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Abstract—This report presents a study on the development and
application of a Region-based Convolutional Neural Network,
Faster RCNN and a more complex one, TransVOD, to locate
solar coronal jets using data from the Solar Dynamic Observatory
(SDO). The study focus on jet detection on image and video.
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I. INTRODUCTION

In recent years, there has been an exponential increase in
the volume of data available for research in solar physics.
This surge is largely due to the launch of the Solar Dynamic
Observatory (SDO) in 2010, equipped with the Advanced
Imaging Assembly (AIA) instrument. The SDO/AIA enables
the acquisition of full-disk images of the Sun with a temporal
resolution of 12 seconds, resulting in an immense data stream
[1].

In the field of coronal jets, creating a consistent and reliable
database for these events is crucial for advancing research in
various solar phenomena.

These events were being manually reported in the
Heliophysics Events Knowledgebase (HEK) [2]. However,
given the overwhelming volume of data, manual inspection
by experts is neither feasible nor efficient. Automatic jet
detection has been attempted and is difficult, a recent example
being described in this article [3], where the algorithm only
works at the limb and only for jets that have a simple
geometry (giving an absence rate of 30% at best), requiring
manual validation.

A citizen initiative, Solar Jet Hunter was launched in 2021
in the platform Zooniverse [4]. In this project, volunteers
were shown a series of movie strips of different regions of
the Sun, with the goal of identifying solar jets. This approach,
requiring minimal training for participants, significantly
scaled up the analysis of solar data. By September 2023,
approximately 21% of the data from 2011 to 2016 had been
processed, leading to the identification of 881 solar jets by
volunteers. However, much of the SDO/AIA data remains
unclassified, as the citizen science project contains only 0.3%
of the available data. Moreover, we know that many jets
have not been reported in HEK and therefore remain to be
discovered in the remaining 99.7% of data that has not been
explored.

While some algorithms have been developed to detect
and track some of the features in this data, these have not

been very successful at detecting solar jets. This is believed
to be due to the fact that jets have various shapes, sizes,
duration, and brightness. In particular, when seen on the solar
disk, they sometimes are not brighter than the background [5].

This report investigates the potential of a novel machine
learning algorithm designed to capture and locate the presence
of coronal jets in videos of solar images. This model, trained
by data obtained from the citizen-driven Solar Jet Hunter
initiative, aims to automate and enhance the classification
process for the vast array of data within the HEK catalogue.

Coronal jets are easily detectable by humans due to their
dynamic motion, but present a challenge for algorithmic
detection as a single image may not contain sufficient
information to detect solar jets. Faster RCNN is an image
based model and for this reason, the following report won’t
go in depth about this model as it performed poorly on
video data [6][7][8]. The fundamental problem with frame
detection models applied to video is that they do not capture
the temporal changes between frames and so will not be able
to capture jet events effectively. Some new models such as
Bal − R2CNN attempt to develop this aspect of recurrent
detection with Faster RCNN notably, but they are still under
development and video detection models seem more adequate
for this task [9][10][11].

This report will first go through the implementation of
Faster RCNN and will follow with the whole development
of a model, TransVOD Lite (Transformers for Video Object
Detection) applied with Solar data [12]. This model has been
selected for it’s capacity to give fast outputs and showed
amazing results for other task such as object identifications
for common objects [13][14].

Fig. 1: Solar coronal jet event in the HEK catalogue
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Fig. 2: Faster RCNN architecture

II. FASTER RCNN

This first section covers the fine-tuning of a Faster RCNN
to detect solar jets. This popular model is based on a single
frame and can consequently be applied independently to each
frame of a video to extract the overall output for that video.
The architecture of the model is shown in Figure 2 and is
quite simple:

A. ResNet-50 Backbone
Specific architecture of Residual Networks (ResNets)
which is based on deep convolutional neural network
(CNN). This backbone consist of 50 consecutive layers.

