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Preface

“The structure of the world seems to be intimately tied to the deep mathematical concepts,

concepts which were developed out of considerations rooted only in logic and the beauty of

the form.”

These words were pronounced by Chen Ning Yang at the Nobel Prize award ceremony

in 1954. Yang’s work on Non-Abelian Gauge theory, was, yet, another demonstration, in the

20th century, of how mathematics could lead the way, providing insights into the underlying

structures of the physical world before they were directly observed. Mathematical formalism

needed for these theories was developed by mathematicians decades earlier with no reference

to physics. Without any claim of being anywhere near close to those minds that revolutionized

physics in the past century, this thesis represents a sincere endeavor to investigate the utility

of mathematical tools forged by earlier generations of mathematicians. Our aim is to uncover

their latent potential for application within the realm of robotics.

While this research has been motivated by the conviction that a more sophisticated math-

ematical framework could significantly enhance the field of robotics, we admit that, in certain

situations, we let ourselves be captivated, solely, by “the beauty of the form”.

Lausanne, January 4, 2024 B. F.
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Abstract

In this thesis, we concentrate on advancing high-level behavioral control policies for robotic

systems within the framework of Dynamical Systems (DS). Throughout the course of this re-

search, a unifying thread weaving through diverse fields emerges, and that is the fundamental

role played by differential geometry. This study delves into various realms of this mathemati-

cal framework, with three distinct projects at its core. The first work revolves around graph

Laplacian-based embedding space reconstruction, followed by an exploration of chart-based

geometry in the second project. The third project shifts its focus towards harmonic analysis

in non-Euclidean spaces. These facets of differential geometry, while seemingly distinct,

converge in their practical application within the realm of robotics, specifically in the domain

of Dynamical Systems (DS) based robot motion generation. The first two projects employ

differential geometry tools for the purpose of learning and clustering DS on Euclidean spaces,

whereas the third project ventures into the potential domain of learning DS on non-Euclidean

spaces, otherwise known as manifolds. Our investigation into a more sophisticated geometry-

based formalism is directed not only at enhancing the expressivity and complexity of DS

policies for navigating intricate and dynamic real-world scenarios but also at favouring a

more profound comprehension of the practical application of rather abstract mathematical

concepts in the field of robotics and machine learning.

We dedicate the first part of thesis to studying manifold learning techniques for clustering

and learning of nonlinear DS characterized by multiple equilibrium points. As determining an

analytical description of the dynamics is often difficult, data-driven approaches are preferred

for identifying and controlling nonlinear DS with multiple equilibrium points. We focus on

an unsupervised learning scenario where neither the number nor the type of dynamics is

known. We propose a Graph-based spectral clustering method that takes advantage of a

velocity-augmented kernel to connect data points belonging to the same dynamics, while

preserving the natural temporal evolution. We study the eigenvectors and eigenvalues of the

Graph Laplacian and show that they form a set of orthogonal embedding spaces, one for each

sub-dynamics. We prove that there always exists a set of 2-dimensional embedding spaces

in which the sub-dynamics are linear and n-dimensional embedding spaces where they are

quasi-linear. We learn a diffeomorphism from the Laplacian embedding space to the original

space and show that the Laplacian embedding leads to good reconstruction accuracy and a

faster convergence compared to the state-of-the-art diffeomorphism-based approaches.

The second part of this thesis explores chart-based differential geometry to empower the

learning of DSs. Drawing inspiration from Einstein’s concept of a four-dimensional manifold
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Abstract

in the context of space-time, we introduce a novel approach to learn non-linear DSs. In our

method, the non-linearity of these systems does not emerge from external forces, but rather,

it arises from the intrinsic curvature of the underlying space. Every d-dimensional DS is

modeled as a damped harmonic oscillator on a given manifold. By learning the manifold’s

d +1-dimensional Euclidean embedded representation, our approach encodes non-linearity

of the DS within the curvature of the space. Asymptotic stability to an equilibrium point of the

learnt DS is always preserved, independently from the curvature of the space. Having at our

disposal an explicit representation of the manifold, we propose a new method of performing

convex and concave obstacle avoidance via direct local deformation of the space, without re-

learning the DS. Our approach demonstrates superior performance with respect to the current

state-of-the-art in the common metrics typically employed in learning of DSs. The proposed

geometry-based approach not only enhances the efficiency of the learning process, enabling

faster convergence, but it also introduces a novel framework that could be further exploited

for configuration space learning, whether in the form of DS-based policies or intrinsic robot

dynamics.

If the first and second part of the thesis found application in clustering and learning DS in

Euclidean space, the third part of the thesis represents the first step towards bringing these

applications to, potentially unknown and high-dimensional, manifolds. In this latest work, we

concentrate on extending Gaussian process regression to non-Euclidean spaces. Gaussian

process regression is widely used because of its ability to provide well-calibrated uncertainty

estimates and handle small or sparse datasets. However, it struggles with high-dimensional

data. One possible way to scale this technique to higher dimensions is to leverage the implicit

low-dimensional manifold upon which the data actually lies, as postulated by the manifold

hypothesis. Prior work ordinarily requires the manifold structure to be explicitly provided

though, i.e. given by a mesh or be known to be one of the well-known manifolds like sphere.

In contrast, we propose a Gaussian process regression technique capable of inferring implicit

structure directly from data (labeled and unlabeled) in a fully differentiable way. Our technique

scales up to hundreds of thousands of data points, and improves the predictive performance

and calibration of the standard Gaussian process regression in high dimensional settings as

well as complex non-Euclidean spaces.
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Zusammenfassung

In dieser Dissertation konzentrieren wir uns auf die Weiterentwicklung von hochrangigen

Verhaltenssteuerungspolitiken für Robotersysteme im Rahmen von Dynamischen Systemen

(DS). Im Verlauf dieser Forschung tritt ein verbindendes Element durch verschiedene Berei-

che hervor, nämlich die fundamentale Rolle der Differentialgeometrie. Diese Studie taucht

in verschiedene Bereiche dieses mathematischen Rahmens ein, mit drei unterschiedlichen

Projekten im Kern. Die erste Arbeit dreht sich um die Rekonstruktion des Einbettungsraums

basierend auf dem Graph-Laplace, gefolgt von einer Erkundung der kartenbasierten Geome-

trie im zweiten Projekt. Das dritte Projekt verlagert seinen Fokus auf die harmonische Analyse

in nicht-euklidischen Räumen. Diese Aspekte der Differentialgeometrie, obwohl scheinbar

unterschiedlich, konvergieren in ihrer praktischen Anwendung im Bereich der Robotik, spe-

ziell im Bereich der robotergestützten Bewegungsgeneration basierend auf Dynamischen

Systemen (DS). Die ersten beiden Projekte verwenden Werkzeuge der Differentialgeometrie

zum Zweck des Lernens und Gruppierens von DS in euklidischen Räumen, während das

dritte Projekt in das potenzielle Gebiet des Lernens von DS in nicht-euklidischen Räumen,

auch bekannt als Mannigfaltigkeiten, vordringt. Unsere Untersuchung eines ausgefeilteren

geometriebasierten Formalismus zielt nicht nur darauf ab, die Ausdrucksfähigkeit und Kom-

plexität von DS-Politiken für das Navigieren in komplexen und dynamischen realen Szenarien

zu verbessern, sondern auch auf ein tieferes Verständnis der praktischen Anwendung von

eher abstrakten mathematischen Konzepten im Bereich der Robotik und des maschinellen

Lernens.

Der erste Teil der Dissertation widmet sich dem Studium von Mannigfaltigkeitslern-

Techniken für das Clustern und Lernen von nichtlinearen DS, die durch mehrere Gleich-

gewichtspunkte gekennzeichnet sind. Da eine analytische Beschreibung der Dynamik oft

schwierig ist, werden datengetriebene Ansätze bevorzugt, um nichtlineare DS mit mehreren

Gleichgewichtspunkten zu identifizieren und zu steuern. Wir konzentrieren uns auf ein un-

überwachtes Lernszenario, in dem weder die Anzahl noch die Art der Dynamiken bekannt ist.

Wir schlagen eine graphbasierte spektrale Clustermethode vor, die einen geschwindigkeitser-

weiterten Kernel nutzt, um Datenpunkte, die zur gleichen Dynamik gehören, zu verbinden

und gleichzeitig die natürliche zeitliche Entwicklung zu bewahren. Wir untersuchen die Eigen-

vektoren und Eigenwerte des Graph-Laplacians und zeigen, dass sie eine Reihe orthogonaler

Einbettungsräume bilden, jeweils einen für jede Subdynamik. Wir beweisen, dass es immer

eine Reihe von 2-dimensionalen Einbettungsräumen gibt, in denen die Subdynamiken linear

sind, und n-dimensionale Einbettungsräume, in denen sie quasi-linear sind. Wir lernen eine
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Zusammenfassung

Diffeomorphismus vom Laplace-Einbettungsraum zum ursprünglichen Raum und zeigen,

dass die Laplace-Einbettung zu einer guten Rekonstruktionsgenauigkeit und einer schnelleren

Konvergenz im Vergleich zu den neuesten diffeomorphismusbasierten Ansätzen führt.

Der zweite Teil dieser Dissertation erforscht die kartenbasierte Differentialgeometrie, um

das Lernen von DSs zu stärken. Inspiriert von Einsteins Konzept einer vierdimensionalen

Mannigfaltigkeit im Kontext von Raum-Zeit, führen wir einen neuartigen Ansatz ein, um nicht-

lineare DSs zu lernen. In unserer Methode entsteht die Nichtlinearität dieser Systeme nicht aus

externen Kräften, sondern aus der intrinsischen Krümmung des zugrunde liegenden Raums.

Jedes d-dimensionale DS wird als gedämpfter harmonischer Oszillator auf einer gegebenen

Mannigfaltigkeit modelliert. Indem wir die d+1-dimensionale euklidische eingebettete Dar-

stellung der Mannigfaltigkeit lernen, kodiert unser Ansatz die Nichtlinearität des DS innerhalb

der Krümmung des Raums.

Die asymptotische Stabilität zu einem Gleichgewichtspunkt des gelernten DS wird immer

bewahrt, unabhängig von der Krümmung des Raums. Mit einer expliziten Darstellung der

Mannigfaltigkeit zur Verfügung, schlagen wir eine neue Methode vor, um konvexe und konkave

Hindernisvermeidung durch direkte lokale Verformung des Raums durchzuführen, ohne das

DS neu zu lernen. Unser Ansatz zeigt eine überlegene Leistung im Vergleich zum aktuellen

Stand der Technik in den üblicherweise verwendeten Metriken beim Lernen von DSs. Der

vorgeschlagene geometriebasierte Ansatz verbessert nicht nur die Effizienz des Lernprozesses,

was eine schnellere Konvergenz ermöglicht, sondern führt auch ein neuartiges Framework

ein, das weiter für das Lernen des Konfigurationsraums genutzt werden könnte, sei es in Form

von DS-basierten Politiken oder intrinsischen Roboterdynamiken.

Wenn der erste und zweite Teil der Dissertation Anwendung im Clustern und Lernen von

DS im euklidischen Raum gefunden haben, stellt der dritte Teil der Dissertation den ersten

Schritt dar, diese Anwendungen auf potenziell unbekannte und hochdimensionale Mannigfal-

tigkeiten zu übertragen. In dieser neuesten Arbeit konzentrieren wir uns darauf, die Gaußsche

Prozessregression auf nicht-euklidische Räume zu erweitern. Die Gaußsche Prozessregression

wird aufgrund ihrer Fähigkeit, gut kalibrierte Unsicherheitsschätzungen zu liefern und kleine

oder spärliche Datensätze zu bewältigen, häufig verwendet. Sie hat jedoch Schwierigkeiten

mit hochdimensionalen Daten. Ein möglicher Weg, diese Technik auf höhere Dimensionen zu

skalieren, ist die Nutzung der impliziten niedrigdimensionalen Mannigfaltigkeit, auf der die

Daten tatsächlich liegen, wie von der Mannigfaltigkeitshypothese postuliert. Frühere Arbeiten

erfordern normalerweise, dass die Struktur der Mannigfaltigkeit explizit vorgegeben wird,

d.h. durch ein Mesh gegeben oder als eine der bekannten Mannigfaltigkeiten wie die Kugel

bekannt. Im Gegensatz dazu schlagen wir eine Gaußsche Prozessregressionstechnik vor, die

in der Lage ist, die implizite Struktur direkt aus den Daten (beschriftet und unbeschriftet)

auf eine vollständig differenzierbare Weise abzuleiten. Unsere Technik skaliert auf Hundert-

tausende von Datenpunkten und verbessert die Vorhersageleistung und Kalibrierung der

standardmäßigen Gaußschen Prozessregression in hochdimensionalen Einstellungen sowie

in komplexen nicht-euklidischen Räumen.
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Résumé

Dans cette thèse, nous nous concentrons sur l’avancement des politiques de contrôle compor-

temental de haut niveau pour les systèmes robotiques dans le cadre des Systèmes Dynamiques

(DS). Au cours de cette recherche, un fil conducteur unifiant émerge à travers divers domaines,

à savoir le rôle fondamental joué par la géométrie différentielle. Cette étude explore divers

domaines de ce cadre mathématique, avec trois projets distincts à son cœur. Le premier travail

porte sur la reconstruction de l’espace d’incrustation basé sur le Laplacien du graphe, suivi

d’une exploration de la géométrie basée sur les cartes dans le second projet. Le troisième

projet déplace son focus vers l’analyse harmonique dans des espaces non euclidiens. Ces

facettes de la géométrie différentielle, bien que distinctes en apparence, convergent dans leur

application pratique dans le domaine de la robotique, spécifiquement dans le domaine de

la génération de mouvement de robot basée sur les Systèmes Dynamiques (DS). Les deux

premiers projets utilisent des outils de géométrie différentielle pour l’apprentissage et le

clustering de DS dans des espaces euclidiens, tandis que le troisième projet se lance dans

le domaine potentiel de l’apprentissage de DS dans des espaces non euclidiens, autrement

connus sous le nom de variétés. Notre enquête sur un formalisme basé sur une géométrie plus

sophistiquée vise non seulement à améliorer l’expressivité et la complexité des politiques DS

pour naviguer dans des scénarios réels complexes et dynamiques, mais aussi à favoriser une

compréhension plus profonde de l’application pratique de concepts mathématiques plutôt

abstraits dans le domaine de la robotique et de l’apprentissage automatique.

Nous consacrons la première partie de la thèse à l’étude des techniques d’apprentissage

sur les variétés pour le clustering et l’apprentissage de DS non linéaires caractérisés par de

multiples points d’équilibre. Comme il est souvent difficile de déterminer une description

analytique de la dynamique, les approches basées sur les données sont préférées pour identi-

fier et contrôler les DS non linéaires avec plusieurs points d’équilibre. Nous nous concentrons

sur un scénario d’apprentissage non supervisé où ni le nombre ni le type de dynamiques ne

sont connus. Nous proposons une méthode de clustering spectral basée sur les graphes qui

tire profit d’un noyau augmenté de vitesse pour connecter les points de données appartenant

à la même dynamique, tout en préservant l’évolution temporelle naturelle. Nous étudions les

vecteurs propres et les valeurs propres du Laplacien du graphe et montrons qu’ils forment

un ensemble d’espaces d’incrustation orthogonaux, un pour chaque sous-dynamique. Nous

prouvons qu’il existe toujours un ensemble d’espaces d’incrustation bidimensionnels dans

lesquels les sous-dynamiques sont linéaires et des espaces d’incrustation n-dimensionnels

où elles sont quasi-linéaires. Nous apprenons un difféomorphisme de l’espace d’incrusta-
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Résumé

tion Laplacien vers l’espace original et montrons que l’incrustation Laplacienne conduit à

une bonne précision de reconstruction et à une convergence plus rapide par rapport aux

approches basées sur le difféomorphisme de l’état de l’art.

La deuxième partie de cette thèse explore la géométrie différentielle basée sur les cartes

pour renforcer l’apprentissage des DS. S’inspirant du concept d’Einstein d’une variété quadri-

dimensionnelle dans le contexte de l’espace-temps, nous introduisons une approche novatrice

pour apprendre les DS non linéaires. Dans notre méthode, la non-linéarité de ces systèmes

n’émerge pas de forces externes, mais plutôt, elle résulte de la courbure intrinsèque de l’es-

pace sous-jacent. Chaque DS d-dimensional est modélisé comme un oscillateur harmonique

amorti sur une variété donnée. En apprenant la représentation embarquée euclidienne d+1-

dimensionnelle de la variété, notre approche encode la non-linéarité du DS dans la courbure

de l’espace. La stabilité asymptot

ique à un point d’équilibre du DS appris est toujours préservée, indépendamment de la

courbure de l’espace. Ayant à notre disposition une représentation explicite de la variété, nous

proposons une nouvelle méthode pour effectuer l’évitement d’obstacles convexes et concaves

via une déformation locale directe de l’espace, sans réapprendre le DS. Notre approche dé-

montre une performance supérieure par rapport à l’état de l’art actuel dans les métriques

couramment utilisées dans l’apprentissage des DS. L’approche basée sur la géométrie améliore

non seulement l’efficacité du processus d’apprentissage, permettant une convergence plus

rapide, mais introduit également un cadre novateur qui pourrait être davantage exploité pour

l’apprentissage de l’espace de configuration, que ce soit sous la forme de politiques basées sur

les DS ou de dynamiques intrinsèques des robots.

Si la première et la deuxième partie de la thèse ont trouvé application dans le clustering

et l’apprentissage des DS dans l’espace euclidien, la troisième partie de la thèse représente

le premier pas vers l’apport de ces applications à des variétés potentiellement inconnues et

de haute dimension. Dans ce dernier travail, nous nous concentrons sur l’extension de la

régression par processus gaussien à des espaces non euclidiens. La régression par processus

gaussien est largement utilisée en raison de sa capacité à fournir des estimations d’incertitude

bien calibrées et à gérer des ensembles de données petits ou épars. Cependant, elle peine

avec des données de haute dimension. Une manière possible d’adapter cette technique à des

dimensions plus élevées est de tirer parti de la variété à faible dimension implicite sur laquelle

les données reposent réellement, comme postulé par l’hypothèse de la variété. Les travaux

antérieurs nécessitent généralement que la structure de la variété soit explicitement fournie,

c’est-à-dire donnée par un maillage ou connue pour être l’une des variétés bien connues

comme la sphère. En revanche, nous proposons une technique de régression par processus

gaussien capable de déduire la structure implicite directement à partir des données (étiquetées

et non étiquetées) de manière entièrement différentiable. Notre technique monte en charge

jusqu’à des centaines de milliers de points de données, et améliore la performance prédictive

et la calibration de la régression par processus gaussien standard dans des paramètres de

haute dimension ainsi que dans des espaces non euclidiens complexes.
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Introduction

Is mathematics discovered or invented? Galileo Galilei, often hailed as the father of the

scientific method, in his work “Il Saggiatore” (1624) wrote: “The book of nature is written in

the language of mathematics, with its characters being triangles, circles, and other geometrical

figures. Without these elements, understanding the world is akin to aimlessly wandering

through a dark labyrinth.” Galilei, a devout believer, was convinced that God articulated

natural truths in the precise language of mathematics. To him, mathematics, as the language

of God, was not just a tool but an eternal truth in itself.

The notion of mathematics as eternal truth persisted well after the “death of God”, pro-

claimed by Nietzsche at the end of the 19th century. Even as human thought increasingly

moved away from the concept of any eternal truth, including God, mathematics continued

to be viewed as a domain of certainty and, consequently, truth. The prevailing belief was

that any imperfections in current theories could be rectified through rigorous proof and self-

consistency. However, this perception was profoundly challenged in 1931 with Kurt Gödel’s

Incompleteness Theorems. These theorems demonstrated that even in the most sophisticated

mathematical systems, there will always be true statements that cannot be proven. This

revelation was a seismic event in the academic world, similar in magnitude to the shift in

geometry where Euclidean geometry, once seen as the sole truth, became just one of many

geometrical systems alongside non-Euclidean geometries. Mathematics was thus stripped of

its perceived incorruptibility and eternity.

While these developments seem to shift the answer to the original question from "dis-

covered" to "invented", an intriguing phenomenon in the realm of science has emerged.

Traditionally, science was driven by induction —deriving universal laws from specific ex-

perimental observations. However, in the 20th century, this process started to move back

from induction to deduction of Aristotelian memory. Theories grounded in mathematical

language began to offer insights beyond just explaining natural phenomena; they started

to “suggest” new experimental content. Differential geometry appears to occupy a unique

position in this context. In 1950, Murray Gell-Mann postulated the existence of quarks and

anti-quarks, not through empirical evidence, but based on their correspondence with the two

fundamental three-dimensional representations of the Special Unitary group of dimension

three, SU(3). These particles had never been observed before; their existence was predicted

based on mathematical symmetry patterns. Similarly, gravitational waves, first postulated
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Figure 1: Differential Geometry in Machine Learning & Robotics; highlighted in yellow the
areas touched in this thesis.

by Einstein’s General Theory of Relativity in 1915, were only experimentally confirmed much

later, in 2015, by the Laser Interferometer Gravitational-Wave Observatory (LIGO).

A Journey into Differential Geometry Applications

In the 20th century, differential geometry marked a conceptual advance in understanding

the structure of the universe. Today, its remarkable representational power continues to

unfold across diverse fields. This thesis explores the use of differential geometry within the

realms of Machine Learning and Robotics. Our approach is twofold: firstly, to address existing

limitations in these fields through the lens of differential geometry, and secondly, to look at a

unified geometrical and mathematically formal framework that enhances our comprehension

of these domains. This endeavor is guided by the belief that a deeper understanding of

the subject will lead to new, applicable knowledge that is crucial for the next technological

innovations.

In preparation for the topics covered in this thesis, it is essential to introduce the concept

of a graph, a recurring element in our discussion. In mathematics, a graph is a structure

defined by two primary components: nodes and edges. Nodes can represent a wide range

of entities, from simple spatial points to complex abstract concepts. Edges expresses some

form of connection or relationship between the nodes. Figure 1 is conceptualized around

the idea of a graph. Here, each node symbolizes a specific area either in Machine Learning

or Robotics that has been significantly influenced by differential geometry principles. A red

frame around a node indicates a predominant application in Robotics, while a blue frame
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signifies an application in Machine Learning. The core areas of this thesis are highlighted in

yellow. The numbering refers to the order of appearance throughout this introduction.

A probabilistic viewpoint common in graph theory, treats graph construction as analogous

to a roadmap. Nodes are akin to distinct locations or checkpoints, linked together by the

edges that enable movement between them. This perspective sets the stage for our journey,

as we explore the nodes illustrated in Figure 1, navigating through the domains of Machine

Learning and Robotics where differential geometry has been influential. Our exploration will

primarily concentrate on those nodes directly relevant to this work. Yet, we will also glimpse

into other applications of differential geometry. These areas, while not the main focus of

our study, provide the foundational knowledge essential for the development of the projects

detailed in this thesis and might offer potential linkages for future expansions of our research.

The solid lines connecting nodes represent the well-established interrelations among different

disciplines, brought together through the lens of differential geometry. Meanwhile, the dashed

lines signify the emerging connections we intend to develop and delve into throughout this

thesis. In this introduction, we will refer to the nodes in Figure 1 using the symbol # for

areas within the Machine Learning field, and # for those pertaining to the Robotics field.

Consistent with the color scheme previously described, these nodes will be highlighted in

yellow to denote areas explicitly addressed in this thesis.

Manifold Learning: representation is all that matters. . .

Our journey begins at the heart of the graph in Figure 1, focusing on a pivotal concept in

differential geometry: representation. In today’s world, it’s commonplace to see Artificial

Intelligence algorithms accurately classify images of people, objects, animals, and more.

Classification here refers to the ability to generate a consistent output for a semantically similar

input. For example, when an algorithm is presented with a picture of a cat, it consistently

assigns a label or number that has been predetermined to represent the concept of a “cat”.

Each image is represented by a large vector that captures the color of each pixel. The process

of training these algorithms involves feeding them millions of such vectors and gradually

adjusting internal parameters until they consistently produce the desired output. While

current computational power facilitates this mechanism, it raises some questions. How

do humans recognize a cat in an image without needing millions of examples? Does our

brain process images at the pixel level or recognize some more fundamental and simpler

structure for easier and more effective learning and inference? The prevailing belief is that

the complexity and unstructured nature of raw data can hinder learning performance. In

the field of Unsupervised Learning, the subfield known as “Manifold Learning”—node 1 —

emerged as an attempt to improve data representation, aiming at extracting relevant features

or fundamental structures, on top which, learning strategies could be more effective. Although

its name hints at its roots in differential geometry, well-known Manifold Learning techniques

like ISOMAP, Tenenbaum et al. (2000), or Graph Laplacian, Belkin and Niyogi (2002, 2003), are

often simply categorized as dimensionality reduction strategies. This classification, focused
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Figure 2: (left) 3D representation of the Earth; (center) chart map representing a portion of the
earth in 2D; (right) graph structure approximating the Earth.

more on the effect than the cause, obscures the true nature of these algorithms and, along

with it, a whole range of potential applications.

Having already introduced the concept of a graph, we now turn to another fundamental

element in differential geometry: the manifold. Instead of delving into its formal and abstract

mathematical definition, let us understand a manifold in a more intuitive way. Essentially, it is

a structure where the distance between two points is not measured by the length of a straight

line connecting them. Consider the Earth as an example, Figure 2 on the left. To measure

the (minimum) distance between the South and North Poles, one must calculate the length

of a meridian, which is not a straight line. This is due to the “curvature” that characterizes

the Earth’s surface, which is approximately spherical. A graph, as previously defined, can

be seen as a discrete, approximated representation of a manifold, Figure 2 on the right. In

Manifold Learning techniques, starting from our raw dataset, the underlying hypothesis is that

each sample lies on an unknown manifold. These techniques construct a graph over the raw

data and, rather than directly learning the manifold as the name might imply, they learn an

alternative representation of it with some desirable features. Sometimes this representation

has a lower dimension than the original space, making these methods useful in situations

where dimensionality reduction is needed for computational efficiency. Other times, the

new representation better emphasizes differences or similarities among samples, aiding in

clustering tasks, for example. The effectiveness of the result is largely dependent on how the

graph is constructed. In the first chapter of this thesis, we will explore this aspect in depth,

using it to identify and learn Dynamical Systems (DS)s.

Dynamical Systems as high level control policies

Before moving forward, it is crucial to define and contextualize the concept of Dynamical

Systems (DS), which plays a central role in this thesis. A DS is a specialization of the abstract

mathematical concept of ordinary differential equations to the case where the integration

variable is interpreted as time. These equations allow for the description of a particle or
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Figure 3: (left) A planar robotic arm tracking a specific streamline, highlighted in green,
sampled from a 2D dynamical system. The other sampled streamlines are depicted in black,
providing a visual representation of the potential ’flow’ paths the robot would follow if it were
positioned along these alternative trajectories. (right) Kinesthetic teaching, where the robot is
physically guided through the task by the human.

ensemble of particles whose state varies over time. However, across various disciplines, this

term has been broadly used beyond its original context of particles’ motion, to describe

abstract systems governed by differential equations involving time derivatives. At the dawn

of the 21st century, the emerging field of robotics, drawing from both control theory and

machine learning, saw potential in using DS formalism to describe high-level behavioral

policies of robotic systems. For example, consider a robotic hand designed to move from

any point within its reachable space to a specific target, such as grasping a glass of water. In

this scenario, a DS can model this behavior as an ideal flow, within which the robotic hand is

immersed, continuously directing it from any point in space towards the glass. At the glass

location, this flow ceases. Such special locations is called equilibrium point or attractor of

the DS. Figure 3, on the left, offers a schematic representation of a robotic arm following

a streamline of the DS. Learning from Demonstration (LfD) has developed as an effective

approach to embed human-like motions, Figure 3 on the right, into a DS, leveraging a limited

number of observations as a foundation, Billard et al. (2008).

Learning a DS guaranteeing the existence of such unique attractor is a complex challenge,

potentially impacting the encoding of the demonstrated behavior’s complexity. Over the past

decade, considerable research has been conducted to address this issue. Differential geometry,

though not always explicitly mentioned, began to emerge in those approaches that learn

DSs through diffeomorphic transformations, Perrin and Schlehuber-Caissier (2016). Without

delving into mathematical intricacies, these approaches essentially seek to transform the

original space in which the DS resides. This transformation aims to simplify and enhance

the learning process while maintaining the existence of a unique attractor for the learned

DS. The link to differential geometry in this context was first explicitly revealed by Rana et al.

(2020). As highlighted earlier, the concept of representation is central to our discussion. Rana

et al. explains how the various transformations of the original space can be seen as ways of

accessing different representations of the same underlying manifold, with the original space

itself being just one such representation. In Figure 1, we have gathered all strategies that
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attempt to learn DSs in one manifold’s representation space under the node 2 —“Learning

Dynamical Systems leveraging on Geometric Tools”.

From Manifold Learning to Dynamical Systems

Real-world complex tasks are rarely accurately modeled by a single DS. The intricacy and

diversity of movements in even the simplest real-world scenarios necessitate a model capable

of integrating multiple DSs. In this context, Multiple-Attractor Dynamical Systems have

emerged as a promising approach to modeling complex tasks. A Dynamical System com-

posed of multiple stable attractors offers the flexibility to encode various methods for reaching

and grasping objects, as well as the capability to execute complex tasks through a series of

simpler subtasks. The concept of Multiple-Attractors DS, along with Manifold Learning, is the

key focus of Chapter 2 in this thesis. In realistic scenarios, proper segmentation and labeling

of data might be lacking, either because the data are generated by inexperienced users or

because the dataset comprises complex physical task demonstrations. It is unreasonable to

expect non-expert users to accurately identify the number of sub-dynamics and the locations

of corresponding attractors. Requiring users to segment the task into sub-components can be

overly demanding and hinder the effective demonstration and transfer of skills. To address the

challenge of identifying multiple-attractor DS without prior knowledge of the dynamics or at-

tractors, we propose a fully unsupervised learning approach. The objective of our algorithm

is twofold: (a) to cluster the sub-dynamics within a dataset, and (b) to uncover the underlying

structure of the data that facilitates the identification of attractors and eases the learning of a

stable vector field. To accomplish our goal, we demonstrate that by creating an appropriate

graph structure, one can unveil, through Manifold Learning strategies, a new resourceful

representation. This representation effectively reveals the number of sub-dynamics and their

respective attractor locations within a Multiple-Attractor DS. Moreover, this newly derived

representation is inherently compatible with diffeomorphic learning DS strategies, thereby

establishing the link between first two nodes, in Figure 1. This final connection was established

by examining both Manifold Learning and diffeomorphic learning of DSs through the lens of

differential geometry.

The application of differential geometry in reinterpreting established concepts might

initially appear as an elaborate exercise in translating ideas into a different mathematical

language. However, this process is far from being an academic redundancy. Reformulating

problems within a more profound and sophisticated mathematical framework is a critical step

towards advancement. An illustrative example, which is relevant to the next chapter of this

thesis, is Contraction Theory (CT), Lohmiller and Slotine (1998). Originally, CT’s formulation

did not explicitly connect with the concepts of manifolds or their representations. However, a

unified and formal reinterpretation of CT through the lens of differential geometry, Simpson-

Porco and Bullo (2014), has enriched our understanding of the subject revealing aspects that

were remained hidden. This new perspective on CT is intimately linked to the concepts of

manifolds and their representations, discussed earlier. Presently, a significant area of research,
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Figure 4: One sampled streamline from a geometrical DS on a flat Euclidean space and on the
sphere. The avoidance of obstacles is achieved via local deformation of the space (not visible
in the picture). The color gradient represent the potential function driving the DS towards the
goal (the star).

which we refer to as “Theoretical Analysis of Stability on Manifolds”—node 3 , is actively

utilizing geometry to broaden various results in control theory, Forni and Sepulchre (2014). As

highlighted for the first work, the second study we are going to introduce will derive results

from the differential geometry interpretation of CT by Simpson-Porco and Bullo (2014).

Learning via Geometrical Dynamical Systems

While having multiple attractors clearly extends the application of Dynamical Systems (DSs)

to complex, real-world scenarios, another research trajectory focuses on enhancing the

adaptability and expressivity of DSs characterized by a single attractor. In this realm, “Geo-

metrical Dynamical Systems”—node 4 —proposed a significant advancement in shaping

complex policies, Figure 4. These approaches involve shaping DSs that operate on carefully

defined manifolds, aiming to achieve two key goals: 1) increase the expressivity and adapt-

ability of DS policies, and 2) enhance the modularity of these systems for addressing the

increasing complexity of real-world scenarios in robotics. A notable contribution in this field

is the Riemannian Motion Policy (RMP), introduced by Ratliff et al. (2018). This modular

mathematical framework is designed for robotic motion generation. By strategically designing

the so-called Riemannian metrics, it allows for a wide range of behaviors to be exhibited

and combined. This foundational work has spurred active research in the area, leading to

extensions of the original concept, Cheng et al. (2020); Bylard et al. (2021), and more recent

explorations into more advanced geometrical frameworks involving pseudo-Riemannian

metrics, Xie et al. (2021); Ratliff et al. (2021).

This line of research has not been explicitly focused on learning DSs from demonstra-

tions. The work presented in Chapter 3 aims to bridge this gap. We combine insights from

DS learning literature with the emerging area of geometry-based shaping of DS policies.

Inspired by Einstein’s concept of a four-dimensional manifold in space-time, we propose a

novel approach to learning nonlinear DSs. In our method, the nonlinearity of the DSs is not a

result of external forces; instead, it originates from the intrinsic curvature of an underlying
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manifold. This approach, which may initially appear as a complex mathematical construct,

results in learning strategies that significantly enhance trajectory reproduction fidelity. No-

tably, this method also reduces computational costs both during training and at the time of

querying. Our framework enhances the expressivity of geometrical policies. It illuminates the

relationship between the nonlinearity of DSs and the curvature of the manifold.

The foundational work of Ratliff et al. (2018), and by extension our own, was enabled by a

differential geometry-based reinterpretation of Lagrangian mechanics, an idea that began to

take shape over a decade earlier. The work of Bullo and Lewis (2005), at the onset of the 21st

century, proposed a unified differential geometric treatment of modeling, analysis, and design

for mechanical control systems. This research domain, identified as “Classical Mechanical

Systems as Riemannian Geometries”—node 5 , has sparked several other intriguing research

areas. Although not covered in this thesis, these fields could potentially intersect with our work

in the future. One particularly interesting field deeply rooted in robotics is “Nonlinear Modes

Analysis”—node 6 , Albu-Schäffer and Della Santina (2020). This area extensively adopts a

differential geometry perspective to enhance the understanding of robotic systems’ intrinsic

dynamics. This endeavor to deepen our understanding is ultimately aimed at designing more

efficient and effective controllers for specific tasks, Bjelonic et al. (2022). Additionally, it seeks

to conceptualize systems that are inherently designed and optimized for particular functions,

enhancing their suitability and performance for those designated tasks, Albu-Schäffer and

Sachtler (2023).

Learning on Manifolds. . . not Manifold Learning

While the concept of a manifold has been intermittently referenced, the primary focus so far

has been on its representation. In both the first and second studies of this thesis, the DS we

aimed to identify or learn were ultimately addressed within a representation of the manifold,

leaving the manifold itself somewhat in the background. To put it in more technical terms, our

discussion has primarily concerned the “charts” that cover a particular manifold. Consider

once again the Earth. We typically conceptualize it as a sphere in a 3D space. However, when

we need to locate a specific city on the globe, we refer to an atlas and flip through its pages

until we find the map showing the part of the Earth where that city is located, Figure 2 in the

center. In mathematical terms, this specific map page is what we call a “chart” representing a

portion of our manifold. A manifold can be depicted through multiple charts, each serving as

a local, flat representation of the manifold. Until now, our approach has relied on the (latent)

presence of the manifold to induce a specific structure in the chart, a local flat Euclidean space.

