
PAPER • OPEN ACCESS

Global fluid simulation of plasma turbulence in
stellarators with the GBS code
To cite this article: A.J. Coelho et al 2024 Nucl. Fusion 64 076057

 

View the article online for updates and enhancements.

You may also like
THE GALACTIC BULGE SURVEY:
COMPLETION OF THE X-RAY SURVEY
OBSERVATIONS
Peter G. Jonker, Manuel A. P. Torres,
Robert I. Hynes et al.

-

THE GALEX/S4G UV–IR COLOR–COLOR
DIAGRAM: CATCHING SPIRAL
GALAXIES AWAY FROM THE BLUE
SEQUENCE
Alexandre Y. K. Bouquin, Armando Gil de
Paz, Samuel Boissier et al.

-

Post-selection in noisy Gaussian boson
sampling: part is better than whole
Tian-Yu Yang, Yi-Xin Shen, Zhou-Kai Cao
et al.

-

This content was downloaded from IP address 128.178.116.9 on 17/06/2024 at 10:14

https://doi.org/10.1088/1741-4326/ad4ef5
/article/10.1088/0067-0049/210/2/18
/article/10.1088/0067-0049/210/2/18
/article/10.1088/0067-0049/210/2/18
/article/10.1088/2041-8205/800/1/L19
/article/10.1088/2041-8205/800/1/L19
/article/10.1088/2041-8205/800/1/L19
/article/10.1088/2041-8205/800/1/L19
/article/10.1088/2041-8205/800/1/L19
/article/10.1088/2041-8205/800/1/L19
/article/10.1088/2041-8205/800/1/L19
/article/10.1088/2058-9565/acf06c
/article/10.1088/2058-9565/acf06c


International Atomic Energy Agency Nuclear Fusion

Nucl. Fusion 64 (2024) 076057 (18pp) https://doi.org/10.1088/1741-4326/ad4ef5

Global fluid simulation of plasma
turbulence in stellarators with the
GBS code

A.J. Coelho∗, J. Loizu, P. Ricci and Z. Tecchiolli

Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne,
Switzerland

E-mail: antonio.coelho@epfl.ch

Received 20 December 2023, revised 21 April 2024
Accepted for publication 22 May 2024
Published 13 June 2024

Abstract
The implementation of three-dimensional magnetic fields, such as the ones of stellarators, in the
GBS code (Ricci et al 2012 Plasma Phys. Control. Fusion 54 124047; Giacomin et al 2022 J.
Comput. Phys. 464 111294) is presented, and simulation results are discussed. The geometrical
operators appearing in the drif-reduced Braginskii equations evolved by GBS are expanded
considering the typical parameter ordering of stellarator configurations. It turns out that most of
the operators have a similar structure as the one implemented in the tokamak axisymmetric
version of the code. In particular, the perpendicular laplacian only acts on the poloidal plane,
which avoids the need of a three-dimensional solver for the electrostatic potential. The
simulation of an island divertor stellarator is then presented, showing the derivation of the
magnetic equilibrium in detail and extending the results in (Coelho et al 2022 Nucl. Fusion 62
074004). Although the island magnetic field-lines divert the plasma towards the strike points of
the walls, the islands do not seem to have a significant impact on the turbulence properties. The
dominant mode, identified as interchange-driven, is field-aligned and breaks the stellarator
toroidal symmetry. The radial and poloidal extensions of the mode are of the same order, in
contrast to typical tokamak simulations. This has consequences on the poloidal dependence of
turbulent transport.

Keywords: stellarator, island divertor, turbulence, GBS, global fluid simulations

(Some figures may appear in colour only in the online journal)

1. Introduction

As stellarators assume an increasing interest as a viable altern-
ative to the tokamak [1, 2], the importance of improving
the predictive capabilities of plasma turbulence simulations
in three-dimensional magnetic fields grows. Significant effort

∗
Author to whom any correspondence should be addressed.

Original Content from this work may be used under the
terms of the Creative Commons Attribution 4.0 licence. Any

further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

is devoted to extend gyrokinetic codes to non-axisymmetric
magnetic fields, namely GENE-3D [3], XGC-S [4], Stella [5]
and EUTERPE [6], with simulations carried out on W7-X and
LHD equilibria [7, 8]. Fluid codes, which can properly sim-
ulate high-collisional plasmas such as the ones found in the
boundary region of fusion devices, are also being extended to
non-axisymmetric magnetic field geometries [9, 10]. Our let-
ter in [9] reports on the first global flux-driven fluid simulation
of a stellarator, which was performed by using the GBS code
and considering an island divertor geometry [9]. The simula-
tion results show important differences with respect to toka-
mak simulations, namely the fact that turbulent transport is
dominated by a coherent mode with low poloidal mode num-
ber, where the structures are such that their extensions in the
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radial and poloidal directions are similar. Although such level
of coherency and size of the structures is not usual in toka-
maks, in stellarators such as TJ-K, a large coherent mode with
low poloidal mode number is observed (usuallym= 3 orm= 4
in hydrogen and helium discharges) [11], a feature that GBS
simulations of TJ-K were able to retrieve [12].

In our initial work reporting a simulation of a stellarator
with an island divertor [9], the drive of the dominant mode is
identified as a curvature-drivenmode with a ballooning nature.
The investigation of the nature of the mode is achieved by
means of a simplified linear theory. The surprising result that
the non-linear turbulent flux is larger on the high-field side
(HFS) than on the low-field side (LFS) is not explained.

In this paper we extend the results presented in [9]. We
present a detailed description of the model used to perform
stellarator simulations and its implementation in GBS. We
analyse in more detail the simulation results and, in particular,
the nature of the mode dominating the transport, and develop
a more complete linear theory that takes into account the stel-
larator geometry, which is able to explain the peaking of the
turbulent transport at the HFS.

The present paper is organized as follows. Section 2
describes the extension of the GBS code to 3Dmagnetic fields.
In section 3, we present the Dommaschk potentials which are
used to generate stellarator vacuum fields. In section 4, res-
ults of an island divertor stellarator simulation is presented.
Finally, our conclusions are drawn in section 5.

2. Extension of the GBS code to 3D configurations

GBS [13–15] is a three-dimensional, global, two-fluid,
flux-driven code that solves the drift-reduced Braginskii
equations [16], valid in the high-collisionality regime that
often characterizes the plasma boundary of magnetic fusion
devices, as well as the core of low-temperature devices such as
the TORPEX basic plasma physics experiment [17] or the TJ-
K stellarator [12]. GBS evolves all quantities in time, without
separation between equilibrium and fluctuating components.
In the version of GBS with non-axisymmetric magnetic fields,
the electrostatic limit is taken, the Boussinesq approximation
is employed [13] and the gyroviscous terms, as well as the
coupling to the neutral dynamics, are neglected, although these
are implemented in the most recent version of the GBS code
for tokamak simulations [14]. Within these approximations,
the drift-reduced model evolved by GBS is:
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which are closed by

∇2
⊥Φ = ω− τ∇2

⊥Ti. (7)

In equations (1)–(7), and in the rest of the paper, density n,
electron temperature Te and ion temperature Ti are normalized
to the reference values n0, Te0 and Ti0, respectively; electron
parallel velocity V∥e and ion parallel velocity V∥i are both nor-
malized to the sound speed cs0 =

√
Te0/mi; vorticity ω and

the electrostatic potential Φ are normalized to Te0/(eρ2s0) and
Te0/e; time is normalized to R0/cs0, where R0 is the machine
major radius; perpendicular and parallel lengths are normal-
ized to the ion sound Larmor radius, ρs0 =

√
Te0mi/(eB0),

and R0, respectively. The normalized parallel current is j∥ =
n(V∥i −V∥e) and the magnetic field B is normalized to the
magnitude of the field on axis, B0.

