
Received: 12 January 2023 Revised: 16 February 2024 Accepted: 5 March 2024

DOI: 10.1112/jlms.12902

Journal of the London
Mathematical SocietyRESEARCH ARTICLE

Additive and geometric transversality of fractal
sets in the integers

Daniel Glasscock1 Joel Moreira2 Florian K. Richter3

1Dept. of Mathematics and Statistics,
University of Massachusetts Lowell,
Lowell, Massachusetts, USA
2Mathematics Institute, University of
Warwick, Coventry, UK
3École Polytechnique Fédérale de
Lausanne (EPFL), Lausanne, Switzerland

Correspondence
Joel Moreira, Mathematics Institute,
University of Warwick, Zeeman Building,
Coventry CV4 7AL, UK.
Email: joel.moreira@warwick.ac.uk

Funding information
Swiss National Science Foundation,
Grant/Award Number: TMSGI2-211214

Abstract
By juxtaposing ideas from fractal geometry and dynami-
cal systems, Furstenberg proposed a series of conjectures
in the late 1960’s that explore the relationship between
digit expansions with respect to multiplicatively inde-
pendent bases. In this work, we introduce and study —
in the discrete context of the integers— analogs of some
of the notions and results surrounding Furstenberg’s
work. In particular, we define a new class of fractal sets
of integers that parallels the notion of ×𝑟-invariant sets
on the 1-torus and investigate the additive and geometric
independence between two such fractal sets when they
are structured with respect to multiplicatively indepen-
dent bases. Ourmain results in this direction parallel the
works of Furstenberg, Hochman–Shmerkin, Shmerkin,
Wu, and Lindenstrauss–Meiri–Peres and include:
∙ a classification of all subsets of the positive integers
that are simultaneously ×𝑟- and ×𝑠-invariant;

∙ integer analogs of two of Furstenberg’s transversal-
ity conjectures pertaining to the dimensions of the
intersection 𝐴 ∩ 𝐵 and the sumset 𝐴 + 𝐵 of ×𝑟- and
×𝑠-invariant sets𝐴 and 𝐵when 𝑟 and 𝑠 aremultiplica-
tively independent; and

∙ a description of the dimension of iterated sumsets𝐴 +

𝐴 +⋯ + 𝐴 for any ×𝑟-invariant set 𝐴.
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We achieve these results by combining ideas from fractal
geometry and ergodic theory to build a bridge between
the continuous and discrete regimes. For the transver-
sality results, we rely heavily on quantitative bounds on
the 𝐿𝑞-dimensions of projections of restricted digit Can-
tor measures obtained recently by Shmerkin. We end
by outlining a number of open questions and directions
regarding fractal subsets of the integers.
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1 INTRODUCTION

Number theorists in the first half of the 20th century were among the first to consider the degree
to which base 2 and base 3 representations of real numbers are independent. An open conjecture
attributed toMahler [35] postulates, for example, that if (𝑎𝑛)∞𝑛=1 ⊆ {0, 1} is not eventually periodic,
then at least one of the numbers

∑∞
𝑛=1 𝑎𝑛2

−𝑛 and
∑∞

𝑛=1 𝑎𝑛3
−𝑛 is transcendental. In a different

vein, Cassels [8] and Schmidt [39], answering a question of Steinhaus about Cantor’s middle
thirds set𝐶, proved that almost every number in𝐶∕2 (with respect to the log 2∕ log 3-dimensional
Hausdorff measure) is normal to every base which is not a power of 3. More general questions
along these lines — which is almost every real number with respect to any continuous ×3-
invariant measure on [0,1] normal to every base that is not a power of 3 — remain open, despite
considerable partial progress [21, 22, 30].
Studying the independence between different representations of real numbers remains an

active area of research that brings together results and techniques from number theory, ergodic
theory, and geometric measure theory. Parallel investigations concerning representations of inte-
gers appear to be less developed but are no less natural or interesting. It is the purpose of this paper
to advance those investigations by demonstrating various forms of independence between differ-
ent base representations in the non-negative integers. One of the basic principles that underpin
our results in this direction states the following:

If 𝑟 and 𝑠 are multiplicatively independent positive integers (meaning that the quan-
tity log(𝑟)∕ log(𝑠) is irrational) and 𝐴 and 𝐵 are subsets of the non-negative integers
that are structured with respect to base-𝑟 and base-𝑠 representations, respectively,
then 𝐴 and 𝐵 lie in general position.

The following unresolved conjecture of Erdős [11] exemplifies this heuristic: for all 𝑛 ⩾ 9, it is
impossible to the express the number 2𝑛 in base 3 using only the digits 0 and 1; see [10, 27] for some
recent progress. Today, Erdős’ conjecture is understood asmerely a special case of amuch broader
conjecture that asserts that any infinite set of natural numbers that has a “simple” description
in base 𝑟 must have a “complex” description in base 𝑠 (see Question 5.2 in Section 5.2 for more
details). A related folklore conjecture in number theory [38] posits that {0, 1, 82 000} is exactly the
set of nonnegative integers that can be written in bases 2, 3, 4, and 5 using only the digits 0 and
1. A partial answer to this was given recently by Burrell and Yu [7], who proved that the set 𝐴 of
nonnegative integers that can be written in bases 4 and 5 using only the digits 0 and 1 satisfies||𝐴 ∩ [0,𝑁]|| ⩽ 𝐶𝜀𝑁

𝜀 for all 𝜀 > 0.
In this paper, we aim to (1) introduce a family of multiplicatively structured “fractal” subsets

of the nonnegative integers that naturally arise from digit restrictions, and (2) investigate the
transversality, or independence, between members of that family that are structured with respect
tomultiplicatively independent bases. Our investigation is stronglymotivated by the heuristic and
conjectures mentioned above and by the recent resolutions of a pair of Furstenberg’s conjectures
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4 of 55 GLASSCOCK et al.

concerning notions of geometric and additive transversality of fractal subsets of the reals. Our
results give integer parallels of those advancements in the reals, generalize the aforementioned
result of Burrell and Yu, and make progress toward Erdős’ conjecture.
Before recounting the relevant history and stating our main results in full generality, we focus

our attention on the special case of restricted digit Cantor sets in the nonnegative integers.
Although restricted digit Cantor sets comprise only a small subclass of the sets that we consider,
most of our results are already novel and interesting for this class. In this sense, the following
section serves as a preview of our main results.

1.1 Preview of the main results

Let ℕ = {1, 2, 3, …} and ℕ0 = {0, 1, 2, …}. An integer base-𝑟 restricted digit Cantor set is a set of non-
negative integers whose base-𝑟 expansion includes only digits from a fixed set ⊆ {0, 1, … , 𝑟 − 1},
that is, {

𝑛∑
𝑖=0

𝑎𝑖𝑟
𝑖
||||| 𝑛 ∈ ℕ0, 𝑎0, … , 𝑎𝑛 ∈ 

}
. (1.1)

The (mass) dimension of such a set 𝐴 is dim𝐴 ∶= log ||∕ log 𝑟, in the sense that |𝐴 ∩ [0,𝑁)| =
𝑁dim𝐴+𝑜(1). We discuss notions of dimension for more general subsets of the nonnegative inte-
gers in the next section and define them precisely in (1.12) and Definition 3.1. While a number
of arithmetic properties of integer restricted digit Cantor sets are well studied — divisibility [3],
distribution in arithmetic progressions [12, 26], number of prime factors [25], and character sums
[2] — much less appears to be known about the relationship between such sets when they are
structured with respect to different bases.
Let 𝑟 and 𝑠 be multiplicatively independent positive integers, and let 𝐴, 𝐵 ⊆ ℕ0 be base-𝑟 and

base-𝑠 restricted digit Cantor sets, respectively. Under these assumptions, our results demonstrate
that the sets 𝐴 and 𝐵 are transverse both in a geometric/probabilistic sense and in an additive
combinatorial sense. More precisely, the sets 𝐴 and 𝐵 are

∙ geometrically/probabilistically in general position, in the sense that neither 𝐴 nor 𝐵 contains
the other and in the sense that the size of 𝐴 ∩ 𝐵 is at most what is expected if 𝐴 and 𝐵 were
independent random sets;

∙ additive combinatorially disjoint, in the sense that the cardinality of the sumset𝐴 + 𝐵 is nearly
as large as possible, and hence, there are only very few coincidences amongst the sums 𝑎 + 𝑏

for 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵.

Our main Theorems A and B address the first point, while Theorem C addresses the second.
We move now to formulate corollaries of those theorems that clearly demonstrate these notions
of independence.
To describe all of the elements of a nontrivial base-5 restricted digit Cantor set in base 17, all 17

digits are required. The following corollary of TheoremA generalizes this observation by showing
that restricted digit Cantor structureswith respect tomultiplicatively independent bases aremutu-
ally incompatible. It also provides an integer analogue of a well-known theorem of Furstenberg;
see Theorem 1.1 below.

Corollary of Theorem A. Under the assumptions on the sets 𝐴 and 𝐵 above, if𝐴 ⊆ 𝐵, then either
𝐴 = {0} or 𝐵 = ℕ0.

 14697750, 2024, 5, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12902 by B

ibliothèque de l’E
PFL

, W
iley O

nline L
ibrary on [19/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ADDITIVE AND GEOMETRIC TRANSVERSALITY OF FRACTAL SETS IN THE INTEGERS 5 of 55

The finer question about the size of the intersection 𝐴 ∩ 𝐵 is addressed in Theorem B. For
𝑁 ∈ ℕ, define 𝐴𝑁 = 𝐴 ∩ [0,𝑁) and 𝐵𝑁 = 𝐵 ∩ [0,𝑁). The sets 𝐴𝑁 and 𝐵𝑁 would be probabilisti-
cally independent if ||𝐴𝑁 ∩ 𝐵𝑁

||∕𝑁 = ||𝐴𝑁
||||𝐵𝑁

||∕𝑁2. Examples show that the sets 𝐴 and 𝐵 can be
disjoint, even in the case that both 𝐴 and 𝐵 have a large set of allowed digits, so the inequality

||𝐴𝑁 ∩ 𝐵𝑁
||

𝑁
≪

||𝐴𝑁
||

𝑁
⋅
||𝐵𝑁

||
𝑁

(1.2)

for all 𝑁 large can be understood to demonstrate a type of asymptotic probabilistic transversality
between the sets 𝐴 and 𝐵. (As explained in the next section, such an inequality can also be inter-
preted as 𝐴𝑁 and 𝐵𝑁 being geometrically in general position.) Theorem B shows that (1.2) holds
up to a factor of 𝑁𝜀; the precise extent to which (1.2) holds remains open and is addressed briefly
in Section 5.2.

Corollary of Theorem B. Under the assumptions on the sets 𝐴 and 𝐵 above, for all 𝜀 > 0 and all
sufficiently large𝑁,

∙ if dim𝐴 + dim𝐵 ⩾ 1, then

||𝐴𝑁 ∩ 𝐵𝑁
||

𝑁
⩽ 𝑁𝜀 ⋅

||𝐴𝑁
||

𝑁
⋅
||𝐵𝑁

||
𝑁

;

∙ if dim𝐴 + dim𝐵 < 1, then

||𝐴𝑁 ∩ 𝐵𝑁
|| ⩽ 𝑁𝜀.

As an example application, let 𝐶4,{0,1} and 𝐶5,{0,1} be the sets of nonnegative integers that have
only digits 0 and 1 in their base 4 and 5 expansions, respectively. Since log 2∕ log 4 + log 2∕ log 5 <

1, it follows that ||𝐶4,{0,1} ∩ 𝐶5,{0,1}
|| = 𝑜(𝑁𝜀), which recovers the theorem of Burrell and Yu’s

mentioned in the previous section.
If 𝑋 and 𝑌 are finite sets of real numbers, then it is easy to check that

|𝑋| + |𝑌| − 1 ⩽ |𝑋 + 𝑌| ⩽ |𝑋||𝑌|.
Equality holds on the left if and only if 𝑋 and 𝑌 are arithmetic progressions of the same step size.
When |𝑋 + 𝑌| is near this lower bound, inverse theorems in combinatorial number theory (e.g.,
[41, Ch. 5]) provide additive structural information on the sets 𝑋 and 𝑌. At the other end of the
spectrum, equality holds on the right if and only if none of the sums 𝑥 + 𝑦, with 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌,
coincide. In this case, the sets𝑋 and𝑌 lie in general position from an additive combinatorial point
of view.
In this context, the inequality

||𝐴𝑁 + 𝐵𝑁
|| ≫ min

(
𝑁, ||𝐴𝑁

|| ⋅ ||𝐵𝑁
||) (1.3)

can be understood as demonstrating additive combinatorial transversality between the sets 𝐴𝑁

and 𝐵𝑁 . Theorem C shows that (1.3) holds up to a factor of 𝑁𝜀; the extent to which (1.3) holds is
unknown and is discussed briefly in Section 5.1.
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6 of 55 GLASSCOCK et al.

Corollary of Theorem C. Under the assumptions on the sets 𝐴 and 𝐵 above, for all 𝜀 > 0 and all
sufficiently large𝑁,

||𝐴𝑁 + 𝐵𝑁
|| ⩾ min

(
𝑁, ||𝐴𝑁

|| ⋅ ||𝐵𝑁
||)/𝑁𝜀.

Theorems A–C are more general than the corollaries above might suggest. Indeed, each result
applies not only to restricted digit Cantor sets, but to a wider class of integer fractal sets called
multiplicatively invariant sets. Moreover, each set can be replaced by a rounded image of itself
under any affine transformation of ℝ. Finally, in Theorem C, the sets 𝐴 and 𝐵 can be replaced by
arbitrary subsets of 𝐴 and 𝐵, and set cardinality can be replaced with a notion of discrete Haus-
dorff content. We will introduce multiplicatively invariant sets in Section 1.3 and state our main
results precisely there, after providing some historical context and motivation for them in the
next section.

1.2 History and context

In the language of fractal geometry and dynamical systems, Furstenberg [14, 15] established a
number of conjectures and results that explore the relationship betweenmultiplicative structures
with respect to different bases in the real numbers. The notion of structure particularly relevant
to this work is that of multiplicative invariance: a set 𝑋 ⊆ [0, 1] is ×𝑟-invariant if it is closed and
𝑇𝑟𝑋 ⊆ 𝑋, where 𝑇𝑟 ∶ [0, 1] → [0, 1] denotes the map

𝑇𝑟 ∶ 𝑥 ↦ 𝑟𝑥 mod 1.

We call a set 𝑋 ⊆ [0, 1]multiplicatively invariant if it is ×𝑟-invariant for some 𝑟 ⩾ 2.
One of Furstenberg’s first and most well-known results concerning multiplicatively invariant

sets is the following theorem, the measure-theoretic analog of which is the ×2, ×3 conjecture, a
central open problem in ergodic theory.

Theorem 1.1 [14, Theorem 4.2]. If 𝑋 ⊆ [0, 1] is simultaneously ×2- and ×3-invariant, then either
𝑋 is finite or 𝑋 = [0, 1].

The numbers 2 and 3 in Theorem 1.1 can be replaced by any pair ofmultiplicatively independent
positive integers 𝑟 and 𝑠. Following Theorem 1.1, Furstenberg conjectured that if 𝑋,𝑌 ⊆ [0, 1] are
×𝑟- and ×𝑠-invariant, respectively, then 𝑋 and 𝑌 are transverse in more than one sense, some of
which are made precise below. While some of Furstenberg’s “transversality conjectures” remain
open, two of them were resolved recently by Hochman and Shmerkin [20], Shmerkin [40], and,
independently,Wu [43]. Both of these conjectures are particularly relevant to this work, so wewill
expound on them further now.
In Euclidean geometry, linear subspaces 𝑈,𝑉 ⊆ ℝ𝑑 are said to be in general position (or

transverse) if

dim(𝑈 ∩ 𝑉) = max (0, dim𝑈 + dim𝑉 − 𝑑), and

dim(𝑈 + 𝑉) = min (dim𝑈 + dim𝑉, 𝑑).
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ADDITIVE AND GEOMETRIC TRANSVERSALITY OF FRACTAL SETS IN THE INTEGERS 7 of 55

By analogy, Furstenberg conjectured† that if 𝑟 and 𝑠 are multiplicatively independent and 𝑋 and
𝑌 are ×𝑟- and ×𝑠-invariant subsets of [0,1], then

dimH(𝑋 ∩ 𝑌) ⩽ max (0, dimH 𝑋 + dimH 𝑌 − 1), and (1.4)

dimH(𝑋 + 𝑌) = min (dimH 𝑋 + dimH 𝑌, 1), (1.5)

where dimH denotes the Hausdorff dimension.
With no assumptions on the sets 𝑋,𝑌 ⊆ [0, 1], it is not difficult to find examples for which

neither (1.4) nor (1.5) hold. Nevertheless, it is a consequence of Marstrand’s projection and slicing
theorems‡ that for all Borel sets 𝑋 and 𝑌, the typical dilated sets 𝜆𝑋 and 𝜂𝑌 are transverse in the
sense of (1.4) and (1.5).

Theorem 1.2 [32, Theorems II and III]. Let 𝑋 and 𝑌 be Borel subsets of [0,1]. For Lebesgue-a.e.
𝜆, 𝜂, 𝜎 ∈ ℝ,

dimH (𝜆𝑋 ∩ (𝜂𝑌 + 𝜎)) ⩽ max (0, dimH(𝑋 × 𝑌) − 1), and (1.6)

dimH (𝜆𝑋 + 𝜂𝑌) = min (dimH(𝑋 × 𝑌), 1). (1.7)

In this context, Furstenberg’s conjectures in (1.4) and (1.5) say that themultiplicative invariance
of the sets𝑋 and𝑌 can be leveraged to change the result inMarstrand’s theorem from concerning
the typical sets 𝜆𝑋 ∩ (𝜂𝑌 + 𝜎) and 𝜆𝑋 + 𝜂𝑌 to concerning the specific ones 𝑋 ∩ 𝑌 and 𝑋 + 𝑌. In
fact, Furstenberg conjectured that for ×𝑟- and ×𝑠-invariant sets 𝑋 and 𝑌, the inequality in (1.6)
and equality in (1.7) hold for all nonzero 𝜆 and 𝜂 and all 𝜎. Hochman and Shmerkin resolved the
sumset conjecture by proving a stronger result formultiplicatively invariantmeasures, and several
years later Shmerkin [40] andWu [43] independently resolved the intersection conjecture. (These
works resolved both conjectures for classes of attractors of iterated function systems, too.) Several
more recent works offer new proofs of (1.4) and (1.5); see, for example, [1, 18, 24, 47].

Theorem 1.3 [40, 43] and [20]. Let 𝑟 and 𝑠 be multiplicatively independent positive integers, and let
𝑋,𝑌 ⊆ [0, 1] be ×𝑟- and ×𝑠-invariant sets, respectively. For all 𝜆, 𝜂 ∈ ℝ∖{0} and all 𝜎 ∈ ℝ,

dimM (𝜆𝑋 ∩ (𝜂𝑌 + 𝜎)) ⩽ max (0, dimH 𝑋 + dimH 𝑌 − 1), and (1.8)

dimH (𝜆𝑋 + 𝜂𝑌) = min (dimH 𝑋 + dimH 𝑌, 1), (1.9)

where dimM denotes the upper Minkowski dimension.

† The intersection conjecture (1.4) is one of several conjectures stated in [15]. The sumset conjecture (1.5) does not, as far
as we are aware, appear by Furstenberg in print, but it was known to have originated with him.
‡Marstrand’s slicing and projection theorems originally concern orthogonal projections of subsets of the plane and inter-
sections with lines. Images of the Cartesian product 𝑋 × 𝑌 under orthogonal projections are, up to affine transformations
which preserve dimension, sumsets of the form 𝜆𝑋 + 𝜂𝑌, while intersections of 𝑋 × 𝑌 with lines are affinely equivalent
to sets of the form 𝜆𝑋 ∩ (𝜂𝑌 + 𝜎). Also note that for sufficiently regular sets 𝑋 and 𝑌, dimH(𝑋 × 𝑌) = dimH 𝑋 + dimH 𝑌;
see, for example, [33, Corollary 8.11].
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8 of 55 GLASSCOCK et al.

The upper bound on the dimension of fibers in (1.8) suffices to give the lower bound on the
dimension of sumsets necessary for (1.9), aswas observed in [16]; for elaboration on the connection
between the two, see the discussion following [20, Conjecture 1.2]. Shmerkin’smain result in [40],
which concerns the decay of 𝐿𝑞 norms of certain self-similarmeasures of dynamical origin, proves
(1.8) by controlling the Frostman exponent of images of regular measures under projections. We
derive a number of our main theorems from Shmerkin’s work, which we elaborate on further in
Section 2.3.
In an effort to better understand the role that the multiplicative independence between the

bases plays in the sumset theorem, it is natural to ask about the sum of sets that are all structured
with respect to the same base 𝑟. Taking 𝑋 ⊆ [0, 1] to be those numbers that can be written in
decimal with only the digits 0, 1, and 2, we see that the equality in (1.5) need not hold:

log 5

log 10
= dimH(𝑋 + 𝑋) < 2 dimH 𝑋 =

2 log 3

log 10
.

Nevertheless, it is a consequence of the following theorem of Lindenstrauss, Meiri, and Peres
that the dimension of the iterated sumset 𝑋 +⋯ + 𝑋 approaches 1 as the number of summands
increases.

Theorem 1.4 [31, Corollary 1.2]. Let (𝑋𝑖)
∞
𝑖=1

be a sequence of ×𝑟-invariant subsets of [0,1]. If∑∞
𝑖=1 dimH 𝑋𝑖∕| log dimH 𝑋𝑖| diverges, then

lim
𝑛→∞

dimH (𝑋1 +⋯ + 𝑋𝑛) = 1.

This theorem demonstrates that the structure captured by multiplicative invariance sits trans-
versely to the additive structure captured by additive closure: because the sumset 𝑋1 +⋯ + 𝑋𝑛

fills out the entire space (with respect to the Hausdorff dimension), the sets 𝑋𝑖 are not contained
in an additively closed set of dimension less than 1. Dimension growth of iterated sumsets under
weaker regularity conditions was studied recently in [13].
While there is a strong historical precedent for the study of ×𝑟-invariant subsets of the unit

interval, less seems to be known in the integer and 𝑝-adic settings, despite the fact that many of
the same objects and questions can be naturally formulated there.
Furstenberg [15], assuming a positive answer to one of his yet-unresolved transversality con-

jectures in the reals, drew a connection between the real and integer regimes by showing that
given any finite word from the alphabet {0, … , 9}, the decimal expansion of the number 2𝑛 con-
tains that word provided that 𝑛 is sufficiently large. This (conditionally) solves an analog of Erdős’
conjecture mentioned earlier.
The folklore conjecturementioned in the second paragraph in Section 1 is profitably understood

in terms of intersections of restricted digit Cantor sets and, as such, evokes the real transversality
conjecture of Furstenberg in (1.4). Burrell and Yu’s [7] results toward a resolution of this con-
jecture rely heavily on Yu’s work in [47] on improvements to Shmerkin and Wu’s resolution of
Furstenberg’s intersection conjecture. Drawing on results in [47], Yu [44] also shows that there
are few solutions to the equation 𝑥 + 𝑦 = 𝑧 in which the variables come from different integer
restricted digit Cantor sets. Using projection theorems and Newhouse’s gap lemma, Yu [46] fur-
thermore proves that there are infinitely many sums of powers of five that can be written as sums
of powers of three and four.
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ADDITIVE AND GEOMETRIC TRANSVERSALITY OF FRACTAL SETS IN THE INTEGERS 9 of 55

The first author proved in [17, Theorem 1.4] a discrete analog ofMarstrand’s projection theorem,
building on the work of Lima andMoreira in [28]: for all𝐴, 𝐵 ⊆ ℤ satisfying a necessary dimension
condition† and for Lebesgue-a.e. (𝜆, 𝜂) ∈ ℝ2,

dimM (⌊𝜆𝐴 + 𝜂𝐵⌋) = min
(
dimM (𝐴 × 𝐵), 1

)
, (1.10)

where the uppermass dimension, dimM , is defined in (1.12) below, ⌊ ⋅ ⌋ denotes the floor function,
and ⌊𝜆𝐴 + 𝜂𝐵⌋ ∶= {⌊𝜆𝑎 + 𝜂𝑏⌋ || 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵

}
. It is reasonable to conjecture by analogy that if

𝐴 and 𝐵 are restricted digit Cantor sets with respect to multiplicatively independent bases, then
(1.10) would hold for all nonzero 𝜆, 𝜂 ∈ ℝ. We show that this is indeed the case in Theorem C and
its generalizations.

1.3 Main results

Our primary goals for this article are to introduce the study of multiplicatively invariant subsets
of the nonnegative integers and to bring transversality results in the integers more in line with
those in the reals by giving full-fledged analogs of Theorems 1.1, 1.3, and 1.4. To that end, we begin
by introducing an analog of a ×𝑟-invariant set for the integers.
Let 𝑟 ∈ ℕ, 𝑟 ⩾ 2. Defineℜ𝑟 ∶ ℕ0 → ℕ0 and 𝔏𝑟 ∶ ℕ0 → ℕ0 by

ℜ𝑟 ∶ 𝑛 ↦ ⌊𝑛∕𝑟⌋ and 𝔏𝑟 ∶ 𝑛 ↦ 𝑛 − 𝑟𝑘⌊𝑛∕𝑟𝑘⌋,
where 𝑘 = ⌊log 𝑛∕ log 𝑟⌋ when 𝑛 ⩾ 1. The maps ℜ𝑟 and 𝔏𝑟 are best understood using the base-
𝑟 representations of nonnegative integers: if 𝑛 = 𝑎𝑘𝑟

𝑘 +⋯ + 𝑎1𝑟 + 𝑎0, 𝑎𝑘 ≠ 0, is the base-𝑟
representation of 𝑛, then

ℜ𝑟(𝑛) = 𝑎𝑘𝑟
𝑘−1 +⋯ + 𝑎2𝑟 + 𝑎1 and 𝔏𝑟(𝑛) = 𝑎𝑘−1𝑟

𝑘−1 +⋯ + 𝑎1𝑟 + 𝑎0.

In other words, the map ℜ𝑟 “forgets” the least significant digit (the right-most digit, hence the
letterℜ), whereas the map 𝔏𝑟 “forgets” the most significant digit (the left-most digit, hence the
letter 𝔏) in base 𝑟. For example, in base 𝑟 = 10, we have ℜ10(71 393) = 7139 and 𝔏10(71 393) =

1393.

Definition 1.5. A set 𝐴 ⊆ ℕ0 is ×𝑟-invariant if ℜ𝑟(𝐴) ⊆ 𝐴 and 𝔏𝑟(𝐴) ⊆ 𝐴. We call 𝐴 ⊆ ℕ0

multiplicatively invariant if it is ×𝑟-invariant for some 𝑟 ⩾ 2.