But what if we want to consider problems directly on the manifold itself, like addressing issues

on the entire sphere in our Earth example?

Numerous scientific disciplines deal with underlying structures that are non-Euclidean

in nature. This includes areas such as computational social sciences, sensor networks in

communications, functional networks in brain imaging, regulatory networks in genetics, and
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meshed surfaces in computer graphics. In these applications, optimization and learning

are critical processes. Extending optimization and learning strategies to non-Euclidean

spaces is a complex task that necessitates a novel reinterpretation of the most basic and

fundamental mathematical operators. When extending optimization problems to manifolds,

it becomes necessary to view parameter spaces as non-Euclidean. When adapting learning

problems to manifolds, the focus shifts to domains that are inherently non-Euclidean.

Building on the abstract but foundational reinterpretation of optimization through differ-

ential geometry, as explored by Absil et al. (2008), these tools have since gained widespread

application across a variety of fields, most notably in machine learning and robotics. In ma-

chine learning, for example, optimization on manifolds has been applied to enhance Principal

Component Analysis (PCA), a well-known unsupervised learning strategy. Structures such

as the Stiefel or Grassmann manifolds have emerged as solutions to optimization problems

characterized by sparsity and increased robustness against outliers. In robotics, optimization

on Special Orthogonal groups (SO(d)) is ubiquitous, as these structures naturally describe

the orientation of a system. This is particularly evident in simultaneous localization and

mapping (SLAM), a process where a robot must map its environment and determine its lo-

cation within it as it navigates Rosen et al. (2021). Furthermore, the fields of “Geometric

Optimal Control”—node 7 , Watterson et al. (2018); Bonalli et al. (2019), and “Lie Group

Theory for Identification & Control”—node 8 , Solà et al. (2021), actively employ tools from

gradient-based optimization extended to non-Euclidean spaces. Today, “Optimization on

Manifolds”—node 9 —represents a broad and dynamic area of research, Boumal (2023),

reflecting its growing importance and applicability across a spectrum of scientific and tech-

nological domains. Optimization on Manifold treatment of differential geometry from both

extrinsic and group-based perspectives, has significantly enhanced our grasp of geometry-

based control. This understanding was pivotal in designing the low-level controller for the

robotics experiments. Moreover, it actively inspired and facilitated the development of various

concepts introduced in this work.

Probabilistic Models on non-Euclidean Domains

The second key area where an extension to non-Euclidean spaces shows significant potential

is learning. The third and final work of this thesis concentrates on learning on manifolds. This

area, involving the learning of scalar or vector-valued functions on manifolds, has rapidly

become a vibrant and productive research field in both machine learning and robotics. In the

realm of deep learning, this extension was already underway with advancements in “Deep

Geometrical Learning”—node 10 , Bronstein et al. (2017). However, probabilistic learning

strategies, which are particularly appealing for robotics and decision-making processes in

general, were still in need of a robust differential geometry framework.

Probabilistic model learning represents an interesting avenue, particularly in the field

of robotics where it is essential to handle hardware noise and model uncertainty in order to
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design safe and robust controllers. In this context, Gaussian Processes (GPs) are among the

most adopted models for learning unknown functions within the Bayesian framework. Their

data efficiency and capability for uncertainty quantification make them an appealing strategy

not only for control design but also for decision-making applications in general. Another key

element behind the success of GPs is their ability to encode different kinds of prior information

about the function they aim to approximate. For example, by choosing different kernels, one

can encode various degrees of differentiability or specific patterns, such as periodicity and

symmetry.

In the field of robotics, various kernels have been developed by leveraging domain knowl-

edge about the specific task at hand. Task-specific kernels were introduced by Antonova

et al. (2017) who learned a distance metric through simulated bipedal locomotion patterns to

optimize gait controllers. Similarly, Rai et al. (2018) utilized gait feature transformations to

design kernels for optimizing locomotion controllers. Although these kernels can be utilized

for robot control or policy search across a wide range of tasks and systems, their application is

specific to the problems for which they were originally designed.

A more general approach, of interest to many fields, aims at incorporating into the kernel

information about the geometry of the space. Many quantities of interest in robotics exhibit

non-Euclidean geometries, necessitating the construction of specific kernels tailored to these

geometries. For instance, three-dimensional rotations can be represented as elements of the

Lie group SO(3) or the sphere S3. Control gains, inertia, and manipulability ellipsoids are

situated in the manifold of symmetric-positive-definite matrices S d++. Meanwhile, the joint

configuration of a d-degree-of-freedom robot with revolute joints can be considered as a point

on a torus Td .

Constructing Kernels via Differential Operators. . . Manifold Learning again?

Initially, progress was made with less mathematically formal approaches, either by working

locally in the so-called tangent space, Zeestraten et al. (2017), or by adapting the notion of

distance to account for the curvature of the manifold, Jaquier et al. (2020). These “Extensions

of Machine Learning Techniques on Manifolds”—node 11 —drew the attention of mathemati-

cians, leading to collaborative efforts in developing both theoretically and practically sound

extensions of learning strategies to manifolds. A significant breakthrough came from insights

that trace back to the mid-20th century. Building on Whittle’s pioneering work, Whittle (1963a),

which established a connection between Gaussian Processes and certain stochastic partial

differential equations (SPDE) driven by white noise, Borovitskiy et al. (2020) proposed an

extension of the well-known Heat and Matérn kernels—central in GP regression and broadly

in ridge regression algorithms—to manifolds. A significant milestone in learning on known

manifolds was achieved by embedding information about the geometry of the specific

structures underlying the data directly into the kernel in a principled way, Figure 5. This de-

velopment has sparked a range of studies, which we categorize under “Differential Operators
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Figure 5: Learning on complex manifold. (left) Geometric kernel evaluated at red dot; the
color gradient represent bell-shaped functions (similar to a multivariate Gaussian), centered
in the red dot, taking place on the surface of the dragon. The kernel decays gradually following
distances calculate on the surface of the manifolds. Note how the two sides of the dragon’s
snout have very different values, despite close Euclidean proximity. (center) Ground truth and
prediction. (right) Uncertainty. 1

for Constructing Kernels on Manifolds”—node 12 . Soon after, a more precise redefinition of

Bayesian learning strategies for well-known manifolds relevant to robotics was introduced by

Jaquier et al. (2022).

What if the structure of the manifold is unknown? Chapter 4 of this thesis addresses

this question by revisiting manifold learning strategies. To bridge the gap between manifold

learning and Bayesian regression on manifolds, a conceptual advancement was necessary.

Following Belkin and Niyogi (2003) foundational work, a line of harmonic analysis research,

influenced by Coifman and Lafon (2006); Nadler et al. (2006b), began exploring manifold learn-

ing as a means to approximate differential operators on manifolds. This approach, inspired by

the work of Whittle (1963a); Lindgren et al. (2011), set a clear direction for our investigation. In

this final part of the thesis, we demonstrate that by constructing an appropriate Geometric

Graph Laplacian, one can recover the differential operator needed to extend the Matérn

kernel to manifolds, without prior knowledge of the manifold’s structure. Moreover, we

treat the two learning challenges—identifying the manifold structure and the function on the

manifold—as interconnected problems. We introduce a Gaussian Process regression method

that concurrently learns a specific function and deduces the underlying manifold structure

from both labeled and unlabeled data in a fully differentiable way. Our technique is scalable

to hundreds of thousands of data points and enhances both the predictive performance and

calibration of standard Gaussian process regression in high-dimensional and complex non-

Euclidean spaces. Although not directly related to learning Dynamical Systems, the research

in this chapter lays the groundwork for future extensions of existing theories Robert-Nicoud

et al. (2024) to learning vector-valued fields on unknown manifolds.

The End. . . ?

Our exploration of Machine Learning and Robotics through the lens of differential geometry

has reached its conclusion. The upcoming chapters will delve into each topic, adhering to a

1©Borovitskiy et al. (2020).
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structured format designed to guide the reader through the diverse theoretical landscapes.

Each chapter begins with an introduction providing a general overview of the current state

of the art in a specific area and the challenges we aim to address. This is followed by a

background section, which compiles all the necessary concepts and tools for the reader to

fully grasp the topic at hand. The core content of each chapter is presented in one or more

sections, thoroughly discussing the main subject matter. Finally, each chapter concludes with

a discussion section. Here, we summarize the key points of our work, examine its limitations,

and contemplate future developments. This section also serves as a conceptual bridge to the

next chapter, ensuring a coherent and continuous narrative throughout the thesis.

Contributions and Thesis Outline

After a first background chapter, this thesis is organized in three main parts corresponding to

the three different “edges” highlighted in Figure 1. Following, we present brief overviews of

each chapter and highlight their corresponding contributions.

Chapter 1: Background

This chapter provides a background summary and reviews the preliminary materials needed

to follow the developed approaches in the thesis.

Chapter 2: Linearization and Identification of Multiple-Attractor Dynamical Systems through

Laplacian Eigenmaps

In complex real-world scenarios, single models often fail to capture the intricacies involved.

A more effective method involves employing Multiple-Attractor Dynamical Systems (DSs),

which integrate various DSs, each distinguished by unique non-linearities and equilibrium

points (attractors). However, human demonstrations of such tasks are typically unstructured,

lacking predefined information about the number and location of sub-dynamics or attractors.

We introduce an unsupervised learning approach that, using a dataset of unlabeled position-

velocity pairs, autonomously determines the number of sub-dynamics and the positions of

attractors. This work has two primary contributions. Theoretically, we explore the structure of

embedding spaces formed by eigenvectors of the Graph Laplacian when applied to specific

graph structures, verifying the existence of multiple embedding spaces corresponding to

each identified sub-dynamic, where demonstrated streamlines appear linear. Practically, we

propose a new kernel, fusing the RBF and Cosine kernels, to reconstruct the desired graph

structure. Additionally, we demonstrate the efficacy of combining differential perspective

Manifold Learning with diffeomorphic transformations for learning stable Dynamical Systems.
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Chapter 3: Learning Dynamical Systems Encoding Non-Linearity within Space Curvature

We concentrate on enhancing the learning of stable Dynamical Systems (DS) using geometric

tools, with several key contributions. Firstly, we introduce a learning framework based on

differential geometry, which encodes the non-linearity of the DS through the curvature of the

space. This approach enables us to establish the stability of the DS on a manifold, indepen-

dent of its complexity in a chart-based representation. This integration effectively combines

Learning from Demonstration (LfD) with Geometric Policies, taking advantage of the latter’s

superior expressivity. We demonstrate how this framework allows for online manipulation of

the space to seamlessly shift from standard behavior to task-specific actions, or to address

local non-linearities in situations like obstacle avoidance, without the need for re-learning.

Finally, our method extends the learning of DS to the realm of second-order systems. This not

only significantly enhances the fidelity of velocity profiles and accommodates a wider array of

trajectory behaviors, but also aims to create a connection between high-level DS policies and

low-level intrinsic DS, both interpreted as Riemannian geometries.

Chapter 4: Implicit Manifold Gaussian Process Regression

Learning on manifolds is increasingly important due to its effectiveness in modeling a variety

of phenomena. Gaussian Process Regression (GPR) is particularly notable in this context, offer-

ing the ability to infer complex functions from limited data while providing reliable uncertainty

quantification, which is crucial in decision-making processes like those in robotics. Recent

theoretical advancements have introduced novel kernel structures for situations where the

manifold’s structure is known. Our work, however, addresses scenarios where this structure is

unknown. We introduce a method that synergizes Manifold Learning with GPR on Riemannian

manifolds. This method learns a specific function and simultaneously infers the manifold’s

structure. This problem utilizes the Matérn precision matrix’s unique structure on Rieman-

nian manifolds, optimizing both the GP model’s hyperparameters and the graph structure

approximating the unknown manifold. We demonstrate the convergence of the approximated

kernel to its continuous counterpart. Our approach, which incorporates K-nearest neighbors

(KNN) for graph construction and Nystrom-formula out-of-sample eigenvectors extension,

scales efficiently to hundreds of points thanks to Krylov subspace methods like Conjugate

Gradient (CG) and Lanczos tridiagonalization. Our method significantly enhances inference

and uncertainty quantification in high-dimensional settings, particularly where the manifold

hypothesis is applicable.

Chapter 5: Conclusion and Future Developments

In this chapter we summarize the presented contributions and outline limitations and future

research directions.
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Appendix

The appendix of this thesis is composed of five sections focused on proofs, expansions and

extensions to the presented contributions.

Publications

The contributions in this thesis have been published, presented or are currently under review

in peer-reviewed journals and conferences. The work presented in Chapter 2 has been pub-

lished in the Journal of Machine Learning Research (JMLR), Fichera and Billard (2022). The

work described in Chapter 2 is currently under review in the International Journal of Robotics

Research (IJRR), Fichera and Billard (2024). Despite not presented in this thesis, the work

in Chapter 2 was inspired and built on top of a “Blue Sky Idea” published in International

Symposium of Robotic Research 2022 (ISRR), Fichera and Billard (2023). The content of Chap-

ter 4 has been published and presented in the Thirty-seventh Annual Conference on Neural

Information Processing Systems (NeurIPS 2023), Fichera et al. (2023).

Developed Libraries

In this section we list the most important libraries developed along the projects presented in

this thesis. Here we are not listing paper related code but general purpose libraries that can

and should be used beyond the scopes of this work.

learn-embedding: https://github.com/nash169/learn-embedding.git

Python library. Given an embedding automatically generates the isometric pulled-back embed-

ding geometry necessary to define first or second order DSs on a chart-based representation

of the manifold. It offers the possibility of modularly defining the embedding via different

function approximators. The fully differentiable pipeline allows for embedding curvature

adaptation to learn stable dynamical systems.

beautiful-bullet: https://github.com/nash169/beautiful-bullet.git

C++ library. It allows to quickly setup your robotic simulation and test your controllers. This

library intends to leverage the core of Bullet Physics Engine and empowers it with different

tools offering a performant, modular and user-friendly solution. All the mathematics is

wrapped by eigen linear algebra library, current standard in C++. It uses urdfdom for efficient

model parsing and assimp for creation of 3D meshed collision objects. Visualization is based on

the light-weight and modular magnum graphics library. All model-based operations, such as

forward/inverse kinematics/dynamics and calculation of various model matrices, is powered

by pinocchio that offers state-of-the-art implementation of many Rigid Body Algorithms.

control-lib: https://github.com/nash169/control-lib.git

C++ library. Manifold based set of controllers. Each controller is defined over a specific

manifold or group, such Rn , SO(n) or SE(n). All the operation done via that controller au-
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tomatically adapt to the geometry of the underlying space. It offers a “dynamic” version of

Quadratic Programming (QP) control. The quadratic functional can be dynamically defined to

operate on first-order or second-order state derivatives to target either kinematics or dynamics

tasks, respectively. Both functional and constraints components can be modularly construct

allowing to easily define task-specific QP control structures.

geometric-control: https://github.com/nash169/geometric-control.git

C++ library. It uses Visitor Pattern with Variadic Template meta-programming strategy

to generate an automatic sequence of connections’ pullback, alias unconstrained inverse

dynamics, across manifolds. It generates tree structures where each is node is a different

manifold. The edges connecting nodes corresponds to maps across manifolds and they are

parent/child node specific. The leaf nodes consist of specific manifolds on which a connection

(or covariant derivative) defines a “task”, alias second-order DS accomplishing a specific goal.

At runtime all the connections are automatically pulled-back towards the root node generating

an overall second-order DS encoding complex and various motions.

manifold-gp: https://github.com/nash169/manifold-gp.git

Python library. Library providing high-quality implementation of Riemannian Matérn kernel

along with fully differentiable structure that allows to perform end-to-end—graph-bandwidth

plus kernel hyperparameters—optimization of the graph Laplacian based GP model. The li-

brary relies on efficient implementation of K-nearest neighbors provided by faiss, to construct

Radom Walk and Symmetric Laplacian sparse operators as well as out-of-sample eigenvectors

extension via Nystrom formula. Combined with modern matrix-free Krylov subspaces strate-

gies, the library can scale up to hundreds of data points, operating in both supervised—only

labeled data—and semi-supervised—both labeled and unlabeled data—learning.

kernel-lib: https://github.com/nash169/kernel-lib.git

C++ library. It offers and high-quality implementation of the most common adopted kernels

in machine learning. It employs Curiously Recurring Template Pattern meta-programming

strategy to achieve runtime high-performance static polymorphism. Powered by OpenMP
multi-threading it can computes Gram matrices on several thousands of points in few mil-

liseconds.
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1 Background

In this thesis, differential geometry finds its application across three distinct domains: Mani-

fold Learning, Geometrical Dynamical Systems, and Gaussian Processes on manifolds. After a

preliminary section designed to establish foundational terminology and definitions, we start

introducing the main topics faced in this work.

In Section 1.2, our objective is to demonstrate the multifaceted nature of Manifold Learn-

ing, unveiling new insights at each level of exploration that typically remain concealed. Ini-

tially, we focus on how Manifold Learning strives to reconstruct embeddings, aiming to retain

certain properties, such as isometry. This viewpoint is instrumental for comprehending the

methodologies presented in Chapter 2 of this thesis. We then extend this interpretation further,

illustrating how Manifold Learning fundamentally seeks to approximate specific differential

operators on manifolds. The eigenfunctions of these operators are versatile; sometimes they

assist in approximating embeddings, while at other times they contribute to defining appro-

priate Gaussian Process (GP) covariance functions on manifolds. These applications will be

explored in detail in Chapter 4.

In Section 1.3, we introduce essential terminology and concepts that are crucial for a

thorough understanding of the ideas developed in Chapter 3. Specifically, we delve into the

derivation of a geometric Dynamical System (DS) conceptualized as the stationary curve of a

massive particle’s world line in the context of action. This approach not only illuminates the

intriguing interplay between Riemannian geometry and Lagrangian mechanics but also paves

the way for the future development of more sophisticated and intricate Dynamical Systems.

Finally, in Section 1.4, we establish a link between the aspect of Manifold Learning, which

focuses on approximating differential operators, and Gaussian Process Regression on mani-

folds. In the initial interpretation of Manifold Learning, the eigenfunctions of such differential

operators were seen as components of embeddings. However, building upon the relation-

ship between stochastic partial differential equations and Gaussian Processes, in Chapter 4,

these eigenfunctions are re-envisioned as a basis, or harmonics. These harmonics are key in

capturing the intrinsic geometry of the manifold, enabling us to accurately reconstruct the
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Chapter 1. Background

M = (M ,O ,A , g )

U

Rdi m(M )

N = (N ,O ,B,h)

V

Rdi m(N )

f

y ◦ f ◦x−1

(U , x) (V , y)

Figure 1.1: The differential manifold philosophy.

appropriate covariance function for the manifold’s specific geometry.

1.1 Manifolds, Coordinate Charts and Smooth Embeddings

We first consider the geometric problem of manifold and metric representation, and define a

smooth manifold in terms of coordinate charts.

Manifold A topological space (M ,O ) is called a d-dimensional manifold if:

∀p ∈M : ∃U ∈O : ∃x : U → x(U ) ⊆Rd (1.1)

and:

1. x is continuous

2. x is invertible

3. x−1 is continuous

O is a topology and U is an open connected set that defines a portion of the manifold. x is

called the chart map. It maps every point p ∈M to the point x(p) = {x1(p), . . . , xd (p)} = x into

the Rd Euclidean space which the manifold is locally homeomorphic to. {x1(p), . . . , xd (p)}

take the name of coordinate maps. We assume to deal with differentiable Riemannian C∞-

manifold.
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1.1 Manifolds, Coordinate Charts and Smooth Embeddings

From geometrical point of view, the operation that leads to the calculation of the metric

starting from a differential coordinate transformation is formalized defining an embedding.

Embedding Let M and N be smooth manifolds and f : M →N be an injective continuous

map. Then f is called an immersion if its derivative (push-forward map f∗ = d f ) is everywhere

injective. An embedding, or a smooth embedding, is defined to be an injective immersion

which is an embedding in the topological sense that f yields a homeomorphism onto its

image.

The derivative of the embedding, also called push-forward map or Jacobian, is a tool that,

informally, allows to send vectors that lie on M to N .

Pushforward map Let f : M →N be a continuous map between manifolds M and N . The

push-forward map f∗ is the map
f∗ : T M → T N

X 7→ f∗(X )
(1.2)

where

f∗(X ) f := X ( f ◦φ) ∀φ ∈C∞(N ),∀X ∈ Γ(T M ). (1.3)

T M and T N are the tangent bundle of M and N , respectively.

The C∞−modul e Γ(T M ) is defined as the set collecting all the sections from the manifold

M to the tangent bundle T M (informally vector fields on M ).

The "reverse" is called pullback map and it sends co-vectors from N to M .

Pullback map Let f : M → N be a continuous map between manifolds M and N . The

pullback map f ∗ is the map
f ∗ : T ∗N → T ∗M

ω 7→ f ∗(ω)
(1.4)

where

f ∗(ω)(X ) :=ω( f∗(X )) ∀X ∈ Γ(T M ),∀ω ∈ T ∗N . (1.5)

T ∗N is the cotangent bundle of N .

In Riemannian geometry the specific embedding that preserves the metric is called iso-

metric embedding.

Isometric embedding Let (M , g ) and (N ,h) be Riemannian manifolds. An isometric em-

bedding is a smooth embedding f : M → N which preserves the metric in the sense that

g is equal to the pullback of h by f , i.e. g = f ∗h. Explicitly, for any two tangent vectors

v, w ∈ Tp (M ) we have

g (v, w) = h
(

f∗(v), f∗(w)
)= ( f ∗h)(v, w) (1.6)
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M = (M ,O ,A , g )

U

Rdi m(M )

F = (Rr ,Ost ,C )

Rr

N = (Rs ,Ost ,B,h)

Rs

f

i dRs ◦ f ◦x−1

(U , x)
(Rr , i dRr ) (Rs , i dRs )

ϕ

Figure 1.2: Manifold learning working flow.

The map across the two local coordinate charts is called the local representative of the map

f .

Local representative of a map Let (U , x) and (V , y) be charts of manifolds M and N , respec-

tively. Given the map f : U → V , the local representative of f with respect to the two charts is

the map fx y : x(U ) → y(V ) given by

fx y (x) = y ◦ f ◦x−1(x), (1.7)

where x = x(p), p ∈M .

Figure 1.1 shows, on the top-left, the manifold M . On the top-right, it is represented the

embedding manifold N . Below these two manifolds there are the related maps chart x and y .

f is the embedding while y ◦ f ◦x−1 is the local representative of f .

1.2 Manifold learning: a differential geometry perspective

Manifold learning algorithms start from the assumption that data lie near or along a smooth

sub-manifold M of dimension d embedded in an Euclidean space M ⊂ Rr with d << r .

From a geometric perspective, one would ideally like to recover directly the d-dimensional

coordinate maps x(p) = {x1(p), . . . , xd (p)} = x with p ∈ M , Figure 1.2. This is not possible

as manifolds in general cannot be represented by a global coordinate chart (the sphere is

an example). Thus, what manifold learning algorithms aim to achieve is to map data into

s ≥ d dimensions. In order to avoid heavy notation all the sampled data-points in Euclidean

space are expressed in bold vector notation with lower index referring to the label. Let i dRr
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1.2 Manifold learning: a differential geometry perspective

be the identity chart map of a r-dimensional Euclidean space endowed with the standard

Euclidean metric. The i-th sampled point on the (Euclidean) manifold pi is expressed in local

coordinates as i dRr (pi ) ≡ ξi . Given a data set X = {ξ1, . . . ,ξm} ⊂Rr , representing the sampling

in Rr of points p ∈ M , the goal of these algorithms is to map the data points into vectors

{ f (ξ1), . . . , f (ξm)} ⊂ Rs where s << r and d ≤ s. f is the embedding from M to N = Rs . The

strong Whitney embedding theorem states that any d-dimensional smooth manifold can be

embedded into R2d . Given a manifold of dimension d , small compared to the observed data

dimension r , manifold learning algorithms try to recover the embedding f : M →Rs , where

s ≤ 2d , preserving the geometry of the manifold. As we have a discretized representation

of the manifold, given by the data set X , manifold learning does not recover a continuous

embedding but a discretized version f̃ represented by a set of vectors f̃ = [
f̃ 1, . . . , f̃ m

]
. f̃ will

provide us with the coordinate in Rs for each point in the dataset1.

1.2.1 Learning the embedding: Diffusion Maps

Diffusion Maps, proposed by Coifman and Lafon (2006), provides a unified probabilistic frame-

work relating diffusion process and corresponding differential operators to Manifold Learning

and more generically Spectral Methods. Assuming that the data is randomly sampled from an

underlying general probability distribution e−U (ξ), as the number of samples goes to infinity,

the eigenvectors of each diffusion map converge to the eigenfunctions of a corresponding

differential operator defined on the support of the probability distribution. 2.

Suppose we have m data points ξi , independently and identically distributed, belong-

ing to a set X , generated by random variables distributed according to a density q over a

sub-manifold M ∈ Rn of dimension d . In addition to this structure a positive definite and

symmetric kernel k : X ×X →R is given. The kernel offers a measure of affinity or similarity

between points and defines a prior on the local geometry of X . Let kϵ(ξi ,ξ j ) = h(
∥∥ξi−ξ j

∥∥2

ϵ ) a

rotation invariant kernel. The degree of the graph constructed over the data points is defined

as qϵ(ξi ) =∑m
j=1 kϵ(ξi ,ξ j ).

In diffusion maps, the graph Laplacian normalization is not applied on the graph with

isotropic weights but on a re-normalized graph. We define the anisotropic kernel as k(α)
ϵ (ξi ,ξ j ) =

kϵ(ξi ,ξ j )
qα
ϵ (ξi )qα

ϵ (ξ j ) , whereα ∈R is a parameter that can be tuned to regulate the influence of the density

in the infinitesimal transitions of the diffusion. The degree of the graph for the new kernel is

d (α)
ϵ (ξi ) =∑m

j=1 k(α)
ϵ (ξi ,ξ j ). Applying the graph Laplacian normalization we get the transition

matrix of the Markov chain

Mϵ,α(ξi ,ξ j ) = k(α)
ϵ (ξi ,ξ j )

d (α)
ϵ (ξi )

. (1.8)

In the limit for m → ∞ the discrete sums converge to integrals over the density q . For φ :

1For out-of-sample extension of the manifold learning problem see Bengio et al. (2004).
2For a deeper analysis about approximation of differential operator on manifolds see Nadler et al. (2006b,a). For

connection between heat kernel and Laplace-Beltrami operator on manifolds see Belkin and Niyogi (2002, 2003).
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Chapter 1. Background

M →Rwe have limm→∞ 1
m

∑m
j=1 kϵ(ξ,ξ j )φ(ξ j ) = ∫

M kϵ(ξ,ξ′)φ(ξ′)q(ξ′)dξ′, where ξ and ξ′ are

two continuous variables. For a finite value of ϵ, the Markov chain in discrete time and

space converges to a Markov process in discrete time but continuous space. The forward and

backward continuous transport operator can be defined

T f
ϵ,αφ(x) =

∫
M

Mϵ,α(ξ|ξ′)φ(ξ′)q(ξ′)dξ′

T b
ϵ,αφ(x) =

∫
M

Mϵ,α(ξ′|ξ)φ(ξ′)q(ξ′)dξ′,
(1.9)

where Mϵ,α(ξ|ξ′) is the continuous in space relative of the discrete Markov chain in Eq. 1.8.

T f
ϵ,α and T b

ϵ,α are thus the continuous analogues of the left and right multiplication by the

finite matrix Mϵ,α.

The operator Mϵ,α admits a spectral decomposition where λk , φk and ψk denote the

eigenvalues, the left and right eigenfunctions, respectively. For a fixed s, decided by evaluating

the spectrum decay of the operator, the mapping between the original and embedding space,

known as diffusion maps, is

Ψ(ξ) = [
λ1ψ1(ξ),λ2ψ2(ξ), . . . ,λsψs(ξ)

]
. (1.10)

The first eigenfunctionψ0 is ignored since as it well known for stochastic matrix it corresponds

to the constant eigenvector for the connected graph.

Another important concept is the diffusion distance:

D(ξ,ξ′) = ∥∥p(ξ, ·)−p(ξ′, ·)∥∥2
L2(P ,d q/π) =

∫
P

(
p(ξ,u)−p(ξ′,u)

)2 d q(u)

π(u)
, (1.11)

where π is the stationary distribution. D(ξ,ξ′) is related to the transition probability between

points over the graph; it is small if there is a large probability of transition from ξ to ξ′, and

large, otherwise. As shown by Coifman Coifman et al. (2005) the diffusion distance is equal to

the Euclidean distance in the embedding generated by the diffusion maps
∥∥Ψ(ξ)−Ψ(ξ′)

∥∥=
D(ξ,ξ′).

In the limit, for ϵ→ 0, the random walk converges to a diffusion process in continuous

time and space, whose probability density evolves according to

∂p(x, t )

∂t
= lim
ϵ→0

I −T f
ϵ,α

ϵ
p(x, t ). (1.12)

The objects of study are the infinitesimal generators (or propagators)

H
f
α = lim

ϵ→0

I −T f
ϵ,α

ϵ
H b

α = lim
ϵ→0

I −T b
ϵ,α

ϵ
(1.13)

For q = e−U and considering the anisotropic diffusion kernel in Eq. 1.8 the propagators can be
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1.2 Manifold learning: a differential geometry perspective

Case Operator Stochastic Process

ϵ> 0,n <∞ Markov n ×n matrix M Random walk discrete in space and time
ϵ> 0,n →∞ Transport Operators T f ,Tb Random walk continuous in space discrete time
ϵ→ 0,n →∞ Infinitesimal Generators H f , Hb Diffusion process continuous in space and time

Table 1.1: Operators philosophy.

expressed in term of the parameter α:

H
f
α p =∆p −2(1−α)∇p ·∇U

H b
αp =∆p −2α∇p ·∇U + (2α−1)p

(
(∇U )2 −∆U

)
.

(1.14)

There three interesting cases:

• for α= 0, the classical normalized Laplacian, introduced by Belkin and Niyogi (2003),

with the infinitesimal backward generator being

H b
0 p =∆p −2∇U ·∇p, (1.15)

that shows how for uniform distribution the propagator coincides with the Laplace-

Beltrami operator;

• for α= 1/2 the construction yields the forward Fokker-Plank equation

∂p

∂t
=∇· (∇p +p∇U ), (1.16)

where p(x, t) represents the density of points at position x and time t of a dynamical

system satisfying the Langevin equation

ẋ =−∇U (x)+p
2ω̇, (1.17)

with ω being a n-dimensional Brownian motion;

• for α= 1, the backward operator returns the Laplace-Beltrami operator independently

from the density distribution generating the samples

H b
1 =∆. (1.18)

The random walk generated through Mϵ,1 converges to Brownian motion on M . Exclud-

ing the eigenvalues connected to the stationary distributions, the initial region of the

spectrum of the Markov matrix can be used to estimate the dimension of the manifold;

the corresponding eigenvectors (eigenfunctions in the continuous case) are intrinsic

coordinate on M . In this case, diffusion maps provide a map from M to the embedding

space E= span{ψ1, . . . ,ψd } and it is possible to recover the Riemannian geometry of the

data set, regardless of the distribution of the data points.
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Chapter 1. Background

In conclusion, the left and right eigenvectors of the finite matrix M can be viewed as

discrete approximations to those of the operators T f and T b , which in turn can be viewed as

approximations to those of H f and H b .

1.3 Geometrical Dynamical Systems

Let (M ,Θ,A , g ) be a topological smooth manifold endowed with the Hausdorff topology Θ,

the C∞ atlas A and the Riemannian metric g . Consider a generic action of matter coupled

with the chosen manifold metric g

Stot al [g ,Φ] = Smetr i c [g ]+Smat ter [Φ, g ], (1.19)

where Φ=σ, A,φ, . . . massive, field (covector, scalar, . . . ) or other matter types. For massive

particle, we consider just the interaction term on the right-hand side with given metric (no

variation with respect to the metric). The action of a massive particle world line is

S[σ; g ] =
∫

dλ
(
m

√
g (vσ, vσ)

)
, (1.20)

where σ : I → M is curve on the manifold M and vσ is the vector field generated by the

tangent velocities of curve σ. Considering the presence of (given) covector fields acting on the

space we have

S[σ; A, g ] =
∫

dλ
(
m

√
g (vσ, vσ)+D(vσ)

)
. (1.21)

The dynamics equations can be derived from the Euler-Lagrange equation of such an action

or equivalently considering the infinitesimal variation of the action itself leading to

m∇vσvσ =F (σ, vσ,λ)# =−dφ# −D(·, vσ)#, (1.22)

where λ ∈ I , F is the forces covectors and the sharp operator (·)# transforms covectors to

vectors. The chart components formulation is

gak
(
m∇vσvσ

)k = ∂a(φ◦x−1)−Dmaσ̇
m(

m∇vσvσ
)k = g ak∂aφ−Dk

mσ̇
m . (1.23)

Here some attention is required in the pulling up of the indices, In addition the "dissipative" is

not properly derived. Nevertheless the equation should be correct. The covariant derivative

∇vσvσ is the so-called geometric acceleration.

The metric can be derived as the pullback of the Euclidean metric with respect to the

isometric embedding f : M → Rs , where Rs is and Euclidean space of dimension s. This

represents a particular case where the co-domain of the embedding is an Euclidean space of

given dimension. Fig. 1.3 shows on the top left the embedding Euclidean space Rs , endowed

with the standard topology Ost and the Euclidean metric g E , whose components with respect
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M = (M ,O ,A , g )

U

(Rdi m(M ), gab)

N = (Rs ,Ost ,B, g E )

(Rs , g E
mn)

f

i dRs ◦ f ◦x−1

(U , x)
(Rs , i dRs )

Figure 1.3: Contraction metric reconstruction via pullback of the Euclidean embedding metric.

to the identity chart map i dRs are represented by the identity matrix.

The local representative map between the manifolds is defined as

(i dRs ◦ f ◦x−1) = ( f ◦x−1) :Rdi m(M ) →Rs (1.24)

and it gives us across the two respective charts. With a little abuse of notation let’s define

such transformation as f (x(p)) = ( f ◦x−1)x(p), where p ∈M . The differential relation can be

expressed as

δ f i = ∂ j ( f ◦x−1)i x(p)δx j =
(
∂ f i

∂x j

)
p
δx j (1.25)

In "vector" this relation is equivalent toδz = Jδx, whereδx andδz = δ f (x) are the infinitesimal

variation in base and target space, respectively, and J is usually called the Jacobian. Then we

can derive the metric of M pulling back the Euclidean metric of N

gab(p) = ( f ∗g E )ab(p)

= (
∂a( f ◦x−1)m x(p)

)(
∂b( f ◦x−1)n x(p)

)
g E

mn(p̃)

=
(
∂ f m

∂xa

)
p

(
∂ f n

∂xb

)
p

g E
mn(p̃),

(1.26)

where p̃ ∈N .
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Chapter 1. Background

1.4 Gaussian Process Regression on Manifolds

Up to this point, we have made a clear distinction between chart coordinates, denoted as

x, and embedded coordinates, represented by ξ. Going forward, however, we will simplify

our notation by using x to refer to both, as the distinction between the two will no longer be

significant in our context. Additionally, to align more closely with the established conventions

in the field of Gaussian Process Regression, we will use the symbol f to represent the generic

function that we aim to learn. It is important to note that when f is accompanied by a

subscript, such as in fn , it specifically refers to an eigenfunction of a particular differential

operator.

The last work presented in this thesis we focus on extending to manifold setting Gaussian

Process Regression. A Gaussian process is a distribution over functions of the form f : X →R.

It is defined implicitly by the requirement that p( f (x1), . . . , f (xN )) be jointly Gaussian, for any

set of points xi ∈X . The parameters of this Gaussian can be computed using a mean function

µ(·) and covariance function (or kernel) k(·, ·). We write f ∼ GP(µ(·),k(·, ·)). In order to extend

the GP formalism to non-Euclidean domains it is fundamental to design new kernels that can

encode the geometry of the underlying space.

