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Abstract

This paper presents the new 2D electrostatic particle-in-cell code FENNECS de-
veloped to study the formation of magnetized non-neutral plasmas in geometries
with azimuthal symmetry. This code has been developed in the domain of gy-
rotron electron gun design, but solves general equations and can be applied in
other domains of plasma physics. FENNECS is capable of simulating electron-
neutral collisions using a Monte Carlo approach and considers both elastic and
inelastic (ionization) processes. It is also capable of solving the Poisson equation
on domains with arbitrary geometries with either Dirichlet or natural boundary
conditions. The Poisson solver is based on a meshless Finite Element Method,
called web-splines, based on b-splines of any order, and used for the first time in
the domain of plasma physics. In addition, the effect of fast ions colliding with
the electrodes and causing ion induced electron emission at the electrode surfaces
has been implemented in the code. In this paper, the governing equations solved
by FENNECS and the numerical methods used to solve them are presented. A
number of verification cases are then reported. Finally, the parallelization scheme
used in FENNECS and its parallel scalability are presented.
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1. Introduction

The understanding of the dynamics of non-neutral plasmas is relevant to many
fields in physics and engineering, from extremely cold and low density plasmas in
elementary particle physics [1], to high-energy and high density plasmas in parti-
cle accelerators [2] or microwave sources [3]. These plasmas possess interesting
stability properties that allow them to be stored for long periods of time ranging
from hours to days [4] and allow the accumulation of antimatter charged particles.
They play a central role in the study of antimatter (for example the effect of gravity
on anti-Hydrogen [5, 6]), or in the accumulation and storage of positrons neces-
sary to study electron-positron plasmas [7]. In the domain of microwave sources,
non-neutral plasmas can be used to generate or amplify RF waves [3], but they
can also form in the microwave device at undesired places, hindering the normal
operation of the source. For example in some high power gyrotrons used to heat
the electrons of magnetically confined fusion plasmas, electron clouds can form
in the electron gun region of the device, preventing their nominal operation [8, 9].
These clouds are formed due to the presence of potential wells generated by the
combination of externally applied electric and magnetic fields and are similar in
nature to the ones characterizing Penning traps [1, 9, 10]. Due to their high ki-
netic energy, the trapped electrons can ionize the residual neutral gas present in
the gun and lead to high density clouds that can cause damaging currents between
the accelerating electrodes of the gun and can lead to arcing events. To understand
the conditions of formation of these clouds and their evolution, a particle-in-cell
code called FENNECS (Finite Element Non-Neutral Electron Cloud Simulator)
has been developed and is the subject of this publication.

Current codes considering neutral and non-neutral plasma discharges are ei-
ther proprietary (LSP [11], MAGIC [12]), or are limited to simple electrode ge-
ometries (NINJA [13]) due to the method used to solve Poisson’s equation. In the
domain of gyrotrons, electron gun simulations are carried out with codes capable
of simulating the complex geometry of the gun. However, the most common codes
such as EGUN [14], ESRAY [15], DAPHNE [16] or ARIADNE++ [17] do not
consider electron neutral collisions and assume a beam-optics framework, which
considers the long time scale evolution and neglects the fast electrostatic modes
that can arise in high density electron clouds. Another candidate, the WARP [18–
20] code, is both capable of simulating electron neutral collisions and the complex
electrodes geometries used in gyrotron electron guns. However, due to the finite
difference method on staggered grids used to solve Poisson’s equation, simula-
tions of complex geometries require potentially costly grid refinements.
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The 2D electrostatic axisymmetric particle-in-cell code FENNECS presented
in this paper considers a novel Finite Element Method (FEM) that allows the exact
definition of the electrodes geometry and somewhat decouples the grid definition
and the geometry of interest when solving for the electrostatic potential. This
method has been successfully used in several domains of physics, for example
to solve elastic deformation problems [21], electromagnetic wave propagation in
wave-guides [22], or the stationary Stokes problem [23], and is used here for the
first time in plasma physics, to the best of the authors knowledge [24, 25]. The
code is also capable of simulating electron neutral collisions, considering elas-
tic and inelastic (ionization) collisions, and resolves the fast time-scale plasma
waves and electron cyclotron motion. This is of great importance for simulat-
ing high-density trapped electron clouds for which the Brillouin ratio, defined as
𝑓𝑏 = 2𝜔2

𝑝𝑒/Ω2
𝑐𝑒 is close to one. Here, 𝜔2

𝑝𝑒 = 𝑒
2𝑛𝑒/𝜖0𝑚𝑒 is the electron plasma

frequency squared and Ω𝑐𝑒 = 𝑒𝐵/𝑚𝑒 the electron cyclotron frequency. 𝑒 and 𝑚𝑒
are, respectively, the electron charge and mass, 𝑛𝑒 is the electron density, 𝐵 is the
magnetic field amplitude, and 𝜖0 is the vacuum permittivity. The magnetic fields
generated by the electron clouds are neglected in front of the strong externally
applied magnetic field that is assumed to dominate the dynamics. This code has
already been successfully used to study the self-consistent formation of trapped
electron clouds in gyrotron electron guns and to derive scaling laws for the elec-
tron cloud density and resulting current as a function of external parameters [9].
In the same context, FENNECS was successfully validated against experimental
measurements [26]. The code is currently used to study gyrotron electron guns.
However, the authors believe that the governing equations are sufficiently general
that it could be used in the domain of Penning traps [1], or be easily adapted to
study cathodic arcs [27]. In addition, the code and its dependencies are, at the
time of writing, under the process of licensing to allow the open-source publica-
tion and sharing of the code. This will facilitate its modification, enable further
improvements, and simplify the beginning of new collaborations. However, the
code is already accessible at https://c4science.ch/source/fennecs.

The goal of the present paper is to present the FENNECS code and capabil-
ities, as well as the numerical methods used. After the introduction, Sec.2 de-
scribes the physical model implemented in FENNECS. In Sec.3, the numerical
methods used to simulate different physical phenomena are described, and spe-
cial care is taken to describe the novel FEM solver based on weighted extend
b-splines (web-splines). The Monte Carlo methods used to simulate electron-
neutral collisions and ion induced electron emission on the electrode surfaces are
also described. In Sec.4, a set of verification test cases confirming the correct
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implementation of the governing equations is also presented. The parallelization
schemes are described and the scalability of the code using domain decomposition
is presented in Sec.5. Finally, a summary of the paper and its conclusions follow.

2. Physical model

2.1. Governing equations
FENNECS is an axisymmetric 2D3V electrostatic particle-in-cell code that

solves the Boltzmann-Poisson system for an electron distribution function 𝑓 (®𝑟,®𝑣, 𝑡)
and the electrostatic potential 𝜙(®𝑟, 𝑡) with the addition of electron-neutral collision
operators. The neutral gas is considered as a cold background gas of uniform den-
sity 𝑛𝑛. Only one neutral gas species is considered, and it is assumed that 𝑛𝑛
does not change in time. In the current model, only elastic and single ionization
collisions are considered with their respective collision cross-sections 𝜎ela and
𝜎io. This choice is supported by the fact that, due to the large radial electric field
in gyrotron electron guns, the newly formed ions are lost on time-scale 𝜏𝑖𝑜𝑛,𝑙𝑜𝑠𝑠
much smaller than the second ionization collision time scale. Similarly, due to
the large electron kinetic energies (more than several hundred eV), the collision
time-scales for excitation of the neutral gas are at least one order of magnitude
larger than both the elastic and single ionization time-scales and are therefore ne-
glected [9, 28]. In elastic and ionization collisions, we assume anisotropic scatter-
ing cross-sections using a screened-Coulomb scattering cross-section [29]. For an
ionization event, the remaining kinetic energy after collision (initial kinetic energy
minus the ionization energy) is split between the freed and the incoming electron
using a double differential cross-section 𝜕2𝜎io,sec

𝜕Ω𝜕𝐸𝑝
for the energy of the secondary

electron, and a second double differential cross-section 𝜕2𝜎io,sca
𝜕Ω𝜕𝐸𝑝

for the energy of
the scattered electron. These cross-sections depend on the solid scattering angle
Ω and the incoming electron energy 𝐸𝑝 [30]. The two double differential cross-
sections are defined such that, in ionization events, the total energy is conserved
𝐸𝑝 = 𝐸io + 𝐸sca + 𝐸sec. Here, 𝐸io is the first ionization energy of the neutral gas,
𝐸sca is the energy of the scattered electron and 𝐸sec is the energy of the secondary
electron.

The magnetic field ®𝐵ext
0 is imposed externally, and the magnetic field gener-

ated by the electron cloud is neglected. Perfectly absorbing boundary conditions
for the particles are used at the electrodes, thereby representing a loss term 𝐿𝑤𝑎𝑙𝑙 .
In addition, a volumetric seed source 𝑆seed can be imposed, and electron emis-
sion due to ions impacting the electrode surfaces can be simulated, introducing a
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surface source 𝑆IIEE. In this case, the Boltzmann equation becomes[
𝜕

𝜕𝑡
+®𝑣 · 𝜕

𝜕®𝑟 −
𝑒

𝑚𝑒

(
®𝐸 +®𝑣× ®𝐵ext

0 (®𝑟)
)
· 𝜕
𝜕®𝑣

]
𝑓 (®𝑟,®𝑣, 𝑡) =

+𝑛𝑛 |®𝑣 |
∫

d𝜎ela( |®𝑣 |)
dΩ

[ 𝑓 (®𝑟,®𝑣′(Ω), 𝑡) − 𝑓 (®𝑟,®𝑣, 𝑡)]𝑑Ω

+ 𝑛𝑛 |®𝑣 |
𝐸

(∫ 2𝐸+𝐸io

𝐸+𝐸io

∫
𝐸𝑝
𝜕2𝜎io,sec

𝜕Ω𝜕𝐸𝑝
𝑓 (®𝑟,®𝑣′(Ω), 𝑡)𝑑Ω𝑑𝐸𝑝

+
∫ ∞

2𝐸+𝐸io

∫
𝐸𝑝
𝜕2𝜎io,sca

𝜕Ω𝜕𝐸𝑝
𝑓 (®𝑟,®𝑣′(Ω), 𝑡)𝑑Ω𝑑𝐸𝑝

)
−𝑛𝑛 |®𝑣 |𝜎io( |®𝑣 |) 𝑓 (®𝑟,®𝑣, 𝑡)
+ 𝑆seed + 𝑆IIEE− 𝐿𝑤𝑎𝑙𝑙 .

(1)

Here, Ω is the solid scattering angle; ®𝑣′ is the electron velocity that is scattered by
a solid angle Ω to ®𝑣 [31]; 𝐸 = 𝑚𝑒 |®𝑣 |2/2 is the electron energy at velocity ®𝑣. On the
right hand side, the first term accounts for the scattering by elastic collisions [31],
the second term describes the emission of secondary electrons by ionization, the
third term accounts for the scattering of incoming electrons during an ionization
collision and the fourth term describes the electrons removed from the distribu-
tion by ionization [32]. The electric potential 𝜙 is solved self-consistently using
Poisson’s equation

∇2𝜙(®𝑟, 𝑡) = − 𝜌
𝜖0

=
𝑒

𝜖0

∫
𝑓 (®𝑟,®𝑣, 𝑡)𝑑3®𝑣 (2)

and considering the boundary conditions imposed by the electrodes. At the elec-
trodes, in addition to fixed potentials imposed by ideal power supplies, the re-
sistive and capacitive effects of a non-ideal power-supply can be simulated (see
section 3.7).

2.2. Normalizations
To improve the numerical precision of the code, all the physical quantities

are normalized by physical constants relevant to the problem. To this end, four
reference quantities are used: 𝐵0, an input parameter usually set to the maximum
amplitude of the magnetic field in the simulation domain; 𝑐, the speed of light in
vacuum; 𝑒, the electron charge; and 𝑚𝑒, the electron mass. The time is normalized
by the inverse of the cyclotron frequency 𝑡𝑁 = 1/Ω𝑐𝑒 = 𝑚𝑒/𝑒𝐵0, velocities are
normalized to 𝑣𝑁 = 𝑐, lengths are normalized to 𝑟𝑁 = 𝑣𝑁/𝑡𝑁 , the magnetic field
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Figure 1: Typical geometry of interest used in FENNECS. The yellow ring represents an example
of an electron plasma cloud. The gray/black parts are the electrodes on which a fixed potential can
be applied. The red dotted-dashed line highlights the axis of symmetry.

is given in units of 𝐵𝑁 = 𝐵0, and the electric potential and fields are respectively
normalized by 𝜙𝑁 = 𝐵𝑁𝑣𝑁𝑟𝑁 and 𝐸𝑁 = 𝑣𝑁𝐵𝑁 .

