Alps from Lausanne in the west to Val Müstair in the east, for a roughly 280km X 170km

domain. The simulation was run for the month of January 2017.

Section 2.4.4 repeats a benchmarking setup from Kruyt et al., 2022, running the HICAR model

at a 50m resolution for five days in March 2019 over a roughly 7.5km x 7.5km domain. This

50m domain is nested within a 450m domain, following the methodology of Kruyt et al., 2022.

High-resolution domain data for all simulations comes from Gerber and Lehning, 2021, which

provides ASTER Global Digital Elevation Model V002 and Corine land use data at a resolution

of 1 arcsec (Agency, 2006; Spacesystems & Team, 2019). For the HICAR simulations, this

terrain data was then upscaled to the desired target resolution with no smoothing applied. In

order to run the WRF model at resolutions approaching 50m, certain considerations must

be applied to the model topography. For the WRF simulations, to ensure model stability at

reasonably long time steps, the terrain for all high-resolution simulations is smoothed using a

1-2-1 smoothing filter with 14 passes, and the terrain near the boundaries of the outer-most

domain is smoothed to match the COSMO topography. Although this smoothing procedure is

not required to run ICAR/HICAR, the same smoothed terrain data as the WRF simulation is

used for one HICAR simulation presented in section 2.4.2. This is done in order to enable a
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direct comparison between WRF and HICAR for the same topography. In a future publication,

potential improvements of using unsmoothed topography on wind speeds in HICAR will be

examined.

2.3.5 Gridded Datasets

In section 2.4.2, two gridded datasets for precipitation are used, MeteoSwiss’s RhiresD product

(MeteoCH, 2013), and the precipitation product produced by the SLF Operational Snow

Hydrology Service (OSHD) using an Optimal Interpolation (OI) technique (Magnusson et al.,

2014; Mott et al., submitted). RhiresD is constructed by taking precipitation data from a

dense network of precipitation gauges distributed throughout the Alps, and then applying a

climatological precipitation-elevation gradient to extrapolate observations beyond gauges,

using a version of the PRISM algorithm (Daly et al., 1994). The OSHD precipitation product is

obtained by first partitioning RhiresD into solid and liquid precipitation and then updating

the snowfall fraction by assimilating snow station data from 350 locations using optimal

interpolation (Magnusson et al., 2014). This allows for a higher station density at higher

elevations relative to RhiresD, and minimizes underestimates of precipitation during snowfall

events due to gauge undercatch. Of course, selecting for snow station sites introduces other

spatial biases in station representativeness (Grünewald & Lehning, 2015). A full description of

the OI procedure used in the OSHD product can be found in Mott et al., submitted.
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2.4 Model Demonstrations

2.4.1 Wind Fields

In section 2.2.2, the effects of the changes to the wind solver were shown for comparison with

ICAR (Figure 2.3) and for a demonstration of their ability to simulate atmospheric stability

(Figure 2.4). To discuss the wind solver of HICAR in the context of existing atmospheric models,

we present here results comparing HICAR to the WRF model. Figure 2.5 shows a plan view

of multiple model simulations at 50m over complex terrain in the Upper Dischma valley of

Davos, Switzerland. As discussed in section 2.2, the COSMO forcing data provided is expected

to capture the effects of mountain waves which the linear wind solver of ICAR is designed

to capture, so this module of ICAR was turned off. As a result, the ICAR simulation shown is

bilinearly interpolated COSMO2 data. The surface flow field from ICAR is quite homogenous

as a result, with uniform south-westerly flow over the domain and a narrow range of wind

speeds over the domain. This is in contrast to the WRF simulation, which reports various

modifications to the flow pattern (blocking, cross-slope flow, terrain-induced speed-up), as

well as a larger range of wind speeds. This result is instructive that ICAR alone is not suitable

for high-resolution simulations. WRF also reports higher wind speeds at ridge crests than any

of the HICAR simulations, but WRF has been found to overestimate speed up of winds over

topography (Gerber et al., 2018; Goger et al., 2022; Gómez-Navarro et al., 2015; Umek et al.,

2021).

For examining the effects of the wind solver detailed above, we present two HICAR simulations:

one with the empirical adjustments based on terrain-descriptors and one without. The

simulation without terrain-descriptors uses a procedure to diagnose its winds which is similar

to that employed by models like WindNinja (Forthofer et al., 2014) but, with the distinction

of using a spatio-temporally varying value for α (EQ #2.17). This simulation already captures

a wider range of surface wind speeds than the base ICAR model, and offers some of the flow

field deflection observed with the WRF model. This is consistent with prior studies which have

employed the technique from Sherman, 1978. Once the terrain descriptors are used, we see

that certain features of the flow field present in the WRF simulation also emerge in the full

HICAR run. Of note are the cross-slope flows and lee-side reductions in wind speed. Due to

the improved terrain representation capable with the ICAR/HICAR model, these flow features

develop for secondary valleys not fully resolved in the WRF topography. This demonstrates the

added value of this two-step approach to generating a diagnostic, mass-conserving wind field.

The advantages of the terrain descriptors are on show in Figure 2.6 as well. This figure presents

a vertical cross section of modeled flow across the Sattelhorn ridge, which is in the upper-

center of Figure 2.5. The WRF model shows a large eddy in the lee-side of the ridge, with a

long horizontal extent and reduced wind speeds relative to the flow outside of the lee. This

eddy also gives rise to up-slope flow at the surface of the lee of the ridge. The HICAR run

simulates a similar dynamic structure. The eddy present in HICAR has a shorter horizontal

extent and is stronger, resulting in higher wind speeds within the eddy and faster reverse flow
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Figure 2.5: Comparison of surface flow fields at a 50m resolution between models and model
setups for March 5th, 2016, 00:00 UTC+1. The upper four panels show flow fields overlaid
on model topography. Model topography is smoothed for the WRF run compared to the
HICAR/ICAR runs. Thickness of flow lines corresponds to wind speed, with thicker flow lines
indicating higher wind speeds. The lower row of panels displays the surface wind speeds of
the various model runs. The sparser flow lines for the ICAR simulation are a plotting decision
to avoid redundancy and do not reflect a difference in the simulation setup. The orange arrow
indicates the location of the Sattelhorn Ridge, which is shown in profile in Figure 2.6.

at the surface of the lee. Despite these differences in the properties of the eddy, the ability

of HICAR to predict the presence of such flow features is a surprising result, since no prior

applications of Sherman 1978’s technique have reported such behavior. We attribute this to

our use of terrain-descriptors, which predispose the solution of Sherman 1978 to generate

an eddy in the lee, all of which may be due to the sharper terrain represented by HICAR.

It is easy to imagine how this approach of pre-conditioning a wind field and then using a

diagnostic, mass-conserving solver, could be used to parameterize other dynamic effects, and

has previously been shown to yield reasonable results when parameterizing thermally driven

winds (Forthofer, 2007). We also note that the calculation of the terrain-descriptor based

corrections depends upon somewhat arbitrary constants, and thus could be adjusted to yield

eddies of varying horizontal extent. This tuning of the terrain-descriptor-based adjustments
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will be done in a future study, using distributed observations of winds in complex terrain as a

basis for tuning and validation.

The differences in terrain representation between WRF and ICAR/HICAR are also on display

in Figures 5 and 6. WRF and other models which prognostically solve for winds rely on

spatial gradients of pressure to calculate wind speeds. In order to simplify the lower boundary

condition, these models also typically employ terrain following coordinates where model

coordinate surfaces slope as the terrain does. This means that high-resolution simulations will

feature large coordinate distortion, and pressure differences in the horizontal may become

quite large as one vertical cell surface exists at lower elevations than another. This may lead

to large pressure gradients which require very fine time steps to stably integrate. The model

terrain is typically smoothed to allow for smaller grid distortions, smaller pressure gradients,

and thus larger time steps. Recent implementation of an immersed boundary method in

WRF allows for this entire consideration to be skipped, although such a domain discretization

comes with its own trade-offs (K. A. Lundquist et al., 2012).

The above discussion is valid for atmospheric models which solve prognostic equations for

momentum. Neither the ICAR model nor the HICAR variant do this, opting for diagnostic

solutions for the wind field instead. As a result, issues of model stability arising from terrain

steepness do not exist, and we can include model terrain without any artificial smoothing or

implicit numerical diffusion. This is apparent in the elevation profile of Figure 2.6 and, to a

lesser extent, in the DEM of Figure 2.5. The difference in terrain used may lead to the different

lee-side dynamics when comparing the HICAR and WRF simulations. This ability of ICAR and

HICAR to represent the terrain without any artificial smoothing is a major strength of both

models. High-resolution atmospheric modeling is assumed to yield more accurate forecasts

in part through improved representation of the underlying terrain. If HICAR can represent

topography more accurately than WRF at the same horizontal resolution and without explicit

numerical diffusion, it allows for effectively higher model resolutions than WRF.

2.4.2 Precipitation Distribution

Ridge-scale

The above discussion of terrain representation also plays an important role in precipitation

distribution, as is on display in Figure 2.7. There are noticeable differences in the snowfall

transects of the two HICAR simulations, one using the unsmoothed topography (HICAR) and

the other using WRF’s smoothed topography (HICAR, WRF-topo). This result supports the

above point that HICAR’s improved terrain representation leads to a higher effective model

resolution, impacting the simulation results. We also note a strong wet-bias over the domain

for the WRF model, with precipitation amounts nearly double what was recorded at a snow

depth station located in the domain (Figure 2.7). This wet bias was attributed to excessive

orographically enhanced precipitation in Gerber et al., 2018. The snowfall transects reveal

ridge-scale differences in precipitation for all model simulations, with the windward (left) side
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Figure 2.6: Profile view of flow fields at a 50m resolution between models for March 5th, 2016,
02:00 UTC+1. Wind direction is indicated by the flow lines, and line thickness corresponds
to wind speed, where thicker lines show higher wind speeds. Wind speed is given by the
background color. A profile of the underlying terrain is shown in each panel, with the WRF
simulation having smoother terrain than the ICAR or HICAR simulations.

of the ridge receiving approximately 15% more snowfall than the leeward (right) side in the

HICAR simulations. The WRF simulation shows a similar although more modest ridge-scale

difference, with a positive snowfall anomaly (relative to mean over the transect) beginning

on the windward side and continuing until just downwind of the ridge, followed by a steady

decrease in snowfall anomaly. The main difference between the HICAR and WRF simulations

are the magnitude of the windward and leeward differences. This can be partly explained by

the leeside dynamics simulated by both models. Taking the flow profiles shown in Figure 2.6

to be representative of the flow differences over the 24-hour event, we note that HICAR has

higher wind speeds aloft on the leeside of the ridge due to the presence of the eddy. The peak

in precipitation on the windward side is likely due to blocking of the lowlevel flow and reduced

wind speeds on this side of the peak (Figure 2.6). We note a positive anomaly in snow depth

just downwind of the ridge, which we attribute to the strong horizontal wind speeds aloft,

inline with previous studies of preferential deposition (Mott et al., 2014; Z. Wang & Huang,

2017). In fact, the HICAR snow depth distributions show a similar windward/leeward pattern

to results obtained by Comola et al., 2019 using an LES model over ideal topography. This

cumulative effect of the flow field on snow depth can be realized intuitively by tracing the

flow lines of Figure 2.6 across the ridge and imagining snow sedimentation given a constant

sedimentation rate. The question of if this flow pattern is accurate for this particular event
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Figure 2.7: Differences in snowfall over the Upper Dischma Valley for a 24-hour snowfall event
on March 5th, 2016. All terrain data displayed is from the unsmoothed HICAR run. All values
of snowfall are reported in cm, with the WRF and HICAR snowfall values converted from mass
to depth assuming a constant density of 100 kg m-3. The upper left panel shows a DEM of the
area, with a dot in the valley indicating the location of a snow depth sensor an arrow indicating
the location and direction (left-right) of the transect shown in the upper right panel. This
arrow points along the prevailing wind direction during the 24-hour snowfall. The upper right
panel shows snow depth transects across the Sattelhorn ridge for three model simulations,
WRF, HICAR, and HICAR run with the same smoothed topography as WRF. Mean snowfall is
almost twice as large in WRF than in HICAR, so snow depth is reported as percentage of the
mean snow depth along the transect in order to compare the HICAR and WRF simulations on
the same graph. The lower two panels show the spatial distribution of snow depth across the
domain, with the value recorded at the snow depth station over the 24-hour period (20.3cm)
overlaid.

has not been demonstrated, but given the proven accuracy of HICARs advection scheme (H.

Wang et al., 2009), the resultant deposition pattern is certainly physically consistent with the

given flow field. This discussion demonstrates the research utility of HICAR: it can be used

to efficiently (Section 2.4.4) test different flow patterns at the ridge scale and see how they

affect particle-flow interactions. A later validation of HICARs flow fields would determine how

predictive the simulated deposition patterns are.

Range-Scale

Accurate high-resolution precipitation estimates in complex terrain are a slippery target

(Bonekamp et al., 2018; J. Lundquist et al., 2019). Gauge-based gridded products are subject
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to gauge undercatch, and assumptions about the spatial patterns used to interpolate them

(Collados-Lara et al., 2018; J. D. Lundquist et al., 2010; R. Rasmussen et al., 2012). Radar

products meanwhile suffer from occlusion when scanning in complex terrain (Germann et al.,

2022). As a result, high-resolution comparisons of modeled versus observed precipitation

in complex terrain deserve careful consideration to offer any form of model validation. We

spare any detailed quantitative validation for a future study, and instead offer a comparison of

different gridded precipitation products for the sake of discussion.

Figure 2.8 shows accumulated precipitation for January 2017 from two gridded products and

a 250m HICAR simulation. We first note that the majority of storms during January 2017

came from the northwest, and our simulation domain for HICAR extended slightly beyond

the boundaries of the figure shown to just include the Swiss Plateau. The HICAR simulation

is forced with only water vapor from COSMO1, so the microphysics requires some time to

"spin-up", generating hydrometeors and thus precipitation. This may explain some of the

lower precipitation amounts along the pre-Alps in the upper northwest of the figure relative to

both RhiresD and the OSHD precipitation product.

Overall, Figure 2.8 shows remarkable agreement between HICAR and the two gridded precipi-

tation products for a one month winter period. The OSHD precipitation product gives larger

precipitation values at higher elevations than RhiresD since it is generated by back-calculating

precipitation from snow water equivalent, avoiding gauge undercatch during snowfall events

(Magnusson et al., 2014). This result suggests that the larger precipitation values obtained

from the HICAR simulation are possible. The inter-alpine areas (center) of the domain how-

ever show less precipitation in HICAR than either gridded product, especially in the valleys.

However, these differences between HICAR and the other gridded products are comparable

to differences observed between the gridded products themselves. Lastly, we note that the

product using climatological averages for its interpolation, RhiresD, returns a smoother field

of precipitation than either HICAR or the OSHD product. The OSHD product yields stronger

elevation gradients of precipitation, which is likely due to its higher station density at higher

elevations relative to RhiresD, and its ability to capture unbiased precipitation during snow-

fall events. This suggests that the stronger gradients observed from HICAR are appropriate.

None of this discussion is to assert an accuracy of one product over another, but is instead to

demonstrate that HICAR’s precipitation estimate is as consistent with existing precipitation

products as those products are with each other.

2.4.3 Cold Air Pooling

Figure 2.9 shows a cold air pooling event on the morning of January 24th, 2017. We observe

that, over the course of the early morning hours, strong mesoscale winds recede from over

the valley, allowing a cool, stable boundary layer layer to develop and for that cool air to

migrate toward lower elevations. This surface layer is ultimately re-mixed as wind speeds

increase and surface cooling decreases around 9 AM local time. These results are somewhat
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Figure 2.8: Precipitation over the central and eastern Swiss Alps during January 2017 at a 250m
resolution. All three plots of precipitation have point data from the OSHD product overlaid as
dots. Since these mostly coincide with the same values for the OSHD product, the dots are
often indistinguishable from the background field in the top panel.

surprising, as a parameterization of thermally driven flows is not yet included in HICAR. Thus,

the flow patterns shown are largely unaware of the evolving thermal stratification of the valley.

