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Abstract
The performance of machine learning algorithms is conditioned by the availability of training datasets, which is especially
true for the field of nondestructive evaluation. Here we propose one reconfigurable specimen instead of numerous reference
specimens with known, unchangeable defect properties, which are usually complicated to fabricate. It consist of a shape
memory polymer foil with temperature-dependent Young’s modulus and ultrasound attenuation. This open a possibility to
generate a reconfigurable defect by projecting a heating laser in the form of a short line on the specimen surface. Ultrasound
is generated by a laser pulse at one fixed position and detected by a laser vibrometer at another fixed position for 64 different
defect positions and 3 different configurations of the specimen. The obtained diversified datasets are used to optimize the neural
network architecture for the interpretation of ultrasound signals. We study the performance of the model in cases of reduced
and dissimilar training datasets. In our first study, we classify the specimen configurations with the defect position being the
disturbing parameter. The model shows high performance on a dataset of signals obtained at all the defect positions, even if
trained on a completely different dataset containing signals obtained at only few defect positions. In our second study, we
perform precise defect localization. The model becomes robust to the changes in the specimen configuration when a reduced
dataset, containing signals obtained at two different specimen configurations, is used for the training process. This work
highlights the potential of the demonstrated machine learning algorithm for industrial quality control. High-volume products
(simulated by a reconfigurable specimen in our work) can be rapidly tested on the production line using this single-point and
contact-free laser ultrasonic method.
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1 Introduction

Emerging technologies based on machine learning algo-
rithms or artificial neural networks are transforming the way
information is processed [1–3]. Audio signal interpretation
by machine learning algorithms is a broadly addressed topic
with typical applications for already highly reliable speech
recognition and sound classification [4–6]. Can ultrasonic
signals be processed in a similar way and provide advantages
of automation and improved performance, as it is the case for
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implementing image recognition algorithms for visual detec-
tion and classification of surface damages [7–9] and analysis
of radiography images [10, 11]?

Insufficient amount of appropriate training data is themain
reason why machine learning algorithms have not success-
fully penetrated the sector of industrial ultrasonic inspection
yet. It is easier to generate a labeled dataset for a problem,
which can easily be solved by a human, than a dataset of ultra-
sonic signals labeled with the target information. In the latter
case, it is difficult to obtain diversified and large datasets, as
we require a reference inspection method, which is in most
cases destructive (e.g. microscopy of a section cut).

Most of the current ultrasonic inspection methods are
relying on relatively basic principles based on, for exam-
ple, observing reflections from internal features or increase
of ultrasound attenuation levels caused by delaminations
or porosity in through transmission setup [12–14]. More
advanced methods use spectral analysis of the signal to
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extract additional information [15–19]. Even more detailed
reconstruction of the inspected area could be provided by the
synthetic aperture focusing technique, total focusing tech-
nique, or certain phased array ultrasonic testing methods
[20–26]. Fully new possibilities open if machine learning
algorithms are used for the ultrasonic signal interpretation.

1.1 State of the Art: Machine Learning for Ultrasonic
Inspection

In the following state of the art review, we address all types of
industrial ultrasonic inspection methods where the training
datasets were obtained experimentally. In the case of analyt-
ically and numerically obtained datasets, we limit us on the
methods using lasers to generate or detect ultrasound.

1.1.1 Analytically and Numerically Supported Training
Process

The numerical and analytical methods for generating large
datasets are facing a strong assumption that the precise phys-
ical model of the inspection system is known. Geometric and
material properties of a specimen and target features, as well
as characteristics of ultrasoundgeneration anddetectionmust
benumerically or analytically describable as precisely as pos-
sible. There is a question if the machine learning algorithm
is really required, if a good physical model is already known.
Machine learning algorithms provide a special advantage for
the industrial inspection applications scenarios of products
with complex shapes, which deliver signals not describable
by analytical or numerical models. After the training pro-
cess, the ultrasound generation, propagation, and detection
properties will be encoded in the parameters of the neural
network (weights and biases) and the ultrasonic signals can
be interpreted without actually knowing the physical model
of the measurement setup.

In one of the early realizations, numerically simulated sur-
face wave dispersion curves of layered structures were used
as training and testing datasets [27]. The model was exper-
imentally tested on two specimens. Numerical simulations
including signal preprocessing based on wavelet decompo-
sition are used as an input to train the neural network [28].
The method is tested on a single composite plate specimen
to determine the elastic constants of the material. Theoret-
ical dispersion curves were used for the network training
[29]. The method was tested experimentally on one plate
by measuring its thickness, Young’s modulus, and Poisson’s
ratio. In an another previous work, dynamic responses calcu-
lated by a finite-element method were used for the network
training [30]. Location and size of the cuts on the specimen
size opposite to the ultrasound excitation and detection were
experimentally determined on two specimens.

