Abstract

In the standard model of particle physics, the chiral anomaly can occur in relativistic plasmas and plays a role in the early Universe, protoneutron stars, heavy-ion collisions, and quantum materials. It gives rise to a magnetic instability if the number densities of left- and right-handed electrically charged fermions are unequal. Using direct numerical simulations, we show this can result just from spatial fluctuations of the chemical potential, causing a chiral dynamo instability, magnetically driven turbulence, and ultimately a large-scale magnetic field through the magnetic alpha effect.

Details