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Preface

“And we hope that he will finish the book with the ability
to apply to his system problems whatever technique is
most appropriate, irrespective of tradition or habit.”

— Kalman, Falb and Arbib [KFA69, p. 12].

The mathematical notion of stability is practically important and usually intuitive,
yet, an elusive concept to work with.

The Cambridge dictionary defines1 stability as: “a situation in which something is
not likely to move or change”. This definition captures the above, we all have a feeling
for what we mean by stability, yet to make this precise we must, mathematically, specify
the “situation”, the “something”, what we mean by “likely” and what it means for this
something to “move” or “change”.

In this thesis we study the interplay between stability and structural properties of the
problem at hand. Not only does this lead to a better understanding of stability and the
problem, but knowledge of merely structural properties is commonly the most we can ask
for. Hence, in an age dominated by the demand for guarantees, it is beneficial to be able
to provide some.

A search for structure has always been there in dynamical systems and control theory,
notably, due to influential works like the 1967 edition of the pivotal book by Abraham and
Marsden on the “Foundation of Mechanics” [AM08] and the monograph by Wonham to-
wards a geometric control theory [Won79]. Still, a lot of structure needs to be understood,
especially regarding feedback [Lew14].

The same search for structure is heavily present in optimization. Nesterov writes:
“The main lesson of the development of our field in the last few decades is that efficient
optimization methods can be developed only by intelligently employing the structure of
particular instances of problems” [Nes18, p. viii-ix].

In fact, he continues by writing that: “In order to do this, it is always useful to look at

1https://dictionary.cambridge.org/dictionary/english/stability

https://dictionary.cambridge.org/dictionary/english/stability


ii

successful examples” [Nes18, p. ix]. This is precisely the aim of this thesis, where judging
successfulness is left to the reader.

Indeed, exploiting structure is common in all of engineering and applied mathematics—
science perhaps, yet, the aim of this thesis is to show that structure should be derived,
not imposed. Linearity and convexity are convenient structural assumptions, but both
are rarely found in nature. The Control for Societal-scale Challenges: Road Map 2030
by the IEEE Control Systems Society also contains several pointers in this direction. To
uncover the structure of our problems we must work with the fields we hope to apply our
theory to: “Just because you can formulate and solve an optimization problem does not
mean that you have the correct or best cost function.” [AJP23, p. 32]. Optimality is only
as interesting as the objective is relevant.

In this thesis we study the interplay between structure and desiderata. We study
ramifications of imposing structural assumptions:

structure =⇒ desiderata. (1)

Indeed, (1) is a common direction of study, e.g., given a controllable linear system ẋ =
Ax + Bu (structure), there is ( =⇒ ) a continuous feedback exponentially stabilizing
the origin (desiderata). We think of (1) as a sufficient structural condition, or as the
constructive direction.

The other direction is less frequently studied, but perhaps of more fundamental im-
portance, that is, we study structural ramifications of certain desiderata:

structure ⇐= desiderata. (2)

Condition (2) should be understood as necessary (structure). In that sense, (2) is fre-
quently obstructive, e.g., the desire of some set being a global attractor of some space
puts (⇐= ) hard topological constraints on the underlying space, possibly contradicting
and thereby obstructing the initial desire (desiderata).

Closing the gap between these sufficient and necessary (deliberately put in that order)
conditions is of great interest towards a principled control theory. We hope to contribute
towards this goal, may it be so slightly.
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Prologue

“The tantalizing possibility suggested by entropy ... is
that there may be other “little somethings” around us
the mathematical beauty of which we still fail to
recognize because we see them in a curved mirror of our
preconceptions”

— Gromov [Gro12, p. 11].

What have bees, starlings and white-spotted pufferfish in common? They all display a
remarkable sense of structure. Bees construct honeycomb tiling that are isoperimetrically
optimal in 2D [Hal01] (not in general [Tót64]), a flock of starlings create unprecedented
collision-free dynamic sculptures in the air by just taking 6 to 7 neighbours into ac-
count [YSC+13] and the male white-spotted pufferfish creates a beautiful sand-sculpture
to attract the attention of a female [Mat15].

The word “structure” is deliberately chosen over words like “geometry” and “order” as
we believe that geometry is rather a manifestation of order, and order itself is some partic-
ular arrangement, whereas structure aims to capture the raison d’être of this arrangement
within a system. The word “principles” could have been suitable, indeed, Newton was
looking for the structure of nature.

The belief that all of nature is well-structured, and not just Newton’s mechanics, was
propelled through, for instance, the 1917 book by Thompson towards a mathematical
biology: “the flower for the bee, the berry for the bird” [Tho17, p. 3]. This belief has
never ceased to amaze.

Unsurprisingly, mathematics plays a key role in discovering and describing the struc-
ture of nature. Now, if you believe that mathematics itself is part of nature, in that it
is discovered and not created, then we can argue that it must display inherent structure,
beauty [Har92] or elegance if you like.

With this in mind, there is nothing else we could do, but looking for this structure.
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Abstract

In this thesis we study stability from several viewpoints. After covering the practical
importance, the rich history and the ever-growing list of manifestations of stability, we
study the following.

(i) (Statistical identification of stable dynamical systems): Understanding stability of
identified systems is of great practical- and theoretical importance. Even the simplest
case, that of characterizing spectral properties of the least-squares estimator of a linear
dynamical system has been largely open. To that end, we propose a principled method for
projecting a system matrix to the nonconvex set of Schur stable matrices. Leveraging large
deviations theory, we show that this projection is optimal in an information-theoretic sense
and that the projection can be approximated, up to arbitrary precision, by simply adding
a feedback term corresponding to the optimal gain matrix of a linear quadratic regulator
problem. The estimator resulting through this projection is constructed from a single
trajectory of state measurements, is guaranteed to be stable and offers non-asymptotic
statistical bounds on the estimation error.

Going one step beyond stability, we further exploit large deviations theory to identify
the topological class of an unknown stable system, again from a single trajectory of data.
We prove that the probability of misclassification decays exponentially with the number
of samples at a rate that is proportional to the square of the smallest singular value of
the unknown matrix.

(ii) (Spaces of stable dynamical systems): Various technical domains are aided by bet-
ter understanding spaces of stable dynamical systems. For instance, in many identification-
and optimal control problems we effectively try to optimize over such a space and thus
understanding its properties is important.

First, we study the linear quadratic regulator problem and finally provide an opera-
tional meaning for cross terms in the stage cost. In particular, we show that the topological
class of the closed-loop system is invariant under a change of the stage cost, as long as no
cross term is introduced, that is, when restricting system matrices to the general linear
group, closed-loop matrices can jump to the opposite path-connected component of this
group if and only if a particular cross term is introduced. Hence, formally speaking, one
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can only “tune” the closed-loop behaviour by introducing a cross term.
Secondly, motivated by the learning community often employing convex Lyapunov

functions to obtain stability certificates, we study the ramifications of the convexity as-
sumption. We show that continuous dynamical systems, on Euclidean space, equipped
with convex Lyapunov functions, asserting that the origin is globally asymptotically sta-
ble, can always be homotoped to each other such that along this homotopy stability is
preserved. This means that the space of those dynamical systems is path-connected, which
in its turn leads to obstructions and the necessity of rethinking convexity assumptions.

(iii) (Numerical stability): Besides stability of attractors and structural stability un-
der perturbations, which are all classical topics of study, we also look at stability of the
implementation of certain dynamical systems. Specifically, we look at zeroth-order opti-
mization algorithms, a widely applicable class of algorithms understood as discrete-time
dynamical systems on Euclidean space.

Most zeroth-order optimization algorithms mimic a first-order algorithm, that is, a dis-
cretized gradient flow, but replace the gradient of the objective with some estimator that
can be computed from a number of function evaluations. This estimator is typically con-
structed randomly, and its expectation matches the gradient of a smooth approximation
of the objective whose quality improves as some underlying smoothing parameter, usually
a finite-difference parameter, is reduced. As such, most zeroth-order algorithms require
this smoothing parameter to decay to zero as the algorithm proceeds. While estimators
based on just a single function evaluation can be obtained via Stokes’ theorem, their vari-
ance is unbounded. Then, estimators based on multiple function evaluations, overcome
the exploding variance, yet, they suffer from numerical cancellation once the smoothing
parameter is sufficiently small. To combat both effects simultaneously, we extend the
objective function to the complex domain and leverage the complex-step derivative to
construct a new randomized estimator. This new estimator is immune to cancellation
as it requires only one function evaluation, in addition, its variance remains bounded.
We prove that zeroth-order algorithms that use our estimator offer the same theoretical
convergence guarantees as the state-of-the-art methods. At the cost of complex lifting,
our results remain true after implementation, the algorithm is numerically stable.

(iv) (Topological obstructions to stability and stabilization): Letting go of stylized
structural assumptions, we study necessary conditions for stability and stabilizability of
dynamical control system defined on topological spaces. We provide new insights in mul-
tistability and odd-dimensional dynamical systems, generalize the obstruction for con-
tinuous feedback to globally asymptotically stabilize a point on a fiber bundle, to the
stabilization of embedded submanifolds and we fully characterize when a compact attrac-
tor is a strong deformation retract of its domain of attraction. Results of this nature
display the synergy between topology and dynamical systems.

All of these studies focus on understanding the interplay between underlying structure
and desiderata. Naturally emerging future directions close the thesis.
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Résumé

Dans cette thèse, nous étudions la stabilité sous plusieurs angles. Après avoir couvert
l’importance pratique, l’histoire riche et la liste toujours croissante des manifestations de
la stabilité, nous étudions ce qui suit.

(i) (Identification statistique des systèmes dynamiques stables) : Comprendre la stabil-
ité des systèmes identifiés revêt une grande importance pratique et théorique. Même dans
le cas le plus simple, celui de la caractérisation des propriétés spectrales de l’estimateur
des moindres carrés d’un système dynamique linéaire, la question reste largement ouverte.
À cette fin, nous proposons une méthode fondée pour projeter une matrice système sur
l’ensemble non convexe des matrices Schur. En utilisant la théorie des Large Deviations,
nous montrons que cette projection est optimale d’un point de vue informationnel et que
la projection peut être approximée, jusqu’à une précision arbitraire, en ajoutant simple-
ment un terme de rétroaction correspondant à la matrice de gain optimale d’un problème
de LQR. L’estimateur résultant de cette projection est construit à partir d’une seule tra-
jectoire de mesures d’état, est garanti d’être stable et offre des bornes statistiques non
asymptotiques sur l’erreur d’estimation. Allant au-delà de la stabilité, nous exploitons
davantage la théorie des Large Deviations pour identifier la classe topologique d’un sys-
tème stable inconnu, encore une fois à partir d’une seule trajectoire de données. Nous
prouvons que la probabilité de mauvaise classification décroît exponentiellement avec le
nombre d’échantillons à un taux proportionnel au carré de la plus petite valeur singulière
de la matrice.

(ii) (Espaces de systèmes dynamiques stables) : Divers domaines techniques bénéficient
d’une meilleure compréhension des espaces de systèmes dynamiques stables. Tout d’abord,
nous étudions le problème du LQR et fournissons enfin une signification opérationnelle
pour les termes croisés dans le coût de l’étape. En particulier, nous montrons que la classe
topologique du système en boucle fermée est invariante en cas de changement du coût de
l’étape, tant qu’aucun terme croisé n’est introduit. Ainsi, formellement parlant, on ne
peut “ajuster” le comportement en boucle fermée qu’en introduisant un terme croisé.
Deuxièmement, motivés par la communauté de Learning Theory utilisant souvent des
fonctions de Lyapunov convexes pour obtenir des certificats de stabilité, nous étudions les
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ramifications de l’hypothèse de convexité. Nous montrons que les systèmes dynamiques
continus, sur l’espace Euclidien, équipés de fonctions de Lyapunov convexes, affirmant que
l’origine est globalement asymptotiquement stable, peuvent toujours être homotopiques
les uns aux autres de telle sorte que la stabilité est préservée le long de cette homotopie.
Cela signifie que l’espace de ces systèmes dynamiques est path-connexe, ce qui entraîne
des obstacles et la nécessité de repenser les hypothèses de convexité.

(iii) (Stabilité numérique) : Nous examinons également la stabilité de la mise en oeu-
vre de certains systèmes dynamiques. Nous examinons spécifiquement les algorithmes
d’optimisation d’ordre zéro (Z-O), une classe largement applicable d’algorithmes compris
comme des systèmes dynamiques en temps discret sur l’espace Euclidien. La plupart des
algorithmes d’optimisation Z-O imitent un algorithme du premier ordre, mais remplacent
le gradient de l’objectif par un estimateur qui peut être calculé à partir d’un certain nom-
bre d’évaluations de la fonction. Cet estimateur est généralement construit de manière
random, et son expectation correspond au gradient d’une approximation lisse de l’objectif
dont la qualité s’améliore à mesure qu’un paramètre de lissage sous-jacent, généralement
un paramètre de différence finie, est réduit. En tant que tels, la plupart des algorithmes
Z-O nécessitent que ce paramètre de lissage décroisse à zéro à mesure que l’algorithme
progresse. Alors que les estimateurs basés sur une seule évaluation de fonction peuvent
être obtenus via le théorème de Stokes, leur variance est illimitée. Ensuite, les estima-
teurs basés sur plusieurs évaluations de fonction surmontent la variance explosive, mais
ils souffrent d’une annulation numérique une fois que le paramètre de lissage est suffisam-
ment petit. Pour lutter contre les deux effets simultanément, nous étendons la fonction
objective au domaine complexe et exploitons la dérivée de complex-step pour construire
un nouvel estimateur aléatoire. Cet nouvel estimateur est immunisé contre l’annulation
car il ne nécessite qu’une seule évaluation de fonction, en outre, sa variance reste bornée.
Nous prouvons que les algorithmes Z-O qui utilisent notre estimateur offrent les mêmes
garanties de convergence théorique que les méthodes de pointe.

(iv) (Obstructions topologiques à la stabilité et à la stabilisation) : En abandonnant les
hypothèses stylisées de structure, nous étudions les conditions nécessaires à la stabilité et à
la stabilisabilité des systèmes de contrôle dynamique définis sur des espaces topologiques.
Nous apportons de nouvelles perspectives sur la multistabilité et les systèmes dynamiques
de dimension impaire, généralisons l’obstruction à la rétroaction continue pour stabiliser
globalement asymptotiquement un point sur un fibré, à la stabilisation de submanifolds et
caractérisons entièrement quand un attractor compact est une strong deformation retract
de son domaine d’attraction. Des résultats de cette nature mettent en évidence la synergie
entre la topologie et les systèmes dynamiques.

Toutes ces études se concentrent sur la compréhension de l’interaction entre la struc-
ture sous-jacente et les desiderata. Les orientations futures qui émergent naturellement
concluent la thèse.
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Introduction

“The procedure ordinarily used consists in neglecting, in
the differential equations ... all the terms of higher than
first order ... The only attempt, as far as I know, at a
rigorous solution belongs to Poincaré, who, in the
remarkable memoir ... ‘Sur les courbes definies par les
equations differentielles’ ... considered questions of
stability for the case of second order systems ... the
methods he used allow much more general applications
and could still lead to many new results. This will be
seen in what follows, for, in a large part of my
researches, I was guided by the ideas developed in the
above-mentioned memoir.”

— Lyapunov [Lia92] [Lya92, p. 531–532].

Early in the 1969 book by Kalman, Falb and Arbib one finds the following: “The
notion of a dynamical system as just defined is far too general. Such a definition is needed
to set up terminology, to analyze and refine concepts, and to perceive unity in a diversity
of applications, but it is not sufficiently coherent to bear a large array of deep mathematical
theorems or useful practical deductions. To get good theorems and interesting applications,
we must particularize and impose additional structure.” [KFA69, p. 6-7]. We agree with
them that the right level of generality is important to derive anything interesting, but
we also believe that imposing structure should be done with utmost care and ideally,
structure is not imposed but derived.



2 Chapter 1. Introduction

1.1 Impetus
The pivotal structural breakthrough in control theory during the last century was the
work of Kalman “On the General Theory of Control Systems” [Kal60]. Inspired by Shan-
non and challenged by technological advances, Kalman set out to study when a plant is
“unalterable”, that is, to study controllability. Interestingly, as he writes it, the Kalman
filter is somewhat of a by-product, due to duality. It is well-known that Kalman succeeds
in providing a rather general theory of control systems, in the linear case. Both reviewers
of [Kal60] comment on reality being nonlinear, however. Kalman responds by stating that
the paper does not pretend being that general, but nevertheless, he writes: “The remarks
of ..., that the paper is of importance only for linear systems, are, in the final analysis
correct.” [Kal60, p. 492]. As we know now, controllability has far weaker ramifications in
the nonlinear case.

Example 1.1.1 (Controllability and continuous feedback). It is well-known that for a
linear control system of the form

d

dt
x(t) = Ax(t) +Bu (1.1.1)

we can select a continuous feedback x 7→ µ(x) for the input u such that the origin 0 ∈
Rn is globally asymptotically stable when the pair (A,B) is controllable. Indeed, µ can
be chosen to be simply linear, which follows from a standard canonical transformation
and pole-placement argument [Won79, TSH01]. Going against populair belief, in the
late 1970s, Jurdjevic and Quinn constructed an example of a controllable system that
cannot be stabilized using differentiable feedback [JQ78]. A year later, Sussmann provided
an example of a controllable system that cannot even be stabilized using continuous
feedback [Sus79]. After further investigations by Sontag and Sussmann [SS80], it was
Brockett who provided a general topological condition that must hold for continuous
feedback to exist [Bro83]. It can be argued that his condition follows from earlier work
by Krasnosel’skĭı and Zabreiko [KZ84], see also [Zab89] and [JM23]. Simply put, for a
continuous control system of the form

d

dt
x(t) = f(x(t), u) (1.1.2)

with f(0, 0) = 0 and (x, u) ∈ Rn×Rm, one must have that f(0, 0) ∈ int f(U) for any open
neighbourhood U of (0, 0), for continuous feedback to exist that locally, asymptotically,
stabilizes the origin. Indeed, various controllable systems fail to satisfy this condition and
hence, we see that controllability is not a sufficient structural condition for the existence
of continuous feedback.

Next, we illustrate necessary topological structure for global, continuous, asymptotic
stabilization.

Example 1.1.2 (Stabilization on the n-torus). Suppose we have a continuous control
system (the precise details are irrelevant at this point) defined over an n-torus Tn 't
S1 × · · · × S1 and we are tasked with finding a continuous control law that globally,
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Figure 1.1: The 2-torus and the set S from Example 1.1.2.

asymptotically, stabilizes a point p on Tn. Regardless of the control system, this means
there must be a continuous (closed-loop) dynamical system, say, a vector field, with these
qualitative properties. It is somewhat evident that this fails for n = 1, since we need to
“rip apart” the circle S1 't T1, see [JM23, Fig. 1.1]. However, perhaps for n > 1 we
have sufficient degrees of freedom? To that end, consider a circle S, embedded in T2,
that is not homotopic to a point, which always exists since π1(T2) ' Z2 (π1(·) being the
fundamental group). Since we demand the closed-loop system to be continuous, we need
to be able to continuously deform S into a point, which is obstructed precisely by S not
being homotopic to a point, see Figure 1.1. As π1(Tn) ' Zn this intuition extends for
any n ∈ N>0. This obstruction is purely topological as it can be shown that the domain
of attraction of a point that is globally asymptotically stable (under some continuous
dynamical system), is contractible [Son98, Thm. 21]. Indeed, for a contractible set X
(with X being a topological space), we have that π1(X) ' 0.

Recall from the preface that we are after understanding the interplay between structure
and desiderata. Now see that Example 1.1.1 and Example 1.1.2 allude to a rather large
gap between sufficient and necessary conditions for continuous feedback to exist (linear
control system vs. a contractible state space). It is also evident that solving this problem
(closing the gap) in full generality is somewhat futile, in line with the comment from
Kalman, Falb and Arbib. To that end, we are inspired by the examples above to better
understand structural properties of stability and stabilizability problems.

We are not only looking at questions from systems- and control theory, but also at
optimization. There, an interesting question is to understand “practically relevant1” nec-
essary conditions on the objective for gradient descent to converge globally. Although we
will only study sufficient conditions for some optimization algorithm to convergence, see
Chapter 5, we highlight one of the most powerful and relevant flavours of invexity.

Example 1.1.3 (Global optimization under a Polyak-Łojasiewicz condition). A function
f ∈ C1(Rn;R) is said to satisfy a µ-Polyak-Łojasiewicz (PL) condition when there is a
µ > 0 such that

1
2‖∇f(x)‖22 ≥ µ(f(x)− f(x?)) ∀x ∈ Rn, (1.1.3)

where x? denotes any critical point of f , that is, ∇f(x?) = 0. Now suppose we want to
solve

minimize
x∈Rn

f(x). (1.1.4)

1The notion of “invexity” is appropriate to mention here, this property is necessary but also quickly
meaningless as little structure is provided.



4 Chapter 1. Introduction

Since f only satisfies a µ-PL condition, we cannot exploit convexity. However, consider
the dynamical system

d

dt
x(t) = −∇f(x(t)) (1.1.5)

and the Lyapunov function (candidate) V (x, t) = e2µt(f(x)− f(x?)). It is evident that V
is positive and only zero at a critical point. Now see that by the µ-PL condition (1.1.3)
we have that

d

dt
V (x(t), t) = 2µe2µt(f(x(t))− f(x?))− e2µt‖∇f(x(t))‖22 ≤ 0. (1.1.6)

Hence, since V (x(t), t) = V (x(0), 0) +
∫ t

0
V̇ (x(s), s)ds ≤ V (x(0), 0) we have that f(x(t))−

f(x?) ≤ e−2µtf(x(0)) − f(x?). A more direct argument employs the Lyapunov function
V ′(x) = f(x)− f(x?), leading to V̇ ′ ≤ −2µV ′, and by Grönwall’s inequality to V (x(t)) ≤
e−2µtV (x(0)). Regardless, this construction serves as a motivation for the development of
gradient descent algorithms to solve (1.1.4), without appealing to convexity arguments.
Indeed, this PL-structure is frequently key in convergence of gradient descent applied to
nonconvex problems [FGKM18]. See [Wil18] for more on Lyapunov techniques in the
context of optimization.

The Examples from above have in common that interesting remarks can be made after
looking at the right structure, e.g., linearizing a nonlinear problem is usually not revealing
(or preserving) the right structure. Focusing on precisely the right structure is something
the main figure of the next section was widely praised for.

1.2 Historical comments
Space does not permit to cover the entire history of stability theory and to some extent,
this has been done before, e.g., see [Kel15, LP17] or see [JM23] and especially the references
therein. We aim to highlight in this section how several notions of stability emerged in the
context of control and we try to look slightly beyond the usual suspects. Here, we focus
on how the 1960s could have been so fruitful, whereas other and more detailed accounts
are presented in the appropriate chapters.

If we reconsider the definition of stability from the dictionary, then one might say
that stability (in the context of differential equations) started with understanding local
flows, that is, solutions depending continuously on initial conditions. However, we want
to guarantee a notion of stability for all time. Inspired by Poincaré’s work on the qual-
itative theory of differential equations, Aleksandr M. Lyapunov (1857-1918) pioneered
this study of the stability of motion, although he was not the first. Motivated by ques-
tions from celestial mechanics, Lagrange, Dirichlet, Poisson, Poincaré and many of their
contemporaries all studied stability (of the solar system). We point out that some stabil-
ity notions with their name attached to it are in fact different from what they proposed
themselves, e.g., Lagrange studied a particular notion of convergence and not necessarily
bounded solutions [LP17].

Going back to Lyapunov, regarding his notion of stability, he finally introduced the
ε − δ notion of stability—nowadays known as Lyapunov stability, in the right order,
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that is, he requested that for each ε-neighbourhood of an equilibrium point there is
a δ-neighbourhood (of initial conditions) such that the solutions starting from the δ-
neighbourhood are contained in the ε-neighbourhood. Previous stability conditions re-
quired one to find an ε given a δ. Of course, then he went on to define his first (indirect,
via linearization) and second method (direct, via Lyapunov functions) to study stability.
In fact, he set up the convention of Lyapunov functions V being positive and introduced
the notion of asymptotic stability. See [LP17] for further comments on how we eventually
moved from asymptotic stability in the large (non-trivial region of attraction different
from the entire space) and asymptotic stability in the whole (region of attraction is the
entire space) to global asymptotic stability.

However, it took several generations of researchers to revitalize and then formalize
Lyapunov’s work. Regarding the revitalization, we largely credit Nikolay G. Chetaev
(1902–1959), the doctoral advisor of Nikolai N. Krasovskii (1924–2012). Krasovskii
himself was responsible for the formalization of a significant amount of Lyapunov stability
theory. In particular, working with Chetaev, Barbashin and Pontryagin, he developed
converse theory (different from Massera), invariance principles and stochastic notions of
stability. A telling anecdote is the following, at the first IFAC world congress in Moscow
(1960), foreign participants asked Barbashin, who gave a talk on behalf of Krasovskii, if
“N. N. Krasovskii” was a group (we suppose similar to N. Bourbaki at the time) [KS15].

Besides aforementioned mentors, Krasovskii was also influenced by the work of José L.
Massera (1915–2002), from Uruguay, whom, as early as 1949, pioneered Lyapunov (con-
verse) theory [Mas49], with further elaborations in 1956 [Mas56]. It is due to him that we
understand the relation between asymptotic- and equiasymptotic stability, have compari-
son functions (also due to Hahn [Hah67]) and frequently appeal to integral representation
of candidate Lyapunov functions. Despite highly-influential work early on, Massera was
faced with long political imprisonment and we can only wonder what would have been
otherwise. We do mention that Massera, in his turn, credits Khalikoff, Malkin, Marachkoff
and Persidskĭı. With Persidskĭı providing the first converse result and especially Malkin
being important and influential regarding the focus on uniformity.

Despite the pivotal work in the East and contributions by Massera, it took a while
before their work crossed the ocean and found its way in the West.

Solomon Lefschetz (1884–1972), an engineer turned mathematician, in part due to
tragically losing both of his hands, was a pioneer in both topology and dynamical systems
and it is largely due to him that we now have a mature stability theory (in the West).

Although retiring in 1953 from Princeton, his most influential work—that is, for this
thesis, had yet to come. Lefschetz, as being born in Moscow, was aware of the Russian
work on differential equations and with the advent of Sputnik (1957) he was convinced
the rest of the world was lagging behind and something had to be done [Lef70]. He
soon established a center for study and research on differential equations at the Research
Institute for Advanced Studies (RIAS) in Baltimore, housed at the Martin Company
(now Lockheed Martin). This center flourished and eventually transformed—since the
Martin company wanted to focus on applications—in 1964 into the (Lefschetz) center for
dynamical systems at Brown [CMP10], initially directed by LaSalle.

Joseph P. LaSalle (1916-1983) was asked by Lefschetz to join the center at the RIAS
in 1958. Ten years prior to this request, LaSalle met Lefschetz (and Bellman) at Prince-
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ton and developed an interest in differential equations. Soon after joining the RIAS,
LaSalle wrote one of the most influential texts on Lyapunov stability theory together with
Lefschetz [LSL61]. Not only that, he established his2 invariance principle [LaS60], he ini-
tiated the SIAM Journal on Control and he eventually found the Journal on Differential
Equations [BHJ83] with Hale (see below).

Besides LaSalle, Lefschetz also found support in Lamberto Cesari (1910–1990), an
expert on the calculus of variations and the author of several influential books, most
notably his text on dynamical systems [Ces71], with the first edition appearing in 1959,
praised by Lefschetz for a good overview of literature in the East.

Not only Cesari, but in particular one of his students: Jack K. Hale (1928–2009)
was attracted to the center. Thanks to a recommendation from Cesari, Hale joined the
center in 1958, after 4 years working in industry, he could finally work on his true pas-
sion again [Cha00]. Together with Lefschetz and LaSalle, Hale was instrumental in the
development of dynamical systems theory in the West. Initially influenced by Krasovskii,
he became an expert on the qualitative theory of infinite-dimensional dynamical systems
(e.g., due to time-delays and PDEs) and eventually replaced LaSalle as the director of the
Lefschetz center for dynamical systems [CMP10].

The final member of the center at the RIAS was Rudolf E. Kalman (1930–2016), who
joined after completing his doctoral studies in 1957. In the early 60s, while being at this
center, Kalman developed all his groundbreaking work (the Kalman filter, the popular-
ization of state space methods, minimal realization theory and an accessible exposition of
Lyapunov stability theory). For more on Kalman developing his filter, the impact of the
first IFAC world congress in Moscow and Kalman his relation to East, see [Ste11].

With all these names at the RIAS, it is hardly a surprise the center flourished, as
we wrote before. This continued long after moving to Brown, attracting the likes of
Fleming, Kushner, Wonham, and many others. It can also be argued that frequency
domain methods from the 50s were pushed to the background in part due to the work at
the RIAS [Bro14].

Lefschetz only established this center after retiring. Before doing so, he worked on
algebraic geometry and later algebraic topology, both very successfully, he was praised for
the right level of generality, see [Hod73] for an overview. Detailing his work here is too
much of a detour, but we like to point out that in his topological work there is a strong
link to dynamical systems. Namely, his fixed-point theorem is key in understanding the
interplay between topology and dynamical systems, e.g., see [GP10].

Before closing this section, we highlight one additional person. Lefschetz and LaSalle
wrote in the preface of their 1961 book on Lyapunov stability theory the following: “We
are especially pleased that our book appears in a series inspired and edited by an old and
cherished friend, Richard Bellman.” [LSL61, p. vi]. Richard E. Bellman (1920–1984)
will not be unfamiliar to the typical reader, but what is less well-known, is that before
his seminal work on dynamic programming, he worked with no other than Lefschetz on
stability theory. In fact, he wrote one of the first English, pedagogical, texts on stability
theory, published in 1953 [Bel53]. Throughout the text, the influence of Poincaré and
Lyapunov is acknowledged and Bellman emphasizes the importance of better understand-
ing periodic systems, 70 years later still very much an open problem. It needs to be said,

2Although the principle was also discovered by Barbashin and Krasovskii.
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however, that his motivation for writing this text is less romantic, he wanted to quickly
obtain the PhD degree and finally work on analytic number theory [Bel84, p. 110-111].

We believe that the crux of this section is twofold, first, good research is a team effort
and a vibrant research center greatly contributes, secondly, international contacts are
crucial and isolation is to be avoided, which is unfortunately (again) far from obvious
these days.

Control and optimization

In this thesis we discuss stability problems in the areas of both control and optimization.
A somewhat naïve point of view would be that if you control a system, you better do it
optimally, hence the control theorist must be a part-time optimizer. We believe there is
more to this. Especially Lyapunov theory appears to provide for a fruitful bridge between
the two fields.

To provide a miniscule bit of historical context. The “Journal of the Society for Indus-
trial and Applied Mathematics Series A Control” was established in 1962 and the opening
text by McMillan emphasizes the importance of bringing engineers and mathematicians
together. Control theory is there to bring order to the chaos, to aid in design, “Theory
creates understanding.” [McM62]. In 1966 the journal became the “SIAM Journal on
Control” and in 1976 the name was again changed, this time to the “SIAM Journal on
Control and Optimization”. Mixing control and optimization was—and still is—classical,
mainly due to the prominent role of mechanics and the calculus of variations at that
time [Bry96, SW97]. Going far beyond optimal control, we owe some of this synergy to
Brockett [BC98, HM12], who also featured in the first edition of the SIAM Journal on
Control and Optimization [BF76].

At the time of writing this thesis, the ETH Zürich just opened a faculty position on
“algorithmic system theory”, the synergy continues.

1.3 Outline of the thesis
In this thesis we focus on addressing the following problems, as illustrated in Figure 1.2.
Before the beginning (Ch. 2), we review mathematical stability theory. Then, first (Ch.
3), given an unknown linear dynamical system that is known to be stable, what should one
do if an estimator, constructed from data, is unstable? This is non-trivial since collecting
more data will only help asymptotically and the space of stable matrices is non-convex
(so, a projection is not obvious). Secondly (Ch. 4), what are the ramifications of imposing
a convex structure on Lyapunov functions? This assumption is populair in the learning
community, but so far it is unclear how the space of dynamical systems is constrained by
doing so. Then, third (Ch. 5), the vast majority of zeroth-order optimization algorithms
need a “difference parameter” δ to vanish for these algorithms to provably work, but
can this ever be implemented in a numerically stable way? At last (Ch. 6), what kind
of structure is imposed on the domain of attraction of a compact attractor? This is
important for stabilization tasks, where we usually start from a space and ask if it admits
a certain global attractor. After the ending (Ch. 7), we provide commentary on future
directions of research.
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More specifically, after having set the stage in the preface and introduction, we provide
an overview of stability theory in Chapter 2, with the emphasis on the topological and
qualitative viewpoint.

Towards a principled data-driven control, in Chapter 3 we study the identification of
Schur stable linear dynamical systems with a stability certificate and finite-sample guar-
antees (data-driven stability problem). We show how the large deviations rate function
(derived structure) of the least squares estimator naturally leads to a tractable, statisti-
cally consistent, identification scheme that guarantees stability (desiderata). Chapter 3 is
based (almost verbatim) on:
(3-i) Wouter Jongeneel, Tobias Sutter, and Daniel Kuhn. “Efficient Learning of a Lin-

ear Dynamical System With Stability Guarantees”. IEEE Transactions on Auto-
matic Control 68.5 (2023), pp. 2790–2804. doi: 10.1109/TAC.2022.3213770.

(3-ii) Wouter Jongeneel, Tobias Sutter, and Daniel Kuhn. “Topological Linear System
Identification via Moderate Deviations Theory”. IEEE Control Systems Letters 6
(2022), pp. 307–312. doi: 10.1109/LCSYS.2021.3072814.

Most control problems do not come with a natural optimization objective. In fact, op-
timization is often merely a principled means to arrive at something “reasonable” [SL12].
In Chapter 4 we study ramifications of common selections of the objective in the linear
quadratic regulator (LQR) problem (imposed structure). We show that the topological
class of the closed-loop system can only be altered by introducing cross-terms (between
state and input) in the objective. Secondly, we discuss the ramifications of assuming (con-
trol) Lyapunov functions to be convex (imposed structure). Chapter 4 is based (almost
verbatim) on:
(4-i) Wouter Jongeneel and Daniel Kuhn. “On Topological Equivalence in Linear Quadratic

Optimal Control”. European Control Conference (ECC). 2021, pp. 2002–2007. doi:
10.23919/ECC54610.2021.9654863.

(4-ii) Wouter Jongeneel and Roland Schwan. “On Continuation and Convex Lyapunov
Functions”. IEEE Transactions on Automatic Control (2024), pp. 1–12. doi:
10.1109/TAC.2024.3381913.

Regarding zeroth-order optimization, we show in Chapter 5 how the real analytic
structure, present in most smooth objective functions (natural structure), can be exploited
to derive a numerically stable randomized gradient estimator (desiderata). Chapter 5 is
based (almost verbatim) on:
(5-i) Wouter Jongeneel, Man-Chung Yue, and Daniel Kuhn. “Small errors in random

zeroth-order optimization are imaginary”. SIAM Journal on Optimization (2024),
pp. 1-32, in press. arXiv: 2103.05478.

(5-ii) Wouter Jongeneel. “Imaginary Zeroth-Order Optimization”. (2021). arXiv: 2112.
07488.

In Chapter 6 we contribute necessary conditions for stabilizing continuous feedback to
exist (from desiderata to structure). We discuss multistability, obstructions to submani-
fold stabilization and we charachterize the homotopy type of the domain of attraction for
compact attractors. Chapter 6 is based on:

10.1109/TAC.2022.3213770
 10 . 1109 / LCSYS . 2021 .3072814
10.23919/ECC54610.2021.9654863
10.1109/TAC.2024.3381913
2103.05478
2112.07488
2112.07488
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(6-i) Wouter Jongeneel and Emmanuel Moulay. Topological Obstructions to Stability
and Stabilization: History, Recent Advances and Open Problems. Springer Nature,
2023. doi: 10.1007/978-3-031-30133-9.

(6-ii) Wouter Jongeneel. “On topological properties of compact attractors on Hausdorff
spaces”. European Control Conference (ECC). 2024, pp. 1–6, in press. arXiv:
2301.05932.

We close the thesis in Chapter 7, with commentary on future research.
We remark that parts of both Chapter 2 and Chapter 7 are also based on the afore-

mentioned prints.

Comment on simulations Despite some work on (numerical) algorithms, in this the-
sis we try to stay away from arguments that extrapolate inherently discrete simulation
results, insights should be obvious or proven. We do agree that simulations can be greatly
helpful, e.g., to visualize and gain intuition, but especially with stability in mind, we
cannot rely on finite realizations to conclude. In fact, some of our work is the result
of phenomena being attributed to simulation errors while in fact they were singularities
embedded in the problem.

Comment on notation We introduce notation throughout the thesis and repeat this
whenever convenient. We strive for consistency and standard notation, but already admit
that “:=” and “=:” are used to emphasize and clarify, not according to a book of rules.
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Figure 1.2: Overview of the thesis contents.
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2
Introduction to stability theory

“Stability theory is the study of systems under various
perturbing influences. Since there are many systems,
many types of influences, and many equations
describing systems, this is an open-ended problem. A
system is designed so that it will be stable under
external influences. However, one cannot predict all
external influences, nor predict the magnitude of those
that occur. Consequently, we need control theory. If one
is interested in stability theory, a natural result is a
theory of control.”

— Bellman [Bel84, p. 110].

Despite the dictionary definition, stability does admit a precise mathematical defini-
tion, although “a” should be immediately replaced with “many”, not because stability
is ill-defined, but because many different notions of stability exist. With that in mind
we provide a brief overview of mathematical stability, with the emphasis on stability of
motion. We assume some familiarity with dynamical systems, for further introductionary
comments and far more details we point to the references, e.g., see [Son98, Sas99, vS21].

Additionally, we comment on stabilizability and stabilization throughout, that is, when
and how to enforce certain notions of stability.

Notation will be standard and always accompanied by explanatory text.

2.1 Stability through regularity
The word “regular” has a remarkable number of meanings in mathematics. In this section,
regularity relates to smoothness properties of a map, that is, we follow the PDE meaning
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Figure 2.1: Example 2.1.1: integral curves of (2.1.2). The dashed unit circle aids in the
computation of ind0(F+) = −1, as used in Section 2.4.1 below.

of the word.

2.1.1 Continuity
Most mathematical notions of stability are intimately related to continuity, e.g., in learning
theory [BE02] (when considering what happens under a change of the training data) or
in optimization [Ber63, SLG95] (to understand how the optimal value changes under a
change in parameters), see also [HRS16].

We do point out that in those settings, stability frequently goes by different names, e.g.,
sensitivity- or perturbation analysis. We will now elaborate on continuity in the context
of the stability of motion (“objects changing over time”). What could even be continuous
here and what does this imply?

Continuity and stability of motion

When speaking of stability with respect to some dynamical system, say, corresponding to
a differential equation

d

dt
x(t) = f(x(t)) (2.1.1)

one might aim to characterize when solutions to (2.1.1) “are close”. As continuity of
solutions to (2.1.1) is well-understood (e.g., when local flows exist), one might believe at
first that for f being sufficiently regular, we are done. The important point is of course
that claims of that nature are only somewhat sensible for finite time, while we demand
stability for all time. An example that comes to mind is ẋ = x2. Evidently, the right-hand
side is continuous (even analytic), yet the integral curves are of the form

t 7→ ξ(t) =
x0

1− t · x0
, ξ(0) = x0.

Hence, despite continuity we experience a finite escape time [Kha02, p. 93]. Perhaps then,
the vector field should be complete [Lee12, pp. 215–217]?
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Example 2.1.1 (Continuity with respect to initial conditions and stability). Consider
the linear dynamical system

d

dt
x(t) = F+(x) =

(
0 1
1 0

)
x(t). (2.1.2)

It follows that the flow corresponding to (2.1.2) is defined globally and given by (t, x0) 7→
ϕt(x0) = eAtx0. Hence, the vector field is complete. It also readily follows from (2.1.2)
that the origin is unstable (a saddle) under (2.1.2) with the stable mode being vs = (1,−1)
and the unstable mode being vu = (1, 1). Hence, it follows that limt→+∞ ϕt(vs) = 0, yet,
for any (arbitrarily small) ε > 0 we get that

lim
t→+∞

‖ϕt(vs + εvu)‖22 = +∞,

despite continuity of ϕ in x0, see Figure 2.1. Note, this is not just a linear phenomenon,
the same happens when starting on and around an unstable periodic orbit and so forth.

Example 2.1.1 shows that to capture the stability of motion, we need to go beyond the
standard notion of continuity for difference- and differential equations, that is, we need to
go beyond continuity with respect to initial conditions.

On the other hand, continuity of the right-hand side of a difference or differential
equation is not necessary for stability either.

Example 2.1.2 (Switched linear systems). Consider the switched linear system given by

xk+1 = Aσ(k)xk, A1 =

(
−1/2 1/2

0 −1/2

)
, A2 =

(
1/2 1/10
1/5 −4/5

)
, (2.1.3)

where σ : Z → {1, 2} is the switching signal. Now, the origin is globally asymptotically
stable under (2.1.3), for any particular realization of σ since x 7→ V (x) = 〈x, x〉 is a
common Lyapunov function for {A1, A2}, that is, for any i ∈ {1, 2} we have V (Aix) <
V (x) for all x 6= 0, which suffices to conclude on stability [LA09, Sec. II] (see below).

The examples above motivate the asymptotic notions of stability, as central to this
thesis. Below, we elaborate on these notions, on Lyapunov functions to capture stability,
as used in Example 2.1.2, but first, we discuss further manifestations of regularity and
their ramifications for stability.

2.1.2 Lipschitz inequalities
In order to be able to prove convergence of zeroth-order optimization algorithms in Chap-
ter 5, we need to exploit regularity of the objective function f . Here, it suffices for f to
display certain Lipschitz continuity properties. Following [Nes03], for any integers p, k ≥ 0

with p ≤ k, we use Ck,pL (D) to denote the family of all k times continuously differentiable
functions on D whose pth derivative is Lipschitz continuous with Lipschitz constant L ≥ 0.
We sometimes write L(f) to indicate which function we are discussing. Similarly, we
use Cω,pL (D) to denote the family of all analytic functions in Cp,pL (D).
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For example, if f ∈ C1,1
L1

(D), then f has a Lipschitz continuous gradient, that is,

‖∇f(x)−∇f(y)‖2 ≤ L1‖x− y‖2 ∀x, y ∈ D. (2.1.4)

By [NS17, Eq. (6)], this condition is equivalent to the inequality

|f(y)− f(x)− 〈∇f(x), y − x〉| ≤ 1
2L1‖x− y‖22 ∀x, y ∈ D. (2.1.5)

To see how inequalities of the form (2.1.5) aid in stability, suppose we aim to find a
minimizer of f ∈ C1,1

L1
(D), denoted by x?. Since it is unlikely we will ever find x? exactly

(by hand) we need to resort to numerical means and thus it is very important to get a grip
on the suboptimality gap under perturbations of x? (since the computer will also never find
x? exactly), that is, on f(x? + ε)− f(x?) for some perturbation ε. Under the assumption
that x? is a critical point of f , it readily follows from (2.1.5) that f(x? + ε) − f(x?) ≤
1
2L1‖ε‖22. Note that getting a grip on suboptimality is also an integral part of studying
convergence of optimization algorithms, which is precisely how we will use these and other
inequalities in Chapter 5.