The problem of kernel regularization beyond non-Euclidean spaces started by focusing

on graphs and discrete spaces with the work of Smola and Kondor (2003). Although its non-

continuos nature, the work clearly hints at the idea that as long as a kernel can be defined in the

input space all the kernel-based algorithms with their theoretical guarantees can exported to

non-flat geometries, namely manifolds. In addition, since every manifold can be isometrically

embedded in Euclidean space, as shown by Nash (1956), it is always possible to define some

cordal distance between points combined with a radial basis function kernel. Although this

type of kernel suffers from the curse of dimensionality and it discards information contained

in the geometry induced by the structure of the manifold.

Another solution was found in replacing the Euclidean norm with the geodesic distance

as in Jayasumana et al. (2013, 2015). Unfortunately this approach does not always lead to

well-defined kernel. Gneiting (1998) showed that, in general, one cannot expect this approach

yielding symmetric positive semi-definite kernel or, in the context of GP, valid covariance

functions. In addition, Feragen et al. (2015a) showed that for positive semi-definite geodesic

squared exponential kernels with positive length scale hyper-parameter the underlying man-

ifold is isometric to a Euclidean space. This implies an ill defined kernel for any compact

Riemannian manifold.

Other interesting approaches leverage on the fact that manifolds are locally homeomor-

phic to the Euclidean space. Most of the technique used in Gaussian-based probabilistic

modeling can be applied in the Euclidean tangent space of the manifold at a certain point by

taking advantage of the so-called exponential and logarithmic maps. As shown in Zeestraten

et al. (2017) and Calinon (2020) squared exponential kernel can be modified via such maps

and concepts like Gaussian product, conditioning and mixture regression redefined consid-

26



1.4 Gaussian Process Regression on Manifolds

ering the geometry of the space. Although this approximation demands for two important

requirements: the manifold has to be homogenous for point-independent definition of the

exponential and logarithmic maps and most importantly the geometry of the manifold has to

be known to define these maps.

In order to take advantage of the geometry of the manifold, Belkin et al. (2006) suggested

to construct the kernel via the Laplace-Beltrami operator used as a semi-norm of the form〈
f ,−∆M

〉= 〈∇ f ,∇ f
〉

. (1.27)

Similar works by Sindhwani et al. (2007) and Zhu et al. (2003) take advantage of the Laplace-

Beltrami operator to define a covariance function for GP. Limitation and improvements of such

approach are discussed in Nadler et al. (2009) and Zhou and Belkin (2011). These approaches

suggest two important ideas: first, differential operators can be used to construct kernels as

formalized by Steinke and Schölkopf (2008); second, data-driven approach to construct a

discrete version of the Laplace-Beltrami operator can be successfully applied to the problem

as in Belkin and Niyogi (2004) and Belkin et al. (2006).

The second point will be the main topic of Chapter 4. The first point, coupled with

the mathematical theory that connects GPs with stochastic partial differential equations

(SPDE), provided a robust foundation for extending kernels to non-Euclidean spaces in a

mathematically sound and principled manner. Given a differential linear operator L , the

SPDE on manifold M

L ( f ) =W (1.28)

with appropriate boundary conditions on ∂M and where W represents a Gaussian white noise

source, has solution

f ∼ GP(0,L −1(L t )−1), (1.29)

where L t is the adjoint operator of L and L −1 is the inverse of the differential operator. The

pioneering work of Whittle (1963a) has shown that the Matern GP on Rd satisfies the SPDE

(
2ν

ϵ2 −∆Rd

) ν
2 + d

4

f =W , (1.30)

whose the connected covariance function is the well-known Matern kernel

kν(x,x′) =σ2 21−ν

Γ(ν)

(p
2ν

∥∥x−x′
∥∥

ϵ

)ν
Kν

(p
2ν

∥∥x−x′
∥∥

ϵ

)
. (1.31)

Following the same argument it is possible to show that

e−
ϵ2

4 ∆Rd f =W (1.32)
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satisfies a GP characterized by the limiting squared exponential kernel

k∞(x,x′) =σ2 exp

(
−

∥∥x−x′
∥∥2

2ϵ2

)
. (1.33)

This viewpoint on GPs has been reintroduced in statistical literature by Lindgren et al. (2011).

The main advantage of this approach is that it generalizes to Riemannian manifold in a

straightforward way by substituting ∆Rd with the Laplace-Beltrami operator ∆M on manifold.

The recent work of Borovitskiy et al. (2020) makes a decisive step forward in the develop-

ment of the topic. Starting from the Sturm–Liouville decomposition of the Laplace-Beltrami

operator

−∆g f =
∞∑

n=0
λn

〈
f , fn

〉
fn (1.34)

a kernel construction based on infinite expansion of eigenfunctions of the Laplace-Beltrami

operator has been proposed. The Matern kernel takes the form of

kν(x,x′) = σ2

Cν

∞∑
n=0

(
2ν

ϵ2 +λn

)−ν− d
2

fn(x) fn(x′), (1.35)

while the exponential squared kernel becomes

k∞(x,x′) = σ2

C∞

∞∑
n=0

e−
ϵ2

2 λn fn(x) fn(x′). (1.36)

This approach allows working in non-conjugate settings, such as classification, or using

recently-proposed techniques for scalable GPs via sparse inducing point methods, see Hens-

man et al. (2018). In order to calculate the necessary eigenfunctions required for the construc-

tion of the kernel the approach relies on PDE-theoretic discretization techniques, such as

Galerkin finite element methods.
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2 Linearization and Identification of
Multiple-Attractor Dynamical Systems
through Laplacian Eigenmaps

2.1 Foreword

The work presented in this chapter has been published in Fichera, B. and Billard, A. (2022).

Linearization and Identification of Multiple-Attractor Dynamical Systems through Laplacian

Eigenmaps. Journal of Machine Learning Research.

2.2 Introduction

Relying on the mathematical framework of differential equations, Dynamical Systems (DS)

describe how a system evolves temporally and spatially. Their application span various fields,

such as physics, biology, engineering, and economics. In recent years, DS have been success-

fully applied to model and control robots (e.g. Heinzmann and Zelinsky (2003); Corteville et al.

(2007)).

Finding an analytical description of the dynamics is, however, often difficult. This led

researchers to turn to data-driven identification of the dynamics using machine learning

algorithms. Data is usually provided by an expert, within the generic framework of learning

from demonstration (Billard et al. (2016)). Data can also be gathered from trial and error in a

reinforcement learning framework (Wabersich and Zeilinger (2021)).

From a machine learning perspective, approximating a DS can be framed as a regression

problem. One estimates a non-linear function f :Rd →Rd , mapping the d-dimensional input

state x(t ) ∈Rd to its time-derivative ẋ(t ) ∈Rd , such that:

ẋ(t ) = f(x(t )). (2.1)

Training data consists of a set of trajectories, as examples of path integrals of the DS. These

trajectories cover a limited portion of the state space. To ensure that the learned DS stably

generalizes over regions not covered by the data represents one of the most challenging and

active research area. One option to tackle this problem is to embed constraints explicitly in
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the algorithm so that the learned dynamics offers similar guarantees as those generated from

control theory. One desirable property is stability at an equilibrium point, or attractor. If x∗ is

the attractor, we wish to guarantee that

lim
t→∞x(t ) = x∗, f(x∗) = 0. (2.2)

2.2.1 Learning Stable Dynamical Systems

In the Stable Estimator of Dynamical Systems (SEDS) proposed by Mohammad Khansari-

Zadeh and Billard (2014), the density estimation with Gaussian Mixture Models is reformulated

to enforce constraints on the parameters of the Gaussian Mixtures, by imposing conditions

derived via Lyapunov’s second method for stability. The DS is then estimated through Gaussian

Mixture Regression (GMR). This approach was, however, limiting. Constraints from a quadratic

Lyapunov function were conservative and led to a poor approximation of the flow when the

dynamics was highly nonlinear.

Accuracy and stability turned out to be conflicting objectives whilst constraints were

derived from a quadratic Lyapunov function, and this prevented modeling dynamics that are

non-monotonic, namely temporarily moving away from the attractor. To address this issue,

other works used more complex expression for the Lyapunov function (e.g. Mirrazavi Salehian

(2018); Figueroa and Billard (2018)). An alternative to using Lyapunov stability is Contraction

Theory (CT) introduced by Lohmiller and Slotine (1998). Stability under CT is less restrictive, as

it follows a differential perspective and enforces solely that the flow contracts locally. Further, it

does not require prior knowledge of the location of the attractor. Ravichandar et al. (2017) used

CT to reformulate the SEDS constraints. Similarly Sindhwani et al. (2018) constraints a Support

Vector regression problem with CT constraints. Although CT represents a promising approach,

current works adopting it are limited to local stability guarantees making the approximated

vector field unsuitable for regions with sparse or no data.

A third approach to tackle the problem of increasing accuracy while preserving stability

is based on the idea of using latent representation to ease the stabilization of the DS. That is

achieved via diffeomorphic mapping. One of the first attempts was offered in Neumann and

Steil (2015), which uses a diffeomorphic map to send a complex Lyapunov function, learned

from the sampled trajectories, to a space where it appears quadratic. In this space, SEDS is

applied, and the original vector field is recovered via the inverse diffeomorphic map. The

two-step learning approach requires fitting both a Lyapunov function (or a diffeomorphism)

and a DS from training data, increasing the number of tunable parameters and the overall

learning time for non-convex optimization problems. Perrin and Schlehuber-Caissier (2016)

follow a similar approach but apply the diffeomorphism directly to the DS using one single

sampled trajectory. The diffeomorphism learning process is purely geometrical, namely only

original and target points’ position are considered. Reconstruction of the proper velocity

profile is achieved via re-scaling the learned DS. The recent work proposed by Rana et al.
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(2020) follows a similar approach but introduces a formulation of the optimization framework

that includes dynamics information (e.g., velocity) within the process, providing for a one-step

learning algorithm.

All the methods reviewed above focus on single-attractor DS, and, except for works using

stability constraints based on CT-derived conditions, they require prior knowledge of the

location of the attractor. Assuming single dynamics and single attractor DS considerably con-

strains the applicability of these methods to learn uni-modal dynamics. Embedding multiple

dynamics in a single control law based on DS increases the complexity of the dynamics that

we can model. Next, we review recent efforts that have been dedicated to learning DS with

multiple attractors.

2.2.2 Learning Dynamical Systems with Multiple Attractors

Learning DS with multiple-attractor can be achieved by explicitly partitioning the space to

separate each dynamics and their respective attractors, as shown by Shukla and Billard (2012).

This work requires knowing how many sub-dynamics exist in the system and the attractors’

locations. Such knowledge may not always be easy to obtain.

Hence, if, for learning single-attractor DS, the main requirement is to know the location of

the attractor, when learning multiple-attractor DS, correct labelling and classification of data

points to distinguish the attractors and their associated dynamics is necessary. In realistic

scenarios, proper segmentation and labeling might not be available either because data are

generated by naive users or because the dataset is constructed by sampling demonstrations of

complicated physical tasks (e.g., cleaning up a messy office). One cannot expect lay users to

properly identify the number of sub-dynamics with the relative attractors location. Asking

users to divide the task into sub-segment will be very cumbersome and prevent proper skill

display and transfer; finally, even for expert users, it might often be difficult to classify the

dynamics, especially when these require data that are not easy to interpret, such as force and

haptic information.

To overcome this limitation, one option is to offer automatic segmentation and iden-

tification of the dynamics. Such an approach was followed by Medina and Billard (2017),

using Hidden Markov Models to extract automatically the attractors’ positions of multiple-

attractor DS. The algorithm assumes that such multiple-attractor DS can be thought of as a

long sequence of multiple sub-dynamics to be performed one after the other. Such approach

implicitly assumes time labeling of the points and can handle only multiple-attractor DS con-

sidered as a long sequence of dynamics. Manschitz et al. (2018) presented another interesting

application of multiple-attractor DS. The DS-based control law is modeled as a weighted com-

bination of linear systems, each of which is stable with respect to an attractor. The location of

the attractors along with the parameters of each linear sub-dynamics is automatically derived

via optimization problem. However the minimum number of attractors necessary to solve a

specific task is a user-defined hyper-parameter that has to be known a priori.
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To avoid providing prior information on both the number of dynamics and attractors, we

see a need for a fully unsupervised learning approach to the identification of multiple-attractor

DS. In this light, we offer an algorithm whose goal is to: (a) cluster the sub-dynamics within a

certain data set, (b) find underlying interesting structure of the data that would allow to locate

the attractors and ease the task of learning stable vector field. To do so, we seek to exploit

structure discovery techniques to identify the number of sub-dynamics automatically.

2.2.3 Manifold Learning for Latent Embedding Spaces of Dynamical Systems

Manifold learning techniques, such as Laplacian Eigenmaps (Belkin and Niyogi (2003)) and

Isometric Mapping (Tenenbaum et al. (2000)), are particularly relevant to our problem. These

techniques can generate Euclidean spaces recovering the intrinsic geometry of a certain

manifold (e.g., Tenenbaum et al. (2000)). As in Kernel PCA (Principal Component Analysis)

(Schölkopf and Smola (2002)), these methods are based on eigenvalue decomposition of a

matrix. The matrix embeds information about the feature of the data, as encapsulated by the

kernel. Depending on the kernel used, different features can be extracted by the manifold.

We find applications of manifold learning techniques for DS in biology for analyzing

emergent dynamics behaviors in data measured from bioelectric signals (Erem et al. (2016)),

or for person identification from ECG (Sulam et al. (2017)); in control theory for data-driven

time series analysis (Shnitzer et al. (2020)); in finance for describing the characteristics of

financial system (Huang et al. (2018)); in chemistry for stochastic model of cellular chemotaxis

(Dsilva et al. (2018)).

In the works reviewed above, the primary goal is to use manifold learning to reduce the

dimensionality of the data and simplify the estimation of the DS. The scope of our work is

different. We do not aim at reducing the dimensionality but rather at finding an embedding

that can simplify the control of DS by linearizing a non-linear dynamics that would otherwise

be difficult to stabilize.

The success of manifold learning depends heavily on the choice of kernel. We define a

velocity-augmented kernel to extract the temporal evolution of data points. We generate the

desired graph structure with this kernel and compute the associated Laplacian. We study the

embedding spaces generated by the eigendecomposition of such a graph-based Laplacian

matrix. We show that an analysis of the eigenvalues enables us to determine the number of

underlying dynamics and to identify a set of eigenvectors that forms an embedding space in

which the DS is linearized.

We validate our technique for sub-dynamics clustering and stable equilibria localization of

multiple-attractor DS using theoretical and noisy instances of DS. We compare our algorithm

to Kernel K-Means, Spectral Clustering, and Gaussian Mixtures. We showcase that even when

these algorithms are provided with the correct number of sub-dynamics, they fail to cluster

them correctly.
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f1
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x∗1

fq

Bq

x∗q
fQ

BQx∗Q

Figure 2.1: Schematic representation of a multiple-attractor DS. Each sub-dynamics fq takes
within a sub-space Bq and converges towards the attractor x∗q .

2.3 Background & Problem Formulation

Let x ∈Rd be the state of a DS. Its temporal evolution is governed by the non-linear function

f(x(t )):

f :Rd →Rd , ẋ(t ) = f(x(t )). (2.3)

Assume that f is composed of Q sub-dynamics, each asymptotically stable at one equilibrium

point, the attractor.

Let the q-th sub-dynamics be

ẋ(t ) = fq (x(t )) ∀q ∈ [1,Q] ⊂N. (2.4)

Each sub-dynamics, fq (x), is Lyapunov stable and there exists δ> 0 such that if
∥∥∥x(0)−x∗q

∥∥∥< δ,

then

limt→∞
∥∥∥x(t )−x∗q

∥∥∥= 0, (2.5)

where x∗q is the attractor of the sub-dynamics fq (x), Fig. 2.1.

We know neither the number of sub-dynamics Q, the shape of the dynamics fq , nor the

number and location of the attractors. All we have at our disposal is a finite set of observations,

samples of trajectories from the DS. These are constituted by unlabeled position-velocity pairs

V = {νi = (xi , ẋi ), i = 1, . . . , M } sampled from f(x) at a constant frequency, fsampli ng . Among

these trajectories, a subset belongs to some of the sub-dynamics, but we know neither to

which dynamics they belong nor how many trajectories belong to the same dynamics. All

sampled trajectories end at the attractor of the associated sub-dynamics.

This paper presents a method by which we can a) determine the number Q of sub-

dynamics present in the dataset, b) identify to which sub-dynamics each data point belongs

and the attractor of the corresponding sub-dynamics and c) project each dynamics into a

separate subspace in which the dynamics is linear. The method is based on a representa-

tion of the data through a graph and exploits properties from the eigendecomposition of the

graph-based Laplacian matrix, as we present next.
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νk
1

νk
pk

Figure 2.2: Each sub-dynamics is embedded in a graph where each trajectory forms a path
connected by a set of termination nodes that form a cyclic path around the attractor. νk

1 ν
k
pk

are the first and last of the k-th path graphs, respectively. pk is the number of nodes with the
k-th path graph.

2.4 Graph Embedding and Linearization of Dynamical Systems

Consider a symmetric weighted graph G(V ,E ). The nodes νi ∈ V represent the data points

νi = {xi , ẋi }, i = {1, . . . , M } sampled from our DS, where M =∑Q
q=1 pq with pq being the number

of data points sampled from each of the sub-dynamics and Q being the number of sub-

dynamics. E is the set of edges ei j ∈ E connecting nodes νi and ν j . For a generic DS containing

Q sub-dynamics, the graph G is the result of the union of Q sub-graphs F such that G =
F1 ∪F2 ∪·· ·∪FQ and F1 ∩F2 ∩·· ·∩FQ =;. Each sub-graph F is given by the composition

of K path graphs, equal to the number of sampled trajectories. We order the nodes (vertices)

of F monotonically as {νk
1 ,νk

2 , . . . ,νk
pk

}, k = 1, . . . ,K , such that each νk
pk

is the last node of the

k-th path graph and pk > 1. The edges are ek
i j = {νk

i ,νk
i+1}. The K nodes {ν1

p1
, . . . ,νK

pK
} form a

cyclic graph (or simple circuit). Each node belonging to the cyclic path has degree 3. All other

nodes along each path graph have degree 1 or 2. The nodes are numbered as

{ν1
1, . . .ν1

p1
,ν2

1, . . . ,ν2
p2

, . . . ,νK
1 , . . . ,νK

pK
} ∼ {1,2, . . . , M }

With reference to Fig. 2.2, {νk
1 , . . . ,νk

pk
} represents the nodes of the k-th path graph where pk is

the number of samples within the k-th path graph.

The Graph Laplacian matrix, L(G) = D(G)− A(G), where A(G) is the adjacency matrix

Ai j =
1, if ei j ∈ E

0, otherwise
(2.6)

and D(G) is a diagonal matrix composed of the sum of the rows of A(G)

Di i =
∑

j
Ai j . (2.7)

L(G) is positive semi-definite and, hence, admits an eigendecomposition. The eigenvalues of

the L(G) are non-negative and we have at least one eigenvalue equal to zero. The multiplicity

of the eigenvalue zero allows to determine the number of sub-dynamics embedded in the
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graph.

Proposition 1. The eigendecomposition of the Laplacian generates a set of M positive eigenval-

ues Λ= {0 =λ1
0 =λ2

0 = ·· · =λQ
0 <λ1 ≤ ·· · ≤λM−Q }. The multiplicity of the eigenvalue 0 is equal

to the number of sub-dynamics Q.

Proof. The multiplicity of the eigenvalue zero of the Laplacian matrix is equal to the number of connected

components, hence, by construction of G is equal to the number of sub-dynamics Q.

As the graph G is composed of a set of disconnected components, the eigendecomposition

of L(G) can be performed by blocks and we can associate a subset of eigenvectors to each of

the Q blocks. We show in the next subsection that each set of non-trivial—λ ̸= 0—eigenvectors

of L(G) generates Q separate sub-spaces in which each sub-dynamics is linearized.

Observe first that, in each of the graph connected component, the nodes are connected

in such a way that each trajectory forms a path in the graph. With K trajectories for each

sub-dynamics, we have K paths. Each trajectory is connected to another trajectory through

the last node of each path graph.

2.4.1 Determining the Eigenvectors that Generate a Linear Embedding

We are now ready to present the main results of this paper, namely that a well-chosen set of

eigenvectors of the graph Laplacian generates a linear embedding of the sub-dynamics. All

the following results relate to the non-trivial eigenvectors, for which λ ̸= 0.

We start by showing that, for each path in the graph, the corresponding entries in the

eigenvectors follow a recursive law.

Lemma 1. Consider K different path graphs that form a graph G with one connected component.

Let u be an eigenvector of the Graph Laplacian L(G). The elements of u entail K sets of scalars

{uk
1 , . . . ,uk

pk
}, corresponding to the nodes within the k-th path graph. Each set follows the

recursive relation:

uk
1 ∈R,

uk
2 = (1−λ)uk

1 ,

uk
n = (2−λ)uk

n−1 −uk
n−2, forn = 3, . . . , pk . (2.8)

Proof. See Appendix A.1.

Lemma 2. In each of the K sets of elements in u denoted as {uk
1 , . . . ,uk

pk
}, the recursive relation

in Eq. 2.8 corresponds to a combination of Chebyshev polynomials T and V , of first and second

kind, given by:

uk
n = uk

1

[
Tn(λ)− λ

2
Vn−1(λ)

]
for n ≥ 1. (2.9)
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Let θ := cos−1 (1− λ
2 ). Eq. 2.9 can be expressed as the following combination of trigonometric

functions:

uk
n(λ,θ(λ)) = uk

1

[
cos((n −1)θ)− λ

2

sin((n −1)θ)

sin(θ)

]
. (2.10)

Proof. See Appendix A.2.

Next, we show that, when we select a specific set of eigenvectors, the coordinates of the

path graphs in these eigenvectors either grow or decrease monotonically. This a key property

to prove the linearity of the embedding.

Proposition 2. If each of the path graphs have at least 3 nodes, pk ≥ 3 ∀k, the coordinates

of a path graph {uk
1 , . . . ,uk

pk
} in the eigenvectors u with corresponding eigenvalues 0 < λ ≤

2

[
1− cos

(
π

pk− 1
2

)]
, either increase or decrease monotonically within each path graph, s.t.:

uk
n ≥ (≤)uk

n+1 for n = 1, . . . , pk , and k ∈ {1, . . . ,K } (2.11)

Proof. See Appendix A.3.

Next, we prove that, when all the path graphs have the same length, i.e pk = N , ∀k, there

always exist, at least, one pair of eigenvectors with properties of Prop. 2, by showing that there

exists an eigenvalue λ≤ 2

[
1−cos

(
π

pk− 1
2

)]
with algebraic multiplicity 2.

The proof is done in two steps: first, we show that the spectrum of L(G) presents repeated

eigenvalues; second, we show that there is at least one repeated eigenvalue upper bounded by

a value inferior to the monotonicity constraint introduced in Prop. 2.

Following Gupta et al. (2022), observe that the graph Laplacian, analyzed in this work, has

the following structure:

L(G) = 2I − J (G), (2.12)

where J has a block circulant matrix structure of the following type

J (G) = circ(B0,B1, 0(N×N )︸ ︷︷ ︸
K−3 times

,B1), (2.13)

with K the number of path graphs and N the number of nodes in each path graph. The
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matrices B0 ∈RN×N is a tri-diagonal matrix of the form

B0 =



1 1

1 0
. . .

. . .
. . .

. . .
. . . 0 1

1 −1


(2.14)

and B1 ∈RN×N is defined as

B1 =
[

0(N−1×N−1) 0

0 1

]
. (2.15)

We repeat results from Gupta et al. (2022) in Proposition 3 and 4:

Proposition 3. If the number of paths K is even, K
2 −1 eigenvalues of L(G) have multiplicity 2

and for K odd, K−1
2 eigenvalues of L(G) have multiplicity 2.

Proof. See Appendix A.4.

Proposition 4. The second smallest eigenvalue of the Graph Laplacian L(G) with algebraic

multiplicity 2 is denoted by λmi n(L) and is bounded above and below as follows:

1−2cos
( π

N

)
<λmi n(L) ≤ 2

(
1−cos

(
π

N − 1
2

))
(2.16)

where N is the number of nodes in each of the K paths.

Proof. See Appendix A.5.

We have shown that there exist at least a pair of eigenvectors with same eigenvalues in

which the corresponding entries of our path graph grow or decrease monotonically.

Next, we show that the DS is linear in the embedding formed by these two eigenvectors.

Corollary 1. For each eigenvector u with associated eigenvalue 0 < λ< 1, the rate of change

r (un) = un −un−1 along the entries {u1, . . . ,upk }, for each path k = 1, . . . ,K decreases monotoni-

cally according to:

ṙ (u) =−λu. (2.17)

Proof. r (un+1) = un −un−1 −λun = r (un )−λun .

Theorem 1. If the graph Laplacian L(G) admits a set of eigenvectors u, with same eigenvalue,

the K paths of the graph expressed in the domain spanned by u form K lines.
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uz
n−1 uz

n uz
n+1

uk
n−1

uk
n

uk
n+1

Figure 2.3: Coordinates of three points on two eigenvectors with constant rate of change,
resulting in a linear path.

Proof. Consider a group of three consecutive nodes {νn−1,νn ,νn+1} of one of the paths of the graph. The coordi-

nate of these points when projected in the space spanned by two eigenvectors uz and uk are {uz,k
n−1,uz,k

n ,uz,k
n+1}.

We show that the three points are on the same line, as illustrated in Fig.2.3. We prove that these coordinates grow

at the same rate for all the eigenvectors that have equal eigenvalues λ< 1. Hence the spacing across each group of

coordinates on each axis is the same, as illustrated in Fig.2.3.

In the following, we drop the upper index referring to the specific eigenvector. For any eigenvector with

eigenvalue 0 <λ< 1, using Eq. A.2, we have

un+1 = γun −un−1, (2.18)

with γ = 2−λ,γ > 1. Furthermore, for the first two points on the path graph, we have, from Eq. A.1: u2 = δu1,

with δ= 1−λ,δ> 0. Combining these two equations, the third point can be expressed as a function of the first

coordinate u1 only: u3 = γ(δu1)−u1 = (γδ−1)u1. Similarly the fourth point can be expressed solely as a function

of the first coordinate u1. We have: u4 = γu3 −u2 = γ(γδ−1)u1 −δu1) = (γ(γδ−1)−δ)u1. The same reasoning

holds for all points and hence by induction, we have:

un = Pn (λ)u1. (2.19)

Pn (λ) is a polynomial of order n −2 that depends only on the eigenvalue λ. If the eigenvectors considered have

same eigenvalue λ, the coordinates along each axis grow with the same series of polynomial Pn (λ). Hence, all

points are located on a line. For a pair of eigenvectors z,k, the line has slope
uk

1
uz

1
.

Note that, while Thm. 1 holds for all the eigenvectors in the spectrum of L(G), the original

ordering of the nodes along each path graph is preserved only when λ< 2

[
1−cos

(
π

pk− 1
2

)]
.

For the eigenvectors with larger λ, the coordinates of the nodes change sign within the path

graph. Hence, while the path may still appear linear in the embedding, the order of the nodes

will not be preserved anymore.

2.4.2 Creating a Linear Embedding

We summarize how the above theoretical results allow us to find embedding spaces so that we

can separate each of the Q sub-dynamics and that they are linear in each embedding.

First, let us recall that, since the matrix L(G) can be decomposed by block with each
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Figure 2.4: (a) Toy graph composed by 3 path graphs connected each other with a cycle graph
passing through nodes {5,10,15}; (b) Spectrum of the first 9 eigenvalues of the Laplacian
applied to graph in Fig. 2.4a; (c) Entries of the first 2 components {u2,u3}; (d) 2D embedding
space reconstructed using components {u2,u3}.

block representing data points that belong to each sub-dynamics fq , we can generate a set

of Q separate embedding spaces by using only the subset of eigenvectors associated to each

sub-block. By orthogonality of the eigenvectors, all other sub-dynamics fk , k ̸= q will project

to the origin in the embedding space of the q-th dynamics. We now need to determine the

existence of such embedding spaces.

Given a K-paths graph, from Prop. 3, for N ≥ 3 and K ≥ 3, there is at least one pair of

eigenvector with eigenvalue 0 <λ≤ 2

[
1−cos

(
π

N− 1
2

)]
. It follows that if the Q dynamics of the

graph have at least N ≥ 3 nodes and K ≥ 3, we have 2Q eigenvectors with properties of Prop. 2

and hence Q embedding spaces.

The properties stated in the previous propositions are illustrated in Fig. 2.4a. We see a

three-path graph connected by a cycle path across nodes {5,10,15}. The entries of the second

and third eigenvectors (we exclude the first eigenvector, as it corresponds to the eigenvalue

zero) are displayed in Fig. 2.4c. To ease the interpretation, we enumerate the data points in

increasing order as we move from the start to the end of each path. We plot the entries of the

eigenvectors against the point label. Observe that, within each path graph, the corresponding

entries on the eigenvectors are either strictly increasing or decreasing. Further, observe

that the spectrum of the Laplacian, see Fig. 2.4b, entails a pair of eigenvalues with algebraic

multiplicity equal to 2. The embedding space reconstructed using the eigenvectors {u2,u3}

corresponding to these two eigenvalues is shown in Fig. 2.4d. Observe that the structure now

entails 3 paths all of which are linear. The original non-linear structure is hence linear in the

embedding space.

In practice, we observe that several pairs of eigenvectors provide these embedding spaces.

We also observe that the third and above eigenvalues are numerically close to the pair of

smallest eigenvalues, and hence allow quasi-linear embedding spaces larger than 2 dimensions

and up to K −1. This follows by observing that the polynomial Pn(λ) in Eq. 2.19 is continuous

and continuously differentiable up to N −1.
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Figure 2.5: (a) Toy graph composed by 4 path graphs connected each other with a cycle graph
passing through nodes {5,10,15,20}; (b) Spectrum of the first 9 eigenvalues of the Laplacian
applied to graph in Fig. 2.5a; (c) 2D embedding space reconstructed using components {u2,u3};
(d) 3D embedding space reconstructed using components {u2,u3,u4}.

We illustrate this property in two examples using 4-path and 5-path graphs, respectively,

see Fig. 2.5 and 2.6. As in our previous example with a 3-path graph, the path graph are

connected through one cycle graph. For the 4-path graph, we see that the spectrum of the

Laplacian entails two eigenvalues of equal magnitude. The third eigenvalue has magnitude

comparable but larger than the previous two, Fig. 2.5b. The graph can be linearized using

the two eigenvectors with equal eigenvalues, see Fig. 2.5c. Quasi-linearization in the 3D

embedding space can be achieved by using as coordinates the first three components, see

Fig. 2.5d.

Using the 5-path graphs, we obtain two pairs of eigenvalues with equal magnitude, visible

in the spectrum, Fig. 2.6b. We can hence reconstruct two distinct 2D embedding spaces where

the DS is perfectly linear. While the embedding space constructed using eigenvectors {u2,u3}

preserves the radial ordering of the path graphs, Fig. 2.6c, the embedding constructed with

components {u4,u5} does not, as shown Fig. 2.6d.
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Figure 2.6: (a) Toy graph composed by 5 path graphs connected each other with a cyclic graph
passing through nodes {5,10,15,20,25}; (b) Spectrum of the first 9 eigenvalues of the Laplacian
applied to graph in Fig. 2.6a; (c) 2D embedding space reconstructed using components {u2,u3};
(d) 2D embedding space reconstructed using components {u4,u5}.
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2.5 Generating the Graph with Real Data

To exploit the results stated in the previous section, we must first embed the data in a graph.

To achieve this, we propose a kernel that takes advantage of positions and velocities.

2.5.1 Velocity-Augmented Kernel

The kernel provides a distance measure across nodes νi ,ν j :

k(νi ,ν j ) = exp

− 1
2σ2

∥∥xi −x j
∥∥2︸ ︷︷ ︸

locality

+
directionality︷ ︸︸ ︷

γ
(∣∣g (xi ,x j , ẋi )

∣∣)2 +γ(∣∣g (x j ,xi , ẋ j )
∣∣)2


, (2.20)

where ẋi = f(xi ) is the DS map that relates positions to velocities.

We introduce g a function to measure the angular distance across the velocity vectors for

a pair of data points xi and x j . We relate the distance vector x j −xi and the velocity vector ẋi

through a cosine kernel

g (xi ,x j , ẋi ) = δσ f

(∥ẋi∥
∥∥ẋ j

∥∥)︸ ︷︷ ︸
Filter

+
〈

x j −xi∥∥x j −xi
∥∥ ,

ẋi

∥ẋi∥

〉
︸ ︷︷ ︸
Cosine similarity kernel

, (2.21)

where δσ f is a normal Gaussian distribution δσ f (x) = exp

(
− x2

2σ2
f

)
centered in ∥∗∥ẋ = 0, withσ f

set approximately to 0. The presence of the filtering part in Eq. 2.21 is necessary to withhold

the "directionality" penalization among zero velocity points potentially close to an attractor.

The filter δσ f takes care of this situation outputting 1 whenever the velocity is zero. The

parameter σ f can be regulated to take into account known noise, e.g., when one knows that

the velocity at an attractor point is not zero for numerical reasons.

The linear function γ :R→R in Eq. 2.20 is defined as

γ(g ) = 3

2
θr

(
1− g

)
σ. (2.22)

The co-domain the function g , in Eq. 2.21, is in between −1 and 1. The function γ, in Eq. 2.22,

maps the part of the co-domain of g in between cos(θr ) and 1 to the range between 3σ and 0.

Consequently, the range of values of g in between −1 and cos(θr ) will be mapped to values

greater than 3σ. When the angle between two velocity vectors is θr the linear map yields

a value equal to 3σ causing a penalization of the weight about 99%. When the output of

the cosine is proximal to 1, due to the almost complete co-linearity, the linear function will

yield 0 causing no penalization over the weight produced by the standard RBF (Radial Basis

Functions) kernel. The reference angle, θr , is a parameter that can be set depending on the

sampling frequency. High frequencies allow for a more strict (θr ≈ 0) selection of such angle.
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∣∣)2 ≈ 0

γ
(∣∣g (x j ,xi , ẋ j )
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Figure 2.7: Illustration of the effect of the spatial distribution of points and velocity vectors on
the kernel Eq. 2.20: (a) the first term in the exponential generates low values for points that are
far apart; (b) the third term in the exponential generates low values when consecutive velocity
vectors are not aligned; (c) the second and third term in the exponential generate low values
whenever the distance vector connecting two points is not aligned with the velocity vector of
one of them.

To understand the kernel better, we illustrate the effect of each term in three scenarios

depicted in Fig 2.7. The directed kernel encompasses two components: "locality" and "direc-

tionality". The locality term gives a measure of the spatial distance between pairs of points

based on the Euclidean distance, similar to the standard RBF kernel. The two directionality

terms measure the co-linearity of the velocity vectors. Two points far apart with co-linear

velocity vectors or two points close with distinct velocity vector will have a small value on the

kernel and hence a loose connectivity in the similarity matrix used to generate the graph. Sole

points that are both close and with co-directed velocity will reach the maximum kernel value,

1.

Points x1 and x2 in Fig. 2.7a will have negligible connection weights due to the large

distance between them even though the "directionality" terms would yield values closed

to 1 (about 0 after mapping γ) since x2 − x1 ∥ ẋ1 and x1 − x2 ∥ ẋ2. The second example in

Fig. 2.7b considers the possibility of having intersecting trajectories perhaps due to second

order dynamics or imprecise user demonstration. Since the figure might be misleading we

(a) (b)

Figure 2.8: (a) Background vector field and reference evaluation point/velocity; (b) Contour of
the velocity-augmented kernel.
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Figure 2.9: Toy data set of 2-attractor samples DS.

clarify that point x1 belongs to the beginning of the trajectory while point x2 lies at the end,

close to the attractor. In this situation we would like to "separate" the two points since they are

not close from a dynamical perspective. Due to the proximity of the points, the "Locality" part

contributes to generate a strong connection between the two points. The second component

of the "directionality" part will take care of drastically decreasing the weight connection.