It may be helpful to note that a ×𝑟-invariant set 𝐴 need not satisfy 𝑟𝐴 ⊆ 𝐴 and that there are
examples, showing that the condition 𝑟𝐴 ⊆ 𝐴 does not yield a natural integer analog of the notion
of ×𝑟-invariance on the unit interval; see Section 4.4.
There are many natural examples of ×𝑟-invariant subsets of ℕ0. Integer base-𝑟 restricted digit

Cantor sets, defined in (1.1), are clearly ×𝑟-invariant. More general examples arise from symbolic
subshifts of {0, 1, … , 𝑟 − 1}ℕ0 . For any closed and left-shift-invariant set Σ ⊆ {0, 1, … , 𝑟 − 1}ℕ0 , the

† The condition is that the upper mass dimension of 𝐴 × 𝐵 is equal to the upper counting dimension of 𝐴 ×

𝐵. The upper mass dimension is defined in (1.12), while the upper counting dimension of 𝐴 × 𝐵 is equal to
lim sup𝑁→∞ max𝑧∈ℤ2 log ||(𝐴 × 𝐵) ∩ (𝑧 + {−𝑁,… ,𝑁}2)||/ log𝑁.
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10 of 55 GLASSCOCK et al.

corresponding language set is defined by

(Σ) = {
𝑤0𝑤1⋯𝑤𝑘

|| 𝑤0𝑤1⋯ ∈ Σ, 𝑘 ∈ ℕ0

}
.

Any language set naturally embeds in two ways into the nonnegative integers as{
𝑤0𝑟

𝑘 +⋯ + 𝑤𝑘−1𝑟 + 𝑤𝑘
|| 𝑤0𝑤1⋯𝑤𝑘 ∈ (Σ)},{

𝑤𝑘𝑟
𝑘 +⋯ + 𝑤1𝑟 + 𝑤0

|| 𝑤0𝑤1⋯𝑤𝑘 ∈ (Σ)},
yielding sets that are ×𝑟-invariant. For more details, see Definition 3.9 and Proposition 3.10, and
for more such examples, see Examples 3.12. As yet another source of ×𝑟-invariant subsets of the
nonnegative integers, we note that if 𝑋 is a ×𝑟-invariant subset of [0,1], then the set⋃

𝑘∈ℕ0

{⌊𝑟𝑘𝑥⌋ || 𝑥 ∈ 𝑋
}

can be shown to be ×𝑟-invariant; see Section 3.4 for more details.
Our first result in the integer setting is an analog of Theorem 1.1 that demonstrates that there

are no nontrivial examples of sets that exhibit structure simultaneously with respect tomultiplica-
tively independent bases. Theorem A is proved in Section 4.1 by expanding on the well-known
argument that all nonzero decimal digits appear as the most significant digit of 2𝑛. We define
[𝑋]𝛿 ∶= {𝑧 ∈ ℝ | ∃𝑥 ∈ 𝑋 with |𝑧 − 𝑥| ⩽ 𝛿} to be the 𝛿-neighborhood of the set 𝑋.

Theorem A. Let 𝑟 and 𝑠 be multiplicatively independent positive integers, and let 𝐴, 𝐵 ⊆ ℕ0 be ×𝑟-
and ×𝑠-invariant sets, respectively. If 𝜆, 𝜂 > 0, 𝜎, 𝜏 ∈ ℝ and 𝛿 > 0 are such that

𝜆𝐴 + 𝜏 ⊆ [𝜂𝐵 + 𝜎]𝛿, (1.11)

then either 𝐴 is finite or 𝐵 = ℕ0.

To measure the size of multiplicatively invariant subsets of ℕ0 and their sumsets and Carte-
sian products, we make use of two notions of dimension in the integers that parallel the classical
Minkowski and Hausdorff dimensions from geometric measure theory. The discrete analog of
the lower and upper Minkowski dimension are the lower and upper mass dimensions, defined for
𝐴 ⊆ ℕ𝑑

0
as

dimM𝐴 = lim inf
𝑁→∞

log |𝐴 ∩ [0,𝑁)𝑑|
log𝑁

= sup

{
𝛾 ⩾ 0

||||| lim inf
𝑁→∞

||𝐴 ∩ [0,𝑁)𝑑||
𝑁𝛾

> 0

}
,

dimM𝐴 = lim sup
𝑁→∞

log |𝐴 ∩ [0,𝑁)𝑑|
log𝑁

= sup

{
𝛾 ⩾ 0

||||| lim sup
𝑁→∞

||𝐴 ∩ [0,𝑁)𝑑||
𝑁𝛾

> 0

}
. (1.12)

Whenever dimM𝐴 = dimM𝐴, we say that themass dimension of𝐴 exists and denote it by dimM𝐴.
In analogy to the way in which the classical Hausdorff dimension can be defined in terms of the
unlimited Hausdorff content (see Section 2.1), the lower and upper discrete Hausdorff dimensions
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ADDITIVE AND GEOMETRIC TRANSVERSALITY OF FRACTAL SETS IN THE INTEGERS 11 of 55

of 𝐴 are defined to be

dimH𝐴 = sup

{
𝛾 ⩾ 0

|||||| lim inf
𝑁→∞

𝛾
⩾1

(
𝐴 ∩ [0,𝑁)𝑑

)
𝑁𝛾

> 0

}
,

dimH𝐴 = sup

{
𝛾 ⩾ 0

|||||| lim sup
𝑁→∞

𝛾
⩾1

(
𝐴 ∩ [0,𝑁)𝑑

)
𝑁𝛾

> 0

}
,

where the discrete 𝛾-Hausdorff content, 𝛾
⩾1
, is defined in Definition 2.2. If these two quanti-

ties agree then we say that the discrete Hausdorff dimension of 𝐴, dimH𝐴, exists and is equal
to this quantity.
The mass dimension and the upper discrete Hausdorff dimension are systematically studied

along with a host of other discrete dimensions in [5]. We discuss these notions of dimension and
the interplay between them at greater length in Section 3.1. For the current discussion, it is helpful
to know that

dimH ⩽ dimM ⩽ dimM and dimH ⩽ dimH ⩽ dimM ,

and that for any ×𝑟-invariant set 𝐴 ⊆ ℕ0, both the mass dimension dimM𝐴 and the discrete
Hausdorff dimension dimH𝐴 exist and coincide; see Proposition 3.6.
Our next main results in the integer setting demonstrate geometric and additive combinato-

rial transversality between ×𝑟- and ×𝑠-invariant subsets of integers. Thus, these results parallel
the results of Hochman and Shmerkin, Shmerkin, and Wu by verifying analogs of Furstenberg’s
intersection and sumset conjectures.
Let 𝑟 and 𝑠 be multiplicatively independent positive integers, and let 𝐴, 𝐵 ⊆ ℕ0 be ×𝑟- and ×𝑠-

invariant sets, respectively. Define 𝛾 = max (0, dimH𝐴 + dimH 𝐵 − 1). (In what follows, recall
the use of the floor notation ⌊ ⋅ ⌋ described just after (1.10) above.)
Theorem B. For all 𝜀, 𝜆, 𝜂 > 0, 𝜎, 𝜏 ∈ ℝ, and sufficiently large𝑁 ∈ ℕ,

||⌊𝜆(𝐴 ∩ [0,𝑁)) + 𝜏⌋ ∩ ⌊𝜂(𝐵 ∩ [0,𝑁)) + 𝜎⌋|| ⩽ 𝑁𝛾+𝜀.

In particular, for all 𝜆, 𝜂 > 0 and 𝜎, 𝜏 ∈ ℝ,

dimM (⌊𝜆𝐴 + 𝜏⌋ ∩ ⌊𝜂𝐵 + 𝜎⌋) ⩽ max (0, dimH𝐴 + dimH 𝐵 − 1).

The upper bound on the dimension of the set ⌊𝜆𝐴 + 𝜏⌋ ∩ ⌊𝜂𝐵 + 𝜎⌋ in Theorem B provides an
analog in the integers to the result of Shmerkin and Wu in (1.8) in the reals. Theorem B will
be derived as a corollary of Theorem 4.3, a stronger result proved in Section 4.2 in which we
demonstrate that the upper bound on ||⌊𝜆 (𝐴 ∩ [0,𝑁)) + 𝜏⌋ ∩ ⌊𝜂 (𝐵 ∩ [0,𝑁)) + 𝜎⌋|| is uniform over
a compact set of scaling parameters.
Our next theorem gives an integer analog of the result of Hochman and Shmerkin in (1.9).

We bound both the cardinality and the discrete Hausdorff content of the set ⌊𝜆𝐴′ + 𝜂𝐵′⌋ from
below in terms of the cardinality and the discrete Hausdorff content of the product set 𝐴′ × 𝐵′,
where 𝐴′ and 𝐵′ are arbitrary subsets of 𝐴 and 𝐵. Note that dimH(𝐴 × 𝐵) = dimH𝐴 + dimH 𝐵

holds because 𝐴 and 𝐵 are multiplicatively invariant (see Corollary 3.8), but this equality need
not hold for arbitrary subsets 𝐴′ ⊆ 𝐴 and 𝐵′ ⊆ 𝐵. Hence, the role played by dimH𝐴 + dimH 𝐵 in
Theorem B is now played by dimH(𝐴

′ × 𝐵′) in this next result.
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12 of 55 GLASSCOCK et al.

TheoremC. For all 𝜀, 𝜆, 𝜂 > 0, 𝛾 ∈ [0, 1], sufficiently large𝑁 and nonempty𝐴′ ⊆ 𝐴 ∩ [0,𝑁), 𝐵′ ⊆

𝐵 ∩ [0,𝑁),

||⌊𝜆𝐴′ + 𝜂𝐵′
⌋|| ⩾ |𝐴′ × 𝐵′|

𝑁𝛾+𝜀
, and

𝛾
⩾1

(⌊
𝜆𝐴′ + 𝜂𝐵′

⌋)
𝑁𝛾

≫𝜀,𝜆,𝜂,𝛾

𝛾+𝛾+𝜀
⩾1

(
𝐴′ × 𝐵′

)
𝑁𝛾+𝛾+𝜀

.

In particular, for all dim ∈ {dimM , dimM , dimH , dimH },

dim (⌊𝜆𝐴 + 𝜂𝐵⌋) = min (1, dim(𝐴 × 𝐵)),

and, if dimH𝐴 + dimH 𝐵 ⩽ 1, then for all 𝐴′ ⊆ 𝐴, 𝐵′ ⊆ 𝐵,

dim
(⌊𝜆𝐴′ + 𝜂𝐵′⌋) = dim

(
𝐴′ × 𝐵′

)
.

Just as with Theorem B, we derive Theorem C from a more general result, Theorem 4.6 proved
in Section 4.3, which demonstrates that the inequalities in Theorem C hold uniformly over the
scaling parameters 𝜆 and 𝜂. Both Theorem B and Theorem C are proved by combing the uni-
formity in Shmerkin’s main theorem in [40] with tools from ergodic theory in an appropriate
symbolic dynamic setting. It remains an interesting question whether there is a direct way of
deriving Theorem C from Theorem B, in analogy to the continuous setting where it is known that
upper bounds on the dimension of fibers imply lower bounds on the dimension of sumsets.
Our final main result in the integer setting is an analog of Theorem 1.4 concerning the dimen-

sion of iterated sumsets of ×𝑟-invariant sets. Our deduction of Theorem D from Theorem 1.4
highlights the flexibility of the machinery developed in this paper to transfer results from the
reals to the integers.

TheoremD. Let (𝐴𝑖)
∞
𝑖=1

be a sequence of×𝑟-invariant subsets ofℕ0. If
∑∞

𝑖=1 dimH𝐴𝑖∕| log dimH𝐴𝑖|
diverges, then

lim
𝑛→∞

dimH (𝐴1 +⋯ + 𝐴𝑛) = 1.

In the same way as in the continuous regime, this theorem demonstrates that the structure
captured by ×𝑟-invariance in ℕ0 sits transversely to the additive structure captured by additive
closure. It also demonstrates the connection between ×𝑟-invariant subsets of the integers and ×𝑟-
invariant subsets of [0,1], and it will serve to emphasize the rolemultiplicative independence plays
in the other results in this section.

1.4 Overview of the paper

The paper is organized as follows. In Section 2, we derive the intersection and sumset transver-
sality results for multiplicatively invariant subsets of [0,1] from the main result in [40]. We begin
Section 3 with the basic facts and results we need from discrete fractal geometry in Section 3.1
and continue by connecting ×𝑟-invariant subsets of ℕ0 to symbolic dynamics andmultiplicatively
invariant subsets of the reals. Section 3 lays the groundwork for Section 4, where we prove our
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ADDITIVE AND GEOMETRIC TRANSVERSALITY OF FRACTAL SETS IN THE INTEGERS 13 of 55

main results: Theorems A–D.We construct an example in Section 4.4 that demonstrates that The-
orem C is not expected to hold under weaker assumptions. Finally, we conclude the paper with
Section 5 by outlining a number of open problems and directions.

2 SUMS AND INTERSECTIONS OFMULTIPLICATIVELY
INVARIANT SUBSETS OF THE REALS

In this section, we prove that subsets of [0,1] that are multiplicatively invariant with respect to
multiplicatively independent bases are both geometrically and additive combinatorially trans-
verse. Our theorems are derived from themain result of Shmerkin [40], but we give particular care
on emphasizing the “uniformity” in the parameters. While most of the results in this section are
already implicit in the literature, we spell out the full details to have the precise statements we
need, and we provide complete proofs for the benefit of nonexperts.
This is the only section in the paper in which we draw on classical fractal geometry, so we begin

by establishing the basic terminology and results.
The set of real numbers, ℝ, is equipped with the usual Euclidean metric, and, for convenience,

all product spaces in the work are endowed with the 𝐿1 (taxicab) metric. The distance between
𝑥, 𝑦 ∈ ℝ𝑑 is denoted by |𝑥 − 𝑦|, and the open ball centered at 𝑥with radius 𝛿 is denoted by𝐵(𝑥, 𝛿).
Throughout the paper, ameasure refers to a nonnegative-valued Radon measure on ℝ𝑑. The total
mass of a measure 𝜇 is ‖𝜇‖ ∶= 𝜇(ℝ𝑑), and its support is denoted as supp𝜇. The push-forward of
𝜇 under a map 𝜑 is denoted as 𝜑𝜇, so that 𝜑𝜇(𝐵) = 𝜇(𝜑−1𝐵) for all measurable sets 𝐵.
Finally, given two positive-valued functions 𝑓 and g , we write 𝑓 ≪𝑎1,…,𝑎𝑘

g if there exists a
constant 𝑐 > 0 depending only on the quantities 𝑎1, … , 𝑎𝑘 for which 𝑓(𝑥) ⩽ 𝑐g(𝑥) for all 𝑥 in the
domain common to both 𝑓 and g . We write 𝑓 ≍𝑎1,…,𝑎𝑘

g if both 𝑓 ≪𝑎1,…,𝑎𝑘
g and 𝑓 ≫𝑎1,…,𝑎𝑘

g .

2.1 Fractal geometry of sets and measures in Euclidean space

In this subsection, we give a terse summary of the necessary notation, terminology, and basic
results from traditional fractal geometry. The reader interested in learning more will find most of
this material in Mattila [33, Ch. 4]. Throughout this subsection, 𝜌 and 𝛾 are positive real numbers
and 𝑋 ⊆ ℝ𝑑 is nonempty.

Definition 2.1.

∙ The set 𝑋 is 𝜌-separated if for all distinct 𝑥1, 𝑥2 ∈ 𝑋, |𝑥1 − 𝑥2| ⩾ 𝜌.
∙ The packing number of 𝑋 (sometimes also called the metric entropy of 𝑋) at scale 𝜌 is

 (𝑋, 𝜌) = sup
{|𝑋0| || 𝑋0 ⊆ 𝑋 is 𝜌-separated

}
.

∙ The upper Minkowski dimension of 𝑋 is

dimM𝑋 = lim sup
𝜌→0+

log (𝑋, 𝜌)

log 𝜌−1
.

The lower Minkowski dimension, dimM𝑋, is defined analogously with a limit infimum in place
of the limit supremum. If the lower and upper Minkowski dimensions agree, then that value
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14 of 55 GLASSCOCK et al.

is the Minkowski dimension of 𝑋, dimM 𝑋. It is easy to check that for all 𝜌 < 1, dimM𝑋 =

lim sup𝑁→∞ log (𝑋, 𝜌−𝑁)
/
log 𝜌𝑁 and similarly for dimM𝑋.

Definition 2.2.

∙ The discrete Hausdorff content of 𝑋 at scale 𝜌 and dimension 𝛾 is

𝛾
⩾𝜌(𝑋) = inf

{∑
𝑖∈𝐼

𝛿
𝛾
𝑖

||||| 𝑋 ⊆
⋃
𝑖∈𝐼

𝐵𝑖, 𝐵𝑖 open ball of diameter 𝛿𝑖 ⩾ 𝜌

}
.

∙ The unlimited Hausdorff content at dimension 𝛾 of 𝑋 is

𝛾
>0
(𝑋) = inf

{∑
𝑖∈𝐼

𝛿
𝛾
𝑖

||||| 𝑋 ⊆
⋃
𝑖∈𝐼

𝐵𝑖, 𝐵𝑖 open ball of diameter 𝛿𝑖 > 0

}
.

∙ The Hausdorff dimension of 𝑋 is

dimH 𝑋 = sup{𝛾 ∈ ℝ |𝛾
>0
(𝑋) > 0} = inf {𝛾 ∈ ℝ |𝛾

>0
(𝑋) = 0}.

Note that if𝑋 is compact, the index set 𝐼 in the definitions of𝛾
⩾𝜌(𝑋) and𝛾

>0
(𝑋)may be taken

to be finite.

Remark 2.3. The discrete Hausdorff content tends to the unlimited Hausdorff content in the limit
as the scale tends to zero. More precisely, for 𝑋 ⊆ ℝ𝑑 compact and 𝛾 ⩾ 0,

lim
𝜌→0+

𝛾
⩾𝜌(𝑋) = 𝛾

>0
(𝑋).

It follows that if lim𝜌→0𝛾
⩾𝜌(𝑋) > 0, then dimH 𝑋 ⩾ 𝛾. The proof is straightforward; see

[18, Lemma 2.4].

Recall the notation [𝑋]𝛿 for the 𝛿-neighborhood of 𝑋:

[𝑋]𝛿 ∶=
{
𝑧 ∈ ℝ𝑑 || ∃𝑥 ∈ 𝑋 with |𝑧 − 𝑥| ⩽ 𝛿

}
.

The Hausdorff distance between two nonempty, compact sets 𝑋,𝑌 ⊆ ℝ𝑑 is

𝑑𝐻(𝑋, 𝑌) ∶= inf
{
𝛿 > 0 || 𝑋 ⊆ [𝑌]𝛿 and 𝑌 ⊆ [𝑋]𝛿

}
.

By the Blaschke selection theorem, the set of all nonempty, compact subsets of ℝ𝑑 equipped with
the Hausdorff distance is a complete metric space.

Lemma 2.4. Suppose𝑋,𝑌 ⊆ ℝ𝑑 are nonempty, compact and𝑋 ⊆ [𝑌]𝛿 . For all nonempty, compact
𝑋′ ⊆ 𝑋, there exists a nonempty, compact 𝑌′ ⊆ 𝑌 such that 𝑑𝐻(𝑋′, 𝑌′) ⩽ 𝛿.

Proof. Define𝑌′ = 𝑌 ∩ [𝑋′]𝛿. By definition, the set𝑌′ is compact and𝑌′ ⊆ [𝑋′]𝛿. Since𝑋′ ⊆ [𝑌]𝛿,
the set 𝑌′ is nonempty. To see that𝑋′ ⊆ [𝑌′]𝛿, let 𝑥 ∈ 𝑋′. Since𝑋 ⊆ [𝑌]𝛿, there exists 𝑦 ∈ 𝑌 such
that |𝑥 − 𝑦| ⩽ 𝛿. This implies that 𝑦 ∈ 𝑌 ∩ [𝑋′]𝛿, which shows that 𝑥 ∈ [𝑌 ∩ [𝑋′]𝛿]𝛿 = [𝑌′]𝛿, as
was to be shown. □
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ADDITIVE AND GEOMETRIC TRANSVERSALITY OF FRACTAL SETS IN THE INTEGERS 15 of 55

We proceed with a number of straightforward lemmas that describe how the packing number
and discrete Hausdorff content behave as functions of the set and the scale. We include full proofs
for completeness.

Lemma 2.5. For all 𝑎, 𝜌 > 0, all nonempty, compact sets 𝑋,𝑌 ⊆ ℝ𝑑 satisfying 𝑋 ⊆ [𝑌]𝑎𝜌, and all
𝛾 ∈ [0, 𝑑],

 (𝑋, 𝜌) ≪𝑎,𝑑  (𝑌, 𝜌), (2.1)

𝛾
⩾𝜌(𝑋) ≪𝑎,𝑑 𝛾

⩾𝜌(𝑌). (2.2)

Proof. Let 𝑋′ ⊆ 𝑋 be a maximal 𝜌-separated subset of 𝑋. Define a map 𝜋 ∶ 𝑋′ → 𝑌 by choosing
for each point 𝑥 ∈ 𝑋′ a point 𝜋𝑥 ∈ 𝑌 such that |𝑥 − 𝜋𝑥| ⩽ 𝑎𝜌. Define 𝑌′ = 𝜋𝑋′. Since 𝑋′ is 𝜌-
separated, there are at most 𝐶 = 𝐶(𝑎, 𝑑) > 0 many points of 𝑋′ in any closed ball of radius (𝑎 +

1)𝜌. It follows that the map 𝜋 is at most 𝐶-to-1, and hence, that |𝑌′| ≫𝑎,𝑑 |𝑋′|. It also follows that
there are at most 𝐶 many points of 𝑌′ in any closed ball of radius 𝜌. Therefore, the set 𝑌′ can be
thinned to a set 𝑌′′ ⊆ 𝑌′ that is 𝜌-separated and that satisfies |𝑌′′| ≫𝑎,𝑑 |𝑌′|. Combining these
observations,

 (𝑋, 𝜌) = |𝑋′| ≪𝑎,𝑑 |𝑌′| ≪𝑎,𝑑 |𝑌′′| ⩽  (𝑌, 𝜌),

which verifies (2.1).
To show (2.2), let {𝐵𝑖}𝑖∈𝐼 be a collection of open balls that covers 𝑌 and where 𝐵𝑖 has diameter

𝑟𝑖 ⩾ 𝜌 and
∑

𝑖∈𝐼 𝑟
𝛾
𝑖
< 2𝛾

⩾𝜌(𝑌). It follows that 𝑋 ⊆
⋃

𝑖∈𝐼[𝐵𝑖]𝑎𝜌 and [𝐵𝑖]𝑎𝜌 is a ball of diameter 𝑟𝑖 +
2𝑎𝜌 ⩽ (2𝑎 + 1)𝑟𝑖 . Therefore,𝛾

⩾𝜌(𝑋) ⩽
∑

𝑖∈𝐼((2𝑎 + 1)𝑟𝑖)
𝛾 ⩽ 2(2𝑎 + 1)𝑑𝛾

⩾𝜌(𝑌). □

Lemma 2.6. For all 𝑎, 𝜌 > 0, all nonempty, compact 𝑋 ⊆ ℝ𝑑, and all 𝛾 ∈ [0, 𝑑],

 (𝑋, 𝜌) ≍𝑎,𝑑  (𝑋, 𝑎𝜌),

𝛾
⩾𝜌(𝑋) ≍𝑎,𝑑 𝛾

⩾𝑎𝜌(𝑋).

Proof. Replacing 𝜌 with 𝑎𝜌, we may assume without loss of generality in both statements that
0 < 𝑎 ⩽ 1.
Since 0 < 𝑎 ⩽ 1, we have that (𝑋, 𝜌) ⩽  (𝑋, 𝑎𝜌). To see the reverse inequality, let 𝑋′ ⊆ 𝑋

be a maximal (𝑎𝜌)-separated subset of 𝑋. Since the set 𝑋′ intersects any ball of diameter 𝜌 in at
most ≪𝑎,𝑑 1 many points, it may be thinned to an 𝜌-separated subset 𝑋′′ of 𝑋′ with cardinality|𝑋′′| ≫𝑎,𝑑 |𝑋′|. Therefore, (𝑋, 𝑎𝜌) = |𝑋′| ≪𝑎,𝑑 |𝑋′′| ⩽  (𝑋, 𝜌).
Since 0 < 𝑎 ⩽ 1, we have that 𝛾

⩾𝑎𝜌 (𝑋) ⩽ 𝛾
⩾𝜌 (𝑋). To see the reverse inequality, let 𝑋 ⊆ ∪𝑖𝐵𝑖

be an open cover of 𝑋 by balls 𝐵𝑖 with diam𝐵𝑖 ⩾ 𝑎𝜌 and
∑

𝑖(diam𝐵𝑖)
𝛾 ⩽ 2𝛾

⩾𝑎𝜌(𝑋). Replace 𝐵𝑖

with an open ball 𝐶𝑖 with the same center and with diameter diam𝐵𝑖∕𝑎. Since 𝐵𝑖 ⊆ 𝐶𝑖 , we have
that 𝑋 ⊆ ∪𝑖𝐶𝑖 is an open cover of 𝑋 by balls 𝐶𝑖 with diam𝐶𝑖 ⩾ 𝜌. Therefore,

𝛾
⩾𝜌(𝑋) ⩽

∑
𝑖

(diam𝐶𝑖)
𝛾 = 𝑎−𝛾

∑
𝑖

(diam𝐵𝑖)
𝛾 ⩽ 2𝑎−𝛾𝛾

⩾𝑎𝜌(𝑋),

as was to be shown. □
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16 of 55 GLASSCOCK et al.

Lemma2.7. For all𝜌 > 0, all nonempty, compact𝑋 ⊆ ℝ𝑑, all Lipschitz𝜑 ∶ ℝ𝑑 → ℝ𝑘 with Lipschitz
constant 𝑎 > 0, and all 𝛾 ∈ [0, 𝑑],

 (𝜑(𝑋), 𝜌) ≪𝑎,𝑑  (𝑋, 𝜌),

𝛾
⩾𝜌(𝜑(𝑋)) ≪𝑎,𝑑 𝛾

⩾𝜌(𝑋).