Numerical simulations of wave propagation in the spec-
imen were used to train the neural network [31]. Maxi-
mum, minimum, and peak-to-peak values of Rayleigh waves
together with the signal peak frequency and its bandwidth
were used as input parameters to determine the location and
size of subsurface cracks. Part of the simulated signals and
three experimental signals were used to validate the model.
A numerical model was utilized to generate ultrasonic sig-
nals, which were converted to images and used for training
an already pretrained convolutional neural network, which
was derived from visual recognition tasks [32]. Four exper-
imentally obtained signals were included in the training and
the validation dataset in order to determine location and size
of subsurface defects.

An interesting method for training data augmentation
was based on a technique used for human inspector train-
ings, which allowed generation of virtual flaws with variable
parameters (e.g. depth or size) by numerical modification
of experimentally obtained signals [33, 34]. As it was the
case for other methods based on numerically or analytically
trained networks, prior knowledge (relevant physical model)
on themeasurement systemand the specimenpropertieswere
required for this method as well.

1.1.2 Training Process Using Experimentally Obtained Data

It is technically challenging to produce a high number of
reference specimens with known target parameters in order
to train a neural network on purely experimental dataset.
In previous studies, a larger training data size was typi-
cally obtained by repeating the measurement (eventually at
different positions) on a small number of specimens. Con-
sequently, the low diversity of the training datasets limited
the robustness of the model, which typically provided good
performance only for a specific configuration of the experi-
mental system and for one specific inspection task.

Defect classification of porosity, lack of fusion, tungsten
inclusions, and intact specimens were performed apply-
ing wavelet preprocessing of ultrasonic signals obtained
by a piezoelectric transducer [35]. The training and testing
datasets were altogether consisting of 240 ultrasonic signals
obtained on 9 specimens. Presence of a notch in a metallic
plate was detected by a neural network trained on a dataset
of 216 numerically and 24 experimentally generated signals,
obtained by varying the location of the transducers [36].

An elegant way to obtain larger dataset of ultrasonic sig-
nals is to use phased array ultrasonic transducers [37–40].
Signals of individual piezoelectric elements at different exci-
tation parameters have only limited diversification if applied
on low number of test objects. Crack orientation and depth
were evaluated on a single specimen using wavelet packet
decomposition [37]. 12 different defect shapes provided
240 signals of different steering beams angles, which were
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divided to the training and testing datasets. The presence of
68 different defects (various holes and crack types) in 6 steel
blocks was estimated [38]. The training and testing datasets
were composed of more than 4000 linear scan images
obtained by phased-array probe and augmented by flipping,
random cropping, translation, and visual color adjustments.
The performance of neural networks can be improved by a
hybrid training process, as shown by two studies address-
ing detection of holes [39] and pipeline cracks [40]. Both
used convolutional neural networks, which were consecu-
tively trained on simulated data and experimental signals
obtained by a phased-array probe.

Machine learning algorithms have been used to support
ultrasonic quality control of spotwelding by classifying them
into four quality levels [41] and to predict their static and
fatigue behavior [42]. X-ray computed tomography scans
were used as a reference to train a neural network to estimate
porosity level in carbon fiber reinforced polymers [43]. Sim-
ilarly, electron backscattered scattering diffraction served as
a reference measurement to measure grain size of polycrys-
talline metals using laser ultrasound [44].

Ultrasonic signals were captured at 10,000 different loca-
tions on four samples before and after applying a damage (in
form of a mass) [45]. The training dataset was obtained by
randomly picking different snapshots of a two-dimensional
scan [46]. These two training data augmentations had only
limited contribution to the robustness of themachine learning
algorithms.

1.1.3 Subwavelength Information Extraction by Machine
Learning Algorithms

Machine learning algorithms can be used to extract specific
information with a resolution below the diffraction limit. The
typical approach is to record wave responses scattered from
the object in the far-field and perform learning process for
different arrangements of the target information (e.g. position
or shape of the imaged object). The inconveniences are that
an arrangement variation is not always achievable and the
method is limited to datasets closely related to the training
conditions.

A study was performed using waves on a plate with differ-
ently shaped holes as defects using six numerical simulations
and five physical specimens [47]. Size and variability of the
training datasets were augmented by a random cropping,
zooming, flipping, and rotating. The method was able to
classify between different shapes, which were used during
the training process, however, it was not able to distinguish
arbitrary and unknown subwavelength shapes of defects.

It was shown that coupling of subwavelength information
to the far field can be improved by placing randomly dis-
tributed resonators in the near field of an object [48, 49].
Subwavelength images of digits and numbers drawn by a

two-dimensional array of speakers (emitting in the audible
frequency range) were reconstructed by a neural network
from the signals of four microphones placed in the far field.

In the microwave domain, an object was localized with a
subwavelength resolution in a chaotic cavity. Coded-aperture
imaging effect was achieved by a metasurface consisting of
an array of individually tunable boundary conditions. The
signal was captured at a single frequency and at a single
location but for a fixed series of random configurations of
the metasurface for each of the object locations [50].

1.1.4 Ultrasonic Localization Based on Machine Learning

Two studies were addressing the localization problem by
ultrasound analysis based on machine learning. The first
was demonstrating a system able to localize a finger touch
on a metal plate [51]. The sensing area was surrounded by
4 transmitters and 12 receivers and all the 144 (12 × 12)
touch positions were used in the training process. The sec-
ond addressed the source localization of ultrasound emitted
by pencil lead-breaks on the surface of a composite plate [52].
8 sensors were used to classify between five zones. In both
cases, the target localization resolution was not significantly
below the training resolution.

