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Abstract

Interpretability for neural networks is a trade-off between three key requirements:
1) faithfulness of the explanation (i.e., how perfectly it explains the prediction), 2)
understandability of the explanation by humans, and 3) model performance. Most
existing methods compromise one or more of these requirements; e.g., post-hoc
approaches provide limited faithfulness, automatically identified feature masks
compromise understandability, and intrinsically interpretable methods such as
decision trees limit model performance. These shortcomings are unacceptable
for sensitive applications such as education and healthcare, which require trust-
worthy explanations, actionable interpretations, and accurate predictions. In this
work, we present InterpretCC (interpretable conditional computation), a family
of interpretable-by-design neural networks that guarantee human-centric inter-
pretability, while maintaining comparable performance to state-of-the-art models
by adaptively and sparsely activating features before prediction. We extend this idea
into an interpretable, global mixture-of-experts (MoE) model that allows humans
to specify topics of interest, discretely separates the feature space for each data
point into topical subnetworks, and adaptively and sparsely activates these topical
subnetworks for prediction. We apply variations of the InterpretCC architecture
for text, time series and tabular data across several real-world benchmarks, demon-
strating comparable performance with non-interpretable baselines, outperforming
interpretable-by-design baselines, and showing higher actionability and usefulness
according to a user study.

1 Introduction

In recent years, the steep rise in popularity of neural networks has come with a severe weakness: the
lack of interpretability of their predictions. Neural networks are considered as black-box models due
to their high number of parameters and complex operations. Therefore, humans cannot understand
how the features impact the network decisions under the hood; this is a crucial limitation in sensitive
applications such as education or healthcare, where models’ predictions might impact humans.

Interpretability is a relatively new field of research in the machine learning community. As a result of
the increasing interest in providing explanations for black-box models, a range of popular methods
have been proposed. Most of these are post hoc, i.e. applied after model training. Popular approaches
include local instance-based methods (e.g. LIME [1], SHAP [2]), using adversarial examples for
counterfactual explanations [3], or global, pattern-based explanations like PREMISE [4]. Post-hoc
methods require the user to trust the explainer’s approximation of the true explanation, which has
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Feature Gating
InterpretCC InterpretCC

Figure 1: InterpretCC Architectures: Feature Gating (left) with individual features: (i) features
are passed as input to a discriminator network which outputs a feature activation mask; (ii) features
are passed individually as input to sub-network and sigmoid for prediction; (iii) activated features’
corresponding predictions are averaged for final output. Group Routing (right) with pre-defined feature
groups: (i) features are passed through a discriminator network which outputs a route activation
mask; (ii) features are split by group to be passed as input to corresponding expert sub-network for
prediction; (iii) activated routes’ predictions are aggregated by a weighted sum for final output.

been shown to be systematically biased and inconsistent [5, 6]. Much fewer works provide in-hoc
explanations, by interpreting model gradients at inference time or customizing the training protocol.
Grad-CAM [7] for example assesses the contribution of a component to the model’s output. TCAV
[8] and DTCAV [9] use user-defined concepts to interpret a neural network’s embeddings.

Finally, intrinsically interpretable models have mainly focused on example-based approaches, over-
whelmingly for the image modality (e.g. B-cos networks [10], PIP-Net [11], ProtoPNet [12]) and
rarely in time-series, tabular, or text modalities [13]. Very recent interpretable-by-design literature in
mixture-of-experts models has highlighted a hierarchical neural network structure with subnetworks,
combining interpretable experts (i.e. decision trees) with DNNs for partially interpretable points [14],
selectively activating experts [15], or extracting automated concepts over the input space for routing
[16]. However, the information used for the explanation is often overly complex and not tailored for
the use case, limiting understandability and actionability.

In this paper, we therefore present a user-centered interpretable-by-design model that achieves
guaranteed interpretability (faithfulness) and provides human-centric explanations, while maintaining
comparable predictive performance to its black-box counterparts. To achieve these goals, we use
conditional computation in neural networks to craft interpretable neural pathways using two different
architectures (see Figure 1) based on routing through individual features or entire feature groups.

Our models enable a statement of the form: “This entry was predicted to be X because and only
because it was assigned to human-interpretable categories A and B". We refer to interpretability from
the users’ perspective, focusing on the model’s local reasoning for a decision on a specific data point,
as opposed to a global understanding of the model’s internals. Our models are characterized by sparse
explicit routing, truncated feature spaces, and adaptivity per data point. These traits are important for
human-centric trustworthiness as they provide clear and concise instance-level explanations [17, 18].

With our family of InterpretCC models, we provide the following contributions:

[1] InterpretCC Feature Gating: A simple, interpretable-by-design NN architecture using a
gating mechanism to sparsely activate specific features.

[2] InterpretCC Group Routing: An interpretable mixture-of-experts architecture that uses
human-specified group routing to separate the feature space and sparsely activate specific experts.

[3] An extension to real-world, human-centric modalities and domains that are often ignored
by interpretable-by-design deep learning approaches: time-series (education domain), tabular
(health, synthetic data), and text (sentiment, news classification).1

[4] A novel XAI user study comparing human preferences of interpretable-by-design model expla-
nations towards designing educational interventions for struggling students.

Across experiments on eight datasets from various domains, we show that InterpretCC models
perform comparatively to non-interpretable baselines, while outperforming interpretable-by-design
baselines. Moreover, participants of the user study preferred InterpretCC explanations over

1We do not use vision datasets since extracting concepts from vision has been well-studied by existing,
modality-specific interpretability approaches, e.g. [10, 16, 19, 20].
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Explanation

Method Granularity Basis Faithfulness Sparsity Coverage

LIME, SHAP
(Post-Hoc) Feature Use all input features Approximation Not sparse Partial

TCAV
(In-Hoc) Concept User defines concepts

through examples
Aligned
with concepts Sparse Partial

Feature Use all input features Guaranteed Not sparse Full

SENN Concept Automated concept
selection integrated

Aligned
with concepts Not sparse Partial

NAM Feature Use all input features Guaranteed Not sparse Full

Feature Use all input features Guaranteed Sparse FullInterpretCC
(Feature Gating,
Group Routing) Concept External definition of group

of features as concepts Guaranteed Sparse Full

Table 1: Method Comparison: InterpretCC models are at the unique intersection of explanation
faithfulness, sparsity, coverage, flexible granularity, and user-defined basis.

baselines in terms of actionability, usefulness, conciseness and trustworthiness. We provide our code
and experiments open source: https://github.com/epfl-ml4ed/interpretcc/.

2 Background

Architecture Foundations. Conditional Computation (CC) has become widely used to improve the
computationally expensive training and inference of large neural networks by activating only parts of
the network [21, 22]. Bengio et al. [23] outline how block dropout conditional computation policies
can be optimized using reinforcement learning. Inspired by the foundations laid out by CC, mixture-
of-expert models have rapidly gained popularity for improving the efficiency of neural networks.
BASE layers [24] direct each token to a designated expert and Switch Transformers [25] use CC to
select one out of 4 feedforward networks across each transformer layer, optimizing computational
resources. Mixtral [26] is a recent LLM using a mixture of experts to select 2 out of 8 expert networks
at each layer, reducing the numbers of active parameters by a factor of 4 compared to training, while
allowing each token to have access to all the parameters. With the InterpretCC models, we extend
a similar routing idea with instance-dependent gating decisions towards an interpretability objective
as opposed to only an efficiency or performance objective.

Interpretability Foundations. Explainability can be integrated into different stages of the modeling
pipeline: post-hoc (after model training), in-hoc (e.g., interpreting model gradients), and intrinsic
(interpretable by design). Our positioning of InterpretCC in comparison to the most popular
approaches is described in Table 1. Specifically, we categorize the approaches using their basis
and the stage they are applied to in the pipeline as well as four key requirements for human-centric
explanations [17, 18]: faithfulness (the explanation reflects the model behavior with certainty),
sparsity (the model uses a minimal amount of features to ease actionability and understandability),
coverage (the explanation covers the entirety of what the model uses for prediction), and flexible
granularity, where the key features or the feature grouping can be user-defined.