2.3. Geometries of interest
As FENNECS is a 2D axisymmetric code, it is capable of simulating geome-

tries with an azimuthal symmetry. Namely, in cylindrical coordinates (𝑟, \, 𝑧) all
fields can depend on 𝑟 and 𝑧 but not on \. For gyrotron electron guns, the typical
geometry of interest, as represented in Figure 1, is composed of a coaxial cath-
ode and an outer cylindrical anode described by an arbitrary radial profile 𝑟 (𝑧).
However, the code is more flexible in the definition of the electrodes and multi-
ple concentric electrode rings can be defined. Similarly, regions where only the
outer electrode is present are also possible. This is important to simulate all types
of gyrotron electron guns, but can also be useful to study non-neutral plasmas in
other physical settings. In addition independent potentials can be applied to each
simulated electrode. Furthermore, the particles are subjected to an axisymmetric
external magnetic field with both radial and axial components. In the configura-
tions typical of gyrotron guns, the electron clouds usually have an annular shape
(see Figure 1) confined axially by magnetic mirrors, due to the electrons large per-
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pendicular velocity, or by electrostatic potential wells imposed externally [9, 10].
However, cylindrical clouds can also be simulated.

2.4. Time scale separation
Typical electron clouds trapped in gyrotron electron guns are subject to physi-

cal phenomena happening on various time-scales. These can span up to ten orders
of magnitude, between the fast electron cyclotron motion at Ω𝑐𝑒, and the slow
ionization collision frequency 𝑓io and effective elastic collision frequency for mo-
mentum exchange 𝑓𝑑 , as illustrated in Figure 2. This large time scale separation
prevents the complete simulation of all the time-scales due to the numerical cost
of the task. However, as 𝑓io = 𝑛𝑛 < 𝜎io𝑣 > and 𝑓𝑑 = 𝑛𝑛 < 𝜎ela𝑣 > are linearly pro-
portional to 𝑛𝑛, the collision time-scales can be shortened by considering, in the
simulations, an increased neutral gas pressure 𝑛𝑛,𝑠𝑖𝑚𝑢 = 𝛼𝑛𝑛,𝑝ℎ𝑦𝑠 compared to the
physical pressure of interest [9, 26]. This factor 𝛼 > 1 must be selected such that
a sufficient time-scale separation is kept between the slow and fast time-scales,
namely such that 𝑓io, 𝑓𝑑 ≪ 𝑓∥ . Here, 𝑓∥ ≈ 𝑣∥/𝐿 is the electron bounce frequency in
the trap of length 𝐿 along the magnetic field lines, and 𝑣∥ is the electron velocity
parallel to the magnetic field line. The simulation characteristic times of particle
losses can then be rescaled to the physical time-scales using the same parameter
𝛼.

Figure 2: Relevant time scales for electron clouds of interest simulated by FENNECS. 𝑓io and 𝑓𝑑
are the ionization collision frequency and the effective elastic collision frequency for momentum
exchange; 𝑓∥ ≈ 𝑣∥/𝐿 is the electron bounce frequency in the trap of length 𝐿 along the magnetic
field lines; 𝜔𝑝𝑒 is the electron plasma frequency; Ω𝑐𝑒 is the electron cyclotron frequency. The
blue shaded area indicates the range of possible time scales for 𝑛𝑒 ≈ 1014 → 1017m−3 and 𝑛𝑛 ≈
1013→ 1017m−3. The red line give Ω𝑐𝑒 for 𝐵 = 0.3T.

3. Numerical methods

To solve the Boltzmann equation (1) and the Poisson equation (2), the particle-
in-cell method is employed. The distribution function 𝑓 is sampled using a finite
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number of macro particles 𝑖 at position ®𝑟𝑖 with velocity ®𝑣𝑖 and each representing
𝑁𝑖 electrons such that

𝑓 (®𝑟,®𝑣, 𝑡) =
∑︁
𝑖

𝑁𝑖𝛿(®𝑟 − ®𝑟𝑖)𝛿(®𝑣−®𝑣𝑖). (3)

Here 𝛿(®𝑥) is the Dirac delta function. This representation of the particles has been
chosen to reduce the number of computations necessary to calculate the right-hand
side of Poisson’s equation, to facilitate the particles removal at the boundaries,
and to facilitate the parallelization of the code. On the other hand, this choice
forces the use of a relatively large number of macro-particles in order to minimize
numerical noise.

Starting from an initial distribution of macro-particles, the code performs the
following steps to advance in time the particles and the fields according to the
Boltzmann-Poisson system described in equations (1) and (2). As illustrated in
the diagram of Figure 3, at each time-step, the code:

1. Localizes each particle in the geometry and calculates its FEM cell index.
Removes the particles that are outside the vacuum region, and generates the
secondary electrons for the lost ions if the Ion Induced Electron Emission
(IIEE) module is activated (Sec. 3.9). In Message Passing Interface (MPI)
parallelism, the particles that are leaving or entering the local domain sim-
ulated by each process are exchanged between the neighbouring processes.

2. Runs the Monte Carlo collision routine for each particle and scatter/reduce
their velocity vector accordingly, and adds the freed electrons due to ioniza-
tion of the neutral gas (Sec. 3.8).

3. Injects the new particles according to the seed source distribution function
(Sec. 3.10).

4. Computes the new applied bias according to the collected current on the
electrodes when the non-ideal power supply module is activated (Sec. 3.7).

5. Computes the right-hand side of Poisson’s equation by looping on all the
macro-particles (Sec. 3.3).

6. Solves Poisson’s equation (Sec. 3.3).
7. Computes for each particle the value of ®𝐸 and ®𝐵 at their position and ad-

vances in time their velocity (Sec. 3.4 and 3.2).
8. Saves on file the requested diagnostic quantities (particles positions and ve-

locities, electric field evaluated on the grid, moments of the distribution
function evaluated on the grid, etc.) (Sec. 3.11).

9. Advances in time the particles’ positions (Sec. 3.1).
10. Restarts the cycle.
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Figure 3: Flow chart of the FENNECS simulations with the relevant subroutines called in the code.
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3.1. Particle trajectory: Boris algorithm
To advance in time the macro-particle positions and velocities, according to

the left-hand side of Boltzmann equation (1), the Boris algorithm is used [33].
This method was selected for its simplicity and reliability, and for its capability
of integrating both classical and relativistic trajectories with very little change in
the code. This allows the user of FENNECS to select at run-time if the classical
or relativistic Newton’s equation is solved during the simulations, by means of
an input flag. The Boris algorithm is a second order in time (𝑂 (Δ𝑡2)) explicit
integrator based on a leap-frog scheme, meaning that the particles positions and
velocities are never known at the same time-step. Instead, the positions are known
at times 𝑡𝑖 and the velocities are known at times 𝑡𝑖+1/2 = 𝑡𝑖 +Δ𝑡/2. This is important
to take into account during the initialization of the particles and when calculating
diagnostics quantities as a naive evaluation will lead to a reduced accuracy of
𝑂 (Δ𝑡). To advance in time the velocities at position ®𝑟𝑡𝑖 from ®𝑣𝑡𝑖−Δ𝑡/2 at 𝑡𝑖 −Δ𝑡/2 to
®𝑣𝑡𝑖+Δ𝑡/2 at 𝑡𝑖 +Δ𝑡/2, the algorithm

1. advances the velocity by half the electric field to ®𝑣−,
2. rotates the velocity due to the magnetic field force to ®𝑣+,
3. advances the velocity by half the electric field to ®𝑣𝑡𝑖+Δ𝑡/2.

To solve the relativistic Newton equation, the new variable ®𝑢 = 𝛾®𝑣 is used, with
𝛾 = (1− 𝑣2/𝑐2)−1/2 the Lorentz relativistic factor. This gives in equation form:

®𝑢− = ®𝑢𝑡𝑖−Δ𝑡/2 +
𝑞Δ𝑡

2𝑚
®𝐸𝑡𝑖 (®𝑟𝑡𝑖 ), (4)

®𝑢′ = ®𝑢− + ®𝑢−×®𝑡, (5)

®𝑢+ = ®𝑢− + ®𝑢′× ®𝑠, (6)

®𝑢𝑡𝑖+Δ𝑡/2 = ®𝑢+ +
𝑞Δ𝑡

2𝑚
®𝐸𝑡𝑖 (®𝑟𝑡𝑖 ). (7)

Here used has been made of the two rotation vectors

®𝑡 =
𝑞 ®𝐵(®𝑟𝑡𝑖 )
𝛾𝑡𝑖𝑚

Δ𝑡

2
, (8)

and

®𝑠 = 2®𝑡
1+ 𝑡2

, (9)

10



with 𝑞 the macro-particle charge, 𝑚 its mass and 𝛾𝑡𝑖 = (1− 𝑣2−/𝑐2)−1/2. The classi-
cal Newton equation is recovered if 𝛾 ≡ 1 is imposed numerically. The particles’
position is finally advanced with:

®𝑟𝑡𝑖+Δ𝑡 = ®𝑟𝑡𝑖−Δ𝑡 +Δ𝑡®𝑣𝑡𝑖+Δ𝑡/2. (10)

3.2. Magnetic field
The magnetic field is imposed externally assuming azimuthal symmetry. It is

also assumed that the external magnetic field amplitude is large enough so that the
contribution from the electron cloud current can be neglected. It can be defined
either using an analytical magnetic field vector potential that, e.g., approximates
a magnetic mirror close to the magnetic axis, as described in Sec.4.2, or it can
be calculated on the grid using standard Biot-Savart solvers and be used as an
input for the simulations. Finally, at the particle position, the magnetic field is
computed using linear interpolation from the FEM grid points values to reduce
the computational cost of the evaluation.

3.3. Poisson: Web-spline method
The Poisson equation, for a scalar field 𝜙 and a source term𝑄, is solved on the

domain 𝐷, closed by boundaries 𝜕𝐷, using a Finite Element Method (FEM) based
on bivariate b-splines of any order [25, 34, 35]. Dirichlet boundary conditions are
imposed on boundaries 𝜕𝐷𝑖 and Neumann boundary conditions are imposed on
boundaries 𝜕𝐷𝑘 such that:

−∇2𝜙 =𝑄 in 𝐷, 𝜙 = 𝑔𝑖 on 𝜕𝐷𝑖, ∇⊥𝑘𝜙 = 0 on 𝜕𝐷𝑘 , (11)

where ∇⊥𝑘 denotes the normal derivative perpendicular to 𝜕𝐷𝑘 . To define these
boundary conditions on curved surfaces, the web-spline method is used for the
first time in plasma physics, to the authors knowledge [24, 25]. This paper will
be limited to the description of the method and of the points necessary for the
implementation. Details regarding the numerical stability and accuracy of the
method can be found in references [24, 25].

To derive a variational formulation, the electric potential 𝜙 is first rewritten to
eliminate the inhomogeneous boundary conditions by setting

𝜙 = 𝑢 + �̃�, (12)

with 𝑢 a function that vanishes on 𝜕𝐷𝑖 and �̃� an extension of the Dirichlet bound-
ary conditions 𝑔 to all 𝐷. �̃� can be set to any smooth function such that �̃�(®𝑥) =
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𝑔𝑖 (®𝑥) ∀®𝑥 ∈ 𝜕𝐷𝑖. The Poisson equation is then multiplied by a test function 𝜓 and
integrated over 𝐷 leading to the weak formulation:∫

𝐷

∇𝑢∇𝜓 =

∫
𝐷

(𝑄𝜓−∇�̃�∇𝜓). (13)

To construct the Ritz-Galerkin approximation of the solution, the function 𝜓 is
taken to be a set of 𝑛𝑏 basis polynomials Ψ𝑚

𝑙
of degree 𝑚 with compact support

on mesh cells of 𝐷, and the solution is approximated by a function 𝜙ℎ such that

𝑢ℎ =

𝑛𝑏∑︁
𝑙=1
𝑢𝑙Ψ

𝑚
𝑙 . (14)

To ensure by construction that the Dirichlet boundary conditions are respected,
the basis functions Ψ𝑚

𝑙
are defined such that they are 0 on 𝜕𝐷𝑖. Solving the Ritz-

Galerkin approximation of the solution then reduces to solving a system of linear
equations for the coefficients 𝑢𝑙 :

←→
𝐴 · ®𝑢 = ®_, (15)

with
←→
𝐴 a matrix with coefficients

𝐴𝑙𝑘 =

∫
𝐷

∇Ψ𝑚
𝑙 ∇Ψ

𝑚
𝑘 , (16)

and ®_ a vector with coefficients

_𝑙 =

∫
𝐷

𝑄Ψ𝑚
𝑙 −∇�̃�∇Ψ

𝑚
𝑙 . (17)

One can define a set of basis functions Ψ𝑚
𝑙

using weighted b-splines by defining
a smooth geometric weight function 𝑤 such that 𝑤(𝑥) = 0 ∀𝑥 ∈ 𝜕𝐷𝑖, and 𝑤 is
positive inside the domain 𝐷/𝜕𝐷𝑖 and negative outside of 𝐷. In this case: Ψ𝑚

𝑙
≡

𝑤𝑏𝑚
𝑙,ℎ

, with 𝑏𝑚
𝑙,ℎ

the n-variate tensor product of b-spline of degree 𝑚, with grid
width ℎ, and support (𝑙1, ..., 𝑙𝑛)ℎ + [0,𝑚 + 1]𝑛ℎ. Since the grid is regular (ℎ is
the same for all b-splines of the basis), the index ℎ will be neglected for the rest
of the paper. The weighted b-spline method is known to show bad numerical
convergence as the grid width is reduced due to a strong increase of the condition
number of the Ritz-Galerkin matrix [24]. This problem comes from the effect of
boundary b-splines whose intersection between their support and the simulation
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Figure 4: Geometric weight 𝑤 and domain boundary for the test case presented in section 4.1
(black). The gray lines show the FEM grid, and the red squares show the boundary of the support
of 3 types of quadratic b-splines.

domain becomes small. To alleviate this problem, Höllig and co-authors [24]
combined boundary and inner b-splines to form a new basis called the web-spline
basis.

