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ABSTRACT
Intelligent Tutoring Systems (ITS) enhance personalized learn-
ing by predicting student answers to provide immediate and
customized instruction. However, recent research has pri-
marily focused on the correctness of the answer rather than
the student’s performance on specific answer choices, lim-
iting insights into students’ thought processes and poten-
tial misconceptions. To address this gap, we present MC-

QStudentBert, an answer forecasting model that leverages
the capabilities of Large Language Models (LLMs) to inte-
grate contextual understanding of students’ answering his-
tory along with the text of the questions and answers. By
predicting the specific answer choices students are likely to
make, practitioners can easily extend the model to new an-
swer choices or remove answer choices for the same multiple-
choice question (MCQ) without retraining the model. In
particular, we compare MLP, LSTM, BERT, and Mistral
7B architectures to generate embeddings from students’ past
interactions, which are then incorporated into a finetuned
BERT’s answer-forecasting mechanism. We apply our pipeline
to a dataset of language learning MCQ, gathered from an
ITS with over 10,000 students to explore the predictive accu-
racy of MCQStudentBert, which incorporates student inter-
action patterns, in comparison to correct answer prediction
and traditional mastery-learning feature-based approaches.
This work opens the door to more personalized content,
modularization, and granular support.
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1. INTRODUCTION
Intelligent tutoring systems (ITS) are powerful educational
tools that personalize the student’s learning experience through
adaptive content [1–3]. Within these systems, the ability to
predict student answers plays an important role in tailoring

∗Equal contribution. Listing order is alphabetical.

the educational content to the student’s level of understand-
ing, knowledge gaps, and learning pace [4].

There is a large body of research modeling students’ learn-
ing [1–9]. This effort encompasses the development of prob-
abilistic frameworks such as Bayesian Knowledge Tracing [6]
and Dynamic Bayesian Networks [3], as well as deep learn-
ing approaches like Deep Knowledge Tracing [7] and Graph-
based Knowledge Tracing [8]. Other educational data min-
ing (EDM) approaches have developed statistical models
such as Learning Factor Analysis [10] and Performance Fac-
tor Analysis [11] to predict the probability of correct student
responses. Additionally, the EDM community has studied
the implementation of Machine Learning (ML) classifiers to
predict learning outcomes such as quiz answers [12].

Despite these advancements, the focus has predominantly
been on predicting whether a student’s answer will be cor-
rect or incorrect [1–4, 6, 7, 12], rather than forecasting the
specific answer the student would provide. This could en-
rich the understanding of the student’s acquired knowledge.
Thus, enabling the development of more personalized con-
tent and hints [13].

Several works have tackled the challenge of analyzing Multi-
ple Choice Questions (MCQs) [14–16]. For example, [12] and
[17] incorporated temporal features, user history features,
and subject features to train ML classifiers, such as XG-
Boost, to predict question quality. Additionally, [18] utilized
a transformer model to fuse metadata and performance fea-
tures for a multiclass classification task. Another approach
by [19] extended Binary Knowledge Tracing using a BiL-
STM with DAS3H features [20] and attention mechanisms.
Similarly, [14] proposed the Order-aware Cognitive Diagno-
sis (OCD) model to predict students’ answers by considering
question order effects, without focusing on the question or
answer text. However, a common limitation in these studies
is the lack of attention to the contextual richness in the text
of questions and answers, which could significantly influence
human cognition and decision-making processes.

In this regard, Large Language Models (LLMs) could be
leveraged to incorporate textual context into predictive mod-
els [21–23]. For example, [21] used LLMs fine-tuned with
personalization and contextualization to enhance early fore-
casting of student performance in courses. Moreover, [22]
proposed a transformer-based knowledge tracing model us-
ing BERT to capture the sequential knowledge states by ran-
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Figure 1: We present a four-stage pipeline for answer forecasting integrating student history: 1) we preprocess ITS data from
Lernnavi, 2) we train student embeddings from several models (MLP, LSTM, Mistral 7B, BERT), 3) we use the ITS data and
student embeddings to train several models (LernnaviBERT for Domain Adaptation, MCQBert for Correct Answer Prediction,
and MCQStudentBert for Student Answer Forecasting) and 4) we evaluate the models using qualitative and quantitative analyses
(accuracy, F1 Score, and MCC).

domly masking labels from the students’ answer sequence.