Proof. Let 𝑋′ ⊆ 𝑋 be such that 𝜑(𝑋′) is a maximal 𝜌-separated subset of 𝜑(𝑋). Since 𝜑 has
Lipschitz constant 𝑎, the points of 𝑋′ are 𝜌∕𝑎-separated. Thus, by Lemma 2.6,

 (𝜑(𝑋), 𝜌) = |𝑋′| ⩽  (𝑋, 𝜌∕𝑎) ≪𝑎,𝑑  (𝑋, 𝜌).

verifying the first inequality.
To see the second inequality, note that if 𝐵 is an open ball in ℝ𝑑, then the diameter of 𝜑(𝐵)

is bounded from above by 𝑎 ⋅ diam𝐵. Hence, there exists an open ball 𝐶 ⊆ ℝ𝑘 with diam𝐵 ⩽

diam𝐶 ⩽ max(𝑎, 1) diam𝐵 and such that 𝜑(𝐵) ⊆ 𝐶.
If ∪𝑖𝐵𝑖 is a cover of 𝑋 by open balls 𝐵𝑖 with diam𝐵𝑖 ⩾ 𝜌, then, finding for each 𝐵𝑖 a ball 𝐶𝑖 as

described above, we obtain a cover ∪𝑖𝐶𝑖 of the image set 𝜑(𝑋) by open balls 𝐶𝑖 ⊆ ℝ𝑘 with 𝜌 ⩽

diam𝐶𝑖 ⩽ max(𝑎, 1) diam𝐵𝑖 . It follows that

𝛾
⩾𝜌(𝜑(𝑋)) ⩽ max(𝑎, 1)𝛾 𝛾

⩾𝜌(𝑋),

as was to be shown. □

Definition 2.8. The real number 𝛾 is aFrostman exponent for ameasure𝜇 if there exists a constant
𝑐 > 0 such that for all balls 𝐵 ⊆ ℝ𝑑,

𝜇(𝐵) ⩽ 𝑐(diam𝐵)𝛾. (2.3)

If (2.3) holds only for balls 𝐵 of diameter greater than/less than 𝜌, then 𝛾 is a Frostman exponent
at scales larger than/smaller than 𝜌, respectively.

The following lemmas are discrete versions of the well-known mass distribution principle
and Frostman’s lemma. This pair of results describes a close relationship between the discrete
Hausdorff content of a set and the Frostman exponents of measures supported on that set.

Lemma 2.9 (cf. [6, Lemma 1.2.8]). Let 𝑐, 𝜌 > 0 and 𝜇 be a measure on ℝ𝑑 . If for all balls 𝐵 ⊆ ℝ𝑑 of
diameter at least 𝜌 we have 𝜇(𝐵) ⩽ 𝑐(diam𝐵)𝛾, then𝛾

⩾𝜌(supp𝜇) ⩾ ‖𝜇‖∕𝑐.
Proof. Let 𝜀 > 0, and let {𝐵𝑖}𝑖∈𝐼 be a cover of supp𝜇 with balls 𝐵𝑖 of diameter 𝛿𝑖 ⩾ 𝜌 and with∑

𝑖∈𝐼 𝛿
𝛾
𝑖
⩽ (1 + 𝜀)𝛾

⩾𝜌(supp𝜇). Then,

‖𝜇‖ ⩽ 𝜇

(⋃
𝑖

𝐵𝑖

)
⩽
∑
𝑖

𝑐𝛿
𝛾
𝑖
⩽ 𝑐(1 + 𝜀)𝛾

⩾𝜌(supp𝜇).

The conclusion follows because 𝜀 > 0 was arbitrary. □

Lemma 2.10. There exists a constant 𝑐 > 0, depending only on the dimension 𝑑 ∈ ℕ, for which the
following holds. For all nonempty, compact 𝑋 ⊆ [0, 1]𝑑 and all 𝜌, 𝛾 > 0, there exists a measure 𝜇
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ADDITIVE AND GEOMETRIC TRANSVERSALITY OF FRACTAL SETS IN THE INTEGERS 17 of 55

supported on 𝑋 with ‖𝜇‖ ⩾ 𝛾
⩾𝜌(𝑋) and with the property that for all balls 𝐵 of diameter at least 𝜌,

𝜇(𝐵) ⩽ 𝑐(diam𝐵)𝛾.

Proof. This requires only a small modification to the proof of Frostman’s Lemma found
in [6, Lemma 3.1.1]. By adjusting the constant 𝑐, it suffices to prove the lemma for 𝜌 of the form 2−𝑘.
Construct the 2-adic tree corresponding to the set 𝑋 down to level 𝑘. More precisely, the vertices
of the tree at level 𝓁 are the closed, 2-adic cubes of the form

[
𝑖1

2𝓁
,
𝑖1 + 1

2𝓁

]
×⋯ ×

[
𝑖𝑑

2𝓁
,
𝑖𝑑 + 1

2𝓁

]
for some 𝑖1, … , 𝑖𝑑 ∈ {0, … , 2𝓁 − 1},

which have nonempty intersection with the set 𝑋. Two vertices are adjacent in the tree if one of
the corresponding cubes contains the other. Associate to each leaf 𝑣 (i.e., a vertex at level 𝑘) of the
tree an arbitrary point 𝑥𝑣 in 𝑋 that belongs to the corresponding 2-adic cube.
Instead of defining a measure 𝜇 on the space of infinite paths through the tree as is done in

[6], we define 𝜇 to be an atomic measure supported on the finite set 𝑆 = {𝑥𝑣 | 𝑣 is a leaf} that are
associated to leaves of the tree.
Let 𝐸 be the set of edges in the tree. We define an edge conductance (or capacity) func-

tion 𝑐 ∶ 𝐸 → [0, 1] as follows: an edge 𝑒 connecting vertices on levels 𝓁 − 1 and 𝓁 is given an
edge conductance of 𝑐(𝑒) = 2−𝓁𝛾. Fix a maximal flow 𝑓 ∶ 𝐸 → [0, 1] from the root of the tree
to the leaves. This means that for every vertex 𝑣 of the tree that is neither the root nor one
of the leafs, the sum of 𝑓(𝑒) over all edges connecting 𝑣 to a vertex at a higher level equals
the value of 𝑓 on the (unique) edge connecting 𝑣 to a vertex of a lower level. Moreover, 𝑓 is
restricted by the conductance (so that 𝑓(𝑒) ⩽ 𝑐(𝑒) for all 𝑒 ∈ 𝐸) and attains the highest possi-
ble value (among all such flows 𝑓) of the sum over all edges connecting to a leaf. Define the
𝜇-mass of each point 𝑥𝑣 ∈ 𝑆 to be equal to the value of 𝑓 on the (unique) edge adjacent to the
leaf 𝑣.
Every 2-adic cube 𝐵 with 2−𝑘 ⩽ diam𝐵 ⩽ 2−1 and with nonempty intersection with 𝑋 corre-

sponds to an edge in the tree. By the choice of edge conductance and the fact that the maximal
flow is a legal flow, 𝜇(𝐵) ⩽ (diam𝐵)𝛾. (Note that this inequality also holds for 𝐵 = [0, 1]𝑑.) A 2-
adic grid cover of 𝑋 with cells of diameter at least 2−𝑘 corresponds to a cut-set of the tree. By the
MaxFlow-MinCut theorem, the measure 𝜇 has total mass equal to the minimum cut, which is
necessarily greater than𝛾

⩾2−𝑘
(𝑋), concluding the proof of the lemma. □

2.2 Multiplicatively invariant sets and restricted digit Cantor sets

In this short subsection, we record some basic facts about multiplicatively invariant subsets of
[0,1] and the subclass of restricted digit Cantor sets.

Definition 2.11. Let 𝑟 ∈ ℕ, 𝑟 ⩾ 2, and 𝑋 ⊆ [0, 1].

∙ The map 𝑇𝑟 ∶ [0, 1] → [0, 1] is defined by 𝑇𝑟𝑥 = {𝑟𝑥}, the fractional part of the real number 𝑟𝑥.
∙ The set 𝑋 is ×𝑟-invariant if it is closed and 𝑇𝑟𝑋 ⊆ 𝑋.
∙ The set 𝑋 ismultiplicatively invariant if it is ×𝑟-invariant for some 𝑟 ⩾ 2.

We stress that, by our definition, all multiplicatively invariant sets are closed.
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18 of 55 GLASSCOCK et al.

Multiplicatively invariant sets behave well in regards to dimension: their Hausdorff and
Minkowski dimensions agree, and so by [33, Theorem 8.10], the dimension of a Cartesian products
of such sets is the sum of the dimensions of the factors.

Lemma2.12. If𝑋,𝑌 ⊆ [0, 1]aremultiplicatively invariant, thendimH 𝑋 = dimM 𝑋 anddimH(𝑋 ×

𝑌) = dimM(𝑋 × 𝑌) = dimH 𝑋 + dimH 𝑌.

Proof. The first fact is proven in [14, Proposition III.1]. The second follows immediately from
[33, Corollary 8.11] and the fact that dimH 𝑋 = dimM𝑋. □

Restricted digit Cantor sets are important examples of multiplicatively invariant sets, and the
natural Bernoulli measures they support will play an important role in the theorems in this
section.

Definition 2.13.

∙ The base-𝑟 restricted digit Cantor set with digits from ⊆ {0, … , 𝑟 − 1} is

𝑟, =

{
∞∑
𝑖=1

𝑑𝑖
𝑟𝑖

||||| (𝑑𝑖)𝑖∈ℕ ⊆ 
}

,

the set of those real numbers in [0,1] expressible in base-𝑟 using only digits from.
∙ The base-𝑟 restricted digit Cantor measure with digits from ⊆ {0, … , 𝑟 − 1}, denoted as 𝜇𝑟,, is
the (1∕||)-Bernoulli measure on 𝑟,, defined as

𝜇𝑟,
([

𝑗

𝑟𝑖
,
𝑗 + 1

𝑟𝑖

))
=

{||−𝑖 if
[
𝑗

𝑟𝑖
,
𝑗+1

𝑟𝑖

)
∩ 𝑟, ≠ ∅

0 otherwise
.

∙ The dimension† of themeasure 𝜇𝑟, is dim𝜇𝑟, ∶= log ||∕ log 𝑟. We also define the dimension
of a product of such measures to be the sum of the dimensions of the factors.

The dimensions of a product of restricted digit Cantor sets 𝑟,𝑟
× 𝑠,𝑠

and of its associated
product measure 𝜇 ∶= 𝜇𝑟,𝑟

× 𝜇𝑠,𝑠
coincide and are equal to log 𝑟∕ log |𝑟| + log 𝑠∕ log |𝑠|. In

fact, such ameasure 𝜇 is highly regular, in the sense that for all balls 𝐵 ⊆ ℝ2 of diameter 0 < 𝛿 < 1

centered at a point in the support of 𝜇,

𝜇(𝐵) ≍ 𝛿dim𝜇, (2.4)

where the asymptotic constants are independent of 𝛿. This follows from the fact that such an
estimate holds for single restricted digit Cantor measures, an easy exercise left to the reader.
While multiplicatively invariant sets can be vastly more complicated than restricted digit Can-

tor sets, the following lemma shows that the former can be approximated fromabove (with respect
to dimension) by the latter. The result is well known; for a proof, see [43, Prop. 9.3].

† There aremany natural and useful ways to define the dimension of ameasure. In this paper, wewill need only to consider
the dimension of products of restricted digit Cantor measures, a class of measures for which most notions of dimension
coincide. Thus, we define “dim𝜇” for such measures 𝜇 in a highly specialized way instead of giving a general definition
of the symbol.
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ADDITIVE AND GEOMETRIC TRANSVERSALITY OF FRACTAL SETS IN THE INTEGERS 19 of 55

Lemma 2.14. Let𝑋 ⊆ [0, 1] bemultiplicatively invariant. For all 𝜀 > 0, there exists a restricted digit
Cantor set 𝑋′ containing 𝑋 such that dimH 𝑋′ < dimH 𝑋 + 𝜀.

2.3 A uniform Frostman exponent projection theorem

For 𝑡 ∈ ℝ, denote by Π𝑡 ∶ ℝ2 → ℝ the oblique projection Π𝑡(𝑥, 𝑦) = 𝑥 + 𝑡𝑦. The goal in this sub-
section is to prove Theorem 2.15 below, which is a result about Frostman exponents for oblique
projections of products of restricted digit Cantor measures. This theorem follows implicitly from
the results in [40], but since the exact statement does not appear in the literature, we provide a
complete proof. We stress the uniformity over the projection parameter 𝑡, which will be crucial to
our applications later.

Theorem 2.15. Let 𝜇 be the product of two restricted digit Cantor measures whose bases are multi-
plicatively independent. For all compact 𝐼 ⊆ ℝ∖{0} and all 0 < 𝛾 < min(dim𝜇, 1), there exists 𝑐 > 0

such that for all 𝜌 ∈ [0, 1],

sup
𝑡∈𝐼, 𝑥∈ℝ

Π𝑡𝜇(𝐵(𝑥, 𝜌)) ⩽ 𝑐𝜌𝛾.

Let 2 ⩽ 𝑟 < 𝑠 bemultiplicatively independent integers,𝑟 ⊆ {0, … , 𝑟 − 1} and𝑠 ⊆ {0, … , 𝑠 − 1}

sets of digits, and 𝑟,𝑟
⊆ [0, 1] and 𝑠,𝑠

⊆ [0, 1] the base-𝑟 and base-𝑠 restricted digit Cantor sets
with allowed digits𝑟 and𝑠, respectively. Let𝜇𝑟,𝑟

and𝜇𝑠,𝑠
the restricted digit Cantormeasures

on 𝑟,𝑟
and 𝑠,𝑠

, respectively, and let 𝜇 = 𝜇𝑟,𝑟
× 𝜇𝑠,𝑠

.
We will prove Theorem 2.15 for the measure 𝜇 by first proving the following theorem, which

we derive from a careful application of Shermkin’s recent 𝐿𝑞-dimension projection theorem
[40, Theorem 1.11]. Denote by𝑚 the dyadic partition ofℝ into intervals of length 2−𝑚, and denote
by log the base-2 logarithm.

Theorem 2.16. For all 𝑞 ∈ (1,∞) and all compact 𝐼 ⊆ ℝ∖{0},

lim
𝑚→∞

sup
𝑡∈𝐼

|||||−
log

∑
𝑄∈𝑚

Π𝑡𝜇(𝑄)
𝑞

(𝑞 − 1)𝑚
−min(dim𝜇, 1)

||||| = 0.

Proof. It suffices to prove Theorem 2.16 for intervals 𝐼 ⊆ (0,∞). Indeed, note that the set 1 −
𝑠,𝑠

= 𝑠,̃𝑠
is a base-𝑠 restricted digit Cantor set with digits from ̃𝑠 = 𝑠 − 1 −𝑠 whose associ-

ated restricted digit Cantor measure 𝜇𝑠,̃𝑠
is the image of the measure 𝜇𝑠,𝑠

under 𝑥 ↦ 1 − 𝑥. It
follows that for 𝑡 < 0,Π𝑡𝜇 is a translate ofΠ−𝑡(𝜇𝑟,𝑟

⊗ 𝜇𝑠,̃𝑠
), a measure that satisfies the conclu-

sion of the theorem. To prove the theorem for 𝐼 ⊆ (0,∞), it suffices to prove it for every interval 𝐼
of the form 𝐼 = [𝜉, 𝜉𝑠), where 𝜉 > 0, since every compact subset of (0,∞) is contained in a finite
union of intervals of this form.
Let 𝜉 > 0 and 𝜆 = 1∕𝑟. Let 𝑇 ∶ [0, 1) → [0, 1) be the irrational rotation by 𝛽 = log 𝑟∕ log 𝑠,

𝑇𝑥 = 𝑥 + 𝛽 mod 1. For 𝑡 > 0, let 𝑆𝑡 ∶ ℝ → ℝ denote the multiplication by 𝑡. Let Δ𝑟 and Δ𝑠 be
the normalized counting measures on𝑟 and𝑠, respectively, and for 𝑥 ∈ [0, 1), define

Δ(𝑥) =

{
Δ𝑟 if 𝑥 ⩾ 𝛽

Δ𝑟 ∗ 𝑆𝜉𝑠𝑥Δ𝑠 if 𝑥 < 𝛽
.
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20 of 55 GLASSCOCK et al.

Given 𝑥 ∈ [0, 1) and 𝑛 ∈ ℕ, define 𝜇𝑥,0 = 𝛿0 and 𝜇𝑥,𝑛 = 𝜇𝑥,𝑛−1 ∗ 𝑆𝜆𝑛Δ(𝑇
𝑛𝑥), where we denote by

𝑆𝜆𝜈 the pushforward of the measure 𝜈 under 𝑆𝜆. To each 𝑥 ∈ 𝑋, we associate the measure

The tuple ([0, 1), 𝑇, Δ, 𝜆) is an example of what Shmerkin calls a “pleasant model”
([40, Definition 1.9]). As such, it follows from [40, Theorem 1.11] that for all 𝑞 ∈ (1,∞),

lim
𝑚→∞

sup
𝑥∈[0,1)

|||||−
log

∑
𝑄∈𝑚

𝜇𝑥(𝑄)
𝑞

(𝑞 − 1)𝑚
−min(𝛼, 1)

||||| = 0, (2.5)

where

𝛼 = 𝛼(𝑞) =
1

(𝑞 − 1) log 𝜆 ∫
1

0
log ‖Δ(𝑥)‖𝑞𝑞 d𝑥

and ‖𝜈‖𝑞𝑞 =
∑

𝑦∈ℝ 𝜈({𝑦})𝑞. To finish the proof of Theorem 2.16, we will show that for all 𝑥 ∈ [0, 1)

and all 𝑞 > 1, 𝜇𝑥 = Π𝜉𝑠𝑥𝜇 and 𝛼 = dim𝜇.
To see that for each 𝑥 ∈ [0, 1) the measure 𝜇𝑥 is equal to Π𝜉𝑠𝑥𝜇, observe first that

𝜇𝑥,𝑛 = 𝜇𝑥,𝑛−1 ∗ 𝑆𝜆𝑛Δ(𝑇
𝑛𝑥)

=

{
𝜇𝑥,𝑛−1 ∗ 𝑆𝑟−𝑛Δ𝑟 if {𝑥 + 𝑛𝛽} ⩾ 𝛽

𝜇𝑥,𝑛−1 ∗ 𝑆𝑟−𝑛
(
Δ𝑟 ∗ 𝑆𝜉𝑠{𝑥+𝑛𝛽}Δ𝑠

)
if {𝑥 + 𝑛𝛽} < 𝛽

. (2.6)

Note that

𝑟−𝑛𝑠{𝑥+𝑛𝛽} = 𝑠−𝑛𝛽𝑠{𝑥+𝑛𝛽} = 𝑠𝑥𝑠−⌊𝑥+𝑛𝛽⌋.
Borrowing notation from Shmerkin, let 𝑛′(𝑥) ∶= ⌊𝑥 + 𝑛𝛽⌋; it is a function of both 𝑥 and 𝑛. Note
that 𝑛′(𝑥) can equivalently be described as the cardinality of the set {𝑖 ∈ {1, … , 𝑛} | {𝑥 + 𝑖𝛽} < 𝛽}.
Now (2.6) becomes

𝜇𝑥,𝑛 =

{
𝜇𝑥,𝑛−1 ∗ 𝑆𝑟−𝑛Δ𝑟 if {𝑥 + 𝑛𝛽} ⩾ 𝛽

𝜇𝑥,𝑛−1 ∗ 𝑆𝑟−𝑛Δ𝑟 ∗ 𝑆𝑠−𝑛′(𝑥)𝜉𝑠𝑥Δ𝑠 if {𝑥 + 𝑛𝛽} < 𝛽
. (2.7)

Since convolution is commutative, the fact that the orbit {𝑇𝑥, … , 𝑇𝑛𝑥} visits [0, 𝛽) exactly 𝑛′(𝑥)
times and (2.7) imply that

Now for all 𝑥 ∈ [0, 1),

which proves that for every 𝑥 ∈ [0, 1), 𝜇𝑥 = lim𝑛→∞ 𝜇𝑥,𝑛 = 𝜇𝑟,𝑟
∗ 𝑆𝜉𝑠𝑥𝜇𝑠,𝑠

= Π𝜉𝑠𝑥𝜇, as claimed.
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ADDITIVE AND GEOMETRIC TRANSVERSALITY OF FRACTAL SETS IN THE INTEGERS 21 of 55

To finish the proof, it remains to show that the value 𝛼 in (2.5) equals the dimen-
sion of 𝜇, which is dim𝜇 = dim𝜇𝑟,𝑟

+ dim𝜇𝑠,𝑠
=

log |𝑟|
log 𝑟

+
log |𝑠|
log 𝑠

. Note that for almost

every 𝑥 < 𝛽, ‖Δ(𝑥)‖𝑞𝑞 =
∑

𝑖∈𝑟

∑
𝑗∈𝑠

(
1|𝑟||𝑠|

)𝑞
= |𝑟|1−𝑞|𝑠|1−𝑞, and for all 𝑥 ⩾ 𝛽, ‖Δ(𝑥)‖𝑞𝑞 =∑

𝑖∈𝑟

(
1|𝑟|

)𝑞
= |𝑟|1−𝑞. Therefore, by the definition of 𝛼,
𝛼 =

1

(𝑞 − 1) log 𝜆 ∫
1

0
log ‖Δ(𝑥)‖𝑞𝑞 d𝑥

=
1

(1 − 𝑞) log 𝑟

(
∫

𝛽

0
log ‖Δ(𝑥)‖𝑞𝑞 d𝑥 + ∫

1

𝛽
log ‖Δ(𝑥)‖𝑞𝑞 d𝑥

)

=
1

log 𝑟
(𝛽(log |𝑟| + log |𝑠|) + (1 − 𝛽) log |𝑟|)

=
log |𝑟|
log 𝑟

+
log |𝑠|
log 𝑠

,

as was to be shown. □

Thoughwe have not developed the terminology for it, the conclusion in Theorem 2.16 concerns
the 𝐿𝑞-dimension of the images of 𝜇 under oblique projections. The following lemma allows us to
derive from Theorem 2.16 a statement concerning Frostman exponents of the projectedmeasures.

Lemma 2.17 (cf. [40, Lemma 1.7]). Let 𝜇 be a probability measure on ℝ, 𝑞 > 1, and 𝛾 > 0. If for all
𝑚 ⩾ 𝑀,

− log
∑

𝑄∈𝑚
𝜇(𝑄)𝑞

(𝑞 − 1)𝑚
⩾ 𝛾, (2.8)

then for all 𝑥 ∈ ℝ and all 𝜌 < 2−𝑀 , 𝜇(𝐵(𝑥, 𝜌)) ⩽ 2𝜌(1−1∕𝑞)𝛾.

Proof. Note that the inequality in (2.8) rearranges to∑
𝑄∈𝑚

𝜇(𝑄)𝑞 ⩽ 2−𝑚(𝑞−1)𝛾.

Thus, for all 𝑄 ∈ 𝑚,

𝜇(𝑄)𝑞 ⩽
∑

𝑄∈𝑚

𝜇(𝑄)𝑞 ⩽ 2−𝑚(𝑞−1)𝛾.

This gives the desired inequality for those intervals that are elements of the partition 𝑚 for𝑚 ⩾

𝑀. Any interval of length 2−(𝑚+1) ⩽ 𝜌 < 2−𝑚 is covered by at most two elements of the partition
𝑚+1, giving the result. □

We are now in a position to deduce Theorem 2.15 from Theorem 2.16 and Lemma 2.17.

Proof of Theorem 2.15. Let 𝐼 ⊆ ℝ∖{0} be compact and 0 < 𝛾 < 𝛾′ < min(dim𝜇, 1). Let 𝑞 > 1 be
large enough so that (1 − 1∕𝑞)𝛾′ > 𝛾. It follows from Theorem 2.16 that there exists𝑀 ∈ ℕ such
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22 of 55 GLASSCOCK et al.

that for all 𝑡 ∈ 𝐼 and all𝑚 ⩾ 𝑀,

− log
∑

𝑄∈𝑚
Π𝑡𝜇(𝑄)

𝑞

(𝑞 − 1)𝑚
⩾ 𝛾′.

Let 0 < 𝜌0 < 2−𝑀 be small enough so that 2𝜌(1−1∕𝑞)𝛾
′

0
< 𝜌

𝛾
0
. It follows from Lemma 2.17 that for

all 𝜌 < 𝜌0, all 𝑡 ∈ 𝐼, and all 𝑥 ∈ ℝ,

Π𝑡𝜇(𝐵(𝑥, 𝜌)) ⩽ 2𝜌(1−1∕𝑞)𝛾
′
.

Since the Π𝑡𝜇 mass of any ball is at most 1, by setting 𝑐 = 𝜌
−𝛾
0
, the conclusion of Theorem 2.15

holds for all 𝜌 ∈ [0, 1]. □

2.4 Geometric transversality in the reals

Here, we employ Theorem 2.15 to deduce upper bounds on the packing number of inter-
sections of multiplicatively invariant sets. The idea in the proof below is borrowed from
[40, Lemma 1.8].

Theorem 2.18. Let 𝑟 and 𝑠 be multiplicatively independent positive integers, and let 𝑋,𝑌 ⊆ [0, 1]

be ×𝑟- and ×𝑠-invariant sets, respectively. Define 𝛾 = max(0, dim𝑋 + dim𝑌 − 1). For all compact
𝐼 ⊆ ℝ∖{0} and 𝜀 > 0,

lim
𝜌→0+

sup
𝑡∈𝐼
𝑥∈ℝ

 (
(𝑋 × 𝑌) ∩ Π−1

𝑡 (𝐵(𝑥, 𝜌)) , 𝜌
)

𝜌−(𝛾+𝜀)
= 0.

Proof. Let 𝐼 ⊆ ℝ∖{0} be compact and 𝜀 > 0. According to Lemma 2.14, we can embed 𝑋 and
𝑌 into restricted digit Cantor sets of slightly higher dimension. Thus, there exists a product
of restricted digit Cantor measures 𝜇 of dimension dim𝜇 < dimH 𝑋 + dimH 𝑌 + 𝜀∕4 such that
𝑋 × 𝑌 ⊆ supp𝜇.
From Theorem 2.15, we have that there exists 𝜌0 > 0 such that for all 𝜌 < 𝜌0, all 𝑡 ∈ 𝐼, and all

𝑥 ∈ ℝ,

Π𝑡𝜇(𝐵(𝑥, 2𝜌)) ⩽ 𝜌min(dim𝜇,1)−𝜀∕4.

Let 𝜌 < 𝜌0, 𝑡 ∈ 𝐼, and 𝑥 ∈ ℝ. By (2.4) and the fact that 𝜌0 is sufficiently small, every ball of
radius 𝜌 centered at a point of supp𝜇 has 𝜇-mass greater than 𝜌dim𝜇+𝜀∕4. Therefore,

 (
(supp𝜇) ∩ Π−1

𝑡 (𝐵(𝑥, 𝜌)), 2𝜌
)
⋅ 𝜌dim𝜇+𝜀∕4 ⩽ 𝜇

(
Π−1
𝑡 (𝐵(𝑥, 2𝜌))

)
⩽ 𝜌min(dim𝜇,1)−𝜀∕4.

It follows now from the fact that 𝑋 × 𝑌 ⊆ supp𝜇 and Lemma 2.6 that

 (
(𝑋 × 𝑌) ∩ Π−1

𝑡 (𝐵(𝑥, 𝜌)), 𝜌
)
⩽  (

(supp𝜇) ∩ Π−1
𝑡 (𝐵(𝑥, 𝜌)), 𝜌

)
≪  (

(supp𝜇) ∩ Π−1
𝑡 (𝐵(𝑥, 𝜌)), 2𝜌

)
⩽ 𝜌min(dim𝜇,1)−dim𝜇−𝜀∕2
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ADDITIVE AND GEOMETRIC TRANSVERSALITY OF FRACTAL SETS IN THE INTEGERS 23 of 55

= 𝜌−(max(0,dim𝜇−1)+𝜀∕2)

⩽ 𝜌−(𝛾+3𝜀∕4).

