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We achieve these results by combining ideas from fractal
geometry and ergodic theory to build a bridge between
the continuous and discrete regimes. For the transver-
sality results, we rely heavily on quantitative bounds on
the L9-dimensions of projections of restricted digit Can-
tor measures obtained recently by Shmerkin. We end
by outlining a number of open questions and directions
regarding fractal subsets of the integers.
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1 | INTRODUCTION

Number theorists in the first half of the 20th century were among the first to consider the degree
to which base 2 and base 3 representations of real numbers are independent. An open conjecture
attributed to Mahler [35] postulates, for example, thatif (a,,); | € {0, 1}is not eventually periodic,
then at least one of the numbers )*°  @,27" and Y | a,37" is transcendental. In a different
vein, Cassels [8] and Schmidt [39], answering a question of Steinhaus about Cantor’s middle
thirds set C, proved that almost every number in C /2 (with respect to the log 2/ log 3-dimensional
Hausdorff measure) is normal to every base which is not a power of 3. More general questions
along these lines — which is almost every real number with respect to any continuous X3-
invariant measure on [0,1] normal to every base that is not a power of 3 — remain open, despite
considerable partial progress [21, 22, 30].

Studying the independence between different representations of real numbers remains an
active area of research that brings together results and techniques from number theory, ergodic
theory, and geometric measure theory. Parallel investigations concerning representations of inte-
gers appear to be less developed but are no less natural or interesting. It is the purpose of this paper
to advance those investigations by demonstrating various forms of independence between differ-
ent base representations in the non-negative integers. One of the basic principles that underpin
our results in this direction states the following:

If r and s are multiplicatively independent positive integers (meaning that the quan-
tity log(r)/ log(s) is irrational) and A and B are subsets of the non-negative integers
that are structured with respect to base-r and base-s representations, respectively,
then A and B lie in general position.

The following unresolved conjecture of Erdds [11] exemplifies this heuristic: for all n > 9, it is
impossible to the express the number 2" in base 3 using only the digits 0 and 1; see [10, 27] for some
recent progress. Today, Erdds’ conjecture is understood as merely a special case of a much broader
conjecture that asserts that any infinite set of natural numbers that has a “simple” description
in base r must have a “complex” description in base s (see Question 5.2 in Section 5.2 for more
details). A related folklore conjecture in number theory [38] posits that {0, 1, 82 000} is exactly the
set of nonnegative integers that can be written in bases 2, 3, 4, and 5 using only the digits 0 and
1. A partial answer to this was given recently by Burrell and Yu [7], who proved that the set A of
nonnegative integers that can be written in bases 4 and 5 using only the digits 0 and 1 satisfies
|ANn[0,N]| < C.N*foralle > 0.

In this paper, we aim to (1) introduce a family of multiplicatively structured “fractal” subsets
of the nonnegative integers that naturally arise from digit restrictions, and (2) investigate the
transversality, or independence, between members of that family that are structured with respect
to multiplicatively independent bases. Our investigation is strongly motivated by the heuristic and
conjectures mentioned above and by the recent resolutions of a pair of Furstenberg’s conjectures
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concerning notions of geometric and additive transversality of fractal subsets of the reals. Our
results give integer parallels of those advancements in the reals, generalize the aforementioned
result of Burrell and Yu, and make progress toward Erdds’ conjecture.

Before recounting the relevant history and stating our main results in full generality, we focus
our attention on the special case of restricted digit Cantor sets in the nonnegative integers.
Although restricted digit Cantor sets comprise only a small subclass of the sets that we consider,
most of our results are already novel and interesting for this class. In this sense, the following
section serves as a preview of our main results.

1.1 | Preview of the main results

LetN ={1,2,3,..}and N, = {0, 1, 2, ...}. An integer base-r restricted digit Cantor set is a set of non-
negative integers whose base-r expansion includes only digits from a fixed set D C {0, 1, ...,r — 1},

that is,
n
{ Z a;r'

n €Ny, ag,...,a, € D}. 1.1)
i=0

The (mass) dimension of such a set A is dim A := log |D|/logr, in the sense that |[A N[0, N)| =
NdimA+o(1) We discuss notions of dimension for more general subsets of the nonnegative inte-
gers in the next section and define them precisely in (1.12) and Definition 3.1. While a number
of arithmetic properties of integer restricted digit Cantor sets are well studied — divisibility [3],
distribution in arithmetic progressions [12, 26], number of prime factors [25], and character sums
[2] — much less appears to be known about the relationship between such sets when they are
structured with respect to different bases.

Let r and s be multiplicatively independent positive integers, and let A, B C N, be base-r and
base-s restricted digit Cantor sets, respectively. Under these assumptions, our results demonstrate
that the sets A and B are transverse both in a geometric/probabilistic sense and in an additive
combinatorial sense. More precisely, the sets A and B are

+ geometrically/probabilistically in general position, in the sense that neither A nor B contains
the other and in the sense that the size of A N B is at most what is expected if A and B were
independent random sets;

* additive combinatorially disjoint, in the sense that the cardinality of the sumset A + B is nearly
as large as possible, and hence, there are only very few coincidences amongst the sums a + b
fora € Aand b € B.

Our main Theorems A and B address the first point, while Theorem C addresses the second.
We move now to formulate corollaries of those theorems that clearly demonstrate these notions
of independence.

To describe all of the elements of a nontrivial base-5 restricted digit Cantor set in base 17, all 17
digits are required. The following corollary of Theorem A generalizes this observation by showing
thatrestricted digit Cantor structures with respect to multiplicatively independent bases are mutu-
ally incompatible. It also provides an integer analogue of a well-known theorem of Furstenberg;
see Theorem 1.1 below.

Corollary of Theorem A. Under the assumptions on the sets A and B above, if A C B, then either
A ={0}orB =N,.
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The finer question about the size of the intersection A N B is addressed in Theorem B. For
N €N, define Ay = An[0,N) and By = BN [0,N). The sets Ay and By would be probabilisti-
cally independent if |[Ay N By|/N = |Ay||By|/N?. Examples show that the sets A and B can be
disjoint, even in the case that both A and B have a large set of allowed digits, so the inequality

Ay NB A B
AvnByl _ [Anl | Bl

N N N (1.2)

for all N large can be understood to demonstrate a type of asymptotic probabilistic transversality
between the sets A and B. (As explained in the next section, such an inequality can also be inter-
preted as Ay and By being geometrically in general position.) Theorem B shows that (1.2) holds
up to a factor of N¢; the precise extent to which (1.2) holds remains open and is addressed briefly
in Section 5.2.

Corollary of Theorem B. Under the assumptions on the sets A and B above, for all € > 0 and all
sufficiently large N,

* ifdim A+ dimB > 1, then

vl B

* ifdim A +dimB < 1, then
|Ay NBy| < N°.

As an example application, let C, 4 13 and Cs 4 1; be the sets of nonnegative integers that have
only digits 0 and 1 in their base 4 and 5 expansions, respectively. Since log2/log4 + log2/log 5 <
1, it follows that |Cy 13 N Csg013| = o(N®), which recovers the theorem of Burrell and Yu’s
mentioned in the previous section.

If X and Y are finite sets of real numbers, then it is easy to check that

IXI+ 1Y -1<|X+Y]| < |X][|Y].

Equality holds on the left if and only if X and Y are arithmetic progressions of the same step size.
When |X + Y| is near this lower bound, inverse theorems in combinatorial number theory (e.g.,
[41, Ch. 5]) provide additive structural information on the sets X and Y. At the other end of the
spectrum, equality holds on the right if and only if none of the sums x + y, withx € X andy €Y,
coincide. In this case, the sets X and Y lie in general position from an additive combinatorial point
of view.

In this context, the inequality

|Ay + By| > min (N, |[Ay]| - [By]) (1.3)
can be understood as demonstrating additive combinatorial transversality between the sets Ay

and By. Theorem C shows that (1.3) holds up to a factor of N¢; the extent to which (1.3) holds is
unknown and is discussed briefly in Section 5.1.
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Corollary of Theorem C. Under the assumptions on the sets A and B above, for all e > 0 and all
sufficiently large N,

|An + By| > min (N, [Ay] - [By|)/N".

Theorems A-C are more general than the corollaries above might suggest. Indeed, each result
applies not only to restricted digit Cantor sets, but to a wider class of integer fractal sets called
multiplicatively invariant sets. Moreover, each set can be replaced by a rounded image of itself
under any affine transformation of R. Finally, in Theorem C, the sets A and B can be replaced by
arbitrary subsets of A and B, and set cardinality can be replaced with a notion of discrete Haus-
dorff content. We will introduce multiplicatively invariant sets in Section 1.3 and state our main
results precisely there, after providing some historical context and motivation for them in the
next section.

1.2 | History and context

In the language of fractal geometry and dynamical systems, Furstenberg [14, 15] established a
number of conjectures and results that explore the relationship between multiplicative structures
with respect to different bases in the real numbers. The notion of structure particularly relevant
to this work is that of multiplicative invariance: a set X C [0, 1] is Xr-invariant if it is closed and
T,X C X,where T, : [0,1] — [0,1] denotes the map

T,: x+~ rx mod 1.

o
We call a set X C [0, 1] multiplicatively invariant if it is Xr-invariant for some r > 2.

One of Furstenberg’s first and most well-known results concerning multiplicatively invariant
sets is the following theorem, the measure-theoretic analog of which is the X2, X3 conjecture, a
central open problem in ergodic theory.

Theorem 1.1 [14, Theorem 4.2]. If X C [0, 1] is simultaneously X2- and X3-invariant, then either
X is finite or X = [0, 1].

The numbers 2 and 3 in Theorem 1.1 can be replaced by any pair of multiplicatively independent
positive integers r and s. Following Theorem 1.1, Furstenberg conjectured that if X, Y C [0, 1] are
Xr- and Xs-invariant, respectively, then X and Y are transverse in more than one sense, some of
which are made precise below. While some of Furstenberg’s “transversality conjectures” remain
open, two of them were resolved recently by Hochman and Shmerkin [20], Shmerkin [40], and,
independently, Wu [43]. Both of these conjectures are particularly relevant to this work, so we will
expound on them further now.

In Euclidean geometry, linear subspaces U,V C R¢ are said to be in general position (or

transverse) if

dim(UNV) = max (0,dimU + dimV — d), and

dim(U + V) = min(dim U + dim V, d).
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By analogy, Furstenberg conjectured’ that if r and s are multiplicatively independent and X and
Y are Xr- and Xs-invariant subsets of [0,1], then

dimp(X NY) € max (0,dimy X + dimy Y — 1), and (1.4)

dimp(X +Y) = min (dimy X + dimy Y, 1), 15)

where dimy denotes the Hausdorff dimension.

With no assumptions on the sets X,Y C [0, 1], it is not difficult to find examples for which
neither (1.4) nor (1.5) hold. Nevertheless, it is a consequence of Marstrand’s projection and slicing
theorems* that for all Borel sets X and Y, the typical dilated sets 1X and 7Y are transverse in the
sense of (1.4) and (1.5).

Theorem 1.2 [32, Theorems II and III]. Let X and Y be Borel subsets of [0,1]. For Lebesgue-a.e.
A,n,0€ER,

dimy (AX N (nY + 0)) < max (0, dimy(X X Y) — 1), and (1.6)

dimy (AX + 1Y) = min (dimy,(X X Y), 1). 1.7

In this context, Furstenberg’s conjectures in (1.4) and (1.5) say that the multiplicative invariance
of the sets X and Y can be leveraged to change the result in Marstrand’s theorem from concerning
the typical sets AX N (Y + o) and X + 1Y to concerning the specificonesX NY and X + Y. In
fact, Furstenberg conjectured that for xr- and Xxs-invariant sets X and Y, the inequality in (1.6)
and equality in (1.7) hold for all nonzero A and » and all 0. Hochman and Shmerkin resolved the
sumset conjecture by proving a stronger result for multiplicatively invariant measures, and several
years later Shmerkin [40] and Wu [43] independently resolved the intersection conjecture. (These
works resolved both conjectures for classes of attractors of iterated function systems, too.) Several
more recent works offer new proofs of (1.4) and (1.5); see, for example, [1, 18, 24, 47].

Theorem 1.3 [40, 43] and [20]. Let r and s be multiplicatively independent positive integers, and let
X,Y C [0, 1] be xr- and xs-invariant sets, respectively. For all ., € R\{0}and allo € R,

dim,;(AX N (Y + o)) < max (0, dimy X + dimy Y — 1), and (1.8)
dimy (AX +7Y) = min (dimy X + dimy, Y, 1), 1.9)

where dim,, denotes the upper Minkowski dimension.

The intersection conjecture (1.4) is one of several conjectures stated in [15]. The sumset conjecture (1.5) does not, as far
as we are aware, appear by Furstenberg in print, but it was known to have originated with him.

#Marstrand’s slicing and projection theorems originally concern orthogonal projections of subsets of the plane and inter-
sections with lines. Images of the Cartesian product X X Y under orthogonal projections are, up to affine transformations
which preserve dimension, sumsets of the form AX + 7Y, while intersections of X X Y with lines are affinely equivalent
to sets of the form AX N (Y + o). Also note that for sufficiently regular sets X and Y, dimy(X X Y) = dimy X + dimy Y;
see, for example, [33, Corollary 8.11].
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The upper bound on the dimension of fibers in (1.8) suffices to give the lower bound on the
dimension of sumsets necessary for (1.9), as was observed in [16]; for elaboration on the connection
between the two, see the discussion following [20, Conjecture 1.2]. Shmerkin’s main result in [40],
which concerns the decay of L norms of certain self-similar measures of dynamical origin, proves
(1.8) by controlling the Frostman exponent of images of regular measures under projections. We
derive a number of our main theorems from Shmerkin’s work, which we elaborate on further in
Section 2.3.

In an effort to better understand the role that the multiplicative independence between the
bases plays in the sumset theorem, it is natural to ask about the sum of sets that are all structured
with respect to the same base r. Taking X C [0,1] to be those numbers that can be written in
decimal with only the digits 0, 1, and 2, we see that the equality in (1.5) need not hold:

log 5 . . 2log3
=d X+X)<2d X = .
log 10 my(X +X) oy log 10

Nevertheless, it is a consequence of the following theorem of Lindenstrauss, Meiri, and Peres
that the dimension of the iterated sumset X + --- + X approaches 1 as the number of summands
increases.

Theorem 1.4 [31, Corollary 1.2]. Let (X;)°, be a sequence of Xr-invariant subsets of [0,1]. If
Yo, dimy X; /| log dimy; X; | diverges, then

lim dimy (X, + - + X)) =1L
n—oo

This theorem demonstrates that the structure captured by multiplicative invariance sits trans-
versely to the additive structure captured by additive closure: because the sumset X; + -+ + X,
fills out the entire space (with respect to the Hausdorff dimension), the sets X; are not contained
in an additively closed set of dimension less than 1. Dimension growth of iterated sumsets under
weaker regularity conditions was studied recently in [13].

While there is a strong historical precedent for the study of Xr-invariant subsets of the unit
interval, less seems to be known in the integer and p-adic settings, despite the fact that many of
the same objects and questions can be naturally formulated there.

Furstenberg [15], assuming a positive answer to one of his yet-unresolved transversality con-
jectures in the reals, drew a connection between the real and integer regimes by showing that
given any finite word from the alphabet {0, ..., 9}, the decimal expansion of the number 2" con-
tains that word provided that n is sufficiently large. This (conditionally) solves an analog of Erdés’
conjecture mentioned earlier.