While LLMs offer a promising solution to account for the
content and context of questions and answers, their applica-
tion on student answer forecasting remains underexplored.
To forecast student answers, the inputs of the question con-
text, granular answer choices, and individual learning his-
tory becomes even more relevant to the model than for gen-
eral question answering tasks [24, 25].

To address this gap, we introduce a novel student answer
forecasting pipeline that leverages LLMs to understand the
content and context of the question and answer and the stu-
dents’ history. We first compare four architectures (MLP,
LSTM, BERT, Mistral 7B) to compute student embeddings
using a student’s previous answering history. Then, we in-
corporate the student embedding into the question-answering
prediction, using a finetuned BERT architecture. We fo-
cus on language learning MCQs from a real-world ITS used
by 10499 students consisting of 237 unique questions to an-
swer the following research questions: (RQ1) How can we
design a performant embedding for student interactions in
German? (RQ2) How can we integrate these student inter-
action embeddings to improve the performance of an answer
forecasting model?

This work contributes a modeling pipeline for question-answer
forecasting that 1) integrates student history into a trans-
former model and 2) focuses on answer choice forecasting
instead of correct answer forecasting. Unlike other answer
forecasting models, answer choice forecasting allows for in-
dependent modularization of answer choices, enabling an ed-
ucator to simply add a fifth answer choice for an original
four-answer MCQ question without retraining the model.
Importantly, we contribute to the literature in German EDM,
presenting a case study from over ten thousand students
from a real-world ITS in a language that is not often re-
searched and therefore accompanied by several biases due
to data and model underrepresentation [26]. We only use
open-source models (including the recent Mistral 7B) and
not API-based services, enabling learning platforms to host
their pipeline and data entirely on their servers. Our code
and models are provided open source at https://gith

ub.com/epfl-ml4ed/answer-forecasting and https:

//go.epfl.ch/hf-answer-forecasting.

2. METHODOLOGY
The student answer forecasting pipeline depicted in Figure
1 is based on students interactions with MCQs in an ITS
named Lernnavi. The pipeline predicts the likelihood of a
student selecting a particular MCQ answer, based on the
question and answer text and a student embeddings gener-
ated from their historical interaction data. In this section,
we describe each step of the pipeline.

2.1 Data Processing
Learning Context. We focus our analyses on data collected
from Lernnavi, an ITS for high-school students. Lernnavi
offers adaptive learning and testing sessions in mathematics
and language learning.

Dataset. The dataset is characterized by the following three
data representations: 1) user-generated interactions, also re-
ferred to as “transactions“ (Isu = i1, . . . , iK for each user
u), 2) Lernnavi questions also referred to as “documents”,
representing the associated questions (Qs), answer choices
(Cs), and textual pages provided to students, and 3) the
taxonomy of topics (T) shown in the German and Math
dashboards. We only consider “documents” regarding Ger-
man MCQs with at least one transaction from a user. After
filtering, the dataset is composed of 237 unique questions
and 138,149 transactions. Moreover, the dataset consists
of 10,499 users with at least one transaction for German
MCQs. The median number of MCQ answers from learners
is 7 with some learners that answered up to 311 questions
(including multiple trials for the same question).

2.2 Problem Formulation
We analyze users Us ⊂ U engaging in learning sessions
s within Lernnavi ’s S offerings, focusing on sessions S =
s1, . . . , sMS , each a unique iteration within a broader topic
t ⊂ T. These sessions are characterized by their interactive
quizzes, sourced from a question bank Qs and designed to
assess user knowledge through multiple-choice formats. In-
teractions in these sessions are represented as Isu = i1, . . . , iK
for each user u, involve selections (c) from the provided an-
swer options for each question q.

These interactions are timestamped and detailed to capture
the essence of user engagement and learning behavior. To
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evaluate user trajectories, we introduce binary metrics for
answer choices, Cs = cq1 , . . . , cq|Qs| , allowing for an in-depth
analysis of user response selection. This design is to enable
the multi-response setting for question q, which can either
have one correct answer choice cqi or multiple correct an-
swer choices Cq, of which user u chooses one answer cqu or
multiple Cqu .