1.2 Knowledge Gap

The main challenge is that typically the machine learning
algorithms only work reliably under the conditions closely
related to those of the training process. They get ineffec-
tive if ultrasound acquisition parameters, ultrasound coupling
properties, specimen characteristics, probe location, or other
conditions change.

Majority of the previous machine learning experimental
studies in the domain of ultrasonic inspection suffered of
low data diversity, as it is practically challenging to obtain
a suitable experimental database containing multiple target
feature (defect) types and system configurations.

The motivation of our work is to test how the efficiency
of the machine learning algorithms depends on the size and
diversity of the training datasets. More precisely, we aim to
measure the precision of damage localization in cases when
signals used for training are obtained at a lownumber of dam-
age locations. We address the question if an appropriately
trained algorithm can make two dimensional defect local-
ization possible by a single-point ultrasound excitation and
detection without performing a scan.

Our study is thefirst using a reconfigurable defect to exper-
imentally obtain large volumes of diverse datasets of laser
ultrasonic signal. We are able to vary both the defect posi-
tion and the specimen configuration, which both affect the
ultrasound propagation. This opens the possibilities to study
the robustness of the model and what size of the training

123



   75 Page 4 of 14 Journal of Nondestructive Evaluation            (2024) 43:75 

dataset is required for certain performance and how related
it should be to the testing dataset.

Our method is able to achieve subwavelength localization
with a resolution up to 5 times below the one of the training
data.

2 Methods

2.1 Specimen Description

The main element of the specimen was a foil with 0.2-
mm thickness made of a shape memory polymer (SMP),
(manufacturer: SMP Technologies Inc, Tokyo), with a glass
transition temperature in the range between 25 and 90 °C. As
its Young’s modulus continuously falls by at least a factor 20
by increasing its temperature a few 10 °C above the room
temperature [53], it is an appropriate material to simulate a
reconfigurable defect by local heating. A localized decrease
of Young’s modulus and increase of ultrasound absorption
has in a certain degree of approximation similar effect on
the ultrasound as a crack, local porosity, or a local change of
material or geometric properties. However, reconfigurable
heat-induced defect is a distinct type of damage, which can-
not be directly compared with the real damage, which might
feature a complex interaction with the sensing wave: scatter-
ing, nonlinear effects, clapping of a delamination, and others.

Its advantage exploited in this study is that the size shape
and location of such a defect are easily reconfigurable, if we
have control over the temperature field of the SMP foil.

The SMP foil was placed in an arbitrary shaped frame
(Fig. 1) consisting of two aluminumplates (with the thickness

of 1mm each) pressed together. The both plates had identical
holes with the disordered shape. The Lamb waves, propagat-
ing in the SMP foil, were reflecting from the hole boundaries,
where the foil was clamped in the frame.One part of the spec-
imen was covered by carbon powder in order to achieve high
light absorption (for efficient laser-based ultrasonic excita-
tion) and another part was covered by a retroreflective foil
(for efficient laser-based ultrasonic detection). Themechanic
properties of the specimen were changed by sticking a first
(100 mg) and a second mass (20 mg) on the SMP foil at the
positions marked in Fig. 1a. This provided us three specimen
configurations: the first configuration is without mass, the
second configuration is with both masses, and the third con-
figuration is with the mass number 1 alone. The masses were
attached at the positions shown in Fig. 1 using a temporary
adhesive. In order to make the wave propagation even more
chaotic, a notch with the length of 2.5 mm and maximal the
width of 0.5mmwas induced in themiddle of the positions of
the reconfigurable defects, which were simulated by heated
spots. It was created by cutting the SMP foil by a knife.

2.2 Experimental Setup

Lambwaveswere excited at a single arbitrary chosen location
by a laser pulse with wavelength of 500 nm, energy of 9 mJ,
duration of 5 ns (full width at half-maximum), and repetition
rate of 20 Hz using a Surelite SL I-20 pump laser together
with a Surelite OPO Plus optical parametric oscillator (man-
ufacturer of both: Continuum). The precise wavelength of
the ultrasound excitation laser is not relevant and was cho-
sen arbitrary. An advantage of using an optical parametric