Post-hoc methods such as LIME [1] or SHAP [2] approximate what the model finds important,
and therefore cannot be faithful or complete. Other in-hoc interpretability approaches use human-
understandable concepts (e.g. TCAV [8] and DTCAV [9]), or hybrid methods using both human-
defined and unsupervised concepts [13]. Such example-based approaches (e.g., TCAV) provide only
partial coverage and limited faithfulness. Inspired by these approaches, InterpretCC allows users to
specify interpretable concepts that are directly useful to them. However, we do not use examples, but
instead allow users to specify groupings over the feature space, achieving guaranteed interpretability
and full coverage.

Initial approaches have also explored expert models for intrinsic interpretability. The Interpretable
Mixture of Experts (IME) framework [14] proposes different tradeoffs to using a mixture of experts
for interpretability, showcasing how linear models can be used as experts to have faithful explanations.
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LIMoE [27] specializes visual experts to identify concepts such as textures and faces, enriching
interpretability for vision. Also for vision, interpretability based on groups is explored by the
Sum-of-Parts (SOP) model [16], where the prediction process involves making sparse groups of
features, highlighting the model’s dependence on subsets of features for its decisions. The most
relevant intrinsic models to our approach are Self-Explaining Neural Networks (SENN) [28] and
Neural Additive Models (NAM) [29]. SENN automatically extracts concepts described by protypical
examples alongside concept relevances to be combined for a prediction, again limiting faithfulness
and coverage. NAM employs models for each feature in the dataset which outputs a score that
is linearly combined for the prediction, making it non-sparse. InterpretCC differentiates from
these models by filtering the feature space (sparsity), using user-specified concepts (basis), and not
supporting overlapping in feature groups (coverage).

3 Methodology

Given an input x, the objective of our approach is to select a sparse subset of x that will be used to
predict the output to solve the classification task. We propose two architectures:

Feature Gating: The approach only processes a subset of the features by applying a sparse mask M
on the input x before processing it by a model f . The output is given by: f(M(x)).

Group Routing: A sparse mixture of models [30] applied on human-interpretable groups of features
where each expert is assigned to a group of features:

K∑
i=1

G(x)i · fi(MG(x)i), (1)

where MG(.)i is a sparse mask selecting only the features of group i, fi is the expert model associated
with the i-th group, and G(x)i is the output of the gating network for group i. If G(x)i = 0, the
entire group of features is ignored.

3.1 Feature Gating

The Feature Gating architecture shown in Fig. 1 is the first step towards using CC paths for inter-
pretability. The features are first passed through a discriminator network D to select which ones to
use for computing the output. The Gumbel Softmax trick [31] is applied on each dimension of D(x)
to select features in a differentiable way (see Appendix F for more details). A feature j is activated
(the associated value in the mask is non-zero) if the Gumbel Softmax output exceeds a threshold τ , a
hyperparameter. This allows the model to adaptively select the number of features based on each
instance, using fewer features for simpler cases and more for complex ones.

The output is computed using a model f on the masked input M(x). Since the explainability is at
the feature level, using a black box model for f does not detract from the interpretability.

3.2 Group Routing

We build upon the instance-dependent gating architecture with feature groups. As displayed in
Figure 1, instead of selecting features individually, the mask is applied to human interpretable groups
of features. Doing so encourages cross-feature interactions while maintaining a meaningful grouping
for human users. To select the features belonging to group i, we use a binary mask MG(x)i that is
computed using human-specified rules. In section 4, we detail our approach to compute MG(x)i for
each dataset used in our experiments.

Group Routing is a sparse mixture of experts utilizing a gating network to assign a weight G(x)i
to each group. This process mirrors that of Feature Gating, starting with a discriminator network
DG whose output has K dimensions (K begin the number of groups). It then applies the Gumbel
Softmax and a threshold τG to each group. As indicated in equation 1, the output of the model is a
weighted sum of the output of each expert fi that only uses the features from the i-th group as input.
Using our sparsity criteria, we ensure that few groups are used to compute the output, making the
Group Routing intrinsically interpretable at the group level, regardless of the types of models used as
experts. Group Routing also exhibits several traits in efficient inference without compromising the
number of parameters the model can use at training.
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During the training phase, we employ soft masking, allowing all weights G(x)i to remain non-zero,
thus granting the model access to every expert. This approach allows the model to leverage the full
set of parameters during training, enhancing the training efficiency. At inference time we switch to
using a hard mask, making the weights sparse and allowing for interpretability and efficiency.

4 Experimental Settings

We apply InterpretCC to four domains: education, news/sentiment classification, healthcare, and
synthetic data covering Time Series, Text, and Tabular inputs; all for classification tasks. For Tabular
features, the input is a vector x ∈ Rn. The mask in the Feature Gating is a sparse vector indicating
which tabular feature to use and how important they are (if the weight is non-0) and the groups form a
partition over the features. For Text features, the input is a sequence of N tokens: x = [t1, t2, · · · , tN ].
The mask is a sparse vector that indicates which token to use and each group consists of a subset of
the tokens. Finally, we consider Time Series of n features across T timesteps: x ∈ Rn×T . In this
case, we apply the same mask across all time steps for both Feature Gating and Groups.

EDU (time series, education domain). We predict student success in the early weeks of four massive
open online courses (MOOCs), using students’ clickstream data (see Table 6 in Appendix A for
details about the courses). The raw clickstream input is transformed into weekly time-series features
that have proven useful for student success prediction in previous literature (e.g. total video clicks,
forum interactions). We select 45 input features used in multiple studies [32, 33, 34, 35]. For early
prediction, we only use the first 40% of time steps as input.

Grouping: To derive human-interpretable concepts from these features, we turn to learning science
literature. In routing by paper, we create 10 distinct feature subsets based on handcrafted initial
input features from 10 papers, directing each to a specific expert subnetwork. For routing by pattern,
we organize features according to five learning dimensions identified by [36, 37]: effort, consistency,
regularity, proactivity, control, and assessment-based (see Table 7 for a detailed feature classification).
Thirdly, routing by Large Language Model (LLM), uses GPT-4’s capabilities to aid humans in
feature grouping [38]. GPT-4 is prompted as an ’expert learning scientist’ to group the features into
self-regulated behavior categories that are easy to understand, which are then used to separate the
features for InterpretCC. More details are included in Appendix B.1.

AG News and SST (text). For news categorization (AG News), we classify news into four categories
(‘World’, ‘Sports’, ‘Business’, ‘Sci/Tech’) given a title and description of a real-world article [39].
We use 36,000 training samples and 3,000 test samples evenly distributed across categories. For
sentiment prediction (Stanford Sentiment Treebank, SST), we use 11,855 sentences labeled by three
annotators[40] and predict a binary sentiment from a sentence fragment.

Grouping: The InterpretCC routing model assigns words to subnetworks using the Dewey Decimal
Code (DDC) hierarchy of topics for book classification to create 10 subnetworks (see Table 8,
Appendix B.2 for more details) [41]. Each word is encoded using SentenceBERT [42] and assigned
to a subcategory (i.e. the word ‘school’ is assigned to the subcategory ‘education’ under category
300 for ‘social sciences’) and routed to the appropriate parent network.

Breast Cancer (tabular, healthcare domain). The Wisconsin Breast Cancer dataset aims to identify
cancerous tissue from an image of a fine needle aspirate (FNA) of a breast mass [43]. It has 30
features (10 from each of 3 cell nuclei) and diagnoses (Malignant: 1, Benign: 0) for 569 patients.

Grouping: For the grouping logic, we group each cell nucleus in a separate subnetwork, enabling
features representing the same part of the tissue sample to be considered together.

Synthetic Dataset (tabular) We use OpenXAI’s synthetic dataset [44], which includes ground
truth labels and explanations, indicating the subset of features influencing each label. This dataset
comprises 5000 samples, 20 continuous features, and two classes. It was created using the SynthGauss
mechanism from 5 cluster neighborhoods (1000 points for each cluster), which ensures three desirable
properties for assessing explanations: (1) feature independence, (2) unambiguous and well-separated
local neighborhoods, and (3) a unique ground truth explanation for each local neighborhood.