The answer-forecasting prediction task is to predict for a
given user u with past interaction history Isu, which answer
choices Cq are most likely to be chosen by the student.

2.3 Embedding Generation
To create student embeddings for a prediction model, we
explored four strategies to make a total of 22 different em-
beddings: one using the MLP model, 16 using the LSTM
models, one using LernnaviBERT, and four using Mistral

7B Instruct models:

MLP Autoencoder Embedding: We utilized a Multilayer Per-
ceptron (MLP) autoencoder with specific architecture and
feature engineering to encode students’ previous performance,
resulting in a size of 11907.

LSTM Autoencoder Embedding: We considered four stacked
LSTM configurations with varying sequence lengths and num-
ber of layers to balance computational complexity and rich-
ness of student interaction history.

LernnaviBERT Embedding: We created embeddings using
a finetuned German BERT base model1 to MCQ-specific
language, LernnaviBERT, with a sequence length of 10 and
mean pooling strategy.

Mistral 7B Instruct Embedding: We used Mistral 7B In-

struct to generate embeddings with sequence lengths of 10,
20, 30, and 40 with mean pooling at the penultimate layer.

2.4 MCQStudentBert: Answer Forecasting
We initially train an MCQBert for the classification of cor-
rect/incorrect MCQ answers. Learning the correct answers
across all MCQs is necessary to ensure that any failure in
predicting a student’s response did not arise from a lack of
knowledge of the correct answer. Appendix 5.1 details the
training and evaluation strategy.

We then extend MCQBert to include the students’ history and
predict students’ responses to MCQs. Inputs for this task
include the text of the MCQs and supplementary student-
specific data encapsulated within embeddings. The objec-
tive has changed; rather than pinpointing the correct an-
swers from available options, the emphasis is on predicting
the actual responses provided by students. This task contin-
ues to be treated as a binary classification problem. Details
are included in Appendix 5.2.

We explore the two models in Figure 2, differing in their
handling of student embeddings for integrating student in-
formation into the prediction process: MCQStudentBertCat

where the inputs are concatenated before the classification
layer and MCQStudentBertSum2 where the embeddings are
summed at the input. Both models are based on MCQBert,

1https://huggingface.co/google-bert/bert-base-german-cased
2
MCQStudentBertCat and MCQStudentBertSum are available at ht

tps://go.epfl.ch/hf-answer-forecasting

Figure 2: MCQStudentBertSum (A) and MCQStudentBertCat

(B) architectures. In MCQStudentBertSum, the student em-
beddings are summed with LernnaviBERT question embed-
dings at the input, before being passed to the MCQBert model
and classification layer. In MCQStudentBertCat, MCQ em-
beddings are generated with LernnaviBERT, then passed to
the MCQBERT model and concatenated with the student em-
beddings just before the classification layer. German BERT
image taken from https://www.deepset.ai/german-bert

finetuned in the previous phase of the pipeline. These vari-
ants are augmented with a classifier head, comprising two
linear layers with a ReLU activation function, to predict
the likelihood of each potential answer being chosen by a
student. Inset B of Figure 2 illustrates MCQStudentBert-

Cat strategy. The concatenation strategy draws inspiration
from context-aware embeddings [27, 28], where additional
features (like user or product embeddings) are appended be-
fore the final classification layer to provide context. For this
purpose, in our context, the student embeddings are first
transformed using a linear layer to match the MCQBert’s hid-
den size. These transformed embeddings are then concate-
nated with the output of the MCQBert model which is the
representation of the first token [CLS] token. This approach
leaves the MCQBert processing unchanged and appends addi-
tional information right before the final decision-making pro-
cess (e.g., classification). It allows the classification model
to consider both the processed input representation and the
student-specific information distinctly.