However, the wind solver used in HICAR is designed to minimize differences between its

wind field and the wind field supplied from the forcing data. The driving model, in this case

COSMO1, has been shown to simulate valley winds supportive of cold air pooling (Goger

et al., 2018), so if the LSM of HICAR simulates a cooling of the surface, cold air pooling as

shown in Figure 2.9 is possible. This figure demonstrates an important caveat of the HICAR

model: its dependency on physically consistent winds from forcing data. The simulation

shown here was forced with COSMO1 data at the boundaries, while the model runs in prior

sections examining HICAR’s wind field were forced with COSMO2 data. A test of HICAR’s

sensitivity to the resolution of the driving model is needed, but is beyond the scope of this

study. At present, only forcing data at resolutions where mountain waves can be expected

to be resolved have been used. Yet, as noted in section 2.2, regional forecasting offices are

increasingly providing model output at these resolutions.
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Figure 2.9: The development and diffusion of surface cooling for an alpine valley during dawn.
The plot shows a small area of the 250m Swiss Alp domain introduced in section 2.3.4. The
local time is indicated on the y-axis label. Wind vectors are plotted for wind directions along
the transect. Thicker vectors indicate higher wind speeds, and winds below 0.2 m s-1 are not
plotted.

2.4.4 Computational Efficiency

The main reason why HICAR may be attractive as a model is through its computational effi-

ciency relative to existing atmospheric models such as WRF or COSMO. Aside from HICARs

improved representation of terrain, the model is not expected to simulate physical phenom-

ena better than more complex models. Thus, understanding its computational demand is

central to establishing its utility. To quantify this demand, we repeat a benchmarking setup

described in Kruyt et al., 2022. We run HICAR at a 50m resolution over a roughly 7.5 x 7.5 km

domain for a 5 day period in March 2019, which includes several winter storms. The model

numerics/physics setup is the same as those used for the above subsections for which results

are shown. The results of the benchmarking test are presented in Table 2.2, alongside the

results previously published in Kruyt et al., 2022. The main takeaway from this comparison
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Table 2.2: Core-hours per simulation day for benchmarking run

WRF ICAR HICAR

Core-hours 33,993 1,336 57
Speed-up over WRF 1.0 25.4 594.3

is that HICAR uses 594x fewer computational resources than WRF for the same simulation.

Stated otherwise, a year of simulation over this domain with WRF would require a significant

allotment of computing time ( 350,000 node hours, assuming 36 cores per node). With HICAR,

the same simulation represents a fraction of a modest project allocation ( 590 node hours).

The more than twenty-fold speedup of HICAR relative to ICAR is also somewhat surprising.

This result is best explained by the switch from the GNU fortran compiler to the Cray compiler

and aggressive optimization of the model code outside of the physics parameterizations. Of

these optimizations, one of the most effective at reducing runtimes was moving to batched

message passing between parallel processes. Testing of Coarray fortran, on which ICAR is

parallelized (S. Rasmussen et al., 2018), has revealed the Cray compiler to have a faster imple-

mentation of this fortran standard than GNU. Additionally, the high-performance computing

architecture used in this study is the Piz Daint computer, featuring Cray XC40 compute nodes.

The use of a native compiler may contribute to speed up as well. The WRF runs here were per-

formed with the Intel compiler, and were not re-run for this study with the cray compiler due

to constraints on computational resources. Prior studies using WRF on the same computing

archetecture additionally recommend the use of the Intel compiler (Gerber & Sharma, 2018).

2.5 Conclusions

In this paper we have introduced the High-resolution variant of the ICAR model, HICAR. We

detailed its primary modifications to adapt it for simulations over high-resolution complex

terrain. This consists primarily of a new approach to solving for a 3D wind field which

utilizes terrain-descriptors, TPI and Sx, to pre-condition the input wind field to approximate

some expected effects of the topography on the flow field (Figure 2.2). These effects are

parameterized simply and rely on assumptions and somewhat arbitrary constants. The

model’s sensitivity to these constants will be further investigated in a future study. After this

correction step, the pre-conditioned wind field is fed into an optimization routine, which

makes the resulting field mass-conserving while minimizing changes to the pre-conditioned

field (Figure 2.1). A novel approach to the diagnostic wind solver is adopted which allows

atmospheric stability to influence the solution as it varies in time as well as space. This allows

for low-level flow blocking, leeside recirculation, and cross-slope flows to be simulated by the

model. These changes to the wind solver, in addition to a new advection scheme and physics

parameterizations, enable the results demonstrated in section 2.4.

We observe a marked improvement in the representation of wind fields in complex terrain
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over the base ICAR model when comparing against the WRF atmospheric model (Figure 2.5).

By avoiding the Navier-Stokes equations, HICAR is also able to run stably over steeper terrain

than WRF, and thus may resolve flow features induced by small-scale topography which WRF

cannot (Figure 2.5). These improvements to the wind field make HICAR capable of simulating

heterogenous snow deposition patterns in complex terrain, which show clear signals resulting

from terrain-flow interactions (Figures 6 and 7). At larger scales, precipitation patterns in com-

plex terrain are represented to the same goodness as existing gridded precipitation products

(Figure 2.9). ICAR/HICAR also forgoes any consideration of pressure gradients in its dynamics,

allowing it to be run without any smoothing of the underlying terrain. Most importantly,

all of these developments were done while maintaining the orders of magnitude speed up

over WRF which ICAR originally demonstrated. The result is a model which is 594x faster

than WRF and can run at very high resolutions (50m), extending intermediate complexity

atmospheric modeling into the resolutions typically used by land surface modelers. HICAR’s

ability to handle very steep terrain, coupled with its computational speed, seems well suited

for modeling efforts over High Mountain Asia, where testing of various model configurations

is already performed with more computationally expensive models (Bonekamp et al., 2018).

HICAR’s computational efficiency also enables high resolution simulations over long time

scales, supporting climate impact studies at the regional scale and seasonal studies of coupled

glacier-atmosphere or snow-atmosphere models at hectometer scales. This last point will be

expanded upon in future publications, where HICAR will be coupled with an intermediate

complexity snow model to enable high-resolution forecasting of winter snowpack and spring

melt. This will involve the addition of a thermal wind parameterization to improve surface

flows over glaciers and snow (Mott et al., 2020), with the goal of better resolving advective

surface-atmosphere processes such as turbulent heat exchange. As atmospheric models begin

to regularly probe higher resolutions, HICAR enables rapid testing and iteration of various

model configurations with relatively little computational cost. This makes HICAR a powerful

companion to conventional atmospheric models.

Code and Data Availability

HICAR can be used for non-profit purposes under the GPLv3 license (http://www.gnu.org/licenses/gpl-

3.0.html, last access: 1 February 2023). Code for the model is available at https://github.com/HICAR-

Model/HICAR. The exact release (v1.1) used in this publication is available at

https://doi.org/10.5281/zenodo.7920422. The model has dependencies for the netCDF4-

parallel fortran and PETSc libraries. Paralellisation is achieved through fortran Coarrays,

which utilizes different message passing protocols depending on the compiler used. For use

with the GNU fortran compiler, OpenCoarrays is required.
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3 Intermediate Complexity Atmospheric
Modeling in Complex Terrain: Is it
Right?

This chapter corresponds to the version of the article submitted to the journal Frontiers in

Earth Science: Cryospheric Sciences by the authors:

Dylan Reynolds, Michael Haugeneder, Michael Lehning, and Rebecca Mott

Abstract Dynamic downscaling of atmospheric forcing data to the hectometer resolution has

shown increases in accuracy for landsurface models, but at great computational cost. Here we

present a validation of a novel intermediate complexity atmospheric model, HICAR, developed

for hectometer scale applications. HICAR can run more than 500x faster than conventional

atmospheric models, while containing many of the same physics parameterizations. Station

measurements of air temperature, wind speed, and radiation, in combination with data from

a scanning Doppler wind LiDAR, are compared to 50 m resolution HICAR output during

late spring. We examine the model’s performance over bare ground and melting snow. The

model shows a smaller root mean squared error in 2 m air temperature than the driving

model, and approximates the 3D flow features present around ridges and along slopes. Timing

and magnitude of changes in shortwave and longwave radiation also show agreement with

measurements. Nocturnal cooling during clear nights is overestimated at the snow covered site.

Additionally, the thermal wind parameterization employed by the model typically produces

excessively strong surface winds, driven in part by this excessive nocturnal cooling over snow.

These findings highlight the utility of HICAR as a tool for dynamically downscaling forcing

datasets, and expose the need for improvements to the snow model used in HICAR.

3.1 Introduction

The state of the atmosphere is intertwined with land surface processes in a myriad of ways,

affecting surface surface mass and energy balances through wind driven transport or radiative
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forcing, to name just two. The scales of these processes are often very heterogeneous, with

ridges and depressions modifying the wind field over horizontal scales of tens of meters (Mott

et al., 2010b; Raderschall et al., 2008; Sauter & Galos, 2016). While land surface models have

been run at the spatial scales of these heterogeneous processes for decades (Lehning et al.,

2006b; G. E. Liston & Elder, 2006a; Sauter et al., 2020), they are not responsible for simulating

these processes themselves. Instead, information about these processes are passed to land

surface models through the atmospheric forcing data supplied to the models. One way of

obtaining this forcing data is through dynamic downscaling, where atmospheric models are

forced with coarse-resolution atmospheric data and run at a target horizontal resolution.

Dynamic downscaling has been used at the scale of tens of kilometers for downscaling re-

analysis data (Bozkurt et al., 2019) and has led to improvements in representing land surface

processes at these scales (Gao et al., 2017; Sharma et al., 2023). Applications of dynamic

downscaling for forcing land surface models at the hectometer scale are sparse, but similarly

show improvements over other downscaling techniques (Vionnet et al., 2017; Voordendag,

Goger, Prinz, et al., 2023). However, the computational demands of dynamic downscaling

to the hectometer scale limit the application to short time series (hours to days) and small

domains (catchment scale) (Gerber et al., 2018; Goger et al., 2022; Saigger et al., 2023; Sauter &

Galos, 2016; Vionnet et al., 2021)).

This has led to widespread use of statistical downscaling in the land surface modeling commu-

nity at the hectometer resolution. Statistical downscaling techniques have yielded reasonable

simulations of seasonal snowpack (Dadic et al., 2010; Winstral & Marks, 2002), but often fail to

capture inter-variable dependencies (Michel et al., 2021). Statistical downscaling treats vari-

ables in a "piece-wise" approach where each atmospheric variable is downscaled separately

from one another. Thus dynamic downscaling is expected to better represent processes such

as preferential deposition of snow (Lehning et al., 2008), where the interaction between terrain

features and atmospheric stability induce changes in near-surface vertical winds, which in

turn modify the deposition of precipitation (Z. Wang & Huang, 2017). Additionally, statistical

downscaling approaches may assume spatial patterns to be temporally fixed, limiting their use

in climate change studies where the validity of these assumptions is unknown (Gutiérrez et al.,

2013; E. D. Gutmann et al., 2012). Thus, although they have high computational costs, physics-

based dynamic downscaling remains attractive for many downscaling problems, especially

under future climate scenarios.

To provide an alternative to weather models typically used in dynamic downscaling studies,

the Intermediate Complexity Atmospheric Research (ICAR) model was proposed (E. Gutmann

et al., 2016). ICAR was evaluated alongside the WRF model (Skamarock et al., 2008) in a

previous study, showing predictive accuracy of wind speed and temperature similar to the

WRF model at a handful of stations (Kruyt et al., 2022). However, the ICAR model suffered

from little diurnal variability at a valley site, as well as a lack of ridge-scale flow features when

compared to observations or the WRF model. These issues largely stem from ICAR being

developed with a focus on downscaling to target resolutions at the kilometer scale, and not at

the hectometer scale, where the evaluation was performed. To improve on these shortcomings,
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the High-resolution Intermediate Complexity Atmospheric Research (HICAR) model was

recently introduced, addressing shortcomings in ICAR’s dynamics at high resolutions while

still more than 500x faster than the WRF model (D. Reynolds et al., 2023). A direct validation

of the HICAR model is still needed to understand how useful it may be for applications of

dynamic downscaling. This study presents such a validation, focusing on processes which

are of particular relevance to seasonal snowpack modeling. At the hectometer scale, flow

features such as leeside recirculation, turbulent eddies, and thermally driven slope flows all

dominate the near-surface flow field. Leeside recirculation can result in preferential deposition

during snowfalls (Lehning et al., 2008), turbulent eddies enhance surface energy exchange

(Haugeneder et al., 2024), and thermal flows effectively distribute surface heating throughout

the surface layer(Farina & Zardi, 2023). This surface heating is itself driven by radiative forcing,

which depends upon both cloud cover as well as topographic shading. HICAR’s ability to

represent these processes is crucial for solving the surface energy balance and, particularly in

the case of snowpack models, the surface mass balance.

This paper continues with section 3.2, where an overview of an observational campaign which

occurred during winter 2021/2022 is given. Section 3.2 also contains a description of model

changes implemented to represent some of the high-resolution processes discussed above.

Section 3.3 presents a comparison of HICAR simulations with observations, focusing on near-

surface flow features observed by a Doppler wind LiDAR. Lastly, a conclusion and summary of

the study’s main points are given in section 3.4.

3.2 Methods

3.2.1 Observational Campaign

In late April and Early May of 2022, a field campaign was conducted over a mountainous

region outside of Davos, Switzerland, in the eastern Swiss Alps (Figure 3.1). A wind LiDAR

(Section 3.2.1) was deployed within this domain, and five existing automatic weather stations

(AWS) nearby recorded air temperature, wind speed, and wind direction during the period

of the campaign. One station, located at the exposed summit Weissfluhjoch (WFJ), lies

roughly 2km south of and 400 m above the wind LiDAR. In this way, the WFJ station gives an

estimate of the mesoscale conditions over the study area. The five stations included in the

study are a part of two different measurement networks: the Swiss Meteorological Network

(SMN) and the Intercantonal Measurement and Information System (IMIS). Sensors in the

SMN feature ventilated temperature sensors, while the sensors in the IMIS network feature

standard, solar-shaded temperature sensors. For wind sensors, IMIS stations sport propeller-

type anemometers, while the SMN stations have 2D sonic anemometers.
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Figure 3.1: Map of the study domain. The upper panel shows the region around Weissfluhgipfel
in the eastern Swiss Alps. The cyan dots indicate the location of the Swiss Met Net (SMN)
weather stations, which feature ventilated temperature sensors. The yellow dots correspond
to stations from the Intercantonal Measurement and Information System (IMIS). The WFJ and
SMN_DAV1 SMN stations shown in Figures 3.3 and 3.4 are labeled. 50 m HICAR simulations
were performed over the area contained within the blue square. The orange rectangle indicates
the region shown in detail in the lower panel. This area focuses on the region around the wind
LiDAR deployment, with the wind LiDAR shown as a pink triangle, and the orientation of the
RHI scans presented in section 3.3 given by the dashed black line. Of note are the Gaudergrat
and Parsennfurgga, which the RHI transect crosses to the left and the right of the LiDAR,
respectively.
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Wind LiDAR Scans

To validate the representation of wind speeds and flow features in HICAR, a Halo Photonics

Streamline Doppler LiDAR was deployed. The ridge of Gaudergrat lies roughly the same

elevation to the west of the location, while the pass Parsennfurgga rises over the LiDAR to the

east. RHI scans were conducted every half hour to sample the flow structures over both terrain

features, starting over the Gaudergrat and ending at Parsennfurgga. The LiDAR was deployed

from April 22nd to May 10th, with atmospheric conditions supporting good scan returns from

May 1st to May 5th.

RHE Scans

In addition to conventional RHI scans, we also introduce a new scan type, Reynolds-Haugeneder

Elevation (RHE) scans. These scans are essentially PPI scans, with varying elevation angles

designed to minimize the distance between the laser and the underlying terrain. In this way,

the ridge crest flow is best sampled for all points around the LiDAR. RHE scans are created by

taking a high-resolution DEM of the LiDAR area, and shooting rays outward from the position

of the LiDAR at each of the azimuthal scan angles 3.2. These rays increase in elevation angle,

from 0° upwards until they no longer intersect the surrounding DEM. This elevation angle

is then saved as the elevation angle for the current azimuthal angle, and the next azimuthal

angle is considered. RHE scans avoid large overshoots of the terrain which occur in PPI scans,

and which are not helpful when validating near-surface flow features.

Figure 3.2: Schematic of how RHE scan angles are determined. The upper, circular graphics
show the domain from above, with north facing upward. The green line cutting across the
circle corresponds to the scan line from the wind LiDAR. In the bottom of the two panels,
the view of the LiDAR in the terrain is shown, with the process of iteratively increasing the
elevation angle until it clears the terrain. The azimuth of each scan, and the resultant scan
elevation determined, is shown.

49



Chapter 3. Intermediate Complexity Atmospheric Modeling: Is it Right?

