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Abstract

Electrochemical Impedance Spectroscopy (EIS) and Equivalent Circuit Models (ECMs)
are widely used to characterize the impedance and estimate parameters of electrochemical
systems such as batteries.

We use a generic ECM with ten parameters grouped to model different frequency regions
of the Li-ion cell’s impedance spectrum. We derive a noise covariance matrix from the mea-
surement model and use it to assign weights for the fitting technique. The paper presents two
formulations of the parameters identification problem. Using the properties of the ECM EIS
spectra, we propose a method to initialize ECM parameters for the Complex Non-linear Least
Squares (CNLS) technique.

The paper proposes a novel algorithm for designing the EIS experiments by applying the
theory on Cramér-Rao Lower Bound (CRLB) and Fisher Information Matrix (FIM) to the
identification problem. We show that contributions to the FIM elements strongly depend on
the frequencies at which EIS is performed. Hence, the algorithm aims to adjust frequencies
such that the most information about parameters is collected. This is done by minimizing
the highest variance of ECM parameters defined by CRLB. Results of a numerical experiment
show that the estimator is efficient, and frequency adjustment leads to more accurate ECM
parameters’ identification.
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Nomenclature

ECM Equivalent Circuit Model

EIS Electrochemical Impedance Spectroscopy

E0 Cell’s operating voltage

∆E Small perturbation of cell’s operating voltage

I0 Cell’s operating current

∆I Small perturbation of cell’s operating current

j Imaginary unit

T Cell’s temperature

SoC Cell’s State-of-Charge

θ,θ0, θ̂ Vector of ECM parameters, their initial values and estimates

M Number of ECM parameters

ω Vector of all angular frequencies for EIS

N Number of EIS measurements

Z̃(ω) Vector of cell’s measured impedances

Z(ω,θ) Vector of cell’s impedance model functions

ℜ(·),ℑ(·) Real and imaginary part of a complex number or function

R̃i, X̃i Real and imaginary parts of cell’s impedance i-th measurement

Ri, Xi Real and imaginary parts of cell’s impedance model at i-th frequency

arg(·) Argument of a complex number or function

ρ̃i, φ̃i Magnitude and phase of cell’s impedance i-th measurement

ρi, φi Magnitude and phase of cell’s impedance model at i-th frequency

ερ, εφ Maximum relative error in magnitude and absolute error in phase

σρ, σφ Standard deviations of magnitude and phase

N (µ, σ2) Normal distribution with mean µ and variance σ2

Q̃,Q Measurement and model covariance matrix

α̃i, β̃i, γ̃i Elements of the i-th 2× 2 block of measurement covariance matrix

αi, βi, γi Elements of the i-th 2× 2 block of model covariance matrix

A Estimated accuracy matrix

Z̄eq Cell’s equivalent circuit impedance

Z̄x Complex impedance of certain part or element of cell’s ECM

Rs Series resistance

CPE Constant Phase Element

Qx, ϕx Coefficient and exponent of CPEx
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Zarc Element of ECM formed by parallel connection of CPE and a resistor

QW Warburg impedance coefficient

L Locus of cell’s ECM element in Nyquist plot

δx Angle between the horizontal axis and CPEx locus

r Circle radius

kx, nx Slope and intercept of a line x

projL Normal projection of complex point to a line L

D Distance between cell’s impedance measurement and its corresponding normal projection
to fitted spectrum

RΣ Sum of cell’s ECM resistances

ωc Characteristic frequency of a Zarc element of cell’s ECM

τ Time constant of a Zarc element of the cell’s ECM

CRLB Cramér-Rao Lower Bound

p.d.f Probability density function

det(·) Determinant of a square matrix

L Log-likelihood function

E(·) Expected value

ε Vector of mismatches between the measurements and the model

CNLS Complex Non-linear Least Squares

F Fisher Information Matrix (FIM)

∆F Contribution to the FIM element

C Inverse of the FIM

Λ Vector of eigenvalues of the FIM

κ Frequencies perturbation coefficient

λ Eigenvalue of the FIM

fmin, fmax Minimum and maximum frequency of the EIS measurements

Ω,Ωc Set of all indices and fixed indices of frequency points

dki Sensitivity of the minimum eigenvalue of the FIM to the perturbation of i−th frequency
point at iteration k of the algorithm for frequencies adjustments

s Sign of the highest sensitivity (by the absolute values)

VM Volume of the M -dimensional ellipsoid volume
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1 Introduction

Estimating the Li-ion cell parameters is fundamental for designing the battery modules and packs,
operating the battery and assessing its performance and degradation while serving its first or
second life. The modeller may choose a specific parametric model depending on the application
and desired level of detail and accuracy, which is opposed to computational complexity. Therefore,
the selected model usually represents a trade-off between complexity, accuracy and computational
efficiency.

In the literature, battery parametric models are classified as electrochemical and equivalent cir-
cuit models (ECMs) [1]. Considering the constraints in computational power, efficiency, and data
storage, the ECM remains the predominant choice among the available battery models employed
in battery management systems (BMS). Together with Electrochemical Impedance Spectroscopy
(EIS), ECMs can be used to characterize the parameters of the cells in the laboratory under con-
trolled experimental conditions. In addition, the idea of implementing on-board EIS measurements
within the BMS becomes more attractive thanks to its potential to estimate the battery impedance
and its ECM parameters without dismantling the battery pack [2] and to access the cells externally.

The cell and its parameters can be characterized in the time and frequency domains. In the
time domain, the excitation signal is generic and can be given by the operation of the battery
itself. This can lead to parameter identifiability issues if the excitation signal has only a few
frequency components [3]. In [4], authors used ECM with equivalent series resistance and one
branch consisting of a resistor and constant-phase element (CPE) to model the cell and estimated
parameters from time-domain data. In the frequency domain, the cell is usually excited with a
small sinusoidal signal (e.g., current excitation) of a defined frequency while measuring the response
(e.g., cell voltage) and remaining in a pseudo-linear regime around a specific operating point. This
enables characterizing the cell impedance at different frequencies. An ECM is usually assigned to
EIS spectra where the choice of ECM topology and elements depends on the EIS spectra shape and
is decided by the modeller before the parameters identification. A critical review [5] presents typical
ECMs used in the literature for different types of cell chemistry. The authors also summarize how
different parts of EIS spectra are modelled with ECM components.

The most common technique in the literature to estimate the ECM parameters from EIS
data in the frequency domain is the Complex Non-linear Least Squares (CNLS) method, initially
used in [6] and applied to impedance data. The CNLS aims to minimize the weighted sum of
squared mismatches between the measured and chosen (theoretical) model’s impedance. The
theory about CNLS, applied in this paper, can be found in a dedicated chapter of [7]. Due to
the highly non-convex functions expressing the ECM’s equivalent impedance, and consequently
the non-convex objective function of CNLS, it is always necessary to initialize parameters before
solving the optimization problem using different numerical techniques, for instance, Levenberg-
Marquardt algorithm [7], [8].

The literature often uses the Fisher Information Matrix (FIM) and the Cramér-Rao lower
bound (CRLB) for the experiment design. CRLB defines the minimum variance for an unbiased
estimator. In [9], different optimal design strategies based on FIM are classified as A-, D- and
E-optimal design [10], which refers to maximizing the trace, determinant and minimum eigenvalue
of FIM, respectively. Considering the optimal design of experiments on batteries, in [11], authors
propose a method to maximize electrochemical single-particle model parameters identifiability by
minimizing the trace of the inverse of FIM. In [12], authors use FIM to estimate the identifiability
of electrochemical model parameters depending on measurements and improve the design of the
experiments. Authors of [13] proposed a method based on CRLB to optimize the current profiles
used to estimate ECM parameters from online measurements. In [14], they maximize the determi-
nant of FIM by adjusting the excitation current parameters and estimating the ECM parameters
containing series resistance, one R∥C branch and an open-circuit voltage source in the time domain.
Authors of [15] utilize FIM and CRLB to quantify the information carried by the measurements
and ensure reliable ECM parameter identification. In this paper, we use the FIM to quantify the
contributions that EIS measurements carry to the parameters of the ECM circuit that consists of
the serial connection of pure resistor, constant phase element (CPE), two R∥CPE1 branches (Zarc)
and Warburg impedance, modelling the high-, mid- and low-frequency parts of the EIS spectrum.

1Symbol ∥ denotes parallel electrical connection.
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Different weighting options are presented in [16] as an alternative to the ideal case when the
inverse of measured impedance variances is used. The alternative weighting strategies were usually
applied when the measurement noise model was unknown or difficult to obtain. Nowadays, how-
ever, manufacturers of EIS measurement devices provide a detailed noise model. Still, in recent
literature, authors use unity weights [17], [18]. In [19], authors assign weights equal to the inverse
of the squared impedance modules. Often, covariances between real and imaginary parts in CNLS
formulated in Cartesian coordinates are neglected [7]. This paper weights mismatches using an
inverse of an entirely derived covariance matrix corresponding to the measurement noise model.