The limit in the conclusion of the theorem follows. □

The following corollary is formulated in a way that will make it convenient to apply in the
integer setting.

Corollary 2.19. Let 𝑟 and 𝑠 be multiplicatively independent positive integers, and let 𝑋,𝑌 ⊆ [0, 1]

be ×𝑟- and ×𝑠-invariant sets, respectively. Define 𝛾 = max(0, dim𝑋 + dim𝑌 − 1). For all compact
𝐼 ⊆ ℝ∖{0} and all 𝜀 > 0,

lim
𝜌→0+

sup
𝜆,𝜂∈𝐼
𝜎,𝜏∈ℝ

 (
[𝜆𝑋 + 𝜏]𝜌 ∩ [𝜂𝑌 + 𝜎]𝜌, 𝜌

)
𝜌−(𝛾+𝜀)

= 0.

Note that, taking fixed 𝜆, 𝜂, 𝜎 and 𝜏 = 0, this corollary recovers the Shermkin–Wu theorem
encapsulated in (1.8).

Proof. Let 𝐼 ⊆ ℝ∖{0} be compact and 𝜀 > 0. Denote by 𝜋1 ∶ (𝑥, 𝑦) ↦ 𝑥 the first coordinate
projection. The following facts are straightforward to verify:

∙ 𝜆[𝑋]𝜌 = [𝜆𝑋]|𝜆|𝜌;
∙ [𝑋 + 𝜏]𝜌 = [𝑋]𝜌 + 𝜏;
∙ [𝑋]𝜌 ∩ ([𝜂𝑌]𝜌 + 𝜎) = 𝜋1

(
[𝑋 × 𝑌]𝜌 ∩ Π−1

−𝜂(𝜎)
)
, using that 𝑋 × 𝑌 is equipped with the 𝐿1

metric;
∙ if 𝜑 has Lipschitz constant 𝐿, then [𝑋]𝜌 ∩ 𝜑−1(𝜎) ⊆ [𝑋 ∩ 𝜑−1𝐵(𝜎, 𝐿𝜌)]𝜌.

Using these facts in order, we see that there exist 𝑐1, 𝑐2 > 1 depending only on 𝐼 such that

[𝜆𝑋 + 𝜏]𝜌 ∩ [𝜂𝑌 + 𝜎]𝜌 ⊆ 𝜆

(
[𝑋]𝑐1𝜌 ∩

([𝜂
𝜆
𝑌
]
𝑐1𝜌

+
𝜎 − 𝜏

𝜆

))
+ 𝜏

= 𝜆𝜋1

(
[𝑋 × 𝑌]𝑐1𝜌 ∩ Π−1

−𝜂∕𝜆

(
𝜎 − 𝜏

𝜆

))
+ 𝜏

⊆ 𝜆𝜋1

([
(𝑋 × 𝑌) ∩ Π−1

−𝜂∕𝜆
𝐵
(
𝜎 − 𝜏

𝜆
, 𝑐1𝑐2𝜌

)]
𝑐1𝑐2𝜌

)
+ 𝜏.

(2.9)

We have need for four more easily verified facts:

∙  (𝑍 + 𝜏, 𝜌) =  (𝑍, 𝜌);
∙  (𝜆𝑍, 𝜌) =  (𝑍, 𝜌∕|𝜆|);
∙  (𝜋1(𝑍), 𝜌) ⩽  (𝑍, 𝜌);
∙  ([𝑍]𝛿, 𝜌) ⩽ 𝛿∕𝜌 (𝑍, 𝜌).

Applying ( ⋅ , 𝜌) to both sides of (2.9) and using the preceding facts in order, we have that there
exists 𝑐3 > 1 depending only on 𝐼 such that

 (
[𝜆𝑋 + 𝜏]𝜌 ∩ [𝜂𝑌 + 𝜎]𝜌, 𝜌

)
⩽ 𝑐3

(
(𝑋 × 𝑌) ∩ Π−1

−𝜂∕𝜆
𝐵((𝜎 − 𝜏)∕𝜆, 𝑐3𝜌), 𝜌∕𝑐3

)
.

The conclusion of the corollary now follows from Theorem 2.18 by appealing to Lemma 2.6. □
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24 of 55 GLASSCOCK et al.

2.5 Additive transversality of sumsets in the reals

In this subsection, we use Theorem 2.18 to show that sets that are multiplicatively invariant with
respect to multiplicatively independent bases are transverse in an additive combinatorial sense.
The core ideas here appear in [40, Corollary 7.4], and we develop it in the context of the discrete
Hausdorff dimension here.
The following lemma is a packing number analog of the useful fact that if the fibers of a map

𝑋 → 𝑌 between finite sets 𝑋 and 𝑌 are uniformly bounded in cardinality, then the image of the
map must be large.

Lemma 2.20. Let 𝜑 ∶ ℝ𝑑 → ℝ𝑘 , 𝑋 ⊆ ℝ𝑑 be bounded, and 𝜌 > 0. If 𝑊 > 0 is such that for all
𝑥 ∈ ℝ𝑘 ,

 (
𝑋 ∩ 𝜑−1(𝐵(𝑥, 2𝜌)) , 𝜌

)
⩽ 𝑊,

then (𝜑(𝑋), 𝜌) ⩾  (𝑋, 𝜌) ∕𝑊.

Proof. Let 𝑋′ be a 𝜌-separated subset of 𝑋 of maximal cardinality so that |𝑋′| =  (𝑋, 𝜌). Since
𝜑(𝑋′) is covered by  (𝜑(𝑋′), 𝜌)-many balls of radius 2𝜌, the set 𝑋′ is covered by  (𝜑(𝑋′), 𝜌)-
many preimages of balls of radius 2𝜌 under 𝜑. Thus, there exists 𝑥 ∈ ℝ𝑘 such that

|𝑋′|
 (𝜑(𝑋′), 𝜌)

⩽ ||𝑋′ ∩ 𝜑−1(𝐵(𝑥, 2𝜌))|| ⩽  (
𝑋 ∩ 𝜑−1(𝐵(𝑥, 2𝜌)), 𝜌

)
⩽ 𝑊.

It follows that

 (𝑋, 𝜌)

𝑊
=

|𝑋′|
𝑊

⩽  (𝜑(𝑋′), 𝜌) ⩽  (𝜑(𝑋), 𝜌),

as was to be shown. □

Theorem 2.21. Let 𝑟 and 𝑠 bemultiplicatively independent positive integers, and let𝑋,𝑌 ⊆ [0, 1] be
×𝑟- and ×𝑠-invariant sets, respectively. Define 𝛾 = max(0, dimH 𝑋 + dimH 𝑌 − 1). For all compact
𝐼 ⊆ ℝ∖{0}, all 𝜀 > 0, all 0 ⩽ 𝛾 ⩽ 1, all sufficiently small 𝜌 > 0 (depending on 𝑋,𝑌, 𝐼, 𝜀, and 𝛾), all
compact, nonempty 𝑋′ ⊆ 𝑋, 𝑌′ ⊆ 𝑌, and all 𝜆, 𝜂 ∈ 𝐼,

 (
𝜆𝑋′ + 𝜂𝑌′, 𝜌

)
⩾

 (
𝑋′ × 𝑌′, 𝜌

)
𝜌−(𝛾+𝜀)

, and (2.10)

𝛾
⩾𝜌

(
𝜆𝑋′ + 𝜂𝑌′

)
≫𝐼,𝛾,𝜀 𝛾+𝛾+𝜀

⩾𝜌

(
𝑋′ × 𝑌′

)
. (2.11)

Proof. It suffices by dilating, appealing to Lemma 2.6, and absorbing asymptotic constants into the
𝜌𝜀 term to prove the following: for all compact 𝐼 ⊆ ℝ∖{0}, all 𝜀 > 0, all 0 ⩽ 𝛾 ⩽ 1, all sufficiently
small 𝜌0 > 0 (depending on 𝐼, 𝜀, and 𝛾), all compact, nonempty 𝑋′ ⊆ 𝑋, 𝑌′ ⊆ 𝑌, all 𝑡 ∈ 𝐼, and all
0 < 𝜌 < 𝜌0,

 (
Π𝑡(𝑋

′ × 𝑌′), 𝜌
)
⩾

 (
𝑋′ × 𝑌′, 𝜌

)
𝜌−(𝛾+𝜀)

, and (2.12)

𝛾
⩾𝜌

(
Π𝑡(𝑋

′ × 𝑌′)
)
≫ 𝜌0𝛾+𝛾+𝜀

⩾𝜌

(
𝑋′ × 𝑌′

)
, (2.13)

where, recall, Π𝑡(𝑥, 𝑦) = 𝑥 + 𝑡𝑦.
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ADDITIVE AND GEOMETRIC TRANSVERSALITY OF FRACTAL SETS IN THE INTEGERS 25 of 55

Let 𝐼 ⊆ ℝ∖{0} be compact, 𝜀 > 0, and 0 ⩽ 𝛾 ⩽ 1. It follows by Theorem 2.18 (with 𝜀∕2 as 𝜀) that
for all sufficiently small 𝜌 > 0, all 𝑡 ∈ 𝐼, and all 𝑥 ∈ ℝ,

 (
(𝑋 × 𝑌) ∩ Π−1

𝑡 (𝐵(𝑥, 2𝜌)), 2𝜌
)
⩽ (2𝜌)−(𝛾+𝜀∕2).

Fix such a sufficiently small 0 < 𝜌0 < 1, and ensure also that it is small enough so that 𝜌−𝜀∕2
0

is
greater than the asymptotic constant appearing in Lemma 2.6 (with 𝑎 = 𝑑 = 2). It follows that for
all 0 < 𝜌 < 𝜌0, all compact, nonempty 𝑋′ ⊆ 𝑋, 𝑌′ ⊆ 𝑌, all 𝑡 ∈ 𝐼, and all 𝑥 ∈ ℝ,

 (
(𝑋′ × 𝑌′) ∩ Π−1

𝑡 (𝐵(𝑥, 2𝜌)), 𝜌
)
⩽ 𝜌−(𝛾+𝜀). (2.14)

Now (2.12) follows immediately from Lemma 2.20 (with 𝑋′ × 𝑌′ as 𝑋).
To show (2.13), let 0 < 𝜌 < 𝜌0 and𝑋′ ⊆ 𝑋,𝑌′ ⊆ 𝑌 be compact, nonempty. By Lemma 2.10, there

exists a measure 𝜈 supported on𝑋′ × 𝑌′ with ‖𝜈‖ ⩾ 𝛾+𝛾+𝜀
⩾𝜌 (𝑋′ × 𝑌′) and such that for all 𝑥 ∈ ℝ2

and all 𝛿 ⩾ 𝜌,

𝜈(𝐵(𝑥, 𝛿∕2)) ⩽ 𝑐1𝛿
𝛾+𝛾+𝜀, (2.15)

where 𝑐1 > 1 is an absolute constant. Using the fact that supp 𝜈 ⊆ 𝑋′ × 𝑌′ ⊆ 𝑋 × 𝑌, it follows from
(2.14) that for all 0 < 𝛿 < 𝜌0, all 𝑡 ∈ 𝐼, and all 𝑥 ∈ ℝ,

 (
supp 𝜈 ∩ Π−1

𝑡 (𝐵(𝑥, 𝛿∕2)), 𝛿∕4
)
⩽ 𝑐2𝛿

−(𝛾+𝜀), (2.16)

where 𝑐2 > 1 is an absolute constant.
The inequality in (2.16) implies that as long as 𝛿 < 𝜌0, the part of the support of 𝜈 contained in

any tube Π−1
𝑡 (𝐵(𝑥, 𝛿∕2)) can be covered by 𝑐2𝛿−(𝛾+𝜀) many balls of diameter 𝛿. The inequality in

(2.15) says that as long as 𝛿 ⩾ 𝜌, each of those balls has 𝜈-measure at most 𝑐1𝛿𝛾+𝛾+𝜀. Therefore, we
have that for all 𝜌 ⩽ 𝛿 < 𝜌0, all 𝑡 ∈ 𝐼, and all 𝑥 ∈ ℝ,

𝜈
(
Π−1
𝑡 (𝐵(𝑥, 𝛿∕2))

)
⩽ 𝑐1𝛿

𝛾+𝛾+𝜀𝑐2𝛿
−(𝛾+𝜀) = 𝑐1𝑐2𝛿

𝛾. (2.17)

We aim now to deduce (2.13) from (2.17). Let 0 < 𝜌 < 𝜌0, and let ∪𝑖𝐵𝑖 be a cover of Π𝑡(𝑋
′ × 𝑌′)

by open balls of diameter at least 𝜌. If some ball 𝐵𝑖 is such that diam𝐵𝑖 ⩾ 𝜌0, then
∑

𝑖(diam𝐵𝑖)
𝛾 ⩾

𝜌
𝛾
0
⩾ 𝜌0. Otherwise, all balls in the cover have diameter less than 𝜌0, and it follows then from (2.17)

that

𝑐1𝑐2
∑
𝑖

(diam𝐵𝑖)
𝛾 ⩾ ‖Π𝑡𝜈‖ = ‖𝜈‖ ⩾ 𝛾+𝛾+𝜀

⩾𝜌 (𝑋′ × 𝑌′).

In either case, we have that∑
𝑖

(diam𝐵𝑖)
𝛾 ⩾ min

(
𝜌0, (𝑐1𝑐2)

−1𝛾+𝛾+𝜀
⩾𝜌 (𝑋′ × 𝑌′)

)
⩾ 𝜌0(𝑐1𝑐2)

−1𝛾+𝛾+𝜀
⩾𝜌 (𝑋′ × 𝑌′),

where the second inequality follows from the fact that both quantities in theminimumare atmost
1. Since the cover was arbitrary, we conclude the inequality in (2.13). □

In the statement of the following corollary, it is useful to recall Lemma 2.12: all of the notions
of dimension for 𝑋, 𝑌, and 𝑋 × 𝑌 coincide, and dim(𝑋 × 𝑌) = dim𝑋 + dim𝑌.

Corollary 2.22. Let 𝑟 and 𝑠 bemultiplicatively independent positive integers, and let𝑋,𝑌 ⊆ [0, 1] be
×𝑟- and ×𝑠-invariant sets, respectively. For all dim ∈ {dimM , dimM , dimH}, for all compact subsets
𝑋′ ⊆ 𝑋 and 𝑌′ ⊆ 𝑌, and for all 𝜆, 𝜂 ∈ ℝ∖{0},
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26 of 55 GLASSCOCK et al.

∙ if dim𝑋 + dim𝑌 ⩽ 1, then

dim
(
𝜆𝑋′ + 𝜂𝑌′

)
= dim

(
𝑋′ × 𝑌′

)
; (2.18)

∙ if dim𝑋 + dim𝑌 > 1, then

dim
(
𝜆𝑋′ + 𝜂𝑌′

)
⩾ dim

(
𝑋′ × 𝑌′

)
− dim (𝑋 × 𝑌) + 1. (2.19)

Note that Corollary 2.22 extends the theorem of Hochman and Shmerkin encapsulated by
(1.9). Indeed, setting 𝑋′ = 𝑋 and 𝑌′ = 𝑌, it follows from (2.18) and (2.19) that dim (𝜆𝑋 + 𝜂𝑌) ⩾

min (1, dim(𝑋 × 𝑌)). Using the fact that (𝑥, 𝑦) ↦ 𝜆𝑥 + 𝜂𝑦 is Lipschitz, the bounds in Lemma 2.7
immediately give the required upper bounds to yield equality in (1.9).

Proof. Define 𝛾 = max(0, dimH(𝑋 × 𝑌) − 1), and let𝑋′ ⊆ 𝑋 and𝑌′ ⊆ 𝑌. To show (2.18) and (2.19),
it suffices to show

dim
(
𝜆𝑋′ + 𝜂𝑌′

)
⩾ dim

(
𝑋′ × 𝑌′

)
− 𝛾. (2.20)

Indeed, this is the lower bound in (2.19) and the upper bound derived from Lemma 2.7 combined
with this lower bound gives the desired equality in (2.18).
Let dim ∈ {dimM , dimM , dimH} and 𝜆, 𝜂 ∈ (0,∞). If dim(𝑋′ × 𝑌′) ⩽ 𝛾, the conclusion is

immediate, so we can proceed under the assumption that dim(𝑋′ × 𝑌′) > 𝛾.
Let 𝜀 > 0, and let 𝛾 = dim(𝑋′ × 𝑌′) − 𝛾 − 2𝜀. It follows from Theorem 2.21 that there exists a

small 𝜌0 > 0 such that for all 0 < 𝜌 < 𝜌0,

 (
𝜆𝑋′ + 𝜂𝑌′, 𝜌

)
𝜌−𝛾

⩾
 (

𝑋′ × 𝑌′, 𝜌
)

𝜌−(𝛾+𝛾+𝜀)
,

𝛾
⩾𝜌

(
𝜆𝑋′ + 𝜂𝑌′

)
⩾ 𝜌0𝛾+𝛾+𝜀

⩾𝜌

(
𝑋′ × 𝑌′

)
.

Consider the first inequality if dim is the Minkowski dimension and the second inequality if dim
is the Hausdorff dimension. Because 𝛾 + 𝛾 + 𝜀 = dim(𝐴′ × 𝐵′) − 𝜀, the limit infimum (if dim is a
lower dimension) or limit supremum (if dim is an upper dimension) as 𝑁 tends to infinity of the
right hand side is positive. It follows that

dim
(
𝜆𝑋′ + 𝜂𝑌′

)
⩾ dim

(
𝑋′ × 𝑌′

)
− 𝛾 − 𝜀.

The inequality in (2.20) now follows from the fact that 𝜀 > 0 was arbitrary, concluding the
proof. □

3 DISCRETE FRACTAL GEOMETRY ANDMULTIPLICATIVELY
INVARIANT SUBSETS OF THE INTEGERS

In this section, we introduce the notation and terminology involved in the study of fractal geom-
etry in the positive integers and develop the basic results concerning multiplicatively invariant
subsets. To prove the results in this section and the transversality results in the next, we relate ×𝑟-
invariant subsets of the integers to symbolic subshifts on 𝑟 symbols and to ×𝑟-invariant subsets of
[0,1].
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ADDITIVE AND GEOMETRIC TRANSVERSALITY OF FRACTAL SETS IN THE INTEGERS 27 of 55

3.1 Notions of dimension for subsets of integers

To measure the size of subsets of ℕ0, we will make use of the (upper and lower) mass dimension
and the (upper and lower) discrete Hausdorff dimension, which were introduced in Section 1.3,
but which we recall for a more detailed discussion in this section. The upper and lower mass
dimensions and the upper Hausdorff dimension are also treated systematically in [5]; we will
state the properties we require from these quantities with the aim of making this presentation
self-contained. These dimensions join a bevy of other natural notions of dimension for subsets of
the integers, integer lattices, and more general discrete sets; see [4, 23, 28, 36, 37].

Definition 3.1. Let 𝐴 ⊆ ℕ𝑑
0
be nonempty.

∙ The lower mass dimension of 𝐴 is

dimM𝐴 = lim inf
𝑁→∞

log ||𝐴 ∩ [0,𝑁)𝑑||
log𝑁

.

The upper mass dimension, dimM𝐴, is defined analogously with a limit supremum in place of
the limit infimum. If dimM𝐴 = dimM𝐴, then this value is themass dimension of 𝐴, dimM𝐴.

∙ The lower discrete Hausdorff dimension of 𝐴 is

dimH𝐴 = sup

{
𝛾 ⩾ 0

|||||| lim inf
𝑁→∞

𝛾
⩾1

(
𝐴 ∩ [0,𝑁)𝑑

)
𝑁𝛾

> 0

}
.

The upper discrete Hausdorff dimension, dimH𝐴, is defined analogously with a limit supremum
in place of the limit infimum. If dimH𝐴 = dimH𝐴, then this value is the discrete Hausdorff
dimension of 𝐴, dimH𝐴.

As the notation suggests, themass and discrete Hausdorff dimensions are defined in analogy to
the Minkowski and Hausdorff dimensions, respectively. The analogy becomes clearer on noting
that

||𝐴 ∩ [0,𝑁)𝑑|| = 
(
𝐴 ∩ [0,𝑁)𝑑

𝑁
, 𝑁−1

)
, (3.1)

𝛾
⩾1

(
𝐴 ∩ [0,𝑁)𝑑

)
𝑁𝛾

= 𝛾

⩾𝑁−1

(
𝐴 ∩ [0,𝑁)𝑑

𝑁

)
, (3.2)

so that the mass and discrete Hausdorff dimensions are capturing, in some sense, the Minkowski
and Hausdorff dimensions of the sequence of sets 𝑁 ↦ 𝐴∕𝑁 in the unit cube.
As a word of caution, note that our terminology does not match exactly with the terminology

used in [5].What we call the upper discrete Hausdorff dimension is called dim𝐿 in [5] (see Lemma
2.3 in that paper), while the discrete Hausdorff dimension defined in that work does not appear in
our work. Our choice of terminology is motivated by the connections drawn in our work between
the discrete and continuous notions of dimension.

Lemma 3.2. Let 𝐴, 𝐵 ⊆ ℕ𝑑
0
, 𝜆 > 0, and 𝜎 ∈ ℝ𝑑 .

(I) For all dim ∈ {dimM , dimM , dimH , dimH }, dim𝐴 ∈ [0, 𝑑].
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28 of 55 GLASSCOCK et al.

(II) For all dim ∈ {dimM , dimM , dimH , dimH }, dim𝐴 = dim (⌊𝜆𝐴 + 𝜎⌋), where ⌊𝜆𝐴 + 𝜎⌋ =
{⌊𝜆𝑛 + 𝜎⌋ | 𝑛 ∈ 𝐴}.

(III) For all dim ∈ {dimM , dimH }, dim(𝐴 ∪ 𝐵) = max (dim𝐴, dim𝐵).
(IV) For all 𝑟 ∈ ℕ, 𝑟 ⩾ 2,

dimM𝐴 = lim inf
𝑁→∞

log |𝐴 ∩ [0, 𝑟𝑁)𝑑|
𝑁 log 𝑟

,

and the analogous statement with dimM in place of dimM and limit supremum in place of limit
infimum holds.

(V) For all 𝑟 ∈ ℕ, 𝑟 ⩾ 2,

dimH𝐴 = sup

{
𝛾 ⩾ 0

|||||| lim inf
𝑁→∞

𝛾
⩾1

(
𝐴 ∩ [0, 𝑟𝑁)𝑑

)
𝑟𝛾𝑁

> 0

}
,

and the analogous statement with dimH in place of dimH and limit supremum in place of limit
infimum holds.

Note that the sets in Examples 3.4 (ii) below show that the statement in (III) does not hold for
the lower mass and lower discrete Hausdorff dimensions.

Proof. The statements in (I) through (IV) follow from straightforward calculations that are left to
the reader.
Both of the statements in (V) follow from (3.2) and the fact that for all 𝛾 ⩾ 0 and all 𝑟𝐾 ⩽ 𝑁 ⩽

𝑟𝐾+1,

𝛾
⩾1

(
𝐴 ∩ [0, 𝑟𝐾)𝑑

)
𝑟𝐾𝛾

⩽ 𝑟𝛾
𝛾

⩾1

(
𝐴 ∩ [0,𝑁)𝑑

)
𝑁𝛾

⩽ 𝑟2𝛾
𝛾

⩾1

(
𝐴 ∩ [0, 𝑟𝐾+1)𝑑

)
𝑟(𝐾+1)𝛾

.

Indeed, this shows that the limit infimum (resp. limit supremum) of the sequence 𝑁 ↦

𝛾
⩾1

(
𝐴 ∩ [0, 𝑟𝑁)

)
∕𝑟𝑁𝛾 is nonzero if and only if the limit infimum (resp. limit supremum) of the

sequence 𝑁 ↦ 𝛾
⩾1 (𝐴 ∩ [0,𝑁)) ∕𝑁𝛾 is nonzero. □

Lemma 3.3. For all 𝐴 ⊆ ℕ𝑑
0
,

dimH𝐴 ⩽ dimM𝐴 ⩽ dimM𝐴,

dimH𝐴 ⩽ dimH𝐴 ⩽ dimM𝐴,

and no other comparisons are possible in general.

Proof. It is immediate from the definitions that dimM𝐴 ⩽ dimM𝐴 and dimH𝐴 ⩽ dimH𝐴, and the
set in Examples 3.4 (i) below shows that neither of these inequalities are, in general, equalities.
To see that dimH𝐴 ⩽ dimM𝐴 and that dimH𝐴 ⩽ dimM𝐴, note that by covering 𝐴 ∩ [0,𝑁)𝑑 by|𝐴 ∩ [0,𝑁)𝑑|many balls of diameter 1 it follows that

𝛾
⩾1

(
𝐴 ∩ [0,𝑁)𝑑

)
𝑁𝛾

⩽
|𝐴 ∩ [0,𝑁)𝑑|

𝑁𝛾
.
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ADDITIVE AND GEOMETRIC TRANSVERSALITY OF FRACTAL SETS IN THE INTEGERS 29 of 55

If 𝛾 > dimM𝐴 (resp. 𝛾 > dimM𝐴), then the limit infimum (resp. limit supremum) of the right-
hand side is zero, implying that 𝛾 ⩾ dimH𝐴 (resp. 𝛾 ⩾ dimH𝐴). It follows that dimH𝐴 ⩽ dimM𝐴

and dimH𝐴 ⩽ dimM𝐴. The set in Examples 3.4 (iii) below shows that neither of these inequalities
are, in general, equalities.
To see that no other comparisons are possible, it suffices to show that there can, in general, be

no comparison between dimH and dimM . This is demonstrated by the sets in Examples 3.4 (i) and
(iii) below. □

The following examples are meant to illustrate the extent to which the mass and discrete Haus-
dorff dimensions relate for subsets ofℕ0. These examples do not feature the type of structures that
we are concerned with in this work, so we leave some of the details to the reader.

Examples 3.4.

(i) Let (𝑥𝑛)∞𝑛=0 ⊆ ℕ0 be any sequence which satisfies lim𝑛→∞ log(𝑥𝑛+1 − 𝑥𝑛)∕ log 𝑥𝑛+1 = 1, and
define

𝐴 ∶= {0} ∪

∞⋃
𝑛=0

{𝑥2𝑛, 𝑥2𝑛 + 1,… , 𝑥2𝑛+1}.

It is easy to check that dimM𝐴 = dimH𝐴 = 0 and that dimM𝐴 = dimH𝐴 = 1.
(ii) Let 𝐴 be the set from (i). Put 𝐵 = {0} ∪ (ℕ0∖𝐴). Then dimM𝐵 = dimH𝐵 = 0 while dimM𝐵 =

dimH𝐵 = 1, and 𝐴 + 𝐵 = 𝐴 ∪ 𝐵 = ℕ0.
(iii) Define

𝐴 = {0, … , 16} ∪

∞⋃
𝑛=2

{
2𝑛, … , 2𝑛 + ⌊2𝑛−𝑛∕ log 𝑛⌋}.