3.2.2 Model Changes

The measurements in section 3.2.1 were conducted to validate a novel atmospheric model,

HICAR (D. Reynolds et al., 2023). This model lacks a traditional Navier-Stokes-based dynamical

core, and instead substitutes a diagnostic solution for the 3D wind field. This saves significant

computational time, but the predicted flow structures have not yet been validated against

observations. In addition to the near-surface flow parameterizations existing in HICAR, a pa-

rameterization of thermal flows has also been introduced since the publication of (D. Reynolds

et al., 2023). The following sections detail model changes relevant to this thermal-flows pa-

rameterization. The terrain parameters required in the following sections, including those for

terrain-shading of radiation and the ridge distances for the slope flow parameterization, can

be calculated using a python script contained in the HICAR distribution.

Thermal Flow Parameterization

One potential application of HICAR is modeling the seasonal snowpack. In snow-covered

environments, katabatic winds, and the interplay between katabatic and valley winds in the

spring play an important role in the surface wind field (Haugeneder et al., 2024). To address

this, a thermal flow parameterization has been added to HICAR following the formulation in

(Grisogono et al., 2015) based on the popular Prandtl model of thermal winds (Prandtl, 1942).

This model extends an existing parameterization of thermal winds, that of Oerlemans and

Grisogono, 2002, which was tested over an alpine glacier and showed reasonable agreement

with station observations up to a height of 13m. The updated formulation in Grisogono et al.,

2015 allows for a vertically varying thermal eddy diffusivity and for the inclusion of additional

terms representing enhanced mixing due to induced near-surface temperature gradients

during anabatic winds. A full derivation of their method is included in the above publication.

One mechanism of note is that the strength of the thermal flow correction is largely dependent

on the temperature anomaly between the surface and the air aloft, in this case 200 m above

the surface. Another important feature of this enhanced parameterization is that it produces

stronger thermal flows over shallower slopes than steeper ones. The physical reason for this is

the adiabatic heating that occurs to an air mass as it descends to lower altitudes. This heating

rate is balanced by cooling due to negative sensible heat fluxes. As a slope becomes steeper,

an air mass descends more elevation, and thus experiences greater adiabatic heating, while

covering less distance along the terrain where cooling of the air parcel may occur. For slopes

of lower angle, the air parcel traverses a greater distance along the terrain to cover the same

vertical drop, resulting in a greater net cooling of the air mass, a larger density difference to the

surrounding air, and thus stronger katabatic winds. Modeling studies using LES simulations

and observational campaigns have noted that slopes of intermediate angle should experience

stronger katabatic flows when compared to steep slopes or very flat slopes (Zardi & Whiteman,

2013; Zhong & Whiteman, 2008). An LES study of upslope flows over slopes of various angles

showed a similar dependency of maximum wind speed on slope angle, perhaps due to the

same mechanism acting in reverse (Schumanndlr, 1990).
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The thermal wind parameterization introduces a dependency of the winds on physics pro-

cesses which are updated more frequently than model input data is ingested. In version 1.1 of

HICAR, a new wind field was only solved for each input time step. To more tightly couple the

model dynamics with the physics, an update to HICAR’s wind solver has been added, allowing

for more frequent solutions to the wind field. In the current study, this has been set so that a

new wind field is solved for every ten minutes of simulation time, allowing for the modeled

surface winds to respond to rapidly changing surface energy fluxes around sunrise and sunset.

Physics Parameterizations

The new thermal flow parameterization in HICAR depends in part upon the surface sensible

heat flux calculated by a land surface model. Daytime sensible heat fluxes are driven primarily

by incoming radiation at the grid cell. To this point, the RRTMG radiation transfer scheme

(Thompson et al., 2016) is used in HICAR to compute both direct and diffuse shortwave

radiation, as well as incident longwave radiation (Thompson et al., 2016). These radiation

fields are then modified to account for sloping terrain surfaces and occluded sky view from

surrounding terrain (Mott et al., 2023). The computation of these terrain parameters, namely

horizon line and sky view fraction, is normally computationally expensive, especially for high-

resolution domains with many grid points. We use the HORAYZON python library developed

by Steger et al., 2022 to efficiently calculate these terrain parameters for our domain.

These terrain-modified radiation inputs are then passed to the land surface model (LSM).

NoahMP has been added to both the ICAR and HICAR models, widening the choice of land

surface process representations. NoahMP has also been modified in HICAR to allow for the

incident direct and diffuse shortwave radiation amounts calculated by RRTMG to be used

directly, instead of a fixed partitioning of 70% direct and 30% diffuse hard-coded into NoahMP.

These modifications allow for NoahMP to give improved estimates of sensible heat flux in

complex terrain. NoahMP contains its own formulation for calculating surface exchange

coefficients, and is not coupled to the surface exchange coefficients calculated by the surface

layer scheme. To improve the representation of surface-atmosphere energy exchange, in

particular during stable conditions, we add the revised MM5 surface layer (Jiménez et al., 2012)

scheme’s calculation of exchange coefficients to NoahMP. To make this change to NoahMP

consistent with the rest of the model physics, the revised MM5 surface layer scheme itself has

been added to the model, and coupled to the Yonsei University (YSU) PBL scheme (Hong et al.,

2006).

Lastly, the ISHMAEL microphysics scheme (Jensen et al., 2017) has also been added to HICAR,

with the necessary steps to couple it to the RRTMG radiation scheme. This novel microphysics

scheme is part of the growing class of adaptive habit (AHAB) microphysics schemes capable of

evolving solid hydrometeor shape through time. This ability is crucial for resolving particle fall

speeds and, thus, mass and energy exchange rates between hydrometeors and the atmosphere.

For these reasons, the ISHMAEL scheme is also expected to offer an improvement in cold-

cloud microphysics relative to the Morrison microphysics scheme (Woods et al., 2007). Taken
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together, the ISHMAEL scheme may improve patterns of snowfall deposition in complex

terrain and the mass-energy exchange between hydrometeors and the atmosphere. To evaluate

the impact of this novel microphysics scheme, we perform HICAR simulations with both the

Morrison and ISHMAEL schemes in Section 3.3.

3.2.3 Modeling Setup

To evaluate the HICAR model, it was run over a period covering the observational campaign

described above. Following the methodology of D. Reynolds et al., 2023 and Gerber et al., 2018,

elevation data from ASTER Global Digital Elevation Model V002 and Corine land use data

were used (Agency, 2006; Spacesystems & Team, 2019), with atmospheric forcing data coming

from the COSMO1E model (www.cosmo-model.org). One caveat to the setup of this study

which differs from the setup used in D. Reynolds et al., 2023 is the lack of vertical velocity data

from COSMO1 during our simulation period. To generate the diagnostic wind field HICAR

requires some initial estimate of the 3D wind field. It then computes a final wind field by

eliminating divergence in the wind field while minimizing the difference between the initial

and final wind fields. Without an input of vertical velocity from COSMO1, an initial vertical

velocity field of 0 is passed to the diagnostic wind solver. The underlying assumption here

is that one solution for the vertical velocity field which eliminates divergence would be the

vertical velocity field used by COSMO1. If there is no bias in the initial guess (using a wind

field of 0) then the solution which minimizes changes to the initial 3d wind field should favor

a solution close to the original COSMO1 vertical velocity.

Starting with forcing data from the 1.1 km horizontal resolution COSMO1E model, nested

HICAR simulations were performed at horizontal resolutions of 1km, 250 m, 100 m, and 50 m.

The blue square shows the final domain used for the 50 m simulations in Figure 3.1. Static data

and forcing variables used from COSMO1E follow the methodology outlined in D. Reynolds

et al., 2023. 1km simulation HICAR runs were run from October 1st 2021 to May 10th 2022,

in order to spin up the seasonal snowpack present during the observational campaign. The

higher resolution simulations performed for the period of the campaign were then initialized

with the snow cover of their parent domain. The high-resolution 50 m simulations were run

from April 25th to May 10th. HICAR uses the NoahMP land surface scheme to parameterize

land-surface processes (Niu et al., 2011), the YSU PBL scheme, and the RRTMG radiation

scheme . Starting at the 250 m resolution simulation, the parameterization of terrain-induced

sheltering introduced in D. Reynolds et al., 2023 is used. This scheme uses a 3D version of the

Sx parameter (Winstral & Marks, 2002) to reduce wind speeds in the lee of prominent terrain

features. The effects of this parameterization on the near-surface flow field are investigated in

Section 3.3.3. Lastly, the PBL scheme is turned on for all simulations, even down to a horizontal

resolution of 50 m. PBL schemes are commonly turned off for atmospheric modeling setups in

the gray zone (Chow et al., 2019), or a scale-aware scheme is used (Shin & Hong, 2015). These

steps are done because the atmospheric model is assumed to resolve some of the turbulent

eddies at these scales, and so parameterized mixing in the form of a PBL scheme should
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Table 3.1: Differences between model setups tested

Run Microphysics Scheme Thermal Winds (ºC)
HICAR_ISH_Therm ISHMAEL Yes

HICAR_ISH ISHMAEL No
HICAR_Mor_Therm Morrison Yes

not "double-count" this turbulence. Because HICAR does not consider momentum in its

solution of a wind field, it is not known how much turbulent motion the model does resolve.

As will be discussed in Section 3.3.4, HICAR does not appear to resolve turbulent motion

driven by vertical wind shear and buoyancy. For this reason, the YSU PBL scheme remains

active for model runs at all resolutions. To test the impact of different model settings on

simulations of air temperature and winds, three different model setups were performed: one

run using the Morrison microphysics scheme (Morrison et al., 2009) and the thermal wind

parameterization, HICAR_Mor_Therm, a run using the ISHMAEL microphysics scheme and

the thermal wind parameterization, HICAR_ISH_Therm, and lastly a run with the ISHMAEL

microphysics scheme and no thermal wind parameterization, HICAR_ISH. These different

modeling strategies are only compared in Table 3.2 and Figure 3.10. At all other points in the

paper, the HICAR_ISH_Therm run is used and referred to simply as "HICAR".

3.3 Model Evaluation

3.3.1 Point Comparisons

Comparisons of 2 m air temperature, wind speed, and wind direction as measured at the

AWSs SMN_DAV1 and WFJ and as modeled by HICAR are shown in figure 3.3 from April 28nd

to May 10th. As seen in figure 3.1, SMN_DAV1 is located on the valley bottom, while WFJ is

located roughly 1000 m above near a mountain peak. The three IMIS stations do not have

ventilated temperature sensors, so only periods with wind speeds greater than 1.5 m/s are

used in computing these statistics, assuming that this allows for some passive ventilation (Erell

et al., 2005). These conditions of higher wind speeds tend to occur during the day, especially

at the lower elevation stations that experience valley winds. Thus, when comparing against

the IMIS stations, our comparison is biased toward mid day periods.

From the statistics of air temperature presented in Table 3.2 it is clear that the performance

of HICAR depends on the microphysics scheme used. The Morrison microphysics scheme

produces the highest positive mean bias error (MBE) of any of the model runs, with a MBE of

0.8ºC across all AWSs in the modeling domain, and an MBE of 1.34°C at the ventilated SMN

stations. At SMN stations, the ISHMAEL runs all show slight cold biases. These results suggest

that the Morrison microphysics scheme results in slightly too warm of temperatures with our

modeling setup. The cold biases of the ISHMAEL schemes may be attributable to the strong

surface-atmosphere decoupling shown in figure 3.3 which leads to very cold temperatures
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Figure 3.3: Comparisons of observations, the HICAR model, and the COSMO 1.1km resolution
model used to force the HICAR model. The upper plots show 2 m air temperature in ºC
from the two SMN stations. The lower plots show wind roses at the two sites calculated from
observations of wind at 10 m height above ground. The data are grouped according to cardinal
direction such that each data source can be compared with the others. The weight of the color
indicates the wind speed, and the distance along the radial axis indicates the frequency of
occurrence. As a reanalysis product, we stress that COSMO output data here has assimilated
the SMN data in a post-processing step.

over snow on calm, clear nights. We thus expect that solving for these low biases would

change the results such that the HICAR run with the Morrison microphysics scheme would no

longer have the lowest MBE. The best results in RMSE are obtained once the thermal wind

parameterization is switched on with the ISHMAEL microphysics scheme, yielding an RMSE

of 1.97ºC across all stations. This score is an improvement over the RMSE of the COSMO1

data (1.99°C), and the same run improves the MBE as well (-0.91°C for HICAR, -1.24°C for

COSMO1), demonstrating HICAR’s added value as a downscaling scheme. For this reason, the

rest of the analysis uses only the HICAR simulation with the ISHMAEL microphysics scheme

and thermal winds.

Of note is the difference in performance when using all stations or simply the two SMN stations.

As noted above, statistics including the IMIS stations are biased toward daytime measurements.

At the high elevation station (WFJ) where a snow cover is present, HICAR displays excessive

54



3.3 Model Evaluation

night time cooling during clear nights. Thus, biasing the period of observations towards

daytime measurements benefits HICAR in this metric. Still, we include both sets of statistics, as

using all stations increases the number of observations available for comparison. Additionally,

the COSMO data has been assimilated to the SMN stations but not the IMIS stations, so this

second group of AWSs is necessary.

When comparing the wind patterns at the valley site, the observations show strong winds

coming from the up-valley direction (NE), and winds distributed roughly evenly along the up-

and down-slope directions (N and S). The 1km COSMO data simulates winds channeled along

the valley axis (NE, SW), with overall lower wind speeds than the observations. HICAR shifts

the distribution of the COSMO winds toward the up- and down-slope directions, unfortunately

effectively removing any signal of channeled valley winds in the process. However, the wind

speeds predicted by HICAR are higher than those of COSMO, and more inline with the ob-

servations. These findings suggest that the thermal wind parameterization, as implemented,

results in excessive deflection of the input winds in the slope direction. At the WFJ site, winds

are predominately affected by synoptic conditions, and thus little thermal flow signal is seen.

Overall, the HICAR wind directions remain close to the wind directions predicted by COSMO.

As observed at the valley site, however, wind speeds from HICAR are increased when compared

to COSMO, better matching observations.

The differences in 2 m air temperature at the WFJ site are worth further discussion because of

the dependency on radiative forcing that they highlight. In Figure 3.4 we observe that before

sunset on April 30th, HICAR simulated cloudier conditions than observed. This is shown by

the higher incoming longwave (LW) radiation and less outgoing shortwave (SW) radiation

compared to observations. As a result, HICAR had higher temperatures than observations

during this period (Figure 3.3). The opposite situation can be observed during the next night on

May 2nd. HICAR simulates much colder temperatures than observed due to underestimating

cloud cover. These results show a strong dependency of 2 m air temperature on the radiative

forcing terms calculated by the RRTMG radiation scheme. It is possible that this strong

dependency is compounded by underestimating turbulent fluxes during clear nights when

stable conditions persist over the snow cover. This would result in excessive cooling of the near-

surface layer. Previous studies using snow models have observed similar excessive nocturnal

cooling of the snowpack, and suggest limiting the lower bound of the exchange coefficient

under such stable conditions (Lafaysse et al., 2017; Martin & Lejeune, 1998; Mott et al., 2023).

In a future study, we will explore the representation of snow-atmosphere interactions in more

sophisticated snowpack models to improve this potential shortcoming.
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3.3 Model Evaluation

Figure 3.4: Observations of incoming longwave and outgoing shortwave at the WFJ SMN
station compared to results from the HICAR model over a 5 day period. The choice of these
variables was limited to the observations available at the WFJ station. The first two days
have little cloud cover, as evident by the amount of incoming longwave, followed a period of
intermittent cloudiness over the final 3 days. In the lower panel, the solid blue line indicates
outgoing shortwave radiation as forecasted by HICAR, while the dashed blue line indicates
outgoing shortwave radiation calculated using a constant surface albedo (α) of 0.8.

3.3.2 Ridge Crest Wind Patterns

To investigate HICAR’s representation of spatial patterns of winds over exposed ridge crests, we

employ the RHE scans introduced in Section 3.2.1. Figure 3.5 gives an example of an RHE scan.

The bottom right panel shows the difference between scan elevation and terrain elevation.

The upper right panel shows modeled wind vectors from HICAR overlaid on the terrain. Black

arrows show the flow field in the first model level, while gray arrows show the flow field

in the second model level. It is already apparent that the thermal wind parameterization

is highly localized to the first model level, and this point will be discussed later in section

3.3.5. When comparing the terrain map in the upper right panel with the scan elevation

difference in the bottom right, we see that the scan elevation is closest to the terrain over

local terrain maxima. This approach maximizes our sampling of areas where terrain-induced

speedup may be observed. The wind LiDAR scan shown in the bottom left panel indicates high

radial velocities towards the LiDAR over Weissfluhgipfel in the bottom left corner of the panel.