The folklore conjecture mentioned in the second paragraph in Section 1 is profitably understood
in terms of intersections of restricted digit Cantor sets and, as such, evokes the real transversality
conjecture of Furstenberg in (1.4). Burrell and Yu’s [7] results toward a resolution of this con-
jecture rely heavily on Yu’s work in [47] on improvements to Shmerkin and Wu’s resolution of
Furstenberg’s intersection conjecture. Drawing on results in [47], Yu [44] also shows that there
are few solutions to the equation x + y = z in which the variables come from different integer
restricted digit Cantor sets. Using projection theorems and Newhouse’s gap lemma, Yu [46] fur-
thermore proves that there are infinitely many sums of powers of five that can be written as sums
of powers of three and four.
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The first author proved in [17, Theorem 1.4] a discrete analog of Marstrand’s projection theorem,
building on the work of Lima and Moreira in [28]: for all A, B C Z satisfying a necessary dimension
condition” and for Lebesgue-a.e. (1,1) € R2,

dimy (|14 + 7B]) = min (ﬁM (Ax B), 1), (1.10)

where the upper mass dimension, di_mM ,isdefined in (1.12) below, | - | denotes the floor function,
and |[1A +nB] := { |[Aa +nb| | a€A be B}. It is reasonable to conjecture by analogy that if
A and B are restricted digit Cantor sets with respect to multiplicatively independent bases, then
(1.10) would hold for all nonzero 4,7 € R. We show that this is indeed the case in Theorem C and
its generalizations.

1.3 | Main results

Our primary goals for this article are to introduce the study of multiplicatively invariant subsets
of the nonnegative integers and to bring transversality results in the integers more in line with
those in the reals by giving full-fledged analogs of Theorems 1.1, 1.3, and 1.4. To that end, we begin
by introducing an analog of a Xr-invariant set for the integers.

Letr €N, r > 2. Define R, : Ny —» Nygand &, : Ny = N, by

R,:n- |n/r] and pU nn—rkn/rk,

where k = |logn/logr| when n > 1. The maps R, and &, are best understood using the base-
r representations of nonnegative integers: if n = a;r* + -+ + a;r + a,, a; #0, is the base-r
representation of n, then

R,(n) = qr* + - +ayr+a and () = ap_ 7"+ +ayr + a,.

In other words, the map R, “forgets” the least significant digit (the right-most digit, hence the
letter R), whereas the map &, “forgets” the most significant digit (the left-most digit, hence the
letter ) in base r. For example, in base r = 10, we have R,,(71393) = 7139 and £,,(71393) =
1393.

Definition 1.5. A set A C N, is xr-invariant if R,(A) C A and L,(A) C A. We call A CN,
multiplicatively invariant if it is Xr-invariant for some r > 2.

It may be helpful to note that a Xr-invariant set A need not satisfy rA C A and that there are
examples, showing that the condition rA C A does not yield a natural integer analog of the notion
of Xr-invariance on the unit interval; see Section 4.4.

There are many natural examples of Xr-invariant subsets of N,. Integer base-r restricted digit
Cantor sets, defined in (1.1), are clearly Xr-invariant. More general examples arise from symbolic
subshifts of {0, 1,...,r — 1}". For any closed and left-shift-invariant set = C {0, 1, ..., ¥ — 1}, the

"The condition is that the upper mass dimension of A X B is equal to the upper counting dimension of A x
B. The upper mass dimension is defined in (1.12), while the upper counting dimension of A X B is equal to
lim supy _, o, Max, 52 log |(Ax B) N (z +{-N,...,N}*)| /logN.
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corresponding language set is defined by
L(Z) = {wow; - wy | wow; - € Z, k €Ny}
Any language set naturally embeds in two ways into the nonnegative integers as

{work + .-+ wk_l}" + U.)k | wowl b wk (S E(E)},

{wkrk + -+ wir+wg | Wol; = Wy € E(E)},

yielding sets that are xr-invariant. For more details, see Definition 3.9 and Proposition 3.10, and
for more such examples, see Examples 3.12. As yet another source of xr-invariant subsets of the
nonnegative integers, we note that if X is a xXr-invariant subset of [0,1], then the set

U {[rkxj |xeX}

keN,

can be shown to be Xr-invariant; see Section 3.4 for more details.

Our first result in the integer setting is an analog of Theorem 1.1 that demonstrates that there
are no nontrivial examples of sets that exhibit structure simultaneously with respect to multiplica-
tively independent bases. Theorem A is proved in Section 4.1 by expanding on the well-known
argument that all nonzero decimal digits appear as the most significant digit of 2. We define
[X]s :={z € R| 3x € X with |z — x| < &} to be the -neighborhood of the set X.

Theorem A. Let r and s be multiplicatively independent positive integers, and let A, B C N, be Xr-
and xs-invariant sets, respectively. If A, > 0, o,7 € R and é > 0 are such that

AA+ 17 C[nB+0]s, (1.11)
then either A is finite or B = N,,.

To measure the size of multiplicatively invariant subsets of N, and their sumsets and Carte-
sian products, we make use of two notions of dimension in the integers that parallel the classical
Minkowski and Hausdorff dimensions from geometric measure theory. The discrete analog of
the lower and upper Minkowski dimension are the lower and upper mass dimensions, defined for
AC Ng as

log |ANn[0,N)4 An[0,N)?
dim, A = limint EANONT T 0 liming AN L
. N—oo log N N—oo NY
— . log|A N [0,N)!| . |An[o,N)|
dimy A = hf;so‘ip T ogN WYY >0 hhr? SUp ———— >0 . (1.12)

Whenever dim, A = dimy; A, we say that the mass dimension of A exists and denote it by dimy; A.
In analogy to the way in which the classical Hausdorff dimension can be defined in terms of the
unlimited Hausdorff content (see Section 2.1), the lower and upper discrete Hausdorff dimensions
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of A are defined to be

H! (An[o,N)?)
dim ;A = supq y >0 |liminf — >0 p,
- N—-oo N7

H (An[0,N)9)
dimpyA = sup< y = 0| limsup —= >0 p,
N—-oo NY

where the discrete y-Hausdorff content, H;l, is defined in Definition 2.2. If these two quanti-
ties agree then we say that the discrete Hausdorff dimension of A, dimy; A, exists and is equal
to this quantity.

The mass dimension and the upper discrete Hausdorff dimension are systematically studied
along with a host of other discrete dimensions in [5]. We discuss these notions of dimension and
the interplay between them at greater length in Section 3.1. For the current discussion, it is helpful
to know that

< dimy, and dim . <dimpy < dimy,,

dim,, < dim o

=H M
and that for any Xr-invariant set A C N, both the mass dimension dimy; A and the discrete
Hausdorff dimension dimy; A exist and coincide; see Proposition 3.6.

Our next main results in the integer setting demonstrate geometric and additive combinato-
rial transversality between Xr- and Xs-invariant subsets of integers. Thus, these results parallel
the results of Hochman and Shmerkin, Shmerkin, and Wu by verifying analogs of Furstenberg’s
intersection and sumset conjectures.

Let r and s be multiplicatively independent positive integers, and let A, B C N, be Xr- and Xs-
invariant sets, respectively. Define ¥ = max (0, dimy A + dimy B — 1). (In what follows, recall
the use of the floor notation | - | described just after (1.10) above.)

Theorem B. Foralle,1,n > 0, 0,7 € R, and sufficiently large N € N,
[LAAN[0,N))+7] N [5(BN[0,N))+0]| < N'*.
In particular, forall .,m > 0and 0,7 € R,

dim,,(|JAA + 7] N [#B + 0]) < max (0, dimy; A + dimj; B — 1).

The upper bound on the dimension of the set [AA + 7| N |»B + o] in Theorem B provides an
analog in the integers to the result of Shmerkin and Wu in (1.8) in the reals. Theorem B will
be derived as a corollary of Theorem 4.3, a stronger result proved in Section 4.2 in which we
demonstrate that the upper bound on | [A (AN [0,N)) + 7] N [n (BN [0,N)) + o] | is uniform over
a compact set of scaling parameters.

Our next theorem gives an integer analog of the result of Hochman and Shmerkin in (1.9).
We bound both the cardinality and the discrete Hausdorff content of the set |1A’ + nB’| from
below in terms of the cardinality and the discrete Hausdorff content of the product set A’ x B/,
where A’ and B’ are arbitrary subsets of A and B. Note that dimy(A X B) = dimy A + dimy; B
holds because A and B are multiplicatively invariant (see Corollary 3.8), but this equality need
not hold for arbitrary subsets A’ C A and B’ C B. Hence, the role played by dimy A + dimy B in
Theorem B is now played by dimy (A’ x B’) in this next result.
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Theorem C. Foralle,A,nm > 0,y € [0, 1], sufficiently large N and nonempty A’ C An[0,N), B’ C
BN |[0,N),

|A" x B'|
|[;1A/ + nB/J| > W and
H!, (|44 +79B'|) HITTH (A% B)
~7 Peinr =y

In particular, for all dim € {di_mM,EM,di_mH,mH},
dim (|1A + nB]) = min (1, dim(A X B)),
and, if dim;; A + dimy; B < 1, then forall A’ C A, B’ C B,
dim (|1A" +7B']) = dim (A" x B').

Just as with Theorem B, we derive Theorem C from a more general result, Theorem 4.6 proved
in Section 4.3, which demonstrates that the inequalities in Theorem C hold uniformly over the
scaling parameters A and 7. Both Theorem B and Theorem C are proved by combing the uni-
formity in Shmerkin’s main theorem in [40] with tools from ergodic theory in an appropriate
symbolic dynamic setting. It remains an interesting question whether there is a direct way of
deriving Theorem C from Theorem B, in analogy to the continuous setting where it is known that
upper bounds on the dimension of fibers imply lower bounds on the dimension of sumsets.

Our final main result in the integer setting is an analog of Theorem 1.4 concerning the dimen-
sion of iterated sumsets of Xr-invariant sets. Our deduction of Theorem D from Theorem 1.4
highlights the flexibility of the machinery developed in this paper to transfer results from the
reals to the integers.

Theorem D. Let (A;)?, be asequence of Xr-invariant subsets of N, If Y2, dimy A; /| logdimy A
diverges, then
r}Lngo dim, (A + - +A4,)=1
In the same way as in the continuous regime, this theorem demonstrates that the structure
captured by Xr-invariance in N, sits transversely to the additive structure captured by additive
closure. It also demonstrates the connection between Xr-invariant subsets of the integers and xr-

invariant subsets of [0,1], and it will serve to emphasize the role multiplicative independence plays
in the other results in this section.

1.4 | Overview of the paper

The paper is organized as follows. In Section 2, we derive the intersection and sumset transver-
sality results for multiplicatively invariant subsets of [0,1] from the main result in [40]. We begin
Section 3 with the basic facts and results we need from discrete fractal geometry in Section 3.1
and continue by connecting Xr-invariant subsets of N, to symbolic dynamics and multiplicatively
invariant subsets of the reals. Section 3 lays the groundwork for Section 4, where we prove our
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main results: Theorems A-D. We construct an example in Section 4.4 that demonstrates that The-
orem C is not expected to hold under weaker assumptions. Finally, we conclude the paper with
Section 5 by outlining a number of open problems and directions.

2 | SUMS AND INTERSECTIONS OF MULTIPLICATIVELY
INVARIANT SUBSETS OF THE REALS

In this section, we prove that subsets of [0,1] that are multiplicatively invariant with respect to
multiplicatively independent bases are both geometrically and additive combinatorially trans-
verse. Our theorems are derived from the main result of Shmerkin [40], but we give particular care
on emphasizing the “uniformity” in the parameters. While most of the results in this section are
already implicit in the literature, we spell out the full details to have the precise statements we
need, and we provide complete proofs for the benefit of nonexperts.

This is the only section in the paper in which we draw on classical fractal geometry, so we begin
by establishing the basic terminology and results.

The set of real numbers, R, is equipped with the usual Euclidean metric, and, for convenience,
all product spaces in the work are endowed with the L' (taxicab) metric. The distance between
x,y € R%isdenoted by |x — y|, and the open ball centered at x with radius & is denoted by B(x, ).
Throughout the paper, a measure refers to a nonnegative-valued Radon measure on R¢. The total
mass of a measure 4 is ||| := u(RY), and its support is denoted as supp u. The push-forward of
w under a map ¢ is denoted as ¢u, so that pu(B) = u(¢~'B) for all measurable sets B.

Finally, given two positive-valued functions f and g, we write f <, ¢ if there exists a
constant ¢ > 0 depending only on the quantities a, ..., a; for which f(x) < cg(x) for all x in the
domain common to both f and g. We write f <, . gifboth f <, ., gandf>, ., g.

2.1 | Fractal geometry of sets and measures in Euclidean space

In this subsection, we give a terse summary of the necessary notation, terminology, and basic
results from traditional fractal geometry. The reader interested in learning more will find most of
this material in Mattila [33, Ch. 4]. Throughout this subsection, p and y are positive real numbers
and X C R4 is nonempty.

Definition 2.1.

* The set X is p-separated if for all distinct x;, x, € X, |x; — x,| > p.
* The packing number of X (sometimes also called the metric entropy of X) at scale p is

N(X,p) =sup {|X,| | X, C X is p-separated }.
* The upper Minkowski dimension of X is

— log N (X,
dimy; X = limsup og—(,o).
p—0% log p_l

The lower Minkowski dimension, dimMX , is defined analogously with a limit infimum in place
of the limit supremum. If the lower and upper Minkowski dimensions agree, then that value
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is the Minkowski dimension of X, dimy; X. It is easy to check that for all p < 1, EMX =
lim supy ., log N'(X, p™V)/log o~ and similarly for dim,, X.

Definition 2.2.

* The discrete Hausdorff content of X at scale p and dimension y is

ML (X) = inf { e

iel

X C U B;, B; open ball of diameter &; > p}.

iel

* The unlimited Hausdorff content at dimension y of X is

M (X) = inf { ol

iel

X C U B;, B; open ball of diameter &; > 0}.

i€l
* The Hausdorff dimension of X is
dimpy X = sup{y e R | HZO(X) >0} =inf{y eR | HZO(X) = 0}.

Note that if X is compact, the index set I in the definitions of H; p(X )and HZO(X ) may be taken
to be finite.

Remark 2.3. The discrete Hausdorff content tends to the unlimited Hausdorff content in the limit
as the scale tends to zero. More precisely, for X C R¢ compact and y > 0,

: 4 — 7
pll)r(r)l+ H?P(X) = H>0(X).

It follows that if lim,_, HZ p(X) > 0, then dimy X > y. The proof is straightforward; see
[18, Lemma 2.4].

Recall the notation [X]s for the §-neighborhood of X:
[X]5 := {z € R?| 3x € X with |z — x| < §}.
The Hausdorff distance between two nonempty, compact sets X, Y C R¢ is
dy(X,Y) :=inf {§ >0 |X C[Y]sand Y C [X];}.

By the Blaschke selection theorem, the set of all nonempty, compact subsets of R¢ equipped with
the Hausdorff distance is a complete metric space.

Lemma 2.4. Suppose X,Y C R? are nonempty, compactand X C [Y]s. For all nonempty, compact
X' C X, there exists a nonempty, compact Y’ C Y such that d;(X',Y') < 6.

Proof. Define Y’ = Y N [X']s. By definition, the set Y’ is compactand Y’ C [X'];.Since X’ C [Y]5,
the set Y’ is nonempty. To see that X’ C [Y'];, let x € X’. Since X C [Y]s, there exists y € Y such
that |[x — y| < 8. This implies that y € Y n [X’]5, which shows that x € [Y n [X]5]s = [Y'];, as
was to be shown. O
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We proceed with a number of straightforward lemmas that describe how the packing number
and discrete Hausdorff content behave as functions of the set and the scale. We include full proofs
for completeness.

Lemma 2.5. Forall a,p > 0, all nonempty, compact sets X,Y C R? satisfying X C [Y] apr and all
y €10,d],
N(X9 P) <<a,d N(Y5 p)a (21)
ML (X) <qq HL(Y). (2.2)

Proof. Let X’ C X be a maximal p-separated subset of X. Define a map 7 : X’ — Y by choosing
for each point x € X’ a point 7x € Y such that |[x — x| < ap. Define Y’ = 7X’. Since X’ is p-
separated, there are at most C = C(a, d) > 0 many points of X’ in any closed ball of radius (a +
1)p. It follows that the map 7 is at most C-to-1, and hence, that |Y'| >, ; |X’|. It also follows that
there are at most C many points of Y’ in any closed ball of radius p. Therefore, the set Y’ can be
thinned to a set Y/ C Y’ that is p-separated and that satisfies |Y”’| >, ; |Y’|. Combining these
observations,

N p) = X' Lo Y| <0 Y"1 < N(Y.0),

which verifies (2.1).