B. RPN network
Region Proposal Network that generate candidates
object bounding boxes (region proposal) in an image.

C. ROI pooling
Region Of Interest pooling mix both previous information
layer to extract finals regions proposal.

D. Classifier
The final component returns the bounding boxes and
their class probability by applying the Softmax function.

Using the weights of this model trained on the COCO
(Common Object in Context) dataset, which contains 200,000
images labelled for 80 classes, this model base is reused to
fine-tune the target model [15][7].

Next, the Faster RCNN model architecture is modified by
changing the last two features (ROI clustering and classifier)
to design the wished output. The ROI clustering has to be
trained again and the classifier now contains only two classes
(one for the solar jet and one for the background).

Finally, the model is trained on a dataset created during
a previous project with two other colleagues and adapted to
new bounding boxes [16]. Because the dataset was small,
the quality was low and the bounding boxes were large, it

was not optimal for this task, but it was the only dataset
in existence at the time (see section III for a new and
significantly enhanced dataset).

The results were weak and unsatisfactory, as there was
no temporal link between the different images in a video,
the desired bounding box was incorrectly calculated on a
validation dataset and the detection of active regions and
solar prominences was much too excessive and unintended.
Even the application of an NMS (Non-Maximum Suppression)
method to better filter the output of a model by post-processing
the results was not sufficient.

This Faster RCNN model revealed that it was not feasible
to use an image model to detect coronal jets as they are
difficult to identify in a single static image shown in Figure 3.
The next steps were to find or develop a new model capable
of using temporal information to accurately detect jets and
provide temporally consistent results.
These requirements were subsequently demonstrated with a
new complex model developed in 2023 called TransVOD Lite
[12].

(a) True Dataset (b) Results of the Model

Fig. 3: Faster RCNN Results
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III. DATA COLLECTION AND PREPROCESSING

The new dataset created for the TransVOD model is more
advanced, complete and ideal for training such a complex
model. This subset includes the dates, duration and locations
of 21% of the solar data from 2011 to 2016 contained in
the original Zooniverse set. The methods for handling this
dataset are explained here : [17][18] and aggregations of
citizens notations : [19]. All the events are downloaded again
from the JSOC (Joint Science Operations Center) server, but
this time they are complete, which means that an event can
range from 15 to 450 images and the quality of each image
is maintained at maximum.

Sunpy [20] [21] is used for this task, a Python library for
solar physics data, to retrieve images from the JSOC server
based on specific locations and dates [22]. The images were
converted and standardized to JPEG formats for use in the
model.

Using this data, we can convert the satellite spatial data
into a dataset that can be used for machine learning by
transforming the Helioprojective latitude/longitude values into
the pixel value corresponding to the corners of the bounding
box in each image. As shown in Figure 4, the conversion of
spatial coordinates into pixel values is accurate and allows
the extraction of new data and precise bounding boxes that
are updated on average every 15 images. It should be noted
that in the initial dataset the bounding boxes could have an
angle of rotation, which is not possible with the model and so
must also be recalculated by taking a wider box that covers
the entire initial box and colours may change due to the
normalisation of pixel values while creating JPEG images.

By downloading all the data from the Citizen project, the
total number of events are equal to 881 and consist of a total
number of images of 41’054. A total memory of 13.2 GB is
necessary to store this data. This is an important increase of
data compared of the previous dataset. As it is mentioned in
[18], the data provided has been annotated by different people
all over the world and can differ from one another. The
aggregation prevent this kind of problem but doesn’t resolve
everything. Also, this dataset has been made to contain a
single bounding box per image which may be restrictive as
one frame may contain multiple coronal jets. Overall, the
dataset is the first one to be able to be applied to vision models.

A JSON file contains information about the image
path, the bounding box coordinates and more detailed
information such as the id, height, width, area and video id
for each image and is needed to load the data. One file is
created for training, which contains 90% of the total data,
and another for validation, which contains the remaining 10%.