The general near-surface wind direction over the peak, as simulated by HICAR, runs mostly

perpendicular to the axis of the RHI scans, indicated by the dashed black line. Radial velocities

simulated by the HICAR model are shown in the upper left panel. These radial velocities are

calculated from the 3D HICAR wind field by projecting the wind vector at each point along

the scan vector from the wind LiDAR. The HICAR model simulates the high wind speeds over
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Weissfluhgipfel observed in the LiDAR data but overestimates the local reduction in wind

speeds observed just south of the wind LiDAR location in the midslopes of Weissfluhgipfel.

Using the modeled streamlines shown in the upper right panel, we can interpret this region of

low radial velocities as being due to flow deflection around the ridge of Weissfluhgipfel. The

scan elevation plot indicates that this region of the scan was slightly above the surface, so

the synthetic RHE scan generated from the HICAR data is rather sampling the simulated flow

field above the surface. The deflection simulated results in wind directions perpendicular to

the LiDAR location, thus yielding near-0 radial velocities. Although the model overestimates

this reduction, its ability to simulate the presence of such a fine-scale feature could still be

considered a success of the model. Moving to the east of the Figure, wind speeds along the

ridge crest containing Parsennfurgga can be examined. Here, we see good agreement between

observed and modeled radial velocities, including predictions of radial velocity direction

around the south-eastern axis of the RHI scan where the sign of radial velocity changes. Figure

3.10 shows a flow field as simulated by HICAR just a few days prior over Parsennfurgga. In the

top panel, channelling of the synoptic scale winds through Parsennfurga, and the associated

speed up, are resolved by the model. Over the summit of Schwarzhorn (the peak in the lower

right of the figure), we do note that HICAR under predicts wind speeds, although the LiDAR

data also suggest a local minimum in radial velocities over the peak compared to mid-slope

wind speeds. Lastly, Figure 3.5 indicates that the synoptic-scale flow near the surface was

oriented more westerly than HICAR predicts. This is evidenced by the line along which the

sign of the radial velocity changes. Judging from the LiDAR data, it is observed to be slightly

more horizontal than the line of sign reversal seen in the HICAR data, which roughly follows

the axis of the RHI scan. This difference is likely due to the COSMO1 forcing data, which

greatly confines the synoptic scale winds of the HICAR simulation. The dependency of the

HICAR model on accurate forcing data results in an inability to correct for inaccurate input

wind direction, although the difference between model and observations appears to only

be on the order of ≈ 15◦. Taken together, we see that the HICAR model greatly relies on the

input data used, but can add significant fine-scale detail to the simulated wind field, including

regions of flow speed up, reduction, channeling, and deflection.

3.3.3 Leeside Structures

As outlined in D. Reynolds et al., 2023, HICAR features a parameterization for lee-side sepa-

ration when the bulk Richardson number near the surface is below a critical threshold. The

positioning of the wind LiDAR was chosen to scan into the leeside of a mountain ridge to

validate this flow parameterization. Figure 3.6 shows the results of an RHI scan from the wind

LiDAR for a time in the early morning of May 2nd. The scan shows flow moving from the east

to the west over the Parsennfurgga. In these RHI figures, the perspective is that of a viewer

standing north of the LiDAR and looking toward the south in Figure 3.1. As the flow encounters

the ridge crest on the left, it seems to separate the lower-level airflow from the upper-level flow,

creating an eddy-like structure on the lee side where we observe a reversal in the flow direction.

This disturbance propagates downwind, with the flow reversal extending farther downwind
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Figure 3.5: Demonstration of a Reynolds-Haugeneder Elevation (RHE) scan. The bottom right
panel shows the difference in scan elevation relative to terrain elevation, with darker areas
indicating scan locations closer to the surface. Radial velocities relative to the LiDAR location
(pink triangle) are shown in the left panels, with the bottom panel showing data from the
LiDAR scan and the upper panel output from the HICAR model. The dashed black line shows
the orientation of the RHI scans discussed in later sections. The upper right panel shows
modeled flow lines in the first model level in black, and flow lines in the second model level in
gray.

than the location of the wind LiDAR. Weak wind speeds not exceeding ≈ 1m/s are observed in

this flow separation region. The results from HICAR accurately predict the occurrence of this

eddy-like structure. The wind speeds within this region are also in approximate agreement

with the observations from the LiDAR. The lateral extent of the eddy-like structure is different

in the HICAR model as compared to observations. In HICAR, the parameterization for eddy

extent relies on a user parameter for maximum extent and the bulk Richardson number in

the lee side (D. Reynolds et al., 2023). Figure 3.6 indicates that the maximum extent of the

lee side parameterization, which was set at 600 m in these simulations, may be limiting the

growth of longer regions of flow recirculation. This highlights the promise of the existing

parameterization for capturing non-local flow dynamics, but also the need for focused testing

of the parameterization assumptions and functional relationships between terrain descriptors
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Figure 3.6: Radial velocities computed from the HICAR model relative to the position of the
wind LiDAR (pink triangle), compared to observations of radial velocity from the LiDAR itself.
Flow from the left to the right (east to west) over Parsennfurgga is seen to induce an area of
recirculation behind the ridge. The approximate region of recirculation is marked with the
dashed black line in both panels.

and flow modification.

3.3.4 Turbulent Flow Features

An important distinction of the HICAR model is its lack of a mass and momentum-based

solution to the wind field. This is one of the core advantages of the model in terms of compu-

tational speed, but also results in an expected under-performance for turbulent flows. Figure

3.7 illustrates such a scenario. The wind LiDAR observed easterly flow over the Gaudergrat

around midday on May 4th, generating regions of alternating flow direction within the first

500 m above the surface. HICAR, however, simulates only one radial flow reversal as a function

of height. This is likely produced by the leeside parameterization (Section 3.3.3), as both

areas of flow reversal occur in the lees of Parsennfurga and Gaudergrat. Additionally, radial

velocities of greater magnitude exist closer to the surface, due to either 1) the thermal flow

parameterization, or 2) a rotation of the wind direction as a function of height. Since using
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Figure 3.7: Radial velocities computed from the HICAR model relative to the position of the
wind LiDAR (pink triangle), compared to observations of radial velocity from the LiDAR itself.
Flow from the left to the right (east to west) over Gaudergratt creates turbulent structures
which extend roughly 500 m aloft. The HICAR model simulates flow reversal relative to the
wind LiDAR near the surface, but fails to capture any turbulent motions as observed.

a single wind LiDAR restricts us to comparisons of radial velocity, apparent flow reversal or

increases in radial velocity in the RHI figures may be due to subtle rotations of the wind vectors

towards or away from the LiDAR (best illustrated by consulting 3.5). Taken together, we can

see that HICAR simulates unstable near-surface conditions, as evident by the activation of

the leeside flow parameterization, and strong vertical shear near the surface. In reality, these

combined factors should produce the turbulent near-surface flow observed by the wind LiDAR,

but HICAR lacks any ability to consider vertical shear or buoyancy-driven turbulence in its

flow modifications. This instance demonstrates HICAR’s inability to simulate turbulent flow

under all atmospheric conditions.

3.3.5 Thermal Flows

The model changes to HICAR, as detailed in Section 3.2.2, all seek to improve the model’s

representation of the surface energy balance. Implementing a terrain-shading radiation
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Figure 3.8: Downwelling shortwave radiation, sensible heat fluxes, and 2 m air temperature as
modeled by HICAR from the pre-dawn hours on April 28th until 17:00 UTC. The upper left
panel shows the orography over the region of interest. No plot of shortwave is shown for 5:00
UTC, as the sun was still below the horizon. The location of the wind LiDAR and orientation of
the RHI transect are shown by the pink triangle and dashed black line, respectively.

parameterization and the direct coupling of RRTMG’s direct and diffuse shortwave radiation

fields with the NoahMP land surface model are the main improvements contributing to this

change in simulating surface energy fluxes. In the following discussion, positive sensible heat

fluxes (Qs) corresponds to an upward heat flux, and negative Qs to a downward heat flux. The

results of the model changes detailed earlier is indirectly on display in Figure 3.3, where the

2 m air temperature shows a clear diurnal signal and the effects of cloud cover. Figure 3.8

shows the heterogeneity in total modeled downwelling shortwave radiation throughout a day,

centered on the deployed wind LiDAR (Figure 3.1). The differences in modeled shortwave

radiation between the two daytime periods show the effects on radiative input induced by the

complex terrain surrounding our site.

This heterogeneity is also reflected in the maps of sensible heat flux. For the map at 9:00 UTC,
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high-elevation areas receiving more solar radiation generally experience a positive sensible

heat flux as the snow cover over the domain heats up to 0ºC. This is because the 2 m air

temperature at these higher elevation areas is still below freezing at 9:00 UTC, resulting in a

positive sensible heat flux. The sharp transition in sensible heat fluxes in the upper region

of the figure is due to a transition from snow-covered, low-vegetation land surface types to

forested model grid cells. NoahMP allows low-vegetation land surface types such as brush

to become partly buried under snow, changing the surface albedo and exchange coefficients

over such grid cells in comparison to forested grid cells. At 17:00 UTC, the pattern in sensible

heat fluxes at high elevation areas is roughly reversed as the solar elevation angle swings

across the sky, and the terrain shading parameterization captures the resultant effects on

slope-scale shortwave irradiance. The high-elevation areas also experience more negative

sensible heat fluxes at 17:00 UTC, as the overlaying air temperature is now above 0ºC at the end

of the clear, sunny day. For the map at the pre-dawn hour of 5:00 UTC, the pattern of sensible

heat flux is seen to vary primarily with air temperature, with exposed areas tending to have

sensible heat fluxes of greater magnitude due to stronger wind speeds driving greater surface

energy exchange. These results for Figure 3.8 demonstrate the model’s ability to simulate

heterogeneous patterns of surface energy fluxes.

Section 3.3.1 demonstrated the model’s ability to simulate downwelling radiative terms of the

surface energy balance accurately. These terms are the driving forces behind the simulated

2 m air temperatures presented in Figure 3.3 and Table 3.2, which showed agreement with

observations. We thus conclude that patterns of sensible heat fluxes shown in Figure 3.8 are

reasonable, and now focus on the parameterization of thermally driven slope flows, which

depend on these sensible heat fluxes.

The parameterization of slope flows follows the methodology outlined in Section 3.2.2. Figure

3.9 displays an RHI scan done in the early morning of May 3rd when little cloud cover was

present and the snow-covered surface was able to cool due to longwave radiation. The LiDAR

observations from this time show a thin layer of downslope flow moving toward the LiDAR from

Parsennfurgga, and a reduction in wind speeds downwind from the LiDAR when compared to

flow aloft. Lastly, flow away from the LiDAR is observed just over the crest of Gaudergrat. These

observations suggest the presence of low-level slope flows down from Parsennfurgga, which

entrain overlaying flow, slowing down the westerly flow aloft. Results from the HICAR model

during this time show similar phenomena, with slope flows dominating the near-surface flow

structure during this time. The primary difference between observations and HICAR is the

difference in the vertical extent of the slope flows. Such strong vertical shear should induce

turbulence, mixing up this near-surface layer. This would both lower the near-surface wind

speeds, and distribute their influence vertically. HICAR’s approach to solving for the 3D wind

field does not currently consider this process, and thus the strong vertical shear remains. One

potential solution would be to modify the parameterization proposed by Grisogono et al.,

2015 to smooth the correction to the wind field when shear is present. A broader picture is

made available by Figure 3.10, illustrating the effect that this parameterization has on surface

flows. The top panel shows wind speeds and direction at the 10 m height for a simulation
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Figure 3.9: Radial velocities computed from the HICAR model relative to the position of the
wind LiDAR (pink triangle), compared to observations of radial velocity from the LiDAR itself.
Flow from the right to the left (west to east) is undercut by downslope flows running down
from Parsennfurga and entraining air aloft.

run without the slope flow parameterization, while the bottom panel shows the same model

output from a simulation run with the slope flow parameterization. The two primary effects

of the parameterization appear to be both an increase in wind speeds along the downslope

direction as well as a rotation of the mid-slope wind vectors to point more downslope. As a

result, this effectively inhibits up-valley flow from spilling over the sub-ridge in the middle of

Figure 3.10. During daytime hours over this late-season snow cover, air parcels from lower

elevations tend to be heated due to their starting position over snow-free ground. The presence

of balancing, katabatic flows produced by the snow cover is crucial to block the impingement

of these warmer flows. Thus, the sort of lower-elevation flow-blocking displayed in figure

3.10 is expected to be a necessary component of simulating late-season snow covers. As seen

in figure 3.3, the surface winds also reach higher speeds with the use of the thermal wind

parameterization. The wind roses of the earlier figure suggest that the speed up shown in

figure 3.10 may be excessive.
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Figure 3.10: A comparison of modeled flow lines at 10 m height above ground for a 50 m
resolution HICAR simulation without the thermal wind parameterization (top panel) and
one with the parameterization (bottom panel). Thickness of the flow lines corresponds to
wind speed, with thicker lines indicating higher wind speeds. For a time in the early morning
hours over snow cover, the use of the thermal wind parameterization is shown to give stronger
downslope flows.

3.4 Conclusions

This study assessed the efficacy of a new intermediate complexity atmospheric model de-

signed for use at hectometer scales in alpine terrain. Three nested simulations were presented,

stepping down to a simulation with a target resolution of 50 m run for 14 days. Each individual

simulation takes an afternoon to run on a high-performance computing cluster, and consumes

roughly 100 node-hours for the 210x213x40 simulation domain. This highly efficient setup al-

lows for comparison of different physics options as done in this study. Such a comparison may

be especially useful when used in combination with traditional, compressible atmospheric

models.

Using sensors of incoming and outgoing radiation, air temperature, and wind speed, we have

evaluated the model at valley bottom and mountain top sites in the late spring. During this

time, ephemeral snowpack at high elevations significantly affects the exchange of energy
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between the surface and the atmosphere. The results overall demonstrate the clear added

value of the HICAR model in its ability to improve forecasts of variables crucial to land-

surface modeling. The findings of this study have particular relevancy to seasonal snowpack

modeling, where forecasts of snowpack depend heavily on the surface energy balance, driven

by downwelling radiation and air temperature, and accumulation processes influenced by

winds and precipitation (Mott et al., 2023). Using measurements at several sites, we have found

that using an adaptive-habit microphysics scheme improves the representation of 2 m air

temperature while allowing for reasonable predictions of surface input radiation as affected

by cloud cover. Additionally, the use of the thermal wind parameterization of Grisogono

et al., 2015 improved simulated 2 m air temperature by allowing for improved near-surface

ventilation during periods of surface radiative cooling. The mean bias error between one 50 m

resolution HICAR simulation and 5 temperature sensors over a roughly 2-week period was

found to be 0.18ºC, compared to a mean bias error of -1.24ºC for the driving model.

A spatial evaluation of the wind fields simulated by HICAR was conducted using data from a

wind LiDAR deployed in complex, snow-covered terrain. A new type of LiDAR scan pattern,

RHE scans, was also introduced and detailed, allowing maximum sampling of near-surface

winds in complex terrain. The LiDAR device measured eddy-like structures in the leeside

of terrain features and low-level thermally driven slope flows over the course of its 16-day

deployment. Simulations with the HICAR model display similar features, demonstrating that

the model can represent the presence and timing of such flow features. These interactions

between terrain and flow are the primary drivers of flow field variability at these scales, and

represent large modifications to the forcing wind field supplied by the 1.1km COSMO data.

Turbulent flow features were also observed by the wind LiDAR which HICAR can not represent.

This is due to the lack of any consideration of momentum in the model’s solution of a 3D wind

field.

Despite advantages for simulating 2 m air temperature when using the thermal wind param-

eterization, its use produced strong vertical gradients in wind speed. In reality, such strong

vertical shear should produce mechanical mixing which allows for a transfer of momentum to

higher altitudes. HICAR does not consider momentum, however, and so this shear remains

in the wind field. Comparison of HICAR’s wind field at a valley station also showed that the

thermal wind parameterization shifted the dominate flow regime from a mix of valley and

slope flows to favoring almost exclusively slope flows. Both points indicate that the ther-

mal flow correction is likely overestimated in the model, and requires some correction. An

effect of vertical shear dampening could be approximated by modifying the thermal wind

parameterization to apply a smoother correction.