To understand the web-spline basis, it is necessary to define inner, outer, and
boundary b-splines, depending on the intersection between the support of the b-
spline and the domain 𝐷. Inner b-splines need to have at least one grid-cell in their
support that is fully inside 𝐷; for outer b-splines, the intersection between their
support and 𝐷 is ∅; and boundary b-splines are all the other b-splines. An example
of this classification is represented in Figure 4, using the geometry defined in sub-
section 4.1 and quadratic b-splines. For the rest of this section, the ensemble 𝐿 of
inner b-splines are identified as 𝑏𝑚

𝑙
using the subscript 𝑙 and the ensemble 𝐾 of

boundary b-splines are identified as 𝑏𝑚
𝑘

using the subscript 𝑘 .
A web-spline basis Ψ𝑚

𝑙,𝑤𝑒𝑏
is defined by combining boundary and inner b-

splines while keeping the correct approximation order of the initial b-spline space.
To this end, the approximated solution 𝑢ℎ is separated between the contribution of
internal and boundary b-splines

𝑢ℎ =
∑︁
𝑙∈𝐿

𝑢𝑙𝑏
𝑚
𝑙 +

∑︁
𝑘∈𝐾

𝑢𝑘𝑏
𝑚
𝑘 . (18)
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According to Marsden’s identity [36], if 𝑢ℎ is a polynomial of degree ≤ 𝑚 the
coefficients 𝑢𝑙 and 𝑢𝑘 can be calculated by a polynomial �̃�(𝑖) = 𝑢𝑖 of degree ≤
𝑚 dependent on the spline index 𝑖. In this case, the outer coefficients 𝑢𝑘 can
be interpolated, for the 𝑛-variate b-splines in a space of dimension 𝑛, from any
(𝑚 + 1)𝑛 inner indices without affecting the approximation power of the spline
space. In practice, the interpolant indices are taken as the closest (𝑚 + 1)𝑛 inner
indices 𝑙, and the coefficients 𝑢𝑘 are interpolated using Lagrange polynomials
such that

𝑢𝑘 =
∑︁
𝑙∈𝐿

𝑢𝑙𝑒𝑙𝑘 . (19)

This assumes that the grid width ℎ is sufficiently small for this list to exist. The
coefficients 𝑒𝑙𝑘 are defined as

𝑒𝑙𝑘 =

𝑛∏
a=1

𝑚∏̀
=0

𝑘a − 𝑝a − `
𝑙a − 𝑝a − `

, (20)

with 𝑛 the dimension of the b-spline space and 𝑝a the lower index in each di-
mension of the inner interpolating splines. In addition to the interpolation of the
external coefficients 𝑢𝑘 , the web-spline basis is also rescaled by the weight evalu-
ated at 𝑥𝑙 , the center of a grid cell belonging to the support of 𝑏𝑚

𝑙
and fully inside

𝐷. The final web-spline basis is finally defined as

Ψ𝑚
𝑙,𝑤𝑒𝑏 =

𝑤

𝑤(𝑥𝑙)

𝑏𝑚𝑙 +
∑︁
𝑘∈𝐾 (𝑙)

𝑒𝑙𝑘𝑏
𝑚
𝑘

 , (21)

with 𝐾 (𝑙) the ensemble of boundary b-splines for which the inner b-spline 𝑙 is
used to interpolate 𝑢𝑘 . The Ritz-Galerkin matrix obtained using this new web-
spline basis has a condition number which is reduced and remains stable as the
grid width is reduced. This greatly improves the numerical stability of the fi-
nite element method and allows for arbitrary small grid width. In addition, this
method allows to keep a regular grid and thus greatly simplifies the localization
of the particles in the grid and facilitates the code parallelization with domain
decomposition.

In FENNECS, since the distribution function is sampled with point-like macro
particles defined with 𝛿 functions, the evaluation of the first term of _𝑙 is straight-
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forward. This terms becomes, for an electron distribution function,∫
𝐷

𝑄Ψ𝑚
𝑙 = − 𝑒

𝜖0

∫
𝐷

∫
𝑣

𝑓 (®𝑟,®𝑣, 𝑡)𝑑®𝑣Ψ𝑚
𝑙 = − 𝑒

𝜖0

∫
𝐷

∑︁
𝑖

𝑁𝑖𝛿(®𝑟 − ®𝑟𝑖)Ψ𝑚
𝑙

= − 𝑒
𝜖0

∑︁
𝑖

𝑁𝑖Ψ
𝑚
𝑙 (®𝑟𝑖).

(22)

In practice, since the basis functions Ψ𝑚
𝑙

have a compact support on mesh cells,
only (𝑚 +1)𝑛 basis functions need to be evaluated for each macro particle 𝑖. The
source term is therefore calculated by looping through all the macro particles and
accumulating their contribution to the (𝑚 + 1)𝑛 elements _𝑙 for which Ψ𝑚

𝑙
(®𝑟𝑖) is

non-zero.
It must be noted that by itself the web-spline method still suffers from some

limitations that characterize some meshless FEM. Indeed, it is not able to solve
the Poisson equation on domains with discontinuous dielectric constants, such
as at the boundary between a dielectric and a vacuum vessel. This can be miti-
gated by not solving the Poisson equation inside the dielectric, but by imposing
a Neumann boundary condition at the dielectric surface. However, several meth-
ods have been devised to solve this problem such as the eXtended Finite Element
Method (XFEM) [37], the Generalized Finite Element Method (GFEM) [38] or
the Stabilized Generalized Finite Element Method (SGFEM) [39], which could be
implemented in future revisions of FENNECS, should they be necessary.

3.4. Implementation of the web-splines method
As described in Section 3.3, the Poisson equation is effectively solved by using

the linear system of equations
←→
𝐴 · ®𝑢 = ®_, (23)

where the matrix and vectors are defined with the web-spline basis

Ψ𝑚
𝑙,𝑤𝑒𝑏 =

𝑤

𝑤(𝑥𝑙)

𝑏𝑚𝑙 +
∑︁
𝑘∈𝐾 (𝑙)

𝑒𝑙𝑘𝑏
𝑚
𝑘

 . (24)

This basis is however not easy to manipulate numerically. This is the case both
during the integration of the basis to generate the linear system of equations and
during the evaluation of the solution. One easier method is to work first in a regu-
lar weighted b-spline (wb-spline) basis to calculate a matrix

←→
𝐴 ′ with coefficients

𝐴′𝑖 𝑗 =

∫
𝐷

∇(𝑤𝑏𝑚𝑖 )∇(𝑤𝑏𝑚𝑗 ), (25)
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and a right-hand side vector ®_′ with coefficients

_′𝑖 =

∫
𝐷

𝑄𝑤𝑏𝑚𝑖 −∇�̃�∇(𝑤𝑏𝑚𝑖 ). (26)

This can be calculated directly by looping on the grid cells and the b-spline func-
tions, and using standard numerical integration methods (e.g. Gauss-Legendre
quadrature integration). In a second step, all the b-splines are catalogued in the
three inner, outer, and boundary splines and a transformation matrix from wb-
spline to web-spline space

←→
𝐸 is calculated, with coefficients

𝐸𝑙, 𝑗 =
1

𝑤(𝑥𝑙)


1 for 𝑗 = 𝑙,
𝑒𝑙,𝑘 for 𝑗 = 𝑘 ∈ 𝐾 (𝑙),
0 otherwise.

(27)

With this definition the web-spline basis is equivalent to

Ψ𝑚
𝑙,𝑤𝑒𝑏 =

∑︁
𝑗

𝑤𝑏𝑚𝑗 𝐸𝑙, 𝑗 . (28)

The web-spline linear system is then obtained from the wb-spline system through
a basis transformation ←→

𝐴 =
←→
𝐸
←→
𝐴 ′
←→
𝐸 𝑡 , (29)

and
®_ =←→𝐸 ®_′. (30)

Here, the superscript 𝑡 indicates the transposed matrix. The system

←→
𝐴 · ®𝑢 = ®_, (31)

is then solved and the wb-spline coefficient vector ®𝑢′ can be obtained through an
inverse transformation

®𝑢′ =←→𝐸 𝑡 ®𝑢. (32)

The final solution
𝑢ℎ =

∑︁
𝑖

𝑢′𝑖𝑤𝑏
𝑚
𝑖 , (33)

is also easier to evaluate numerically using standard b-spline libraries in the wb-
spline basis than in the web-spline basis.
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Figure 5: Left: integration on an inner cell using three Gauss-Legendre points in each direction.
Right: integration on a boundary cell using three Gauss-Legendre points in each direction for
each sub-rectangle. The red line shows the domain boundary and the blue dotted line shows the
cell subdivision. The X indicate the integration points and the gray background highlights the
intersection between the domain and the grid cell.

3.5. Numerical element integration for generating the Ritz-Galerkin matrix
The integration of the elements on all the inner cells is done using a standard

numerical integration algorithm based on Gauss-Legendre quadrature due to its
good precision and efficiency. However, in the boundary cells, the integration
domain is not rectangular and the integration scheme needs to be modified. In
FENNECS, it is assumed that the domain in each cell can be reduced to the union
of a finite set of smoothly deformed rectangles, by cuts parallel to the coordinate
directions and Gauss points with adapted positions are used in each sub-rectangle.
This process is illustrated in Figure 5 where a boundary cell is subdivided by the
dotted blue line between two smoothly deformed rectangles. In each deformed
sub-rectangle, the Gauss points are first defined normally in the direction perpen-
dicular to the cell subdivision (horizontal direction in Figure 5). In a second step,
at each of these Gauss points, the position of the points parallel to the cut are
defined by the boundaries of the domain in the sub-rectangle. To this end, a root
finding algorithm based on the dichotomy method is used on the weight function
𝑤 to obtain the boundary points of the domain (the position of the red curve in Fig-
ure 5) and set the extent of the integration segment parallel to the cut. This method
allows a systematic evaluation of the element integrals while needing only local
information on the cell, and allowing for a straightforward parallelisation of the
construction of

←→
𝐴 and ®_.
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3.6. Boundaries and boundary conditions definitions
With the web-spline method, Dirichlet boundary conditions are imposed by

defining the weight function 𝑤(𝑥) and the value at the boundary is set with the
function �̃�(𝑥). There is a freedom in defining 𝑤(𝑥) and �̃�(𝑥). Within this section,
two main methods will be described to create these functions, that are both sys-
tematic and robust. Moreover, a 2D domain is considered, but this method can
also be applied to 3D. The first method used to define 𝑤, that sets the simulation
domain 𝐷, is based on analytical geometric functions 𝑤𝑖 that define elementary
geometric shapes. These functions can define, for example, a half-plane, a disc,
or a square. One such geometric function 𝑤1 can be the equation delimiting the
inside of an ellipse of minor radius 𝑎, major radius 𝑏 and center (𝑥0, 𝑦0)

𝑤1(𝑥, 𝑦) = 1−
(𝑥− 𝑥0

𝑎

)2
−
( 𝑦− 𝑦0

𝑏

)2
. (34)

These elementary weight functions can be combined by using Rvachev func-
tions to define the union, intersection, or complementary of these elementary do-
mains [40]. The union (+) and intersection (-) of two weights 𝑤1 and 𝑤2 can be
calculated with

𝑤(𝑥, 𝑦) = 𝑤1(𝑥, 𝑦) +𝑤2(𝑥, 𝑦) ±
√︃
𝑤2

1 (𝑥, 𝑦) +𝑤
2
2 (𝑥, 𝑦). (35)

Similarly, the complementary of a domain 𝐷 is defined by taking the negative
of the weight function. This method is used in Sec.4.1 to combine two ellipti-
cal domains of different major and minor radii and of different center. For this
type of weight, the function �̃� used to impose the Dirichlet boundary conditions
can be defined using transfinite interpolation of the potentials 𝑔𝑖 imposed on 𝑛𝑖
boundaries 𝜕𝐷𝑖 and defined using weights 𝑤𝑖 [41]. In this case:

�̃� =

𝑛𝑖∑︁
𝑖=1
𝑔𝑖

∏𝑛𝑖
𝑗=1; 𝑗≠𝑖 𝑤 𝑗∑𝑛𝑖

𝑘=1
∏𝑛𝑖

𝑗=1; 𝑗≠𝑘 𝑤 𝑗
. (36)

This function ensures that ∀®𝑥 ∈ 𝜕𝐷𝑖; 𝑔(®𝑥) = 𝑔𝑖. Furthermore, if all 𝑤𝑖 are contin-
uous, then �̃� is also continuous and that is needed for the stability and physicality
of the solution.