Fig. 1 Scheme (a) and photo (b) of the specimen – a shape memory
polymer (SMP) foil in an aluminum frame of arbitrary shape. Ultra-
sound was generated by a laser pulse and detected by a laser vibrometer
at fixed positions. An artificial reconfigurable defect was created by
locally reducing the Young’s modulus and increasing the ultrasound

attenuation level of the SMP by a heating laser. Specimen configuration
was changed by applying two masses on the SMP foil. The light and
dark grey areas correspond to the SMP polymer regions with high and
low laser light reflectivity
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Fig. 2 Raw experimentally obtained signals used for the model train-
ing. In the shades of gray, change of the defect position in the direction
x (a–c) and direction y (d–f) is shown for first (a, d), second (b,
e), and third (c, f) specimen configuration. Without machine learn-
ing algorithms, it is not possible to localize the defect and distinguish
between the different specimen configurations. Please note that in order

to increase figure clarity, only 624 (13 repetitions × 8 defect positions
× 2 defect position dimensions × 3 specimen configurations) signals
are shown instead of altogether 3840 signals (20 repetitions × 8 defect
positions x × 8 defect positions y × 3 specimen configurations) used
in our study

oscillator was that we were able to detune its optimal opti-
cal configuration and cause the excitation laser to become
unstable, simulating a chaotic excitation scenario. For each
of the ultrasound excitation, pulse energy, shape, and diam-
eter of the laser beam were randomly varying for up to 50%.
This decreased the repeatability of the ultrasound genera-
tion, brought more noise in the measurement and provided
more stochastic variations in the signals, which are more
challenging but more interesting to be evaluated by machine
learning algorithms. This is observable in Fig. 2 where the
signals of the same gray shade were subject to stochastic
variations despite that they were captured at the same con-
ditions. The motivation for this was to make our experiment
more similar to industrial quality control processes, which
are typically affected by variations in laser light absorption,
environmental noise, or similar disturbing parameters. Ultra-
sound was detected at a single location using PSV-F-500-HV
laser vibrometer (manufacturer: Polytec) with 15 signal aver-
aging.

A third laser used in our experiment was a SuperK super-
continuum white light laser with a SuperK Varia tunable
wavelength filter (manufacturer of both: NKT Photonics). Its
power was approximately 0.2 W and the wavelength range
was arbitrary chosen to range from 400 and 500 nm. A single
wavelength laser could also be used instead. XG210 2-axis
galvanometer scan head (manufacturer: Mecco) was used to
project a 2 mm long and 0.5 mm broad line and locally heat
the SMP foil. The orientation of the line was chosen to be
perpendicular to the notch length in order to decrease the
variation of the heating laser light absorption. It might have

decrease if the line was fully overlapping with the notch. By
the local drop of the Young’s modulus and local increase of
the ultrasound absorption, a reconfigurable defect was cre-
ated. Due to the thermal conductivity of the SMP, the 4 mm
wide and6mmlong (fullwidth at halfmaximum) area around
the projected line was featuring a decrease of the Young’s
modulus.

2.3 Acquisition of Datasets

Altogether 3840 signals were captured with the length of
250 points and the sampling frequency of 625 kHz. 20 mea-
surements were repeated for each of the 64 reconfigurable
defect positions (8 × 8 positions in two dimensions defined
as x and y) and for each of the three specimen configurations
(without mass, with both masses, and with a mass number 1
alone). The step distances in the x andy directions between
the two defect positions were 0.4 mm. After each change of
the defect position, we waited for 20 s in order to reach a new
thermal equilibrium.

The 20 repeated signal measurements for each of the
defect positions and each of the specimen configurations
were firstly divided to 13 signals exclusively used for the
model training and the remaining 7 signals exclusively used
for the model testing. This remains true for all the studies of
our work. As described in the following section, the number
of defect positions and specimen configurations was addi-
tionally reduced for the model training. This included the
cases where the network was trained on only a few defect
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positions and tested on all the 64 positions as described in
Sect. 3.2.

A part of raw measured signals is shown in Fig. 2. The
signals consisted of a superposition of multiple unidenti-
fied symmetric and antisymmetric Lamb wave modes. The
change in the direction x of the defect positions at y� 1.2mm
is coded by the shades of gray in the left-hand column (x �
0 mm for the black, x � 3.2 mm for the bright gray). The
change in the direction y of the defect positions at x� 1.2mm
is coded by the shades of gray in the right-hand column (y �
0 mm for the black, y � 3.2 mm for the bright gray). The sig-
nals of the same shade of gray were consecutively obtained
by repeating the measurement at the same defect position.
Each of the three rows represents from the top to the bottom:
the first specimen configuration (without additional mass),
the second specimen configuration (with two masses), and
the third specimen configuration (with only mass number 1
attached on the SMP foil). Please note that for the purpose
of easier visualization, a single x and a single y position was
chosen to demonstrate the signal variation in the y and x direc-
tion, respectively. For the same reason, only 13 repetitions,
which were used for the model training, are shown instead
of all the 20 measurements at each of the defect position and
at each of the specimen configuration.

The shape of the signal has complex and unknown depen-
dency on the target parameters—the specimen configuration
(presence of mass) and the defect position. From the raw sig-
nals shown in Fig. 2, it visually appears that the latter has
stronger influence on the signal. It is not possible to visually
distinguish between the different defect positions also in the
case when the signals are converted to the frequency domain.
The goal is to interpret the signals by extracting the target
parameters without actually knowing the wave propagation
and the measurement system properties.

3 Results and Discussion

Two studies are performed on the datasets obtained as
described above. The first is a classification of the specimen
configuration and the second is a localization of the reconfig-
urable defect. While the classification problem has a discrete
output (label number) the localization has two analog outputs
(defect positions x and y).