Lastly, a large negative model bias in 2 m air temperature was observed over snow during

clear nights. Due to the timing of this bias, and its presence in simulations both with and

without the thermal wind parameterization we suspect that it is caused by overly inefficient

exchange between the snow and atmosphere under stable conditions. As noted earlier, the

snow modeling community has identified that current exchange parameterizations often
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produce excessively stable conditions over snow and result in excessive cooling of the snow

surface (Martin & Lejeune, 1998; Schlögl et al., 2017). These shortcomings may be overcome

by coupling HICAR to a more physically rigorous snowpack model, which will be explored in a

future study. Coupling HICAR with land surface models may prove to be mutually beneficial,

as these models would themselves benefit from high resolution atmospheric forcing data.

Such a demonstration of a two-way coupled HICAR-snowpack model would prove the use of

the model for applications where dynamic downscaling has long been attractive but remained

technically prohibitive.

Code and Data Availability HICAR can be used for non-profit purposes under the GPLv3

license (http://www.gnu.org/licenses/gpl-3.0.html, last access: 1 February 2023). Code for

the model is available at https://github.com/HICAR-Model/HICAR. The exact release (v1.2)

used in this publication is available at https://doi.org/10.5281/zenodo.10679307. Data from

the IMIS stations are available at https://measurement-data.slf.ch/, data from the SMN

stations are available at https://opendata.swiss/en/dataset/automatische-meteorologische-

bodenmessstationen, and data from the Wind LiDAR observations are available at 10.16904/en-

vidat.481. Output from the COSMO1 model was obtained through MeteoSwiss. The basemap

layer used in Figure 3.1 comes from Swiss Topo. Similarly, topographic data for generat-

ing the RHE schematic and designing the scans was obtained from Swiss Topo swissALTI3d

(https://www.swisstopo.admin.ch/de/hoehenmodell-swissalti3d).
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4 Seasonal Snow-Atmosphere Modeling:
Let’s do it

This chapter corresponds to the version of the article submitted to the journal The Cryosphere

by the authors:

Dylan Reynolds, Louis Quéno, Mahdi Jafari, Justine Berg, Michael Haugeneder, Michael

Lehning, and Rebecca Mott

Abstract

Mountain snowpack forecasting relies on accurate mass and energy input information to the

snowpack. For this reason, coupled snow-atmosphere models, which downscale input fields

to the snow model using atmospheric physics, have been developed. These coupled models

are often limited in the spatial and temporal extent of their use by computational constraints.

In addressing this challenge, we introduce HICARsnow, an intermediate-complexity coupled

snow-atmosphere model. HICARsnow couples two physics-based models of intermediate

complexity to enable basin-scale snow and atmospheric modeling at seasonal time scales. To

showcase the efficacy and capability of HICARsnow, we present results from its application to

a high-elevation basin in the Swiss Alps. The simulated snow depth is compared throughout

the snow season to aerial LiDAR data. The model shows reasonable agreement with obser-

vations from peak accumulation through late-season melt-out, representing areas of high

snow accumulation due to redistribution processes, as well as melt patterns caused by inter-

actions between radiation and topography. HICARsnow is also found to resolve preferential

deposition, with model output suggesting that parameterizations of the process using surface

wind fields only may be inappropriate under certain atmospheric conditions. The two-way

coupled model also improves surface air temperatures over late-season snow, demonstrating

added value for the atmospheric model as well. Differences between observations and model
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output during the accumulation season indicate a poor representation of redistribution pro-

cesses away from exposed ridges and steep terrain, and a low-bias in albedo at high elevations

during the ablation season. Overall, HICARsnow shows great promise for applications in

operational snow forecasting and studying the representation of snow accumulation and

ablation processes.

4.1 Introduction

Patterns in mountainous snowpack are beautifully complex, with sharp cornices contrasted

by smooth wind slabs and fresh snow deposits. The process affecting these shapes are equally

complicated, comprised mostly of redistribution by wind and preferential deposition for

the aforementioned features (Mott et al., 2018). Wind redistribution acts close to exposed

ridges and peaks, where winds have sharp discontinuities in wind speed. This sets up net

accumulation and ablation by saltation or suspension. Snowfall itself is modified at the

ridge scale via preferential deposition, where some areas of a cross-ridge transect receive

more snow than others (Lehning et al., 2008; Zängl, 2008). Preferential deposition has been

the subject of focused research into what mechanisms lead to such deposition patterns.

Initial observational studies found that information about surface winds, either from station

data or model simulations, correlated with areas of differential deposition. Lehning et al.,

2008 noted the mechanism of updrafts decreasing the net fall speed of snow particles, while

downdrafts would do the opposite. This should lead to less deposition in the region of updrafts

relative to downdrafts, and their study proposed a parameterization of preferential deposition

relating vertical wind speeds to precipitation. Similarly, Dadic et al., 2010; Helbig et al.,

2024 found that higher horizontal wind speeds, as well as vertical wind speeds, correlated to

regions of differential snow deposition over an alpine glacier. Both of these studies explain

preferential deposition as a process dependent on interactions between snow and the near-

surface flow field. Mott et al., 2014 challenged this simplified view of the process, observing

that interactions between falling snow and cloud microphysics, mainly via the seeder-feeder

mechanism, also played a role in preferential deposition. The earlier modeling study of

Zängl, 2008 found a similar mechanism to lead to increased deposition on leeward slopes

for solid hydrometeors. Importantly, this process is expected to occur at elevations more

than 100m above the terrain surface. Mott et al., 2014 also observed that horizontal advection

of particles above ridges in the downwind direction played a dominant role in the process

of preferential deposition. A modeling study from Gerber et al., 2019 corroborated these

observations, noting that differences in modeled snowfall along a cross-ridge transect were

existent at elevations above 100m above the terrain surface, suggesting an influence from

cloud-microphysical processes. The authors of this study also considered that mean advection

aloft may contribute to this signal, where a peak in precipitation is shifted downwind from over

the peak in elevation. Due to difficulties in separating these two processes when examining

final precipitation amounts, Gerber et al., 2019 considered both processes to contribute to

the preferential deposition signal simulated at the 100m above ground level. Notably, the
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differences in snowfall at this height explained two-thirds of the surface snowfall differences.

Additional modeling by Z. Wang and Huang, 2017 and Comola et al., 2019 supports the

conclusion that horizontal advection aloft contributes to preferential deposition. Viewed

together, the basic description of preferential deposition arising from particle-flow interactions

remains correct. At the same time, the notion that it mainly occurs close to the surface, and is

thus a direct result of the surface flow field, is uncertain. The results of Comola et al., 2019 in

particular demonstrated that parameterizations of preferential deposition based on surface

measurements are valid only under advection-dominated particle motion.

Atmospheric models are often employed to better consider the processes affecting snow depth

patterns in the mountains, as done by Gerber et al., 2019. These atmospheric models have

also been coupled with snow models in a two-way setup (Sharma et al., 2023; Vionnet et al.,

2014; Voordendag, Goger, Prinz, et al., 2023). Two-way coupling of atmospheric models with

snow models offers benefits to both models. In this configuration, a better representation of

the surface snowpack can lead to better estimates of mass and energy exchanges between the

surface and the atmosphere, which then feeds back to the snow model. This has been found

to directly improve estimates of near-surface air temperature and blowing snow sublimation

rates (Groot Zwaaftink et al., 2013a; Schlögl et al., 2018). The influence of precipitation on

seasonal snowpack during the accumulation season has already been discussed, while during

the ablation season radiation is the primarily driver of changes to the snowpack (Helbig et al.,

2010; Jonas et al., 2020; Mazzotti, Essery, Webster, et al., 2020). Unfortunately, these two

processes are computed by the most expensive parts of modern atmospheric models, the

radiation and microphysics schemes. Even more troubling, the heterogeneity of mountain

snowpack is only resolved at horizontal resolutions approaching the hectometer scale and

below (Deems et al., 2006), and this snowpack heterogeneity is precisely what matters for snow

hydrological questions (Luce et al., 1998; J. D. Lundquist & Dettinger, 2005). This heterogeneity

results from the accumulation processes discussed above, namely preferential deposition and

redistribution, as well as fine-scale radiative processes such as shading from cloud cover or

terrain. This means that coupled snow-atmosphere models should be run at the hectometer

resolution in order to capture hydrologically relevant differences in the snowpack. And, that

the two processes which require the most computation time should not be degraded to reduce

computational demand.

These conditions have been followed by the earlier studies using coupled snow-atmosphere

models in mountainous terrain mentioned above, and as a result these studies have been

constrained to simulation periods on the scale of days. This is due to the computational

expense of running atmospheric models at such high horizontal resolutions. One exception

to this is the usage of snow-atmosphere models over ice sheets, as done by Sharma et al.,

2023 with the CRYOWRF model. In this environment the snowpack is found to vary over

larger length scales than in mountainous terrain. This is partly due to the lack of terrain

obstacles disturbing the wind field, and a homogeneous distribution of snow depth aside from

small-scale bedforms (Filhol & Sturm, 2015; Picard et al., 2019). This reduced heterogeneity of

snow depth thus permits larger modeling resolutions. Caveat aside, studying the cumulative
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impacts of dynamic downscaling on mountain snowpack over an entire snow season requires

efficient atmospheric models of intermediate complexity.

The snow modeling community has been adopting this strategy, with numerous studies em-

ploying a diagnostic wind solver to generate a wind field for simulating wind-driven redistribu-

tion (Groot Zwaaftink et al., 2013a; Quéno et al., 2023; D. S. Reynolds et al., 2021; Vionnet et al.,

2021). This efficient approach to generating a 3D wind field can also be implemented within

an atmospheric model, as was done in D. Reynolds et al., 2023 when developing the HICAR

model. This creates a computationally efficient atmospheric model capable of providing

high-resolution precipitation and radiation data, in addition to a surface wind field required

by most intermediate-complexity wind-redistribution schemes. The approach was tested in

Berg et al., 2024, in prep, with HICAR downscaling COSMO1 data (www.cosmo-model.org)

to force the FSM2trans snow model (Quéno et al., 2023). COSMO1 is a non-hydrostatic at-

mospheric model which was used to produce operational weather forecasts over Switzerland.

Using dynamically downscaled data was found to result in more heterogeneous snowpack

than using dynamically downscaled winds alone, better matching the distribution of observed

snow depth.

These results motivated the development of a two-way coupled snow-atmosphere model

using HICAR and FSM2trans, which will be the focus of this study. Section 2 will discuss how

these two models are coupled together and which data they share. Section 3 will present

results from the two-way coupled model, focusing on accumulation patterns in complex

terrain, the representation of preferential deposition in the model, and lastly the melt patterns.

All of these results will be compared to observations of snow depth from aerial LiDAR scans.

Finally, these results will be summarized in the last section, with recommendations for future

applications and model improvements.

4.2 Methods

4.2.1 Model Coupling

To simulate the seasonal snowpack and processes of snow redistribution in a computationally

efficient manner HICAR employs the FSM2trans model (Quéno et al., 2023), which consists

of the base Factorial Snow Model 2 oshd variant (FSM2oshd) (Essery, 2015; Mazzotti, Es-

sery, Moeser, & Jonas, 2020; Mott et al., 2023) with additional modules for calculating snow

redistribution. This snow model can account for snow accumulation and melt processes

as well as redistribution of the snowpack through wind-driven and gravitational transport.

HICAR and FSM2trans are coupled in a two-way system, where a static library of FSM2trans

routines are integrated into HICAR as the snow module. At each call to the land surface model

(LSM) in HICAR, the forcing data required to drive FSM2, including 10 m wind speed, 2 m air

temperature and relative humidity, incoming shortwave and longwave radiation components,

and precipitation, are supplied by HICAR. In return, FSM2 computes changes to the internal
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snowpack properties, as well as the sensible heat flux, latent heat flux, and snow surface tem-

perature, which are subsequently utilized by the chain of surface-atmosphere exchange within

HICAR. To highlight these model changes and the coupled system’s potential for modeling

seasonal snow, we refer to the two-way coupled model as HICARsnow in the rest of the study.

Previous validation of HICAR highlighted the need for a more accurate snow model than

the one featured in the NoahMP LSM. However, the rest of NoahMP features more rigorous

bare-ground and non-snow-covered vegetation dynamics than what is available for non-

snow-covered cells in FSM2. To take the best from both LSMs, we run NoahMP at each LSM

time step as well. We turn off the internal NoahMP precipitation partitioning when FSM2 is

activated, and supply NoahMP with only liquid precipitation from HICAR. When snow falls on

a particular grid cell, or if there is already snow on a grid cell, then the results from running

FSM2 are used to update that grid cell during a given call to the LSM routines in HICAR. If a

cell is snow covered, then FSM2trans simulates its soil physics, while the soil beneath bare

cells is handled by NoahMP.

4.2.2 Parallelization of Snow Redistribution

While the original FSM2 snow model only considers local effects of the atmosphere on the

snowpack at each grid cell, FSM2trans simulates redistribution, requiring a transfer of in-

formation between grid cells. To facilitate this within the parallelization of HICAR, it was

necessary to rewrite the redistribution routines used.

Wind-driven redistribution of snow is calculated using the SnowTran-3D scheme (G. E. Liston

et al., 2007) in FSM2trans. In this scheme, the saltation flux for the local grid cell are first

calculated considering the local wind speed, direction, and the surface properties of the snow-

pack. We note that this saltation scheme has been known to underestimate saltation fluxes

(Doorschot & Lehning, 2002; Melo et al., 2023), but it has given reasonable snow deposition

patterns in prior studies employing intermediate-complexity snow transport schemes.

The local saltation flux is then considered by summing the local contribution and the flux at the

upwind cell. This step requires the use of non-local information, namely from some upwind

grid cell. In the non-parallel SnowTran-3D implementation, the operation is simply performed

over the whole model domain at once, moving along each cardinal direction. The domain

boundary conditions serve as the upwind flux at the boundary grid cells. However, HICAR

parallelizes the domain into a number of discrete images. In the parallel implementation,

boundary grid cells on a given image take on the domain boundary condition for the first

iteration, and an initial guess for local saltation fluxes is obtained. The saltation flux at the

boundary grid cells of a particular image are then exchanged with boundary grid cells on

neighboring images in a standard halo exchange. These updated boundary values are then

used to re-run the saltation flux calculation on the local images.

The exchange of boundary estimates of saltation fluxes and re-calculation of local fluxes is
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then repeated. This approach has been tested with varying numbers of iterations, and an

iteration count of 3 was determined to be adequate for computing steady-state fluxes. The

methodology is inspired by the approach used in Mower et al., 2023. Once steady-state fluxes

are found, net snow transport and changes to the snowpack properties can be calculated. The

same approach is used for calculating transport via suspended snow.

For gravitational redistribution, FSM2trans uses a scheme based on Snowslide (Bernhardt &

Schulz, 2010). In this scheme, all grid cells are examined in a given call to the gravitational

redistribution module, comparing the local snow depth to a "snow holding depth" which

varies for each grid cell according to slope. Grid cells with snow above their snow-holding

depth shed their snow to down-slope grid cells. These down-slope grid cells are then examined

for the same condition, with the process repeated until no grid cell has a snow depth greater

than its local snow-holding depth. Quéno et al., 2023 added the additional condition that

snow holding depth is reduced when a grid cell was passed snow. In this way, the reduction

approximates the effect of static or dynamic frictional coefficients when avalanching snow

slides. To parallelize this module, Snowslide is run on each image, and any snow found to be

sliding "out of" the image is transferred to the neighboring image. This sequence is repeated

an arbitrary number of times to ensure that avalanches are able to run out their full path.

Because Snowslide requires a relatively high number of exchanges, and because the exact

timing of avalanche release in such a simplified model is not important, the gravitational

module is only called once every simulation hour in HICARsnow.

4.2.3 Observational Datasets

This study relies on repeated areal LiDAR surveys of snow depth to validate the snow depth

distribution simulated by the HICAR model. In spring of 2017, three areal LiDAR flights were

performed over eastern Switzerland, covering the rugged upper Dischma catchment. The

scans include a date near the peak accumulation of snow before the onset of wide spread melt

(March 20th), a date 11 days later after warm temperatures and clear skies induced melting

of the snowpack (March 31st), and a date in the middle of May, where most snow at lower

elevations has melted away. For this May flight, late-season storms have also enriched the

snowpack at higher elevations. The area enclosed by these repeat LiDAR flights is shown

in figure 4.1 by the black lines. Part of the upper Dischma catchment is glaciated, making

the extraction of snow depth at these locations difficult. This is because movements of the

underlying glacier result in shifts of the snow surface, which would be recorded as changes

in snow depth by the LiDAR scan. To avoid comparing the model with observations at these

locations, glaciated areas have been masked from the LiDAR data and model results using

glacier outlines from the Randal Glacier Inventory 6 (RGI Consortium, 2017).