The second method to define a boundary is to use spline curves defined using
a set of control points, called ”knots”, in 2D or 3D. The total weight function 𝑤,
induced by the boundaries 𝜕𝐷𝑖 can be computed, in this case, using a smoothed
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distance function to the curves, blended with a plateau of value 1 inside the do-
main.

𝑤 = 1−
𝑛𝑖∑︁
𝑖=1

max(1− 𝑑 (𝑥, 𝑦;𝜕𝐷𝑖)/𝑑0,0)3, (37)

where 𝑑 (𝑥, 𝑦;𝜕𝐷𝑖) is the shortest distance between the point (𝑥, 𝑦) and a point on
the boundary 𝜕𝐷𝑖, and 𝑑0 is the characteristic fall length from the plateau to 0.
This variable 𝑑0 is an input parameter and needs to be chosen such that the shortest
distance between two boundaries is always greater than 𝑑0 (𝑑 (𝜕𝐷𝑖;𝜕𝐷 𝑗 ) > 𝑑0).
With this method, 𝑤 = 1 on almost all 𝐷 and 𝑤 < 1 only at a distance 𝑑 < 𝑑0 of
the boundaries. This is useful to ensure that at each position in the domain, only
one distance function needs to be calculated. This limits the number of calls to the
distance function, as this evaluation is numerically expensive and needs to be com-
puted for each macro-particle. The cubic power in 𝑤 ensures the 𝐶2-continuity of
the weight at the plateau boundary. For this type of boundary conditions, since at
most one boundary affects the weight in any position, �̃� can be defined using

�̃� =

𝑛𝑖∑︁
𝑖=1
𝑔𝑖max(1− 𝑑 (𝑥, 𝑦;𝜕𝐷𝑖)/𝑑0,0)3. (38)

Since by the choice of 𝑑0, only one boundary 𝜕𝐷𝑖 can be at a distance smaller than
𝑑0 anywhere, the relevant boundary 𝑖 can be pre-computed in each grid cell during
the initialization of the geometry and at most one distance must be computed
anywhere. Furthermore, for points sufficiently inside the domain, 𝑤 = 1 and �̃� = 0,
which is equivalent to the classic b-spline FEM. This greatly reduces the execution
time of the code.

To impose natural boundary conditions, only the integration domain 𝐷 needs
to be adapted as the FEM ensures by construction ∇⊥𝑘𝜙 = 0 on 𝜕𝐷𝑘 . To define 𝐷,
the current solution is to consider another weight function 𝑤𝑁 (®𝑥) = 0 ∀®𝑥 ∈ 𝜕𝐷𝑘

which is used to calculate on each grid-cell, and in each direction, the integration
boundaries of 𝐷, by finding the roots of 𝑤𝑁 . In its current form, FENNECS per-
mits only the definition of Neumann boundary conditions with ∇⊥𝑘𝜙 = 0 on 𝜕𝐷𝑘 .
However, the web-spline method is more general and the code could be modified
with limited effort to include more general Neumann boundary conditions. For
the case ∇⊥𝑘𝜙 = 𝑔𝑘 on 𝜕𝐷𝑘 , this boundary condition can be imposed by adding a
term

∑
𝑘

∫
𝜕𝐷𝑘

𝑔𝑘Ψ
𝑚
𝑙

to _𝑙 in equation (17).
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Figure 6: Circuit considered top simulate the effect of a non ideal power supply imposing the
external bias between the electrodes.

3.7. Non-Ideal power supply
In addition to a constant bias imposed on each electrode of the domain, the

code can simulate the effect of a non-ideal power supply (PS) imposing the con-
fining biases between two selected electrodes. The PS and load circuit in this case
is approximated by the circuit of Figure 6. The power supply is configured to
impose a set voltage 𝑉𝑆 supposed to be constant in time, and has an internal resis-
tance 𝑅𝑆. The plasma cloud is described as a current source generating a current
𝑖𝑝 (𝑡). In addition, the capacitive effects of the geometry and of the cables con-
necting the PS and the electrodes is simulated by a capacitor with capacitance 𝐶𝐺
connected in parallel with the plasma cloud. This configuration imposes a bias
𝑉𝑝 between the electrodes and is included in the code by changing in time the
values 𝑔 𝑗 corresponding to the boundaries 𝑗 connected to the PS. The ordinary
differential equation of this circuit for the potential 𝑉𝑝 is

d𝑉𝑝 (𝑡)
d𝑡

=
𝑉𝑆 −𝑅𝑆𝑖𝑝 (𝑡) −𝑉𝑝 (𝑡)

𝑅𝑆𝐶𝐺
. (39)

The applied bias𝑉𝑝 is advanced in time using a 4th order Runge-Kutta method
every 𝑁𝑠 time-steps of the particle advance, by assuming that 𝑖𝑝 (𝑡) is only function
of time. Here, 𝑁𝑠 is an input parameter. The plasma current 𝑖𝑝 (𝑡) is measured
every 𝑁𝑠/2 time steps, by accumulating the charge 𝑞(𝑡𝑖) collected at each time
step 𝑡𝑖 on the electrodes, giving:

𝑖𝑝 (𝑡𝑖+𝑁𝑠/2) =
1

Δ𝑡𝑁𝑠/2

𝑖+𝑁𝑠/2∑︁
𝑗=𝑖

𝑞(𝑡 𝑗 ). (40)

Here, Δ𝑡 is the numerical timestep used to evolve the particles position. Since
the PS has a fixed characteristic response time, independent on 𝑝𝑛, and due to
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the artificial reduction of the time-scale separation defined by the parameter 𝛼,
the time response of the PS must be rescaled in the simulation. Similarly, as the
collected current is linearly proportional to the neutral gas density [9, 26], 𝑖𝑝 must
be adapted in the simulations. This is particularly important if simulations need to
be run for experimental cases in high and ultra high vacuum. To this end the value
of 𝑅𝑆 is rescaled in the simulations defining 𝑅𝑆,simu = 𝑅𝑆,phys/𝛼. This has the effect
of rescaling both the power supply time-scales 𝜏𝑃𝑆 = 𝑅𝑆𝐶𝐺 , and is equivalent to
rescaling the numerical current 𝑖𝑝,simu(𝑡) by 1/𝛼 due to the term 𝑅𝑆𝑖𝑝 (𝑡) in the
differential equation.

3.8. Electron-neutral collisions
The electron-neutral collisions are simulated using a standard Monte Carlo

approach [42]. For this process, each macro-particle is temporarily treated as a
single particle of the simulated species. At each time step, the collision cross-
sections 𝜎io and 𝜎ela are evaluated, from tabulated data [28, 43], for each type
of interaction and each macro-particle. For each particle 𝑖, a random number
𝑥𝑖,1 ∈ [0,1] is generated according to a uniform distribution function and is used
to determine if the particle 𝑖 of kinetic energy 𝐸𝑖 and velocity 𝑣𝑖 undergoes a
collision event.

1. If 𝑥𝑖,1 < 1− exp(−𝑛𝑛 (𝜎io(𝐸𝑖) +𝜎ela(𝐸𝑖))𝑣𝑖Δ𝑡), with Δ𝑡 the time step, a col-
lision is triggered.

2. The type of collision is determined using a new random variable 𝑥𝑖,2. If

𝑥𝑖,2 <
𝜎ela(𝐸𝑖)

𝜎io(𝐸𝑖) +𝜎ela(𝐸𝑖)
, (41)

an elastic collision is triggered, otherwise an ionization event takes place.
3. In case of an elastic event, the first scattering angle 𝜒 is calculated using a

singly differential cross-section for screened Coulomb Collision [29, 44],
using a third random number 𝑥𝑖,3, according to

cos(𝜒) = 1− 2𝑥𝑖,3(1− b)
1+ b (1−2𝑥𝑖,3)

. (42)

Here, b = 4𝐸𝑖/(𝐸ℎ+4𝐸𝑖) and 𝐸ℎ = ℏ2/(𝑚𝑒𝑎2
0) = 27.21eV is one Hartree, the

atomic unit of energy, with ℏ the reduced Planck constant and 𝑎0 the Bohr
radius. The second scattering angle \ = 2𝜋𝑥𝑖,4 is obtained with a fourth
random number. The electron velocity is then rotated using 𝜒 and \.
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4. In case of an ionization event, the energy splitting between the two resulting
electrons is determined using a normalized differential cross-section ob-
tained from experimental data [30] with a random number 𝑥𝑖,5. The scat-
tered electron kinetic energy 𝐸sca is

𝐸sca = 𝐸
∗ tan

(
𝑥𝑖,5 arctan((𝐸𝑖 −𝐸io)/(2𝐸∗))

)
, (43)

with 𝐸∗ a fitted scattering factor that depends on the neutral gas [30] and
𝐸io the ionization energy of the gas. A new macro-particle is created in the
simulation at the position of the particle 𝑖 and with velocity 𝑣𝑖 rescaled such
that the kinetic energy of the new particle 𝐸sec ensures energy conservation
𝐸sec = 𝐸𝑖 − 𝐸io − 𝐸sca. The kinetic energy of the incoming particle is then
also rescaled to 𝐸sca.

5. Both scattered and freed electrons undergo a scattering event using the same
differential cross-section as for the elastic collision. The same procedure as
in point 3 is used for both electrons.

Depending on the physical system being simulated, the generated ion can either
be added to a second species and be tracked in the simulation or not simulated.
Ignoring the generated ions is justified in cases where the ions are lost rapidly
and where ion induced electron emission happens in regions devoid of trapping
mechanism. This rapid loss happen when the ions Larmor radius is larger than the
dimensions of the vacuum vessel, which is typically the case in gyrotron electron
gun simulations.

3.9. Ion induced emission
In simulations with large electrode bias (above 5kV), the ions generated due to

an ionization event are accelerated toward the electrodes and gain large energies,
e.g. of the order of several keV. In this regime, their collision with the electrodes
can cause ion induced electron emission (IIEE). This process is currently simu-
lated in the code for several types of metallic surfaces and Hydrogen ions. To
calculate the electronic yield 𝛾(𝐸𝑖), defined as the average number or electrons
released by one impinging ion, two collision regimes are considered depending
on the ion kinetic energy 𝐸𝑖. At low kinetic energies, 𝐸𝑖 < 1keV, the electrons
of the metal are extracted due to the potential energy of the incoming ions [45].
In this case, the yield depends on the ionization energy 𝐸io necessary to form the
incoming ion, the Fermi energy 𝜖𝐹 and the work function Φ of the metal, but is
independent of the ion kinetic energy,

𝛾𝑝𝑜𝑡 ≈
0.2
𝜖𝐹
(0.8𝐸io−2Φ). (44)
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Figure 7: IIEE yield used in FENNECS for Hydrogen atoms hitting aluminum electrodes as a
function of the incoming ion kinetic energy. The circles show the effective yield calculated using
(45) and tabulated inelastic stopping power [48, 49]. For this electrode material 𝛾𝑝𝑜𝑡 = 0.

At large kinetic energies 𝐸𝑖 > 1keV, the energy used to free the metallic electron
comes from the kinetic energy of the ion and the yield is calculated using a model
derived by Schou [46]

𝛾𝑘𝑖𝑛 (𝐸𝑖) = Λ𝛽

(
d𝐸
d𝑥

)
𝑒

. (45)

Here, Λ is a material constant, 𝛽 is a coefficient that accounts for energy transport
by recoiling electrons and by backscattered ions, and

(
d𝐸
d𝑥

)
𝑒

is the inelastic stop-
ping power of the impacting ion which depends on the ion type and kinetic energy,
and on the material type. As the code currently only considers IIEE by Hydrogen
atoms, an experimental parameter Λ𝛽 = Λ𝑒𝑥𝑝 ≈ 0.1 ÅeV−1 is used, which is inde-
pendent on the metal type [46, 47]. The inelastic stopping power is taken from
tabulated data based on experimental data and theoretical predictions [48, 49]. As
both types of collision events can happen in the same simulation, the two yields
are blended in the range 0 ≤ 𝐸𝑖 ≤ 1keV using a linear interpolation between 𝛾𝑝𝑜𝑡
and 𝛾𝑘𝑖𝑛 (1keV) as seen in Figure 7.