It is quick to check that the mass dimension of𝐴 exists and dimM𝐴 = 1. On the other hand,
by covering𝐴with the intervals in its definition, it can be shown that the discrete Hausdorff
dimension of 𝐴 exists and dimH𝐴 = 0.

We conclude this section by proving some basic upper and lower bounds on the dimension of
product sets.

Lemma 3.5. For all nonempty 𝐴1,… ,𝐴𝑑 ⊆ ℕ0,

dimM (𝐴1 ×⋯ × 𝐴𝑑) ⩽

𝑑∑
𝑖=1

dimM𝐴𝑖, (3.3)

dimH (𝐴1 ×⋯ × 𝐴𝑑) ⩾

𝑑∑
𝑖=1

dimH𝐴𝑖. (3.4)

In particular, if dimH𝐴𝑖 = dimM𝐴𝑖 for each 𝑖 ∈ {1, … , 𝑑}, then for all dim ∈

{dimM , dimM , dimH , dimH },

dim (𝐴1 ×⋯ × 𝐴𝑑) = dim𝐴1 +⋯ + dim𝐴𝑑.

Proof. The inequality in (3.3) is immediate from the definition of upper mass dimension. To prove
the inequality in (3.4), define 𝛾𝑖 = dimH𝐴𝑖 and 𝛾 =

∑𝑑
𝑖=1 𝛾𝑖 . Define 𝐴 = 𝐴1 ×⋯ × 𝐴𝑑.
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30 of 55 GLASSCOCK et al.

Let 𝜀 > 0 and 𝑁 ∈ ℕ. It follows by Lemma 2.10 that there exists a measure 𝜇𝑖 supported on
(𝐴𝑖∕𝑁) ∩ [0, 1) with ‖𝜇𝑖‖ ⩾ 𝛾𝑖−𝜀

⩾𝑁−1 ((𝐴𝑖∕𝑁) ∩ [0, 1)) and such that for all balls 𝐵 of diameter at
least 𝑁−1, 𝜇𝑖(𝐵) ⩽ 𝑐 diam(𝐵)𝛾𝑖−𝜀.
Consider the product measure 𝜇 = 𝜇1 ×⋯ × 𝜇𝑑; it is supported on the set 𝐴 and has the

property that for all balls 𝐵 of diameter at least 𝑁−1, 𝜇(𝐵) ⩽ 𝑐𝑑 diam(𝐵)𝛾−𝑑𝜀. It follows by
Lemma 2.9 and (3.2) that

𝛾−𝑑𝜀
⩾1

(𝐴 ∩ [0,𝑁)𝑑)

𝑁𝛾−𝑑𝜀
= 𝛾−𝑑𝜀

⩾𝑁−1

(
𝐴

𝑁
∩ [0, 1)𝑑

)
⩾ 𝑐−𝑑

𝑑∏
𝑖=1

𝛾𝑖−𝜀

⩾𝑁−1((𝐴𝑖∕𝑁) ∩ [0, 1))

= 𝑐−𝑑
𝑑∏
𝑖=1

𝛾𝑖−𝜀

⩾1
(𝐴𝑖 ∩ [0,𝑁))

𝑁𝛾𝑖−𝜀
.

By the definition of the lower discrete Hausdorff dimension, the limit infimum as 𝑁 tends to
infinity of the right-hand side of the previous inequality is positive, whereby dimH𝐴 ⩾ 𝛾 − 𝑑𝜀.
The conclusion of the lemma follows since 𝜀 > 0 was arbitrary. □

3.2 Dimension regularity of multiplicatively invariant sets

In this section, we prove that the mass and discrete Hausdorff dimensions of a multiplicatively
invariant set (cf. Definition 1.5) exist and coincide. This is accomplished by adapting an argument
of Furstenberg [14, Prop. III.1] from the continuous setting.

Proposition 3.6. If 𝐴 ⊆ ℕ0 is multiplicatively invariant (see Definition 1.5), then

dimH𝐴 = dimH𝐴 = dimM𝐴 = dimM𝐴.

In particular, the mass and discrete Hausdorff dimensions of 𝐴 exist and coincide.

Before the proof, we introduce some notation that will be useful throughout this section and the
following ones. Fix 𝑟 ∈ ℕ, 𝑟 ⩾ 2, and denote by Λ𝑟 the alphabet {0, … , 𝑟 − 1}. An element 𝑤 ∈ Λ𝓁

𝑟

is a word of length |𝑤| = 𝓁. The set of all finite words is Λ∗
𝑟 = ∪∞

𝓁=0Λ
𝓁
𝑟 , and the set of all infinite

words is Λℕ0
𝑟 . The empty word is the sole element of the set Λ0

𝑟 . The concatenation of the word
𝑤 ∈ Λ𝓁

𝑟 with the word 𝑣 ∈ Λ𝑘
𝑟 is denoted by juxtaposition: the word𝑤𝑣 is an element ofΛ

𝓁+𝑘
𝑟 . We

write 𝑤𝑘 for the word 𝑤 concatenated with itself 𝑘 many times. Finally, we write 𝑤 = 𝑤0⋯𝑤𝓁−1
to indicate that the letters of 𝑤 are 𝑤0,… ,𝑤𝓁−1 ∈ Λ𝑟, in that order.
For 𝑤 = 𝑤0⋯𝑤𝓁−1 ∈ Λ𝓁

𝑟 , define an element in ℕ0 by

(𝑤)𝑟 ∶= 𝑤0𝑟
𝓁−1 + 𝑤1𝑟

𝓁−2 +⋯ + 𝑤𝓁−2𝑟 + 𝑤𝓁−1.

The function ( ⋅ )𝑟 ∶ Λ∗
𝑟 → ℕ0 serves as the primary link between subsets of nonnegative integers

and words. In the following subsection, we will use ( ⋅ )𝑟 to connect ×𝑟-invariant subsets of ℕ0

with symbolic subshifts. Note that ( ⋅ )𝑟 is surjective, and is injective when restricted to Λ𝓁
𝑟 for

some 𝓁 ∈ ℕ0.
As a final ingredient before the proof of Proposition 3.6, we give an equivalent characterization

of the lower discrete Hausdorff dimension, dimH .
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ADDITIVE AND GEOMETRIC TRANSVERSALITY OF FRACTAL SETS IN THE INTEGERS 31 of 55

Lemma 3.7. For all 𝐴 ⊆ ℕ0,

dimH𝐴 = sup

{
𝛾 ⩾ 0

|||||| lim inf
𝑁→∞

𝛾,∗
⩾1

(
𝐴 ∩ [0, 𝑟𝑁)

)
𝑟𝑁𝛾

> 0

}
,

where𝛾,∗
⩾1

(𝑋) is defined to be

min

{∑
𝑖∈𝐼

𝑟𝑑𝑖𝛾
||||| 𝑋 ⊆

⋃
𝑖∈𝐼

(
(𝑤(𝑖)0𝑑𝑖 )𝑟 + [0, 𝑟𝑑𝑖 )

)
, 𝑤(𝑖) ∈ Λ∗

𝑟 , 𝑑𝑖 ∈ ℕ0

}
.

Proof. It suffices to show that for all finite 𝑋 ⊆ ℕ0, 𝛾,∗
⩾1

(𝑋) ≍ 𝛾
⩾1
(𝑋), and then appeal to

Lemma 3.2 (V). That 𝛾,∗
⩾1

(𝑋) ⩾ 𝛾
⩾1
(𝑋) follows immediately from the definitions. To show that

𝛾,∗
⩾1

(𝑋) ≪ 𝛾
⩾1
(𝑋), use the fact that any interval in ℕ0 of length 𝓁 can be covered by at most two

intervals of the form (𝑤0𝑑)𝑟 + [0, 𝑟𝑑), where 𝑑 = ⌈log𝑟 𝓁⌉. □

Proof of Proposition 3.6. Suppose 𝐴 ⊆ ℕ0 is ×𝑟-invariant. Let 𝛾 > dimH𝐴. We will show that
lim sup𝑀→∞ |𝐴 ∩ [0, 𝑟𝑀)|∕𝑟𝑀𝛾 < ∞, from which it follows that dimM𝐴 ⩽ 𝛾. Since 𝛾 > dimH𝐴 is
arbitrary, it will follow that dimM𝐴 ⩽ dimH𝐴. It will follow then from Lemma 3.3 that dimH𝐴 =

dimH𝐴 = dimM𝐴 = dimM𝐴, which will conclude the proof of the lemma.
According to Lemma 3.7, there exists 𝑁 ∈ ℕ and a collection of intervals 𝐵𝑖 = (𝑤(𝑖)0𝑑𝑖 )𝑟 +

[0, 𝑟𝑑𝑖 ), 𝑖 ∈ 𝐼, that cover 𝐴 ∩ [0, 𝑟𝑁) and for which
∑

𝑖∈𝐼 𝑟
(𝑑𝑖−𝑁)𝛾 < 1. By prepending zeros onto

each 𝑤(𝑖), we may assume that |𝑤(𝑖)| + 𝑑𝑖 = 𝑁. Note that for all 𝑤 ∈ Λ𝑁
𝑟 , (𝑤)𝑟 ∈ 𝐵𝑖 if and only if

𝑤 = 𝑤(𝑖)𝑤′ for some 𝑤′ ∈ Λ
𝑑𝑖
𝑟 .

Let 𝑀 ∈ ℕ, 𝑀 > 𝑁, and let 𝑛 ∈ 𝐴 ∩ [0, 𝑟𝑀). Write 𝑛 = (𝑤)𝑟, where 𝑤 ∈ Λ𝑀
𝑟 (so that 𝑤 may

have leading zeroes). Since 𝐴 is ℜ𝑟-invariant, ℜ𝑀−𝑁
𝑟 (𝑛) = (𝑤1⋯𝑤𝑁)𝑟 ∈ 𝐴 ∩ [0, 𝑟𝑁). Since 𝐴 ∩

[0, 𝑟𝑁) ⊆ ∪𝑖𝐵𝑖 , there exists 𝑖1 ∈ 𝐼 such that (𝑤1⋯𝑤𝑁)𝑟 ∈ 𝐵𝑖1
. It follows that 𝑤 = 𝑤(𝑖1)𝑤′ for

some 𝑤′ ∈ Λ
𝑀−𝑑𝑖1
𝑟 . Since 𝐴 is 𝔏𝑟-invariant, applying 𝔏𝑟 to 𝑛 between 0 and |𝑤(𝑖1)|-many times

(depending on how many initial zeroes there are in the word 𝑤(𝑖1)) to 𝑛, we see that (𝑤′)𝑟 ∈ 𝐴.
Repeating the argument with (𝑤′)𝑟 ∈ 𝐴, there exists 𝑖2 ∈ 𝐼 such that𝑤′ = 𝑤(𝑖2)𝑤′′ for some𝑤′′ ∈

Λ
𝑀−𝑑𝑖1−𝑑𝑖2
𝑟 . Repeating further, we see that there exist 𝑖1, … , 𝑖𝑘 ∈ 𝐼 such that 𝑤 = 𝑤(𝑖1)⋯𝑤(𝑖𝑘)𝑣,

where 𝑣 ∈ Λ<𝑁
𝑟 .

Using the factorization of words 𝑤 ∈ Λ𝑀
𝑟 for which (𝑤)𝑟 ∈ 𝐴 described in the previous

paragraph and recalling that −|𝑤(𝑖)| = 𝑑𝑖 − 𝑁, we see that

||𝐴 ∩ [0, 2𝑀)||
𝑟𝑀𝛾

=
∑

𝑤∈Λ𝑀
𝑟 ∶ (𝑤)𝑟∈𝐴

𝑟−|𝑤|𝛾

⩽

⎛⎜⎜⎝
∑

𝑣∈Λ<𝑁
𝑟

𝑟−|𝑣|𝛾⎞⎟⎟⎠
(
1 +

∑
𝑖1∈𝐼

𝑟(𝑑𝑖1−𝑁)𝛾 +
∑

𝑖1,𝑖2∈𝐼

𝑟(𝑑𝑖1−𝑁+𝑑𝑖2−𝑁)𝛾 +⋯

)

=
⎛⎜⎜⎝

∑
𝑣∈Λ<𝑁

𝑟

𝑟−|𝑣|𝛾⎞⎟⎟⎠
(
1 −

∑
𝑖∈𝐼

𝑟(𝑑𝑖−𝑁)𝛾

)−1

.
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32 of 55 GLASSCOCK et al.

Since the final quantity is finite and independent of𝑀, and since𝑀 > 𝑁 was arbitrary, it follows
that lim sup𝑀→∞ |𝐴 ∩ [0, 𝑟𝑀)|∕𝑟𝑀𝛾 < ∞, as was to be shown. □

Corollary 3.8. If𝐴1,… ,𝐴𝑑 ⊆ ℕ0 are multiplicatively invariant (with respect to any bases), then for
all dim ∈ {dimM , dimM , dimH , dimH },

dim (𝐴1 ×⋯ × 𝐴𝑑) = dim𝐴1 +⋯ + dim𝐴𝑑.

Proof. This follows immediately by combining Lemma 3.5 and Proposition 3.6. □

3.3 Connections to symbolic dynamics

Throughout this subsection, we use 𝜎 to denote the left shift on Λ
ℕ0
𝑟 , which is defined by

𝜎 ∶ (𝑤𝑛)𝑛∈ℕ0
↦ (𝑤𝑛+1)𝑛∈ℕ0

.

We endow Λ𝑟 with the discrete topology and Λ
ℕ0
𝑟 with the product (or Tychonoff) topology. In

the context of symbolic dynamics, any closed subset ofΛℕ0
𝑟 satisfying 𝜎(Σ) ⊆ Σ is called a subshift.

The language set associated to a subshift Σ is the set of all the finite words, including the empty
word, appearing in the elements of Σ, that is,

(Σ) = {
𝑤0⋯𝑤𝓁−1

|| 𝑤 = 𝑤0𝑤1⋯ ∈ Σ, 𝓁 ∈ ℕ0

}
.

The language set of any subshift can be naturally embedded into the integers in two ways, giving
rise to the following definition.

Definition 3.9. The 𝑟-language sets associated to a subshift Σ ⊆ Λ
ℕ0
𝑟 are the sets 𝐴Σ, 𝐵Σ ⊆ ℕ0

defined by

𝐴Σ =
{
(𝑤0⋯𝑤𝓁−1)𝑟 = 𝑤0𝑟

𝓁−1 + 𝑤1𝑟
𝓁−2 +⋯ + 𝑤𝓁−2𝑟 + 𝑤𝓁−1

|| 𝑤0⋯𝑤𝓁−1 ∈ (Σ)},
𝐵Σ =

{
(𝑤𝓁−1⋯𝑤0)𝑟 = 𝑤𝓁−1𝑟

𝓁−1 + 𝑤𝓁−2𝑟
𝓁−2 +⋯ + 𝑤1𝑟 + 𝑤0

|| 𝑤0⋯𝑤𝓁−1 ∈ (Σ)},
where (𝑤)𝑟 = 0 when 𝑤 is the empty word.

The following proposition uses 𝑟-language sets to relate ×𝑟-invariant sets with subshifts ofΛℕ0
𝑟 .

It is a generalization of some of the results in [28, Section 3], where subsets of integers arising from
shifts of finite type are defined and studied.

Proposition 3.10. The 𝑟-language sets 𝐴Σ, 𝐵Σ ⊆ ℕ0 corresponding to any nonempty subshift Σ ⊆

Λ
ℕ0
𝑟 are×𝑟-invariant sets, and have discretemass andHausdorff dimensions equal to the normalized

topological entropy of the symbolic subshift (Σ, 𝜎), that is,

dimH𝐴Σ = dimM𝐴Σ = dimH 𝐵Σ = dimM 𝐵Σ =
ℎtop(Σ, 𝜎)

log 𝑟
. (3.5)
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ADDITIVE AND GEOMETRIC TRANSVERSALITY OF FRACTAL SETS IN THE INTEGERS 33 of 55

Moreover, for any ×𝑟-invariant set 𝐵 ⊆ ℕ0, there exists a subshift Σ ⊆ Λ
ℕ0
𝑟 such that 𝐵 coincides with

the 𝑟-language set 𝐵Σ associated to Σ.

Remark 3.11. The second part of Proposition 3.10 does not hold with 𝐴Σ in place of 𝐵Σ in general.
As an example, let 𝑘 ∈ ℕ and put 𝐵 ∶= {0, 1, 2, … , 𝑘} ⊆ ℕ0. It is clear that for any 𝑟 ⩾ 2, the set 𝐵
is a ×𝑟-invariant set. However, note that for any subshift Σ, the set 𝐴Σ is either {0} or infinite, so
we cannot have that 𝐴Σ = 𝐵.

Proposition 3.10 shows that 𝑟-language sets (1) provide uswith a naturalway of producing exam-
ples of ×𝑟-invariant subsets of the nonnegative integers; and (2) allow us to employ tools and
techniques from symbolic dynamics to study ×𝑟-invariant sets. Before the proof, we give some
examples of ×𝑟-invariant subsets of ℕ0 arising this way.

Examples 3.12. In each of the examples below, the language of the subshift Σ used to generate the
𝑟-language set 𝐴Σ is invariant under reversing words. Therefore, in each example, 𝐵Σ = 𝐴Σ.

∙ The classical golden mean shift is the subshift of {0, 1}ℕ0 consisting of all binary sequences
with no two consecutive 1’s. This leads to a natural example of a ×2-invariant set 𝐴golden ⊆ ℕ0

consisting of all integers whose binary digit expansion does not contain two consecutive 1’s.
Since the topological entropy of the golden mean shift is known the equal log((1 +

√
5)∕2)

(cf. [29, Example 4.1.4]), it follows from Proposition 3.10 that the dimension of 𝐴golden equals
log((1 +

√
5)∕2)∕ log 2. Integer sets corresponding to the broader class of subshifts of finite type

were also considered by Lima and Moreira in [28].
∙ The even shift is the subshift of {0, 1}ℕ0 consisting of all binary sequences so that between any
two 1’s there are an even number of 0’s. The corresponding×2-invariant set𝐴even ⊆ ℕ0 consists
of all integers whose binary digit expansion has an even number of 0’s between any two 1’s.
Since the topological entropy of the golden mean shift coincides with the topological entropy
of the even shift (cf. [29, Example 4.1.6]), we conclude that 𝐴even and 𝐴golden have the same
dimension.

∙ The prime gap shift is the subshift of {0, 1}ℕ0 consisting of all binary sequences such
that there is a prime number of 0’s between any two 1’s. This corresponds to the ×2-
invariant set 𝐴prime ⊆ ℕ0 of all those numbers written in binary in which there is a prime
number of 0’s between any two 1’s. For example, the first 17 elements of 𝐴prime are:
0, 1, 2, 4, 8, 9, 16, 17, 18, 32, 34, 36, 64, 65, 68, 72, 73. The entropy of the prime gap shift is approx-
imately 0.30293, (cf. [29, Exercise 4.3.7]) which implies that the dimension of 𝐴prime is
approximately 0.437.

Proof of Proposition 3.10. LetΣ ⊆ Λ
ℕ0
𝑟 be a subshift, and let𝐴Σ and𝐵Σ be the associated 𝑟-language

sets. We begin with the proof that the set 𝐴Σ is ×𝑟-invariant. Note first that 0 ∈ 𝐴Σ because the
empty word is in (Σ). Let 𝑛 ∈ 𝐴Σ, 𝑛 ⩾ 1. Because Σ is shift-invariant, there exists a word 𝑤 =

𝑤0⋯𝑤𝓁−1 ∈ (Σ) such that 𝑤0 ≠ 0 and (𝑤)𝑟 = 𝑛. We see that

ℜ𝑟(𝑛) = (𝑤0⋯𝑤𝓁−2)𝑟 and 𝔏𝑟(𝑛) = (𝑤1 …𝑤𝓁−1)𝑟.

Since (Σ) is closed under prefixes,ℜ𝑟(𝑛) ∈ 𝐴Σ, and since Σ is shift-invariant, 𝔏𝑟(𝑛) ∈ 𝐴Σ. This
shows that 𝐴Σ is ×𝑟-invariant. The proof that 𝐵Σ is ×𝑟-invariant is identical, only with the order
of letters reversed.
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34 of 55 GLASSCOCK et al.

Next we will show (3.5). Since 𝐴Σ and 𝐵Σ are ×𝑟-invariant, it follows from Proposition 3.6
that dimH𝐴Σ = dimM𝐴Σ and dimH 𝐵Σ = dimM 𝐵Σ. Therefore, it suffices to verify that dimM𝐴Σ =

dimM 𝐵Σ = ℎtop(Σ, 𝑇)∕ log 𝑟.
Let 𝓁(Σ) denote the set of words of length 𝓁 appearing in the language set (Σ), that is,

𝓁(Σ) ∶=
{
𝑤0𝑤1⋯𝑤𝓁−1

|| 𝑤 = 𝑤0𝑤1⋯ ∈ Σ
}
.

It is well known (see, e.g., [42, Theorem 7.13 (i)]) that the topological entropy of (Σ, 𝜎) is given by

ℎtop(Σ, 𝜎) = lim
𝓁→∞

1

𝓁
log |𝓁(Σ)|, (3.6)

where the limit as 𝓁 → ∞ on the right-hand side is known to exist. We claim that for all 𝓁 ∈ ℕ0,

||𝓁(Σ)
|| ⩽ ||𝐴Σ ∩ [0, 𝑟𝓁)|| ⩽ || 𝓁⋃

𝑘=0

𝑘(Σ)
||. (3.7)

Indeed, the first inequality follows immediately from the fact that ( ⋅ )𝑟 ∶ Λ𝓁
𝑟 → [0, 𝑟𝓁) is injective.

For the second inequality, associate to each 𝑛 ∈ 𝐴Σ ∩ [0, 𝑟𝓁) a word 𝑤 ∈ (Σ) such that 𝑤0 ≠ 0

and (𝑤)𝑟 = 𝑛. Since 𝑛 < 𝑟𝓁 , |𝑤| ⩽ 𝓁. The second inequality follows then from the fact that the
association just described is bijective.
Using the fact that the limit in (3.6) exists, it is a short exercise to show that lim𝓁→∞ log || ∪𝓁

𝑘=0𝑘(Σ)
||∕𝓁 exists and is equal to ℎtop(Σ, 𝜎). It follows from the inequalities in (3.7) that dimM𝐴Σ =

ℎtop(Σ, 𝑇)∕ log 𝑟. The same argument shows that similarly dimM 𝐵Σ = ℎtop(Σ, 𝑇)∕ log 𝑟, verifying
the equality in (3.5).
Finally, suppose 𝐵 ⊆ ℕ0 is a ×𝑟-invariant set. We will prove that there exists a subshift Σ ⊆

Λ
ℕ0
𝑟 for which 𝐵Σ = 𝐵. Let Σ(𝓁) denote the set of all infinite words 𝑤0𝑤1⋯ ∈ Λ

ℕ0
𝑟 for which

(𝑤𝓁−1⋯𝑤0)𝑟 ∈ 𝐵, and define

Σ ∶=
⋂
𝓁∈ℕ

Σ(𝓁−1). (3.8)

Being an intersection of closed sets, Σ is closed. From ℜ𝑟(𝐵) ⊆ 𝐵, it follows that 𝜎(Σ(𝓁)) ⊆ Σ(𝓁),
whereby 𝜎(Σ) ⊆ Σ. This proves that (Σ, 𝜎) is a subshift. From the construction, it is clear that
𝐵Σ ⊆ 𝐵.
On the other hand, if (𝑤𝓁−1⋯𝑤0)𝑟 ∈ 𝐵, then the infinite word 𝑤0⋯𝑤𝓁−100⋯ ∈ Σ. It follows

that (𝑤𝓁−1⋯𝑤0)𝑟 ∈ 𝐵Σ, showing that 𝐵 = 𝐵Σ. □

Wenote that the identification of×𝑟-invariant subsets ofℕ0 and subshifts ofΛ
ℕ0
𝑟 given by Propo-

sition 3.10 is not bijective. The subshift Σ defined in (3.8) can be shown to be the largest such that
𝐵Σ = 𝐵, but, in general, there can be infinitely many distinct subshifts Σ′ such that 𝐵Σ′ = 𝐵.
As a corollary to Proposition 3.10, we obtain the following result, which plays an important role

in most of our main results.

Corollary 3.13. For any ×𝑟-invariant 𝐴 ⊆ ℕ0, the set

𝐴′ ∶=
⋂
𝑘∈ℕ0

⋂
𝓁∈ℕ0

ℜ𝑘
𝑟𝔏

𝓁
𝑟 (𝐴)

 14697750, 2024, 5, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12902 by B

ibliothèque de l’E
PFL

, W
iley O

nline L
ibrary on [19/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense
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satisfies ℜ𝑟(𝐴
′) = 𝔏𝑟(𝐴

′) = 𝐴′ (in particular, 𝐴′ is ×𝑟-invariant) and dimH𝐴′ = dimM𝐴′ =

dimM𝐴.

Proof. Note that 𝐴′ is the largest subset of 𝐴 satisfyingℜ𝑟(𝐴
′) = 𝔏𝑟(𝐴

′) = 𝐴′; in particular, it is
×𝑟-invariant. Therefore, to prove dimM𝐴′ = dimM𝐴, it suffices to find a subset𝐴′′ ⊆ 𝐴 satisfying
ℜ𝑟(𝐴

′′) = 𝔏𝑟(𝐴
′′) = 𝐴′′ and dimM𝐴′′ = dimM𝐴. Appealing to Proposition 3.6, this would also

prove that dimH𝐴′ = dimM𝐴. If dimM𝐴 = 0, then there is nothing to show, so let us proceed
under the assumption that dimM𝐴 > 0.
According to Proposition 3.10, we can find a subshift Σ ⊆ Λ

ℕ0
𝑟 such that 𝐴 coincides with the

𝑟-language set 𝐵Σ associated to Σ. Let 𝜇 be an ergodic 𝜎-invariant Borel probability measure on
Σ of maximal entropy (the existence of such a measure follows from, e.g., [42, Theorem 8.2 +

Theorem 8.7 (v)]). Let Σ′′ denote the support of 𝜇, and observe that (Σ′′, 𝜎) is a subshift of (Σ, 𝜎)
with ℎtop(Σ, 𝜎) = ℎtop(Σ

′′, 𝜎). Moreover, since 𝜇 is ergodic, almost every point in Σ′′ has a dense
orbit (by Birkhoff’s ergodic theorem) and almost every point is recurrent (by Poincaré’s recur-
rence theorem). Therefore, there exists a point 𝑥 ∈ Σ′′ that visits every nonempty open set in Σ′′

infinitely often.
Let 𝐴′′ ⊆ ℕ0 be the 𝑟-language set associated to Σ′′, that is, 𝐴′′ = 𝐵Σ′′ . Since Σ′′ ⊆ Σ, we have

𝐴′′ ⊆ 𝐴. Also, by Proposition 3.10, dimM𝐴 = ℎtop(Σ, 𝜎)∕ log 𝑟, dimM𝐴′′ = ℎtop(Σ
′′, 𝜎)∕ log 𝑟, and

ℎtop(Σ, 𝜎) = ℎtop(Σ
′′, 𝜎), which implies dimM𝐴 = dimM𝐴′′. All that remains to be shown is that

ℜ𝑟(𝐴
′′) = 𝔏𝑟(𝐴

′′) = 𝐴′′.
Since 𝐴′′ is an 𝑟-language set, it is ×𝑟-invariant, so we already have the inclusions

ℜ𝑟(𝐴
′′) ⊆ 𝐴′′ and 𝔏𝑟(𝐴

′′) ⊆ 𝐴′′.