Grouping: We group the feature space by assigning each feature to a cluster neighborhood based
solely on the distribution of the training data. The average absolute value of each feature for each
cluster is calculated, and the highest feature-cluster value determines the assignment.
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Feature-Based Interpretability Concept-Based Interpretability

Dataset Non-interpretable
Base Module NAM SENN

Features
InterpretCC
Feature Gating

SENN
Concepts

InterpretCC
Top K Routing

InterpretCC
Group Routing

DSP 82.81 ± 2.61 85.20 ± 0.64 71.70 ± 0.95 90.75 ± 0.01 81.50 ± 2.26 83.08 ± 1.10 84.90 ± 7.59
Geo 72.96 ± 1.59 65.12 ± 4.07 57.90 ± 2.69 71.92 ± 0.01 70.90 ± 2.45 80.44 ± 3.19 81.58 ± 0.57
HWTS 73.93 ± 3.76 73.11 ± 2.13 68.63 ± 3.78 82.89 ± 0.04 75.10 ± 11.67 72.59 ± 2.84 78.34 ± 0.95

Education

VA 74.90 ± 5.28 71.39 ± 3.38 74.37 ± 1.11 77.80 ± 0.01 69.99 ± 8.83 71.43 ± 1.11 72.08 ± 3.71

Health B. Cancer 89.70 ± 1.05 88.77 ± 7.31 80.52 ± 6.21 78.19 ± 3.54 85.26 ± 1.03 84.66 ± 3.02 94.85 ± 1.25

AG News 89.93 ± 3.32 85.72 ± 5.31 87.25 ± 2.48 90.35 ± 1.07Text SST 91.12 ± 2.03
Not
Supported

Not
Supported 88.21 ± 3.41

Not
Supported 92.98 ± 0.88 91.75 ± 1.86

Synthetic OpenXAI 86.67 ± 0.31 87.85 ± 1.31 83.67 ± 1.86 89.51 ± 0.51 84.67 ± 4.04 90.83 ± 1.93 89.47 ± 2.89

Table 2: InterpretCC Performance (avg ± std) on EDU (balanced accuracy), Text, Health, and
Synthetic (accuracy) datasets compared to a non-interpretable baseline and three interpretable-by-
design baselines. All 95% CI overlap with the non-interpretable base module for values in black.
Colored values indicate significantly higher (green) or lower (red) performance than the base module.
The reported Group Routing results are the best performing InterpretCC variations from Table 3.

5 Experimental Results

Through the following three experiments, we demonstrate that our InterpretCC models do not
compromise performance compared to black-box models and provide explanations that are faithful
as well as human-centered.
Experimental Setup. We run hyperparameter tuning and three different random seeds for each
reported model (reproducibility details in Appendix E). Since EDU MOOC courses have a low
passing rate (below 30%), and thus the dataset has a heavy class imbalance, we use balanced accuracy
for evaluation. The other datasets are more balanced (AG News, SST, Breast Cancer, synthetic),
hence we use accuracy as our evaluation metric. We perform an 80-10-10 train-validation-test data
split stratified on the output label, to conserve the class imbalance in each subset. In addition to
InterpretCC Feature Gating and Group Routing, we also employ a InterpretCC Top-K expert
network solution with k=2 for group routing. This approach is similar to existing mixture-of-expert
approaches [26, 15], except that their models make a layer-wise expert choice, which significantly
reduces interpretability, while we make a global expert choice.

Base Prediction Module. We choose simple yet performant predictive modules reported in previous
literature to isolate the difference in performance due to the interpretable architectures. For the
EDU data, previous works uses BiLSTMs on student behavioral data for best predictive performance
[6, 35]. Thus, for comparative benchmarking, the most performant BiLSTM setting is used as a
baseline model [45]. For the AG News and SST datasets, we use fine-tuned DistilBERT2 variations
as baselines, also used in related works [46, 47]. For the Breast Cancer dataset, we use a fully
connected network as reported in [48].

Interpretable Baselines. In addition to non-interpretable baselines, we compare ICC to two
interpretable-by-design methods: SENN [28] and NAM [29], adaptable to any base architecture.
SENN generates concept-based explanations and is designed to learn "interpretable basis concepts"
in parallel with the model optimization. Explanations consist of the concepts most similar to the
input. NAM, a General Additive Model [49], uses individual neural networks for each input feature
to calculate feature weights. The model’s output is the sum of these weights, and explanations are
given by displaying the feature weights.

5.1 Exp. 1: InterpretCC does not compromise on performance

Table 2 shows the models’ metrics (average accuracy, standard deviations, and 95% confidence
intervals (CIs)) across three iterations of model training for all eight datasets.

InterpretCC Feature Gating improves performance with respect to the non-interpretable base
prediction module for two EDU courses (DSP, HWTS) and the synthetic dataset. It shows comparable
performance on all other datasets (indicated by the overlapping CIs) except the Breast Cancer dataset,
suggesting that a higher number of the available features is necessary for performant prediction. The

2https://huggingface.co/distilbert/distilbert-base-uncased
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Dataset Baseline InterpretCC Group Routing
Paper Pattern GPT-4

DSP 82.81 ± 2.61 82.37 ± 6.27 82.29 ± 3.72 84.90 ± 7.59
Geo 72.96 ± 1.59 69.64 ± 1.23 81.58 ± 0.57 81.19 ± 1.53
HWTS 73.93 ± 3.76 78.34 ± 0.95 72.34 ± 2.77 75.12 ± 4.17
VA 74.90 ± 5.28 69.88 ± 2.93 72.08 ± 3.71 70.98 ± 2.77

Average 76.65 ±3.31 75.56 ±2.85 77.57 ±2.69 78.05 ±4.01

Table 3: InterpretCC Group Routing Performance:
balanced accuracy (average ± std) on variations of
routing strategies (paper, pattern, GPT-4) for the EDU
datasets in comparison to the non-interpretable baseline.

AG
News

SST Health EDU
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Figure 2: InterpretCC Feature Gating
Sparsity: % of features activated per data
point across five representative datasets.

interpretable-by-design baselines SENN and NAM never outperform the base model, and always
under-perform or perform comparably to InterpretCC.3

InterpretCC Group Routing outperforms (for Geo course and Breast Cancer dataset) or performs
comparably (95% CI overlap) to the fine-tuned, non-interpretable base module. It also consistently
performs at least comparatively to SENN which, besides never outperforming the base model, has a
relatively high variance. We further observe that the selected grouping method impacts performance
(Table 3). We achieve a 10% increase in performance compared to the base model when grouping
using patterns or GPT-4 for the Geo course. On average, over the four EDU courses, the automated
LLM grouping and the pattern-based human-defined grouping perform comparably, showing that
using automated grouping methods does not mean compromising on performance.

InterpretCC performs comparable to black-box models and outperforms interpretable baselines.

5.2 Exp. 2: InterpretCC provides faithful and user-friendly explanations

Table 4 showcases the faithfulness of InterpretCC models in comparison to SENN and NAM on
ground truth explanations from the synthetic dataset. All 95% CI overlap in ground truth accuracy
(how close the explanation is to ground truth feature importance, similarly to [50]) and Pairwise Rank
Agreement (PRA) [44], except for SENN Concepts performing statistically significantly worse than
InterpretCC Feature Gating in accuracy and InterpretCC Group Routing on PRA. This indicates
that ICC’s identification of important features, and of their order of importance, is close to the ground
truth and better than all baselines.

Besides being faithful, our models enable concise and hence user-friendly explanations by sparse
feature (group) activations [6, 17]. Figure 2 shows the percentage of activated features per data point
for ICC Feature Gating. For EDU, only ∼ 10% of the 45 features are activated, with low standard
deviation. For Breast Cancer, more features seem to be needed to make the prediction: 39.7% of
the features are activated per data point. Contrarily to other datasets, for text-based data, the number
of available features (words) varies per data point. AG News consists of news articles (average
number of words per sample: 35), and only a small percentage of words is activated for each article.
SST contains much shorter sentences (7 words on average), with high variance, leading to a higher
percentage of features selected per data point (59.8%) as well as a high standard deviation. The
achieved sparsity, concisely indicating the most important features in the original data set (especially
for EDU and AG News), is a major advantage of our feature gating approach. In comparison, post-hoc
explainers often select a wider range of important features (e.g., in previous work [6] on EDU, LIME
and SHAP [1, 2] indicated broad importance over all input features).