To simulate IIEE in the code, the ions generated by electron-neutral collisions
are simulated and tracked. Once an ion reaches an electrode, its kinetic energy
𝐸𝑖 and yield 𝛾(𝐸𝑖) are calculated. To determine the number of macro-electrons
generated, a random number 𝑘 is generated according to a Poisson distribution
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with mean < 𝑘 >= 𝛾(𝐸𝑖) such that the probability of freeing 𝑘 electrons is

𝑃(𝑘) = exp(−𝛾(𝐸𝑖))
𝑘!

. (46)

𝑘 macro-electrons are then generated at the last known position of the ion inside
the domain. The 𝑘 resulting electrons are given a velocity normal to the electrode
surface. To simulate the emitted electron energy spectra [46], the kinetic energy
of the generated electrons 𝐸𝑒 is given using a gamma distribution function which
best fits experimental measurements [50]. We recall here the probability density
function of the gamma distribution with parameters ^ and \ and mean < 𝑥 >= ^\:

𝑓𝛾 (𝑥) =
1

Γ(^)\^ 𝑥
^−1 exp

(
−𝑥
\

)
. (47)

Here Γ(^) is the gamma function

Γ(^) =
∫ ∞

0
𝑡^−1𝑒−𝑡𝑑𝑡. (48)

As a first approximation, the parameters ^ = 4 and \ = 0.5 of the distribution
function are independent of the electrode material and impose a mean kinetic
energy of the generated electrons < 𝐸𝑒 >= 2eV. This approximation is supported
by the fact that, in gyrotron gun simulations, large electric fields are externally
imposed, and the initial electron kinetic energy becomes negligible compared to
the one gained by electric field acceleration.

3.10. Seed sources
In addition to the electron sources resulting from the ion-induced electron

emission and the impact ionization of the neutrals, a volumetric seed source is
implemented in the code. This source can generate electrons in a fixed volume
according to various types of distribution functions in velocity. For example, a
Maxwellian distribution function with temperature 𝑇 or a mono-velocity beam
can be used. The amplitude and spacial distribution of the source is also an input
parameter. This source can be used to simulate the effect of neutral ionization
due to background radiation, or to simulate the effect of field-emissions on the
electrodes. It is sometimes necessary to ensure that some electrons are present at
all times in the simulation domain and can start the cloud formation cascade [9].
Indeed, without this source, the initial electron cloud population might be entirely
lost due to electron-neutral friction drifts and no new electron cloud could be gen-
erated.
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3.11. Post-processing
In addition to the Fortran PIC code, FENNECS is also bundled with a set of

post-processing routines, implemented in MATLAB, to allow the extraction of
several physical quantities relevant to the problem at hand. These routines allow
the loading and easy manipulation of the raw simulation data. They provide an
abstraction layer that reads HDF5 simulation result files, and present to the user
standard MATLAB structures and classes, which facilitates the manipulation of
the data and reduces the complexity of figures generation. For example, a set of
graphical user interface routines have been created to display dynamically the time
evolution of the electron density, the fluid velocities, the electrostatic potential and
electric field, or the pressure tensor.

The raw data is saved at user-defined regular intervals. This can either be by
saving the individual particles physical quantities for studying the full distribution
of the simulated species, or by calculating at each grid-point the 0𝑡ℎ,

𝑛(®𝑟, 𝑡) =
∫
R3
𝑓 (®𝑟,®𝑣, 𝑡)𝑑3𝑣, (49)

first,

𝑛®𝑢(®𝑟, 𝑡) =
∫
R3
®𝑣 𝑓 (®𝑟,®𝑣, 𝑡)𝑑3𝑣, (50)

and second order,

𝑛𝐸𝑖 𝑗 (®𝑟, 𝑡) =
∫
R3

𝑚𝑒

2
𝑣𝑖𝑣 𝑗 𝑓 (®𝑟,®𝑣, 𝑡)𝑑3𝑣 (51)

moments of the distribution function in each direction. From these moments, the
density and fluid velocity are directly accessible and evaluated at discrete time-
steps. The pressure tensor can be calculated with

P𝑖 𝑗 =
∫
R3
𝑚𝑒 (𝑣𝑖 −𝑢𝑖) (𝑣 𝑗 −𝑢 𝑗 ) 𝑓 (®𝑟,®𝑣, 𝑡)𝑑3𝑣 = 𝑛

(
−𝑚𝑒𝑢𝑖𝑢 𝑗 +2𝐸𝑖 𝑗

)
. (52)

This information is then accessible in the MATLAB class representing the simu-
lation result.

4. Verifications

To verify the correct implementation of the code, a set of test cases have been
run and are presented in this section.

25



Figure 8: Domain and manufactured solution of the potential used to verify the implementation of
the FEM solver.
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Figure 9: H1 norm of the relative error for spline orders from 2 to 5 (◦,⋄,△,□) and varying grid
width ℎ. The dotted lines highlight the ideal convergence for each spline order. Each order is color
coded (black, red, blue, magenta) for readability.
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Figure 10: L2 norm of the relative error for spline orders from 2 to 5 (◦,⋄,△,□) and varying grid
width ℎ. The dotted lines highlight the ideal convergence for each spline order. Each order is color
coded (black, red, blue, magenta) for readability.

4.1. General complex geometry Poisson solver
The Poisson solver is verified using a manufactured solution of the form

𝜙 = sin
(
𝜋
𝑧− 𝑧0
𝐿𝑧

)
sin

(
𝜋
𝑟 − 𝑟0
𝐿𝑟

)
, (53)

which satisfies the Poisson equation with the source term:

𝑄 =

(
𝜋

𝐿𝑧

)2
sin

(
𝜋
𝑧− 𝑧0
𝐿𝑧

)
sin

(
𝜋
𝑟 − 𝑟0
𝐿𝑟

)
+ 𝜋
𝐿𝑟

sin
(
𝜋
𝑧− 𝑧0
𝐿𝑧

) [
−1
𝑟

cos
(
𝜋
𝑟 − 𝑟0
𝐿𝑟

)
+ 𝜋
𝐿𝑟

sin
(
𝜋
𝑟 − 𝑟0
𝐿𝑟

)]
,

(54)

on a domain defined using the Rvachev intersection of two domains defined with
ellipses, as represented in Figure 8. The spline grid is defined with −25 ≤ 𝑧 ≤
25 mm and 10 ≤ 𝑟 ≤ 60 mm and for an increasing number of grid cells per di-
mension, from 20 to 960. The manufactured solution parameters are 𝑟0 = 35mm,
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𝑧0 = 0mm, 𝐿𝑟 = 10mm and 𝐿𝑧 = 10mm. The inner ellipse is defined with the
geometric weight

𝑤1 =

(
𝑟 −35
8.3

)2
−
(
𝑧−8.3

8.3

)2
−1, (55)

and the outer ellipse is defined with

𝑤2 = 1−
(
𝑟 −35

15

)2
−
( 𝑧
25

)2
. (56)

Here 𝑟 and 𝑧 are defined in mm. The error in the solution is evaluated using both
the 𝐿2 and the 𝐻1 norms defined respectively as

𝑒2 = | |𝜙ℎ −𝜙 | |𝐿2 =

(∫
𝐷

(𝜙ℎ −𝜙)2𝑑𝑉
)1/2

, (57)

and

𝑒1 = | |𝜙ℎ −𝜙 | |𝐻1 =

(∫
𝐷

(𝜙ℎ −𝜙)2 + |∇(𝜙ℎ −𝜙) |2𝑑𝑉
)1/2

. (58)

It can be shown [35] that 𝑒1 ∼ 𝑂 (ℎ𝑚−1) as ℎ→ 0 when using web-splines of
order 𝑚. Similarly, it can be shown that 𝑒2 ∼ 𝑂 (ℎ𝑚) as ℎ→ 0 when using web-
splines of order 𝑚. Evaluations of the relative error using the 𝐻1 and 𝐿2 norms are
represented in Figure 9 and Figure 10 using the manufactured solution previously
defined. We observe that the correct convergence rates are recovered for different
orders of the web-spline basis.The error calculated using the maximum norm also
called 𝐿∞ shows the same convergence order and one order of magnitude higher
relative error than obtained with the 𝐿2 norm.

The same manufactured solution is also used in a geometry defined by a set
of straight lines forming a 4 branch star pattern to show the robustness of the
method in simulating sharp edges (see Figure 11). The weight function 𝑤 for this
geometry, is defined using a smoothed distance function (see equation (37)) with
parameter 𝑑0 = 0.01m. In Figure 11, the regions of low and high relative error
in this geometry, show that convex edges are well resolved by the method, while
concave edges show less accuracy. This is probably due to the reduced number
of free parameters at these locations and to the loss of regularity of the weight
function 𝑤. The 𝐿2 norm of the relative error for this configuration, represented
in Figure 12, shows that the convergence order of the method is lost for degrees
𝑚 > 2 for reasons that are not yet clear. However, the method still converges with
a reduced order. We suspect that this effect is due to a loss of regularity of the
weight function 𝑤, but further studies will be necessary to address this effect.
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Figure 11: Domain and relative error on the potential for the second geometry used to verify the
implementation of the FEM solver. This result was obtained for a resolution 𝑛𝑟 = 𝑛𝑧 = 120 and
b-splines of degree 𝑚 = 2. The error is larger at the convex edges and show that the concave edges
are well resolved. The white regions inside the domain show a relative error below 10−9.
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Figure 13: Zoom on the initial density loading of the electron cloud and steady-state Z = 0 contour
(dotted magenta). In addition, the electric equipotential (dashed blue) and magnetic field lines
(dash-dotted black) are represented.

4.2. Equilibrium of a ring of charges trapped in a magnetic mirror
In this section we present the results of simulations of a pure electron plasma

equilibrium for which an analytical solution exists. This particular Vlasov electro-
static equilibrium considers an annular electron cloud trapped radially by a strong
magnetic field and trapped axially by a magnetic mirror of length 𝐿 [2, 51]. The
magnetic vector potential for an externally imposed mirror field is described ana-
lytically by

𝐴ext
0 (𝑟, 𝑧) =

1
2
𝐵0

[
𝑟 −

(
𝐿

𝜋

𝑅−1
𝑅 +1

)
𝐼1

(
2𝜋𝑟
𝐿

)
cos

(
2𝜋𝑧
𝐿

)]
, (59)

with 𝐵0 the magnetic field amplitude on axis at 𝑧 = ±𝐿/4, 𝐼1 the modified Bessel
function of order one, 𝐿 the distance between the mirror coils, and 𝑅 the mirror
ratio defined by 𝑅 ≡ 𝐵𝑚𝑎𝑥/𝐵𝑚𝑖𝑛 = 𝐵ext

0 (𝑟 = 0, 𝑧 = ±𝐿/2)/𝐵ext
0 (𝑟 = 0, 𝑧 = 0). The

distribution function is written in terms of conserved quantities, namely the total
energy 𝐻 = 𝑝2/(2𝑚𝑒) −𝑒𝜙(𝑟, 𝑧), with ®𝑝 =𝑚𝑒®𝑣, and the canonical angular momen-
tum 𝑃\ = 𝑟 [𝑝\ − 𝑒𝐴ext

0 (𝑟, 𝑧)],

𝑓𝑒 (𝐻,𝑃\) =
𝑛0𝑅0
2𝜋𝑚𝑒

𝛿(𝐻 −𝐻0)𝛿(𝑃\ −𝑃0). (60)

Here, 𝑛0 is the maximum electron density in the cloud, 𝑅0 is the lower radial limit
of the cloud at 𝑧 = 0, 𝐻0 and 𝑃0 are positive constants, and 𝑝\ is the electron
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Figure 14: Zoom on the final density of the electron cloud and steady-state Z = 0 contour (dotted
magenta). In addition, the electric equipotential (dashed blue) and magnetic field lines (dash-
dotted black) are represented.

momentum in the azimuthal direction. Equation (60) is a solution of the Vlasov
equation. For this equilibrium, one can show that an envelope function Z (𝑟, 𝑧) can
be defined [51]:

Z (𝑟, 𝑧) =
𝑝2
⊥(𝑟, 𝑧)

2𝑚𝑒𝐻0
= 1+ 𝑒𝜙

𝐻0
− 1

2𝑚𝑒𝐻0

[
𝑃0
𝑟
+ 𝑒𝐴ext

0

]2
, (61)

such that the curve where Z (𝑟, 𝑧) = 0 denotes the limit of the electron cloud. Here,
𝑝⊥ is the momentum perpendicular to 𝑒\ and 𝜙 is the self-consistent electric po-
tential. The electron density is therefore:

𝑛𝑒 (𝑟, 𝑧) =
𝑅0
𝑟
𝑛0𝑈 [Z (𝑟, 𝑧)], (62)

with 𝑈 [𝑥] the Heaviside step function. To verify the code implementation, a
cloud of electrons is loaded in FENNECS with 𝐻0 = 3.2×10−14 J and 𝑃0 = 8.66×
10−26 kgm2 s−1 in the region where Z0 = 1− 1

2𝑚𝑒𝐻0

[
𝑃0
𝑟
+ 𝑒𝐴ext

0

]2
> 0 using a uni-

form density distribution function as seen in Figure 13. The number of loaded
macro particles is 2116800 with a macro particle weight 𝑤𝑝 = 1.018 · 104 such
that the reference density in steady state is 𝑛0 = 5×1014 m−3. The simulation do-
main is defined with a cylindrical volume of radius 𝑟𝑏 and length 𝐿𝑧 as shown in
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𝐵0 0.21 T
𝑅 1.5

𝐿 = 𝐿𝑧 0.48 m
𝑟𝑏 0.06m
Δ𝑧 1.9×10−3 m
Δ𝑟 2.8×10−4 m
Δ𝑡 5×10−12 s ≈ 0.2𝑚𝑒/𝑒𝐵0
𝑛0 5×1014 m−3

𝑅0 0.005m
𝐻0 3.2×10−14 J
𝑃0 8.66×10−26 kgm2 s−1

Table 1: Physical and numerical parameters used in the simulation of the annular electron cloud
trapped in a magnetic mirror.