Initialization of the parameters for CNLS is often done by defining the physically meaningful
ranges of parameters’ values according to experience and choosing the values within the corre-
sponding ranges. Authors of [20] initialize parameters for the Randles circuit by looking at some
properties of the EIS spectra to extract the parameters’ values quickly. However, for some param-
eters, the feasible range can be challenging to guess. In [19], a method is proposed for re-adjusting
the feasible range for battery model parameters to automatize the fitting process. Still, the initial
range for each parameter requires a manual adjustment. In [21], authors manually divide EIS
spectra into regions corresponding to different parts of ECM and separately solve least-squares to
obtain estimates. This approach might provide results for initialization rather than final estimates
since, here, it is assumed that there is no overlapping between different elements in the spectra.

To the best of our knowledge, EIS measurements are usually performed at logarithmically
distributed frequencies within the pre-defined frequency range and number of points per decade
(ppd). When estimating the parameters, the variances of estimates are rarely compared to the
theoretical minimum defined by CRLB. Therefore, this paper proposes the experimental design for
characterizing the Li-ion battery impedance and accurately estimating ECM parameters from EIS
measurements.

In view of the above state-of-the-art on ECM parameters identification from EIS data, the
authors of this study identified two fundamental research questions:

i. How to set frequencies that bring the most information in the parameters identification
process?

ii. How to best initialize the ECM parameters for solving the CNLS?

The key contributions of this work are summarized as follows:

(1) We first formulate the identification problem for Li-ion ECM parameters estimation from EIS
measurements in a rigorous mathematical way in both polar and Cartesian coordinates. We
derive a covariance matrix from the measurement model commonly provided by EIS instru-
ment manufacturers. Its inverse weights the mismatch vectors between the measurements
and model functions. We discuss the theory and analyze the connection between the obtained
EIS spectra and elements of wide-band Li-ion ECM with ten parameters. This results in the
development of a method for the automated initialization of the parameters that leverages
the properties of the EIS spectra and parameters importance in different frequency regions.

(2) We estimate the Li-ion cell ECM parameters using the weighted CNLS by solving the un-
constrained minimization problem starting from the obtained initial parameter values. This
provides the estimation algorithm to converge to the values with expected statistics, i.e.,
mean value and variance of the estimated parameters.

(3) We derive the expressions for computing the FIM and CRLB for estimated parameters of
Li-ion ECM from the EIS data in a general Gaussian form. This is used to quantify the best
possible accuracy and to show that our estimator is efficient.

(4) We improve the experimental design by proposing a novel algorithm to adjust the frequen-
cies at which EIS should be performed to increase the accuracy of the estimates using the
E-optimal design. We show that information about ECM parameters strongly depends on the
frequencies at which EIS measurements are performed. The algorithm decides the frequency
distribution over a predefined range by maximizing the FIM’s lowest eigenvalue and mini-
mizing the highest eigenvalue of its inverse matrix. EIS measurements at these frequencies
contain more information about ECM parameters than traditionally used logarithmic span.
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Therefore, the final frequency adjustment leads to the EIS measurements from which ECM
parameters can be estimated with lower variances and higher overall fitting accuracy.

This paper is organized as follows: in Section 2, we present the Li-ion battery ECM parameters
estimation problem from EIS measurements in a rigorous way and discuss two different formula-
tions and the problem of parameters’ initialization, recall the theory of general Gaussian CRLB
adapted to our problem and introduce a novel algorithm for improving the variance of the es-
timated parameters via CRLB. Section 3 presents the results of the numerical simulations and
experimental validation on a real Li-ion cell, where the parameters are estimated, and the overall
estimation accuracy improved thanks to the proposed algorithm. Section 4 summarizes the main
contributions and potentials of this work.

Keywords

Li-ion batteries, Electrochemical Impedance Spectroscopy, Equivalent Circuit Models, parameters
estimation, Cramér-Rao Lower Bound, Fisher Information Matrix.
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2 Method

2.1 General Aspects and Assumptions of Cells’ Parameters Identifica-
tion via EIS Measurements

EIS is a powerful, non-invasive technique used to characterize Lithium-ion cells and generic elec-
trochemical energy storage devices. EIS is performed by exciting the battery cell with small
sinusoidal signals (current in galvanostatic mode or voltage in potentiostatic mode) at different
frequencies and measuring the cell’s response (respectively, the voltage in galvanostatic mode or
current in potentiostatic mode). Although electrochemical systems are nonlinear, for sufficiently
small excitations (yet maintaining an acceptable signal-to-noise ratio), their response can be ap-
proximated as being pseudo-linear [22]. Small excitation amplitudes ensure that, while performing
the EIS, changes in the State-of-Charge (SoC) and cell temperature are negligible, i.e., ∆SoC ≈ 0
and ∆T ≈ 0. Supposing that the voltage and current signals are E(t) = E0 + ∆E sin(ωt) and
I(t) = I0+∆I sin(ωt−φ), respectively, while operating around the point (E0, I0) on the nonlinear
voltage-current curve, the complex impedance can be simply calculated as:

Z̄(ω) =
∆Ē(ω)

∆Ī(ω)
= R(ω) + jX(ω), (1)

where ∆Ē(ω) = ∆E(ω)∠0 and ∆Ī(ω) = ∆I(ω)∠(−φ) are corresponding phasors of sinusoidal
perturbation signals ∆E sin(ωt) and ∆I sin(ωt− φ).

The common method used to estimate the ECM parameters is the Complex Non-linear Least
Square (CNLS). This is done by simultaneously fitting the real and imaginary parts of complex
impedance measurements to fixed model functions, which are usually non-linear. Various terms in
the CNLS objective are weighted to quantify the heteroscedastic noise content of each observation.

The choice of elements comprising the ECM depends on the shape of the obtained complex
impedance curve on the Nyquist plot and it is fixed by the modeller before the fitting procedure.
Once the ECM topology is fixed, the equivalent impedance Ẑ(θ, ω) is expressed as a function of
the parameter vector, θ, and angular frequency ω.

In this paper, the assumptions are the following: (a) the small sine excitation signal is always
chosen such that the system’s response is pseudo-linear, (b) the measurement noise model is known,
(c) we use a given parametric circuit model of a Li-ion battery cell.

The ECM parameters θ are estimated by solving the following unconstrained optimization
problem either in Cartesian or polar coordinates, written in the standard quadratic form:

θ̂ = argmin
θ

(
Z̃(ω)−Z(θ,ω)

)⊤
Q̃

−1
(
Z̃(ω)−Z(θ,ω)

)
, (2)

where vector Z̃(ω) = [z̃1, . . . , z̃N ]
⊤
, with z̃i =

[
R̃i, X̃i

]⊤
, R̃i = ℜ(Z̃(ωi)) and X̃i = ℑ(Z̃(ωi))

in Cartesian or z̃i = [ρ̃i, φ̃i]
⊤
, ρ̃i = |Z̃(ωi)| and φ̃i = arg(Z̃(ωi)) in polar coordinates, contains

separated real and imaginary parts in Cartesian, or modules and angles in polar coordinates, of
impedances measured at N frequencies contained in the vector ω = [ω1, . . . , ωN ]

⊤
. On the other

hand, Z(θ,ω) contains the impedance model (expressions for the real and imaginary part, or
module and angle, of ECM impedance) as a function of ECM parameters θ and evaluated at
corresponding frequencies. The mismatches between the measurements and model are weighted
using the inverse of the measurement covariance matrix, Q̃.

Regardless of the formulation, the measurement covariance matrix Q̃ has a block-diagonal form,
Q̃ = diag(Q̃1, . . . , Q̃N ) since the measurements are independent. Therefore, the problem (2) can
be also written as:

θ̂ = argmin
θ

N∑

i=1

(z̃i − zi(θ))
⊤
Q̃

−1

i (z̃i − zi(θ)) . (3)

The objective function given by Eq. (3) is generally highly non-convex due to the non-convexity
of model functions zi(θ). Hence, it can have multiple local minima, which motivates the need for
good initialization of parameters that will be elaborated on later on in the paper.
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2.2 Measurement Model

In system identification, the choice of the noise model is essential for selecting the estimation
method to be used [23]. In what follows, we provide the measurement model structure that is used
in the proposed ECM parameters estimation technique.

The EIS instrument’s precision is often characterized by maximum relative error in magnitude,
ερ, and maximum absolute error in phase, εφ. Manufacturers often provide accuracy contour
plots where one can read the values of ερ and εφ as a function of the impedance magnitude and
frequency. The accuracy contours divide the frequency-impedance plane into several areas. Each
accuracy contour plot area is defined as a set of (f, |Z̄|) points with f > 0 and |Z̄| > 0, at which the
EIS instrument measures the impedance magnitude |Z̄| with maximum magnitude relative error
ερ and absolute error εφ, at frequency f . Typical contour plots and instructions for interpreting
them can be found, for instance, in [24] and [25] with respect to commercial EIS instruments.

To express the standard deviations of the measured impedance module and phase, we use the
three-sigma (3σ) rule, assuming that the measurement noise is Gaussian, unbiased, and lies within
the specified maximum bound with a probability of 99.73%. Therefore, to obtain the standard
deviations in magnitude and phase, we divide the maximum error provided by the manufacturer
of the EIS instrument by 3. This yields:

σρ(ρ) =
1

3
ρ · ερ and σφ =

1

3
· εφ = const. (4)

Hence, for a true value of complex impedance Z̄ = ρejφ, corresponding measured impedance is
Z̃ = ρ̃ejφ̃ = (ρ + ∆ρ)ej(φ+∆φ) where the magnitude and phase errors are distributed as ∆ρ ∼
N (0,

ρερ
3 ) and ∆φ ∼ N (0,

εφ
3 ), respectively.

