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Predicting visual stimuli from cortical response
recorded with wide-field imaging in a mouse

D. De Luca, S. Moccia, L. Lupori, R. Mazziotti, T. Pizzorusso, and S. Micera Fellow, IEEE

Abstract— Neural decoding of the visual system is a subject of
research interest, both to understand how the visual system works
and to be able to use this knowledge in areas such as computer
vision or brain-computer interfaces. Spike-based decoding is often
used, but it is difficult to record data from the whole visual cortex
and it requires proper pre-processing. We here propose a decoding
method that combines wide-field calcium brain imaging, which
allows us to obtain large-scale visualization of cortical activity
with a high signal-to-noise ratio, and convolutional neural networks
(CNNs). A mouse was presented with 10 different visual stimuli, and
the activity from its primary visual cortex (V1) was recorded. A CNN
we designed was then compared to other existing commonly used
CNNS, that were trained to classify the visual stimuli from wide-field calcium imaging images, obtaining a weighted F1
score of more than 0.70 on the test set, showing it is possible to automatically detect what is present in the visual field of
the animal.

Index Terms— Deep learning, transfer learning, visual cortex, visual prostheses, wide-field imaging

I. INTRODUCTION

THE study of visual system has always been of great
interest among researchers, as vision constitutes about

70% of the perceptual information acquired by humans, and
understanding neural coding is crucial to comprehend how the
brain interprets environmental stimuli [1]. Decoding of visual
information aims to derive a visual stimulus from the response
generated by the stimulus itself and is of critical importance
not only to study how the brain processes information, but also
to advance artificial vision technology used in virtual reality
and brain-computer interfaces [2] [3].

Mice are frequently employed in visual cortex decoding for
a variety of reasons, despite their tiny size and low-resolution
vision. The mouse visual cortex shares several characteristics
with the human visual cortex, including retinotopy, different
types of receptive fields, orientation tuning, and plasticity
in ocular dominance [4] [5]. Additional factors include the
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availability of transgenic animals, the ability to record vast
amounts of data, and their relatively simple maintenance [6].

Spike signals are the most common type of neural data
used in animal visual decoding studies [3]. It is possible to
obtain spike data using intracortical probes, or through two-
photon calcium imaging paired with proper algorithms [7].
As a consequence, plenty of state-of-the-art algorithms exist
to analyze and decode spike data, and most of the visual
neural decoding studies are spike-based [8] [9]. Concurrently,
a variety of algorithms, from linear to Bayesian-based to deep
neural network techniques, can produce excellent decoding
performance [3]. Intracortical microelectrodes are the most
practical when accessing deeper levels of the cortex, and
recordings frequently yield good decoding performance. How-
ever, they do not enable us to record the activity throughout
the entire visual cortex surface, so that only a fraction of the
visual field’s cortical activity is recorded because of the visual
cortex’s retinotopic architecture [4] [10] [11].

Calcium imaging is a recent and still less explored tech-
nique, which is typically used to record from large portions
of the brain [3]. A commonly applied decoding strategy
is to gather data using two-photon Ca2+ imaging and to
convert the signal into spikes to exploit the many available
algorithms [12] [13] [14]. Wide-field calcium imaging, to our
knowledge, has never been used in the literature to perform
visual cortex decoding. This technique allows us to record
from the whole primary visual cortex (V1) of the animal with
high signal-to-noise-ratio (SNR) [15], enough to eliminate
the need for averaging the signals over multiple trials and
enabling us to gather data on which to use machine learning
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Fig. 1: Visual stimuli delivered to the mouse.

methods. It exploits engineered proteins that have the property
of expressing fluorescence in response to certain neuronal
events [15] [16]. Genetically encoded calcium indicators
(GECIs) are a class of these proteins and are specific for
detecting alterations in intracellular calcium, which indirectly
indicates neural activity [17]. Among these, the GCamP family
is the most common in neuroscience [18]. In vivo experiments
usually involve the head fixation of the animal, whose skull
can be thinned to achieve partial transparency or removed and
substituted with transparent materials [18]. A light source,
e.g., a LED, is then used along with a light-sensing device
connected to a microscope to capture fluorescence [17] [18].

Here, we propose to exploit wide-field calcium imaging
to record the V1 response of a mouse and deep learning
architectures to perform V1 response decoding. We study con-
volutional neural networks (CNNs) to classify V1 responses
evoked by 10 classes of visual stimuli passively presented
to a transgenic mouse. We rely on CNNs as they are the
standard not only for medical imaging sensors analysis [19]
[20] and for brain signal classification [21] [22], but are also
extensively used for image classification across several sensor
modalities [23] [24] [25], as their versatility allows us to
optimize the usage of sensor data. In the literature, CNN-
based approaches have been adopted to analyze wide-field
calcium imaging recordings in the mouse cortex to classify
sleep stages [26] and to detect mild traumatic brain injury [27].