The dimensionless parameters appearing in equations (1)–
(7) are the normalized ion sound Larmor radius ρ∗ = ρs0/R0,
the normalized electron and ion parallel heat diffusivities, χ∥e
and χ∥i, considered constants here, the ion to electron temper-
ature ratio τ = Ti0/Te0, the normalized electron and ion vis-
cosities, η0e and η0i, which we assume to have constant values,
and the normalized Spitzer resistivity, ν = ν0T

−3/2
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4
√
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5.88
e4
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√
meR0n0λ
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3/2
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, (8)

where λ denotes the Coulomb logarithm [18]. Small numerical
diffusion terms such as Dn∇2

⊥n and D∥
n∇2

∥n (and similar for
the other fields) are introduced to improve the numerical sta-
bility of the simulations (the simulation results show that they
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Table 1. Boundary conditions applied at the top, bottom, inner and
outer domain boundaries. The derivative ∂s = s ·∇ is along the
direction normal to the surface, s. The upper signs apply if the
magnetic field is directed towards the wall, while the lower signs
apply in the opposite case. It is defined FT =

√
1+ τTi/Te and

Λ = 3 [21].

Top and bottom walls Inner and outer walls

V∥e V∥e =±
√
Te exp(Λ−Φ/Te) ∂sV∥e = 0

V∥i V∥i =±
√
TeFT ∂sV∥i = 0

ω ω= 0 ω= 0
n ∂sn= 0 ∂sn= 0
Φ ∂sΦ =±

√
Te
FT

∂sv∥i Φ = ΛTe
Te,Ti ∂sTe = ∂sTi = 0 ∂sTe = ∂sTi = 0

have a negligible effect on turbulence since they lead to sig-
nificantly lower perpendicular transport than turbulence). The
terms Sn, STe and STi denote the density, electron temperat-
ure and ion temperature sources, respectively. Magnetic pre-
sheath boundary conditions, described in [19, 20], are applied
to all quantities at the top and bottom boundaries of the simu-
lation domain. For the stellarator simulations presented here,
the density and vorticity at the boundary satisfy, respectively,
∂sn= 0 and ω= 0, where ∂s = s ·∇ is the derivative along the
direction normal to the wall, s. This choice is due to stabil-
ity reasons. A summary of the applied boundary conditions is
given in table 1.

The GBS simulation domain is a torus of radius R0 with a
rectangular cross-section of size LR×LZ. The physical model
in equations (1)–(7) is discretized using a regular cylindrical
grid (R,ϕ,Z), with R the radial coordinate, ϕ the toroidal angle
and Z the vertical coordinate. Equations (1)–(6) are advanced
in time using an explicit Runge–Kutta fourth-order scheme,
while spatial derivatives are computed with a fourth-order
finite difference scheme.

The normalized geometrical operators appearing in
equations (1)–(7) are the parallel gradient ∇∥u= b ·∇u, the
Poisson brackets, [Φ,u] = b · [∇Φ×∇u], the curvature oper-
ator, C(u) = (B/2) [∇× (b/B)] ·∇u, the parallel Laplacian,
∇2

∥u= b ·∇(b ·∇u), and the perpendicular Laplacian

∇2
⊥u=∇ · [(b×∇u)× b]. For their numerical implement-

ation in three-dimensional magnetic field configurations, we
expand these operators in the following small parameters:
δ = BR/B∼ BZ/B, where BR and BZ are the radial and ver-
tical components of the magnetic field; the normalized mirror
ratio, ∆= (Bmax −Bmin)/B, where B is the toroidally aver-
aged value of B along the magnetic axis and (Bmax −Bmin)
is the toroidal ripple amplitude; and the ratio between per-
pendicular and parallel turbulence length scales, σ = l⊥/l∥.
We then retain only the leading order terms in these expan-
sion parameters as shown in appendix A. For the stellarator
configuration considered in this work δ ∼ 0.1, ∆≲ 0.1 and
a posteriori we verify that σ ∼ 0.01, confirming the validity
of our expansion. In the particular case of a vacuum field, the
operators are, after expansion,

∇∥u=
BR
B
ρ−1
∗

∂u
∂R

+ sign
(
Bϕ

B

)
R0

R
∂u
∂ϕ

+
BZ
B
ρ−1
∗

∂u
∂Z

(9)

C(u) = R0

[
1
B
∂Bϕ

∂Z

]
∂u
∂R

+R0

[
− 1
B
∂Bϕ

∂R

]
∂u
∂Z

(10)

[Φ,u] = sign
(
Bϕ

B

)
∂Φ

∂Z
∂u
∂R

− sign
(
Bϕ

B

)
∂Φ

∂R
∂u
∂Z

(11)

∇2
⊥u=

∂2u
∂R2

+
∂2u
∂Z2

(12)

∇2
∥u= R0

[
BR
B

1
B
∂BR
∂R

+ sign
(
Bϕ

B

)
1
R
1
B
∂BR
∂ϕ

+
BZ
B

1
B
∂BR
∂Z

]
ρ−1
∗

∂u
∂R

+R0

[
BR
B

1
B
∂BZ
∂R

+ sign
(
Bϕ

B

)
1
R
1
B
∂BZ
∂ϕ

+
BZ
B

1
B
∂BZ
∂Z

]
ρ−1
∗

∂u
∂Z

+

(
BR
B

)2 (
ρ−1
∗

)2 ∂2u
∂R2

+

(
R0

R

)2
∂2u
∂ϕ2

+

(
BZ
B

)2 (
ρ−1
∗

)2 ∂2u
∂Z2

+ 2
BR
B

sign
(
Bϕ

B

)
R0

R
ρ−1
∗

∂2u
∂R∂ϕ

+ 2
BR
B
BZ
B

(
ρ−1
∗

)2 ∂2u
∂R∂Z

+ 2sign
(
Bϕ

B

)
BZ
B
R0

R
ρ−1
∗

∂2u
∂ϕ∂Z

.

(13)

Since the geometrical operators (9)–(13) have the same
structure as the ones implemented in the axisymmetric ver-
sion of GBS [14], their implementation does not require major
changes in the structure of the code thanks to the use of a non
field-aligned spatial discretization algorithm [22, 23]. In fact,
as in the previous versions of GBS, an Arakawa scheme is
applied to implement the Poisson brackets [23], and the same
solver used to invert equation (7) can be considered, since the
perpendicular Laplacian only acts on the RZ-plane (to lowest
order in the expansion parameters δ, ∆ and σ).

3. Stellarator vacuum magnetic field based on the
Dommaschk potentials

The stellarator vacuum magnetic field generated by any set of
external coils can be described using appropriate basis func-
tions that completely span the space of field solutions. A
vacuum field obeys ∇×B= 0, meaning that B=∇V, where
V is denoted as the magnetic potential. Since∇·B= 0, V sat-
isfies a Laplace equation, ∇2V= 0. There are several sets of
analytical functions that solve Laplace’s equation in a torus,
namely, toroidal field harmonics, spherical harmonics or the
Vuillemin-Gourdon set [24, 25]. A set of functions that has
advantages over the other sets is the one commonly known as
Dommaschk potentials [26–28], which are given in cylindrical
coordinates by

V(R,ϕ,Z) = ϕ +
∑
m,l

Vm,l (R,ϕ,Z) , (14)
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Figure 1. Poincaré plot of the Dommaschk configuration b5,2 = c5,2 = 1.5, b5,4 = 10, a5,9 =−d5,9 =−7.5× 109 on two poloidal planes at
different toroidal angles. The boundary of the simulation domain is represented in blue and the LCFS in red.

where

Vm,l = [am,l cos(mϕ)+ bm,l sin(mϕ)]Dm,l (R,Z)

+ [cm,l cos(mϕ)+ dm,l sin(mϕ)]Nm,l−1 (R,Z) . (15)

am,l, bm,l, cm,l and dm,l are free real constants andDm,l, Nm,l are
explicit functions given in [26]. The first term on the right-hand
side of equation (14) gives the 1/R dependence of the toroidal
component of the magnetic field. The Dommaschk potentials
are advantageous over others sets of solutions because the
Vm,l functions consist of simple algebraic expressions (powers,
logarithms, sines and cosines) whose numerical evaluation
is computationally convenient. Furthermore, the indices m
and l correspond, respectively, to the toroidal and poloidal
periodicities of Vm,l, a property that for example the spher-
ical harmonics lack [26]. As a consequence, if the field is
generated with potentials restricted to m= kNfp and k ∈ N,
then the stellarator has field period Nfp. In addition, stellar-
ator symmetry [29] requires am,l = dm,l = 0 for even l, and
bm,l = cm,l = 0 for odd l.

