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Abstract

Various technological applications for body posture correction have been pro-
posed in order to improve handwriting or facilitate its learning for children,
under the common-sense assumption that a better posture promotes better hand-
writing. However, very little research investigates the correlation between body
posture quality and handwriting quality. Moreover, investigating this correlation
typically necessitates the expertise of human observers, leading to high costs,
slow progress, and potential subjectivity issues. Consequently, this method may
not be suitable for educational environments that require prompt feedback and
interventions. In this paper, we present a fully-automated pipeline for the real-
time assessment of body posture quality, which builds upon validated scales from
ergonomics, which relies on RGB-D data to compute the REBA/RULA body
posture scores. Together with a state-of-the-art tool for the automated, real-time
assessment of handwriting quality, we applied our pipeline in an experiment at
school involving 31 children, to quantitatively and objectively investigate (i) the
correlation between body posture quality and handwriting quality, as well as (ii)
the impact that interventions aimed at improving the children’s body posture
have on their handwriting quality.

This is a preprint version of the article.
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1 Introduction

Think of how common written exams are throughout the school system: handwriting
is a fundamental skill to acquire because, from a very young age onward, it is a means
to express one’s ideas and knowledge in a wide variety of disciplines and contexts. At
the same time, handwriting is a complex skill to acquire, which typically takes around
10 years to master (Accardo, Genna, & Borean, 2013). It is therefore not surprising,
but tragic, that nearly one-third of all children between 4 and 12 years are affected by
different levels of handwriting difficulties (Smits-Engelsman, Niemeijer, & van Galen,
2001).

Recent years saw a rising interest towards the use and development of assis-
tive technologies and software for the purposes of handwriting learning and training.
Such efforts include special training support for visually-impaired people with tactile
interfaces (Plimmer, Crossan, Brewster, & Blagojevic, 2008), automated handwriting
analysis and exercise games with digital tablets (Asselborn et al., 2018), engage-
ment maintenance and confidence restoration with social robots (Hood, Lemaignan,
& Dillenbourg, 2015), etc.

More specifically, various research works and commercial products focus on pro-
moting a correct body posture for handwriting. As an example, a dedicated mechanical
apparatus was designed for this purpose, envisioning a rigid bracket mounted in front
of the desk to physically prevent children from writing in a slouched pose (Fan, Zheng,
& Zhang, 2009). To tackle the same problem via a different approach, Luo (2015)
developed intelligent glasses capable of monitoring the face-desk distance and head
pose and thereby timely alert the user of any undesirable pose. Similarly, Wu and
Chen (2012) proposed a digital surveillance system with infrared sensors that can be
mounted on top of conventional pens as a pen sleeve to detect any incorrect hand-
writing body posture and remind the children of the wrong posture via a flashlight,
beeper and vibrator accordingly. These methods all rely on the standard body posture
for handwriting (Graham & Weintraub, 1996) as a reference, defined as the pose such
that the ankle, knee, and hip angles are around 90 degrees with the forearms resting
on the desk and feet flat on the floor.

A fundamental assumption of all the aforementioned body posture correction sys-
tems for handwriting training is that there exists a correlation between the quality of
one’s body posture and the quality of their handwriting, which, while supported by
common sense, is not yet sustained by conclusive scientific evidence in the field of edu-
cation and information technologies (Blote & Heijden, 1988; Parush, Levanon-Erez, &
Weintraub, 1998). We argue that characterizing the interplay between body posture
and handwriting quality is crucial for the design of effective Child-Computer Interac-
tion (CCI) systems aiming to provide handwriting training interventions, which can
be tailored on a child’s specific difficulties and preferences.

Handwriting quality and body posture quality, moreover, are typically assessed by
human experts, on the basis of direct observation and reference scales (Blote & Heij-
den, 1988; Gargot et al., 2021; Parush et al., 1998). Such assessment methodologies not
only suffer from humans’ intrinsic subjectivity, but also do not allow for a straightfor-
ward automatisation. Recent works have started to focus on semi-automated methods
using motion capture systems or multi-camera systems for postural assessment (Kim,
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Sung, Saakes, Huang, & Xiong, 2021; Manghisi et al., 2017). Aiming at endowing a
handwriting training system with the ability to assess a child’s body posture and hand-
writing quality in real-time, and intervene appropriately, in this article we propose a
pipeline using a single RGB-D camera for the automated real-time assessment of body
posture quality, which computes the Rapid Entire Body Assessment (REBA) (Hignett
& Mcatamney, 2000) and Rapid Upper Limb Assessment (RULA) (Mcatamney &
Corlett, 1993) scores on features extracted from RGB-D images.

Building on our body posture quality assessment pipeline and a recently developed
tool for the automated assessment of handwriting quality (Asselborn et al., 2018),
we then quantitatively investigate the relationship between body posture quality and
handwriting quality as shown in Fig. 1. To this end, we designed and conducted an
experiment involving 31 children aged 8-9 years old in school.

Our findings not only (i) reveal the existence of correlations between specific pos-
tural elements (e.g., the neck inclination) and handwriting dimensions (e.g., static
components such as the spacing between words), but also (ii) suggest that interventions
aiming to improve body posture quality also have an immediate, significant positive
effect on handwriting quality. These findings, albeit preliminary, provide compelling
evidence for building a handwriting training system where the system’s ability to con-
tinuously assess a child’s posture in a fast, reliable and objective way, combined with
the found correlation between body posture improvements and handwriting quality
improvements, allows for new forms of training activities and interventions.