In this work, we designed a CNN to perform visual cortex
responses classification and compared its performance against
that of CNNs commonly used in medical image analysis: In-
ception V3 [28], VGG 16 [29], and Inception-ResNet V2 [30].
The contributions of this study can be summarized as follows:

• Collection of a dataset of V1 responses to standardized
visual stimuli, acquired via wide-field calcium imaging
in vivo.

• Design of a CNN to perform V1 responses decoding from
wide-field calcium images recorded in vivo.

• Comparison of the performance of state-of-the-art CNNs
used for classification tasks in medical images.

II. MATERIALS AND METHODS

The visual stimuli shown to the mouse and the procedure of
acquisition of the cortical response of the mouse are described
in Sec. II-A. Section II-B presents an overview of the dataset
analyzed in this work and data augmentation methodologies,
Sec. II-C describes the CNN architectures and Sec. II-D our
experimental protocol to compare the CNNs performance.

A. Data acquisition
Animal experiments were performed in accordance with the

European Directives (2010/63/EU) and were approved by the
Italian Ministry of Health (authorization number 621/2020-
PR). In this work, we performed experiments on a GCaMP6f
transgenic mouse, which was deeply anesthetized with Isoflu-
rane 3% and kept with the head fixed, while a screen was
positioned 20 cm from its right eye. Anesthesia only affects
the temporal dynamics of the cortical response of the animals
and does not alter the topography of the activation pattern
in V1, which is taken into account by our classification
algorithms [31].

The visual stimuli consisted of 60 repetitions of 10 different
shapes, shown in Fig. 1, which were delivered at the center
of the screen. Their outlines were filled with a checkerboard
that flickered at a temporal frequency of 5 Hz and a spatial
frequency of 0.08 cpd, on a gray background. This choice
was made to enhance the response amplitude of V1 neurons,
sensitive to contrast and orientation [32] [33]. Each trial
consisted of the presentation of a stimulus with a frequency
of 0.5 Hz. The sequence was: 500 ms of a pre-stimulus gray
background, 500 ms of stimulus duration, and 1 s of post-
stimulus gray background to let the cortical response return to
baseline.

A custom Leica fluorescence microscope (Leica Microsys-
tems) was used to visualize V1 activity, and was equipped
with a Leica Z6 APO coupled with a Leica PlanApo 2.0x
(10447178) objective. An I3 cube (excitation BP 450-490
nm dichroic 510 nm emission LP 515 nm) was used to
detect fluorescence. Images were acquired with a 12-bit depth
acquisition camera (PCO edge 5.5) at 10 fps with a resolution
of 270x320 pixels, for a total of 20 frames per trial.
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Fig. 2: Architectures of the CNNs trained and tested in this work. (a) The CNN we designed, (b) Inception V3, (c) VGG 16,
(d) Inception-ResNet V2

B. Data preprocessing

For every trial, we visualized ∆F/F0, where ∆F and F0 are
the variation of fluorescence with respect to the baseline and
the baseline fluorescence, respectively. F0 has been calculated
as the mean fluorescence intensity across the frames corre-
sponding to the response to the pre-stimulus gray background.
The mean across the three central frames corresponding to the
presentation of the stimulus (frames 7, 8, and 9) was computed
to obtain a final, smoothed image to be included in the dataset.

The images were visually inspected to discard trials where
cortical activity was not present or only partially visible. A
sample of the final dataset is shown in Fig. 3. After this data
curation process, the selected samples were 260, divided as
follows: 25 for Circle, 29 for Cross, 24 for H, 22 for S, 26
for T, 28 for V, 28 for W, 28 for Square, 19 for Star and 31
for Triangle.

The images were prepared to train the CNNs with a factor
of 2 downsampling and mean subtraction.

C. Convolutional neural networks

This Section describes the proposed CNN and the CNNs
models we considered as competitors.

1) Our CNN: The CNN we developed has 9 layers, as sum-
marized in Table I and Fig. 2a. Of these, 2 are convolutional
with 32 and 64 channels, respectively. Their kernels have a size
of 3x3 and they both have a hyperbolic tangent function as ac-
tivation function. Dropout layers are included, to attenuate the
chance of overfitting. This architecture proved to be effective
for this classification task, while being a lightweight model
with low computational and memory requirement [34] [35].
The hyperparameters (learning rate, optimizer, number of
epochs, batch size) were adjusted through an empirical, it-
erative process rather than a systematic tuning procedure.