To prove the reverse inclusions, let 𝑛 ∈ 𝐴′′, and let 𝑤0⋯𝑤𝓁−1 ∈ (Σ′′) be such that 𝑛 =

(𝑤𝓁−1⋯𝑤0)𝑟 ∈ 𝐴′′. Since the point 𝑥 visits every open set of Σ′′ infinitely often, the word
𝑤0⋯𝑤𝓁−1 appears in 𝑥 infinitely often. This implies that 𝑥 cannot be equal to𝑤0⋯𝑤𝓁−10

∞, and
so, there exists a nonzero letter𝑢 ∈ Λ𝑟 and some 𝑘 ∈ ℕ0 such that theword𝑤0⋯𝑤𝓁−10

𝑘𝑢 appears
in 𝑥 and hence in(Σ′′). Now (𝑢0𝑘𝑤𝓁−1⋯𝑤0)𝑟 ∈ 𝐴′′ and𝔏𝑟(𝑢0

𝑘𝑤𝓁−1⋯𝑤0)𝑟 = (𝑤𝓁−1⋯𝑤0)𝑟 =

𝑛, showing that 𝐴′′ ⊆ 𝔏𝑟(𝐴
′′).

Invoking again the fact that the word 𝑤0⋯𝑤𝓁−1 appears infinitely often in 𝑥, there must exist
a letter 𝑣 ∈ Λ𝑟 such that the word 𝑣𝑤0⋯𝑤𝓁−1 appears in 𝑥 and hence belongs to (Σ′′). Now
(𝑤𝓁−1⋯𝑤0𝑣)𝑟 ∈ 𝐴′′ andℜ𝑟(𝑤𝓁−1⋯𝑤0𝑣)𝑟 = 𝑛, showing that 𝐴′′ ⊆ ℜ𝑟(𝐴

′′). □

A well-known fact from geometric measure theory states that if 𝑋 ⊆ [0, 1] is multiplicatively
invariant and has Hausdorff dimension 1, then𝑋 = [0, 1] (see [15, discussion after Conjecture 2]).
The following corollary of Proposition 3.10 offers a discrete analog of this result and may be of
independent interest.

Corollary 3.14. If 𝐴 ⊆ ℕ0 is multiplicatively invariant and dimM𝐴 = 1, then 𝐴 = ℕ0.

Proof. Suppose𝐴 is ×𝑟-invariant with dimM𝐴 = 1. It follows from Proposition 3.6 that dimM𝐴 =

1. In view of Proposition 3.10, there exists a subshift Σ ⊆ Λ
ℕ0
𝑟 such that 𝐴 = 𝐵Σ and ℎtop(Σ, 𝜎) =

log 𝑟. However, the only subshift of Λℕ0
𝑟 with full entropy is the full shift. Hence, Σ = Λ

ℕ0
𝑟 , which

implies 𝐴 = 𝐵Σ = ℕ0. □
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36 of 55 GLASSCOCK et al.

3.4 Connections to fractal geometry of the reals

The purpose of this subsection is to establish a connection between ×𝑟-invariant subsets of the
nonnegative integers and×𝑟-invariant subsets of [0,1]. Recall that𝑋 ⊆ [0, 1] is called×𝑟-invariant
if it is closed and 𝑇𝑟𝑋 ⊆ 𝑋, where 𝑇𝑟 ∶ 𝑥 ↦ 𝑟𝑥 mod 1.
First, we remark that every ×𝑟-invariant subset of [0,1] can be “lifted” to a ×𝑟-invariant subset

of ℕ0. Indeed, if 𝑋 ⊆ [0, 1] is ×𝑟-invariant, then one can show that the set{⌊𝑟𝑘𝑥⌋ | 𝑥 ∈ 𝑋, 𝑘 ∈ ℕ0

}
is×𝑟-invariant.Wewill notmake use of this fact, so we leave the details to the interested reader. Of
more importance to us is the converse direction, stated in the following proposition. Recall from
Section 2.1 the definition of Hausdorff distance.

Proposition 3.15. For any ×𝑟-invariant set 𝐴 ⊆ ℕ0, the sequence 𝑋𝑘 ∶= (𝐴 ∩ [0, 𝑟𝑘))∕𝑟𝑘 con-
verges with respect to the Hausdorff metric 𝑑𝐻 as 𝑘 → ∞ to a ×𝑟-invariant set 𝑋 ⊆ [0, 1] satisfying
dimM 𝑋 = dimM𝐴.

We remark that by Lemma 2.12 and Proposition 3.6, the Minkowski and Hausdorff dimensions
of multiplicatively invariant sets in ℕ0 and [0,1] coincide. Thus, either dimension can be used in
the conclusion of Proposition 3.15. For the proof of the proposition, we will need two technical
lemmas.

Lemma 3.16. Let 𝐴 ⊆ ℕ0, and define 𝑋𝑘 ∶= (𝐴 ∩ [0, 𝑟𝑘))∕𝑟𝑘 .

(I) Ifℜ𝑟(𝐴) ⊆ 𝐴, then for any 𝑘, 𝑙 ∈ ℕ with 𝑙 ⩾ 𝑘, we have 𝑋𝑙 ⊆ [𝑋𝑘]𝑟−𝑘 .
(II) Ifℜ𝑟(𝐴) ⊇ 𝐴, then for any 𝑘, 𝑙 ∈ ℕ with 𝑙 ⩾ 𝑘, we have 𝑋𝑘 ⊆ [𝑋𝑙]𝑟−𝑘 .

In particular, ifℜ𝑟(𝐴) = 𝐴, then for all 𝑙 ⩾ 𝑘, we have 𝑑𝐻(𝑋𝑙, 𝑋𝑘) ⩽ 𝑟−𝑘 .

Proof. It is helpful to note first that for all 𝑛, 𝑙, 𝑘 ∈ ℕ with 𝑙 ⩾ 𝑘,||||| 𝑛𝑟𝑙 − ℜ𝑙−𝑘
𝑟 (𝑛)

𝑟𝑘

||||| ⩽ 1

𝑟𝑘
. (3.9)

This inequality follows easily from the fact that ℜ𝑙−𝑘
𝑟 (𝑛) = ⌊𝑛∕𝑟𝑙−𝑘⌋. For the proof of part (I),

let 𝑦 ∈ 𝑋𝑙 and write 𝑦 = 𝑚∕𝑟𝑙 for some 𝑚 ∈ 𝐴. Note that 𝑚̃ ∶= ℜ𝑙−𝑘
𝑟 (𝑚) belongs to 𝐴 ∩ [0, 𝑟𝑘)

becauseℜ𝑟(𝐴) ⊆ 𝐴. Then, setting 𝑦̃ ∶= 𝑚̃∕𝑟𝑘, we see that 𝑦̃ ∈ 𝑋𝑘 and, by (3.9), 𝑑(𝑦, 𝑦̃) ⩽ 𝑟−𝑘. This
proves 𝑋𝑙 ⊆ [𝑋𝑘]𝑟−𝑘 .
Next, we prove part (II). For any 𝑥 ∈ 𝑋𝑘, we can find 𝑛 ∈ 𝐴 ∩ [0, 𝑟𝑘) such that 𝑥 = 𝑛∕𝑟𝑘. Since

𝐴 ⊆ ℜ𝑙−𝑘
𝑟 (𝐴), there exists 𝑛̃ ∈ 𝐴 ∩ [0, 𝑟𝑙) such that

ℜ𝑙−𝑘
𝑟 (𝑛̃) = 𝑛.

Now 𝑥̃ ∶= 𝑛̃∕𝑟𝑙 belongs to 𝑋𝑙 and it follows from (3.9) that 𝑑(𝑥, 𝑥̃) ⩽ 𝑟−𝑘. This proves 𝑋𝑘 ⊆

[𝑋𝑙]𝑟−𝑘 . □

Lemma 3.17. Suppose𝐴 ⊆ ℕ0 satisfiesℜ𝑟(𝐴) ⊆ 𝐴, and define𝐴′ ∶=
⋂

𝑘∈ℕ ℜ
𝑘
𝑟 (𝐴). Also, set𝑋𝑘 ∶=

(𝐴 ∩ [0, 𝑟𝑘))∕𝑟𝑘 and 𝑋′
𝑘
∶= (𝐴′ ∩ [0, 𝑟𝑘))∕𝑟𝑘 . Then lim𝑘→∞ 𝑑𝐻(𝑋𝑘, 𝑋

′
𝑘
) = 0.
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ADDITIVE AND GEOMETRIC TRANSVERSALITY OF FRACTAL SETS IN THE INTEGERS 37 of 55

Proof. Let 𝜀 > 0, and let𝑚 ∈ ℕ such that 2𝑟−𝑚 < 𝜀. Sinceℜ𝑟(𝐴) ⊆ 𝐴, we have

𝐴 ∩ [0, 𝑟𝑚) ⊇ ℜ𝑟(𝐴) ∩ [0, 𝑟𝑚) ⊇ ℜ2
𝑟(𝐴) ∩ [0, 𝑟𝑚) ⊇ ℜ3

𝑟(𝐴) ∩ [0, 𝑟𝑚) ⊇ … .

In particular, the sequence 𝑘 ↦ ℜ𝑘
𝑟 (𝐴) ∩ [0, 𝑟𝑚) eventually stabilizes, which happens exactly

whenℜ𝑘
𝑟 (𝐴) ∩ [0, 𝑟𝑚) = 𝐴′ ∩ [0, 𝑟𝑚). It follows from (3.9) that

𝑋𝑘 ⊂

[
ℜ𝑘−𝑚

𝑟 (𝐴) ∩ [0, 𝑟𝑚)

𝑟𝑚

]
𝑟−𝑚

.

Therefore, for large enough 𝑘, 𝑋𝑘 ⊂ [𝑋′
𝑚]𝑟−𝑚 . On the other hand, it is clear that 𝑋

′
𝑘
⊂ 𝑋𝑘. Finally,

since from Lemma 3.16, we have that 𝑑𝐻(𝑋′
𝑘
, 𝑋′

𝑚) < 𝑟−𝑚, we conclude that 𝑋′
𝑘
⊂ 𝑋𝑘 ⊂ [𝑋′

𝑚]𝑟−𝑘 ⊂

[𝑋′
𝑘
]2𝑟−𝑚 , when it follows that 𝑑𝐻(𝑋𝑘, 𝑋

′
𝑘
) < 𝜀. □

Proof of Proposition 3.15. Define 𝐴′ ∶=
⋂

𝑘∈ℕ0
ℜ𝑘

𝑟 (𝐴) and 𝑋′
𝑘
∶= (𝐴′ ∩ [0, 𝑟𝑘))∕𝑟𝑘. In view of

Lemma 3.17, the sequence 𝑘 ↦ 𝑋𝑘 converges with respect to the Hausdorff metric if and only
if the sequence 𝑘 ↦ 𝑋′

𝑘
converges. Since 𝐴′ = ℜ𝑟(𝐴

′), it follows from Lemma 3.16 that

𝑑𝐻(𝑋
′
𝑘
, 𝑋′

𝑙
) ⩽ 𝑟−𝑘, for all 𝑘, 𝑙 ∈ ℕ with 𝑙 ⩾ 𝑘.

This implies that 𝑘 ↦ 𝑋′
𝑘
is a Cauchy sequence, and hence, it is convergent (recall that by the

Blaschke selection theorem, the set of all nonempty, compact subsets of [0,1] equipped with the
Hausdorff distance, is a complete metric space). Let 𝑋′ = lim𝑘→∞ 𝑋′

𝑘
, and note that 𝑋′ ⊆ 𝑋.

Next, let us show that 𝑋 is ×𝑟-invariant. Since 𝔏𝑟(𝐴) ⊆ 𝐴, a simple computation shows
𝑇𝑟(𝑋𝑘) ⊆ 𝑋𝑘−1. Therefore, using 𝑋 = lim𝑘→∞ 𝑋𝑘 and the fact that 𝑇𝑟 is continuous on
[0, 1)∖{0, 1

𝑟
, … , 𝑟−1

𝑟
}, we get that for any closed set 𝐶 ⊆ [0, 1)∖{0, 1

𝑟
, … , 𝑟−1

𝑟
},

𝑇𝑟(𝑋 ∩ 𝐶) = 𝑇𝑟

(
lim
𝑘→∞

(𝑋𝑘 ∩ 𝐶)

)
= lim

𝑘→∞
𝑇𝑟(𝑋𝑘 ∩ 𝐶)

⊆ lim
𝑘→∞

𝑇𝑟(𝑋𝑘)

⊆ lim
𝑘→∞

𝑋𝑘−1

= 𝑋.

It follows that 𝑇𝑟(𝑋∖{0,
1

𝑟
, … , 𝑟−1

𝑟
}) ⊆ 𝑋. Since 0 ∈ 𝑋, we obtain 𝑇({0, 1

𝑟
, … , 𝑟−1

𝑟
}) ⊆ 𝑋, and hence,

𝑇𝑟(𝑋) ⊆ 𝑋, as desired.
Finally, we must show dimM 𝑋 = dimM𝐴. As guaranteed by Corollary 3.13, dimM𝐴 =

dimM𝐴′. By combining part (I) of Lemma 3.16 with Lemma 2.5, we see that

0 ⩽ lim inf
𝑘→∞

(
log (

𝑋𝑘, 𝑟
−𝑘

)
𝑘 log 𝑟

−
log (

𝑋, 𝑟−𝑘
)

𝑘 log 𝑟

)

= dimM𝐴 − lim sup
𝑘→∞

log (
𝑋, 𝑟−𝑘

)
𝑘 log 𝑟

,

(3.10)
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38 of 55 GLASSCOCK et al.

where the equality follows from the fact that dimM𝐴 = lim𝑘→∞
1

𝑘 log 𝑟
log (𝑋𝑘, 𝑟

−𝑘) (cf. Equa-
tion (3.1)). On the other hand, using part (II) of Lemma 3.16, Lemma 2.5, and the fact that
dimM𝐴′ = lim𝑘→∞

1

𝑘 log 𝑟
log (𝑋′

𝑘
, 𝑟−𝑘), we see

0 ⩽ lim inf
𝑘→∞

⎛⎜⎜⎜⎝
log (

𝑋′, 𝑟−𝑘
)

𝑘 log 𝑟
−

log(
𝑋′
𝑘
, 𝑟−𝑘

)
𝑘 log 𝑟

⎞⎟⎟⎟⎠
= lim inf

𝑘→∞

log (
𝑋′, 𝑟−𝑘

)
𝑘 log 𝑟

− dimM𝐴′.

(3.11)

Combining (3.10) and (3.11) with the fact that 𝑋′ ⊆ 𝑋, we see

dimM𝐴′ ⩽ lim inf
𝑘→∞

log (
𝑋′, 𝑟−𝑘

)
𝑘 log 𝑟

⩽ lim sup
𝑘→∞

log (
𝑋, 𝑟−𝑘

)
𝑘 log 𝑟

⩽ dimM𝐴.

Since dimM𝐴 = dimM𝐴′ and 𝑋′ ⊆ 𝑋, we conclude that dimM 𝑋 exists and is equal to
dimM𝐴. □

4 TRANSVERSALITY BETWEENMULTIPLICATIVELY INVARIANT
SUBSETS OF THE INTEGERS

In this section, we prove our main results, Theorems A–D. As in the other sections, the positive
integers 𝑟 and 𝑠 are fixed, and the implicit constants appearing in asymptotic notationmay depend
on 𝑟 and 𝑠 without further indication.

4.1 Sets that are simultaneously multiplicatively invariant

In this subsection, we give a proof of Theorem A. We follow the notation and terminology estab-
lished in Section 3.2. We say that a nonnegative integer 𝑛 begins with the word 𝑤 in base 𝑠 if there
exists 𝑑 ∈ ℕ0 and 𝑛0 ∈ [0, 𝑠𝑑) such that

𝑛 = (𝑤)𝑠𝑠
𝑑 + 𝑛0. (4.1)

If𝑤 = 𝑤0⋯𝑤𝓁−1 and𝑤0 ≠ 0, thismeans that the𝓁most significant digits in the base-𝑠 expansion
of 𝑛 are 𝑤0, 𝑤1,… ,𝑤𝓁−1, in order.

Lemma 4.1. For all 𝑤 ∈ Λ𝓁
𝑠 , there is an arc 𝐼𝑤 ⊆ [0, 1) modulo 1 (meaning that 𝐼𝑤 is an interval

when 0 and 1 are identified) with the property that for all 𝑥 ⩾ (𝑤)𝑠, the integer ⌊𝑥⌋ begins with 𝑤 in
base 𝑠 if and only if {log 𝑥∕ log 𝑠} ∈ 𝐼𝑤 .

Proof. Let 𝑤 ∈ Λ𝓁+1
𝑠 . It follows from (4.1) that a positive integer 𝑛 begins with 𝑤 in base 𝑠 if and

only if there exists 𝑑 ∈ ℕ0 such that

(𝑤)𝑠𝑠
𝑑 ⩽ 𝑛 < ((𝑤)𝑠 + 1)𝑠𝑑.
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ADDITIVE AND GEOMETRIC TRANSVERSALITY OF FRACTAL SETS IN THE INTEGERS 39 of 55

Therefore, a positive real number 𝑥 has the property that ⌊𝑥⌋ begins with 𝑤 in base 𝑠 if and only
if there exists 𝑑 ∈ ℕ0 such that

(𝑤)𝑠𝑠
𝑑 ⩽ 𝑥 < ((𝑤)𝑠 + 1)𝑠𝑑.

The previous inequality is equivalent to

log(𝑤)𝑠
log 𝑠

+ 𝑑 ⩽
log 𝑥

log 𝑠
<

log ((𝑤)𝑠 + 1)

log 𝑠
+ 𝑑. (4.2)

Let 𝐼𝑤 be the modulo 1 arc from the fractional part of log(𝑤)𝑠∕ log 𝑠 to the fractional part of
log ((𝑤)𝑠 + 1) ∕ log 𝑠 in the positive direction. We see that for all 𝑥 ⩾ (𝑤)𝑠, the integer ⌊𝑥⌋ begins
with 𝑤 in base 𝑠 if and only if (4.2) holds, which happens if and only if

{
log 𝑥∕ log 𝑠

}
∈ 𝐼𝑤. □

Recall from Section 2.1 that [𝐴]𝛿 denotes the 𝛿-neighborhood of 𝐴.

Lemma 4.2. Let 𝑟 and 𝑠 be multiplicatively independent positive integers, and let 𝐴 ⊆ ℕ0 be ×𝑟
invariant and infinite. If 𝜆, 𝛿 > 0, 𝜏 ∈ ℝ, and 𝐵 ⊆ ℕ0 are such that 𝜆𝐴 + 𝜏 ⊆ [𝐵]𝛿 , then for all 𝑤 ∈

Λ∗
𝑠 , there exists an integer in 𝐵 that begins with 𝑤 in base 𝑠.

Proof. Let 𝑤 ∈ Λ∗
𝑠 , and let 𝐼𝑤 be the arc from Lemma 4.1. Let 𝐼′𝑤 be the middle third subinterval

of 𝐼𝑤, and let 𝜉 be the length of 𝐼′𝑤. Define 𝛼 = log 𝑟∕ log 𝑠. Since 𝛼 is irrational, there exists 𝐾 ∈ ℕ

such that the set
{
{𝑖𝛼} | 𝑖 ∈ {0, … , 𝐾}

}
is 𝜉-dense in [0,1).

Since 𝐴 is infinite, there exists 𝑛 ∈ 𝐴 sufficiently large (to be specified momentarily) such that
𝜆𝑛∕𝑠𝐾 + 𝜏 ⩾ (𝑤)𝑠 + 𝛿 + 𝜆. Since 𝐴 isℜ𝑟-invariant, 𝑛, ⌊𝑛∕𝑟⌋, … , ⌊𝑛∕𝑟𝐾⌋ are all elements of 𝐴. Let
𝑖 ∈ {0, … , 𝐾}. Since 𝜆𝐴 + 𝜏 ⊆ [𝐵]𝛿, the real number 𝜆⌊𝑛∕𝑟𝑖⌋ + 𝜏 is within a distance 𝛿 of the set 𝐵.
Therefore, there exists 𝑡𝑖 ∈ ℝ, |𝑡𝑖| ⩽ 𝜆 + 𝛿, such that 𝜆𝑛∕𝑟𝑖 + 𝜏 + 𝑡𝑖 ∈ 𝐵.
By the mean value theorem, ensuring that 𝑛 is sufficiently large, we see that for all 𝑖 ∈

{0, … , 𝐾},

||||| log
(
𝜆𝑛∕𝑟𝑖 + 𝜏 + 𝑡𝑖

)
log 𝑠

−
log

(
𝜆𝑛∕𝑟𝑖

)
log 𝑠

||||| < 𝜉. (4.3)

It follows from the fact that log
(
𝜆𝑛∕𝑟𝑖

)
∕ log 𝑠 = log(𝜆𝑛)∕ log 𝑠 − 𝑖𝛼 and from our choice of𝐾 that

there exists 𝑖 ∈ {0, … , 𝐾} such that
{
log

(
𝜆𝑛∕𝑟𝑖

)
∕ log 𝑠

}
∈ 𝐼′𝑤. It follows from (4.3) and the defi-

nition of 𝜉 that
{
log

(
𝜆𝑛∕𝑟𝑖 + 𝜏 + 𝑡𝑖

)
∕ log 𝑠

}
∈ 𝐼𝑤. By our choice of 𝑛 and the fact that 𝑖 ⩽ 𝐾, we

have that 𝜆𝑛∕𝑟𝑖 + 𝜏 + 𝑡𝑖 ⩾ (𝑤)𝑠. Therefore, Lemma 4.1 gives that 𝜆𝑛∕𝑟𝑖 + 𝜏 + 𝑡𝑖 , an integer in 𝐵,
begins with the word 𝑤 in base 𝑠, as was to be shown. □

Proof of Theorem A. Let 𝑟 and 𝑠 be multiplicatively independent positive integers, and let 𝐴, 𝐵 ⊆

ℕ0 be ×𝑟- and ×𝑠-invariant sets, respectively. Suppose 𝜆, 𝜂 > 0, 𝜎, 𝜏 ∈ ℝ, and 𝛿 > 0 are such that
𝜆𝐴 + 𝜏 ⊆ [𝜂𝐵 + 𝜎]𝛿. We need to show that then either 𝐴 is finite or 𝐵 = ℕ0.
Suppose𝐴 is infinite; we will argue that 𝐵 = ℕ0. Since 𝐵 is ×𝑠-invariant, it suffices to show that

for all 𝑤 ∈ Λ∗
𝑠 , there exists an integer in 𝐵 that begins with 𝑤 in base 𝑠.

Let 𝑤 ∈ Λ∗
𝑠 . It follows from (1.11) that 𝜆′𝐴 + 𝜏′ ⊆ [𝐵]𝛿′ , where 𝜆′ = 𝜆∕𝜂, 𝜏′ = (𝜏 − 𝜎)∕𝜂 and

𝛿′ = 𝛿∕𝜂. Since 𝐴 is ×𝑟-invariant and infinite, Lemma 4.2 gives that some integer in 𝐵 begins
with 𝑤 ∈ Λ∗

𝑠 in base 𝑠, as was to be shown. □
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40 of 55 GLASSCOCK et al.

4.2 Intersections of multiplicatively independent invariant sets

In this subsection, we prove Theorem B, showing that ×𝑟- and ×𝑠-invariant sets are geometrically
transverse in the sense that the dimension of the intersection of one with any affine image of the
other is small. In fact, we prove the following stronger version.

Theorem 4.3. Let 𝑟 and 𝑠 bemultiplicatively independent positive integers, and let𝐴, 𝐵 ⊆ ℕ0 be×𝑟-
and×𝑠-invariant sets, respectively. Define 𝛾 = max (0, dimH𝐴 + dimH 𝐵 − 1). For every compact set
𝐼 ⊆ ℝ∖{0} and 𝜀 > 0,

lim
𝑁→∞

sup
𝜆,𝜂∈𝐼
𝜎,𝜏∈ℝ

||⌊𝜆(𝐴 ∩ [0,𝑁)) + 𝜏
⌋
∩
⌊
𝜂(𝐵 ∩ [0,𝑁)) + 𝜎

⌋||
𝑁𝛾+𝜀

= 0. (4.4)

In particular, for all 𝜆, 𝜂, 𝜎, 𝜏 ∈ ℝ,

dimM (⌊𝜆𝐴 + 𝜏⌋ ∩ ⌊𝜂𝐵 + 𝜎⌋) ⩽ max (0, dimH𝐴 + dimH 𝐵 − 1). (4.5)

Proof. Let 𝐼 ⊆ ℝ∖{0} be compact and 𝜀 > 0. Since
⌊
𝜆 (𝐴 ∩ [0,𝑁)) + 𝜏

⌋
⊆ [𝜆 (𝐴 ∩ [0,𝑁)) + 𝜏]1 and⌊

𝜂 (𝐵 ∩ [0,𝑁)) + 𝜎
⌋
⊆ [𝜂 (𝐵 ∩ [0,𝑁)) + 𝜎]1, the cardinality in the numerator on the left-hand side

of (4.4) is bounded from above by

 ([𝜆(𝐴 ∩ [0,𝑁)) + 𝜏]1 ∩ [𝜂(𝐵 ∩ [0,𝑁)) + 𝜎]1, 1),

which is quickly seen to be equal to


([

𝜆

(
𝐴 ∩ [0,𝑁)

𝑁

)
+

𝜏

𝑁

]
𝑁−1

∩

[
𝜂

(
𝐵 ∩ [0,𝑁)

𝑁

)
+

𝜎

𝑁

]
𝑁−1

, 𝑁−1

)
. (4.6)

Define for every 𝑘,𝓁 ∈ ℕ, the sets

𝑋𝑘 ∶=
𝐴 ∩ [0, 𝑟𝑘)

𝑟𝑘
and 𝑌𝓁 ∶=

𝐵 ∩ [0, 𝑠𝓁)

𝑠𝓁
.

Define 𝑘𝑁 ∶= ⌊log𝑁∕ log 𝑟⌋ + 1 and 𝓁𝑁 ∶= ⌊log𝑁∕ log 𝑠⌋ + 1, and note that

𝑁 = 𝑟𝑘𝑁𝑟{log𝑁∕ log 𝑟}−1 = 𝑠𝓁𝑁 𝑠{log𝑁∕ log 𝑠}−1.