To continue, if f ∈ C1,1
L1

(D) is also convex then, the Lipschitz condition (2.1.4) is also
equivalent to

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ 1
2L1
‖∇f(y)−∇f(x)‖22 ∀x, y ∈ D, (2.1.6)

see, e.g., [Nes03]. In particular, if x is a critical point, e.g., a local minimizer of f with
∇f(x) = 0, then the estimate (2.1.6) simplifies to 2L1 (f(y)− f(x)) ≥ ‖∇f(y)‖22 for
all y ∈ D.

If f ∈ C2,2
L2

(D), then f has a Lipschitz continuous Hessian, i.e.,

‖∇2f(x)−∇2f(y)‖2 ≤ L2‖x− y‖2 ∀x, y ∈ D. (2.1.7)

By [Nes03, Lem. 1.2.4], this condition is equivalent to the inequality

|f(y)−f(x)−〈∇f(x), y−x〉− 1
2 〈∇

2f(x)(y−x), y−x〉| ≤ 1
6L2‖x−y‖32 ∀x, y ∈ D. (2.1.8)

More generally, any f ∈ Cp,pLp (D) has a Lipschitz continuous pth derivative. Recalling
the definitions of higher-order partial derivatives and multi-indices, this requirement can
be expressed as

|
∑
|α|=p ∂

α
x f(x) · uα −

∑
|α|=p ∂

α
x f(y) · uα| ≤ Lp‖x− y‖2 ∀x, y ∈ D, u ∈ Sn−1.

It is often referred to as a (p + 1)th-order smoothness condition [BP16, Sec. 1.1] as it
implies that any f ∈ Cp+1,p

Lp
(D) ⊆ Cp,pLp (D) has a bounded (p+ 1)th derivative, that is,

|
∑
|α|=p+1 ∂

α
x f(x) · uα| = |∂p+1

t f(x+ tu)|t=0| ≤ Lp ∀x ∈ D, u ∈ Sn−1. (2.1.9)

Stability under maps

A more “dynamical” application of a map being Lipschitz is the following. Let F : X → X
be a map on a metric space (X, d), then F is said to be a contraction when there is a
γ ∈ [0, 1) such that

d(F (x1), F (x2)) ≤ γd(x1, x2) ∀x1, x2 ∈ X. (2.1.10)
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See that if X = Rn and d is the usual metric on Rn, then we get that F is Lipschitz
continuous with L0(F ) = γ. Now suppose that F relates to some algorithm, say an
optimization algorithm. Then we usually think of F as in the update rule xk 7→ F (xk) =
xk+1 and ideally F (x?) = x? for x? an optimizer of our problem at hand. In that case,
F being a contraction readily implies that d(xk+1, x

?) ≤ γkd(x1, x
?), which under mild

topological conditions on (X, d) implies that xk → x?. This observation appears frequently
in optimization, however, we would like to stress, already, that results of this form say more
than mere convergence. Consider a map V : X → R≥0 defined through V (x) = d(x, x?),
then, since F is a contraction, it follows that V (F (x)) < V (x) and V (x) = 0 ⇐⇒ x =
x?. Hence, through Lyapunov arguments (see below), we observe stability, which is very
important since an algorithm only runs for finite time. Indeed, since the time of Malkin
and Massera we know that asymptotic stability and uniform convergence are intimately
related. More on that below.

2.2 Dynamical control systems
In this section we start by discussing (time-invariant) dynamical systems over Rn of
the form

d

dt
x(t) = F (x(t)) :

{
F : Rn → TRn

π ◦ F = idRn ,
(2.2.1)

where F is Cr-smooth with r ≥ 0, π : TRn → Rn defined by (x, v) 7→ π(x, v) = x
is the canonical projection and for any x ∈ Rn we have with some abuse of notation
F (x) ∈ TxRn. Evidently, TRn ' Rn × Rn, but (2.2.1) is useful to keep in mind when
comparing objects to assess if generalizations beyond Rn are possible. Integral curves
of (2.2.1) are differentiable curves t 7→ ξ(t) ∈ Rn such that ξ̇(t) = F (ξ(t)) for all t ∈
dom(ξ), which is non-empty by, for instance, assuming that r ≥ 1. However, in general,
such an assumption is too strong. We will not go into further regularity conditions and
always assume, for simplicity and unless written otherwise, that r = 0 and that the vector
field is complete, i.e., a global flow (see below) is induced, such that we are allowed to
make global statements1, for further information we point the reader to [Son98, Hal09]
and Example 2.2.3 below.

Going beyond descriptions, when aiming to prescribe the dynamics of a system we
consider (time-invariant) dynamical control systems over Rn × Rm of the form

d

dt
x(t) = f(x(t), u) (2.2.2)

such that f(x, u) ∈ TxRn ' Rn for all (x, u) ∈ Rn × Rm, where x and u denote the
state and input, respectively. Again, with some abuse of notation, we will assume that
f ∈ C0(Rn×Rm;Rn), but again omit integrability discussions. Input functions are of the
form t 7→ µ(t) ∈ Rm, e.g., a state feedback is of the form t 7→ µ(x(t)). Note, we use µ

1We remark that completeness is the important property here as we will appeal to a global flow,
smoothness of F (going beyond C0), on the other hand, is rarely exploited. The only reason to potentially
keep smoothness is that one can naturally relax completeness and make some local statements.
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instead of u to differentiate between the function and the point. A subclass of (2.2.2) of
interest are the so-called control affine systems of the form

d

dt
x(t) = f(x(t)) +

∑m
i=1 gi(x(t))ui, (2.2.3)

where ui is the ith element of u ∈ Rm and again f, gi ∈ C0(Rn;Rn) for i = 1, . . . ,m [NvdS90].
Based on the control system at hand, one might say more about the space of allowable
inputs t 7→ µ(t), e.g., one might consider absolutely integrable (L1

loc) or essentially bounded
(L∞loc) function spaces [Son98, App. C].

2.2.1 Stability
Now, we will define the central asymptotic notion of stability.

Let F parametrize a dynamical system of the form (2.2.1). By our standing complete-
ness and smoothness assumptions, F will give rise to a continuous flow2 ϕ : R×Rn → Rn,
with its evaluation denoted by ϕt(x0) := ϕ(t, x0), which is understood to describe a solu-
tion to (2.2.1) at time t, starting at time 0 from x0. A point x? ∈ Rn is an equilibrium
point of F when F (x?) = 0, w.l.o.g. we set x? = 0. Then, 0 is said to be globally
asymptotically stable (GAS) (with respect to F ) if

(s-i) 0 is Lyapunov stable, that is, for any open neighbourhood Uε 3 0 there is an open
set Uδ ⊆ Uε such that a solution (with respect to F ) starting in Uδ stays in Uε;

(s-ii) 0 is globally attractive, that is, limt→+∞ ϕt(x0) = 0 for all x0 ∈ Rn.

Simply put, we speak of asymptotic stability of some equilibrium point, when solu-
tions starting sufficiently close to this equilibrium converge to this point and while doing
so do not first diverge. We do point out that Lyapunov stability and attractivity are
independent, for instance, the origin is Lyapunov stable under a center3, but fails to be
attractive, on the other hand, the origin is attractive under Artstein’s circles4, yet, it fails
to be Lyapunov stable.

We also point out that the focus on global stability should be understood as working
with the domain of attraction and not “some” neighbourhood. Indeed, the focus on (0,Rn)
is somewhat arbitrary for the moment.

As we focus on time-invariant dynamical systems, we will not further digress much
into solutions and stability and refer to [Hah67, Son98]. In particular, we will not discuss
comparison functions, see [Hah67, Sec. 24].

In general it is not straightforward to capture if 0 is GAS or not. A fruitful tool
that does allow for conclusions of this form has been devised by Lyapunov in the late
1800s [Lia92]. A function V ∈ C∞(Rn;R≥0) is said to be a (smooth, strict and proper)
Lyapunov function (with respect to F and 0) when

(V-i) V (x) > 0 for all x ∈ Rn \ {0} and V (0) = 0;
2Flows satisfy: (1) the identity ϕ0 = idRn ; and (2) group property ϕs+t = ϕs ◦ ϕt ∀s, t ∈ R.
3A system of the form ẋ1 = x2, ẋ2 = −x1.
4A system of the form ẋ1 = x2

1 − x2
2, ẋ2 = 2x1x2, mapped onto the sphere S2, see also [JM23, Rem.

6.1].
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(V-ii) 〈∇V (x), F (x)〉 < 0 for all x ∈ Rn \ {0};

(V-iii) and V is radially unbounded, that is, V (x)→ +∞ for ‖x‖ → +∞.

Property (V-iii) implies sub-level set compactness, which is want we need, coercivity
is just a convenient way to capture this. Now, based on work by Massera, Kurzweil
and others [Kur63, FP19], we will exploit the celebrated theorem stating that 0 is GAS
if and only if there is a (corresponding) smooth Lyapunov function [BR05, Thm. 2.4].
Note, we dropped the adjective “strict and proper” as we almost exclusively look at
Lyapunov functions of that form. See also that, given that V satisfies Property (V-i),
then 〈∇V (x), F (x)〉 ≤ −V (x) implies Property (V-ii).

For further references on Lyapunov stability theory we point the reader to [BS70,
Son98, BR05].

Remark 2.2.1 (On asymptotic- and uniform asymptotic stability). Due to Massera
we know that for time-invariant dynamical systems on finite-dimensional spaces (e.g.,
like (2.2.1)) asymptotic- and uniform asymptotic stability are equivalent [Mas49, Thm.
7], [Mas56, p. 188]. In the time-invariant case, this simply means that the convergence
from (s-ii) is uniform, that is, for any ε there is a T (ε) such that ‖ϕt(x0)‖2 ≤ ε for all
t ≥ T (ε) and any x0 ∈ Rn. This observation was very important regarding converse
theory [Hah67, Sec. 47], looking at Lyapunov functions, the sub-level set compactness
naturally connects to uniformity.

Remark 2.2.2 (On time-invariant converse theorems). The vast majority of converse
theorems provide a Lyapunov function of the form (x, t) 7→ V (x, t) (for possibly time-
varying and non-smooth dynamical systems). For the full proof, that includes the time-
invariant case, we point to [BR05, p. 146] and the theory that precedes that remark.

Example 2.2.3 (On completeness). We assume completeness of our vector fields to avoid
technical discussions on existence and uniqueness of solutions. However, since the time
of Zubov an easy transformation is known that justifies our assumption in the qualitative
study of dynamical systems, see [Hah67, Sec. 34]. Given some dynamical system (2.2.1),
then define the differential (one-form) ds = (1 + ‖F (x)‖22)1/2dt. Now consider

d

ds
x(s) = ϕ(x)F (x) :=

1

(1 + ‖F (x(s))‖22)1/2
F (x(s)). (2.2.4)

Since the right-hand side of (2.2.4) is globally bounded, the transformed vector field is
complete under mild assumptions on F . As such a transformation is just a positive
scaling of the original vector field F , stability properties are preserved (e.g., consider
〈∇V (x), F (x)〉 and 〈∇V (x), ϕ(x)F (x)〉 for appropriate functions x 7→ ϕ(x)).

Now, given a control system (2.2.2), when it comes to the task of globally asymptotically
stabilizing 0 (we will exclusively focus on stabilization by means of time-invariant state
feedback5), the Lyapunov function paradigm can be adjusted.

5Considering more general input functions, e.g., of the form t 7→ µ(t, x(t)), integral curves of the
corresponding closed-loop system are generally understood to be absolutely continuous curves ξ : I → Rn
such that the differential relation ξ̇(t) = F (ξ(t), µ(t, ξ(t))) =: F ′(t, ξ(t)) holds for almost all t ∈ I, in the
sense of Lebesgue. This requires rethinking some concepts, e.g., global asymptotic stability and what a
closed-loop vector field really is.
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Given our stabilization goal, we seek a function t 7→ µ(x(t)) such that under f(x, µ(x)) =:
F (x) the origin is GAS. Then, analogously to the definition of a Lyapunov function, one
can define control Lyapunov functions (CLFs), yet, Property (V-ii) is now replaced
by asking that for any x ∈ Rn \ {0} the following holds

inf
u∈Rm

〈∇V (x), f(x, u)〉 < 0. (2.2.5)

It is not evident that a choice of input function based on (2.2.5) can result in a continuous—
let alone smooth—feedback. The next section elaborates on this problem.

Before doing so, we do remark that rendering a system stable is by no means always the
goal, rather understanding how stability properties of our system relate to our desiderata.
We must not forget to respect the unstable6 [Ste03].

Chetaev functions and instability

When studying instability it is imperative to understand that unstable systems are not
simply generated by stable systems under time reversal, the class of unstable systems is
larger. Hence, searching for Lyapunov functions to conclude on instability is frequently
futile (consider a saddle). Instead, one can do with so-called Chetaev functions. Intu-
itively, you just need “some direction to escape”, like an eigenvector corresponding to an
unstable eigenvalue.

Formally, let x? = 0 be an equilibrium point of some vector field on Rn. Suppose there
is a V ∈ C1(D;R) with 0 ∈ D, V (0) = 0 and such that any neighbourhood U of 0 satisfies
V −1((0,+∞)) ∩ U 6= ∅. Then, x? = 0 is unstable if V̇ > 0 on V −1((0,+∞)) ∩K, for K
some compact neighbourhood of 0, being a subset of D [Kha02, Ch. 4].

2.2.2 Control Lyapunov functions
Consider a dynamical control affine system with scalar input of the form

d

dt
x(t) = f(x(t)) + g(x(t))u, (2.2.6)

Then, for V to be a smooth CLF for (2.2.6), we must have that for any x ∈ Rn \{0} there
exists a u ∈ R such that LfV (x) + uLgV (x) < 0. However, the existence of a smooth
control-Lyapunov function is topologically strong in the sense that it generally implies
(see below) that an asymptotically stabilizing continuous feedback exists [Son98, Ch. 5].
Indeed, the controller attributed to Sontag is

x 7→ µs(x) :=

−
α(x) +

√
α(x)2 + β(x)4

β(x)
if β(x) 6= 0

0 otherwise,
(2.2.7)

6The very first Bode lecture, by Stein, contains various examples of how delicate unstable plants
are, but also that some engineering problems desire instability. For instance, for airplanes, instability in
certain regimes is necessary to be efficient in other regimes. Similarly, neuroscientists actively study in
which stability regime the brain operates.
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for α(x) := LfV (x) and β(x) := LgV (x), e.g., see [Son98, p. 249]. Although (2.2.7)
appears singular, µs(x) can be shown to be continuous under the following condition;
we speak of the small control property when for all ε > 0 there is a δ > 0 such that if
x ∈ Rn\{0} satisfies ‖x‖ < δ, then, there is a u such that ‖u‖ < ε and LfV (x)+LgV (x)u <
0 [Son89, p. 247]. As such, the existence of a smooth CLF is strictly stronger than being
(globally) asymptotically controllable7, e.g., continuous feedback can be easily obstructed
for globally controllable systems that even admit smooth CLFs8. To add, the small
control property does not always hold and it is well-known that CLF-based-controllers
can be singular, and ever since their inception so-called “desingularization techniques”
emerged [Cor07, Sec. 12.5.1]. For instance, under structural assumptions a backstepping
approach to handle CLF singularities is studied in [LK97] and a PDE reformulation to
avoid singularities is presented in [YI00].

Nevertheless, in case the dynamical control system is affine in the input u, and u is
constrained to a compact convex set, then, the existence of a C∞ CLF is equivalent to
the existence of a C0 (on Rn \ {0}) stabilizing feedback [Art83]. Indeed, the work by
Sontag aimed at making the construction of such a feedback transparent. Further re-
laxing regularity of a CLF, it can be shown that the existence of a so-called “proximal
CLF” is equivalent to asymptotic controllability. These proximal CLFs are Cr-smooth
with r ∈ [0, 1), e.g., see [Cla10] for more on non-smooth CLFs. Better yet, it can be shown
that global asymptotic controllability implies the existence of a—possibly discontinuous—
feedback [CLSS97]. Even more, Rifford showed that when the control system is globally
asymptotically controllable, a—possibly nonsmooth—semiconcave9 CLF always exists.
Exploiting this structure, for control affine systems, Rifford could extend Sontag’s for-
mula (2.2.7) to this setting [Rif02, Thm. 2.7] and get again an explicit feedback.

The existence of a smooth CLF is not only topologically strong, it implies there exists
a robustly stabilizing feedback [LS99]. We also point out that the CLF framework largely
extends to switched systems [MBP07].

On learning-based stabilization

Neural networks are becoming increasingly popular in the context of controller synthe-
sis [JWYM20, GZY21, MDT+22, ZZL22]. A principled approach, however, that guaran-
tees some form of stability is largely lacking. Progress has been made when it comes to
handling side-information [AEK20], obtaining statistical stability guarantees [BTM+21],
in the context of input-state stability [YXRR22], in the context of input-output stabil-
ity by exploiting the Hamilton-Jacobi inequality [OK22], by exploiting contraction the-
ory [RKKM22] and by exploiting Koopman operator theory [ZB22], to name a few. As
these methods are data-driven, errors inevitably slip in and great care must be taken
when one aims to mimic CLF-based controllers, i.e., if LgV (x) = 0 =⇒ LfV (x) < 0
holds for the estimated system, does it hold for the real system and what happens if it
does not? In particular, recall (2.2.7). Moreover, in this setting the underlying dynamical

7See for example [Rif02, Sec. 2] and references therein for more on this notion.
8A well-known example attributed to Ledyaev and Sontag is of the form ẋ1 = u2u3, ẋ2 = u1u3,

ẋ3 = u1u2 cf. [LS99].
9A continuous function f is said to be semiconcave when there is a C > 0 such that x 7→ f(x)−C‖x‖22

is concave.
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control system is frequently unknown and a function class for V needs to be chosen a
priori, what does this choice imply? These questions inspired Section 4.2. We also point
out that these methods continue a long history of research on computational methods for
Lyapunov functions, e.g., see [GH15] for a review.

2.2.3 Topological perspective on level sets and singularities
We proceed by detailing (recalling) how level sets of smooth Lyapunov functions, with
respect to points, look like topologically. This result has some ramifications and provides
for motivation in the Section 4.2. For simplicity, we momentarily focus on (2.2.6).

In Section 2.2.2 we discussed why one might be interested in studying terms of the
form LgV (x)−1 = 〈∇V (x), g(x)〉−1 cf. (2.2.7). In this section we show that for practical
purposes, the properties of V frequently obstruct this term to be well-behaved (perhaps,
to no surprise). Indeed, singularities are studied and shown to be unavoidable when
g(x) := g for some g ∈ Rn.

To start, consider a C0 dynamical system of the form (2.2.1) on Rn, with n ≥ 2, and
assume that 0 ∈ Rn is globally asymptotically stable (and hence isolated). This implies
that there is a (strict) C∞ Lyapunov function V : Rn → R≥0. In particular, this implies
that V is also a Lyapunov function for the C∞ auxiliary system

d

dt
z(t) = −∇V (z(t)). (2.2.8)

Hence, 0 ∈ Rn is also GAS under (2.2.8). By a classical topological result largely10 due
to Krasnosel’skĭı & Zabrĕıko [KZ84, Sec. 52] this directly implies that the corresponding
vector field index (with respect to 0) satisfies

ind0(−∇V ) = (−1)n 6= 0.

As the vector field index is the (oriented) degree of the map v : ∂U → Sn−1 for any
open neighbourhood U of 0 containing no other equilibrium points in its closure [Mil65,
Sec. 6], [GP10, Ch. 3], this can only be true if

v : ∂U 3 z 7→ −∇V (z)

‖∇V (z)‖2

is surjective. As U is arbitrary, it follows that the (normalized) gradient of V along any
non-trivial level set hits any vector in Sn−1. Differently put, fix any g ∈ Sn−1 then, for any
c > 0 there is always a z ∈ V −1(c) =: Vc ⊂ Rn such that 〈∇V (z), g〉 = 0. Indeed, this is
why we assumed n ≥ 2, otherwise the claim is not true cf. [Son89, p. 121]. Summarizing,
we have shown the following—which we attribute to Wilson [WJ67] and Byrnes [Byr08,
Thm. 4.1].

Proposition 2.2.1 (Level sets of smooth Lyapunov functions (Wilson, Byrnes)). Let
n ≥ 2 and fix some g ∈ Rn \ {0}. Then, for any level set Vc, with c > 0, of any C∞-
smooth Lyapunov function V : Rn → R≥0, asserting 0 ∈ Rn to be GAS under some
dynamical system (2.2.1), there is an x ∈ Vc such that 〈∇V (x), g〉 = 0.

10Earlier comments can be found in [BK74], see also [JM23].
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Note, Proposition 2.2.1 implicitly assumes that 0 ∈ Rn is the only equilibrium point
as we assume the origin is globally asymptotically stable. If desired, one can adapt the
statement and work with the domain of attraction. Also note that the discussion above
detailed that the normalized vector ∇V (x) will hit any vector in Sn−1, our focus on
〈∇V (x), g〉 being equal to 0 at some point is purely application-driven. Moreover, we see
that the set of points that render the inner product zero is of codimension 1.

Indeed, Proposition 2.2.1 is itself classical as this result can also be understood more
intuitively by directly appealing to work by Wilson. Namely, due to the work by Wilson,
and later Perelman, we know that the level sets of (strict and proper) C∞ Lyapunov
functions V : Rn → R≥0 are homeomorphic to Sn−1 [WJ67, Sti12]. Although we might
assume that these level sets Vc and Sn−1 come equipped with a smooth structure, this
does not immediately imply the manifolds are diffeomorphic, e.g., consider Milnor’s ex-
otic spheres [Mil56]. Nevertheless, one expects that the gradient of V along Vc hits any
direction when seen as a vector in Sn−1, as indeed succinctly shown above. Visualizations
can be found in [Son99] and further comments of this nature are collected by Byrnes
in [Byr08], in particular, the diffeomorphism question is addressed.

The ramifications for smooth CLFs are immediate as one observes that the argument
with respect to the auxiliary system (2.2.8) extends mutatis mutandis.

These comments are motivated by renewed interest in CLFs from the neural network
community. The following example highlights some work that arguably would benefit
from Proposition 2.2.1.

Example 2.2.4 ((Almost) Singular CLF-based controllers). In [KYK22, Sec. IV] the au-
thors consider a dynamical control system of the form ẋ = f(x)+gu with f ∈ C∞(R2;R2),
g ∈ R2 and u ∈ R. Their to-be-learned CLF is of the form V (x) = σk(γ(x)−γ(0))+ε‖x‖2
with γ : Rn → R being an input-convex neural network and σi : R → R≥0 C1-
smooth locally quadratic activation functions [KM19, Eq. (13)] for i = 0, . . . , k. Hence,
V ∈ C1(Rn;R≥0). Indeed, the authors report that the learned CLF leads to large con-
trol values (under a Sontag-type controller (2.2.7)), they do not detail why. The above
discussion provides a topological viewpoint.

One can also interpret Proposition 2.2.1 through the lens of feedback linearization.
Consider some input-output system Σ of the form

Σ :


d

dt
x(t) = f(x(t)) + gu

y(t) = h(x(t))
(2.2.9)

for h = V , that is, h is given by the CLF V (with respect to f and g). Let the desired
output be yd ≡ 0 such that e(t) = y(t) − yd(t) = y(t). Hence, ė = V̇ . Now the standard
(relative degree 1) feedback linearizing controller for (2.2.9) is of the form u = (LgV )−1(v−
LfV ) with v denoting the new auxiliary input [Isi85, NvdS90]. Indeed, under the choice

v = −
√

(LfV )2 + (LgV )4

one recovers Sontag’s controller (2.2.7). Now Proposition 2.2.1 tells us that the decoupling
term (LgV )−1 must be singular in any sufficiently small neighbourhood of 0, i.e., the
relative degree assumption fails to hold.
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Remark 2.2.5 (Generalizations). To go beyond input vector fields of the form g(x) ≡
g ∈ Rn we look at two scenarios.
(g-i) (Dependency on x): Introduce the function class

Gn := {g ∈ C0(Rn;Rn) : g(x) = g1 + g2(x), g1 ∈ Rn \ {0}, lim
x→0

g2(x) = 0}.

Indeed, for any g ∈ Gn, with n > 1, it follows that for sufficiently small c > 0 there is an
x ∈ Vc such that 〈∇V (x), g(x)〉 = 0. The reason being that since g ∈ Gn there are always
x1, x2 ∈ Vc such that 〈∇V (x1), g(x1)〉 < 0 while 〈∇V (x2), g(x2)〉 > 0. Then the claim
follows from standing regularity assumptions11 and the intermediate value theorem.
(g-ii) (Multidimensional input): Assume that u ∈ Rm with 1 < m < n and let the
dynamical control system be of the form ẋ = f(x) +

∑m
i=1 giui (dependence on x can

be generalized as in (g-i)). Then, as span{g1, . . . , gm} 6= Rn there is a nonzero v ∈
span{g1, . . . , gm}⊥.

Exploiting the remark from above, we recover a slightly weaker version of a well-
known result cf. [Blo15, Prop. 6.1.4], better yet, one recovers (locally) a weaker version
of the highly influential obstruction to continuous asymptotic stabilization of Brockett’s
nonholonomic integrator e.g., see [Son98, Ex. 5.9.16].

Corollary 2.2.2 (Obstruction for nonholonomic systems). Assume that u ∈ Rm with
1 < m < n and let the dynamical control system be of the form ẋ =

∑m
i=1 gi(x)ui with

gi ∈ Gn for i = 1, . . . ,m, then, there is no smooth CLF with respect to 0 ∈ Rn.

Proof. Indeed, this result follows from, for example, Brockett’s condition [Bro83]. How-
ever, from Proposition 2.2.1 and Remark 2.2.5 we know there is a point x′ ∈ Rn \ {0}
such that 〈∇V (x′),

∑m
i=1 gi(x

′)〉 = 0. This implies that LfV (x′) < 0 must hold for V to
be a CLF. As f ≡ 0, this is impossible and no smooth CLF can exist.

2.2.4 Comments on discrete-time dynamical systems
So far, we looked at continuous-time dynamical systems, but similar results hold true
for discrete-time dynamical systems. The discrete version of (2.2.1) would simply be a
continuous map F : Rn → Rn, usually interpreted as xk 7→ F (xk) = xk+1 for k ∈ Z. If
F is derived from a flow, that is, if F corresponds to the time-one map x 7→ ϕ1(x), then
F is a homeomorphism (since ϕ−1 exists and is continuous). Indeed, in that case we can
still work with maps of the form (t, x) 7→ ϕt(x), yet, now t is taking values in Z.

Again, we can capture global asymptotic stability, in this case of a fixed point of F ,
that is, a point x? such that F (x?) = x?. For simplicity of exposition, suppose that x? is
again 0. In that case, the stability notions (s-i–s-ii) and Lyapunov characterization (V-i–
V-iii) carry over almost immediately, with the only difference being that (V–ii) is replaced
with V (F (x)) < V (x) for all x 6= 0. We also remark that in this case we gain little by
demanding that V is smooth. Continuity, however, is important regarding robustness.

It is interesting to point out that converse theory for the discrete case was not imme-
diate an usually relies on exponential stability [Hah58, KB60]. It took until 2002, when

11It readily follows that Vc>0 is a codimension 1, C∞ manifold.
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Jiang and Wang provided a converse theory for discrete-time systems, similar to what was
known for continuous-time systems [JW02, Thm. 1]. See also [GGLW14].

Discrete-time systems are frequently presented as a simple modification of continuous-
time systems, however, some phenomena are purely discrete or purely continuous. For
instance, in the discrete case, a finite escape time does not exist since x 7→ Fn(x) remains
a continuous map for any finite n ∈ Z≥0, mapping compact sets to compact sets. Indeed,
discretizing ẋ = x2 will not result in a (global) continuous map F : R→ R.

Also see that a global flow for a vector field immediately translates to a time-one map
x 7→ ϕ1(x) (discrete-time system), yet, the other way around is less obvious. For instance,
if F ∈ C0(Rn;Rn) should correspond to a time-one map of a global flow, then F must
be a homeomorphism. Now consider x 7→ F (x) = Bx for some low-rank B ∈ Rn×n.
Such a map does not correspond to a global flow and indeed see that ẋ = Ax translates
to xk+1 = eAxk where det(eA) = eTr(A) > 0 for any A ∈ Rn×n. We refer to work on
suspensions for more on relations between maps and flows [KH95].

2.2.5 Further comments on linear dynamical systems
Largely due to outstanding texts on linear algebra, we have a beautifully developed theory
of linear (dynamical) (control) systems, e.g., see [Won79]. In this section we highlight a
few aspects that are relevant for this thesis. In particular, we comment on dynamical
systems of the form

d

dt
x(t) = Ax(t) (2.2.10a)

and
xk+1 = Bxk (2.2.10b)

for some matrices A,B ∈ Rn×n.
First of all, by looking at the flow corresponding to (2.2.10a), that is, ϕt(x0) = eAtx0,

it follows somewhat directly (up to messy computations due to non-trivial Jordan blocks)
that for linear dynamical systems there is no difference between local and global conver-
gence, also, there is no difference between attractivity and asymptotic stability. In fact,
there is no difference between asymptotic stability and exponential stability. A slightly dif-
ferent viewpoint is that isolated equilibria of linear systems of the form (2.2.10a)—which
must be 0—always have their vector field index satisfying ind0(Ax) ∈ {−1, 1} (this follows
from a directly computation, recall Section 2.2.3).

Despite not parametrizing a wealth of behaviour, linear systems are populair as they
ought to approximate nonlinear systems locally. The Hartman-Grobman theorem [Rob95,
Ch. 5] formalizes this and states that if the linearization of a nonlinear system around
an equilibrium point is locally hyperbolic, then, the linearized system is qualitatively
equivalent to the original nonlinear system, locally. This is not completely satisfactory as
the neighbourhood where this result holds true is frequently unknown and nothing can be
said for systems as simple as ẋ = −x3. We return to hyperbolicity in Section 2.3.

We also remark that more recent work looks at linear time-varying (LTV) and switched
linear systems (SLSs), to leverage our understanding of linear systems, applied to nonlinear
problems, e.g., see [Lib03, VTHK21].
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So far, we have discussed the Euclidean finite-dimensional case, which is largely intu-
itive and indeed well-understood. In the infinite-dimensional case, intuition rapidly break
down.

Example 2.2.6 (Stability of infinite-dimensional linear systems). Here, we elaborate
on [VDKS93, Thm. 4.11], which we point to as a source of various other examples.
Throughout, let n ≥ 1. Now, define the matrix An ∈ Rn×n via

An :=


−1 −2 · · · −2

0 −1
. . .

...
...

. . . . . . −2
0 · · · 0 −1

 .

By the triangular structure of An it follows immediately that λi(An) = −1 for all i ∈ [n]
and thus ẋ = Anx corresponds to a dynamical system with the origin 0 ∈ Rn being
globally asymptotically stable. In particular, by the definition of Lyapunov stability this
implies that ‖exp(tAn)‖p < +∞ for any t > 0 since ϕt(x0) = exp(tAn)x0. Such a bound
is of interest since it directly relates to relative peaking phenomena through

sup
t≥0

sup
x0∈Sn−1

‖ϕt(x0)‖p
‖x0‖p

= sup
t≥0
‖exp(Ant)‖p.

Interestingly, despite the structure of An, limn→+∞ ‖exp(Ant)‖∞ = +∞ for any t > 0.
The intuition is that the operator A∞ does not map `∞ to `∞. To make this precise,
define a shift matrix Sn ∈ Rn×n via Sn,ij := δi+1,j , that is, Sn is of the form

Sn =



0 1 0 · · · 0

0 1
. . .

... 0
. . . 0
. . . 1

0 · · · 0


.

The matrix Sn is nilpotent, meaning that Skn = 0 for sufficiently large k ∈ N≥0. In this case
Skn = 0 for any k ≥ n. Also, fix some t > 0 and define the map C 3 z 7→ f(z) := exp(−t(1+
z)(1 − z)−1) ∈ C. Indeed, f has merely a pole at ei0 ∈ C such that f ∈ H(C \ {ei0};C)
(holomorphic away from ei0). This means that f admits a series representation around,
for instance, 0 ∈ C on the open complex unit disk, that is, f(z) =

∑∞
j=0 aj(t)z

j for some
t-dependent sequence (aj(t))j∈N≥0

. Now see that f(eiθ) = exp(−it/ tan(θ/2)) such that
limθ→0 f(eiθ) fails to exist indeed. All of this tells us that

∑∞
j=0 |aj(t)| = +∞. The claim

is concluded by overloading f and observing that −(In + Sn) = An(In − Sn) such that
exp(tAn) = f(Sn) =

∑n−1
j=0 aj(t)S

j
n and ‖exp(tAn)‖∞ =

∑n−1
j=0 |aj(t)|.

Next, we provide more commentary on discrete-time systems and stability, central to
Chapter 3.
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Schur stable matrices

A matrix B ∈ Rn×n is said to be Schur stable when ρ(B) < 1. Consider such a matrix
B in the context of a linear dynamical system, e.g., (2.2.10b). Now if B is diagonalizable
through B = TΛT−1, it immediately follows that ‖xk+1‖2 ≤ κ(T )ρ(B)k‖x1‖2 and thus
asymptotic stability of the origin readily follows. As usual, we remark that if B is not
diagonalizable, the computation is more involved. Indeed, as in the continuous case,
exponential stability also readily follows as we simply translate terms of the form αk, with
α ∈ (0, 1) to e−βk with β = − log(α) > 0. For a more quantitative notion of stability, that
is, (τ, ρ)-stability, we refer to Definition 3.1.11.

Regarding Lyapunov functions, we point out that since Lyapunov functions can always
we chosen to be quadratic, we end up with the so-called “discrete Lyapunov equation”:

BTPB − P +Q = 0. (2.2.11)

for some P,Q ∈ Sn�0. As (2.2.11) is linear (affine) in P , we can solve for P when B is
Schur and Q is fixed. To see this, it follows that

BTPB − P = −Q ⇐⇒ (BT ⊗BT − In2)vec(P ) = −vec(Q),

for “⊗” denoting the Kronecker product and P 7→ vec(P ) ∈ Rn2 being standard “column
stacking”, with (BT⊗BT−In2) being invertible when B is Schur. For a detailed exposition
of (2.2.11) and related equations, consider [LR95] or [vS21, Ch. 22].

We end this subsection with a comment on mere stability. The set of Schur (asymp-
totically stable) matrices is open (the spectral radius is a continuous map), unbounded
(rescale an off-diagonal term) and nonconvex (combinations of upper- and lower-triangular
matrices are common counterexamples). The set of matrices that are merely stable (i.e.,
such that 0 is Lyapunov stable under (2.2.10b)) is more deceptive. For instance, consider
the matrices B1 and B2 given by

B1 =

(
1 1
0 1

)
, B2 =

(
1 1
0 1− ε

)
, (2.2.12)

where ε ∈ (0, 1) is arbitrarily small. Both matrices have their spectral radius equal to 1,
so one might jump to the conclusion that they correspond to stable matrices. However,
now consider the limits B∞i := limk→∞Bki :

B∞1 =

(
1 ∞
0 1

)
, B∞2 =

(
1 ε−1

0 0

)
. (2.2.13)

This means that the spectral properties are not enough and one needs to discuss marginal
stability. In fact, the space of stable matrices is neither open nor closed [GKS19].

2.2.6 Dynamical control systems on topological spaces
The state space framework as illustrated above can be generalized from Rn to smooth
manifolds and when working with flows directly, to topological Hausdorff spaces. The
benefit of such a generalization is largely the contribution to our understanding. These
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studies usually reveal what we can do and most importantly, why. The price to pay for
this generality is that these studies are largely qualitative, that is, explicit models are
rarely available and since we are not imposing metrics, we have to do with asymptotic-
instead of exponential notions of stability. The key difference, between working over Rn
and some space that is not contractible, e.g. the circle S1, is that the topology of the
space restricts dynamical behaviour, we saw this in Example 1.1.2. It is interesting to
note that, intuitively, the stability notions and even the Lyapunov stability theory largely
extends.

In this section we only scratch the surface and introduce some notation. We elaborate
in Chapter 6.

First, there are several generalizations of the standard “Euclidean dynamical control
system”: ẋ = f(x, u). Generalization of the following form are still actively studied,
and doing so, Kvalheim recently generalized [Kva23] the seminal necessary conditions by
Brockett [Bro83], Coron [Cor90] and Mansouri [Man07, Man10]. For more context, see
also [JM23, Ch. 6]. For simplicity, we assume our manifold to be C∞-smooth (simply,
“smooth” from now on).

A continuous control system [WVdS82, Def. 6], [NvdS90, TP05, KK22] is the triple
Σ = (M, F,U), consisting of a smooth manifold M, a topological space U , a continuous
surjective map πu : U → M, the canonical projection πx : TM → M and a continuous
fiber-preserving map F : U → TM such that the following diagram (solid lines) commutes:

U TM

M

πu

F

πx
µ

Available inputs at p ∈ M are characterized by the sections (dashed line) Γ(U), i.e.,
the continuous maps µ : M → U such that πu ◦ µ = idM. Hence, the closed-loop vector
field is of the form F ◦ µ : M → TM. For example, the populair input-affine framework
corresponds to πu : U → M being a vector bundle. Effectively, what is achieved, is that
necessary conditions from global stabilization via feedback, can be studied through the
existence of sections.

For instance, in aerospace, constraints in the engine thrust can result in input con-
straint sets that look like homotopy spheres [MRS+22, p. 47] (e.g., constraints are of
the form ρ ≤ ‖u‖2 ≤ ρ). Hence, in that case it is far from obvious that a global section
exists, e.g., consider the Hopf fibration.

We continue along these lines in Chapter 6.

2.2.7 Further examples
An unwritten rule is that every work on dynamical systems must contain something on
the pendulum. For us, this example helps in illuminating that our idealized notion of
stability (asymptotic stability) appears where one would expect it.

Example 2.2.7 (The (mathematical) pendulum). Normalizing mass, gravity and the
length of the rod, the potential energy of the pendulum is given by U(θ) = 1 − cos(θ)
whereas the kinetic energy becomes T (θ, θ̇) = θ̇2, see Figure 2.2. Hence, the Lagrangian
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Figure 2.2: Example 2.2.7.

is simply L(θ, θ̇) = θ̇2 − (1 − cos(θ)) such that the Euler-Lagrange equations yield θ̈ =
− 1

2 sin(θ) for the equations of motion. Now, we suppose that there is friction (again,
normalizing any constants) such that the final equation becomes θ̈ = − 1

2 sin(θ)− θ̇, or as
in first-order form with (x1, x2) = (θ, θ̇):

d

dt

(
x1(t)
x2(t)

)
=

(
x2(t)

− 1
2 sin(x1(t))− x2(t)

)
. (2.2.14)

Although the notation for (2.2.14) might reminisce of R2, the dynamical system should
be understood as living on S1×R (see [JM23, Fig. 1.2]). As the cylinder is not contractible,
we cannot have global asymptotic stability and indeed we have two equilibrium points
being xs = (0, 0) and xu = (π, 0), see Figure 2.2. Linearizing (2.2.14) around these points
reveals they are both hyperbolic such that we can infer local stability properties. Indeed,
xs is locally asymptotically stable and xu is unstable (a saddle). Exactly as intuition
would tell us. To make almost global statements, one can use the energy E = T +U as a
Lyapunov function and use the Krasovskii-LaSalle invariance principle [Kha02, Sec. 4.2]
to conclude on almost global asymptotic stability of xs.

Example 2.2.8 (Solving a linear system). Suppose we want to solve the linear system
Ax = b for x, assuming that A ∈ GL(n,R). We can construct the negative gradient flow
(with respect to the objective f(x) = 1

2‖Ax− b‖
2
2):

d

dt
x(t) = −AT(Ax(t)− b).

Now consider the Lyapunov function V = f (V (x) = 0 ⇐⇒ x = A−1b, V (x) ≥ 0) and
see that since −‖ · ‖2AAT ≤ −‖ · ‖22σmin(A)2 we have that V̇ ≤ −V σmin(A)2 such that (by
Grönwall’s inequality)

1
2‖Ax(t)− b‖22 = V (x(t)) ≤ e−σmin(A)2tV (x(0)) = 1

2e
−σmin(A)2t‖Ax(0)− b‖22.

Let us apply this to the discrete Lyapunov equation (2.2.11). In vectorized form, we
aim to solve (BT ⊗ BT − In2)vec(P ) = −vec(Q) for P . Unrolling vectorizations and
exploiting properties of the Kronecker product (e.g., (BT ⊗ BT − In2)T = (B ⊗ B − In2)
and vec(BXAT) = (A⊗B)vec(X)) we readily find that the following (affine) differential
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Figure 2.3: Phase portrait of (i) ẋ = −x3 and (ii) ẋ = εx− x3.

equation

d

dt
P (t) = −B(BTP (t)B − P (t) +Q)BT +BTP (t)B − P +Q

solves (2.2.11), in an exponentially stable12 manner.

2.3 Structural stability
Stability is sometimes, and incorrectly, said to be important since it allows for modelling
errors (one should discuss feedback instead [Kha16]). Consider the non-hyperbolic system
ẋ = −x3, with 0 ∈ R being globally asymptotically stable. Indeed adding an arbitrarily
small term of the form εx for some ε > 0 destroys stability, e.g., consider Figure 2.3. The
exact opposite can be done for ẋ = x3, from 0 being globally unstable, to 0 being locally
stable under ẋ = x3 − εx. The crux here is the lack of structural stability, which is as
shown evidently independent of equilibria being stable or not.

Stability in the sense of Lyapunov is essentially about perturbations in the state (initial
condition), away from an attractor. Structural stability is about perturbations in the
system description itself. If somehow “most systems” would be structurally stable, then,
sufficiently small modelling errors are forgiven. This motivated the likes of Poincaré,
Birkhoff, Andronov, Pontryagin, Lefschetz, Smale, Thom, Peixoto(s) and many others to
study this topic.

To define structural stability, we need to define topological equivalence.

2.3.1 Topological equivalence
Regarding topological equivalence in the context of linear control systems, [Wil80] Willems
stated in 1980 that “Because of the obvious ... practical importance of these concepts,

12It is tempting to say “exponentially fast”, but towards such a claim, one must talk about how
exactly the differential equation is integrated. It is interesting to note the typical iterative scheme Pk+1 =
BTPkB +Q can be analyzed through contractions as highlighted in Section 2.1.2. To that end one does
need to find an appropriate norm ‖ · ‖P (or change of coordinates), to link norms to spectral radii, this
is also used in the proof of Proposition 3.1.6.
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Figure 2.4: We speak of topological equivalence, denoted 't, when two phase portraits are
homeomorphic, while preserving the direction of time.

... there is no doubt that they will become standard vocabulary among practitioners.”
Although Polderman [Pol87] provided many additional insights a few years later, there
has been little recent follow-up work on topological properties of control systems.

In this thesis we will frequently study the qualitative behaviour of a dynamical system.
We capture this via the notion of topological equivalence13.

The advantage is that we can greatly simplify the study and pass from a continuum
of systems to just a set of classes which is usually finite. The topological classification of
linear flows and maps was pioneered by Kuiper and co-workers [KR73]. A range of these
ideas were later extended into the system theoretic direction [Wil80] and some attention
has been given to topological feedback linearization, e.g., see [Če95], plus there is recent
interest in structural stability in the context of systems biology [BCCG20]. We believe
this lack of interest is in part due to the fact that topological classification seems to be
rather coarse, and frankly, rather difficult. In this thesis we hope to provide some concrete
motivation and perhaps contribute to re-instigating this beautiful field.