2.3 ECM Parameters Estimation via the CNLS in Polar Coordinates

In polar coordinates, (3) can be written as:

θ̂ = argmin
θ

N∑

i=1

([
ρ̃i
φ̃i

]
−
[
ρi(θ)
φi(θ)

])⊤ [
σ2
ρ(ρi) 0
0 σ2

φ

]−1([
ρ̃i
φ̃i

]
−
[
ρi(θ)
φi(θ)

])
. (5)

In this case, the covariance matrix has a pure diagonal form:

Q̃ = diag(σ2
ρ1
, σ2

φ, . . . , σ
2
ρN

, σ2
φ) (6)

since it is assumed that stochastic errors in magnitude and phase are not correlated and, in addition,
stochastic errors at different frequencies are not correlated with each other. The relationship
between the measured impedance module and angle and real and imaginary parts is:

|Z̄(ωi)| = ρi =
√

R2
i +X2

i (7)

arg Z̄(ωi) = φi = arctan

(
Xi

Ri

)
, since Ri > 0. (8)

Same relations hold for model functions in polar coordinates ρi(θ) and φi(θ) expressed in terms
of model functions in Cartesian coordinates, Ri(θ) and Xi(θ).

2.4 ECM Parameters Estimation via the CNLS in Cartesian Coordi-
nates

In Cartesian coordinates, the minimization problem (3) becomes:

θ̂ = argmin
θ

N∑

i=1

([
R̃i

X̃i

]
−
[
Ri(θ)
Xi(θ)

])⊤

Q̃
−1

i

([
R̃i

X̃i

]
−
[
Ri(θ)
Xi(θ)

])
. (9)
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Since the measurement errors are given in polar coordinates, while the measurements and model
functions in Cartesian, we perform a transformation of coordinates (i.e., projection from polar to
Cartesian coordinates), as in [26] and [27], to obtain Q̃i. Namely:

Q̃i =

[
σ2(R̃i) σ(R̃i, X̃i)

σ(R̃i, X̃i) σ2(X̃i)

]
=

[
α̃i β̃i

β̃i γ̃i

]
, (10)

whose elements are calculated using the measured impedance quantities (magnitude ρ̃ and phase
φ̃):

α̃i = ρ̃2i e
−2σ2

φ
[
cos2 φ̃i(cosh(2σ

2
φ)− cosh(σ2

φ)) + sin2 φ̃i(sinh(2σ
2
φ)− sinh(σ2

φ))
]

(11)

+ σ2
ρi
e−2σ2

φ
[
cos2 φ̃i(2 cosh(2σ

2
φ)− cosh(σ2

φ)) + sin2 φ̃i(2 sinh(2σ
2
φ)− sinh(σ2

φ))
]

β̃i = ρ̃2i e
−σ2

φ
[
sin2 φ̃i(cosh(2σ

2
φ)− cosh(σ2

φ)) + cos2 φ̃i(sinh(2σ
2
φ)− sinh(σ2

φ))
]

(12)

+ σ2
ρi
e−σ2

φ
[
sin2 φ̃i(2 cosh(2σ

2
φ)− cosh(σ2

φ)) + cos2 φ̃i(2 sinh(2σ
2
φ)− sinh(σ2

φ))
]

γ̃i = sin φ̃i cos φ̃ie
−4σ2

φ

[
σ2
ρi

+ (σ2
ρi

+ ρ̃2i )(1− eσ
2
φ)
]
. (13)

2.5 Accuracy Assessment of the Estimates

Variances for the estimated parameters can be approximately calculated as diagonal elements of the
matrix A−1, calculated at values of estimated parameters, θ̂ where, the element (k, l) is expressed
as:

Ak,l ≈
{[

∂Z(θ,ω)

∂θk

]⊤
Q̃

−1
[
∂Z(θ,ω)

∂θl

]
−
[
Z̃(ω)−Z(θ,ω)

]⊤
Q̃

−1
[
∂2Z(θ,ω)

∂θk∂θl

]} ∣∣∣∣∣
θ=θ̂

(14)

which corresponds to one-half of the corresponding (k, l)-th Hessian matrix element [7].

2.6 ECM Parameters Initial Guess

Since the objective function of the minimization problem given by Eq. (3) is highly non-convex,
the solution is very sensitive to the initial guess of the ECM parameters. Further, if the initial
point is far from the true value, the solver is more likely to find a local minimum. Therefore, there
is a need to improve the initial guess of parameters θ and make the optimization solver more likely
to find the estimates with the expectation equal to the actual true values. One possible approach
can be to analyze the geometrical shapes of certain parts of EIS spectra.

As a matter of fact, when connected, the spectra of each ECM element interfere and, there-
fore, their corresponding spectra overlap. Still, approximate values for ECM parameters can be
extracted by fitting parts of the spectra to the expected geometrical shapes of each ECM branch.

HF region MF region LF region

Rs

Z̄HF (!)

QHF ,�HF

Z̄CPE,1(!)

Q1,�1

R1

Z̄CPE,2(!)

Q2,�2

R2

Z̄W (!)

QW

Figure 2: Full Randles ECM modelling the Li-ion cell impedance. The param-
eters are indicated below each element.

2

Figure 1: Impedance spectrum of the Li-ion cell ECM.
The parameters are indicated below each element.

Param. Values θ Unit

Rs 3.80E-02 Ω

QHF 1.67E+04 S · s−φHF

ϕHF -8.50E-01 -

R1 4.50E-01 Ω

Q1 2.00E-02 S · s−φ1

ϕ1 9.00E-01 -

R2 6.50E-01 Ω

Q2 4.00E-01 S · s−φ2

ϕ2 9.00E-01 -

QW 3.69E+00 S · s−1/2

Table 1: ECM parameters’ true
values (inspired from [18]).
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Fig. 1 shows the noiseless impedance spectrum and ECM used to model the Li-ion battery
cell in this paper and highlights different frequency regions. Tab. 1 reports the ECM parameters’
true values. As known, the equivalent cell’s impedance can be represented as a superposition
of equivalent series resistance, CPE modelling the HF behaviour, a number (e.g., two) of Zarc
elements (i.e., CPE in parallel to a resistor) and the Warburg impedance:

Z̄eq(θ;ω) = Rs + Z̄HF +R1 ∥ Z̄CPE,1 +R2 ∥ Z̄CPE,2 + Z̄W , (15)

where Z̄1 ∥ Z̄2 = Z̄1Z̄2

Z̄1+Z̄2
is the equivalent impedance of parallel connection of Z̄1 and Z̄2. The

expression for HF region CPE is

Z̄HF (QHF , ϕHF ;ω) =
1

(jω)ϕHFQHF
, ϕHF ∈ [−1, 0) , (16)

while for two CPEs within the MF region, we have:

Z̄CPE,i(Qi, ϕi;ω) =
1

(jω)ϕiQi
, ϕi ∈ (0, 1] , i ∈ {1, 2}. (17)

The Warburg impedance is a special case of CPE with the exponent ϕ equal to 1
2 :

Z̄W (QW ;ω) =
1√

jω ·QW
. (18)

Separating the real ℜ(Z̄eq(θ;ω)) = Req(θ, ω) and imaginary ℑ(Z̄eq(θ;ω)) = Xeq(θ, ω) parts of the
equivalent impedance yields:

Req(θ, ω) = Rs + 1
ωϕHF QHF

cos δHF +

2∑

i=1

Ri+R2
iQiω

ϕi cos δi

1+2RiQiωϕi cos δi+(RiQiωϕi)
2 + 1

QW

√
2ω

(19)

Xeq(θ, ω) = − 1
ωϕHF QHF

sin δHF −
2∑

i=1

R2
iQiω

ϕi cos δi

1+2RiQiωϕi cos δi+(RiQiωϕi)
2 − 1

QW

√
2ω

(20)

where δHF = ϕHFπ
2 and δi =

ϕiπ
2 , i ∈ {1, 2}.

2.6.1 On the Geometry of ECM Elements Spectra

Individually, all the ECM electrical elements, with fixed parameters, produce spectra with a known
locus L governed by the expressions for its impedance:

L = {(R(ω),−X(ω)) : R(ω) = ℜ(Z̄(ω)) ∧X(ω) = ℑ(Z̄(ω)) ∧ ω ∈ (0,∞)}. (21)

Note that we always consider the Nyquist plot with axes indicating R and −X as a usual
convention for plotting the EIS measurements.

The locus of the resistance Rs is simply a singleton (Rs, 0) at the Nyquist plot. Adding a pure
resistance in series to the ECM translates the entire spectrum in the direction of the horizontal
axis by the value of the resistance.

The locus of CPE with parameters Q and ϕ represents a line starting from the origin and an
angular coefficient tan πϕ

2 .
By adding the resistance R in parallel to the CPE (i.e., the Zarc element), the locus represents

a part of a depressed circle crossing the real axis at (0, 0) and (R, 0), centred at
(

R
2 ,−R

2 cot πϕ
2

)
,

with a radius r = R
2 sin πϕ

2

and ℑ{Z̄arc} < 0.

The CPE can be seen as a special case of a Zarc element for which R→∞ and, therefore, the
locus of the CPE impedance is tangent to Zarc if their exponents are equal.