To enhance model robustness and realism, data
augmentation techniques are implemented, particularly
random rotations and flips. It was crucial to apply the same
transformation to every frame within a sequence and their
corresponding bounding boxes. This consistency is vital
because the primary identifiable characteristic of a jet is its
motion, and altering the orientation of images between frames
could impede the model’s ability to detect it.

Finally, when the model’s input data is loaded, it is
normalised once again to the mean and standard deviation of
the values calculated for the red, green and blue bands on
the training dataset and resized for a square frame of size
600× 600 pixels.

Fig. 4: Examples of modification from the citizen catalogue (left) to a vision model training dataset (right)
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IV. DEEP-LEARNING FRAMEWORK

Fig. 5: Structure of TransVOD Lite Model

A. Model Architecture
TransVOD Lite framework is a new end-to-end video object

detection based on Transformer architecture. TransVOD adapts
the Transformer architecture to video object detection by
using a spatio-temporal transformer to learn both spatial and
temporal dependencies between objects in a video clip.

The TransVOD Lite framework is based on the input of a
video containing a number of consecutive frames. According
to the article creating this model, TransVOD Lite receives
several images of video clips as input and provides detection
results for each image received [12]. It contains four main
components:

1) Spatial Transformer for single frame object detection
Extracting both object queries and compact features
representation

2) Temporal Deformable Transformer Encoder(TDTE)
Fuse memory outputs from Spatial Transformers

3) Temporal Query Encoder (TQE)
Link objects in each frame along the temporal dimension

4) Temporal Deformable Transformer Decoder (TDTD)
Obtain final outputs

The main components are represented in Figure 5. For more
details on this complex model, the full model framework is
displayed in Figure 7.

Since jet events can be quite short, with only 15 frames in
a complete event, the number of frames needed to train the
temporal aspect of the model should be set between 12 and
15 frames. This will be detailed in Hyperparameter Tuning Tw.

The model employed in this project is a lighter version of
the older TransVOD model [13], because it is much easier to
train due to its reduced parameter count (106.3 M parameters)
and because its performance is better overall with a shorter
inference time. One of the advantages of this approach is
that it can be used continuously with satellite imagery and
real-time data. The frames per second (FPS) returned by the
model are close to 14 FPS and the satellite gives an image
every 24 seconds, which means that we are well within the
limit of continuous scanning.

B. Hyperparameter Tuning
The selection of hyperparameters such as batch size,

learning rate, number of epochs, learning rate scheduler,
optimizers, criterion and temporal window size is vital in deep
learning optimisation. In addition, the detection threshold
parameter also needs to be adjusted, but this will be done
when evaluating the model in section VI.

1) Batch size: count of data samples used to compute the
gradient and update the model’s weights at each iteration. An
ideal batch size is problem-specific, and typically depends on
experimentation. Smaller batch sizes can introduce a form
of generalization due to the fact that it update weights more
frequently and may converge faster, but are prone to noisier
gradient estimates. Due to the large requirement of the model,
the best batch size is set of 1.

2) Learning rate (scheduler): magnitude of weight updates
during model training, essentially controlling the step size in
the gradient descent process. The learning rate is typically
set experimentally and often decreases over time (based on a
scheduler), starting with a broader search to approach the area
of minimum loss, and then slow down to stabilize and refine
the training. A MultiStep learning rate scheduler is used to
reduce the learning rate by a factor 10−1 each time on some
predetermined epochs while the model is being trained.

Fig. 6: MultiStep Learning Rate Scheduler
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Fig. 7: Detailed TransVOD Lite Architecture

3) Epochs: number of times model’s weights are updated
by passing through the entire training dataset. The optimal
number of epochs depends on various factors, such as the
model’s complexity, the task’s nature, the size and quality of
the training data, and the available computational resources.
This training does not require a large number of epochs
because of the large volume of data, which seems to converge
after 14 epochs.