Topological equivalence in linear dynamical systems

This part mainly highlights the work of Kuiper and Robbin [Rob72, KR73], looking at
dynamical systems of the form

V 3 x 7→ f(x) ∈ V (2.3.1)

where the time-one map f : V → V is a linear endomorphism14 over a finite-dimensional
topological vector space V. Then, we say that two dynamical systems are topologically
equivalent when their phase-portraits are homeomorphic15, preserving the direction of
time [Rob95], [Kuz04, Ch. 2] (see Figure 2.4). The purpose of this tool is to characterize
classes of dynamical systems giving rise to qualitatively similar behaviour. This notion
appears in the celebrated Hartman-Grobman theorem [Rob95, Thm. 5.3] and is the key

13To avoid confusion, we would like to stress that the vast majority of work on topology in the context
of control, relates to network topology, which is not what this, or any other section, is about.

14For example, for V = (Rn,+) linear maps are endomorphisms as they preserve the group-structure
of Rn. If these maps are invertible they are called automorphisms.

15To remind the reader, two topological spaces X and Y are homeomorphic when there exists a con-
tinuous bijective map ϕ : X → Y with a continuous inverse. Such a map ϕ is called a homeomorphism.



32 Chapter 2. Introduction to stability theory

concept in bifurcation theory [Kuz04], which studies precisely this qualitative change. In
fact, we speak of a bifurcation when a system, after some parameter change, is not (locally)
topologically equivalent anymore to its initial configuration. The notion of topological
equivalence has an explicit characterization in the discrete-time setting, there it coincides
with the two time-one maps being conjugates.

Definition 2.3.1 (Topological equivalence). Two endomorphisms f : V → V and g :
W → W over topological vector spaces V and W are topologically equivalent, denoted
f 't g, if and only if there exists a homeomorphism ϕ : V → W such that g ◦ ϕ = ϕ ◦ f ,
that is, the diagram

V V

W W

f

ϕ ϕ

g

(2.3.2)

commutes.

Instead of Definition 2.3.1 one encounters the stronger notion of linear equivalence
more often. Indeed, for any T ∈ GL(n,R) and A ∈ Rn×n the diagram (2.3.2) commutes
for f(x) = Ax, g(y) = TAT−1y, i.e., ϕ(x) = Tx. However, the quotient space under
linear equivalence is still a continuum, whereas from a topological point of view, there are
for example just 7 scalar linear systems (maps) [KR73, Prop. 1.5]. Hence, one can think
of Definition 2.3.1 as a weaker change of coordinates. However, one should merely assume
that the map ϕ is a homeomorphism, assuming ϕ to be a diffeomorphism implies that ϕ
is linear [Rob95, Prop. 6.1].

To clarify Definition 2.3.1, examine the example from [KR73] given by f(x) = 2x and
g(y) = 8y. Although their eigenvalues are clearly different, qualitatively, f and g are the
same. Indeed, f 't g since ϕ(x) = x3 is the corresponding homeomorphism. Observe
that although ϕ ∈ Cω(R), the inverse ϕ−1(x) = 3

√
x ∈ C0(R).

Then, Kuiper proposes several conditions on the (generalized) eigenspaces of the linear
endomorphims f and g to show topological equivalence. We will mainly focus on two of
them; stability, but most and for all: orientation.

Definition 2.3.2 (Orientation of linear maps). We call a linear automorphism f orienta-
tion preserving when the sign of the signed volume of the unit cube is invariant under the
map f . This preservation (of orientation) is denoted by or(f) = 1, otherwise or(f) = −1.

For example, given x 7→ f(x) = Fx and y 7→ g(y) = Gy with F ∈ GL+(n,R) and
G ∈ GL−(n,R), then, or(f) = 1 while or(g) = −1. The intuitive reason why stability and
orientation show up is as follows. Given time-one maps f and g, the trajectories they
induce are homeomorphic when there is a homeomorphism ϕ such that f = ϕ ◦ g ◦ ϕ−1.
The link with stability follows from the observation that this definition implies that16

fn = ϕ ◦ gn ◦ ϕ−1 must hold for any n, that is, the direction of time is enforced. As
ϕ will be either orientation preserving or reversing, Definition 2.3.1 implies that or(f) =
or(g). In fact, orientation is a topological invariant [Lee11, Ch. 6, 10], such that for two
automorphisms f and g, f 't g, only if or(f) = or(g). When f is not an automorphism,

16Where fn is understood as f ◦ f ◦ · · · ◦ f , that is, applying the operator n times.
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then, the orientation of f is only defined over its (invariant) automorphic domain. In the
scalar case, the orientation can be interpreted as spring vs. damper-like behaviour, in
higher dimensions one can think of the map relating to a flow or not, see Remark 2.3.1
below.

At last we state the main tool of this section, which supplies us with an easy sufficient
condition to assess if f 't g (in the case of linear maps).

Theorem 2.3.3 (Topological equivalence of asymptotically stable systems [Rob95, Thm
9.2, p. 117] ). Let x 7→ f(x) = Fx and y 7→ g(y) = Gy be asymptotically stable linear
automorphisms on Rn. Moreover, let X(t) parametrize a path in GL(n,R), continuously
depending on t ∈ [0, 1], such that X(0) = F and X(1) = G, then, f 't g.

The key in Theorem 2.3.3 is to demand that F and G are members of the same path-
connected component17 of GL(n,R), hence the maps f and g have the same orientation.

Remark 2.3.1 (Orientation in the wild). Orientation might seem like an esoteric prop-
erty, especially for simple linear dynamical systems, but it makes its appearance especially
often when one discretizes a continuous-time problem. For instance, sampling any solution
to ẋ = Ax yields the time-one map x 7→ exp(sA)x for some sampling step s > 0. It can
be seen from det(exp(A)) = exp(Tr(A)) that this map is always orientation-preserving.
It is known that this observation extends to non-linear systems [Arn88], e.g., the same
holds (locally) for any Poincaré return map, which follows from the Liouville formula
(cf. [Kuz04, Ch. 1]). This means that if one imposes a control law on these discretized
maps which flips the orientation, then, this resulting map could never relate to some
continuous flow.

Remark 2.3.2 (Continuous-time topological equivalence). Definition 2.3.1 allows to work
with topological equivalence in the case of discrete-time systems (cf. Section 4.1). Regard-
ing continuous-time systems, suppose we have two vector fields ẋ = F (x), ẋ = G(x), for
simplicity on Rn, and we want to understand their qualitative equivalence. Suppose we at-
tach flows to those vector fields, say ϕ to F and ψ to G. Then, if there is a homeomorphism
h such that ϕt = h−1 ◦ϕt ◦h, then, we speak of a topological conjugacy cf Definition 2.3.1.
In the continuous-time case, this is stronger than topological equivalence, as a continuous,
monotone, reparametrization of time does not break topological equivalence. That is, we
speak of topological equivalence, we there is a map α ∈ C0(R × Rn;R), (t, x) 7→ α(t, x),
monotonically increasing in t for any fixed x, such that ϕα(t,·) = h−1 ◦ ϕt ◦ h [Rob95, p.
115]. Evidently, as we appeal to flows, this is hard to practically work with. In fact, the
previous remarks can be also be seen as further motivation for Lyapunov theory, that is,
to understand qualitative dynamical behaviour without resorting to solutions (flows).

Comments on structural stability

Having briefly discussed topological equivalence, we can comment on structural stability.
Simply put, a dynamical system is structurally stable when a perturbation to the system

17The general linear group GL(n,R) has two path-connected components, which follows from det :
Rn×n → R being continuous and Rn×n \ GL(n,R) = det−1(0).
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Figure 2.5: Three vector fields on S1: (i) X having two hyperbolic equilibrium points and
clearly X t Z(S1); (ii) X having a single index-0 equilibrium point and indeed X fails to be
transversal to Z(S1) at this point; (iii) X having no equilibrium points and trivially X t Z(S1).
The visualization is possible by TS1 't S1 × R.

preserves its topological class. Evidently, the type of perturbation must be made pre-
cise. As we will look several times at linear dynamical systems in this thesis, frequently
motivated as being local representations of nonlinear dynamical systems, we discuss the
structural stability of these local linear representations. We do this from a rather gen-
eral viewpoint, that is, to see how the linearization behaves under perturbation to the
nonlinear system directly.

For simplicity, we only consider smooth (i.e., C∞-smooth) spaces. LetM be a compact,
smooth manifold. Then, a vector field X ∈ Γr(TM) is Cr-structurally stable (typically,
C1) when Γr(TM) contains an open neighbourhood U of X, with respect to the Cr-
topology (Whitney topology), such that all vector fields in U are topologically equivalent.
We recall that the Cr-topology is a vast generalization of, for instance, the topology
generated by the Ck-norm on Ck([0, 1]), i.e.,

‖f‖Ck =
∑k
i=0 supx∈[0,1] |f (i)(x)|.

For the details we point to [Hir76, PDM82]. We need another technical notion. Let
F : M → N be a smooth map between smooth manifolds and let S ⊆ N be a smooth
submanifold. We say that F is transversal to S, denoted F t S, when Im(DFp)+TF (p)S =
TF (p)N for all p such that F (p) ∈ S. This notion of transversality allows for generalizations
of critical point theory, i.e., F is transversal to its regular values. Thom provided several
powerful results, for instance, suppose in addition to the above that S is closed and let
k ≥ 1, then, the subset {F ∈ Ck(M;N) : F t S} is open and dense, e.g., see [PDM82, p.
25]. This is intuitive, when drawing two lines on a piece of paper, they will be “almost
surely” transversal (note, if F−1(S) = ∅, then F is trivially transversal to S). Now, we say
that an equilibrium point p? of X ∈ Γr(TM) is simple when DXp? is an isomorphism. It is
not too surprising that p? is simple if and only if the vector fieldX : M→ TM is transversal
to the zero section at p?, that is, the map p 7→ (p,X(p)) ∈ TM should be transversal to
Z(M) = {(p, 0) ∈ TpM : p ∈ M} at p?, see also Figure 2.5. Then, by exploiting Thom’s
transversality theorem, one can now show that {X ∈ Γr(TM) : X t Z(M)} is open
and dense in Γr(TM) [PDM82, p. 56]. In fact, one can show that vector fields with
their equilibrium points being hyperbolic, are open and dense in that particular set as
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well [PDM82, p. 58]. Now one can continue, along the lines of Theorem 2.3.3, and show
that hyperbolic equilibria of X ∈ Γr(TM) are locally structurally stable [PDM82, p. 67].
This means that in a fairly general sense, hyperbolic equilibria are structurally stable.
Hence, the study of linear dynamical systems as local representations can be rigorously
justified, however, how local is up for debate.

2.4 Other notions of stability

There are many interesting notions of stability we did not cover here.

First of all, we did not cover input-to-state stability (ISS) and “practical stability”,
see [Son01] for an introduction to ISS by Sontag himself. We also barely touched upon
time-varying systems and hence did not cover any of the relevant stability notions in that
context, most of the early texts already include non-autonomous systems, e.g., see [Hah67],
see [JL14] for further technical discussions on time-varying vector fields. Another stability
notion we did not cover is finite time stability. To put our further work on asymptotic
stability in the right perspective, we provide an explicit example.

Example 2.4.1 (Finite time stability). Consider some Hurwitz matrix A ∈ Rn×n and
the linear ODE ẋ = FA(x) := Ax. We know that the origin must be exponentially
stable under this dynamical system. If instead, we consider ẋ = F1(x) := Ax/‖Ax‖2 with
F1(0) := 0, what would happen? We point in the exact same direction, yet, the magnitude
of the tangent vectors is constant on Rn\{0}. First, as dynamical systems of this form fail
to be continuous, we resort to analysis in the sense of Filippov. For the details we point to
his book [Fil88] and in particular to Chapter 2 for the intuition behind his convexification
method. In our case, we can study F1 through the differential inclusion

d

dt
x(t) ∈ F (x(t)) =

{
F1(x) if x 6= 0

∩δ>0 cl convF1(Bnδ (0) \ {0}) otherwise.
(2.4.1)

Since ‖F (x)‖2 ≤ 1, solutions to (2.4.1) (in the integral sense) can be guaranteed to
exist [Kun00, Thm. 2.2.1] (this is why we consider Ax/‖Ax‖2 and not Ax/‖Ax‖22). Now,
to study finite time stability of the origin under F1, we aim for finding a Lyapunov
function V , together with constants k > 0 and α ∈ [0, 1) such that under (2.4.1) we
have that V̇ ≤ −kV α on Rn \ {0}. The intuition follows from studying the scalar ODE
ẋ = −kxα, for references we point to [MP05].

Now, let x 7→ V (x) = 〈Px, x〉 be the Lyapunov function corresponding to FA. In
particular, we know there is a Q � 0 such that PA + ATP � −Q. Now see that the
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Figure 2.6: Example 2.4.1: (i) the vector field FA for (2.4.2); and (ii) integral curves t 7→ ξ(t),
emanating from (1, 1) ∈ R at t = 0, for both FA and F1.

following holds for any x ∈ Rn \ {0}:

〈∇V (x), F (x)〉 =
1

‖Ax‖2
〈(PA+ATP )x, x〉 ≤ − 1

‖Ax‖2
〈Qx, x〉

≤ − ‖x‖22
‖x‖2‖A‖2‖Q−1‖2

= − 1

‖A‖2‖Q−1‖2
(‖x‖22‖P‖2)1/2

‖P‖1/22

≤ −kV (x)α

for k = 1/(‖A‖2‖Q−1‖2‖P‖1/22 ) and α = 1
2 . Them, to compare FA against F1 we consider

A =

(
−1 10
0 −2

)
(2.4.2)

and show FA, plus the convergence over time, in Figure 2.6. We see that, although finite
time stability is very appealing, it is, for all practical purposes, not uniformly “better” than
exponential- or even asymptotic stability. Of course, it does allow for the computation of
settling times, which is of great interest.

We also did not touch on stability through optimal- or model predictive control (MPC)
(although we will mention LQR several times in the thesis, see Chapters 3-4.). Especially
in optimal control, care needs to be taken with discount factors [PBND16], which is the
de facto paradigm in reinforcement learning. Stability in the context of MPC is also still
an very active research area. Recently, the stability analysis of MPC—towards necessary
and sufficient conditions, is generalized through the lens of dissipativity and the maximum
principle [Fau21].

Another important notion is incremental stability. Throughout, we always assume
some extra knowledge regarding our system in that we assume to know something about
our attractor18. Suppose you do not have this knowledge, then, incremental stability

18Although, we like to emphasize that we are frequently after necessary conditions in that we start
from a desirable attractor and then ask if a corresponding dynamical system exists.
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allows you to still conclude on some notion of stability, that is, when trajectories are
asymptotically (usually, exponentially) attracted to each other (hence the name). Or as
Lohmiller and Slotine put it, “the initial conditions are exponentially forgotten” [LS98, p.
4]. Incremental stability is elegantly captured via contraction analysis. Very briefly, given
a C1-smooth dynamical system of the form ẋ = F (x), construct the variational equation
δẋ = ∂xF (x)δx and see that

d

dt
〈δx(t), δx(t)〉 =

〈(
∂xF (x(t)) + ∂xF (x(t))T

)
δx(t), δx(t)

〉
.

Hence, bounds on the symmetric part of the Jacobian ∂xF (x) allow for an exponentially
fast contraction. For more details, see [LS98].

We also barely touched upon hybrid- or switched systems [Lib03]. The stability no-
tions in that context are similar, yet, care needs to be taken in handling a lack of
regularity [GST12], as we briefly saw in Example 2.4.1. Common approaches are to
work with piecewise “regular”, multiple- or path-complete Lyapunov functions, instead
of a common smooth Lyapunov function directly (we were lucky in Example 2.1.3), e.g.,
see [Bra98, Joh03, AJPR14].

At last, we also did not touch upon stability of systems, which we cover in some more
detail below.

2.4.1 Comments on stability of systems
Although we are mostly concerned with dynamical systems, that is, systems of the form
ẋ = F (x) or xk+1 = G(xk), we do briefly mention several viewpoints when working with
non-trivial outputs. The key difference with other notions of stability is that now the
dynamical (differential/difference) perspective is internal, that is, we effectively consider
“simply” maps from inputs to outputs.

There are many different notions of input-output stability, we follow [Kha02, Ch. 5-6],
but only scratch the surface.

Lp-stability

Suppose that the input t 7→ u(t) ∈ Rm and output t 7→ y(t) ∈ Rp are related through
y = H(u), that is, a map H : Lep(Rm) → Lep(Rp) (where the superscript e denotes that
we deal with “extended” Lp-spaces, that is, we cannot constrain y ∈ Lp(Rp), a priori).
Then we say, for instance, that H is Lp-stable when there is a class-K function19 γ and
a constant β ≥ 0 such that

‖yτ‖Lp ≤ γ(‖uτ‖Lp) + β ∀τ ∈ [0,∞). (2.4.3)

Indeed, when H is L∞ stable, the input-output system is bounded-input bounded-output
(BIBO) stable.

Now, given a linear time-invariant (LTI) (input-output) system of the form

ΣLTI
i/o :

{
ẋ =Ax+Bu

y =Cx+Du,
(2.4.4)

19The function γ is said to be of class−K when γ(0) = 0 and γ(s) > γ(t) for all s > t.
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then clearly, input-output stability is not immediately related to stability of the state
(internal stability), e.g., uncontrollable unstable modes might live in the kernel of the
observability matrix. Moreover, interpret (2.4.4) as a controlled system with u a distur-
bance signal and suppose that A is Hurwitz. It can be shown that for the transfer matrix
G(s) = C(sI −A)−1B+D we have that the L2-gain of (2.4.4) equals supω∈R ‖G(jω)‖2 =
‖G(jω)‖H∞ , which one might try to optimize towards desired performance (H∞ control).

It should be evident that in general, it is hard to say anything about Lp stability of
an input-output system. A fruitful approach relates again to Lyapunov stability theory
and is called passivity. A nonlinear input-output system

Σi/o :

{
ẋ =f(x, u)

y =h(x, u),
(2.4.5)

with f(0, 0) = 0, h(0, 0) = 0, f and h both sufficiently regular, x ∈ Rn and u, y ∈ Rm
is then said to be passive when there is a storage function S ∈ C1(Rn;R≥0) such that
〈u, y〉 ≥ Ṡ(x). Now suppose that (2.4.5) is not just passive, but “strictly output passive”,
meaning in this case that there is a δ > 0 such that 〈u, y〉 ≥ Ṡ(x) + δ〈y, y〉. One readily
computes (see [Kha02, Lem. 6.5]) that

‖yτ‖L2
≤ 1

δ ‖uτ‖L2
+
√

2
δS(x(0)),

and thus, (2.4.5) is L2-stable with a L2-gain bound of 1/δ. This line of reasoning can be
continued and one can even use passivity to reason about internal stability, which is not so
surprising, since given a passive system with storage function S, we know that regarding
stability of the origin under ẋ = f(x, 0) we can simply use V = S, since Ṡ(x) ≤ 0 (u = 0).

Stability through output feedback

Stability of systems is rather different from stability of dynamical systems, the same is
true for stabilizability.

Consider (2.4.4). Typically, the internal states cannot be directly measured and as
such a standard control problem is to regulate the system through output feedback.
When (2.4.4) is minimal, this can always be done, but it is important to note that control-
lability just guarantees there is a stabilizing feedback of the form u = Kx, not u = K ′y.
Indeed, a stabilizing static output feedback is not guaranteed to exist when (2.4.4) is
minimal.

Consider the single-input single-output (SISO) LTI system

ΣLTI
i/o :


ẋ1 = x2

ẋ2 = u

y = x1.

(2.4.6)

Note, (2.4.6) is controllable and observable (simply compute, for the appropriate triple
(A, b, c), the matrices (bAb) and (cT (Ac)T). One might wonder if there is a continuous
output feedback u = k(y) = k(x1) that asymptotically stabilizes the origin of the internal
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system. Sontag provides an elegant Lyapunov-based counterargument to the existence of
such a feedback (2.4.6) [Son98, Ex. 7.2.1], we elaborate.

First, reconsider (2.1.2). Then, since k is continuous and by assumption k(x1) =
0 ⇐⇒ x1 = 0, we know that either (i) the sign of k agrees with x1 or (ii) the sign of k
is the opposite.

Regarding case (i), we use a topological argument to argue that the closed-loop be-
haviour cannot be stable. We know that since 0 is a saddle under F+, the vector field
index evaluates to ind0(F+) = −1, see Figure 2.1, whereas for an asymptotically stable
vector field this would be 1 instead. Now the index of the closed-loop system under k is
not obvious, however, vector fields that “point in the same direction” have the same index
(formalized in [JM23, Ex. 3.2]). Taking the inner product between (x2, k(x1) and (x2, x1)
yields x2

2 + x1k(x1) > 0 for all (x1, x2) 6= 0. Hence, the index of 0 under the closed-loop
vector field will be −1 as well.

Then, regarding case (ii), we take a Hamiltonian20 point of view and recover the
example by Sontag. Recall that if we have a (normalized) harmonic oscillator, then the
Hamiltonian is H(p, q) = 1

2p
2 + 1

2q
2, resulting in the center

q̇ =
∂

∂p
H(q, p) = p, ṗ = − ∂

∂q
H(q, p) = −q,

that is, q̈ = −q. Now, given that k must have the opposite sign of x1 it readily follows
that the closed-loop system must be of the form q̈ = −K(q)q, for K ∈ C0(R;R≥0) with
K(0) = 0. Differently put, K is a state-dependent spring constant. With this in mind,
the corresponding Hamiltonian readily follows as H(q, p) = 1

2p
2 +

∫ q
0
K(s)sds cf. [Son98,

Ex. 7.2.1]. By construction, the Hamiltonian is conserved along trajectories of the system
and hence the origin cannot be asymptotically stable (as there are points (q, p) such that
H(q, p) 6= 0).

Evidently, since (2.4.6) is minimal, we can stabilize the system, however, we must use
dynamic feedback, that is, construct an observer ˙̂x = (A+BK)x̂+L(Cx̂−y) such that we
recover the current state through the output and effectively apply standard static state
feedback u = Kx̂, see [Son98, Thm. 32]. For instance, we can pick L = KT = (−1,−1) ∈
R2.

2.4.2 Numerical stability
Very much related to stability through regularity, we briefly comment on numerical stabil-
ity. Rigorously defining numerical stability in great generality is somewhat futile as it is
algorithm (problem) dependent. Technically speaking, it is even system dependent. Yet,
we do highlight what we will discuss in Chapter 5: numerical cancellation.

In general, we can think of numerical stability as statements of the following form [Hig02,
p. 7], suppose we only work with scalars, let u 7→ h(u) = y be an algorithm with the
numerical output evaluating to ŷ. Now we say that the algorithm is (“mixed”) stable

20We do not cover Lagrangian/Hamiltonian/Routhian mechnical systems and their stability. In general,
those systems do exhibit significant structure. We point the reader to [AM08, Blo15] for the mechanical
point of view and to [GFXFT23] for a modern exploitation of this structure in the context of neural
networks.
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when the following holds

h(u+ ∆u) = ŷ + ∆y, |∆u| ≤ α|u|, |∆y| ≤ β|y|

for sufficiently small α, β > 0. This is very similar to Lyapunov stability.
However, for this thesis, when it comes to numerical stability, we will be mostly inter-

ested in how rounding errors complicate or even obstruct the numerical implementation
of algorithms. As a typical example, consider the standard rules to compute the roots of
a quadratic equation αx2 +βx+γ = 0. For instance, a triple (α, β, γ) with β2 ≈ 4αγ, yet,
β2 6= 4αγ, can lead to numerical cancellation, that is, ±

√
β2 − 4αγ might be rounded to

0, incorrectly giving the impression one has two equal roots.
To elaborate on the problem, consider the subtraction of two scalars a − b, for â =

a(1 + ∆a) and b̂ = b(1 + ∆b) the numerical evaluations of a and b, respectively. Suppose
that a 6= b, then we have

â− b̂ = (a− b)
(

1 +
a∆a− b∆b

a− b

)
,

such that for non zero (∆a,∆b) and a ≈ b, the evaluation â − b̂ can be far away from
a − b. This should be understood in the rounding context, the exact value of a might
require precision not available on the system at hand, hence, the numerical representation
becomes â = a(1 + ∆a) where ∆a is such that â is one of the nearest floating points to a.

The notion of cancellation becomes more intricate when functions are involved, e.g.,
f(a)− f(b). In Chapter 5 we consider precisely this phenomenon, that is, typical zeroth-
order optimization algorithms work with expressions of the form

f(x+ δ)− f(x)

δ
, (2.4.7)

for f differentiable and δ asymptotically vanishing (δ → 0+). On paper, we can let
δ vanish and recover the derivative of f , however, numerically, for δ sufficiently small,
f(x+ δ) ≈ f(x) and the numerical evaluation of (2.4.7) becomes useless21. We point out
that in such a case we do not simply have 0/0, due to the representation of floating point
numbers22.

To see how properties of f can make the situation better or worse, suppose that f is
L0(f)-globally Lipschitz. Then we have that |f(x + δ) − f(x)| ≤ L0(f)δ. Therefore, if
δ ≤ µM/L0(f), for µM denoting the machine precision, we are in numerical trouble. This
means that flat functions are numerically challenging, which is precisely how the most
important areas of an optimization landscape look like.
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3
Identifying stability

“The concept of a least-squares estimator was first
discovered in 1795 by the eighteen-year-old Gauss. He
needed a practical tool for analyzing survey data ...
Gauss thought it such a simple idea that he did not
publish it ... On January 1, 1801 Giuseppe Piazzi
discovered the asteroid Ceres. Ceres was only visible for
forty days before it was lost to view behind the sun ...
Gauss, using three observations, extensive analysis, and
the method of least squares, was able to determine the
orbit with such accuracy that Ceres was easily found
when it reappeared in late 1801.”

—Kahaner, Moler and Nash [KMN89, Sec. 6.6].

Understanding stability of identified systems is of great practical- and theoretical im-
portance. Even the simplest case, that of characterizing spectral properties of the least-
squares estimator of a linear dynamical system has been largely open. To that end, we
propose a principled method for projecting a system matrix to the nonconvex set of Schur
stable matrices. Leveraging large deviations theory, we show that this projection is op-
timal in an information-theoretic sense and that the projection can be approximated, up
to arbitrary precision, by simply adding a feedback term corresponding to the optimal
gain matrix of a linear quadratic regulator problem. The estimator resulting through this
projection is constructed from a single trajectory of state measurements, is guaranteed to
be stable and offers non-asymptotic statistical bounds on the estimation error.

Going one step beyond stability, we further exploit large deviations theory to identify
the topological class of an unknown stable system, again from a single trajectory of data.
We prove that the probability of misclassification decays exponentially with the number
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of samples at a rate that is proportional to the square of the smallest singular value of
the unknown matrix.

3.1 Identifying a linear dynamical system with stabil-
ity guarantees

In this section we study how to enforce stability while preserving statistical guarantees.
To our best knowledge, we present the first method for the identification of a linear
dynamical system with stability guarantees that is both computationally efficient and
offers asymptotic consistency and tight statistical error bounds.

3.1.1 Introduction
We study the problem of identifying an asymptotically stable linear dynamical system
(i.e., the system matrix is Schur stable) from a single trajectory of correlated state ob-
servations. This problem is of fundamental importance in various disciplines such as
adaptive control [ÅW73], system identification [KV86, VV07], reinforcement learning
[SB18, Ber19, MPRT19, Rec19] and approximate dynamic programming [BT96, Pow07].
Specifically, we consider a discrete-time linear time-invariant system of the form

xt+1 = θxt + wt, x0 ∼ ν, (3.1.1)

where xt ∈ Rn and wt ∈ Rn denote the state and the exogenous noise at time t ∈ Z≥0,
respectively, while θ represents a fixed system matrix1, and ν stands for the marginal
distribution of the initial state x0. We assume that θ is asymptotically stable, that is, it
belongs to Θ := {θ ∈ Rn×n : ρ(θ) < 1}, where ρ(θ) denotes the spectral radius of θ, see
Section 2.2.5. For ease of terminology, we will usually refer in this section to Θ as the
set of stable matrices and to its complement in Rn×n as the set of unstable matrices. We
assume that nothing is known about θ except for its membership in Θ, and we aim to
identify θ from a single-trajectory of data {x̂t}Tt=0 generated by (3.1.1). To this end, one
can use the least squares estimator

θ̂T =
(∑T

t=1 x̂tx̂
T
t−1

)(∑T
t=1 x̂t−1x̂

T
t−1

)−1

, (3.1.2)

which may take any value in Θ′ := Rn×n under standard assumptions on the noise distri-
bution. It is therefore possible that θ̂T /∈ Θ even though θ ∈ Θ. This is troubling because
stability is important in many applications, for example, when the estimated model is
used for prediction, filtering or control, e.g., see the discussions in [VODM96, pp. 53–60,
125–129].

Given the prior structural information that θ is stable, we thus seek an estimator that
is guaranteed to preserve stability. A natural approach to achieve this goal would be
to “project” the least squares estimator θ̂T to the nearest stable matrix with respect to

1Although the standard notation would be xt+1 = Axt+wt, we use θ since this is the common symbol
to denote a parametrization in several statistical communities.
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some “discrepancy function” on Rn×n. This seems challenging, however, because Θ is
open, unbounded and non-convex; see [JSK23, Fig.1 (a)]. To circumvent this difficulty,
we introduce a new discrepancy function that adapts to the geometry of Θ and is thus
ideally suited for projecting unstable matrices onto Θ. We will characterize the statistical
properties of this projection when applied to the least squares estimator, and we will show
that it can be computed efficiently even for systems with O(103) states.

The following example shows that naïve heuristics to project θ′ into the interior of Θ
could spectacularly fail.

Example 3.1.1 (Projection by eigenvalue scaling). A naïve method to stabilize a ma-
trix θ′ /∈ Θ would be to scale its unstable eigenvalues into the complex unit circle. To see
that the output of this transformation may not retain much similarity with the input θ′,
consider the matrices

θ′=

(
1.01 10
.01 1

)
, θ′a=

(
.84 4.77
.005 .84

)
, θ′b=

(
.99 10
0 .99

)
.

Clipping off the unstable eigenvalues of θ′ at |λ| = .99 yields θ′a with ρ(θ′a) = .99 and
‖θ′ − θ′a‖2 & 5. However, the matrix θ′b also has spectral radius ρ(θ′b) = .99 but is much
closer to θ′. Indeed, we have ‖θ′ − θ′b‖2 ≈ 0.02. Even more so, if this clipping procedure
would work, what is a desirable clipping-point?

Learning stable systems

The problem of learning a stable dynamical system is widely studied in system identifi-
cation, while the problem of projecting an unstable matrix onto Θ with respect to some
norm has attracted considerable interest in matrix analysis.

In the context of identification, Maciejowski proposed one of the first methods to
project a possibly unstable estimator onto Θ by using subspace methods [Mac95]. This
pioneering approach has significant practical merits [VODM96] but may also significantly
distort the original estimator. To overcome this deficiency, Lacy and Bernstein approx-
imate Θ by the set of contractive matrices whose operator norm is at most 1 [LB02].
While this set is convex, it offers but a conservative approximation of Θ. Several related
methods have since been proposed to enforce stability [LB03, BGS08, TBQ+13], which
are all either conservative or computationally expensive. Moreover, these methods do not
provide any statistical guarantees. Van Gestel et al. regularize the least squares objective
and show that the spectral radius of the resulting estimator is bounded by a function of
the regularization weights [vSvd00, vSvd01]. As Θ is an open set, however, the tuning
of these weights remains a matter of taste. More recently, Umenberger et al. propose a
maximum likelihood approach that is attractive from a statistical point of view but can
be computationally challenging in certain applications [UWMS18]. On the other hand,
several authors use Lyapunov theory to provide stability guarantees for deterministic vec-
tor fields; see, e.g., [MB14, BTSK17, KM19, UH20, BTM+21]. There is also a substantial
body of literature on (sub-)optimal finite-sample concentration bounds for linear systems
identified via least squares estimation [SMT+18, JP19, SR19, JP20, SRD21]. These ap-
proaches offer learning rates but cannot guarantee stability of the identified systems for
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finite sample sizes, the point being that bounds of the form Pθ(‖θ̂T − θ‖2 ≤ ε) ≥ 1− βT
tell us very little about stability (spectral properties) of θ̂T .

Much like in dynamical systems theory, in matrix analysis one seeks algorithms for
projecting an unstable matrix θ′ onto Θ, which is equivalent to finding the smallest additive
perturbation that stabilizes θ′. More specifically, matrix analysis studies the nearest stable
matrix problem

ΠΘ(θ′) ∈ arg min
θ∈cl Θ

‖θ′ − θ‖2, (3.1.3)

where ‖ · ‖ represents a prescribed norm on Rn×n. Note that optimizing over the closure
of Θ is necessary for (3.1.3) to be well-defined because, for θ′ /∈ Θ, any minimizer lies on
the boundary of the open set Θ. Unfortunately, solving (3.1.3) is challenging because Θ
is non-convex. Existing numerical solution procedures rely on successive convex approxi-
mations [ONv13], on local optimization schemes based on the solution of low-rank matrix
differential equations [GL17] or on an elegant reparametrization of the set of stable matri-
ces, which simplifies the numerics of the projection operation [GKS19, CGS20]. The latter
approach was recently used for learning stable systems [MXM20, MAM23]. Nesterov and
Protasov solve (3.1.3) for certain polyhedral norms and non-negative matrices θ′ [NP20],
which allows them to find exact solutions. See [Hig89] for a general discussion on matrix
nearness problems.

Optimal control offers a promising alternative perspective on problem (3.1.3), which
is closely related to the approach advocated in this chapter: one could try to design a
linear quadratic regulator (LQR) problem, see also Section 4.1.2, whose optimal feedback
gain K? ∈ Rn×n renders θ′ + K? stable. By proposing an LQR objective that is in-
versely proportional to the sample covariance matrix of the measurement noise, Tanaka
and Katayama show that this idea is indeed valid, but they provide no error analysis or
statistical guarantees [TK05]. As we show in Section 4.1 below, these optimal control
techniques also naturally preserve structure of the underlying system matrix. Such a
structure-preserving approach seems preferable over the plain nearest stable matrix prob-
lem (3.1.3), which merely seeks stability at minimal cost. Appealing to the theory of large
deviations, we will give such approaches a statistical underpinning.

We already bring some notation forward to make the upcoming sections easier to
read.
Notation: For a matrix A ∈ Cn×n, we denote by ρ(A) the largest absolute eigenvalue
and by κ(A) the (`2) condition number of A. For a set D ⊂ Rn, we denote by Dc the
complement, by clD the closure and by intD the interior of D. For a real sequence
{aT }T∈Z≥0

we use 1 � aT � T to express that aT /T → 0 and aT → ∞ as T → ∞. We
also use the soft-O notation Õ(f(T )) as a shorthand for O(f(T ) log(T )c) for some c ∈ Z≥0,
that is, Õ(·) ignores polylogarithmic factors.

Contributions

Throughout this section we assume that all random objects are defined on a measurable
space (Ω,F) equipped with a probability measure Pθ that depends parametrically on the
fixed yet unknown system matrix θ, and the system equations (3.1.1) are assumed to
hold Pθ-almost surely; see also the discussion below Assumption 3.1.1. The expectation
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operator with respect to Pθ is denoted by Eθ[·]. Even though the least squares estimator θ̂T
is strongly consistent and thus converges Pθ-almost surely to θ [CK98], it differs Pθ-almost
surely from θ for any finite T . To quantify estimation errors, we introduce a discrepancy
function I : Θ′ ×Θ→ [0,∞] defined through

I(θ′, θ) = 1
2Tr

(
S−1
w (θ′ − θ)Sθ(θ′ − θ)T

)
. (3.1.4)

Here, Sw � 0 stands for the time-independent noise covariance matrix, and Sθ denotes
the covariance matrix of xt under the stationary state distribution, which exists for θ ∈ Θ
but diverges as θ approaches the boundary of Θ; see [JSK23, Fig.1 (b)]. Note that since
Sw � 0 and hence Sθ � 0, I(θ′, θ) vanishes if and only if θ′ = θ. In this sense I behaves
like a distance. Note, however, that I(θ′, θ) is not symmetric in θ and θ′.

Now, we propose to use the discrepancy function (3.1.4) for projecting an unstable
matrix θ′ onto Θ. Specifically, we define the reverse I-projection of any θ′ ∈ Rn×n as

P(θ′) ∈ arg inf
θ∈Θ

I(θ′, θ). (3.1.5)

We will see that the discrepancy function (3.1.4) has a natural statistical interpretation,
which enables us to derive strong statistical guarantees for the reverse I-projection of
the least squares estimator. We will actually show that the discrepancy function (3.1.4)
determines the speed at which the probability of the least squares estimator θ̂T being
sufficiently different from the true system matrix θ decays with the sample size T .

Specifically, we will prove that the transformed estimator ϑ̂T =
√
T/aT (θ̂T −θ)+θ sat-

isfies a moderate deviations principle with rate function (3.1.4). By exploiting the relation
I(θ̂T , θ) = (aT /T )I(ϑ̂T , θ), one can then show that the probability density function %θ,T of
the original least squares estimator θ̂T with respect to the probability measure Pθ decays
exponentially with T , that is,

%θ,T (θ̂T ) ≈ exp(−I(θ̂T , θ) · T ). (3.1.6)

Thus, the reverse I-projection P(θ̂T ) maximizes the right-hand-side of (3.1.6) across all θ ∈
Θ. Therefore, one can interpret P(θ̂T ) as a maximum likelihood estimator, that is, the
most likely asymptotically stable model in view of the data. In addition, by using ideas
due to Jedra and Proutiere [JP20], one can readily show that if the exogenous noise is
Gaussian, then the discrepancy function I(θ′, θ) defined in (3.1.4) can be interpreted as
the long-run average expected log-likelihood ratio between observations generated under
Pθ and Pθ′ .

Our main contributions can be summarized as follows.

(i) We prove that the discrepancy function (3.1.4) has a natural statistical interpretation
as the rate function of a moderate deviation principle for the transformed least
squares estimators

√
T/aT (θ̂T − θ) + θ, T ∈ Z≥0.

(ii) We derive finite-sample and asymptotic statistical error bounds on the operator norm
distance between the reverse I-projection P(θ̂T ) of the least squares estimator θ̂T
and the unknown true system matrix θ.
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(iii) We show that the reverse I-projection P(θ′) can be computed to within any desired
accuracy by solving a standard LQR problem, e.g., via readily available numerical
routines.

We also note that the derivation of the explicit rate function (3.1.4) is of independent
interest in the context of statistical learning of linear dynamical systems.

3.1.2 Efficient identification with stability guarantees
From now on we impose the following assumption.

Assumption 3.1.1 (Linear system). The following hold.

(i) The linear system (3.1.1) is stable, i.e., θ ∈ Θ.
(ii) For each θ ∈ Θ the disturbances {wt}t∈Z≥0

are independent and identically dis-
tributed (i.i.d.) and independent of x0 under Pθ. The marginal noise distributions
are unbiased (Eθ[wt] = 0), non-degenerate (Sw = Eθ[wtwT

t ] � 0 is finite) and have
an everywhere positive probability density function.

Assumption 3.1.1 ensures that the linear system (3.1.1) admits an invariant distribu-
tion νθ [MT09, Sec. 10.5.4]. This means that xt ∼ νθ implies xt+1 ∼ νθ for any t ∈ Z≥0.
Moreover, as the probability density function of wt is everywhere positive, {xt}t∈Z≥0

rep-
resents a uniformly ergodic Markov process, which implies that the marginal distribution
of xt under Pθ converges weakly to νθ as t tends to infinity [MT09, Thm. 16.2.1, 16.5.1].
Assumption 3.1.1 then implies that the mean vector of νθ vanishes and that the covariance
matrix Sθ of νθ coincides with the unique solution of the discrete Lyapunov equation

Sθ = θSθθ
T + Sw, (3.1.7)

which provides for a convenient way to compute Sθ; see, e.g., [AM06, Sec. 6.10 E]. Recall
that Sθ critically enters the discrepancy function I(θ′, θ) defined in (3.1.4) and thus also
the reverse I-projection defined in (3.1.5). Given the existence of an invariant distribution,
we impose another standard regularity condition.

Assumption 3.1.2 (Light-tailed noise and stationarity). The following hold for every
θ ∈ Θ.

(i) The disturbances {wt}t∈Z≥0
are light-tailed, i.e., there exists α > 0 with Eθ[eα‖wt‖

2

] <
∞ for all t ∈ Z≥0.

(ii) The initial distribution ν coincides with the invariant distribution νθ of the linear
system (3.1.1).

Assumption 3.1.2 (i) essentially requires the noise to have no heavier tails than a normal
distribution and is equivalent to the requirement for the noise to be sub-Gaussian [Ver18,
Prop. 2.5.2 (iv)]. Assumption 3.1.2 (ii) stipulates that the linear system is in the stationary
regime already at time t = 0.

To motivate the remainder of this chapter, we bring the key result already forward at
this point. That is, the following theorem summarizes the key statistical and computa-
tional properties of the reverse I-projection that will be proved in the remainder. This
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theorem involves the function dlqr(A,B,Q,R), which outputs the optimal feedback gain
matrix of an infinite-horizon deterministic LQR problem in discrete time, e.g., see [Ber05,
Sec. 4].

Theorem 3.1.3 (Efficient identification with stability guarantees). Suppose that Assump-
tions 3.1.1 and 3.1.2 hold, and that θ̂T is the least squares estimator (3.1.2). Then, for
any θ ∈ Θ the reverse I-projection defined in (3.1.5) has the following properties.

(i) Asymptotic consistency.

lim
T→∞

P(θ̂T ) = θ Pθ-a.s.

(ii) Finite sample guarantee. There are constants τ ≥ 0 and ρ ∈ (0, 1) that depend
only on θ such that

Pθ

(
‖θ − P(θ̂T )‖2 ≤ κ(Sw)

2εn1/2τ√
1− ρ2

)
≥ 1− β

for all β, ε ∈ (0, 1) and T ≥ κ(Sw)Õ(n)log(1/β)/ε2.

(iii) Efficient computation. For any θ′ ∈ Θ′ \ ∂Θ and Sw, Q � 0 there is a p ≥ 1,
such that for all δ > 0 we have that

θ?δ = θ′ + dlqr(θ′, In, Q, (2δSw)−1)

is stable and satisfies ‖P(θ′)− θ?δ‖2 ≤ O(δp).

The asymptotic consistency (i) formalizes the intuitive requirement that more data is
preferable to less data. We emphasize that the reverse I-projection does not introduce
unnecessary bias because P(θ′) = θ′ if θ′ is already stable. The finite sample guarantee (ii)
stipulates that the projected least squares estimator P(θ̂T ) is guaranteed to be close
to the (unknown) true stable matrix θ with high probability 1 − β. Note that if the
observed state trajectory {x̂t}Tt=0 is generated under Pθ, then the inverse matrix appearing
in (3.1.2) exists Pθ-almost surely for any sample size T ≥ n thanks to Assumption 3.1.1 (ii).
The efficient computability property (iii), finally, shows that computing the reverse I-
projection to within high accuracy is no harder than solving a standard LQR problem.

We also emphasize that setting Q = In works well in practice, that is, no tuning is
required to compute P(θ′). However, tuning Q can nevertheless improve the condition-
ing of the optimization problem and speed up the computation of P(θ′). Guidelines on
choosing Q and the results of extensive numerical experiments are reported in [Jon22].