Indeed, if the first term yields a high value, x2 −x1 ∥ ẋ1, the second term will be decisive in

cutting of the connection between the points since x1−x2 ≈ ẋ1 ⊥ ẋ2. As last scenario in Fig. 2.7c,

we consider the case of two proximal trajectories belonging to different sub-dynamics. As in

the previous example the "Locality" cannot account for this situation; the "directionality" part

will take care of decreasing the weight connection given that x2 −x1 ⊥ ẋ1 and x1 −x2 ⊥ ẋ2.

Fig. 2.8a shows streamlines of an expanding vector field ẋ = x and a reference point with

its velocity vector. In Fig. 2.8b it is possible to see how the proposed kernel generates, with

respect to the considered vector field, high value regions symmetrically placed with respect to

the plane orthogonal to reference velocity in the proximity of the evaluation point.

2.5.2 Selecting the Hyperparameters

The choice of the hyperparameterσ is important as it modulates the granularity of the distance

measure in Cartesian space. To inform the choice of σ, we can use the sampling frequency

fsampli ng of the acquisition system, when recording trajectories. The higher the frequency,

the closer the two consecutive data points. The maximum distance between two consecutive

point is dmax = argmax(D)
fsampli ng

with D := {ẋi , i = 1, . . . ,m}. If sampling is perfect (no frame loss),

we can set σ= dmax . Otherwise, a margin of error may be warranted. The adjacency matrix is

computed as follows: Ai j = 1 if k(νi ,ν j ) ≥ ϵ otherwise Ai j = 0. The tolerance ϵmust be chosen

in relation to σ. For instance, if σ= dmax , the kernel will be equal to at maximum 0.6 for the

two most distant pair of points.

2.6 Clustering Dynamics & Attractor Search

We consider as toy example a 2-attractor DS where each sub-dynamics is constituted by

3 sampled trajectories. Fig. 2.9 shows the connection strength generated by the velocity-
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Figure 2.10: Structure of the constant right eigenvectors associated to eigenvalues equal to 0.

augmented kernel in Eq. 2.20. Connection between nodes belonging to different trajectories

will have very low weight. Only points at the end of each trajectory, close to an attractor, will

have high weight even if they belong to different trajectories.

The labeling of points, for clustering dynamics, is done by taking advantage of the first

right eigenvectors, {u1, . . . ,uQ }, connected to the eigenvalues equal to zero. Assuming n data

points for each of the Q demonstrated dynamics the k-th eigenvectors extracted will have non-

zero entries between un(k−1)+1 and unk , see Fig. 2.10. For each eigenvector the coefficients

corresponding to the points belonging to a particular DS (sub-graph) are equal to a constant

value c while all the others are 0.

In summary, the number of 0 eigenvalues is used to determine the number of attractors

present in the DS. The corresponding eigenvectors are then used to cluster the data points,

belonging to each sub-dynamics. Plotting the first four eigenvectors, Fig. 2.11, it is possible

to observe that the spectral decomposition of the Laplacian produces a set of eigenvectors

that are "expanding" one dynamics while "compressing", in zero, the other ones for each

projected space. In this example u3 and u6 focused on sub-dynamics A while u4 and u5 on

sub-dynamics B. The selection of the "interesting" components can be easily achieved by

checking the change of the slope in the spectrum of the Laplacian matrix. Fig. 2.12 gives the

spectrum analysis for varying the number of attractors, keeping the number of demonstrated

trajectories to three. The number of relevant components grows proportionally to the number

of sub-dynamics present in the dataset, nDS = ∑K
q=1 Kq −1 with Q being the total number

of sub-dynamics and Kq the number of sampled trajectories for the q-th sub-dynamics. As

shown in Alg. 1, taking advantage of the stationary right eigenvectors used to label points,
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Figure 2.11: (left) {u3,u6} embedding space; (center) Scatter matrix of the embedding space
for the DS in 2.9; (right) {u4,u5} embedding space.
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Figure 2.12: Spectrum analysis of the multiple-attractor DS for three demonstrated trajectories
and increasing number of attractors.

each eigenvector is assigned to either one dynamics or the other. For the toy case in exam we

have two eigenvectors associated to zero eigenvalues. The eigenvectors associated the least

two eigenvalues, with algebraic multiplicity equal to two, are used for the reconstruction of

the embedding spaces as shown in Fig. 2.11.

The search of the attractor positions is carried out by exploiting the particular structure of

the embedding spaces. In each embedding space the related dynamics is "linearized", while

the other ones, as said before, are "compressed" in zero. In this space the position of the

attractor, u∗, is easily found at the intersection of the lines whose slopes can be calculated

using diffusion distances.

With reference to Fig. 2.13b, the algorithm randomly selects a point in the embedding

space, u1 representing the vector containing the embedding coordinates of the chosen point.

For a clear visualization of the problem, the process is illustrated in 2-dimensional space but,

as shown before, the embedding space can have a higher dimension depending on the number

of demonstrated trajectories or the input space dimension. u2 is selected searching among

the nearest neighbors of u1. The line direction mr = u2 −u1 is stored. The process is repeated

until all the line directions, ms = u4 −u3, have been found. Pairwise intersections of the of

the found lines can be simply calculated by solving the overdetermined linear system Ax = b,

where A = [ms ,mr ], x = [α,β]T and b = u3 −u1 for the two parametric lines, r = u1 +mrα

and s = u3 +msβ. The mean of the intersection points calculated is used to established the

position of the attractor, u∗, in the embedding space.

Algorithm 1: Clustering Dynamics & Embedding Reconstruction.

Input: Λ= {λ1, . . . ,λm}, U = {u1, . . . ,um}

Output: x∗q , Q

nsub-DS = (λk == 0) // Compute the number of attractors
Ucluster s = {u1

λ=0, . . . ,unsub-DS

λ=0 } // Right "stationary" eigenvectors
while stop = false do

stop = false

/* From the first non-stationary eigenvector till the
last one */

for i = nattractors +1 to m do

/* Iterate over the number of attractors */
for k = 1 to nattractors do

/* Assign eigenvector to sub-dynamics/attractor k */
if 1T (uk

λ=0 ◦ |ui |) ̸= 0 then
U k ← ui

/* Stop loop at the spectral gap */
if |λi+1 −λi | > tol then

stop = true
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Algorithm 1: Attractors Search

Input: Uk = {u1, . . . ,ud}, nattractors

Output: x∗
l

for k = 1 to nattractors do
i ∼ puniform(u)

u1 = Uk(i)

u2 = Uk(argminℓ ̸=i(
∥∥u1 − Uk(ℓ)

∥∥))
while stop = false do

i ∼ puniform(u)

u3 = Uk(i)

u4 = Uk(argminℓ ̸=i(
∥∥u3 − Uk(ℓ)

∥∥))
if <u2−u1,u4−u3>

∥u2−u1∥∥u4−u3∥ < 0.9 then
stop = true

end

end

end

(a)

u1

u2

u3u4

s = u3 +msα

r = u1 +mrβ

(b)

Figure 2.13: Finding the attractor in the embedding space.

2.7 Results

We validate our approach first at correctly identifying the underlying dynamics of well-known

DS. We choose three nonlinear DS known to embed two separate sub-dynamics which are

asymptotically stable at two separate attractors. Second, to test the sensitivity of the approach

to real and noisy data, we validate the approach to decompose DS generated from handwritten

data. For each of the systems, we generate a set of three example trajectories so as to obtain

an embedding of the same dimension as the original system, namely D = 2.

To quantify the clustering results, we compare our approach, to three clustering techniques:

Kernel K-means, Spectral Clustering and Gaussian Mixture Model (GMM). GMM adopts full

covariance matrix. Kernel K-means and GMM require the number of clusters. For those, we

provide them with the correct number of dynamics. For Kernel K-means we adopt, as similarity

metric, a Radial Basis Functions (RBF) kernel with the hyper-parameter σ set as previously

explained. Spectral Clustering adopts k-nearest neighborhoods technique for building the

adjacency matrix and the identification of the sub-dynamics clusters is achieved through

spectral decomposition of the symmetric normalized Laplacian. In order to provide the same

information to all the algorithms, the feature state for the compared approaches has been

augmented with the velocities.

As none of the clustering techniques we compare can extract the attractors, we compute

the reconstruction error for the attractors only for our approach., the Orthogonal Expansion.

The error is calculated as the squared error between the actual and the extracted location,

normalized by the standard deviation of the position data set

e(x∗) = (
(x∗r eal −x∗est i mated )TΣ−1(x∗r eal −x∗est i mated )

) 1
2 , (2.23)

where Σ is the diagonal matrix containing the standard deviation of the dataset.

Note that K-means and GMM are iterative approaches sensitive to initialization. For each

of them we provide average performance over 10 trials as the number of iterations increases.
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Figure 2.14: (a) Vector field generated by Eq. 2.24. (b) Sampled trajectories from the DS
in Fig.2.14a. (c) Embedding space of the sub-dynamics with local attractor in (1,−2). (d)
Embedding space of the sub-dynamics with local attractor in (1,2).

Example. As a first example we consider the following 2-dimensional DS

ẋ1 = 2x1 −x1x2

ẋ2 = 2x2
1 −x2, (2.24)

which present two stable equilibrium points in (−1,2) and (1,2). The vector field generated

from Eq. 2.24 and the sampled trajectories are shown in Fig. 2.14, case (a) and (b) respectively.

Such multiple-attractor DS represents a challenging case for our algorithm due to the proximity

of the trajectories belonging to different sub-dynamics, symmetrically displaced with respect

to the vertical axis passing through zero, Fig. 2.14b. In order to have a successful reconstruction

of the graph we sampled from the DS for 10s at a frequency of 100H z reaching a total of

6006 points sampled. The correct reconstruction of the graph can be assessed by looking at

Fig. 2.14c and 2.14d, where the two sub-dynamics are correctly linearized. In particular using

components u3 and u5 the embedding space linearizes sub-dynamics B while sub-dynamics

A is compressed in zero; vice-versa for the embedding space constructed adopting u4 and u6

components. Results of clustering are reported in Tab. 2.1a and Fig.2.15. Kernel K-means does

not yield good performance and, as shown in Fig. 2.1b, it remains fairly sensitive to centroids

initialization. Spectral Clustering shows good performance being able to cluster correctly the

# CLUSTER A B e(x∗)
Our Approach

Cluster 1 100% 0% 0.061
Cluster 2 0% 100% 0.061

Kernel K-Means
Cluster 1 0% 100% -
Cluster 2 58.42% 41.58% -

Spectral Clustering
Cluster 1 0% 100% -
Cluster 2 79.04% 20.96% -

Gaussian Mixture Models
Cluster 1 12.71% 87.29% -
Cluster 2 12.71% 87.29% -

(a) (b) (c)

Table 2.1: For sampled points in Fig. 2.14b: (a) Clustering labeling and attractor location
error results, (b) Kernel K-Means clustering error over iteration, (c) Gaussian Mixture Model
clustering error over iteration.
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Figure 2.15: Clustering results of Tab. 2.1a.

two high-density region areas. Although it fails in clustering correctly regions with sparse

data. GMM present stable solution with respect to parameters initialization, see Fig. 2.1c, but

poor performance failing in placing the mixtures in a consistent way with respect to the two

sub-dynamics. In particular the two high-density regions around the attractors are described

by a single component yielding incorrect clustering.

Example. We consider in this example the pendulum equation with friction. The second

order differential equation describing the dynamics of the pendulum is θ̈ =− l
g si n(θ)−kl θ̇,

where l is the length of the pendulum, g the gravity constant and k the friction coefficient.

The phase space of such system yields a multiple-attractor vector fields with periodic stable

equilibria at k2π, with k ∈Z. Let x1 = θ and x2 = θ̇. The pendulum dynamics can be rewritten

as a system of first order differential equations

ẋ1 = x2

ẋ2 =− l

g
si n(x1)−kl x2 (2.25)

We consider a domain x1 ∈ [0,2π] where such DS presents 2 attractors at the boundary of the

domain and one unstable point at π. In order to asses the ability of our kernel to generate

the desire graph structure to build the Laplacian matrix we appositely sampled proximal

trajectories pointing to two different attractors (central region in Fig. 2.16b). Each trajectories

has been sampled for 60s at a frequency of 10H z for a total 3592 points. As it is possible to see
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Figure 2.16: (a) Vector field generated by Eq. 2.25. (b) Sampled trajectories from the DS
in Fig.2.16a. (c) Embedding space of the sub-dynamics with local attractor in (0,0). (d)
Embedding space of the sub-dynamics with local attractor in (0,2π).
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# CLUSTER A B e(x∗)
Our Approach

Cluster 1 100% 0% 1.34%
Cluster 2 0% 100% 1.34%

Kernel K-Means
Cluster 1 0% 100% -
Cluster 2 97.67% 2.33% -

Spectral Clustering
Cluster 1 3.63% 96.37% -
Cluster 2 100% 0% -

Gaussian Mixture Models
Cluster 1 0% 100% -
Cluster 2 97.00% 3.00% -

(a) (b) (c)

Table 2.2: For sampled points in Fig. 2.16b: (a) Clustering labeling and attractor location
error results, (b) Kernel K-Means clustering error over iteration, (c) Gaussian Mixture Model
clustering error over iteration.

from the embedding spaces extracted, Fig. 2.16c and 2.16d, the kernel is able to approximate

the theoretical graph proposed leading to linearization of the sub-dynamics. In Tab. 2.2a

and Fig. 2.17 the results of clustering are shown. All the algorithms yields good performance

in this case correctly assigning points belonging to high-density regions around attractors.

Nevertheless, with exception of our approach, they all fail to achieve perfect clustering due to

mis-clustering in regions with sparse data.

Example. As a third example we consider the Duffing equation (or oscillator), a non-linear

second-order differential equation used for modeling damped oscillator

ẍ +δẋ +αx +βx3 = 0. (2.26)

Differently from a simple harmonic oscillator such equation models more complex potential

by including a non-linear spring with restoring force αx +βx3. Such DS exhibits chaotic

behavior. We consider positive damping case, δ= 0.3, with α=−1.2 < 0 and β= 0.3 > 0 which

present two stable at +√−α/β and −√−α/β. The phase space of the duffing equation can be

achieved by the following two dimension DS

ẋ1 = x2

ẋ2 = 0.3(4x1 −x3
1 −x2). (2.27)

As for example 1, due the presence of highly compact and non-linear regions, high frequency
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Figure 2.17: Clustering results of Tab. 2.2a.
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Figure 2.18: (a) Vector field generated by Eq. 2.27. (b) Sampled trajectories from the DS in
Fig.2.18a. (c) Embedding space of the sub-dynamics with local attractor in (0,

√−α/β). (d)
Embedding space of the sub-dynamics with local attractor in (0,−√−α/β).
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Figure 2.19: Clustering results of Tab. 2.3a.

sampling is required. Each trajectory is sample at 200H z for 5s yielding a dataset of 6006

samples. For this case eigenvectors u3 and u5 yield an embedding space where sub-dynamics

A is linearized while the space generate by u4 and u6 achieve linearization of sub-dynamics

B. The results of clustering in Tab. 2.3a and Fig. 2.19 show a similar behavior for Spectral

Clustering and GMM. Both algorithms yields quantitative good results. Although, due to the

chaotic behavior of the DS they fail in clustering correctly trajectories close to the attractor

belonging to another sub-dynamics. Kernel K-means is able to cluster correctly points lying

close to the attractors but it is incapable of clustering the majority of the trajectories.

Example. As last examples we show applicability to hand-drawn multiple-attractor DS where

our algorithm can be used to cluster the sub-dynamics and locate the various attractors

for then providing such information to stable learning algorithms present in the literature.

# CLUSTER A B e(x∗)
Our Approach

Cluster 1 100% 0% 1.34%
Cluster 2 0% 100% 1.34%

Kernel K-Means
Cluster 1 100% 0% -
Cluster 2 27.81% 72.19% -

Spectral Clustering
Cluster 1 94.61% 5.39% -
Cluster 2 5.65% 94.35% -

Gaussian Mixture Models
Cluster 1 4.12% 95.88% -
Cluster 2 94.88% 5.12% -

(a) (b) (c)

Table 2.3: For sampled points in Fig. 2.18b: (a) Clustering labeling and attractor location
error results, (b) Kernel K-Means clustering error over iteration, (c) Gaussian Mixture Model
clustering error over iteration.
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Figure 2.20: (a) Demonstrated trajectories. (b) Embedding space of the red sub-dynamics. (d)
Embedding space of the cyan sub-dynamics.
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Figure 2.21: Clustering results of Tab. 2.4a.

Fig. 2.20a shows the demonstrated trajectories for a 2-attractor DS in 2D. For drawing such

trajectories we took advantage of Wacom tablet and the software provided by ML_toolbox1.

Spectral Clustering is able to achieve perfect clustering while GMM misplaces the Gaussian

components yielding poor results. Kernel K-means yields particular poor results in this case

when a small kernel width such the one adopted for our algorithm is used. To enhance the

performance of Kernel K-means, we set the kernel width to be equal to the standard deviation

of the dataset. Nevertheless Kernel K-means is not able to consistently cluster the two sub-

dynamics as shown in Fig. 2.4b. For such case the real attractor location is assumed to be the

mean average of the position of the last point of the demonstrated trajectories. For this specific

case we show results for the location of the attractor based on quasi-zero velocity heuristic.

1https://github.com/epfl-lasa/ML_toolbox

# CLUSTER A B e(x∗)
Our Approach

Cluster 1 100% 0% 1.56%
Cluster 2 0% 100% 1.56%

Kernel K-Means
Cluster 1 48.85% 51.15% -
Cluster 2 48.67% 51.33% -

Spectral Clustering
Cluster 1 100% 0% -
Cluster 2 0% 100% -

Gaussian Mixture Models
Cluster 1 55.23% 44.77% -
Cluster 2 47.71% 52.29% -

(a) (b) (c)

Table 2.4: For sampled points in Fig. 2.20a: (a) Clustering labeling and attractor location
error results, (b) Kernel K-Means clustering error over iteration, (c) Gaussian Mixture Model
clustering error over iteration.
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(a) (b) (c)

Figure 2.22: Quasi-zero velocity heuristic for attractor location. Threshold at (a) 10%, (b) 5%
and (c) 1% of the average velocity.

Fig.2.22 shows the identification of potential locations for the attractors based on different

velocity thresholds. Notice that zero-velocity crossing ends up with identifying multiple and

incorrect attractor locations. This happens often at the beginning of a trajectory or in region

of high curvature where the velocity can be proximal to zero.

2.8 Dynamical System Learning via NVP Transformations

From a differential geometry perspective Manifold Learning has a simple and straightforward

interpretation. Consider the differentiable manifold M in Fig. 2.23. The maps x and u,

generally called chart maps, represent two different (local) representation of the manifold in

the Euclidean spaces Rd and Rs .

Going back to the problem of learning stable DS, we view trajectories as motions over a

differentiable manifold M . Starting from an Euclidean representation Rd of such motions

(the original dataset), our approach is capable of reconstructing an alternative Euclidean

representation Rs of the manifold in which the DS looks linear. If the number of selected

eigenvectors to reconstruct the embedding space is equal to the dimension of the original

space, namely s = d , such ensemble represents the discrete counterpart of the continuous

diffeomorphic map that links the two different representation of the manifold u◦x−1 :Rd →Rs .

A differentiable manifold ensures that any two charts (representations of the same manifold)

are differentiable-compatible, namely u◦x−1 and its inverse x◦u−1 are continuous and differ-

Rd
M Rs

x u

Figure 2.23: (left) Original Euclidean Space where the dataset is sampled from; (center) mani-
fold where the DS is taking place; (right) extracted Euclidean embedding space.
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entiable. This properties allows to relate velocity components in the two different Euclidean

spaces by the means of the so called Jacobian. For easier notation let the diffeomorphism be

ψ= u◦x−1, and the Jacobian Jψ = ∂xψ then

u̇ = Jψẋ. (2.28)

It is easy to show that if Lyapunov stability is guaranteed in one Euclidean representation of

M the diffeomorphism induces the same property in the other one. Consider the existence of

a Lyapunov function V :Rd →R radially unbounded and positive in all the space with V̇ (x) < 0

except in x∗, equilibrium point, where V (x) = V̇ (x) = 0. The diffeomorphism ψ generates a

Lyapunov function Ṽ :Rs →R and a related attractor u∗ =ψ(x∗)

˙̃V (u) = ∂V

∂x

∂ψ−1

∂u

∂u

∂t
= ∂V

∂x
J−1
ψ Jψẋ = ∂V

∂x
ẋ = V̇ (x) < 0. (2.29)

Given the bijectivity of the diffeomorphism if Ṽ is a Lyapunov function defining a stable

equilibrium point at u∗, x∗ is a globally asymptotically stable equilibrium point. We apply this

principle to reconstruct the dynamics in the original space.

We start by constructing a linear DS in embedding space that follows the linearized trajec-

tories of our DS: u̇ = u∗−u. This system is globally asymptotically stable at u∗. Stability can

be proved easily by considering the quadratic Lyapunov function Ṽ (u) = 1
2 (u∗−u)T (u∗−u).

Observe that Ṽ is also the potential of the vector field (namely u̇ = ∇Ṽ ). Following from

Eq. 2.28, the original dynamics can be recovered through

ẋ = J−1
ψ (u∗−u) = J−1

ψ (ψ(x∗)−ψ(x)). (2.30)

The corresponding (deformed) Lyapunov function in original space can be recovered as

V = Ṽ ◦ψ= 1
2 (ψ(x∗)−ψ(x))T (ψ(x∗)−ψ(x)).

To reconstruct the diffeomorphic map using the embedding space as a ground truth, we

adopt Non-Volume Preserving (NVP) transformations introduced by Dinh et al. (2017). The

diffeomorphism is obtained through a sequence of k coupling layers each of which is given by:u1:n = x1:n

un+1:d = xn+1:d ⊙exp(s(x1:n))+ t (x1:n)
(2.31)

with n < d , d the dimension of the original space. s(·) and t (·) are scaling and translating func-

tions, respectively. Each of these functions is approximated through Random Fourier feature

approximation (Rahimi and Recht (2007a)) of a vector-valued isotropic Radial Basis Functions

kernel as shown by Rana et al. (2020). As loss function, we use the standard Mean Squared

Error, MSE =∑ND
i=1

∥∥ui −ψ(xi )
∥∥2, adopting the embedding space coordinates as ground truth.

We applied the diffeomorphism to learn a mapping from our original space to the em-

bedding spaces for the hand-drawn multiple-attractor unknown DS, presented in Fig. 2.20a.
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(a) (b) (c) (d)

Figure 2.24: (a) Linear DS generated when using identity diffeomorphism; (b) reconstructed
dynamics through learned diffeomorphism; (c) initial quadratic potential function generating
a linear DS in Fig. 2.24a; (d) deformed potential under the action of the learned diffeomor-
phism generating the nonlinear DS in Fig. 2.24b.

Fig. 2.24 focuses on the red sub-dynamics. Fig. 2.24a shows the original linear dynamics

produced by Eq. 2.30 when the diffeomorphism ψ is the identity. After having learned the

diffeomorphism, the deformed nonlinear DS is shown in Fig. 2.24b. Fig. 2.24c and 2.24d

show the potential function V = Ṽ ◦ψ with identity and learned diffeomorphism, respectively.

Results for the second extracted sub-dynamics are shown in Fig. 2.25.

Our approach to learning DS through diffeomorphic mapping is highly inspired by the

works of Perrin and Schlehuber-Caissier (2016) and Rana et al. (2020). Different from the

approach of Perrin and Schlehuber-Caissier (2016), our learned diffeomorphism generates

a map from the original space to the embedding space, rather than the opposite. This leads

to a different formulation of the deformed non-linear DS. The advantage of our approach

is that it does not require to construct explicitly the inverse diffeomorphism. This comes

at the cost of having to invert the Jacobian when reconstructing the DS. Compared to the

approach proposed in Rana et al. (2020), we rely solely on the geometrical deformation of the

space, induced by the embedding space information, without taking into account dynamics

information. As consequence our loss function considers only position information (original

vs. embedding space) discarding the velocities. This allows to achieve faster convergence, due

to the simpler learning problem, and sensible lower learning time due to the advantage of

(a) (b) (c) (d)

Figure 2.25: (a) Linear DS generated via identity diffeomorphism; (b) deformed DS under the
action of the learned diffeomorphism; (c) initial quadratic potential function generating the
linear DS in Fig. 2.25a; (d) deformed potential under the action of the learned diffeomorphism
generating the nonlinear DS in Fig. 2.25b.
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(a) (b)

Figure 2.26: For Laplacian Embedding (LE) and Euclideanizing Flows (EF) approaches: (a) loss
decay over 1000 epochs; (b) training time for 1000 epochs.

not having to calculate and invert the Jacobian in the process. Fig.2.26 shows a comparison

between our approach, termed as Laplacian Embedding (LE), and Euclideanizing Flows (EF)

presented in Rana et al. (2020). All the tests have been performed on a machine endowed with

an Intel i9-10900K CPU and a NVIDIA GeForce RTX 2080Ti GPU2. On the left it is possible to

see how the easier formulation proposed in LE leads to a fast, exponential decaying of the

loss while EF generally requires more epochs to properly converge. On the right the training

time over 1000 epochs is shown. As LE does not require to invert the Jacobian, it requires

approximately half training time compared to EF.

We evaluate the ability of the proposed non-volume preserving transformation to re-

construct the diffeomorphism between the original and the embedding space on the LASA

dataset3, a dataset composed of hand-drawn letters, that has been often used to compare

2Repository available at: https://github.com/nash169/learn-diffeomorphism
3https://bitbucket.org/khansari/lasahandwritingdataset

(a) Angle (b) CShape (c) GShape (d) JShape (e) RShape (f) Trapezoid

Figure 2.27: For each demonstrated DS (column wise), the first row shows the DS generated by
the identity diffeomorphism (no train), the second row shows the DS generated after having
learned the diffeomorphism between the original space and the embedding space, the third
row shows the embedding space reconstructed using the eigenvectors extracted from the
eigen-decomposition of the Laplacian matrix.
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(a) Angle (b) CShape (c) GShape (d) JShape (e) RShape (f) Trapezoid

Figure 2.28: Deformed potential under the action of the learned diffeomorphism generating
the nonlinear DS for the LASA dataset.

performance of learned non-linear DS. Each demonstration is composed by 7 trajectories

(1000 samples of position-velocity pairs). Since, in two dimensions, the reconstruction of the

embedding does not require more than three trajectories, for each demonstration, we discard

4 trajectories that we use at testing time to evaluate performance.

For the reconstruction of the embedding to be successful, it is necessary that the demon-

strated trajectories are instances of a first order DS. While noise is tolerated, the trajectories

should not intersect, as this would violate a fundamental property of first order DS and core

assumption of the DS graph representation. Therefore, whenever it was possible, from each

demonstration, we selected trajectories in line with this requirement. In those cases where it

was not possible, in order to retain a good statistical analysis on the diffeomorphism learning

part, we reconstructed the graph structure manually.

Fig. 2.28 shows the deformed quadratic potential function under the action of the learned

diffeomorphism for a subset of demonstrations, while Fig. 2.28 shows the relative learned

DS. To evaluate the performance of the algorithm we employ three metrics: (1) prediction

cosine similarity error ė = 1
ND

∑ND
i=1

∣∣∣∣∣1− f (xr e f
i )T ẋr e f

i∥∥∥ f (xr e f
i )

∥∥∥∥∥∥ẋr e f
i

∥∥∥
∣∣∣∣∣, (2) average Dynamic Time Warping

Distance (DTWD) Salvador and Chan (2007) and (3) prediction Root Mean Square Error

RMSE = 1
ND

∑ND
i=1

∥∥∥ẋr e f
i − f (xr e f

i )
∥∥∥. Table 2.5 shows the performance at reconstructing each of

the demonstrations for each of the 12 dynamics shown in Figure 2.27.

The proposed implementation of the diffeomorphism appears more capable at shaping

the streamlines of the vector field according to the demonstrated trajectories. It also has

Angle CShape GShape JShape RShape Trapezoid
RSME 23.92 16.55 18.50 16.11 14.36 15.13
DTWD 0.015 0.066 0.098 0.060 0.046 0.073
CS 0.679 0.992 0.979 0.861 0.504 0.749

Table 2.5: Performance evaluation at reconstructing the demonstrations for each of the 12
handdrawn examples of Figure 2.27. Performance is measured according to three metrics:
root mean square error (RSMR), dynamic time warping distance (DTWD) and cosine similarity
error (CS).
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Figure 2.29: For Laplacian Embedding (LE) and Euclideanizing Flows (EF) approaches box
plots comparison of DTWD and CS metrics.

good accuracy, with values of prediction cosine similarity error and average DTWD about

0.5 and 0.2, respectively, all of which are comparable to the current state-of-the-art (e.g.

Figueroa and Billard (2018); Rana et al. (2020)) as shown in Fig.2.29. This comes at the cost of

a poor RMSE, over the velocities, given that the velocity information has been discarded in

the learning process. Reconstruction of the desired velocity profile can be achieved through

proper re-scaling techniques of the reconstructed DS as shown, for instance, by Perrin and

Schlehuber-Caissier (2016).

2.9 Conclusion

This paper showed that it is possible to automatically decompose a set of unlabelled data,

stemming from a multiple-attractor DS, and to identify the number of underlying dynamics

and their associated attractors. We further provided theoretical guarantees for DS linearization

based on Manifold Learning reconstruction of multiple embedding spaces. We proved that,

for a graph structure of the shape described in Sec. 2.4, the eigenvectors of the Laplacian

matrix generate an embedding space where the sampled trajectories from a given DS are

linearized. We introduced a novel velocity-augmented kernel to achieve the desired graph

structure from real data. Relying on these theoretical results, we proposed an algorithm to

cluster the sub-dynamics and identify the equilibria locations of multiple-attractor DS through

eigendecompostion of a graph-based Laplacian matrix. In particular, we utilized the spectral

properties of a Laplacian matrix applied to the particular graph proposed to reconstruct

multiple embedding spaces, where each sub-dynamics is linearized while the others are

compressed into a single point at zero. We showcased that, in such space, it is possible to

identify the position of the attractor while, at the same time, clustering the sub-dynamics.

Combined with state-of-the-art techniques for learning diffeomorphic maps, our method

provides an algorithm for stable learning of multiple-attractor DS in a complete unsupervised

learning scenario.

Limitations & Future Developments. Nevertheless, our algorithm relies heavily on the
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reconstruction of the correct graph. Whenever the velocity-augmented kernel is not able

to reconstruct the correct graph, the clustering performance degrades drastically and it is

not possible to locate the attractors anymore. This generally happens in extreme cases of

considerable high curvature of the sampled trajectories. In addition we highlight that Spectral

Clustering taking advantage of the kernel proposed in this work is capable of matching the

clustering performance of our algorithm. However Spectral Clustering does not exploit the

particular structure of the DS in the embedding space, and therefore, it is incapable of assessing

the location of the attractors. In all examples used in this paper, the DS were 2-dimensional

and represented single motion patterns. However, our algorithm is not limited theoretically to

2D and scales well to higher dimensions since both the proposed kernel and the Laplacian

matrix are dimension-independent. The dimension of the embedding space is upper bounded

by the number of trajectories sampled and it does not depend on the dimension of the original

space.
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3 Learning Dynamical Systems En-
coding Non-Linearity within Space
Curvature

3.1 Foreword

The work presented in this chapter is under review in the International Journal of Robotics

Research (IJRR), Fichera and Billard (2024).

3.2 Introduction

Learning from Demonstration (LfD) represents a powerful approach to derive global behav-

ioral policies for high-level closed-loop control by observing demonstrated tasks. Such policies

are represented using the mathematical framework of Dynamical Systems (DS), namely a

vector field f :Rd →Rd , mapping the d-dimensional input state x(t ) ∈Rd to its time-derivative

ẋ(t ) ∈Rd , such that ẋ(t ) = f(x).

In the field of robotics, this framework is commonly employed for describing and reg-

ulating various motion types, such as point-to-point motions characterized by fixed-point

stable equilibrium DS, or periodic motions featuring stable limit-cycle DS. The stability of a

learned DS becomes a significant concern when it is applied in closed-loop control systems.

Using standard regression methods to learn the mapping f provides no inherent guarantee of

producing stable control policies. A wealth of learning approaches have been developed in the

last decades to learn a DS with the stability guaranteed. They follow two fundamental paths:

1) constraint optimization; 2) learning of complex potential function via diffeomorphism.

In the first category, the most popular approach is to derive constraints via Lyapunov’s

second method for stability. In the beginning, Khansari-Zadeh and Billard (2011) utilized

a quadratic Lyapunov function to establish stability conditions in a Gaussian Mixture Re-

gression (GMR) problem for learning Dynamical Systems (DS). However, stability guarantee

imposes a severe restriction on the learnable complexity of the DS and prevents learning highly

non-linear DS containing high-curvature regions or non-monotonic motions (i.e., temporally

moving away from the attractor). More recent approaches tried to alleviate this issue by im-
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Figure 3.1: End-effector motion of a robotic arm guided by a 2D learned DS. The surface
corresponds to the 3D Euclidean space embedded representation of the learnt 2D manifold.
The color gradient represents the value of the potential function that drives the linear vector
field taking place on the 2D manifold. The manifold’s curvature induces "apparent" non-
linearity in the 2D chart Euclidean space representation of the vector field taking place on the
2D manifold. During the learning process, the curvature of the manifold adapts so that the
streamlines of the 2D chart Euclidean space representation of the vector field follow closely
the demonstrated trajectories (red dots), preserving the stability towards a desired equilibrium
point (yellow star).

proving the complexity of the Lyapunov function adopted as constraint, Figueroa and Billard

(2018). Specifically, by moving towards an elliptic Lyapunov function, these approaches are

capable of relaxing the constraints allowing for learning more complicated trajectories. Never-

theless, they still struggle in learning DS exhibiting high non-linearity and non-monotonic

behavior in different radial directions with respect to the equilibrium point.

An alternative constraint optimization problem can be derived from Contraction Theory

(CT), Lohmiller and Slotine (1998). Abstracting from the absolute position of the equilibrium

point, CT follows a differential perspective. Conditions derived by CT impose local contraction

of trajectories implying, as a consequence, global exponential stability towards the equilib-

rium point. Blocher et al. (2017) takes advantage of CT to derive a stabilizing controller that

eliminates potential spurious attractor present in the DS learned without stability constraints.

Sindhwani et al. (2018) uses CT to derive constraints for learning DS in a Support Vector Regres-

sion problem. Both Blocher et al. (2017) and Sindhwani et al. (2018) rely on non-generalized

contraction analysis, which, in turn, results in overly conservative constraints. This is anal-

ogous to the adoption of a simplistic quadratic function in the Lyapunov approach to the

stability problem. In their work, Ravichandar et al. (2017) introduced a GMR-based regression

problem, incorporating stability constraints derived from generalized (CT) analysis. While

this approach demonstrates superior performance by relaxing overly conservative constraints,

it does so at the expense of achieving global stability, focusing solely on local stability.
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Another approach to learning DS involves the existence of a latent space, in which either

the Lyapunov function is quadratic or the DS is linear. In these approaches, the focus is on

learning a diffeomorphism ψ : Rd → Rd between the original space and the latent one. A

first example of this approach for solving the stability vs accuracy dilemma was proposed by

Neumann and Steil (2015). This approach extends the applicability of SEDS by introducing a

diffeomorphic mapping that transforms non-quadratic Lyapunov functions, ensuring point-

wise stability of the demonstrated trajectory, into quadratic forms. After applying SEDS in

this transformed space, the desired policy is obtained through the application of the inverse

diffeomorphic mapping. More recent approaches concentrate on directly identifying latent

spaces where the DS exhibits linear behavior. These methods make use of an approximation

of the Large Deformation Diffeomorphic Metric Mapping (LDDMM) framework, Joshi and

Miller (2000), to accommodate the required smoothness constraints in the mapping.

