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Abstract. Clustering in education, particularly in large-scale online en-
vironments like MOOCs, is essential for understanding and adapting to
diverse student needs. However, the effectiveness of clustering depends
on its interpretability, which becomes challenging with high-dimensional
data. Existing clustering approaches often neglect individual differences
in feature importance and rely on a homogenized feature set. Addressing
this gap, we introduce Interpret3C (Interpretable Conditional Compu-
tation Clustering), a novel clustering pipeline that incorporates inter-
pretable neural networks (NNs) in an unsupervised learning context.
This method leverages adaptive gating in NNs to select features for each
student. Then, clustering is performed using the most relevant features
per student, enhancing clusters’ relevance and interpretability. We use
Interpret3C to analyze the behavioral clusters considering individual
feature importances in a MOOC with over 5, 000 students. This research
contributes to the field by offering a scalable, robust clustering method-
ology and an educational case study that respects individual student
differences and improves interpretability for high-dimensional data.
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1 Introduction

Clustering a student population into educationally relevant groups facilitates
a deeper understanding of student behaviors and learning patterns, enabling
educators to optimize curriculum design and implement group interventions
[5,11,12,15]. The effectiveness of these strategies hinges on the interpretabil-
ity of the clusters as it directly influences the quality of insights educators can
extract from them [5,16]. In large-scale educational settings such as Massive
Open Online Courses (MOOCs), where individualized attention is challenging
due to the sheer number of participants, clustering provides a feasible approach
to understand and address the needs of different student groups.

In these online contexts, abundant and varied features have been used to
study student behavior [1,2,3,7,8,9,10,13,21]. A broad spectrum of features is
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necessary for a comprehensive study of complex student behavior. However, it
simultaneously poses substantial challenges in terms of robustness and inter-
pretability due to the curse of dimensionality. In high-dimensional spaces, the
sparsity of data makes most distance measures less effective, leading to less ro-
bust results [6]. In addition, a large number of features can lead to intricate yet
less intuitive clustering outputs, thereby complicating the translation of these
results into practical educational applications, such as supporting educators to
identify and address areas where groups of students may require assistance.

To target the issues of interpretability and robustness, previous works have
used a subset of expert-selected features [4,12,11], and data-driven feature se-
lection methods [5,14] before clustering. The learning science-driven approach
has been to select a limited number of setting-specific features [2,4,9,11,12]. For
example, [4] followed the domain modeling step of the evidence-centered design
framework to engineer the features used for clustering. However, the process
of hand-picking features is heavily reliant on the expertise and perspectives of
the researchers or educators involved. This reliance can inadvertently introduce
subjective biases, as the selected features may reflect the specific hypotheses or
expectations of the individuals involved, rather than the full spectrum of student
behaviors and learning patterns. On the other hand, there are multiple data-
driven approaches for feature selection in unsupervised settings, including filter,
wrapper, hybrid, and embedded approaches [6]. A significant limitation within
these approaches is that the features are chosen averaging over all students,
thereby neglecting individual differences in feature importance. This oversight
results in an aggregation process that identifies features beneficial on a global
scale but fails to account for unique student characteristics.

Addressing this challenge, neural networks (NNs) could be adapted to act as
embedded methods to perform individual feature selection as part of their train-
ing process. Compared to traditional ML methods, NNs are exceptionally good
at capturing complex, non-linear relationships and interactions between features.
This characteristic could enable NNs to identify important features in datasets
where the significance of a feature is not obvious or is dependent on interactions
with other features. Moreover, NNs are well suited for high-dimensional data,
as they are robust to irrelevant or redundant features. However, NNs face in-
terpretability issues due to their complex, multi-layered “black box” operations
[15,18,16]. To address this issue, [18] proposed an interpretable NN architecture
(InterpretCC) that uses a dynamic feature mask to enforce sparsity regulariza-
tion on the number of input features. This method enables feature importances
vectors per student without compromising classification or regression accuracy.