Figure 13. The volume is enclosed radially by a cylindrical conductor of radius 𝑟𝑏
at ground. The system and numerical parameters are given in Table 1.

The simulation is run with a timestep Δ𝑡 = 5×10−12 s ≈ 0.2/Ω𝑐𝑒 and the total
kinetic and potential energies of the cloud are monitored. As shown in Figure 15,
the total energy summed over all particles 𝐸𝑡𝑜𝑡 is conserved on average and the
relative error on the energy is kept below 10−4 over long time scales as compared
to the bounce time of electrons. During the simulation no particles are lost, and
after a time 𝑡 = 364ns ≈ 460/𝜔𝑝𝑒, the system is in a steady state and successfully
retrieves the analytical solution of the equilibrium. In particular, the 1/𝑟 radial
dependency of the electron cloud density, as predicted by equation (62), is well
reproduced and the cloud remains limited by the envelope function as can be ob-
served in Figure 14 and Figure 16.

4.3. Radial drifts due to collisions
To verify the electron neutral collision implementation, an annular electron

cloud is considered in a coaxial configuration of infinite length, subjected to a
uniform axial magnetic field, and to elastic collisions with a residual neutral gas.
We assume that the distribution remains close to isotropic and study the system
using a fluid model [9]. In this model the force balance equation is

𝑛𝑒𝑚𝑒
d®𝑢
d𝑡

= −𝑛𝑒𝑒
(
®𝐸 + ®𝑢× ®𝐵

)
−𝑛𝑒𝑚𝑒aela,mom ®𝑢−∇𝑃. (63)

Here, ®𝑢 is the fluid velocity of the electrons, 𝑛𝑒 is the local electron density,
aela,mom = 𝑛𝑛 <

∫ d𝜎ela
dΩ 𝑣𝑑Ω > 𝑓 is the averaged collision frequency for momentum
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Figure 15: Left: Time evolution of the total (yellow), kinetic (blue) and potential (red) energies
during the simulation. Right: Relative error on the total energy conservation during the simulation.
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Figure 17: Top: initial and final radial electron density profile. Bottom: Expected (blue) and
simulated (black) radial flux at the end of the simulation.

exchange, <> 𝑓 denotes the average over the distribution function, and 𝑃 is the
pressure. Due to the azimuthal symmetry considered, the pressure term is identi-
cally 0 in the azimuthal direction. Neglecting all inertial terms, equation (63) in
the azimuthal direction gives the radial electron flux Γ𝑟 (𝑟) = 𝑛𝑒𝑢𝑟 caused by the
collisional drag:

Γ𝑟 (𝑟) = −𝑛𝑒
𝑢\aela,mom

Ω𝑐

. (64)

In the simulations, the system is defined with a coaxial configuration of infinite
length, using periodic boundary conditions for the particles and natural boundary
conditions for the fields. A bias Δ𝜙 = 300V is applied between the electrodes
and the system is also subjected to a uniform external magnetic field of amplitude
𝐵0 = 0.28T. In this configuration, a cloud of uniform density 𝑛0

𝑒 = 2.5×1015 m−3

and uniform velocity, as represented in Figure 17 is loaded on an annulus between
𝑟 = 70mm and 𝑟 = 76mm. The simulation is set with periodic axial boundary con-
ditions for the particles to simulate the infinite length and is run for several elastic
collision characteristic times. The simulation results show indeed that the distri-
bution function remains isotropic and that the inertial terms are small compared
to the Lorentz and collisional drag terms. The radial flux is measured in the code
and compared to the prediction obtained using the fluid model (64). The fluid az-
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imuthal velocity is extracted from the code, and the averaged collision frequency
is evaluated with the electron distribution function extracted from the simulation
results. Both the expected and simulated fluxes are averaged along the axial direc-
tion to reduce the numerical noise. As shown in Figure 17, both fluxes exhibit the
same behavior throughout the simulation domain with a maximum relative error
of 20% at 𝑟 = 76mm.

4.4. Ion induced emission
The IIEE module is verified with a coaxial configuration with an inner elec-

trode at 𝑟𝑎 = 1mm and an outer electrode at 𝑟𝑏 = 10mm with an axial uniform
magnetic field of amplitude 𝐵0 = 0.21T. A bias Δ𝜙 = 20kV is imposed between
the electrodes and three clouds of 1000 Hydrogen ions each are loaded at differ-
ent radial positions 𝑟1 = 3mm, 𝑟2 = 5mm and 𝑟3 = 8mm with zero velocity. In
this configuration, the ions are accelerated radially towards the central electrode,
gaining a kinetic energy 𝐸𝑘𝑖𝑛 (𝑟 𝑗 ) ≡ 𝐸 𝑗 = 𝑒(𝜙(𝑟 𝑗 ) − 𝜙(𝑟𝑎)) that depends on their
initial radial position 𝑟 𝑗 . The effective yield obtained in the simulation is then
compared to the theoretical yield 𝛾𝑘𝑖𝑛 (𝐸 𝑗 ) for each initial position 𝑟 𝑗 . The results
of these simulations are given for three electrode materials in Table 2, and show an
agreement between the theoretical yields 𝛾𝑒𝑥𝑝 and simulation yields 𝛾𝑠𝑖𝑚 within
2%.

Material 304SS 𝑟1 𝑟2 𝑟3
𝛾𝑒𝑥𝑝 1.311 1.623 1.870
𝛾𝑠𝑖𝑚 1.299 1.627 1.891

Rel. error 0.9% 0.2% 1.1%
Material Cu 𝑟1 𝑟2 𝑟3

𝛾𝑒𝑥𝑝 1.237 1.522 1.746
𝛾𝑠𝑖𝑚 1.229 1.518 1.760

Rel. error 0.6% 0.3% 0.8%
Material Al 𝑟1 𝑟2 𝑟3

𝛾𝑒𝑥𝑝 0.920 1.133 1.297
𝛾𝑠𝑖𝑚 0.910 1.115 1.293

Rel. error 1.0% 1.6% 0.3%

Table 2: Expected and simulation yield obtained for the IIEE verification case considering: stain-
less steel 304, copper and aluminum as electrode material, and 3 initial radial position of the ions.
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Figure 18: Strong scaling and parallel efficiency of FENNECS for a case considering 10M macro-
particles in a coaxial geometry. Left: scaling using only OpenMP parallelism. Right: Scaling
using MPI and OpenMP parallelism with each task set to use 4 OpenMP threads.

5. Parallel performance

The code is parallelized using a hybrid OpenMP/MPI approach. Indeed, the
code is first parallelized using MPI and a non-uniform axial domain decomposi-
tion. This choice is supported by the fact that the particle distribution is usually
not uniform axially, as illustrated by the test case described in Sec.4.2. Thus, to
ensure a good load balancing for the computation of the particle trajectories be-
tween each task, the axial length covered by each task must be different. On each
node, OpenMP parallelism is used to parallelize the computation of the particle
trajectories. To avoid the use of atomic operations, the RHS of the Poisson equa-
tion is duplicated on each OpenMP thread and reduced to a single array before
communications and the computation of 𝜙. The OpenMP parallelism is limited
by the wait times during particles creation and deletion in the particles structure
(bound, boundary loss and neutcol step routines), which necessitate serial opera-
tions to avoid holes in the structure, and any overwrite of existing particles. These
waits already take ∼ 10% of the time for 16 cores, but could probably be re-
duced with clever parallelisation of these routines. The Poisson solver is currently
implemented using the MUMPS library in serial mode, but the solver could, in
principle, be adapted to leverage the OpenMP and MPI parallelism. This was
motivated by the fast solution of the Poisson equation due to the problem size,
even using a direct solver. Indeed in serial, the solving step takes less than 1%
of runtime. However, in MPI parallelism, the RHS of the Poisson equation must
be gathered on the host node and broadcasted to all the nodes at each time-steps
which leads to significant portion of the code spent in waiting for the communica-
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tions to be finished. As this communication time increases linearly with the num-
ber of nodes, the parallelisation scheme used in FENNECS becomes no longer
sustainable above 8 nodes where communications already take 35% of the run
time. There is still room for improvement of the parallelisation by leveraging the
full potential of the MUMPS solver and reducing the communication time. Simi-
larly, the OpenMP parallelism could also be improved by rearranging the order of
the computations for each particle, thus reducing the need for OpenMP barriers.
Given these facts, the run-time of FENNECS is acceptable for the configurations
currently simulated. Nevertheless, with the future planned extension of FEN-
NECS to 3D geometries, the added numerical and communication costs of the
larger problems will surely necessitate the implementation of a parallel Poisson
solver. This solver should strongly reduce the data communication and improve
the overall scalability of FENNECS.

Strong scaling studies have been run on the jed cluster of EPFL [52] which is
composed of nodes with 2 Intel(R) Xeon(R) Platinum 8360Y leading to 72 cores
per node. The scalling studies were run using a pure OpenMP parallelism with
up to 16 cores and a hybrid parallelism with up to 16 tasks and 4 threads per task
as shown in Figure 18. For these studies, we considered a coaxial geometry in
which 10 million particles are simulated on a (150x192) grid. The strong scaling
results show a parallel efficiency above 75% for up to 4 tasks with each 4 OpenMP
threads corresponding to a total of 16 CPUs. The parallel efficiency [par is defined
as the ratio between the time 𝑡1 to run the task with a given number of cores, and
𝑁 times 𝑡𝑁 the time needed to run when 𝑁 times more cores are used ([par =

𝑡1/(𝑁𝑡𝑁 )).

6. Summary and conclusions

The present paper describes the code FENNECS solving the Boltzmann-Poisson
equations for a non-neutral plasma subject to strong electric fields generated by
electrodes of complex shapes and space-charge effects, and to strong external
magnetic fields. The novel numerical method used to simulate the complex elec-
trode geometries present in gyrotron electron guns is also described. The dif-
ferent electron sources considered in the code are presented. More specifically,
the Monte Carlo method used to simulate the electron-neutral collisions (elastic
and ionization), and the emission of electrons at the electrode surfaces due to
collisions of energetic ions on the electrode surfaces are also described. A set
of verification cases are presented and confirm the correct implementation of the
governing equations. In addition, the cases underline the efficiency of the novel
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web-spline method and demonstrate its capability of reaching arbitrary precision
for the electrostatic potential.

The code is parallelized using a hybrid OpenMP/MPI approach allowing to
leverage the capabilities of modern computers and computational clusters. Scala-
bility studies have shown a reasonable speed-up of the code for workstations and
small cluster use. This allows the code to be used for parametric studies and to
guide the design of electron guns.

FENNECS has already been used to study trapped electron clouds in existing
gyrotron electron guns [9, 26] and has shown its relevance as a design tool for
future gyrotron electron gun. It has also been used to support the design of the
T-REX experiment [53] and to define the relevant diagnostics and geometries to
study the problem of trapped electron clouds in a more controlled environment.
Furthermore, the authors believe that the governing equations are sufficiently gen-
eral that the code can also be applied to study arc formations, and more conven-
tional Penning-Malmberg traps. As the code will soon be open-source, it will al-
low easy adaptations to study other problems of plasma physics, where electrode
geometric effects are non-negligible.
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Appendix A. FENNECS input parameters

In this appendix, we present a list of the input parameters of the code that
can be defined in the input files. To define the simulation parameters for a run of
FENNECS, a single text file containing Fortran namelists is given as a command
line parameter to the executable. In this appendix, the current namelists and their
parameters are defined and all the quantities must be written in SI units unless
specified.