3.1 Classification of the Specimen Configurations

The aim of the first study is to classify the laser ultrasonic
signals obtained at three different specimen configurations
(three rows in Fig. 2). In this case, a disturbing factor is the
defect position, which significantly affects the signal shape
and should be eliminated (marked by the shades of gray in
Fig. 2).

3.1.1 Model Architecture and Training Process

At first, the raw signals were converted to the frequency
domain by the fast Fourier transform. The first half of the
real and imaginary component values (125 values each) were
merged together and used as a parallel input for the neural
network. Consequently, the full frequency range up to the
half of the sampling frequency was considered at the input.
Performance dropped by around 10% in the case if raw time-
domain signals were used as input for the neural network.

The model consisted of a fully connected neural network
with an input of 250 elements, two hidden layers—the first
with 200 elements and the second with 20 elements. The last
(output) layer had 3 elements for 3 classes: first, second, and
third specimen configuration. All three layers were linear
and have a rectified linear unit activation function. An Adam
optimization algorithmwas used as it dynamically adjusts its
step size. It is more efficient than stochastic gradient descent.
The loss parameter was calculated by a cross entropy loss
function. The neural network was trained by 50 epochs—-
passes of the entire training dataset. Alternative conditions
to terminate the training process, which cannot guaranty the
constant number of epochs, are not suitable for our study
since we vary the size of the training process. The termi-
nation conditions might not be reached at lower sizes of the
training dataset. For all the training datasets, the convergence
rate drastically decreased before 50 epochs. The batch size
was always equal to the whole training dataset size, which
was a changing variable in our research as described below.
Alternative less efficient network architectures are described
in the following section.

In Fig. 3, we show results of the classification between the
three different configurations of the specimen—between the
three rows of Fig. 2. We test the performance of the machine
learning algorithm on the diversified datasets if a reduced
amount of training data is used. Signals obtained at a lim-
ited number of defect positions (which is here the disturbing
parameter) was used for the model training (starting with a
single defect position), while it was tested for all the defect
positions. The number of signals used for the training was
reaching from 13 (13 repetitions at a single defect position)
to 832 (13 repetitions at 64 defect position). The model was
always tested on the dataset obtained at all the 64 defect posi-
tions with 7 repetitions each—altogether 448 signals, which
were always all different from the training dataset.

The final performance of themodel tested for all the defect
position depends on the defect positions we choose for the
model training. The defect positions lying in themiddle of the
defect position area deliver better performance comparing to
those lying at the edge of the scan. In our statistical approach,
we repeated the training process 20 times for each number
of the defect positions, which were chosen randomly. We
determined the labeling accuracy (red full line) and the loss
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Fig. 3 Labeling accuracy (red full line) and loss parameter (blue dashed
line) for the classification between the three specimen configurations
in dependency on the number of defect positions used for training. The
defect position is in this case a disturbing parameter, which significantly
affects the signal shape. The model was tested on the previously unseen
dataset containing signals of all defect positions. Good performance
and robustness of the model is achieved for reduced training datasets as
well

parameter (blue dashed line) at the end of the learning process
(Fig. 3). They are represented by the mean value and the
shadowed standard deviation range.

The model has a moderate performance on the testing
dataset containing signals of all defect positions if the training
is performed on a dataset only containing the signals of one
defect position (56% labeling accuracy). If additional defect
positions are included in the training dataset, the accuracy
rapidly increases and reaches 90% if only 8 defect positions
are used for the training process. This is remarkable as the
defect position (shades of gray in Fig. 2) visually appears to
have higher influence on the signal shape than the specimen
configuration (three rows in Fig. 2). Influence of the disturb-
ing factor (changing defect position) is eliminated also if
training is performed on datasets with limited diversity (lim-
ited number of detect locations) and the model robustness is
extended to related, but previously unseen data.

3.2 Defect Localization

The second study of our work is using the same experimental
data as the first study, but we reverse the problem. Its goal
is to localize the defect (which affects the signal as marked
by the shades of gray in Fig. 2) and a disturbing factor is the
drastic change of the specimen configuration (three rows in
Fig. 2) by applying a mass, on which the model should be
made robust.

3.2.1 Model Architecture and Training Process

Signal preprocessing for the second study of this work was
the same as for the first study: signal conversion to the
frequency domain and parallel merging of the real and imag-
inary components.

The simplest model with sufficient efficiency, which was
chosen to be included in the study, consisted of a fully con-
nected neural network with an input of 250 elements, two
hidden layers—the first with 500 elements and the second
with 100 elements. The last layer had only two elements
which were quasi-continuous with high numeric precision
and directly represented the defect positions x and y. The
loss function was defined as the mean absolute error of these
two values. Similarly as for our first study, linear layers and a
rectified linear unit activation function were chosen, together
with theAdamoptimization algorithmand a scheduler reduc-
ing the initial learning rate of 0.01 for 10% every 100 epochs,
which provided sufficient convergence before the end of the
training process. Because of a higher range of possible out-
puts (defect positions in two dimensions), and because it is
about localization and not classification, the learning process
for the second study of this work was approximately a hun-
dred times longer than for the first study. The training process
comprised 1000 epochs. The batch size was always equal to
the whole training dataset size, which was a changing vari-
able (described below), as it was the case for our first study
as well.