4) Optimizer: determines the update of model parameters
during training. The simplest is gradient descent, which
adjusts weights against the loss gradient. The selected
optimizer is AdamW which is the most widely used in
the literature. Combines momentum, adapting LR, and
regularization through weight decay to avoid overfitting [23].

5) Loss functions (criterion): difference between the pre-
dicted output and actual target values.
It should be initialized with different losses because it pro-
duces distinct things (class prediction and bounding boxes):

• Loss classes : Focal loss for classification
• L1 loss
• Loss giou : Loss of generalized Intersect of Union

and the total loss is equal to :

Laux = λclasses ∗ Lclasses + λL1 ∗ LL1 + λgiou ∗ Lgiou (1)

λ are the coefficients for each loss.

6) Temporal Window size, Tw: This parameter, which
determines the number of frames of a single video used as a
single input, establishes the temporal parameters of the model.
As previously indicated, this value must be low because
of the brevity of the jet episodes. After training different
models, the results for this hyperparameter are revealed to be
Figure 8 and therefore set at 14, which seems consistent for
this project. The speed of inference and the memory increases
when Tw is larger. In this method, it may effectively exploit

the GPU’s memory to accelerate the inference time.

Fig. 8: Temporal Window size against maximum Average
Precision

7) Backbone: The backbone is the structure for image
detection and classification that can be used with or without
pretrained weights. This is the core feature extraction network
to produce high-level feature map. Lately, the majority of the
new models were using the ResNet-50 network for object
detection, image classification or even for segmentation (as
seen for Faster RCNN). The Swin backbone, which has just
surfaced as a new backbone for these activities, exhibits
overall superior performance than the preceding ones. Here,
three alternative sizes can be used: Swin Base, Swin Tiny,
and Swin Small. The Swin Base one was chosen because of
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Fig. 9: Cross validation on some hyperparameters

its even higher precision [24][25][26].

In Figure 9 we can see the results of various runs with
different hyperparameters, note that some runs stopped early
due to high GPU demand in the EPFL cluster. The overview
of the selected hyperparameters can be found in Table I.

Initial LR 4× 10−5

Scheduler MultiStep Learning rate

Optimizer AdamW

Weight Decay 10−4

Criterion Laux

Batch size 1

Total epochs 14

Temporal Window, Tw 14

Backbone Swin Base

TABLE I: Overview of the hyperparameters

V. MODEL TRAINING

A. General notes
As the training requirements are quite expensive, it needs

some preparation and setup. An efficient GPU (graphic
processing unit) can compute one epoch in about 4 hours on
average, therefore a standard computer cannot complete the
training of several epochs. This sophisticated model is trained
on the EPFL cluster using multiple GPUs over several days.

The training combine image and video identification. It
means that the inputs are shuffled images from the same
video with or without transformations applied on all images
of the same film. This makes the training more efficient,
robust and need less computations.

What’s more, the training doesn’t start from scratch, we
train from a pre-trained model that was created for 30 classes
and achieved amazing results (the first class is changed from

a plane to a solar coronal jet) which was based on COCO’s
pre-trained weights [27].

B. Data from training
As we can see in Figure 10, in the course of learning,

different losses are assessed and minimised over time. We
will see in the section VI that reducing these values does not
necessarily mean obtaining a better model.

Fig. 10: Training losses over the epochs

VI. RESULTS AND DISCUSSION

The results of the final model are displayed in Figure 11
and show a good overall improvement. However, the recall
curve does not really benefit from a large number of
bounding boxes, which is not really important because a
video of coronal jet event often contains one to five jets at
the same time, but not a hundred different boxes per image.