In Perrin and Schlehuber-Caissier (2016), the diffeomorphic learning DS is fundamentally

geometric, focusing solely on the positions of the original and target points. To reconstruct

the proper velocity profile, a rescaling of the learned DS is employed. The diffeomorphic map

is learned as sequence locally weighted translations applied to the points in the original space.

Additionally, more modern and network-based strategies, such as non-volume preserving

transformation (NVP) Dinh et al. (2017), can be utilized to model the diffeomorphic map. Rana

et al. (2020) adopts NVP transformations within an optimization framework that incorporates

dynamic information, specifically velocity, into the process. This results in a one-step learning

algorithm. Essentially, all these approaches involve learning a complex potential function

whose gradient closely follows the target DS. While these methods demonstrate improved

performance, they come with the trade-off of requiring sophisticated machinery for creating a

function approximator capable of learning a mapping that exhibits the diffeomorphic property

mandated by the proposed mathematical framework.

All the methods discussed above are confined to learning first-order conservative DS.

Dissipative or second-order DS cannot be learned within this framework. Moreover, online

local adaptation to environmental changes is not considered as part of the problem. In

DS-based control, such issues are typically addressed a-posteriori and handled through a

modulation matrix, as in Khansari-Zadeh and Billard (2012). These approaches are agnostic

to the DS they aim to modulate, potentially leading to spurious attractors whenever the DS

velocity direction aligns with the normal principal direction of the modulation matrix. A

clever trick to partially address this problem involves breaking orthogonality between the

modulation matrix’s principal components, as proposed by Huber et al. (2019). However,

these methods rely on manually designing modulation matrices for each local adaptation they

aim to accommodate, resulting in increased complexity in both problem design and stability

analysis. The application of modulation to second-order systems remains unclear.

These limitations cast a shadow over DS methods when compared to planning methods.

Planning methods, armed with inherent adaptability and increasingly efficient sampling-

based strategies, Williams et al. (2017), are gradually overcoming their reactivity challenges,
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fueled by advancements in computational hardware power, as shown in Bhardwaj et al. (2021).

In response to this, geometry-based DS shaping approaches, drawing on tools from the

field of differential geometry, emerge as a solution to reverse this trend. These approaches

aim to achieve two crucial objectives: 1) enhance DS policies with greater expressivity and

bolster their adaptability, and 2) broaden the modularity of the approach to tackle the growing

complexity of real-world scenarios in which robotic systems must operate.

Drawing inspiration from Bullo and Lewis (2005), Ratliff et al. (2018) introduced the

Riemannian Motion Policy (RMP), a modular mathematical framework for robotic motion

generation. In contrast to prior works, this approach produces second-order DS, the specific

behavior of which is inherently linked to a Riemannian metric. By carefully designing such

metrics, a wide range of behaviors can be exhibited and combined.

With few exceptions, detailed in Section 3.3, this research line has not explicitly focused

on Learning from Demonstration (LfD). Instead, the emphasis has been on expanding the

capabilities of the mathematical framework to enhance the complexity and variety of re-

producible behaviors. Building upon RMP, Cheng et al. (2020) proposed RMPflow, which

effectively combines different tasks designed via RMPs, leveraging the sparsity of the structure

for computational efficiency.

Summarizing the endeavors of previous works, Bylard et al. (2021) provides a principled

and geometrically consistent description of the mathematical framework used for geometry-

based policies. Current research in the field is shifting towards a more general formalism,

extending beyond Riemannian differentiable manifolds to include Finsler structures, as dis-

cussed in Xie et al. (2021); Ratliff et al. (2021). This expansion aims to introduce velocities as a

fundamental ingredient in shaping metrics that define policies’ behavior.

Contribution

Our work bridges the gap between DS learning literature and the evolving field of geometry-

based shaping of DS policies. From the DS learning literature, we draw inspiration from

concepts related to the existence of a latent space. A notable distinction is that we do not

enforce diffeomorphic constraints. On the other hand, we borrow from the Geometric DS

literature the idea of a chart-based representation of DS occurring on a manifold, along with

employing various tools from differential geometry to define the operators we utilize.

In this work, we introduce a novel approach to learning DS that aims to integrate LfD with

modern geometric control techniques. Within our framework, the non-linearity of the DS is

"encoded" within the curvature of a d +1-dimensional latent manifold, where d represents

the dimension of the vector field being learned. This concept is illustrated in Figure 3.1.

Our framework naturally extends to second-order dissipative DS and easily adapts to po-

tential online local non-linearity changes, such as those arising from the presence of obstacles.

Additionally, we propose a variety of solutions, such as directional and exponential, to make
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the usage second-order DS effective in LfD scenario. The proposed geometric framework,

as indicated by standard metrics for evaluating learning performance, matches or outper-

forms the state-of-the-art while achieving notably lower computational costs during both

training and query phases. These efficiency gains are obtained without compromising the

performance or stability of the learned DS. Furthermore, such framework amplifies the ex-

pressivity of geometrical policies, shedding light on the relationship between DS non-linearity

and manifold curvature. It also provides an explicit visualization of the Euclidean embedded

representation of the latent manifold responsible for generating non-linearity.

To operationalize this work, we developed a fully differentiable PyTorch library1, which can

be used for both Learning from Demonstration (LfD) and manually shaping geometric policies.

In second-order settings, such policies can exhibit either geodesic or damped harmonic

behavior, expanding the variety of behaviors available. To preserve reactive control features,

we developed a high-performance C++ library2, that integrates our geometrical DS with fast

one-step model-based or model-free Quadratic Programming control techniques. Additionally,

the fully-templated nature of the library allows for the generalization of the controllers’ suite

to different non-Euclidean spaces, such as Lie Groups. In practical terms, for robot end-

effector control, this represents a valuable feature for R3 ×SO(3) control, where one controller

operates in the three-dimensional Euclidean space, while the other one functions in the Special

Orthogonal Group characterizing orientation space. The control strategy is fully modular and

easily integrable in RMP frameworks as in Fichera and Billard (2023).

3.3 Related work

In contrast to the approach outlined in Rana et al. (2020), our method circumvents the ne-

cessity of learning a diffeomorphism between two chart representations of the underlying

manifold. Instead, it focuses on learning an embedding that defines a higher-dimensional

Euclidean representation of the manifold, offering two advantages: enhanced computational

efficiency and greater model expressivity. From both a computational and mathematical per-

spective, our approach imposes fewer mathematical constraints. Specifically, we only need to

ensure homeomorphic property between the manifold and its image through the embedding.

In this context, an effective learning process can be achieved using any continuous function

approximator, eliminating the need for a specific non-volume preserving (NVP) network to

learn the diffeomorphism. Consequently, our learning process becomes more straightfor-

ward and faster in converging to the optimal solution. Furthermore, our approach naturally

facilitates the construction of second-order DSs, although it can also yield first-order DSs

as a sub-case. This increased mathematical structure provides greater expressivity, enabling

us to replicate crossing trajectories and navigate around concave obstacles through hybrid

geodesic/harmonic motion.

1learn-embedding code available at: https://github.com/nash169/learn-embedding
2control-lib code available at: https://github.com/nash169/control-lib
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While not directly classified as part of the LfD literature, Mukadam et al. (2020) applies

learning methods in RMPflow by introducing weight functions that hierarchically modify

the Lyapunov functions associated with subtasks. This enhancement improves the overall

performance of the combined policy. Contrastingly, our approach primarily focuses on

learning the curvature of the manifold. This enables the generation of complex policies

without incurring in stability problems caused by the lack of convexity of the Lyapunov

function.

In the work presented in Rana et al. (2019), the emphasis lies in learning the Cholesky

decomposition of the metric tensor. When compared with our approach, this method not only

exhibits limitations by solely addressing first-order geometry but also mandates specifically

designed and more complex function approximators to learn the lower diagonal matrix of

the metric tensor Cholesky decomposition. This structure limits the flexibility to dynamically

adjust the local geometry of the space to handle scenarios, such as obstacle avoidance.

Beik-Mohammadi et al. (2021) developed a method to generate geodesic motions aligned

with observed trajectories by deriving a Riemannian metric from a map between the original

and a latent space, learned through a Deep Autoencoder. This involves geodesic motions

generated via an iterative optimization process that minimizes the curve length between two

points. Conversely, our method focuses on constructing a DS formulation, ensuring stabil-

ity, reactivity, and robustness against spatial and temporal disturbances typical in DS-based

control. We directly access the manifold as a higher-dimensional Euclidean representation by

approximating a single embedding component through a simple feedforward network, elimi-

nating the need for complex Deep Learning structures. This not only enhances computational

efficiency but also provides much greater expressivity, allowing a deeper understanding of why

and how altering manifold’s curvature to achieve the desired DS non-linearity. Our framework

allows for a directly modifiable embedding designed to facilitate online local deformation.

3.4 Background

The presentation of the work relies heavily on concepts from differential geometry. Our

notation follows do Carmo (1992). We employ the Einstein summation convention in which

repeated indices are implicitly summed over.

Given a set, M , and a Hausdorff and second-countable topology, O , a topological space

(M ,O ) is called a d-dimensional manifold if ∀p ∈ M : ∃U ∈ O : ∃x : U → x(U ) ⊆ Rd , with x

and x−1 continuous maps. (U , x) is a chart of the manifold (M ,O ). x is called the chart

map; it maps p ∈ M to the point x(p) = (
x1(p), . . . , xd (p)

)
into the Rd Euclidean space.(

x1(p), . . . , xd (p)
)

are known as the coordinate maps or local coordinates. With slight abuse of

notation, we will refer to a point in Rd using the bold vector notation x = x(p), dropping the

explicit dependence on p ∈M . xi will be i -th local coordinate of x ∈Rd .

Throughout, we will denote with M a differentiable Riemannian manifold, that is a mani-
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fold endowed with a C∞-atlas, A , and a (0,2)-tensor field, g , with positive signature, satisfying

symmetry and non-degeneracy properties. We refer to g as a Riemannian metric.

TpM (T ∗
p M ) denotes the tangent (resp. cotangent) space at p ∈M . We denote by vp ∈

TpM a vector in the tangent space at p. Given a set of local coordinates (x1, . . . , xd ), in a

neighborhood U of p ∈M , we denote by ∂
∂x i (resp. d xi ) the i -th basis vector of TpM (resp.

T ∗
p M ). The tangent bundle T M (resp. cotangent bundle T ∗M ) is the disjoint union of these

tangent (resp. cotangent) spaces over all p ∈M .

A vector field (resp. covector field) X on U ⊂M is a map assigning to each point p ∈U

a vector X (p) ∈ TpM (resp. X (p) ∈ T ∗
p M ). Γ(T M ) (resp. Γ(T ∗M )) denotes the set of vector

(resp. covector) fields on M . Let X ,Y ∈ Γ(T M ), the vector field ∇Y X is the covariant derivative

of X with respect to Y . In the context of dynamical systems subjected to external driving

forces on manifolds, a force at a point p ∈M is a covector, namely fd : TpM × I → T ∗
p M .

The metric can be used to uniquely relate elements of T M and elements of T∗M . For

each p ∈M we define the flat map (·)♭ : TpM → T ∗
p M and sharp map (·)♯ : T ∗

p M → TpM as

the inverse of (·)♭.

C∞(M ) denotes the set of smooth functions ϕ : M → R. The differential of a function

ϕ ∈C∞(M) is the covector field dϕ ∈ Γ(T ∗M). In local coordinates, dϕ= ∂ϕ

∂x i d xi . To express

the partial derivative, we will adopt the contracted notation ∂iϕ= ∂ϕ

∂x i .

Let M and N be two differentiable Riemannian manifolds and f : M → N be a con-

tinuous map. The pushforward map f∗ is the map f∗ : T M → T N where f∗(X )ϕ := X ( f ◦
ϕ) ∀ϕ ∈C∞(N ),∀X ∈ Γ(T M ). The pullback map f ∗ is the map f ∗ : T ∗N → T ∗M , where

f ∗(ω)(X ) :=ω( f∗(X )) ∀X ∈ Γ(T M ),∀ω ∈ T ∗N .

A curve γ on a given manifold M is a mapping γ : I ⊂R→M . The curve can be expressed

in local coordinate through the mapping xγ = x ◦γ : I → Rd such that x(γ(t)) = xγ(t) ∈ Rd

for each t ∈ I . We use ẋγ(t) to express the speed
d xγ
d t . Wherever the explicit reference to the

underlying curve is not needed, we use directly ẋi to indicate the i-th local coordinate of the

velocity of the curve.

Given a curve γ : I →M , a vector field along γ, vγ, is a map that assigns to each t ∈ I an

element vγ(t ) ∈ Tγ(t )M . The covariant derivative of vγ along vγ in local coordinates is(∇vγvγ
)k = ẍk +Γk

i j ẋi ẋ j , (3.1)

with Γk
i j the Christoffel symbols. A Riemannian metric g induces a unique affine connection

∇ on M , called the Levi-Civita connection. In this scenario the Christoffel symbols can be

expressed as a function of the Riemannian metric g . In local coordinates the Christoffel

symbols for the Levi-Civita connection are Γk
i j = 1

2 g km
(
∂i gm j +∂ j gmi −∂m gi j

)
for (i , j ,k ∈

1, . . . ,d).
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A second-order linear DS on M can be expressed, for t ∈ I ⊂R, in intrinsic formulation as

∇vγvγ =F (γ, vγ, t )# =−dφ# −D(·, vγ)#, (3.2)

where γ : I →M is a curve on the manifold M , vγ is the vector field generated by the tangent

velocities of curve γ. On the right-hand side of Equation (3.2), F is the total forces covector.

It can be further split into elastic and dissipative components. Given a potential function,

φ ∈C∞(M ), dφ# represents the elastic gradient field, while D(·, vγ) ∈ T ∗M is the dissipative

covector field. In local coordinates we have(∇vγvγ
)k =−g ak∂aφ−Dk

m ẋm . (3.3)

Combining Equations (3.1) and (3.3), we have

ẍ︷︸︸︷
ẍk +

Ξ︷ ︸︸ ︷
Γk

i j ẋi

ẋ︷︸︸︷
ẋ j =−

G−1︷︸︸︷
g ak

∇φ︷︸︸︷
∂aφ−

D︷︸︸︷
Dk

m

ẋ︷︸︸︷
ẋm . (3.4)

Note that Dk
m = g ak Dam . Equation (3.4) can be expressed using vector notation as

ẍ = f(x, ẋ) =−G−1∇φ−Dẋ−Ξẋ. (3.5)

In the following sections, we will use capital bold letters to represent matrices in vector

notation. When indices are used alongside a matrix, for the sake of clarity, the matrix itself will

be denoted using capital letters without bold formatting.

3.5 Learning the Latent Manifold Embedding

Let M and N be two (non-compact) Riemannian manifolds, with respective charts (U , x)

and
(
V , y

)
. We will indicate with g and h, the Riemannian metrics of M and N , respectively.

In particular, for dim(M ) = d , N coincides with a (d +1)-dimensional Euclidean space, Rd+1.

Therefore, V ≡Rd+1 and y ≡ i dRd+1 , where i dRd+1 is the identity map. Let h = δi j with respect

to the chosen chart, where δi j is the Kronecker symbol, δi j = 1 if i = j otherwise δi j = 0, and

i , j = 1, . . . ,d +1. With reference to Figure 3.2, f : M ,→Rd+1 is a smooth isometric embedding

into a d +1 Euclidean space. (y ◦ f ◦x−1) is the local coordinates expression of the embedding,

i.e. the mapping between the two charts (U , x) and (V , y).

M N ≡Rd+1

Rd+1Rd

f

(V ≡Rd+1, y ≡ i dRd+1 )(U , x)

y ◦ f ◦x−1

Figure 3.2: Mapping structure across manifolds.
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We propose to model the components of the local coordinates formulation of the embed-

ding as follows

(y ◦ f ◦x−1)i =
xi if i ≤ dim(M )

ψ(xi ;w) otherwise
, (3.6)

where ψ : Rd → R is a smooth function parametrized by the weights w and ψ ∈C r (Rd ) with

r ≥ 1. We will refer to the embedding expressed in local coordinates with the vector notation

Ψ :Rd →Rd+1, highlighting the implicit dependence on ψ.

Proposition 5. f : M →Rd+1 is a smooth mapping with local coordinates as in Equation (3.6).

f : M ,→Rd+1 is an embedding.

Proof. See Appendix B.1.1.

All the geometric operators, namely the metric and the Christoffel symbols, in Equa-

tion (3.5), are derived from the embedding defined in Equation (3.6) by leveraging on the

pullback operation. To improve readability, in the following, we drop the explicit dependency

of ψ on the local coordinates point x and the weights w. Nevertheless, all operators derived

have to be considered dependent on x and w via ψ.

We first derive the metric as a function of the approximator ψ. The components of the

pushforward map, J i
j = ∂ j (y ◦ f ◦x−1)i , can be expressed in matrix notation as

J(x;w) =
[

Idim(M )×dim(M )

∇ψT

]
, (3.7)

where ∇ψ= [
∂1ψ, . . . ,∂dim(M )ψ

]T ; J is also known as the Jacobian. Isometry of the embedding

implies that the metric on M can be derived from the metric on N via the pullback operation

of the metric, g = f ∗h. In local coordinates this can be expressed as

gi j = ∂i (y ◦ f ◦x−1)ahab∂ j (y ◦ f ◦x−1)b . (3.8)

Given hab = δab , Equation (3.8) can be written in matrix notation as

G(x;w) = JT J = I+∇ψ∇ψT . (3.9)

To derive the Christoffel symbols, we need to express the derivative of the metric. Given

that the metric depends on x only through the term ∇ψ∇ψT , the Christoffel symbols (con-

tracted with the velocity) can be expressed as

Ξ
q
j (x, ẋ;w) =g qm 1

2
(∂i

(
∂mψ∂ jψ

)+∂ j
(
∂mψ∂iψ

)−∂m
(
∂iψ∂ jψ

)
)ẋi (3.10)

The last two terms not yet defined in Equation (3.5) are the potential energy φ and the
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dissipative coefficients D. We impose to the potential energy a classical quadratic structure

φ= 1
2 xT Kx. Both the matrices K and D can be user-defined or left "open" for optimization.

Given the full state, (x, ẋ), of a DS, our training dataset is composed of position-velocity

pairs {xm , ẋm |m = 1, . . . , M }, with M the total number of sampled points. The ground truth

is given by sampled acceleration {ẍm |m = 1, . . . , M }. We propose the following optimization

problem

min
w,K,D

F2(xm , ẋm , ẍm |w,K,D), (3.11)

with

F2(xm , ẋm , ẍm |w,K,D) =
M∑

m=1
||ẍm +G−1(xm ;w)

(
K(xm −x∗)+Dẋm

)+ (3.12)

Ξ(xm , ẋm ;w)ẋm ||2+λ∥w∥2, (3.13)

where K,D ∈S d++, the manifold of Symmetric Positive Definite (SPD) matrices of dimension d .

x∗ is the fixed stable equilibrium point, or attractor, of the DS. λ is a parameter weighing the

regularization term. This parameter affects the manifold’s curvature smoothness. Since the

manifold’s curvature translates into acceleration within the DS (via the Christoffel symbols),

regularization plays a crucial role in containing high frequency change of curvature, avoiding

high accelerations and potential overfitting.

SPD matrices optimization is achieved by parametrazing the generic SPD matrix as

M(α,ξ) =U (α)Λ(ξ)U (α)T , (3.14)

with

Λ(ξ) =


eξ1 0 0

0
. . . 0

0 0 eξd

 (3.15)

and U the orthogonal matrix resulting from QR decomposition of the matrix constructed so to

have the first column equal to the vectorα ∈Rd . α and ξ are the learnable parameters.

Theorem 2. Let w ∈ (−∞,∞). The dynamical system

ẍ =−G−1(x;w) (K(x−x∗)+Dẋ)−Ξ(x, ẋ;w)ẋ (3.16)

is globally asymptotically stable at the attractor x∗, i.e. limt→∞∥x−x∗∥= 0.

Proof. See Appendix B.1.2.
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3.5.1 Gradient Systems & Incremental Learning

Our method can be applied to first order dynamics. Let X : M → T M be a vector field on M .

X is called a gradient system if

X =−dφ# local coordinates−→ X k =−g i k∂iφ. (3.17)

As for the system in Equation (3.3), gradient systems are globally stable; moreover, they are

globally exponentially stable. Such property follows from the fact that this type of systems

are contracting on M , Simpson-Porco and Bullo (2014), i.e. g (∇v X , v) ≤−λg (v, v) for p ∈U

and v ∈ TpM . λ > 0 is the contraction rate. For strongly convex functions φ on U , they

satisfy the contraction condition Hess(φ) ⪰λg , where Hess(φ) is the Riemannian Hessian, see

Simpson-Porco and Bullo (2014); Wensing and Slotine (2020) for details.

We can minimize the Mean Square Error (MSE) loss, as in Equation (3.11), having as target

the sampled velocities

min
w,K

M∑
m=1

F1(xm , ẋm |w,K). (3.18)

with

F1(xm , ẋm |w,K) =
M∑

m=1

∥∥ẋm +G−1(xm ;w)K(xm −x∗)
∥∥2 +λ∥w∥2, (3.19)

If for simpler scenarios, first-order DS might suffice, more complicated cases require the usage

of second-order DS. Nevertheless, first-order DS optimization can be performed as a way of

finding a good initial solution for the second-order DS. As shown in Section 3.7.4, given the

simple structure of a first-order DS, solution to Equation (3.18) can be found in considerably

lower time than Equation (3.11). For complicated problems, this situation suggests to perform

a sort of incremental learning: first, find optimal embedding weights, w∗ and stiffness matrix,

K∗, by solving repeatedly Equation (3.18); second, solve Equation (3.11) starting from w∗ and

K∗.

3.6 Online Kernel-Based Local Space Deformation

Kernel-based space deformation is an effective method for generating localized curvature,

which subsequently influences the behavior of chart-based DS. As detailed in Section 3.6.1,

for obstacle avoidance scenarios, this approach is particularly relevant to our method, where

an explicit representation of the latent manifold is available.

Nevertheless, kernel-based deformation can also be adopted to model any type of global

manifold’s curvature realized as a linear combination of point-wise sources of the deforma-

tion. The analytical formulation provides a simplified framework that would allow us to gain

intuition on the effect of the metric tensor and Christoffel symbols in the chart space DS,

as curvature starts to appear in the manifold. These concepts are explored in Sections 3.6.2

and 3.6.3. Starting from a flat space scenario, we analyze the effect of locally deforming the
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space via Radial Basis Function (RBF) kernels for first-order dynamics and second-order

dynamics. In addition, for second-order dynamics, we show how it is possible to leverage

on hybrid harmonic and geodesic motion to achieve concave obstacle avoidance, in fairly

extreme scenarios, without recurring to planning strategies.

3.6.1 Obstacle Avoidance via Direct Space Deformation

One advantage of the proposed method is the direct extendibility to obstacle avoidance

scenarios. We take advantage of the geometric obstacle avoidance techniques based on the

local deformation or stretching of the space. In our approach, we encode the non-linearity

of the DS within the curvature of the space. Without repeating the learning process, the

non-linearity needed for the obstacle avoidance task can be encoded, locally, in the curvature

of the space as well.

Geometry-based obstacle avoidance techniques rely on the definition of a metric that

takes into account the presence of obstacles. The metric can be defined in the ambient space

(and pulled back afterwards), Beik-Mohammadi et al. (2021), or directly in chart space, Cheng

et al. (2020). The two approaches are equivalent. They work well if the original space on

which the DS is taking place does not present pre-existent relevant curvature. In our approach,

an explicit knowledge of the "shape" of the manifold is available. Given this knowledge, we

show how it is possible to directly deform an already non-linear space to produce obstacle

avoidance.

Let kchart : Rd ×Rd → R (kambient : Rd+1 ×Rd+1 → R) be a similarity measure in the chart

(ambient) space. Let x̄ ∈ Rd (ȳ ∈ Rd+1) be the location of an obstacle in chart (ambient)

space. Given a current position x ∈ Rd (y ∈ Rd+1), k(x, x̄) (k(y, ȳ)) informally expresses how

close we are to the obstacle in the chart (ambient) space. Considering x̄ (ȳ) fixed, we have

kchart(x̄, ·) :Rd →R (kambient(ȳ, ·) :Rd+1 →R). We assume kchart ∈C r (Rd ) (kambient ∈C r (Rd+1))

with r ≥ 1 and kchart(x, x̄) ≈ 0 (kambient(y, ȳ) ≈ 0) for ∥x− x̄∥ ≥ ϵ (
∥∥y− ȳ

∥∥≥ ϵ) for some ϵ> 0. The

first condition imposes at least one time differentiability while the second one requires fast

decay of the similarity measure away from the obstacle.

Recall in Equations (3.8) and (3.9), we assumed the ambient metric to be constant over all

the space and equal to the identity, namely the Euclidean metric. We now use the following

metric for the ambient Euclidean space

H = I+∇kambient∇kambient, (3.20)

where ∇kambient expresses the derivative of the similarity measure kambient with respect to y.

The metric in Equation (3.20) is implicitly defining a deformation of the ambient space. It

can be derived via the pullback of the Euclidean metric of a d+2-dimensional Euclidean space,

embedding our ambient spaceΨambient = [y,k(ȳ,y)]T . With H ∈Rdim(M )+1×dim(M )+1, the chart

space metric can be derived via the pullback of the ambient metric as in Equation (3.8),
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G(x;w) = JT HJ.

The pullback operation is equivalent to adding the "obstacle" metric to the chart space met-

ric encoding the non-linearity of the DS, Gtotal = G(x;w)+Gobs, where Gobs = I+∇kchart∇kchart.

Let H =
[

I+A B

BT 1+C

]
, with A ≡ ∇kchart∇kchart ∈ Rd×d , B ∈ R1×d and C ∈ R1×1. The pull-

back operation in Equation (3.20) becomes G = I+A+B∇ψT +∇ψBT +∇ψ(I+C)∇ψT . For

γ(t ) ∈M ∀t ≥ 0 we have B,C = 0; therefore G = I+A+∇ψ∇ψT = I+∇kchart∇kT
chart+∇ψ∇ψT =

Gobs +G(x;w).

Adding metrics linearly is akin to treating the deformations of space, due to the non-

linearity of the DS and the presence of an obstacle, separately. G(x;w) is derived as in Equa-

tion (3.9) from the embedding Ψ in Equation (3.6); Gobs can be derived from an embedding

of the type Ψobstacle = [x,k(x̄,x)]T . In other terms, the deformation of the space due to the

presence of the obstacle is agnostic of the previous curvature in the manifold. Such a scenario

still yields good results where the space is fairly flat.

The explicit formulation of the embedding allows us to directly deform the space while

actively taking into consideration the curvature of the space. Let {x̄i , i = 1, . . . , N } be the

location of N obstacles in chart space; w̄ are the weights after learning the DS. We model

obstacles as a kernel-based local deformation of the spaces given by

ψ̄(x) =
N∑

i=1
ηi k(x̄i ,x), (3.21)

where ηi is a user-defined weight assigned to the local deformation at x̄i . At query-time the

embedding in Equation (3.6) can be expanded as follows

Ψ=
[

x

ψ(x;w̄)+ ψ̄(x).

]
(3.22)

The embedding in Equation (3.22) leads to the following pullback metric

G(x;w) = I+∇ψ∇ψT +
coupling term︷ ︸︸ ︷

2∇ψ∇ψ̄(x)T +∇ψ̄(x)∇ψ̄(x)T . (3.23)

The coupling term in Equation (3.23) encodes the pre-existent curvature of the space. Given

the imposed condition on the regularity of k, both Proposition 5 and Theorem 2 still hold. The

overall DS generated with such embedding retains global asymptotical stability, independently

from the number of obstacles present.

Second order dynamical systems cannot perform proximal obstacle avoidance. Indeed,

the geometrical term given by the Christoffel symbols generates forces that lead the system

to "climb up" regions of local high-curvature, penetrating the obstacle. This forces conflict

with the potential one generating an overall motion that stagnates right after the obstacle,
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(a) (b) (c) (d)

Figure 3.3: Firs-order DS in flat space with localized deformation in the obstacle area: (a) Vector
field with one sampled streamline avoiding the obstacle; (b) 3D embedded representation
of the manifold; (c) one sampled trajectory with eigenvalue decomposition ellipses of the
inverse of the metric for selected location; (d) metric determinant function with eigenvalue
decomposition ellipses of the metric.

see Section 3.6.3. This issue can be solved by introducing velocity-dependent local space

deformations

ψ̄(x, ẋ) =
N∑

i=1
ηi (x− x̄i , ẋ)k(x̄i ,x), (3.24)

where ηi (x− x̄i , ẋ)3 is framed as generalized sigmoid function acting on the cosine kernel

between x− x̄i and ẋ

ηi (x− x̄i , ẋ) = 1

1+e−τ(kcos(x−x̄i ,ẋ)−cosθr e f )
, (3.25)

with kcos(x− x̄i , ẋ) = (x−xi )T ẋ
∥x−xi ∥∥ẋ∥ . τ regulates the growth rate and θr e f defines the starting growth

point. Safe option can be θr e f = π
2 . In this scenario, the underlying manifold dynamically

deforms (locally) whenever the motion is monotonically decreasing towards the obstacle. If

the system is moving away from the obstacle, the manifold curvature goes back to the flat or

nominal state. This allows to effectively turn off the local geometrical terms once crossed the

obstacle, allowing the system to reach the desired equilibrium point.

3.6.2 Local Space Deformation In First Order DS

Let the d +1 embedding component (y ◦ f ◦ x−1)d+1 = ψ be defined as a weighted sum of

exponentially decaying kernels

ψ(x) =
N∑

i=1
αi k(x, x̄i ) =

N∑
i=1

αi exp−∥x− x̄i∥2

2σ2 , (3.26)

where x̄i is the i -th kernel center and N is the number of kernel used. σ andαi are user-defined

parameters; the former controls till which distant the local deformation affects the space

geometry, the latter defines the magnitude of the deformation. Consider N = 1 and α1 = 1.

3Note that this function, though dependent on x, must be treated as constant in the derivation of the geometrical
terms.
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x

x̄

λ1 = ∥x− x̄∥2

λ2 = 0

Figure 3.4: Kernel-based metric tensor eigenvalues and eigenvectors.

Via the pull-back of the embedding metric we recover the metric onto the manifold. In

case of Euclidean (identity) metric for the ambient space we have

G(x) = I+ 1

σ4 (x− x̄)(x− x̄)T k(x, x̄)2. (3.27)

See Appendix B.2.1 for derivation details. From Equation (3.27) we note that the metric tensor

is composed by two terms: an identity term, independent from the location of the deformation

source, and a term active only in the neighborhood of the deformation where k(x, x̄)2 ≈ 1.

This second term is given by the outer product of the distance vector between the current

location and the source of the deformation. Outer product matrices are rank deficient with

the eigenvector related to the only non-zero eigenvalues, λ1 = ∥x− x̄∥2, directed as x− x̄.

Consider a 2D space locally deformed in x̄. Figure 3.4 shows the eigenvalues and the

eigenvectors of the second term in the sum of Equation (3.27). Recall that the metric tensor

is used to measure lengths. In the direction of the deformation source, the space elongates

of an amount proportional to ∥x− x̄∥2k(x, x̄)2. In the direction perpendicular to the defor-

mation source, as expected, the space does not elongate; indeed, λ2 = 0. The space is only

stretched in the direction of the deformation source. This stretch reaches its maximum in

the neighborhood of the source to than decrease gradually towards zero at x̄ where the space

goes back to be flat, Figure 3.3d. This explains clearly how obstacle avoidance is achieved

for a gradient system as in Equation (3.17). The projection of the gradient system’s velocity

onto the inverse of the metric tensor decreases the velocity’s component in the direction of

the obstacle, located at the source of deformation, of an amount inversely proportional to

the entity of space stretching. Figure 3.3c shows the ellipsoids generated by the inverse of

the metric tensor. The velocity component perpendicular to the source of the deformation

remains unchanged. This turns into an overall behavior of the gradient system that increases

its velocity in the direction tangential to the obstacle. Note that, if the velocity of the gradient

system, v, points exactly towards the source of deformation, v ∥ x− x̄, the streamline will not

be deflected at all. In such a case vT (x− x̄)⊥ = 0.

3.6.3 Local Space Deformation In Second Order DS

Second-order systems’ behavior is affected by the Christoffel symbols. This term depends

on the derivative of the metric tensor. As done for the differential of ψ, we can calculate the
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(a) (b) (c) (d)

Figure 3.5: (a)-(c) Geodesic motion at time instants: 1s, 5s and 10s; (d) 3D embedded represen-
tation of case (c). In background the color gradient represents the d+1 embedding coordinate.

differential of the metric tensor

dG(x)[v] =
(
(vx̃T + x̃vT )k(x̃)− 1

σ2 x̃x̃T (x̃T v)

)
k(x̃), (3.28)

where x̃ = x− x̄. Consider a geodesic motion. The Christoffel symbol generates a deceleration

perpendicular to the source of deformation.

This, when approaching the source of deformation, deflects the streamlines avoiding

the high curvature region. Nevertheless, if the streamline transits too close to the source of

deformation, the geodesic gets captured by the high curvature region. Figures 3.5a to 3.5c show

different frame of such geodesic motion. This is clear by analyzing the Christoffel symbols’

principal components shown in Figure 3.6b. This components are perpendicular to the inverse

metric ones, Figure 3.6a, and they generate an inward acceleration towards the obstacle that

"captures" the geodesic motion leading the streamline to climb up and down the source of

deformation as illustrated in Figure 3.6a.

When adopting second-order DS, the harmonic part conflicts with the Christoffel symbol,

generating a stagnation of the DS right after the obstacle, Figure 3.7a. To alleviate this issue, as

seen in Section 3.6.1, it is possible to define a velocity-dependent local deformation, Equa-

(a) (b)

Figure 3.6: Geodesic motion after 1s with ellipses representing eigenvalues and eigenvectors
of (a) the inverse of the metric and (b) the Christoffel symbols for selected locations.
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(a) (b)

Figure 3.7: Second-order DS convex obstacle avoidance: (a) velocity independent local defor-
mation; (b) velocity dependent deformation.

tion (3.24). This makes the curvature of the space "dynamic", so that it disappears when the

obstacle is surpassed. In this scenario, the effect of the Christoffel symbols, due to the local

deformation, is canceled; the second-order DS behaves like a standard Euclidean harmonic

oscillator, successfully reaching the attractor, Figure 3.7b. As a byproduct of this strategy,

we obtained a more effective obstacle avoidance behavior. The DS shows an asymmetrical

behavior before and after the obstacle, following the most efficient trajectory to reach the

attractor once surpassed the obstacle.

Concave obstacle avoidance represents a more challenging scenario where both first

and second order DSs will stagnates in the middle of obstacle due to conflicting forces, Fig-

ure 3.8a. Nevertheless, as seen previously, second-order system geodesics exhibit the ability of

navigating through the space deformation.

Similarly to what seen before, Figure 3.8b shows the geodesic motion in face of concave

obstacle. When approaching the obstacle, the geodesic motion exhibits the ability of success-

fully avoid the deformed area. To perform concave obstacle avoidance, we propose an hybrid

DS capable of leveraging on either geodesic or harmonic motion depending on the need

ẍ =−Ξẋ−σ(
ψ̄(x, ẋ)

)
G−1(Kx+Dẋ), (3.29)

(a) (b) (c) (d)

Figure 3.8: Concave obstacle avoidance: (a) harmonic motion; (b) geodesic motion; (c)-(d)
hybrid motion for semicircle and horseshoe obstacles.