A previous study using HICAR found that the model exaggerated nighttime cooling of the

snow surface, and thus 2m air temperature, in the spring (D. Reynolds et al., 2024, in prep).

To compare the ability of previous model versions with HICARsnow, 2m air temperature data
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Figure 4.1: Overview of the Upper Dischma Valley outside of Davos, Switzerland. The smaller
map in the upper left corner shows the location of the zoomed-in plot within the broader
Eastern Swiss Alps. The brown box indicates the modeling domain for the 50m horizontal
resolution HICARsnow simulations. The black swath indicates the approximate spatial cover-
age of the LiDAR data introduced in Section 4.2.3 The green line indicates the location of the
transect figures (Figs 4.6, 4.7). Lastly, the purple angle shows the viewing angle for figure 4.8,
which compares a 50m and 2m DEM of the region.

from a ventilated temperature sensor used in this prior study is again used here and discussed

in section 4.3.2. For a full description of the experimental setup used in this earlier study and

the conditions present at this time, we refer the reader to the publication.

4.2.4 Model Setup

To test HICARsnow’s representation of snow accumulation patterns and snow ablation, the

model is run from October 1st 2016 through May 17th, 2017 over the upper Dischma catchment

outside of Davos, Switzerland (Figure 4.1). The simulations are performed at a 50m horizontal

resolution, and are one-way nested within larger 250m and 1000m resolution simulations.

Topographic data for constructing the Digital Elevation Models (DEMs) is available from the

ASTER Global DEM V002 (Spacesystems & Team, 2019), and land surface data from the Corine

dataset is used (Agency, 2006). These static data are then used as input to a domain-generation
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script distributed with HICAR, which can produce the remaining necessary topographic

data. Output from the COSMO1 model was used for meteorological forcing data, including

temperature, pressure, water vapor mixing ratio, and the 3D wind field. This data is used to

force the outer 1km domain, after which output from the 1km domain simulation is used to

force the 250m simulation, and finally 50m. This setup follows that used by previous studies

employing HICAR (D. Reynolds et al., 2023; D. Reynolds et al., 2024, in prep). For the HICAR

model, we use version 2.0(TODO: HERE) which features the changes to surface processes

detailed in D. Reynolds et al., 2024, in prep. For the FSM2trans model we use the same model

parameters used in Berg et al., 2024, in prep. Of note, FSM2trans can be configured with

an arbitrary number of snowpack layers. For this study, we configured the model with 6

snow layers, following the methodology of Quéno et al., 2023. One model simulation was

performed over the whole time range with the Morrison microphysics scheme (Morrison et al.,

2005). A shorter simulation was performed with the ISHMAEL microphysics scheme (Jensen

et al., 2017) from October 1st through November 7th 2016 to capture a particular snowfall

event. This shorter run was performed due to the nearly doubled model run times when

using the ISHMAEL scheme. The ISHMAEL microphysics scheme tracks three forms of ice

hydrometeors, or ice "habits", and evolves their density and shape through time to allow

for accurate predictions of fall speeds (Harrington et al., 2013a). The scheme belongs to the

broader class of Adaptive-habit (AHAB) microphysics schemes (J.-P. Chen & Lamb, 1994),

which have not yet been employed in the study of preferential deposition. A discussion of the

deposition patterns predicted by the two schemes is given in section 4.3.1.

Lastly, in addition to running the two-coupled HICARsnow model, standalone runs using

FSM2trans and various forcing data were performed. Two runs with the FSM2trans model

were conducted: one run with statistically downscaled COSMO1 data according to Mott et al.,

2023 and only the wind field from HICARsnow, and a second run with all of the forcing data

provided by HICARsnow except for precipitation. In this case, precipitation again comes

from statistically downscaled COSMO1 data. These two runs are included to demonstrate

both the overall impact of dynamic downscaling aside from redistribution, and the effect of

dynamically downscaling precipitation alone.

4.3 Results and Discussion

4.3.1 Snow accumulation Processes

Results from running HICARsnow with the Morrison microphysics scheme are shown in figure

4.2, comparing modeled and observed snow depth around peak accumulation. Across the

domain, modeled snow depth amounts generally agree with observations, with the valley

bottom containing snow depths less than 0.5 m, while higher elevation regions have snow

depths near 2 m. Finer scale patterns are also observed in the vicinity of ridges and steep

slopes, and these patterns are discussed later in section 4.3.1. Importantly, differences in snow

depths exist between the HICARsnow run, and a simulation using FSM2trans with all of the
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HICAR forcing data except for precipitation. In this FSM2trans run, we see that there is reduced

heterogeneity of snow depth a few hundred meters away from the ridge line compared with

the HICARsnow simulation and the LiDAR data. 4.3 shows that HICAR snow better matches

observed snow depth values away from the ridge along a transect bisecting this ridge. Moving

to the right towards the ridge, snow depth values steadily increase, and this increase persists

after crossing the ridge before reducing towards the snow depths from the FSM2trans run.

This likely arises from the inclusion of preferential deposition in HICARsnow’s precipitation

data, and is discussed further in section 4.3.1. From the upper row of figure 4.2 we notice

a bias in HICARsnow towards higher snow depths, particularly on the north-eastern facing

slopes near the valley bottom. This trend is confirmed when binning snow depths according

to aspect and elevation, as done in figure 4.4. Here we note excessively high snow depths

along the north-east, east, as well as south-to-west facing slopes. Since this date is near peak

accumulation, and little snow melt has occurred until now, we assume that these snow depth

patterns are driven by accumulation processes, and not melt processes. The higher snow

depths in HICAR at lower elevations may be explained by errors in large-scale precipitation

patterns, such as an incorrect rain-snow line earlier in the season, or an overall wet bias

in precipitation, as suggested in figure 4.5. We also note more evidence of re-distribution

processes, such as avalanching or wind-redistribution, at lower elevations in the LiDAR data

than model output. Indeed, HICARsnow mostly represents redistribution processes only in the

vicinity of ridges. Section 4.3.1 will discuss the influence of model resolution on this process

representation. In the case of SnowTran-3D, wind-redistribution is affected by both forcing

data from HICAR and the process representation itself, making it difficult to separate the two

as sources of error. At the least, representing redistribution processes at more locations is a

clear area of improvement for FSM2trans, as noted by the original study (Quéno et al., 2023).
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Figure 4.2: Basin-wide comparison of observed snow depth from aerial LiDAR, simulated snow
depth from HICARsnow, and simulated snow depth from FSM2trans with all of its forcing data
coming from HICAR, except for precipitation. The date is on March 20th, 2017 around peak
accumulation of snow. In the lower row, the snow depth around a ridge is shown in detail. The
black boxes in the upper row show the location of the detailed view. The model simulations
are masked to match the LiDAR flights, where glaciated regions or border cells are removed
from the maps.

Figure 4.5 shows the effects of dynamical downscaling on snow depth distributions around

peak accumulation. As a baseline, one run is shown where FSM2trans is forced with statistically

downscaled output from the COSMO1 model, except for wind input, which comes from HICAR.

This was chosen as the baseline to not include effects of redistribution in the comparison.

The green line then shows the result from including HICAR forcing data for all other variables,

except for precipitation. We note a slight shift to the left, indicating lower snow depths.

This may be due a lack of snowfall, as the HICAR temperature field is now used to partition

precipitation into rain or snow, or it may be due to more mid-season melt. The greatest

shift can be seen when using dynamically downscaled precipitation from HICAR. Here, the

distribution is both broader, and has a wider range of values. This result highlights the added

value of dynamically downscaling precipitation, where improved gradients in precipitation

result in a broader distribution. Interestingly, the 250m HICARsnow simulation, run without

redistribution processes, shows a similar improvement in snow depth heterogeneity over this

domain. Again, we attribute this to the more heterogeneous precipitation patterns resolved
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by HICAR relative to the statistically downscaled precipitation input, even at the 250m scale.

Additionally, the HICARsnow simulation at 250m does have a narrower distribution, reflecting

the lack of redistribution processes in the simulation.

Figure 4.3: Transect of snow depth values, averaged along the transect shown in the cutout of
figure 4.2. The direction of the transect is south to north, moving from left to right.

Snowfall processes

During the accumulation season, snowfall processes shape the pattern of snow depth on the

ground, either via orographic precipitation or preferential deposition. These two processes

are most dominant on smooth, flat terrain in the vicinity of ridges. At these locations, a lack

of discontinuities in wind speed driven by terrain features will not lead to net transport via

redistribution, flat terrain will not avalanche, and the proximity to ridges confers a signal of

preferential deposition. In figure 4.2 we can see such a region in the lower panels, comparing

the two sides of the dominant ridge. In the LiDAR data we observe deeper snow deposits on the

right side of the ridge compared to the left. This general trend is observed in the HICARsnow

results as well, but not in the simulation using FSM2trans without dynamically downscaled

precipitation.

To better visualize the process of preferential deposition as simulated by the model, two

movies of the process have been made and included in the supplement to this study (placed

in the Data Availability Statement for this thesis). Snapshots from two significant moments

in the movies are included as figures 4.6 and 4.7 here. Figure 4.6 shows the accumulation

of snowfall across a ridge during a particular snowfall event on November 6th, 2016. From

this event, we observe a clear difference in snow deposition on the windward side versus the
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Figure 4.4: Aspect-elevation plots of observed and simulated snow depth above an elevation
of 2000m. The data used correspond to the same masked region shown in figure 4.2.

leeward side of the ridge. Stronger winds aloft suggest that the dominant process leading

to preferential deposition, in this case, is the advection of snow particles downstream by

winds aloft, resulting in a shift of the peak precipitation distribution (Z. Wang & Huang, 2017).

Interestingly, the snowfall simulated by the two microphysics schemes is roughly similar,

with slightly higher snowfall amounts downwind of the ridge in the ISHMAEL simulation

than the Morrison simulation. This difference in snowfall amounts is reflected by the higher

concentration of snow particles downwind of the ridge in the ISHMAEL simulation. To better

grasp why these differences occur, and how the pattern of preferential deposition develops in

the first place, a view of the microphysical parameters during this event is presented in figure

4.7.

Here, the complex processes of microphysical interactions, net advection aloft, and near-

surface particle-flow interactions are all on display. The ISHMAEL microphysics scheme

can track three ice types, planar, columnar, and aggregate ice, and evolve them separately.

Aggregates of ice particles were not present during this event, so they are not shown. The
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Figure 4.5: Probability Density Functions (PDFs) of observed and simulated snow depth at
the times of two LiDAR flights. The orange line shows the results of an FSM2trans run where
all of the forcing data comes from statistically downscaled COSMO1 output, except for the
winds, which come from HICAR. The green line shows the results of an FSM2trans run where
all of the forcing data comes from HICARsnow, except for precipitation, which comes from
COSMO1.

Morrison microphysics scheme sorts ice hydrometeors into particular species assumed to

have given relationships between particle concentration, mass, and fall speeds. Only snow

ice was present in a large concentration for this event. For the initial state shown in figure 4.7,

mean advection aloft is shown to act primarily on planar ice, ice1. The bulge in the distribution

of ice1 is shifted downwind in the region of strong horizontal winds. Lower in the atmosphere

on the leeward side, the distribution of ice1 has a positive trend, suggesting riming of ice1 as it

falls towards the surface. The increase in ice1 fall speeds and positive trend in particle density

on the leeward side confirm this. Interestingly, the region of increased fall speeds corresponds

to the region of columnar ice, ice2. Ice2 is observed to have much lower particle fall speeds,

and thus net fall speeds, than ice1, with a distribution concentrated around the leeward side of

the hill. This suggests that the feeder cloud in the seeder-feeder process is shifted downwind
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Figure 4.6: Demonstration of preferential deposition during a storm on November 6th, 2016.
The location of the transect is shown in figure 4.1, running from the east (left) to the west
(right). A vertical dashed line in the upper plot indicates the highest elevation point along the
transect. The upper panels show the hourly increase in snowfall (lines in the air) and the hourly
increase in snow water equivalent (lines above the terrain) since the beginning of the storm.
The lower panels show wind vectors projected along this transect, and the concentration of
snow particles in the air. Results using the Morrison microphysics scheme are shown on the
left, and the ISHMAEL microphysics scheme is on the right.

of the ridge crest. The cause of this shift is likely a combination of the winds roughly 200 m

above the ridge crest, as well as the updrafts present on the leeward side. In this way, we see

that cloud-microphysical enhancement via the seeder-feeder mechanism as described by

Mott et al., 2014 is also affected by the near-surface flow field. A shifted concentration of snow

hydrometeors is also observed for the simulation using the Morrison microphysics scheme,

with a bulged distribution of hydrometeors aloft. However, the distribution of particle fall

speeds is very homogeneous, indicating that the differences in net fall speed shown by the

dashed black contours are mostly due to heterogeneities in the vertical velocity field.

The dynamics of this event are best appreciated by referring to the video in the supplement

(placed in the Data Availability Statement for this thesis). Over 30 minutes, the feeder cloud

in the lee breaks down, and the local water vapor concentration decreases. As a result, fall

speeds of both ice species decrease, and their concentrations decline. This leads to a fall-out

of the remaining hydrometeors on the leeward side, signaling the end of this intense period of

snowfall. Again, the Morrison microphysics scheme fails to capture these dynamic changes in

particle fall speed. It maintains a fairly constant particle fall speed throughout the snowfall

event, which has a value similar to the mean fall speed that ISHMAEL predicts for ice1 and ice2

species. The net particle speeds are similar between the Morrison and ISHMAEL simulations,

reflecting the importance of the 3D flow field itself in determining sedimentation rates. This

similarity likely explains why the deposition patterns shown in figure 4.6 diverge very little.

In all, this event was chosen because it highlights the dynamics that can be simulated with

HICAR and shows that the Morrison microphysics scheme produces results consistent with a
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Figure 4.7: The same transect as shown in figure 4.6, but comparing the representation of
snowfall in the ISHMAEL and Morrison microphysics schemes. In the upper panels, the
wind vectors are overlaid on the water vapor mixing ratio. In the middle panel, the mixing
ratio of snow hydrometeors is shown in the background. For the ISHMAEL simulation, the
concentrations of ice1 (planar ice; pink) and ice2 (columnar ice; green) are overlaid as contour
lines. Thicker lines correspond to higher concentrations. In the lower plots, the ice particles’
fall speed are shown as the background shaded color. The hydrometeors’ net vertical velocity
(vertical air motion - fall speed) is shown with the dashed black lines, where thicker lines
indicate faster fall speeds toward the surface. For the ISHMAEL panels, the density of the ice
particles is shown by the cyan lines, where thicker lines indicate higher densities. For the
ISHMAEL plots, one is shown for the ice1 species, and a second for the ice2 species.

more detailed, adaptive-habit scheme. Importantly, differences in snowfall patterns between

the two schemes do exist, particularly over longer time scales and at spatial resolutions larger

than the 50m resolution simulations shown here (Jensen et al., 2018). Still, at these spatial

scales, the ISHMAEL scheme simulates more complex microphysical interactions, which give

rise to solid precipitation patterns in complex terrain. This comparison also demonstrates

the utility of adaptive-habit microphysics schemes for studying preferential deposition and in

particular showing the influence of different types of hydrometeors.

Of note, downdrafts are present on the windward side of the ridge during this event, while

updrafts are present on the leeward side. Figure 4.7 suggests that this is due to eddy-like

structures occurring in both valleys which run across the axis of the valley and counter to the

mesoscale wind direction. Interestingly, this result contradicts existing parameterizations of

preferential deposition based on surface variables (Dadic et al., 2010; Helbig et al., 2024). These
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previous study identified regions of near-surface updrafts and downdrafts, and correlated

them with areas of decreased or increased snow deposition. In this way, it describes the

portion of preferential deposition arising purely from interactions between the near-surface

flow and the advection of snow particles. The later studies of Mott et al., 2014 and Gerber

et al., 2019 found these particle-flow interactions to be a contributing factor to preferential

deposition, but concluded that the interaction between the 3D flow field, snow particles, and

cloud microphysics contributed more to preferential deposition of snow.

Synthesizing the results of these studies, we can see that preferential deposition cannot be fully

described without knowledge of local cloud microphysical processes and the 3D flow field.

This implies that approaches that only utilize 2D near-surface surface fields to parameterize

preferential deposition will not capture the dominant effects of a) 3D advection aloft and b)

microphysical evolution of snow particles. Earlier models which representing preferential

deposition by the advection and diffusion of particles alone will simulate the transport of

snow particles (Lehning et al., 2008), but not microphysical processes which may alter their

eventual fallout. In the worst case, where local updrafts enhance hydrometeor growth or

production, leading to increased fallout, approaches to parameterizing preferential deposition

using surface variables will give incorrect results. Since preferential deposition is the dominant

process by which precipitation patterns are altered at the hectometer scale, we conclude that

dynamic downscaling is necessary to resolve precipitation patterns in complex terrain.