The contribution of this article is three-fold: (i) a publicly-available pipeline for
the automated, real-time assessment of body posture quality using a single RGB-D
camera; (ii) a data-driven analysis of the correlation between body posture quality
and handwriting quality; (iii) an evaluation of the immediate effects that interventions
aiming at improving body posture quality have on handwriting quality.

The article is organized as follows. Section 2 surveys relevant literature on hand-
writing and body posture quality assessment. Section 3 describes the proposed
automated body posture quality assessment pipeline. Section 4 details the user study
we conducted, while the results of the analyses are presented in Section 5. Section 6
discusses key findings, alongside limitations and future work. The suggestions for the
design of an educational CCI system for handwriting training support are presented
in Section 7. At last, we conclude our work in Section 8.

2 Related Work

2.1 Importance of Handwriting

Handwriting is a critical skill for children to acquire during their early education
because it forms the basis of key activities such as paper-based exams, note-taking,
and self-expression (K.P. Feder & Majnemer, 2007). Christensen (2009) revealed the
strong link between good handwriting skills and academic success. And as schoolwork
becomes increasingly cognitively demanding over time, children who struggle with
handwriting may simultaneously struggle to manage other tasks such as grammar,
orthography, and composition, which might lead to general learning difficulties and
even failure (Christensen, 2009; K.P. Feder & Majnemer, 2007). Moreover, children
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Correlated?

P_Global P_Neck … P_Wrist
postural measures  

H_Total H_Tilt … H_Kine.
handwriting measures  

Fig. 1 This article investigates the relationship between body posture and handwriting quality, to
pave a path for customising Child-Computer Interaction systems for handwriting training with the
ability to provide real-time appropriate interventions. Body posture quality is assessed by computing
validated ergonomics scores (Hignett & Mcatamney, 2000; Mcatamney & Corlett, 1993) on features
extracted from RGB-D data, while handwriting quality is computed by the iPad app Dynamilis with
the methodology described in (Asselborn et al., 2018).

with handwriting difficulties usually try to avoid writing tasks, which may even-
tually result in increased anxiety and lower self-esteem (Gargot et al., 2021). This
in turn leads them to avoid training opportunities and sometimes results in school
refusal (K. Feder, Majnemer, & Synnes, 2000). Given the deep and long-lasting conse-
quences that handwriting difficulties can have on children and their lives, we deem it
of paramount importance to use and develop technological solutions that can support
handwriting practice and the remediation of difficulties.

2.2 Handwriting Quality Assessment

Several standard tests exist to assess handwriting quality and diagnose handwrit-
ing difficulties for different languages (Barnett, Henderson, Scheib, & Schulz, 2009;
Charles, Régis, & Albaret, 2003), all relying on the child writing using pen and paper,
with an expert evaluating the child’s handwritten piece, typically at a later point in
time, on the basis of given references. For instance, the Rapid Assessment Scale for
Children’s Handwriting (BHK) is the de-facto standard for handwriting quality assess-
ment in French speaking countries, which was created to detect dysgraphia in children
at an early age (Hamstra-Bletz, DeBie, Den Brinker, et al., 1987).

Such methods suffer from a number of limitations: having the handwriting product
graded by a human expert makes the whole process time-consuming, expensive and
prone to subjectivity biases. Moreover, these methods only focus on the final hand-
writing product, with the dynamics of the writing process being entirely lost. With the
emergence of digital tablets, novel handwriting assessment methods were conceived,
taking the dynamics of handwriting into account (Burget et al., 2023; Mekyska et
al., 2016; Rosenblum & Dror, 2016). Asselborn et al. (2018) proposed a data-driven
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method to quantitatively evaluate handwriting on the basis of a number of low-level
features, organized in the four categories of tilt, static, pressure and kinematic. A
refined version of that method is currently employed by the iPad app Dynamilis1,
which provides the assessment in a few minutes. Considering the speed, objectivity
and accuracy of the Dynamilis handwriting quality assessment, together with the pos-
sibility to examine handwriting along different dimensions, we decided to use it in this
work as our handwriting quality assessment method.

2.3 Body Posture Quality Assessment

Many methods have been developed over the past decades to evaluate a person’s body
posture quality from the biomechanical and ergonomic perspective, mainly with the
aim of ensuring the comfort and efficiency of people in their working or daily life
activities (Caputo, Gironimo, & Marzano, 2006; Hignett & Mcatamney, 2000; Karhu,
Kansi, & Kuorinka, 1978; Mcatamney & Corlett, 1993). The New York Posture Rating
(NYPR) scale evaluates people’s physical fitness in clinical settings by assessing the
proper or improper alignment of body segments. In the work of McRoberts, Cloud,
and Black (2013), for example, the NYPR scale was used to investigate the influence
of posture support garments on body posture. However, the NYPR requires the sub-
ject to stand upright, which makes it an unsuitable reference for activities, such as
handwriting, which usually take place while sitting.

A number of ergonomic scales have been developed, to analyse the postural
attitude of workers at their workstations. The Ovako Working Posture Analysis
(OWAS) (Karhu et al., 1978) is meant to assess the postural risk of workplace tasks
and environments, by evaluating the worker’s body posture at regular intervals. The
Rapid Entire Body Assessment (REBA) (Hignett & Mcatamney, 2000) and the Rapid
Upper Limb Assessment (RULA) (Mcatamney & Corlett, 1993) are among the most
widely used tools to assess the occupational postural risk, referenced by the Interna-
tional Ergonomics Association (IEA) and the World Health Organization (WHO) as
an international standard (Occhipinti & Colombini, 2012).