Recall that the reverse I-projection exhibits optimism in the face of uncertainty, a
decision-making paradigm that is used with great success in various reinforcement learning
applications [LS20]. In general, however, optimism in the face of uncertainty leads to
computational intractability [CK98]. Thus, the tractability result of Theorem 3.1.3 (iii)
is a perhaps unexpected exception to this rule; see Proposition 3.1.16 below for further
details.
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3.1.3 The reverse I-projection
We now demonstrate that the discrepancy function (3.1.4) underlying the reverse I-
projection has a natural statistical interpretation, which is crucial for the proof of Theo-
rem 3.1.3.

Moderate Deviations Theory

We leverage recent results from moderate deviations theory to show that the discrepancy
function (3.1.4) is intimately related to the least squares estimator (3.1.2). To this end, we
first introduce the basic notions2 of a rate function and a moderate deviation principle. For
a comprehensive introduction to moderate- and large deviations theory we refer to [dH08,
DZ09].

Definition 3.1.4 (Rate function). An extended real-valued function I : Θ′ × Θ → [0,∞]
is called a rate function if it is lower semi-continuous in its first argument.

Definition 3.1.5 (Moderate deviation principle). A sequence of estimators {ϑ̂T }T∈Z≥0

is said to satisfy a moderate deviation principle with rate function I if for every sequence
{aT }T∈Z≥0

of real numbers with 1 � aT � T , for every Borel set D ⊂ Θ′ and for every
θ ∈ Θ all of the following inequalities hold.

− inf
θ′∈intD

I(θ′, θ) ≤ lim inf
T→∞

1

aT
logPθ

(
ϑ̂T ∈ D

)
(3.1.8a)

≤ lim sup
T→∞

1

aT
logPθ

(
ϑ̂T ∈ D

)
(3.1.8b)

≤− inf
θ′∈clD

I(θ′, θ) (3.1.8c)

If the rate function I(θ′, θ) is continuous in θ′ and the interior of D is dense in D, then
the infima in (3.1.8a) and (3.1.8c) coincide, which implies that all inequalities in (3.1.8) col-
lapse to equalities. In this case, (3.1.8) can be paraphrased as Pθ(ϑ̂T ∈ D) = e−raT+o(aT ),
where r = infθ′∈D I(θ′, θ) represents the I-distance between the system matrix θ and
the set D of estimator realizations. Thus, r represents the decay rate of the proba-
bility Pθ(ϑ̂T ∈ D), while {aT }T∈Z≥0

can be viewed as the speed of convergence. The
condition 1 � aT � T is satisfied, for example, if aT =

√
T , T ∈ Z≥0. However, many

other choices are possible. It is perhaps surprising that if a sequence of estimators satisfies
a moderate deviations principle, then the choice of the speed {aT }T∈Z≥0

has no impact on
the decay rate r but may only influence the coefficients of the higher-order terms hidden
in o(aT ). We also remark that if the inequalities in (3.1.8) hold for aT = T , T ∈ Z≥0 (in
which case the speed of convergence violates the condition 1� aT � T ), then {ϑ̂T }T∈Z≥0

is said to satisfy a large deviation principle [DZ09]. It is also customary to talk about
a moderate deviation principle as being a large deviation principle with reduced speed
{aT }T∈Z≥0

such that 1� aT � T .

2The theory is applicable to far more general settings, we define the objects only in our setting: that
of estimators on subsets of Euclidean space.
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We now show that the transformed least squares estimators

ϑ̂T =
√
T/aT (θ̂T − θ) + θ (3.1.9)

satisfy a moderate deviation principle, where the discrepancy function (3.1.4) plays the
role of the rate function.

Proposition 3.1.6 (Moderate deviation principle). If Assumptions 3.1.1 and 3.1.2 hold,
{θ̂T }T∈Z≥0

denote the least squares estimators defined in (3.1.2) and {aT }T∈Z≥0
is a real

sequence with 1 � aT � T , then the transformed least squares estimators {ϑ̂T }T∈Z≥0

defined in (3.1.9) satisfy a moderate deviation principle with rate function (3.1.4).

Proof. Fix any θ ∈ Rn×n and assume that ‖θ‖2 < 1. This condition is stronger than
Assumption 3.1.1 (i) because the spectral radius ρ(θ) is bounded above by the spec-
tral norm ‖θ‖2. Together with Assumptions 3.1.1 (ii) and 3.1.2, this condition implies
via [YS09, Prop. 2.2], that the transformed least squares estimators {

√
T/aT (θ̂T − θ) +

θ}T∈Z≥0
satisfy a moderate deviation principle with rate function

sup
L∈Rn×n

{
〈L, θ′ − θ〉 − 1

2Eθ
[
〈L,w1x

T
0S
−1
θ 〉

2
]}
, (3.1.10)

where we recall that the inner product of two matrices A,B ∈ Rn×n is defined as 〈A,B〉 =
Tr(ATB).

As an intermediate step, we derive the analytical solution of the following uncon-
strained convex quadratic maximization problem over the matrix space Rn×n,

max
X∈Rn×n

{
〈C,X〉 − 1

2Tr
(
XB1X

TB2

)}
, (3.1.11)

which is parameterized by B1, B2 ∈ Sn�0 and C ∈ Rn×n. As the trace term Tr(XB1X
TB2)

is convex in X, we can solve (3.1.11) by setting the gradient of the objective function to
zero. Hence, we find

gradX
(
〈C,X〉 − 1

2Tr(XB1X
TB2)

)
= CT −B1X

TB2.

As B1, B2 � 0, ones verifies that this gradient vanishes at X? = B−1
2 CB−1

1 , which implies
that the optimal value of problem (3.1.11) is 1

2Tr(B−1
2 CB−1

1 CT). Next, we rewrite the
expectation in (3.1.10) as

Eθ
[
〈L,w1x

T
0S
−1
θ 〉

2
]

= Eθ
[
(wT

1LS
−1
θ x0)2

]
= Eθ

[
wT

1LS
−1
θ SθS

−1
θ LTw1

]
= EθTr(LS−1

θ LTw1w
T
1 )

= Tr(LS−1
θ LTSw),

where the second equality follows from Assumption 3.1.1 (ii), which implies that x0 and w1

are independent, and from Assumption 3.1.2 (ii), which implies that x0 is governed by
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the invariant state distribution νθ and thus has zero mean and covariance matrix Sθ.
Substituting the resulting trace term into (3.1.10) yields

max
L∈Rd×d

{
〈θ′ − θ, L〉 − 1

2Tr
(
LS−1

θ LTSw
)}

= 1
2Tr

(
S−1
w (θ′ − θ)Sθ(θ′ − θ)T

)
= I(θ′, θ),

where the first equality follows from our analytical solution of problem (3.1.11) in the
special case where B1 = S−1

θ , B2 = S2 and C = θ′ − θ.
At last, we show that the moderate deviations principle established for ‖θ‖2 < 1

remains valid for all asymptotically stable system matrices. To this end, fix any θ with
ρ(θ) < 1. By standard Lyapunov stability theory, there exists P � 0 with P − θTPθ � 0;
see, e.g., [LR95, Thm. 5.3.5]. Using P , we can apply the change of variables x̄t = P 1/2xt
and w̄t = P 1/2wt to obtain the auxiliary linear dynamical system

x̄t+1 = θ̄ x̄t + w̄t, x̄0 ∼ ν̄,

with system matrix θ̄ = P 1/2θP−1/2, where the noise w̄t has zero mean and covariance
matrix Sw̄ = P 1/2SwP

1/2 for all t ∈ Z≥0, and ν̄ = ν ◦ P−1/2 is the pushforward distribu-
tion of ν under the coordinate transformation P 1/2. Note also that the invariante state
covariance matrix is given by Sθ̄ = P 1/2SθP

1/2. By construction, the auxiliary linear
system is equivalent to (3.1.1) and satisfies Assumptions 3.1.1 (ii) and 3.1.2. Moreover,
multiplying P − θTPθ � 0 from both sides with P−1/2 yields In − θ̄Tθ̄ � 0, which means
that the largest eigenvalue of θ̄Tθ̄ is strictly smaller than 1 or, equivalently, that ‖θ̄‖2 < 1.
If we denote by ̂̄θT the least squares estimator for θ̄ based on T state observations of the
auxiliary linear system, we may then conclude from the first part of the proof that the
estimators {

√
T/aT (̂̄θT − θ) + θ}T∈Z≥0

satisfy a moderate deviations principle with rate
function

Ī(θ̄′, θ̄) = 1
2Tr

(
S−1
w̄ (θ̄′ − θ̄)Sθ̄(θ̄′ − θ̄)T

)
.

One also readily verifies from (3.1.2) that the least squares estimators pertaining to the
original and the auxiliary linear systems are related through the continuous transfor-
mation ̂̄θT = P 1/2θ̂TP

−1/2. The corresponding transformed estimators evidently obey
the same relation. By the contraction principle [DZ09, Thm. 4.2.1], the estimators
{
√
T/aT (θ̂T −θ)+θ}T∈Z≥0

thus satisfy a moderate deviations principle with rate function
Ī(P−1/2θ′P 1/2, P−1/2θP 1/2) = I(θ′, θ). This observation completes the proof.

Unlike the standard least squares estimators (3.1.2), the transformed estimators (3.1.9)
depend on the unknown parameter θ. However, as we will explain below, they are useful
for theoretical considerations. Proposition 3.1.6 can be viewed as a corollary of [YS09,
Thm. 2.1], which uses ideas from [Wor99] to show that the transformed least squares
estimators satisfy a moderate deviation principle with a rate function that is defined
implicitly in variational form. Proposition 3.1.6 shows that this rate function admits the
explicit representation (3.1.4) and allows for showing (3.1.6). It also relaxes the restrictive
condition ‖θ‖2 < 1 from [YS09, Prop. 2.2] to ρ(θ) < 1.

By identifying the discrepancy function (3.1.4) with the rate function of a moderate
deviation principle, Proposition 3.1.6 justifies our terminology, whereby P(θ′) is called
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the reverse I-projection of θ′. Indeed, Csiszar and Matus use this term to denote any
projection with respect to an information divergence I(θ′, θ) [CM03]. Note that swapping
the arguments θ′ and θ of the (asymmetric) function I(θ′, θ) would give rise to an ordi-
nary I-projection [Csi84]. Proposition 3.1.6 also suggests that the reverse I-projection is
intimately related to maximum likelihood estimation, as already alluded to in the intro-
duction. Indeed, for i.i.d. data it is well-known that every maximum likelihood estimator
can be regarded as a reverse I-projection with respect to the rate function of some large
deviation principle [CS04, Lem. 3.1].

The power of Proposition 3.1.6 lies in its generality. Indeed, a moderate deviation
principle provides tight bounds on the probability of any Borel set of estimator real-
izations. A simple direct application of the moderate deviation principle established in
Proposition 3.1.6 is described below.

Example 3.1.2 (System identification). Consider a scalar system with Sw = 1 that sat-
isfies Assumptions 3.1.1 and 3.1.2. In this case Θ = (−1, 1) with the rate function (3.1.4)
reducing to I(θ′, θ) = 1

2 (θ′ − θ)2/(1 − θ2). Using the least squares estimators (3.1.2) to
identify θ, Proposition 3.1.6 reveals that

Pθ(|θ̂T − θ|> ε
√
aT /T )

= Pθ(θ +
√
T/aT (θ̂T − θ) ∈ D)

= exp (− infθ′∈D I(θ′, θ) · aT + o(aT ))

= exp
(
− 1

2ε
2 aT /(1− θ2) + o(aT )

)
for any ε > 0 and T ∈ Z≥0, where D = {θ′ ∈ R : |θ′ − θ| > ε}. This result confirms the
insight that stable systems with |θ| ≈ 1 are easier to identify than systems with |θ| ≈ 0,
e.g., see [SMT+18].

Next, we establish3 several structural properties of the rate function (3.1.4).

Proposition 3.1.7 (Properties of I(θ′, θ)). The rate function I(θ′, θ) defined in (3.1.4)
has the following properties.

(i) I(θ′, θ) is real analytic in (θ′, θ) ∈ Θ′ ×Θ.

(ii) If θ′ ∈ Θ′\∂Θ, then the sublevel set {θ ∈ Θ : I(θ′, θ) ≤ r} is compact for every r ≥ 0.

(iii) If θ′ ∈ Θ′ \ ∂Θ, then I(θ′, θ) tends to infinity as θ approaches the boundary of Θ.

Proof. The proof of the first item follows directly from [Pol86, Lem. 3.2].
The proof of assertion (ii) consists of two steps. We first prove that if a sequence

{θk}k∈N in Θ has an unstable limit θ (i.e., ρ(θ) = 1), then there exists a subsequence
{θkl}l∈N with liml→∞ I(θ′, θkl) =∞ for all θ′ ∈ Θ′ \ ∂Θ (Step 1). We then use this result
to show that the set {θ ∈ Θ : I(θ′, θ) ≤ r} is compact for all r ≥ 0 (Step 2).

Step 1: We first derive an easily computable lower bound on the rate function I(θ′, θ)
for any asymptotically stable matrix θ ∈ Θ and θ′ ∈ Θ′ \ ∂Θ. To this end, we denote by

3This result is slightly more general than the original result from [JSK23], that is, with essentially no
modification of the proof, we can work with θ′ ∈ Θ′ \ ∂Θ instead of θ′ ∈ Θ.
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λ ∈ C an eigenvalue of θ whose modulus |λ| matches the spectral radius ρ(θ) < 1. We
further denote by v ∈ Cn a normalized eigenvector corresponding to the eigenvalue λ,
that is, ‖v‖ = 1 and θv = λv. We also use β = λmin(Sw)/λmax(Sw) > 0 as a shorthand
for the inverse condition number of the noise covariance matrix Sw � 0. Recalling that
for any A,B,C ∈ Sn�0 the semidefinite inequality A � B implies Tr(AC) ≥ Tr(BC), we
find the following estimate.

2I(θ′, θ) = Tr
(
S−1
w (θ′ − θ)Sθ(θ′ − θ)T

)
≥ λ−1

max(Sw) Tr
(
(θ′ − θ)Sθ(θ′ − θ)T

)
≥ β

∑∞
k=0 Tr

(
(θ′ − θ)θk(θk)T(θ′ − θ)T

)
= β

∑∞
k=0 Tr

(
(θk)T(θ′ − θ)T(θ′ − θ)θk

)
≥ β

∑∞
k=0 v

H(θk)T(θ′ − θ)T(θ′ − θ)θkv
= β

∑∞
k=0 |λ|2kvH(θ′ − θ)T(θ′ − θ)v

= β‖(θ′ − θ)v‖22
1

1− |λ|2

Here, the first equality follows from the definition of the rate function in (3.1.4), and the
first inequality exploits the bound λmax(Sw)In � Sw. The second inequality holds due
to the series representation Sθ =

∑∞
t=0 θ

tSw(θt)T, the bound Sw � λmin(Sw)In and the
definition of β. The second equality exploits the cyclicity property of the trace, and the
third inequality holds because any (real) matrix C ∈ Sn�0 satisfies

Tr(C) ≥ wHCw ∀w ∈ Cn : ‖w‖ = 1.

The third equality then uses the eigenvalue equation θv = λv, and the last equality holds
because |λ| = ρ(θ) < 1. We thus conclude that the rate function admits the lower bound

I(θ′, θ) ≥ β

2
‖(θ′ − θ)v‖22

1

1− |λ|2
. (3.1.12)

Consider now a converging sequence {θk}k∈N in Θ whose limit θ satisfies ρ(θ) = 1. Define
λk ∈ C as an eigenvalue of θk with |λk| = ρ(θk) < 1 and let vk ∈ Cn be a normalized
eigenvector corresponding to λk, that is, ‖vk‖ = 1 and θkvk = λkvk. As the spectral
radius is a continuous function, we then have

lim
k→∞

|λk| = lim
k→∞

ρ(θk) = ρ( lim
k→∞

θk) = ρ(θ) = 1.

In addition, as the unit spheres in C and in Cn are both compact, there exists a subse-
quence {(λkl , vkl)}l∈N converging to a point (λ, v) ∈ C × Cn with |λ| = 1 and ‖v‖ = 1.
This limit satisfies the eigenvalue equation

θv = lim
l→∞

θklvkl = lim
l→∞

λklvkl = λv, (3.1.13)

which implies that v is an eigenvector of θ corresponding to the eigenvalue λ with |λ| =
1 = ρ(θ).



3.1. Identifying a system with stability guarantees 59

The above reasoning allows us to conclude that

lim
l→∞

I(θ′, θkl) ≥ lim
l→∞

β

2
‖(θkl − θ′)vkl‖22

1

1− |λkl |2

= lim
l→∞

β

2
‖λklvkl − θ′vkl‖22

1

1− |λkl |2

=
β

2
‖λv − θ′v‖22 lim

l→∞

1

1− |λkl |2
=∞,

where the inequality follows from (3.1.12), the first equality holds because θkvk = λkvk,
and the second equality exploits (3.1.13). Finally, the last equality holds because limk→∞ |λk| =
1 and because the term β

2 ‖λv−θ
′v‖2 is strictly positive. Indeed, this non-negative term can

only vanish if θ′v = λv, which would imply that θ′ has unimodular eigenvalues (|λ| = 1),
which contradicts our standing assumption θ′ ∈ Θ′ \ ∂Θ. This observation completes
Step 1.

Step 2: Select now any θ′ ∈ Θ′ \ ∂Θ and r ≥ 0, and define A = {θ ∈ Θ : I(θ′, θ) ≤ r}.
As we work with subsets of finite-dimensional Euclidean spaces, in order to prove that A
is compact, we need to show that it is bounded and closed. This is potentially difficult
because Θ itself is unbounded and open. In order to prove boundedness of A, note that
every θ ∈ A satisfies

r ≥ I(θ′, θ) = 1
2Tr

(
S−1
w (θ′ − θ)Sθ(θ′ − θ)T

)
≥ 1

2Tr
(
S−1
w (θ′ − θ)Sw(θ′ − θ)T

)
,

where the second inequality follows from the trivial bound Sθ � Sw, which is implied
by the Lyapunov equation (3.1.7). Thus, the sublevel set A is contained in a bounded
ellipsoid,

A ⊂
{
θ ∈ Rn×n : 1

2Tr
(
S−1
w (θ′ − θ)Sw(θ′ − θ)T

)
≤ r
}
,

and thus A is bounded. To show that A is closed, consider a converging sequence {θk}k∈N
in A with limit θ. We first prove that θ ∈ Θ. Suppose for the sake of argument that θ /∈ Θ.
As θ is the limit of a sequence in A ⊂ Θ, this implies that θ must reside on the boundary
of Θ ( i.e., ρ(θ) = 1). By the results of Step 1, we may thus conclude that there exists a
subsequence {θkl}l∈N with liml→∞ I(θ′, θkl) =∞. Clearly, we then have I(θ′, θkl) > r for
all sufficiently large l, which contradicts the assumption that θkl ∈ A for all l ∈ N. Thus,
our initial hypothesis was wrong, and we may conclude that θ ∈ Θ. In addition, we have

r ≥ lim
k→∞

I(θ′, θk) = I(θ′, lim
k→∞

θk) = I(θ′, θ),

where the inequality holds because θk ∈ A for all k ∈ N. Here, the first equality follows
from assertion (i), which ensures that the rate function is analytic and thus continuous.
Hence, we find that θ ∈ A. As the sequence {θk}k∈N was chosen arbitrarily, we conclude
that A is closed. In summary, we have shown that A is bounded and closed and thus
compact. This observation completes Step 2. Hence, assertion (ii) follows.

As for assertion (iii), fix θ′ ∈ Θ′ \ ∂Θ and consider a sequence {θk}k∈N in Θ whose
limit θ resides on the boundary of the open set Θ. This implies that θ /∈ Θ. Next,
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choose any r ≥ 0. We know from assertion (ii) that A = {θ ∈ Θ : I(θ′, θ) ≤ r} is a
compact subset of Θ, and thus θ /∈ A. Hence, the complement of A represents an open
neighborhood of θ, and thus there exists k(r) ∈ N such that θk /∈ A and I(θ′, θk) ≥ r for
all k ≥ k(r). As r was chosen freely, this means that limk→∞ I(θ′, θk) =∞.

Lemma 3.1.8 (Pinsker-type inequality). For any θ′ ∈ Θ′ and θ ∈ Θ we have ‖θ′− θ‖22 ≤
2κ(Sw) · I(θ′, θ).

Proof. By the definition of the rate function we have

2I(θ′, θ) = Tr
(
S−1
w (θ′ − θ)Sθ(θ′ − θ)T

)
≥ σmin(S−1

w )σmin(Sθ)‖θ′ − θ‖2F ≥
1

κ(Sw)
‖θ′ − θ‖22,

where the third inequality holds because Sθ � Sw and σmin(S−1
w ) = 1/σmax(Sw).

Lemma 3.1.8 provides a direct link between the nearest stable matrix problem (3.1.3)
and the reverse I-projection (3.1.5) as

inf
θ∈Θ
‖θ′ − θ‖22 ≤ 2κ(Sw) · I(θ′,P(θ′)).

Statistics of the reverse I-projection

In the following we apply the reverse I-projection to the least squares estimator θ̂T . An
elementary calculation shows that I(θ̂T , θ) = (aT /T )I(ϑ̂T , θ), and thus I(θ̂T , θ) inherits
any statistical interpretations from I(ϑ̂T , θ).

We first show that P(θ̂T ) is asymptotically consistent.

Proposition 3.1.9 (Asymptotic consistency). Suppose that Assumption 3.1.1 holds and
that θ̂T is the least squares estimator. Then, for any θ ∈ Θ the reverse I-projection P(θ̂T )

of θ̂T satisfies limT→∞ P(θ̂T ) = θ Pθ-almost surely.

Proof. Recall that limT→∞ θ̂T = θ Pθ-almost surely [CK98]. Therefore, we have Pθ-almost
surely that

lim
T→∞

P(θ̂T ) = lim
T→∞

arg min
θ̄∈Θ

I(θ̂T , θ̄)

= arg min
θ̄∈Θ

lim
T→∞

I(θ̂T , θ̄)

= arg min
θ̄∈Θ

I
(

lim
T→∞

θ̂T , θ̄
)

= arg min
θ̄∈Θ

I(θ, θ̄) = θ,

where the first equality exploits the definition of P(θ̂T ) in (3.1.5). The second equality
follows from the strict convexity of the rate function in its first argument and [Sun96,
Thm. 9.17], which imply that the reverse I-projection is continuous. The third equality
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follows from the continuity of the rate function established in Proposition 3.1.7 (i), and
the last equality holds because the rate function vanishes if and only if its arguments
coincide. This proves the proposition.

Next, we can use the results of Section 3.1.3 to establish probabilistic bounds. Specif-
ically, the following lemma provides two implicit finite-sample bounds involving random
error estimates. These bounds are both structurally identical to existing finite-sample
bounds for θ̂T ; see, e.g., [SR19, Sec. 6]. In Proposition 3.1.12 below, these implicit bounds
will be used to establish explicit finite sample bounds involving deterministic error esti-
mates.

Lemma 3.1.10 (Implicit finite sample bounds). Suppose that Assumptions 3.1.1 and 3.1.2
hold and that θ̂T and P(θ̂T ) represent the least squares estimator and its reverse I-
projection, respectively. Setting ε̂T = (2κ(Sw)I(θ̂T ,P(θ̂T )))1/2, we then have ‖θ̂T −
P(θ̂T )‖2 ≤ ε̂T Pθ-almost surely. In addition, the following finite sample bounds hold
for all β, ε ∈ (0, 1).

(i) We have
Pθ
(
‖θ − P(θ̂T )‖2 ≤ ε+ ε̂T

)
≥ 1− β (3.1.14a)

for all T ∈ Z≥0 with T ≥ κ(Sw)Õ(n) log(1/β)/ε2.

(ii) If {aT }T∈Z≥0
is a real sequence satisfying 1� aT � T , then we have

Pθ
(
‖θ − P(θ̂T )‖2 ≤ ε

√
aT /T + ε̂T

)
≥ 1− β (3.1.14b)

for all T ∈ Z≥0 with aT ≥ 2κ(Sw)(log(1/β) + o(aT ))/ε2.

Proof. Lemma 3.1.8 and the monotonicity of the square root function imply that ‖θ̂T −
P(θ̂T )‖2 ≤ ε̂T is a Pθ-almost sure event. As for assertion (i), we thus have

Pθ
(
‖θ − P(θ̂T )‖2 ≤ ε+ ε̂T

)
≥ Pθ

(
‖θ − θ̂T ‖2 + ‖θ̂T − P(θ̂T )‖2 ≤ ε+ ε̂T

)
≥ Pθ

(
‖θ − θ̂T ‖2 ≤ ε, ‖θ̂T − P(θ̂T )‖2 ≤ ε̂T

)
= Pθ

(
‖θ − θ̂T ‖2 ≤ ε

)
.

Hence, to estimate the probability, we can leverage tools developed in [SR19, Sec. 6]. To
this end, assume first that the noise is isotropic, i.e., assume that Sw = αIn for some α > 0.
In this case, [SR19, Thm. 1] implies that Pθ(‖θ − θ̂T ‖2 ≤ ε) ≥ 1 − β for all β, ε ∈ (0, 1)

and sample sizes T ≥ Õ(n) log(1/β)/ε2. As κ(Sw) = κ(αIn) = 1, this settles assertion (i)
when the noise is isotropic.

Assume now that the noise is anisotropic with an arbitrary convariance matrix Sw � 0.
The change of coordinates x̄t = S

−1/2
w xt and w̄t = S

−1/2
w wt then yields the auxiliary

system
x̄t+1 = θ̄ x̄t + w̄t, x̄0 ∼ ν ◦ S1/2

w ,
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with θ̄ = S
−1/2
w θS

1/2
w and isotropic noise w̄t having zero mean and unit covariance matrix

for all t ∈ Z≥0. Denoting by ̂̄θT the least squares estimator for the auxiliary system, we
find

Pθ
(
‖θ − θ̂T ‖2 ≤ ε

)
= Pθ

(
‖S1/2

w (θ̄ − ̂̄θT )S−1/2
w ‖2 ≤ ε

)
≥ Pθ

(
‖S1/2

w ‖2‖θ̄ − ̂̄θT ‖2‖S−1/2
w ‖2 ≤ ε

)
= Pθ

(
‖θ̄ − ̂̄θT ‖2 ≤ εκ(Sw)−1/2

)
,

where the last equality holds because ‖S1/2
w ‖2‖S−1/2

w ‖2 = κ(S
1/2
w ) = κ(Sw)1/2. From

the first part of the proof for linear systems driven by isotropic noise we know that the
resulting probability is no less than 1 − β whenever T ≥ κ(Sw)Õ(n) log(1/β)/ε2. This
observation completes the proof of assertion (i).

The proof of assertion (ii) first parallels that of assertion (i). In particular, multiplying
ε with

√
aT /T yields

Pθ
(
‖θ − P(θ̂T )‖2 ≤ ε

√
aT /T + ε̂T

)
≥ Pθ

(
‖θ − θ̂T ‖2 ≤ ε

√
aT /T

)
.

However, now we use the moderate deviations principle from Section 3.1.3 to bound
the resulting probability. To this end, define D = {θ′ ∈ Rn×n : ‖θ′ − θ‖2 > ε}. By
Lemma 3.1.8, we have I(θ′, θ) > ε2/(2κ(Sw)) for any estimator realization θ′ ∈ D, and thus
infθ′∈clD I(θ′, θ) ≥ ε2/(2κ(Sw)). Recall now from Proposition 3.1.6 that the transformed
least squares estimators ϑ̂T =

√
T/aT (θ̂T − θ) + θ obey a moderate deviations principle

with rate function I. Hence, we have

lim sup
T→∞

1

aT
logPθ

(
‖θ̂T − θ‖2 > ε

√
aT /T

)
= lim sup

T→∞

1

aT
logPθ(ϑ̂T ∈ D)

≤− inf
θ′∈clD

I(θ′, θ) ≤ −ε2/(2κ(Sw)),

where the equality exploits the definitions of D and ϑ̂T , and the first inequality follows
from Proposition 3.1.6. By passing over to complementary events, we therefore obtain

Pθ
(
‖θ̂T − θ‖2 ≤ ε

√
aT /T

)
≥ 1− e−ε

2aT /(2κ(Sw))+o(aT ).

For all sufficiently large sample sizes T satisfying the inequality aT ≥ 2κ(Sw)(log(1/β) +
o(aT ))/ε2 this implies that

Pθ
(
‖θ̂T − θ‖2 ≤ ε

√
aT /T

)
≥ 1− β.

This observation completes the proof of assertion (ii).

Note that the finite sample bound (3.1.14a), which leverages sophisticated results
from [SR19, Sec. 6], and the bound (3.1.14b), which follows almost immediately from
the moderate deviations principle of Section 3.1.3, are qualitatively similar. They both
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hold for all T that exceed a critical sample size depending on an unknown deterministic
function of the order Õ(n) or o(aT ), respectively. Both bounds also involve a random
error estimate ε̂T . As θ̂T as well as P(θ̂T ) converge Pθ-almost surely to θ ∈ Θ, and as
I is continuous in both of its arguments, it is easy to show that the random variable ε̂T
as defined in Proposition 3.1.10 converges Pθ-almost surely to 0 as T grows. Therefore,
the bounds (3.1.14a) and (3.1.14b) improve with T . As the inequalities in (3.1.8) are
asymptotically tight, we conjecture that the bound (3.1.14b) is statistically optimal.

In the following we will show that the implicit finite sample bounds of Lemma 3.1.10
can be used to derive explicit finite sample bounds involving deterministic error estimates.
To this end, we recall a more nuanced quantitative notion of stability.

Definition 3.1.11 ((τ, ρ)-stability [KTR19, Def. 1]). We say that the system matrix θ ∈ Θ
is (τ, ρ)-stable for some τ ≥ 1 and ρ ∈ (0, 1) if ‖θk‖2 ≤ τρk for all k ∈ Z≥0.

We emphasize that any stable matrix θ ∈ Θ is in fact (τ, ρ)-stable for some τ ≥ 1 and
ρ ∈ (0, 1). If θ is diagonalizable with spectral decomposition θ = TΛT−1, for example,
then ‖θk‖ = ‖TΛkT−1‖ ≤ κ(T )ρ(θ)k, which implies that θ is (τ, ρ) stable for τ = κ(T )
and ρ = ρ(θ). If θ is not diagonalizable, a similar but more involved argument is used,
akin to showing Schur stability.

Proposition 3.1.12 (Explicit finite sample bounds). Suppose that Assumptions 3.1.1
and 3.1.2 hold and that θ̂T and P(θ̂T ) are the least squares estimator and its reverse I-
projection, respectively. The following finite sample bounds hold for all β, ε ∈ (0, 1) and
for all parameters τ ≥ 1 and ρ ∈ (0, 1) such that θ is (τ, ρ)-stable, which are guaranteed
to exist.

(i) We have

Pθ

(
‖θ − P(θ̂T )‖2 ≤ κ(Sw)

2εn1/2τ√
1− ρ2

)
≥ 1− β

for all T ∈ Z≥0 with T ≥ κ(Sw)Õ(n) log(1/β)/ε2.

(ii) If {aT }T∈Z≥0
is a real sequence satisfying 1� aT � T and T ∈ Z≥0, then we have

Pθ

(
‖θ − P(θ̂T )‖2 ≤ κ(Sw)

2εn1/2τ√
1− ρ2

√
aT
T

)
≥ 1− β

for all T ∈ Z≥0 with aT ≥ 2κ(Sw)(log(1/β) + o(aT ))/ε2.

Proof. As θ is (τ, ρ)-stable, the defining properties of the reverse I-projection imply that

I(θ̂T ,P(θ̂T )) ≤ I(θ̂T , θ) = 1
2Tr

(
S−1
w (θ̂T − θ)Sθ(θ̂T − θ)T

)
≤ 1

2Tr(S−1
w )‖θ̂T − θ‖22‖Sθ‖2

≤ 1
2nκ(Sw)‖θ̂T − θ‖22

τ2

1− ρ2
,
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where the second inequality holds because Tr(AB) ≤ Tr(A)‖B‖2 for any two symmetric
matrices A,B ∈ Rn×n, while the third inequality follows from [KTR19, Prop. E.5]. Hence,
up to problem-dependent constants, I(θ̂T ,P(θ̂T )) decays as least as fast as ‖θ̂T − θ‖22.
Combining the above estimate with Lemma 3.1.8 and taking square roots then yields

‖θ̂T − P(θ̂T )‖2 ≤ ‖θ̂T − θ‖2κ(Sw)
n1/2τ√
1− ρ2

. (3.1.16)

Setting η = κ(Sw)n1/2τ/
√

1− ρ2 ≥ 1, we may use a similar reasoning as in the proof
Lemma 3.1.10 to obtain

Pθ
(
‖θ − P(θ̂T )‖2 ≤ 2ηε

)
≥ Pθ

(
‖θ − θ̂T ‖2 ≤ ηε, ‖θ̂T − P(θ̂T )‖2 ≤ ηε

)
≥ Pθ

(
‖θ − θ̂T ‖2 ≤ ε, ‖θ̂T − P(θ̂T )‖2 ≤ η‖θ − θ̂T ‖2

)
= Pθ

(
‖θ − θ̂T ‖2 ≤ ε

)
,

where the second inequality holds because η ≥ 1, the equality follows from (3.1.16), which
holds with certainty. However, from the proof of Lemma 3.1.10 (i) we already know that
Pθ(‖θ − θ̂T ‖2 ≤ ε) ≥ 1 − β whenever T ≥ κ(Sw)Õ(n) log(1/β)/ε2. This observation
completes the proof of assertion (i).

The proof of assertion (ii) widely parallels that of assertion (i) and is thus omitted for
brevity.

The explicit finite-sample bounds of Proposition 3.1.12 refine the implicit bounds of
Lemma 3.1.10 and notably expose the dependence of the approximation error on the sta-
bility parameters τ and ρ. Of course, these parameters are unknown under our standing
assumption that θ is unknown, as such we cannot adapt the projection (3.1.5) to incorpo-
rate (τ, ρ)-stability. In contrast, the implicit finite-sample bounds of Lemma 3.1.10 involve
approximation errors that are random but known.

As the finite-sample bounds established in Lemma 3.1.10 (i) and Proposition 3.1.12 (i)
critically rely on [SR19], they depend on the sub-Gaussianity parameter α from Assump-
tion 3.1.2 (i). In particular, the sample complexity deteriorates for small α. The exact
dependency can be inferred from [SR19, Sec. 8–10].

Computation of the reverse I-projection

We now address the numerical computation of P(θ′) as defined in (3.1.5) for any given
estimator realization θ′ ∈ Θ′ \∂Θ. To this end, we fix Q � 0 and show that solving (3.1.5)
is equivalent to finding a minimizer of the optimization problem

min
θ∈Rn×n

{Tr(QSθ) : I(θ′, θ) ≤ r} (3.1.17)

for the smallest radius r = r that renders (3.1.17) feasible. Note that r exists because
the optimal value of (3.1.17) is lower semi-continuous in r (e.g., by Berge’s theorem). In
addition, problem (3.1.17) admits a minimizer for any r ≥ r due to Proposition 3.1.7.
Moreover, the proposed procedure is computationally attractive because we will prove
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below that (3.1.17) is equivalent to a standard LQR problem. We emphasize that the
exact choice of Q has no effect on the validity and hardly any effect on the numerical
performance of this procedure. Summarizing the discussion, we have the following.

Proposition 3.1.13 (Reformulation of (3.1.5)). If θ′ ∈ Θ′ \ ∂Θ, Q � 0 and r is the
smallest r ≥ 0 for which (3.1.17) is feasible, then any minimizer of (3.1.17) at r = r is a
reverse I-projection.

Note that if we consider r ≥ r = I(θ′, 0), then problem (3.1.17) has simply the trivial
solution θ = 0, and its optimal value reduces to Tr(QSw).4 In this case, the rate constraint
is not binding at optimality. If r < r, then problem (3.1.17) is infeasible if additionally
r < r, the problem admits a quasi-closed form solution for r > r as explained in the
following proposition.

Proposition 3.1.14 (Optimal solution of (3.1.17)). Suppose that Assumption 3.1.1 holds.
Then, for every θ′ ∈ Θ′ \ ∂Θ there exists an analytic function ϕ : (r, r) → (0,∞) that is
increasing and bijective such that the following hold for all r ∈ (r, r).

(i) For any δ ∈ (0,∞) the matrix Pδ ∈ Sn is the unique positive definite solution of the
Riccati equation

Pδ = Q+ θ′
T
Pδ (In + 2δSwPδ)

−1
θ′. (3.1.18)

(ii) The matrix θ?δ = (In + 2δSwPδ)
−1θ′ is the unique solution of problem (3.1.17) at

r = ϕ−1(δ), and the rate constraint is binding at optimality, i.e., I(θ′, θ?δ ) = r.

The approximate computation of the reverse I-projection exploits standard results on
infinite-horizon dynamic programming (see, e.g., [BB95, Ch. 3] or [Ber07]) as well as
the following exact constraint relaxation (Lagrangian) result borrowed from [Jon19, Lem.
A-0.1]; see also [JSM19]. We repeat this result here, again, to keep the thesis somewhat
self-contained.

Lemma 3.1.15 (Exact constraint relaxation). Let f and g be two arbitrary functions
from Θ to (−∞,∞], and consider the two minimization problems

P1(r) : inf
θ∈Θ
{f(θ) : g(θ) ≤ r}

P2(δ) : inf
θ∈Θ

f(θ) +
g(θ)

δ

parametrized by r ∈ R and δ ∈ (0,∞), respectively. If the penalty-based minimization
problem P2(δ) admits an optimal solution θ?2(δ) for the parameter values δ within some
set ∆ ⊂ (0,∞), then the following hold.

(i) The function h(δ) = g(θ?2(δ)) is non-decreasing in the parameter δ ∈ ∆.

(ii) If there exits δ ∈ ∆ with h(δ) = r, then the constrained minimization problem P1(r)
is solved by θ?2(δ).

4One readily verifies that r = 1
2
‖S−1/2
w θ′S

1/2
w ‖2F , where ‖ · ‖F stands for the Frobenius norm.
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Proof. In order to prove assertion (i), choose any parameters δ1, δ2 ∈ ∆ with δ1 > δ2. As
θ?2(δ1) is optimal in P2(δ1) and θ?2(δ2) is optimal in P2(δ2), one can readily verify that

f
(
θ?2(δ1)

)
+
g(θ?2(δ1))

δ1
≤ f(θ?2(δ2)) +

g(θ?2(δ2))

δ1

and

f(θ?2(δ2)) +
g(θ?2(δ2))

δ2
≤ f

(
θ?2(δ1)

)
+
g(θ?2(δ1))

δ2
.

Summing up these two inequalities yields(
1

δ2
− 1

δ1

)
g
(
θ?2(δ2)

)
≤
(

1

δ2
− 1

δ1

)
g
(
θ?2(δ1)

)
⇐⇒ h(δ2) = g

(
θ?2(δ2)

)
≤ g
(
θ?2(δ1)

)
= h(δ1),

where the equivalence holds because δ1 > δ2. This completes the proof of assertion (i).
As for assertion (ii), fix any r ∈ R and assume that there exists δ ∈ ∆ with r = h(δ).

We need to show that the optimizer θ?2(δ) of P2(δ) is also optimal in P1(r). To this end,
observe that θ?2(δ) is feasible in P1(r) because r = h(δ) = g(θ?2(δ)). It then suffices to
prove optimality. Assume for the sake of contradiction that there exists θ′1 ∈ Θ with
f(θ′1) < f(θ?2(δ)) and g(θ′1) ≤ g(θ?2(δ)) = r. In this case, we have

f(θ′1) +
g(θ′1)

δ
< f

(
θ?2(δ)

)
+
g(θ?2(δ))

δ
,

which contradicts the optimality of θ?2(δ) in P2(δ). We thus conclude that θ?2(δ) must
indeed solve P1(r).

Proof of Proposition 3.1.14. Fix any θ′ ∈ Θ′ \ ∂Θ, and identify the reverse I-projection
problem (3.1.17) with problem P1(r) from Lemma 3.1.15, that is, set f(θ) = Tr(QSθ)
and g(θ) = I(θ′, θ). By the definition of the rate function I in (3.1.4), the corresponding
unconstrained problem P2(δ) is equivalent to

min
θ∈Θ

Tr(QSθ) +
1

δ
I(θ′, θ)

= min
θ∈Θ

lim
T→∞

1

T
Eθ
[∑T−1

k=0 x
T
kQxk + 1

2δx
T
k (θ′ − θ)TS−1

w (θ′ − θ)xk
]

= min
L∈Rn×n

lim
T→∞

1

T
Eθ′+L

[∑T−1
k=0 x

T
k

(
Q+ 1

2δL
TS−1

w L
)
xk

]
,

where the first equality exploits the Markov law of large numbers. The second equality
follows from the variable substitution L← θ′−θ. Note that the constraint θ′+L ∈ Θ can
be relaxed because Eθ′+L[xTkQxk] diverges with k whenever θ′ +L is unstable. Indeed, in
this case the trace of the covariance matrix of xk explodes. Also, we remark again that
Eθ′+L[·] merely indicates that the distribution is parametric in θ′+L, the variables θ′ and
L are not random in the above.
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As any infinite horizon LQR problem with average cost criterion is solved by a linear
control policy of the form uk = Lxk for some L ∈ Rn×n, problem P2(δ) is equivalent to

min
ϕk(·)

lim
T→∞

1

T
E
[∑T−1

k=0 x
T
kQxk + uTkRuk

]
s.t. xk+1 = θ′xk + uk + wk, x0 ∼ ν,

uk = ϕk(xk),

(3.1.19)

where R = (2δSw)−1. As standard stabilizability and detectability assumptions are triv-
ially satisfied [Ber05, Ch. 4], the LQR problem (3.1.19) is solvable for every δ > 0.
Its optimal solution is a stationary linear control policy with state feedback gain Lδ =
−(Pδ +R)−1Pδθ

′, where Pδ is the unique positive definite solution of the Riccati equation

Pδ = Q+ θ′TPδθ
′ − θ′TPδ(Pδ +R)−1Pδθ

′.

Note that this equation is equivalent to (3.1.18) by standard matrix inversion results [VV07,
p. 19] and the definition of R. Hence, problem P2(δ) is solved by

θ?2(δ) = θ′ + Lδ = θ′ − (Pδ +R)−1Pδθ
′ = (In +R−1Pδ)

−1θ′

for any δ > 0. Note that the last expression is equivalent to θ?δ from the proposition
statement. By using [Pol86, Lem. 3.2], one can show that Pδ and consequently also θ?δ are
real-analytic in δ > 0. As the rate function I is analytic thanks to Proposition 3.1.7 (i),
the function ϕ−1(δ) = I(θ′, θ?δ ) is thus analytic as a composition of two analytic functions.
In addition, ϕ−1(δ) is non-decreasing thanks to Lemma 3.1.15 (i). As any non-decreasing
analytic function that is not constant must be strictly monotonically increasing, we may
conclude that ϕ−1 : (0,∞)→ (r, r) is bijective, where

r = lim
δ↓0

ϕ−1(δ) and r = lim
δ↑∞

ϕ−1(δ).