While interpretable-by-design NNs offer a promising solution for dealing with
high-dimensional data and individualized feature selection, their application has
predominantly been in supervised tasks [13,18,16]. The extension of these meth-
ods to unsupervised settings, particularly for interpretable clustering, remains
unexplored. This could address the existing gap in the consideration of individ-
ual differences in clustering. Traditional feature selection techniques, typically
employed before clustering, opt for a global feature selection strategy [6]. Such a
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strategy creates a homogenized feature set that fails to recognize and incorporate
the distinctive attributes of individual students.

This work bridges the aforementioned gaps by developing Interpret3C (In-
terpretable Conditional Computation Clustering), a clustering pipeline that lever-
ages the strengths of interpretable NNs in an unsupervised learning context. This
approach is tailored to adaptively select features per student, thereby facilitat-
ing easier and more meaningful interpretation of clusters without compromising
the quality and robustness of the clustering process. This is achieved through
a deep feature selection method where the individual feature importance masks
are extracted from interpretable NNs trained to predict academic performance.
Clustering is then performed on the important features. We evaluate our pipeline
on a large MOOC with over 5,000 enrolled students and hundreds of thousands
of interactions to address the following research question: What kind of student
behavioral clusters are identified through inherently interpretable clustering?

2 Methodology

We contribute an inherently interpretable clustering pipeline*. Our approach
involves the adaptive selection of the most pertinent features for individual stu-
dents, and uses only these identified features for the clustering process.

2.1 Student Interactions and Feature Extraction

We begin by collecting clickstream data from MOOCs on student interactions
from videos and problems, and their associated actions, which include video-
related actions. We extract 45 behavioral features from the student interac-
tions* that have been found to be predictive in MOOCs [2,3,7,9,17]. The feature
sets encompass a wide array of online learning behaviors, including clickstream
patterns, study regularity, quiz performance, and video interaction metrics. [2]
evaluates study pattern regularity and [3] explores clickstream activities. Video
interactions in MOOCs are analyzed in detail by [7], while [9] focuses on features
related to quiz performance.

Each feature is computed on a weekly basis, resulting in a time series vector
for every student. This transforms each student’s behavior into a multivariate
time series, where one dimension represents the progression of weeks and the
other encapsulates the diverse set of features. We then use unit-norm scaling to
normalize the features, preventing vanishing or exploding gradients in the deep
feature selection step.

2.2 Deep Feature Selection

We extract the most important features for each student using an interpretable
NN architecture. We define feature importance as the degree to which individual

* https://github.com/epfl-ml4ed/interpretable-clustering/
* The full list of features is available at https://github.com/epfl-ml4ed/

interpretable-clustering/blob/main/docs/features-description.pdf

https://github.com/epfl-ml4ed/interpretable-clustering/
https://github.com/epfl-ml4ed/interpretable-clustering/blob/main/docs/features-description.pdf
https://github.com/epfl-ml4ed/interpretable-clustering/blob/main/docs/features-description.pdf
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Fig. 1: Interpret3C pipeline with deep feature selection and clustering.

features contribute to the predictive accuracy of the model. Thus, to extract the
individual feature importance masks, we train NNs on the supervised task of
predicting students’ academic performance (pass or fail).

The architecture, an extension of the predictive model presented by [18],
leverages a feature gating mechanism that dynamically selects relevant input
features for making predictions. As shown in Fig. 1, the features initially pass
through discriminator layers, followed by a sigmoid function that produces a
feature mask. Features with a sigmoid output of 0.5 or higher are considered
activated. Each activated feature is then processed by a dedicated BiLSTM sub-
network to predict the student’s likelihood of passing or failing. The overall
prediction is the average of these individual predictions, weighted by the feature
activations.

To encourage interpretability through sparsity, we integrate an annealed
mean-squared error regularization on the feature mask. Moreover, the incom-
patibility of discrete feature gating with backpropagation is overcome by using
the Gumbel-SoftMax technique. This technique approximates discrete choices
through differentiable functions by adding Gumbel noise and applying softmax
as done in [18].