3.2.2 Less Efficient Alternatives of Model Architecture
and Training Procedure

Typically, a higher number of neural network layers and a
higher number of elements in each layer improved the per-
formance of the model. However, higher model complexity
made the training process slower. The performance of the
model was significantly reduced if only one hidden layer
was used and a neural network with a single layer (similar to
multi-variable regression) was inefficient. If the raw signals
are directly used as the input for the neural network (with-
out conversion to the frequency domain), its performance
decreases by around 10%. Stochastic gradient descent was
less efficient than the Adam optimizer.

The optimization of the network architecture was per-
formed on a dataset consisting of 13 repetitions at 64 defect
positions obtained at the third specimen configuration. The
test dataset was obtained at the same specimen configuration.
As described in Sect. 2.3, the test dataset and the train dataset
were not overlapping. In Table 1, we show absolute position-
ing error and labeling accuracy of the output provided by the
trained neural networks having six different sizes, with and
without the second hidden layer.
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Table 1 Absolute positioning error and labeling accuracy at six different sizes of the neural network

Number of elements—first hidden layer 500 250 125 500 250 125

Number of elements—second hidden layer 100 50 25 – – –

Absolute positioning error [µm] 78 80 95 83 85 91

Labeling accuracy 91% 88% 83% 88% 87% 83%

3.2.3 Reduced Training Datasets and Model Robustness

In order to estimate the robustness of the model for the defect
localization, we tested its performance with reduced datasets
and datasets significantly different to the testing dataset were
used for the training process. Please note that during the sec-
ond study of our work, the 7 signal repetitions measured at
each of the defect positions obtained at the third specimen
configuration were always used for the model testing. These
signals were never included in the training datasets.

For the first training process, we used a dataset consisting
of 13 repetitions at a single randomly chosen defect posi-
tion obtained at the first specimen configuration. The second
training process used dataset consisting of 13 repetitions at
two randomly chosen (different from each other) defect posi-
tions at the first specimen configuration; and so on until the
64th training process, where we used a dataset consisting
of 13 repetitions at all of the 64 defect positions at the first
specimen configuration. In order to reduce the uncertainty
of randomly reducing the training dataset, we repeated this
procedure for 20 times. In order to obtain the black dotted
curve in Fig. 4a and c, we performed altogether 1280 train-
ing processes—at 20 randomly chosen defect positions with
the number of different defect positions used for the training
process reaching from 1 to 64.

The same procedure was repeated for the second speci-
men configuration and for the combination of the first and
the second specimen configuration. For the latter, we used the
same randomly chosen defect positions for datasets obtained
at both specimen configurations. This delivered us the blue
dashed line and the red dash-dot line in Fig. 4a and c, respec-
tively.

Subsequently, we gradually added ultrasonic signals
obtained at the third specimen configuration. Please note that
we never used the same ultrasonic signals for themodel train-
ing and the model testing.

The first training process used a dataset consisting of 13
repetitions at a single randomly chosen defect position at the
third specimen configuration, together with 13 repetitions at
all defect positions at the first specimen configuration—al-
together 13 × (64 + 1) signals. The second training process
used a dataset consisting of 13 repetitions at two always ran-
domly chosen (different from each other) defect positions at
the third specimen configuration, togetherwith 13 repetitions

at all defect positions at the first specimen configuration—al-
together 13 × (64 + 2) signals; and so on until the 64th
training process, where we used a dataset consisting of 13
repetitions at 64 defect positions at third specimen configu-
ration and 13 repetitions at all of the 64 defect positions at
the first specimen configuration—altogether 13 × (64 + 64)
signals. In order to obtain the black dotted curve in Fig. 4b
and d, we performed altogether 1280 training processes—at
20 randomly chosen defect positions with the number of dif-
ferent defect positions at the third specimen configuration
used for the training process reaching from 1 to 64.

The sameprocedure of gradually addingmoreof the defect
positions obtained at the third specimen configuration was
repeated while exchanging all the defect positions at the first
specimen configuration with all the defect positions at the
second specimen configuration (blue dashed line in Fig. 4b
and d). The procedure was followed for the third time using
all the defect positions at the first and the second specimen
configuration together (red dash-dot line in Fig. 4b and d). As
a reference, we repeated the same procedure for the fourth
timewithout any training data of the defect positions obtained
at the first and the second specimen configuration (green full
line in Fig. 4b and d).

The positioning error in Fig. 4a and b represents the mean
value of absolute errors between the predicted and the real
defect positions in the dimensions x and y. If this absolute
error is smaller than 0.2 mm for both dimensions, which is
the half of the minimal distance between the two defects,
its position is labeled correctly. The percentages of correct
labeling are shown in Fig. 4c and d.