Appendix A.1. &BASIC
Defines the general parameters of the run, the loading of the particles, the FEM

grid, the magnetic field and how the momentum equation is solved. The following
parameters can be defined:

Variable (default value) Description

job time (3600) Wall plug time in seconds allowed for the simulation to run. The
simulation will be stopped safely at the end of job time.

extra time (60) Extra time in seconds allowed for the simulation to finish a loop
and save data to disk, once job time is finished.

nrun (1) Number of time-steps to run.

tmax (100000) Physical simulation time in seconds after which the run must be
stopped.

dt (1) Time step expressed in seconds.

it0d (1) Defines the number of steps between the saving of each scalar variable
not depending on r and z (𝐸𝑝𝑜𝑡 , 𝐸𝑘𝑖𝑛 ...).

it2d (1) Defines the number of steps between each write to the hdf5 file of the 2d
variables (Φ, 𝐸 , moments of the distribution ...).

itparts (1) Defines the number of steps between each write to the hdf5 file of the
full particles’ position and velocity.

ittracer (1) Defines the number of steps between each write to the hdf5 file of the
particles’ position and velocity if they are defined with the tracer property.
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ittext (1) Defines the number of steps between each write to the program standard
output of the total potential energy, kinetic energy and error in the energy
and of the population of macro-particles in each specie.

itgraph () Defines the number of time steps between the updates of the graphi-
cal interface in case FENNECS is compiled with XGRAFIX and run using
nlxg=.TRUE..

nbcelldiag (0) Defines the number of &celldiagnostics groups in &celldiagparams.

itcelldiag (100000) Defines the number of steps between each write of the cell
diagnostic data to the hdf5 file.

resfile (’results.h5’) Name and path of the hdf5 file containing the simulation
results.

rstfile (’restart.h5’) Name and path of the hdf5 file containing the simulation and
particle data at the last time-step of the simulation, to allow the restart of
the run.

nlres (.FALSE.) Sets if this run is a restart. This means that during the pro-
gram initialization, the particles position and velocities will be read from a
”restart.h5” file, and the new simulation data will be appended to the exist-
ing resfile.

nlsave (.TRUE.) Defines if the simulation data at the final time-step is saved in
rstfile as a checkpoint to allow for a restart.

newres (.FALSE.) Sets if the result file resfile is a new file (.TRUE.) and should
be created in the case of a restart. This means that during the program ini-
tialization, the particles position and velocities will be read from a ”restart.h5”
file, and the new simulation data will be saved in the new resfile.

nlxg (.FALSE.) Sets if the graphical interface and plots should be displayed. The
code should be compiled with the XGRAFIX library and run on a personal
computer.

nlPhis (.TRUE.) Sets if the macro particles will interact through the self-consistent
electric field. If set to .FALSE. the self-consistent electric potential and
fields will be evaluated and saved in the hdf5 result, but not applied to the
particles during the momentum update. However, the external electric field
is always applied.
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nlfreezephi (.FALSE.) If .TRUE. the electrostatic potential is first solved self-
consistently at the start or restart of the simulation and not updated after-
wards. If .FALSE., 𝜙 is updated every time-steps.

nlclassical (.FALSE.) If set to .TRUE., 𝛾 is set to 1 for every particle throughout
the simulation. This is equivalent to solving the momentum equation in the
classical limit. Otherwise, the relativistic momentum equations are solved.

potinn () Value of the electric potential on the surface of the inner cylinder(Φ(𝑟𝑎))
for simple geometries. (see &geomparams)

potout () Value of the electric potential on the surface of the outer cylinder(Φ(𝑟𝑏))
for simple geometries. (see &geomparams)

radii () Up to 11 components array containing in order for the 𝑟 dimension, the
lower limit of the mesh, the 𝑖𝑡ℎ limits for the subdivision of the radial grid,
the upper limit of the mesh ([𝑟𝑎, 𝑟𝑖, 𝑟𝑖+1, ...𝑟𝑏]).

lz () Up to 11 components array containing in order for the axial dimension, the
lower limit of the mesh, the 𝑖𝑡ℎ limits for the subdivision of the axial grid,
the upper limit of the mesh ([𝑧−, 𝑧𝑖, ...𝑧+]).

nz () Number of intervals in 𝑧 for the mesh definition. This variable is overridden
if nnz is defined.

nnr () Up to 10 components vector containing the number of intervals in 𝑟 for the
𝑛 radial mesh regions ([𝑛0, 𝑛𝑖, ..., 𝑛end]).

nnz () Up to 10 components vector containing the number of intervals in 𝑧 for the
𝑛 axial mesh regions ([𝑛0, 𝑛𝑖, ..., 𝑛end]).

ngauss () 2 component array containing the number of axial and radial gauss
points used for the integration in the FEM method([𝑛𝑔𝑎𝑢𝑠𝑠𝑧, 𝑛𝑔𝑎𝑢𝑠𝑠𝑟]).

femorder () 2 component array containing the axial and radial degree of the B-
splines polynomials used in the FEM method([𝑜𝑟𝑑𝑒𝑟𝑧, 𝑜𝑟𝑑𝑒𝑟𝑟]).

nlppform (.TRUE.) Defines if b-splines are evaluated using the ppform or b-
spline representation of the field. ppform is usually faster as less polynomial
evaluations are necessary.
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distribtype (1) Switch parameter defining the distribution function used to load
the particles.

1. Uniform distribution in 𝑧, 1/𝑟 distribution in 𝑟, Gaussian distribution
in each component of the velocity given the temperature temp.

2. Stable distribution for a magnetic mirror, as described in section ??
and in [51].

3. Same as 2. but with uniform radial density.
7. particles loaded from partfile input parameter

nbspecies (1) Number of simulated species and number of partfile species to
read and load.

partfile (””) array of length 10 to set the filename of the particle input files. The
files in this list from 2 to nbspecies are always read and loaded. partfile(1)
is loaded only if Distribtype=7.

nbaddtestspecies (0) Number of added simulated species and number of addedtest-
specfile to read and load during the restart of the simulation.

addedtestspecfile (””) array of length 10 to set the filename of the particle input
files read during a restart and added to the simulation.

partperiodic (.FALSE.) If true, sets the axial particle boundary conditions to pe-
riodic, otherwise the particles are lost when they reach the axial limits of
the simulation domain.

samplefactor (1) During rescale, this parameter allows multiplying the amount
of macro-particles by an integer number, while keeping the same moments
of the distribution function.

nplasma () Number of macro-particles simulated for the first specie if distrib-
type!=7.

npartsalloc () Size of the allocated memory for particles of specie 1 at the begin-
ning of the simulation. More particles can be generated during the run, but
only the first npartsalloc particles will be saved to disk. This allows better
storage of the results if ionization is used in the simulation. This parameter
is only used if distribtype!=7.
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plasmadim () 4 component array containing the axial and radial limits in m, of
the electron cloud used by Distribtype=1 at the initialization of the parti-
cles’ positions ([𝑧𝑚𝑖𝑛, 𝑧𝑚𝑎𝑥 , 𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥]).

n0 () Initial value of the density factor, in m−3, used in the different Distribtype,
which defines the weight of the macro-particles.

temp () Temperature expressed in Kelvins used for initializing the electron ve-
locities in Distribtype=1.

H0 () Initial value of the hamiltonian 𝐻0, in SI units, used in Distribtype=2,3
(see Section 4.2).

P0 () Initial value of the Canonical angular momentum 𝑃0, in SI units, used in
Distribtype=2,3 (see Section 4.2).

nblock () Number of slices in the axial direction used to approximate the electron
cloud boundary for particle initialization in Distribtype=2,3.

weights scale (1.0) Allows rescaling the macro-particle weight of the main specie
on restart, to artificially increase or decrease the density.

B0 () Magnetic mirror scaling factor, or reference magnetic field amplitude for
the time normalisation, expressed in T. This values can also be used with
bscaling to rescale the maximum magnetic field amplitude from the one
loaded from a h5 file.

Rcurv () Magnetic mirror ratio, in the case of a magnetic field defined as a mag-
netic mirror (see Section 4.2).

width () Magnetic mirror width in meters, in the case of a magnetic field defined
as a magnetic mirror (see Section 4.2).

magnetfile (””) Name of the hdf5 file containing the description of the magnetic
field.

bscaling (-1) Defines the way the magnetic field is rescaled when read from hdf5
file. (0) no rescale, (1) rescale the maximum value of the magnetic field
amplitude in the h5 file (could contain points outside the simulation grid),
(-1) Rescale the magnetic field amplitude after calculation of the field at the
grid points.
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nlmaxwellsource (.FALSE.) Sets is the ad-hoc source module is activated in this
run.

Appendix A.2. Magnetic field h5 file
To input an external magnetic field a ”.h5” file must be generated and loaded

by setting the magnetfile variable in ”&basic”. Such h5 files can be constructed
using the ”savemagtoh5.m” Matlab function in the Matlab subfolder of FEN-
NECS. Using the hdf5 nomenclature, the magnetic field data is saved in the group
”/mag/” with the following structure:

r Array of dimension 𝑛𝑟 defining the radial grid, in meters, on which the magnetic
field is defined.

z Array of dimension 𝑛𝑧 defining the axial grid, in meters, on which the magnetic
field is defined.

Athet Stores the azimuthal component of the magnetic field potential vector in
Tm, as a 2D array of dimension (𝑛𝑧,𝑛𝑟).

Bz Stores the axial component of the magnetic field vector in T, as a 2D array of
dimension (𝑛𝑧,𝑛𝑟).

Br Stores the radial component of the magnetic field vector in T, as a 2D array of
dimension (𝑛𝑧,𝑛𝑟).

Appendix A.3. Magnetic field txt file
To input an external magnetic field a ”.txt” file must be generated and loaded

by setting the magnetfile variable and magnetfiletype=1 in ”&magnetparams”.
Such text file store on each line a new coil with on the columns from left to right:
the axial lower and upper limits of the coil (in m); the radial lower and upper
limits (in m); the number of turns; the number of axial and radial subdivisions for
the computation of the field using elliptic integrals; the current in amperes. The
total magnetic field and the magnetic field potential are then computed on each
grid points using elliptic integrals [54].

Appendix A.4. &magnetparams
This input parameter allows the definition of the magnetic field using three

different methods. Some input parameters are the same as the one used in the
”&basic” namelist and will overwrite these values.
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magnetfiletype (0) type of magnet definition. If set to 0 and magnetfile is empty,
then the default mirror magnet definition is used. If it is set to 0 and mag-
netfile is not empty, it will assume a hdf5 input file. If this variable is set
to one, the code assumes a text input file describing the geometry and cur-
rents of each coils forming the magnet. bscaling to rescale the maximum
magnetic field amplitude from the one loaded from a h5 file.

magnetfile (””) Name of the hdf5 file containing the description of the magnetic
field, or of the text file containing the geometry and currents of the az-
imuthally symmetric magnet.

Appendix A.5. &partsload
Defined in specific particles loading files, this namelist allows more flexibility

than the legacy loader. It is also combined with either a list of individual macro
particles to load or a list of slices and their respective number of macro-particles
to load non-trivial distributions. Each specie should have its own particle file list,
leading to a separate storage structure in the code.

Variable (default value) Description

partformat (’slices’) Type of particle file.

’slices’ the cloud is defined spacially as a list of slices with, on each line,
the left axial limit, the lower and upper radial limit and the number
of macro-particles to load in this slice. The right limit is given on the
next line, and the last line comports only the axial limit.

’parts’ the cloud is defined by individual particles with in order: the radial,
azimuthal and axial positions, then the radial, azimuthal and axial ve-
locities in SI units.

nblock () number of slices in the ’slices’ description or number of particles in the
’parts’ description.

mass (m e) the mass of a physical particle in kg.

charge (q e) the charge of a physical particle in C.

weight (1) the number of physical particles that one macro-particle represents.
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npartsalloc () size of the initial particles array to prepare for an increase of parti-
cle numbers. In the diagnostics, only the first npartsalloc particles will be
saved in the hdf5 file. However, more particles can be created or present in
the simulations. The additional particles are simply not saved.

radialtype (2) type of radial distribution used when creating particles:

1. 1/𝑟 distribution in r.
2. uniform distribution in r.
3. 1/𝑟2 distribution in r.
4. Gaussian distribution in r centred at 0.5(𝑟𝑙𝑖𝑚𝑖𝑡𝑠(1) + 𝑟𝑙𝑖𝑚𝑖𝑡𝑠(2)) and

with 𝜎 = 0.1(𝑟𝑙𝑖𝑚𝑖𝑡𝑠(2) − 𝑟𝑙𝑖𝑚𝑖𝑡𝑠(1)).

velocitytype (1) type of velocity distribution to use when creating particles

1. Maxwellian velocity of mean < 𝑣 >= 0ms−1 and temperature defined
in temperature.

2. Davidson stable distribution defined with H0 and P0 (see section 4.2).
3. Flat top velocity distribution with mean < 𝑣 >=meanv and span max(𝑣) =

meanv+ spanv, min(𝑣) = meanv− spanv

temperature (10000) Temperature in Kelvin used for the Maxwellian velocity
distribution function.