The aforementioned methods are meant for on-site observation, which requires the
work cell to be deployed before the postural assessment can be done. To overcome
this limitation, the Task Analysis Toolkit (TAT) is a plugin assessment tool for the
human factors simulation software Jack 2 allowing for performing ergonomic compli-
ance checks directly within a 3D virtual environment. The Posture Evaluation Index
(PEI) (Caputo et al., 2006) relies on TAT and the virtual environment provided by
Jack and integrates Lower Back Analyses (LBA), OWAS, and RULA to measure how
ergonomic a body posture is. It was developed in 2006 and used to optimize the design
of manufacturing work cells.

Since ergonomics typically focuses on workplace environments, only a handful of
studies assess the quality of handwriting postures. Rasyad and Muslim (2019) used
PEI to assess the body posture quality during handwriting, in order to investigate
the effect of having left-handed students work using a right-sided writing armchair.
Among the three scales composing PEI, RULA was found to have the largest weight.

1https://dynamilis.com/en/
2https://www.simsol.co.uk/products/human-factors-simulation/jack/
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Given the worldwide acceptance of REBA and RULA, together with the latter’s use
in the context of handwriting-related assessments, they are the scales we consider as
references for body posture quality assessment in our study.

2.4 Body Posture and Handwriting Correlation

While common sense has long identified the existence of a relationship between hand-
writing and body posture, to the best of our knowledge no in-depth, comprehensive
studies have been done on the subject. The only study quantitatively exploring this
relationship is found for the Hebrew language, where Parush et al. (1998) used the
Hebrew Handwriting Evaluation (HHE) method to jointly rate the body position-
ing score (measured by a human observer on a scale from 1 to 4) and a number of
handwriting features including legibility, speed, etc. Their findings revealed that some
handwriting features, such as the number of unrecognizable letters and subjective
legibility, are significantly correlated with the body positioning score. However, their
methodology relies on human observers, and thus cannot be directly ported onto fully
automated CCI systems, nor can be considered devoid of the typical human biases and
limitations. More recently, Dziedzic (2015) explored the effects of lying down posture
on handwriting, specifically investigating whether handwriting features vary between
two different lying postures. However, the correlation between postural elements and
handwriting quality was not addressed in the study. In the study of Wang, Tozadore,
Bruno, and Dillenbourg (2024), a correlation was observed between handwriting qual-
ity and changes in posture among children. However, it is worth noting that only head
posture was monitored during the experiment. As outlined in the Introduction, we pos-
tulate that developing methods allowing for the objective analysis of the correlation
between body posture quality and handwriting quality is not only important to expand
our knowledge of the handwriting process, but also key for designing effective training
activities and interventions, that can be conducted or mediated by autonomous CCI
systems.

3 Automated Body Posture Quality Assessment

3.1 Body Posture Quality Assessment Pipeline

As the literature review highlights, REBA and RULA are widely used, validated stan-
dard scales for posture quality assessment. REBA is a systematic measure to evaluate
the ergonomic risk factors associated with postures and tasks (Hignett & Mcatam-
ney, 2000). Concretely, the REBA scale follows a bottom-up approach to build an
overall score (which ranges from 1 to 13 with steps of 1) as the aggregation of inde-
pendent sub-scores associated with different body parts (listed in Table 1), plus a
number of sub-scores related to the activity to be performed in that posture and the
forces/loads at play. Higher values represent worse posture quality. Conversely, RULA
was developed to specifically evaluate the ergonomic state associated with the upper
limb and neck extremities, using a scale going from 1 (“good posture”), to 7 (“bad
posture”) (Mcatamney & Corlett, 1993). Like for REBA, the overall RULA score is
built as the aggregation of sub-scores, specifically focusing on neck, trunk, legs, upper
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Fig. 2 Automated body posture quality assessment pipeline.

arms, lower arms, wrists, wrist twist, muscle use and forces/loads. In both scales, the
sub-score is determined on the basis of reference tables, which associate a score to
different joint configurations3. Note that sub-scores referring to the activity, coupling
and forces/loads at play are not discussed in this work, since they are constant for the
handwriting activity.

REBA and RULA require computing the relative position of different body parts:
we argue that state-of-the-art RGB-D cameras and skeleton tracking software allow for
the automated in-the-wild computation of REBA and RULA, with a rate and accuracy
surpassing those of human observers. The pipeline we propose to this end, shown in
Fig. 2, relies on the data stream provided by an RGB-D camera and the following steps
executed on each frame: (i) 3D human body skeleton extraction, with the skeleton
represented as a set of joints, each with a position, orientation, and confidence value;
(ii) noise filtering on the joints confidence values (cutoff = 0.5) and smoothing of
the joint movement with an exponential moving average filter (smoothing factor α =
0.7); (iii) extraction of the features (joint configurations) required for the computation
of the REBA and RULA sub-scores; (iv) REBA and RULA scores computation via
lookup tables for the feature values.