In Fig. 4a and c,we can observe that the performance of the
model on the testing dataset, obtained at the specimen con-
figuration different from the training dataset (third specimen
configuration), is increased if the model is trained on amixed
dataset containing signals obtained at two different (first and
second) specimen configurations (red dash-dot line). In this
case, the model is robust to the change of the specimen con-
figuration and the mean positioning error reaches the values
below the half of the minimal distance between two defect
positions used for the training process in this study (0.4 mm).
Consequently, the labeling accuracy increases to 50%, while
it remains low if the undiversified training dataset is used
(black dotted and blue dashed line).

If the training process is performed on the dataset obtained
at the specimen configurations different to the testing dataset,
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Fig. 4 Mean positioning error
and labeling accuracy of the
defect positions if the model is
trained on reduced datasets and
different specimen
configurations. 20 repetitions of
the training process are
represented by the mean value
(solid line) and the standard
deviation range. The thick orange
vertical line represents the case
shown in Fig. 5. The diversified
datasets make the model robust.
The labels of the horizontal axes
continue in the legend of (c)

around 21 randomly chosen defect positions already deliver
performance close to the one when all the defect positions
are used for training.

The end values of Fig. 4a and c are equal to the start values
of Fig. 4b and d. If the model is trained by a dataset contain-
ing all defect positions obtained at two different specimen
configurations (red dash-dot line), both different to the test-
ing datasets, the positioning error is decreased almost for
the factor of 2 and the labeling accuracy is improved for the
factor of 5, in comparison to the case when a dataset only
containing signals obtained at the first (black dotted line) or
the second (blue dashed line) specimen configurations.

In this case the model performance is high already when
including only a few additional defect positions from the
dataset obtained at the third specimen configuration equiv-
alent to the testing. After 11 additional defect positions,
positioning error below0.1mmand labeling accuracy of 80%
is achieved (red dash-dot line in Fig. 4d). Neural network
without the training on previous (different) datasets achieves
the same performance when 35 different defect positions are
used for the training.

Please note that the datasets of the ultrasonic signals
obtained at the three specimen configurations are signifi-
cantly different from each other, as proven by the classifi-
cation problem described in the first study of this work.

In the first row of Fig. 5, we show the performance of the
model during the trainingprocess at the situationmarkedwith
the thick orange vertical line in Fig. 4. The final performance
(after 1000 epochs) for the defect localization on the train-
ing dataset (second row) and the testing dataset (third row)
is visually represented. In order to provide better compari-
son, the training dataset always comprised the same 3 defect
positions at the third specimen configuration (red dots with
full outline). Similar as for Fig. 4, where the defect positions
were always chosen randomly, 13 ultrasonic signals repeti-
tions at each of these three positions were used for the first
columnof Fig. 5.We additionally included all the defect posi-
tions obtained at the first specimen configuration (green dots
with dashed outline) for the second column in Fig. 5, all the
defect positions obtained at second specimen configuration
(orange dots without outline) for the third column in Fig. 5,
and both datasets (obtained at the first and second specimen
configurations) for the fourth column in Fig. 5.

The testing dataset was always the same—all defect posi-
tions at the third specimen configuration. In order to better
distinguish between the different defect positions, red and
blue colors are alternating in x dimension and full and empty
filling are alternating in y dimension. In the background, the
gray shading shows the mean absolute error of each of the
defect with the black representing the largest error.
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Fig. 5 Performance of the model during a single training process (first
row) and its final performance on the training (second row) and testing
(third row) datasets. No localization is possible if only three defect posi-
tions from the dataset obtained at the specimen configuration equivalent
to the testing dataset are used for the training process (first column). The
performance of the model is partly improved if an additional dataset
containing all defect positions is used for the training process even if

they were obtained at the specimen configuration different to the one of
testing (second and third column). The localization error decreases to
0.25mm (which delivers the labeling accuracy of 80%) if the robustness
of the model is improved by a diversified dataset containing all defect
positions obtained at two different specimen configurations and only
three defect positions obtained at the specimen configuration equiva-
lent to the testing dataset (fourth column)

The localization is not possible if only three defect position
are used to train the model (first column in Fig. 5), because of
the lack of the information about the rest of the defect posi-
tions. The performance of the model significantly improves,
if other defect positions are included in the dataset, even
though they were not obtained at the same specimen config-
uration. Comparing the second and third column of Fig. 5,
we can observe that the second specimen configuration is
more similar to the third specimen configuration, because
of its slightly better training performance. However, labeling
accuracy does not lift above 50% and themean absolute error
is not much below 0.17 mm.

The model become robust to the change of the speci-
men configuration if all the defect positions obtained at the
first and second specimen configuration are used for train-
ing. Labeling accuracy of 80% and mean absolute error of
0.25 mm is achieved already if only three defect positions at

the specimen configuration equivalent to the testing dataset
are used for training.

Predicted defect positions are scattered also when the
method is tested on the training dataset. This is showing
the high stochastic variability of all the datasets because of
the low repeatability of the ultrasound excitation, which was
induced artificially.