In contrast, MCQStudentBertSum, depicted in Figure 2 (inset
A), integrates the student embeddings directly into the input
embeddings of the MCQBert model. This approach is similar
to multimodal learning for LLMs to create combined embed-
dings that represent both modalities at the input level (e.g.
to create visual-semantic embeddings) [29]. Specifically, the
student embeddings are first transformed to match the di-
mensionality of the MCQBert input embeddings using a lin-
ear layer. These transformed student embeddings are then
summed with the original input embeddings. This approach
alters the initial representation that the MCQBert model pro-
cesses. The student embeddings can be seen as providing an
initial bias or modification to the input embeddings, po-
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Figure 3: t-SNE visualization of the LernnaviBERT embed-
ding space. Highlighted is the evolution of a single student’s
embedding through time.

tentially allowing the model to adapt more specifically to
characteristics represented by the student embeddings.

3. EXPERIMENTAL EVALUATION
We finetune LernnaviBert to predict the correct MCQ an-
swer, resulting in MCQBert. Next, we integrate the stu-
dent embeddings (RQ1) to forecast student answers to pro-
duce variations of MCQStudentBert (RQ2). The experimen-
tal evaluation of MCQBert for correct answer prediction can
be found in Section 5.1

We evaluate the different embedding strategies and ways
of integration to predict student responses to MCQ. A key
difference from MCQBert is the incorporation of student em-
beddings, enabling models to use contextual information.

Embedding Performance. The training of the MLP au-
toencoder yielded a mean validation loss of 1.3e−7. Fur-
ther analysis highlighted a discrepancy in the norm-2 dis-
tance between the input and output vectors across training,
validation, and test datasets, with an average input norm-
2 (∥input∥2:) of 1.31 and an average discrepancy norm-2
(∥input − output∥2) of 0.03. The LSTM models yielded a
mean validation loss of 1.3e−2 with a mean input norm of
13.59 and an average reconstruction norm of 10.94.

We did not find a trend in the number of hidden layers for
the LSTM. For subsequent analyses, the single-layer LSTMs
are used. After tuning, for both Mistral 7B and LSTMs,
the best sequence length was 20.

To examine the LernnaviBERT embeddings in detail, Figure
3 visualizes the embedding space using t-SNE. Each point
represents a student-embedding at a given time. Students
are represented by multiple points, reflecting the evolution
of their embeddings as they respond to successive MCQs. In
Figure 3, the trajectory of embeddings from an individual
student is accentuated. The temporal aspect of these em-
beddings is depicted through a color gradient, transitioning
from lighter shades for initial interactions to darker shades
for more recent activity. The highlighted trajectory sug-
gests a discernible shift in the student’s embedding space
over time from the upper right to the lower left corner.

Predictive Model Performance. A total of 20 models were
trained, incorporating 10 distinct embeddings and 2 integra-
tion strategies, over three epochs3. The models were eval-
uated on a hold-out test set consisting of MCQs previously
encountered by the model, but not in the context of the
specific student being assessed.

The optimal performance for all models was recorded in ei-
ther the second (followed by a marginal decline in the third
epoch) or third epoch. Table 1 presents the results from the
best epoch, showcasing both integration strategies (concate-
nation and addition) across four embedding types (MLP,
LSTM, LernnaviBERT, Mistral 7B), compared to a base-
line Dummy Classifier and MCQBert (no embedding). For
brevity, only the results from the best-performing LSTM,
with 1 hidden layer and a sequence length of 20, and the
highest-achieving Mistral 7Bmodel, with a sequence length
of 20, are displayed3.

Integration Strategies. As seen in Table 1, the concatenation
strategy (MCQStudentBertCat) generally yields slightly bet-
ter results compared to the summation strategy (MCQStudent
BertSum), particularly noticeable with LernnaviBERT.

Embeddings. All embedding strategies show substantial im-
provements over the Dummy Classifier across all metrics.
Mistral 7B is the best-performing embedding for both in-
tegration strategies (MCQStudentBertCat, MCQStudentBert-
Sum). When applied to MCQStudentBertCat, the Mistral 7B

embedding shows a notable increase in performance metrics:
an improvement of 0.579 in MCC, 0.477 in F1 score, and
0.207 in accuracy compared to the Dummy Classifier. For
the second baseline (MCQBert), the Mistral 7B embedding
showed a 12% improvement.