2) Inception V3: The first CNN we compared against our
model is Inception V3 [28]. This CNN (Fig. 2b) is the third
evolution of the GoogLeNet CNN, winner of the ILSVRC
2014 competition. The innovation proposed by Google was
the Inception module, which allowed to reduce the number
of network parameters while increasing the network depth.
Multi-scale feature extraction is allowed by parallel filters of
different sizes [36]. Inception V3 achieved a top-1 accuracy of
77.9% and a top-5 accuracy of 93.7% on the ImageNet [37]
dataset. Those are the fraction of test images for which the
classification was correct or among the highest probable labels
provided by the CNN [36], respectively.
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Fig. 3: Example of cortical responses for each of the visual stimuli, recorded via wide-field calcium imaging.

3) VGG 16: VGG 16 (Fig. 2c) was introduced by the
Oxford’s Visual Geometry Group (VGG) for ILSVRC in
2014 [29]. This CNN is composed of 16 layers and is an
improvement of the AlexNet CNN [38], where the large-sized
kernel filters are replaced with sequences of 3x3 filters [36].
VGG 16 classified the ImageNet dataset with a top-1 accuracy
of 71.5% and a top-5 accuracy of 89.8%.

4) Inception-ResNet V2: Inception-ResNet V2 (Fig. 2d) is
a hybrid architecture that combines inception module and
residual connections, linking the input and output of the
Inception V4 blocks [30]. Inception-ResNet V2 achieved a
top-1 accuracy of 80.4% and a top-5 accuracy of 95.3% on
ImageNet.

D. Training strategy and performance assessment

The dataset was divided into 5 stratified folds. During
training, 25% of the training set (52 samples) was used as
the validation set. Offline and on-the-fly data augmentation
were performed by applying geometrical transformations to
the datasets [39]. Offline data augmentation was performed by
applying 4 different geometrical transformations to the images,
which were a random rotation in a range of ±20 degrees, a
random spatial shear of a factor between 0 and 0.2, random
corrections of brightness with a maximum variation of 40%,
random corrections of contrast with a lower and upper bound
of variation of respectively 20% and 50%. The augmentation
factor was set to 8 so the training set went from 166 to 5312
images. Of these, 20% (1664 images) were used as validation
set during training.

TABLE I: Architecture of the convolutional neural network we
designed to perform V1 responses classification.

Name Kernel size Output shape
Input - 135x160x1

Convolutional layer 3x3 133x158x32
Convolutional layer 3x3 131x156x64
Max pooling layer 2x2 65x78x64

Dropout - 65x78x64
Flattening layer - 324480

Dense layer - 128
Dropout - 128
Output - 10

On-the-fly data augmentation was also performed during
training, which may contribute to reduce the chance of overfit-
ting [40]. The geometrical transformations were the following:
random rotation in the range of ±5 degrees, random vertical
and horizontal shift of a factor of ±0.02, random zoom of a
factor of ±0.3, random shear with intensity in a range of ±2.

To reduce the impact of the small size of the dataset, we
also exploited transfer learning [41] [42]. This method involves
training a neural network on a larger dataset and using the
resulting weights as the starting weights for a new neural
network. Big data enables CNNs to extract low-level spatial
properties that are shared by multiple image datasets, which
accounts for this method’s efficacy [40].

All the experiments were performed on a Dell XPS 8940, In-
tel Core i7-10700 processor, 2.90GHz CPU, NVIDIA GeForce
GTX 1660 Ti GPU, 16 GB RAM.

1) Ablation study: We performed 3 experiments to test
different training strategies, with the aim of individuating the
most suitable for the CNN we designed. A: The CNN was
trained on the original dataset (i.e., without data augmentation)
using Adadelta as optimizer for 100 epochs and batch size
equal to 16, maximizing the accuracy on the validation set.
We used the categorical cross-entropy as loss function.

B: The same training procedure was repeated with the
dataset augmented both offline and on-the-fly.