3.2 Run-time Analysis

We computed the run-time performance of our pipeline on a laptop with Intel i7-
11850H CPU 2.50GHz and NVIDIA RTX A4000 GPU in a test of 1000 iterations.
The 3D skeleton extraction with Nuitrack AI 4 and Intel RealSense depth camera
D435 takes about 33.33±3.85 ms per frame without GPU support, which is the same
configuration we use in our experiment. Filtering and feature extraction take around
1.68±0.27 ms, while the REBA and RULA score calculation only takes 0.08±0.01 ms
per skeleton. The complete end-to-end pipeline needs around 35.19 ms per frame, which
is compatible with a system operating at the frequency of at most 28.41 fps. Thus the
proposed pipeline can endow a CCI system with the ability to assess a child’s posture
in real-time.

3Worksheets for the computation of REBA and RULA can be found online at: https://ergo-plus.com/
wp-content/uploads/REBA.pdf and https://ergo-plus.com/wp-content/uploads/RULA.pdf

4https://nuitrack.com/
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4 Experimental Evaluation

To objectively investigate the relationship between body posture quality and hand-
writing quality in an ecologically valid, fast and fully-automated way, we designed an
experiment relying on the body posture quality assessment pipeline described in the
previous Section and the handwriting quality assessment provided by the iPad app
Dynamilis.

4.1 Automated Handwriting Quality Assessment

The Dynamilis app functionality for handwriting quality assessment (shown in Fig. 1
- right) requires the child to copy a standard text, writing on an iPad with an Apple
Pencil. Low-level features related to the tilt of the pencil, the pressure applied via the
pencil on the tablet, the movements done while writing (e.g., the speed and acceler-
ation profiles) and the spatial characteristics of the final product (e.g., the distance
between words) are analysed following the procedure outlined in Asselborn et al. (2018)
to extract the tilt, pressure, kinematic and static sub-scores respectively, which are
merged in the total handwriting quality score (henceforth referred to as HW score).
All scores are normalized in the range [0,1], where a higher value indicates a better
handwriting quality. The analysis is performed online and takes about 1 minute for
completion.

4.2 Experiment Design

The goal of the experiment is to answer the following questions:

Q1: Is body posture quality (REBA and RULA scores) correlated with handwriting
quality (HW score)? Is there a correlation between the body posture quality of spe-
cific body parts (REBA and RULA sub-scores) and specific handwriting dimensions
(HW sub-scores)?

Q2: Do interventions aiming to improve the body posture quality have an immediate
effect on handwriting quality?

To investigate these questions, we designed an experiment in which: children are
initially asked to engage in handwriting training activities for a certain amount of time,
to ensure they fall onto their natural handwriting body posture; once they presumably
are in their natural handwriting body posture, e.g., a slouch posture due to fatigue, a
body posture correction intervention is performed to investigate the effect of posture
change on handwriting quality. The detailed experiment procedure can be seen in
Fig. 3.

4.2.1 Experimental Setup

We employed an established Child-Robot Interaction system specifically designed to
facilitate handwriting training support (Tozadore et al., 2023; Tozadore, Wang, March-
esi, Bruno, & Dillenbourg, 2022). A social robot was included in the experimental
setup, with the purpose of automating the entire interaction. As shown in Fig. 1 - left,
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Pre-test Handwriting 
Training Mid-test Body Posture 

Correction Post-test

Fig. 3 The flow chart of the experiment procedure. The introduction phase is not included in the
chart.

the setup includes: (i) an iPad running the Dynamilis app, paired with an Apple Pen-
cil, (ii) the social robot QTrobot5 positioned in front of the child, approximately 1.5 m
away, (iii) an external RGB-D camera to track the body posture of the child and (iv) a
laptop coordinating the integration of the devices via ROS. The external camera is an
Intel RealSense depth camera D435, placed on a tripod on the right side of the child
(around 2 m away and 20◦ behind). The camera is operated with RealSense Viewer
and captures the RGB-D video at 30 fps, where the resolution of the RGB camera is
640x480 and that of the stereo module is 848x480.

4.2.2 Experiment Procedure

The session unfolds as shown in Fig. 3. At first, a researcher welcomes the child,
outlines the structure of the experiment and briefly introduces the robot and the
activities in the Dynamilis app. The child is also asked to try out the seat and adjust
its position and height according to the child’s preference. Then, the robot invites the
child to sit down and perform the handwriting assessment test (referred to as pre-test)
on the Dynamilis app6. Afterwards, for approx. 15 minutes (referred to as handwriting
training phase) the robot proposes different handwriting training activities on the
tablet to the child, reacting with congratulatory or encouraging statements to the
child’s performance in the activities. The purpose of this phase is to let the child
familiarize with Dynamilis, the handwriting quality assessment functionality and the
robot, and fall onto their natural body posture while handwriting. At the end of this
phase, the robot asks the child to perform another handwriting assessment (henceforth
referred to as mid-test). At the end of the test, a researcher demonstrates the standard
sitting posture (Graham & Weintraub, 1996) for handwriting to the child, inviting
them to repeat the test one last time trying to maintain the showcased posture. This
last handwriting quality assessment is the post-test. The whole session lasts approx.
30 minutes, with children taking 2-3 minutes to perform one handwriting test.

The analysis of the correlation between body posture quality and handwriting
quality during the pre-test, mid-test and post-test allows for answering Q1, while
the analysis of the change in body posture quality and handwriting quality from the
mid-test to the post-test allows for answering Q2.