2.3 Clustering

To obtain the clusters, we use as input the masked feature matrix per stu-
dent containing only the important feature vectors. For instance, if a student
s has a feature mask ms = (0, 1, 1) and their corresponding feature matrix is
Fs = (f1

s , f
2
s , f

3
s ), with f i

s representing the time series vector for each feature i,
the resulting masked feature matrix would be Fm = (−, f2

s , f
3
s ). Next, for each

feature f , we calculate Df the Euclidean pairwise distance between students’
time series. To calculate distances between vectors in the presence of incomplete
data, we impute a vector of zeros. This allows non-missing features to have a
stronger contribution to the distance calculation. Following, we compute D as
the average of all the features’ distance matrix (Df ). Next, we apply a Gaussian
Kernel to compute Sf , the similarity matrix of Df . We use Spectral Clustering
to cluster Sf with the number of clusters n as a hyper-parameter. We consid-
ered from 3 to 10 clusters and choose n according to the Eigengap heuristic as
suggested in [20]. We deliberately choose n to be greater than two to prevent
replicating the outcomes of the binary classification task (pass or fail) and obtain
additional insights into student behavior.
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Fig. 2: For each of 8 important features (x-axis), the percentage of students (y-
axis) from each cluster (color) that selected the feature as important.
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Fig. 3: For each of 8 important features (x-axis), the feature value distribution
(y-axis) from each cluster (color).

3 Experimental Evaluation

In our analysis, we trained an Intepret3C pipeline to examine the clusters ob-
tained over thousands of students in a MOOC on Digital Signal Processing. In
particular, the course is a Computer Science Master’s course taught in English
with 5,611 active students for 10 weeks. The choice of this course was based on
its prior use in other studies [9,17,19].

We use the first four weeks in an early prediction setting to identify six
behavioral clusters labeled A through F and ordered according to academic
outcomes. Cluster A is the group with the highest percentage of students passing
the course, while students in F have the highest failure rate. The distribution
of students across these clusters is as follows: Cluster A contains 786 students,
equating to 14% of the course’s population, with a passing rate of 60%. Clusters B
through F comprise 15%, 14%, 14%, 18%, 25% of the student body, respectively,
with passing rates of 42%, 31%, 17%, 15%, 11%.

Fig. 2 illustrates the distribution of important features within each cluster.
For each cluster, it shows the percentage of students for whom each feature was
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deemed relevant. One initial observation is that out of the 45 original features,
only eight were selected as important for at least one student. Out of these eight
features, five emerged as significant across all clusters. The features are related
to video activities (Total Clicks Video Load, Total Clicks Video), quiz interac-
tions (Time in Problem Sum, and Student Speed) and regularity patterns (Time
Between Sessions Std). The other three features (Total Time Video, Content
Alignment and Total Time Session) vary considerably between clusters. Only
in the best-performing clusters (A, B, and C), Total Time Video and Content
Alignment were selected as important for the majority of the students.

To gain a deeper understanding of the differences between the clusters, Fig. 3
presents a comparison of the average feature values for each important feature
across clusters. It also includes the “Overall” category, which shows the average
feature values for all students. Different from Fig. 2 where there were slight vari-
ations in the percentages of feature importances, in Fig. 3 the distributions vary
considerably between clusters. This variation suggests that while a feature may
be considered important across clusters, the degree to which it is manifested in
student behavior could differ. One specific feature of interest is “Content Align-
ment”, which measures schedule adherence. In Fig. 3, this feature consistently
exhibits one of the highest levels of variability, with both the 25th and 75th per-
centiles at zero for all clusters. This indicates that the vast majority of students
did not complete the video content within the designated timeframe. This con-
trasts with the Overall category distribution of the feature where the definition
of outlier is above 0.35 (instead of zero). Thus, it seems that Content Alignment
is mostly considered as an important feature for the students who are behind
schedule. For example, in Clusters A and B, it was an important feature for more
than 70% of the students. Interestingly, in Cluster B, all students had a value of
zero for this feature, while for Cluster A, there were multiple outliers with values
greater than zero. This suggests that while this feature was important for both
clusters, students in Cluster B were universally off-track, whereas in Cluster A,
a subset of the students managed to adhere to the schedule.