Note that if δ tends to 0, then problem P2(δ) just minimizes g(θ) = I(θ′, θ) over Θ, in
which case the reverse I-projection P(θ′) is optimal. Recall that P(θ′) is also optimal in
problem P1(r) for r = I(θ′,P(θ′)) = r. Note also that if δ tends to∞, then problem P2(δ)
just minimizes f(θ) = Tr(QSθ) over Θ, in which case the trivial solution θ = 0 is optimal.
Clearly, 0 is also optimal in problem P1(r) for r = I(θ′, 0) = r. Hence, we may define ϕ :
(r, r) → (0,∞) as the inverse of ϕ−1. By construction, ϕ is analytic, strictly increasing
and bijective.

In summary, Lemma 3.1.15 implies that for each r ∈ (r, r) we may set δ = ϕ(r)
such that θ?δ is the unique optimal solution of problem P1(r), and this solution satisfies
I(θ′, θ?δ ) = r.

We have seen that evaluating P(θ′) is equivalent to solving (3.1.17) at r = r. Unfor-
tunately, r is unknown, and Proposition 3.1.14 only characterizes solutions of (3.1.17) for
r > r. However, by the properties of ϕ established in Proposition 3.1.14, we also have
limr↓r ϕ(r) = 0, which is equivalent to limδ↓0 ϕ

−1(δ) = r. A standard continuity argument
therefore implies that limδ↓0 θ

?
δ solves (3.1.17) at r = r. In practice, we may simply set

δ to a small positive number and compute θ?δ by solving (3.1.18) to find a high-accuracy
approximation for the reverse I-projection P(θ′).
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Proposition 3.1.16 (Computing the reverse I-projection). If Assumption 3.1.1 holds,
θ′ ∈ Θ′ \ ∂Θ and Q � 0, then there exists a p ≥ 1 such that for all δ > 0 the matrix θ?δ
from Proposition 3.1.14 (ii) is stable and satisfies

‖P(θ′)− θ?δ‖2 = O(δp). (3.1.20)

In addition, θ?δ can be computed as

θ?δ = θ′ + dlqr(θ′, In, Q, (2δSw)−1), (3.1.21)

where the standard LQR routine dlqr(·) has time and memory complexity of the order
O(n3) and O(n2), respectively.

Proof. Fix any θ′ ∈ Θ′ \ ∂Θ. Proposition 3.1.14 implies that limδ↓0 θ
?
δ = P(θ′). However,

one cannot simply evaluate θ?δ at δ = 0 (in general). Nevertheless, the error bound (3.1.20)
follows directly from the Pinsker-type inequality established in Lemma 3.1.8 and from
the analyticity of I(θ′, θ?δ ) in δ ∈ (0,∞). For δ > 0, the proof of Proposition 3.1.14
reveals that θ?δ can be computed by solving problem (3.1.19), which can be addressed with
standard LQR routines. Hence, the computational bottleneck is the solution of the Riccati
equation (3.1.18). The state-of-the-art methods to solve (3.1.18) utilize a QZ algorithm
that has time and memory complexity of the order O(n3) and O(n2), respectively; see, e.g.,
[PLS80] and [GvL13, Alg. 7.7.3]. However, large problem instances should be addressed
with alternative schemes such as the ones proposed in [GL91, BF11].

As mentioned before, we refer to [Jon22] for more on the computation. In particular,
we propose to use a QZ algorithm to compute θ?δ .

Corollary 3.1.17 (P(θ′) and θ?δ preserve the structure of θ′). For any θ′ ∈ Θ′ \ ∂Θ there
exist invertible matrices Λ,Λδ ∈ Rn×n such that P(θ′) = Λ−1θ′ and θ?δ = Λ−1

δ θ′.

Corollary 3.1.17 follows directly from the above in combination with Section 4.1 be-
low and alludes to the preservation of structure, which is precisely what we exploit in
Section 3.2.

Final remarks

First, to conclude, we have all the tools in place to prove Theorem 3.1.3.

Proof of Theorem 3.1.3. The three assertions follow directly from Propositions 3.1.9, 3.1.12
and 3.1.16, respectively.

Secondly, we were pedantic in pointing out that θ′ ∈ Θ′ \ ∂Θ. From a practical and
statistical point of view this is of course irrelevant. In fact, as our results hold either
asymptotically or for a sufficiently large T , this constraint can be omitted since there is
a T̄ such that Pθ(θ̂T ∈ ∂Θ) = 0 for all T ≥ T̄ (due to Pθ-almost surely convergence of θ̂T
and Θ being open). We also point out that during the time of writing, a new approach
(SIMBa) to optimize over (not just project) stable matrices has been proposed, which
appears promising [DNZH+23].
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3.2 Topological linear system identification via mod-
erate deviations theory

Elaborating on Section 3.1 we show in this section how the flexibility of large (moderate)
deviations theory helps us in further refining qualitatively correct system identification.

3.2.1 Introduction
We consider the same setting as in Section 3.1, that is, we work with the least squares
estimators {θ̂T }T (3.1.2) for the system (3.1.1). Previously we exclusively focused on
(asymptotic) stability. However, stability is not the only property of θ that impacts the
qualitative behaviour of a linear system; see Section 2.3.1. In fact—as we elaborate on
in Section 4.1, the closed-loop system corresponding to LQ optimal regulation (with a
block-diagonal cost) preserves the structure of the system matrix. Hence, if the least
squares estimator θ̂T is structurally different from θ itself, even despite stability, then
implementing optimal linear feedback designed for θ̂T results in a closed-loop system that
is structurally different from the predicted closed-loop system, e.g., you predict a damper
but get a spring.

As we discussed before, linear system identification—especially by means of least
squares techniques—has a rich history [VODM96, VV07]. In this section we are, however,
not only interested in finding estimators that fall into the vicinity of the unknown true
model θ. In addition, the estimators should give rise to the same qualitative behaviour
as θ. This requirement relates to some extent to the work on qualitative identification
pioneered by Kuipers [Kui94].

More recently, the focus in linear system identification shifted towards ensuring the
efficient use of data. General informativity of data is discussed in [VWETC20], which jus-
tifies the identification pipeline for a class of control problems. Moreover, sharp statistical
characterizations of the effectiveness of the least squares estimator (3.1.2) are presented
in [SMT+18, SR19]. These statistical results usually quantify the likelihood that θ lies
in some ball around θ̂T . However, the models residing within this ball may be qualita-
tively different. Again, leveraging recent results from the theory of large and moderate
deviations [DE97, dH08, DZ09], we will be able to characterize the likelihood that the
estimated system is qualitatively equivalent to the unknown true system.

Contribution

A high-level goal is to showcase how topological insights can benefit the control commu-
nity. More specifically, we establish topological properties of the reverse I-projection P(·)
introduced above. We will characterize here the probability that the reverse I-projection
P(θ̂T ) of the least-squares estimator θ̂T is topologically different from θ. Formally, we
show that

Pθ(P(θ̂T ) 6't θ) . e−O(σmin(θ)2
√
T ),

where ‘'t’ denotes topological equivalence (see Section 2.3.1). Thus, the probability that
P(θ̂T ) misrepresents the topological properties of θ decays exponentially with T at a rate
∝ σmin(θ)2.
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Notation: We remind the reader that we denote the real n-dimensional general linear
group by GL(n,R) = {A ∈ Rn×n : det(A) 6= 0}. The sets GL+(n,R) and GL−(n,R)
contain all matrices in GL(n,R) with a strictly positive or negative determinant.

3.2.2 Topological linear system identification
Given two linear maps f(x) = Fx and g(y) = Gy we recall from Theorem 2.3.3 that f
and g are topologically equivalent only if the signs of the determinants of F and G match.
By slight abuse of notation, we henceforth define the orientation or(F ) of an invertible
matrix F as the sign of det(F ).

Now we also recall that the MDP framework giving rise to the reverse I-projection is
rather flexible, that is, Definition 3.1.5 holds for any Borel set. In addition, the reverse
I-projection preserves orientation, i.e., or(P(θ′)) = or(θ′) for any θ′ ∈ GL(n,R), see,
Corollary 3.1.17. In fact, the same is true for the numerical approximation, for any δ > 0.
Due to its desirable statistical and computational properties, our proposed approach to
estimate the topological class of θ ∈ Θ will critically rely on the reverse I-projection θ̂T 7→
P(θ̂T ).

To aid the presentation we assume from now on, without much loss of generality, that
θ is invertible. Then, we are equipped to demonstrate that the MDP of Proposition 3.1.6
allows us via the reverse I-projection P(θ̂T ) to derive sharp bounds on the decay rate of the
probability of the event P(θ̂T ) 6't θ. The approach is as follows. Recall again that the two
stable and (Pθ-almost surely) invertible matrices P(θ̂T ) and θ are topologically equivalent
if and only if they have the same orientation. Recall also that or(P(θ̂T )) = or(θ̂T ) because
the reverse I-projection preserves orientation. Checking whether P(θ̂T ) is topologically
equivalent to θ is thus tantamount to checking whether the determinants of θ̂T and θ have
the same signs.

Theorem 3.2.1 (Probability of misclassification). Assume that θ ∈ Θ∩GL(n,R), {θ̂T }T∈Z≥0

are the least squares estimators (3.1.2) and {aT }T∈Z≥0
is a sequence with 1 � aT � T .

If Sθ◦ = S
−1/2
w SθS

−1/2
w and r = 1

2λmin(Sθ◦ − In), then

lim sup
T→∞

1

aT
logPθ

(
or(θ̂T ) 6= or(θ)

)
≤ −r, (3.2.1a)

lim sup
T→∞

1

aT
logPθ

(
P(θ̂T ) 6't θ

)
≤ −r. (3.2.1b)

Proof. As for (3.2.1a), note that θ̂T ∈ GL(n,R) Pθ-almost surely for all sufficiently large
T , and therefore we have

Pθ
(
or(θ̂T ) 6= or(θ)

)
= Pθ

(
or(θ̂T ) = −or(θ)

)
= Pθ

(
∃G ∈ GL−(n,R) : θ̂T = Gθ

)
= Pθ

(
ϑ̂T ∈ DT (θ)

)
where the second equality holds because any invertible matrices θ̂T and θ whose determi-
nants have opposite signs satisfy θ̂T = Gθ for some G ∈ GL−(n,R). The third equality
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follows from the definition of the transformed least squares estimators {ϑ̂T }T∈Z≥0
in (3.1.9)

and the construction of the set

DT (θ) := {
√

(T/aT )(G− In)θ + θ : G ∈ GL−(n,R)}.

As this set is time-dependent, we cannot directly use it. That is, it is not admissible in
the sense of Definition 3.1.5. To sidestep this complication, we consider instead the larger
set

D(θ) =
⋃
T∈Z≥0

DT (θ).

The above reasoning then implies that

lim sup
T→∞

1

aT
logPθ

(
or(θ̂T ) 6= or(θ)

)
≤ lim sup

T→∞

1

aT
logPθ

(
ϑ̂T ∈ D(θ)

)
≤− inf

θ′∈clD(θ)
I(θ′, θ),

where the first inquality holds because DT (θ) ⊂ D(θ) for all T ∈ Z≥0, while the second
inequality follows from the MDP established in Proposition 3.1.6. In the remainder of the
proof we derive an analytical lower bound on the minimization problem on the right hand
side of the above expression. To this end, assume first that Sw = In. Evaluating the rate
function (3.1.4) at an arbitrary θ′ ∈ D(θ) then yields

I(θ′, θ) =
T

2aT
Tr
(
(G− In)θSθθ

T(G− In)T
)

(3.2.2)

for some G ∈ GL−(n,R) and some T ∈ Z≥0, and the Lyapunov equation (3.1.7) implies
that θSθθT = Sθ− In. In addition, our assumptions about the sequence {aT }T∈Z≥0

imply
that T/aT ≥ 1. We may thus conclude that

min
θ′∈clD(θ)

I(θ′, θ)

≥ inf
det(G)≤0

1
2Tr

(
(G− In)(Sθ − In)(G− In)T

)
≥ 1

2 (λmin(Sθ)− 1) inf
det(G)≤0

‖G− In‖2F = 1
2 (λmin(Sθ)− 1),

where the first inequality holds because det(G) ≤ 0 for every G ∈ clGL−(n,R), the
second inequality uses the bound Tr(AB) ≥ σmin(A)Tr(B) for any A,B � 0, and the
third inequality follows from the Eckart-Young Theorem [GvL13, Thm. 2.4.8].

This establishes (3.2.1a) for Sw = In. If Sw � 0 is arbitrary, one may first apply
a change of coordinates x◦ = S

−1/2
w x, under which the noise covariance matrix simpli-

fies to In, while the system matrix and the invariant state covariance matrix become
θ◦ = S

−1/2
w θS

1/2
w and Sθ◦ = S

−1/2
w SθS

−1/2
w , respectively. As Sw � 0, we further have

θ◦ 't θ. Applying the results of the first part of the proof to the transformed system
finally yields (3.2.1a). As for (3.2.1b), recall from Sections 2.3.1 and 3.1.3 that P(θ′) is
asymptotically stable for θ′ ∈ Θ′ \ ∂Θ and that or(θ′) = or(P(θ′)) for any θ′ ∈ GL(n,R).
Therefore, we can focus on orientation, i.e., if or(θ′) = or(θ) and θ′ ∈ Θ′ \ ∂Θ, then
P(θ′) 't θ. Then again, as Pθ

(
θ̂T 6∈ GL(n,R) ∩Θ

)
= 0 for sufficiently large T , the claim

follows from (3.2.1a).
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Figure 3.1: Example 3.2.1: empirical versus theoretical convergence rates. Adapted from the
original Matlab figure [JSK22, Fig. 4].

We point out that the rate r = 1
2λmin(Sθ◦ − In) established in Theorem 3.2.1 is non-

trivial (strictly positive) for any θ ∈ Θ ∩ GL(n,R) as

Sθ◦ = S−1/2
w SθS

−1/2
w

(3.1.7)
= S−1/2

w

∞∑
k=1

θkSw(θk)TS−1/2
w + In.

One can continue and further study this term, as is done in [JSK22, Sec. III A]. We only
point out that since Sθ◦ − In � θ◦(θ◦)T it follows that 1

2λmin(Sθ◦ − In) ≥ 1
2σmin(θ◦)2.

Hence, an increase in σmin(θ◦) improves the rate r from Theorem 3.2.1. So as in Exam-
ple 3.1.2, very fast dynamics are perhaps desired for the application, not for the identifi-
cation. We end with a short numerical example.

Example 3.2.1 (Numerical topological identification). We now compare the theoretical
decay rate of topological misclassification derived in Theorem 3.2.1 against the empirical
decay rate for the nominal least squares estimator θ̂T and its reverse I-projection P(θ̂T ).
To this end, we set

θ =

(
Y I2
0 Y

)
, for Y =

(
−0.1 1
0.1 0.05

)
,

and simulate (3.1.1) under this θ, starting from E = 103 initial conditions x0
i.i.d.∼ N (0, I4)

with Sw = I4. Each initial condition leads to a trajectory under θ from which we construct
the corresponding least squares estimators θ̂(i)

T , i = 1, . . . , E, T = 0, . . . , 103 (of course,
only for a sufficiently large T we have that θ̂T is well-defined). Averaging over the E
simulation runs yields the empirical probability that θ̂T or its reverse I-projection are
topologically equivalent to the true system matrix θ. Figure 3.1 compares the bounds on
the misclassification probability derived in Theorem 3.2.1 for aT = T

1
1+ε with ε = 10−9

against the empirical probabilities. Here, P(θ̂
(i)
T ) is computed via (3.1.21) for δ = 10−9.

As expected, the projection accelerates topological identification.

Closing this chapter, we saw the least squares estimators give rise to a “natural”
discrepancy function that can be derived (and not just simply imposed), which can be
exploited to construct probabilistic bounds with respect to qualitative system properties.
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4
Space of stable systems and structural
stability

“A well-known early example of the occurance of
convexity, though originally in a more implicite role, is
Euler’s theorem on polyhedra. ... the theorem ... aims
at a classification of the polyhedra. ... There appeared
many investigations about this topic, in particular in the
second half of the last century. In most of them only
convex polyhedra are considered, presumably often
because the problems otherwise seemed insuperable.”

—Fenchel [Fen83, p. 121].

Various domains are aided by better understanding spaces of stable dynamical systems.
For instance, in many identification- and optimal control problems we effectively try to
optimize over such a space and thus understanding its properties is important.

First, we study the linear quadratic regulator problem and finally provide an opera-
tional meaning for cross terms in the stage cost. In particular, we show that the topological
class of the closed-loop system is invariant under a change of the stage cost, as long as no
cross term is introduced, that is, when restricting system matrices to the general linear
group, closed-loop matrices can jump to the opposite path-connected component of this
group if and only if a cross term is introduced. Hence, formally speaking, one can only
“tune” the closed-loop behaviour by introducing a cross term.

Secondly, motivated by the learning community often employing convex Lyapunov
functions to obtain stability certificates, we study the ramifications of the convexity as-
sumption. We show that continuous dynamical systems, on Euclidean space, equipped
with convex Lyapunov functions, asserting that the origin is globally asymptotically sta-
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ble, can always be homotoped to each other such that along this homotopy stability is
preserved. This means that the space of those dynamical systems is path-connected, which
in its turn leads to obstructions and the necessity of rethinking convexity assumptions.

4.1 On topological equivalence in linear quadratic op-
timal control

In this section we will show that in general, closed-loop systems resulting from discrete-
time linear quadratic optimal control problems are all topologically equivalent. As such,
we provide new insights in structural “tuning” of controlled behaviour.

4.1.1 Introduction

Ever since its inception and celebration, the theory of optimal control also received cri-
tique. The cost is commonly scalar-valued, making the optimal control selection solely
dependent on a single performance criteria, which limits practicality [Zad63]. To improve
our understanding of optimality in the context of control, Kalman set out to understand
the inverse problem [Kal64], that is, given a control policy, does there exist an optimal
control problem giving rise to this policy? To quote his motivation “...discover general
properties shared by all optimal control laws. We might be able to separate control laws
which are optimal in some sense from those which are not optimal in any sense.”. In this
section we add to this investigation, with an emphasis on the controlled behaviour.

In particular, we will consider the discrete-time Linear Quadratic Regulation (LQR)
problem. This is a classical setting which made its appearance in many real-world sys-
tems. There, one usually encounters the notion of “tuning” the cost function such that
the system is “sufficiently” stable. Success-stories of this tuning can be found throughout,
with the catch being that there, linear feedback is designed for a locally-linear system,
where tuning might be needed indeed. This section shows that, for the better or worse, if
one does have a linear system how to change the closed-loop system behaviour structurally.

To classify the behaviour of a controlled dynamical system we take again a topologi-
cal approach, see Section 2.3.1. As in the original work by Kuiper and Robbin, we focus
on linear dynamical systems, but this time, in line with Kalman, driven by some opti-
mal Linear Quadratic (LQ) regulator, or any other policy originating from the family of
LQ optimal control problems. LQ theory is well-understood, especially in the context
of classical engineering [AM89] and currently in the context of statistical reinforcement
learning [DMM+20] and optimization [FGKM18]. In the context of adaptive control,
several interesting topological results, with respect to the underlying model, are made
in [Pol87, vS94, CL19]. Topological insights in the resulting closed-loop systems are less
known, or at least, not described as much in the modern literature. We try to fill in this
gap and provide a new interpretation of how one can change the dynamical behaviour,
structurally, via selecting appropriate cost-matrices.
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Contributions

The main result of this section is to show that a well-known class of optimization prob-
lems have structurally equivalent minimizers (closed-loop systems), i.e., in optimization
parlance, without defining the class F and equivalence relation ∼, we have

arg min
x∈X

f1(x) ∼ arg min
x∈X

f2(x) ∀f1, f2 ∈ F .

Specifically, we highlight that the most common class of LQ Optimal Control (OC) prob-
lems result in topologically equivalent closed-loop behaviour1. In particular, we show that
by means of tuning the cost matrices, a bifurcation in the controlled system can only be
induced by the introduction of cross-terms. Concurrently, building on [Pol87], we see that
a lot of structure of the underlying system is LQ feedback invariant. These observations
have some implications, for example to reduce the dimension of the optimal control prob-
lem, to give a new interpretation of cross-terms in the cost or to preserve structure from a
corresponding continuous-time problem. Although the arguments are simple, to the best
of our knowledge, this was not observed before.

Notation: To remind the reader, we denote the real n-dimensional General Linear group
by GL(n,R) := {A ∈ Rn×n : det(A) 6= 0}. The group GL(n,R) can be written as
GL−(n,R) ∪ GL+(n,R), which is the disjoint union of two path-connected sets. Here, the
superscript denotes the sign of the determinant, e.g., T ∈ GL+(n,R) ⇐⇒ det(T ) > 0. A
matrix A ∈ Cn×n is said to be asymptotically stable (Schur) when ρ(A) := maxi |λi(A)| <
1.

4.1.2 Linear quadratic optimal control
In this subsection we introduce the control problem at hand. Consider the deterministic
linear discrete-time system

x 7→ Ax+Bu =: σ(x, u), x ∈ Rn (4.1.1)

where A ∈ Rn×n and B ∈ Rn×m comprise a stabilizable pair, that is, there exists a
K ∈ Rm×n such that ρ(A+BK) < 1. We will write this as σ ∈ Σ, for Σ parametrized by
the set of stabilizable pairs (A,B). Then, for some triple (Q,R, S) ∈ Sn�0 × Sm�0 × Rn×m
define the corresponding stage-cost c : Rn × Rm → R by

(x, u) 7→ c(x, u) :=

(
x
u

)T(
Q S
ST R

)(
x
u

)
. (4.1.2)

When S = 0, we refer to the (stage-)cost as being block-diagonal. The block-diagonal
form is well-understood and dominates the practical- and theoretical literature. We try
to understand why. Now, following [LR95, Ch. 16], we can easily bring (4.1.2) to such a
block-diagonal form. Specifically, by defining v := R−1STx + u, Q′ := Q− SR−1ST and
A′ := A−BR−1ST, we can, equivalently to (4.1.2) under (4.1.1), consider the stage-cost

1Preliminary arguments appeared in [Jon19].
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c′(x, v) := xTQ′x + vTRv, under the time-one map x 7→ A′x + Bv. This transformation
allows for applying all celebrated block-diagonal tools.

In what follows we will assume (without loss of generality), that the input u is linear
state-feedback, that is, for some K ∈ Rm×n, u := Kx. Then, fixing some σ ∈ Σ, we define
the cost function J : Rn × Rm×n → R ∪ {±∞} by

J(x′,K) :=
∑∞
k=0 c(xk,Kxk),

subject to xk+1 = σ(xk,Kxk) ∀k ≥ 0, x0 = x′.
(4.1.3)

To optimize this cost over K and have a meaningful solution, assume the stage-cost is
non-negative and that (A,C) is a detectable pair for C ∈ Rp×n defined by CTC := Q with
rank(Q) = rank(Q′)2. It is known that under the aforementioned conditions (cf. [LR95,
Ch. 13-16]), arg minK J(x′,K) is given by K? = −(R+BTPB)−1BTPA′−R−1ST, where
P ∈ Sn�0 is the unique solution to the Algebraic Riccati Equation (ARE)

P = Q′ +A′TPA′ −A′TPB(R+BTPB)−1BTPA′, (4.1.4)

such that the optimal closed-loop time-one map x 7→ σ(x,K?x) =: σ?(x) is asymptotically
stable. With respect to (4.1.3), the aforementioned domain of (Q,R, S) and the definition
of Q′, we define the set of cost-matrices C(σ) by

C(σ) :=

(Q,R, S) :

Q− SR−1ST � 0,

rank(Q) = rank(Q′),

∃C ∈ Rp×n : CTC = Q,

(A,C) detectable

 . (4.1.5)

Linear quadratic dynamic games

One of the insights of this section is that the qualitative behaviour of the whole family
of block-diagonal Linear Quadratic Optimal Control problems is the same. To exemplify
what we mean by this “family”, we introduce a different, but analogous, block-diagonal
cost function to (4.1.3). We introduce what is called a two-player zero-sum dynamic game,
e.g., see [BB95]. There, given some δ ∈ R≥0, the stage-cost is defined by the function
g : Rn × Rm × Rd → R

g(x, u, w) := xTQx+ uTRu− δ−1wTw. (4.1.6)

The variable w will act as an adversary. Given some D ∈ Rn×d, let σw(x, u) := σ(x, u) +
Dw and again, without loss of generality, assume w to be linear in x, that is w := Lx
for some L ∈ Rd×n. such that we can define the cost function J : Rn × Rm×n × Rd×n →
R ∪ {±∞} by

J(x′,K, L) :=
∑∞
k=0 g(xk,Kxk, Lxk),

subject to xk+1 = σLxk(xk,Kxk) ∀k ≥ 0, x0 = x′.
(4.1.7)

2See [LR95, Sec. 16.2] for the intuition regarding this condition. It is essentially there to assure we
can carry out standard LQR practices while avoiding degenerate examples. Under this condition we can
be concerned with detectability, simply, with respect to Q and not Q′.
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Under conditions analogous to the ones from before (see [BB95, Ch. 3]), a solution to
minK maxL J(x′,K, L) exists and is given by the static gainsK?(δ) := −R−1BTP (δ)Λ(δ)−1A
and L?(δ) := δDTP (δ)Λ(δ)−1A. Here, the pair (P (δ),Λ(δ)) compromises a solution to
the Generalized Algebraic Riccati Equation (GARE):

P = Q+ATPΛ−1A,

Λ =
(
In +

(
BR−1BT − δDDT

)
P
)
.

(4.1.8)

The parameter δ relates to how much adversarial action we allow for. Crossing what is
called the “breakdown-point” δ̄ means it is “affordable” for the adversary to destabilize
the system and hence this scenario is avoided by selecting δ ∈ [0, δ̄) (see [BB95, Whi90]).
Moreover, it can be shown that the closed-loop system matrix is asymptotically stable and
can be written as Λ(δ)−1A. This observation is the key in showing topological equivalence
in the next section.

Summarizing, we parametrize a Linear Quadratic Optimal Control problem by the pair
(σ, J), where one seeks a sequence of inputs to the linear dynamical system σ such that
the quadratic cost function J , subject to σ, is minimized. Then, we will be interested in
understanding to which topological class the corresponding optimal closed-loop systems
x 7→ σ?(x) belong.

4.1.3 Topological equivalence in linear quadratic optimal control
The main result of this section can be stated as follows: given any two closed-loop maps
f, g resulting from LQ optimal control problems with block-diagonal cost, then f and g
are topologically equivalent. This means that the qualitative behaviour of these controlled
systems is invariant under “tuning” of the cost. To proceed, we introduce a orientation-
dependent version of the set in (4.1.5). Given a σ ∈ Σ such that A ∈ GL(n,R) then define
C(i)(σ), (i) ∈ {+,−} by

C(i)(σ) :=

{
(Q,R, S) ∈ C(σ) :

A ∈ GL(i)(n,R),

A′ ∈ GL(i)(n,R)

}
. (4.1.9)

Here, GL(i)(n,R) relates to either GL+(n,R) or GL−(n,R). Now we can state the main
result.

Theorem 4.1.1 (Topological equivalence in LQ regulation). Fix some σ ∈ Σ with A ∈
GL(i)(n,R), (i) ∈ {+,−}. Let x 7→ σ?1(x) be the optimal LQ regulated closed-loop time-one
map corresponding to an arbitrary triple (Q1, R1, S1) ∈ C(i)(σ), that is x 7→ (A+BK?

1 )x =
σ?1(x) with K?

1 the minimizing argument in (4.1.3). Analogously, define σ?2 for some
arbitrary triple (Q2, R2, S2) ∈ C(i)(σ). Then, σ?1 't σ?2 .

Proof. Since the cost-matrices are elements of C(i)(σ) we use the transformations as set
forth in Section 4.1.2. Then, it is known (see [LR95, Ch. 12]) that the closed-loop system
matrices can be written as (In + BR−1

j BTPj)
−1A′j =: Λ−1

j A′j for Pj ∈ Sn�0 the solution
to the algebraic Riccati equation (4.1.4) under (Qj , Rj , Sj) j ∈ {1, 2}. Now we claim
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that Λj ∈ GL+(n,R). Let N := BR−1BT and M := Pj , which are both symmetric
positive semidefinite. Then observe that given some eigenpair (λ, v) such that NMv =
λv3, multiplying from the left with vTMT implies that vTMvλ = vTMTNMv ≥ 0 and
hence, by construction of M and N , that λ ≥ 0. Therefore, the eigenvalues of Λj are all
strictly positive such that det(Λj) > 0. Since an application of such a Λj does not alter
the membership of A′ to GL(i)(n,R), i.e., GL+GL(i) = GL(i), we can directly appeal to
Theorem 2.3.3 and conclude the proof.

We see from Theorem 4.1.1 that if (Q,R, 0) ∈ C(σ), then, since A = A′ we have
(Q,R, 0) ∈ C(i)(σ) and indeed we see that all block-diagonal problems result in closed-loop
maps being topologically equivalent. In particular, if ρ(A) < 1, then Ax 't (A+BK?)x.
Moreover, when A ∈ GL+(n,R), then, block-diagonal LQ feedback leaves the group-
structure intact, i.e., (A + BK?) ∈ GL+(n,R). Moreover, if A is singular, the gist of
Theorem 4.1.1 remains true, yet, we need to restrict our discussion to the automorphic
part of σ?, which is remarkably simple since ker(A) is preserved under block-diagonal
LQ feedback (since the closed-loop matrix is of the form Λ−1A or see [Pol86a, Lem. 3.4]).
When we introduce a non-zero S, however, the kernel of A and the optimally LQ controlled
closed-loop system matrix Λ−1A′ do not necessarily match anymore since ker(A) and
ker(A−BR−1ST) can be different.

The form of Theorem 4.1.1 is chosen since it captures the central message: without
constructing explicit LQR solutions one can easily assess a priori if some closed-loop maps
will be topologically equivalent. Next, we construct another indirect characterization of
these distinct topological classes.

When A′ ∈ GL(n,R), then, a minimizing solution to the standard LQR cost (4.1.3)
can be characterized via a Symplectic matrix. In particular, define Ω ∈ R2n×2n by

Ω :=

(
0 −In
In 0

)
.

Then, define the real Symplectic group by Sp(2n,R) := {M ∈ R2n×2n : MTΩM = Ω}.
Moreover, we speak of a subspace Y being M -invariant, when MY ⊆ Y. Next, define
M ∈ Sp(2n,R) by

M :=

(
A′ +BR−1BTA′−TQ′ −BR−1BTA′−T

−A′−TQ′ A′−T

)
. (4.1.10)

A celebrated result—as for example communicated for an even more general setting
in [PLS80]—is that eigenspaces of M in (4.1.10) directly map to solutions of (4.1.4)
and in fact, the spectrum of M relates directly to the spectrum of the optimal LQ regu-
lated time-one map. Better yet, the relation between M and Λ−1A′ is well-understood.
Now, assume that the triple (Q,R, S) is parametrized by some scalar γ ∈ [0, 1], that
is, let A′(γ) := A − BR(γ)−1S(γ)T, Q′(γ) := Q(γ) − S(γ)R(γ)−1S(γ)T and define
M(γ) ∈ Sp(2n,R) accordingly. Then, loosely speaking, it turns out that when M(γ)

3We point out that, in general, one cannot assume that NM would have real eigenvalues. However,
since both matrices are symmetric positive definite, this does immediately follow. The intuition being
that, under the assumption that M ∈ GL(n,R) we have that NM is similar to M1/2NM1/2. Then the
claim follows from GL(n,R) being dense in Rn×n.
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is a continuous curve in Sp(2n,R), then, all closed-loop maps it parametrizes (see Sec-
tion 4.1.2) are topologically equivalent. We formalize this in a Corollary to Theorem 4.1.1:

Corollary 4.1.2 (Topological equivalence via the Symplectic Group). Fix some σ ∈ Σ
and let γ ∈ [0, 1] parametrize a curve (Q,R, S)(γ) ⊂ C(σ) such that both (Q,R, S)(0) and
(Q,R, S)(1) correspond to feasible LQR problems with optimal closed-loop maps σ?(x)(0)
and σ?(x)(1). Then, σ?(0) 't σ?(1) if there exists a continuous path [0, 1] 7→ M [0, 1] ⊂
Sp(2n,R) from M(0) to M(1).

Proof. Since Sp(2n,R) ⊂ SL(2n,R) and we can continuously deform M(0) into M(1) this
must mean we do not drop rank along the path M(γ), γ ∈ [0, 1]. Moreover, we know that
for any M ∈ Sp(2n,R) µ ∈ λ(M) ⇒ 1/µ ∈ λ(M). Also, for any feasible LQR problem
leading to (4.1.10) it is known that 1 6∈ |λ(M)|, hence, when one constructs the Jordan
normal form related to such a M , there are n-dimensional M -invariant stable (s) and
unstable (u) subspaces, that is M = XJX−1 with X = [Xs Xu], J = diag(Js, Ju). In
fact, it can be shown that λ(Js) = λ(Λ−1A′), where Λ−1A′ is the optimal LQ regulated
closed-loop system matrix from Section 4.1.2. See [PLS80] and references therein for more
on the aforementioned results. The prior discussion implies that if 0 6∈ λ(M(γ)) ∀γ ∈ [0, 1],
then, 0 /∈ λ(Js(γ)) and as such 0 6∈ λ(Λ(γ)−1A′(γ)). This however means that A′(γ) ∈
GL(i)(n,R) ∀γ ∈ [0, 1], thereby, the result follows after an application of Theorem 2.3.3.

So, although Sp(2n,R) is connected, by varying the triple (Q,R, S) ∈ C(σ) we ef-
fectively generate disjoint connected sets of matrices M ∈ Sp(2n,R) through (4.1.10)
corresponding to distinct topological classes of closed-loop maps they generate. Since this
result provides the link with the far more general Maximum Principle, the hope is that
similar constructions are possible for different Hamiltonians.

Now, we are not just interested in the OC problem related to (4.1.3), but into the
whole “family of LQ problems”. To that end, we give one example and use Section 4.1.2
to extend Theorem 4.1.1.

Corollary 4.1.3 (Topological equivalence in dynamic games). Fix σ ∈ Σ, let A ∈
GL(i)(n,R) and set D := In in (4.1.7)-(4.1.8). Moreover, consider J as in (4.1.7) for some
pair (Q,R) being such that for any δ ∈ [0, δ̄) the extremizers in minK∈Rm×n maxL∈Rd×n J(x′,K, L)
denoted by K?(δ) and L?(δ), exist. Then, the “nominal”-, “robust”- and “worst-case
robust” optimal closed-loop maps given by f(x) :=

(
A + BK?(δ)

)
x|δ=0, g(x) :=

(
A +

BK?(δ)
)
x|δ∈(0,δ), h(x) :=

(
A + BK?(δ) + L?(δ)

)
x|δ∈(0,δ), respectively, are topologically

equivalent.

Proof. Let the pair (P (δ),Λ(δ)) correspond to a solution to (4.1.8). Recall, for example,
from [BB95, Ch. 3] that f(x) = Λ−1(δ)Ax|δ=0, g(x) =

(
In − δP (δ)

)
Λ−1(δ)Ax|δ∈(0,δ)

with (δ−1In − P (δ)) � 0 and h(x) = Λ−1(δ)Ax|δ∈(0,δ). Then, all that we need to
show is that Λ(δ)|(0,δ) ∈ GL+(n,R). It follows from Theorem 4.1.1 that limδ↓0 Λ(δ) =

(In + BR−1BTP ) ∈ GL+(n,R). Since GL(n,R) has two connected components, Λ(δ) is
continuous in δ (this can be shown as in [Pol86b]) and starts in GL+(n,R), it must remain
in that group. This concludes the proof.
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Corollary 4.1.3 indicates that the adversaries these dynamic games hedge against are
somewhat natural.

Remark 4.1.1 (Beyond standard LQR). Corollary 4.1.3 shows that Theorem 4.1.1 is not
limited to the “standard” LQR problem. Hence, we would like to point to related problems,
displaying similar, if not equivalent, structure. When considering an exponential utility
function in (4.1.3) subject to a linear Gaussian system, which is called the LEQR prob-
lem, then, its optimal policy coincides with that of a dynamic game [Jac73, Whi90, BB95].
Similar algebraic structures are also seen in distributionally robust control and estima-
tion [Yan20]. Note that in the stochastic case, the topological equivalence is with respect
to the closed-loop mean state processes. Also, to be able to use Theorem 2.3.3 in a
discounted setting, stability must be explicitly verified.

We can conclude, however, without a formal proof, that given any two optimal closed-
loop time-one maps resulting from any two block-diagonal LQ OC problems, they are
topologically equivalent. The crux is that all these optimal closed-loop maps are of the
form x 7→ Λ−1Ax for some Λ ∈ GL+(n,R). Now, if the cost is not block-diagonal, the
cross-terms will determine, for the better or worse, to which topological class the closed-
loop map belongs.

This section also showed again the importance of correctly identifying ker(A) and
or(A). If some estimate of A, say Â, satisfies or(A) 6= or(Â), then, for standard (block-
diagonal) LQR, no matter the tuning, the simulated and real behaviour will always be
structurally different, which was our partial motivation for the previous chapter.

4.1.4 Concluding comment on “tuning”

(a) (ε = 0) A (discrete)
stable counter-clockwise spiral
with or(σ?) = 1.

(b) (ε = 0.5) Due to an increase
in ε the spiral starts to shear,
yet or(σ?) = 1.

(c) (ε = 2) For ε > 1 or(σ?) =
−1 and the spiral deteriorates.

Figure 4.1: Given the parameters from Example 4.1.2, starting from 8 initial conditions on
∂[−1, 1]2, we show a few closed-loop trajectories as a function of S(ε). In Figure 4.1c, we see
that emergence of the dashed trajectory, breaking the spiral.

In the vast majority of work on LQ optimal control the stage-cost (4.1.2) is diago-
nal (cf. [Kal64, PCC+15]). However, all of the above emphasizes that one should not
underestimate the use of S 6= 0. One successful example is presented in [TD12] (“the
balancing cube”), where the authors exploit S with the purpose of penalizing subsequent
input deviations.
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Looking at this from the tuning point of view, by excluding S, you are restricting the
behaviour of the closed-loop system to maps with at least the same orientation as the
automorphic part of x 7→ Ax, e.g., in the scalar case, by changing the pair (Q,R), one
cannot go from spring- to damper-like behaviour. Therefore, we propose that if one wants
to tune, if a change in behaviour is desired, change S. At last, we briefly visualize the
effect of S.

Example 4.1.2 (Structural tuning). Consider the general LQR problem from Section 4.1.2
parametrized by B = I2, R = I2, Q = 10 · I2 and

A =

(
0 −1
1 0

)
, S(ε) =

(
ε 0
0 −ε

)
,

for some ε ∈ R≥0. We see that for all ε < 1, (Q,R, S(ε)) ∈ C+(σ), i.e., det(A′ =
A−S(ε)) = −ε2 +1. To illustrate the structural change, we vary ε from 0 and 2, construct
K? accordingly and show a few closed-loop trajectories in Figure 4.1. Indeed, once S
(formally, (Q,R, S)) leaves C+(σ), the behaviour changes structurally (cf. Figure 4.1c).

4.2 On continuation and convex Lyapunov functions
In this section we will discuss how the structure of Lyapunov functions can be exploited
towards a study of the space of stable dynamical systems.

4.2.1 Introduction
Ever since the time of Descartes, convexity has been recognized as an important notion
to study structural properties of various mathematical objects [Fen83]. In this section, we
aim to improve our understanding of the topology of spaces of stable systems and show
that again convexity plays an important role. In particular, we study if vector fields on Rn
with a common global attractor can be continuously transformed (formally, homotoped,
see Section 4.2.2) into each other while preserving the attractor along the transformation.
Before making this precise, we briefly elaborate on the relevance of this question.

One can argue that, originally, this question emerged in the dynamical systems commu-
nity. That is, well over 40 years ago, Conley asked if dynamical systems with qualitatively
similar properties can be continuously transformed into each other while preserving those
properties along the transformation [Con78, p. 83]. In this work we address—in arguably
the most simple setting—those continuation (see Section 4.2.3) questions as posed by
Conley [Con78] and later Kvalheim [Kva23]. Our setting is simple in the sense that we
largely focus on stability of equilibrium points instead of general attractors and spaces.

Then, in the context of linear optimal control, policy gradient methods have been re-
cently shown to be a powerful controller synthesis paradigm as data and constraints can
be naturally incorporated [HZL+23]. Omitting details, these algorithms are frequently
studied as being discretizations of a continuous-time gradient flow [BMFM19]. Here, the
common assumption is that the optimal control cost is only finite under a stabilizing con-
troller. Now, the hope is that, if initialized properly, gradient flow gives rise to a curve of
stabilized closed-loop systems, moving from some initial closed-loop system to an optimal
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closed-loop system. As such, it is of great importance to understand a priori when such
a curve exists, especially when moving beyond linear systems. For instance, when such a
curve does not exist, a step size cannot be made arbitrarily small cf. [HZL+23, Thm. 1]
as one might need to “jump”, similarly, initialization becomes of critical importance. In-
deed, the importance of understanding the topology of the space of stable systems has
been recognized early on, e.g., see [Bro76, Obe87] and motivated by these gradient-based
methods this question received renewed interest, e.g., see [FL19, BMFM19, BMM20].

A more surprising motivating example can be found in the context of switched systems.
It turns out that if we have two vector fields such that the origin is globally asymptotically
stable (GAS) (see Section 2.2.1), then, the origin remains GAS under arbitrary switching
between those two vector fields only if those two vector fields can be continuously trans-
formed into each other such that along the transformation the origin remains GAS (see
Proposition 4.2.6 below).

Motivated by the above, this work aims to illustrate how the path-connectedness of
spaces of dynamical systems can be studied via structural properties of Lyapunov func-
tions. In particular, motivated by recent advances in learning [AXK17, KM19], we focus
on the ramifications of assuming (control) Lyapunov functions—as pioneered by Art-
stein [Art83] and Sontag [Son89]—to be convex. Overall, this work is also in the spirit
of the work by Arnold [Arn73, Sec. 22], Zabczyk [Zab89], Reineck [Rei91], Sepulchre and
Aeyels [SA96], Grüne, Sontag and Wirth [GSW99], Coron [Cor07, Ch. 11], Byrnes [Byr08]
and Cieliebak and Eliashberg [CE12, Ch. 9].

For this section we recall Section 2.2 on Lyapunov functions for dynamical control
systems on Rn. In particular, we recall Section 2.2.3, where we highlight topological
properties of level sets of Lyapunov functions. These observations are the motivation for
Sections 4.2.2-4.2.3 where we infer continuation results by considering several notions of
convexity.

Notation is standard, but for simplicity we again highlight the main objects below.
Notation: Let r ∈ N ∪ {∞}, then, Cr(U ;V ) denotes the set of Cr-smooth functions from
U to V . The inner product on Rn is denoted by 〈·, ·〉 and Sn−1 = {x ∈ Rn : ‖x‖2 = 1}.
The Lie derivative of a smooth function h over some open set U ⊆ Rn with respect to a
smooth vector field X over U is denoted by LXh and is defined pointwise by LXh(p) :=
〈∇h(p), X(p)〉 for any p ∈ U [Lee12, Prop. 12.32]. By cl(W ) we denote the closure of W
and by int(W ) we denote its interior. The map x 7→ x on Rn is denoted by idRn and
tangent spaces of appropriate sets M are denoted by TpM , for p ∈M , with TM denoting
the corresponding tangent bundle [Lee12, p. 65].