To show (2.2), let {B;};; be a collection of open balls that covers Y and where B; has diameter
ri > pand Yo 1] < 2HL (Y). It follows that X C [J;/[B;la, and [B;],, is a ball of diameter r; +
2ap < (2a + 1)r;. Therefore, H;p(X) < Yie(@a+1Dr) <2Qa+ l)dH;p(Y). O

Lemma 2.6. Forall a,p > 0, all nonempty, compact X C R%, and ally € [0,d],

N(X,,O) xa,d N(X’ aP),

ML (X)) =qq HL ) (X).

Proof. Replacing p with ap, we may assume without loss of generality in both statements that
0<ax<l

Since 0 < a < 1, we have that N (X, o) < N (X, ap). To see the reverse inequality, let X’ C X
be a maximal (ap)-separated subset of X. Since the set X’ intersects any ball of diameter p in at
most <, ; 1 many points, it may be thinned to an p-separated subset X"’ of X" with cardinality
IX"'| >, 4 1X’|. Therefore, N'(X,ap) = |X'| <, 4 IX"| < N (X, p).

Since 0 < a < 1, we have that H., L0 < M. , (X). To see the reverse inequality, let X C U;B;
be an open cover of X by balls B; with diam B; > ap and ) ;(diam B;)" < ZH; p(X)- Replace B;
with an open ball C; with the same center and with diameter diam B;/a. Since B; C C;, we have
that X C U;C; is an open cover of X by balls C; with diam C; > p. Therefore,

>ap

MY (X) < Y (diam C;Y = a7 ) (diam B, < 2a™"HL, (X),
i

i

as was to be shown. O
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Lemma2.7. Forall p > 0, all nonempty, compactX C R<, all Lipschitzp : R — R¥ with Lipschitz
constant a > 0, and all y € [0,d],

N(@X),p) <4q N(X, p),
ML (9(X) <qq HL,(X).

Proof. Let X’ C X be such that ¢(X’) is a maximal p-separated subset of ¢(X). Since ¢ has
Lipschitz constant a, the points of X’ are p/a-separated. Thus, by Lemma 2.6,

N(@X),p) = IX'| S N(X,p/a) <, 4 N (X, p).

verifying the first inequality.

To see the second inequality, note that if B is an open ball in R, then the diameter of ¢(B)
is bounded from above by a - diam B. Hence, there exists an open ball C C R¥ with diam B <
diam C € max(a, 1) diam B and such that ¢(B) C C.

If U;B; is a cover of X by open balls B; with diam B; > p, then, finding for each B; a ball C; as
described above, we obtain a cover U;C; of the image set ¢(X) by open balls C; C R* with p <
diam C; < max(a, 1) diam B;. It follows that

ML (p(X)) < max(a, 1) HL (X),
as was to be shown. O

Definition 2.8. The real number y is a Frostman exponent for a measure u if there exists a constant
¢ > 0 such that for all balls B C RY,

U(B) < c(diam B)". (2.3)

If (2.3) holds only for balls B of diameter greater than/less than p, then y is a Frostman exponent
at scales larger than/smaller than p, respectively.

The following lemmas are discrete versions of the well-known mass distribution principle
and Frostman’s lemma. This pair of results describes a close relationship between the discrete
Hausdorff content of a set and the Frostman exponents of measures supported on that set.

Lemma 2.9 (cf. [6, Lemma 1.2.8]). Let ¢, p > 0 and u be a measure on R If for all balls B C R? of
diameter at least p we have u(B) < c(diam B)Y, then Hg p(supp W) = lull/c.

Proof. Let € > 0, and let {B;};c; be a cover of supp u with balls B; of diameter §; > p and with
Y6 <A+ E)Hip(supp ). Then,

lull < /,¢<U Bi> < 20517 < (1 +e)HL (supp w).
i i

The conclusion follows because € > 0 was arbitrary. O

Lemma 2.10. There exists a constant ¢ > 0, depending only on the dimension d € N, for which the
following holds. For all nonempty, compact X C [0, l]d and all p,y > 0, there exists a measure U
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supported on X with ||u|| > H;p (X) and with the property that for all balls B of diameter at least p,
u(B) < c(diam B)”.

Proof. This requires only a small modification to the proof of Frostman’s Lemma found
in [6, Lemma 3.1.1]. By adjusting the constant c, it suffices to prove the lemma for p of the form 2.
Construct the 2-adic tree corresponding to the set X down to level k. More precisely, the vertices
of the tree at level # are the closed, 2-adic cubes of the form

hoh+1
el
2o

which have nonempty intersection with the set X. Two vertices are adjacent in the tree if one of
the corresponding cubes contains the other. Associate to each leaf v (i.e., a vertex at level k) of the
tree an arbitrary point x, in X that belongs to the corresponding 2-adic cube.

Instead of defining a measure u on the space of infinite paths through the tree as is done in
[6], we define u to be an atomic measure supported on the finite set S = {x, | v is a leaf} that are
associated to leaves of the tree.

Let E be the set of edges in the tree. We define an edge conductance (or capacity) func-
tion ¢ : E — [0,1] as follows: an edge e connecting vertices on levels # — 1 and 7 is given an
edge conductance of c(e) = 2777. Fix a maximal flow f : E — [0,1] from the root of the tree
to the leaves. This means that for every vertex v of the tree that is neither the root nor one
of the leafs, the sum of f(e) over all edges connecting v to a vertex at a higher level equals
the value of f on the (unique) edge connecting v to a vertex of a lower level. Moreover, f is
restricted by the conductance (so that f(e) < c(e) for all e € E) and attains the highest possi-
ble value (among all such flows f) of the sum over all edges connecting to a leaf. Define the
u-mass of each point x, € S to be equal to the value of f on the (unique) edge adjacent to the
leaf v.

Every 2-adic cube B with 27 < diam B < 2~! and with nonempty intersection with X corre-
sponds to an edge in the tree. By the choice of edge conductance and the fact that the maximal
flow is a legal flow, u(B) < (diam B)?. (Note that this inequality also holds for B = [0,1]%.) A 2-
adic grid cover of X with cells of diameter at least 2% corresponds to a cut-set of the tree. By the
MaxFlow-MinCut theorem, the measure y has total mass equal to the minimum cut, which is
necessarily greater than H;_k (X), concluding the proof of the lemma. O

[id ig+1

2 o7 ]forsomeil,...,id G{O,...,2f—1},

2.2 | Multiplicatively invariant sets and restricted digit Cantor sets

In this short subsection, we record some basic facts about multiplicatively invariant subsets of
[0,1] and the subclass of restricted digit Cantor sets.
Definition 2.11. Letr € N,r > 2,and X C [0, 1].

* ThemapT, : [0,1] — [0,1]is defined by T,x = {rx}, the fractional part of the real number rx.
* The set X is xr-invariant if it is closed and T, X C X.
* The set X is multiplicatively invariant if it is Xr-invariant for some r > 2.

We stress that, by our definition, all multiplicatively invariant sets are closed.
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Multiplicatively invariant sets behave well in regards to dimension: their Hausdorff and
Minkowski dimensions agree, and so by [33, Theorem 8.10], the dimension of a Cartesian products
of such sets is the sum of the dimensions of the factors.

Lemma?2.12. [fX,Y C [0, 1] are multiplicatively invariant, then dimy X = dim,,; X and dimy(X X

Proof. The first fact is proven in [14, Proposition IIL.1]. The second follows immediately from
[33, Corollary 8.11] and the fact that dimy; X = dim,;X. O

Restricted digit Cantor sets are important examples of multiplicatively invariant sets, and the
natural Bernoulli measures they support will play an important role in the theorems in this
section.

Definition 2.13.
* The base-r restricted digit Cantor set with digits from D C {0, ...,r — 1} is
- d
i
Cr,D = { z F ' (di)ieN < D}’
i=1

the set of those real numbers in [0,1] expressible in base-r using only digits from D.
* The base-r restricted digit Cantor measure with digits from D C {0, ...,r — 1}, denoted as y, p, is
the (1/|D|)-Bernoulli measure on C, p, defined as

JoiHn\ _ o it |4 B ) e, #0
o |5 = :

rt 0 otherwise

* The dimension' of the measure My pisdim u, 1, :=log|D|/logr. We also define the dimension
of a product of such measures to be the sum of the dimensions of the factors.

The dimensions of a product of restricted digit Cantor sets C, , X C; p_and of its associated
product measure u 1= i, p X Uy p coincide and are equal to logr/ log |D,| + log s/ log |Dyl. In
fact, such a measure y is highly regular, in the sense that for all balls B C R? of diameter 0 < § < 1
centered at a point in the support of u,

u(B) < §4m#, (2.4)

where the asymptotic constants are independent of §. This follows from the fact that such an
estimate holds for single restricted digit Cantor measures, an easy exercise left to the reader.

While multiplicatively invariant sets can be vastly more complicated than restricted digit Can-
tor sets, the following lemma shows that the former can be approximated from above (with respect
to dimension) by the latter. The result is well known; for a proof, see [43, Prop. 9.3].

 There are many natural and useful ways to define the dimension of a measure. In this paper, we will need only to consider
the dimension of products of restricted digit Cantor measures, a class of measures for which most notions of dimension
coincide. Thus, we define “dim w” for such measures y in a highly specialized way instead of giving a general definition
of the symbol.
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Lemma 2.14. Let X C [0, 1] be multiplicatively invariant. For all € > 0, there exists a restricted digit
Cantor set X' containing X such that dimy X' < dimy X + €.

2.3 | A uniform Frostman exponent projection theorem

For t € R, denote by IT, : R? — R the oblique projection IT,(x,y) = x + ty. The goal in this sub-
section is to prove Theorem 2.15 below, which is a result about Frostman exponents for oblique
projections of products of restricted digit Cantor measures. This theorem follows implicitly from
the results in [40], but since the exact statement does not appear in the literature, we provide a
complete proof. We stress the uniformity over the projection parameter ¢, which will be crucial to
our applications later.

Theorem 2.15. Let u be the product of two restricted digit Cantor measures whose bases are multi-
plicatively independent. For all compact I C R\{0} and all 0 < y < min(dim y, 1), there existsc > 0
such that for all p € [0,1],

sup I, u(B(x, p)) < cp’.

tel, xeR

Let 2 < r < s be multiplicatively independent integers, D, C {0, ...,r — 1}and D, C {0, ...,s — 1}
sets of digits, and C, , C [0,1]and C;p, C [0,1] the base-r and base-s restricted digit Cantor sets
with allowed digits D, and Dy, respectively. Let i, , and i p, the restricted digit Cantor measures
onC, p and C; p , respectively, and let u = p, p X s p .

We will prove Theorem 2.15 for the measure u by first proving the following theorem, which
we derive from a careful application of Shermkin’s recent L9-dimension projection theorem
[40, Theorem 1.11]. Denote by P, the dyadic partition of R into intervals of length 27, and denote
by log the base-2 logarithm.

Theorem 2.16. Forall q € (1, o) and all compact I C R\{0},

log > I, u(Q)?
lim sup |— QPn_! — min(dim y, 1)| = 0.
m—oo sef (q —1m

Proof. 1t suffices to prove Theorem 2.16 for intervals I C (0, o0). Indeed, note that the set 1 —
Cs,p, = Cs,p, is a base-s restricted digit Cantor set with digits from D, = s — 1 — D, whose associ-
ated restricted digit Cantor measure ;55 is the image of the measure 4 , under x = 1 —x. It
follows that for < 0, IT, it is a translate of IT_, (i, p, ® g p, ), a measure that satisfies the conclu-
sion of the theorem. To prove the theorem for I C (0, o), it suffices to prove it for every interval I
of the form I = [£, £s), where £ > 0, since every compact subset of (0, co) is contained in a finite
union of intervals of this form.

Let £>0and A=1/r. Let T : [0,1) — [0,1) be the irrational rotation by 8 = logr/logs,
Tx =x+ P mod 1. For t >0, let S, : R - R denote the multiplication by ¢. Let A, and A, be
the normalized counting measures on D, and D, respectively, and for x € [0, 1), define

A if x >
Ax) = ’ 1 X ﬁ.
A, x SexAg ifx <
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Given x € [0,1) and n € N, define u, , = 6 and u, , = u, ,_; * S A(T"x), where we denote by
S, v the pushforward of the measure v under S;. To each x € X, we associate the measure

My = % SpA(T"x) = lim u, ,.
n=1 n—oo

The tuple ([0,1),T,A,1) is an example of what Shmerkin calls a “pleasant model”
([40, Definition 1.9]). As such, it follows from [40, Theorem 1.11] that for all g € (1, ),

log Yoep,, Hx(Q)
lim sup |- Q€Pm 7 — min(a, 1)| =0, (2.5)
M= ye(0,1) (q—1Dm
where
1 ! ¢
= =—— [ log|A d
a=aq) = o [ log Al dx

and ||V||3 = ZyeR v({¥})4. To finish the proof of Theorem 2.16, we will show that for all x € [0, 1)
andallg > 1, u, = Ilzcu and a = dim u.
To see that for each x € [0, 1) the measure u, is equal to IT¢ i, observe first that

Hxn = My p—1 * Sy A(T"x)

) Hene ok Spend, if{x+np}t>p

= . . (2.6)
My n—1 * S,—n <Ar * S%’s{H"B}As) if{x+np}<p
Note that

r—ns{x+n[5’} — S—nﬁs{x+n/3} = s¥s~ [x+ng] .

Borrowing notation from Shmerkin, let n’(x) := |x + nf]; it is a function of both x and n. Note
that n’(x) can equivalently be described as the cardinality of the set {i € {1, ...,n} | {x + if} < 8}.
Now (2.6) becomes

My nq1 % S,—nA if{x+np}>p
Hxn = { xn-1 4 r (2'7)

HMxn-1 * AL szn’(X)gsxAs if {x + nﬁ} < ;3 .

Since convolution is commutative, the fact that the orbit {T'x, ..., T"x} visits [0, 8) exactly n’(x)

times and (2.7) imply that
no n'(x)
Mon = ( 1r‘lA,> * Sggr < _>x<1 SS_zAS> .
1= =

Now for all x € [0,1),

. n . n'(x)
lim % S, A, =, p and lim % SoiAg=pup,

n—oo j=1 n—-0o0o j=1

which proves that for every x € [0,1), u, =1lim,,_, o iy, = Ky p, * SeexHs p, = Iggx i, as claimed.
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To finish the proof, it remains to show that the value a in (2.5) equals the dimen-
. . . . T . _ log|D,| log | Dy
sion of u, which is dimu =dimu, p +dimpy,p = Tlogr + Tlogs Note that for almost

q
every x < B, 1ACONE = Tien, Zyen, (7)) = 1D 4IDs[14, and forall x > B, IAGO)I{ =

q
Zien, (ﬁ) = |D,|'79. Therefore, by the definition of a,

1
“= (g—1)loga

8 1
1
=— - lo ||A(x)||qu+/ log [|AGO)|| dx
(l—q)logr</o ¢ ! s v !

1
= @(B(IOg |D,| +log |Dy]) + (1 — B) log | D, |)

1
[ rognacong ex
0

_log|D,| | log D
logr log s

as was to be shown. O

Though we have not developed the terminology for it, the conclusion in Theorem 2.16 concerns
the L9-dimension of the images of ¢t under oblique projections. The following lemma allows us to
derive from Theorem 2.16 a statement concerning Frostman exponents of the projected measures.

Lemma 2.17 (cf. [40, Lemma 1.7]). Let u be a probability measure on R, ¢ > 1, and y > 0. If for all
m>M,

- 10g ZQer M(Q)q
(@—1m

>7, (2.8)

then forall x € R and all p < 27M, u(B(x, p)) < 2o~/

Proof. Note that the inequality in (2.8) rearranges to

Z u(Q)? < 2—m(g—1)y

QePy,

Thus, forallQ € P,,,

MQI< Y, pQ <27y,

QeP,,

This gives the desired inequality for those intervals that are elements of the partition 7, for m >

M. Any interval of length 2=("+1) < p < 27 is covered by at most two elements of the partition
P41, giving the result. O
‘We are now in a position to deduce Theorem 2.15 from Theorem 2.16 and Lemma 2.17.