Different elements dominate in different frequency regions as indicated in Fig. 1. However,
the spectra produced by individual elements interfere. This results in the equivalent superposed
spectrum for which the locus of different frequency regions deviates from the ideal geometrical
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shapes (as was the case for individual ECM elements). Still, the approximate values for ECM
parameters can be extracted and used to define each ECM parameter’s initial guess and reasonable
interval of feasibility. In such a way, we reduce the solution space of the estimation problem.

Theoretically, as ω → 0, the Warburg impedance modelling the LF region dominates the EIS
spectrum while the influence of HF and MF parts is negligible. Since:

kLF = lim
ω→0

ℑ(Z̄eq(θ;ω))

ℜ(Z̄eq(θ;ω))
= −1 (22)

and
nLF = lim

ω→0

[
ℑ(Z̄eq(θ;ω))− kLFℜ(Z̄eq(θ;ω))

]
= Rs +R1 +R2 = RΣ, (23)

on the Nyquist plot (R,−X), the spectrum asymptotically approaches the line −X = R+RΣ.
Similarly, as ω → ∞, the HF spectrum asymptotically approach the line X = kHFR + nHF

where:

kHF = lim
ω→∞

ℑ(Z̄eq(θ;ω))

ℜ(Z̄eq(θ;ω))
= lim

ω→∞

ℑ(Z̄eq(θ;ω))

ℜ(Z̄eq(θ;ω))−Rs
= − tan

(
πϕHF

2

)
(24)

and

nHF = lim
ω→∞

[
ℑ(Z̄eq(θ;ω))− kHFℜ(Z̄eq(θ;ω))

]
= Rs tan

(
πϕHF

2

)
. (25)
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Figure 2: Equivalent MF region spectrum cleaned from the interference produced by Z̄HF and
Z̄LF for different ratios of the time constants of Zarc1 and Zarc2 (cell’s parameters R1, Q1, ϕ1, R2

and ϕ2 true values are those reported in Tab. 1, while parameter Q2 changes its values to achieve
a desired τ2

τ1
ratio).

We assume that two Zarc elements have different time constants τ1 and τ2, τ1 < τ2, defined by

τ1 = (R1Q1)
1
ϕ1 and τ2 = (R2Q2)

1
ϕ2 . (26)

An example of the spectra of MF region produced only by two Zarc elements is shown in Fig. 2
for different time constants of Zarcs by varying only the parameter Q2. For parameters’ values
reported in Tab. 1, τ2 = 41.98τ1. The superposed MF spectrum of the two Zarcs is positioned
above parts of two depressed semi-circles located above the horizontal axis, centred at O1 and O2
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with radii R1

2 sin
πϕ1
2

and R2

2 sin
πϕ2
2

, respectively. Both represent the locus of the MF region ECM with

two Zarcs connected in series: in the first one, CPE2, is short-circuited, while in the second one,
CPE1 is replaced by an open-circuit. The interference of two Zarc elements spectra depends on
the ratio between time constants, τ2

τ1
. The greater the ratio, the closer is the superposed spectra to

these depressed semi-circles. For these two Zarcs, the characteristic angular frequencies are given
by

ωc1 =
1

(R1Q1)
1
ϕ1

and ωc2 =
1

(R2Q2)
1
ϕ2

. (27)

The MF impedance (excluding the HF and LF impedances) is

Z̄MF (θ;ω) = R1 ∥ Z̄CPE,1 +R2 ∥ Z̄CPE,2 =
R1

1 + (jω)ϕ1R1Q1
+

R2

1 + (jω)ϕ2R2Q2
(28)

and at ωc1 and ωc2 it has the following values:

Z̄MF (θMF ;ωc1) =
R1

1 + jϕ1
+

R2

1 + jϕ2

(
τ2
τ1

)ϕ2
(29)

Z̄MF (θMF ;ωc2) =
R1

1 + jϕ1

(
τ1
τ2

)ϕ1
+

R2

1 + jϕ2
. (30)

If τ1 << τ2 (i.e., the processes inside the cell modelled with Zarc elements can be well distinguished)
we have:

Z̄MF (θMF ;ωc1) ≈
R1

1 + jϕ1
+R2(0 + j0) =

R1

2
− j

R1

2
tan

πϕ1

4
, (31)

Z̄MF (θMF ;ωc2) ≈ R1(1 + j0) +
R2

1 + jϕ2
= R1 +

R2

2
− j

R2

2
tan

πϕ2

4
(32)

which are exactly the peaks of the two depressed semi-circles defined by Zarc1 and Zarc2 elements
while having the CPE2 and CPE1 replaced by a short-circuit and open-circuit, respectively. In
Fig. 2, these two peaks are denoted as A and B.

2.6.2 Parameters Initialization Procedure

In what follows, we propose a detailed procedure to initialize the ECM parameters for the CNLS
using the discussed properties of the spectra. First, the LF and HF parameters are estimated from
two ends of the EIS spectrum.

Fitting the LF and HF spectra to a line. We first choose the number of points NLF

and NHF used for fitting such that the residuals between the selected points of the LF and HF
spectra and the fitted line are normally distributed while respecting the maximum relative error
in magnitude and maximum absolute error in phase as defined in Section 2.2. This ensures that
the points belong to the part of the spectrum where the Warburg impedance and CPE used to
model the LF and HF spectrum dominate, respectively. The procedure is described in the following
pseudo-code.

9



Algorithm 1 Determining NxF , kxF and nxF , x ∈ {L,H}
1: Initialize NxF ← 1, ερ = ερ(f, |Z|), εφ = const;
2: Sort the EIS data on f in decreasing (for HF) or increasing order (for LF);
3: do
4: NxF ← NxF + 1;
5: Obtain kxF and nxF by solving:

argmin
kxF ,nxF

NxF∑

i=1

D2
i

s.t. Di =
∣∣∣Z̃i − ZL

i

∣∣∣
L(Ri) = kxFRi + nxF

kxF ∈
{
{−1}, x = L

[0,+∞) , x = H

ZL
i = projLZ̃i

(33)

6: ε̃ρi
=
∣∣∣ |Z

L
i |−|Z̃i|
|ZL

i |

∣∣∣, ε̃φi
=
∣∣∣argZL

i − arg Z̃i

∣∣∣
7: while ε̃ρi

⩽ ερ(fi, ρ̃i) and ε̃φi
⩽ εφ,∀i ∈ {1, . . . , NxF }

The algorithm initializes the starting number of data points NxF and the measurement model
through ερ and εφ. At each iteration, it increases the number of data points used for fitting and
finds the slope and the interception by fitting NxF consecutive end-points of the spectra (either
from the LF or HF) to a line. Namely, it solves a simple least-squares problem (33) by minimizing
the sum of squared distances Di between the measurements Z̃i and their corresponding normal
projections (in Algorithm 1, projL denotes the projection operator) to a line L, denoted as ZL

i

for i = 1, . . . , N . It uses the property that the HF and LF spectra asymptotically approach the
line with slope kHF ∈ [0,+∞) and kLF = −1, respectively. The algorithm then computes all
the relative errors in magnitude and absolute errors in phase between the measured points and
corresponding fitted points on the line. It terminates if any of the errors exceed the defined error
limits. Initialization of LF parameter QW . Starting from the lowest frequency, NLF points
are used to fit the spectra to a line X(R) = kLFR+ nLF , specifically −X = R+RΣ for which:

R̃i + jX̃i ≈ RΣ + Z̄W = RΣ +
1

QW
√
ωi

e−j π
4 , i = 1, . . . , NLF . (34)

Therefore, QW can be initialized with the mean value using the expressions for QW from both real
and imaginary parts of these selected points:

Q0
W =

1

2NLF

(
NLF∑

i=1

1√
2ωi(R̃i −RΣ)

−
NLF∑

i=1

1√
2ωiX̃i

)
, (35)

where RΣ is the interception of the fitted line with the horizontal axis. Therefore, fitting the LF
part of the spectra has provided us with the initial guess for QW and the sum of all the resistances
of the ECM, RΣ = Rs +R1 +R2.