4.2.2 On convexity
Section 2.2.3 illustrated why level sets of Lyapunov functions are topological spheres. As
such, this motivates the hope that all those Lyapunov functions can be transformed—in
some sense—to the canonical Lyapunov function V (x) = 1

2 〈x, x〉. Indeed, Grüne, Sontag
and Wirth [GSW99] showed that when V is a C∞ Lyapunov function corresponding to
0 being GAS, then, there is a C1 homeomorphism T such that Ṽ (T (y)) = V (y) for
Ṽ (y) = 1

2 〈y, y〉. However, it is not clear if their arguments can be extended to construct a
homotopy from −∇V (y) to −y along vector fields such that 0 remains GAS throughout.
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The complication here is the topology of the homeomorphism- and diffeomorphism groups
used in their line of arguments. Those spaces are not necessarily path-connected, similar
to {X ∈ Rn×n : det(X) 6= 0} not being path-connected, see [Kup19, Ch. 9].

To continue, we start this study of transformations by looking at convex Lyapunov
functions, as this class is particularly simple to handle. Better yet, by exploiting this struc-
ture, it follows that any convex Lyapunov function also asserts stability of the “canonical”
inward pointing vector field on Rn indeed, which we will denote with some abuse of no-
tation by the map −idRn , i.e., giving rise to ẋ = −x. Exactly this observation will be
formalized and further studied below.

Convex Lyapunov functions

Convexity in the context of Lyapunov stability theory has been an active research area.
For example, convexity in linear optimal control [LR95], convexity in the dual density
formulation due to Rantzer [PPR04], convexity of the set of Lyapunov functions due
to Moulay [Mou10] and recently, component-wise convexity of vector fields to construct
Chetaev functions due to Sassano and Astolfi [SA23]. We are, however, interested in un-
derstanding convexity of Lyapunov functions themselves. It is known that simple asymp-
totically stable dynamical systems do not always admit polynomial Lyapunov functions.
For instance

d

dt

(
x1(t)
x2(t)

)
=

(
−x1(t) + x1(t)x2(t)

−x2(t)

)
(4.2.1)

does not admit a (global) polynomial Lyapunov function [AKP11], but one can show
that V (x) = log(1 + x2

1) + x2
2 is a Lyapunov function asserting 0 ∈ R2 is GAS. Indeed,

V is smooth, yet not convex. We will come back to this several times below. Similar
obstructions can be found for analytic or rational Lyapunov functions [BR05, AEK18].

The (computational) assumption to look for convex Lyapunov functions is a popular
one in the learning community, e.g., propelled by [AXK17, KM19]. However, this as-
sumption evidently restricts the problem class that can be handled. The ramifications of
assuming Lyapunov functions to be convex are understood in the context of linear systems,
even for linear differential inclusions [GTHL06] and linear switched systems [MCS23], but
not completely in the C0 nonlinear setting. An exception is [AJ18], where the authors
consider nonlinear difference inclusions of the form xk+1 ∈ conv{f1(xk), . . . , fn(xk)} with
k ∈ N, fi ∈ C0(Rn;Rn) fi(0) = 0 for i = 1, . . . , n and conv(·) denoting the convex hull.
Then, assuming that the maps f1, . . . , fn share a common convex Lyapunov function al-
lows for concluding on 0 being GAS4. Concurrently, they show that relaxing convexity is
not possible in general, that is, counterexamples exist [AJ18, Ex. 1].

Similarly, in our setting, for n > 1, one can construct vector field examples ẋ = F (x)
over Rn such that 0 is globally asymptotically stable, F is smooth, yet no smooth convex
Lyapunov function exists. To see why, for the sake of contradiction, one can exploit
that by convexity5 we must have 〈∇V (x), x〉 ≥ 0 ∀x ∈ Rn and due to the stability
assumption we have 〈∇V (x), F (x)〉 < 0 ∀x ∈ Rn \ {0} such that the function V must
satisfy 〈∇V (x), F (x) − x〉 < 0 for all x ∈ Rn \ {0}. Hence, if there is a non-zero fixed

4This should be understood in the discrete-time sense.
5Combine the inequalities V (x) ≥ V (x?) + 〈∇V (x?), x− x?〉 and V (x?) ≥ V (x) + 〈∇V (x), x? − x〉.



88 Chapter 4. Space of stable systems and structural stability

Figure 4.2: Example 4.2.1: integral curves of a smooth dynamical system that obstructs the
existence of a smooth convex Lyapunov function, yet, 0 is GAS. Adapted from the original figure
made with Python.

point6 of F , we contradict the existence of such a V . See Figure 4.2 for a phase portrait
illustrating a dynamical system with a fixed point obstructing the existence of a smooth,
convex Lyapunov function. As one will be able to infer from the results below, F cannot
point (radially) outward. Indeed, it is known that for homogeneous Lyapunov functions
this can also not be true [SA96, Prop. 1]. We also remark that for convex Lyapunov
functions Property (V-iii) is implied by Property (V-i) [AJ18, Lem. 4.1].

We will now formalize this observation. To do so, we recall the notion of a homotopy.
The functions f, g ∈ C0(X;Y ) are said to be homotopic when there is a continuous map
H : [0, 1] × X → Y such that for any x ∈ X we have that x 7→ H(0, x) = f(x) while
x 7→ H(1, x) = g(x). The homotopy is said to be a straight-line homotopy when H is
simply of the form H(s, x) = (1 − s)f(x) + sg(x). Note that homotopies only become
interesting beyond X = Y = Rn, e.g., on manifolds or when requiring more structure
to be preserved along the homotopy, as is done in this section. See [JM23] for more
on homotopies in the context of control theory. See also Section 4.2.4 for more on how
homotopies allow us to discuss path-connectedness.

Theorem 4.2.1 (Convex Lyapunov functions). Let F ∈ C0(Rn;Rn) give rise to ẋ = F (x)
with 0 ∈ Rn globally asymptotically stable (GAS) under F . Then, if there is a convex C∞
Lyapunov function asserting 0 is GAS, the vector field F is straight-line homotopic to
−idRn such that 0 is GAS throughout the homotopy.

Proof. By assumption there is a C∞ Lyapunov function V such that 〈∇V (x), F (x)〉 < 0
for all x ∈ Rn \ {0}. By the convexity of V we also know that

V (y) ≥ V (x) + 〈∇V (x), y − x〉, ∀y, x ∈ Rn. (4.2.2)

In particular, (4.2.2) must hold for y = 0, which yields 〈∇V (x),−x〉 ≤ −V (x), that is,
V is also a Lyapunov function for ẋ = −x. Hence, we find that 0 is also GAS under
sF (x)− (1− s)x (or (1− s)F (x)− sx for that matter) for all s ∈ [0, 1] since for any such s

〈∇V (x), sF (x)− (1− s)x〉 < 0 ∀x ∈ Rn \ {0}.
6Note, here we heavily exploit the underlying vector space structure to be able to compare x and

F (x).
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Hence, H(s, x) = sF (x)− (1− s)x is the homotopy.

To illustrate the homotopy resulting from Theorem 4.2.1, two vector fields F1 and
F2 on Rn such that 0 is GAS—asserted via possibly different smooth convex Lyapunov
functions—are homotopic through a continuous map H : [0, 1]× Rn → Rn of the form

H(s, x) =

{
−2sx+ (1− 2s)F1(x) s ∈ [0, 1

2 ]

−(2− 2s)x+ (2s− 1)F2(x) s ∈ ( 1
2 , 1].

A variety of known topological conditions capture the existence of a (local) homotopy (in
far more general settings), but not that along the homotopy stability is preserved cf. [Kva23].

Similar statements can be made about control Lyapunov functions.

Corollary 4.2.2 (Convex control Lyapunov functions). Let f ∈ C0(Rn × Rm;Rn) give
rise to the control system ẋ = f(x, u). If there is a convex control Lyapunov function
(CLF) V ∈ C∞(Rn;R≥0) for this control system with respect to 0, then, V is a CLF for
any control system on the straight-line homotopy between f and the map (x, u) 7→ −x.

Proof. The proof is identical to that of Theorem 4.2.1, yet, now we start from V satisfying

∀x ∈ Rn \ {0} ∃u ∈ Rm : 〈∇V (x), f(x, u)〉 < 0.

and again exploit convexity of V to conclude.

As remarked above, we see from Theorem 4.2.1 that a necessary condition for ẋ = F (x)
to admit a smooth, convex Lyapunov function, asserting 0 is GAS, is that

F (x) 6= λx ∀λ ∈ R≥0, ∀x ∈ Rn \ {0}. (4.2.3)

Differently put, if V is a Lyapunov function for ẋ = F (x), it is also a Lyapunov function
for ẋ = F (x)−λx, with λ ≥ 0. The next example shows we can find families of dynamical
systems that do not obey Condition (4.2.3).

Example 4.2.1 (Necessarily nonconvex). The system as depicted in Figure 4.2 can be
made explicit. Consider a C∞ dynamical system of the form (2.2.1) on R2 as given by

d

dt

(
x1(t)
x2(t)

)
=

(
α 1
−1 α

)(
x1(t)
x2(t)

)
+ γ

(
exp(−β‖x(t)− p‖22)− exp(−β‖p‖22)

)(1
1

)
(4.2.4)

where x = (x1, x2) ∈ R2, and α = −0.1, β = 100, γ = 10 and p = (0.5, 0.5) ∈ R2

correspond to Figure 4.2. Indeed, one can show that only 0 ∈ R2 is an equilibrium point
of this dynamical system. Note, (4.2.4) can also be understood as a stabilizable linear
system under a (bounded) nonlinear perturbation. Regarding our necessary condition for
convexity, we find, for instance, that x = (0.51, 0.45) ∈ R2 and λ = 1/0.0629 provide for
a (numerical)7 invalidation of (4.2.3). Regarding 0 being GAS, we first note that 0 is

7We write “numerical” since the obstruction is not provided in closed-form. However, our argument
is as follows. Due to the symmetry in the nonlinear part, a necessary condition for (4.2.4) to satisfy
F2(x) = λx is that (λ−α−1)x1 = (λ−α+1)x2 holds for some appropriate tuple (λ, α, x1, x2). For instance,
fix (α, λ, x2) such that (λ − α − 1) 6= 0 and solve for x1. Let ζ(x) = exp(−β‖x − p‖22) − exp(−β‖p‖22),
then, we can simply set γ = (λx1 − αx1 − x2)/ζ(x) (to avoid dividing by 0 we can simply adjust λ) such
that F2(x) = λx holds. The provided numerical values are obtained accordingly and hence provide for a
valid obstruction.
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hyperbolic and LAS. Then, it is not too hard to show that D2 ⊂ R2 is forward invariant
under F2, e.g., construct a quadratic Lyapunov function for the linear part of (4.2.4), see
Figure 4.2. Since we have a single equilibrium point at 0, the only obstruction to global
asymptotic stability is the existence of a periodic orbit , which must live, if it exists, within
D2 (the closed unit ball). Now we can also find a smaller ball rD2 of radius r = 1/4 that
is again forward invariant. Hence, if a periodic orbit exists, it is either a semi-stable orbit,
comprised of stable/unstable pairs, or a combination. It turns out that γ parametrizes
such a bifurcation, with 0 being GAS for our choice of parameters. Details are provided
elsewhere.

Remark 4.2.2 (A nonconvex conic structure). Let 0 ∈ Rn be GAS under ẋ = F (x),
then 0 is also GAS under ẋ = θF (x) for any θ > 0, e.g., consider 〈∇V (x), F (x)〉 and
〈∇V (x), θF (x)〉 for some Lyapunov function V with respect to F . Hence, if F is convex,
then by Theorem 4.2.1, all θF are straight-line homotopic to −idRn . Despite the conic
structure, convexity of the set of these vector fields (vector fields such that 0 is GAS,
verified via a convex Lyapunov functions) breaks down as already the set of Hurwitz
stable matrices is nonconvex, e.g.,

s

(
−1 10
0 −1

)
+ (1− s)

(
−1 0
10 −1

)
becomes unstable (not all eigenvalues lie in C<<0) for s = 1/2.

Similarly, from Corollary 4.2.2 we see that the control system ẋ = f(x, u) admits a
smooth, convex CLF only when

∀x ∈ Rn \ {0} ∃u ∈ Rm : f(x, u) 6= λx ∀λ ∈ R≥0. (4.2.5)

Indeed, one can replace λ ∈ R≥0 in (4.2.5) by λ(x) ∈ R≥0, for example, λ ∈ C0(Rn;R≥0) cf. [SA96].

Example 4.2.3 (Linear dynamical systems). Consider the linear dynamical system ẋ =
Ax for some matrix A ∈ Rn×n. Theorem 4.2.1 implies that for a convex Lyapunov function
to exist (asserting 0 is GAS) the expression sAx−(1−s)x cannot vanish for some s ∈ [0, 1]
and x ∈ Rn \ 0. Reformulating, we get (4.2.3), i.e., Ax = λx cannot have a solution for
some λ ≥ 0 and x ∈ Rn \ {0}. However, this is precisely stating that A cannot have
an unstable eigenvalue of the form λ ∈ R≥0. Indeed, for globally asymptotically stable
linear systems a convex (quadratic) Lyapunov function of the form V (x) = 〈Px, x〉 always
exists [Son98, Thm. 18].

Remark 4.2.4 (On sufficiency). Example 4.2.1 showed that for dynamical systems of the
form (4.2.4) (for certain parameters) no convex Lyapunov function can exist. Going back
to (4.2.1), the provided Lyapunov function is nonconvex. Concurrently, one can check
that (4.2.3) holds, so a convex Lyapunov function is not ruled out. We come back to this
below.

To elaborate on Example 4.2.3, for controllable linear systems, e.g., of the form ẋ =
Ax+Bu, one can always parameterize a quadratic Lyapunov function for the LQ optimally
controlled closed-loop system by the positive definite solution to the corresponding Riccati
equation (for any appropriate cost) [Son98, Thm. 42, Ex. 8.5.4].
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Example 4.2.5 (Linear dynamical control systems and Hautus’ test). A celebrated condi-
tion largely attributed to Hautus (plus Belevitch and Popov) states that a linear dynamical
control system of the form ẋ = Ax+Bu, is stabilizable when

rank
((
A− λIn B

))
= n ∀λ ∈ σ(A) ∩ C<≥0, (4.2.6)

where σ(A) denotes the spectrum of A. See for instance [TSH12, Ch. 3]. Now, elementary
algebraic arguments show that Hautus’ condition (4.2.6) implies that (4.2.5) holds, as it
should for linear control systems.

Using the above, one can readily verify that, for example

d

dt

(
x1(t)
x2(t)

)
=

(
x1(t)u

x1(t)x2(t)u

)
(4.2.7)

does not admit a smooth, convex CLF. Indeed, for (4.2.7), controllability is lost at (0, x2) ∈
R2.

Example 4.2.3 and Example 4.2.5 show that conditions (4.2.3) and (4.2.5) are to some
extent generalizations of known conditions for linear systems, yet, lifted to nonlinear
systems under convexity assumptions. These conditions are, however, weak.

A stronger set of conditions one can derive from Theorem 4.2.1 is of the form: ẋ =
f(x, u) admits a smooth, convex CLF only if ẋ = f(x, u) − λ(x)x does, for any λ ∈
C0(Rn;R≥0). We are not the first to observe something of this form, e.g., Sepulchre and
Aeyels [SA96, Sec. 4.1] look at homogeneous CLFs and recover a similar condition.

We close this subsection with a comment on mere Lyapunov stability, that is, Prop-
erty (V-ii) is replaced with the weaker notion 〈∇V (x), F (x)〉 ≤ 0. This notion of stability
is understood as local, yet, for practical purposes such a Lyapunov function allows for
concluding trajectories to remain bounded.

Remark 4.2.6 (Lyapunov stability). At the time of writing, several examples of Lya-
punov stable dynamical systems surfaced that provably fail to admit a smooth, convex
Lyapunov function [APH23]. We show that our line of arguments offers an arguably
simpler means of reaching such a conclusion. Following the same reasoning as for Theo-
rem 4.2.1, when 0 is Lyapunov stable under some vector field F and comes equipped with
a C∞ convex Lyapunov function V , then, we must have that 〈∇V (x), F (x) − λx〉 ≤ 0
∀x ∈ Rn, λ ∈ R≥0. We claim that the existence of a point x′ ∈ Rn \ {0} such that
F (x′)i = λ′x′i 6= 0 for i = 1, . . . , n for some λ′ ∈ R>0 contradicts the existence of such
a function V . To see this, suppose that such a pair (x′, λ′) exists, then we can find
λ1, λ2 ∈ R>0 such that 2F (x′) = (λ1 + λ2)x′. In particular, we have that F (x′)− λ1x

′ =
(−1)(F (x′) − λ2x

′). We can select λ1 6= λ2 such that by construction no element of the
equation above equals 0. However, that means that when we move λ from λ1 to λ2, the
sign of 〈∇V (x′), F (x′) − λx′〉 flips, which is a contradiction. One can employ precisely
this argument to show that for k > 1 the origin of the system

d

dt

(
r(t)
θ(t)

)
=

(
r2k+1 sin(1/r)

1

)
is Lyapunov stable, yet, no smooth, convex Lyapunov function exists to assert this cf. [APH23,
Thm. 1].
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On compact convex sets

We briefly show that without too much effort the results extend from 0 ∈ Rn being GAS
under some dynamical system parametrized by F ∈ C0(Rn;Rn) to a compact convex set
A ⊆ Rn being GAS8 under F . As A is homotopy equivalent to a point, this is perhaps
not surprising. Define the projection operator by

ΠA(x) := arg min
y∈A
‖x− y‖2.

We have the following.

Corollary 4.2.3 (Convex Lyapunov functions for convex compact sets). Let F ∈ C0(Rn;Rn)
give rise to ẋ = F (x) with a compact convex set A ⊆ Rn being globally asymptotically sta-
ble (GAS) under F . Then, if there is a convex C∞ Lyapunov function asserting A is
GAS, the vector field F is straight-line homotopic to ΠA − idRn on Rn \A such that A is
GAS throughout the homotopy.

Proof. The Lyapunov function is such that V (x) = 0 ⇐⇒ x ∈ A, hence for the convexity
condition V (y) ≥ V (x) + 〈∇V (x), y − x〉 we pick y = ΠA(x) such that for all x ∈ Rn \ A
we have 〈∇V (x),ΠA(x)− x〉 < 0. We can conclude.

Some comments are in place, we do not need F (A) = 0, A merely needs to be invari-
ant9. This is why we cannot say anything about the homotopy on A itself. Moreover,
settings like these easily obstruct V ∈ Cω(Rn;R≥0) (real-analyticity), not to contradict
real-analytic function theory (bump functions cannot be Cω). Also, when A is not con-
vex, ΠA is potentially set-valued, obstructing our vector field construction and perhaps
ΠA− idRn is not the expected “canonical” inward vector field (due to the non-scaled offset
−x). At last, we point out that although V is smooth, this does not imply that ∂A must
be a smooth manifold. For instance, consider V (x1, x2) = (x1 − x2)2(x1 + x2)2 (although
here, V −1(0) is clearly not convex), or the `2 distance from [−1, 1]n. We direct the reader
to [FP19] and references therein for more on Lyapunov theory with respect to sets.

Geodesic convexity

To go beyond vanilla convexity, we follow [Udr13, Ch. 3], [Bou23, Ch. 11] and show how
the situation is hardly different in the context of geodesic convexity. We will be brief,
for the details on geodesic convexity we point the reader to the references above and for
background information on Riemannian geometry we suggest [Lee97].

Let (Rn, g) be a C∞ Riemannian manifold for some Riemannian metric g. One can
think of g as inducing a change of coordinates via the inner product 〈·, ·〉g, in particular,
this metric has an effect on gradients, that is, the (Riemanian) gradient of a differentiable
function f : Rn → R, with respect to g, satisfies Df(x)[v] = 〈grad f(x), v〉g for any
(x, v) ∈ TRn, with Df(x)[v] being the directional derivative in the direction v ∈ TxRn.
For example, let g be parametrized by a symmetric positive definite matrix P , that is,

8For more on the generalization of stability notions from points to sets we point the reader to [Hur82]
for a topological treatment.

9Let ϕ be the flow corresponding to F , then A is said to be invariant (under ϕ) when ϕ(R, A) = A.
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〈v, w〉g := 〈Pv,w〉 for any v, w ∈ TxRn and x ∈ Rn, then, grad f(x) = P−1∇f(x). Indeed,
for a practical application of this in Rn, we point the reader to a discussion of Newton’s
method as used in second-order optimization [BV04, Sec. 9.5]. The metric g also has
ramifications for “straight lines”, a C1 curve [0, 1] 3 s 7→ γ(s) is a geodesic, with respect
to g, when it is an extremal of the energy functional γ 7→ E(γ) := 1

2

∫
[0,1]
〈γ̇(τ), γ̇(τ)〉gdτ .

This implies geodesics are locally minimizing length and in that sense they generalize
straight lines. As this statement is local, geodesics are by no means always unique. Then,
a subset U ⊆ Rn is called geodesically convex (g-convex) when for all points x, y ∈ U
there is a unique10 geodesic γ : [0, 1] → Rn (with respect to g) connecting x to y such
that γ([0, 1]) ⊆ U . A function f : U ⊆ Rn → R, over some g-convex domain U , is said to
be geodesically convex (g-convex) when

(1− t)f(x) + tf(y) ≥ f(γ(t)) ∀t ∈ [0, 1] (4.2.8)

for γ : [0, 1] → Rn a geodesic, with γ([0, 1]) ⊆ U connecting the point x to y. In-
deed, (4.2.8) generalizes the standard C0 definition of convexity. A C1 condition is now
given by

f(Expx(tv)) ≥ f(x) + t〈grad f(x), v〉g ∀t ∈ [0, 1],

where v ∈ TxRn, Expx is the (Riemannian) exponential map at x ∈ U ⊆ Rn and
grad f(x) is the Riemannian gradient of f . Here, the exponential map is defined, lo-
cally, by Expx(v) = γ(1) for γ the unique geodesic with γ(0) = x and γ̇(0) = v.

Similarly, for a C2 condition, a function f is g-convex when the Riemannian Hessian
satisfies Hess f(x) � 0 for all x ∈ U ⊆ Rn (see [AMS09, ch. 5] for a correct interpretation).
The interest in g-convex functions stems from the fact that local minima are again global
minima, as with standard convex functions.

We are now equipped to generalize Theorem 4.2.1.

Theorem 4.2.4 (Geodesically convex Lyapunov functions). Let (Rn, g) be a Riemannian
manifold and let U ⊆ Rn be open and g-convex. Let F ∈ C0(U ;Rn) give rise to ẋ = F (x)
with 0 ∈ U globally asymptotically stable (GAS) (on U) under F . Then, if there is a
g-convex C∞ Lyapunov function asserting 0 is GAS, the vector field F is straight-line
homotopic to Exp−1(0) such that 0 is GAS throughout the homotopy.

In Theorem 4.2.4, Exp−1(0) should be understood as the map being defined by x 7→
Exp−1

x (0) ∈ TxRn.

Proof. By assumption, there is a C∞ Lyapunov function V such that 〈∇V (x), F (x)〉 < 0
for all x ∈ U \ {0}. By the g-convexity of V we also know that for all t ∈ [0, 1] and
(x, v) ∈ TU we have

V (Expx(tv)) ≥V (x) + t〈gradV (x), v〉g = V (x) + t〈∇V (x), v〉,

where we removed the dependency on the metric g by identifying both inner products
with the directional derivative DV (x)[v]. We consider t = 1 and pick v := Exp−1

x (0).
This map is always well-defined since our geodesics are unique. Now we proceed exactly
as in the proof of Theorem 4.2.1 and conclude.

10See the discussion in [Bou23, Sec. 11.3] on various slightly different definitions of geodesic convexity
and their implications.
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Indeed, we recover Theorem 4.2.1 for the identity metric on Rn and U = Rn. In
particular, in that case we can define our Riemannian exponential map as Expx(v) = x+v
for v ∈ TxU . Hence, the tangent vector v such that Expx(v) = 0 is simply −x (now seen
as a tangent vector), i.e., Exp−1

x (0) = −x. Recall, formally speaking, −idRn should be
understood as x 7→ (x,−x) ∈ TU while ignoring the first component of the image. With
this in mind we can again understand Exp−1(0) as the canonical “inward” vector field,
yet now on a subset of (Rn, g).

Generalizing to compact manifolds and so forth (beyond contractible sets) is somewhat
nonsensical as no smooth function with a single critical point exists on those spaces. This
restriction comes from the demand that our geodesics are unique, obstructing nontrivial
topologies. See [Udr13, Ch. 4] for more pointers.

A similar generalization can be achieved through the lens of contraction analysis [LS98].
See in particular [WS20] for a relation between g-convexity and contraction metrics.

We end this section by returning to Remark 4.2.4, the Lyapunov function with respect
to (4.2.1) is nonconvex, yet the dynamical system satisfies the necessary condition (4.2.3).
Indeed, fixating on each quadrant separately, the function is g-convex11 (under quadrant-
wise exponential geodesics, which suffices thanks to the invariance properties of the vector
field), and the necessary condition effectively extends (as inferred from Theorem 4.2.4).

4.2.3 On continuation
The existence of a mere homotopy is not immediately informative. Often, only when the
homotopy itself satisfies certain properties, one can draw nontrivial conclusions.

In our case the homotopies as detailed in Theorem 4.2.1, Corollary 4.2.2, Corol-
lary 4.2.3 and Theorem 4.2.4 all preserve qualitative properties of the underlying dy-
namical system. More formally, this construction provides a continuation in the sense of
Conley, albeit from a different perspective. Again, we are decidedly brief, but we point
the reader to [Con78, MM02] for more details on Conley index theory and suggest [Hat02]
as a reference on algebraic topology.

Recall that, under our assumptions, a dynamical system of the form (2.2.1) gives rise
to a global flow ϕ : R× Rn → Rn. Let S ⊂ Rn be an isolated invariant set (with respect
to ϕ), that is,

S = Inv(M,ϕ) := {x ∈M : ϕ(R, x) ⊆M} ⊆ int(M)

for some compact set M ⊂ Rn. Note that not every invariant set is isolated, e.g. consider
an equilibrium point of the center-type. Then, a pair of compact sets (N,L) ⊂ Rn × Rn
is an index pair for S when

(I-i) S = Inv(cl(N \ L), ϕ) and N \ L is a neighbourhood of S;

(I-ii) L is positively invariant in N ;

(I-iii) L is an exit set for N (a trajectory that leaves N , must leave through L).

Now, the (homotopy) Conley index of S is the homotopy type of the pointed (quotient)
space (N/L, [L]), e.g., for N = Bn, L = ∂Bn = Sn−1, we have that N/L 't Sn such

11In fact, the function x 7→ log(1 + x2) is also semiconcave.
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that (N/L, [L]) is the pointed n-sphere. As this object is hard to computationally work
with, let Hk(A,B;Z) denote the kth singular cohomology group of A relative to B ⊆ A,
then, the homological Conley index defined as CHk(S, ϕ) := Hk(N/L, [L];Z) is of larger
interest, e.g., as computational tools are available [KMM04]. Going back to our setting,
assume for that moment that 0 ∈ Rn is a GAS hyperbolic fixed point of the flow ϕ. By
hyperbolicity (local linearity), we can pick N = εBn (a sufficiently small closed ball in
Rn) and L = ∅. Now see that

CHk(0, ϕ) = Hk(εBn/∅, [∅];Z)

' Hk(εBn;Z)

'

{
Z if k = 0

0 otherwise

since εBn is homotopic (homotopy equivalent) to a point. If 0 is not hyperbolic, pick
N to be a sub-level set of a smooth Lyapunov function that asserts 0 is GAS, this set
is compact by Property (V-iii). Indeed, constructions like these provide for topological
obstructions [MH11].

Now, if someN can be chosen to be an isolating neighbourhood throughout a homotopy,
then the Conley index is preserved along that homotopy [Mro94, Thm. 1.10]. Simply put,
we speak in this case of a continuation between the dynamical system at the beginning
and the end of the homotopy. A question asked by Conley concerns the opposite [Con78,
p. 83], to what extent do equivalent Conley indices relate to the existence of such a
continuation. See also the discussion in [MRS00, Kva23]. Indeed, we see that if there is
a homotopy through flows [0, 1] 3 λ 7→ ϕλ such that 0 is GAS along the homotopy, then
CHk(0, ϕ0) ' CHk(0, ϕ1).

For the other direction, based on the above we have the following. One can extend
the statement to compact convex sets or g-convexity if desired.
Corollary 4.2.5 (On continuation and convex Lyapunov functions). Let 0 ∈ Rn be GAS
under two dynamical systems of the form (2.2.1) parametrized by F0 and F1, giving rise to
the flows ϕ0 and ϕ1. Assume that 0 being GAS is asserted by—possibly different—smooth,
convex Lyapunov functions V0 and V1. Then 0 (with respect to ϕ0) and 0 (with respect to
ϕ1) are related by continuation where N can be chosen to be of the form N = N0 ∩ N1

(based on sub-level sets of V0 and V1).
A further study of this observation is the topic of future work.
To return to similarities pointed out in the introduction, the work by Reineck [Rei91]

and the proof of [Cor07, Thm. 11.4] provide the homotopy (preserving the Conley index)
between F and the (a) negative gradient flow −∇V . However, how to link—if at all—
multiple dynamical systems is unclear. The book by Cieliebak and Eliashberg does contain
results in this direction, yet under Ck-nearness assumptions [CE12, Ch. 9], not in general.

Then, this work alludes to convexity being a simple structural ingredient to actually
link several dynamical systems together via some canonical dynamical system.

4.2.4 Appendix
In this appendix we present auxiliary results on topology and switched systems.
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Homotopies and path-connectedness

We frequently refer to spaces of stable dynamical systems and ask if such a space is path-connected or
not, however, without making precise how to think of continuous curves in such a space. In this appendix,
we briefly highlight how to go about this. We recall that we identify continuous vector fields on Rn with
elements of C0(Rn;Rn). We will address in which sense the homotopy H : [0, 1] × Rn → Rn provides a
continuous path in the space C0(Rn;Rn). Due to space constraints, the discussion is brief, but for more
details, we refer the reader to [Hir76, Mun14].

First, a topological space X is said to be path-connected if for any two points x0, x1 ∈ X there exists
a continuous map γ : [0, 1] → X, a path, such that γ(0) = x0 and γ(1) = x1. Then, to reason about
continuous curves in C0(Rn;Rn) we need to endow it with a topology, that is, we need to decide when
two continuous maps are “close”. Leaving Rn for the moment, given two topological spaces X and Y ,
then, for K a compact subset of X and U an open subset of Y , sets of the form O(K,U) := {f : f ∈
C0(X;Y ), f(K) ⊂ U} comprise a subbasis for the compact-open topology on C0(X;Y ). It turns out that
this is the appropriate topology, as one can show the following. Let X,Y and Z be topological spaces
with X locally compact Hausdorff and endow C0(X;Y ) with the compact-open topology, then, the map
H : Z ×X → Y is continuous if and only if the map h : Z → C0(X;Y ) is continuous, where h is defined
by (h(z))(x) = H(z, x) [Mun14, Thm. 46.11]. In particular, pick Z = [0, 1] and X = Y = Rn, then, the
existence of a homotopy H : [0, 1]× Rn → Rn is equivalent to a continuous path in C0(Rn;Rn).

Switched systems

Suppose we have a finite set of locally Lipschitz vector fields F = {F1, . . . , Fn} on Rn such that the origin
0 ∈ Rn is GAS under any Fi ∈ F . Now one might be interested in understanding if 0 is still GAS under
arbitrary switching between elements of F , that is, to understand if 0 is GAS under the switched system

d

dt
x(t) = Fσ(t)(x(t)), (4.2.9)

where t 7→ σ(t) is a piecewise constant function taking values in {1, . . . , n}. It is known that for this to be
true a common C∞ Lyapunov function V must exist [MAG00]. However, by the proceeding arguments
we know that this implies that any Fi ∈ F can be homotoped to −∇V such that 0 remains GAS along
the homotopy. Then, by the transitive properties of homotopies, this implies that for any two elements
of F there must be a homotopy between them such that along the homotopy 0 remains GAS. Hence, a
somewhat counterintuitive statement is the following.

Proposition 4.2.6 (Necessary condition for switched stability). The origin 0 ∈ Rn is GAS under (4.2.9)
only if all elements of F belong to the same path-connected component of the space of vector fields on
Rn for which 0 is GAS.

Hence, Proposition 4.2.6 further motivates studying the topology of the space of vector fields with a
common attractor, e.g., vector fields on Rn such that 0 is GAS. It is interesting to note that under the
aforementioned conditions, the switched system (4.2.9) can be continuously transformed to a negative
gradient flow, without sacrificing stability. To that end, simply construct the maps Hσ : [0, 1]×Rn → Rn
defined by Hσ(s, x) = (1− s)Fσ(x)− s∇V (x) and observe that for any s ∈ [0, 1] the origin is GAS under

d

dt
x(t) = Hσ(t)(s, x(t)).

For more on switched systems we refer the reader to [Lib03]. In particular, we point the reader to [Lib03,
Rem. 2.1] for subtleties with respect to Lyapunov functions for switched systems. In fact, from the same
point of view, one observes that a necessary condition for 0 to be GAS under (4.2.9) is that 0 is GAS
under any element of the convex hull of F , e.g., consider 〈θFi + (1− θ)Fj ,∇V 〉 for θ ∈ [0, 1] [Lib03, Cor.
2.3].
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5
Numerical stability in optimization

“It has been written that the shortest and best way
between two truths of the real domain often passes
through the imaginary one.”

— Hadamard [Had45, p. 123].

Besides classical dynamical systems topics, like stability of attractors and structural
stability of a system itself, as discussed elsewhere in the thesis, we look in this chapter
at stability of the implementation of certain dynamical systems. Specifically, we look at
zeroth-order optimization algorithms, a widely applicable class of algorithms understood
as discrete-time dynamical systems on Euclidean space.

Zeroth-order optimization methods are developed to overcome the practical hurdle
of having knowledge of explicit derivatives. Instead, these schemes work with merely
access to noisy functions evaluations. One of the predominant approaches is to mimic
first-order methods by means of some gradient estimator. The theoretical limitations are
well-understood, yet, as most of these methods rely on finite-differencing for shrinking
differences, numerical cancellation can be catastrophic. The numerical community devel-
oped an efficient method to overcome this by passing to the complex domain. In this
chapter we show how this “imaginary” method can be adopted for optimization.

5.1 Introduction to imaginary zeroth-order optimiza-
tion

In this fist section we introduce our framework, in the next section we highlight how to
cope with noise and further details.
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5.1.1 Introduction
We study optimization problems of the form

minimize
x∈X

f(x), (5.1.1)

where f : D → R is a real analytic objective function defined on an open set D ⊆ Rn,
and X ⊆ D is a non-empty closed feasible set. Throughout, we assume that prob-
lem (5.1.1) admits a global minimizer x? (if not, restrict to an appropriate neighbourhood)
and that the objective function f can only be accessed through a deterministic (Section
5.2 considers noise) zeroth-order oracle, which outputs function evaluations at prescribed
test points. Under this premise, we aim to develop optimization algorithms that generate
a (potentially randomized) sequence of iterates x1, x2, . . . , xK ∈ X approximating x?. As
they only have access to a zeroth-order oracle, these algorithms fall under the umbrella
of zeroth-order optimization, derivative-free optimization or, more broadly, black-box op-
timization, see, e.g., [AH17]. As we will explain below and in contrast to (almost) all
prior work on zeroth-order optimization, we will assume that our zeroth-order oracle also
accepts complex inputs beyond D.

Zeroth-order optimization algorithms are needed when problem (5.1.1) cannot be ad-
dressed with first- or higher-order methods. This is the case when there is no simple
closed-form expression for f and its partial derivatives or when evaluating the gradient
of f is expensive. In simulation-based optimization, for example, the function f can be
evaluated via offline- or online simulation methods, but its gradient is commonly inac-
cessible. Zeroth-order optimization algorithms can also be used for addressing minimax,
bandit or reinforcement learning problems, and they lend themselves for hyperparameter
tuning in supervised learning [Spa05, CSV09, NS17]. As they can only access function
values, zeroth-order optimization methods are inevitably somewhat crude. This simplicity
is both a curse and a blessing. On the one hand, it has a detrimental impact on the algo-
rithms’ ability to converge to local minima, on the other hand—and this requires further
formalization [Sch22], it may enable zeroth-order methods to escape from saddle points
and thus makes them attractive for non-convex optimization.

Zeroth-order optimization algorithms can be categorized into direct search methods,
model-based methods and random search methods [LMW19]. Direct search methods eval-
uate the objective function at a set of trial points without the goal of approximating the
gradient. A representative example of a direct search method is the popular Nelder–Mead
algorithm [NM65]. Model-based methods use zeroth-order information acquired in previ-
ous iterations to calibrate a Cr-smooth model for some r ∈ Z≥0 that approximates the
black-box function f locally around the current iterate and then construct the next iterate
via rth-order optimization methods. These approaches typically attain a higher accuracy
than the direct and random search methods, and they have the additional advantage
that function evaluations can be re-used. In general, however, they require at least O(n)
function evaluations in each iteration to construct a well-defined local model [BCCS21].
Examples of commonly used models include polynomial models, interpolation models and
regression models [LMW19]. In contrast to model-based methods, random search methods
estimate the gradients of f at the iterates directly from finitely many function evaluations
and use the resulting estimators as surrogates for the actual gradients in a first-order
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algorithm. More precisely, random search methods typically approximate f by a smooth
function fδ that is close to f for small δ and construct an unbiased estimator gδ(x) for
∇fδ(x) by sampling f at test points in the vicinity of x [FKM04, NS17]. For many popular
approximations fδ there exists p ≥ 1 such that ‖∇fδ(x)−∇f(x)‖ ≤ O(δp). In analogy to
the model-based methods, gδ(x) can thus be used as a surrogate for the actual gradient in
a first-order algorithm. A striking advantage of these random search methods over model-
based methods is that the computation of gδ(x) requires only O(1) function evaluations,
yet at the expense of weaker approximation guarantees [LCK+20, BCCS21, Sch22]. In
principle, the approximation quality of the surrogate gradients (and therefore also the
convergence rate of the first-order method at hand) can be improved by reducing the
smoothing parameter δ. As gδ(x) is often reminiscent of a difference quotient with incre-
ment δ, however, its evaluation is plagued by numerical cancellation. This means that if δ
drops below a certain threshold, innocent round-off errors in the evaluations of f have a
dramatic impact on the evaluations of gδ. Hence, the actual numerical performance of a
random search zeroth-order algorithm may fall significantly short of its theoretical per-
formance [SXON22], however, the awareness for this phenomenon seems to be somewhat
lacking.

Inspired by techniques for numerically differentiating analytic functions, we propose
here a new smoothed approximation fδ as well as a corresponding stochastic gradient
estimator gδ that can be evaluated rapidly and faithfully for arbitrarily small values
of δ without suffering from cancellation effects. Integrating the new estimator into the
gradient-descent-type algorithm

xk+1 ← xk − µk · gδk(xk) (5.1.2)

with adaptive stepsize µk and smoothing parameter δk gives rise to new randomized
zeroth-order algorithms. The performance of such algorithms is measured by the de-
cay rate of the regret RK = 1

K

∑K
k=1 E [f(xk)− f(x?)] as K grows. Here, x? is a

global minimizer, and the expectation E[·] is taken with respect to the randomness in-
troduced by the algorithm. Note that if f is convex, then, Jensen’s inequality ensures
that the expected suboptimality gap (or expected optimization error) of the averaged it-
erate x̄K = 1

K

∑K
k=1 xk satisfies E [f(x̄K)− f(x?)] ≤ RK . The main goal of this section

is to understand how RK scales with the total number K of iterations and with critical
problem parameters such as the dimension of x or Lipschitz moduli of f . Whenever pos-
sible (e.g., when f is strongly convex), we also analyze the expected suboptimality gap
E[f(xK) − f(x?)] of the last iterate xK . The scaling behavior of RK with respect to K
reflects the algorithm’s convergence rate. We will show that algorithms of the form (5.1.2)
equipped with the new gradient estimator offer provable convergence rates, are numerically
stable, and empirically outperform algorithms that exploit existing smoothed approxima-
tions both in terms of accuracy and runtime.

Before continuing, let us briefly comment on the emphasis on gradient descent in
optimization.

Remark 5.1.1 (On gradient descent). Besides being simple to implement, there is a
strong link with control and stability. Suppose that f ∈ C1(Rn) is strongly convex (or at
least such that critical points are global minimizers, i.e., ∇f(x) = 0 ⇐⇒ x = x?). In
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this case, we can construct a function V (x) = f(x) − f(x?) ≥ 0 and study convergence
of the negative gradient flow ẋ = −∇f(x). Indeed, V acts as a Lyapunov function since
f is strongly convex and 〈∇V (x),−∇f(x)〉 = −‖∇f(x)‖22, which is strictly negative for
all x 6= x?. Hence, the gradient flow converges globally, in a stable manner, to x?. This
is solid motivation to look for an efficient discretization of such a flow and to see how far
this continuous viewpoint extends. That the gradient points in the direction of steepest
descent is just static motivation.

We use standard notation, but we emphasize the use of complex numbers throughout
this chapter.
Notation: We reserve the symbol i =

√
−1 for the imaginary unit. The real and imaginary

parts of a complex number z = a+ ib for a, b ∈ R are denoted by <(z) = a and =(z) = b.
In addition, Vn stands for the volume of the closed unit ball Bn = {x ∈ Rn : ‖x‖2 ≤ 1},
and Sn−1 stands for the surface area of the unit sphere Sn−1 = {x ∈ Rn : ‖x‖2 = 1}.
The family of all r times continuously differentiable real-valued functions on an open
set D ⊆ Rn is simply denoted by Cr(D) instead of Cr(D;R), and similarly, the family of
all real analytic functions on D is denoted by Cω(D).

More on zeroth-order optimization

Given a deterministic zeroth-order oracle, one could address problem (5.1.1) with a
gradient-descent algorithm that approximates the gradient of f with a vector of coordinate-
wise finite differences [KW52, KY03, Spa05, BCCS21]. The corresponding finite-difference
methods for zeroth-order optimization are reminiscent of inexact gradient methods [d’A08,
DGN14]. Maybe surprisingly, there is merit in using stochastic gradient estimates even
if a deterministic zeroth-order oracle is available [NS17]. The randomness not only helps
to penetrate previously unexplored parts of the feasible set but also simplifies the con-
vergence analysis. Specifically, if f is convex, then it is often easy to show that f(xk)
converges in expectation to the global minimum f(x?) [NS17].