We have constructed a five-field period (Nfp = 5)
stellarator-symmetric configuration with a 5/9 chain of
islands surrounding a closed flux surface region by taking
b5,2 = c5,2 = 1.5, b5,4 = 10, a5,9 =−d5,9 =−7.5× 109, and
imposing all other coefficients to vanish. Figure 1 shows the
corresponding Poincaré plot of the magnetic field at different
toroidal angles. The potential V5,9 is added in order to control
the width of the 5/9 islands. In fact, this potential resonates
with the 5/9 rational surface and can be used to increase the
size of the islands. If V5,9 becomes too large, a chaotic region
is generated due to the overlap of different island chains.
This is shown in figure 2 where the Poincaré sections with
a5,9 =−d5,9 =−15× 109 reveal a chaotic region outside the
last closed flux surface (LCFS) instead of an island chain.

The rotational transform ι is entirely provided by the
rotation of the flux surfaces since no torsion is present in
the configuration considered here (the magnetic axis lies on
a plane) nor current. We can estimate the expected rota-
tional transform on axis, ι0, from the elongation of the
ellipses [30, 31], that is ι0 = (Nfp/2)(rmax − rmin)

2/(r2min +

r2max)≈ 0.5, where rmax and rmin are the ellipses major and
minor radius, which is in very good agreement with the ι
evaluated numerically by field-line tracing and depicted in
figure 3. The ι profile flattens at ι= 5/9≈ 0.555, where the
island chain is present. We note that the magnetic shear is very
small.

The amplitude of B varies approximately as 1/R, as in a
tokamak. Therefore, a LFS and a HFS can be identified, simil-
arly to tokamaks. This can be seen in figure 4 where we show
|B| on the LCFS. In fact, |B| peaks at θ = π and is minimized
around θ= 0, where θ is the polar angle defined with respect
to the magnetic axis that rotates anti-clockwise, with the out-
board midplane corresponding to θ= 0 and the inboard mid-
plane to θ = π.

The height and width of the rectangular computational
domain cross-section can be taylored such that the magnetic
field of the islands intercept the top and bottom of the simu-
lation box, as shown in figure 5, emulating an island divertor
stellarator. In such a configuration, the LCFS is not in con-
tact with the wall. Heat and particles outflowing from the core
reach the island region and are transported along the mag-
netic field of the islands, eventually striking the top and bot-
tom walls at specific toroidal locations. The strike points of
the island magnetic field lines at the top of the simulation box
are indicated in figure 6(a). A similar structure is found on the
bottom part of the box. On the other hand, the Dommaschk
configuration without islands, shown in figure 2, yields a lim-
ited stellarator. In such configuration, the LCFS is in contact
with the wall.

It is noteworthy to mention the similarities between our
island divertor stellarator model and W7-X. Our configura-
tion leads to large connection lengths in the island region
(Lc ∼ 100R0) as seen in figure 5(right), similarly to W7-X
where connection lengths of the order of hundreds of meters
are found in the edge [32]. In addition, in W7-X the mag-
netic shear is also small. Finally, a chain of islands sur-
rounds the closed flux surface region in W7-X and the plasma
is evacuated through the magnetic islands that strike non-
axisymmetric divertor targets, although in our case the divertor
targets are axisymmetric.

4
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Figure 2. Poincaré plot of the Dommaschk configuration b5,2 = c5,2 = 1.5, b5,4 = 10, a5,9 =−d5,9 =−15× 109 on two poloidal planes at
different toroidal angles. The boundary of the simulation domain is represented in blue and the LCFS in red.

Figure 3. Rotational transform along R at Z= 0 and ϕ= 0.

4. Results

4.1. Simulation parameters and convergence

We use the following parameters for the simulations dis-
cussed in this paper: ρ−1

∗ = 1000, ν0 = 0.1, τ = 1, χ∥e,i =

η0e,i = 1.0, Dn = DTe = DTi = DV∥e = DV∥i = Dω = 10, D∥
n =

D∥
ω = 1, LR = 380ρs0, LZ = 230ρs0, a grid resolution of NR×

NZ×Nϕ = 200× 120× 200 points and a time-step of 2.9×
10−6R0/cs0. The convergence of the simulation is assessed
by performing a simulation with grid NR×NZ×Nϕ = 250×
150× 200 and a second one with grid NR×NZ×Nϕ = 250×
150× 250, which is at the limit of our computational capab-
ilities. In both cases the dynamics of the simulation is sim-
ilar to the one presented here. The sources for density and
temperature, Sn = STe = STi , are localized around a magnetic
surface near the LCFS, as shown in figure 7, mimicking the
ionization of recycled neutrals. We have performed simula-
tions with forward and reversed magnetic field by reversing
the total B, i.e. the sign of equation (14). We denote these two
cases with Bϕ > 0 and Bϕ < 0, respectively. In what follows,

Figure 4. Amplitude of the magnetic field on the LCFS as a
function of the polar angle θ defined with respect to the magnetic
axis and the toroidal angle ϕ. Only one field period is displayed.

if not mentioned, we are referring to the simulation with for-
ward magnetic field (Bϕ > 0), which corresponds to an anti-
clockwise toroidal magnetic field seen from above.

4.2. Quasi-steady state and balance between particle
sources and fluxes

The simulations are started from a noisy initial state and, after
a transient, reach a quasi-steady state where sources, parallel
and perpendicular transport and, ultimately, losses at the ves-
sel balance each other. If we volume-integrate equation (1) we
obtain

∂

∂t

ˆ
ndV+

ˆ [
ρ−1
∗
B

[Φ,n] +
2
B
nC(Φ)

]
dV

+

ˆ
−2
B
C(pe)dV+

ˆ
∇∥

(
nV∥e

)
dV

−
ˆ
Dn∇2

⊥ndV−
ˆ
D∥
n∇2

∥ndV=

ˆ
SndV.

(16)
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Figure 5. (Left) 1/10 of the simulation box. Note how the height and width of the cross-section of the simulation domain are adjusted to
create an island divertor stellarator. (Right) Connection length of the field lines normalized to the major radius, Lc/R0.

Figure 6. (a) Top view of the simulation box. Black dots correspond to field-lines of the island chain leaving the box (BZ > 0) and red dots
to field-lines entering (BZ < 0). The contours correspond to the time-averaged electron pressure obtained from the GBS simulations on the
target. (b) Time-averaged electron plasma pressure on the top of the simulation box, as obtained from the GBS non-linear simulation in
steady-state.

Figure 7. Density, electron temperature and ion temperature sources at two different poloidal planes.

The second term in equation (16) corresponds to the E×B
flux, the third term to the electron diamagnetic flux, and the
fourth term to the electron parallel flux. These terms are

integrated over the plasma volume inside the LCFS, and the
time evolution of the integral is shown in figure 8. The plot
shows that the simulation reaches a quasi-steady state at t≈

6
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Figure 8. Volume integral of each term in the density equation. The system reaches a quasi-steady state at t≈ 70R0/cs0. The mode m= 4
appears at t≈ 35R0/cs0.

Figure 9. Equilibrium profiles of density (left) and electron temperature (right), obtained by time-averaging the simulation results. Top and
bottom correspond to the toroidal planes ϕ= 0 and ϕ= 0.6, respectively.