Initialization of HF parameters Rs, QHF and ϕHF . Choosing the NHF points with the
highest frequencies, for which again the residuals are normally distributed, we fit the HF spectra
to a line −X = kHFR+ nHF where the chosen points are expressed as:

R̃i + jX̃i ≈ Rs + Z̄HF = Rs +
1

ωϕHF

i QHF

e−j
πϕHF

2 , i = 1, . . . , NHF . (36)

On obtaining the slope kHF , the exponent ϕHF is initialized with

ϕ0
HF ≈

arctan kHF

π/2
. (37)
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Now, the initial guess for Rs can be obtained by simply using (25) as

R0
s ≈

nHF

tan

(
πϕ0

HF

2

) , (38)

and QHF can be initialized by averaging the expressions for QHF from the real and imaginary part
of (36) evaluated at R̃i and X̃i over the chosen NHF points:

Q0
HF =

1

2NHF




NHF∑

i=1

1(
R̃i −R0

s

)
ω
ϕ0
HF

i

cos
πϕ0

HF

2
−

NHF∑

i=1

1

X̃iω
ϕ0
HF

i

sin
πϕ0

HF

2


 . (39)

Initialization of MF parameters R1, Q1, ϕ1 and R2, Q2, ϕ2. To initialize the MF
parameters, we subtract the LF and HF spectra from the original one using their initial values:

Z̄MF (θ
0
MF ;ω) ≈ Z̄eq(θ;ω)− Z̄LF (θ

0
LF ;ω)− Z̄HF (θ

0
HF ;ω). (40)

We can then find two peak points of the MF spectra corresponding to two Zarcs at their charac-
teristic frequencies ωc1 and ωc2, we use Eq. (31) and (32) to initialize the parameters:

R0
1 = 2 · ℜ(Z̄MF (θ;ωc1)) and ϕ0

1 =
4

π
arctan

(
−2ℑ(Z̄MF (θ;ωc1))

R0
1

)
(41)

and similarly

R0
2 = 2 · (ℜ(Z̄MF (θ;ωc2))−R0

1) and ϕ0
2 =

4

π
arctan

(
−2ℑ(Z̄MF (θ;ωc2))

R0
2

)
. (42)

The remaining parameters Q1 and Q2 can be initialized by expressing them from (27):

Q0
1 =

1

(ωc1)ϕ
0
1R0

1

and Q0
2 =

1

(ωc2)ϕ
0
2R0

2

. (43)
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2.7 General Gaussian CRLB for Estimated ECM Parameters

This section assesses the CRLB to find and compute the best possible CNLS estimator’s variance.
Since, in polar and Cartesian coordinates, the covariance matrix can be expressed as a function of
parameters, Q(θ) = diag(Q1(θ), . . . ,QN (θ)), a general Gaussian CRLB can be derived.

First, we assume that the probability density function of measurement mismatches is normal.
I.e., the probability density function is given by the following expression:

p.d.f(Z̃|θ,ω) =
1√

(2π)N detQ(θ)
exp

[
−1

2
ε⊤(θ,ω)Q−1(θ) ε(θ,ω)

]
, (44)

where ε(θ,ω) = Z̃(ω) − Z(θ,ω) is the vector containing mismatches between the measurements
and model function at frequencies ω. This enables us to find the Log-likelihood function L,
expressed as follows:

L(θ,ω|Z̃) = ln p.d.f(Z̃|θ) (45)

L(θ,ω|Z̃) = −N

2
ln 2π − 1

2
ln detQ(θ)− 1

2
ε⊤(θ,ω)Q−1(θ) ε(θ,ω) (46)

and to compute its first-order partial derivatives with respect to every parameter θj , j = 1, . . . ,M :

∂L(θ,ω|Z̃)
∂θj

= −1

2

∂

∂θj
ln detQ(θ)− 1

2

∂

∂θj

(
ε⊤(θ,ω)Q−1(θ)

)

= −1

2
tr

(
Q−1(θ)

∂Q(θ)

∂θk

)
+

∂Z⊤(θ,ω)

∂θk
Q−1(θ)ε(θ,ω)− 1

2
ε⊤(θ,ω)

∂Q(θ)

∂θk
ε(θ,ω).

The (k, l)-th element of the FIM, F ∈ RM×M , as a function of parameter vector θ and angular
frequency ω, is equal to the expected value of the product between partial derivatives of the
Log-likelihood function with respect to k-th and l-th parameter:

Fk,l(θ,ω) = E

[
∂L(θ,ω|Z̃)

∂θk

∂L(θ,ω|Z̃)
∂θl

]
. (47)

The expression for (k, l)-th element of the FIM can be written in compact form as follows [28]:

[F(θ,ω)]k,l =
∂Z⊤(θ,ω)

∂θk
Q−1(θ)

∂Z(θ,ω)

∂θl
+

1

2
tr

(
Q−1(θ) · ∂Q(θ)

∂θk
·Q−1(θ) · ∂Q(θ)

∂θl

)
. (48)

Measurements at different frequencies, in general, contribute differently to the elements of the
FIM. Thanks to the fact that in Cartesian and polar coordinates, the covariance matrix is purely
and block diagonal, respectively, it is possible to define the contribution to the FIM element (k, l)
as a function of parameters θ and frequency ωi:

[∆F i(θ)]k,l =
∂z⊤i (θ)

∂θk
Q−1

i (θ)
∂zi(θ)

∂θl
+

1

2
tr

(
Q−1

i (θ) · ∂Qi(θ)

∂θk
·Q−1

i (θ) · ∂Qi(θ)

∂θl

)
. (49)

To calculate (k, l) element of F , we can use the following property.
Property 1. The element (k, l) of the FIM can be expressed as a sum of contributions at every

frequency ωi, i = 1, . . . , N :

[F(θ,ω)]k,l =

N∑

i=1

[∆F i(θ)]k,l . (50)

When expressed in Cartesian coordinates, the vector zi(θ) from (49) is zi(θ) = [Ri(θ), Xi(θ)]
⊤

and Qi(θ) is a covariance matrix block:

Qi(θ) =

[
σ2(Ri(θ)) σ(Ri(θ), Xi(θ))

σ(Ri(θ), Xi(θ)) σ2(Xi(θ))

]
=

[
αi(θ) βi(θ)
βi(θ) γi(θ)

]
, (51)
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whose elements are expressed in terms of true values of the impedance (magnitude ρi and phase
φi):

αi(θ) = ρ2i e
−σ2

φ
[
cos2 φi(cosh(σ

2
φ)− 1) + sin2 φi sinh(σ

2
φ)
]

(52)

+ σ2
ρi
e−σ2

φ
[
cos2 φi cosh(σ

2
φ) + sin2 φi sinh(σ

2
φ)
]

βi(θ) = ρ2i e
−σ2

φ
[
sin2 φi(cosh(σ

2
φ)− 1) + cos2 φi sinh(σ

2
φ)
]

(53)

+ σ2
ρi
e−σ2

φ
[
sin2 φi cosh(σ

2
φ) + cos2 φi sinh(σ

2
φ)
]

γi(θ) = sinφi cosφie
−2σ2

φ

[
σ2
ρi

+ ρ2i (1− eσ
2
φ)
]
. (54)

Note that ρi = ρi(θ), φi = φi(θ), σρi = σρi(θ) and σφ = const.

On the other hand, in polar coordinates zi(θ) = [ρi(θ), φi(θ)]
⊤
and covariance matrix block is

of a diagonal form:

Qi(θ) =

[
σ2
ρi
(θ) 0
0 σ2

φ

]
. (55)

Using either the polar or Cartesian coordinates, the calculation of the CRLB requires the
evaluation of the FIM elements at the true parameter values, θtrue, which are unknown in practice:

[F ]k,l = [F(θ,ω)]k,l

∣∣∣
θ = θtrue

. (56)

The diagonal elements of the FIM inverse, C ≜ F−1, evaluated at parameters’ true values and
frequency values, provide CRLB for each parameter and define the least possible variance of the
estimated parameter. Namely:

σ2
θi ≜ Var(θi) ⩾ Ci,i, ∀i = 1, . . . ,M. (57)
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2.8 Least-variance Circuit Parameter Identification via CRLB

When performing EIS measurements, it is common to use logarithmically spaced frequency points,
sayN , from a minimum fmin to a maximum fmax desired frequency to measure the cell’s impedance.

As known from classical information theory, we expect that different circuit parameters are
dominant at different frequency ranges, i.e. different parameters achieve a maximum contribution
to the FIM at different frequencies (see Fig. 4 of Section 3.1.3). Therefore, for a fixed single
frequency point, each parameter contributes differently to the FIM. Modifying such frequency
affects the variances of all estimated parameters and justifies the search for frequencies that improve
the overall estimation accuracy.

For the multi-parameter estimation problem where all the parameters are mutually coupled,
there exist different techniques one can use to improve the FIM and, consequently, minimize the
variances of the estimates. Some of these include maximizing: the trace of FIM, the determinant
of FIM, and the smallest eigenvalue of FIM, known as A-, D- and E-optimal experiment design,
respectively.

In this section, we propose an algorithm to find a set of frequencies that provide measurements
carrying the most information to estimate ECM parameters by maximizing the smallest eigenvalue
of the FIM.

2.9 E-optimal design

The square FIM, F , is a real, symmetric, positive-semidefinite matrix. Therefore, it has M real
and non-negative eigenvalues. Let’s define the M -dimensional vector of the FIM’s eigenvalues as

Λ = [λ1, . . . , λM ]
⊤ ∈ RM (58)

with eigenvalues in non-descending order 0 ⩽ λ1 ⩽ · · · ⩽ λM .
The eigenvalues of the FIM’s inverse C are equal to the reciprocal values of the eigenvalues of

the FIM F . Therefore, the eigenvalues of C are

1

λ1
, . . . ,

1

λM
with

1

λ1
⩾ · · · ⩾ 1

λM
⩾ 0. (59)

As known, square roots of eigenvalues of FIM’s inverse, C = F−1, represent the length of
semi-axes of estimated parameters’ confidence ellipsoid [29]. Since the smallest eigenvalue of F
defines the highest eigenvalue of C, to minimize the length

√
1/λ1 of the largest semi-axis of the

confidence ellipsoid, it is sufficient to maximize the smallest eigenvalue of the F matrix, λ1. We
will show that it consequently results in a decrease of the volume of M−dimensional confidence
ellipsoid given by:

VM =
2

M

π
M
2

Γ
(
M
2

)
M∏

i=1

√
1/λi, (60)

where Γ is the gamma function [30]. It is worth mentioning that we neglect the exact corre-
spondence between eigenvalues and parameters but focus on minimizing the largest axis of the
confidence ellipsoid to improve the overall accuracy.