ICC Group Routing activates different subnetworks with different weights for each data point. Figure
3 illustrates the number of activations and the average weight for each subnetwork for the text data
sets (see Appendix G for detailed analysis on the Breast Cancer and EDU datasets). For AG News
(Figure 3 top), the average activation weight is similar across all subnetworks (min 0.10, max 0.21).
However, some subnetworks are activated much more frequently (400 - Language: 18, 335 times).
This indicates that most data points will be routed through the same subset of subnetworks, while the
remaining subnetworks are important for specific data points only. SST (Figure 3 bottom) shows

3We do not report results for text features with NAM and SENN, since having a network for every word
oreach word as a concept would be infeasible.
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Perseid Meteor Shower Peaks Overnight 
(SPACE.com) - A fine display of shooting 
stars is underway and peaks overnight 
Wednesday into early Thursday morning. 
Astronomers expect the 2004 Perseid meteor
shower to be one of the best versions of the 
annual event in several years.

Hip Hop's Online Shop Celebrity fashion is 
booming. These webpreneurs are bringing it 
to main street.

Prediction

2 
Business

3 
Sci/Tech

AG News Examples

400 – Language
600 – Technology

DDC

Weight

500 – Pure science 
700 – Arts and Recreation

Figure 4: AG News: Qualitative examples of two ar-
ticles, where highlighted text represents a subnet ac-
tivation. The pie chart represents the weight of each
subnetwork in the resulting prediction.

similar subnetwork activation patterns. However, in contrast to AG News, the distribution of average
weights is not uniform: only three networks are activated with weights larger than 0.15.

Figure 4 illustrates two entries of AG News and corresponding ICC explanations. In the top example
(Perseid meteor shower), the words ‘stars’, ‘meteor’, and ‘SPACE’ are routed to the Pure Science
(500) subnetwork with a 50% activation weight, resulting in the correct prediction of ‘Sci/Tech’
category. Likewise, for the bottom article, both the Technology and Arts subnetworks are highly
weighted, resulting in the correct prediction of the ‘Business’ category. Interestingly, subnetwork
Language (400) is also activated. We suspect the high weights showcased for 400 in Figure 3 are
representative of words the DDC does not have a close relation to in SentenceBERT embedding
space. Examples of explanations for the EDU domain for all models can be found in Appendix D,
Figures 6 and 7. We also compare ICC behavior across the three grouping strategies for the DSP
course (Appendix G.2.2) and analyze the network sparsity at different prediction horizons (G.2.1).
Finally, we show the variation of the selection of feature groups across all MOOCs, indicating the
adaptability of ICC in selecting relevant subnetworks whatever the grouping method (G.2.3).

Model PRA [44] Ground Truth
Accuracy

InterpretCC FG 69.71 ± 3.89 94.84 ± 4.11
InterpretCC GR 74.55 ± 1.21 89.51 ± 0.56
SENN Features 71.99 ± 3.25 85.83 ± 2.56
SENN Concepts 45.30 ± 7.49 65.19 ± 9.23
NAM 70.16 ± 5.63 87.39 ± 2.45

Table 4: Synthetic faithfulness evalua-
tion across five models on ground truth
explanations using PRA and accuracy.

NAM SENN ICC GR ICC FG Weight
Usefulness 3.25 ±0.98 3.3 ±1.11 3.53 ±1.11 3.88 ±0.94 0.28
Trustworthiness 3.28 ±0.93 3.64 ±0.92 3.36 ±1.06 3.78 ±0.9 0.23
Actionability 3.08 ±0.96 3.25 ±1.06 3.37 ±1.04 3.77 ±0.95 0.21
Completeness 3.18 ±1.02 3.76 ±1.09 3.1 ±1.19 3.67 ±1.07 0.16
Conciseness 3.13 ±1.06 2.82 ±1.31 3.72 ±1.06 3.68 ±1.05 0.12

Global 3.2 ±0.81 3.38 ±0.85 3.41 ±0.88 3.78 ±0.77

Table 5: Model score for each criterion (average ± std),
and criteria weight according to their ranking. All scores
range from 1 (lowest) to 5 (highest).

InterpretCC provides sparse and hence user-friendly explanations, while not compromising on
explanation faithfulness.

5.3 Exp. 3: InterpretCC explanations are preferred by humans

Setting. To validate the user-centeredness of our approach, we conducted a user study comparing
InterpretCC’s explanations with the ones from other interpretable-by-design methods, SENN and
NAM. We focused on the education domain and time series input type, using the DSP course in
the EDU dataset. We trained InterpretCC Feature Gating and Group Routing (with pattern-based
feature grouping strategy, since it is heavily grounded on expert knowledge) as well as SENN and
NAM and randomly selected four test samples (i.e., four students) for prediction.

We recruited 56 teachers using Prolific4, (see Appendix D for detailed information about the
participants’ demographics and backgrounds (Figure 5) and the content of the study). We showed
them each model’s prediction of the student’s success or failure along with its explanation. The

4www.prolific.com/
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explanations were given as a short text and a graph showing the features and concepts used by the
model. Note that the choices we made for the presentation of the explanations might have an influence
on the participants’ perception of the explanations. Examples of how the explanations were presented
and a discussion on this limitation can be found in Appendix D, Figures 6, 7, 9 and 8. We asked
participants to compare these explanations according to five criteria (aligned with [51]), and to rank
the criteria in terms of importance.

[1] Usefulness: This explanation is useful to understand the prediction.
[2] Trustworthiness: This explanation lets me judge if I should trust the model.
[3] Actionability: This explanation helps me know how to give feedback to the student.
[4] Completeness: This explanation has sufficient detail to understand why the prediction was made.
[5] Conciseness: Every detail of this explanation is necessary.

Results. Using Friedman’s Chi-Square test, we verify that the ranking of the criteria is consistent
among the participants (p < 0.05). We report normalized criteria importance in Table 5 (last column).
We observe that Usefulness, Trustworthiness and Actionability are consistently ranked the highest by
the participants. We compute the Global satisfaction score as a weighted average of the criteria as a
global satisfaction measure for each model (Table 5, last row).

We observe that ICC FG ranks the highest in the top 3 most important criteria as well as in global
satisfaction. Furthermore, ICC GR ranks second in Usefulness and Actionability and first in Concise-
ness. Overall, InterpretCC models are favored over interpretable baselines in 4 out of 5 criteria
and in terms of global satisfaction. An ANOVA performed separately for each criterion as well as
the global satisfaction measure (Table 10, Appendix D.3), indicates that there is indeed a significant
difference between the models for each criterion. Post-hoc pairwise Tukey’s Honest Significant
Difference (HSD) tests confirm that ICC FG significantly outperforms NAM and SENN on all criteria
but completeness (see Figure 11, Appendix D.3 for details).

Participants prefer InterpretCC explanations in terms of usefulness, trustworthiness, actionabil-
ity, and conciseness over interpretable baselines.

6 Discussion and Conclusion
We propose InterpretCC, a family of interpretable-by-design models that puts interpretability and
human understanding at the forefront of the design. Through our experiments with feature gating
models and interpretable group routing (mixture-of-expert) models, we demonstrate that our optimally
interpretable modular architectures do not compromise on performance. In a real-world setting, we
show that InterpretCC models are preferred over other intrinsically interpretable models in 4 of 5
explainability criteria.

Limitations. InterpretCC Feature Gating is best when individual features are important for
actionable decisions based on the explanation. However, it can lose sparseness if all features are
equally important: consider the extreme case where the prediction is a sum over the full feature
space and all features are independent. While this is rare in real-world datasets, it is a critical design
consideration. InterpretCC Group Routing requires more human effort than Feature Gating and
is, therefore, more adapted to scenarios with large feature spaces, where broader concepts are more
relevant than individual features. For both InterpretCC models, we find that tuning the learning
rate and feature threshold parameter was especially key to achieving strong results.