Proof of Theorem 2.15. Let I C R\{0} be compact and 0 < y <y’ < min(dim g, 1). Let ¢ > 1 be
large enough so that (1 — 1/q)y’ > y. It follows from Theorem 2.16 that there exists M € N such
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thatforallt e Tandallm > M,

—log ZQer IT, u(Q)1

>7.
(g—Dm v

Let 0 < p, < 2~ be small enough so that 2p(()1_1/ o' < p} - It follows from Lemma 2.17 that for
allp < pg,allt €l,and all x € R,

I, u(B(x, p)) < 201" 1/7",

Since the IT,u mass of any ball is at most 1, by setting ¢ = p(; 7| the conclusion of Theorem 2.15
holds for all p € [0, 1]. O

2.4 | Geometric transversality in the reals

Here, we employ Theorem 2.15 to deduce upper bounds on the packing number of inter-
sections of multiplicatively invariant sets. The idea in the proof below is borrowed from
[40, Lemma 1.8].

Theorem 2.18. Let r and s be multiplicatively independent positive integers, and let X,Y C [0,1]
be xr- and xs-invariant sets, respectively. Define y = max(0,dim X + dimY — 1). For all compact
I CR\{0}ande > 0,

_ N(X xY)NIIY(B(x,0)), p)
lim sup = =0
p—0t tel p~(r+e)

X€ER

Proof. Let I C R\{0} be compact and € > 0. According to Lemma 2.14, we can embed X and
Y into restricted digit Cantor sets of slightly higher dimension. Thus, there exists a product
of restricted digit Cantor measures u of dimension dim u < dimy X + dimy Y + /4 such that
X XY Csuppu.

From Theorem 2.15, we have that there exists p, > 0 such that for all p < p,, all t € I, and all
X ER,

I1, u(B(x, 2p)) < p™in(dimp1)—e/4,

Let p < py, t €1, and x € R. By (2.4) and the fact that p, is sufficiently small, every ball of
radius p centered at a point of supp y has u-mass greater than pdim#+¢/4_ Therefore,

N((supp 'u) n H;I(B(x,p)), ZP) . pdim,u+5/4 < ,u(Ht_l(B(x, 2,0))) < pmin(dim,u,l)—s/4.
It follows now from the fact that X X Y C supp u and Lemma 2.6 that
N((X xY)n T (B(x, p), p) < N ((supp w) N TT;(B(x, p)), p)
< N ((supp p) N TI, ' (B(x, p)), 20)

in(dim g,1)—dim u—e/2
<pmm( im u,1)—dim u—e/
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— pf(max(o,dim u—1)+e/2)

< P_(7+35/4)-

The limit in the conclusion of the theorem follows. O

The following corollary is formulated in a way that will make it convenient to apply in the
integer setting.

Corollary 2.19. Let r and s be multiplicatively independent positive integers, and let X,Y C [0, 1]
be xr- and xs-invariant sets, respectively. Define y = max(0,dim X + dimY — 1). For all compact
I CR\{O}andalle > 0,
i N (X + 7], n[nY +0],,p)
im sup — =
P—=0% Anel p~(r+e)
o,TeER

Note that, taking fixed 4,7, and t = 0, this corollary recovers the Shermkin-Wu theorem
encapsulated in (1.8).

Proof. Let I C R\{0} be compact and € > 0. Denote by 7; : (x,y) — x the first coordinate
projection. The following facts are straightforward to verify:

* A[X]p = [M]|A|pa

X+l =X+

* Xl n(wYl, +0)=m ([X XY], N H:;(o*)>, using that X XY is equipped with the L!
metric;

* if ¢ has Lipschitz constant L, then [X], n ¢~'(0) C [X n¢™'B(c,Lp)],.

Using these facts in order, we see that there exist ¢;, ¢, > 1 depending only on I such that

[AX + 7], n[nY + 0], Ql([X]clpn <[,21Y]CP+ J/;T>> T

=/1n1([XxY]Clan:}7M(%))+r (2.9)

C Am, <[(X xY)Nn H_;/13<$,clczp)]c102p> + 7.

We have need for four more easily verified facts:

* N(Z+1,0)=N(Z,p);
NQ@Z,p) = N(Z,p/IA]);
N(,(2),p) < N'(Z, p);
N(Zls5,p) < 8/pN(Z,p).

Applying N'(-, p) to both sides of (2.9) and using the preceding facts in order, we have that there
exists c; > 1 depending only on I such that

N (X +7], 0 [5Y +0],,p) < c3j\f<(X XY)NTZ!  B((o - 0)/A, c3p),p/c3).

The conclusion of the corollary now follows from Theorem 2.18 by appealing to Lemma 2.6. []
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2.5 | Additive transversality of sumsets in the reals

In this subsection, we use Theorem 2.18 to show that sets that are multiplicatively invariant with
respect to multiplicatively independent bases are transverse in an additive combinatorial sense.
The core ideas here appear in [40, Corollary 7.4], and we develop it in the context of the discrete
Hausdorff dimension here.

The following lemma is a packing number analog of the useful fact that if the fibers of a map
X — Y between finite sets X and Y are uniformly bounded in cardinality, then the image of the
map must be large.

Lemma 2.20. Let ¢ : RY = R¥, X C RY be bounded, and p > 0. If W > 0 is such that for all
x € Rk,
N(Xne '(B(x,20)), p) < W,
then N (¢(X),p) > N (X, p) /W.
Proof. Let X’ be a p-separated subset of X of maximal cardinality so that |X’| = N (X, p). Since

o(X") is covered by N (¢(X'), p)-many balls of radius 2p, the set X’ is covered by N (¢p(X"), p)-
many preimages of balls of radius 2p under ¢. Thus, there exists x € R such that

1 X )1 -1
—  <|X'n B(x,2 <SN(Xn B(x,20)),0) < W.
N &) X" N (B(x,20)| (X N ' (B(x,20)). p)
It follows that
N(X, X/ ,
) ] < N0 < N (o0, p),
as was to be shown. O

Theorem 2.21. Let r and s be multiplicatively independent positive integers, and let X, Y C [0, 1] be
Xr- and Xs-invariant sets, respectively. Define y = max(0, dimy X + dimy Y — 1). For all compact
I CR\{0}, alle > 0, all 0 < y < 1, all sufficiently small p > 0 (depending on X,Y,1, ¢, and y), all
compact, nonempty X' CX,Y' CY,andallA,n €1,

N(X'xY',
N(AX +nY',p) > —( - p), and (2.10)
p—(}’+€)
HL (X +9Y") 3>y, MU (X % Y). (2.11)

Proof. 1t suffices by dilating, appealing to Lemma 2.6, and absorbing asymptotic constants into the
pf term to prove the following: for all compact I C R\{0}, all € > 0, all 0 < y < 1, all sufficiently
small p, > 0 (depending on I, ¢, and y), all compact, nonempty X’ C X, Y’ CY,allt €I, and all
0 <p <pp

N(X'xY,p)
! !
N(IL,(X' xY'),p) > — and (212)
HL (T, (X" x Y")) 3 pg LT (X x Y'), (213)

where, recall, IT,(x, y) = x + ty.
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Let I C R\{0} be compact, € > 0, and 0 < y < 1. It follows by Theorem 2.18 (with £/2 as ¢) that
for all sufficiently small p > 0, all t € I, and all x € R,

N (X xY) NI (B(x, 20)),2p) < (20) "7/

Fix such a sufficiently small 0 < p, < 1, and ensure also that it is small enough so that p /2 i
greater than the asymptotic constant appearing in Lemma 2.6 (with a = d = 2). It follows that for
all 0 < p < py, all compact, nonempty X' C X, Y’ CY,allt €[,and all x € R,

N (X' x Y n 117 (B(x, 20)), p) < p~ 7. (214)
Now (2.12) follows immediately from Lemma 2.20 (with X’ x Y” as X).
To show (2.13),1et0 < p < ppand X’ C X, Y’ C Y be compact, nonempty. By Lemma 2.10, there

exists a measure v supported on X’ x Y’ with ||v|| > H;;}_'”(X ’ x Y') and such that for all x € R?
and all § > p,

v(B(x,58/2)) < ¢, 877, (2.15)

where ¢; > 1isan absolute constant. Using the fact that suppv C X’ X Y’ C X X Y, it follows from
(2.14) thatforall0 < § < py,allt € I,and all x € R,

N (suppv NI 71 (B(x,8/2)),8/4) < ¢, 6779, (2.16)

where ¢, > 1 is an absolute constant.

The inequality in (2.16) implies that as long as § < p,,, the part of the support of v contained in
any tube IT;1(B(x, §/2)) can be covered by c,6~+) many balls of diameter §. The inequality in
(2.15) says that as long as § > p, each of those balls has v-measure at most ¢, 57 *7*¢. Therefore, we
have thatforall p < d < py, allt € I, and all x € R,

V(I L (B(x, 6/2))) < ¢8747+0,677+) = ¢,c,87. 2.17)

We aim now to deduce (2.13) from (2.17). Let 0 < p < p,, and let U;B; be a cover of IT,(X’ x Y”)
by open balls of diameter at least p. If some ball B, is such that diam B; > p,, then ) ;(diam B;)" >
pg > p,- Otherwise, all balls in the cover have diameter less than p,), and it follows then from (2.17)
that

¢, Y (diam B > [T, v]| = [[vl| > HL (X' x Y").

1

In either case, we have that

' (diamB;)’ > min (po, (e;6) T HUTH(X Y’)) > polcrc) HLTHEX X Y,
i

where the second inequality follows from the fact that both quantities in the minimum are at most
1. Since the cover was arbitrary, we conclude the inequality in (2.13). O

In the statement of the following corollary, it is useful to recall Lemma 2.12: all of the notions
of dimension for X, Y, and X X Y coincide, and dim(X X Y) = dimX + dimY.

Corollary 2.22. Let r and s be multiplicatively independent positive integers, and let X, Y C [0, 1] be
Xr- and Xs-invariant sets, respectively. For all dim € {di_mM, dim,,, dimy;}, for all compact subsets
X' CXandY' CY,andforall A,n € R\{0},
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* ifdimX +dimY < 1, then
dim (AX" + 7Y’) = dim (X' xY’); (2.18)

* ifdimX +dimY > 1, then
dim (AX’ +7Y’) > dim (X' xY') —dim (X x Y) + 1. (219)

Note that Corollary 2.22 extends the theorem of Hochman and Shmerkin encapsulated by
(1.9). Indeed, setting X’ = X and Y’ =Y, it follows from (2.18) and (2.19) that dim (X + nY) >
min (1, dim(X X Y)). Using the fact that (x, y) — Ax + ny is Lipschitz, the bounds in Lemma 2.7
immediately give the required upper bounds to yield equality in (1.9).

Proof. Definey = max(0, dimy(X X Y) — 1),andletX’ C X and Y’ C Y. To show (2.18) and (2.19),
it suffices to show

dim (AX' +7Y’) > dim (X' xY') —7. (2.20)

Indeed, this is the lower bound in (2.19) and the upper bound derived from Lemma 2.7 combined
with this lower bound gives the desired equality in (2.18).

Let dim € {dim,,, dimy,, dimy} and 4,7 € (0, 00). If dim(X’ x Y’) <7, the conclusion is
immediate, so we can proceed under the assumption that dim(X’ x Y’) > 7.

Lete > 0, and let y = dim(X’ X Y') — ¥ — 2e. It follows from Theorem 2.21 that there exists a
small p, > 0 such that forall 0 < p < p,

N@AX +nY',p) N(X'xY',p)
2 =
P77 p—(y+y+£)
+7+
ML (AX" +1Y") 2 poHL "™ (X" x Y).
Consider the first inequality if dim is the Minkowski dimension and the second inequality if dim
is the Hausdorff dimension. Because y + 7 + ¢ = dim(A’ X B’) — ¢, the limit infimum (if dim is a
lower dimension) or limit supremum (if dim is an upper dimension) as N tends to infinity of the
right hand side is positive. It follows that

dim (AX’ +7Y’) > dim (X' xY') -y —«.

The inequality in (2.20) now follows from the fact that € > 0 was arbitrary, concluding the
proof. O

3 | DISCRETE FRACTAL GEOMETRY AND MULTIPLICATIVELY
INVARIANT SUBSETS OF THE INTEGERS

In this section, we introduce the notation and terminology involved in the study of fractal geom-
etry in the positive integers and develop the basic results concerning multiplicatively invariant
subsets. To prove the results in this section and the transversality results in the next, we relate xr-
invariant subsets of the integers to symbolic subshifts on » symbols and to Xr-invariant subsets of
[0.1].
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3.1 | Notions of dimension for subsets of integers

To measure the size of subsets of N,, we will make use of the (upper and lower) mass dimension
and the (upper and lower) discrete Hausdorff dimension, which were introduced in Section 1.3,
but which we recall for a more detailed discussion in this section. The upper and lower mass
dimensions and the upper Hausdorff dimension are also treated systematically in [5]; we will
state the properties we require from these quantities with the aim of making this presentation
self-contained. These dimensions join a bevy of other natural notions of dimension for subsets of
the integers, integer lattices, and more general discrete sets; see [4, 23, 28, 36, 37].

Definition 3.1. Let A C Ng be nonempty.

* The lower mass dimension of A is

. . log|lAn[o,N)|
dim,, A = liminf ——M8M——.
M N—oo logN

The upper mass dimension, dimy; A, is defined analogously with a limit supremum in place of
the limit infimum. If dimMA = dimy, A, then this value is the mass dimension of A, dimy; A.
* The lower discrete Hausdorff dimension of A is

H! (An[0,N)9)
dim A =supq y >0|liminf — >0 p.
— N->oo NY

The upper discrete Hausdorff dimension, dimp A, is defined analogously with a limit supremum
in place of the limit infimum. If dimHA = dimy A, then this value is the discrete Hausdorff
dimension of A, dim; A.

As the notation suggests, the mass and discrete Hausdorff dimensions are defined in analogy to
the Minkowski and Hausdorff dimensions, respectively. The analogy becomes clearer on noting
that

|An[o,N)!| =N(%O’N)d,1\r—l>, (3.1)

HZ (An[o,N)) _a <An[0,N)d> 52)

N >N N ’ '
so that the mass and discrete Hausdorff dimensions are capturing, in some sense, the Minkowski
and Hausdorff dimensions of the sequence of sets N — A/N in the unit cube.

As a word of caution, note that our terminology does not match exactly with the terminology
used in [5]. What we call the upper discrete Hausdorff dimension is called dim; in [5] (see Lemma
2.3 in that paper), while the discrete Hausdorff dimension defined in that work does not appear in
our work. Our choice of terminology is motivated by the connections drawn in our work between
the discrete and continuous notions of dimension.

Lemma 3.2. Let A,B C N, 2> 0,ando € R

(I) Foralldim € {dim,,, dim,,,dim,,,dim,}, dim A € [0,d].
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() For all dim € {dim,,,dim,,dim,,dim;}, dimA = dim(|AA +c]), where [AA+0| =
{|1Ain+0c]|neAl

(III) For all dim € {dim,;,dimy}, dim(A U B) = max (dim A, dim B).

(IV) Forallr eN,r > 2,

log|A N[0, rN)d
dim,, A = lim inf log|lAn[o,r™)|
— N-oo Nlogr

5

and the analogous statement with dim, in place of dim, . and limit supremum in place of limit
infimum holds.
(V) Forallr e N, r > 2,

lim inf
N-oo

H; (An[o,rV)d)
N >0 p,

i, 4= {70

and the analogous statement with dimy; in place of dim,, and limit supremum in place of limit
infimum holds.

Note that the sets in Examples 3.4 (ii) below show that the statement in (IIT) does not hold for
the lower mass and lower discrete Hausdorff dimensions.