2.10 Algorithm: Frequencies Adjustments via E-optimal Design

The proposed algorithm’s objective is to adjust the initial set of frequencies so that the new
frequency set provides better estimates than the traditional log-spaced frequency span. The initial
and final set of frequencies will have the same predetermined number of points, N and the frequency
range [fmin, fmax]. With Ω = {1, 2, . . . , N}, we denote the set of indices of frequency measurement
points.
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Algorithm 2 Frequencies Adjustments via E-optimal Design

1: Initialize k = 0, Ω = {1, . . . , N}, Ωc = Ø, fmin, fmax, κ
2: do
3: if k = 0 then
4: ωk = logspace(2πfmin, 2πfmax, N)

5: Obtain Z̃(ωk) =
[
Z̃(ωk

1 ), . . . , Z̃(ωk
N )
]⊤

6: θinit ← θ0 (from the procedure described in Sec. 2.6)
7: else
8: ωk ← ωk−1

9: Obtain only Z̃(ωk
m)

10: Update: Z̃(ωk)←
[
Z̃(ωk−1

1 ), . . . , Z̃(ωk
m), . . . , Z̃(ωk−1

N )
]⊤

11: θinit ← θ̂
k−1

12: end if
13: Estimate the ECM parameters, θ̂

k
by solving (3) with initial guess θinit

14: Compute FIM: Fk = FIM(ωk, θ̂) using (48)

15: Compute eigenvalues of FIM: Λk = eig(Fk) =
[
λk
1 , . . . , λ

k
M

]⊤
16: for i ∈ Ω \ Ωc do

17: ∆ωk
i =

ωk
i

κ
18: if i = N then
19: ωk

i ← ωk
i −∆ωk

i

20: else
21: ωk

i ← ωk
i +∆ωk

i

22: end if
23: Fk

∆i = FIM(ωk, θ̂)
24: Λk

∆i = eig(Fk
∆i)

25: dki =
minΛk −minΛk

∆i

∆ωk
i

26: end for
27: dkm = argmaxdk

i
{|dki | : i ∈ Ω \ Ωc}

28: s = sgn(dkm)
29: n← 1
30: do
31: ωk

m ← ωk
m + s · n∆ωk

m

32: if ωk
m ⩾ 2πfmax or ωk

m ⩽ 2πfmin then
33: ωk

m ← 2π [(s− 1)fmin + (1− s)fmax]
34: break
35: end if
36: Fk

n∆m = FIM(ωk, θ̂)
37: Λk

n∆m = eig(Fk
n∆m)

38: n← n+ 1
39: while minΛk

n∆m > minΛk
(n−1)∆m

40: ωk
m ← ωk

m + s · (n− 1)∆ωk
m

41: Ωc ← Ωc ∪ {m}
42: k ← k + 1
43: while Ωc ̸= Ω

Globally, the algorithm’s iterations consist of the following main parts: perform the EIS mea-
surements at defined frequencies (lines 3-12), estimating the ECM parameters, FIM and its eigen-
values (lines 13-15), decide which frequency to adjust (lines 16-28) and optimally adjust it using a
gradient approach (lines 29-41). The algorithm terminates when adjustments of all the frequencies
are identified and implemented.

The first stage (line 1) initializes the iteration counter k, the set of frequency measurements’
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indices Ω and the set of already adjusted and fixed frequencies, Ωc. As input, the user defines the
minimum and maximum frequencies for the EIS measurements, fmin and fmax, and the parameter
κ, used to numerically compute small perturbations of the frequencies through the iterations.

In the preliminary iteration (for k = 0) the modeller can use N frequency points spread log-
arithmically between defined frequency bounds and obtain N impedance measurements. ECM
parameters can be initialized by applying the described procedure in Section 2.6, θinit = θ0. In
all the other iterations, the impedance is measured only at the frequency adjusted in the previous
iteration. ECM parameters take the initial values equal to the estimated ones from the previous

iteration, θinit = θ̂
k−1

. On estimating the ECM parameters, we compute the FIM calculated using
the estimated parameters’ values and find its eigenvalues using the procedures FIM and eig.

The lines 16-28 of the pseudo-code decide which frequency to adjust (from the set of frequencies
that have not been adjusted). It finds the index of the frequency for which adjustment has the
most impact on the minimum eigenvalue of the FIM. This step is done numerically: the algorithm
perturbs each candidate frequency ωi, i ∈ Ω\Ωc, one by one, by increasing it by its small fraction,
∆ωi. To satisfy the pre-determined frequency bounds fmin and fmax, the highest frequency point,
ωN is decreased by ∆ωi and we assume that κ is chosen such that for all the other frequencies,
∆ωi is sufficiently small so that the perturbed frequency stays within the bounds. In that case,
one should ensure:

ωN−1 +∆ωN−1 = ωN−1 +
ωN−1

κ
⩽ 2πfmax, (61)

and therefore
κ ⩾

ωN−1

2πfmax − ωN−1
. (62)

The FIM and its eigenvalues are re-computed for each perturbation. In k-th iteration, the metric
used to quantify the impact of the perturbation of ωi on the minimum eigenvalue of the FIM, is
denoted as dki . It represents a sensitivity of the minimum eigenvalue of the FIM to the perturbation
of frequency ωi. By finding the maximum sensitivity (by the absolute value, since dki can also take
negative values), the algorithm decides the index of the best suitable frequency to adjust and the
direction of the adjustment (i.e., depending on the sign of the sensitivity).

In lines 29-41 of the pseudo-code, the algorithm further perturbs the chosen frequency (index
denoted asm) in discreet steps by multiplying ∆ωk

m by the loop counter n and the sensitivity sign s.
In case the frequency bounds are violated, by increasing or decreasing the frequency, the algorithm
fixes the current frequency to the maximum or minimum frequency, respectively (lines 32-35). It
then re-computes the FIM and its eigenvalues until there is no further improvement (increase) of
the minimum eigenvalue. Therefore, the frequency point is considered to be adjusted and fixed.
Its index is then included in the set of already adjusted frequencies Ωc. The algorithm terminates
when all the frequencies are adjusted.
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3 Results and Discussion

This section presents the results of numerical simulations and a dedicated experimental validation
carried out on a real Li-ion cell used to verify the proposed methods for parameter initialization,
estimation, accuracy assessment and frequency adjustment.

3.1 Numerical Simulations

The main advantage of performing a numerical simulation is the knowledge of the parameters’
true values, which are always unknown in practice. In what follows, we generate synthetic, noisy
EIS measurements using the chosen ECM topology with known parameters and respecting the
measurement model. We use this data to validate the proposed methodology presented in Section 2.

3.1.1 Cell and Measurement Model

Circuit Topology. We use the ECM for the Li-ion battery cell shown in Fig. 1. The parameter
vector is:

θ = [Rs, QHF , ϕHF , R1, Q1, ϕ1, R2, Q2, ϕ2, QW ]
⊤
. (63)

For simulation purposes, we assume to know the ECM parameters’ true values, listed in Tab. 1.
Impedance Data Generation. Artificial EIS measurements are generated by assuming that the
topology and true values of the Full Randles ECM parameters are known and equal to θtrue. The
measurement errors follow Gaussian distribution according to the discussed measurement model
from Sec. 2.2, with relative error in magnitude ερ = 1% and absolute error in phase εφ = 1◦ (these
values are quite typical for commercial EIS spectrometers). Therefore, here we assumed that our
EIS measurements belong within a unique accuracy contour. The following pseudo-code describes
the generation of noisy impedance measurements within a specific accuracy contour plot.

Algorithm 3 EIS Data Generation

1: Initialize ω, θtrue, ECM topology, ερ, εφ
2: for i = 1 : N do
3: Ri = Ri(θtrue), Xi = Xi(θtrue)
4: Zi = Ri + jXi

5: ρi = |Zi|, φi = arg(Zi)
6: ∆ρ← N (0,

ρiερ
3 )

7: ∆φ← N (0,
εφ
3 )

8: ρ̃i = ρi +∆ρ
9: φ̃i = φi +∆φ

10: Z̃i = ρ̃ie
jφ̃i

11: R̃i = ℜ(Z̃i), X̃i = ℑ(Z̃i)
12: end for

It is important to mention that, according to the EIS instrument characteristics, the normal
distribution of measurement errors is valid in polar coordinates for both magnitude and phase.
After the projection from polar to Cartesian coordinates, residuals for the real and imaginary
parts are, in general, no longer normally distributed. However, for considered values of ερ = 1%
and εφ = 1◦, after the projection, errors of the real and imaginary part are practically normal [27].
This is confirmed by comparing the quantile-quantile (QQ) plots for the noise of both real and
imaginary parts of simulated impedance measurements (of a corresponding error structure) with
the ones of a standard normal random variable. An interested reader can generate these QQ plots
and easily verify this statement.