4.3 Participants

We invited 31 children (11 girls and 20 boys aged M = 8.52 years old, SD = 0.57)
enrolled in two classes of grade three at a local international school to take part in

5https://luxai.com/
6Test scores, by default settings, are not accessible to children.
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Fig. 4 Evolution of the REBA (a) and RULA (b) scores during a part of one handwriting test. The
overall score is computed as the average of the frame-specific scores, over the interval of interest.

the study 7. Teachers took care of sharing the information sheets and consent forms
with the children and their parents. The children come from diverse cultural and
socioeconomic backgrounds and all use spoken and written English in their daily life at
school. One had previously used the Dynamilis app. Two participants abandoned the
experiment prior to its completion and two are left-handed (which made the posture
quality assessment unreliable due to the camera’s positioning) thus leaving us with
the data of 27 participants for the analysis.

4.4 Data Processing

We collected the handwriting quality assessment scores, of all tests, of all participants,
from the Dynamilis app Firestore database. No post-processing is needed. The raw
RGB-D camera data were stored as ROS bag files and processed offline following
the pipeline described in Section 3. Concretely, we used the out-of-the-box Nuitrack
SDK 8, which is an industrial-leading 3D body tracking middleware compatible with
RealSense D435 camera, with the CNN HPE skeletonization type and Depth to Color
Registration enabled. All the other configurations were in default settings. This setup
enables the Nuitrack to output the 3D human body skeleton represented as a set of 24
body joints. Fig. 4 gives an example of the evolution of the REBA and RULA scores
during a part of one handwriting test, for one of our participants. For both scales, the
overall body posture quality score associated with a test is defined as the average score
over time during the test execution. And the postural score will not be computed in
the software by design if the average confidence value of the right body joints is less
than 0.5. Please notice that while REBA and RULA scores can be computed for either
side of the human body, in this experiment we exclusively focused on the right side of

7This study has received ethical approval from the Human Research Ethics Committee of EPFL under
protocol HREC 057-2021

8https://nuitrack.com/
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the participant (i.e., using the right body joints plus those in the sagittal plane), due
to the positioning of the camera.

5 Results

5.1 On the correlation between body posture quality and
handwriting quality - REBA

To investigate the relationship between body posture quality and handwriting quality
[Q1] we performed a two-sided Spearman’s rank correlation analysis on the body
posture quality score and handwriting quality score, on the result of the mid-test and
post-test separately. Please notice that in this section we exclusively focus on REBA
as body posture quality score. The additional insights brought by RULA are reported
in Section 5.2. The Spearman correlation coefficient r and p values are summarized in
Fig. 5. The higher the coefficient r is, the more similar ranks two observations have.
Our hypothesis is that children with a better body posture (i.e., a lower REBA score),
also have a better handwriting (i.e. a higher HW score), hence we expect the two
scores to be negatively correlated.

In the correlation heatmap of Fig. 5 negative correlation is represented by the
color blue, while positive correlation is marked in red, while stars denote statistical
significance. For the mid-test, as Fig. 5a shows, we found a strong significant negative
correlation (r <-.4) between:

• HW static score and REBA global score (p <.05),
• HW static score and REBA trunk score (p <.01),
• HW kinematic score and REBA neck score (p <.01),
• HW kinematic and REBA wrist score (p <.05).

While the above results are in line with our hypothesis, others disprove it.
Specifically, there was a strong significant positive correlation (r >.4) between:

• HW static score and REBA neck score (p <.01),
• HW static score and REBA upper arm score (p <.01).
• HW total score and REBA neck score (p <.05)

To verify the consistency of our findings, as shown in Fig. 5b and Fig. 6, the
same correlation analysis was also performed on the post-test. In line with the mid-
test findings, we found a strong negative correlation between the HW kinematic score
and REBA wrist score (r=.70, p <1e-3), as well as between the HW total score and
REBA wrist score (r=.47, p=.029). Moreover, as in the mid-test, the HW static score
and REBA neck score were strongly positively correlated (r=.46, p=.032). To further
corroborate the validity of our findings, no statistically significant correlation found
in the post-test is in contrast with a statistically significant correlation found in the
mid-test.
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Fig. 6 Scatter plots of the Spearman’s rank correlation between HW scores and REBA scores for
both the mid-test and post-test: The x axis of each plot represents the rank of certain REBA score
and the y axis is for the rank of certain HW score. There are two groups (mid-test and post-test) of
data points indicated by different colors in each plot and a linear regression line is drawn for each
group.

5.2 On the correlation between body posture quality and
handwriting quality - RULA

RULA and REBA share the exact same methodology to construct the trunk, upper
arm and lower arm scores. Since the results of our analysis for these sub-scores are
identical, we discard them in the following analysis.

In line with the REBA findings, the RULA wrist score was found to be strongly
negatively correlated with the HW kinematic score, both in the mid-test (r=-.50,
p=.018) and in the post-test (r=-.66, p < 1e-3). Additionally, the same significant
positive correlation was found between RULA neck score and HW static score, both in
the mid-test (r=.57, p=.006) and in the post-test (r=.51, p=-.015). Additionally, no
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Fig. 7 The REBA global (a), trunk (b) and neck (c) scores at pre-test, mid-test and post-test. The
corresponding p value is reported with the asterisks convention: *p <.1, **p <.05, ***p <.01.

statistically significant correlation found for RULA was in contrast with a statistically
significant correlation found for REBA.