70R0/cs0, with the radial E×B flux dominating over the other
fluxes. The sum of all terms on the left-hand side of (16)
balances the source term within an error of 14%, reflecting
the numerical error of the volume integration and the approx-
imation used in evaluating the time derivative ∂t (

´
ndV). In

fact, while time derivatives are discretized with a fourth-
order Runge–Kutta scheme in GBS, we have used a second-
order finite-differences scheme when computing the term
∂t (
´
ndV). This difference, along with the low sampling fre-

quency of the data used to evaluate the quantities in figure 8,
leads to errors of the order of 10%.

4.3. Equilibrium profiles

In figure 9 we show the equilibrium (time-averaged over the
quasi-steady state) density and electron temperature profiles,
which are very similar. Density and temperature peak in the
center and decay radially across the flux surfaces, confirm-
ing that the prescribed configuration confines particles and
heat within the LCFS. We note that the gradients are steeper
at the HFS than at the LFS, which has consequences on
the position of the peaks of the turbulent flux, as discussed
in section 4.5. As expected, most of the particles and heat

7
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Figure 10. Equilibrium profiles of electrostatic potential (left) and parallel current (right), obtained by time-averaging the simulation
results. Top and bottom correspond to the toroidal planes ϕ= 0 and ϕ= 0.6, respectively.

is deposited where the island magnetic field lines strike the
top and bottom of the simulation domain. This is shown in
figure 6(b), where the equilibrium electron pressure, ⟨pe⟩t =
⟨nTe⟩t, on the top of the simulation box is presented. The pres-
sure peaks at the footprints of the island field-lines on the
vessel.

In figure 10 we show the equilibrium profiles of the elec-
trostatic potential and parallel current. j∥ has a sinusoidal-like
profile along the poloidal direction in the island region. In
fact, ⟨∇ · j⟩t = 0 implies

∣∣∇∥j∥
∣∣∼ |∇⊥jdia|, and since jdia =

∇p×B/B2, the Pfirsch–Schlütter current modulation j∥ ∼
cos(θ) is expected from the 1/R nature of the magnetic field.
We note that the potential profile in the core region is quite
flat leading to an almost-zero radial electric field, Er. In
fact, in the core, where fluctuations have small amplitude,
⟨Er⟩t ≡−∂r ⟨Φ⟩t ∼ ∂r ⟨pi⟩t /⟨n⟩t (see derivation in [33]), as
confirmed by figure 11 where this relation along R, at ϕ= 0
and Z= 0, is shown to be satisfied in the core (950ρs0 ≲ R≲
1050ρs0). Although not clear in the plot due to saturation of
the colorbar scale, we note that strong parallel currents form
at the magnetic presheath entrance in the region where the
islands strike the simulation boundary, at the top and bottom
walls. This is a result of the potential deviating substantially
from ΛTe at the top and bottom walls. We also note that a
potentially-nonphysical negative potential is seen in the top
boundary.

4.4. Nature of turbulent fluctuations

Snapshots of the density and potential fluctuations, evaluated
as ñ= n−⟨n⟩t and Φ̃ = Φ−⟨Φ⟩t, are shown in figure 12. A
mode with toroidal mode number n= 2 and poloidal mode
number m= 4 (corresponding to kyρs0 ≈ 0.04, where y is the

Figure 11. Comparison between equilibrium radial electric field,
−∂r ⟨Φ⟩t, and pressure gradient, ∂r ⟨pi⟩t /⟨n⟩t, along R at ϕ= 0 and
Z= 0.

binormal direction, while x and z are the radial and parallel
coordinates) dominates the global dynamics of the system.
The mode is coherent and rotates in the ion diamagnetic dir-
ection. We remark that the radial and poloidal wavenumbers
of the mode are of the same order, kx ∼ ky. This is in contrast
with ballooning-driven tokamak edge turbulence, where kx ∼√
ky/Lp with Lp the equilibrium pressure length scale [34],

meaning that kx < ky.
In figure 13 we display a snapshot of the potential fluctu-

ations on the LCFS and its Fourier spectrum in straight-field-
line coordinates (θ∗,ϕ), with θ∗ defined such that B·∇θ∗

B·∇ϕ = ι is

8
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Figure 12. Snapshot of fluctuations of density (left) and electrostatic potential (right). Top and bottom correspond to the toroidal planes
ϕ= 0 and ϕ= 0.6, respectively.

Figure 13. Snapshot of potential fluctuations on the LCFS (left) and its Fourier spectrum (right). The poloidal angle θ∗ is such that field
lines (black arrows) are straight in the (θ∗,ϕ) plane.

constant on a flux surface, showing that the dominantmode has
m= 4 and n= 2 (Coelho et al [9] wrongly reports that the tor-
oidal mode number is 5). Alongside the dominant mode, two
sub-dominant modes corresponding to the side-bands m= 3
and m= 5 are present. We remark that the dominant and sub-
dominant modes are global, i.e. they do not satisfy the 5-field
periodicity of the stellarator. Such symmetry-breaking modes
are reported to exist in the TJ-K stellarator experiment [11], as
confirmed by GBS simulations of this machine. This under-
lines the importance of simulating the whole torus and not just
one field-period.

We note that the dominant mode is field-aligned. Indeed,
its poloidal and toroidal mode numbers are linked to the

rotational transform through ι= n/m. In fact, in a straight-
field-line coordinate system (s,θ∗,ϕ), where s is a flux sur-
face coordinate, the parallel gradient can be written as ∇∥ =
Bϕ

|B| (ι∂θ∗ + ∂ϕ), i.e. k∥ =
Bϕ

|B| (ιm− n) in Fourier space, and
therefore k∥ → 0 implies ι= n/m. In the current configura-
tion, ι≈ 0.5 throughout the whole volume, yielding k∥ = 0 for
n/m= 2/4. In our previous Letter [9], we show, by means
of a non-local linear theory, that the mode 2/4 is one of the
few linear modes that can transport the E×B flux observed in
the non-linear simulation. On the other hand, a simulation we
performed with only one field-period shows a dominant mode
with n/m= 5/9, a consequence of limiting the toroidal mode
number to multiples of 5.

9
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Figure 14. Snapshot of density fluctuations at two different planes in the configuration without islands.

A simulation with a configuration where the islands are
removed (see figure 2) shows that the same dominant mode,
n/m= 2/4, appears (see figure 14), leading us to conclude
that the islands are not an important element in determining
the properties of the dominant mode. Furthermore, the pres-
sure profile is not flat inside the islands. Indeed, such flatten-
ing could only occur if the time-scale for the convection along
the islands flux tubes, τ∥, is shorter than the rotation time-
scale of the mode, τmode. Since the mode rotates with approx-
imately the ion diamagnetic frequency, ωdi = vdik⊥, where
vdi ∼ c2sTe/(Ωia) is the ion diamagnetic drift velocity, Ωi the
ion cyclotron frequency and a the plasma minor radius, and
denoting Lc as the connection length of the island field lines,
we have that

τ∥

τmode
∼ Lc/cs

ω−1
di

∼ Lc
cs
k⊥vdi ∼

Lc
a
kyρs ≳ 1 (17)

since Lc/a≳ 100R0/a and kyρs = 0.04. This shows that con-
vection along the island magnetic field lines occurs on a longer
time-scale than the rotation of the mode, thus preventing the
islands to all have the same flat pressure profile along them.
This can be seen in the plots of the equilibrium density and
temperature (figure 9).

Based on a reduced non-local linear theory, Coelho et al [9]
points out the ballooning nature of the dominant mode [9].
In addition to this study, the nature of the mode can also
be determined by comparing the amplitude of density fluctu-
ations with those of the potential. Indeed, for resistive balloon-
ing instabilities, ∇∥Φ̃∼ ν j̃∥. From equation (4) this implies
Φ̃≫ ñ. In our simulation, the amplitude of the potential fluc-
tuations is about twice as large as the amplitude of density
fluctuations, as can be seen in figure 12. While this is not a
conclusive observation that precludes the presence of other
instabilities (drift-waves, for example), it is compatible with
the previous statement on the ballooning nature of the domin-
ant mode.