The results of this section demonstrate the complexity of near-surface precipitation processes

and the need for dynamic downscaling to capture it. Statistical downscaling is unlikely to

capture these precipitation processes which lead to greater variability of snow depths, as

shown in figure 4.5. This section has also shown that preferential deposition can occur

through interactions between near-surface flow features and microphysical processes. This

challenges a dichotomy often invoked when describing preferential deposition (Vionnet et

al., 2017), where the two processes shape snowfall distributions independent of each other.

Our results suggest that preferential deposition cannot be generally split into two processes,

microphysical interactions and near-surface particle-flow interactions, based purely on height

above terrain (Gerber et al., 2019).

Redistribution processes

In the direct vicinity of ridges and steep terrain, redistribution processes of wind-redistribution

and avalanching play a dominant role in shaping the distribution of snow. Importantly, wind-

redistribution often feeds the process of avalanching, loading slopes with snow until the

weight of the overlaying snow triggers redistribution to lower elevations. In this way, it is

difficult to completely disentangle the processes from each other when considering snow

depth maps. This is apparent when viewing the cut-out displayed in figure 4.2. Along the ridge

line, deep deposits of snow depth are seen to the north of the ridge in the LiDAR data. These

deposits may result from wind-loading, avalanching, or a combination of the two. Thus, we

will not try to differentiate between the two processes except where obvious and instead focus
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Figure 4.8: Part of the model domain represented using either a 50m or 2m DEM. The view of
the camera is indicated in figure 4.1 by the purple angle.

on the strong heterogeneities present in snow depth around steep or exposed terrain.

Overall, HICARsnow shows good agreement with LiDAR data when representing the hetero-

geneity of snow depth around the ridges. In particular, the approximate areas of deep deposits

are captured well (fig. 4.2). This results in a weighting of aspect-dependent snow depths at

higher elevations (Fig. 4.4). These observations reflect the findings of Quéno et al., 2023 for

FSM2trans in general. Of interest to this study is what patterns of wind-redistribution may

say about the wind fields generated by HICAR. One feature of note in the snow depth maps

is the lack of wind-redistribution away from prominent terrain features. Figure 4.2 displays

this, where the secondary ridge found in the upper center of the cut-out features much more

heterogeneity in snow depth in the LiDAR data than in the model output. Again, it is difficult

to conclude if this results from insufficient wind transport, or avalanching. A similar pattern

is seen in the upper right corner of the cutout, where steep, vegetated gullies in the terrain

lead to much greater observed snow depth heterogeneity than modeled. This feature is a

clue to why redistribution around secondary ridges is also underrepresented. Both of these

terrain features occur over short distances, meaning that they may be poorly represented

even in a 50m resolution DEM. Natural disturbances unrelated to the topography (rocks,

bushes) should also contribute to increased surface roughness and alter patterns of snow

redistribution. The PDF in figure 4.5 shows what effect increased model resolution has on the

overall distribution of snow depth, supporting the conclusion that higher model resolutions,

or parameterizations which account for sub-grid roughness, may be necessary to resolve

snow redistribution in these areas. Figure 4.8 shows the difference between representing the

domain at a 50m resolution vs. a 2m resolution. This viscerally demonstrates how sub-grid

scale topographic features likely alter the wind field at finer scales (Mott & Lehning, 2010),

resulting in different patterns of snow depth even when up-scaling to the 50m resolution.

Wind scour of snow is, however, likely overestimated directly at ridges. Figure 4.2 shows

almost 0m of snow depth at some ridge crests throughout the domain, and overall lower

snow depth at ridges compared with LiDAR observations. Importantly, many of these areas
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of low snow depth are found without corresponding down-slope deposits of snow, ruling

out the process of avalanching as a cause of these low snow areas. This excessive scour

may be driven by erroneously high wind speeds from HICAR, although a prior study did

find reasonable agreement between HICAR’s wind speeds and observations at ridge-crests

in complex terrain (D. Reynolds et al., 2024, in prep). Thus, the excessive scour at ridges is

likely a combination of high wind speeds and errors an overly simplified relationship between

wind speeds and transport in SnowTran-3D. Lastly, we note that some deep snow deposits

present in the LiDAR data exist further from the ridge line than simulated by HICARsnow.

These deposits are likely avalanches that have longer run out paths in reality than simulated.

Quéno et al., 2023 did address this with a modification to the Snowslide parameterization as

discussed in section 4.2.2, but it may be difficult to accurately represent this process with a

simple avalanching model. The issue of model resolution again comes up, where a higher-

resolution DEM may represent these slopes at a higher angle, resulting in further run out of

the avalanche deposits. Computing wind-redistribution with a snow-physics model capable

of resolving the surface microstructure would also make for an interesting comparison to

FSM2Trans. Such a snow-physics model is expected to better estimate the threshold friction

velocity, which depends upon the surface microstructure of the snow. Coupling HICAR with

such models may also be advantageous, since blowing snow model run times are relatively

small compared to atmospheric models (Sharma et al., 2023). Overall, the successes and

shortcomings of representing snow redistribution with FSM2trans are in agreement with those

of Quéno et al., 2023. We refer the reader to this publication for a more detailed investigation

of the redistribution processes simulated by FSM2trans.

4.3.2 Ablation Processes

Later in the snow season, air temperature and incident solar radiation begin to shape the

spatial patterns of snow depth inherited from the accumulation season. The LiDAR data

for March 31st in figure 4.4 shows how lower elevations have already begun to experience

melt out by this date in the season. Due to the short temporal difference between these

two march flights, and the lack of any precipitation event, the two flights are compared in

below to examine HICARsnow’s representation of melt patterns. Despite being named the

"ablation season", late-season snowfall events can and do occur, as happened between the

March 31st and May 17th LiDAR flight. For this reason, the later two flights are not compared

for the sake of examining melt patterns. Instead, this flight can be used to test the model’s

representation of snow depth patterns under a complex situation of melt-out and springtime

mixed precipitation events. The PDF of snow depth for May 17th shows good agreement

between model output and observations for very small snow depths 4.5. These snow depths

occur at lower elevations and on southerly slopes at this point in the season, showing that

HICARsnow can capture the snow line well compared to observations. This is reflected in

figure 4.4, where the snow line is found to be within 100m of observations across all aspects.

The distribution of snow depths shown in the PDF is close to observations for higher snow

depths, but lacks snow depths greater than 160cm when compared to observations. Figure
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4.4 shows that these snow depths occur at higher elevations, and are absent in the model

output. The following paragraph discusses an observed melt bias at higher elevations, which

we believe explains this difference in snow depths at higher elevations so late in the season. A

prior study comparing HICAR output to observed 2m air temperature also found a slight warm

bias when using the Morrison microphysics scheme compared to the ISHMAEL microphysics

scheme. A low bias in high-elevation albedo, combined with a slight warm bias, could explain

this excessive melt. Thus, future studies using HICARsnow may want to explore using the

ISHMAEL microphysics scheme for simulations during the ablation season. The late-season

dry bias at high elevations could also be due to a lack of precipitation, but we have previously

noted a slight wet bias in the model results around peak accumulation, and the highest

elevations in the domain all experienced solid precipitation events up until May 17th. Thus,

we conclude that a bias in the amount of precipitation or phase of precipitation is an unlikely

explanation for the dry bias at high elevations on May 17th. Lastly, the 250m resolution

HICARsnow simulation shows remarkable similarity to the 50m HICARsnow simulation. This

reflects the fact that melt processes largely control the snow depth distribution at this point

in the season. Since terrain-dependent radiation parameters such as shading and sky-view

fraction are still included at the 250m simulations, most of this variability in melt patterns is

captured even at the 250m resolution.

To visualize the magnitude and spatial distribution of melt processes simulated by HICARsnow,

we compare the difference in snow depth from March 20th to March 31st to the observed

difference. During this period of March, sunny conditions lead to widespread melt, as observed

in the LiDAR data (fig. 4.9). In particular, snow depth changes occurred mostly at elevations

below 2400m, while snow depth patterns above this elevation remained relatively unchanged

4.4. The maps of change in snow depth also show that southern-facing aspects experienced

more melt than northern facing aspects, with this general pattern observed in the model

output as well. In particular, smaller scale terrain features, such as the gullies present in the

upper right corner of the cutout in figure 4.9, show the same pattern of melt as the LiDAR

flight. This highlights HICARsnow’s ability to simulate slope-scale differences in radiation,

thanks in part to the use of terrain-shading factors calculated using the HORAYZON model

(Steger et al., 2022).

While HICARsnow captures the overall pattern and slope-scale differences in snow depth

change, the model tends to overestimate melt on south facing slopes, especially at middle

elevations. One potential explanation for this is lower albedos predicted by the FSM2oshd

model. The albedo scheme used here is a prognostic one, which differs from the scheme used

for the operational snow forecast over Switzerland (Cluzet et al., 2024; Mott et al., 2023). The

operational scheme was specifically developed to increase snow albedos at higher elevations.

This option was not used for the current study, because it was assumed that changing the rest of

the model forcing data would invalidate the methodology used to tune the operational albedo

parameterization. Nonetheless, the identification of too low albedos at high elevations in

previous studies supports the hypothesis here that melt on southern aspects is exaggerated due

to errors in the snow albedo. Observations from the LiDAR flights also show a larger decrease
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Figure 4.9: Maps of snow difference patterns between the two LiDAR flights at the end of
March, comparing LiDAR and HICARsnow. Red colors indicate a loss of snow depth from
March 20th to March 31st.

in snow depth on south facing slopes relative to northern facing slopes. Solar radiation is

an obvious explanation for this difference. Still, the snow difference maps in figure 4.9 show

that redistribution of snow onto north-facing aspects has also enriched snow depths in these

locations. Thus, when comparing the same aspects from the HICARsnow simulation, we can

conclude that excessively low snow depths on high-elevation, north facing slopes on March

31st result from a lack of redistribution onto these slopes.

4.3.3 Snow-Atmosphere Interactions

Near Surface Air Temperatures

During the ablation season, temperature, wind, and radiative input dominate the energy

input to temperate mountain snow cover. An earlier study comparing HICAR simulations over
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Figure 4.10: Comparison of 2m air temperature from HICAR simulations with observations
over a snow covered area in late April 2022. The cyan line shows the results from a simulation
with HICARsnow, while the salmon line shows the results from a simulation where HICAR
uses the snow model from NoahMP. This figure is a partial reproduction of Figure 3.3 from
D. Reynolds et al., 2024, in prep.

spring snow cover found that the model had a large negative 2m air temperature bias during

calm, clear nights (D. Reynolds et al., 2024, in prep). This error was interpreted to be due to

strong radiative cooling of the snowpack. During these calm, stable conditions, excessively

low exchange thermal coefficients are calculated by the NoahMP LSM in HICAR, and thus

an uncoupling of the snowpack temperature from the atmosphere develops. This process

has been documented and remedied in other snow modeling studies (Lafaysse et al., 2017;

Mott et al., 2023), and the mechanism of excessively low predicted exchange coefficients has

been observed experimentally (Martin & Lejeune, 1998). Thus, one expectation of coupling

HICAR with FSM2 is improving surface air temperatures during such conditions. To test

this, we compare the previous results of D. Reynolds et al., 2024, in prep with a run using

HICARsnow for their same modeling setup in figure 4.10. The strong departure from observed

temperatures during the night is gone when using the HICARsnow model, and there is little

change in daytime temperature peaks. This result suggests that HICARsnow can represent

diurnal temperature changes during the ablation season, and demonstrates the importance of

simulating snow processes for atmospheric models.
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Figure 4.11: Comparison of mean daytime air temperature in the first atmospheric model level
for a simulation with HICARsnow, and simulation where HICAR uses the snow model from
NoahMP. This covers the same domain and dates as D. Reynolds et al., 2024, in prep. Black
contour lines are shown to represent the topography.

A knock-on effect of this excessive nocturnal cooling is found in figure 4.11. Here, air tempera-

tures in the first model level of HICAR ( 10m above surface) are shown for just a couple hours

after sunrise. We note that the air temperature over snow at higher elevations is comparable

between the HICARsnow simulation and the simulation where HICAR uses the snow model

from NoahMP, albeit with slightly warmer air temperatures in HICARsnow. At lower eleva-

tions, however, there are distinct differences between the two simulations, with the HICAR

+ NoahMP run producing colder temperatures down slope. This effect is likely due to the

excessive cooling of the snowpack at night producing colder air temperatures across a larger

area. Thus, the excessive radiative cooling at night results in lower air temperatures which

persist after sunrise, likely producing less melt in the HICAR + NoahMP simulation.

Blowing Snow Sublimation

Lastly, we can consider the effects of coupling the blowing snow module of FSM2trans,

SnowTran-3D, with the HICAR model. Blowing snow, especially via suspension, brings snow

crystals into increased contact with the atmosphere where it is possible for them to directly

sublimate. If the atmosphere is dry, more sublimation of snow crystals occurs. As sublimation

of blowing snow occurs, the surrounding air becomes moist, reducing the efficiency of blowing

snow sublimation. This effect has been shown to lead to reduced blowing snow sublimation at

the basin scale in alpine catchments (Groot Zwaaftink et al., 2013a) and has been documented

to completely change surface energy exchange (Sigmund et al., 2022). While studies employing

SnowTran-3D have noted basin-wide sublimation rates of 4% of solid precipitation (Bernhardt
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et al., 2012; Sexstone et al., 2018; Strasser et al., 2008), the study by Groot Zwaaftink et al., 2013a

found a value of only 0.1% when blowing snow sublimation was coupled to the atmosphere.

To test this effect on SnowTran-3D, we similarly computed sublimation rates as a percentage

of total snowfall over the entire modeling domain shown in figure 4.1. As a result, we find

blowing snow to result in just 0.35% mass loss relative to snowfall. In contrast, using just the

winds from HICAR to force FSM2trans and the rest of the forcing data coming from statistical

downscaling of COSMO1, a rate of 1.2% was found.

These values only reflect domain-wide averages though, and do not speak to the effect that

blowing snow sublimation has at individual pixels. Figure 4.2 shows a considerable difference

in snow depths near the ridge crest when comparing HICARsnow versus FSM2 with HICAR

winds. In particular, snow depths on the southern facing aspect are lower. When comparing

the seasonal rates of blowing snow sublimation as a percentage of snowfall at the ridgeline,

we see a clear difference between the two simulations (fig. 4.12). HICARsnow simulates

maximum values around 4% at the ridge crest, while the FSM2trans simulation reports values

up to 12%. While we do not expect this process alone to not account for all of the difference in

snow depth at this ridge, it clearly contributes to the low snow depth values observed in the

FSM2trans simulation. This effect demonstrates a clear added value of coupling FSM2trans to

HICARsnow, as both models benefit from this improved process representation.
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Figure 4.12: Blowing snow sublimation at the ridgeline shown in figure 4.2 as a percentage
of local snowfall. Values are cumulative over the entire modeling period, October 1st - May
17th. The FSM2trans run uses only wind data from HICAR, and otherwise uses statistically
downscaled COSMO1 output as forcing data.

4.4 Conclusions

In this study we have presented results from the first application of a coupled snow-atmosphere

model for resolving seasonal snowpack at the hectometer scale. This was achieved by utilizing

intermediate complexity snow and atmospheric models which made trade-offs in the repre-

sentation of some processes in favor of increased run time. To couple the two models together,

a static library approach was used, where routines from the FSM2trans snow model are called.

Output from FSM2trans is used at snow-covered pixels and replaces the NoahMP LSM at these

grid cells. Parallelisation of the snow redistribution schemes used in FSM2trans was required,

allowing for efficient calculation of snow transport via saltation, suspension, and gravitational

redistribution.

Simulated snow depth compares well with snow depth observations from an aerial LiDAR

throughout the snow season. Near peak accumulation, spatial patterns in modeled snow

depth vary throughout the domain according to aspect, elevation, and proximity to ridgelines,
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matching the trend in observations. We attribute this in part to the models ability to represent

preferential deposition at the ridge scale, and a particular snowfall event was investigated

to disentangle processes that lead to the observed snow distribution. As a result, the basin-

wide distribution of simulated snow depth better matches observations than FSM2trans

forced without dynamically downscaled precipitation. The coupling of FSM2trans with HICAR

shows clear benefits to both models, with FSM2trans improving estimates of near-surface air

temperature over snow, especially during clear, calm nights. The ability for blowing snow-

sublimation to feedback to the atmospheric model also results in less sublimation overall. This

results in an estimate for blowing snow sublimation rates in HICARsnow of 0.35% of annual

snowfall. FSM2trans forced with winds from HICAR, but statistically downscaled humidity,

estimated this rate to be 1.2%, while another study which considered feedbacks of blowing

snow sublimation on humidity reported 0.1% for a similar catchment Groot Zwaaftink et al.,

2013a.