5.3 On the effects of the handwriting training phase - pre-test
vs. mid-test

5.3.1 On body posture quality

Table 1 REBA scores (mean± sd) at pre-test, mid-test and post-test, with T statistics and effect
size (*p <.1, **p <.05, ***p <.01)

Item Global Neck Trunk Leg Upper
Arm

Lower
Arm

Wrist

Pre-test 5.21±0.80 2.77±0.17 1.86±0.55 2.91±0.19 1.48±0.35 1.04±0.07 1.07±0.05
Mid-test 5.36±0.73 2.73±0.17 2.14±0.54 2.92±0.16 1.48±0.28 1.07±0.07 1.08±0.05
Post-test 5.01±0.52 2.82±0.11 1.71±0.36 2.97±0.10 1.57±0.30 1.15±0.20 1.06±0.04

Pre-test vs. Mid-test
T stat. 0.87 1.28 2.07 1.29 0.08 2.21 1.36
p value .391 .211 .048** .208 .937 .036** .184
Cohen-d -0.20 0.23 -0.49 -0.06 -0.02 -0.41 -0.26

Mid-test vs. Post-test
T stat. 2.31 2.39 3.81 1.27 1.01 1.90 2.69
p value .029** .024** <1e-3*** .215 .323 .068* .012**
Cohen-d 0.54 -0.61 0.88 -0.37 -0.28 -0.48 0.48

One assumption of the experiment design is that the body posture of children at
the beginning of the experiment could not persist for a long period and their posture
naturally deteriorated over time. The result of a two-sided paired Student’s T test on
the REBA/RULA scores between pre-test and mid-test conformed to this assumption.
In addition, the Cohen’s effect size d was computed. As shown in Table 1 and Fig. 7a,
comparing the REBA scores between before and after the handwriting training phase,
the global score increased from 5.21 to 5.36, but the difference was not statistically
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significant (t(26) = 0.87, p = .391, Cohen-d = −0.20). With the sole exception of the
neck score, which decreased by 1%, all REBA sub-scores increased from the pre-test
to the mid-test, thus denoting a deterioration in body posture quality. Specifically, a
statistically significant difference was found on the REBA trunk score, t(26) = 2.07,
p = .048, Cohen-d = −0.49, whose mean value increased by 15%, indicating that
children significantly bent their body trunks due to the long handwriting training
phase. Similarly, the REBA lower arm score increased by 3% (t(26) = 2.21, p = .036,
Cohen-d = −0.41).

Once again, the results of the RULA scores were in line with those of REBA. The
global score increased from 4.07 to 4.12 without statistically significance, (t(26) = 0.82,
p = .420, Cohen-d = −0.19). All the mean sub-scores of RULA except for the neck
score increased as well. And the same statistically significant increases were found on
RULA trunk and lower arm scores due to the same definition.

5.3.2 On handwriting quality

Table 2 Two-sided Wilcoxon T statistics and effect size on HW scores between pre-test and
mid-test

Item Total Tilt Static Pressure Kinematic

W stat. 133.0 162.0 150.0 158.0 119.0
p val. .442 .999 .751 .916 .252
Cohen-d -0.22 -0.11 -0.13 -0.08 0.16

To investigate the potential improvement of the handwriting quality scores induced
by the handwriting training phase, a two-sided Wilcoxon T test was conducted, since
not all handwriting dimensions were found to follow the normal distribution (Asselborn
et al., 2021). As shown in Table 2 and Table 3, there was no statistically significant
difference in any of the dimensions of handwriting quality between pre-test and mid-
test, which is in line with the fact that handwriting skill acquisition is a long-term
process (K. Feder & OT(C, 2007) thus not significantly affected by a 15-minutes
handwriting training.

5.4 On the effects of the body posture intervention - mid-test
vs. post-test

5.4.1 On body posture quality

A necessary precondition for the investigation of the effects that improving one’s body
posture quality has on handwriting quality [Q2] is to verify that the body posture
intervention we conducted had a significant positive effect on the children’s body
posture quality. To this end, a two-sided paired Student’s T test was conducted to
detect whether there was a statistically significant difference between the mid-test
REBA/RULA scores and the post-test REBA/RULA scores.

As shown in Table 1, a statistically significant difference was found on the REBA
global score, t(26) = 2.31, p = .029, whose mean value decreased from 5.36 to 5.01
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with medium effect size (Cohen-d = 0.54). This result indicates that the body pos-
ture intervention globally significantly improved the body posture of the children. As
the table shows, the most significant improvements concern the trunk score, which
decreased by 20.09%, with large effect size, (t(26) = 3.81, p < 1e−3, Cohen-d = 0.88),
and the wrist score, which dropped from 1.08 to 1.06, (t(26) = 2.69, p = .012). Con-
versely, there was a significant increase in the neck score after the posture intervention
(t(26) = 2.39, p = .024), with medium effect size (Cohen-d = -0.61). This result indi-
cates that the angle of neck flexion, which is the movement bringing the chin towards
the trunk, was increased after the body posture intervention. An intuitive explanation
for this finding is that since children kept their trunk straighter during the post-test,
they might have flexed the neck more as a compensatory motion to keep their focus
on the tablet.

Regarding RULA, the global score dropped from 4.12 to 4.05, but the difference
was not statistically significant, (t(26) = 1.23, p = .229, Cohen-d = 0.30). Since
RULA, w.r.t. REBA, poses a greater focus on the upper limbs, this result is in line
with the above finding that the most notable improvement concerned the trunk. The
statistically significant findings at the level of the RULA sub-scores are in line with
those of REBA. The wrist score significantly decreased from 1.36 to 1.29 (t(26) = 2.87,
p = .008), while the neck score increased from 3.61 to 3.75 (t(26) = 2.39, p = .024 <
.05).

We can thus conclude that our intervention had a globally positive, noticeable
effect on the children’s posture quality.