4.5. The turbulent E×B flux

The time-averaged E×B flux is characterized by the stellar-
ator toroidal periodicity (n= 5). In fact, the instantaneous

radial E×B flux (assuming B purely toroidal) is
given by

ΓsE×B =
n
B
∂Φ

∂θ
ξ (s,θ,ϕ) , (18)

in the coordinate system (s,θ,ϕ), where s is a flux surface
label, and ξ(s,θ,ϕ) is a geometrical factor such that in a stellar-
ator has the same toroidal periodicity of the magnetic field and
therefore can be written as ξ(s,θ,ϕ) =

∑
MN |ξsMN|ei(Mθ−NNfpϕ)

(in the case of a tokamak with circular flux surfaces it
reduces to ξ = 1/r). Since the density and potential fluctu-
ations can be written as n=

∑
mn |nmn|ei(mθ−nϕ+ωt) and Φ =∑

m ′n ′ |Φm ′n ′ |ei(m ′θ−n ′ϕ+ωt−∆), with ∆ the phase difference
between density and potential and ω the frequency of the
mode, the time-averaged flux is〈
ΓsE×B

〉
t
=
∑
mn

∑
m ′n ′

m ′ |nmnΦm ′n ′ |
B

∑
MN

∣∣ξsMN∣∣
×
〈
ℜ
(
ei(mθ−nϕ+ωt)

)
ℜ
(
ei(m

′θ−n ′ϕ+ωt−∆+π/2)
)

× ℜ
(
ei(Mθ−NNfpϕ)

)〉
t

=
∑
mn

∑
m ′n ′

m ′ |nmnΦm ′n ′ |
B

∑
MN

∣∣ξsMN∣∣sin
×
[
∆+

(
m−m ′)θ− (

n− n ′
)
ϕ
]
cos

(
Mθ−NNfpϕ

)
.

(19)

The spectrum in figure 13 shows that all the dominant modes
have n= 2 and thus equation (19) simplifies to〈

ΓsE×B

〉
t
=
∑
m

∑
m ′

m ′ |nm2Φm ′2|
B

∑
MN

|ξsMN|sin

× [∆+ (m−m ′)θ]cos(Mθ−NNfpϕ) , (20)

showing that the toroidal periodicity of the time-averaged flux
is dictated by the toroidal periodicity of the geometrical factor
(which is a multiple of the field period). On the other hand,
the poloidal dependence is an intricate convolution between
the poloidal dependencies of the geometrical factor and the
density and potential fluctuations.

As seen in figure 15, the flux peaks on the HFS rather than
on the LFS, in contrast to typical observations in tokamaks.
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Figure 15. Time-averaged radial E×B flux on the LCFS for positive (left) and negative (right) magnetic field.

In the case Bϕ > 0 the peaks are localized around θ = 3π/2,
while in the Bϕ < 0 case around θ = π/2.

We argue that the shift of the peak of the flux along the pol-
oidal angle is a result of the poloidal dependence of the linear
instabilities, as well as their convection due to an equilibrium
E×B drift. We consider a reduced model of equations (1)–
(7) that includes the main elements of the ballooning instabil-
ity [35]:

∂n
∂t

=−ρ−1
∗
B

[Φ,n]

∂Te
∂t

=−ρ−1
∗
B

[Φ,Te]

∂V∥e

∂t
=−ν

(
mi

me

)
nV∥e +

(
mi

me

)
∇∥Φ

∂∇2
⊥Φ

∂t
=−B2

n
∇∥

(
nV∥e

)
+

2B
n
C(pe) .

(21)

We linearize the model by assuming that the density can be
written as n= n0(x,z)+ n1(x,z)ei kyy+γt, where x is a local
coordinate normal to the flux surface, z a coordinate along
the magnetic field line and y the local binormal coordinate; n0
is the background and n1 the perturbation (n1 ≪ n0). A sim-
ilar expression is used for Te, while for the potential and the
electron parallel velocity we assume Φ0 = 0 and V∥e0 = 0. We
retain the z dependence of the equilibrium density and elec-
tron temperature because the gradients depend on the pol-
oidal angle (they are typically steeper on the HFS). In addi-
tion, we retain the x dependence of n1 (and others), since we
observe in the non-linear simulation ∂xn1 ∼ kyn1. This con-
trasts with previous local linear theories of the drift-reduced
Braginskii equations, where variations along the x direction
are neglected, i.e. kx ≪ ky is assumed [35–37]. The present lin-
earization leads to the following set of equations whose deriv-
ation is detailed in appendix B:

γn1 = sign(Bϕ)ρ
−1
∗ i ky

∂n0
∂x

Φ1

γTe1 = sign(Bϕ)ρ
−1
∗ i ky

∂Te0
∂x

Φ1

γV∥e1 =−ν
mi

me
n0V∥e1 +

mi

me

∂

∂z
Φ1

γ∇2
⊥Φ1 =− ∂

∂z
V∥e1 + 2

(
κg

∂

∂x
+ iκnky

)
Te1

+ 2
Te0
n0

(
κg

∂

∂x
+ iκnky

)
n1,

(22)

where ∇2
⊥ = ∂2

x − k2y ≡−k2⊥, and κn and κg are the normal-
ized normal and geodesic field-line curvatures, i.e. the projec-
tion of the curvature vector κ=−b× [∇× b] along the nor-
mal and binormal directions (normalized to R0). Note that,
when the field is reversed, κg changes sign while κn is not
affected. By Fourier transforming the parallel and radial dir-
ections, ∂/∂z→ ik∥ and ∂/∂x→ i kx, a quadratic equation for
the growth-rate is obtained:

γ2 +
1
νn0

(
k∥
k⊥

)2

γ = 2ρ−1
∗

k2y
k2⊥

(
Te0
n0

∂n0
∂x

+
∂Te0
∂x

)
×
(

sign(Bϕ)
kx
ky
κg+κn

)
. (23)

While the k∥ term is stabilizing, the drive of the ballooning
instability appears on the right-hand side of equation (23) and
it results from the density and temperature equilibrium gradi-
ents and the normal and geodesic components of the curvature.
Note that sign(Bϕ) cancels out since κg changes sign when
the field is reversed. This means that the dispersion relation in
equation (23) depends on the direction of the magnetic field
only through the equilibrium profiles (which, in the non-linear
simulation, are slightly different due to the different frequency
with which data is saved).

In an infinite aspect-ratio tokamak where kx ≪ ky, one
deduces from equation (23) that γ2 ∼ cos(θ), consistent with
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Figure 16. Product of the density and potential eigenmodes, |n1Φ1|, for the forward and reversed magnetic field along the toroidal direction.
The vertical dashed lines corresponds to the positions θ = π/2 (red) and θ = 3π/2 (grey). These are the eigenmodes that correspond to the
eigenvalue with largest real part. In both cases, γ≈ 3.

Figure 17. Equilibrium gradients, retrieved from the non-linear GBS simulation (top) and the normal and geodesic curvatures (bottom) used
in the model in equation (22).

the common observation that turbulence is more developed at
the LFS (θ≈ 0) than at the HFS (θ ≈ π). On the other hand, the
geodesic curvature is important when kx ∼ ky, as it is observed
in our non-linear simulations, thereby influencing the position
of the eigenmodes maximum amplitude.

The solution of the 2D eigenvalue problem in equation (22),
namely the product of the eigenmodes |n1Φ1| at the radial pos-
ition where the density gradient has its maximum, is shown
in figure 16 for kyρs0 = 0.04, considering Bϕ > 0 and Bϕ < 0.
The eigenmodes peak at θ = π/2 and θ = 3π/2, respectively,
where the normal curvature is negative (but not where it has its
minimum value) and the geodesic curvature is positive, as seen
in figure 17 for the case Bϕ > 0 (the same applies for Bϕ < 0).