Proof. The statements in (I) through (IV) follow from straightforward calculations that are left to
the reader.
Both of the statements in (V) follow from (3.2) and the fact that for all y > 0 and all X < N <

}"K+1,

H; (An]o, rK)d) , H;I (An]o, N)d) ., H; (An]o, rK+1)d)
<r <r

h N7 h F(K+1)y

rKy

Indeed, this shows that the limit infimum (resp. limit supremum) of the sequence N —
H! (An[0,rN)) /rN7 is nonzero if and only if the limit infimum (resp. limit supremum) of the
sequence N +— HL (AN [0,N)) /N7 is nonzero. O

Lemma 3.3. Forall A CNY,
dimHA < dimMA < dim, A,
dimHA <dimpA < dimy, A,
and no other comparisons are possible in general.

Proof. 1tis immediate from the definitions that di_mMA < MMA and di_mH A < ﬁHA, and the
set in Examples 3.4 (i) below shows that neither of these inequalities are, in general, equalities.

To see that di_mHA < di_mMA and that mHA < EMA, note that by covering A N [0, N )d by
|A n [0, N)¢| many balls of diameter 1 it follows that

HL(ANIONY) janfo, Ny
NY = NY '
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If y > dim,, A (resp. y > EM A), then the limit infimum (resp. limit supremum) of the right-
hand side is zero, implying that y > dim, A (resp. y > d1mH A). It follows that dim A < dim,, A
and dlmH A< dlmM A. The set in Examples 3.4 (iii) below shows that neither of these inequalities
are, in general, equalities.

To see that no other comparisons are possible, it suffices to show that there can, in general, be
no comparison between MH and dim, . This is demonstrated by the sets in Examples 3.4 (i) and
(iii) below. O

The following examples are meant to illustrate the extent to which the mass and discrete Haus-
dorff dimensions relate for subsets of N,,. These examples do not feature the type of structures that
we are concerned with in this work, so we leave some of the details to the reader.

Examples 3.4.

(i) Let(x,)®
define

> o € Ny be any sequence which satisfies lim,,_, , log(x,,;; — x,)/logx,,; = 1, and

oo
A = {000 (0 X0 + 1o X b

n=0
It is easy to check that dim; A = dim; A = 0 and that dimy A = dimy A = 1.
(i) Let A be the set from (i). Put B = {0} U (Ny\A). Then dim, B = dim, B = 0 while RMB =
dimyB=1,and A+ B=AUB =N,,.
(iii) Define
[so]
A={0,..,16}u | J{2",..,2" + [2""/loen |}
n=2
It is quick to check that the mass dimension of A exists and dimy; A = 1. On the other hand,

by covering A with the intervals in its definition, it can be shown that the discrete Hausdorff
dimension of A exists and dimy; A = 0.

We conclude this section by proving some basic upper and lower bounds on the dimension of
product sets.
Lemma 3.5. For all nonempty A, ...,A; C N,

d
dimy (A; X X Ag) < ) dimy A, (3.3)

i=

—

Mm

dim, (A4; X - X Ag) > ) dim A, (34)

i=1

In  particular, if dim, A, —dlmMA for each iefl,..,d}, then for all dime

{dim,, dlmM,dlm dlmH}

Proof. The inequality in (3.3) is immediate from the definition of upper mass dimension. To prove
the inequality in (3.4), define y; = dim; A; and y = Z?zl y;.Define A = A; X - X Ay.
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Let € > 0 and N € N. It follows by Lemma 2.10 that there exists a measure y; supported on
(A;/N)n[0,1) with ||| = H;’;] ((A;/N)n[0,1)) and such that for all balls B of diameter at
least N1, i;(B) < cdiam(B)”i~¢.

Consider the product measure u = u; X --- X uy; it is supported on the set A and has the
property that for all balls B of diameter at least N1, u(B) < c¢? diam(B)’~%. It follows by
Lemma 2.9 and (3.2) that

y—de d
M AN e (£ 0,17
Ny—de T UeNTIAN ’

>N—1

d
> T MU (AN o, )
i=1

e HIT (A N [0,N)
=c ]1 = .
=

By the definition of the lower discrete Hausdorff dimension, the limit infimum as N tends to
infinity of the right-hand side of the previous inequality is positive, whereby dim A > y — de.
The conclusion of the lemma follows since £ > 0 was arbitrary. O

3.2 | Dimension regularity of multiplicatively invariant sets

In this section, we prove that the mass and discrete Hausdorff dimensions of a multiplicatively
invariant set (cf. Definition 1.5) exist and coincide. This is accomplished by adapting an argument
of Furstenberg [14, Prop. I11.1] from the continuous setting.

Proposition 3.6. If A C N, is multiplicatively invariant (see Definition 1.5), then
dim, A = dimyA = dim, A = dim), A.

In particular, the mass and discrete Hausdorff dimensions of A exist and coincide.

Before the proof, we introduce some notation that will be useful throughout this section and the
following ones. Fix r € N, r > 2, and denote by A, the alphabet {0, ... ,r — 1}. An element w € Af
is a word of length |w| = 7. The set of all finite words is A} = U;°:0Af , and the set of all infinite
words is ATO. The empty word is the sole element of the set A’. The concatenation of the word
w e Af with the word v € A’r‘ is denoted by juxtaposition: the word wv is an element of Af +k We
write wk for the word w concatenated with itself k many times. Finally, we write w = wy -+ w,_;
to indicate that the letters of w are wy, ..., w,_; € A,, in that order.

For w = wy - w,_; € A, define an element in N, by
W), = wor’ w4 W+ W,

The function (-), : A} — N, serves as the primary link between subsets of nonnegative integers
and words. In the following subsection, we will use (- ), to connect Xr-invariant subsets of N,
with symbolic subshifts. Note that (-), is surjective, and is injective when restricted to Af for
some £ € N,.

As a final ingredient before the proof of Proposition 3.6, we give an equivalent characterization
of the lower discrete Hausdorff dimension, dim,,.
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Lemma 3.7. Forall A C N,

dim, A = >0 | limi fH;l*(An[O’rN)) >0
am,A=supqy =0 amnin Ny ’

where H!""(X) is defined to be

min { Z rdir

iel

xclJ ((w@odi)r + o0, rdi)), w® e AY, d; €N, }

i€l

Proof. It suffices to show that for all finite X € N,, H”'(X) < H/ (X), and then appeal to

Lemma 3.2 (V). That H”;"(X) > H_ (X) follows immediately from the definitions. To show that
HZ’l* X< H;(X ), use the fact that any interval in N, of length # can be covered by at most two
intervals of the form (w0%), + [0, r?), where d = [log, 7]. O

Proof of Proposition 3.6. Suppose A C N, is Xr-invariant. Let y > dim ; A. We will show that
limsup,,_ o, |4 N [0,rM)|/rM’ < oo, from which it follows that dimy; A < y. Since y > dim, Ais

arbitrary, it will follow that dimy; A < dim A. It will follow then from Lemma 3.3 that dim ; A =

dimy A = dim, A = dimy; A, which will conclude the proof of the lemma.

According to Lemma 3.7, there exists N € N and a collection of intervals B; = (w®0%), +
[0,rd), i €I, that cover AN [0,rV) and for which },_; r4~N” < 1. By prepending zeros onto
each w®, we may assume that [w®| + d; = N. Note that for allw € AY, (w), € B; if and only if
w = ww' for some w' € A%,

Let M €N, M > N, and let n € An [0,r™). Write n = (w),, where w € AM (so that w may
have leading zeroes). Since A is R, -invariant, R¥~N(n) = (w, - wy), € An[0,rN). Since AN
[0,rN) C U;B;, there exists i; € I such that (w; - wy), € B; . It follows that w = ww’ for

some w' € AIrVI_dil. Since A is &, -invariant, applying &, to n between 0 and |w()|-many times
(depending on how many initial zeroes there are in the word w(®) to n, we see that (w’ ), € A.
Repeating the argument with (w’), € A, there exists i, € I such that w’ = ww" for some w”’ €
Alrw_dil_diz. Repeating further, we see that there exist iy, ..., i, € I such that w = w) ... iy,
where v € AN,

Using the factorization of words w € A]r"[ for which (w), € A described in the previous

paragraph and recalling that —|w”| = d; — N, we see that

M
|[Anf0,2")] Y e
rMy

weAM : (w),€eA

< 2 r—|U|V (1 + Z r(dil_N)V + Z r(dil_N+di2_N)y + >
veAN iel inhel

-1

= 2 plvly <1_Zr(di—N)7> )

veAN iel
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Since the final quantity is finite and independent of M, and since M > N was arbitrary, it follows
that lim supy,_, ., |[A N [0,rM)]/rM < o, as was to be shown. O

Corollary 3.8. IfA,, ..., Ay C N, are multiplicatively invariant (with respect to any bases), then for
alldim € {dim, , dim,,, dim ,dim},

dim(A; X --- X Ay) =dim A, + - + dim A,.

Proof. This follows immediately by combining Lemma 3.5 and Proposition 3.6. O

3.3 | Connections to symbolic dynamics

Throughout this subsection, we use o to denote the left shift on ATJ", which is defined by
g (wn)neNo = (wn+1)neN0'

We endow A, with the discrete topology and A?O with the product (or Tychonoff) topology. In
the context of symbolic dynamics, any closed subset of A?O satisfying o(Z) C X is called a subshift.
The language set associated to a subshift X is the set of all the finite words, including the empty
word, appearing in the elements of %, that is,

L) ={wy - w,y |w=wow, - €, £ €Ny}

The language set of any subshift can be naturally embedded into the integers in two ways, giving
rise to the following definition.

Definition 3.9. The r-language sets associated to a subshift X C AT" are the sets Ay, By C N,
defined by

-1 =2

As = {(wo e Wpq)y = Wl T AW TR e W P+ Wy | Wy Wy € E(Z)},

Bs = {(wf_1 cewy), = Wy 7 T w4 e w4 w, | wy - w,_; € E(E)},
where (w), = 0 when w is the empty word.

The following proposition uses r-language sets to relate xr-invariant sets with subshifts of A,NO.
It is a generalization of some of the results in [28, Section 3], where subsets of integers arising from
shifts of finite type are defined and studied.

Proposition 3.10. The r-language sets As, Bs C N, corresponding to any nonempty subshift X C
AT" are Xr-invariant sets, and have discrete mass and Hausdorff dimensions equal to the normalized
topological entropy of the symbolic subshift (Z, o), that is,

htop(za O')

(3.5)
logr
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Moreover, for any Xr-invariant set B C N, there exists a subshift X C ATO such that B coincides with
the r-language set By associated to Z.

Remark 3.11. The second part of Proposition 3.10 does not hold with Ay, in place of By, in general.
As an example, let k € Nand put B :={0,1,2,...,k} C N,. It is clear that for any r > 2, the set B
is a Xr-invariant set. However, note that for any subshift X, the set Ay is either {0} or infinite, so
we cannot have that Ay, = B.

Proposition 3.10 shows that r-language sets (1) provide us with a natural way of producing exam-
ples of Xr-invariant subsets of the nonnegative integers; and (2) allow us to employ tools and
techniques from symbolic dynamics to study Xr-invariant sets. Before the proof, we give some
examples of Xr-invariant subsets of N, arising this way.

Examples 3.12. In each of the examples below, the language of the subshift ¥ used to generate the
r-language set Ay is invariant under reversing words. Therefore, in each example, By = As.

* The classical golden mean shift is the subshift of {0,1}™ consisting of all binary sequences
with no two consecutive 1's. This leads to a natural example of a X2-invariant set Aggjgen € Ny
consisting of all integers whose binary digit expansion does not contain two consecutive 1’s.
Since the topological entropy of the golden mean shift is known the equal log((1 + \/E)/z)
(cf. [29, Example 4.1.4]), it follows from Proposition 3.10 that the dimension of Agyjgen €quals

log((1 + \/g) /2)/ log 2. Integer sets corresponding to the broader class of subshifts of finite type
were also considered by Lima and Moreira in [28].

* The even shift is the subshift of {0, 1} consisting of all binary sequences so that between any
two I’s there are an even number of 0’s. The corresponding X2-invariant set A, € N, consists
of all integers whose binary digit expansion has an even number of 0’s between any two 1’s.
Since the topological entropy of the golden mean shift coincides with the topological entropy
of the even shift (cf. [29, Example 4.1.6]), we conclude that A, and Ay g, have the same
dimension.

» The prime gap shift is the subshift of {0,1} consisting of all binary sequences such
that there is a prime number of 0’s between any two 1's. This corresponds to the Xx2-
invariant set Apyne € N, of all those numbers written in binary in which there is a prime
number of 0’s between any two 1's. For example, the first 17 elements of A, are:
0,1,2,4,8,9,16,17,18, 32, 34, 36, 64, 65, 68, 72, 73. The entropy of the prime gap shift is approx-
imately 0.30293, (cf. [29, Exercise 4.3.7]) which implies that the dimension of Apy. is
approximately 0.437.

Proof of Proposition 3.10. LetZ C ATO be a subshift, and let A5, and By be the associated r-language
sets. We begin with the proof that the set Ay is Xr-invariant. Note first that 0 € A5 because the
empty word is in £(Z). Let n € Ay, n > 1. Because X is shift-invariant, there exists a word w =
Wy -+ Wwy_; € L(Z) such that wy # 0 and (w), = n. We see that

R.(n) = (wy - wy_y), and R.(n)=W;..wWs_1),.
Since L£(X) is closed under prefixes, R,(n) € Ay, and since X is shift-invariant, &.(n) € As. This

shows that Ay is Xr-invariant. The proof that By, is Xr-invariant is identical, only with the order
of letters reversed.
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Next we will show (3.5). Since Ay and By are Xr-invariant, it follows from Proposition 3.6
that dimy; Ay = dimy; Ay and dimy; By = dim,, By. Therefore, it suffices to verify that dimy; Ay =
dimy; By = hyo,(Z,T)/ logr.

Let £,(Z) denote the set of words of length # appearing in the language set £(X), that is,

L,(D) = {wow; - wy_; | w=wow, -+ €T}
It is well known (see, e.g., [42, Theorem 7.13 (i)]) that the topological entropy of (Z, o) is given by
.1
hiop(Z,0) = }Lngo ;loglﬁf@)l, (3.6)

where the limit as £ — oo on the right-hand side is known to exist. We claim that for all £ € N,
¢
1£,®)] <Az nlo,r)] < || £e®)- (3.7)
k=0

Indeed, the first inequality follows immediately from the fact that (-), : Af — [0,7) is injective.
For the second inequality, associate to each n € Ay N [0,7’) a word w € £(Z) such that wy #0
and (w), = n. Since n < r’, |w| < Z. The second inequality follows then from the fact that the
association just described is bijective.

Using the fact that the limit in (3.6) exists, it is a short exercise to show that lim,_, ., log | Ui:o
Lik(Z)| /¢ exists and is equal to htop(Z, o). It follows from the inequalities in (3.7) that dimy; Ay =
hiop(Z,T)/ logr. The same argument shows that similarly dimy By = h,,(2,T)/ logr, verifying
the equality in (3.5).

Finally, suppose B C N,, is a xr-invariant set. We will prove that there exists a subshift X C
ATJ" for which By = B. Let () denote the set of all infinite words wyw, -+ € A?" for which
(wy_q -- wy), € B, and define

T = ﬂ (=D, (3.8)
eN

Being an intersection of closed sets, X is closed. From R,.(B) C B, it follows that a(z) c =,
whereby o(Z) C X. This proves that (Z, o) is a subshift. From the construction, it is clear that

Bs C B.
On the other hand, if (w,_, --- wy), € B, then the infinite word wy, - w,_;00 --- € . It follows
that (w,_; -+ wy), € By, showing that B = Bs. O

We note that the identification of xr-invariant subsets of N, and subshifts of ArN % given by Propo-
sition 3.10 is not bijective. The subshift ¥ defined in (3.8) can be shown to be the largest such that
By, = B, but, in general, there can be infinitely many distinct subshifts ¥’ such that By; = B.

As a corollary to Proposition 3.10, we obtain the following result, which plays an important role
in most of our main results.