5.4.2 On handwriting quality
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Fig. 8 Comparison between the HW scores at the mid-test and post-test with Wilcoxon T test.

To compare the handwriting quality scores between the mid-test and post-test, a
two-sided Wilcoxon T test was conducted. The results of the comparison are reported
in Table 3 and Fig. 8. There was no statistically significant difference in total score,
tilt score, static score and pressure score. However, at the same time the Wilcoxon test
indicated that the average kinematic score increased by 11.4% after the body posture
correction (W = 82.0, p = .030). This finding suggests that a good body posture
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might have a direct positive impact on the kinematic aspects of handwriting, such as
the speed and the in-air-time of the pen.

5.5 On the correlation between variations in body posture
quality and handwriting quality
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Fig. 9 The heatmap of the Spearman correlation matrix between the mid-post change of HW scores
and the mid-post change of REBA scores. The value of the correlation coefficient r is encoded by
the color while the corresponding p value is reported with the asterisks convention: *p <.1, **p <.05,
***p <.01.

As a follow-up on the previous analysis, we also checked whether variations in body
posture quality, from the mid-test to the post-test, are correlated with variations in
handwriting quality. The results of the two-sided Spearman’s rank correlation between
REBA and HW scores is reported in Fig. 9, where ∆X denotes the difference in X
between its mid-test and post-test values. The only statistically significant correlation
was between ∆HW total score and ∆REBA wrist score, (r=-.60, p <.01), indicat-
ing that children who greatly improved their HW total score also greatly improved
their wrist posture quality. Moreover, a marginally significant moderate negative cor-
relation was found between ∆HW kinematic score and ∆REBA neck score (r=-.38,
.05< p <.1). Lastly, marginally significant strongly positive correlations were found
between ∆HW tilt score and ∆REBA wrist score, and between ∆HW static score and
∆REBA neck score (r >.40, .05< p <.1).

Table 3 HW scores (mean± sd) at pre-test, mid-test and post-test

Item Total Tilt Static Pressure Kinematic

Pre-test 0.39±0.16 0.34±0.18 0.47±0.11 0.39±0.20 0.38±0.19
Mid-test 0.43±0.21 0.36±0.20 0.48±0.12 0.41±0.21 0.35±0.16
Post-test 0.41±0.17 0.40±0.19 0.49±0.12 0.44±0.20 0.39±0.19
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As to the correlation analysis between the variation of RULA scores and HW
scores, the same correlation between ∆wrist score and ∆HW total score was found,
with marginal significance (r =-.41, p = .056).

6 Discussion

6.1 Correlations

The outcomes of the user study provided us with statistical evidence regarding the
correlation between the quality of specific body posture element and handwriting
dimension as presented in Sections 5.1 and 5.2. As shown in Fig. 6a, we found a
statistically significant strong negative correlation between the HW kinematic score
and REBA wrist score, which means that the pose of the wrist is strongly related to
pen dynamics during writing (e.g., the handwriting speed (Asselborn et al., 2018)).
Specifically, the REBA/RULA wrist score mainly measures the wrist flexion (Hignett
& Mcatamney, 2000; Mcatamney & Corlett, 1993), with a neutral wrist pose having
the lowest score. Ample research in the field of bio-mechanics pointed out that wrist
poses have effects on hand gripping endurance (Lee & Sechachalam, 2016), gripping
strength (Lee & Sechachalam, 2016), and hand dexterity (Metcalf et al., 2014). Intu-
itively, our findings suggest that a flexed wrist might decrease the dexterity of the
hand gripping the pen, which is related to poor handwriting kinematic score. In addi-
tion, as shown in Fig. 6b, it was noticed that the angle of neck flexion of the children
is strongly correlated with the HW static score, which generally captures how the
final handwriting product looks like. Thus we can infer that, in our study, children
who tended to flex their necks also produced handwriting samples with better spatial
characteristics.

6.2 The variation of handwriting body posture of children

In the experiment, the body posture of the children was evaluated during three hand-
writing tests at different moments of the experiment, as described in Section 4.2.2.
At the pre-test, the children were in their initial body postures, which were devel-
oped from their past personal and educational experience and might be influenced by
their mental and physical states when starting the experiment. After the approx. 15-
minutes long handwriting training phase, we assume the children fell into their daily,
more natural and comfortable handwriting body posture due to the increasing engage-
ment, familiarity with the experiment set-ups or fatigues. Regardless of the cause, the
change in posture is testified by the significant increase in the trunk score between the
pre-test and mid-test, as shown in Fig. 7b. The body posture correction intervention
also had an impact on the children’s body posture, whose significance was revealed by
the Student’s T test as shown in Table 1 (see part Mid-test vs. Post-test). Thus, we
argue that the dynamics of body posture play an important role in the educational
context: our study reveals how the children’s posture changed already after 15 minutes
of activity, and how a posture-related intervention has a direct impact on their activ-
ity (handwriting quality), which means that the body posture is not only an indicator
but also a lever for learning-supporting interventions.
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In addition, a two-sided Student’s T test was performed by comparing the postural
scores between pre-test and post-test and the only statistically significant difference
was found on the lower arm score (t(26) = 2.77, p = .010, Cohen-d = −0.68).
Thereby a conclusion cannot be drawn with regard to whether the children’s initial
body postures is already close to the correct body posture.