This study also represents the first time that adaptive habit (AHAB) microphysics schemes

have been employed to study preferential deposition. We believe this development to be

crucial to further understanding the phenomena, since AHAB schemes promise more physics-

based predictions of particle fall speeds. Using this approach, we have demonstrated that the

seeder-feeder mechanism involved in preferential deposition can also be impacted by near

surface flow regimes. This finding is significant, since existing descriptions of preferential

deposition typically bifurcate the process into microphysical processes and near-surface flow

(Gerber et al., 2019; Vionnet et al., 2017). Instead, we find that near-surface flow features

directly contribute to microphysical processes, indicating that attempts to quantify the relative

contribution of each may disregard this unity. However, the conditions during this process

would suggest a decrease in precipitation when using parameterizations of preferential depo-

sition based solely on surface-winds. Ultimately, there is a large difference in computational

demand between these two approaches to describing preferential deposition, and the use

of simpler surface-wind parameterizations may still be useful for some applications under

certain atmospheric conditions. In the direct proximity of ridges, snow redistribution is also

well represented, with the approximate locations of deposits of snow similar in both LiDAR

data and HICARsnow output. These features serve to improve the spatial distribution of snow

depths at the basin scale.

Redistribution processes occur mostly at exposed ridges in the model, while observations

show evidence of redistribution at secondary ridges and mid-elevation slopes as well. The

exact cause of this discrepancy is unclear, but the 50m horizontal model resolution likely

plays a role in the ability of the model to represent sub-grid processes generating snow depth

variability at these locations (Quéno et al., 2023). Snow melt on southern-facing aspects is also

found to be exaggerated by HICARsnow. Prior studies using the FSM2oshd model have found

modeled early season melt to be heavily dependent on the snow albedo at these elevations

(Cluzet et al., 2024), suggesting that improvements to modeled albedo may yield better maps

of early season melt.
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Chapter 4. Seasonal Snow-Atmosphere Modeling: Let’s do it

In all, this study demonstrates the efficacy of a novel snow-atmosphere model for resolving

seasonal patterns of snow depth. The horizontal resolution used for the model simulation

controls which processes are capable of being represented, and to what degree of accuracy.

This said, coarser resolution (250m) runs with the HICARsnow model yielded distributions of

snow depth of similar accuracy to finer resolution (50m) runs with FSM2trans and statistically

downscaled data. This suggests that while hectometer-scale HICARsnow runs remain too

computationally expensive for operational snow forecasting at the range scale, some trade off

of scale and process representation may be found which rivals higher-resolution approaches.

If sufficient computational resources are available though, coupled snow-atmosphere models

show significant promise for representing seasonal patterns in snow depth at the hectometer

scale.

Code and Data Availability The animations of preferential deposition mentioned in the text

are available at the DOI: 10.16904/envidat.482. HICARsnow can be used for non-profit pur-

poses under the GPLv3 license (http://www.gnu.org/licenses/gpl-3.0.html, last access: 1

February 2023). The GitHub repository of HICARsnow can be found at:

https://github.com/HICAR-Model/HICAR/tree/HICARsnow with the exact version used for

this study found here: 10.5281/zenodo.10679464. LiDAR data will be made available upon

request, and is to be published in full in a later publication. Data from the SMN station are avail-

able at https://opendata.swiss/en/dataset/automatische-meteorologische-bodenmessstationen.

The basemap layer used in Figure 4.1 comes from Swiss Topo. Similarly, topographic data

for generating the DEM resolution comparison was obtained from Swiss Topo swissALTI3d

(https://www.swisstopo.admin.ch/de/hoehenmodell-swissalti3d)
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5 Conclusions

This thesis has presented the first application of coupled snow-atmosphere modeling at sea-

sonal time scales. Along the way, the potential of diagnostic wind solvers in combination with

terrain descriptors has been shown to yield wind fields in complex terrain which simulate sim-

ilar features to more complex, Navier-Stokes based solvers. Such wind solvers have particular

use at high resolutions, where influences on wind fields such as mesoscale pressure gradients

and Coriolis forces can be neglected or are represented by a coarser resolution parent solver.

At these high resolutions, the computational cost of running Navier-Stokes based solvers also

becomes prohibitive for studies of seasonal duration. The shortcuts to the model dynamics

of HICAR lead to faster run times compared with conventional NWP models for a variety of

reasons.

First, we note in Chapter 2 that surface wind speeds from the diagnostic solver are lower than

those from the WRF model. Studies employing WRF at the hectometer scale in complex terrain

have found the model to overestimate wind speeds (Gerber et al., 2018; Goger et al., 2022),

suggesting that these lower wind speeds are reasonable. As a result of lower wind speeds,

the chosen advection scheme is stable for longer time steps, directly scaling the model run

time. The simplification to the model dynamics also means that numerical integration of the

Navier-Stokes equations, and of the equation for pressure, can be neglected in favor of the

solution of an optimization problem. By removing these equations from the dynamical core,

any instabilities arising from horizontal pressure gradients in vertically stretched coordinate

systems are also avoided, permitting longer run times. As a demonstration of this, the sim-

ulations presented in Chapter 4 using HICARsnow had average time steps around 1 second,

while Gerber et al., 2018, who performed WRF simulations over the same domain, found that

time steps of 1/27 second were necessary to achieve numerical stability. This reported time

step is also for smoothed topography, while HICAR requires no such topographic smoothing,

resulting in a more accurate representation of terrain. This point has significant implica-

tions for coupled snow-atmosphere modeling. During the ablation season, radiation and

temperature provide energy inputs to the snowpack, driving melt. Both variables have some

elevation dependency, with colder temperatures found at higher elevations, and radiative
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transfer attenuated by the atmosphere. A mountain top represented at an elevation of 2800 m

will experience a different input of energy than the same mountain when represented at an

elevation of 3000 m.

Finally, the simplified model dynamics allow for a larger vertical grid spacing, reducing the

number of computational elements needed for a given simulation. This point requires the

additional qualification that a coarsening of the vertical grid will result in a poorer representa-

tion of near-surface processes, where vertical gradients are often greater than higher up in

the atmosphere. Given the performance of HICAR in the studies presented here, we conclude

that the vertical coarsening currently implemented makes a balanced trade-off between com-

putational demand and process representation. All of these benefits which follow from the

simplified model dynamics, in combination with optimization of the code and targeting a

high level of optimization on a native compiler, result in the model speed up reported here.

Despite these simplifications, HICAR is still shown to give good predictions of near-surface

variables relevant to forcing land surface models. Precipitation patterns in complex terrain are

shown to be within the spread of estimates produced by operational forecasting offices (section

2.4.2). Near-surface flow features observed using a wind LiDAR, particularly when driven

by terrain-flow interactions, can also be simulated by the model. A new form of Doppler

wind LiDAR scans, RHE scans, was also proposed to best sample ridge-crest speed up in

complex terrain. Surface radiative inputs and 2m air temperatures were also validated against

station measurements over springtime snow cover at a horizontal model resolution of 50 m.

Model bias and RMSE for 2m air temperature was found to outperform estimates from a 1

km operational NWP model, even when stations to which the NWP model was assimilated

were included. 2m air temperature was found to exhibit a large negative bias over snow during

calm, clear nights, but this bias was rectified when coupling HICAR with the FSM2trans snow

model (section 4.3.3.

Coupling HICAR to the FSM2trans snow model was shown to improve estimates of snow depth

distribution relative to the FSM2trans model forced with statistical downscaling, or when

forced with statistical downscaling and HICAR winds alone. This improvement confirms the

original hypothesis of this study, namely that dynamic downscaling can produce more accurate

forcing data for land surface modeling than statistical techniques. Interestingly, dynamic

downscaling was found to produce distributions of snow depth at a 250 m resolution which

are comparable to distributions obtained using mixed statistical and dynamic downscaling at

a 50 m resolution. This was attributed to the representation of snowfall at the hectometer scale

such as preferential deposition, which increase snow depth heterogeneity. This heterogeneity

introduced by snowfall processes was shown to improve distributions of snow depth for both

50 m and 250 m dynamically downscaled simulations when compared to a 50 m statistically

downscaled simulation.

HICARsnow achieves this in part by representing preferential deposition, resolving interac-

tions between the mean flow field, near-surface flow features, and microphysical processes.
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HICARsnow implements the ISHMAEL microphysics scheme to track multiple ice species

and consider how their interactions lead to the signal of preferential deposition. This first-of-

its-kind application of AHAB microphysics schemes to the study of preferential deposition

reveals how microphysical processes such as seeder-feeder clouds interact with near-surface

flow features and generate enhanced leeside precipitation. This result motivates further study

of preferential deposition with AHAB schemes to understand how their performance relative

to two-moment microphysics schemes is affected by particular atmospheric conditions.

This thesis has demonstrated that intermediate complexity atmospheric modeling is possible

at the hectometer scale, and that it can represent precipitation patterns which remain a

challenge for statistical downscaling techniques. The atmospheric model HICAR has potential

to improve forecasts of snow in complex terrain, as shown in Chapter 4. Regional scale climate

studies, where downscaling techniques are needed to bring decades of coarse-resolution GCM

simulations to the kilometer or hectometer scale, are another area where the model could

prove useful. We temper the conclusions of this thesis with limitations of the approach in the

following section, ending with an outlook toward future research opportunities founded on

the work presented here.
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6 Limitations and Outlook

The design philosophy behind the HICAR model inherently leads to shortcomings relative to

other atmospheric models. This is done in the pursuit of faster model run times, but does come

at the cost of physical accuracy. The model mostly makes changes to the model dynamics,

which reduce the number of physical processes considered when calculating a 3D wind field.

As discussed in section 3.3.4, one of the main processes ignored is turbulence. The usage of a

diagnostic wind solver uses a fundamentally different approach to calculating the wind field

when compared with a solver based on the Navier-Stokes equations. Without considering

these equations, effects on the wind field due to local variations in air pressure, density, and

turbulent exchange will not be included. Comparisons against the WRF atmospheric model

and observations from a wind LiDAR show that HICAR can simulate surface wind speeds and

the presence of eddies when they form in the leeside of terrain features (section 2.4.1 and 3.3.3).

However, turbulent structures arising from vertical wind shear or buoyancy differences away

from the surface are neither considered by the model nor present when comparing against

observations (section 3.3.4). Additionally, when turbulent structures in the lee of terrain are

simulated, the extent is often incorrect, and the structures themselves exhibit little change

over time scales smaller than the interval between forcing updates. This is due to the linear

interpolation of HICAR’s wind field through time between calls to the wind solver. This restricts

the model from studies concerned with resolving turbulent exchanges for particular events. Of

interest, the work of (Haugeneder et al., 2024) does show that the energy balance of seasonal

snow is greatly affected by ephemeral eddies during the melt season when patchy snow is

present. However, these processes occur at resolutions less than 10s of meters, meaning it

would need to be parameterized at the sub-grid scale for RANs- or LES-basesd models as well.

Indeed, a prior study using the LES-WRF setup showed that the simulation still overpredicts

turbulent kinetic energy relative to an eddy covariance tower, in some cases up to an order

of magnitude (Goger et al., 2022). So, while HICAR may not include these processes at all,

reasonable process-representation in models which do consider the sources and sinks of

turbulent energy is also not guaranteed.

These model limitations are accepted under the cause of reduced model run time, ultimately
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with the goal of operational applications for the model. This raises another limitation of

the model: the remaining efficiencies needed to achieve operational readiness. At a bare

minimum, operational weather forecasting requires that a unit of simulation time be faster

than the same unit of real time. Operational readiness is as much a function of computational

resources as it is of model performance. Still, for the HICARsnow model presented in Chapter

4, one day of model simulation at 50 m resolution can require up to 54 minutes of simulation

time when running on 360 CPUs, and up to 14 minutes at 250 m with the same number of

CPUs. The lateral extent of this 50 m domain is only 175 km2, compared to the 41,000 km2

domain used for the operational snow hydrological forecast performed for Switzerland. This

represents roughly 235x more computational elements than the target domain over the Upper

Dischma catchment used in Chapter 4. If one fixes the number of computational resources

and allows for a forecast which runs as fast as real time, a roughly 10x speed up of the model

would still be required. Possible avenues for achieving this speed up are discussed in the final

paragraph.

The success of HICAR in explicitly simulating preferential deposition with an adaptive habit

microphysics scheme motivates further research into this method. Comola et al., 2019 previ-

ously found that particle properties affect the pattern of preferential deposition under various

atmospheric conditions. In Chapter 4, we have only investigated preferential deposition for

one storm. One potential next step is to examine the ability of AHAB schemes to resolve

various patterns of preferential deposition under varying atmospheric conditions. Another

possibility would be to understand at what spatial scales, if any, AHAB schemes offer diminish-

ing improvements over two-moment schemes. Earlier studies have shown that AHAB schemes

predict different precipitation patterns at the range scale compared to non-AHAB schemes,

but the results from Chapter 4 suggest that differences at the ridge scale may be less significant.

Still, this study examined just one snowfall event at the ridge scale, and further investigation of

precipitation downscaling using AHAB schemes is needed. Understanding how these schemes

differ from two-moment microphysics schemes would allow for a considered trade off be-

tween process representation and model run time. Lastly, AHAB schemes like ISHMAEL offer

information about the structure of falling snow which may have added benefits to snowpack

modeling. For example, both ISHMAEL and CRYOWRF use a best-number (Mitchell, 1996)

approach to calculating particle fall speeds. CRYOWRF assumes spherical ice particles, while

ISHMAEL calculates the best-number considering any form of oblate ice. Clearly, this infor-

mation from ISHMAEL could benefit the blowing snow scheme in CRYOWRF. Additionally,

processes occurring in the snowpack that alter the snow microstructure require some initial

state of the snow crystals. Information on snow crystal shape could thus benefit predictions of

the density of both new snow and snow layers, as well as the optical properties of the snow-

pack related to grain size and type. This may improve upon estimates of surface shortwave

albedo and threshold friction velocity for snow transport, both of which were identified in

Chapter 4 as potential shortcomings of the FSM2trans model. Coupling HICAR to one of these

snow-physics models is thus a tempting avenue for future research.

Chapter 4 also identified differences between observed snow depth from an aerial LiDAR
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survey and HICAR snow output, particularly in the presence of small-scale terrain features.

This may occur if a ridge is sharper at higher resolutions, resulting in a sharper discontinuity in

the wind field and thus more net wind transport of snow. Similarly, a bare grid cell next to one

covered in small boulders may experience net scouring of snow without roughness elements

to generate areas of stagnation. In contrast, the boulder-covered grid cell would experience

scour and deposition, resulting in a net flux of snow closer to 0. One could imagine extracting

data from a very high-resolution DEM, say at a resolution of 2m, and using this information

about differences between resolved and unresolved terrain features to modify snow transport

amounts.

Finally, as any programmer would promise, there remain areas of further optimization for

the model. When considering operational snow forecasting over Switzerland, the extreme

differences in terrain complexity between the Valais Alps and the Swiss Plateau demonstrate

that one fixed grid resolution may not be economical. More grid elements will be needed to

represent the shape of the Matterhorn than, say, Hönggerberg. This approach of irregular

gridding is being used in many modern NWP models (Skamarock et al., 2012; Wan et al., 2013)

as well as one operational snow model (Marsh et al., 2020). Such an approach would allow for a

reduction in the number of grid elements, reducing the overall run time. Next, all of the model

code is currently written to run on CPUs. Over the past 10 years, however, NWP models have

turned toward using GPUs to accelerate certain routines, especially physics parameterizations.

The modularity of these parameterizations makes it simple to benefit from open-source code

which re-writes existing parameterizations to run on GPUs. Porting the microphysics schemes

and radiation modules of HICAR, which currently comprise roughly two-thirds of the model

run time, may result in model speed up of 3x. Lastly, exploring alternative advection schemes

with larger stability envelopes may allow for a further reduction of the model time step. Seen

in this way, the current limitations of the model represent opportunities for advancing its

performance even further.

The promise of dynamic downscaling for operational snow hydrologic modeling remains in

the future, but the HICARsnow model demonstrates the potential that exists and points the

way towards realising this goal.
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