Corollary 3.13. For any Xr-invariant A C N, the set

A=) [ REg)

keNy £eN
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satisfies R, (A") = 8,.(A") = A’ (in particular, A" is xr-invariant) and dimy A’ = dim,; A’ =
dim,, A.

Proof. Note that A’ is the largest subset of A satisfying R,(A") = &,(4") = A’; in particular, it is
xr-invariant. Therefore, to prove dimy; A’ = dimy, A, it suffices to find a subset A” C A satisfying
R,.(A”) = 8,(4") = A" and dimy; A" = dimy; A. Appealing to Proposition 3.6, this would also
prove that dimy A’ = dimy; A. If dimy; A = 0, then there is nothing to show, so let us proceed
under the assumption that dimy; A > 0.

According to Proposition 3.10, we can find a subshift & C AT‘O such that A coincides with the
r-language set By associated to Z. Let ¢ be an ergodic o-invariant Borel probability measure on
¥ of maximal entropy (the existence of such a measure follows from, e.g., [42, Theorem 8.2 +
Theorem 8.7 (v)]). Let =" denote the support of u, and observe that (X", o) is a subshift of (Z, o)
with hy,,(2,0) = htop(Z’ ! o). Moreover, since yu is ergodic, almost every point in £ has a dense
orbit (by Birkhoff’s ergodic theorem) and almost every point is recurrent (by Poincaré’s recur-
rence theorem). Therefore, there exists a point x € ' that visits every nonempty open set in ="/
infinitely often.

Let A” C N, be the r-language set associated to X'/, that is, A” = Byy. Since X" C %, we have
A" C A. Also, by Proposition 3.10, dimy A = hy,,(Z,0)/ logr, dimy A” = h,,,(2",0)/logr, and
hiop(Z,0) = hyo, (£, 0), which implies dimy A = dimy A”. All that remains to be shown is that
ERV(A”) — QV(A") = A",

Since A” is an r-language set, it is Xr-invariant, so we already have the inclusions

R,(A")CA” and 24" cA.

To prove the reverse inclusions, let n € A”, and let w, - w,_; € L(Z”) be such that n =
(wy_; -+ wy), € A”. Since the point x visits every open set of £” infinitely often, the word
w, --- W,_; appears in x infinitely often. This implies that x cannot be equal to wy --- w,_; 0%, and
so, there exists a nonzero letter u € A, and some k € N, such that the word wy, --- w,_;0Xu appears
in x and hence in £(Z"). Now (w0 w,_; - wy), € A” and &,(u0 w,_; - wy), = (Wy_; = Wp), =
n, showing that A" C £.(A").

Invoking again the fact that the word w, -+ w,_; appears infinitely often in x, there must exist
a letter v € A, such that the word vw, --- w,_; appears in x and hence belongs to L(Z"). Now
(wy_; - wyv), € A” and R, (w,_, -+ wyv), = n, showing that A" C R,.(A"). O

A well-known fact from geometric measure theory states that if X C [0, 1] is multiplicatively
invariant and has Hausdorff dimension 1, then X = [0, 1] (see [15, discussion after Conjecture 2]).
The following corollary of Proposition 3.10 offers a discrete analog of this result and may be of
independent interest.

Corollary 3.14. If A C N is multiplicatively invariant and dimy; A = 1, then A = N,

Proof. Suppose A is Xr-invariant with di_mMA = 1. It follows from Proposition 3.6 that dimy; A =
1. In view of Proposition 3.10, there exists a subshift = C ArNO such that A = By and hy,,(Z,0) =
log r. However, the only subshift of A,N° with full entropy is the full shift. Hence, X = A?O, which
implies A = By = N,,. Ll
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3.4 | Connections to fractal geometry of the reals

The purpose of this subsection is to establish a connection between Xr-invariant subsets of the
nonnegative integers and Xr-invariant subsets of [0,1]. Recall that X C [0, 1] is called xr-invariant
ifitisclosed and T,X C X, where T, : x — rx mod 1.

First, we remark that every xr-invariant subset of [0,1] can be “lifted” to a Xr-invariant subset
of Ny. Indeed, if X C [0, 1] is Xr-invariant, then one can show that the set

{lr'x| |x € X, keN,}

is xr-invariant. We will not make use of this fact, so we leave the details to the interested reader. Of
more importance to us is the converse direction, stated in the following proposition. Recall from
Section 2.1 the definition of Hausdorff distance.

Proposition 3.15. For any xr-invariant set A C N, the sequence X, := (AN [0,7X))/r* con-
verges with respect to the Hausdorff metric dy; as k — oo to a Xr-invariant set X C [0, 1] satisfying

We remark that by Lemma 2.12 and Proposition 3.6, the Minkowski and Hausdorff dimensions
of multiplicatively invariant sets in N, and [0,1] coincide. Thus, either dimension can be used in
the conclusion of Proposition 3.15. For the proof of the proposition, we will need two technical
lemmas.

Lemma 3.16. Let A C N, and define X, := (A n[0,r%))/rk.

@) IfR,.(A) C A, then forany k,l € N with
(1) IfR.(A) 2 A, then for any k,l € N with

k, we have X; C [X; ].«.
k, we have X, C [X;],—«.

[>
I>
In particular, if R, (A) = A, then for all | > k, we have d (X}, X)) < rk,
Proof. 1t is helpful to note first that for all n, [, k € Nwith ] > k,

<L (3.9)
rk

no_ R (n)

rl rk

This inequality follows easily from the fact that R!=%(n) = |n/r'=]. For the proof of part (I),
let y € X, and write y = m/r! for some m € A. Note that i := R"%(m) belongs to A n [0, r¥)
because R,(A) C A. Then, setting j := ri1/rk, we see that j € X, and, by (3.9), d(y, ) < r*. This
proves X; C [X;],—«.

Next, we prove part (II). For any x € X, we can find n € A n [0, 7¥) such that x = n/rk. Since
A C REK(A), there exists i € AN [0,r!) such that

RIK@) = n.

Now % :=7i/r! belongs to X, and it follows from (3.9) that d(x,%) < r~*. This proves X, C
[Xl]r*k' D

Lemma 3.17. Suppose A C N satisfiesR.(A) C A, and define A" := [ o ERI;(A).AISO, setX) =
(Anfo,r%)/rk and X]’c := (A" n[0,75))/rk. Thenlim,_ dH(Xk,X]’C) =0.
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Proof. Lete > 0, and let m € N such that 2r~™ < ¢. Since R,(A) C A, we have
An[0,r™) 2 R.(A)N[0,r) 2 RAA)N[0,r) 2 R(A)Nn[0,r) 2 ...

In particular, the sequence k — mf(A) N [0,r™) eventually stabilizes, which happens exactly
when m’;(A) N [0,r™) = A’ n[0,r™). It follows from (3.9) that

rm

X, [ER’;""(A)O[O,r’”)] ‘

Therefore, for large enough k, X;, C [X],],-n. On the other hand, it is clear that X l’{ C X.. Finally,
since from Lemma 3.16, we have that d;; (X}, X}, ) < r~", we conclude that X; C X C [X], ]« C
[X} 1--m, when it follows that dj; (X;, X}) <. O

Proof of Proposition 3.15. Define A" := (o, RE(A) and X, := (A n[0,r"))/rk. In view of
Lemma 3.17, the sequence k — X converges with respect to the Hausdorff metric if and only
if the sequence k — X, converges. Since A" = R,(A4"), it follows from Lemma 3.16 that

dy(X,, X)) <r %, forallk,l € Nwithl > k.

This implies that k —» X l/{ is a Cauchy sequence, and hence, it is convergent (recall that by the

Blaschke selection theorem, the set of all nonempty, compact subsets of [0,1] equipped with the

Hausdorff distance, is a complete metric space). Let X’ = lim,_, X ]’{, and note that X’ C X.
Next, let us show that X is Xr-invariant. Since ®.(A) C A, a simple computation shows

T,.(Xy) € X_;. Therefore, using X =lim,_, X, and the fact that T, is continuous on

[0, D\{0, %, s r%l}, we get that for any closed set C C [0, 1)\{0, %, s % ,

T.(XNC)=T, <klim X, N C))
= lim T,(X, N C)
k—oo
k—o0
C lim X
=
=X.
It follows that T,(X\{0, % . %}) C X. Since 0 € X, we obtain T({0, %, e %}) C X, and hence,
T,(X) C X, as desired.

Finally, we must show dimy;X = dimy; A. As guaranteed by Corollary 3.13, dimy A =
dimy; A’. By combining part (I) of Lemma 3.16 with Lemma 2.5, we see that

log V' (X, r7%)  log N (X, r7¥)
klogr B klogr

0 < liminf <

k— o0

(3.10)

di A i log V' (X, r7F)
= dimy A — lglsoljpTgr

5
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where the equality follows from the fact that dimy; A = lim;_, , —— kl - log N (X, %) (cf. Equa-

tion (3.1)). On the other hand, using part (II) of Lemma 3.16, Lemma 2.5, and the fact that
dimy; A’ = limy_, o, —— kl -log N (X, 7 k), we see

logJ\f(X’,r_k) lOg.f\f(XI,c,r—k>

0 < liminf -
11?1»10101 klogr klogr
(3.11)
log N (X', r k
= lim inf M — dimy, A"
k—co klogr

Combining (3.10) and (3.11) with the fact that X’ C X, we see

. , log V' (X', r %) log V' (X, r %)
dimy; A" < hm inf —————— = <limsup ————= < dimy A.
k—oco klogr K 00 klogr
Since dimy; A = dimy; A’ and X’ C X, we conclude that dimy X exists and is equal to
dim,, A. [l

4 | TRANSVERSALITY BETWEEN MULTIPLICATIVELY INVARIANT
SUBSETS OF THE INTEGERS

In this section, we prove our main results, Theorems A-D. As in the other sections, the positive
integersr and s are fixed, and the implicit constants appearing in asymptotic notation may depend
on r and s without further indication.

4.1 | Sets that are simultaneously multiplicatively invariant

In this subsection, we give a proof of Theorem A. We follow the notation and terminology estab-
lished in Section 3.2. We say that a nonnegative integer n begins with the word w in base s if there
exists d € N, and n,, € [0, s%) such that

n = (w)s + n,. (4.1)

Ifw =w, - w,_; and w, # 0, this means that the £ most significant digits in the base-s expansion
of n are wy, Wy, ..., Wy_;, in order.

Lemma 4.1. Forallw € Af there is an arc I, C [0, 1) modulo 1 (meaning that I, is an interval
when 0 and 1 are identified) Wlth the property that for all x > (w)y, the integer | x| begins with w in
base s if and only if {log x/ log s} € I,,,.

Proof. Letw € Asf *+1 1t follows from (4.1) that a positive integer n begins with w in base s if and
only if there exists d € N such that

(W)s® <n < (W), + Vs,
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Therefore, a positive real number x has the property that | x| begins with w in base s if and only
if there exists d € N, such that

(w)ys? < x < (W) + s,

The previous inequality is equivalent to

log(w); < logx log((w); +1) i d 42)

log s log s log s
Let I,, be the modulo 1 arc from the fractional part of log(w),/logs to the fractional part of
log ((w); + 1) / log s in the positive direction. We see that for all x > (w),, the integer |x| begins
with w in base s if and only if (4.2) holds, which happens if and only if { logx/logs} € I,,. [

Recall from Section 2.1 that [A]; denotes the §-neighborhood of A.

Lemma 4.2. Let r and s be multiplicatively independent positive integers, and let A C N, be xr
invariant and infinite. If 1,6 > 0, 7 € R, and B C N, are such that AA + © C [B]s, then for all w €
A, there exists an integer in B that begins with w in base s.

Proof. Letw € A}, and let I, be the arc from Lemma 4.1. Let I/ be the middle third subinterval
of I,,, and let £ be the length of I/ . Define a = logr/logs. Since « is irrational, there exists K € N
such that the set {{ia} | i € {0,...,K}} is &-dense in [0,1).

Since A is infinite, there exists n € A sufficiently large (to be specified momentarily) such that
An/sK + 1 > (w), + 8 + A. Since A is R, -invariant, n, |n/r|, ..., |n/rX | are all elements of A. Let
i €{0,...,K}. Since AA + T C [B];, the real number A|n/r!| + 7 is within a distance § of the set B.
Therefore, there exists t; € R, |t;| < 4 + &, such that An/ ri4+ 7+ t; € B.

By the mean value theorem, ensuring that n is sufficiently large, we see that for all i €
{0, ...,K},

log (An/ri+ T +1t;) log(An/r")

4.3
logs log s (43)

It follows from the fact that log (An/r') / logs = log(4n)/ log s — i and from our choice of K that
there exists i € {0, ..., K} such that { log (An/r') /logs} € I! . It follows from (4.3) and the defi-
nition of ¢ that { log (An/r' + 7 +1;) /logs} € I,,. By our choice of n and the fact that i < K, we
have that An/r' + 7 + t; > (w),. Therefore, Lemma 4.1 gives that An/r' + 7 + ¢;, an integer in B,
begins with the word w in base s, as was to be shown. O

Proof of Theorem A. Let r and s be multiplicatively independent positive integers, and let A, B C
N, be Xr- and Xs-invariant sets, respectively. Suppose 4,1 > 0, 0,7 € R, and § > 0 are such that
AA + 1 C [nB + o]s. We need to show that then either A is finite or B = N,

Suppose A is infinite; we will argue that B = N,. Since B is Xs-invariant, it suffices to show that
for all w € A}, there exists an integer in B that begins with w in base s.

Let w € A} It follows from (1.11) that A’A + 7/ C [B]s, where 2’ = 1/, 7/ = (t — 0) /1 and
&’ = &/n. Since A is xr-invariant and infinite, Lemma 4.2 gives that some integer in B begins
with w € A in base s, as was to be shown. O
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4.2 | Intersections of multiplicatively independent invariant sets

In this subsection, we prove Theorem B, showing that Xr- and Xs-invariant sets are geometrically
transverse in the sense that the dimension of the intersection of one with any affine image of the
other is small. In fact, we prove the following stronger version.

Theorem 4.3. Letr and s be multiplicatively independent positive integers, and let A, B C N, be xr-
and Xs-invariant sets, respectively. Definey = max (0, dimy A + dimy; B — 1). For every compact set
I CR\{0}ande > 0,

AMAN[O,N)+t|Nn|n(BN[O,N)+0o
lim sup H ( [ ) J_ [77( [ ) Jl =0. (4.4)
N—oo Anel Nv+e
o,7eER

In particular, forall A,n,0,7 € R,

dimy; (|44 + 7] N [»B + ¢ ) < max (0, dimy; A + dimy; B — 1). (4.5)

Proof. Let I C R\{0} be compact and ¢ > 0. Since |1(A N[0,N)) + 7| C[A(AN[0,N)) + 7], and
|n(BN[0,N))+ o] C[n(Bn[0,N))+ o]y, the cardinality in the numerator on the left-hand side
of (4.4) is bounded from above by

N(IAAN[0,N) + 7], n[nBN[0,N)) + 0]y, 1),

which is quickly seen to be equal to

ANJ[O,N) T Bn[0,N) g -1
Al ——= — N _ — ,N . 4.6
([(E5R2) + 7, () + 5, @9
Define for every k, £ € N, the sets
k ¢
r S

Define ky := |logN/logr| + 1and £y := |logN/logs]| + 1, and note that

N = rkNr{logN/ logr}-1 _ SfNS{logN/ log s}—1‘

Since N < min(rk~, s/~), we have that AN [0,N) C ANn[0,r*¥) and BN [0,N) C BN [0,s'N).
Therefore, the expression in (4.6) is bounded from above by

N‘( [Arl—{logN/ logr}XkN + T/N] - n [nsl—{logN/logs}YfN + U/N]N_l’N_l)'

Since I C R\{0} is compact, there exists t > 1such thatI C +[¢t~!,¢]. If A and 7 belong to I, then
Api—llogN/logr} anq ysl—tlogN/logs}t belong to J := +[t~!, max(r, s)t]. Therefore, to show (4.4), it
suffices to prove

N([/le +r] N [an +cr] ,N‘1>
. N N-1 N N-1
lim sup — =0. 4.7)
N—oo ) ner Nr+e
o,7€R
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In view of Proposition 3.15, the limits X :=lim;_ X, andY :=lim,_, ., Y, existin the Haus-
dorff metric. Moreover, X and Y are Xr- and Xs-invariant, respectively, and dimy X = dimy; A4,
dimy; Y = dimy; B. By Lemma 3.16, we have that dj; (X ,X) < N~' and dy (Y, ,Y) < N~'. Put
a = maxJ, and note that forall 4,7 € J and 0,7 € R,

[AXkN + T]N_l N [anN + a]N_l C [AX + Tlgy1 N [NY + O] ynt- (4.8)

We can now manipulate the left-hand side of (4.7) using (4.8), Lemma 2.6, and Corollary 2.19
(with J as I), to get

N([AXkN +T]N71 n [anN + G]N—I’N_l)

limsup sup —
N—ooo  Apel Nv+e
o,TeER

] log N ([AX + T]gn-1 N [7Y + 0]yn-1,N7Y)
< limsup sup

N—ooo  Apel N7+e
o,TeER

) N([AX + T]an-1 N [9Y + 0] gn-1,aN ")
< lim sup - =0.
N—oo /1,776] (aN)}/‘I'E

This verifies (4.7) and concludes the proof of (4.4).
To show (4.5), let A,7,0,7 € R. Put M = 3max (|4|7%, |»|™!), and note that for all N >
max (|o|, |7]),

1A+ 7| n 9B +0c|N[0,N)C [AAN[0,MN))+7| N [n(BN[0,MN))+0c|.