User-defined feature groups aim at deriving explanations useful to the user, but might compromise
performance if the user specifies a grouping that carries minimal signal. This is by design: regardless
of the grouping, InterpretCC optimizes for explanation actionability and understandability over
performance. We believe that an accurate prediction at the cost of explanation usefulness is not
worth it in an applied setting. Moreover, we have shown how the feature groups can be defined
automatically using LLMs to reduce human effort, but still provide human-centric explanations.

We acknowledge that the presentation of explanations in our user study (Section 5.3) has influence
over our preliminary results on user perception. We had to significantly post-process the explanations
of SENN and NAM to provide them in a format understandable for a non-technical audience.
An extensive study over many different prediction tasks and participants’ domains of expertise is
necessary for generalizable conclusions.

Future Work. For the text datasets, we fine-tune DistilBERT models to solve the task given
groups of features. For more complex tasks, for example requiring very long context size, multi-step
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reasoning ability, or strong prior domain-specific knowledge, DistilBERT can be swapped with
large decoder models (LLMs), either through fine-tuning or in-context learning. Parameter-efficient
fine-tuning such as LoRA would allow fine-tuning even large LMs with limited computational cost,
while in-context learning would use the same model instance for each feature and feature group.
Overall, we encourage the machine learning community to design models for interpretability at many
different granularities and user-specified requirements. InterpretCC provides one such family of
models as a tradeoff between human specification, explanation certainty, and performance.
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Impact Statement

This paper introduces work aimed at advancing the field of human-centered machine learning,
addressing the critical balance between interpretability and model performance in neural networks.
We demonstrate that these aspects do not necessarily need to be a trade-off, particularly in fields
where AI’s can influence decisions that can have effects on people’s lives, such as finance, healthcare,
and education. Focusing on the applications presented in this paper, in healthcare, the ability to
understand and trust AI-driven recommendations can greatly improve care delivery. In education,
the application of interpretable models reduces the risks of unintended biases, help users to identify
actionable items, and increases trust.

A key impacts is regulatory compliance, where guidelines and regulations around AI usage are in-
creasing. Models like InterpretCC can help industries and organizations meet these legal standards
by increasing the transparency of their AI-based decision-making tools.

ICC enhances trust and human-centered actionability in predictive tools by clearly listing the features
impacting predictions. This empowers decision-makers to take informed actions. Different contexts
and applications lead to different interpretability needs; different levels of granularity, and different
sets or groups of features. ICC Group Routing allows users to define their own set of feature, adapted
to their needs. Moreover, by identifying a finite set of key features, ICC may reduce spurious
predictions and allow users to better understand the causes of unexpected model behavior. Overall, an
interpretable model like ICC allows users to assess the model’s robustness more easily and faithfully.

Our tool also offers the potential to identify and mitigate biased behaviors within models, particularly
if discriminatory predictions arise from certain feature uses. As different contexts may require varying
levels of interpretability, the Group Routing feature of ICC allows users to define and adjust feature
sets according to their specific needs, ensuring flexibility and relevance in diverse applications.

Comparable in societal and technological impact to other interpretable-by-design methods, such as
those discussed by Agarwal et al. in their 2021 study, ICC represents a significant step forward in
making AI more accessible and understandable for users and practitioners alike.

However, we acknowledge that despite the versatility of ICC across various data types, domains, and
datasets demonstrated in this work, we cannot guarantee that it will always perform on par with or
better than baseline models. It is important to note that the model weights we release are not safe
for direct use in production tasks, such as detecting breast cancer, without further validation and
adaptation. We encourage other researchers and practitioners to adopt explainable AI methods.

A Additional Details on Datasets

Here, we provide additional statistics regarding each dataset used in our study. In particular, we
highlight their availability details and terms of use.

EDU. We predict student success during the early weeks of four massive open online courses
(MOOCs), using students’ clickstream data (see Table 6 for details about the courses). Contrary to
the other 4 datasets, this dataset is kept private for student privacy reasons, as required by HREC
058-2020/10.09.2020 and HREC 096-2020/09.04.2022.

Title Identifier Topic Level Language No. Weeks No. Students Passing Rate [%]
Digital Signal Processing DSP CS MSc English 10 4,012 23.1
Éléments de Géomatique Geo Math BSc French 11 452 45.1
Household Water Treatment and Storage HWTS NS BSc French 5 2,438 47.2
Villes Africaines VA SS BSc En/Fr 12 5,643 9.9

Table 6: Course Details and Statistics.
Topic abbreviations: Math: Mathematics; NS: Natural Science; CS: Computer Science; SS: Social
Science; Arch: Architecture; Bus: Economics and Business.

AG News is a news classification dataset, where given a title and description of a real-world article, it
has to be classified into one of the four categories: ‘World’, ‘Sports’, ‘Business’, ‘Sci/Tech’ [39]. It is
freely available at the following location: http://groups.di.unipi.it/~gulli/AG_corpus_
of_news_articles.html, but only for non-commercial use.
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SST. The Stanford Sentiment Treebank dataset aims at predicting the sentiment from a sentence
fragment sourced from a movie review. The dataset is freely available here: https://huggingface.
co/datasets/sst. This popular benchmark is an extension of the Movie Review Database (MRD)
[40]. It includes two sets of labels: one for binary sentiment classification and one for multiclass. We
use binary classification to demonstrate a different setting than the multiclass classification of AG
News.

Breast Cancer. The Wisconsin Breast Cancer dataset attempts to identify the presence of cancerous
tissue from an image of a fine needle aspirate (FNA) of a breast mass [43]. This dataset is freely
available here: https://archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin+
diagnostic, and is licensed under a Creative Commons Attribution 4.0 International (CC BY
4.0) license.

Synthetic Dataset. We generate 5000 points of OpenXAI’s synthetic dataset [44] through the class
generate_gaussians with 5 cluster centers, which includes both ground truth labels and ground
truth explanations, and is available here: https://github.com/AI4LIFE-GROUP/OpenXAI (under
MIT license).

B InterpretCC Group Routing Schema

In the following, we discuss the exact grouping schematic employed on the 4 EDU datasets (including
three schemes) and the 2 text datasets.

Dimensions Corresponding measures Student patterns

Effort Total time online
Total video clicks

Higher intensity
Lower intensity

Consistency
Mean session duration
Relative time online
Relative video clicks

Uniform
First half
Second half

Regularity
Periodicity of week day
Periodicity of week hour
Periodicity of day hour

Higher peaks
Lower peaks

Proactivity Content anticipation
Delay in lecture view

Anticipated
Delayed

Control
Fraction time spent (video)
Pause action frequency
Average change rate

Higher intensity
Lower intensity

Assessment Competency strength
Student shape

Higher intensity
Lower intensity

Table 7: EDU Routing by Pattern uses learning dimen-
sions from [37] to create interpretable feature groupings.

Code Field of Study
000 Computer Science, Information

and General Works
100 Philosophy and Psychology
200 Religion
300 Social Sciences
400 Language
500 Pure Science
600 Technology
700 Arts and recreation
800 Literature
900 History and geography

Table 8: Text Routing by the
Dewey Decimal Classification system
[52]. Each code represents a sub-
network in the text variations of the
InterpretCC framework.

B.1 Feature Grouping Schema for EDU Datasets

The data is composed of student clickstream data from four different MOOCs. The raw clickstream
input is transformed into 45 weekly time-series features that have proven useful for student success
prediction in previous literature (e.g. total video clicks, forum interactions).

Routing by pattern. We organize features according to four learning dimensions identified by [36]
and detailed in Table 7—effort, consistency, regularity, proactivity, control, and assessment—based
on [37], with a focus on these dimensions in an extended experiment.

Routing by GPT-4. To leverage LLMs for automated feature groupings, we use the following
prompt alongside the feature descriptions from the appendix table of Swamy et. al [45].