The peak position of the eigenmodes differ from the peak
positions of the E×B flux observed in the non-linear simu-
lation. In fact, the turbulent fluctuations are transported along
the poloidal direction by the equilibrium E×B drift, ⟨VE×B⟩t,
which is predominantly in the poloidal direction as shown in
figure 18. The distance travelled by a turbulent eddy within the
instability time-scale, Vθ

E×B/γ, is of the order of π l/2, with l
the arc length of the LCFS in a single toroidal cross-section,
in both the forward and reversed cases.

We draw the attention to the fact that the relevance of
the geodesic curvature is pointed out to explain observations
B.8.1)in the TJ-K stellarator. Experiments in this machine
systematically observe the peak of the level of the density
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Figure 18. Equilibrium E×B drift, ⟨VExB⟩t, in the forward and reversed field simulations.

and potential fluctuations where κn is negative and κg is pos-
itive [38, 39]. In the experiment, however, this region also
coincides with the peaking of the E×B flux, whereas in our
simulation the effect of the poloidal ⟨VE×B⟩t convection is
important.

5. Conclusions

The present paper describes the non-axisymmetric version of
the GBS code, recently extended to handle three-dimensional
magnetic configurations [9]. Using the expansion parameters
δ, σ and ∆, the geometrical operators appearing in the drift-
reduced Braginskii equations solved by GBS are expanded up
to leading order, resulting in a perpendicular Laplacian that
acts on the poloidalRZ plane and Poisson brackets that can still
be numerically implemented using the Arakawa algorithm.
This makes GBS implementation of the three-dimensional
configurations similar to the axisymmetric version of the code.

We use the Dommaschk potentials to generate two vacuum
magnetic fields, namely a configuration where a chain of
islands surrounds the closed flux region mimicking an island
divertor stellarator, and a configuration where the islands are
replaced by a chaotic region, yielding a limited stellarator con-
figuration. With the parameters of our simulations, we observe
that the presence of the islands has a minor impact on the tur-
bulent dynamics of the plasma.

The identification of the nature of the dominant mode as
a ballooning-driven instability, based on a simplified non-
local linear theory [9], is supported here by noticing that the
amplitude of the potential fluctuations is larger than that of
the density. The mode is field-aligned, k∥ → 0, and its tor-
oidal and poloidal mode numbers obey ι= n/m since ι= 0.5
and (n,m) = (2,4). We note that the dominant mode does not
have the toroidal periodicity of the magnetic field. Symmetry-
breaking modes are reported in the TJ-K stellarator experi-
ment [11]. This observation in experiments, and now in sim-
ulations, underscores the importance of simulating the whole
torus and not just one field-period.

When the magnetic field is reversed, B→−B, the E×B
flux peaks around θ = π/2, in contrast to the Bϕ > 0 case
where it peaks around θ = 3π/2. A two-dimensional linear
theory suggests that the instabilities develop at θ = π/2 when
Bϕ > 0, and at θ = 3π/2 when Bϕ < 0 because the equilib-
rium gradients are poloidally asymmetric and tend to peak at

the HFS and the radial and poloidal elongations of the mode
are similar, kx ∼ ky. In these conditions, not only the normal
curvature plays an important role, but also the geodesic one,
effectively shifting the most destabilizing region away from
θ= 0. The mode is then transported in the poloidal direction
by the equilibrium E×B drift, providing a possible explana-
tion for the location of the peak of the turbulent flux.

One of the surprising outcomes of the simulations presented
here is that the mode driving transport occurs on a large scale,
it is coherent and has kx ∼ ky. This is not the case in typical
tokamak simulations and it is a subject currently under invest-
igation. Preliminary results indicate that this difference is due
to the small value of the magnetic shear and the ellipticity of
the flux surfaces.

A natural next step in the study of island divertor configur-
ations is the simulation of W7-AS and W7-X configurations.
Although W7-AS is no longer operating, there is a large body
of literature reporting on experimental measurements in dif-
ferent configurations [40], which can help with further valid-
ation of the GBS code. Moreover, the simulation of W7-AS
constitutes a step forward towards the simulation of W7-X,
a machine that shares many features with its predecessor but
whose size is still prohibitively large for simulation purposes
at the moment, in particular because of the time necessary to
solve the Poisson equation for the electrostatic potential, the
bottleneck of GBS [14]. Furthermore, we believe that the role
of the neutrals cannot be neglected if one is interested in sim-
ulating meaningful scenarios in such large machines. This is
the reason why a kinetic neutrals model, currently implemen-
ted in the tokamak version of the code [41], is being ported to
the stellarator version of GBS.
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Appendix A. Expansion of the geometrical
operators

The parallel gradient, Poisson brackets and curvature operat-
ors can be written in cylindrical coordinates as follows:

∇∥u=
BR
B

∂u
∂R

+
Bϕ

B
1
R
∂u
∂ϕ

+
BZ
B

∂u
∂Z

, (A.1)

[Φ,u] =
BR
B

[
1
R
∂Φ

∂ϕ

∂u
∂Z

− ∂Φ

∂Z
1
R
∂u
∂ϕ

]
+
Bϕ

B

[
∂Φ

∂Z
∂u
∂R

− ∂Φ

∂R
∂u
∂Z

]
+
BZ
B

[
∂Φ

∂R
1
R
∂u
∂ϕ

− 1
R
∂Φ

∂ϕ

∂u
∂R

]
, (A.2)

C(u) = CR
∂u
∂R

+Cϕ
1
R
∂u
∂ϕ

+CZ
∂u
∂Z

, (A.3)

where the coefficients CR, Cϕ, CZ are given by

CR =−BZ
B

1
B
1
R
∂B
∂ϕ

+
Bϕ

B
1
B
∂B
∂Z

+
1
2B

[
1
R
∂BZ
∂ϕ

− ∂Bϕ

∂Z

]
,

(A.4)

Cϕ =−BR
B

1
B
∂B
∂Z

+
BZ
B

1
B
∂B
∂R

+
1
2B

[
∂BR
∂Z

− ∂BZ
∂R

]
, (A.5)

CZ =−Bϕ

B
1
B
∂B
∂R

+
BR
B

1
B
1
R
∂B
∂ϕ

+
1
2B

[
1
R
∂ (RBϕ)

∂R
− 1
R
∂BR
∂ϕ

]
.

(A.6)

The terms inside the square brackets vanish in the case of
a vacuum magnetic field (where ∇×B= 0). We now order
these terms using the small parameters δ, σ and ∆ defined in
section 2. We first consider the scaling of the fields evolved by
GBS, such as density and temperature, and then the scaling of
the magnetic field.

The first-order derivatives of the quantities evolved by GBS
scale as

∂u
∂R

∼ u
l⊥

,
∂u
∂Z

∼ u
l⊥

, (A.7)

where l⊥ is the perpendicular length scale of fluctuations.
Indeed, since u= ⟨u⟩t+ ũ, it follows ∂Ru∼ ⟨u⟩t /L⊥ + ũ/l⊥,
where L⊥ is the equilibrium perpendicular length scale (the
perpendicular plane coincides with the RZ-plane except for

an error of order δ). Because L⊥ ∼ a≫ ρs0 ∼ l⊥ and in the
plasma boundary ⟨u⟩t ∼ ũ, we can write ∂Ru∼ u/l⊥. The
same observation applies for the Z coordinate. In addition, we
find that

1
R
∂u
∂ϕ

∼ u
δ

l⊥
. (A.8)

In fact,

1
R
∂u
∂ϕ

= eϕ ·∇u= eϕ ·
[(
∇∥u

)
b+(∇⊥u)e⊥

]
=

Bϕ

B︸︷︷︸
1+O(δ2)

∇∥u︸︷︷︸
u/l∥

+(∇⊥u)︸ ︷︷ ︸
u/l⊥

eϕ · e⊥, (A.9)

where l∥ is the parallel length scale of fluctuations. Similarly to
the perpendicular direction, we have ∇∥u∼ ⟨u⟩t /L∥ + ũ/l∥,
with l∥ ∼ R0 ≪ L∥. Therefore, ∇∥u∼ u/l∥. Since eϕ · e⊥ ∼
O(δ), then

1
R
∂u
∂ϕ

∼ u
l∥

(
1+

l∥
l⊥

δ

)
∼ u
l∥

(
1+σ−1δ

)
. (A.10)

Moreover, σ ≪ δ in typical conditions, and

Bϕ

B
=

±
√
B2 −B2

R−B2
Z

B
=±

√
1− 2δ2 =±1+O

(
δ2
)
,

(A.11)

which yields the result in equation (A.8).
Due to the periodicity of the field, we can write ∂ϕBR ∼

mBR and ∂ϕBZ ∼ mBZ, where m is the highest toroidal mode
number of the magnetic field, which is a multiple of the field
period.