H0 (3.2 · 10−14) Energy in joules of the particles for Davidson distribution func-
tion.

P0 (8.66 · 10−25) Canonical angular momentum in kgm2 s−1 of the particles for
Davidson distribution function.

is test (.FALSE.) Defines if the specie is a test specie for which all the particles
properties should be saved every ittest time steps.

is field (.TRUE.) If .TRUE. the specie is used to calculate the RHS of Poisson’s
equation, otherwise the particles see the electric field, but do not participate
in its resolution.

calc moments (.FALSE.) Determines if the moments of the distribution function
of this specie needs to be calculated on the grid and saved every it2d time
steps.
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meanv (0,0,0) mean velocity, expressed in ms−1, in the radial, azimuthal and
axial directions for the flat-top velocity loading.

spanv (0,0,0) span of the flat-top velocity, expressed in ms−1 , in the radial, az-
imuthal and axial directions for the flat-top velocity loading. Velocities will
be contained between meanv-spanv and meanv+spanv.

iiee id (-1) When positive, defines that this specie contains ions that undergo ion
induced electron emission and sets the index of the specie id, in the Fortran
array partslist, of the electronic specie where to add emitted electrons.

neuttype id (1) Defines the type of ion simulated to determine the correct yield
coefficients used to calculate the number of emitted electrons per collision
with an electrode. The implemented values are:

1. H2 gas.

material id (1) Defines the type of material for the electrodes during the ion
induced electron emission events. The implemented values are:

1. Stainless steel 304.
2. Copper.
3. Aluminium.

zero vel (.TRUE.) If .TRUE. the electrons emitted during IIEE events are gener-
ated at the electrode surfaces with ®𝑣 = 0, otherwise their velocity is initial-
ized normal to the electrode surface, and with a non-uniform distribution of
kinetic energy described in section 3.9.

Appendix A.6. &celldiagparams
This defines the behaviour of the cell diagnostic that stores the particles’ ve-

locity and position for all particles in a given cell, and at every itcelldiag steps.
The arguments are a list of size nbcelldiag that allows you to define several of
these diagnostics.

Variable (default value) Description

specieid () List of species with index corresponding to the indices in the Fortran
array partslist.

rindex () radial index of the cell to consider.

zindex () axial index of the cell to consider.
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Appendix A.7. &geomparams
Namelist used to define the geometry using weighted-extended-b-splines and

allowing the definition of boundary conditions on curved surfaces. Currently,
Dirichlet boundary conditions are used on the metallic parts and Neumann are
used otherwise. The centre cylinder will be set at a potential Potinn and the
external cylinder and ellipse are set at a potential Potout of the &Basic namelist.

Variable (default value) Description

walltype (0) Type of configuration to consider. A list of predefined weights are
given here, but others could be defined. For detailed examples, see the
Fortran source files ”geometry mod.f90” and ”weighttypes mod.f90”.

-*. If the walltype number is negative, a verification case with an analyt-
ical source-term is imposed, and the geometry is defined by the abso-
lute value of walltype. With this, the correctness of the Poisson solu-
tion can be tested in many geometries. The manufactured electric po-
tential solution has the form: 𝑠𝑖𝑛(𝜋(𝑧− 𝑧𝑐)/𝐿𝑧) ∗ 𝑠𝑖𝑛(𝜋(𝑟 −𝑟𝑐)/𝐿𝑟) +2
as in section 4.1.

0. Coaxial configuration of constant radius with central cylinder and ex-
ternal cylinder.

1. Center cylinder of infinite length and external ellipse.
2. Center cylinder and combination of external cylinder with a metallic

ellipse added. This configuration is used in Chapter ??.
3. Two facing ellipses with extended cylinders where the centre ellipse

radii are defined with 𝑟𝑎,𝑖𝑛𝑛𝑒𝑟 = 𝑧𝑟 + 𝑟𝑏 − 𝑟𝑎, 𝑟𝑏,𝑖𝑛𝑛𝑒𝑟 = 𝑧𝑟 + 𝑟𝑏 − 𝑟𝑎 and
the ellipse centres are the same between inner and outer ellipse. The
inner ellipse is an enlarged version of the outer ellipse.

4. Two facing ellipses with extended cylinders with identical major and
minor radii.

5. Central cylinder and tilted upper cylinder, combined with tilted ellipse
and left and right flat section. Natural boundary conditions are im-
posed at the left and right boundaries.

6. Same as previous but with a metallic wall at ground on the lower axial
limit of the simulation grid.

7. Same as previous but with a metallic wall at ground on the upper axial
limit of the simulation grid.

8. Same geometry as previous but only the right wall has a set potential,
the rest of the electrodes are at ground.
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9. Geometry read from a b-spline description of the boundaries and de-
fined by the namelist &spldomain and a hdf5 input file.

10. Coaxial configuration closed on both ends. The applied bias is be-
tween the end electrodes and the cylindrical electrodes. This approxi-
mates an ion pump configuration.

11. Concentric ellipses as used in section 4.1.
12. Central electrode with elliptic cut biased at Potinn, left disc and outer

cylinder are set at a potential Potout.

nlweb (.TRUE.) Toggle if weighted-extended-b-splines (.TRUE.) or simple weighted-
b-splines (.FALSE.) must be used. There is better numerical precision
and stability if set to true. Most cases will crash with mumps using nl-
web=.FALSE..

testkr (1) For testing purposes (negative walltype), this defines the radial wave-
length 𝐿𝑟 = (𝑟𝑚𝑎𝑥 − 𝑟𝑚𝑖𝑛)/𝑡𝑒𝑠𝑡𝑘𝑟 of the imposed source term.

testkz (1) For testing purposes (negative walltype), this defines the axial wave-
length 𝐿𝑧 = (𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛)/𝑡𝑒𝑠𝑡𝑘𝑧 of the imposed source term.

z 0 () axial centre of the ellipse.

r 0 () radial centre of the ellipse.

z r () axial radius of the ellipse.

r r () radial radius of the ellipse.

r a () radius of the central metallic cylinder.

r b () radius of the external metallic cylinder.

z a () axial position of a left metallic wall.

z b () axial position of a right metallic wall.

Interior (-1) Defines if the inside or the outside of the ellipses are considered in
the geometry.

above1 (1) Defines if the vacuum region is outside (1) or inside (-1) the cylinder
of radius r a.
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above2 (-1) Defines if the vacuum region is outside (1) or inside (-1) the cylinder
of radius r b.

alpha () angle of the tilted wall and tilted ellipse w.r.t. the 𝑧 axis.

r bLeft () radial limit of the left wall for walltype 5 to 8.

r bRight () radial limit of the right wall for walltype 5 to 8.

Appendix A.8. &spldomain
Defines the behaviour of the splinebound module which allows setting bound-

aries using a b-spline curve representation of the metallic, vacuum and insulating
surfaces.

Variable (default value) Description

dist extent () Set the distance in meters over which the geometric weight goes
from 0 to 1 away from the boundary (see section 3.6).

h5fname () name of the h5 file containing the boundaries descriptions.

Dvals () array storing the fixed potential in V for each of the metallic boundaries
defined in h5fname.

nelexact (.FALSE.) if .TRUE. calculates the geometric weight using the exact
blended distance function all the time. If .FALSE., the weight is precom-
puted at each grid cell and used to generate an interpolant of the weight with
bivariate b-splines of degree 3. The weights are then calculated by interpo-
lation. This can add small errors for very coarse grids, but greatly increase
the execution speed of the code.

Appendix A.9. Geometry h5 file
To input a geometry using a b-spline curve a ”.h5” file must be generated and

loaded by setting the h5fname variable in ”&spldomain”. Such hdf5 files can be
constructed using the ”savegeomtoh5.m” Matlab function in the Matlab subfolder
of FENNECS. Using the hdf5 nomenclature, the geometry data is saved in the
group ”/geometry spl/” with the following structure:

nbsplines Defines the number of spline curves stored in this file
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*splineid group named by the identifier of the spline structure written in the form
”%2.2i” which give ”01” for the first spline, ”02” for the second ... In each
of the spline curve groups, the following parameters must be defined:

order order of the spline curve.

dim dimension of the spline curve.

name name of the spline curve for easier debugging and post-processing.

type integer defining the type of boundary condition to apply on the curve
surface: 0 Dirichlet constant on the full surface, 2 natural boundary
condition.

periodic if set to 1 the curve is closed and periodic, and if set to 0 the curve
is opened.

pos (dim,n)-array of control points of the spline curve. The first dimension
defines the dimension of the spline object and the second dimension is
of size n, the number of control points.

Appendix A.10. &maxwellsourceparams
This section defines the behaviour of a volumetric source creating particles

uniformly in the axial direction, according to a specified distribution in the radial
direction and according to a Maxwellian distribution in velocity.

Variable (default value) Description

frequency () Number of macro-particles created per second of simulated time.

temperature () temperature in Kelvins used in the Maxwellian distribution func-
tion.

rlimits () 2 element array storing the radial extent of the source.

zlimits () 2 element array storing the axial extent of the source.

time start (-1) time in seconds of the simulation time at which the source must
be turned on. -1 means start from the beginning of the simulation

time end (-1) time in seconds of the simulation time at which the source must be
turned off. -1 means, never turn off the source.

radialtype (2) type of radial distribution to use when creating particles. The
implemented values are:
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1. 1/𝑟 distribution in r.
2. uniform distribution in r.
3. 1/𝑟2 distribution in r.
4. Gaussian distribution in r centred at 0.5(𝑟𝑙𝑖𝑚𝑖𝑡𝑠(1) + 𝑟𝑙𝑖𝑚𝑖𝑡𝑠(2)) and

with 𝜎 = 0.1(𝑟𝑙𝑖𝑚𝑖𝑡𝑠(2) − 𝑟𝑙𝑖𝑚𝑖𝑡𝑠(1)).

Appendix A.11. &neutcolparams
This defines the behaviour of the elastic and ionisation collisions between elec-

trons and the residual neutral gas particles.

Variable (default value) Description

nlcol (.FALSE.) defines if the collisions are active or not. If both ela cross sec file
and io cross sec file are empty, the collisions are deactivated.

neutdens (2.4 ·1016𝑚−3) density of the RNG expressed in m−3.

Eion (21.56 eV) first ionization energy, expressed in eV, of the neutral consid-
ered.

scatter fac (24.2 eV) tabulated scatter factor, expressed in eV, used to compute
the fraction of energy between scattered and created electrons in an ioniza-
tion event. To set this parameter, please refer to [30].

io cross sec file () name of the file containing the table of cross-sections as a
function of energy in eV for the ionisation. In this file the comments are
indicated with ”!” and the table is just a two column list with the energy in
eV and the cross-section in m2. Example files are stored in the ”wk” folder
of the repository, but can also be downloaded from the LXCat database [28].

ela cross sec file () name of the file containing the table of cross-sections as a
function of energy in eV for the elastic collisions. In this file the comments
are indicated with ”!” and the table is just a two column list with the en-
ergy in eV and the cross-section in m2. Example files are stored in the
”wk” folder of the repository, but can also be downloaded from the LXCat
database [28].

species (1,-1) The first number sets the colliding specie ID in the partslist Fortran
array. In the case of an ionisation, the second number defines in which
specie the ions should be added with 0 velocity. If the second number is
lower than 1, no ions are created.
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isotropic (.FALSE.) Defines if the scattering of the velocity vector during colli-
sions is isotropic or anisotropic according to the differential cross-section
described in [29]. The default is anisotropic.

itcol (1) allows running the collision routine every itcol time steps of the particle
pushing. If the pressure is too low, this parameter can reduce unnecessary
calculations.

Appendix A.12. &psupplyparams
Sets the parameters of the non-ideal power supply described in section 3.7.

The input parameters are:

Variable (default value) Description

active (.FALSE.) Defines if this module is active.

expneutdens () neutral density, in m−3, measured in the experiment we want to
simulate. This permits correct timescale separation and rescaling because
we accelerate the ionisation time-scales (see sections 3.7 and 2.4).

PsResistor () Internal resistance of the power supply in Ohms.

geomcapacitor () Total capacitance of the geometry and connecting cables in
Farrads.

targetbias () Set bias 𝑣𝑠 in V requested on the power supply.

nbhdt () Number of Boris algorithm time steps between each half time-steps of
the Runge-Kutta algorithm used to compute the time-evolution of the bias
at the surface of the electrodes.

bdpos (0) Array of integers indicating for each boundary the direction of the
current for the collected species. The boundaries with bdpos(i)=-1 are set
to 𝑉𝑖 = −𝑉𝑠 and all the other are set to ground.
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