C: To compensate for the limited size of the dataset, we
pre-trained the CNN to classify the MNIST handwritten digits
dataset [43], and fine-tuned it with our images. The MNIST
dataset is composed of 60000 training samples and 10000 test
samples, which are 28x28 pixels greyscale images. We chose
this dataset because it shares similar characteristics in terms
of semantic content with our calcium imaging dataset. Each
MNIST digit is indeed a single, bright object displayed on a
dark background. The MNIST digits were resized to 135x160
pixels to match the wide-field frames, normalized between 0
and 1, and fed into the CNN for training. The CNN was trained
for 25 epochs on batches of 32 samples, enough to reach an
accuracy of 95% on the test set. Categorical cross-entropy was
used as loss function, and Adadelta as optimizer to maximize
the MNIST classification accuracy. The weights of the model
trained on MNIST digits were loaded in the CNN and fine-
tuning was done in two steps. The first step was to freeze the
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weights of the first convolutional layer of the network and to
train the rest of the model (Adadelta optimizer, accuracy as
metrics, 100 epochs and size 16 batches). The second step
consisted of unfreezing the weights of the first layer and fine-
tuning the model again, for 20 epochs, using Adam optimizer
with a learning rate of 10-4. A repeated stratified 5 fold cross-
validation with 5 repetitions was performed.

2) Existing CNNs: Transfer learning was also exploited to
train the CNNs we used to compare our model. In all 3
cases we used pre-trained CNNs on the ImageNet dataset,
removed their last fully connected layers, and fine-tuned the
CNNs on our wide-field calcium imaging dataset augmented
both offline and on-the-fly. Inception V3 was frozen until its
288th layer, VGG 16 until its 3rd convolutional block (3
layers) and Inception-ResNet V2 until its 288th layer. The
CNNs were fine-tuned for 25 epochs using Adam as optimizer,
with a learning rate of 5 ∗ 10−5. The loss function to be
minimized was the categorical cross-entropy, and the metrics
to be maximized was the accuracy on the validation set. To
compare the classification performance achieved by the state-
of-the-art CNNs and the one we designed, we implemented a
repeated stratified 5 fold cross-validation with 5 repetitions.

3) Performance assessment: The classification perfor-
mance of our CNN trained according to the 3 different strate-
gies previously described was evaluated using the accuracy
(Eq. 1) achieved on the test set across the stratified 5 folds. The
performance of the CNN we designed was compared against
that of the state-of-the-art CNNs by computing the weighted
F1 score (Eq. 2).

accuracy =
Number of correct predictions

Total number of images
(1)

F1 score = 2
Precision * Recall
Precision + Recall

(2)

The receiver operating characteristic (ROC) curves were
computed for each stratified fold, and the area (AUC) under
the macro-averaging ROC curve was calculated.

Statistical significance between results was evaluated using
the one-way ANOVA test after performing the Shapiro-Wilk
normality test (significance level α = 0.05 in both tests), to
assess the distribution of the data.

III. RESULTS

A. Training strategy selection for our CNN
As shown in Fig. 4, the mean classification accuracy across

folds resulting from experiment A was 51.54%±6.48%. This
result indicates that our CNN can perform classification above
the chance level, but the accuracy is relatively low when no
data augmentation is applied.

The classification performance improved significantly (p <
0.05) by training the model according to experiment B,
achieving an accuracy across folds of 71.93%±6.73%, with
a median of 73.08%.

Experiment C, that consisted in applying transfer learning
to the model pre-trained on the MNIST dataset, classified the
visual stimuli with a performance of 78.46%±3.31% accuracy

on the test set. The ROC curves relative to experiment C, in
Fig. 5, show an area under the curve (AUC) of 0.97.

B. Comparison with existing CNNs

The F1 scores achieved by the tested classifiers across the
5 repetitions of the repeated stratified 5 folding are displayed
in the boxplots in Fig. 6, while Fig.7 shows the confusion
matrices and ROC curves resulting from the first repetition
of the repeated cross-validation. Inception V3 achieved an F1
score of 0.15±0.03 (mean ± std), with an AUC of 0.81±0.02;
VGG16 achieved an F1 score of 0.72±0.09, with an AUC
of 0.94±0.04; Inception-ResNet v2 achieved an F1 score of
0.75±0.02, with an AUC of 0.95±0.02; our CNN achieved an
F1 score of 0.77±0.02, with an AUC of 0.97±0.00.

Inception V3 performed significantly worse than the other
networks, including our CNN (p < 0.05). The CNN we

Fig. 4: Performance of our CNN in terms of accuracy on
the test set. A: CNN trained on the original dataset. B: CNN
trained on the dataset augmented offline and online. C: CNN
trained on the MNIST dataset and fine-tuned on the wide-field
dataset augmented offline and online.

Fig. 5: ROC curves for our CNN trained on the MNIST dataset
and fine-tuned on the wide-field dataset augmented offline and
online (experiment C). The thin lines refer to the ROC curves
of the 5 stratified folds, while the thick line to the macro
average ROC curve.
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Fig. 6: F1 score of the trained and tested existing CNNs and
the CNN we proposed, trained according to experiment C.

developed did not differ with statistical significance from VGG
16 and Inception-ResNet V2 (p > 0.05).