Prompt: You are a talented learning scientist, specializing in self-regulated learning behavior. You
want to group the following features together into smaller groups of logical concepts based on
educational theory with headings. What are your feature groupings?
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Response: Certainly, based on educational theory and self-regulated learning behavior, I would group
the provided features into the following logical categories:

• Temporal Engagement:

– DelayLecture
– RegPeakTimeDayHour
– RegPeriodicityDayHour

• Study Patterns:

– NumberOfSessions
– AvgTimeSessions
– TotalTimeSessions
– StdTimeSessions
– StdTimeBetweenSessions

• Video Engagement:

– AvgWatchedWeeklyProp
– StdWatchedWeeklyProp
– AvgReplayedWeeklyProp
– StdReplayedWeeklyProp
– AvgInterruptedWeeklyProp
– StdInterruptedWeeklyProp

• Competency and Learning Progress:

– CompetencyStrength
– CompetencyAlignment
– CompetencyAnticipation
– ContentAlignment
– ContentAnticipation

• Interaction Patterns:
– TotalClicks
– TotalClicksProblem
– TotalClicksVideo
– TotalClicksWeekday
– TotalClicksWeekend
– TotalTimeProblem
– TotalTimeVideo
– TotalClicksVideoLoad
– TotalClicksVideo
– FrequencyEventVideo
– FrequencyEventLoad
– FrequencyEventPlay
– FrequencyEventPause
– FrequencyEventStop
– FrequencyEventSeekBackward
– FrequencyEventSeekForward
– FrequencyEventSpeedChange
– AvgSeekLength
– StdSeekLength
– AvgPauseDuration
– StdPauseDuration
– AvgTimeSpeedingUp
– StdTimeSpeedingUp

• Assessment Behavior:
– StudentSpeed
– StudentShape

Each grouping represents a different aspect of self-regulated learning behavior, focusing on how
students engage with learning resources, interact with content, demonstrate competency, and approach
assessments. This categorization aligns with principles of self-regulated learning and can help in
analyzing and understanding students’ behaviors and strategies within an educational context.

Routing by Paper. In routing by paper, we create 4 distinct feature subsets based on handcrafted
initial input features from 4 learning science research papers highlighted as predictive for MOOCs in
[45]. We filter each feature set to a expert subnetwork for the research paper the set originated from
[32, 35, 34, 33].

B.2 Feature Grouping Schema for Text Datasets

For news categorization (AG News) and sentiment prediction (SST) feature grouping, we assign
words to subnetworks. For this, we use the Dewey Decimal Code (DDC) for librarians and its
hierarchy of topics for book classification to create 10 subnetworks, as showcased by topic in Table 8
[41]. Each word is assigned to a subcategory (i.e. the word ‘school’ is assigned to the subcategory
‘education’ under category 300 for ‘social sciences’) and routed to the appropriate parent network.
The decision to use the DDC was to use subnetworks that were standardized, pervasive in daily life
and clearly human-understandable. To conduct this assignment, we utilize SentenceBERT to encode
the subtopics for each DDC heading (i.e. all of 010, 020, 030, etc. for the category 000) [42]. The
choice of SentenceBERT is motivated towards capturing the broader context of multi-word category
headings in a lightweight model. During training and inference, we again use SentenceBERT to
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encode each word in the input instance, then assign each word to the most similar DDC category in
embedding space with cosine similarity.

C Sparsity Criterion Experiments

For the feature gating architecture to further improve interpretability, we would like the network to
learn sparse feature activations. That is, for a given input x we would like to reduce the number of
features that affect the model prediction. To achieve this we apply regularization to the generated
feature mask.

One natural choice to enforce sparse feature activations is to apply L1-norm regularization to the
feature mask, which penalizes a high number of nonzero elements. Another choice is to use annealed
regularization as presented by Verelst and Tuytelaars [53], which might aid the model to first work
through a prediction optimization phase that is not confounded by any additional error terms before
moving towards a sparsity-enforcing phase.

We experiment with annealing L1 and L1 regularization across four courses, and find that traditional
L1 regularization is more stable (at least in the time-series setting). The Baseline BiLSTM results are
not reported as confidence intervals here as they are directly sourced from a recent benchmarking
paper by Swamy et al., with confirmed similarity by Asadi et al. [45, 54]. We reproduce this
benchmark above with similar values in Table 9.

EDU
Dataset Baseline InterpretCC

Feature Gating
40% EP BiLSTM Annealing L1

DSP 82 87.76 +/- 3.12 90.75 +/- 0.01
Geo 76.2 81.13 +/- 5.39 71.92 +/- 0.01
HWTS 72 77.58 +/- 0.01 82.89 +/- 0.04
VA 73.8 84.81 +/- 0.01 77.80 +/- 0.01

Table 9: Annealing L1 regularization in comparison with L1 regularization across EDU datasets.

D User Study

In this section, we discuss the details of the user study presented in Section 5.3, discussing the
design, content, and additional analyses of the results (including an ANOVA and Tukey HSD tests).
We designed the study over four rounds of pilots, with 8 individuals from diverse backgrounds,
continuously updating the study design following their feedback. The survey has been approved
by the the Human Research Ethics Committee (HREC) under application number HREC 065-
2022/27.09.2022.

D.1 Design of the Study

We recruit 56 participants using Prolific,5, selecting the ones who identified their current profession
as a teacher and who have at least a bachelor’s degree. Our target participants have expertise in
teaching, as they would be well-suited to understand both the educational context of the study and the
consequences of black-box models for student outcomes. During the study, we ask the participants
whether they have ever taken or prepared material for an online course (MOOC), their level of
education, and what level they are teaching at (from primary school to graduate school). Detailed
demographics distribution can be found in Figure 5. The sample of participants is gender-balanced,
and about half of them have taken or participated in creating a MOOC. The median completion time
is 22 minutes, and the average reward per hour is £14.55.

At the beginning of the study, the participants are shown the following welcome message and
disclaimer:

5www.prolific.com/
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Figure 5: Demographics of teachers that participated in the user study.

Dear participant,

Thank you for participating in our study on model explanations. We are very grateful for your
participation and your invaluable insight. Please read this Explanatory Statement in full before
moving forward. If you would like further information regarding any aspect of this project,
please contact us via the email address provided below.

We are a group of researchers from the ML4ED Laboratory at EPFL dedicated to improving
education through technology. The goal of this study is to evaluate different explanations to
help a student improve their performance in an online course.

- This survey has been approved by the EPFL Human Research Ethics Committee (HREC)
under application number HREC 065-2022/27.09.2022. HREC reviews research proposals
involving human participants to ensure that they are ethically acceptable.

- All the personal information will be kept confidential and anonymized. Only demographic
information is being recorded and will only be reported as aggregate in a way that prevents
identification of any individual participant. You can freely withdraw at any time and any
collected data you provided so far will be destroyed.

- All data will be collected and stored safely and reported in an anonymous form, in accordance
with the Swiss Federal law on data protection (“Loi fédérale sur la protection des données” –
RS 235.1).

- Only anonymized or aggregated data may be used in follow-up research (subject to ethics
approval), and made available to other researchers for further analysis and for verification of the
conclusions reached by the research team.

- Only the principal investigator and the aforementioned researchers have access to the original
data under strict confidentiality. Results from the project may be published in conference
papers and/or journal articles. In any case, no personal data will be published (only aggregated,
anonymous and/or anonymized data will be published).

- Personal data of participants will be stored for 5 years from the date of collection. During
this time, participants have the right to access their data and request information about the
processing of their personal data. In order to exercise this right, you need to contact the Principal
Investigator.
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By participating in this survey, you agree that your data can be used for scientific purposes.

In the following study, you will be asked to compare explanations for approximately 35
minutes. Please ensure that you have enough time to finish the study correctly. Unfinished or
only partially answered studies will not be considered as taken part.

We ask you to approach the questions and exercises with seriousness and to complete them to
the best of your ability. We will subsequently check questionnaires for seriousness and will
have to discard questionnaires that do not meet this requirement.

Thank you for your help. If you encounter any problem with the survey, or if you want to give ex-
tra feedback, or receive additional information, feel free to contact us (vinitra.swamy@epfl.ch).