6.3 Ergonomic body posture quality scale vs. handwriting
body posture quality scale

To the best of our knowledge, there is no quantitative measure specifically evaluating
the quality of one’s body posture for handwriting activities so far. As mentioned in
Section 2.3, in our study we relied on the REBA/RULA scales, which are validated
ergonomic scales, as the proxy to evaluate the body posture quality during handwrit-
ing. However, our findings reveal that a better handwriting is not necessarily associated
with an ergonomically better body posture. For instance, the best ergonomic posture
for the neck, according to the REBA/RULA scales, implies that the person looks
straight ahead. However, this is impractical for the purposes of handwriting, which
requires to tilt the neck towards the chest, to have a clear view on the desk. Indeed,
our study revealed that the neck score significantly increased (i.e., worsened from an
ergonomic point of view) after the posture correction intervention. Future works from
our part will include the design and validation of methods for body posture quality
assessment measures that are specifically tailored for handwriting activities.

6.4 Limitations and Future Work

While our work sheds new light on the relationship between handwriting and body pos-
ture quality, a number of limitations should be highlighted. Firstly, the participants of
this study were recruited from two classes in the same grade and same school: it would
be worthwhile to extend the study to more subjects, with more diverse backgrounds,
e.g., students from different schools. Secondly, we took a snapshot at a specific age and
while this is valuable in itself, it is important to repeat the study with children of differ-
ent ages to analyse the evolution of the correlation over time. Besides, all the children
in this study wrote in English and most of them are right-handed: investigating the
transferability of our analysis results to other languages and to left-handed children
would allow for characterizing the influence of other factors (handedness and script)
on the correlation. Lastly, in our method, the body posture quality during a hand-
writing test was computed as the average score over the activity duration. While this
can be a viable solution for short activities (as shown by Fig. 4, where the REBA and
RULA global values appear to be constant throughout one handwriting test), longer
activities will likely require different and more sophisticated methods of aggregation
and analysis. For instance, an analysis of the temporal features of body postures, e.g.,
the angular speed of the elbow, and their correlation with handwriting features is an
important goal for future work.
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7 Suggestions on the design of CCI system for
handwriting training support

In this study, correlations on multiple pairs of postural elements and handwriting
dimensions were identified as described in Section 5.1 and 5.2. Although correlation
does not indicate causality, our study still revealed some insights into the causal
relationship between body posture quality improvement and handwriting quality
improvement due to the fact that the HW scores were not significantly changed by
the handwriting training phase (before the body posture intervention) and instead
significantly improved in the kinematic dimension immediately after the body posture
intervention. Future studies will be designed to investigate the pairwise causal relation-
ship between body posture and handwriting quality by changing specific body posture
element and comparing with a control group. Establishing the causality is important to
determine whether we can use body posture as a lever to improve handwriting: know-
ing the direction of the causal link can instruct the design of CCI systems, specifically
to properly integrate and make good use of body posture in their interventions.

The experimental system described in Section 4.2.1, already gives us a glimpse
of such an effective CCI system for handwriting training support: the child practices
handwriting on a digital tablet, with an external camera positioned to monitor his/her
body posture. According to the correlation revealed in this study, body posture qual-
ity can act as an indicator to predict handwriting difficulty. For instance, based on
the correlation between HW kinematic score and wrist score in Fig. 6a, we can pre-
dict the child may not have a good HW kinematic score when a high REBA wrist
score is computed by the system. Then, in case the existence of a causal link between
body posture quality and handwriting quality is confirmed, we can use body pos-
ture as a lever. For instance, if there is a causal relationship between trunk flexion
and the kinematic dimension of handwriting quality, the system can alert the child
to correct his/her trunk pose timely when the HW kinematic score computed by the
application drops significantly. While such an educational CCI system is no match for
human teachers and therapists in supporting a child practice handwriting, handwrit-
ing is a too fundamental skill, that too many children (one in three (Smits-Engelsman
et al., 2001)) struggle with, to disregard the help that technology and automation
can provide. We argue that an autonomous CCI system able to assess a child’s body
posture and handwriting quality, and equipped with a rich and diverse portfolio of val-
idated interventions, can complement curricular practice and help reduce the number
of children with handwriting difficulties.

8 Conclusion

In this paper, we propose a pipeline for the automated, real-time assessment of the
body posture quality, which computes the REBA and RULA scores on 3D human
skeletons extracted from RGB-D data. Combining this pipeline with the automated
handwriting assessment performed by the iPad app Dynamilis allows for a quantita-
tive analysis of the correlation between the quality of one’s body posture and their
handwriting, in a way which, by removing the need for human observers, mitigates
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the errors introduced by humans’ subjectivity. To the best of our knowledge, this is
the first data-driven study of this correlation.

Using the data collected from 31 children aged 8-9 years old, we acquired evidence
of a statistically significant correlation between body posture quality and handwriting
quality, specifically suggesting that: (i) wrist quality scores are directly negatively
correlated with the quality of the handwriting’s kinematics (i.e., the speed of the
movement); (ii) neck score is positively correlated with the quality of the handwriting’s
statics (i.e., features related to the appearance of the letters, such as the distance
between words). At the level of variations, improvements in the wrist score (concretely,
minimizing the angle between the wrist and the lower-arm direction) were found to be
strongly negatively correlated with improvements in the overall handwriting quality.
Lastly, our work provides empirical support that a simple intervention aiming to help
the children improve their body posture has not only immediate positive effects on
their body posture quality, but also on their handwriting quality: this finding, refined
by future studies, constitutes a fundamental step towards the design of CCI systems
for handwriting training support.
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