IV. DISCUSSION

We designed a light, 9-layered CNN and performed experi-
ments to individuate the most suitable training strategy for this
task. The first experiment (A) consisted of training and testing
the model on the base (i.e., not augmented) version of the
dataset. The mean accuracy across folds (51.54%±6.48%) was
above the chance level, and we hypothesized it could increase
along with the size of the dataset. Data augmentation is a
commonly used approach when datasets are not large enough
for CNN to extract generalizable features [40]. Experiment
B was performed to investigate the effects of offline and on-
the-fly data augmentation. The mean classification accuracy
across folds increased significantly (p < 0.05), showing that
the size of the dataset has a prominent role when training
this model. Experiment C was performed by applying transfer
learning and pre-training the CNN on the MNIST dataset
before fine-tuning it on our wide-field calcium images. It
resulted in a slight improvement with respect to experiment B.
The difference between B and C is not statistically significant
but, as shown in Fig.4, the standard deviation is much lower
in C, making it the most robust model among the ones we
designed. These results show the importance of the size of the
dataset when training such a CNN.

We compared the CNN we designed against 3 commonly
used algorithms: Inception V3, VGG 16, and Inception-ResNet
V2. The goal was to investigate the performance of models that
have become, in recent years, widely used in the biomedical
field [19]. On the one hand, these models represent a good
benchmark for evaluating the performance of a newly designed
CNN. On the other hand, if an existing model performed bet-
ter, it would be reasonable to deploy it for future experiments.
These CNNs were not trained directly on our dataset, but a
pre-trained version of them was used. this choice was made
to shorten training time and to avoid overfitting problems due
to an extremely small dataset and very complex models.

Inception V3 resulted in a weighted F1 score significantly
lower than the other CNNs. Its AUC was above 0.80, which is
considered satisfactory [44], but the confusion matrix shows
a tendency of the CNN to label images as “Cross” and a
complete misclassification of “S” pictures. In general, the
matrix results in poor diagonality. VGG 16, Inception-ResNet,
and our CNN yielded consistent results with each other. All of
these achieved a weighted F1 score above 0.70 and very good
AUCs above 0.90. In particular, our CNN resulted in an AUC
of 0.97. Their confusion matrices are more diagonal and do
not show preference toward any class. However, they share a
tendency of misclassification between “Circle” and “Square”
images, which is reasonable given the very similar cortical
responses elicited in the mouse by these two shapes (shown
in Fig.3).

These results suggest that, from the classification perfor-
mance point of view, there is no significant difference between
the lightweight model we developed and other computationally
more complex models that are commonly used in medical
image analysis. While for more complex tasks they can be the
gold standard, their use might not be recommended for this
application, since they are inherently complicated and require
expensive processing. We could dramatically cut on training
time, memory requirements, and computing resources by using
a lighter design [35]. A lightweight model is the best option
when the aim is to promote computational speed and artificial
intelligence sustainability [45]. Similar choices have also been
made in the literature [26] [27].

Limitations of this method include the difficulties in the
skull preparation of the animals, which has to be removed
or made transparent. In either case, the operation requires a
great deal of care because poor results lead to the opacity of
the recorded images [15] [18] [16]. Another challenge is the
need for large datasets to properly train the CNNs, and it is
strictly related to the availability of the animals and the quality
of the obtained images. As previously discussed, the latter can
be mitigated by data augmentation and transfer learning, but
the original dataset size remains the primary contributor for
successful classification of a CNN [40].

V. CONCLUSION

The goal of this study was to assess the possibility of
decoding the V1 response of a transgenic, anesthetized mouse
passively looking at simple visual stimuli, by combining wide-
field calcium imaging to record V1 activity and deep-learning
architectures for classification. The visual stimuli were divided
into 10 different shapes and displayed on the screen in random
order. For each of them, the V1 evoked activation was recorded
via wide-field calcium imaging. We obtained a set of 10 classes
of images, that were used to train and test the CNNs. Our
findings suggest that, with these techniques, it is possible
to univocally associate V1 responses to the visual stimulus
that evoked them, and that lightweight CNNs are suitable to
perform this classification task. Moreover, the application of
data augmentation and transfer learning highly improves the
performance of the models, suggesting a high dependence on
the dataset size.
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Fig. 7: Confusion matrix and receiver operating characteristic curves of the trained and tested CNNs resulting from the first
repetition of the repeated cross-validation.

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2023.3335613

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



8 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

Future work will be partially devoted to more extensive data
collection, increasing both the number of animals involved in
the recordings and the variety of visual stimuli.
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