Consistency is observed in the performance ranking of em-
beddings between the two integration strategies. In the MC-
QStudentBertCat configuration, LernnaviBERT ranks second
with an MCC = 0.575, followed by the LSTM autoencoder
with MCC = 0.567, and the MLP autoencoder trailing with
MCC = 0.557. Similarly, for the MCQStudentBertSum strat-
egy, the LernnaviBERT embedding is in the second position
MCC = 0.575 followed by the LSTM autoencoder with an
MCC = 0.564, while the MLP autoencoder remains the
least effective, with an MCC = 0.552.

The performance differentials between embeddings are marginal.
For instance, within the MCQStudentBertCat framework Mis-
tral 7B, exhibits a modest 4% improvement in MCC over
the MLP autoencoder. Similarly, in the MCQStudentBertSum
framework, the margin is 3%.

4. DISCUSSION AND CONCLUSION
Our goal is to enhance the predictive capabilities of ITS
by developing embeddings that capture student interactions
(RQ1) and integrating them into an answer forecasting model
(RQ2) to improve performance and personalization.

We explored various methods of encoding students’ interac-
tions with the ITS including using autoencoders with MLP
and LSTM architectures, and LLMs including LernnaviBERT

3Full results are available at https://go.epfl.ch/mcq-results
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Table 1: MCQStudentBert Embedding Comparisons and Performance. For two models MCQStudentBertCat and MCQStudent-

BertSum, we evaluate the performance of different student embeddings (MLP, LSTM, LernnaviBERT, and Mistral 7B) against a
baseline dummy classifier and MCQBert. We report MCC, F1 Score and Accuracy, with the highest values indicating the most
performant embeddings (Appendix 5.2). * represents the best model determined by a hyperparameter search.

Embedding

Dummy MCQBert MLP LSTM∗ LernnaviBERT Mistral 7B∗

MCQStudentBertCat

MCC 0 0.518 0.557 0.567 0.575 0.579

F1 Score 0.305 0.740 0.772 0.777 0.780 0.782

Accuracy 0.590 0.771 0.785 0.790 0.795 0.797

MCQStudentBertSum

MCC 0 0.518 0.552 0.564 0.568 0.569

F1 Score 0.305 0.740 0.767 0.774 0.777 0.778

Accuracy 0.590 0.771 0.785 0.790 0.789 0.789

model and Mistral 7B (RQ1). Our findings revealed that
the Mistral 7B embedding emerged as the best-performing
method for our use-case, demonstrating a 12% performance
enhancement relative to MQCBert (baseline with no embed-
ding) and a 4% improvement over the least effective embed-
ding, the MLP autoencoder. The performance of Mistral

7B, closely followed by LernnaviBERT, LSTM, and MLP au-
toencoder can be likely attributed to the inherent capa-
bilities of each embedding approach in capturing and rep-
resenting student interactions. For example, Mistral 7B

has a sliding window attention mechanism, facilitating a
deeper understanding of contextual relationships within stu-
dent data [30]. This model’s efficacy is further augmented
by its fine-tuning on instructional datasets, potentially en-
hancing its proficiency in interpreting question-answer pairs.
Moreover, LernnaviBERT also seemed to capture the con-
textual information of educational interactions effectively,
ranking it closely behind Mistral 7B. The slight difference
in performance between these two models may be due to
Mistral 7B’s more advanced mechanisms for handling long
sequences and its ability to incorporate broader contextual
information. Notably, the optimal sequence length for Mis-
tral 7B was identified as 20, whereas the LernnaviBERT

model was constrained to sequence lengths of 10 due to
its context limitations. This is further supported by the
Mistral 7B embedding visualizations that show a more dis-
cernible trend with sequence lengths greater than 10. The
LSTM autoencoder underperforms compared to transformer-
based models because it prioritizes temporal dynamics over
deep contextual understanding. While its sequential pro-
cessing is good for capturing learning progression, it may not
handle complex language structures as well as transformer
models. The low performance scores of the MLP autoen-
coder can be attributed to its simpler architecture, which
may not capture complex language-based information and
temporal dynamics effectively.

To study the integration of student interaction embeddings
into an answer forecasting model (RQ2), we used two ap-
proaches: MCQStudentBertCat, which concatenates student
embeddings with model outputs before classification, and
MCQStudentBertSum, which sums the embeddings at the in-
put stage. The superior performance of the MCQStudent-

BertCat model compared to the MCQStudentBertSum model
could be attributed to its ability to maintain a clear sep-

aration between the question-answer information and the
student-specific embeddings, promoting distinct utilization
of both sources of information in the prediction process. Fu-
ture research could further explore the optimization of such
integration techniques, potentially investigating the impact
of varying the point of concatenation.