Zeroth-order optimization algorithms that mimic gradient descent algorithms can be
categorized by the number of oracle calls needed for a single evaluation of the gradient
estimator. The most efficient algorithms of this kind make do with one single oracle
call. Arguably the first treatise on zeroth-order optimization with a random single-point
gradient estimator appeared in [NY83, Sec. 9.3], where the objective function f(x) is
approximated by the smoothed function fδ(x) = V −1

n

∫
Bn f(x+ δy) dy, and the degree of

smoothing is controlled by the parameter δ > 0. By leveraging the dominated convergence
theorem and the classical divergence theorem, one can then derive the following integral
representation for the gradient of fδ(x),

∇fδ(x) =
n

δ

∫
Sn−1 f(x+ δy)y σ(dy),

where σ represents the uniform distribution on the unit sphere Sn−1 (see also the proof of
Proposition 5.1.8). Hence, the gradient of the smoothed function fδ admits the unbiased
stochastic estimator

gδ(x) =
n

δ
f(x+ δy)y with y ∼ σ, (5.1.3)
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which can be accessed with merely a single function evaluation. Stochastic gradient esti-
mators of this kind have been used as surrogate gradients in gradient descent algorithms,
for example, in the context of bandit problems [FKM04]. However, as already pointed
out in [NY83], the variance of the gradient estimator (5.1.3) is of the order O(n2/δ2) for
small δ even if the function f is constant. This is inconvenient because a smaller δ reduces
the bias of fδ vis-à-vis f . To improve this bias-variance trade-off, it has been proposed
to subtract from gδ(x) the control variate nδ−1f(x)y, which has a vanishing mean but is
strongly correlated with gδ(x) and therefore leads to a variance reduction [ADX10, NS17].
The resulting unbiased stochastic gradient is representable as

g′δ(x) =
n

δ
(f(x+ δy)− f(x)) y with y ∼ σ, (5.1.4)

which is reminiscent of a directional derivative and can be accessed via two function evalu-
ations. Now, under mild conditions on f , the variance of g′δ(x) remains bounded as δ tends
to 0. If we aim to solve problem (5.1.1) to an arbitrary precision, however, the smooth-
ing parameter δ needs to be made arbitrarily small, in which case f(x + δy) and f(x)
become numerically indistinguishable. Subtractive cancellation therefore makes it impos-
sible to evaluate estimators of the form (5.1.4) to an arbitrarily high precision. This phe-
nomenon is exacerbated when the function evaluations are noisy, which commonly happens
in simulation-based optimization [LZH+16]. Generalized stochastic gradient estimators
requiring multiple function evaluations are discussed in [HL14], and in [DJWW15, LLZ21]
various optimality properties of zeroth-order schemes with multi-point gradient estimators
are discussed.

Stochastic gradient estimators akin to (5.1.4) with u following a Gaussian instead of a
uniform distribution are studied in [NS17]. The corresponding stochastic gradient descent
algorithms may converge as fast as O(n/K) if f is convex and has a Lipschitz continuous
gradient, but they are typically O(n) times slower than their deterministic counterparts.
Convergence can be accelerated by leveraging central finite-difference schemes or by adding
random perturbations to the gradient estimators [DJWW15, GKL+17, Sha17]. Local
convergence results for nonconvex optimization problems are investigated in [GL13], and
second-order algorithms similar to (5.1.2), which use a Stein identity to estimate the
Hessian matrix, are envisioned in [BG22]. Lower bounds on the convergence rate of
algorithm (5.1.2) are established in [AWBR09, JNR12, Sha13].

Another stream of related research investigates zeroth-order optimization methods
that have only access to a stochastic zeroth-order oracle, which returns function evalua-
tions contaminated by noise. The performance of these methods critically depends on the
smoothness properties of f . Indeed, the higher its degree of smoothness, the more terms
in the Taylor series of f can be effectively averaged out [PT90]. Improved convergence
results for zeroth-order optimization methods under convexity assumptions are derived
in [BP16, APT20, NG22]. When function evaluations are noisy, the smoothing parame-
ter δ controls a bias-variance tradeoff. Indeed, reducing δ reduces the bias introduced by
smoothing f , while increasing δ reduces the variance of the gradient estimator induced by
the noisy oracle, which scales as 1/δ for small δ. The variance can be further reduced by
mini-batching [JWZL19]. The impact of exact line search methods and adaptive stepsize
selection schemes is discussed in [SMG13, BCS21]. Better stepsize rules are available if f
displays a latent low-dimensional structure [GKK+20].
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Generalized zeroth-order methods for optimizing functions defined on Riemannian
manifolds are proposed in [LBM22], and algorithms that have only access to a comparison
oracle, which is less informative than a zeroth-order oracle, are investigated in [CMYZ22].

For comprehensive surveys of zeroth-order optimization and derivative-free optimiza-
tion we refer to [LMW19, LCK+20]. Abstract zeroth-order methods for convex optimiza-
tion are studied in [HPGS16]. The minimax regret bounds derived in that work reveal the
importance of having control over the randomness of the zeroth-order oracle. Accordingly,
most existing methods rely on the assumption that the noise distribution is light-tailed.
In contrast, if the zeroth-order oracle is affected by adversarial noise, then optimization
is easily obstructed [SV15, Thm 3.1].

Contributions

Most existing zeroth-order schemes approximate the gradient of f in a way that makes
them susceptible to numerical instability. For example, if f ∈ C1(R) is Lipschitz con-
tinuous with Lipschitz constant L, then, in theory, the finite-difference approximation
(f(x + δ) − f(x))/δ converges to ∂xf(x) as δ > 0 tends to zero. In practice, however, f
can only be evaluated to within machine precision, which means that f(x + δ) and f(x)
become indistinguishable for sufficiently small δ. More precisely, as f is Lipschitz contin-
uous, we have |f(x+ δ)− f(x)| ≤ L · |δ|, and thus cancellation errors1 are prone to occur
when L · |δ| approaches machine precision [Ove01, Sec. 11]. Other gradient estimators
that are based on multiple function evaluations or that involve interpolation schemes suffer
from similar cancellation errors. Nevertheless, the convergence guarantees of the corre-
sponding zeroth-order methods require that the smoothing parameter δ must be driven
to zero. For example, [APT20, Thm. 3.1] establishes regret bounds under the assumption
that the smoothing parameter of a multi-point estimator scales as δk = O(1/

√
k).

The randomized gradient estimator (5.1.3) avoids cancellation errors because it re-
quires only one single function evaluation—an attractive feature that has, to the best
of our knowledge, gone largely unnoticed to date. However, as pointed out earlier, the
variance of this estimator diverges as δ decays, which leads to suboptimal convergence
rates. In this section we propose a numerically stable gradient estimator that enables
competitive convergence rates and is immune to cancellation errors. More precisely, we
will use complex arithmetic to construct a one-point estimator akin to (5.1.3) that offers
similar approximation and convergence guarantees as state-of-the-art two-point estima-
tors. Maybe surprisingly, we will see that computing this new estimator is not significantly
more expensive than evaluating (5.1.3). Our results critically rely on the assumption that
the objective function f is real analytic on its domain D. Recall that f is real analytic if
it locally coincides with its multivariate Taylor series. We emphasize that real analyticity
does not imply βth-order smoothness for some β ∈ Z>0 in the sense of [BP16, Sec. 1.1],
which means that f is almost surely β−1 times differentiable and that the (β−1)th-order
term of its Taylor series is globally Lipschitz continuous. We will recall that f can be
extended to a complex analytic function f : Ω→ C defined on some open set Ω ⊆ Cn that
covers D ⊆ Rn. By slight abuse of notation, this extension is also denoted by f . Given an

1It is true that cancellation errors are not always catastrophic, the typical example being x + y − z
with y ≈ z and |x| � y, z [Hig02]. However, since we just subtract two numbers, the cancellation will be
catastrophic in that signs flip and so forth.
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oracle that evaluates f at any query point in Ω, we will devise new zeroth-order methods
that combine the superior convergence rates and low variances of multi-point schemes
reported in [DJWW15, LLZ21] with the numerical robustness of single-point approaches.

We now use R = ‖x1 − x?‖2 to denote the distance from the initial iterate x1 to a2

minimizer x? and F = f(x1)−f(x?) to denote the suboptimality of x1. Assuming that the
objective function f is real analytic and has an L-Lipschitz continuous gradient, we will
devise zeroth-order methods that offer the following convergence guarantees. If (5.1.1)
represents a convex optimization problem with x? ∈ int(X ), then our algorithm’s regret
decays as O(nLR2/K) with the iteration counter K. If, in addition, f is τ -strongly
convex for some τ > 0, then the expected suboptimality decays at the linear rate O((1−
τ/(4nL))KLR2). If (5.1.1) represents a non-convex optimization problem, finally, we
establish local convergence to a stationary point and prove that mink∈[K] E[‖∇f(xk)‖22] ≤
O(nLF/K). All of these convergence rates are qualitatively equivalent to the respective
rates reported in [NS17, Thm. 8], and they are sharper than the rates provided in [APT20,
Sec. 3] in the noise-free limit. The latter rely on higher-order smoothness properties of f
but do not require f to be analytic. The key difference to all existing methods is that
we can drive the smoothing parameter to 0, e.g., as δk = δ/k, without risking numerical
instability.

As highlighted in the recent survey article [LMW19], an important open question
in zeroth-order optimization is whether single-point estimators enable equally fast con-
vergence rates as multi-point estimators. The desire to reap the benefits of multi-point
estimators at the computational cost of using single-point estimators has inspired multi-
point estimators with memory, which only require a single new function evaluation per
call [ZZJZ22]. However, this endeavor has not yet led to algorithms that improve upon the
theoretical and empirical performance of the state-of-the-art methods in [NS17]. Filtering
techniques inspired by ideas from extremum seeking control can be leveraged to improve
the convergence rates obtained in [ZZJZ22] to O(n/K2/3) [CTL22]. However, this rate
is still inferior to the ones reported in [NS17]. To our best knowledge, we propose here
the first single-point zeroth-order algorithm that enjoys the same convergence rates as the
multi-point methods in [NS17] but often outperforms these methods in experiments. The
price we pay for these benefits is the assumption that there exists a zeroth-order oracle ac-
cepting complex queries. This assumption is restrictive as it rules out oracles that depend
on performing a physical experiment or timing a computational run etc. Nevertheless, the
method can be shown to excel in the context of simulation-based optimization [JYK21,
Sec. 7].

5.1.2 Elements from complex analysis
Before detailing our algorithms, we highlight a few elements from complex analysis.

Multivariate complex analysis

For any multi-index α ∈ Zn≥0 and vector x ∈ Rn, we use xα as a shorthand for the mono-
mial xα1

1 · · ·xαnn , and we denote the degree of xα by |α| =
∑n
i=1 αi. The factorial of α is

2As becomes clear later on, we assume that x? is unique for simplicity, this is not necessary.
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defined as α! =
∏n
i=1 αi!, and ∂αx stands for the higher-order partial derivative ∂α1

x1
· · · ∂αnxn .

Multi-index notation facilitates a formal definition of real analytic functions.

Definition 5.1.1 (Real analytic function). The function f : D → R is real analytic
on D ⊆ Rn, denoted f ∈ Cω(D), if for every x′ ∈ D there exist fα ∈ R, α ∈ Zn≥0, and an
open set U ⊆ D containing x′ such that

f(x) =
∑
α∈Zn≥0

fα · (x− x′)α ∀x ∈ U. (5.1.5)

Whenever we write that a series has a finite value, we mean that it converges absolutely,
that is, it converges when the summands of the series are replaced by their absolute values.
In this case any ordering of the summands results in the same value.

One can show that any real analytic function is infinitely differentiable and that the
coefficients of its power series are given by fα = 1

α! ∂
α
x f(x′) for every α ∈ Zn≥0. This

implies that the power series is unique and coincides with the multivariate Taylor series
of f around x′ [KP02, Sec. 2.2]. We will now recall that every real analytic function
admits a complex analytic extension.

Definition 5.1.2 (Complex analytic function). The function f : Ω → C is complex
analytic on Ω ⊆ Cn, denoted f ∈ H(Ω), if for every z′ ∈ Ω there exist fα ∈ C, α ∈ Zn≥0,
and an open set U ⊆ Ω containing z′ such that

f(z) =
∑
α∈Zn≥0

fα · (z − z′)α ∀z ∈ U. (5.1.6)

Complex analytic functions are intimately related to holomorphic functions.

Definition 5.1.3 (Holomorphic function). The function f : Ω→ C is holomorphic on an
open set Ω ⊆ Cn if the complex partial derivatives ∂zjf , j = 1, . . . , n, exist and are finite
at every z ∈ Ω.

The requirement that Ω is open is essential, f may fail to be holomorphic on a neigh-
borhood of a point z even if it is complex differentiable at z. For example, the Cauchy-
Riemann equations reviewed below imply that f(z) = |z|3 is complex differentiable at
z = 0 but fails to be complex differentiable on any neighborhood of 0. Holomorphic func-
tions are in fact infinitely often differentiable [Leb20, Prop. 1.1.3]. Moreover, a function
is holomorphic if and only if it is complex analytic [Leb20, Thm. 1.2.1].

It is common to identify any complex vector z ∈ Cn with two real vectors x, y ∈ Rn
through z = x+iy (Cn ' R2n). Similarly, we may identify any complex function f : Cn →
C with two real functions u : Rn → R and v : Rn → R through the relation f(x + iy) =
u(x, y) + iv(x, y). Clearly, u and v inherit the differentiability properties of f and vice
versa. In particular, one can show that if f is holomorphic, then the partial derivatives
of u and v exist and satisfy the multivariate Cauchy-Riemann equations.

Theorem 5.1.4 (Multivariate Cauchy-Riemann equations). If f(x + iy) = u(x, y) +
iv(x, y) is a holomorphic function on an open set Ω ⊆ Cn, then the multivariate Cauchy-
Riemann equations

∂xju(x, y) = ∂yjv(x, y) and − ∂xjv(x, y) = ∂yju(x, y) ∀j = 1, . . . , n (5.1.7)

hold for all x, y ∈ Rn with x+ iy ∈ Ω.
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Theorem 5.1.4 is a standard result in complex analysis; see, e.g., [Rud87, Thm. 11.2]
or [Kra00]. Nevertheless, we provide here a short proof to keep this chapter self-contained.

Proof of Theorem 5.1.4. We use ej to denote the jth standard basis vector in Rn. By the
definition of the complex partial derivative, for any z ∈ Ω we have

∂zjf(z) = lim
δ∈C, δ→0

1

δ
(f(z + δej)− f(z)),

where the limit exists and is independent of how δ ∈ C converges to 0 because f is
holomorphic on Ω. In particular, δ may converge to 0 along the real or the imaginary axis
without affecting the result. Using our conventions that z = x+ iy ∈ Ω and f(x+ iy) =
u(x, y) + iv(x, y), we thus have

∂xj (u(x, y) + iv(x, y)) = lim
δ∈R, δ→0

f((x+ δej) + iy)− f(x+ iy)

δ

= lim
δ∈R, δ→0

f(x+ i(y + δej))− f(x+ iy)

iδ

=
1

i
∂yj (u(x, y) + iv(x, y))

for all x, y ∈ Rn, where the second equality holds because both limits are equal to ∂zjf(z).
Matching the real and imaginary parts of the above equations yields (5.1.7).

Under additional assumptions one can further show that the Cauchy-Riemann equa-
tions imply that f is holomorphic [GM78]. However, this reverse implication will not be
needed in this thesis. The following lemma based on [Kra00, Sec. 2.3] establishes that any
real analytic function defined on an open set D ⊆ Rn admits a complex analytic extension
defined on an open set Ω ⊆ Cn that covers D.

Lemma 5.1.5 (Complex analytic extensions). If f ∈ Cω(D), then there exists an open
set Ω ⊆ Cn and a complex analytic function g ∈ H(Ω) such that D ⊆ Ω and f(x) = g(x)
for every x ∈ D, with D understood as embedded in Cn.

Proof. Select any x′ ∈ D. As f ∈ Cω(D), there exists a neighborhood U ⊆ D of x′ such
that f admits a power series representation of the form (5.1.6) on U . Also, as U is open,
there exists x ∈ U with rj = |xj−x′j | > 0 for every j = 1, . . . , n. By Abel’s lemma [Kra00,
Prop. 2.3.4], the power series (5.1.6) extended to Cn is thus guaranteed to converge on
the open polydisc ∆(x′) = {z ∈ Cn : |zj − x′j | < rj ∀j = 1, . . . , n}. This reasoning implies
that f extends locally around x′ to a complex analytic function, which we henceforth
denote as gx′ . It remains to be shown that the local extensions corresponding to different
reference points x′ ∈ D are consistent. To this end, select any x′, x′′ ∈ D such that the
polydiscs ∆(x′) and ∆(x′′) overlap. We need to prove that gx′ and gx′′ coincide on the open
convex set ∆ = ∆(x′) ∩∆(x′′), which has a non-empty intersection with Rn. For ease of
exposition, we will equivalently prove that the holomorphic function h = gx′−gx′′ vanishes
on ∆. We first notice that h vanishes on ∆ ∩ Rn because gx′ and gx′′ are constructed to
coincide with f on ∆∩Rn. This implies that ∂zjh = ∂xjh = 0 on ∆∩Rn, where the first
equality follows from standard arguments familiar from the proof of Theorem 5.1.4. As
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any partial derivative of a holomorphic function is also holomorphic, one can use induction
to show that all higher-order partial derivatives of h must vanish on ∆ ∩ Rn. Hence, the
Taylor series of h around any reference point in ∆∩Rn vanishes, too. We have thus shown
that h = 0 on an open subset of ∆. By standard results in complex analysis, this implies
that h vanishes throughout ∆; see, e.g., [Leb20, Thm. 1.2.2]. In summary, this reasoning
confirms that all local complex analytic extensions gx′ , x′ ∈ D, of f are consistent and
thus coincide with a complex analytic function g defined on the open set Ω = ∪x′∈D∆(x′).
This observation completes the proof.

Lemma 5.1.5 implies that the complex extension of a real analytic function is unique.
For example, f(x) = log(x) is real analytic on the positive real line. Representing z =
reiθ ∈ C in polar form with r ≥ 0 and θ ∈ (−π, π], the complex logarithm has countably
many branches, that is, log(z) can be defined as gk(z) = log(r)+ i(θ+2πk) for any k ∈ Z.
However, only the branch g0 corresponding to k = 0 matches f on the positive reals. We
will henceforth use the same symbol f to denote both the given real analytic function as
well as its unique complex analytic extension g. We now explicitly derive the complex
analytic extensions of a few simple univariate functions.

Example 5.1.2 (Complex analytic extensions). The unique complex analytic extension
of f(x) = ex is the entire function g(z) = g(x+ iy) = ex(cos(y) + i sin(y)). Similarly, the
unique complex analytic extension of the even polynomial f(x) = x2p with p ∈ Z≥0 is the
entire function

g(z) = g(x+ iy) =
∑p
k=0(−1)k

(
2p
2k

)
y2kx2(p−k) + i

∑p−1
k=0(−1)k

(
2p

2k+1

)
y2k+1x2(p−k)−1.

Finally, the unique solution f(x) to the Lyapunov equation f(x) = x2f(x)+1 parametrized
by x ∈ R is real analytic on R \ {1}. It admits the extension

g(z) = g(x+ iy) =
1− x2 + y2 − 2ixy

(1− x2 + y2)2 + 4x2y2
,

which is analytic throughout C \ {(1, 0)}.

The next example shows that the domain Ω of the complex analytic extension is not
always representable as Rn + i · (−δ̄, δ̄)n for some δ̄ > 0 even if D = Rn.

Example 5.1.3 (Non-trivial extension). Consider the function f(x) =
∑∞
k=1 2−k(1 +

k2(x − k)2)−1 ∈ Cω(R), which admits a unique complex analytic extension with do-
main Ω = C\{k + ik−1 : k ∈ Z>0}. In addition, f can be extended to a meromorphic
function on C with countably many poles k + ik−1, k ∈ Z>0. As these poles approach R
arbitrarily closely, however, Ω cannot contain any strip of the form R× i · (−δ̄, δ̄).

To avoid technical discussions of limited practical impact, we will from now on restrict
attention to functions f ∈ Cω(D) that admit a complex analytic extension to Ω = D× i ·
(−δ̄, δ̄)n for some δ̄ > 0. One can show that such an extension always exists if f ∈ Cω(Rn)
and D is bounded or if f is entire, that is, if f has a globally convergent power series
representation. The latter condition is restrictive, however, because it rules out simple
functions such as f(x) = 1/(1 + x2). Provided there is no risk of confusion, we will
sometimes call a real analytic function f ∈ Cω and its complex analytic extension simply
an analytic function.
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Complex-step approximation

The finite-difference method [VVvGV23, Ch. 3] is arguably the most straightforward
approach to numerical differentiation. It simply approximates the derivative of any suf-
ficiently smooth function f ∈ C2(R) by a difference quotient. For example, the forward-
difference method uses the approximation

∂xf(x) =
1

δ
(f(x+ δ)− f(x)) +O(δ). (5.1.8)

The continuity of the second derivative of f allows for a precise formula for the O(δ)
remainder term3. However, as explained earlier, typical finite difference methods suffer
from cancellation errors when δ becomes small. The complex-step approximation proposed
in [LM67, ST98] and further refined in [MSA03, ASM15, ASKG18] leverages ideas from
complex analysis to approximate the derivative of any real analytic function f ∈ Cω(R)
on the basis of one single function evaluation only, thereby offering an elegant remedy for
numerical cancellation. Denoting by u and v as usual the real and imaginary parts of the
unique complex analytic extension of f , which exists thanks to Lemma 5.1.5, we observe
that ∂xf(x) equals

∂xu(x, 0) = ∂yv(x, 0) = lim
δ→0+

v(x, δ)− v(x, 0)

δ

= lim
δ→0+

1

δ
v(x, δ) = lim

δ→0+

1

δ
=
(
f(x+ iδ)

)
,

where the first and the fourth equalities hold because f(x) must be a real number, which
implies that v(x, 0) = 0, while the second equality follows from the Cauchy-Riemann
equations. The derivative ∂xf(x) can thus be approximated by the fraction =(f(x+iδ))/δ,
which requires merely a single function evaluation. To estimate the approximation error,
we consider the Taylor expansion

f(x+ iδ) = f(x) + ∂xf(x)iδ − 1
2∂

2
xf(x)δ2 − 1

6∂
3
xf(x)iδ3 +O(δ4) (5.1.9)

of the unique complex analytic extension of f , which exists thanks to Lemma 5.1.5. Sep-
arating the real and imaginary parts of (5.1.9) then yields

f(x) = <(f(x+ iδ)) +O(δ2) and ∂xf(x) = δ−1=
(
f(x+ iδ)

)
+O(δ2).

This reasoning shows that a single complex function evaluation f(x + iδ) is sufficient to
approximate both f(x) as well as ∂xf(x) without the risk of running into numerical in-
stability caused by cancellation effects. In addition, the respective approximation errors
scale quadratically with δ and are thus one order of magnitude smaller than the error in-
curred by (5.1.8). Note also that the complex-step approximation recovers the derivatives
of quadratic functions exactly irrespective of the choice of δ. For example, if f(x) = x2,
then =(f(x + iδ))/δ = 2x = ∂xf(x). This insight suggests that the approximation is
numerically robust for locally quadratic functions.

3Of course, f need not be C2-smooth, this is merely an easy sufficient condition.
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Figure 5.1: Comparison of the gradient estimators of Example 5.1.4 at x = −1, with ei =
|∇f(x)− fi(x, δ)|, figure adapted from the original Matlab figure [JYK21, Fig. 2.1].

The error of the complex-step approximation can be further reduced to O(δ4) by en-
riching it with a finite-difference method [ASM15, HS23]. However, the resulting scheme
requires multiple function evaluations and is thus again prone to cancellation errors.
Unless time is expensive, the standard complex-step approximation therefore remains
preferable. The complex-step approximation can also be generalized to handle matrix
functions [AMH10] or to approximate higher-order derivatives [LRD12]. For a discussion
concerning automatic differentiation (AD) and the ramifications of its underlying ring-
structure, we refer to [JYK21, Sec. 2.3], the crux being that although AD is powerful, the
representation of the objective is critical.

Being immune to cancellation effects, the complex-step approach offers approximations
of almost arbitrary precision. For example, software by the UK’s National Physical Labo-
ratory is reported to use smoothing parameters as small as δ = 10−100 [CH04, p. 44]. The
complex-step approach also emerges in various other domains. For example, it is success-
fully used in airfoil design [GWX17]. However, its potential for applications in optimiza-
tion has not yet been fully exploited. Coordinate-wise complex-step approximations with
noisy function evaluations show promising performance in line search experiments [NS18]
but come without a rigorous convergence analysis. In addition, the complex-step approach
is used to approximate the gradients and Hessians in deterministic Newton algorithms for
blackbox optimization models [HS23]. The potential of leveraging complex arithmetic in
mathematical optimization is also mentioned in [SW18, BBN19]. In this work we use
the complex-step method to construct an estimator akin to (5.1.3) and provide a full re-
gret analysis. Our approach is most closely related to the recent works [WS21, WZS21],
which integrate the complex-step and simultaneous perturbation stochastic approximation
(SPSA) [Spa92] into a gradient-descent algorithm and offer a rigorous asymptotic conver-
gence theory. In contrast, we will derive convergence rates for a variety of zeroth-order
optimization problems.

In optimization, the ability to certify that the gradient of an objective function is
sufficiently small (i.e., smaller than a prescribed tolerance) is crucial to detect local optima.
The following example shows that, with the exception of the complex-step approach,
standard numerical schemes to approximate gradients fail to offer such certificates—at
least when a high precision is required.

Example 5.1.4 (Numerical stability of gradient estimators). To showcase the power of
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the complex-step method and to expose the numerical difficulties encountered by finite-
difference methods, we approximate the derivative of f(x) = x3 at x = −1 via a forward-
difference (fd), central-difference (cd) and complex-step (cs) method, that is, for small
values of δ we compare

ffd(x, δ) = δ−1(f(x+ δ)− f(x))

fcd(x, δ) = (2δ)−1(f(x+ δ)− f(x− δ))
fcs(x, δ) = δ−1=(f(x+ iδ)).

Figure 5.1 visualizes the absolute approximation errors as a function of δ. We observe
that fcd and fcs offer the same approximation quality and incur an error of O(δ2) for
all sufficiently large values of δ. However, only the complex-step approximation reaches
machine precision (≈ 10−16), whereas both finite-difference methods deteriorate below
δ ≈ 10−6 due to subtractive cancellation errors and suboptimal difference parameters4.
As most existing zeroth-order optimization methods use finite-difference-based gradient
estimators, we conclude that there is room for numerical improvements by leveraging
complex arithmetic.

5.1.3 A smoothed complex-step approximation
We now use ideas from [NY83, NS17] to construct a new gradient estimator, which can be
viewed as a complex-step generalization of the estimators proposed in [NY83, FKM04].
Our construction is based on the following assumption, which we assume to hold through-
out the rest of this section.

Assumption 5.1.6 (Analytic extension). The function f : D → R of problem (5.1.1)
admits an analytic extension to the strip D × i · (−δ̄, δ̄)n for some δ̄ ∈ (0, 1).

Recall from Lemma 5.1.5 that f admits an analytic extension to some open set Ω ⊆ Cn
covering D whenever f ∈ Cω(D). However, unless f is entire or D is bounded, Ω may
not contain a strip of the form envisaged in Assumption 5.1.6. Hence, this assumption
is not automatically satisfied for any real analytic function f ∈ Cω(D). The require-
ment δ̄ ∈ (0, 1) is unrestrictive and has the convenient consequence that δp ≤ δp−1 for
any δ ∈ (0, δ̄) and p ∈ Z≥0. All subsequent results are based on a smoothed complex-step
approximation fδ of f , which is defined through

x 7→ fδ(x) := V −1
n

∫
Bn
<
(
f(x+ iδy)

)
dy. (5.1.10)

Here, the radius δ ∈ (0, δ̄), of the ball used for averaging, represents a tuneable smooth-
ing parameter. Given prior structural knowledge about f , one could replace Bn with a

4Regarding (sub)optimal difference parameters, let µM denote machine precision, then, we recall that
for the forward-difference method one commonly selects δ = O(

√
µM) ≈ 10−8 and for the central-difference

method δ = O( 3
√
µM) ≈ 10−5, which follows from optimizing the numerical approximation error over δ.

To be slightly more concrete, we provide an example in case of the forward-difference method. Consider
the Taylor series of f around x, but suppose that the numerical evaluation of f(x+δ) comes with an error
O(µM). Then, we have f(x+ δ) = f(x) + ∂xf(x)δ +O(µM + δ2). Now, if we optimize the approximation
error |(f(x+ δ)− f(x))/δ − ∂xf(x)| over δ we recover the aforementioned.
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different compact set [HL14, Jon21], see also Section 5.2. We emphasize that the integral
in (5.1.10) is well-defined whenever δ ∈ (0, δ̄), which ensures that f has no singularities
in the integration domain. Next, we address the approximation quality of fδ.

Proposition 5.1.7 (Approximation quality of fδ). If f ∈ Cω,1L1
(D) satisfies Assump-

tion 5.1.6, then for fδ defined as in (5.1.10) and for any fixed x ∈ D and κ ∈ (0, 1) there
exists Cκ ≥ 0 with

|fδ(x)− f(x)| ≤ 1
2L1δ

2 + Cκδ
4 ∀δ ∈ (0, κδ̄].

Proof. By the definition of fδ in (5.1.10), we have |fδ(x) − f(x)| ≤ V −1
n

∫
Bn |<

(
f(x +

iδy)
)
− f(x)|dy. The Taylor series of f(x+ iδy) around x then yields

< (f(x+ iδy))− f(x) =

∞∑
k=0

(−1)kδ2k

(2k)!

∑
|α|=2k

∂αx f(x)yα − f(x)

= − 1
2δ

2〈∇2f(x)y, y〉+ δ4R(y, δ),

where the real-valued remainder term R(y, δ) is continuous in y ∈ Bn and δ ∈ [0, δ̄).
Substituting the last expression into the above estimate and using (2.1.9), we obtain

|fδ(x)− f(x)| ≤ V −1
n

∫
Bn

1
2δ

2L1 + δ4|R(y, δ)|dy ≤ 1
2δ

2L1 + Cκδ
4 ∀δ ∈ (0, κδ̄],

where the non-negative constant Cκ = maxy∈Bn maxδ∈[0,κδ̄] |R(y, δ)| is finite due to conti-
nuity of R(y, δ) and compactness of Bn and [0, κδ̄] (the role of κ is to enforce compactness).
Hence, the claim follows.

Note that if f is affine, then fδ = f . Note also that [0, κδ̄] is a compact subset of the
set [0, δ̄) on which R(y, δ) is continuous in δ and that R(y, δ) may be unbounded on [0, δ̄).
The following proposition provides an integral representation for the gradient of fδ. It
extends [NY83, Sec. 9.3] and [FKM04, Lem. 1] to the realm of complex arithmetic. This
is the main result of this chapter.

Proposition 5.1.8 (Gradient of the smoothed complex-step function). If f ∈ Cω(D)
satisfies Assumption 5.1.6, then fδ defined as in (5.1.10) is differentiable, and we have

∇fδ(x) =
n

δ
Ey∼σ [= (f(x+ iδy)) y] ∀x ∈ D, δ ∈ (0, δ̄), (5.1.11)

where σ denotes the uniform distribution on Sn−1.

Proof. Any function g ∈ C1(Rn) and vector w ∈ Rn define a vector field v(y) = g(y) · w.
The divergence theorem [Lee13, Thm. 16.32] then implies that∫

Bn
〈w,∇g(y)〉dy =

∫
Bn

div(v(y)) dy = Sn−1

∫
Sn−1

〈v(y), y〉σ(dy)

= Sn−1

∫
Sn−1

g(y)〈w, y〉σ(dy),
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where the scaling factor Sn−1 accounts for the fact that the uniform distribution σ is
normalized on Sn−1. Note also that the outward-pointing unit normal vector of Sn−1 at
any point y ∈ Sn−1 is exactly y itself. As the above equation holds for all vectors w ∈ Rn
and as both the leftmost and rightmost expressions are linear in w, their gradients (in w)
must coincide. This reasoning implies that∫

Bn
∇g(y) dy = Sn−1

∫
Sn−1

g(y)y σ(dy). (5.1.12)

We are now ready to prove (5.1.11) by generalizing tools developed in [NY83, FKM04] to
the complex domain. Specifically, by the definition of fδ in (5.1.10) we have

∇fδ(x) = V −1
n

∫
Bn
∇x< (f(x+ iδy)) dy

= (Vnδ)
−1

∫
Bn
∇y= (f(x+ iδy)) dy

= Sn−1(Vnδ)
−1

∫
Sn−1

= (f(x+ iδy)) y σ(dy),

where the interchange of the gradient and the integral in the first equality is permitted by
the dominated convergence theorem, which applies because Bn is compact and because
any continuously differentiable function on a compact set is Lipschitz continuous. The
second equality is a direct consequence of the Cauchy-Riemann equations, and the third
equality, finally, holds thanks to (5.1.12) with g(y) = = (f(x+ iδy)). At last, we observe
that the volume of the unit ball and the surface of the unit sphere satisfy Vn =

∫
Bn dy =

Sn−1

∫ r
0
rn−1dr = Sn−1/n =⇒ Sn−1/Vn = n. Thus, the claim follows.

Proposition 5.1.8 reveals that ∇fδ admits the unbiased single-point estimator

gδ(x) =
n

δ
= (f(x+ iδy)) y with y ∼ σ. (5.1.13)

Now we show that ∇fδ(x) approximates ∇f(x) arbitrarily well as δ drops to 0.

Proposition 5.1.9 (Approximation quality of ∇fδ). If f ∈ Cω,2L2
(D) satisfies Assump-

tion 5.1.6, then for fδ defined as in (5.1.10) and for any fixed x ∈ D and κ ∈ (0, 1) there
exists Cκ ≥ 0 with

‖∇fδ(x)−∇f(x)‖2 ≤ 1
6nL2δ

2 + nCκδ
4 ∀δ ∈ (0, κδ̄]. (5.1.14)

Proof. If we denote as usual by In the identity matrix in Rn, then the covariance matrix
of the uniform distribution σ on the unit sphere Sn−1 can be expressed as∫

Sn−1

yyTσ(dy) =

∫
Sn−1

‖y‖22 σ(dy) · 1
nIn = 1

nIn, (5.1.15)

where the two equalities hold because the sought covariance matrix must be isotropic and
because ‖y‖2 = 1 for all y ∈ Sn−1, respectively, see also Lemma 5.3.3. Thus, the gradient
of f can be represented as

∇f(x) = n

∫
Sn−1

〈∇f(x), y〉y σ(dy)
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Together with Proposition 5.1.8, this yields the estimate

‖∇fδ(x)−∇f(x)‖2 =
n

δ

∥∥∥∥∫
Sn−1

= (f(x+ iδy)) y − δ〈∇f(x), y〉y σ(dy)

∥∥∥∥
2

≤ n

δ

∫
Sn−1

|= (f(x+ iδy))− δ〈∇f(x), y〉| ‖y‖2 σ(dy).

By using the Taylor series representation of f(x+ iδy) around x, we find

= (f(x+ iδy))− δ〈∇f(x), y〉 =

∞∑
k=0

(−1)kδ2k+1

(2k + 1)!

∑
|α|=2k+1

∂αx f(x)yα − δ〈∇f(x), y〉

=

∞∑
k=1

(−1)kδ2k+1

(2k + 1)!

∑
|α|=2k+1

∂αx f(x)yα

= − 1
6δ

3
∑
|α|=3

∂αx f(x)yα + δ5R(y, δ),

where the real-valued remainder term R(y, δ) is continuous in y ∈ Bn and δ ∈ [0, δ̄).
Substituting the last expression into the above and using (2.1.9), we obtain

‖∇fδ(x)−∇f(x)‖2 ≤
n

δ

∫
Sn−1

(
1
6δ

3L2 + δ5 |R(y, δ)|
)
‖y‖2 σ(dy)

≤ 1
6δ

2nL2 + nCκδ
4 ∀δ ∈ (0, κδ],

where the non-negative constant Cκ = maxy∈Sn−1 maxδ∈[0,κδ̄] |R(y, δ)| is again finite due
to the continuity of R(y, δ) and the compactness of Sn−1 and [0, κδ̄].

Proposition 5.1.9 implies that the single-point estimator (5.1.13) incurs only errors of
the order O(δ2) on average. Equally small errors were attained in [NS17] for f ∈ C2,2

L2
by

using Gaussian smoothing and a multi-point estimator. Unfortunately, the latter is sus-
ceptible to cancellation effects. Proposition 5.1.9 also implies that limδ→0+ ∇fδ(x) =
∇f(x). In addition, one readily verifies that if f is quadratic (that is, if L2 = 0),
then ∇fδ(x) = ∇f(x) for all x ∈ D and δ ∈ (0, δ̄). The single-point estimator gδ(x)
introduced in (5.1.13) is unbiased by construction. In addition, as for the multi-point
estimator proposed in [NS17], the second moment of gδ(x) admits a convenient bound.

Corollary 5.1.10 (Second moment of gδ(x)). If f ∈ Cω,2L2
(D) satisfies Assumption 5.1.6,

then for gδ as in (5.1.13) and for any fixed x ∈ D and κ ∈ (0, 1) we have

Ey∼σ
[
‖gδ(x)‖22

]
≤ n2( 1

6L2δ
2 + Cκδ

4)2 + n‖∇f(x)‖22
+ 2n2

(
1
6L2δ

2 + Cκδ
4
)
‖∇f(x)‖2,

(5.1.16)

where Cκ ≥ 0 is the same constant as in Proposition 5.1.9.

Proof. Using the definition of gδ and the fact that ‖y‖2 = 1 ∀ y ∈ Sn−1, we find

Ey∼σ
[
‖gδ(x)‖22

]
=
n2

δ2
Ey∼σ[(= (f(x+ iδy)))

2
]. (5.1.17)
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By essentially the same arguments as in the proof of Proposition 5.1.9, we further have

|= (f(x+ iδy))| = |= (f(x+ iδy))− 〈∇f(x), δy〉+ 〈∇f(x), δy〉|
≤
∣∣ 1

6δ
3L2 + δ5Cκ

∣∣+ |〈∇f(x), δy〉| .

Squaring the above and applying the Cauchy-Schwarz inequality yields

|= (f(x+ iδy))|2 ≤
(

1
6δ

3L2 + δ5Cκ
)2

+ 〈∇f(x), δy〉2

+ 2δ
(

1
6δ

3L2 + δ5Cκ
)
‖∇f(x)‖2‖y‖2.

The claim then follows from substituting the above into (5.1.17) and using (5.1.15).

In analogy to Proposition 5.1.9, one readily verifies that if f is quadratic (i.e., if L2 =
0), then the right hand side of (5.1.16) vanishes. Under a third-order smoothness con-
dition, there exist multi-point estimators that satisfy a bound akin to (5.1.16) [NS17,
Thm. 4.3].

Unlike the smooth approximations proposed in [NS17], the smoothed complex-step
approximation fδ does frequently not belong to the same function class as f . For example,
even though the Lorentzian function f(x) = 1/(1+x2) has a Lipschitz continuous gradient
with L1 = 2, the Lipschitz modulus of its approximation fδ strictly exceeds 2 for some
values of δ close to 1 because f has two poles at i and −i. Similarly, fδ does not necessarily
inherit convexity from f .

Example 5.1.5 (Loss of convexity). If f ∈ Cω(R) is entire, then it has a globally con-
vergent power series representation with real coefficients. Consequently, f satisfies

<(f(x+ iδy)) =

∞∑
k=0

(−1)k
f (2k)(x)

(2k)!
(δy)2k.

In the special case when f(x) = x2, the complex-step approximation <(f(x + iδy)) =
x2 − (δy)2 inherits convexity from f regardless of the choice of δ > 0 and y ∈ R. Thus,
fδ is also convex because convexity is preserved by integration. However, if f(x) = x4,
then we find <(f(x + iδy)) = x4 − 6x2(δy)2 + (δy)4, which fails to be convex in x for
any δ > 0 and y 6= 0. In this case, fδ remains non-convex despite the smoothing. Finally,
if f is strongly convex (e.g., if f(x) = x2 +x4), then one readily verifies that <(f(x+ iδy))
is convex in x provided that δ is sufficiently small (e.g., exploit second-order convexity
conditions).

If fδ inherited convexity from f , one could simply incorporate the estimator (5.1.13)
into the algorithms studied in [NS17, § 5], and the corresponding convergence analysis
would carry over with minor modifications. As the smoothed complex-step approximation
may destroy convexity, however, a different machinery is needed here.

5.1.4 Optimization: algorithms and analysis
In what follows, we study zeroth-order optimization under the randomized (gradient)
estimator (5.1.13).
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Algorithm 1 Imaginary zeroth-order optimization
1: Input: initial iterate x1 ∈ X , stepsizes {µk}k∈Z>0

, smoothing parameters {δk}k∈Z>0

2: for k = 1, 2, . . . ,K − 1 do
3: sample yk ∼ σ
4: set gδk(xk) = n

δk
= (f(xk + iδkyk)) yk

5: set xk+1 = ΠX (xk − µk gδk(xk))
6: end for
7: Output: last iterate xK and averaged iterate x̄K = 1

K

∑K
k=1 xk

Convex optimization

Now, we study the convergence properties of zeroth-order algorithms for solving prob-
lem (5.1.1) under the assumption that f is a convex function on D and X is a non-empty
closed convex subset of D. Our methods mimic existing algorithms developed in [NS17]
but use the single-point estimator gδ defined in (5.1.13) instead of a multi-point estima-
tor that may suffer from cancellation effects. Our method is described in Algorithm 1,
where ΠX : D → X denotes the Euclidean projection onto X . Note that ΠX reduces to
the identity operator if X = D.

In the remainder we will assume that the iterates {xk}k∈Z>0 generated by Algorithm 1
as well as all samples {yk}k∈Z>0

and the corresponding gradient estimators {gδk(xk)}k∈Z>0

represent random objects on an abstract filtered probability space (Ω,F , {Fk}k∈Z>0
,P),

where Fk denotes the σ-algebra generated by the independent and identically distributed
samples y1, . . . , yk−1. Therefore, xk is Fk-measurable. In the following, we use E[·] to
denote the expectation operator with respect to P.

The proofs of our convergence results rely on the following lemma borrowed from [SRB11].

Lemma 5.1.11 ([SRB11, Lem. 1]). If {tk}k∈Z>0
and {νk}k∈Z>0

are two sequence of non-
negative real numbers, while {TK}K∈Z>0

is a non-decreasing sequence of real numbers with
T1 ≥ t21 such that t2K ≤ TK +

∑K
k=1 νktk ∀K ∈ Z>0, then we have

tK ≤ 1
2

∑K
k=1 νk +

(
TK + ( 1

2

∑K
k=1 νk)2

) 1
2 ∀k ∈ Z>0.

In addition, several proofs in the main text make use of the inequalities∑J
j=1 j

−2 ≤ ζ(2) = 1
6π

2 and
∑J
j=1 j

−4 ≤ ζ(4) = 1
90π

4 ∀J ∈ Z>0, (5.1.18)

which are obtained by truncating the series that defines the Riemann zeta function.

Theorem 5.1.12 (Convergence rate of Algorithm 1 for convex optimization). Suppose
that f is a convex, real analytic function satisfying Assumption 5.1.6 as well as the Lip-
schitz conditions (2.1.4) and (2.1.7) with L1 > 0 and L2 ≥ 0. Also assume that X is
non-empty, closed and convex and that there exists x? ∈ X with ∇f(x?) = 0. Denote by
{xk}k∈Z>0

the iterates generated by Algorithm 1 with constant stepsize µk = µ = 1/(2nL1)
and adaptive smoothing parameter δk ∈ (0, κδ̄] for all k ∈ Z>0, where κ ∈ (0, 1), and define
R = ‖x1 − x?‖2. Then, the following hold for all K ∈ Z>0.



5.1. Introduction to imaginary zeroth-order optimization 119

(i) There is a constant C1 ≥ 0 such that

E [f(x̄K)− f(x?)] ≤ 1
µKR

2 + 1
KC1nR

∑K
k=1 δ

2
k + 1

KµC
2
1n

2(
∑K
k=1 δ

2
k)2

+ 1
KµC1C2n

2(
∑K
k=1 δ

2
k)(
∑K
k=1 δ

4
k)

1
2 + 1

KµC
2
2n

2
∑K
k=1 δ

4
k.