3.1.2 Parameters’ Initial Guess and Fitted Values Accuracy

In what follows, we analyze the accuracy of the parameters’ initial guess and fitted values after
carrying out a controlled numerical experiment with known true values of the parameters. To show
that the fitting algorithm provides the estimated values of the parameters close to the true values
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with an expected accuracy, we performed 1000 simulations. In each simulation, we generate the
noisy EIS data as described in Algorithm 3 for a logarithmically spread set of frequencies, from
fmin = 10−2 Hz to fmax = 104 Hz and 10 ppd. We set the frequency perturbation coefficient to
κ = 0.01. All the ECM parameters are first initialized by applying the described process of Section
2.6.2 and then estimated by solving the optimization problem (5), in polar, and (9), in Cartesian
coordinates. Tab. 2 shows the mean values of the parameters’ initial guess after simulations. The
proposed method for the initialization, where all ten parameters are initialized only by applying
the properties of the EIS spectrum and before running the weighted CNLS fitting method, provides
approximate values which do not exceed 16% for Rs, while most of the parameters are initialized
with the accuracy better than 8%.

Param. θ µθ0

∣∣ θ−θ0
θ

∣∣ · 100 (%)

Rs 3.800E-02 4.227E-02 15.90
QHF 1.667E+04 1.736E+04 7.53
ϕHF -8.500E-01 -8.519E-01 0.70
R1 4.500E-01 4.714E-01 4.75
Q1 2.000E-02 1.815E-02 10.44
ϕ1 9.000E-01 9.425E-01 4.72
R2 6.500E-01 6.382E-01 1.90
Q2 4.000E-01 3.593E-01 12.38
ϕ2 9.000E-01 9.425E-01 4.72
QW 3.693E+00 3.537E+00 4.24

Table 2: True and initial ECM parameters’ values.

The CNLS estimation results are presented in Tab. 3. Both formulations in polar and Cartesian
coordinates provide the same results. The mean value µθ̂ of each estimated parameter is extremely
close to its true value (maximum relative error of 1.134% for QHF ). Therefore, our estimator is
unbiased. We calculated the variance of each parameter from the collection of all the estimated
parameters’ values. On the other hand, by having access to the parameters’ true values, we
computed the CRLB, defining the best possible variance of estimated parameters for an unbiased
estimator. The calculated variance from 1000 simulations is quite close to the exact CRLB for
the first nine parameters. This variance is slightly lower for the QW , due to the finite number
of repeated simulations. However, the results indicate that our estimator is efficient, i.e., the
estimator is capable of attaining the CRLB.

Param. θ µθ̂

∣∣∣ θ−µθ̂

θ

∣∣∣ σ2
θ CRLBθ

σ2
θ

θ2
CRLBθ

θ2

Rs 3.800E-02 3.801E-02 0.752% 1.279E-07 1.159E-07 8.860E-03 8.028E-03
QHF 1.667E+04 1.668E+04 1.134% 5.602E+04 5.065E+04 2.017E-02 1.823E-02
ϕHF -8.500E-01 -8.500E-01 0.129% 1.902E-06 1.723E-06 2.633E-04 2.385E-04
R1 4.500E-01 4.499E-01 0.476% 7.220E-06 6.860E-06 3.565E-03 3.388E-03
Q1 2.000E-02 1.999E-02 0.956% 5.743E-08 5.335E-08 1.436E-02 1.334E-02
ϕ1 9.000E-01 9.001E-01 0.201% 5.075E-06 4.666E-06 6.266E-04 5.761E-04
R2 6.500E-01 6.502E-01 0.652% 2.806E-05 2.788E-05 6.641E-03 6.599E-03
Q2 4.000E-01 4.000E-01 0.585% 8.788E-06 8.710E-06 5.492E-03 5.444E-03
ϕ2 9.000E-01 8.999E-01 0.484% 2.965E-05 2.921E-05 3.660E-03 3.606E-03
QW 3.693E+00 3.693E+00 0.464% 4.560E-04 4.586E-04 3.344E-03 3.363E-03

Table 3: True and estimated ECM parameters’ values and the estimation accuracy.
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(a) Initial values of ECM parameters. (b) Fitted values of ECM parameters.

(c) Relative errors in R and X. (d) Relative error in ρ and absolute error in φ.

Figure 3: Bode plots obtained using the initial and estimated parameters (a-b) and minimum,
maximum and mean errors of reconstructed EIS spectra compared to the true values (c-d).

To illustrate the accuracy of the initialized and estimated parameters’ values, in each simulation,
the EIS data is reconstructed by evaluating the equivalent impedance functions given by (19) and
(20) at the obtained initial and estimated value for the defined frequency span. From the entire
families of Bode curves, in Fig. 3a and Fig. 3b, we show the minimum, maximum, mean, and true
value of the impedance magnitude and phase at a specific frequency, using the initial and fitted
estimated parameters’ values, respectively. Since the curves in Fig. 3b are extremely close, Fig. 3c
and 3d show minimum, maximum and mean values of the errors in Cartesian and polar coordinates,
respectively, from the reconstructed EIS data using the estimated values, with reference to the true
EIS spectrum.

19



3.1.3 Parameters’ Contributions to the FIM

Using the expression (49), for a certain frequency region, it is possible to show the evolution of
different contributions to the FIM, as a function of frequency. In Fig. 4, the contributions to the
diagonal elements of FIM are shown for the frequency range from fmin = 10−2 Hz to fmax = 104

Hz. For visibility, each curve is normalized by its peak value achieved in this range.
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Figure 4: Contributions to the diagonal elements of FIM as a function of frequencies for every
ECM parameter.

For different parameters, different frequencies provide measurements at which the diagonal
elements of the FIM reach their peak values. As expected, contributions from the elements Rs

and QHF and ϕHF are the highest at high frequencies, while from QW is increasing towards low
frequencies. Peaks of the contribution curves corresponding to CPE1 parameters (R1, Q1, ϕ1) and
CPE2 (R2, Q2, ϕ2) are within the mid-frequency region, in the expected order, having the time
constants τ1 and τ2 where τ1 < τ2.

3.1.4 Parameters and Variances Identification

In this part, we present the results obtained after executing the proposed algorithm for frequency
adjustment. The purpose of the numerical study is to compare the performance of the proposed
algorithm for frequency adjustments and show that for that measurements at resulting frequencies
convey more information than ones performed at log-spaced frequencies. Therefore the overall
accuracy of parameters’ estimated values increases.

Fig. 5 illustrates the adjustment of frequencies throughout the iterations. Frequencies with i ∈
Ω, i.e., candidate frequencies, in the current iteration are shown in black dots. After perturbation
of all candidate frequencies, the algorithm decides which frequency perturbation has the highest
impact on the minimum eigenvalue of the FIM (i.e., as a result of lines 16-28 of the pseudo-code).
At each iteration, this frequency is indicated as considered frequency and coloured in red. After
the frequency is finally adjusted and fixed (i.e., as a result of lines 29-41 of the pseudo-code), it is
indicated as a blue empty dot connected to its value in the previous iteration to track the change
and level of adjustment.
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Figure 5: Frequencies adjustments via E-optimal design.

At each iteration, we compare true CRLB, calculated using the parameters’ true values, θ
with its approximate value, which is evaluated at the parameters’ estimated values, at the current
iteration, θ̂. Fig. 6 shows the evolution of the CRLB throughout the iterations, namely, Ci,i(θ,ω

k)

and Ci,i(θ̂
k
,ωk), i = 1, . . . ,M in a percentage of the CRLB at the log-spaced frequencies at

the beginning of the algorithm. The CRLB for i-th parameter is computed by finding the i-th
diagonal element of inverted FIM calculated using the expression (50). Note that all the decisions
for frequency adjustment along the iterations are taken using the information about the FIM that
is calculated using the estimated parameters’ values. As the set of frequencies is being modified
for most of the parameters, the CRLB is improving. For parameters θ7, θ8 and θ9, the CRLB
at the final set of frequencies is slightly, but negligibly increased, by 0.70%, 1.71% and 0.05%,
respectively. From the figure, we also conclude that by using the estimated parameters from each
iteration to calculate the CRLB, the approximation is tracking well the true values.
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Figure 6: Relative improvement in CRLB for each ECM parameter compared to the initial log-
spaced frequency span.

To quantify the overall improvement, in Fig. 7, we also show the evolution of the parameters
confidence ellipsoid’s volume (normalized with the true initial volume of the confidence ellipsoid)
along the iterations, calculated using (60) and evaluated at both true and estimated parameters’
values at each iteration. The frequency adjustment, while maximizing the lowest eigenvalue of the
FIM and consequently minimizing the highest eigenvalue of its inverse, also reduces the volume of
the confidence ellipse and improves the overall parameter estimation. After the termination of the
algorithm, the confidence ellipsoid decreased in volume by at least 25%.

Figure 7: Evolution of the confidence ellipsoid volume while adjusting the frequencies along the
algorithm’s iterations.
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3.2 Experimental Validation on Li-ion Cells

The proposed methods are experimentally validated on a Li-ion 5 Ah cell SLPB 11543140H5 by
Kokam Ltd., in correspondence of two states of the cell: (a) 25 ◦C and 80% SoC and (b) at 15 ◦C
and 20% SoC.