One limitation of our study is the interpretability of the
embeddings generated by the models we explored, such as
LernnaviBERT and Mistral 7B. Despite their effectiveness,
there is a significant gap in our understanding of the under-
lying features and feature patterns encapsulated by these
embeddings, hindering our ability to comprehend their ef-
fectiveness. The generalizability of our findings is limited by
the study’s execution within a single context and the lack of
publicly available datasets comparable in richness to Lern-
navi. However, our study aligns with and contributes to the
growing body of research in answer forecasting by incorpo-
rating student history into predictive models. We aim to
introduce a novel approach that can be replicated by the
EDM community in different ITS and contexts, enabling a
better understanding of the generalizability of our findings
and fostering advancements in personalized instruction.

In conclusion, we introduce MCQStudentBert, a model for
student answer forecasting that leverages LLMs to integrate
the contextual understanding of question and answer texts
with students’ historical interactions. Our work contributes
to the field of EDM in the German language context, where
such studies are scarce, and promotes the use of open-source
models, facilitating wider adoption and adaptation within
the EDM community. Furthermore, our model’s utility ex-
tends to ITS, where it can be employed to tailor potential
answers for individual learners and give hints dynamically.
From the educator’s and developers’ perspective, it is pos-
sible to modify or augment the answer choices without ne-
cessitating a complete retraining of the model. This fea-
ture could allow seamless updates and expansions to the an-
swer sets in response to evolving pedagogical requirements
or teacher/student feedback.
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5. APPENDIX
This appendix includes additional figures and material to
complement the main section of the paper.

Figure 4: Example of dataset to illustrate the dataset split
into a training and a validation/test dataset. For clarity, each
individual MCQ is characterized by the same colour.

Figure 5: Training and validation/test datasets obtained by
splitting the dataset using the second method presented in
the report. Different instances of the same MCQ can be in
only one of the two datasets.

Table 2: MCQBert performance in comparison with a baseline
model (Dummy Classifier) that predicts the majority class
(0) for each answer choice.

MCC F1 Score Accuracy

Dummy Classifier 0 0.292 0.605

MCQBert 0.472 0.702 0.740

5.1 MCQBert: Correct Answer Prediction
This section introduces MCQBert, a model developed to pre-
dict students’ responses to MCQs using only the question
text4. The downstream task and primary objective of MC-

QBert is to accurately identify the correct answer(s) from

4MCQBert is available at https://huggingface.co/collect
ions/epfl-ml4ed/student-answer-forecasting-edm-202
4-663b7c20bb2aa3273dda4de2

Figure 6: MCQBERT Architecture. The MCQBERT model for
correct answer prediction involves a binary classifier and a
finetuned BERT architecture predicting answers in sequence.
The inset showing the Transformer encoder is taken from [28].

the given options in each MCQ in the dataset. The archi-
tectural design of MCQBert is illustrated in Figure 6. It rep-
resents the LernnaviBERT model’s application in processing
both the question and a potential answer as input sequences.
The transformer encoder component of LernnaviBERT pro-
cesses the sequences before it is passed to a binary classifier,
which outputs ‘1’ for a correct answer and ‘0’ for an incorrect
one.

Data Split. To formulate the MCQ prediction challenge as
a binary classification task, each MCQ datapoint is decom-
posed into separate instances, each pairing the question with
a possible answer option. The model thus aims to assign a
‘1’ to a correct or student-selected answer and a ‘0’ to an
incorrect or unselected answer.

We implement a partitioning ratio of 80/10/10 for training,
validation, and testing, respectively. Notably, each MCQ
occurs multiple times within the dataset, corresponding to
different answers. To rigorously assess the model’s ability
to generalize and accurately answer new MCQs, we ensure
that individual MCQs are exclusively allocated to either the
training or the testing set. In other words, all occurrences
of a particular MCQ are confined to a single subset.