D.2 Content of the study

First, we explain the setting of the study to the participants with the following introductory message:

You are a teaching assistant helping with a Massive Open Online Course (MOOC). This course
is taught at the Master’s level with quizzes and video lectures taking place over 10 weeks. Since
it’s a difficult course with a low passing rate (23.1%), the teaching team wants to help students
who are not doing well to perform better in the course by giving them personalized assistance,
and encourage students who are already performing well to continue.

To do this, we have models to predict student success or failure using various weekly behavior
features, such as number of video clicks or how accurately questions are answered on the weekly
quizzes. If potential failure is predicted early (in our case, in the first 4 weeks of the course),
we can use the explanation of the prediction to give additional support (i.e. specific tutoring or
assignment reminders) to help the student pass the course.

We train four interpretable machine learning models. Each model predicts a student’s perfor-
mance at the end of the course, in the form of “pass” or “fail”, but also gives us which factors
contribute to student success or failure. We want to compare these explanations according to
several criteria:

• Usefulness: This explanation is useful to understand the prediction.
• Trustworthiness: This explanation lets me judge if I should trust the model.
• Actionability: This explanation helps me know how to give feedback to the student.
• Completeness: This explanation has sufficient detail to understand why the prediction

was made.
• Conciseness: Every detail of this explanation is necessary.

We randomly sample 4 students from the test set. Among the 4 selected students, 3 failed the class
and one passed. For each student, we predict their success or failure with each model and generate an
explanation. We provide them to the participants along with the models’ prediction of the student’s
success or failure. The ground truth (student’s performance) and the models’ performance are not
provided to the participants so that we do not bias their assessment.

The content of the explanation obtained by each method differs greatly. We simplify the explanations
and render them in textual and graph format to make them as easy to understand as possible to a
human. For InterpretCC explanations, we provide the full list of single features / feature groups
used by the models. For Feature Gating, we show the evolution of the student’s behavior across
weeks for each of the features used (see Figure 6). For Group Routing, we compute a generic score
for each concept used by the model, by averaging the normalized behavior features that compose
the concept. We show the evolution of that concept measure across weeks for the student. We also
provide the definition of the concept and of the features that compose it (see Figure 7). For SENN,
we select the top 5 groups of students, that we call concepts. We showcase all 180 feature-weeks
for each concept along with their importance in that concept, highlighting the salient ones. We also
provide the importance of each concept for the model’s prediction (see Figure 9). Finally, NAM
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assigns feature importance to all 180 feature-weeks used to make the prediction. We select the 5
feature-weeks found to have highest positive impact, 5 feature weeks with the lowest impact, and the
5 feature-weeks with highest negative impact. We show their importance in a barplot (see Figure 8).

Note that the choice we made for the presentation of the explanations might have an influence on the
participants’ perception of the explanations. In an ideal setting, we would provide a very detailed
description of how each model uses the features and how the explanation is derived, so that the
participants can fairly assess the explanation’s quality. However, in a realistic setting, the user facing
the explanation might not have the time or prior knowledge necessary to understand these elements.
To tackle that trade-off between ensuring thoroughness and accessibility of the content of each
model’s explanation, we opted for a balanced approach in presenting each explanation with a simple
graph and an explanatory text that we kept as short as possible.

For each new sample (student taking the course), we provide the list of 4 model explanations in
random order. We ask participants to compare these explanations according to five criteria using likert
scales. A screenshot of the answer section is shown in Figure 10. We include a practice question to
train the participants in how to answer the study and filter inattentive experts. We excluded from the
analysis 5 participants who failed to answer correctly to half of the practice questions.
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Figure 6: Explanation visualizations given to the participants for the InterpretCC Feature Gating
method, for one student.

Along with the InterpretCC FG graphs, we provide the following explanatory text:

This student is predicted to fail the course. The model found the following 2 features to be the
most predictive for this student, and only used these features to make the prediction:

• Quiz Speed on Attempts: The average time passed between two consecutive attempts for the
same quiz.

• Total Time spent on Problems: The total (cumulative) time that a student has spent on problem
events.

The plot shows the evolution of the student’s behavior for each feature across the 4 weeks.
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Figure 7: Graph given to the participants for the InterpretCC Group Routing with pattern-based
matching method, for one student.

Along with the InterpretCC GR graph, we provide the following explanatory text:

This student is predicted to fail the course. For this student, the model decided to only use 1
group(s) of features to make the prediction as this was the one(s) it found most important.
The groups of features were designed by expert literature in learning sciences:

• Concept: PROACTIVITY

Definition: Proactivity measures the extent to which students are on time or ahead of the schedule,
as engagement in pre-class activities has shown to be associated with exam performance.

• It includes the following features: The number of videos covered by the student from those that
are in subsequent weeks and The average delay in viewing video lectures after they are released
to students.
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Figure 8: Graph given to the participants for the NAM method, for one student.

Along with the NAM graph, we provide the following explanatory text:

This student is predicted to fail the course. The model used all 180 feature-weeks (45 features
from 4 weeks) to make the prediction. It has assigned a level of importance for each feature-
week, showing how much it impacts the predictions, independently of the student’s behavior.
Out of the 180 feature-weeks, the plot shows the 5 feature-weeks found to have the highest positive
impact, 5 feature weeks with the lowest impact, and the 5 feature-weeks with the highest negative
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impact. For example, Quiz Max Grade in Few Attempts in week 0 has an importance score of
3.48.
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Figure 9: Graph given to the participants for the SENN method, for one student.
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Along with the SENN graph, we provide the following explanatory text:

This student is predicted to fail the course. The model used all 180 feature-weeks (45 features
from 4 weeks) to make the prediction. It groups them into 5 concepts automatically and
assigned a score to each concept. Each concept can be interpreted as a group of features that
are important for the prediction. The plot shows the importance of each feature-week for each
concept, from high positive importance (blue) to high negative importance (red).

Here is the list ordered by absolute value of importance:

• Concept 3 (-0.21)
• Concept 2 (0.08)
• Concept 1 (-0.01)
• Concept 5 (-0.01)
• Concept 4 (0.01)

Figure 10: Format of the Likert scale question asked for each criterion and explanation.

D.3 Significance Testing for User Study Results

We perform an ANOVA to determine the effect of the model and the sample (the student) on the score
given by the participants, for each criterion and on average. Table 10 shows the p-values testing the
significance of the effect of the model and sample on the participants’ scores for each criterion. It
can be interpreted the following way. In the first row, if the p-value is lower than the significance
level (0.05), then there is a statistically significant difference in scores across the different models
for that criterion. In the second row, if the p-value is below 0.05, there is a statistically significant
difference in scores across the different students. Finally, a p-value lower than 0.05 in the final row
shows that the effect of the model on the scores depends on the student. According to the table, the
model has always a significant impact of the value given to each criterion. Then, we apply Tukey’s
Honest Significant Difference (HSD) Test to determine, for each pair of explanation, if their scores
are significantly different (Figure 11).

Usefulness Trustworthiness Actionability Completeness Conciseness Global

Model 0.000 0.001 0.000 0.000 0.000 0.000
Student 0.004 0.018 0.144 0.003 0.075 0.075
Model:Student 0.143 0.058 0.063 0.000 0.171 0.171

Table 10: ANOVA results for the user study.
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Figure 11: Significance test using Tukey’s Honest Significant Difference (HSD) Test. It indicates
which pairs of models have significantly different means. We highlight the top model on average
(Global satisfaction, in the last plot), ICC FG (InterpretCC Feature Gating) in blue, and the models
that are significantly worse according to each criterion in red.
Example of interpretation: for the criterion Usefulness, ICC FG is scored significantly better than
SENN and NAM, but is not significantly better than ICC GR.

E Reproducibility and Compute Details

All EDU, Health, and Synthetic experiments were run on a single NVIDIA A100 GPU with 32 GB
Memory, each model taking approximately 20 minutes (or often less) to train. Text experiments for
InterpretCC took approximately an hour to train. SENN Concepts took the longest time of all models,
with each model running within 3-4 hours.