An additional observation is the difference in engagement between the best-
performing clusters (A and B). As seen in Fig. 3, students in Cluster B dedicate
more time to videos and problem-solving than those in Cluster A. However,
students in Cluster A exhibit more active engagement, as evidenced by lower
Student Speed values related to quiz attempt frequency as well as higher values
in video-related features such as Total Video Clicks.

Furthermore, Fig. 3 reveals a general downward trend in feature values, with
high-performing clusters (A, B, and C) having higher values compared to low-
performing clusters (E and F). Cluster D, however, deviates from this trend by
exhibiting the lowest median values (zero) for all video-related features. Despite
this, students in Cluster D are not disengaged from the course as they exhibit
the longest time online, attributed primarily to their extensive interaction with
quizzes (Total Time Problems). The passing rate for Cluster D is 16.8%, which is
marginally higher than the 15.2% passing rate of Cluster E. Nevertheless, their
interaction with the course material was very different. The students in Cluster
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D spent a lot of time online interacting with the quizzes, while the students in
Cluster E showed lower levels of engagement across both videos and quizzes.

4 Discussion and Conclusion

In this work, we presented a novel methodology and initial evaluation for an
interpretable-by-design clustering pipeline, Interpret3C.

We performed an in-depth cluster analysis based on student behavior from
the first four weeks of a large MOOC course. Our pipeline revealed six diverse be-
havioral clusters, each characterized by varying levels of interaction with course
materials and platform features. The contrast between Cluster D, highly engaged
in quizzes, and Cluster E, generally disengaged, illustrates that while the out-
comes may appear similar, the underlying behaviors can differ significantly; thus,
effective interventions should address the specific needs of each group. Moreover,
we found five features important for all students and three features with a vary-
ing percentage of importance across clusters. Global feature selection methods
[5,6,14] could have also identified the five universal relevant features but would
likely have overlooked the nuanced variations in the importance of Total Time
Video, Content Alignment, and Total Time Sessions across different clusters.

The quality and relevance of the selected features depends strongly on 1)
the signal of the input features and 2) the performance of the discriminator
network and subsequent time series networks, which require a relatively complex
architecture. Although the utilization of these resources for feature selection may
initially appear excessive, the number of parameters is much smaller than a LLM
or other models used for educational deep learning [13,17]. In these settings, the
training can serve a double purpose: to predict and also to learn about the
group behaviors in the class. Furthermore, the deep feature selection process
has a bias towards the initial predictive task of the discriminator NN. In our
case, the selection mechanism identifies important features related to academic
outcomes. This bias towards the initial task is not inherently negative, as the
prediction task can be adapted to fit other educational goals (e.g., retention or
self-regulated learning skills). Including the outcome measure in unsupervised
settings mirrors that of other methodologies, such as supervised PCA and sparse
supervised CCA [22], helping to identify features associated with the outcomes
and correlations between datasets. Extending the Interpret3C approach to other
tasks and interpreting the clusters over a more generalizable set of courses is left
as future work.

In conclusion, Interpret3C introduces an innovative clustering pipeline by
emphasizing the interpretability of high-dimensional data and respecting indi-
vidual student differences. Through adaptive feature selection, our approach en-
hances the relevance and clarity of clustering outcomes. Our findings illustrate
the potential of Interpret3C to identify insightful clusters in MOOC environ-
ments and paves the way for more effective and personalized group interventions.

Acknowledgements. We kindly thank the Swiss State Secretariat for Educa-
tion, Research and Innovation (SERI) for supporting this project.
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