Since 𝑁 ⩽ min(𝑟𝑘𝑁 , 𝑠𝓁𝑁 ), we have that 𝐴 ∩ [0,𝑁) ⊆ 𝐴 ∩ [0, 𝑟𝑘𝑁 ) and 𝐵 ∩ [0,𝑁) ⊆ 𝐵 ∩ [0, 𝑠𝓁𝑁 ).
Therefore, the expression in (4.6) is bounded from above by

([
𝜆𝑟1−{log𝑁∕ log 𝑟}𝑋𝑘𝑁

+ 𝜏∕𝑁
]
𝑁−1

∩
[
𝜂𝑠1−{log𝑁∕ log 𝑠}𝑌𝓁𝑁

+ 𝜎∕𝑁
]
𝑁−1

, 𝑁−1
)
.

Since 𝐼 ⊆ ℝ∖{0} is compact, there exists 𝑡 > 1 such that 𝐼 ⊆ ±[𝑡−1, 𝑡]. If 𝜆 and 𝜂 belong to 𝐼, then
𝜆𝑟1−{log𝑁∕ log 𝑟} and 𝜂𝑠1−{log𝑁∕ log 𝑠} belong to 𝐽 ∶= ±[𝑡−1,max(𝑟, 𝑠)𝑡]. Therefore, to show (4.4), it
suffices to prove

lim
𝑁→∞

sup
𝜆,𝜂∈𝐽
𝜎,𝜏∈ℝ

([
𝜆𝑋𝑘𝑁

+ 𝜏
]
𝑁−1

∩
[
𝜂𝑌𝓁𝑁

+ 𝜎
]
𝑁−1

, 𝑁−1
)

𝑁𝛾+𝜀
= 0. (4.7)
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ADDITIVE AND GEOMETRIC TRANSVERSALITY OF FRACTAL SETS IN THE INTEGERS 41 of 55

In view of Proposition 3.15, the limits𝑋 ∶= lim𝑘→∞ 𝑋𝑘 and𝑌 ∶= lim𝓁→∞ 𝑌𝓁 exist in the Haus-
dorff metric. Moreover, 𝑋 and 𝑌 are ×𝑟- and ×𝑠-invariant, respectively, and dimH 𝑋 = dimH𝐴,
dimH 𝑌 = dimH 𝐵. By Lemma 3.16, we have that 𝑑𝐻(𝑋𝑘𝑁

, 𝑋) ⩽ 𝑁−1 and 𝑑𝐻(𝑌𝓁𝑁
, 𝑌) ⩽ 𝑁−1. Put

𝑎 = max 𝐽, and note that for all 𝜆, 𝜂 ∈ 𝐽 and 𝜎, 𝜏 ∈ ℝ,[
𝜆𝑋𝑘𝑁

+ 𝜏
]
𝑁−1

∩
[
𝜂𝑌𝓁𝑁

+ 𝜎
]
𝑁−1

⊆ [𝜆𝑋 + 𝜏]𝑎𝑁−1 ∩ [𝜂𝑌 + 𝜎]𝑎𝑁−1 . (4.8)

We can now manipulate the left-hand side of (4.7) using (4.8), Lemma 2.6, and Corollary 2.19
(with 𝐽 as 𝐼), to get

lim sup
𝑁→∞

sup
𝜆,𝜂∈𝐽
𝜎,𝜏∈ℝ

([
𝜆𝑋𝑘𝑁

+ 𝜏
]
𝑁−1

∩
[
𝜂𝑌𝓁𝑁

+ 𝜎
]
𝑁−1

, 𝑁−1
)

𝑁𝛾+𝜀

⩽ lim sup
𝑁→∞

sup
𝜆,𝜂∈𝐽
𝜎,𝜏∈ℝ

log (
[𝜆𝑋 + 𝜏]𝑎𝑁−1 ∩ [𝜂𝑌 + 𝜎]𝑎𝑁−1 , 𝑁−1

)
𝑁𝛾+𝜀

≪ lim
𝑁→∞

sup
𝜆,𝜂∈𝐽
𝜎,𝜏∈ℝ

 (
[𝜆𝑋 + 𝜏]𝑎𝑁−1 ∩ [𝜂𝑌 + 𝜎]𝑎𝑁−1 , 𝑎𝑁−1

)
(𝑎𝑁)𝛾+𝜀

= 0.

This verifies (4.7) and concludes the proof of (4.4).
To show (4.5), let 𝜆, 𝜂, 𝜎, 𝜏 ∈ ℝ. Put 𝑀 = 3max

(|𝜆|−1, |𝜂|−1), and note that for all 𝑁 ⩾

max (|𝜎|, |𝜏|),⌊
𝜆𝐴 + 𝜏

⌋
∩
⌊
𝜂𝐵 + 𝜎

⌋
∩ [0,𝑁) ⊆

⌊
𝜆(𝐴 ∩ [0,𝑀𝑁)) + 𝜏

⌋
∩
⌊
𝜂(𝐵 ∩ [0,𝑀𝑁)) + 𝜎

⌋
.

It follows from this containment and (4.4) that for all 𝜀 > 0,

1

𝑀𝛾+𝜀
lim
𝑁→∞

||⌊𝜆𝐴 + 𝜏
⌋
∩
⌊
𝜂𝐵 + 𝜎

⌋
∩ [0,𝑁)||

𝑁𝛾+𝜀
= 0.

This proves (4.5) and concludes the proof of the theorem. □

Remark 4.4. We note two modifications to the statement of Theorem 4.3 that can be proved
with minor corresponding modifications made to the proof. First, the initial interval [0, 𝑁) can
be replaced by an interval symmetric about the origin, (−𝑁,𝑁). Though 𝐴 and 𝐵 consist of posi-
tive integers, this is meaningful because the theorem allows for 𝜆 and/or 𝜂 to be negative. Second,
using the floor function to round to the integer lattice is a mere convenience: the result hold when
the sets 𝜆𝑋 + 𝜏 and 𝜂𝑌 + 𝜎 are rounded to any other discrete subgroup (or translate of a discrete
subgroup) of ℝ.

4.3 Sums of multiplicatively independent invariant sets

In this subsection, we prove TheoremC, showing that sets that are multiplicatively invariant with
respect to multiplicatively independent bases are transverse in an additive combinatorial sense.
The results can be phrased in terms of the size (cardinality or Hausdorff content) of finite subsets
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42 of 55 GLASSCOCK et al.

of multiplicatively invariant sets. The upper bounds on the size of the sumsets are contained in
Lemma 4.5 and follow from general considerations. The difficulty in the main results is in prov-
ing the lower bounds, which are handled in Theorem 4.6 and are derived from their continuous
counterparts in Theorem 2.21.

Lemma 4.5. For all finite, nonempty 𝐴′, 𝐵′ ⊆ ℕ0, all 𝜆, 𝜂 > 0, and all 0 ⩽ 𝛾 ⩽ 1,

||⌊𝜆𝐴′ + 𝜂𝐵′
⌋|| ⩽ ||𝐴′ × 𝐵′||, (4.9)

𝛾
⩾1

(⌊
𝜆𝐴′ + 𝜂𝐵′

⌋)
≪max(𝜆,𝜂) 𝛾

⩾1

(
𝐴′ × 𝐵′

)
. (4.10)

Moreover, for all 𝐴, 𝐵 ⊆ ℕ0, all dim ∈ {dimM , dimM , dimH , dimH }, and all 𝜆, 𝜂 > 0,

dim (⌊𝜆𝐴 + 𝜂𝐵⌋) ⩽ min (1, dim(𝐴 × 𝐵)).

Proof. Let 𝐴′, 𝐵′ ⊆ ℕ0 be finite, nonempty, let 𝜆, 𝜂 > 0, and let 0 ⩽ 𝛾 ⩽ 1. Denote by 𝜑 ∶ ℝ2 → ℝ

the map 𝜑(𝑥, 𝑦) = 𝜆𝑥 + 𝜂𝑦; it is Lipschitz with Lipschitz constant max(𝜆, 𝜂). Note that 𝜑(𝐴′ ×

𝐵′) = 𝜆𝐴′ + 𝜂𝐵′.
The upper bound in (4.9) follows from the fact that |⌊𝜑(𝐴′ × 𝐵′)⌋| ⩽ |𝜑(𝐴′ × 𝐵′)| ⩽ |𝐴′ × 𝐵′|,

while the upper bound in (4.10) follows from Lemma 2.5 and Lemma 2.7 via

𝛾
⩾1

(⌊𝜑(𝐴′ × 𝐵′)⌋) ≍ 𝛾
⩾1

(
𝜑(𝐴′ × 𝐵′)

)
≪max(𝜆,𝜂) 𝛾

⩾1

(
𝐴′ × 𝐵′

)
.

To prove the dimension inequality for 𝐴, 𝐵 ⊆ ℕ0, note that there exists𝑀 ∈ ℕ, depending only
onmax(𝜆, 𝜂), such that for all 𝑁 ∈ ℕ,⌊

𝜆𝐴 + 𝜂𝐵
⌋
∩ [0,𝑁) ⊆

⌊
𝜆(𝐴 ∩ [0,𝑁𝑀)) + 𝜂(𝐵 ∩ [0,𝑁𝑀))

⌋
. (4.11)

Let dim ∈ {dimM , dimM , dimH , dimH }, and let 𝛾 > dim(𝐴 × 𝐵). It follows from (4.9), (4.10), and
(4.11) that ||⌊𝜆𝐴 + 𝜂𝐵

⌋
∩ [0,𝑁)||

𝑁𝛾
⩽ 𝑀𝛾

||(𝐴 × 𝐵) ∩ [0,𝑁𝑀)2||
(𝑁𝑀)𝛾

,

𝛾
⩾1

(⌊
𝜆𝐴 + 𝜂𝐵

⌋
∩ [0,𝑁)

)
𝑁𝛾

≪max(𝜆,𝜂) 𝑀
𝛾
𝛾

⩾1

(
(𝐴 × 𝐵) ∩ [0,𝑁𝑀)2

)
(𝑁𝑀)𝛾

.

Considering the first or second inequality (if dim is the discrete Minkowski or Hausdorff dimen-
sion, respectively), the limit infimum or limit supremum (if dim is a lower or upper dimension,
respectively) of the quantity on the right-hand side is equal to zero because 𝛾 > dim(𝐴 × 𝐵).
It follows that dim (⌊𝜆𝐴 + 𝜂𝐵⌋) ⩽ 𝛾. This suffices for the conclusion of the lemma since 𝛾 >

dim(𝐴 × 𝐵) was arbitrary and since dim (⌊𝜆𝐴 + 𝜂𝐵⌋) is clearly bounded from above by 1. □

Theorem 4.6. Let 𝑟 and 𝑠 be multiplicatively independent positive integers, and let 𝐴, 𝐵 ⊆ ℕ0 be
×𝑟- and ×𝑠-invariant sets, respectively. Define 𝛾 = max(0, dimH(𝐴 × 𝐵) − 1). For all compact 𝐼 ⊆
(0,∞), all 0 ⩽ 𝛾 ⩽ 1, all 𝜀 > 0, all sufficiently large𝑁 (depending on𝐴, 𝐵, 𝐼, 𝛾, and 𝜀), all nonempty
𝐴′ ⊆ 𝐴 ∩ [0,𝑁) and 𝐵′ ⊆ 𝐵 ∩ [0,𝑁), and all 𝜆, 𝜂 ∈ 𝐼,
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ADDITIVE AND GEOMETRIC TRANSVERSALITY OF FRACTAL SETS IN THE INTEGERS 43 of 55

||⌊𝜆𝐴′ + 𝜂𝐵′
⌋|| ⩾ ||𝐴′ × 𝐵′||

𝑁𝛾+𝜀
, and (4.12)

𝛾
⩾1

(⌊
𝜆𝐴′ + 𝜂𝐵′

⌋)
𝑁𝛾

≫𝐼,𝛾,𝜀

𝛾+𝛾+𝜀
⩾1

(
𝐴′ × 𝐵′

)
𝑁𝛾+𝛾+𝜀

. (4.13)

Proof. For all 𝑘,𝓁 ∈ ℕ, define the sets

𝑋𝑘 ∶=
𝐴 ∩ [0, 𝑟𝑘)

𝑟𝑘
and 𝑌𝓁 ∶=

𝐵 ∩ [0, 𝑠𝓁)

𝑠𝓁
.

Let 𝑋 = lim𝑘→∞ 𝑋𝑘 and 𝑌 = lim𝓁→∞ 𝑌𝓁 in the Hausdorff metric; Proposition 3.15 gives that
these limits exist, that 𝑋 and 𝑌 are ×𝑟- and ×𝑠-invariant subsets of [0,1], respectively, and that
dimH 𝑋 = dimH𝐴 and dimH 𝑌 = dimH 𝐵. For𝑁 ∈ ℕ, define 𝑘𝑁 ∶= ⌊log𝑁∕ log 𝑟⌋ + 1 and 𝓁𝑁 ∶=⌊log𝑁∕ log 𝑠⌋ + 1, and note that

𝑁 = 𝑟𝑘𝑁𝑟{log𝑁∕ log 𝑟}−1 = 𝑠𝓁𝑁 𝑠{log𝑁∕ log 𝑠}−1. (4.14)

By Lemma 3.16, we have that

𝑑𝐻(𝑋𝑘𝑁
, 𝑋) ⩽ 𝑁−1 and 𝑑𝐻(𝑌𝓁𝑁

, 𝑌) ⩽ 𝑁−1. (4.15)

Let 𝐼 ⊆ (0,∞) be compact, 0 ⩽ 𝛾 ⩽ 1, and 𝜀 > 0. Define 𝐽 ∶= [min 𝐼, 𝑟𝑠 max 𝐼]. Next, we invoke
Theorem 2.21 with 𝐽 in place of 𝐼 and either 𝜀∕2 in place of 𝜀 (to prove (4.12)) or 𝜀 as it is (to
prove (4.13)). Let 𝑁 be sufficiently large, to be specified later, but in particular so that 𝜌 ∶= 1∕𝑁

is sufficiently small for Theorem 2.21 to apply (with 𝜀 as either 𝜀∕2 or 𝜀).
Let 𝐴′ ⊆ 𝐴 ∩ [0,𝑁) and 𝐵′ ⊆ 𝐵 ∩ [0,𝑁) be nonempty, and 𝜆, 𝜂 ∈ 𝐼. It follows from (4.14) that

𝑁 ⩽ min(𝑟𝑘𝑁 , 𝑠𝓁𝑁 ), whereby

𝐴′

𝑟𝑘𝑁
⊆ 𝑋𝑘𝑁

and 𝐵′

𝑠𝑘𝑁
⊆ 𝑌𝑘𝑁

.

Combining these facts with (4.15), it follows from Lemma 2.4 that there exist nonempty compact
sets 𝑋′ ⊆ 𝑋 and 𝑌′ ⊆ 𝑌 such that

𝑑𝐻

(
𝑋′,

𝐴′

𝑟𝑘𝑁

)
⩽ 𝑁−1 and 𝑑𝐻

(
𝑌′,

𝐵′

𝑠𝓁𝑁

)
⩽ 𝑁−1. (4.16)

Define 𝜆′ = 𝑟𝑘𝑁𝜆∕𝑁 = 𝑟1−{log𝑁∕ log 𝑟}𝜆 and 𝜂′ = 𝑠𝓁𝑁𝜂∕𝑁 = 𝑠1−{log𝑁∕ log 𝑠}𝜂. Note that 𝜆′, 𝜂′ ∈ 𝐽 and
that

𝜆′
𝐴′

𝑟𝑘𝑁
+ 𝜂′

𝐵′

𝑠𝓁𝑁
=

𝜆𝐴′ + 𝜂𝐵′

𝑁
. (4.17)

Combining (4.16) and (4.17) with basic properties of the Hausdorff distance, we see that

𝑑𝐻

(
𝜆′𝑋′ + 𝜂′𝑌′,

𝜆𝐴′ + 𝜂𝐵′

𝑁

)
⩽ 2𝑟𝑠max(𝐼)𝑁−1, and (4.18)

𝑑𝐻

(
𝑋′ × 𝑌′,

𝐴′

𝑟𝑘𝑁
×

𝐵′

𝑠𝓁𝑁

)
⩽ 𝑁−1. (4.19)
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44 of 55 GLASSCOCK et al.

It follows from Lemma 2.7 and (4.19) that

 (
𝑋′ × 𝑌′,𝑁−1

)
≍ 

(
𝐴′ × 𝐵′

𝑁
,𝑁−1

)
=  (

𝐴′ × 𝐵′, 1
)
= |𝐴′ × 𝐵′|, and (4.20)

𝛾+𝛾+𝜀

⩾𝑁−1

(
𝑋′ × 𝑌′

)
≍ 𝛾+𝛾+𝜀

⩾𝑁−1

(
𝐴′ × 𝐵′

𝑁

)
=

𝛾+𝛾+𝜀
⩾1

(
𝐴′ × 𝐵′

)
𝑁𝛾+𝛾+𝜀

. (4.21)

Appealing to (4.18), Lemma 2.5, Theorem 2.21 (with 𝜀∕2 as 𝜀), and (4.20), we see that

|⌊𝜆𝐴′ + 𝜂𝐵′⌋| ≍  (
𝜆𝐴′ + 𝜂𝐵′, 1

)
= 

(
𝜆𝐴′ + 𝜂𝐵′

𝑁
,𝑁−1

)

≍𝐼  (
𝜆′𝑋′ + 𝜂′𝑌′, 𝑁−1

)
⩾

 (
𝑋′ × 𝑌′,𝑁−1

)
𝑁𝛾+𝜀∕2

≍
|𝐴′ × 𝐵′|
𝑁𝛾+𝜀∕2

.

Thus, there exists a constant 𝐶 > 0 depending only on 𝑟, 𝑠, and 𝐼 for which |⌊𝜆𝐴′ + 𝜂𝐵′⌋| ⩾ |𝐴′ ×

𝐵′|∕(𝐶𝑁𝛾+𝜀∕2). The inequality in (4.12) follows as long as 𝑁𝜀∕2 > 𝐶.
Replacing cardinality and packing number with the 𝛾-dimensional discrete Hausdorff content

and appealing to (4.18), Lemma 2.5, Theorem 2.21 (with 𝜀 as 𝜀), and (4.21) in the same way, we see
that

𝛾
⩾1

(⌊
𝜆𝐴′ + 𝜂𝐵′

⌋)
𝑁𝛾

≍
𝛾

⩾1

(
𝜆𝐴′ + 𝜂𝐵′

)
𝑁𝛾

= 𝛾

⩾𝑁−1

(
𝜆𝐴′ + 𝜂𝐵′

𝑁

)

≍𝐼 𝛾

⩾𝑁−1

(
𝜆′𝑋′ + 𝜂′𝑌′

)
≫𝐼,𝛾,𝜀 𝛾+𝛾+𝜀

⩾𝑁−1

(
𝑋′ × 𝑌′

)
≍

𝛾+𝛾+𝜀
⩾1

(
𝐴′ × 𝐵′

)
𝑁𝛾+𝛾+𝜀

.

This is precisely the inequality in (4.13), completing the proof. □

In the following corollary, note that it is a consequence of Corollary 3.8 that all four discrete
notions of dimension, dimM , dimM , dimH , dimH , coincide for multiplicatively invariant sets 𝐴
and 𝐵 and their Cartesian product 𝐴 × 𝐵. In particular,

dim(𝐴 × 𝐵) = dim𝐴 + dim𝐵

for any dim ∈ {dimM , dimM , dimH , dimH }.

Corollary 4.7. Let 𝑟 and 𝑠 bemultiplicatively independent positive integers, and let𝐴, 𝐵 ⊆ ℕ0 be×𝑟-
and ×𝑠-invariant sets, respectively. For all dim ∈ {dimM , dimM , dimH , dimH } and 𝜆, 𝜂 ∈ (0,∞),

dim (⌊𝜆𝐴 + 𝜂𝐵⌋) = min (1, dim(𝐴 × 𝐵)). (4.22)

Moreover, for all 𝐴′ ⊆ 𝐴 and 𝐵′ ⊆ 𝐵,

∙ if dim𝐴 + dim𝐵 ⩽ 1, then

dim
(⌊𝜆𝐴′ + 𝜂𝐵′⌋) = dim

(
𝐴′ × 𝐵′

)
; (4.23)
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ADDITIVE AND GEOMETRIC TRANSVERSALITY OF FRACTAL SETS IN THE INTEGERS 45 of 55

∙ if dim𝐴 + dim𝐵 > 1, then

dim
(⌊𝜆𝐴′ + 𝜂𝐵′⌋) ⩾ dim

(
𝐴′ × 𝐵′

)
− dim (𝐴 × 𝐵) + 1. (4.24)

Proof. First, note that (4.22) is a consequence of (4.23) and (4.24). Indeed, setting 𝐴′ = 𝐴 and
𝐵′ = 𝐵, if dim𝐴 + dim𝐵 ⩽ 1, then (4.22) becomes (4.23), and if dim𝐴 + dim𝐵 > 1, then (4.24)
implies that dim (⌊𝜆𝐴 + 𝜂𝐵⌋) ⩾ 1. Since any subset of ℕ0 has dimension at most 1, (4.22) follows
in this case as well.
Define 𝛾 = max(0, dimH(𝐴 × 𝐵) − 1), and let 𝐴′ ⊆ 𝐴 and 𝐵′ ⊆ 𝐵. To show (4.23) and (4.24), it

suffices to show

dim
(⌊𝜆𝐴′ + 𝜂𝐵′⌋) ⩾ dim

(
𝐴′ × 𝐵′

)
− 𝛾. (4.25)

Indeed, this is the lower bound in (4.24), and the upper bound guaranteed byLemma4.5 combined
with this lower bound gives the desired equality in (4.23).
Let dim ∈ {dimM , dimM , dimH , dimH } and 𝜆, 𝜂 ∈ (0,∞). If dim(𝐴′ × 𝐵′) = 0, the conclusion

is immediate, so we can proceed under the assumption that dim(𝐴′ × 𝐵′) > 0.
There exists𝑀 ∈ ℕ such that for all 𝑁 ∈ ℕ,⌊

𝜆𝐴′ + 𝜂𝐵′
⌋
∩ [0,𝑁) ⊇

⌊
𝜆
(
𝐴′ ∩ [0,𝑁∕𝑀)

)
+ 𝜂

(
𝐵′ ∩ [0,𝑁∕𝑀)

)⌋
.

Let 𝜀 > 0, and let 𝛾 = dim(𝐴′ × 𝐵′) − 𝛾 − 2𝜀. Let 𝑁 be large enough that Theorem 4.6 holds with
𝑁∕𝑀 in place of 𝑁, and define 𝐴′′ = 𝐴′ ∩ [0,𝑁∕𝑀) and 𝐵′′ = 𝐵′ ∩ [0,𝑁∕𝑀). It follows from
Theorem 4.6 that||(𝜆𝐴′ + 𝜂𝐵′

)
∩ [0,𝑁)||

𝑁𝛾
⩾

|𝐴′′ × 𝐵′′|
𝑁𝛾(𝑁∕𝑀)𝛾+𝜀

= 𝑀𝛾+𝜀 |(𝐴′ × 𝐵′) ∩ [0,𝑁∕𝑀)2|
𝑁𝛾+𝛾+𝜀

,

𝛾
⩾1

(⌊
𝜆𝐴′ + 𝜂𝐵′

⌋
∩ [0,𝑁)

)
𝑁𝛾

≫𝜆,𝜂,𝛾,𝜀

𝛾+𝛾+𝜀
⩾1

(𝐴′′ × 𝐵′′)

𝑁𝛾(𝑁∕𝑀)𝛾+𝜀

= 𝑀𝛾+𝜀
𝛾+𝛾+𝜀

⩾1
((𝐴′ × 𝐵′) ∩ [0,𝑁∕𝑀)2)

𝑁𝛾+𝛾+𝜀
.

Consider the first inequality if dim is the discreteMinkowski dimension and the second inequality
if dim is the discrete Hausdorff dimension. Because 𝛾 + 𝛾 + 𝜀 = dim(𝐴′ × 𝐵′) − 𝜀, the limit infi-
mum (if dim is a lower dimension) or limit supremum (if dim is an upper dimension) as𝑁 tends
to infinity of the right-hand side is positive. It follows that

dim
(⌊𝜆𝐴′ + 𝜂𝐵′⌋) ⩾ 𝛾.

The inequality in (4.25) now follows from the fact that 𝛾 = dim(𝐴′ × 𝐵′) − 𝛾 − 2𝜀 and 𝜀 > 0 was
arbitrary, concluding the proof. □

4.4 An example that shows𝕽-invariance does not suffice

Fix 2 ⩽ 𝑟 < 𝑠. In this section, we construct two sets 𝐴, 𝐵 ⊆ ℕ0 that satisfy the following
properties:
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46 of 55 GLASSCOCK et al.

(I) the mass dimensions of 𝐴 and 𝐵 exist and dimM𝐴 = dimM 𝐵 = 1∕2;
(II) 𝑟𝐴 ⊆ 𝐴 and 𝑠𝐵 ⊆ 𝐵;
(III) ℜ𝑟(𝐴) = 𝐴 andℜ𝑠(𝐵) = 𝐵; and
(IV) dimM (𝐴 + 𝐵) ⩽ 4∕5.

This example demonstrates that neitherℜ-invariance nor the invariance indicated in (II) suf-
fice to obtain the result in Corollary 4.7. This is in contrast to Theorem A, where the conclusion
holds under the weaker assumption that the sets 𝐴 and 𝐵 areℜ𝑟- andℜ𝑠-invariant, respectively.
We do not know whether 𝔏-invariance alone suffices in either Theorem A or Corollary 4.7, but
invariance under multiplication by 𝑟 and 𝑠 (in the sense of (II)) does not suffice to reach the con-
clusions in either theorem: the set of squares is invariant under multiplication by both 4 and 9
simultaneously, but has dimension equal to 1∕2, while the sets 𝐴 and 𝐵 above demonstrate that
Corollary 4.7 does not hold under the assumption of invariance under multiplication.
In what follows, the interval notation [𝑎, 𝑏] is understood tomean [𝑎, 𝑏] ∩ ℕ0. For 𝑖, 𝑗 ∈ ℕ0, let

𝐼𝑖 = [𝑟𝑖, 𝑟𝑖 + 𝑟(𝑖+1)∕2], 𝐽𝑗 = [𝑠𝑗, 𝑠𝑗 + 𝑠(𝑗+1)∕2],

and then define

𝐴 = {0} ∪
⋃
𝑖,𝓁⩾0

𝑟𝓁𝐼𝑖, 𝐵 = {0} ∪
⋃
𝑗,𝑚⩾0

𝑠𝑚𝐽𝑗.