75



Chapter 3. Learning Dynamical Systems Encoding Non-Linearity within Space Curvature

(a) (b)

Figure 3.9: (a) 2-joints planar robotic arm performing a straight point-to-point motion of the
end-effector; (b) corresponding trajectories in configuration space starting from different
initial states.

where σ is a generalized sigmoid function, as in Equation (3.25), to smoothly transition be-

tween harmonic and geodesic motion. Figures 3.8c and 3.8d, respectively for semicircle and

horseshoe obstacle shape, show the behavior of the DS in Equation (3.29). The DS in Equa-

tion (3.29) exhibits geodesic behavior near to obstacle, when approaching it, σ
(
ψ̄(x, ẋ)

)≈ 0.

When leaving the obstacle, thanks to the velocity dependency introduced before, the DS

exhibits harmonic behavior, given that σ
(
ψ̄(x, ẋ)

)≈ 1, allowing to reach the attractor without

being "captured" by the local deformation of the space.

3.7 Synthetic Example

To gain intuition on how the proposed method operates, in this Section, we start by analyzing

a synthetic dataset achieved by gathering configuration space non-linear motions of a 2-joints

planar robotic arm.

Consider the 2-joints planar robotic arm in Figure 3.9a whose state is represented by the

vector q = [q1, q2]T . Consider the generic equation of motion for a robotic arm, M(q)q̈+
C(q, q̇)q̇ =−g(q̇)+τ, with M(q), C(q, q̇), g(q̇) and τ being the inertia matrix, the Coriolis matrix,

the gravity forces and input torques, respectively. We notice that classical mechanical systems

are Riemannian geometries with the inertia matrix, M(q), playing the role of the metric tensor,

G(q), and the fictitious (or Coriolis) forces, C(q, q̇), representing the geometric forces derived

by the product of the Christoffel symbols and the velocities, Ξ(x, ẋ). We elicit the non-linear

dynamics of the robot by generating straight motions in the task (end-effector) space using

operation space control, τ=−J(q)T (K(x−x∗)+Dẋ), where J(q) is the Jacobian matrix relating

joint space velocities to task space velocities, x∗ the equilibrium point in task space and K and

D tunable gain matrices. Starting from different initial configurations, q0, we generate in total

7 trajectories, Figure 3.9b, of which 4 are used for training and 3 for testing.

In order to learn the non-linear trajectories shown in Figure 3.9b, we approximate ψ,

in Equation (3.6), with a feed-forward network composed by 2 hidden layers of 32 neurons each
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Figure 3.10: From top to bottom 3D embedded representation of the latent manifold, chart
space representation of the DS field induced by the manifold curvature and metric tensor’s
determinant and ellipsoids for selected locations: (center) before learning; (left) learned
first-order DS; (right) learned second-order DS.

with hyperbolic tangent activation function to guarantee at least C 1 regularity; see Appendix

B.3 for details. The network’s weights are randomly initialized very close to zero. This yields an

almost flat manifold in the embedding space representation, Figure 3.10 central column in

the top, with the metric tensor approaching the identity Euclidean metric. At the bottom of

the central column, this is shown by the determinant of G, the color gradient in background,

and the ellipses representing the principal direction of the metric tensor. The determinant

of the metric gives an absolute value of the local deformation of the space. In this case, the

determinant of G is constant and almost equal to 1 everywhere. The ellipses generated by the

eigen-decomposition of the metric tensor are shown for a selected location. They provide an

idea of the direction of the deformation.

For the Euclidean metric generated by the almost flat space condition, such ellipses ap-

proach the shape of a circle. For the first order DS learning, we start from a spherical stiffness

matrix. For the second order DS, we additionally set the damping matrix to yield an initial

critically damped behavior in flat space, D = 2(KM)1/2. These conditions, for both DSs, results

in a linear vector field, in the chart space representation, where the sampled streamlines are

straight lines towards the attractor, in the middle of the central column in Figure 3.10. Note

that, for the second-order DS, the vector field is obtained by integrating one step forward Equa-

tion (3.4), considering an initial velocity of zero. During the training process, the stiffness and

the damping matrices can be spherical, diagonal or Symmetric Positive Definite (SPD), as well

as fixed and therefore not considered as an optimization variable. The stiffness and dissipation

matrices, together with the curvature of the manifold, contribute to the non-linearity of the

learned DS.
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(a) (b)

Figure 3.11: Learned potential function with stiffness and dissipation matrices principal
direction ellipsoids for (a) first-order and (b) second-order DS.

Figures 3.11a and 3.11b show the isoline of the potential function, after the learning, for the

first and second order DS. In this example, we opted for an SPD matrix for both the stiffness

and the damping matrices. Observe that in both cases, first and second order DS, the learnt

stiffness matrix "aligns" itself orthogonally to the direction of demonstrated trajectories in

the neighborhoods of the attractor. Therefore, part of the contribution to the non-linearity of

the streamlines is outsourced to the potential function gradient. The remaining non-linearity

needed for learning the demonstrated DS is taken over by the curvature of the space.

The top row of Figure 3.10 shows the embedded representation of the learnt manifold for

the first (left column) and second (right column) order DS. In the bottomr line, the behavior

of the determinant of the metric for both DSs. In the case of the first-order DS, the curvature

of the space gives rise to an energetic barrier at the onset of the trajectory, guiding the flow

downward. In the lower-right region of the space, it steers the streamlines towards the attractor.

This phenomenon is further elucidated by examining the principal directions indicated by

the ellipses of the metric tensor. The ellipses experience a compression perpendicular to the

direction of maximal deformation. As a consequence, this leads to a projection of DS velocities

tangentially to the deformation of the space, resulting in the desired non-linearity. In the case

of the second-order DS shown at the bottom, we encounter a similar scenario, but this time

with a more pronounced energetic barrier in the lower region of the space. This barrier, via

the Christoffel symbols, induces directional deceleration, effectively guiding the streamlines

towards the attractor.

The resulting chart space representation of the vector field along with 3 sampled testing

trajectories is shown in the central row. The underlying deformation of the space induces an

apparent non-linearity in the chart space representation of both DSs. The streamlines curve,

adapting to the shape of the demonstrated trajectory for the first-order DS. Differently, in the

second-order DS, the sampled streamlines do not evolve accordingly to the background vector

field. Indeed, for the second-order DS, the background vector field assumes in each point zero

initial velocity.

Consider the first order DS. Figure 3.12a shows how the principal directions of the inverse

metric tensor vary along the one sampled trajectory due to deformation of the space. In the
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(a) (b)

Figure 3.12: Evolution of (a) inverse metric and (b) Christoffel symbols principal directions
along one sampled streamline.

first part of the trajectory the ellipses are considerably elongated in q1. By projecting the DS

current velocity onto the inverse metric principal axis, see Equation (3.17), the velocity of

the DS increases in the direction of q1, generating the non-linear behavior depicted. Similar

consideration, Figure 3.12b, can be done for the second-order DS by analyzing the Christoffel

symbols (solid line) and metric tensor inverse (dashed line) ellipses.

Notice that the DS is linear on the manifold and follows a mass-spring-damper system as

in Equation (3.5). The curvature of the manifold makes the DS appear non-linear in the chart

(Euclidean) space representation of the manifold.

3.7.1 Locally Active Space Deformation

Despite global stability guarantees, when using global function approximator such as neural

networks, the behavior far away from demonstrations is not predictable. Figure 3.13a shows

the contour of the d+1 embedding component, approximated by a neural network, that

directly influences the curvature of the manifold. Close to the demonstrated trajectories,

the function approximator ensures that the manifold’s curvature would yield the desired DS

(a) (b) (c) (d) (e)

Figure 3.13: (a) Gradient of the d+1 embedding component; (b) gradient of the d+1 embedding
component with bump function; (c) one sampled trajectory with initial position far away from
the demonstrated trajectories; (d) one sampled trajectory with initial position far away from
the demonstrated trajectories with bump function; (e) metric determinant with eigenvalue
decomposition ellipses of the metric from selected location.
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non-linearity. Away from the demonstrated trajectories, the local curvature of the manifold

produces a DS behavior that can be sub-optimal or even undesired, see Figure 3.13c.

To alleviate this problem, we propose to flatten the space far away from the demonstrations.

This is operation is performed at query time and it does not influence the training process.

In this case, by flattening the space away from the demonstrations, the DS will exhibit global

linear behavior except for the regions where training points are available. The nominal

behavior far away from the demonstration is not limited to be linear. By choosing different

types of nominal curvature, the DS will exhibit different behaviors.

To enforce flat space behavior in those areas where training data is not available, we deploy

a distance dependent bump function. Let X denoting the training set. We define

ψbumped(x;w) =α(x)ψ(x;w), (3.30)

where α(x) is a bump function defined as

α(x) =


1
e exp

(
− r 2

r 2−dist(x,X )2

)
, dist(x,X ) ≤ r

0, otherwise.
(3.31)

dist(x,X ) is the distance between x and its nearest neighborhood xi ∈X 4. r is a user-defined

parameter that regulates how far from the demonstrated trajectories the manifold should start

to have nominal zero curvature.

Figure 3.13b shows the third embedding component behavior when pre-multiplied by the

bumped function. The manifold region in the neighborhood of the demonstration preserves its

original curvature given by the learning procedure. Away from the demonstration the manifold

becomes increasingly flat. This type of manifold structure yields a linear behavior away from

the demonstrations that smoothly transitions towards nonlinear behavior when approaching

the area of the demonstrated trajectories, see Figure 3.13d. By analyzing the determinant of

the metric tensor, Figure 3.13e, we can clearly notice how this type of embedding structure

affects the curvature only in localized portion of the space. The ellipses of the metric tensor

away from the demonstrated trajectories converge to circles; constant and equal eigenvalues

of value 1. Close to the demonstrations the ellipses deform, yielding the correct geometric

accelerations to follow the demonstrated trajectories.

4In oder to increase regularity of the ψbumped(x;w), dist(x,X ) can be computed as the average distance be-
tween x and its K nearest neighborhoods. This is still computationally cheap by adopting modern efficient
implementation of KNN. Distribution based bump function may represent an alternative way to KNN. In this case
the distribution can be learned offline (for instance via GMM) yielding almost zero cost at query time. In addition
joint position-velocity distribution could be learned to enforce flat-space behavior away from the demonstrated
velocities.
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(a) (b) (c)

Figure 3.14: Second-order DS (a) without, (b)-(c) with (λ= 10 and λ= 20) directional dissipa-
tion.

3.7.2 Directional & Exponential Dissipation

Second-order DSs offer a richer and more versatile way to articulate high-level policies com-

pared to first-order DS. However, their application in LfD is uncommon. Primarily, user

demonstrations tend to emphasize position over velocity. For instance, during a kinaes-

thetic demonstration with a robot—manually guiding the robot’s end-effector along a desired

path—focus is primarily on the sequence of positions rather than the end-effector’s velocity.

Consequently, this oversight can result in unintended behaviors near the demonstrated posi-

tions, especially when the state velocity differs from the demonstrated one. In this section, we

present two potential strategies aimed at mitigating this issue when deploying second-order

DSs.

Figure 3.14a shows the streamline sampled from the initial position of one of the testing

trajectories. In this case the initial velocity is not equal to zero, differently from what we had

during the training. As it is possible to see in this scenario, the sampled streamline does

not follow at all the demonstrations taking an alternative path to reach the attractor. When

controlling, for instance, on real robot’s end-effector, we cannot ensure the current velocity of

the end-effector will always lie to the demonstrated ones for each specific position, especially

when the controlled system has to answer to compliance requisite in the interaction with

humans. In order to make second-order DS reliable in this type of scenario and alleviate

undesired behaviors whenever we have initial velocities far away from the demonstrated ones,

we propose to add, without loss of stability, an additional directional dissipation

ẍ =−G−1(x;w) (K(x−x∗)+Dẋ)−Ξ(x, ẋ;w)ẋ

−λdir(
ẋ

∥ẋ∥ − ẋ∗
∥ẋ∗∥ ). (3.32)

ẋ∗ is a first-order reference DS, providing the desired velocity field nominal behavior. When-

ever first-order DS following the demonstrated trajectories is available we can take advantage

of it to steer our second-order DS within the demonstrated velocities. Figures 3.14b and 3.14c

show the resulting streamline for increasing values of λdir.

Another issue encountered in adopting second-order DS is the undesired under-damped
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(a) (b) (c) (d) (e) (f)

Figure 3.15: Vector field and metric determinant for (a)-(d) first-order DS with classic method;
(b)-(e) first-order DS with direct deformation method; (c)-(f) second-order DS with direct
deformation method.

behavior. If for classical harmonic damped oscillator we can easily set the damping term so to

have a critically-damped behavior, this is not possible for oscillators on manifolds whereas

the Christoffel symbols acts as a non-linear damping term not under our control. This leads

to trajectory overshoot in the attractor area. In order to alleviate this problem, an additional

dissipative force can be considered

ẍ =−G−1(x;w) (K(x−x∗)+Dẋ)−Ξ(x, ẋ;w)ẋ

−λexp exp
(−τ∥x−x∗∥2). (3.33)

This new dissipative force acts only locally and it grows exponentially approaching the attrac-

tor. This term effectively arrest the DS streamline at the attractor removing the problem of

overshooting.

3.7.3 Obstacle Avoidance Online Direct Deformation

We now show how the learned DS can adapt to the presence of obstacles. As analyzed in Sec-

tion 3.6.1 we have two ways of performing obstacle avoidance leveraging on the geometrical

structure of the space.

The first method, as in Beik-Mohammadi et al. (2021), consists in designing a specific

metric that acts in the ambient space. All the geometric terms are then derived as shown

in Section 3.5 with H = Ĥ ̸= I. We will refer to this approach as classical method.

In our framework, we have the additional and more intuitive option of directly deforming

the space by altering locally the embedding map post-training, ψ̂(x;w̄) =ψ(x;w̄)+ ψ̄(x). We

will refer to our approach as direct deformation method.

For the classical method we opt, as barrier function, for the Gaussian kernels given by

k(ȳ,y) = exp

(
−∥ȳ−y∥2

2σ2

)
, with kernel width σ. ȳ =Ψ(x̄) is the obstacle position in the ambient

space. The ambient metric is then constructed as in Equation (3.20).

For the direct deformation of the space the same Gaussian kernel acting in the chart space
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(a) (b)

Figure 3.16: Embedding space visualization of the local deformation due to the obstacle
presence for (a) first-order DS and (b) second-order DS.

k(x̄,x) can be used, with no need to query the ambient space location of the obstacle. The

embedding is then altered as in Equation (3.22).

σ is a user-defined parameter regulating the speed of the decay of the local deforma-

tion. One straightforward way of setting this parameter is imposing the desired decay at

the border of the obstacle. For instance σ =
√
−1

2
r 2

logϵ , where r is the local radius of the

obstacle and ϵ is value of the kernel at r ; typically ϵ ≤ 1e-3. Barrier functions of the type

k(ȳ,y) = exp
(

a
b(∥ȳ−y∥−r )b

)
can be used as well. a and b are user-defined parameters that reg-

ulate the entity of the local deformation of the space and r is the radius of the obstacle as

before.

The training process is carried out using H = I and ψ̂(x;w̄) =ψ(x;w̄). The ambient metric,

for the classical method, and the embedding map, for the direct deformation method, will be

locally modified at test time to take into account the presence of obstacles.

Figure 3.15a shows, for the first order DS, the resulting vector field and test sampled

trajectories, adopting the classical method for performing obstacle avoidance. In this scenario,

it is possible to notice how the streamline do not avoid the obstacle properly. Moreover, by

looking at Figure 3.15d, we can notice how the space has been deformed in a asymmetric way.

Despite the isotropic kernel used, the local deformation of the space spans a tilted elliptic area.

This is due to the presence of prior curvature in the embedded space given by the learnt DS.

Whenever considerable curvature is present in the manifold, the lack of the coupling term,

see Equation (3.23), can lead to undesired behavior in the neighborhood of the obstacle.

By considering the obstacle as a direct local deformation of the manifold, we recover the

expected behavior of the vector field in the neighborhood of the obstacle, Figure 3.15b. The

metric determinant, Figure 3.15e, displays space deformation consonant with the isotropic

kernel used. The same happens for a second-order DS, Figures 3.15c and 3.15f. Differently

from the first-order DS, as already observed already in Section 3.6.3, we notice how the

streamlines detach more quickly from the obstacle showing asymmetric behavior before and

after the local deformation.
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(a) (b) (c) (d) (e) (f)

Figure 3.17: Evaluation: (top) Motion frames of 2-joints planar robotic manipulator; (bottom)
sampled DSs in configuration space, corresponding to the above depicted robotic motion.

In this case, we can directly visualize how the presence of the obstacle affects the manifold’s

curvature, Figures 3.16a and 3.16b. The manifold structure is not re-learnt and it remains glob-

ally consistent with the embedded representation shown in Figure 3.10. The obstacle affects

the geometry only locally allowing the streamlines to follow the demonstrated trajectories

away from the obstacle.

3.7.4 Evaluation

To evaluate the performance of the learned DS we employ three metrics: 1) Root Mean Square

Error, RMSE =
√

1
M

∑M
i=1

∥∥ẋref
i − ẋDS

i

∥∥2
, 2) Cosine Similarity, CS = 1

M

∑M
i=1

∣∣∣∣1− 〈ẋref
i ,ẋDS

i 〉
∥ẋref

i ∥∥ẋDS
i ∥

∣∣∣∣, and 3)

Dynamic Time Warping Distance, DTWD. (1) and (2) are point-wise metrics that measure the

similarity between two vector fields; in the first case, magnitude and direction are considered

while, in the second case, only direction influences the score.

For the first order system we have ẋDS
i = f

(
xref

i

)
. To compare first and second order systems

with metric (1) and (2), for the second order system, we sample one step forward from the

learned DS with initial condition given by
(
xref

i , ẋref
i

)
. Using the same sampling frequency, h, of

the testing trajectories we have

ẋDS
i+1 = ẋref

i + 1

h
f
(
xref

i , ẋref
i

)
for i = 1, . . . , N −1, (3.34)

where N the number of sampled points per testing trajectory.

(3) measures the dissimilarity between the shape of a reference trajectory and its corre-

sponding reproduction from the same initial points (and velocity for second order systems).

In this case, for each testing trajectory, we sample a streamline starting from initial condition

xref
1 , for the first order DS, and

(
xref

1 , ẋref
1

)
, for the second order DS, with sampling frequency h.

The sampling frequency is coincident with the one used to sample the testing trajectories.
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3.7 Synthetic Example

RMSE [rad/s] CS [rad] DTWD [rad2]

Demonstration Baseline 1st - DS 2nd - DS Baseline 1st - DS 2nd - DS Baseline 1st - DS 2nd - DS
(a) 1.35±0.66 0.40±0.20 0.02±0.00 0.04±0.03 0.01±0.00 0.01±0.00 1.04±0.89 0.20±0.16 0.15±0.06
(b) 6.81±3.10 0.30±0.07 0.02±0.00 0.37±0.25 0.01±0.00 0.01±0.00 2.57±1.10 0.28±0.07 0.70±0.24
(c) > 10.00 1.31±0.13 0.04±0.01 0.49±0.44 0.01±0.00 0.00±0.00 > 10.00 1.59±0.31 1.19±0.26
(d) > 10.00 1.25±0.07 0.05±0.01 0.71±0.31 0.02±0.00 0.00±0.00 > 10.00 3.15±0.57 2.33±0.18
(e) 4.17±2.79 0.72±0.11 0.02±0.00 0.03±0.01 0.00±0.00 0.00±0.00 1.21±0.48 0.26±0.11 0.31±0.10
(f) > 10.00 0.88±0.11 0.03±0.00 0.49±0.33 0.01±0.0 0.00±0.00 7.45±5.28 5.17±5.65 1.04±0.45

Table 3.1: Evaluation results: for each sampled DS in Figure 3.17 we evaluate 1st and 2nd order
learning DS against the Baseline with respect to the three metrics RMSE, Cosine Similarity
Kernel in velocity space, DTWD.

We compare our approach against the learning dynamical systems via diffeomorphism

in Rana et al. (2020). We refer to this approach as Euclideanizing Flows (EF)5. This approach

adopts an NVP transformation structure, Dinh et al. (2017), where the diffeomorphism is

achieved by a sequence of the so-called coupling layers. Each coupling layers is composed

by operations of scaling and translation approximated by weighted sum of Random Fourier

Features (RFF), Rahimi and Recht (2007b), kernels.

In each scenario, we conduct Adam optimization until convergence with a dynamic

learning rate starting from a value of 0.01. We use a single NVIDIA GeForce 3090-24GB GPU

for the experiments. Each trajectory is constituted by triplets {xi , ẋi , ẍi }i=1,...,T with T = 1000.

Figure 3.17 the different DSs on which we conducted our evaluation. For each DS we

performed 5 training repetitions, each time randomizing training and testing trajectories.

Table 3.1 reports the comparison of our approach for first and second order DS against the

baseline. Our method for the first-order DS achieves on average better performance than the

baseline. For the second-order DS, our approach outperforms by a considerable margin the

baseline and the first-order DS in RMSE.

Table 3.2 reports, over 2000 iterations, the training loss and time for each of the tested

approaches. Due to the simplicity of our architecture, our method can be up to 5 times faster

than the baseline for the first-order DS. Despite the increased complexity of the learning

problem with respect to the first-order case, our method still manages to be up to two times

faster at training time with respect to the baseline.

5Efficient PyTorch implementation of EF available at: https://github.com/nash169/learn-diffeomorphism

Baseline First DS Second DS
Loss 6.8e-4±9.6e-4 8.7e-5±2.2e-5 1.1e-3±8.5e-4
Time/Epoch 0.017±8.7e-5 0.003±1.9e-4 0.011±1.2e-4
Train Epochs 4404.3±1744.9 4168.3±797.3 13257.0±2280.3

Table 3.2: Training results.
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(a) (b)

Figure 3.18: Learning three dimensional Dynamical Systems for Robotic Arm Control.

3.8 Robotics Experiments

We evaluate our method on learning 3D robotic end-effector motions in real-world settings6.

The robotic platform used consists of the 7-DOF Franka Emila, Figure 3.18b. We gather

7 samples of the desired task space behavior by manually driving the robot’s end-effector.

4 trajectories are selected for training; the remaining trajectories are used as testing set.

Figure 3.18a shows, qualitatively, the 3D learnt DS. The red dots represent the the sampled

observations from the demonstrated trajectories converging towards the attractor represented

by the yellow star. The blue trajectories represents the streamlines obtained by sampling, till

convergence, from the learnt 3D DS starting from two different initial locations.

The equations of motion for an articulated robot system can be described as

M(q)q̈+h(q, q̇) =τc +τe (3.35)

where M(q) is the inertia matrix, h(q, q̇) is the sum of gravitational, centrifugal and Coriolis

forces. τc and τe are the vector of controlled and external joint torques, respectively.

Robustness to spatial and temporal perturbation as well as compliancy in the event of

human interactions are the desired features of our control strategy. In this work, we test three

different torque-based control strategies. Figure 3.19a illustrates the generic control strategy

where robot configuration space state is fed directly to the controller module while task space

information are pre-processed by the learned DS before going inside the controller. Depending

on the DS order we have different control strategies illustrated in details in Figure 3.19b. The

left block shows the two DS tested. Both the first-order and second-order DSs are split in two

submodules, one operating in R3 and the other one in SO(3), respectively used to control

end-effector’s position and orientation. The DS operating in R3 is learned based on the

demonstrated trajectory. The DS operating in SO(3) generates a linear DS (critically damped

for the second-order space) with the velocities taking place in the Lie Algebra so3, Solà et al.

(2021).

6Code to reproduce simulation and real-robot results available at: https://github.com/nash169/
demo-learn-embedding
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Figure 3.19: Control Structure.

Passive Interaction Control. Model-free control strategy that naturally adapts DS-based

control, Kronander and Billard (2016). It is constitute by a feedback controller with solely the

damping term

τc = JT D(ẋ− f(x))+ g (q). (3.36)

f(x) is the target velocity generated by the first-order DS, top-left in Figure 3.19b.

Model-Free Quadratic Programming Control. In model-free QP control we first find the

desired joint velocities as a solution of the optimization problem

min
q̇,ξ

1

2
q̇T Qq̇+ξT Wξ

s.t. Jq̇ = f(x)+ξ
q− ≤ qt−1 +dtq̇ ≤ q+, q̇− ≤ q̇ ≤ q̇+. (3.37)

The target task space velocity generate by the first-order DS is imposed as relaxed inverse

kinematics constraint in the optimization problem. After prior integration of the desired joint

velocities, a feedback controller composed by a proportional and a derivative terms generates

the control torques

τc =−K
(
q−q∗)−Dq+ g (q). (3.38)

Model-Based Quadratic Programming Control. This control strategy is suited when

adopting our learned second-order DS. In this case the control torques are generated as

solution of the optimization problem

min
q̈,τ,ξ

1

2
q̈T Qq̈+τT Rτ+ξT Wξ

s.t. M(q)q̈ = h(q, q̇)+τ+ξ, Jq̈ = f(x, ẋ)+ξ, q− ≤ qt−1 +dtq̇t−1 + 1/2dt2q̈ ≤ q+

q̇− ≤ q̇t−1 +dtq̈ ≤ q̇+

q̈−,τ− ≤ q̈,τ≤ q̈+,τ+. (3.39)
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1st Order DS 2n Order DS

Metric Operation Space QP Inverse Kinematics QP Inverse Dynamics

DTWD > 5.00 2.46±0.09 2.06±0.27
Frequency [Hz] ≈ 1300 ≈ 1300 ≈ 500

Table 3.3: Experimental results.

In this case we impose track the desired acceleration generated by our second-order DS by

imposing a relaxed inverse dynamics constraint in the quadratic optimization problem. The

control torques are

τc =τ∗, (3.40)

where τ∗ is extracted from the solution of the optimization problem in Equation (3.39).

3.8.1 Trajectory Tracking Evaluation

In the case of first-order DS-based control, we deploy a standard proportional controller to

generate an Euclidean space linear first-order DS that drives the end-effector to the starting

point of each testing trajectory. Afterwards, we switch to the learned first-order DS to perform

the desired motion.

When adopting second-order DS-based control, a critically damped proportional and

derivative feedback is used to generate a standard Euclidean space linear second-order DS

that drives the end-effector to the starting point of each testing trajectory. Afterwards, we

switch to the learned second-order DS to perform the desired motion.

Table 3.3 reports the simulation7 results. Operation Space control yields considerably

worse performance in terms of DTW but achieves much higher control frequency making it

suitable for application where reactivity is major concern rather than precision. The combina-

tion of model-based QP and second-order DS demonstrates the best DTW. This comes at the

cost of a reduced control frequency. Nevertheless the response time of such control makes it

suitable for a large variety of high frequency applications.

3.9 Conclusion

In this study, we presented an approach for learning non-linear DS grounded in a purely geo-

metrical framework. Our approach involves defining a harmonic damped oscillator on a latent

manifold. The inherent non-linearity of the DS is intrinsically captured by the curvature of this

manifold so that the chart space representation of the DS’s vector field accurately replicates

target trajectories. Our method ensures global asymptotic stability, which is maintained irre-

spective of the manifold’s curvature. Additionally, our method’s explicit embedded manifold’s

7beautiful-bullet simulator available at: https://github.com/nash169/beautiful-bullet
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3.9 Conclusion

representation grants direct control over the curvature of the space. This feature is particularly

advantageous in integrating the learning of non-linear DS with scenarios involving obstacle

avoidance. Our approach is characterized by relatively minimal constraints. Specifically, the

function approximator is required to learn a multi-scalar function from Rd to R, maintaining

only C 1-regularity. This constraint significantly reduces computational demands during both

the training and query phases.

In conventional robotic motion generation, the process typically involves initially planning

trajectories at a kinematic level, followed by the development of controllers for accurate

trajectory tracking. Our approach aims at reincorporating dynamics information within LfD

framework by integrating two elements: (1) the utilization of high-level policies represented

as more expressive second-order DSs, and (2) the application of model-based QP control for

efficient one-step inverse dynamics.

Limitations & Future Developments. We demonstrated the application of learned DS.

We believe that our approach can be adapted for joint space learning without violating joint

limits. This involves initially learning a DS in high-dimensional joint space, followed by the

application of local deformations to create energetic barriers, ensuring the robot remains

within joint limits. In order to learn the embedding, we adopted a simple feed-forward net-

work. Nevertheless, the use of controlled-smoothness kernels like the Matern kernel, coupled

with probabilistic embedding, enhances noise robustness. Specifically, Gaussian Process

Regression models can improve precision and query time, making our approach viable for

online and adaptive learning. It is important to note that not every d-dimensional manifold

can be isometrically embedded in a d +1 dimensional Euclidean space. This limitation con-

strains the extent of non-linearity that can be effectively learned. A potential avenue for future

research involves exploring embedding strategies for the manifold in a d +n dimensional

Euclidean space. However, this approach would necessitate the use of n function approxi-

mators, potentially leading to a decrease in model interpretability. Currently, our methods

cannot handle vector fields with limit-cycles or non-zero curl components. To address the

first limitation, one could consider embedding compact Riemannian manifolds into higher-

dimensional Euclidean spaces. For the second limitation, involving the manifold topology and

the generation of non-zero curl vector fields, extending the theory to include the embedding

of pseudo-Riemannian manifolds into higher-dimensional Minkowski spaces may offer a

solution.
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4 Implicit Manifold Gaussian Process
Regression

4.1 Foreword

The work presented in this chapter has been published and presented in Fichera, B., Borovit-

skiy, V., Krause, A., and Billard, A. (2023). Implicit Manifold Gaussian Process Regression. In

Advances in Neural Information Processing Systems 37th (NeurIPS 2023). The author of this

thesis expresses gratitude to Viacheslav Borovitskiy for his invaluable assistance and support

throughout the development of this project. His inputs were essential to its completion. Addi-

tionally, special thanks are owed for his contributions in Appendix C.1, which greatly enriched

this work.

4.2 Introduction

Gaussian processes are among the most adopted models for learning unknown functions

within the Bayesian framework. Their data efficiency and aptitude for uncertainty quantifica-

tion make them appealing for modeling and decision-making applications in the fields like

robotics Deisenroth and Rasmussen (2011), geostatistics Chilès and Delfiner (2012), numerics

Hennig et al. (2015), etc.

The most widely used Gaussian process models, like squared exponential and Matérn Ras-

mussen and Williams (2006), impose the simple assumption of differentiability of the unknown

function while also respecting the geometry of Rd by virtue of being stationary or isotropic.

Such simple assumptions make uncertainty estimates reliable, albeit too conservative at times.

The same simplicity makes these models struggle from the curse of dimensionality. We hypoth-

esize that it is still possible to leverage these simple priors for real world high-dimensional

problems granted that they are adapted to the implicit low-dimensional submanifolds where

the data actually lies, as illustrated by Figure 4.1.

Recent works in machine learning generalized Matérn Gaussian processes for modeling

Code available at https://github.com/nash169/manifold-gp.
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Figure 4.1: Euclidean (standard Matérn-5/2 kernel) vs ours (implicit manifold) Gaussian process
regression for data that lies on a dumbbell-shaped curve (1-dimensional manifold) assumed
unknown. The data contains a small set of labeled points and a large set of unlabeled points.
Our technique recognizes that the two lines in the middle are intrinsically far away from each
other, giving a much better model on and near the manifold. Far away from the manifold it
reverts to the Euclidean model.

functions on non-Euclidean domains such as manifolds or graphs Borovitskiy et al. (2020,

2021, 2023); Azangulov et al. (2024a,b). Crucially, this line of work assumes known geometry

(e.g. a manifold or a graph) beforehand. In this work we aim to widen the applicability of

Gaussian processes for higher dimensional problems by automatically learning the implicit

low-dimensional manifold upon which the data lies, the existence of which is suggested by the

manifold hypothesis. We propose a new model which learns this structure and approximates

the Matérn kernel on the implicit manifold.

Our approach can operate in both supervised and semi-supervised settings, with the

emphasis on the latter: uncovering the implicit manifold may require a lot of samples from it,

however these samples need not be labeled, and unlabeled data is usually more abundant.

Taking inspiration in the manifold learning results of Coifman and Lafon (2006), Dunson

et al. (2021) and others we approximate the unknown manifold by an appropriately weighted

nearest neighbor graph. Then we use graph Matérn kernels thereon as approximations to

the manifold Matérn kernels of Borovitskiy et al. (2020), extending them to the vicinity of the

manifold in the ambient Rd in an appropriate way.

4.2.1 Related Work and Contribution

High-dimensional Gaussian process regression is an area of active research, primarily mo-

tivated by decision making applications like Bayesian optimization. There are three main

directions in this area: (1) selecting a small subset of input dimensions, (2) learning a small

number of new features by linearly projecting the inputs and (3) learning non-linear features.

Our technique belongs to the third direction. Further details on the area can be found in the

recent review by Binois and Wycoff (2022).

The closest relative of our technique in the literature is described in Dunson et al. (2022).

It targets the low-dimensional setting where the inputs are densely sampled on the underlying

surface. It is based on the heat (diffusion) kernels on graphs as in Kondor and Lafferty (2002)

and uses the Nyström method to extend kernels to Rd , both of which may incur a high
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computational cost.

We are targeting the high-dimensional setting. Here, larger datasets of partly labeled points

are often needed to infer geometry. Because of this, we emphasize computational efficiency by

leveraging sparse precision matrix structure of Matérn kernels (as opposed to the heat kernels)

and use KNN for sparsifying the graph and accelerating the Nyström method. This results in

linear computational complexity with respect to the number of data points. Furthermore, the

model we propose is fully differentiable, which may be used to find both kernel and geometry

hyperparameters by maximizing the marginal likelihood. Finally, to get reasonable predictions

on the whole ambient space Rd , we combine the prediction of the geometric model with the

prediction of a classical Euclidean Gaussian process, weighting these by the relative distance

to the manifold.

The geometric model is differentiable with respect to its kernel-, likelihood- and geometry-

related hyperparameters, with gradient evaluation cost being linear with respect to the number

of data points. After training, we can efficiently compute the predictive mean and kernel as

well as sample the predictive model, providing the basic computational primitives needed

for the downstream applications like Bayesian optimization. We evaluate our technique on a

synthetic low-dimensional example and test it in a high-dimensional large dataset setting of

predicting rotation angles of rotated MNIST images, improving over the standard Gaussian

process regression.

4.3 Gaussian Processes

A Gaussian process f ∼ GP(m,k) is a distribution over functions on a set X . It is deter-

mined by the mean function m(x) = E f (x) and the covariance function (kernel) k(x,x′) =
Cov

(
f (x), f (x′)

)
.

Given data X,y, where X = (x1, ..,xn)⊤ and y = (y1, .., yn)⊤ with xi ∈X d , yi ∈R, one usually

assumes yi = f (xi )+εi where εi ∼ N(0,σ2
ε) is IID noise and f ∼ GP(0,k) is some prior Gaussian

process, whose mean is assumed to be zero in order to simplify notation. The posterior

distribution f | y is then another Gaussian process f | y ∼ GP(m̂, k̂) with Rasmussen and

Williams (2006)

m̂(·) = K(·)X
(
KXX +σ2

εI
)−1

y, k̂(·, ·′) = K(·,·′) −K(·)X
(
KXX +σ2

εI
)−1

KX(·′), (4.1)

where the matrix KXX has entries k(xi ,x j ), the vector KX(·) = K⊤
(·)X has components k(xi , ·).

If needed, one can efficiently sample f | y using pathwise conditioning Wilson et al. (2020,

2021)

Matérn Gaussian processes—including the limiting ν→ ∞ case, squared exponential

Gaussian processes—are the most popular family of models for X = Rd . These have zero
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(a) Kernel, sphere S2 (b) Kernel, graph PS2 (c) Sample, sphere S2 (d) Sample, graph PS2

Figure 4.2: Kernel values k(•, ·) and samples for the Matérn-3/2 Gaussian processes on the
sphere manifold S2 and for the approximating Matérn-5/2 process on a geodesic polyhedron
graph PS2.

mean and kernels

kν,κ,σ2 (x,x′) =σ2 21−ν

Γ(ν)

(p
2ν

∥∥x−x′
∥∥

κ

)ν
Kν

(p
2ν

∥∥x−x′
∥∥

κ

)
(4.2)

where Kν is the modified Bessel function of the second kind Gradshteyn and Ryzhik (2014)

and ν,κ,σ2 are the hyperparameters responsible for smoothness, length scale and variance,

respectively. We proceed to describe how Matérn processes can be generalized to inputs x

lying on explicitly given manifolds or graphs instead of the Euclidean space Rd .