3.2.1 Experimental Setup

The cell is first brought to a certain SoC level by constant current constant voltage (CC-CV)
charge/discharge to a corresponding voltage from the manufacturer OCV-SoC curve. We use a
standard charging/discharging current of C/5 = 1 A. The cell is placed in a climatic chamber
at a constant temperature. Before the measurements, the cell rests at a constant temperature
for twelve hours to reach the equilibrium. We performed the EIS measurements in galvanostatic
mode, exciting the cell with a small sinusoidal current with ∆Irms = 0.5 A (i.e., corresponding
to a C/10 rate for the considered 5 Ah cell). We monitor the Lissajous figures at each frequency
point, ensuring the cell is in the pseudo-linear regime. Initial EIS is done from fmax = 10 kHz to
fmin = 0.01 Hz with 5 ppd. For frequency perturbations within the proposed algorithm, we set
κ = 0.01.

3.2.2 Parameters and Variances Identification

The cell EIS response justifies using the ECM of the same structure already introduced and shown
in Fig. 1. Since there is a slight deviation from the unity slope in the LF spectrum locus, the LF
impedance is modelled with CPE(QLF , ϕLF ) instead of pure Warburg impedance to improve the
fitting. The LF CPE coefficient QLF is in S · s−ϕLF . Hence, the parameter vector used for the
experimental validation is

θ = [Rs, QHF , ϕHF , R1, Q1, ϕ1, R2, Q2, ϕ2, QLF , ϕLF ]
⊤
. (64)

(a) Cell at 25 ◦C and 80% SoC (b) Cell at 15 ◦C and 20% SoC

Figure 8: Measured impedance spectrum of Kokam SLPB 11543140H5 cell and reconstructed
spectra using the initial and fitted parameters’ values.

The parameter initialization is done by following the steps described in Sec. 2.6.2. Since the
spectrum slope at LF is close to the unit slope, it is sufficient to initialize LF parameters as if
ECM consisted of pure Warburg impedance and let the fitting adjust the parameters. As it can be
observed from Fig. 8, the part of the spectrum at MF consists of two arcs. However, due to the high
overlapping between them, it is not trivial to identify all the characteristic points. Therefore, from
the MF spectrum (obtained by subtracting the influence of HF and LF spectrum), one can first
initialize the more geometrically dominant arc, in this case, Zarc2. Once the parameters R2, Q2

and ϕ2 are initialized, the remaining R1 can be found as R1 = RΣ −Rs −R2. The approximation
for ωc1 can then be found from the MF spectrum point with the real part closest to R1/2 and
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the exponent ϕ1 is sufficient to initialize with some typical values (e.g., ϕ1 = 0.9 or 1). Starting
from the initial point, the CNLS algorithm finds the optimal fitting. Figures 8a and 8b show the
obtained EIS spectra of a Kokam cell in two different states. They also show the reconstructed
spectra, assuming the values of the parameters equal to the initial and fitted ones. The fitting
matches the measurements quite well for both states, certifying the ECM choice and demonstrating
the estimator’s efficiency.

Tables 4 and 5 report the numerical results of the experimental validation of the proposed
Algorithm 2 for frequencies adjustments via E-optimal design. They show the estimated ECM pa-
rameter values θ̂1 at the beginning of the algorithm (i.e., from EIS measurements at logarithmically
spread frequencies) and after final adjustment of the set of frequencies, θ̂N and the corresponding
estimated CRLBs (absolute values and normalized values with respect to each estimated param-
eter squared). The last column shows the percentage improvement, i.e., the percentage change
of the initial CRLB for every parameter. Negative values indicate a decrease in the CRLB. At
25 ◦C and 80% SoC parameters’ CRLB improved by 16.4% on average, while at 15 ◦C and 20%
SoC, the improvement is even more significant with 28.22%, on average. Fig. 9 shows the evolu-
tion of the volume of the confidence ellipsoids throughout iterations normalized with the volume
at the beginning of the algorithm. At 25 ◦C and 80% SoC, the volume reduces by nearly 20%,
while at 15 ◦C and 20% SoC, the decrease is even more significant, by 55%. This confirms that
the frequency adjustments are parameter- and state-dependent. It is worth mentioning that the
adjusted frequencies in every iteration can slightly differ from the ones provided by the algorithm
due to the discreet frequency steps of the EIS measurement device’s signal generator. I.e., the EIS
measurement device measures at the nearest frequency to the value provided by the algorithm.

Param. θ̂1 θ̂N CRLB1 CRLBN
CRLB1

θ̂21

CRLBN

θ̂2
N

∆CRLB (%)

Rs 1.937E-03 1.936E-03 1.698E-09 1.257E-09 4.527E-04 3.351E-04 −25.99

QHF 1.132E+07 1.132E+07 5.683E+11 4.113E+11 4.431E-03 3.208E-03 −27.61

ϕ1 -9.845E-01 -9.842E-01 3.502E-05 2.516E-05 3.613E-05 2.596E-05 −28.16

R1 2.409E-03 2.393E-03 6.146E-08 4.834E-08 1.059E-02 8.333E-03 −21.34

Q1 4.715E+00 4.622E+00 8.381E-01 6.344E-01 3.771E-02 2.854E-02 −24.31

ϕ1 6.618E-01 6.631E-01 8.927E-04 6.856E-04 2.038E-03 1.566E-03 −23.20

R2 3.273E-03 3.385E-03 4.504E-08 3.762E-08 4.205E-03 3.512E-03 −16.47

Q2 6.419E+00 6.409E+00 4.802E-02 4.011E-02 1.165E-03 9.733E-04 −16.49

ϕ2 9.347E-01 9.306E-01 3.161E-04 2.911E-04 3.617E-04 3.332E-04 −7.90

QLF 8.585E+02 8.845E+02 1.881E+02 2.025E+02 2.552E-04 2.748E-04 +7.66

ϕLF 5.553E-01 5.656E-01 3.447E-05 3.569E-05 1.118E-04 1.157E-04 +3.53

Table 4: Numerical results for Kokam cell at 25 ◦C and 80% SoC: parameters’ estimated values,
estimated CRLBs in the first and last iteration of optimal frequency adjustment algorithm and
CRLB percentage improvement.
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Figure 9: Evolution of the estimated confidence ellipsoid volume for two different cell states.
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Param. θ̂1 θ̂N CRLB1 CRLBN
CRLB1

θ̂21

CRLBN

θ̂2
N

∆CRLB (%)

Rs 2.017E-03 2.095E-03 6.343E-10 4.123E-10 1.559E-04 1.013E-04 −34.99

QHF 1.020E+07 1.082E+07 2.137E+11 1.587E+11 2.056E-03 1.527E-03 −25.71

ϕ1 -9.849E-01 -9.899E-01 1.719E-05 1.126E-05 1.772E-05 1.161E-05 −34.48

R1 9.535E-03 7.804E-03 2.637E-07 1.009E-07 2.901E-03 1.110E-03 −61.74

Q1 8.307E+00 6.767E+00 2.097E-01 1.172E-01 3.039E-03 1.698E-03 −44.13

ϕ1 5.698E-01 6.029E-01 8.329E-05 6.815E-05 2.566E-04 2.099E-04 −18.18

R2 2.647E-02 2.800E-02 3.147E-07 2.034E-07 4.493E-04 2.904E-04 −35.37

Q2 6.497E+00 6.227E+00 7.280E-03 3.536E-03 1.724E-04 8.375E-05 −51.43

ϕ2 9.546E-01 9.363E-01 5.879E-05 4.520E-05 6.452E-05 4.960E-05 −23.12

QLF 6.250E+02 6.233E+02 3.280E+03 3.626E+03 8.399E-03 9.284E-03 +10.53

ϕLF 5.356E-01 5.368E-01 7.495E-04 8.108E-04 2.612E-03 2.826E-03 +8.18

Table 5: Numerical results for Kokam cell at 15 ◦C and 20% SoC: parameters’ estimated values,
estimated CRLBs in the first and last iteration of optimal frequency adjustment algorithm and
CRLB percentage improvement.

4 Conclusion

In this paper, we presented a rigorous formulation of the ECM parameters identification problem
for Li-ion batteries from EIS measurements. We developed the method to initialize the parameters
of one of the most complete ECMs containing ten parameters. This automated method can be
implemented into EIS measuring device software to help users run the CNLS method with a good
starting point. We then studied and derived general CRLB applied to this specific identification
problem, enabling us to design the experiments by quantifying the best possible accuracy of the
parameter estimates. Since these values are highly dependent on the frequency set at which the
EIS measurements are done, we developed the algorithm that modifies the initial logarithmic
frequency span used for EIS measurements. This is done by utilizing the FIM and maximizing its
lowest eigenvalue via the E-optimal design. In the numerical study, where we assumed the true
parameters’ values to be known, we showed that the variances for most of the ECM parameters
were significantly lowered. After executing our algorithm, parameters improved their variance by
14.34% on average. The overall accuracy, quantified by the volume of the confidence ellipsoid,
improved by at least 25%. The developed method for frequency adjustments for performing the
EIS can also be incorporated within a measurement setup when characterizing the Li-ion cells. This
is confirmed through experimental validation on a real Li-ion cell at different temperatures and
SoC. For the considered states, the parameters are successfully initialized and efficiently estimated.
For the case of 25 ◦C and 80% SoC, frequency adjustments lead to a variance decrease of 16.4%
on average and ellipsoid volume decreases by nearly 20%. At 15 ◦C and 20% SoC, the frequency
adjustments result in a variance decrease of 28.2% on average and ellipsoid volume decrease by
55%. A similar approach can be potentially applied to other electrochemical systems which require
impedance characterization and precise ECM identification.
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