As we know, precision assesses the accuracy of positive
predictions and the recall curve focuses on capturing all event
instances. For this specific project, we would like to maximize
the detection of coronal jet events even if it decrease the
precision curve. We want to have the minimum false negative
classification.
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(a) Average precision for a threshold of 0.5 to 0.95 (b) Average recall for different number of boxes (1,10,100)

Fig. 11: TransVOD Lite Results

Precision =
True Positives

True Positives + False Positives
(2)

Recall =
True Positives

True Positives + False Negatives
(3)

IoU =
Area of Overlap
Area of Union

(4)

Here, the evaluation metric is based on the IoU (Intersection
of Union). To match the predictions with the ground truth,
the IoU must be calculated for each predicted delimitation
box with each ground truth delimitation box. On the basis
of the IoU threshold, we classify each prediction as True
Positives or False Positives. Any ground truth box that has
no corresponding predicted box (based on the IoU threshold)
is a False Negative.

These values should also be taken with caution as the
dataset does not provide a precise bounding box and has only
one box, as mentioned above. As a consequence, we don’t
want the result to be identical to the initial dataset but it gives
an approximation of how well the model fits the data. In the
validation dataset it may contains multiples coronal jets but
only one is bounded with a box.
In addition, the minimum threshold evaluated here is 50%,
i.e. 0.5, and it is therefore possible to lower it even further
in order to increase the model’s detection capacity, even
though this will undoubtedly lead to a net increase in false
positives, but it does reduce the number of false negatives.
These methods effectively improve recall metrics.

The final model selected is the one of the tenth epoch. It
offers a good compromise between precision and recall, with
0.42 precision and 0.37 recall for a threshold between 0.5 and
0.95. These measurements can be seen on the upper curve of
Figure 11a and on the lower curve of Figure 11b.

After evaluating the model with new data and different field
of view of the sun (notably more far away), the final threshold
is set at 0.4 and can provide the desired minimisation and not
having too much unwanted false positive while the sun is quiet.

Fig. 12: Output of an on-disk coronal jet event.
Click the image for an animated version.

Fig. 13: Output of an off-limbs coronal jet event.
Click the image for an animated version.
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A variety of animated model outputs are displayed in
Figure 12, Figure 13 and here (online). It is interesting to
note that in Figure 12, it would have been very difficult
to detect this coronal jet on a single image, as is the case there.

VII. CONCLUSION

In this paper, I have implemented and developed two
different models for detecting and locating coronal jets
using data from the Solar Dynamic Observatory with AIA
instrument at 304 Angstrom.

We saw that the Faster RCNN gave mixed results, but that
TransVOD gave very good and reliable scores.

The first dataset for vision models based on the Citizen
Solar Jet Hunter project has been created and obtained
promising results for future applications. This dataset can be
improved by adding ”zoomed out” data, for example images
of the whole sun and perhaps data that does not contain jets
so that the model is better able to avoid detection, which
is slightly lacking because of the need to minimise false
negatives. Other improvements can also be made, such as
using multiple boxes for a single image and more accurate
bounding boxes. In this way, the robustness of the model
could be improved and it would be easier to interpret the
final precision and recall results instead of using the model
on the validation dataset to truly see how it performs.

This model can be used on real-time data and automatically
detects and locates the coronal jet all around the solar globe
for any size of sequential image input, but performs even
more accurately for sharper images around coronal jets.
While applications to real-time data was not the focus of
this project, there could be an interest for space weather
applications. Some operational missions are monitoring the
Sun in EUV, such as the SUVI satellites from NOAA (USA)
or the upcoming Vigil mission from ESA (Europe). The
detection of features in real time, including jets, would
certainly be interesting for example, triggering space weather
alerts.

Generally speaking, it is a development of the new
possibilities offered by advances in machine learning models
adapted to the field of space research and the understanding
of our star, along with space weather. To my knowledge, this
project is the first to have been carried out, and the results
are more than encouraging.
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IX. APPENDIX

A. Code Repository
For detailed information on my project’s code structure,

the libraries utilized, and the implementation of the
model in predicting new data, please visit my GitHub
repository at https://github.com/adrienjoliat/Jet-detection-and-
localisation.git.

B. Selection of model

Fig. 14: precision-recall, the more upper right, the best
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