It follows from this containment and (4.4) that for all € > 0,

. [[AA+7| N |nB+0c|n[0,N)] _

— — 0.
M7V+e N—oo NvY+e

This proves (4.5) and concludes the proof of the theorem. [l

Remark 4.4. We note two modifications to the statement of Theorem 4.3 that can be proved
with minor corresponding modifications made to the proof. First, the initial interval [0, N) can
be replaced by an interval symmetric about the origin, (—N, N). Though A and B consist of posi-
tive integers, this is meaningful because the theorem allows for A and/or 7 to be negative. Second,
using the floor function to round to the integer lattice is a mere convenience: the result hold when
the sets AX + 7 and Y + o are rounded to any other discrete subgroup (or translate of a discrete
subgroup) of R.

4.3 | Sums of multiplicatively independent invariant sets
In this subsection, we prove Theorem C, showing that sets that are multiplicatively invariant with

respect to multiplicatively independent bases are transverse in an additive combinatorial sense.
The results can be phrased in terms of the size (cardinality or Hausdorff content) of finite subsets
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of multiplicatively invariant sets. The upper bounds on the size of the sumsets are contained in
Lemma 4.5 and follow from general considerations. The difficulty in the main results is in prov-
ing the lower bounds, which are handled in Theorem 4.6 and are derived from their continuous
counterparts in Theorem 2.21.

Lemma 4.5. For all finite, nonempty A’,B' C Ny, all1,n > 0,andall0 <y <1,

[|[AA" +9B'|| < |A"x B|, (4.9)

M. (|2A" +1B'|) <maxay) ML, (A" X B). (4.10)
Moreover, for all A,B C N, alldim € {di_mM,ﬁM,di_mH,ﬁH}, andall ,n > 0,
dim (|14 + nB]) < min (1, dim(A X B)).

Proof. Let A’,B’ C N, be finite, nonempty, let 4,7 > 0, and let 0 < y < 1. Denote by ¢ : R?> - R
the map ¢(x,y) = Ax + ny; it is Lipschitz with Lipschitz constant max(4, 7). Note that p(A’ X
B')=1A" +nB..

The upper bound in (4.9) follows from the fact that ||[@(A’ x B")|| < |p(A’ x B")| < |A’ X B/|,
while the upper bound in (4.10) follows from Lemma 2.5 and Lemma 2.7 via

H; (lp4d’ x B]) =< H; (p(A”" X B")) <pmax(i) H; (A" xB').

To prove the dimension inequality for A, B C N, note that there exists M € N, depending only
on max(4,n), such that for all N € N,

|1A +7B| n[0,N) C [A(AN[0,NM)) + n(B N[0, NM))]. (4.11)

Let dim € {dim,, ,ﬁM ,dim,, ﬁH }, and let y > dim(A X B). It follows from (4.9), (4.10), and
(4.11) that

[|AA +5B| n[0,N)| . |(AxB)n[0,NM)?|

=X ’

N (NM)”
M. (|2A+nB| n[o,N)) , M. ((AxB)N[0,NM)*)
N7 Smaxa M (NM)Y

Considering the first or second inequality (if dim is the discrete Minkowski or Hausdorff dimen-
sion, respectively), the limit infimum or limit supremum (if dim is a lower or upper dimension,
respectively) of the quantity on the right-hand side is equal to zero because y > dim(A X B).
It follows that dim (|1A + nB]) < y. This suffices for the conclusion of the lemma since y >
dim(A x B) was arbitrary and since dim (|AA + 5B|) is clearly bounded from above by 1. O

Theorem 4.6. Let r and s be multiplicatively independent positive integers, and let A,B C N, be
Xr- and Xs-invariant sets, respectively. Define y = max(0, dimy(A X B) — 1). For all compact I C
(0,0),all0 <y < 1,alle > 0, all sufficiently large N (depending on A, B, I, y, and €), all nonempty
A'"CAN[0,N)and B CBNJ[0,N),andallA,n €1,
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|A” x B'|
> —— an

[[AA" +nB'|| = o (4.12)
14 y+y+e
M ( |1A" +nB'|) H (A x B
N7 >0 - . (4.13)
NvY+yte
Proof. For all k,¢ € N, define the sets
__AnJo,r% __BnJo0,s)
Xk = r—k and Yf = S—f

Let X =lim,_,  X; and Y =lim,_, Y, in the Hausdorff metric; Proposition 3.15 gives that
these limits exist, that X and Y are xr- and xs-invariant subsets of [0,1], respectively, and that
dimy X = dimy A and dimy; Y = dimy; B. For N € N, define kyy := [logN/logr] + 1and ¢y :=
[logN/logs| + 1, and note that

N = rkNr{logN/ logr}-1 _ SfNS{logN/ logs}—l_ (4.14)
By Lemma 3.16, we have that
dy (X, X) < N"tand dy(Y, ,Y) <N7. (4.15)

LetI C (0, 00) be compact,0 < ¥ < 1,and € > 0. Define J := [min [, rs max I]. Next, we invoke
Theorem 2.21 with J in place of I and either £/2 in place of ¢ (to prove (4.12)) or ¢ as it is (to
prove (4.13)). Let N be sufficiently large, to be specified later, but in particular so that p :=1/N
is sufficiently small for Theorem 2.21 to apply (with ¢ as either /2 or ¢).

Let A” C An[0,N) and B’ C BN [0,N) be nonempty, and 1,7 € I. It follows from (4.14) that
N < min(r*~, s7N), whereby

A’ B’

FTN ngN and Sk_N C YkN'
Combining these facts with (4.15), it follows from Lemma 2.4 that there exist nonempty compact
sets X’ € X and Y’ C Y such that

! A, -1 ’ B, -1
dy( X', 2= ) <N'andd, (Y, =) <N (4.16)
rkn SEN

Define A’ = rkv /N = pl-llogN/logrt) and gy’ = s/Ny/N = s1~110gN/logsly Note that’,7’ € Jand
that

’ ' QA +B
g A B2 B

4.17
rkn SON N ( )
Combining (4.16) and (4.17) with basic properties of the Hausdorff distance, we see that
AA" + nB’
dy </1'X’ +7'Y’, T”) < 2rsmax()N~!, and (4.18)
/ /
dy X' xY’, A B <NL (4.19)
rkn - sOn

8518017 SUOULIOD A1 3|ced1jddle 3Ly Aq peusenob ae sapive O ‘8sn Jo S9N 104 AReid18UIIUO AB]IA UO (SUOIIPUOO-PUR-SWLBY/WI00 A 1M Ae.q 1 jBul|Uo//Sd1L) SUORIPUOD pue SWis | 8Ly 88S *[202/90/6T] Uo Areiq17auiuo A|IM T4d3.18p @nbeyioldig Aq 2062 T SW(/ZTTT OT/I0p/wo0 A8 1M AReq Ul U0"d0SUIRWPUO|//Sdhy WO pepeojumoq 'S ‘v20z '0SLL69vT



44 of 55 | GLASSCOCK ET AL.

It follows from Lemma 2.7 and (4.19) that

/ /
N(X'xY' ,N7!) < N(A ;\‘IB ,N—1> = N(A'xB',1) = |A' xB'|, and (4.20)

(4.21)

yHY+E (41 ’

Hy+7+E(X’ xY') < privre (ATXBTY My (AT B
>N-1 >N-1 N Ny+7+e ’

Appealing to (4.18), Lemma 2.5, Theorem 2.21 (with £/2 as ), and (4.20), we see that

1A' + 9B’
[[AA" +3B']| < N'(AA" +nB',1) = N(i,z\i*)

N
N(X'XY' ,N7Y) 14’ xB|
NY+e/2 - NY+e/2 )

= NAX' +7Y N7 >

Thus, there exists a constant C > 0 depending only on r, s, and I for which ||[14" + nB’]| > |A’ x
B'|/(CN7*¢/2), The inequality in (4.12) follows as long as N¥/2 > C.

Replacing cardinality and packing number with the y-dimensional discrete Hausdorff content
and appealing to (4.18), Lemma 2.5, Theorem 2.21 (with ¢ as €), and (4.21) in the same way, we see
that

M (|24" +1B'|) _ ML (AA +9B') QA 4B
NY - NY TN N

H;ﬁ“ (A’ x B')

< H (X +9'Y ) >, HOTE (X xY) < N

>N-1 >N-1

This is precisely the inequality in (4.13), completing the proof. O

In the following corollary, note that it is a consequence of Corollary 3.8 that all four discrete
notions of dimension, dim, ,dimy,,dim, dimy, coincide for multiplicatively invariant sets A
and B and their Cartesian product A X B. In particular,

dim(A X B) = dim A + dim B
for any dim € {dim, , dimy ,dim,, dimyg }.

Corollary 4.7. Letr and s be multiplicatively independent positive integers, and let A, B C N, be Xr-
and Xs-invariant sets, respectively. For all dim € {di_mM, dim,,, dimH, dimy}and 1,1 € (0, ),

dim (|1A + nB]) = min (1, dim(A X B)). (4.22)

Moreover, forall A’ C Aand B’ C B,

* ifdim A +dimB < 1, then

dim (|24’ + nB']) = dim (A" x B'); (4.23)

8518017 SUOULIOD A1 3|ced1jddle 3Ly Aq peusenob ae sapive O ‘8sn Jo S9N 104 AReid18UIIUO AB]IA UO (SUOIIPUOO-PUR-SWLBY/WI00 A 1M Ae.q 1 jBul|Uo//Sd1L) SUORIPUOD pue SWis | 8Ly 88S *[202/90/6T] Uo Areiq17auiuo A|IM T4d3.18p @nbeyioldig Aq 2062 T SW(/ZTTT OT/I0p/wo0 A8 1M AReq Ul U0"d0SUIRWPUO|//Sdhy WO pepeojumoq 'S ‘v20z '0SLL69vT



ADDITIVE AND GEOMETRIC TRANSVERSALITY OF FRACTAL SETS IN THE INTEGERS 45 of 55

* ifdimA + dimB > 1, then
dim ([2A" + 7B']) > dim (A’ X B’) —dim (A X B) + 1. (4.24)

Proof. First, note that (4.22) is a consequence of (4.23) and (4.24). Indeed, setting A’ = A and
B’ = B, if dim A + dim B < 1, then (4.22) becomes (4.23), and if dim A + dim B > 1, then (4.24)
implies that dim (|1A + nB]) > 1. Since any subset of N, has dimension at most 1, (4.22) follows
in this case as well.

Define ¥ = max(0,dimy(A X B) — 1), and let A’ C A and B’ C B. To show (4.23) and (4.24), it
suffices to show

dim (|24’ + 7B'|) > dim (A’ xB") —7. (4.25)

Indeed, this is the lower bound in (4.24), and the upper bound guaranteed by Lemma 4.5 combined
with this lower bound gives the desired equality in (4.23).

Let dim € {di_mM,di_mM ,dim,, ,di_mH} and 1,7 € (0, c0). If dim(A’ x B’) = 0, the conclusion
is immediate, so we can proceed under the assumption that dim(A’ x B) > 0.

There exists M € N such that for all N € N,

|24” + 7B’ | n[0,N) 2 [/I(A’ n[0,N/M)) +73(B'n [O,N/M))J.

Lete > 0,and let y = dim(A’ X B") — ¥ — 2¢. Let N be large enough that Theorem 4.6 holds with
N/M in place of N, and define A” = A’ n[0,N/M) and B” = B’ n[0,N/M). 1t follows from
Theorem 4.6 that

|(24" + nB’) N[0, N)] _ A" xB] (A’ xB')n[0,N/M)?|

— M}_/+€ |

N7 z NV(N/M)}_""E - Nry+r+e ’
! (|AA" +7B'| N[0, N)) HITTE (A" X B)
>
NY Anye NY(N/M)7+

HIITH (A x B))n [0,N/M)?)

— M}_/+€

Nv+7+e

Consider the first inequality if dim is the discrete Minkowski dimension and the second inequality
if dim is the discrete Hausdorff dimension. Because y + ¥ + ¢ = dim(A’ X B’) — ¢, the limit infi-
mum (if dim is a lower dimension) or limit supremum (if dim is an upper dimension) as N tends
to infinity of the right-hand side is positive. It follows that

dim (|24’ +7B']) > y.

The inequality in (4.25) now follows from the fact that y = dim(A’ X B’) — ¥ — 2¢ and € > 0 was
arbitrary, concluding the proof. [l
4.4 | An example that shows R-invariance does not suffice

Fix 2 <r <s. In this section, we construct two sets A,B C N, that satisfy the following
properties:
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(I) the mass dimensions of A and B exist and dimy; A = dimy B = 1/2;
(I) rA C A and sB C B;
(II) R,.(A) = Aand Ry (B) = B; and
(IvV) dimy (A + B) < 4/5.

This example demonstrates that neither R-invariance nor the invariance indicated in (IT) suf-
fice to obtain the result in Corollary 4.7. This is in contrast to Theorem A, where the conclusion
holds under the weaker assumption that the sets A and B are R,.- and R-invariant, respectively.
We do not know whether &-invariance alone suffices in either Theorem A or Corollary 4.7, but
invariance under multiplication by r and s (in the sense of (II)) does not suffice to reach the con-
clusions in either theorem: the set of squares is invariant under multiplication by both 4 and 9
simultaneously, but has dimension equal to 1/2, while the sets A and B above demonstrate that
Corollary 4.7 does not hold under the assumption of invariance under multiplication.

In what follows, the interval notation [a, b] is understood to mean [a, b] N N,,. For i, j € N, let

L=[r,r 47T go= s 5]+ U0/,
and then define

A=u ', B={u | ;.

i,£>0 J.m=0

First, we will verify (I) by showing that the mass dimension of A exists and is equal to 1/2; the
argument for B is the same. It is easy to see that for all N > 1,

Iy, CAN[LMY)C U 1,
i,/>0
i+/<N

from which it follows that
N2 <|AN[0,rN)] < (N + DN HD/2 4 1),

This shows that dim, A = dimy; A = dimy; A = 1/2.

It is clear from the definition of the sets A and B that (II) holds.

Next, we will verify (IIT) by showing that R, (A) = A; the same argument works to show that
R (B) = B.Since rA C A, we have that

A=R,0rA) CR,A) ={0}u | R,0D).

i,020

Since 0 € A, we need only to verify that for all i,# > 0, R,(r’I;) C A. If # > 1, then R,(r'I,) =
r’71I, CA. If # =0 and i = 0, then we see R,(I,) ={0} C A. If # =0 and i > 1, then we see
R, (1) = [r1,rit +r0=D/2] C I,_, C A. Thus, R,(A) = A.