4.3.1 Matérn Gaussian Processes on Explicit Manifolds and Graphs

For a domain which is a Riemannian manifold, an obvious and natural idea for generalizing

Matérn Gaussian processes could be to substitute the Euclidean distances
∥∥x −x ′∥∥ in Equa-

tion (4.2) with the geodesic distance. However, this approach results in ill-defined kernels that

fail to be positive semi-definite Feragen et al. (2015b); Gneiting (2013).

Another direction for generalization is based on the stochastic partial differential equa-

tion (SPDE) characterization of Matérn processes first described by Whittle (1963b): f ∼
GP(0,kν,κ,σ2 ) solves (

2ν

κ2 −∆Rd

) ν
2 + d

4

f =W , (4.3)

where ∆Rd is the standard Laplacian operator and W is the Gaussian white noise with variance

proportional to σ2. If taken to be the definition, this characterization can be easily extended to

general Riemannian manifolds X =M by substituting∆Rd with the Laplace–Beltrami operator

∆M , taking d = dimM and substituting W with the appropriate generalization of the Gaussian

white noise Lindgren et al. (2011). Based on this idea, Borovitskiy et al. (2020) showed that

on compact Riemannian manifolds, Matérn Gaussian processes are the zero-mean processes

with kernels

kν,κ,σ2 (x, x ′) = σ2

Cν,κ

∞∑
l=0

(
2ν

κ2 +λl

)−ν−d/2

fl (x) fl (x ′), (4.4)
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where −λl , fl are eigenvalues and eigenfunctions of the Laplace–Beltrami operator and Cν,κ

is the normalizing constant ensuring that 1
X

∫
X kν,κ,σ2 (x, x)dx = σ2. This, alongside with

considerations from Azangulov et al. (2024a) allows one to practically compute kν,κ,σ2 for

many compact manifolds.

If the domain X is a weighted undirected graph G , we can also use Equation (4.3) to define

Matérn Gaussian processes on G Borovitskiy et al. (2021). In this case, ∆Rd is substituted with

the minus graph Laplacian −∆G and W ∼ N(0,σ2
W

I) is the vector of IID Gaussians. Here, SPDE

transforms into a stochastic linear system, whose solution is of the same form as Equation (4.4)

but with a finite sum instead of the infinite series, with d = 0 because there is no canonical

notion of dimension for graphs and with λl , fl being the eigenvalues and eigenvectors—as

functions on the node set—of the matrix ∆G . These processes are illustrated on Figure 4.2.

4.4 Implicit Manifolds and Gaussian Processes on Them

Consider a dataset X = (x1, ..,xN )⊤, xi ∈ Rd partially labeled with labels y1, .., yn ∈ R, n ≤ N .

Assume that xi are IID randomly sampled from a compact Riemannian submanifold M ⊆Rd .

As by Section 4.3.1, the manifold M is associated to a family of Matérn Gaussian processes

tailored to its geometry. We do not assume to know M , only the fact that it exists, hence the

question is: how can we recover the kernels of the aforementioned geometry-aware processes

from the observed dataset?

It is clear from Equation (4.4) that to recover kν,κ,σ2 we need to get the eigenpairs −λl , fl

of the Laplace–Beltrami operator on M . Naturally, for a finite dataset this can only be done

approximately. We proceed to discuss the relevant theory of Laplace–Beltrami eigenpair

approximation.

4.4.1 Background on Approximating the Eigenpairs of the Laplace–Beltrami Oper-
ator

There exists a number of theoretical and empirical results on eigenpair approximation. Vir-

tually all of them study approximating the implicit manifold by some kind of a weighted

undirected graph1 with node set {x1, ..,xN } and weights that are somehow determined by

the Euclidean distances
∥∥xi −x j

∥∥. The eigenvalues of the graph Laplacian on this graph

are supposed to approximate the eigenvalues of the Laplace–Beltrami operator, while the

eigenvectors—regarded as functions on the node set—approximate the values of the eigenfunc-

tions of the Laplace–Beltrami operator at xi ∈M . To approximate eigenfunctions elsewhere,

any sort of continuous (smooth) interpolation suffices.

There are three popular notions of graph Laplacian. Let us denote the adjacency matrix

1Other possibilities include linear (classical PCA) or quadratic Pavutnitskiy et al. (2022) approximations. See the
books by Ma and Fu (2011); Lee and Verleysen (2007) for additional context.
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of the weighted graph by A and define D to be the diagonal degree matrix with Di i =∑
j Ai j .

Then

∆un = D−A
unnormalized

, ∆sym = I−D−1/2AD−1/2

symmetric normalized

, ∆rw = I−D−1A
random walk normalized

. (4.5)

The first two of these are symmetric positive semi-definite matrices, the third is, generally

speaking, non-symmetric. However, from the point of view of linear operators, all of them can

be considered symmetric (self-adjoint) positive semi-definite: the first two with respect to the

standard Euclidean inner product 〈·, ·〉, and the third one with respect to the modified inner

product 〈v,u〉D = 〈Dv,u〉. Thus for each there exists an orthonormal basis of eigenvectors and

eigenvalues are non-negative.2

The most common way to define the graph is by setting Ai j = exp
(−∥xi−x j∥2

/4α2
)

for an

α> 0. If xi are IID samples from the uniform distribution on the manifold M , then all of the

graph Laplacians, each multiplied by an appropriate power of α, converge to the Laplace–

Beltrami operator, both pointwise Hein and Audibert (2007) and spectrally García Trillos

et al. (2020), i.e. in the sense of eigenpair convergence, at least at the node set of the graph.3

However, if the inputs xi are sampled non-uniformly, graph Laplacians, at best, converge to

different continuous limits, none of which coincides with the Laplace–Beltrami operator Hein

and Audibert (2007).

Coifman and Lafon (2006) proposed a clever trick to handle non-uniformly sampled data

x1, ..,xN . Starting with Ã and D̃ defined in the same way as A and D before, they define A =
D̃−1ÃD̃−1. Intuitively, this corresponds to normalizing by the kernel density estimator to cancel

out the unknown density. The corresponding ∆rw then converges pointwise to the Laplace–

Beltrami operator Hein and Audibert (2007), though ∆un and ∆sym do not: they converge

to different continuous limits. (Dunson et al., 2021, Theorem 2) show that, under technical

regularity assumptions, eigenvalues λk and renormalized eigenvectors of ∆rw converge to the

respective eigenvalues and eigenfunctions of the Laplace–Beltrami operator, regardless of the

sampling density of xi .

Both in the simple case and in the sampling density independent case, the graphs and

their respective Laplacians turn out to be dense, requiring a lot of memory to store and

being inefficient to operate with. To make computations efficient, sparse graphs such as

KNN graphs are much more preferable over the dense graphs. Spectral convergence for

KNN graphs is studied, for example, in Calder and Trillos (2022), for Ai j = h
(∥xi−x j∥/α) with a

compactly supported regular function h, and with limit depending on the sampling density.

Unfortunately, we are unaware of any spectral convergence results in the literature that hold

for KNN graphs and are independent of the data sampling density.

2Naturally, for the random walk normalized Laplacian ∆rw the orthonormality is with respect to 〈·, ·〉D.
3citegarcia2020 do not explicitly study ∆sym. Since ∆sym and ∆rw are similar matrices, they share eigenvalues,

so eigenvalue convergence for ∆sym is trivial, the eigenvector convergence, however, is not.
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4.4 Implicit Manifolds and Gaussian Processes on Them

4.4.2 Approximating Matérn Kernels on Manifolds

Here we incorporate various convergence results, including but not limited to the ones de-

scribed in Section 4.4.1, proving that all spectral convergence results imply the convergence of

graph Matérn kernels to the respective manifold Matérn kernels.

Proposition 6. Denote the eigenpairs by λl , fl for a graph Laplacian and by λM
l , f M

l for the

Laplace–Beltrami operator. Fix δ> 0. Assume that, with probability at least 1−δ, for all ε> 0,

forα small enough and for N large enough we have |λl−λM
l | < ε and | fl (xi )− f M

l (xi )| < ε. Then,

with probability at least 1−δ, we have kN ,α,L
ν,κ,σ2 (xi ,x j ) → kν,κ,σ2 (xi ,x j ) as α→ 0, N ,L →∞, where

kN ,α,L
ν,κ,σ2 (xi ,x j ) = σ2

Cν,κ

L−1∑
l=0

(
2ν

κ2 +λl

)−ν−dim(M )/2

fl (xi ) fl (x j ). (4.6)

Proof. First prove that the tail of the series in Equation (4.4) converges uniformly to zero, then

combine this with eigenpair bounds. See details in Appendix C.1.

Remark. The convergence in xi ∈M can be lifted to pointwise convergence for all x ∈M if

eigenvectors are interpolated Lipschitz-continuously, simply because the eigenfunctions are

smooth.

Inspired by this theory, we proceed to present the implicit manifold Gaussian process

model.

4.4.3 Implicit Manifold Gaussian Process

Guided by the theory we described in the previous section we are now ready to formulate the

implicit manifold Gaussian process model. Given the dataset x1, ..,xN ∈Rd and y1, .., yn ∈R,

we put

A = D̃−1ÃD̃−1, Ãi j = SK (xi ,x j )exp

(
−

∥∥xi −x j
∥∥2

4α2

)
, D̃i j =


∑

m Ãi m i = j ,

0 i ̸= j .
(4.7)

Here SK (xi ,x j ) = 1 if xi is one of the K nearest neighbors of x j or vice versa and SK (xi ,x j ) = 0

otherwise; all matrices are of size N ×N and depend on α and K as hyperparameters. Thanks

to the coefficient SK (xi ,x j ) that performs KNN sparsification, the matrix A is sparse when

K ≪ N .4

Then we consider the operator ∆rw = I−D−1A defined by Equation (4.5), whose matrix is

also sparse. Denoting its eigenvalues—ordered from the smallest to the largest—by 0 =λ0 ≤
λ1 ≤ . . . ≤λN−1, and its eigenvectors—orthonormal under the modified inner product 〈·, ·〉D

4Note: Ãi i = 1, as if the graph has loops. Assuming Ãi i = 0 would lead to discontinuities at later stages.
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and regarded as functions on the node set of the graph—by f0, f1, . . . , fN−1, we define Matérn

kernel on graph nodes xi by

kX
ν,κ,σ2 (xi ,x j ) = σ2

Cν,κ

L−1∑
l=0

Φν,κ(λl ) fl (xi ) fl (x j ), Φν,κ(λ) =
(

2ν

κ2 +λ
)−ν

, (4.8)

where L does not need to be equal to the actual number N of eigenpairs. Doing so means

truncating the high frequency eigenvectors ( fl for l large), which always contribute less to the

sum because they correspond to smaller values of Φν,κ(λl ). This can massively reduce the

computational costs.

By Proposition 6, Equation (4.8) approximates the manifold Matérn kernel with smooth-

ness ν′ = ν−dim(M )/2. We adopt such a reparametrization because it does not require

estimating the a priori unknown dim(M ). This, however, makes the typical assumption of

ν ∈ {1/2, 3/2, 5/2} inadequate. We chose a particular graph Laplacian normalization, namely

the random walk normalized graph Laplacian ∆rw, to approximate the true Laplace-Beltrami

operator regardless of the potential non-uniform sampling of x1, ..,xN , based on the theoretical

insights described in Section 4.4.1.

The kernel in Equation (4.8) is only defined on the set of nodes xi , next step is to extend

it to the whole space Rd . Extending kernels is usually a difficult problem because one has to

worry about positive semi-definiteness. To work around it, we extend the features fl . For this,

we use Nyström method: we allow the first argument of SK to be an arbitrary vector from Rd ,

defining SK (x,x j ) = 1 if x j is one of the K nearest neighbors of x among x1, ..,xN . This allows

us to extend Ã, D̃, A and D as

Ã(x,x j ) = SK (x,x j )exp

(
−

∥∥x−x j
∥∥2

4α2

)
, D̃(x) =

N∑
j=1

Ã(x,x j ) = ∑
x j∈KNN(x)

Ã(x,x j ), (4.9)

A(x,x j ) = Ã(x,x j )

D̃(x)D̃(x j )
, D(x) =

N∑
j=1

A(x,x j ) = ∑
x j∈KNN(x)

A(x,x j ), (4.10)

where KNN(x) is the set of the K nearest neighbors from x among x1, ..,xN . With this, we define

fl (x) = 1

1−λl

N∑
j=1

A(x,x j )

D(x)
fl (x j ) = 1

1−λl

∑
x j∈KNN(x)

A(x,x j )

D(x)
fl (x j ). (4.11)

It is easy to check that this extension perfectly reproduces the values fl (x j ), simply because

A(x,x j ) coincides with Ai j when x = xi and because ( fl (x1), .., fl (xN ))⊤ is the eigenvector of A

corresponding to the eigenvalue 1−λl . It also allows us to extend the kernel kX
ν,κ,σ2 as well,

such that kX
ν,κ,σ2 (x,x′) is defined for arbitrary x,x′ ∈ Rd and Equation (4.8) still holds for the

nodes x1, ..,xN . We visualize an extended eigenvector and an extended kernel in Figures 4.3a

and 4.3b.

For x far away from the nodes x j the values of D̃(x) become very small, making the
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(a) Extended eigenvector f3(·) (b) Extended kernel (c) Function γ(dist(·,M ))

Figure 4.3: Different quantities connected to kernel extension. Notice that the values on
subfigures (a) and (b) are artificially restricted to the set dist(·,M ) < 3α to maintain numerical
stability.

extension procedure numerically unstable. Furthermore, the geometric model is generally

not so relevant far away from the manifold. Because of this, the final predictive model f (p) ∼
GP(m(p),k(p)) combines the geometric model f (m) ∼ GP(m(m),k(m))—the posterior under the

kernel kX
ν,κ,σ2 we defined just above—with the standard Euclidean model f (e) ∼ GP(m(e),k(e))—

the posterior under the standard Euclidean Gaussian process in Rd , for instance with the

squared exponential kernel:

f (p)(x) = γ(x) f (m)(x)+ (1−γ(x)) f (e)(x), γ(x) = exp

(
1− (3α)2

(3α)2 −dist(x,M )2

)
, (4.12)

where γ is a bump function that is zero outside the 3α neighborhood of the manifold, illus-

trated in Figure 4.3c. Here dist(x,M ) can be computed as the distance from x to its nearest

neighbor node x j .5

4.5 Efficient Training of the Implicit Manifold Gaussian Processes

Here we describe how to perform the implicit manifold Gaussian process regression efficiently,

being able to handle hundreds of thousands of points, in both supervised and semi-supervised

regimes.

In all cases we need efficient (approximate) KNN to build a graph, extend the kernel

beyond the nodes xi and combine the geometric model with the standard Euclidean one. For

this we use FAISS Johnson et al. (2019). The resulting sparse matrices, such as the Laplacian

∆rw, we represent as black box functions capable of performing matrix-vector multiplications

for any given input vector.

After hyperparameters are found—we will return to their search later—we need to compute

the eigenpairs λl , fl of ∆rw. For this we run Lanczos algorithm Meurant (2006) to evaluate

the eigenpairs λsym
l , fsym

l of the symmetric matrix ∆sym, putting λl =λsym
l and fl = D−1/2fsym

l
because the matrices∆rw and∆sym are similar, i.e. ∆rw = D−1/2∆symD1/2. Importantly, Lanczos

5In practice it makes sense to compute dist(x,M ) as the average of distances between x and its K nearest
neighbors to smoothen the resulting γ(x)—this is computationally cheap given an efficient KNN implementation.
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algorithm only relies on matrix-vector products with ∆sym. We only compute a few hundred of

eigenpairs, asking Lanczos to provide trice as many and disregarding the rest.

When there is a lot of labeled data, we approximate the classical Euclidean (e.g. squared

exponential) kernel using random Fourier features approximation Rahimi and Recht (2007c),

this allows linear computational complexity scaling with respect to the number of data points.

The number of Fourier features is taken to be equal to L, with the same L as in Equation (4.8).

As it was already mentioned, we need to find hyperparameters θ̂ = (
α̂, κ̂, σ̂2, σ̂2

ε

)
that

determine the graph, Gaussian process prior and the noise variance that fit the observations y

best. The ν parameter we assume manually fixed. To avoid nonsensical parameter values—a

common difficulty often occurring when the data is scarce—one might want to assume a

prior p(θ) on θ. Some specific choices of which are discussed in Appendix C.3. Then θ̂ is a

maximum a posteriori (MAP) estimate:

θ̂ = argmaxθ log p(y | θ,X)+ log p(θ). (4.13)

To simplify hyperparameter initialization and align with zero prior mean assumption it makes

sense to preprocess yi to be centered and normalized.

To solve the optimization problem in Equation (4.13) we use restarted gradient descent.

Repeatedly evaluating the gradient of log p(y | θ,X) is the main computational bottleneck. The

key idea for doing this efficiently—viable for integer values of ν—is to reduce matrix-vector

products with Matérn kernels’ precision to iterated matrix-vector products with the Laplacian,

which is sparse. First, we describe this in detail in the noiseless supervised setting, where the

idea is most directly applicable.

4.5.1 Noiseless Supervised Learning

Here we assume that all inputs are labeled, i.e. N = n, and all observations are noiseless, i.e.

σ2
ε = 0.

Denoting by PXX = K−1
XX the precision matrix, the log-likelihood log p(y | θ,X), up to a

multiplicative constant and an additive constant irrelevant for optimization, is given by

L(θ) =− logdet(KXX)−y⊤K−1
XXy = logdet(PXX)−y⊤PXXy. (4.14)

Its gradient may be given and then subsequently approximated Hutchinson (1989) by

∂L(θ)

∂θ
= tr

(
P−1

XX
∂PXX

∂θ

)
−y⊤

∂PXX

∂θ
y ≈ z⊤P−1

XX
∂PXX

∂θ
z−y⊤

∂PXX

∂θ
y, (4.15)

where z is a random vector consisting of IID variables that are either 1 or −1 with probability

1/2. Since the kernels from Section 4.4.3 coincide with graph Matérn kernels on the nodes xi ,
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we have

KXX = σ2

Cν,κ

L−1∑
l=0

Φν,κ(λl )fl f⊤l , ∆rwfl =λl fl , f⊤l Dfm = δlm . (4.16)

However, as the graph bandwidth α is one of the hyperparameters we optimize over, us-

ing Equation (4.16) would entail repeated eigenpair computations and differentiating through

this procedure. Because of this, we use an alternative way to compute matrix-vector products

PXXu detailed below.6

Proposition 7. Assuming ν ∈N, the precision matrix PXX of kX
ν,κ,σ2 (xi ,x j ) can be given by

PXX = σ−2

C−1
ν,κ

D
(2ν

κ2 I+∆rw

)
· . . . ·

(2ν

κ2 I+∆rw

)
ν times

. (4.17)

Proof. See Appendix C.1.

Using Proposition 7 to evaluate matrix-vector products PXXu and conjugate gradients

Meurant (2006) to solve z⊤P−1
XX using only the matrix-vector products, we can efficiently

evaluate the right-hand side of Equation (4.15), with linear costs with respect to N , assuming

that the graph is sparse.

4.5.2 Noiseless Semi-Supervised Learning

Here we assume that inputs are partly unlabeled, i.e. N ̸= n, while observations are still

noiseless, i.e. σ2
ε = 0. Denote Z to be the labeled part of X. Then the matrix KXX in the log-

likelihood given by Equation (4.14) should be substituted with KZZ. However, while PXX can

be represented using Equation (4.17), the precision PZZ = K−1
ZZ cannot. We thus compute it as

the Schur complement:

PZZ = A−BD−1C, PXX =
(

A B

C D

)
, (4.18)

where partitioning of PXX corresponds to partitioning X into Z and the rest. Evaluating a

matrix-vector product PZZu requires a solve of D−1(Cu). This solve can also be performed

using conjugate gradients, keeping the computational complexity linear in N but increasing

the constants.

6Though automatic differentiability could in principle work for iterative methods like the Lanczos algorithm,
the amount of memory required for storing the gradients of the intermediate steps quickly becomes prohibitive.
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4.5.3 Handling Noisy Observations

Finally, we assume noisy observations, i.e. σ2
ε > 0. The inputs can be partially unlabeled, i.e.

N ̸= n.

In this case, matrix KXX in the log-likelihood given by Equation (4.14) should be substituted

with KZZ +σ2
εI. To reduce this to the previously considered cases, we use the Taylor expansion

(KZZ +σ2
εI)−1 ≈ K−1

ZZ −σ2
εK−2

ZZ +σ4
εK−3

ZZ − . . . = PZZ −σ2
εP2

ZZ +σ4
εP3

ZZ − . . . (4.19)

In practice, we only use the first two terms on the right-hand side as an approximation. This

allows to retain linear computational complexity scaling with respect to N but increases the

constants.

4.5.4 Resulting Algorithm

Here we provide a concise summary of the implicit manifold Gaussian process regression

algorithm.

Step 1: KNN-index. Construct the KNN index on the points x1, ..,xN . This allows linear

time evaluation of any matrix-vector product with Ã, and thus also with A, ∆r w , PXX for ν ∈N,

etc.

Step 2: hyperparameter optimization. Find the hyperparameters θ̂ that solve Equa-

tion (4.13). Assuming ν= ν̂ ∈N is manually fixed, this relies only on matrix-vector products

with ∆r w .

Step 3: computing the eigenpairs. Fixing the graph bandwidth α̂ found on Step 2, compute

the eigenpairs λl , fl corresponding to the L smallest eigenvalues λl . For large N , use Lanczos

algorithm.

After the steps above are finished, Equations (4.8) and (4.11) define the geometric kernel

kX
ν̂,κ̂,σ̂2 (x,x′) for arbitrary x,x′ ∈Rd . Then the respective prior GP(0,kX

ν̂,κ̂,σ̂2 ) can be conditioned

by the labeled data in the standard way, yielding the posterior f (m) ∼ GP(m(m),k(m)). To get

sensible predictions far away from the data, the geometric model f (m) is convexly combined

with an independently trained classical Gaussian process model, as given by Equation (4.12).

The resulting predictive model is still a Gaussian process, sum of two appropriately weighted

independent Gaussian processes.

Remark. The number of neighbors K , the number of eigenpairs L and the smoothness ν are

assumed to be manually fixed parameters. Higher values of K and L improve the quality of

approximation of the manifold kernel, which is often linked to better predictive performance,

but requires more computational resources. The parameter ν can be picked using cross

validation or prior knowledge. Small integer values of ν reduce computational costs, but may
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(a) Ground truth (b) Noiseless, prediction (c) Low noise, prediction (d) High noise, prediction

Figure 4.4: The ground truth function on the dumbbell manifold and the predictions of the
implicit manifold Gaussian process regression (IMGP) under different levels of noise.

be inadequate for higher dimensions of the assumed manifold due to the ν′ = ν−dim(M )/2

link with the manifold kernel smoothness ν′.

4.6 Experiments

We start in Section 4.6.1 by examining a simple synthetic example to gain intuition on how

noise-sensitive the technique is. Then in Section 4.6.2 we consider real datasets, showing

improvements in higher dimensions. More experiments, results, and additional discussion

can be found in Appendix C.2

4.6.1 Synthetic Examples

We consider a one dimensional manifold resembling the shape of a dumbbell which already

appeared in Figures 4.1 and 4.3. The unknown function f∗ is defined by fixing a point x∗ in the

top left part of the dumbbell, and computing sin(d(x∗, ·)) where d(·, ·) denotes the geodesic

(intrinsic) distance between a pair of points on the manifold. This function is illustrated

in Figure 4.4a.

To measure performance we primarily rely on measuring negative log-likelihood (NLL) on

the dense mesh of test locations. We do this because such metric is able to combine accuracy

and calibration simultaneously. Additionally, we present the root mean square error (RMSE).

We investigate a semi-supervised setting where the number of unlabeled points is large

(N −n = 1546) and the number of labeled points is small (n = 10). We contaminate the

inputs with noise, putting X = Xnoiseless +N(0,σ2
XI) and do the same with the outputs, putting

y = f∗(X)+N(0,σ2
yI) for various values of σX,σy > 0. Specifically, we consider σX = σy = β ∈

{0,0.01,0.05} to which we refer to as the noiseless setting, the low noise setting and the high

noise setting, respectively.

The results for these are visualized in Figures 4.4b to 4.4d with performance metrics

reported in Table 4.1. The implicit manifold Gaussian process regression is referred to as IMGP

(we use ν= 1) and it is compared with the standard Euclidean Matérn-5/2 Gaussian process.

IMGP performs much better in the noiseless and the low noise settings. The high noise is

enough to damage the calibration of IMGP, as it ties with the baseline model: NLL is slightly
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worse and RMSE is slightly better.

In Appendix C.2.1 we show how performance depends on the fraction n/N of labeled

data points, the truncation level L and we discuss the choice of the K parameter in KNN.

Additionally, in Appendix C.2.2 we consider noise-sensitivity for a 2D manifold.

4.6.2 High Dimensional Datasets

For the high-dimensional setting, we considered predicting rotation angles for MNIST-based

datasets. Additionally, we examined a high-dimensional dataset from the UCI ML Repository,

CT slices.

Setup

Datasets. We consider two MNIST-based datasets. The first one is created by extracting a

single image per digit from the complete MNIST dataset. By randomly rotating these 10

images we obtained N = 10000 training samples and 1000 testing samples. We call it Single

Rotated MNIST (SR-MNIST). For the second dataset, we select 100 random samples from

MNIST. By randomly rotating these, we generate N = 100000 training samples, most will be

unlabeled, and 10000 testing samples. We call it Multiple Rotated MNIST (MR-MNIST). The

last dataset, CT slices, has dimensionality of d = 385, we split it to have N = 24075 training

samples and 24075 testing samples. Dataset names can be complemented by the fraction of

labeled samples, e.g. MR-MNIST-10% refers to n = 10%N .

Methods. We consider implicit manifold Gaussian processes in the supervised regime

(S-IMGP) and in the semi-supervised regime (SS-IMGP). We compare them to the GPyTorch

implementation of the Euclidean Matérn-5/2 Gaussian Process. We refer to it as the Euclidean

Gaussian Process (EGP).

Additional details. We run 100 iterations of hyperparameter optimization using Adam

with a fixed learning rate of 0.01. For MNIST, with use IMGP with ν= 2; for CT slices—with

ν= 3.

RMSE NLL

β= 0 β= 0.01 β= 0.05 β= 0 β= 0.01 β= 0.05

Euclidean Matérn-5/2 0.98 0.99±0.02 1.02±0.03 −2.17 −2.09±0.03 −1.91±0.10
IMGP 0.33 0.34±0.02 1.00±0.02 −5.02 −4.19±0.1 −1.91±1.88

Table 4.1: Performance metrics for the dumbbell manifold with varying magnitude of noise β.
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MNIST CT slices

Method SR - 10% MR - 1% MR - 10% 5% 10% 25%

EGP −0.54±0.01 −0.20±0.01 −0.43±0.01 −0.80±0.02 −0.96±0.00 −1.20±0.09
S-IMGP −1.42±0.01 2.24±0.20 −0.68±0.08 0.47±0.06 −0.59±0.08 −0.08±0.01

SS-IMGP −1.52±0.01 −0.59±0.01 −0.79±0.00 26.1±12.7 1.03±0.09 −0.72±0.68
S-IMGP (full) - - - 0.64±0.83 0.88±0.29 −0.42±0.10

SS-IMGP (full) - - - −2.48±0.08 −2.35±0.04 −1.99±0.04

Table 4.2: Negative log likelihood on test samples for real datasets. For RMSE see Tables C.2
and C.3.

Results

Table 4.2 shows the negative log-likelihood metric for different datasets and methods on

the test set. The respective RMSEs are presented in Appendix C.2.3. On SR-MNIST, IMGP

outperforms EGP in both supervised and semi-supervised scenarios. MR-MNIST is more

challenging. In the supervised setting for n = 1%N , S-IMGP is incapable of inferring the

underlying manifold structure, performing worse than EGP. However, SS-IMGP, with more

data to infer manifold from, performs best. For n = 10%N , IMGP gets a better grip of the

dataset’s geometry, outperforming EGP in both regimes.

For CT slices, regardless of n, both S-IMGP and SS-IMGP performed poorly. Looking for an

explanation, we considered two modifications. First, we fixed the graph bandwidth α̂ found in

the algorithm’s Step 2 (cf. Section 4.5.4), and re-optimized the other hyperparameters κ,σ2,σ2
ε

by maximizing the likelihood of the eigenpair-based model (truncated to L = 2000 eigenpairs)

computed in the algorithm’s Step 3. This resulted in limited improvement but did not change

the big picture—in fact, values for S-IMGP and SS-IMGP in Table 4.2 for CT slices already

include this modification.

Second, on top of this hyperparameter re-optimization, we tried computing the eigenpairs

using torch.linalg.eigh instead of the Lanczos implementation in GPyTorch, taking the same

number L = 2000 of eigenpairs. The resulting methods S-IMGP (full) and SS-IMGP (full)

showed considerable improvement over the baseline, as shown in Table 4.2. This indicated

an issue with the quality of eigenpairs derived from the Lanczos method which requires

further investigation. We discuss this in Appendix C.2.3, together with the aforementioned

hyperparameter re-optimization procedure.

4.7 Conclusion

In this work, we propose the implicit manifold Gaussian process regression technique. It is

able to use unlabeled data to improve predictions and uncertainty calibration by learning the

implicit manifold upon which the data lies, being inspired by the convergence of graph Matérn

Gaussian processes to their manifold counterparts. This helps building better probabilistic
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models in higher dimensional settings where the standard Euclidean Gaussian processes

usually struggle. This is supported by our experiments in a synthetic low-dimensional setting

and for high-dimensional datasets. Leveraging sparse structure of graph Matérn precision

matrices and efficient approximate KNN, the technique is able to scale to large datasets of

hundreds of thousands points, which is especially important in high dimension, where a large

number of unlabeled points is often needed to learn the implicit manifold. The model is fully

differentiable, making it possible to infer hyperparameters in the usual way.

Limitations.The quality of the constructed graph significantly influences the technique’s

performance. When dealing with data from complex manifolds or exhibiting highly non-

uniform density, simplistic KNN strategies might fail to capture the manifold structure due

to their reliance on a single graph bandwidth. In such scenarios, larger values of parameters

K and L, or in high dimensions, of parameter ν, may be beneficial but could substantially

increase computational costs. Furthermore, larger datasets coupled with high parameter

values can lead to numerical stability issues, for instance, in the Lanczos algorithm, calling for

further improvements and research. Despite these challenges, our method shows promise for

advancing probabilistic modeling in higher dimensions.
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5 Conclusion and Future Developments

This chapter offers a comprehensive review of the research undertaken in this thesis, providing

a concise summary of the key contributions made. Following this, we delve into a critical

discussion of the limitations encountered during the research process. This sets the stage for

outlining promising avenues for future exploration and development, thereby contextualizing

the work within the broader scope of ongoing academic inquiry and potential real-world

applications.

5.1 Main Contributions

Initially, we explored the potential of decomposing unlabelled data from multiple-attractor

DS, focusing on identifying the number of underlying dynamics and their associated attrac-

tors. Our approach, grounded in Manifold Learning, provided theoretical guarantees for DS

linearization through the reconstruction of multiple embedding spaces. By introducing a

novel velocity-augmented kernel, we achieved a graph structure that allowed for the clustering

of sub-dynamics and identification of equilibria locations of multiple-attractor DS. Subse-

quently, the use of eigendecomposition of a graph-based Laplacian matrix in combination

with diffeomorphic strategies effectively allows to learn each of the identified sub-dynamics.

Further, we extended our investigation to improving and complexity and adaptability of

single-attractor non-linear learned DS, employing a purely geometrical framework. Here,

we defined a harmonic damped oscillator on a latent manifold, capturing the inherent non-

linearity of the DS through the curvature of this manifold. This approach not only ensured

global asymptotic stability but also provided direct control over the space’s curvature, which

is advantageous in scenarios like obstacle avoidance. Our method’s minimal constraints

and efficient computational demands represent a significant advancement in conventional

robotic motion generation, integrating dynamics information within a LfD framework. This

integration encompasses high-level policies through expressive second-order DSs and model-

based QP control for efficient inverse dynamics.
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Lastly, we proposed the Implicit Manifold Gaussian process Regression technique, for

probabilistic learning on unknown manifolds or higher-dimensional settings. By learning the

implicit manifold on which data lies, our technique enhances predictions and uncertainty

calibration. It capitalizes on the convergence of graph Matérn Gaussian processes to their

manifold counterparts, demonstrating significant scalability to large datasets, a crucial factor

in high-dimensional contexts where a large volume of unlabeled data is often necessary. The

fully differentiable nature of this model allows for conventional hyperparameter inference.

5.2 Limitations & Future Developments

In this thesis, we have presented novel methodologies and algorithms for DS identification

and learning. However, each approach comes with its own set of limitations and avenues for

future development. This section synthesizes these limitations and potential future directions,

providing a cohesive view of the next steps in this field.

A critical limitation in our first study involves the dependency on accurate graph recon-

struction. In cases where the velocity-augmented kernel fails to reconstruct the correct graph,

such as in scenarios with high curvature in sampled trajectories, the performance of our

algorithms for clustering and attractor location identification degrades significantly. Addition-

ally, while our algorithm demonstrates scalability to higher dimensions, only its efficacy in

2-dimensional DS and single motion patterns has been thoroughly tested and confirmed. The

extension to more complex and higher-dimensional spaces remains a theoretical possibility

yet to be fully explored.

In the context of learning DS, our approach shows potential for adaptation to configuration

space DS learning while respecting potential state limits. Our current method faces challenges

in modeling certain type of non-linearities effectively, as not every d-dimensional manifold

can be embedded isometrically in a d +1 dimensional Euclidean space. Future research could

explore embedding strategies in higher-dimensional spaces, albeit at the potential cost of

reduced model interpretability. Furthermore, our methods currently do not accommodate

vector fields with limit cycles or non-zero curl components, which presents an opportunity

for future exploration, possibly through embedding compact Riemannian manifolds, for the

former, and Minkowski manifolds, for the latter, into higher-dimensional spaces.

Lastly, the performance of our Implicit Manifold Gaussian Process Regression technique is

closely tied to the quality of the constructed graph. The technique’s efficacy is compromised

when dealing with complex manifolds or data with highly non-uniform density, as simplistic

KNN strategies may not adequately capture manifold structures. Adjusting parameters like K ,

L, and ν can improve performance in high-dimensional settings, but this comes with increased

computational costs and potential numerical stability issues. These challenges underscore

the need for further research and development in probabilistic modeling, particularly for large

datasets and in higher-dimensional spaces.
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5.2 Limitations & Future Developments

In conclusion, while our approaches have demonstrated promising results in their re-

spective areas, the future of DS analysis and learning is poised for significant advancements.

Addressing the limitations in graph reconstruction, extending the applicability to higher-

dimensional and more complex DS, enhancing the embedding strategies for non-linear man-

ifolds, and improving the stability and efficiency of probabilistic modeling techniques are

key areas for future research. These developments will not only deepen our understanding of

dynamical systems but also expand their practical applications in various fields.
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A Appendix of Chapter 1

A.1 Proof of Lem. 1 from Sec 2.4

For each m-th row Lm of L(G), we have D +1 non-zero entries, where D is the degree of the

m-th node with Lm,n = D for m = n and Lm,n =−1 for m ̸= n. In the following, for the sake of

clarity, we will drop the upper index k for the eigenvector’s entries.