The parameter ∆ allows us to write ∂ϕB/B∼ m∆. By
introducing the radius a of the LCFS, we can write

∂BR
∂R

∼ ∂BR
∂Z

∼ BR
a
,

∂BZ
∂R

∼ ∂BZ
∂Z

∼ BZ
a
. (A.12)

Using the vacuum condition ∂ϕBZ/R= ∂ZBϕ, we have that
∂ZBϕ ∼ mBZ/R0, and we can finally write:

1
B
∂B
∂R

=
BR
B

1
B
∂BR
∂R︸ ︷︷ ︸

δ2ϵ−1/R0

+
Bϕ

B
1
B
∂Bϕ

∂R︸ ︷︷ ︸
1/R0

+
BZ
B

1
B
∂BZ
∂R︸ ︷︷ ︸

δ2ϵ−1/R0

∼ 1
R0

, (A.13)

1
B
∂B
∂Z

=
BR
B

1
B
∂BR
∂Z︸ ︷︷ ︸

δ2ϵ−1/R0

+
Bϕ

B
1
B
∂Bϕ

∂Z︸ ︷︷ ︸
mδ/R0

+
BZ
B

1
B
∂BZ
∂Z︸ ︷︷ ︸

δ2ϵ−1/R0

∼ mδ
R0

. (A.14)

We retain only the terms scaling with 1/R0 and mδ/R0 since
they dominate over the other terms (as long as δ2 ≪ ϵ).

We now turn to the geometric operators. The physical
length scales of the parallel gradient, Poisson brackets and
curvature operators are l∥, l2⊥ and R0l⊥ respectively. Note,
however, that we use R0 and ρs0 as normalization factors of
GBS since l∥ and l⊥ cannot be determined a priori; they cor-
respond to the turbulence length scales in the parallel and
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perpendicular directions, and are a result of the simulations.
Nonetheless, it is expected that l∥ ∼ R0 and ρs0 ≲ l⊥ ≪ R0.

For the parallel gradient, we have

l∥∇∥u= l∥
BR
B

∂u
∂R︸ ︷︷ ︸

δσ−1

+ l∥
Bϕ

B
1
R
∂u
∂ϕ︸ ︷︷ ︸

δσ−1

+ l∥
BZ
B

∂u
∂Z︸ ︷︷ ︸

δσ−1

, (A.15)

where all terms are order 1 and cannot be neglected. Similarly,
for the Poisson brackets we have

l2⊥ [Φ,u]

=
BR
B︸︷︷︸
δ

l2⊥
1
R
∂Φ

∂ϕ

∂u
∂Z︸ ︷︷ ︸

δ

− BR
B︸︷︷︸
δ

l2⊥
∂Φ

∂Z
1
R
∂u
∂ϕ︸ ︷︷ ︸

δ

+
Bϕ

B︸︷︷︸
1

l2⊥
∂Φ

∂Z
∂u
∂R︸ ︷︷ ︸

1

− Bϕ

B︸︷︷︸
1

l2⊥
∂Φ

∂R
∂u
∂Z︸ ︷︷ ︸

1

+
BZ
B︸︷︷︸
δ

l2⊥
∂Φ

∂R
1
R
∂u
∂ϕ︸ ︷︷ ︸

δ

− BZ
B︸︷︷︸
δ

l2⊥
1
R
∂Φ

∂ϕ

∂u
∂R︸ ︷︷ ︸

δ

,

(A.16)

where only the third and fourth terms are retained. Regarding
the curvature operator in the vacuum limit,

l⊥R0CR
∂u
∂R

=−R0
BZ
B

1
R
1
B
∂B
∂ϕ︸ ︷︷ ︸

δm∆

l⊥
∂u
∂R︸ ︷︷ ︸
1

+R0
Bϕ

B
1
B
∂B
∂Z︸ ︷︷ ︸

mδ

l⊥
∂u
∂R︸ ︷︷ ︸
1

(A.17)

l⊥R0Cϕ
1
R
∂u
∂ϕ

=−R0
BR
B

1
B
∂B
∂Z︸ ︷︷ ︸

δmδ

l⊥
1
R
∂u
∂ϕ︸ ︷︷ ︸

δ

+R0
BZ
B

1
B
∂B
∂R︸ ︷︷ ︸

δ

l⊥
1
R
∂u
∂ϕ︸ ︷︷ ︸

δ

(A.18)

l⊥R0CZ
∂u
∂Z

=−R0
Bϕ

B
1
B
∂B
∂R︸ ︷︷ ︸

1

l⊥
∂u
∂Z︸ ︷︷ ︸
1

+R0
BR
B

1
R
1
B
∂B
∂ϕ︸ ︷︷ ︸

δm∆

l⊥
∂u
∂Z︸ ︷︷ ︸
1

,

(A.19)

only the second term of (A.17) and the first term of (A.19) are
retained. The same expansion can be applied to the parallel and
perpendicular Laplacians, yielding equations (12) and (13).

Appendix B. Linearization of the drift-reduced
Braginskii equations

We start by defining a field-aligned coordinate system (x,y,z),
where x is a flux surface coordinate, z is the parallel coordin-
ate and y a coordinate along the binormal direction. The ortho-
gonal unit vectors are introduced,

e1 (z) =
dr0
dz

= sign(Bϕ)b(z) , (B.1.1)

e2 (z) = n̂(z) , (B.1.2)

e3 (z) = e1 × e2, (B.1.3)

where r0 is the position of a given field line (depending only
on the parallel coordinate), b= B/B and n̂ is the normal unit

vector to the flux surface, allow us to define the position r of
any point around a given field line:

r= r0 (z)+ xe2 (z)+ ye3 (z) (B.2)

for x and y small (in the general case, e2 and e3 also depend on
x and y). The covariant basis is formulated as:

ex =
∂r
∂x

= e2, (B.3.1)

ey =
∂r
∂y

= e3, (B.3.2)

ez =
∂r
∂z

= e1 + x
∂e2
∂z

+ y
∂e3
∂z

. (B.3.3)

The covariant metric tensor is given by gij = ei · ej:

gxx = 1, (B.4.1)

gyy = 1, (B.4.2)

gxy = gyx = 0, (B.4.3)

gxz = x
�

�
��>

0
∂e2
∂z

· e2 + y
∂e3
∂z

· e2 = gzx (B.4.4)

gyz = x
∂e2
∂z

· e3 + y
�
�

��>
0

∂e3
∂z

· e3 = gzy (B.4.5)

gzz = 1+ 2x
∂e2
∂z

· e1 + 2y
∂e3
∂z

· e1 + 2xy
∂e2
∂z

· ∂e3
∂z

+ x2
∣∣∣∣∂e2∂z

∣∣∣∣2 + y2
∣∣∣∣∂e3∂z

∣∣∣∣2 , (B.4.6)

g=

 1 0 gxz
0 1 gyz
gxz gyz gzz

 (B.5)

and the Jacobian by

J =
√
gzz− g2xz− g2yz. (B.6)

The contravariant metric tensor gij =Inv(gij) is

gxx =
gzz− g2yz

J 2
, (B.7.1)

gyy =
gzz− g2xz

J 2
, (B.7.2)

gxy =
gxzgyz
J 2

= gyx, (B.7.3)

gxz =− gxz
J 2

= gzx (B.7.4)

gyz =−
gyz
J 2

= gzy (B.7.5)

gzz =
1
J 2

, (B.7.6)
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and the contravariant basis ∇i = gijej is:

∇x= gxxex + gxyey + gxzez (B.8.1)

= gxxe2 + gxye3 + gxz
[
e1 + x

∂e2
∂z

+ y
∂e3
∂z

]
, (B.8.2)

∇y= gyxex + gyyey + gyzez (B.8.3)

= gyxe2 + gyye3 + gyz
[
e1 + x

∂e2
∂z

+ y
∂e3
∂z

]
, (B.8.4)

∇z= gzxex + gzyey + gzzez (B.8.5)

= gzxe2 + gzye3 + gzz
[
e1 + x

∂e2
∂z

+ y
∂e3
∂z

]
. (B.8.6)

Note that g(x= 0,y= 0) = g−1(x= 0,y= 0) are equal to the
3× 3 identity matrix.