Table 2 showmean absolute positioning error and labeling
accuracy at the end of the training process for eleven different
training datasets (13 repetitions for each of the defect position
as specified in Sect. 2.3). The test dataset was the same as for
Figs. 4 and Fig. 5—separately obtained at the third specimen
configuration.
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Table 2 Mean absolute positioning error and labeling accuracy at different sizes of the train dataset

Number of defect positions used for training

First specimen configuration 64 0 64 0 64 0 64 0 64 0 64

Second specimen configuration 0 64 64 0 0 64 64 0 0 64 64

Third specimen configuration 0 0 0 3 3 3 3 32 32 32 32

Absolute positioning error [µm] 397 291 168 603 220 178 129 104 84 87 80

Labeling accuracy 3% 9% 49% 10% 36% 44% 66% 77% 85% 85% 87%

4 Conclusions

We introduce a novel experimental method to generate large
labeled datasets of laser ultrasonic inspection signals. This
open a possibility to validate and optimize the architec-
ture of machine learning algorithms for the application of
ultrasound signal interpretation. We study their performance
and robustness if limited and/or only partly related training
datasets are used for the model training. We prove that by the
use of machine learning algorithms, it is possible to extract
information, difficult to access by conventional ultrasonic
signal processing methods. Due to the complex effect of the
inspected property on the signal shape and subwavelength
size of target features (defects), it is impossible to directly
interpret the raw signal, for example, by observing the time
of flight or the amplitude variations. The algorithm can be
trained to identify relevant signal parameters with their inter-
dependences and to correlate them to the desired output. The
mechanism behind cannot be fully interpreted by humans,
as well as it is in the most cases impossible to visually dif-
ferentiate between differently labeled ultrasonic signals. The
relevant information can be extracted from the ultrasonic sig-
nals without knowing the physical model of the system i.e.
without actually understanding the wave propagation (dif-
ferentiating between the wave types, reflections etc.). In the
case of our study, it would not be possible because of the
disordered specimen shape and undefined and unstable laser
excitation properties. The additional advantage of machine
learning ultrasound interpretation is that the ultrasound exci-
tation and detection devices do not require to be each of them
separately calibrated. This is proven by our setup since the
lasers for ultrasound excitation and detection are not cali-
brated and the ultrasound propagation in the complex shape
of the sample are not modeled. In a certain way, the training
process itself is the calibration process of the whole sys-
tem including wave propagation in the specimen, ultrasound
excitation, detection, and coupling properties, together with
the signal processing elements, which can all be undefined.
Our results show that only a small dataset obtained at new
conditions is required in order to restitute the algorithm’s
performance after the change of environmental conditions

(specimen configuration). The training process is more flexi-
blemethodof calibration,which allows the systembeingonly
partly calibrated by less-related or small training datasets.
The increased number of trained parameters can make the
system robust to variations of systempropertieswithoutman-
ually switching between different calibration settings related
to the specific system properties.

In the first study of our work, the model trained on a
reduced dataset (reduced number of different defect posi-
tions) is able to discern with high reliability the specimen
configurations and is robust to the change of the defect posi-
tion, which is otherwise having a stronger effect on the signal
shape. We reverse the problem for the second study of our
work. If a mixed dataset of two specimen configurations is
used for the training process, themodel for defect localization
becomes robust to the different related change of the spec-
imen configuration. The localization error is smaller than
0.1 mm (four times less than the minimum resolution of the
trainingdataset) if only 10 additional trainingdefect positions
obtained at the specimen configuration equivalent to the one
of the testing dataset are included. This is giving some evi-
dence that if the training dataset is sufficiently diversified, it
is possible to make the neural network for ultrasound inter-
pretation robust to the change of the specimen properties.Our
study suggests the potential for this being also true for the
change in ultrasound excitation (e.g. energy, position, form)
detection (e.g. position, gain) and other system properties.
Likewise, the neural network can be made robust to some
disturbances (in our case variation of ultrasound excitation
properties) and to the certain degree of noise level.Our results
show also that model performance, sufficient for multiple
applications, can also be achieved if the model is trained on
a small-sized dataset partly different from the testing dataset.

These outcomes of our research show a high potential
of the machine learning algorithms for the laser ultrasound
signal interpretation for the specific industrial inspection
applications as, for example, two-dimensional defect local-
ization on a flat sample without performing a scan. Reduced
size of training datasets would suffice for numerous cases
to achieve sufficient performance and the training is not
even necessary to be performed on datasets closely related
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to the testing dataset. If the testing object or the inspec-
tion system is moderately changed, only a small size of the
training data is required to achieve the same correctness.
After this change and additional training, the model becomes
increasinglymore robust to this type of change. This has prac-
tical advantages for modern lean industries demanding high
flexibility, autonomous production, and interconnectivity of
machines, products, and personnel. Only several test objects
are necessary to be inspected destructively for the purpose
of the model training, while the quality state of the rest can
be with high fidelity estimated by non-destructive inspec-
tion method and ultrasound signal interpretation based on
machine learning method described in this work, which is
an essential part of the cyber-physical, non-destructive eval-
uation concept known under the term NDE 4.0 [54–61]. We
expect that the results of our work are potentially transferable
to other broadband ultrasonic inspection methods (e.g. using
a single-point contact piezoelectric transducer) and possibly
to additional defect characteristics (e.g. size or orientation).
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