The first node, n = 1 has degree D = 1, as it is connected only to its direct neighbor. Using

the monotonic ordered labelling of the nodes, L1u =λu1 yields u1 −u2 =λu1, that simplifies

into:

u2 = (1−λ)u1. (A.1)

The second node of the path graph is connected to the previous and next node. It has

hence degree D = 2. L2u = λu2 yields 2u2 −u1 −u3 = λu2. The same holds for all the other

nodes in the path. Hence, we have 2un −un−1 −un+1 =λun . This recurrence can be rewritten

into the recursion:

un+1 = (2−λ)un −un−1 for n = 2, . . . , pk −1, (A.2)

or, equivalently,

un = (2−λ)un−1 −un−2 for n = 3, . . . , pk . (A.3)

A.2 Proof of Lem. 2 from Sec 2.4

Consider the following Chebyshev polynomial of first kind T :

T1(λ) = 1

T2(λ) = 1− λ

2

Tn(λ) = 2

(
1− λ

2

)
Tn−1(λ)−Tn−2(λ) for n ≥ 3, (A.4)
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equivalent to the following trigonometric expression:

Tn(λ) = cos

(
(n −1)cos−1

(
1− λ

2

))
for n ≥ 1. (A.5)

Consider the following Chebyshev polynomial of the second kind V :

V1(λ) = 1

V2(λ) = 2

(
1− λ

2

)
Vn(λ) = 2

(
1− λ

2

)
Vn−1(λ)−Vn−2(λ) for n ≥ 3, (A.6)

equivalent to the following trigonometric expression:

Vn(λ) =
sin

(
n cos−1

(
1− λ

2

))
sin

(
cos−1

(
1− λ

2

)) for n ≥ 1. (A.7)

The combination of the Chebyshev polynomials in Eq. A.5 and A.7, as indicated in Eq. 2.9,

yields the trigonometric expression in Eq. 2.10.

A.3 Proof of Prop. 2 from Sec 2.4

For simplicity, we remove the superscript k in uk
n and denote it as un . To preserve monotonicity,

we must determine the conditions for which the entries do not change sign along one path.

From Lem. 2, we know that un follows periodic functions that are expressed as a combination

of trigonometric functions given by Eq. 2.10 for n ≥ 1. We study the stationary points of Eq. 2.10

with respect to the index n:

∂

∂n
un = u1

[
−θ sin((n −1)θ)−θλ

2

cos((n −1)θ)

sin(θ)

]
= sin((n −1)θ)+ λ

2

cos((n −1)θ)

sin(θ)
= 0. (A.8)

Let the eigenvalue λ be

λ= 2
(
1−cos(θ−2π j )

)
, j ∈N. (A.9)
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A.4 Proof of Prop. 3 from Sec 2.4

This expression of λ is sufficient to represent all eigenvalues in [0,4]. Replacing Eq. A.9 in

Eq. A.8, we obtain

sin((n −1)θ)+ 2(1−cos(θ−2π j ))

2

cos((n −1)θ)

sin(θ−2π j )
= 0

sin((n −1)θ)+ tan(
θ

2
−π j )cos((n −1)θ) = 0

tan((n −1)θ)+ tan(
θ

2
−π j ) = 0. (A.10)

The stationary points correspond to all n, such that:

n = π j

θ
+ 1

2
. (A.11)

Expressing the stationary points in term of λ, we have:

n = π j

cos−1(1− λ
2 )

+ 1

2
. (A.12)

The monotonicity of the entries un is hence preserved until one reaches a stationary point.

Observe, from Eq. A.12, that the smaller λ, the larger the number of nodes in the path

with monotonicity preserved. If pk is the number of nodes within each path graph k, we can

determine an upper bound on λ for which all un within one path would evolve monotonically

:

λ≤ 2

[
1−cos

(
π

pk − 1
2

)]
. (A.13)

From (A.13), it is clear that for pk ≥ 3 one has additionally λ < 1. From Prop. 1, we have

u2 = (1−λ)u2, hence u2 < u1 if u1 positive and u2 > u1, otherwise.

A.4 Proof of Prop. 3 from Sec 2.4

In the following we will drop the reference to the underlying graph structure G . Given the

circulant block structure of the matrix J in Eq. 2.13, as shown by Tee (2007), the eigenvalues

and corresponding eigenvectors of such matrix are determined by the following K equations,

each giving us N eigenvalues and eigenvectors

H j v =λ j v j ∈ {0, . . . ,K −1}, (A.14)

with the matrix H j defined as

H j := B0 +B1

(
ρ j +ρK−1

j

)
, (A.15)
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where ρ j = exp
(
i 2π j

K

)
. Observe that ρK−1

j = ρ−1
j for all j . Further,

ρ j +ρ−1
j = 2cos

(
2π j

K

)
= 2cos

(
2π(K − j )

K

)
= ρK− j +ρ−1

K− j . (A.16)

Therefore the matrices H j and HK− j , for j ≥ 1, yield the same eigenvalues. This shows how

in the matrix J has at least (K−1)
2 , if K is odd, or K

2 −1, if K is even, eigenvalues with algebraic

multiplicity equal to 2.

A.5 Proof of Prop 4 from Sec 2.4

In the following we will drop the reference to the underlying graph structure G . The eigenvalues

of the Laplacian matrix L are given by

ΛL = 2I −ΛJ , (A.17)

where ΛL and ΛJ are the diagonal matrices containing the eigenvalues of L and J , respectively.

Therefore the smallest non-zero eigenvalue of L corresponds to the largest non-zero eigenvalue

of J . The matrices H j in Eq. A.15 can be expressed as

H j = I +M j , (A.18)

where M j is the matrix

M j =



0 1

1 −1
. . .

. . .
. . .

. . .
. . . −1 1

1 α j −2


= M1, j +M2, (A.19)

wherein

M1, j =
[

M0 v

vT α j −2

]
, M2 =



0

−1
. . .

−1

0

 (A.20)
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A.5 Proof of Prop 4 from Sec 2.4

with α j = 2cos
(

2π j
K

)
and

M0 =


0 1

1
. . .

. . .
. . .

. . . 1

1 0

 , v = [0, . . . ,0,1]T . (A.21)

M0 is the adjacency matrix of a single path graph with N −1 vertices. From Thm. 3.7 in Bapat

(2010) the eigenvalues of M0 are given by

λn(P ) = 2cos
(πn

N

)
, n = 1, . . . , N −1. (A.22)

Let λmax and λmi n the largest and the smallest eigenvalues in the spectrum, respectively.

From Thm 4.3.17 in Horn and Johnson (2012), the largest eigenvalue of each M1(i ) matrices is

equal or larger than the largest eigenvalue of M0. The largest eigenvalue of M0 is found for

n = 1. Hence, we have

2cos
( π

N

)
≤λn(M1, j ), ∀ j . (A.23)

From Cor. 4.3.15 in Horn and Johnson (2012) the largest eigenvalue among all M j matrices is

bounded above and below by

2cos
( π

N

)
−1 =λmax (M1, j )+λmi n(M2) <λmax (M j ) < 2cos

( π
N

)
∀ j . (A.24)

The inequality is strict as M1, j and M2 do not have a common eigenvector. Recalling that

λ(L) = 1−λ(M j ), this is equivalent to

1−2cos
( π

N

)
<λmi n(L) < 2

(
1−cos

( π
N

))
, (A.25)

being λmi n(L) the smallest non-zero eigenvalue of the Laplacian matrix. Since cos
(
π
N

) >
cos

(
π

N− 1
2

)
for N ≥ 2, we obtain the inequality in Eq. 2.16.
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B Appendix of Chapter 2

B.1 Proofs of Prop. 5 & Thm. 2

In this appendix, we provide proofs for Prop. 5 and Thm. 2.

B.1.1 Proof of Prop. 5

A smooth embedding is an injective immersion f : M →N that is also a topological embedding.

f , in order to be a topological embedding, has to yield a homeomorphism between M and

f (M ). Every map that is injective and continuous is an embedding in the topological sense.

Consider the local representative function in Eq. 3.6. Continuity follows directly from

imposingψ ∈C r (Rd ) with r ≥ 1. Also the injectivity property follows by the construction of the

embedding. Let x ∈Rd and x̃ ∈Rd two different points on M , expressed in local coordinates,

satisfying Ψ(x) =Ψ(x̃). Therefore [
x

ψ(x)

]
=

[
x̃

ψ(x̃)

]
. (B.1)

It is clearly that in Eq. B.1 the equality holds only if x = x̃.

f : M → N is an immersion if f∗ : TpM → TpN is injective for every point p ∈ M ;

equivalently rank( f∗) = dim(M ). In order to analyze the rank of the pushforward map f∗ we

can look at its local coordinates components

f i
∗ j

= ∂ j (y ◦ f ◦x−1)i . (B.2)

It is clear from Eq. 3.6 that for i ≤ dim(M ) we have f i∗ j
≡ δi

j where δi
j is the Kronecker symbol.

Therefore rank( f∗) = dim(M ) = d .
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B.1.2 Proof of Thm. 2

Stability of the harmonic linearly damped oscillator in Eq. 3.2 can be proved via Lyapunov’s

second method for stability. Let γ : I →M a curve on the manifold M . We adopt the following

energetic function in intrinsic notation

V (γ(t ), vγ(t )) = 1

2
g(γ(t ))

(
vγ(p), vγ(t )

)+φ(γ(t )), (B.3)

where t ∈ I and γ(t ) ≡ p ∈M . The time derivative, D t , of V is given by

D t V (p, vp ) =∇vp V (p, vp ) (B.4)

= 1

2
∇vp

(
g(p)(vp , vp )

)+∇vpφ(p). (B.5)

For the compatibility of the Levi-Civita connection with the metric, ∇vp g = 0, we can simplify

Eq. B.5 in

D t V (p, vp ) = g(p)
(∇vp vp , vp

)+∇vpφ(p). (B.6)

Eq. B.6 can be expressed in local coordinates as

D t V (p, vp ) = g(p)

(
−g i k (∂iφ+Di j ẋ j )

∂

∂xk
, ẋi ∂

∂xi

)
+∂iφẋi

= g(p)

(
∂

∂xk
,
∂

∂xi

)(
−g i k (∂iφ+Di j ẋ j )ẋi

)
+∂iφẋi

=−gki g i k (∂iφ+Di j ẋ j )ẋi +∂iφẋi (B.7)

Given the symmetry of the metric tensor g i k = g ki we have

D t V (p, vp ) =−∂iφẋi −Di j ẋ j ẋi +∂iφẋi

=−Di j ẋ j ẋi (B.8)

We assumed D ∈S d++. Hence it follows D ≻ 0 and D t V (p, vp ) < 0.

B.2 Kernel-Based Space Deformation

In this appendix we analyze kernel based deformation. In Sec. 3.6.1 we saw how this technique

to effectively achieve obstacle avoidance.
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B.3 Ablation Study

B.2.1 Derivation of the Metric Tensor

The differential of the deformation function in the direction v is given by

dψ(x)[v] = limt→0
exp− ∥x+tv−x̄∥2

2σ2 −exp− ∥x−x̄∥2

2σ2

t

= k(x, x̄) · limt→0
1

t

(
ez −1

)
, (B.9)

where z =− 1
σ2 (t (x−x̄)T v+t 2vT v). Dividing and multiplying Eq. B.9 by z and using the property

limz→0

(
ez−1

z

)
= 1 we have

dψ(x)[v] = k(x, x̄) · limz→0

(
ez −1

z

)
· limt→0

z

t

= k(x, x̄) · limt→0 − 1

σ2 ((x− x̄)T v+ tvT v)

=
〈
− 1

σ2 (x− x̄)k(x, x̄),v
〉
= 〈∇ ¯ψ(x),v

〉
. (B.10)

Via the pull-back of the embedding metric we recover the metric onto the manifold. In case of

Euclidean (identity) metric for the ambient space we have

G(x) = I+ 1

σ4 (x− x̄)(x− x̄)T k(x, x̄)2. (B.11)

The generic sum of kernels formulation is given by

G(x) = I+ 1

σ4

N∑
i=1

αi (x− x̄i )(x− x̄i )T k(x, x̄i )2. (B.12)

B.2.2 Derivative of the Metric Tensor

dG(x)[v] =
(
(vx̃T + x̃vT )k(x̃)− 1

σ2 x̃x̃T (x̃T v)

)
k(x̃). (B.13)

B.3 Ablation Study

In order to select the correct model for the neural network used to learn the manifold embed-

ding we performed an ablation study. In order to asses properly the model’s ability of learning

the embedding, for the ablation study, we fixed the stiffness matrix to be spherical and we do

not optimize for it. For the second-order DS, the damping matrix is set to be spherical and

fixed as well, with diagonal values such that the systems exhibits critically damped behavior

in flat space. In this case the non-linearity is achieve solely via the manifold’s curvature. For

different number of layers and neurons within each layer we train each model till convergence.

The training and testing dataset are given by 4 and 3 demonstrated trajectories, respectively.
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MSE - 1e-3

NEURONS PER LAYER
8 16 32 64 128 256

L
AY

E
R

S

1 1.935 ± 2.144 0.839 ± 0.798 1.317 ± 0.652 0.632 ± 0.306 1.066 ± 0.528 0.543 ± 0.314
2 0.209 ± 0.074 1.195 ± 2.370 0.133±0.020 0.183 ± 0.083 0.159 ± 0.096 2.092 ± 2.073
3 0.335 ± 0.325 0.192 ± 0.061 1.093 ± 1.990 0.193 ± 0.115 0.477 ± 0.480 3.507 ± 3.777
4 0.232 ± 0.080 0.161 ± 0.077 0.121±0.040 0.718 ± 1.282 2.094 ± 1.984 1.972 ± 2.235
5 1.226 ± 2.111 0.844 ± 1.507 1.221 ± 2.296 0.702 ± 0.766 2.564 ± 1.451 2.598 ± 2.406
6 0.686 ± 0.554 1.191 ± 2.356 2.318 ± 2.860 2.542 ± 2.516 3.887 ± 1.637 7.678 ± 4.950

Table B.1: Ablation Study for the Neural Network function approximator.

Each trajectory is composed by 1000 sampled points. Results are averaged over 10 runs of

ADAM optimization on an NVIDIA RTX4090 24GB.

Tab. B.1 reports the MSE results for different configurations. As it possible to see from

the results, a 2-layers configuration with 32 neurons per layer is enough to achieve good

performance with a high level of repeatability. By increasing the number of layers to 4, we

observe an improvement of the performance. Nevertheless, we did not consider this marginal

improvement sufficient to justify the additional overhead in term of computational cost at

training and query time. Therefore, for both the 2D and 3D experiments we opted for a neural

network model composed by 2 hidden layers each of the composed by 32 neurons.
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C.1 Theory

Proposition 6. Denote the eigenpairs by λl , fl for a graph Laplacian and by λM
l , f M

l for the

Laplace–Beltrami operator. Fix δ> 0. Assume that, with probability at least 1−δ, for all ε> 0,

forα small enough and for N large enough we have |λl−λM
l | < ε and | fl (xi )− f M

l (xi )| < ε. Then,

with probability at least 1−δ, we have kN ,α,L
ν,κ,σ2 (xi ,x j ) → kν,κ,σ2 (xi ,x j ) as α→ 0, N ,L →∞, where

kN ,α,L
ν,κ,σ2 (xi ,x j ) = σ2

Cν,κ

L−1∑
l=0

(
2ν

κ2 +λl

)−ν−dim(M )/2

fl (xi ) fl (x j ). (4.6)

Proof. Fix small ε> 0. We will prove that for α small enough and N ,L large enough we have

|kν,κ,σ2
f
(xi ,x j )−kN ,α,L

ν,κ,σ2
f

(xi ,x j )| < Cε for some C > 0 with probability at least 1−δ. Since the

assumption holds on the same event of probability 1−δ for all ε, this directly translates to the

convergence on the same event. In fact, a probabilistic narrative is nonessential for what we

actually prove, and we do not use it below. To simplify notation, we replace
∑L−1

l=0 by
∑L

l=0.

First, for any L ∈Z>0 define the truncated version kL
ν,κ,σ2

f

of the manifold kernel kν,κ,σ2
f

by

kL
ν,κ,σ2

f
(x,x′) =

σ2
f

Cν,κ

L∑
l=0

(
2ν

κ2 +λM
l

)−ν−dim(M )/2

f M
l (x) f M

l (x′). (C.1)

The manifold Matérn kernels are the reproducing kernels of Sobolev spaces, if the latter are

defined appropriately Borovitskiy et al. (2020). These are Mercer kernels De Vito et al. (2021),

hence, by Mercer’s theorem, kL
ν,κ,σ2

f

→ kν,κ,σ2
f

uniformly on M , i.e. for L large enough we have

∣∣∣∣kL
ν,κ,σ2

f
(xi ,x j )−kν,κ,σ2

f
(xi ,x j )

∣∣∣∣≤ sup
x,x′∈M

∣∣∣∣kL
ν,κ,σ2

f
(x,x′)−kν,κ,σ2

f
(x,x′)

∣∣∣∣< ε. (C.2)
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Now suppose that α is small enough and N is large enough so that

∣∣∣λl −λM
l

∣∣∣< ε′, | fl (xi )− f M
l (xi )| < ε′, ε′ = min

(
1,

(
λM

L

)− d−1
4

,
(
λM

L

)− d−1
2 ) ε

L
(C.3)

for all l ∈ {1, ..,L} and for all i ∈ {1, .., N } with probability at least 1−δ.

Assuming the manifold is connected, by we have | f M
l | ≤ Cλ

(
λM

l

) d−1
4 for l > 0 Donnelly

(2006). The case l = 0 is special because λM
0 = 0. Since f M

0 is a constant function, we have

| f M
l | ≤Cλmax((λM

l )
d−1

4 ,1) (C.4)

for all l ≥ 0, where Cλ here is potentially different from the Cλ before. Assuming, without loss

of generality, ε< 1, we have∣∣∣ fl (xi ) fl (x j )− f M
l (xi ) f M

l (x j )
∣∣∣≤ ∣∣ fl (xi )

∣∣∣∣∣ fl (x j )− f M
l (x j )

∣∣∣ (C.5)

+
∣∣∣ f M

l (x j )
∣∣∣∣∣∣ fl (xi )− f M

l (xi )
∣∣∣ (C.6)

≤ ε′ ·
(∣∣ fl (xi )

∣∣+ ∣∣∣ f M
l (x j )

∣∣∣) (C.7)

≤ ε′ ·
(∣∣∣ fl (xi )− f M

l (xi )
∣∣∣+ ∣∣∣ f M

l (xi )
∣∣∣+ ∣∣∣ f M

l (x j )
∣∣∣) (C.8)

≤ ε′ · (ε′+2Cλmax((λM
l )

d−1
4 ,1)

)≤ (1+2Cλ)ε

L
. (C.9)

The function Φ(λ) = (2ν
κ2 +λ

)−ν−dim(M )/2
is Lipschitz:

∣∣Φ(λ)−Φ(λ′)
∣∣≤CΦ

∣∣λ−λ′∣∣ where

CΦ = sup
λ≥0

∣∣Φ′(λ)
∣∣= sup

λ≥0
(ν+dim(M )/2)

(
2ν

κ2 +λ
)−ν−dim(M )/2−1

= (ν+dim(M )/2)

(
2ν

κ2

)−ν−dim(M )/2−1

. (C.10)

Define an auxiliary kernel with manifold eigenvalues and graph eigenfunctions by

k̃L
ν,κ,σ2

f
(x,x′) =

σ2
f

Cν,κ

L∑
l=0

(
2ν

κ2 +λM
l

)−ν−dim(M )/2

fl (x) fl (x′). (C.11)

Then

Cν,κ

σ2
f

∣∣∣∣kL
ν,κ,σ2

f
(xi ,x j )− k̃L

ν,κ,σ2
f
(xi ,x j )

∣∣∣∣≤ L∑
l=0

(
2ν

κ2 +λM
l

)−ν−dim(M )/2 (1+2Cλ)ε

L
(C.12)

≤Φ(0)(1+2Cλ)ε. (C.13)
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Also, noting that
∣∣ fl (xi )

∣∣≤ ∣∣ f M
l (xi )− fl (xi )

∣∣+ ∣∣ f M
l (xi )

∣∣≤ ε′+Cλmax((λM
l )

d−1
4 ,1), write

Cν,κ

σ2
f

∣∣∣∣k̃L
ν,κ,σ2

f
(xi ,x j )−kN ,α,L

ν,κ,σ2
f

(xi ,x j )

∣∣∣∣≤ L∑
l=0

∣∣∣Φ(λM
l )−Φ(λl )

∣∣∣∣∣ fl (xi )
∣∣∣∣ fl (x j )

∣∣ (C.14)

≤
L∑

l=0
CΦ

∣∣∣λM
l −λl

∣∣∣∣∣ fl (xi )
∣∣∣∣ fl (x j )

∣∣ (C.15)

≤
L∑

l=0
2CΦε

′
(
(ε′)2 +C 2
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l )

d−1
2 ,1)

)
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≤ 2CΦ(1+C 2
λ)ε. (C.17)

Finally,∣∣∣∣kν,κ,σ2
f
(xi ,x j )−kN ,α,L

ν,κ,σ2
f

(xi ,x j )
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+
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ν,κ,σ2

f
(xi ,x j )− k̃L
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f
(xi ,x j )

∣∣∣∣ (C.19)

+
∣∣∣∣k̃L
ν,κ,σ2

f
(xi ,x j )−kN ,α,L

ν,κ,σ2
f

(xi ,x j )

∣∣∣∣ (C.20)

≤ ε+
σ2

f

Cν,κ

(
Φ(0)(1+2Cλ)+2CΦ(1+C 2

λ)
)
ε. (C.21)

This proves the claim.

Proposition 7. Assuming ν ∈N, the precision matrix PXX of kX
ν,κ,σ2 (xi ,x j ) can be given by

PXX = σ−2

C−1
ν,κ

D
(2ν

κ2 I+∆rw

)
· . . . ·

(2ν

κ2 I+∆rw

)
ν times

. (4.17)

Proof. The covariance matrix KXX is given by

KXX = σ2

Cν,κ

L−1∑
l=0

Φ(λl )fl f⊤l , Φ(λ) =
(

2ν

κ2 +λ
)−ν

(C.22)

where fl = D−1/2fsym
l and fsym

l are the orthonormal eigenvectors of the symmetric normalized

Laplacian ∆sym. Denote

Ksym
XX = σ2

Cν,κ

L−1∑
l=0

Φ(λl )fsym
l

(
fsym

l

)⊤
(C.23)

then
(
Ksym
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l
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. We have

KXX = σ2

Cν,κ
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l=0

Φ(λl )D−1/2fsym
l

(
fsym

l
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On the other hand,
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D1/2 = D1/2(Ksym

XX

)−1
D1/2 (C.26)

= K−1
XX = PXX. (C.27)

C.2 Additional Experimental Results and Details

Here we provide additional results and details for synthetic examples and high-dimensional

datasets.

C.2.1 1D Dumbbell Manifold

In this section, we analyze our method’s sensitivity to the number of labeled points, spec-

trum truncation, and neighbor count in graph construction, offering deeper insights into its

behavior.

Eigenpairs Truncation. From a theoretical standpoint, utilizing the complete set of

eigenpairs to construct the kernel should be beneficial. However, this assumption may not

hold true in cases where the optimization problem is not fully converged. The trends of

RMSE and NLL, as depicted in Figures C.1a and C.1b, illustrate the impact of increasing the

number of eigenpairs for 100, 200, and 1000 iterations. In situations where hyperparameter

optimization does not converge fully, the length scale parameter κ fails to reach sufficiently

high values necessary to generate appropriate spectral density decay, which in turn would

properly weigh higher frequency eigenpairs. In such scenarios, truncating the spectrum is

similar to increasing the length scale, which might improve results in certain cases. In the 1D

scenario, due to its simplicity, we opted for a modest number of eigenpairs, namely L = 50.

Exceeding this count did not yield any discernible improvements.

Dataset Size. We analyze the sensitivity to dataset size of our method (IMGP) against the

Euclidean case (EGP) in the semi-supervised learning scenario. For fixed number of eigenpairs,

L = 50, Figures C.1c and C.1d show performance metrics (RMSE and NLL) depending on the

percentage n%N of labeled points. In a typical scenario where we have at our disposal fewer

labeled points compared to the number of unlabeled points, our method outperforms EGP

in both accuracy (RMSE) and uncertainty quantification (NLL). As n increases EGP starts to

match the performance of IMGP.

Number of neighbors. For the one dimensional case considered in this section, only three
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(a) RMSE depending on L (b) NLL depending on L (c) RMSE depending on f

(d) NLL depending on f

Figure C.1: Root Mean Square Error (RMSE) and Negative Log-Likelihood (NLL) for increasing
number of eigenpairs L (left panels) and increasing fraction f = n%N of labeled points (right
panels). The legend in (a) and (b) refers to the number of hyperparameter optimization
iterations.

neighbors are necessary to capture the essential features of the manifold’s geometry. Choosing

a number less than three would hinder the algorithm’s ability to capture the underlying mani-

fold structure. On the other hand, increasing the number of neighbors beyond this threshold

does not affect the solution, provided that sufficient time is allocated for hyperparameter

optimization to converge and the graph bandwidth becomes small enough to "correct" for all

undesired edges in the graph structure (for instance in the central region of the dumbbell).

In high-dimensional problems where the dimension of the underlying manifold is unknown,

this suggests to incrementally increase the number of neighbors until the loss function stops

improving, if it is computationally feasible to try multiple values of K .

C.2.2 2D Dragon Manifold

We consider another synthetic setting, a complex 2D manifold, depicted in Figure C.2. The

ground truth function is visualized in Figure C.2a, it is the same as in the one-dimensional

case, the sine of the geodesic distance to a point, which is located in the green area.

RMSE NLL

β= 0 β= 0.01 β= 0.05 β= 0 β= 0.01 β= 0.05

Euclidean Matérn-5/2 0.24±0.02 0.24±0.01 0.26±0.00 −0.85±0.46 0.16±1.58 1.26±1.80
IMGP 0.12±0.01 0.21±0.01 0.22±0.01 −2.14±0.13 −1.51±0.03 −1.30±0.09

Table C.1: Results for a complex 2D manifold with varying magnitude of sampling noise.
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(a) Ground truth (b) IMGP pred. β= 0 (c)IMGP pred.β=0.01 (d)IMGP pred.β=0.05

(e) Euclidean, prediction (f) Euclidean, uncertainty (g) IMGP, uncertainty

Figure C.2: (a) Ground truth function on the complex 2D manifold and (b)-(d) predictions
of the implicit manifold Gaussian process regression (IMGP) for increasing level of sampling
noiseβ. (e)-(d) Euclidean GP prediction and uncertainty and (g) IMGP uncertainty in noiseless
scenario.

In the semi-supervised learning scenario, Figures C.2e and C.2b offer a comparison of the

posterior mean between the Euclidean GP and IMGP, while Figures C.2f and C.2g illustrate

the posterior standard deviation for both models—quite similar to each other, in this regime.

Similar to what we did for the 1D compact manifold in Section 4.6.1, we evaluated the perfor-

mance of IMGP under varying levels of sampling noise. Figures C.2b to C.2d display the IMGP

predictions in the semi-supervised learning scenario as sampling noise increases. Similar to

the 1D case, our approach consistently outperforms the standard Euclidean GP, as evidenced

in Table C.1.

Remark. We observed that for higher levels of sampling noise, the linear combination of

posteriors, as described by Equation (4.12), significantly outperform the single geometric

model.

C.2.3 High Dimensional Datasets

Rotated MNIST. For IMGP, we use ν= 2. As discussed in Appendix C.2.1, the optimal number of

eigenpairs L varies considerably depending on the convergence of the optimization problem.

Given the limited number of iterations per run we opted to fix the number of eigenpairs at

20%N and 2%N , for SR-MNIST and MR-MNIST, respectively. Table C.2 reports the complete

results obtained for the rotated MNIST dataset, including both RMSE and NLL. Notably, these

emphasize the importance of unlabeled points, as S-IMGP performs worse than both SS-IMGP
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and EGP on MR-MNIST-1%.

CT slices. For IMGP, we use ν = 3. In Table C.3 we report results for IMGP-S (full) and

IMGP-SS (full). These are based on the "exact" eigenpairs, computed by torch.linalg.eigh,

as opposed to the standard Lanczos implementation we use by default. Additionally, these

include the hyperparameter re-optimization step, as described in Section 4.6.2 and discussed

below. Regarding RMSE, all three compared methods—IMGP-S (full) and IMGP-SS (full) and

EGP—exhibit similar performance, with a slight advantage for SS-IMGP (full) as the number

of training points increases. When considering NLL, as previously observed with MNIST, SS-

IMGP performs best in all settings. However, NLL decreases for larger values of n/N , indicating

a probable overfit in this regime.

Hyperparameter re-optimization. We observed this step to serve two important purposes:

(1) fixing overly small values of the signal variance σ2, potentially caused by the absence of

covariance normalization in the optimization process and poor convergence; (2) adjusting the

length scale parameter to take into account the loss of high-frequency components due to

truncation.

Implementation. Currently, the implementation faces two significant limitations that

might restrict its usability to high-memory hardware setups. Firstly, due to the absence of rich

enough sparse matrix routines in PyTorch, we had to develop our own custom implementation

of differentiable sparse operators. We kept to high-level routines, which forced us to strike a

balance between performance and memory efficiency. In particular, for matrix-vector sparse

product operations, our approach relies on highly optimized vectorized code, delivering high

performance on GPU at the expense of increased memory allocation. Secondly, we faced chal-

lenges with sparse eigen-solvers in the PyTorch ecosystem. Our attempts of using the PyTorch

implementation of the LOBPCG algorithm, torch.lobpcg, yielded relatively poor results. We

had similar experience with the Lanczos implementation from GPyTorch Gardner et al. (2018).

In light of this, when extracting higher-frequency components was needed, we resorted to

two alternative solutions: PyTorch dense matrix eigen-decomposition torch.linalg.eigh and

the SciPy Arpack wrapper scipy.linalg.eigsh. The first approach, while benefiting from GPU

acceleration, can be infeasible because of limited GPU memory. The second approach, known

for its efficiency in memory usage due to its Krylov subspace-based nature, is constrained to

CPU utilization, significantly impacting the algorithm’s overall performance.

RMSE NLL

Dataset n/N S-IMGP SS-IMGP EGP S-IMGP SS-IMGP EGP

SR-MNIST 10% 0.04±0.01 0.01±0.00 0.12±0.01 −1.42±0.01 −1.52±0.01 −0.54±0.01
MR-MNIST 1% 0.74±0.02 0.43±0.02 0.74±0.02 2.24±0.20 −0.59±0.01 −0.20±0.01
MR-MNIST 10% 0.14±0.05 0.03±0.00 0.13±0.00 −0.68±0.08 −0.79±0.00 −0.43±0.01

Table C.2: Results for the rotated MNIST dataset.
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RMSE NLL

n/N S-IMGP (full) SS-IMGP (full) EGP S-IMGP (full) SS-IMGP (full) EGP

5% 0.27±0.02 0.39±0.04 0.24±0.02 0.64±0.83 −2.48±0.08 −0.80±0.02
10% 0.22±0.02 0.19±0.01 0.16±0.00 0.88±0.29 −2.35±0.04 −0.96±0.00
25% 0.14±0.01 0.08±0.02 0.09±0.01 −0.42±0.10 −1.99±0.04 −1.20±0.09
50% 0.08±0.01 0.07±0.01 0.08±0.04 −0.96±0.11 −2.04±0.02 −1.02±0.04

Table C.3: Results for Relative location of CT slices on axial axis (d = 385, N = 48150) from UCI
Machine Learning Repository.

(a) Prior for the semi-supervised case (b) Prior for the supervised case

Figure C.3: The histogram of D and the prior for the bandwidth hyperparameter α.

C.3 Hyperparameter Priors and Initialization

Here we describe hyperpameter priors which might be of help when using implicit manifold

Gaussian process regression.

Graph Bandwidth α. Graph Laplacian converges to the Laplace–Beltrami operator when

α tends to zero, motivating smaller α. However, in a non-asymptotic setting it is imprac-

tical to have α overly small as it will render the graph effectively disconnected and cause

numerical instabilities. One appropriate prior could thus be gamma distribution, whose right

tail discourages high values of α, and which, given an appropriate choice of the parameters,

encourages α to align with the scale of pairwise distances between graph nodes. Specifically,

we choose the parameters of the gamma distribution so as to (1) match its mode with the

median (Q2) of pairwise average distance between K -th nearest neighbors because such an

α would give reasonable weights in the KNN graph and (2) so as to place its standard 0.95

confidence interval to the right of a certain lower bound ᾱ we define further that ensures the

graph is numerically not disconnected. Let

D = {
maxxi∈KNN(x j )

∥∥xi −x j
∥∥ where j = 1, .., N

}
. (C.28)

The bandwidth’s lower bound we compute as

ᾱ= min
d∈D

√
− d 2

4logτ
, (C.29)
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where τ is a user-defined parameter.

Let η and β the shape and rate parameters of the gamma distribution. In order to achieve

(1), we define

η= ρQ2 +1 and β= ρ (C.30)

where ρ is used to achieve (2) and is given by

ρ ≈ 4Q2

(Q2 − ᾱ)2 . (C.31)

Considering the S-MNIST dataset, Figure C.3 shows the bandwidth prior distribution for the

semi-supervised (labeled and unlabeled points) and the supervised (labeled points) scenarios.

Signal Variance σ2
f . Assuming normalized yi , the signal variance σ2

f should be close to 1.

Because of this a natural prior for σ2 is the truncated normal (onto the set of positive reals

σ2 > 0), with mode at 1. The pre-truncation variance can be chosen, for example, to have 0 at

3 standard deviations away from the mode, i.e. it can be chosen to be 1/9. Note that setting

a prior over the signal variance parameter requires evaluating the normalization constant

Cν,κ
1 for the kernel at each hyperparameter optimization step, something that can be avoided

otherwise.

Noise Varianceσ2
ε. Choosing a prior for the noise varianceσ2

ε is heavily problem-dependent.

Truncated normal (onto the set σ2
ε > 0) with mode at 0 could be a reasonable option. The

pre-truncation variance can be chosen, for example, to be 1, 1/4 or 1/9, placing the value 1,

which is the variance of the normalized observations yi , at 1, 2 or 3 standard deviations away

from the mode.

Length scale. The interpretation and the scale of the length scale parameter is manifold-

specific. This makes it very difficult to come up with any reasonable prior. Because of this, we

suggest actually leaving the length scale parameter free.

Parameter initialization When doing MAP estimation, one can initialize parameters

randomly, sampling them from respective priors.

1Covariance matrix normalization constant Cν,κ can be approximated as Cν,κ ≈ 1
M

∑M
i=1 eT

i P−1
XXei , where M

is relatively small, ei are random standard basis vectors and the solve is performed by running the conjugate
gradients. Differentiability of the model is preserved. Note however that we did not use this normalization in
our tests since the performance improvement we observed was not enough to justify the additional computation
overhead. This trade-off can vary considerably from case to case, which is why in our implementation, the
covariance normalization is optional.
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École Polytechnique Fédérale de Lausanne
Thesis: Geometric Learning: Leveraging Differential Geometry for
Learning and Control
Supervised by Prof. A. Billard

M.Sc. in Aeronautical Engineering 2016
Politecnico di Milano
Thesis: Spiking Neural Network Controller For Flight Stabilization
Of The Harvard Microrobotic Bee
Supervised by Prof. M. Lovera and Prof. S. Ferrari

B.Sc. in Aerospace Engineering 2012
Politecnico di Milano

EXPERIENCE Research Assistant 2018
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École Polytechnique Fédérale de Lausanne
Courses taught: Applied Machine Learning (200+ students), Ad-
vanced Machine Learning (50+ students)
Leading TA and member of the exam preparation team.

SUPERVISION Master’s Thesis 2024
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