All interpretable models reported in 2 and 3 has been hyperparameter tuned over the following
parameters with early-stopping (where applicable):

• learning rate: 1e-3, 1e-4, 2e-5, 1e-5

• layer size: 16, 32, 64

• number of concepts (only for SENN): 5, 6, 7

• batch size: 8, 16, 32, 64)

• gumbel softmax threshold (only for InterpretCC): 0.1, 0.3, 0.5, 0.7

Each Feature-Based model was run for 100 epochs with early stopping, and each Concept-Based
model was run for 20 epochs with early stopping. Other details related to preprocessing and thresholds
are included directly in our repository.

F Gumbel Softmax trick and its application to InterpretCC

To make the feature gating and routing architectures compatible with backpropagation, we need to
make the masks differentiable. These discrete decisions can be trained end-to-end using the Gumbel
Softmax trick [31]. This method adapts soft decisions into hard ones while enabling backpropagation,
i.e. provides a simple way to draw samples from a categorical distribution.
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Figure 12: Breast Cancer: Number of activations (left) vs. average activation weight (right) per cell.

Given a categorical distribution with class probabilities π = [π1 π2 ... πN ], one can draw discrete
samples z as follows:

z = ONEHOT
(
argmax

i
[gi + log πi]

)
where g1...gN are i.i.d. samples drawn from the Gumbel(0, 1) distribution. Then, the softmax
function is used as a differentiable approximation to argmax to generate a N -dimensional sample
vector y such that

yi =
exp((log(πi) + gi)/τ)∑N

j=1 exp((log(πj) + gj)/τ)
for i = 1, ..., N

where τ is a softmax temperature parameter that is fixed at τ = 1 for experiments in this project.

Notice that for the gating mechanism, an independent sample is drawn for each ‘gate’ instead of
for each datapoint in routing. For example in feature gating, for each feature i, a soft-decision
ai ∈ (−∞,+∞) is outputted by the discriminator layers. The probability π1 that the feature should
be activated as well as the complement probability π2 (feature is not activated) can then be computed
by using the sigmoid function:

π1 = σ(ai) π2 = 1− π1 = 1− σ(ai)

The corresponding (1-dimensional) sample y for each i can thus be reduced to

y = σ

(
ai + g1 − g2

τ

)
In other words, the discriminator layers from Fig. 1 actually feed into an adapted Gumbel Sigmoid
where σi is the corresponding y sample as described above.

For routing, the discriminator layers actually output the route logits to a Gumbel Softmax, which
constructs the categorical sample vector (of dimension equal to the number of routes and i-th entry yi
defined as above).

Finally, we can use a straight-through estimator during training. In other words, binary (or
hard/quantized) samples are then used for the forward pass while gradients are obtained from
the soft samples for backpropagation. This means that, given soft decisions σi, architectures that
use a mask M = [m1 ...mN ] with mi = 1{σi≥0.5} differ in value during the forward and backward
pass:

mi =

{
1{σi≥0.5} (forward pass),
σi (backward pass)

G Additional Group Routing Experiments

We conduct additional analyses for the high impact, real-world applications in Health and EDU.

G.1 Grouping Analysis for Breast Cancer Dataset

For the Breast Cancer data set, the subnetworks grouping features from Cell 1 and Cell 2 are
activated much more frequently than the third subnetwork (see Fig. 12). Furthermore, Cell 3 also
gets activated with higher weights than the other two cells (Cell 1: 0.25, Cell 2: 0.40, Cell 3: 0.0.70).
Smoothness and texture of the tissue images were the most important features across cells.
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Figure 13: EDU: Number of subnetwork activations (left) and Gumbel Softmax activation weights
(right) across different groupings (GPT-4, Paper, Pattern) for course DSP 1 of the EDU domain.

G.2 Grouping Analysis for EDU Datasets

We conduct sparsity and group routing paradigm analyses on a representative course of the EDU
datasets (DSP). We additionally experiment with grouping by paper and pattern over all courses,
including two additional MOOC courses with low predictive performance (Structures and Ventures)
featured in [45].

G.2.1 Sparsity Analysis on DSP

We conduct a sparsity analysis on the course used for the user study, DSP, and featured in several
research works in the learning science community [6, 45, 33]. In line with [45], we evaluate the
sparsity at both the 40% and 60% prediction setting, representing early prediction at 4 and 6 weeks
of the course respectively.

Setting Model
Performance

ACC BAC AUC
Activated Features

µ σ

40%

Baseline
L1 (1e-5)
L1 (1e-4)

Annealed MSE
Truncated AMSE

0.835 0.653 0.858
0.790 0.711 0.817
0.763 0.748 0.784
0.768 0.770 0.823
0.805 0.743 0.823

97 0
8.54 0.58
2.20 1.64

13.26 3.72
5.95 1.03

60%

Baseline
L1 (1e-5)
L1 (1e-4)

Annealed L1 (1e-5)
Annealed MSE

Truncated AMSE

0.944 0.925 0.982
0.914 0.935 0.963
0.914 0.917 0.957
0.910 0.927 0.957
0.892 0.927 0.952
0.787 0.788 0.839

97 0
37.60 3.97
31.38 4.45
38.36 3.61
21.45 3.23

- -

Table 11: InterpretCC Feature Gating comparison of performance metrics between different
sparsification methods next to their average and standard deviation of number of activated features for
both 40% and 60% early success prediction settings; baseline benchmarks also provided for contrast.

An annealed mean-squared regularization proved most effective, although it activated more features
on average than L1-norm regularization which more effectively reduced the feature space while
achieving desirable balanced accuracy performance in this setting. By truncating the initial feature
space to only the activated features and using the same architecture, performance is almost maintained
even though the average number of activated features per datapoint is more than halved (from around
13 to 6). However, this method was not as effective for the 60% setting. Truncating the feature space
largely reduces predictive capability (e.g. almost a 0.15 drop in balanced accuracy). L1 regularization
in this case proved best. Using an annealed regularization did not significantly improve or change
model performance as well.
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G.2.2 Multiple Grouping Paradigms on DSP

To illustrate the influence of different feature groupings, we conduct a deep dive for course DSP 1
of the EDU domain. Figure 13 illustrates the number of subnetwork activations and corresponding
weights for three different groupings.

For the first two groupings (GPT-4, Paper), the subnetwork activations (number of times the route
was activated) closely mirror the Gumbel Sigmoid adaptive weighting, indicating that a few networks
are activated with high weights for prediction. In the group by GPT-4 setting, we see behaviors of
competency, interaction patterns, and assessment frequently activated for student pass-fail predictions.
Although ‘interaction patterns’ is the largest category (most number of features chosen by GPT-4), it
still comes second to competency (focusing on student achievement). In the group by paper setting,
we see a clear preference for Marras et al. with over 17, 500 students predicted using this network
(dark orange) and high weight given to the predictions from the network (light orange).

In contrast, in the third grouping (Pattern), we see a differentiation between the number of activations
(dark orange) and the weight of the activations (light orange). Notably, the patterns of ‘Effort’,
‘Proactivity’, ‘Consistency’ and ‘Control’ all have higher than 50% weight when they are activated,
which means they contribute a lot to the overall prediction when chosen.

G.2.3 Grouping by paper and pattern over all courses
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Figure 14: EDU analysis of group by paper routing averaged over all six courses for each paper
grouping. The y-axis represents the proportion of points for which the subnetwork is activated.

In Figure 14, we see InterpretCC routing by research paper (grouping the features based on the
paper they were proposed in). The Marras et al. and Chen Cui feature sets have clearly been identified
as important over the majority of courses, echoing findings in other learning science literature using
BiLSTM and random forest architectures [35, 34, 55]. The large standard deviations in the box-plots
indicate that for at least some courses (in this case Structures and Venture), Chen Cui and Marras
were not found significantly important. Notably, the same courses that have low accuracies on routing
in 2 are those that have low scores on the two most popular feature sets, showing a consensus among
performant InterpretCC models and a validation of the identification of importance.
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Figure 15: EDU Weighting distribution across subnetworks using group by pattern for 6 courses.

In Fig. 15, we see a widely varying distribution of patterns selected across courses, showcasing the
ability of InterpretCC to adaptively select subnetwork weights depending on the dataset.
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