Finally, we will verify (IV) by showing that for all N sufficiently large,

|(A+B)n[0,rV)| < aN*r*N/5. (4.26)
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Let o = logs/logr. Because

BnlL,Mc |J s,
i,£/>0
o(j+m)<N

we have that

|(A+B)n[0,/M)| <1+ Y Ir'T +5™T)l, (4.27)
i,j,0,m

where the sum is over all i, j,Z,m > 0 for which i + £ < N and o(j + m) < N. We will estimate
this sum from above by splitting the sum indices into two sets depending on the “type” of the pair
(i, j), which we now define.
A pair (i, j) is of Type T if
. 5 1
i+1 + o,J + 4N .
2 2 5

Using the trivial bound |C + D| < |C||D| for finite sets C, D C N, we see that if i, j, £, and m are
such that (i, j) is of Type I, then

[FT 4 s | < LI | = pUHD250H0/2 AN s, (4.28)
A pair (i, j) is of Type I if it is not of Type I, that is, if

' i+1
L I AN (4.29)
2 2 5

Using the fact that oj < N and that N is sufficiently large, we see from (4.29) that (i — 1)/2 > N /4.
It follows then from the fact thati + # < N that

i+1 4N
£+ — < —. 4.30
> S (4.30)

Similarly, using that i < N and the fact that N is sufficiently large, we see from (4.29) that o(j —
1)/2 > N /4.1t follows from the fact that o(j + m) < N that

i+ 1
cr<m + ]T> < % (4.31)

Now we are in a position to use the following fact: if C,D C N, are contained in intervals of length
L, M, respectively, then C + D is contained in an interval of length L + M and hence |C + D| <
L+ M +1.1fi, j,#, and m are such that (i, j) is of Type II, then

|'fIi + stj| < pEHI+1)/2 + gm+(+1)/2 +1.
Using (4.30) and (4.31), we have that
P71+ 5™ ;| < 3475, (4.32)

Finally, by splitting up the sum in (4.27) into tuples for which the pairs (i, j) are of Type I or
Type II, we see by combining (4.28) and (4.32) that the desired inequality in (4.26) holds.
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4.5 | Iterated sums of a multiplicatively invariant set

In this section, we will prove Theorem D. The strategy is to use tools from Section 3.4 to derive The-
orem D from the theorem of Lindenstrauss—-Meiri-Peres, Theorem 1.4. Throughout this section,
r > 2 is fixed and all of the asymptotic notation may implicitly depend on it.

Remark 4.8. There are some useful remarks to make before the proof. Let X, X,, ..., X,, C [0,1]
be xr-invariant sets. The sumset X; + - + X,, may be interpreted in R/Z or in R. Denote tem-
porarily by W, the set X + --- + X,, interpreted modulo 1 as a subset of [0,1] and by Y,, the set
X, + -+ + X, interpreted in R as a subset of [0, n]. Two facts of particular relevance to us are: (1)
set W, is xr-invariant, and (2) dimy W,, = dimy; Y,,. The first fact follows easily from the fact that
multiplication by r is a group endomorph1sm of (R/Z, +). (In contrast, note that the sumset of xr-
invariant subsets of N, is not necessarily Xr-invariant: if A is the base-10 restricted digit Cantor
set with allowed digits 0 and 5, then A + A contains 10 but does not contain R,,(10) = 1, e.g.).
The second fact follows immediately by writing W, = U 1 o (Y, n[i,i+1])—1i) and using the
translation-invariance and finite (countable) stability under unions of the Hausdorff dimension.

Proof of Theorem D. Recall that (A;):?, is a sequence of xr-invariant subsets of N,. For each i €
N, let Alf be the set described in Corollary 3.13, and define X; C [0, 1] to be the Hausdorff limit
of the sequence (A N [0, N/ rN , asin Proposition 3.15. Since dimy X; = dimy; A] = dimy 4;
and ZZ ,dimy A4; /| logdimy; A;| d1verges we have that Zl: dimy X; /| log dimy X;| diverges. It
follows by Theorem 1.4 that

lim dimH (Xl + e + X}’l) = 1. (4.33)
n—oo
According to Remark 4.8, we can and will interpret the sum X; + --- + X, to be in R.
We claim now that for all n € N, the discrete Hausdorff dimension of the set A’1 + -+ A; exists
and

dimy (A} + - + A])) = dimy (X, + - + X,). (4.34)

Combined with (4.33), this suffices to conclude the proof of Theorem D since A; C A, implies that
dimy (A] + - + Al) <dimy (A) + - + A4)).

To show (4.34), let n € N, and define k = [logn/logr| + 1. Define B, = A} + .- + A] and
Y, =X, + -+ + X,,, where the sum defining Y, is understood to be in R. Note that forall N > k

" AN [0,rN7k) BnOr) "A’n[OrN)

> - r;, Z (4.35)

i=1

where the sums indicate sumsets. The goal now is to compare the discrete Hausdorff contents of
each of these sets at scale r=V
By the definition of the set X, it follows from Lemma 3.16 that

A'n[o,rN)
dH<lr—N’Xi < l"_N, (436)
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which implies by Lemma 2.5 that for all y € [0, 1],

noAnfo,rN)
My <Z lr—N <p H_((Y,). (4.37)

i=1

It also follows from (4.36) that

which implies by Lemma 2.5 that
" Aln[o,rN7k) Y
Y L - V4 n
H <214 )= " <r_k> . (4.38)
i=

Combining (4.35) with (4.37) and (4.38), we see that

14 N
Y B,nlo,rN)\ ML (B,n[0.r"))
4 n 4 n ’ _ Ed 4
H),_N <_rk > <, H;r‘”( N = e <, H;r—N(Yn)'

Letting N tend to infinity and noting that n, and hence k, are fixed, these inequalities combine
with Remark 2.3, Lemma 3.2 (V), (4.33), and the fact that dimy (Y, /r*) = dimy; Y,, to prove the
equality in (4.34). O

5 | OPEN DIRECTIONS

We collect in this section a number of interesting open questions concerning multiplicatively
invariant subsets of the nonnegative integers. Though these questions and conjectures are stated
for arbitrary xr-invariant subsets of N, many are already open and interesting for the special case
of base-r restricted digit Cantor sets.

5.1 | Positive density for sumsets of full dimension

In [19, Problem 4.10], Hochman asks whether the sumset X + Y of a Xr- and a Xs-invariant subset
of [0, 1] satisfying dimy; X + dimy Y > 1 has positive Lebesgue measure. We remark that a projec-
tion theorem of Marstrand [32, Theorem I] implies that AX + Y has positive Lebesgue measure
for a.e. (4,1) € R?, suggesting a possible affirmative answer. In [17, Theorem 1.4], a version of
Marstrand’s projection theorem for subsets of the integers was obtained, with Lebesgue measure
replaced by the notion of upper natural density. " It therefore makes sense to consider the following
integer analog of Hochman’s question.

Question 5.1. Let r,s € N be multiplicatively independent, and let A, B C N, be Xr- and Xs-
invariant, respectively. If dimy; A 4+ dimy; B > 1, then does the sumset A + B have positive upper
natural density?

" Given a set E C Z, its upper natural density is defined by d(E) := lim SUPN_ o [EN{—N,..,N}|/(2N +1).
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5.2 | Small intersections

While Question 5.1 considers the sum A + B when sum of the dimensions is larger than 1, it is
also natural to ask about the intersection A N B when the sum of the dimensions is below 1. A
special case of a conjecture posed by Furstenberg in [15] asserts that if r, s € N are multiplicatively
independent and X, Y C [0, 1] are Xr- and Xs-invariant, respectively, then

dimX +dimY <1=>XnY CQ.

Furstenberg showed that an affirmative answer to this question implies that any large enough
power of 2 contains every digit (in base 10), which is a variant of the conjecture of Erdés [11]
mentioned in the introduction.

The following question is inspired by Furstenberg’s conjecture.

Question 5.2. Let r,s € N be multiplicatively independent, and let A, B C N, be Xr- and Xs-
invariant, respectively. Is it true that

dim A + dim B < 1= A n B is finite?

A special case of this question is formulated in [45, Conjecture 6.2]. If the answer to Question 5.2
is positive, then Erd6s’ conjecture holds (this can be seen by taking r = 2, s = 3, A to be the powers
of 2, and B to be a restricted digit Cantor set). A weaker version of this statement was established
by Lagarias [27].

One can formulate a natural quantitative strengthening of Question 5.2 as follows. Given
n,r,k €N, letd, ,(n) be the number of subwords of (n), of length at most k. Then, the answer to
Question 5.2 is positive if one can show that

limsup lim inf =1. 5.1

k—co n—oo0

log dr,k(n) + 10g ds,k(n)
klogr klogs

In fact, it suffices to prove that the expression in (5.1) is greater than or equal to 1. Indeed, by
considering n to be a power of r, for any k € N, liminf,_, logd, ,(n)/klogr = log2k/klogr,
whereby the expression in (5.1) is at most 1. We believe the limit in (5.1) as k tends to infinity
exists, but this would not be necessary to imply a positive answer to Question 5.2.

5.3 | Difference sets

For closed subsets X, Y C [0, 1], working with the difference set X — Y is no harder than working
with the sumset X + Y. In particular, proving that

dimy; (X —Y) = min (dimy; X + dimy Y, 1)

in Equation (1.9) requires no additional work. The story changes in the setting of the nonnegative
integers, where difference sets are much more cumbersome to handle, ultimately because the
fibers of the map (a, b) — a — b are not compact. This observation explains why our main results
in the integer setting only deal with sumsets 1A + B with 1 and 7 both positive, and it naturally
leads us to the following question.
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Question 5.3. Let r and s be multiplicatively independent positive integers, and let A, B C N, be
Xr- and xs-invariant, respectively. Is it true that

dimy;(A — B) = min (dimy A + dimy; B, 1)?

The methods used in Section 4.3 allow us to establish the lower bound dim,, (A —
B) > min(dimy; A + dimy; B, 1). However, the upper bound ﬁM (A — B) < min(dimy; A +
dimy; B, 1), which is straightforward for sums, remains open for differences.

There are many natural variants and extensions of Question 5.3: one can replace A — B with a
more general expression |AA + nB| for any nonzero real numbers 4,7, or one can replace dimy,
with dimy;. One can ask about combinations of the form [1A’ + nB’] for arbitrary subsets A’
and B’ of A and B, or one can look only at the positive portion (4 — B) N N of the difference set.
Our methods provide an outline for obtaining lower bounds, but upper bounds seem to require a
new strategy.

5.4 | Analogous results for other notions of discrete dimension
The upper Banach dimension (or upper counting dimension, cf. [28] and [17]) of a set A C N is

o ) log|ANn[M,N]|
dim* A := limsup ———
N-M—-oco log(N —M)

In general, we only have the inequality dim* A > dimy; A, but if A C N, is Xr-invariant, then it
can be shown that dimy; A = dimy; A = dim™ A.

Question 5.4. Letr and s be multiplicatively independent positive integers, and let A, B C N, be
Xr- and Xs-invariant, respectively. Is it true that

dim*(A + B) = min (dim* A + dim* B, 1), and / or

dim*(A N B) < max (dim* A 4+ dim* B —1, 0)?

Note that the lower bound dim*(A4 + B) > min (dim* A + dim* B, 1) follows from Theorem C
using the fact that dim* > EM.

There are several other ways to define natural notions of dimensions for subsets of N,,. Barlow
and Taylor [5] define, for example, a discrete notion of packing dimension. The main results in
this article suggest possible analogs for their discrete packing dimension.

5.5 | Polynomial functions of multiplicatively invariant sets

The dimension of the sumset of affine images of multiplicatively invariant sets A and B is
described in Theorem C. It is natural to ask about the extent to which the results in that theorem
might hold for the sumset of images of A and B under other functions.

In this subsection, for n € N, denote by A®™ the set of nth-powers of elements of A: A® :=
{a" | a € A}. The following question is a (special case of a) natural polynomial extension of
Theorem C.
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Question 5.5. Letn,m € N, letr,s € N be multiplicatively independent, and let A, B C N be Xxr-
and Xs-invariant, respectively. Is it true that

dimy; (A® + B ) = min (% dimy, A + % dimy B, 1)? (5.2)

When A = B = N, an affirmative answer to Question 5.5 follows from basic facts in number
theory. It is easy to see that for any A C N, for which the Minkowski dimension exists, the set
A™ has dimension dimy; A®™ = dim,,; A/n (however, it is not true in general that A" is xr-
invariant when A is). Thus, for arbitrary sets A and B that satisfy a natural dimension condition
(see footnote), it follows from the discrete version of Marstrand’s projection theorem in (1.10) that
dimy, ([2A™ + B |) is equal to the right-hand side of (5.2) for Lebesgue almost every 1,7 > 0.

We cannot rule out the possibility that (5.2) holds when n,m > 2 for arbitrary sets A and B
for which the Minkowski dimensions exist. When A = B and n = m = 2, equality in (5.2) is an
infinitary version of a conjecture attributed to Ruzsa; see [9, Conjecture 5].

5.6 | Multiplicatively invariant sets in relation to other arithmetic sets
in the integers

In this paper, we are concerned with transversality between xr- and Xs-invariant sets whenever
r and s are multiplicatively independent. In principle, it makes sense to inquire about transver-
sality (or independence) between any two sets that are structured in different ways. To keep the
discussion short, we restrict to infinite arithmetic progressions (or congruence classes), the set of
perfect squares, and the set of primes.

Question 5.6. Let A C N, be a Xr-invariant set, and let P be an infinite arithmetic progression.
Is it true that dimy;(A N P) is either 0 or dim,,;(A)?

The answer is yes for restricted digit Cantor sets. In fact, it is proved in [12] that such sets satisfy
“good equidistribution properties” in residue classes.

More generally, one could ask about the sum or the intersection of a Xr-invariant set and the
image of an arbitrary polynomial with integer coefficients, for instance, the set of perfect squares,
S = {n? | n € Ny}. Note that dimy S = 1/2.

Question 5.7. Let A C N, be a Xr-invariant set. Is it true that
dimy (A + S) = min(dimy; A +1/2, 1)
and/or
dimy; (AN S) < max (dimy A —1/2, 0)?
Note that the first expression in this question is a special case of the equality in Question 5.5.
In a similar vein, one can ask about intersections with the set of prime numbers, P. Note that

dimM P=1.

Question 5.8. Let A C N be a xr-invariant set. Isit true that dim,;(A N P) is either 0 or dim,,;(A)?
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Maynard showed in [34] that the answer to Question 5.8 is positive when A is a restricted digit
Cantor set where the number of restricted digits is small enough with respect to the base. In fact,
he obtains a Prime Number Theorem in such sets, which is stronger than simply dimy;(A N P) =
dim,; A. Question 5.8 is open for general restricted digit Cantor sets, and may be very difficult in
general. The methods in this paper do not appear to shed new light on this line of inquiry.

5.7 | Transversality of multiplicatively invariant sets in the rs-adics

The rs-adics is a non-Archimedean regime in which it is easy to ask questions analogous to those
asked in this work. Furstenberg proved in [15, Theorem 3] an analog of Theorem 1.1 in the rs-adics.

Following Furstenberg, note that the maps R, and R, with domains extended to Z, are uni-
formly continuous with respect to the rs-adic metric on Z, and therefore extend to continuous
transformations of the set of rs-adic integers, Z,,. As a compact metric space, there is a natural
Hausdorff dimension to measure the size of subsets of Z,;. Let us call a set X C Z,; Xr-invariant
ifitis closed and R, X C X.

Question 5.9. Let r and s be multiplicatively independent positive integers, and let X, Y C Z,
be Xr- and Xs-invariant sets, respectively. Is it true that

dimy (X +Y) = min (dimy X + dimy Y, dimy Z,), and / or

dimy (X NY) < max (dimy X + dimy Y — dimy; Z,, 0)?

The upper bound on dimy; (X N'Y) in the previous question was conjectured by Furstenberg in
[15, Conjecture 3]. A positive answer to these questions would bring transversality results in the
rs-adics in line with those in the real and integer settings.
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