Experiments. To evaluate the performance of our models
in predicting correct answers to MCQs, two distinct experi-
ments were conducted. In the first one, the model was fine-
tuned using the designated training set, and its generaliza-
tion capacity was assessed on a separate test set comprising
unseen questions, validating its ability to respond to MCQs
beyond the training data. The second experiment involved
training the model on the entire MCQ dataset, confirming its
effective learning of correct answers across all MCQs, ensur-
ing that any failure in predicting a student’s response did not
arise from a lack of knowledge of the correct answer. In the
final phase of our pipeline for predicting student responses to
MCQs, the model trained on the complete dataset was fine-
tuned, allowing it to utilize its comprehensive knowledge of
the correct answers when making predictions.

This section describes the evaluation of MCQBert’s perfor-
mance in the specific task of predicting correct answers to
MCQs. The evaluation consisted of two distinct experi-
ments, each employing a different training procedure to as-
sess the model’s predictive capabilities.
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Figure 7: t-SNE visualization of the Mistral 7B embedding space for difference sequence lengths. The evolution of the same
student’s embedding through time is highlighted.

Experiment 1: Model Evaluation Against Unseen MCQs. The
first experiment aimed to evaluate the ability of the model
to predict the correct answers of previously unseen MCQs
accurately. The models were fine-tuned for one epoch on
a designated training set and subsequently evaluated on a
separate test set. The evaluation metrics included MCC, F1
score, and accuracy.

The results, as summarized in Table 2, contrast the per-
formance of MCQBert with that of a Dummy Classifier, a
baseline always predicting the majority class (i.e. 0). This
comparison is useful for evaluating the effectiveness of MC-
QBert beyond simple chance or biased class distribution.

The performance metrics indicate that MCQBert outperforms
the baseline Dummy Classifier, evidencing its capability to
discern correct answers in the context of MCQs.

Experiment 2: Model MCQs Retention Evaluation. The sec-
ond experiment was designed to evaluate MCQBert’s capacity
for retaining correct answers after being fine-tuned on the
entire Lernnavi MCQ dataset. The model was then tested
on the same dataset to assess its ability to recall the correct
answers, effectively evaluating its memorization capability.
Not surprisingly, MCQBert achieved an MCC of 0.983, indi-
cating nearly perfect recall of the correct answers within the
dataset. This high level of performance is further corrobo-
rated by F1 scores of 0.993 for class 0 and 0.989 for class
1. The accuracy score of 0.992 reinforces the model’s strong
predictive capability and suggests that MCQBert model has
learnt the correct answers to the vast majority of the MCQs
present in the dataset, and we can therefore exploit this
knowledge in the next step.

5.2 Reproducibility for MCQStudentBERT
Similar to the MCQ prediction task without student data,
we split the dataset into training, validation, and test datasets
using an 80/10/10 split. In contrast to the base model
(MCQBert), where each question-answer pair was exclusively
assigned to one subset, in this task, individual MCQs can be
present in both training and testing phases due to multiple
representations within the dataset. This decision allows the
model to leverage prior history related to specific questions,
enhancing predictive accuracy by considering responses from
students who share similar characteristics with the target
student.

Evaluation Metrics. We assess our models using three differ-

ent metrics: the Matthews Correlation Coefficient (MCC)
for binary classification, the F1 score for balancing preci-
sion and recall, and the accuracy score for overall predic-
tions. MCC and F1-score are effective even if the classes
are strongly imbalanced, motivating our evaluation choices.
While accuracy and F1-score range between 0 to 1, MCC is
a correlation coefficient value between -1 and +1 (+1: per-
fect prediction, 0: average random prediction, -1: inverse
prediction).

5.3 Impact of sequence length on latent space
representations

We examined the sequence length impact on the Mistral

7B embeddings. Similar to Figure 3, Figure 7 shows a sin-
gle student’s embeddings across varying sequence lengths.
Echoing the behavior of the LernnaviBERT embedding, we
note a discernible diagonal progression in the embeddings
when the sequence length is greater than 10. The trend
suggests that as the sequence length increases, the student’s
representation in the embedding space demonstrates a more
pronounced diagonal trajectory, transitioning methodically
from older to more recent embeddings with a progressively
smoother evolution.
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