We can now express the parallel gradient

∇∥f = b ·∇f = e1 ·
[
∂f
∂x

∇x+ ∂f
∂y

∇y+ ∂f
∂z

∇z
]
, (B.9)

and thus

∇∥f
∣∣

y = 0
x = 0

=
∂f
∂z

. (B.10)

As usual, we normalize the parallel gradient by R0:

∇∥f → R0∇∥f = R0
∂f
∂z

. (B.11)

Since we are interested in discretizing the toroidal direction
rather than the z direction, we make use of the following prop-
erty:

z(ϕ) =
ˆ ∣∣∣∣ BBϕ

∣∣∣∣R(ϕ)dϕ =⇒ dz
dϕ

=

∣∣∣∣ BBϕ

∣∣∣∣R(ϕ) , (B.12)

allowing us to write the normalized operator as

∇∥f = R0

(
∂z
∂ϕ

)−1
∂f
∂ϕ

=

∣∣∣∣Bϕ

B

∣∣∣∣ R0

R
∂f
∂ϕ

. (B.13)

Regarding the Poisson Brackets,

[ϕ, f] = b · (∇ϕ×∇f) = sign(Bϕ)e1 · (∇ϕ×∇f) . (B.14)

Since

∇ϕ×∇f = 1
J

[(
∂ϕ

∂y
∂f
∂z

− ∂ϕ

∂z
∂f
∂y

)
ex +

(
∂ϕ

∂z
∂f
∂x

− ∂ϕ

∂x
∂f
∂z

)
×ey +

(
∂ϕ

∂x
∂f
∂y

− ∂ϕ

∂y
∂f
∂x

)
ez

]
, (B.15)

then

[ϕ, f]| y = 0
x = 0

= sign(Bϕ)

(
∂ϕ

∂x
∂f
∂y

− ∂ϕ

∂y
∂f
∂x

)
. (B.16)

We normalize the Poisson Brackets by ρ2s0:

[ϕ, f]→ ρ2s0 [ϕ, f] = sign(Bϕ)ρ
2
s0

(
∂ϕ

∂x
∂f
∂y

− ∂ϕ

∂y
∂f
∂x

)
= sign(Bϕ)

(
∂ϕ

∂ (x/ρs0)
∂f

∂ (y/ρs0)

− ∂ϕ

∂ (y/ρs0)
∂f

∂ (x/ρs0)

)
,

(B.17)

and we renormalize x/ρs0 → x and y/ρs0 → y.
We now consider the curvature operator,

C( f) =
B
2

[
∇× b

B

]
·∇f = [b×κ] ·∇f, (B.18)

where κ=−b× [∇× b] is the magnetic field-line curvature.
By writing κ= κne2 +κg[e2 × e1] = κne2 −κge3, it follows
that [b×κ] = κney +κgex, and thus

C( f)| y= 0
x= 0

= κn
∂f
∂y

+κg
∂f
∂x

. (B.19)

The operator is normalized by R0ρs0:

C( f)→ R0ρs0C( f) = R0κn
∂f

∂ (y/ρs0)
+R0κg

∂f
∂ (x/ρs0)

≡ κn
∂f
∂y

+κg
∂f
∂x

, (B.20)

where x/ρs0 → x, y/ρs0 → y, R0κn → κn, and R0κg → κg.
Note that κn does not change sign when the field is reversed,
but κg does. Finally, the perpendicular Laplacian can be
expressed as

∇2
⊥f =∇· [(b×∇f)×b] =∇·

(e1 ×∇f)× e1︸ ︷︷ ︸
G

 . (B.21)

Note thatG= Ĝ2e2 + Ĝ3e3 sinceG is perpendicular to e1. We
can further write G= Ĝ2ex + Ĝ3ey according to (B.3.1). This
means that Ĝ2 and Ĝ3 are the contravariant components of G.
The perpendicular laplacian is evaluated according to

∇2
⊥f =∇·G=

1
J

∑
i

∂

∂qi
(
JGi

)
=

1
J

∂J
∂x

G2

+
1
J

∂J
∂y

G3 +
∂G2

∂x
+

∂G3

∂y

=
1
J

∂J
∂x

Ĝ2 +
1
J

∂J
∂y

Ĝ3 +
∂Ĝ2

∂x
+

∂Ĝ3

∂y
.

(B.22)

We obtain:

∇2
⊥f

∣∣∣ y = 0
x = 0

=
∂2f
∂x2

+
∂2f
∂y2

+

(
∂e2
∂z

· e1
)

∂f
∂x

+

(
∂e3
∂z

· e1
)

∂f
∂y

.

(B.23)
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Figure B1. Normal, κn, and geodesic, κg, components of curvature κ along the field line that spans the LCFS of the Dommaschk
equilibrium. For comparison, the curvatures of an infinite aspect-ratio tokamak with circular flux surfaces are shown in red, where ι= 0.547.

The normalization is

∇2
⊥f → ρ2s0∇2

⊥f =
∂2f
∂x2

+
∂2f
∂y2

+ ρs0

(
∂e2
∂z

· e1
)

∂f
∂x

+ ρs0

(
∂e3
∂z

· e1
)

∂f
∂y

, (B.24)

meaning that the last two terms are R0/ρs0 times smaller than
the first two and therefore we neglect them.

To derive a reduced set of equations able to describe the bal-
looning instability, we start from the model in equation (21).
We assume that quantities vary as f = f0(x,z)+ f1(x,z)eikyy+γt.
For the potential and the electron parallel velocity we assume
f 0 = 0. The z-dependence of the equilibrium density and elec-
tron temperature is retained because the gradients depend on
the poloidal angle (they are typically steeper on the HFS).
These assumptions lead to system in equation (22).

To numerically solve the system in equation (22), we recast
it in matrix form, γÂx= B̂x. We define a two-dimensional reg-
ular grid, xi = x0 + i∆x and ϕ = j∆ϕ with i = 0, . . . ,Nx− 1
and j = 0, . . . ,Nϕ − 1. The operators ∂z, ∂x and ∂2

x are imple-
mented with finite differences. We neglect the magnetic shear
and assume infinite aspect-ratio, which allows us to set the grid
spacing in the flux surface direction, ∆x, to be the same at all
z positions. This spacing is defined as the distance between
the flux surfaces at the initial position where the field lines
start to be followed (in our case we choose the starting pos-
ition as R= xi, Z= 0 and ϕ= 0). Note that the equilibrium
gradients, ∂n0/∂x and ∂Te0/∂x, depend on x and ϕ and are
computed from the non-linear simulations. The curvatures κn
and κg depend on ϕ and very weakly on x. They are shown
in figure B1 on the LCFS. For comparison, the reference val-
ues κn =−cos(ιϕ) and κg = sin(ιϕ) of an infinite aspect-ratio
tokamak with circular flux surfaces are also shown.
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