First, we will verify (I) by showing that the mass dimension of 𝐴 exists and is equal to 1∕2; the
argument for 𝐵 is the same. It is easy to see that for all 𝑁 ⩾ 1,

𝐼𝑁−1 ⊆ 𝐴 ∩ [1, 𝑟𝑁) ⊆
⋃
𝑖,𝓁⩾0
𝑖+𝓁⩽𝑁

𝑟𝓁𝐼𝑖,

from which it follows that

𝑟𝑁∕2 ⩽ ||𝐴 ∩ [0, 𝑟𝑁)|| ⩽ (𝑁 + 1)2(𝑟(𝑁+1)∕2 + 1).

This shows that dimM𝐴 = dimM𝐴 = dimM𝐴 = 1∕2.
It is clear from the definition of the sets 𝐴 and 𝐵 that (II) holds.
Next, we will verify (III) by showing thatℜ𝑟(𝐴) = 𝐴; the same argument works to show that

ℜ𝑠(𝐵) = 𝐵. Since 𝑟𝐴 ⊆ 𝐴, we have that

𝐴 = ℜ𝑟(𝑟𝐴) ⊆ ℜ𝑟(𝐴) = {0} ∪
⋃
𝑖,𝓁⩾0

ℜ𝑟(𝑟
𝓁𝐼𝑖).

Since 0 ∈ 𝐴, we need only to verify that for all 𝑖,𝓁 ⩾ 0, ℜ𝑟(𝑟
𝓁𝐼𝑖) ⊆ 𝐴. If 𝓁 ⩾ 1, then ℜ𝑟(𝑟

𝓁𝐼𝑖) =

𝑟𝓁−1𝐼𝑖 ⊆ 𝐴. If 𝓁 = 0 and 𝑖 = 0, then we see ℜ𝑟(𝐼0) = {0} ⊆ 𝐴. If 𝓁 = 0 and 𝑖 ⩾ 1, then we see
ℜ𝑟(𝐼𝑖) = [𝑟𝑖−1, 𝑟𝑖−1 + 𝑟(𝑖−1)∕2] ⊆ 𝐼𝑖−1 ⊆ 𝐴. Thus,ℜ𝑟(𝐴) = 𝐴.
Finally, we will verify (IV) by showing that for all 𝑁 sufficiently large,

||(𝐴 + 𝐵) ∩ [0, 𝑟𝑁)|| ⩽ 4𝑁4𝑟4𝑁∕5. (4.26)
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ADDITIVE AND GEOMETRIC TRANSVERSALITY OF FRACTAL SETS IN THE INTEGERS 47 of 55

Let 𝜎 = log 𝑠∕ log 𝑟. Because

𝐵 ∩ [1, 𝑟𝑁) ⊆
⋃
𝑖,𝓁⩾0

𝜎(𝑗+𝑚)⩽𝑁

𝑠𝑚𝐽𝑗,

we have that

||(𝐴 + 𝐵) ∩ [0, 𝑟𝑁)|| ⩽ 1 +
∑

𝑖,𝑗,𝓁,𝑚

|𝑟𝓁𝐼𝑖 + 𝑠𝑚𝐽𝑗|, (4.27)

where the sum is over all 𝑖, 𝑗,𝓁, 𝑚 ⩾ 0 for which 𝑖 + 𝓁 ⩽ 𝑁 and 𝜎(𝑗 + 𝑚) ⩽ 𝑁. We will estimate
this sum from above by splitting the sum indices into two sets depending on the “type” of the pair
(𝑖, 𝑗), which we now define.
A pair (𝑖, 𝑗) is of Type I if

𝑖 + 1

2
+ 𝜎

𝑗 + 1

2
⩽

4𝑁

5
.

Using the trivial bound |𝐶 + 𝐷| ⩽ |𝐶||𝐷| for finite sets 𝐶,𝐷 ⊆ ℕ0, we see that if 𝑖, 𝑗,𝓁, and𝑚 are
such that (𝑖, 𝑗) is of Type I, then

|𝑟𝓁𝐼𝑖 + 𝑠𝑚𝐽𝑗| ⩽ |𝐼𝑖||𝐽𝑗| = 𝑟(𝑖+1)∕2𝑠(𝑗+1)∕2 ⩽ 𝑟4𝑁∕5. (4.28)

A pair (𝑖, 𝑗) is of Type II if it is not of Type I, that is, if

𝑖 + 1

2
+ 𝜎

𝑗 + 1

2
>

4𝑁

5
. (4.29)

Using the fact that 𝜎𝑗 ⩽ 𝑁 and that𝑁 is sufficiently large, we see from (4.29) that (𝑖 − 1)∕2 > 𝑁∕4.
It follows then from the fact that 𝑖 + 𝓁 ⩽ 𝑁 that

𝓁 +
𝑖 + 1

2
<

4𝑁

5
. (4.30)

Similarly, using that 𝑖 ⩽ 𝑁 and the fact that 𝑁 is sufficiently large, we see from (4.29) that 𝜎(𝑗 −
1)∕2 > 𝑁∕4. It follows from the fact that 𝜎(𝑗 + 𝑚) ⩽ 𝑁 that

𝜎

(
𝑚 +

𝑗 + 1

2

)
<

4𝑁

5
. (4.31)

Nowwe are in a position to use the following fact: if 𝐶,𝐷 ⊆ ℕ0 are contained in intervals of length
𝐿, 𝑀, respectively, then 𝐶 + 𝐷 is contained in an interval of length 𝐿 +𝑀 and hence |𝐶 + 𝐷| ⩽
𝐿 +𝑀 + 1. If 𝑖, 𝑗,𝓁, and𝑚 are such that (𝑖, 𝑗) is of Type II, then

|𝑟𝓁𝐼𝑖 + 𝑠𝑚𝐽𝑗| ⩽ 𝑟𝓁+(𝑖+1)∕2 + 𝑠𝑚+(𝑗+1)∕2 + 1.

Using (4.30) and (4.31), we have that

|𝑟𝓁𝐼𝑖 + 𝑠𝑚𝐽𝑗| ⩽ 3𝑟4𝑁∕5. (4.32)

Finally, by splitting up the sum in (4.27) into tuples for which the pairs (𝑖, 𝑗) are of Type I or
Type II, we see by combining (4.28) and (4.32) that the desired inequality in (4.26) holds.
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48 of 55 GLASSCOCK et al.

4.5 Iterated sums of a multiplicatively invariant set

In this section,wewill prove TheoremD. The strategy is to use tools fromSection 3.4 to derive The-
orem D from the theorem of Lindenstrauss–Meiri–Peres, Theorem 1.4. Throughout this section,
𝑟 ⩾ 2 is fixed and all of the asymptotic notation may implicitly depend on it.

Remark 4.8. There are some useful remarks to make before the proof. Let 𝑋1, 𝑋2,… , 𝑋𝑛 ⊆ [0, 1]

be ×𝑟-invariant sets. The sumset 𝑋1 +⋯ + 𝑋𝑛 may be interpreted in ℝ∕ℤ or in ℝ. Denote tem-
porarily by 𝑊𝑛 the set 𝑋1 +⋯ + 𝑋𝑛 interpreted modulo 1 as a subset of [0,1] and by 𝑌𝑛 the set
𝑋1 +⋯ + 𝑋𝑛 interpreted in ℝ as a subset of [0, 𝑛]. Two facts of particular relevance to us are: (1)
set𝑊𝑛 is×𝑟-invariant, and (2) dimH𝑊𝑛 = dimH 𝑌𝑛. The first fact follows easily from the fact that
multiplication by 𝑟 is a group endomorphism of (ℝ∕ℤ,+). (In contrast, note that the sumset of×𝑟-
invariant subsets of ℕ0 is not necessarily ×𝑟-invariant: if 𝐴 is the base-10 restricted digit Cantor
set with allowed digits 0 and 5, then 𝐴 + 𝐴 contains 10 but does not contain ℜ10(10) = 1, e.g.).
The second fact follows immediately by writing 𝑊𝑛 = ∪𝑛−1

𝑖=0
((𝑌𝑛 ∩ [𝑖, 𝑖 + 1]) − 𝑖) and using the

translation-invariance and finite (countable) stability under unions of the Hausdorff dimension.

Proof of Theorem D. Recall that (𝐴𝑖)
∞
𝑖=1

is a sequence of ×𝑟-invariant subsets of ℕ0. For each 𝑖 ∈

ℕ, let 𝐴′
𝑖
be the set described in Corollary 3.13, and define 𝑋𝑖 ⊆ [0, 1] to be the Hausdorff limit

of the sequence (𝐴′
𝑖
∩ [0, 𝑟𝑁)∕𝑟𝑁)∞

𝑁=1
as in Proposition 3.15. Since dimH 𝑋𝑖 = dimH𝐴′

𝑖
= dimH𝐴𝑖

and
∑∞

𝑖=1 dimH𝐴𝑖∕| log dimH𝐴𝑖| diverges, we have that∑∞
𝑖=1 dimH 𝑋𝑖∕| log dimH 𝑋𝑖| diverges. It

follows by Theorem 1.4 that

lim
𝑛→∞

dimH (𝑋1 +⋯ + 𝑋𝑛) = 1. (4.33)

According to Remark 4.8, we can and will interpret the sum 𝑋1 +⋯ + 𝑋𝑛 to be in ℝ.
We claimnow that for all 𝑛 ∈ ℕ, the discreteHausdorff dimension of the set𝐴′

1
+⋯ + 𝐴′

𝑛 exists
and

dimH
(
𝐴′
1 +⋯ + 𝐴′

𝑛

)
= dimH (𝑋1 +⋯ + 𝑋𝑛). (4.34)

Combined with (4.33), this suffices to conclude the proof of TheoremD since𝐴′
𝑖
⊆ 𝐴𝑖 implies that

dimH
(
𝐴′
1
+⋯ + 𝐴′

𝑛

)
⩽ dimH (𝐴1 +⋯ + 𝐴𝑛).

To show (4.34), let 𝑛 ∈ ℕ, and define 𝑘 = ⌊log 𝑛∕ log 𝑟⌋ + 1. Define 𝐵𝑛 = 𝐴′
1
+⋯ + 𝐴′

𝑛 and
𝑌𝑛 = 𝑋1 +⋯ + 𝑋𝑛, where the sum defining𝑌𝑛 is understood to be inℝ. Note that for all𝑁 ⩾ 𝑘,

𝑛∑
𝑖=1

𝐴′
𝑖
∩ [0, 𝑟𝑁−𝑘)

𝑟𝑁
⊆

𝐵𝑛 ∩ [0, 𝑟𝑁)

𝑟𝑁
⊆

𝑛∑
𝑖=1

𝐴′
𝑖
∩ [0, 𝑟𝑁)

𝑟𝑁
, (4.35)

where the sums indicate sumsets. The goal now is to compare the discrete Hausdorff contents of
each of these sets at scale 𝑟−𝑁 .
By the definition of the set 𝑋𝑖 , it follows from Lemma 3.16 that

𝑑𝐻

(
𝐴′
𝑖
∩ [0, 𝑟𝑁)

𝑟𝑁
, 𝑋𝑖

)
≪ 𝑟−𝑁, (4.36)
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ADDITIVE AND GEOMETRIC TRANSVERSALITY OF FRACTAL SETS IN THE INTEGERS 49 of 55

which implies by Lemma 2.5 that for all 𝛾 ∈ [0, 1],

𝛾

⩾𝑟−𝑁

(
𝑛∑
𝑖=1

𝐴′
𝑖
∩ [0, 𝑟𝑁)

𝑟𝑁

)
≍𝑛 𝛾

⩾𝑟−𝑁
(𝑌𝑛). (4.37)

It also follows from (4.36) that

𝑑𝐻

(
𝐴′
𝑖
∩ [0, 𝑟𝑁−𝑘)

𝑟𝑁
,
𝑋𝑖

𝑟𝑘

)
≪𝑛 𝑟−𝑁,

which implies by Lemma 2.5 that

𝛾

⩾𝑟−𝑁

(
𝑛∑
𝑖=1

𝐴′
𝑖
∩ [0, 𝑟𝑁−𝑘)

𝑟𝑁

)
≍𝑛 𝛾

⩾𝑟−𝑁

(
𝑌𝑛

𝑟𝑘

)
. (4.38)

Combining (4.35) with (4.37) and (4.38), we see that

𝛾

⩾𝑟−𝑁

(
𝑌𝑛

𝑟𝑘

)
≪𝑛 𝛾

⩾𝑟−𝑁

(
𝐵𝑛 ∩ [0, 𝑟𝑁)

𝑟𝑁

)
=

𝛾
⩾1

(
𝐵𝑛 ∩ [0, 𝑟𝑁)

)
𝑟𝑁𝛾

≪𝑛 𝛾

⩾𝑟−𝑁
(𝑌𝑛).

Letting 𝑁 tend to infinity and noting that 𝑛, and hence 𝑘, are fixed, these inequalities combine
with Remark 2.3, Lemma 3.2 (V), (4.33), and the fact that dimH(𝑌𝑛∕𝑟

𝑘) = dimH 𝑌𝑛 to prove the
equality in (4.34). □

5 OPEN DIRECTIONS

We collect in this section a number of interesting open questions concerning multiplicatively
invariant subsets of the nonnegative integers. Though these questions and conjectures are stated
for arbitrary ×𝑟-invariant subsets of ℕ0, many are already open and interesting for the special case
of base-𝑟 restricted digit Cantor sets.

5.1 Positive density for sumsets of full dimension

In [19, Problem 4.10], Hochman asks whether the sumset𝑋 + 𝑌 of a×𝑟- and a×𝑠-invariant subset
of [0, 1] satisfying dimH 𝑋 + dimH 𝑌 > 1 has positive Lebesguemeasure.We remark that a projec-
tion theorem of Marstrand [32, Theorem I] implies that 𝜆𝑋 + 𝜂𝑌 has positive Lebesgue measure
for a.e. (𝜆, 𝜂) ∈ ℝ2, suggesting a possible affirmative answer. In [17, Theorem 1.4], a version of
Marstrand’s projection theorem for subsets of the integers was obtained, with Lebesgue measure
replaced by the notion of upper natural density.† It thereforemakes sense to consider the following
integer analog of Hochman’s question.

Question 5.1. Let 𝑟, 𝑠 ∈ ℕ be multiplicatively independent, and let 𝐴, 𝐵 ⊆ ℕ0 be ×𝑟- and ×𝑠-
invariant, respectively. If dimM𝐴 + dimM 𝐵 > 1, then does the sumset 𝐴 + 𝐵 have positive upper
natural density?

†Given a set 𝐸 ⊆ ℤ, its upper natural density is defined by 𝑑(𝐸) ∶= lim sup𝑁→∞ |𝐸 ∩ {−𝑁,… ,𝑁}|∕(2𝑁 + 1).
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50 of 55 GLASSCOCK et al.

5.2 Small intersections

While Question 5.1 considers the sum 𝐴 + 𝐵 when sum of the dimensions is larger than 1, it is
also natural to ask about the intersection 𝐴 ∩ 𝐵 when the sum of the dimensions is below 1. A
special case of a conjecture posed by Furstenberg in [15] asserts that if 𝑟, 𝑠 ∈ ℕ are multiplicatively
independent and 𝑋,𝑌 ⊆ [0, 1] are ×𝑟- and ×𝑠-invariant, respectively, then

dim𝑋 + dim𝑌 < 1 ⇒ 𝑋 ∩ 𝑌 ⊆ ℚ.

Furstenberg showed that an affirmative answer to this question implies that any large enough
power of 2 contains every digit (in base 10), which is a variant of the conjecture of Erdős [11]
mentioned in the introduction.
The following question is inspired by Furstenberg’s conjecture.

Question 5.2. Let 𝑟, 𝑠 ∈ ℕ be multiplicatively independent, and let 𝐴, 𝐵 ⊆ ℕ0 be ×𝑟- and ×𝑠-
invariant, respectively. Is it true that

dim𝐴 + dim𝐵 < 1 ⇒ 𝐴 ∩ 𝐵 is finite?

A special case of this question is formulated in [45, Conjecture 6.2]. If the answer toQuestion 5.2
is positive, then Erdős’ conjecture holds (this can be seen by taking 𝑟 = 2, 𝑠 = 3,𝐴 to be the powers
of 2, and 𝐵 to be a restricted digit Cantor set). A weaker version of this statement was established
by Lagarias [27].
One can formulate a natural quantitative strengthening of Question 5.2 as follows. Given

𝑛, 𝑟, 𝑘 ∈ ℕ, let 𝑑𝑟,𝑘(𝑛) be the number of subwords of (𝑛)𝑟 of length at most 𝑘. Then, the answer to
Question 5.2 is positive if one can show that

lim sup
𝑘→∞

lim inf
𝑛→∞

(
log 𝑑𝑟,𝑘(𝑛)

𝑘 log 𝑟
+

log 𝑑𝑠,𝑘(𝑛)

𝑘 log 𝑠

)
= 1. (5.1)

In fact, it suffices to prove that the expression in (5.1) is greater than or equal to 1. Indeed, by
considering 𝑛 to be a power of 𝑟, for any 𝑘 ∈ ℕ, lim inf𝑛→∞ log 𝑑𝑟,𝑘(𝑛)∕𝑘 log 𝑟 = log 2𝑘∕𝑘 log 𝑟,
whereby the expression in (5.1) is at most 1. We believe the limit in (5.1) as 𝑘 tends to infinity
exists, but this would not be necessary to imply a positive answer to Question 5.2.

5.3 Difference sets

For closed subsets 𝑋,𝑌 ⊆ [0, 1], working with the difference set 𝑋 − 𝑌 is no harder than working
with the sumset 𝑋 + 𝑌. In particular, proving that

dimM (𝑋 − 𝑌) = min (dimM 𝑋 + dimM 𝑌, 1)

in Equation (1.9) requires no additional work. The story changes in the setting of the nonnegative
integers, where difference sets are much more cumbersome to handle, ultimately because the
fibers of the map (𝑎, 𝑏) ↦ 𝑎 − 𝑏 are not compact. This observation explains why our main results
in the integer setting only deal with sumsets 𝜆𝐴 + 𝜂𝐵 with 𝜆 and 𝜂 both positive, and it naturally
leads us to the following question.
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Question 5.3. Let 𝑟 and 𝑠 be multiplicatively independent positive integers, and let 𝐴, 𝐵 ⊆ ℕ0 be
×𝑟- and ×𝑠-invariant, respectively. Is it true that

dimM(𝐴 − 𝐵) = min (dimM𝐴 + dimM 𝐵, 1)?

The methods used in Section 4.3 allow us to establish the lower bound dimM (𝐴 −

𝐵) ⩾ min(dimM𝐴 + dimM 𝐵, 1). However, the upper bound dimM (𝐴 − 𝐵) ⩽ min(dimM𝐴 +

dimM 𝐵, 1), which is straightforward for sums, remains open for differences.
There are many natural variants and extensions of Question 5.3: one can replace 𝐴 − 𝐵 with a

more general expression ⌊𝜆𝐴 + 𝜂𝐵⌋ for any nonzero real numbers 𝜆, 𝜂, or one can replace dimM
with dimH. One can ask about combinations of the form ⌊𝜆𝐴′ + 𝜂𝐵′⌋ for arbitrary subsets 𝐴′

and 𝐵′ of 𝐴 and 𝐵, or one can look only at the positive portion (𝐴 − 𝐵) ∩ ℕ of the difference set.
Our methods provide an outline for obtaining lower bounds, but upper bounds seem to require a
new strategy.

5.4 Analogous results for other notions of discrete dimension

The upper Banach dimension (or upper counting dimension, cf. [28] and [17]) of a set 𝐴 ⊆ ℕ0 is

dim∗ 𝐴 ∶= lim sup
𝑁−𝑀→∞

log ||𝐴 ∩ [𝑀,𝑁]||
log(𝑁 −𝑀)

.

In general, we only have the inequality dim∗ 𝐴 ⩾ dimM𝐴, but if 𝐴 ⊆ ℕ0 is ×𝑟-invariant, then it
can be shown that dimM𝐴 = dimH𝐴 = dim∗ 𝐴.

Question 5.4. Let 𝑟 and 𝑠 be multiplicatively independent positive integers, and let𝐴, 𝐵 ⊆ ℕ0 be
×𝑟- and ×𝑠-invariant, respectively. Is it true that

dim∗(𝐴 + 𝐵) = min
(
dim∗ 𝐴 + dim∗ 𝐵, 1

)
, and / or

dim∗(𝐴 ∩ 𝐵) ⩽ max
(
dim∗ 𝐴 + dim∗ 𝐵 − 1, 0

)
?

Note that the lower bound dim∗(𝐴 + 𝐵) ⩾ min
(
dim∗ 𝐴 + dim∗ 𝐵, 1

)
follows from Theorem C

using the fact that dim∗ ⩾ dimM .
There are several other ways to define natural notions of dimensions for subsets of ℕ0. Barlow

and Taylor [5] define, for example, a discrete notion of packing dimension. The main results in
this article suggest possible analogs for their discrete packing dimension.

5.5 Polynomial functions of multiplicatively invariant sets

The dimension of the sumset of affine images of multiplicatively invariant sets 𝐴 and 𝐵 is
described in Theorem C. It is natural to ask about the extent to which the results in that theorem
might hold for the sumset of images of 𝐴 and 𝐵 under other functions.
In this subsection, for 𝑛 ∈ ℕ, denote by 𝐴(𝑛) the set of 𝑛th-powers of elements of 𝐴: 𝐴(𝑛) ∶=

{𝑎𝑛 | 𝑎 ∈ 𝐴}. The following question is a (special case of a) natural polynomial extension of
Theorem C.
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Question 5.5. Let 𝑛,𝑚 ∈ ℕ, let 𝑟, 𝑠 ∈ ℕ bemultiplicatively independent, and let𝐴, 𝐵 ⊆ ℕ0 be×𝑟-
and ×𝑠-invariant, respectively. Is it true that

dimM

(
𝐴(𝑛) + 𝐵(𝑚)

)
= min

(
1

𝑛
dimM𝐴 +

1

𝑚
dimM 𝐵 , 1

)
? (5.2)

When 𝐴 = 𝐵 = ℕ0, an affirmative answer to Question 5.5 follows from basic facts in number
theory. It is easy to see that for any 𝐴 ⊆ ℕ0 for which the Minkowski dimension exists, the set
𝐴(𝑛) has dimension dimM𝐴(𝑛) = dimM𝐴∕𝑛 (however, it is not true in general that 𝐴(𝑛) is ×𝑟-
invariant when 𝐴 is). Thus, for arbitrary sets 𝐴 and 𝐵 that satisfy a natural dimension condition
(see footnote), it follows from the discrete version of Marstrand’s projection theorem in (1.10) that
dimM

(⌊𝜆𝐴(𝑛) + 𝜂𝐵(𝑚)⌋) is equal to the right-hand side of (5.2) for Lebesgue almost every 𝜆, 𝜂 > 0.
We cannot rule out the possibility that (5.2) holds when 𝑛,𝑚 ⩾ 2 for arbitrary sets 𝐴 and 𝐵

for which the Minkowski dimensions exist. When 𝐴 = 𝐵 and 𝑛 = 𝑚 = 2, equality in (5.2) is an
infinitary version of a conjecture attributed to Ruzsa; see [9, Conjecture 5].

5.6 Multiplicatively invariant sets in relation to other arithmetic sets
in the integers

In this paper, we are concerned with transversality between ×𝑟- and ×𝑠-invariant sets whenever
𝑟 and 𝑠 are multiplicatively independent. In principle, it makes sense to inquire about transver-
sality (or independence) between any two sets that are structured in different ways. To keep the
discussion short, we restrict to infinite arithmetic progressions (or congruence classes), the set of
perfect squares, and the set of primes.

Question 5.6. Let 𝐴 ⊆ ℕ0 be a ×𝑟-invariant set, and let 𝑃 be an infinite arithmetic progression.
Is it true that dimM(𝐴 ∩ 𝑃) is either 0 or dimM(𝐴)?

The answer is yes for restricted digit Cantor sets. In fact, it is proved in [12] that such sets satisfy
“good equidistribution properties” in residue classes.
More generally, one could ask about the sum or the intersection of a ×𝑟-invariant set and the

image of an arbitrary polynomial with integer coefficients, for instance, the set of perfect squares,
𝑆 = {𝑛2 | 𝑛 ∈ ℕ0}. Note that dimM 𝑆 = 1∕2.

Question 5.7. Let 𝐴 ⊆ ℕ0 be a ×𝑟-invariant set. Is it true that

dimM (𝐴 + 𝑆) = min (dimM𝐴 + 1∕2, 1)

and/or

dimM (𝐴 ∩ 𝑆) ⩽ max (dimM𝐴 − 1∕2, 0)?

Note that the first expression in this question is a special case of the equality in Question 5.5.
In a similar vein, one can ask about intersections with the set of prime numbers, ℙ. Note that
dimM ℙ = 1.

Question 5.8. Let𝐴 ⊆ ℕ0 be a×𝑟-invariant set. Is it true that dimM(𝐴 ∩ ℙ) is either 0 or dimM(𝐴)?
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Maynard showed in [34] that the answer to Question 5.8 is positive when 𝐴 is a restricted digit
Cantor set where the number of restricted digits is small enough with respect to the base. In fact,
he obtains a Prime Number Theorem in such sets, which is stronger than simply dimM(𝐴 ∩ ℙ) =

dimM𝐴. Question 5.8 is open for general restricted digit Cantor sets, and may be very difficult in
general. The methods in this paper do not appear to shed new light on this line of inquiry.

5.7 Transversality of multiplicatively invariant sets in the 𝒓𝒔-adics

The 𝑟𝑠-adics is a non-Archimedean regime in which it is easy to ask questions analogous to those
asked in this work. Furstenberg proved in [15, Theorem 3] an analog of Theorem 1.1 in the 𝑟𝑠-adics.
Following Furstenberg, note that the maps ℜ𝑟 and ℜ𝑠, with domains extended to ℤ, are uni-

formly continuous with respect to the 𝑟𝑠-adic metric on ℤ, and therefore extend to continuous
transformations of the set of 𝑟𝑠-adic integers, ℤ𝑟𝑠. As a compact metric space, there is a natural
Hausdorff dimension to measure the size of subsets of ℤ𝑟𝑠. Let us call a set 𝑋 ⊆ ℤ𝑟𝑠 ×𝑟-invariant
if it is closed andℜ𝑟𝑋 ⊆ 𝑋.

Question 5.9. Let 𝑟 and 𝑠 be multiplicatively independent positive integers, and let 𝑋,𝑌 ⊆ ℤ𝑟𝑠

be ×𝑟- and ×𝑠-invariant sets, respectively. Is it true that

dimH (𝑋 + 𝑌) = min (dimH 𝑋 + dimH 𝑌, dimH ℤ𝑟𝑠), and / or

dimH (𝑋 ∩ 𝑌) ⩽ max (dimH 𝑋 + dimH 𝑌 − dimH ℤ𝑟𝑠, 0)?

The upper bound on dimH (𝑋 ∩ 𝑌) in the previous question was conjectured by Furstenberg in
[15, Conjecture 3]. A positive answer to these questions would bring transversality results in the
𝑟𝑠-adics in line with those in the real and integer settings.
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