(ii) If δk = δ for all k ∈ Z>0, then we have

E [f(x̄K)− f(x?)] ≤ 1
K 2nL1R

2 + C1nRδ
2 + 1

L1
(1 +

√
K)2C2

1nδ
4.

(iii) If δk = δ/k for all k ∈ Z>0, then there is a constant C2 ≥ 0 such that

E [f(x̄K)− f(x?)] ≤ n
K

(√
2L1R+ C2δ

2
)2
.

Under the assumptions of Theorem 5.1.12, problem (5.1.1) is convex and x? represents
a global minimizer. Note, however, that X may not contain any x? with ∇f(x?) = 0 even
if X is compact. This is usually the case if the global minimum of (5.1.1) is attained
at the boundary of X . If x? is not unique, one should set R = ‖x1 − P ?(x1)‖2 for the
bounds not to be trivial, with P ?(x1) = argminx?‖x?−x1‖22, which is well-defined since f
is convex, real analytic. Explicit formulas for C1 and C2 in terms of κ, L2 etc. are derived
in the proof of Theorem 5.1.12.

Proof of Theorem 5.1.12. For ease of notation, we define rk = ‖xk−x?‖2 for all k ∈ Z>0.
We prove the theorem first under the simplifying assumption that X = D, which implies
the projection onto X becomes obsolete, that is, xk+1 = xk − µk · gδk(xk). Thus, we have

E
[
r2
k+1

∣∣Fk] = E
[
r2
k − 2µk〈gδk(xk), xk − x?〉+ µ2

k ‖gδk(xk)‖22
∣∣Fk]

= r2
k − 2µk〈∇fδk(xk), xk − x?〉+ µ2

k E
[
‖gδk(xk)‖22

∣∣Fk] ,
where the second equality follows from (5.1.11), the definition of gδk(xk) and the Fk-
measurability of xk and rk. The Cauchy-Schwartz inequality then implies that

E
[
r2
k+1

∣∣Fk]
≤ r2

k − 2µk〈∇f(xk), xk − x?〉+ 2µk‖∇fδk(xk)−∇f(xk)‖2 rk + µ2
k E
[
‖gδk(xk)‖22

∣∣Fk]
≤ r2

k − 2µk (f(xk)− f(x?)) + 2µk
(

1
6nL2δ

2
k + nCκδ

4
k

)
rk

+ µ2
kn

2
((

1
6L2δ

2
k + Cκδ

4
k

)2
+ 1

n‖∇f(xk)‖22 + 2
(

1
6L2δ

2
k + Cκδ

4
k

)
‖∇f(xk)‖2

)
≤ r2

k − 2µk (f(xk)− f(x?)) + 2nµkδ
2
k

(
1
6L2 + Cκδ

2
k + nL1µk

(
1
6L2 + Cκδ

2
k

))
rk

+ µ2
kn

2
(
δ4
k

(
1
6L2 + Cκδ

2
k

)2
+ 1

n2L1(f(xk)− f(x?))
)
,

where the second inequality exploits the convexity of f as well as Proposition 5.1.9 and
Corollary 5.1.10, while the third inequality follows from the estimates (2.1.4) and (2.1.6),
which imply that ‖∇f(xk)‖2 ≤ L1‖xk − x?‖2 and 2L1(f(xk) − f(x?)) ≥ ‖∇f(xk)‖22,
respectively. To simplify notation, we now introduce the constant C1 = 1

2L2 + 3Cκ,
which upper bounds 1

2L2 + 3Cκδ
2
k and 1

6L2 +Cκδ
2
k for any k ∈ Z>0 because all smoothing
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parameters belong to the interval [−1, 1]. Recalling that the stepsize is constant and equal
to µ = 1/(2nL1), the above display equation thus simplifies to

E
[
r2
k+1

∣∣Fk] ≤ r2
k − µ (f(xk)− f(x?)) + nµδ2

kC1rk + µ2n2C2
1δ

4
k. (5.1.19)

Taking unconditional expectations and rearranging terms then yields

E [f(xk)− f(x?)] ≤ 1
µ

(
E
[
r2
k

]
− E

[
r2
k+1

])
+ nC1δ

2
kE [rk] + µn2C2

1δ
4
k

≤ 1
µ

(
E
[
r2
k

]
− E

[
r2
k+1

])
+ nC1δ

2
k

√
E [r2

k] + µn2C2
1δ

4
k.

Next, choose any k′ ∈ Z>0 and sum the above inequalities over all k ≤ k′ − 1 to obtain∑k′−1
k=1 E [f(xk)− f(x?)] ≤ 1

µ

(
r2
1 − E

[
r2
k′
])

+ C1n
∑k′−1
k=1 δ2

k

√
E [r2

k]

+ µC2
1n

2
∑k′−1
k=1 δ4

k.
(5.1.20)

Clearly, the inequality (5.1.20) remains valid if we lower bound its left hand side by 0 and
upper bound its right hand side by increasing the upper limits of the two sums to k′. We
then obtain E[r2

k′ ] ≤ r2
1 + µC1n

∑k′

k=1 δ
2
k

√
E [r2

k] + µ2C2
1n

2
∑k′

k=1 δ
4
k. Setting tk =

√
E [r2

k]

and νk = µC1nδ
2
k for all k ∈ Z>0 and defining Tk′ = r2

1 +µ2C2
1n

2
∑k′

k=1 δ
4
k for all k′ ∈ Z>0,

we may use Lemma 5.1.11 to conclude that√
E [r2

k′ ] ≤
1
2µC1n

∑k′

k=1 δ
2
k +

(
r2
1 + µ2C2

1n
2
∑k′

k=1 δ
4
k + ( 1

2µC1n
∑k′

k=1 δ
2
k)2
) 1

2

≤ µC1n
∑K
k=1 δ

2
k + r1 + (µ2C2

1n
2
∑K
k=1 δ

4
k)

1
2 ∀k ≤ K,

where the second inequality holds because
√
a+ b+ c ≤

√
a +
√
b +
√
c for all a, b, c ≥ 0

and because the sums increase when we increase their upper limits from k′ to K. Next,
consider the estimate (5.1.20) for k′ = K+1, replace E[r2

K+1] with its trivial lower bound 0
and replace

√
E[r2

k] with the above upper bound for every k ≤ K. Noting that r1 = R
and dividing by K then yields

1
K

∑K
k=1 E [f(xk)− f(x?)]

≤ 1
µKR

2 + 1
KµC

2
1n

2∑K
k=1 δ

4
k

+ 1
KC1n

∑K
k=1 δ

2
k

(
µC1n

∑K
k=1 δ

2
k +R+ (µ2C2

1n
2
∑K
k=1 δ

4
k)

1
2

)
= 1

µKR
2 + 1

KC1nR
∑K
k=1 δ

2
k + 1

KµC
2
1n

2(
∑K
k=1 δ

2
k)2

+ 1
KµC

2
1n

2(
∑K
k=1 δ

2
k)(
∑K
k=1 δ

4
k)

1
2 + 1

KµC
2
1n

2
∑K
k=1 δ

4
k.

As E[f(x̄K)−f(x?)] ≤ 1
K

∑K
k=1 E[f(xk)−f(x?)] by Jensen’s inequality, assertion (i) thus

follows. If δk = δ ∈ (0, κδ̄] for all k ∈ Z>0, then assertion (i) implies that

E [f(x̄K)− f(x?)] ≤ 1
µKR

2 + C1nRδ
2 + C2

1Kµn
2δ4 + C2

1

√
Kµn2δ4 + C2

1µn
2δ4

≤ 1
µKR

2 + C1nRδ
2 + (C1

√
K + C1)2µn2δ4

≤ 1
K 2nL1R

2 + C1nRδ
2 + (C1

√
K + C1)2 1

L1
nδ4

≤ 1
K 2nL1R

2 + C1nRδ
2 + C2

1 (1 +
√
K)2 1

L1
nδ4,
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where the last two inequalities exploit the assumption µ = 1/(2nL1). Thus, assertion (ii)
follows. Next, assume that δk = δ/k for all k ∈ Z>0. In analogy to the proof of asser-
tion (ii), we combine assertion (i) with the standard zeta function inequalities (5.1.18) to
conclude that

E [f(x̄K)− f(x?)] ≤ 1
µKR

2 + 1
6π

2C1
1
KnRδ

2 + 1
90π

4C2
1

1
Kµn

2δ4

+ 1
36π

4C2
1

1
Kµn

2δ4 + 1
6
√

90
π4C2

1
1
Kµn

2δ4

≤ n
K 2L1R

2 + n
KR

1
6π

2C1δ
2 + n

KRπ
4( 1

6C1 + 1√
90
C1)2 1

2L1
δ4

≤ n
K (
√

2L1R+ C2δ
2)2,

where C2 = π2(C1/3+C1/
√

90)/
√

2L1. The third inequality holds because µ = 1/(2nL1).
Thus, assertion (iii) follows. This completes the proof for X = D.

In the last part of the proof we show that the three assertions remain valid when X is a
non-empty closed convex subset of D. Indeed, as the projection ΠX onto X is contractive,
we have

r2
k+1 = ‖xk+1 − x?‖22 = ‖ΠX (xk − µkgδk(xk))−ΠX (x?)‖22

≤ ‖xk − µkgδk(xk)− x?‖22.

Thus, all arguments used above carry over trivially to situations where X 6= D.

Theorem 5.1.12 (iii) shows that if δk decays as O(1/k), then one needs O
(
nL1R

2/ε
)

iterations to guarantee that E [f(x̄K)− f(x?)] ≤ ε. This is the first-order complexity
scaled by n [Nes03, Sec. 2.1.5]. Theorem 5.1.12 can be extended to a larger class of
convex optimization problems by relaxing the assumption of constant stepsizes [Jon21].
In particular, it can be extended to constrained optimization problems whose constraints
are binding at optimality, in which case ∇f(x?) 6= 0; see also Section 5.2 below.

Strongly convex optimization

We now extend the results from Section 5.1.4 to analytic objective functions f that are
τ -strongly convex over their domain D for some τ > 0, i.e., we assume that f(y) ≥
f(x) + 〈∇f(x), y − x〉+ 1

2τ‖y − x‖
2
2 ∀x, y ∈ D. If y is a stationary point with ∇f(y) = 0,

then τ -strong convexity ensures that

f(y)− f(x) ≥ 1
2τ‖y − x‖

2
2 ∀x ∈ D, (5.1.21)

which in turn implies via the Polyak-Łojasiewicz inequality ‖∇f(x)‖22 ≥ 2τ(f(x)− f(y))
for τ -strongly convex functions [Nes03, Eq. 2.1.19] that

‖∇f(x)‖2 ≥ τ‖y − x‖2. (5.1.22)

Theorem 5.1.13 (Convergence rate of Algorithm 1 for strongly convex optimization).
Suppose that all assumptions of Theorem 5.1.12 (iii) are satisfied and that f is τ -strongly
convex for some τ > 0. Then, there is a constant C ≥ 0 such that the following inequality
holds for all K ∈ Z>0.

E[f(xK)− f(x?)] ≤ 1
2L1

(
δ2C + (1− τ

4nL1
)K−1

(
R2 − δ2C

))
(5.1.23)
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An explicit formula for C in terms of n, L1, L2 and τ is derived in the proof.

Proof of Theorem 5.1.13. As in the proof of Theorem 5.1.12, we set C1 = 3( 1
6L2 + Cκ)

and rk = ‖xk − x?‖2 for all k ∈ Z>0, and we initially assume that X = D. Combin-
ing the estimate (5.1.19) from the proof of Theorem 5.1.12 with the strong convexity
condition (5.1.21) yields E

[
r2
k+1|Fk

]
≤
(
1− µτ

2

)
r2
k + µC1nδ

2
krk + µ2C2

1n
2δ4
k. By taking

unconditional expectations and applying Jensen’s inequality, we then find

E[r2
k+1] ≤

(
1− µτ

2

)
E[r2

k] + µC1nδ
2
k

√
E[r2

k] + µ2C2
1n

2δ4
k (5.1.24a)

≤ E[r2
k] + µC1nδ

2
k

√
E[r2

k] + µ2C2
1n

2δ4
k. (5.1.24b)

Next, choose any k′ ∈ Z>0 and sum the above inequalities over all k ≤ k′ − 1 to obtain

E[r2
k′ ] ≤ r2

1 + µC1n
∑k′−1
k=1 δ2

k

√
E[r2

k] + µ2C2
1n

2
∑k′−1
k=1 δ4

k

≤ r2
1 + µC1n

∑k′

k=1 δ
2
k

√
E[r2

k] + µ2C2
1n

2
∑k′

k=1 δ
4
k.

By using the same reasoning as in the proof of Theorem 5.1.12, the last bound implies√
E [r2

k′ ] ≤ µC1n
∑k′

k=1 δ
2
k + r1 + (µ2C2

1n
2
∑k′

k=1 δ
4
k)

1
2 .

Substituting this inequality into (5.1.24a) for k = k′ and noting that r1 = R yields

E[r2
k′+1] ≤

(
1− µτ

2

)
E[r2

k′ ] + µ2C2
1n

2δ4
k′

+ µC1nδ
2
k′

(
µC1n

∑k′

k=1 δ
2
k +R+ (µ2C2

1n
2
∑k′

k=1 δ
4
k)

1
2

)
.

As δk = δ/k for all k ∈ Z>0 and as the constant stepsize satisfies µ = 1/(2nL1), we may
then use the standard zeta function inequalities (5.1.18) to obtain

E[r2
k′+1]≤(1− τ

4nL1
)E[r2

k′ ] + C2
1

δ4

4L2
1(k′)4

+ C2
1

π2δ4

24L2
1(k′)2

+ C1R
δ2

2L1(k′)2 + C2
1

π2δ4

4
√

90L2
1(k′)2

≤(1− τ
4nL1

)E[r2
k′ ] + C1R

δ2

L1
+ 3C2

1
δ4

L2
1
,

where the last inequality follows from the elementary bounds 1
2(k′)2 < 1, 1

4(k′)4 < 1,
π2

24(k′)2 < 1 and π2/(4
√

90(k′)2) < 1. As |δ| < 1, we may set C = 4n
τ (C1R + 3C2

1/L1) to
obtain

E[r2
k′+1] ≤ (1− τ

4nL1
)E[r2

k′ ] + τ
4nL1

δ2C.

Taken together, the Lipschitz inequality (2.1.4) and the strong convexity inequality (5.1.22)
imply that τ ≤ L1, which in turn ensures that τ/(4nL1) < 1. Hence, the above inequality
implies E[r2

k′+1]−δ2C ≤ (1− τ
4nL1

)
(
E([r2

k′ ]− δ2C
)
. As this estimate holds for all k′ < K,

we may finally conclude that

E[r2
K ]− δ2C ≤ (1− τ

4nL1
)
(
E[r2

K−1]− δ2C
)
≤ · · · ≤ (1− τ

4nL1
)K−1(R2 − δ2C).

The claim then follows by combining this inequality with the estimate E[f(xK)−f(x?)] ≤
1
2L1E[r2

K ], which follows from the Lipschitz condition (2.1.5). This completes the proof
for X = D. To show that the claim remains valid when X is a non-empty closed convex
subset of D, we may proceed as in the proof of Theorem 5.1.12. Details are omitted for
brevity.
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By Theorem 5.1.13 and the construction of C, we can enforce E[f(xK) − f(x?)] ≤ ε
for a given tolerance ε > 0 by selecting a sufficiently small smoothing parameter δ ≤
O(
√
ετ/(nL2

1)) and by running Algorithm 1 over
O(nL1/τ log(L1R

2/ε)) iterations.
Remark 5.1.6 (Stochastic stability). The commentary of Section 2.1.2 applies to the
convergence result from Theorem 5.1.13. In particular, the proof of that theorem reveals
we have

E
[
‖xk+1 − x?‖22 − δ2C

]
≤ γE

[
‖xk − x?‖22 − δ2C

]
≤ γk(R2 − δ2C), (5.1.25)

for C as given in the proof and γ = (1 − τ/(4nL1)) ∈ (0, 1). Now define the function
V : Rn → R≥0 by V (x) = 0 for all x ∈ Dn

δ
√
C

(x?) and V (x) = ‖x− x?‖22 −Cδ2 otherwise.
Let Fk be the usual (stochastic) update rule of the algorithm (Algorithm 1), that is,
xk+1 = Fk(xk), then it follows that for any k ≥ 1 we have E[V (Fk(x))] < V (x) for all
x 6∈ Dn

δ
√
C

(x?) and V (x) ≥ 0 with V (x) = 0 ⇐⇒ x ∈ Dn
δ
√
C

(x?). See [Mor68] for more
on precisely defining stochastic stability of discrete-time systems.

Non-convex optimization

We now extend the convergence guarantees for Algorithm 1 to unconstrained non-convex
optimization problems. Our proof strategy differs from the one in [NS17] as the smoothed
objective function fδ does not necessarily admit a Lipschitz continuous gradient. In this
setting, convergence can still be guaranteed if the initial iterate x1 is sufficiently close to
some global minimizer x?.
Theorem 5.1.14 (Convergence rate of Algorithm 1 for nonconvex optimization). Suppose
that all assumptions of Theorem 5.1.12 (iii) hold, but assume that f may be non-convex,
X = D and µk = µ = 1/(nL1) for all k ∈ Z>0. Define F = f(x1) − f(x?), where x? is
a global minimizer of problem (5.1.1). If ‖∇f(x1)‖22 ≤ 2nL1F , then there is a constant
C ≥ 0 such that for all K ∈ Z>0 we have

1
K

∑K
k=1 E

[
‖∇f(xk)‖22

]
≤ n

K

(
2L1F + δ2C

)
.

The dependence of C on n, L1, L2 and F can be derived from the proof of Theo-
rem 5.1.14.

Proof of Theorem 5.1.14. As X = D, the iterates of Algorithm 1 satisfy xk+1 = xk −
µk · gδk(xk). In addition, as f has a Lipschitz continuous gradient, the Lipschitz inequal-
ity (2.1.5) implies that

f(xk+1) ≤f(xk)− µk〈∇f(xk), gδk(xk)〉+ 1
2µ

2
kL1‖gδk(xk)‖22

=f(xk)− µk‖∇f(xk)‖22 − µk〈∇f(xk), gδk(xk)−∇f(xk)〉+ 1
2µ

2
kL1‖gδk(xk)‖22.

Taking conditional expectations on both sides of this expression, recalling that gδk is an
unbiased estimator for ∇fδk conditional on Fk and applying the Cauchy-Schwarz inequal-
ity then yields

E [f(xk+1)|Fk] ≤f(xk)− µk‖∇f(xk)‖22
+ µk‖∇f(xk)‖2‖∇fδk(xk)−∇f(xk)‖2 + 1

2µ
2
kL1E[‖gδk(xk)‖22|Fk].
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Defining C0 = 1
6L2 + Cκ, we may use the estimates (5.1.14) and (5.1.16) to obtain

E [f(xk+1)|Fk] ≤f(xk)− µk‖∇f(xk)‖22 + µkC0nδ
2
k‖∇f(xk)‖2

+ 1
2µ

2
kL1

(
n‖∇f(xk)‖22 + C2

0n
2δ4
k + 2C0n

2δ2
k‖∇f(x)‖2

)
=f(xk)− 1

2nL1
‖∇f(xk)‖22 + 1

2L1
C2

0δ
4
k + 2

L1
C0δ

2
k‖∇f(xk)‖2,

where the equality holds because the stepsize is constant and equal to µk = 1/(nL1). By
taking unconditional expectations, applying Jensen’s inequality and rearranging terms,
we then find

E[‖∇f(xk)‖2]2 ≤ E[‖∇f(xk)‖22]

≤ 2nL1E[f(xk)− f(xk+1)] + 4nC0δ
2
kE [‖∇f(xk)‖2] + nC2

0δ
4
k.

(5.1.26)

Next, choose any k′ ∈ Z>0 and sum the left- and rightmost terms in (5.1.26) over all
k ≤ k′ to obtain

E[‖∇f(xk′)‖2]2

≤
∑k′

k=1 E[‖∇f(xk)‖2]2

≤ 2nL1E[f(x1)− f(xk′+1)] + 4nC0

∑k′

k=1 δ
2
kE[‖∇f(xk)‖2] + nC2

0

∑k′

k=1 δ
4
k

≤ 2nL1F + 4nC0

∑k′

k=1 δ
2
kE[‖∇f(xk)‖2] + nC2

0

∑k′

k=1 δ
4
k,

where the third inequality holds because x? is a global minimizer of problem (5.1.1), which
implies E[f(x1) − f(xk′+1)] = E[f(x1) − f(x?)] + E[f(x?) − f(xk′+1)] ≤ F . Setting tk =

E[‖∇f(xk)‖2] and νk = 4nC0δ
2
k for all k ∈ Z>0, and defining Tk′ = 2nL1F +nC2

0

∑k′

k=1 δ
4
k

for all k′ ∈ Z>0, we may then use Lemma 5.1.11, which applies because ‖∇f(x1)‖22 ≤
2nL1F , to find

E[‖∇f(xk′)‖2] ≤ 2nC0

∑k′

k=1 δ
2
k +

(
2nL1F + nC2

0

∑k′

k=1 δ
4
k + (2nC0

∑k′

k=1 δ
2
k)2
) 1

2

.

As δk = δ/k for all k ∈ Z>0, the standard zeta function inequalities (5.1.18) imply that

E[‖∇f(xk′)‖2] ≤ nC0δ
2 π2

3 +
(

2nL1F + nC2
0δ

4 π4

90 + n2C2
0δ

4 π4

9

) 1
2

≤
√

2nL1F + nC0δ
2( 2π2

3 + π2
√

90
),

where the second inequality holds because
√
a+ b+ c ≤

√
a +
√
b +
√
c for all a, b, c ≥ 0

and because
√
n ≤ n for all n ∈ Z≥0. Averaging the second inequality in (5.1.26) across

all k ≤ K and using the above upper bound on E[‖∇f(xk)‖2] for each k ≤ K finally yields

1
K

∑K
k=1 E

[
‖∇f(xk)‖22

]
≤ n
K

[
2L1F + 4C0

∑K
k=1 δ

2
k

(√
2nL1F + nC0δ

2( 2π2

3 + π2
√

90
)
)

+ C2
0

∑K
k=1 δ

4
k

]
.

Applying the zeta function inequalities (5.1.18) once again and recalling that δ2
k ≤ 1 for

all k ∈ Z>0, it is then easy to construct a constant C ≥ 0 such that
1
K

∑K
k=1 E[‖∇f(xk)‖22] ≤ n

K (2L1F + δ2C).
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Figure 5.2: Example 5.1.7, (i) suboptimality gap f(x̄K)− f? for (5.1.27) and (ii) suboptimality
gap f(xK)− f? for (5.1.27). Figure adapted from the original Matlab figure [JYK21, Fig. 7.1].

By Theorem 5.1.14, we can enforce 1
K

∑K
k=1 E[‖∇f(xk)‖22] ≤ ε for a given ε > 0

by selecting a smoothing parameter δ ≤ O(
√
Kε/n) and by running Algorithm 1 over

O(nL1F/ε) iterations.

Numerical example

For an extensive numerical section, we point to [JYK21, Sec. 7], here, we showcase just a
simple example.

Specifically, we will compare the proposed complex-step estimator gcs defined in (5.1.13)
against the forward-difference estimator

gfd(x, δ) =
1

δ
(f(x+ δy)− f(x))y with y ∼ N (0, In)

which relies on Gaussian smoothing [NS17, Eq. (30)]. When using gfd, we set the stepsize
of Algorithm 1 to µk = 1/(4(n + 4)L1) as recommended in [NS17, Eq. (55)]. When
using gcs, on the other hand, we select the stepsize in view of the structural properties of
the given objective function f in accordance with Theorem 5.1.12. The experiments are
performed in MATLAB on a x86_64 machine with a 4 GHz CPU and 16 GB RAM, using
double precision, that is, machine precision is 2−52 ≈ 2.2204 · 10−16.

Example 5.1.7 (Quadratic test function). Assume that X = Rn and f is an ill-conditioned
version of what Nesterov calls the ‘worst function in the world’ [Nes03, Sec. 2.1.2], that
is, assume that

f(x) = L
(

1
2

[
(x(1))2 +

∑n−1
j=1 (x(j+1) − x(j))2 + (x(n))2

]
− x(1)

)
, (5.1.27)

where n = 5, L = 10−8, and x(j) denotes the jth component of x for any j ≤ n. One can
show that ∇f has Lipschitz modulus L1 = 4L and that the unique global minimizer x?
of f has coordinates (x?)(j) = 1 − j/(n + 1). In this case, the theoretical convergence
guarantees of Algorithm 1 are independent of whether gcs or gfd is used. However, starting
from x1 = 0 and gradually reducing the smoothing parameter δ towards machine precision
exposes the advantages of the one-point estimator gcs over the multi-point estimator gfd.
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Figure 5.2 visualizes the suboptimality gap of x̄K and xK as a function of K along a
single sample trajectory, respectively. For gcs the performance is independent of selecting
δ ∈ [10−16, 10−4]. Note that especially the performance of xK is significantly better
when gcs is used.

5.2 Further topics in imaginary zeroth-order optimiza-
tion

The previous section introduced our zeroth-order optimization framework. In this section
we comment on noise and several other generalizations. For the full details and further
references, we point to [Jon21].

In contrast to the section above, we now allow for the presence of (computational)
noise.

Assumption 5.2.1 (Stochastic complex oracle). Consider some unknown function f ∈
Cω(D) which admits a holomorphic extension to Ω ⊆ Cn. We assume to have access to
an oracle which outputs <(f(z)) + ξ and =(f(z)) + ξ for any z ∈ Ω with ξ a zero-mean
random variable supported on Ξ ⊆ R with E[ξ2] ≤ σξ for some σξ > 0.

Assumption 5.2.1 is particularly important in the simulation-based context. As there
the evaluation of f(z) might pertain to millions of floating-point operations, chopping and
round-off errors are easily introduced. Again, the set Ω will be specified later on. We will
make no further assumptions regarding the distribution of ξ.

In what follows we show that catastrophic numerical cancellation errors are also in-
evitable in the widely used noisy multi-point case. We will show that this non-deterministic
setting also benefits from the imaginary gradient estimator as proposed in Section 5.1.
Using this single-point estimator and building upon [HRB08, APT20], we provide the
non-asymptotic analysis for a variety of algorithms. Specifically, we consider for strongly
convex functions the unconstrained, constrained, online and quadratic cases. In the last
setting we can show that the algorithm is rate-optimal. To comply with zeroth-order
knowledge we also propose an estimation scheme for the strong-convexity parameter. As
an outlook we provide a local result in the nonconvex case. Besides, we generalize some
results from Section 5.1.

Notation will be largely the same as in Section 5.1, however, as we not only consider
Bn and its boundary to smooth over, we need more general equipment. Let Y ⊂ Rn be a
Borel measurable set such that ∂Y is an orientable compact differentiable manifold. We
write y ∼ Y to declare that y is a random vector following the uniform distribution on Y,
and for any Borel measurable function g : Y ⊂ Rn → R we denote by

Ey∼Y[g(y)] = 1/vol(Y)

∫
Y

g(y)dV (y)

the expected value of g(y), where dV represents the Borel measure induced by the volume
form on Y, and vol(Y) represents the volume of Y.
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5.2.1 On the gradient estimator
Under Assumption 5.2.1, Proposition 5.1.8 provides us immediately with a (noisy) single-
point estimator of ∇fδ(x), namely

gδ(x) =
n

δ
= (f(x+ iδu))u+

n

δ
ξu, u ∼ Sn−1 (5.2.1)

for some noise term ξ ∈ Ξ. In contrast to the noise-free setting in Section 5.1, equa-
tion (5.2.1) immediately reveals the delicacy in selecting δ ∈ R>0. Note, the term n/δ
follows from our choice to average over Bn, i.e., by (5.1.10). Below we will clarify that this
term, and thereby the offset due to the noise, cannot be decreased by any other choice of
solid. In that sense, Bn is geometrically optimal. Again, we will use (5.2.1) in gradient
descent algorithms of the form xk+1 = xk − µkgδk(xk), as detailed in Algorithm 1, for
µk ∈ R a stepsize and δk ∈ R>0 the smoothing parameter.

The next assumption on the (computational) noise will be assumed throughout.

Assumption 5.2.2 (Independence). The random variable ξ is drawn independently of
u ∼ Sn−1.

In general E[gδ(x)] 6= ∇f(x), thus, there will be a bias, controlled in part by selecting
the sequence {δk}k∈Z≥0

and unfortunately, a fixed bias prohibits (local) convergence in
general [AS21]. However, by looking at (5.2.1), it can be shown that to overcome this, a
selection of {µk}k∈Z>0

and {δk}k∈Z>0
should satisfy the following;

(i) As µk = Θ(k−1) [RSS12], for fixed δk = δ > 0 a bias term prevails of the form∑K
k=1 µkδ = O(log(K)+1). This can be avoided by selecting δk to be asymptotically

vanishing.

(ii) However, as the data is noisy, a term of the form µk/δk also accumulates. As such,
by (i) δk → 0, but slower than µk → 0.

With this in mind we see that when E[gδ] 6= ∇f zeroth-order optimization algorithms
resort to selecting the smoothing-parameter sequence {δk}k∈Z>0 such that δ1 converges
to 0, but sufficiently slow, cf. [NG22, Thm. 1], [BG22, Thm. 3]. See also [Fab71], [Spa05,
Ch. 6], [WZS21, Assump. 1] for similar assumptions from the stochastic approximation
viewpoint. Motivated by the observation that δk → 0 is necessary for an abundance of al-
gorithms, this section provides a framework that can handle this requirement numerically.
That means, a framework where δk can be made arbitrarily small5.

At last, to characterize the effectiveness of our algorithms, we need to bound the second
moment of the estimator (5.2.1) again.

Lemma 5.2.3 (Estimator second moment). Let f ∈ Cω,2L2(f)(D) satisfy Assumption 5.1.6
for some δ̄ ∈ (0, 1) and L2(f) ≥ 0. Then, for any fixed x ∈ D, κ ∈ (0, 1) and gδ(x)
as in (5.2.1) there are constants Ca, Cb ≥ 0, vanishing with L2(f), such that for any
δ ∈ (0, κδ̄] one has

E
[
‖gδ(x)‖22

]
≤ Can2δ4 + Cbn

2δ2‖∇f(x)‖2 + n‖∇f(x)‖22 +
n2

δ2
σξ. (5.2.2)

5Again, this means up to what the machine at hand can produce, usually 2−1023 ≈ 10−308.
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Proof. First, observe from Algorithm 1, Assumption 5.2.1 and Assumption 5.2.2 that

E
[
‖gδ(x)‖22

]
=
n2

δ2
Eu∼Sn−1

[
(= (f(x+ iδu)))

2
]

+
n2

δ2
Eξ[ξ2].

Then, the claim follows directly by the same reasoning as for Corollary 5.1.10.

As with standard gradient-descent, the more isotropic the level sets of the objective
are, the better. The common way to enforce this is by means of changing the underlying
metric via the Hessian, i.e., Newton’s method. With this in mind, averaging over some
solid ellipsoid might appear more beneficial than averaging over the ball. In the spirit
of [HL14] and [HPGS16, Prop. 3, Lem. 4] we generalize Proposition 5.1.8 to more generic
solids and show—perhaps unsurprisingly—that spherical smoothing is optimal in the sense
that it minimizes the offset due to noise in (5.2.2).

To be in line with Assumption 5.1.6 we assume that this generic solid M is a subset of
[−1, 1]n.

Lemma 5.2.4 (The gradient of the complex-step function for smooth solids). Let M ⊂
[−1, 1]n ⊂ Rn be diffeomorphic to Bn. Let f ∈ Cω(D) satisfy Assumption 5.1.6 for some
δ̄ ∈ (0, 1), then, fδ,M as in

fδ,M(x) = Ev∼M [<(f(x+ iδv)] (5.2.3a)

is differentiable and for any x ∈ D we have for any δ ∈ (0, δ̄)

∇fδ,M(x) =
vol(δ∂M)

vol(δM)
· Eu∼∂M [= (f(x+ iδu))N(u)] . (5.2.3b)

for N(u) a unit normal in T⊥u ∂M.

Proof. As M ⊂ Rn is a compact oriented manifold with boundary, we can appeal to the
Divergence theorem [Lee13, Thm. 16.32] (under the Euclidean metric), which states that
for any smooth vector field X on M one has∫

M

div(X(v))dV (v) =

∫
∂M

〈X(u), N(u)〉dV (u), (5.2.4)

for N denoting the unit normal vector (field) along ∂M. That is, Rn = Tp∂M⊕T⊥p ∂M for
all p ∈ ∂M and N(p) ∈ T⊥p ∂M.

Using the same reasoning as for example in [JYK21], since one can select X = h · C
for h some smooth function and C some constant vector field on M, then, as div(C) = 0
and we can select C to be aligned with any coordinate axis, (5.2.4) implies that∫

M

∇h(v)dV (v) =

∫
∂M

h(u)N(u)dV (u). (5.2.5)

Now we obtain the generalization of the result in [JYK21], that is, by compactness, the
Dominated Convergence theorem [Fol99, Sec. 2.3], the Divergence theorem (5.2.4) and the
Cauchy-Riemann equations [Kra00] we get

∇x
∫
δM

< (f(x+ iv)) dV (v)=

∫
δ∂M

= (f(x+ iu))N(u)dV (u),
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e.g., see [JYK21] for more on this line of reasoning. Then, due to the distributional
assumption (uniformity), we write

fδ,M(x) =Ev∼M [< (f(x+ iδv))] = 1/vol(δM)

∫
δM

< (f(x+ iv)) dV (v),

and similarly,

Eu∼∂M [= (f(x+ iδu))N(u)] = 1/vol(δ∂M)

∫
δ∂M

= (f(x+ iu))N(u)dV (u).

Combining it all yields (5.2.3b).

As N(u) ∈ T⊥u ∂M is a unit vector, the offset term in the variance (5.2.2) is minimized
when we select M as

arg min
M∈M

vol(δ∂M)

vol(δM)
, (5.2.6)

where M is the set of manifolds in [−1, 1]n diffeomorphic to Bn and δ ∈ R>0. To retrieve
the optimizer, consider the isoperimetric inequality in Rn [Oss78] which implies that
M? = Bn is optimal in the sense of (5.2.6).

To get (the complex-step version of) [HL14, Cor. 6] from Lemma 5.2.4, let EnQ = {x ∈
Rn : 〈Q−1x, x〉 ≤ 1} for some Q ∈ Sn�0. Now, Tp∂EnQ = {v ∈ Rn : 〈Q−1p, v〉 = 0}. As
EnQ = Q1/2Bn one can write

fδ,EnQ(x) = Ev∼EnQ [f(x+ iδv)] = Ev∼Bn
[
f(x+ iδQ1/2v)

]
. (5.2.7a)

Via the rightmost term in (5.2.7a) and the proof of Lemma 5.2.4 it follows immediately
that

∇fδ,EnQ(x) = Eu∼Sn−1

n

δ

[
f(x+ iδQ1/2u)Q−1/2u

]
. (5.2.7b)

Equivalently, one can directly appeal to (5.2.3b). However, here one needs to appeal to
the isoperimetric ratio for ellipsoids [Riv07].

5.2.2 On the addition of computational noise
In this section we will utilize the imaginary gradient estimator gδ as given by (5.2.1) in
the context of zeroth-order optimization algorithms. We will not focus (again) on fully
generic convex optimization problems as the flat parts of non-trivial real-analytic convex
functions must have measure zero [Kra00]. Hence, without too much loss of generality
we omit convex functions which are not strongly convex6. See also [KSST09] for more on
strong-convexity in the context of generalization.

In this section we relax some of the assumptions in Section 5.1, not only can we handle
computational noise, the algorithms demand less knowledge of the problem compared to
other work. This is possible by introducing a time-varying stepsize and a construction

6Future work will highlight the intimate relation between convex and strongly convex functions under
the assumption that both are real analytic. Initial work was done together with Helia Atarod.
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very much in line with [APT20]. In fact, recall from [RSS12] that µk = Θ(k−1) to allow
for optimal rates. The edge our results have, however, over these existing works is that
our sequence of smoothing parameters {δk}k∈Z>0 is never7 catastrophic.

In contrast to Section 5.1, our algorithms “only” demand knowledge of the strong-
convexity parameter. We comment in [Jon21, Sec. A.2] on the estimation of τ(f). With
some abuse of notation we will again use (Ω,F , {Fk}k∈Z>0

,P) to denote our probability
space at hand.

Generic convergence rates

As in [APT20], we start with the constrained case.

Theorem 5.2.5 (Convergence rate of Algorithm 1 (constrained) with noise). Let f ∈
Cω(D) be a τ(f)-strongly convex function satisfying Assumption 5.1.6, let K ⊂ D be a
compact convex set and suppose that f has a Lipschitz Hessian over K. Let {xk}k∈Z>0

be the sequence of iterates generated by Algorithm 1 with stepsize µk = 2/(τ(f)k) and
smoothing parameters δk = δk−1/6 with δ ∈ (0, κδ̄] for κ ∈ (0, 1). Then, if the oracle
satisfies Assumption 5.2.1 and K ≥ 1, x̄K = K−1

∑K
k=1 xk satisfies

E[f(x̄K)− f(x?)] ≤ Õ
(
n2

τ(f)
δ−1/3σξK

−2/3

)
.

Proof. We mainly follow [APT20]. To that end, let supx∈K ‖∇f(x)‖2 ≤ G. As K is
convex and compact we have by the contractive property of ΠK that ‖xk+1 − x?‖22 ≤
‖xk − µkgδk(xk)− x?‖22. This can be written conveniently as

〈gδk(xk), xk − x?〉 ≤ 1
2µk

(
‖xk − x?‖22 − ‖xk+1 − x?‖22

)
+ µk

2 ‖gδk(xk)‖22. (5.2.8)

After reordering the standard strong τ(f)-convexity expression, one obtains

f(xk)− f(x?) ≤ 〈∇f(xk), xk − x?〉 − τ(f)
2 ‖xk − x

?‖22. (5.2.9)

Set ak = ‖xk − x?‖22, then, an application of the Cauchy-Schwarz inequality after com-
bining (5.2.8) with (5.2.9) and taking the expectation over uk and ξk conditioned on xk
yields

E[f(xk)− f(x?)|Fk] ≤ ‖E[gδk(xk)|Fk]−∇f(xk)‖2 ‖xk − x
?‖2

− τ(f)
2 E[ak|Fk] + 1

2µk
E[ak − ak+1|Fk]

+µk
2 E[‖gδk(xk)‖22|Fk]

(5.1.14)
≤ C1nδ

2
k‖xk − x?‖2 + 1

2µk
E[ak − ak+1|Fk]

+µk
2 E[‖gδk(xk)‖22|Fk]− τ(f)

2 ak,

7Up to the limits of the machine.



5.2. Further topics in imaginary zeroth-order optimization 131

for some C1 > 0. Now, use ab ≤ 1
2 (a2 + b2), in particular ab ≤ 1

2 (γa2 + γ−1b2) for γ 6= 0,
to construct

nδ2
k‖xk − x?‖2 ≤ 1

2

(
2C1

τ(f)n
2δ4
k + τ(f)

2C1
‖xk − x?‖22

)
.

Next, take unconditional expectation and let rk = E[ak] such that we can write

E[f(xk)− f(x?)] ≤ 1
2µk

(rk − rk+1)− τ(f)
4 rk + 1

τ(f)C
2
1n

2δ4
k + µk

2 E[‖gδk(xk)‖22]. (5.2.10)

Summing (5.2.10) over k yields∑K
k=1 E[f(xk)− f(x?)] ≤ 1

2

∑K
k=1

(
1
µk

(rk − rk+1)− τ(f)
2 rk

)
+
∑K
k=1

(
1

τ(f)C
2
1n

2δ4
k + µk

2 E[‖gδk(xk)‖22]
)
.

As we selected µk = 2/(τ(f)k) we can simplify the above by using the same reasoning as
in [APT20], that is∑K

k=1

(
1
µk

(rk − rk+1)− τ(f)
2 rk

)
≤r1

(
1
µ1
− τ(f)

2

)
+
∑K
k=2 rk

(
1
µk
− 1

µk−1
− τ(f)

2

)
= 0.

Note that we rely on the τ(f)-strong convexity. Using the observation from above and
plugging in the stepsize µk elsewhere yields by (5.2.2)∑K

k=1 E[f(xk)− f(x?)] ≤ 1
τ(f)

∑K
k=1

(
C2

1n
2δ4
k + 1

kE[‖gδk(xk)‖22]
)

≤ n2

τ(f)

∑K
k=1

(
C2

1δ
4
k + 1

k

[
C2δ

4
k + C3δ

2
k‖∇f(xk)‖2

+ 1
n‖∇f(xk)‖22 + 1

δ2k
σξ

])
,

for some C2, C3 > 0. Now, minimizing over {δk}k∈Z>0 is possible but yields smoothing
parameters as a function of unknown constants. Instead, we retain the “optimal” root8

and propose
δ̃k =

(ασξ
k

)1/6

,

for some α ∈ (0, 1) to be specified. Using this smoothing parameter sequence, that is,
δk = δ̃k, together with

∑K
k=1 k

−1 ≤ 1 + log(K) (Lemma 5.3.1) yields∑K
k=1 E[f(xk)− f(x?)] ≤ n2

τ(f)

∑K
k=1

(
C2

1

(ασξ
k

)2/3
+ 1

k

[
C2

(ασξ
k

)2/3
+
(ασξ
k

)−1/3
σξ

])
+ n
τ(f)G

2(1 + log(K)) + n2

τ(f)GC3

∑K
k=1

1
k

(ασξ
k

)1/3
= n2

τ(f)

∑K
k=1

(
C2

1

(ασξ
k

)2/3
+ 1

k

[
C2

(ασξ
k

)2/3
+ k1/3σ

2/3
ξ α−1/3

])
+ n
τ(f)G

2(1 + log(K)) + n2

τ(f)GC3

∑K
k=1 k

−2/3(ασξ)
1/3

≤ n2

τ(f)

∑K
k=1 C4k

−2/3σ
2/3
ξ α−1/3

+ n
τ(f)G

2(1 + log(K)) + n2

τ(f)GC3

∑K
k=1 k

−2/3(ασξ)
1/3.

8Let a, b ∈ R>0, then, see that (b/(2a))1/6 = arg minδ∈R≥0
{aδ4 + b 1

δ2
}.
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Now, as
∑K
k=1 k

−2/3 ≤ 3K1/3 (Lemma 5.3.2) we can continue and write

∑K
k=1 E[f(xk)− f(x?)] ≤ n2

τ(f)C5K
1/3σ

2/3
ξ α−1/3 + n

τ(f)G
2(1 + log(K))

+ n2

τ(f)GC6K
1/3(ασξ)

1/3.

and as such we obtain the optimization error

E[f(x̄K)− f(x?)] ≤ n2

τ(f)C5K
−2/3σ

2/3
ξ α−1/3 + n

τ(f)G
2K−1(1 + log(K))

+ n2

τ(f)GC6K
−2/3(ασξ)

1/3.

As α ∈ (0, 1) was arbitrary, we can set δ = (ασξ)
1/6 such that δk = δk−1/6 for some

δ ∈ (0, δ̄).

The edge Theorem 5.2.5 has over existing work is that the requested sequence {δk}k∈Z>0

can always be safely implemented. With respect to optimality, we highlight α-suffix aver-
aging, as proposed in [RSS12], as a general method to pass from Õ(·) to O(·) complexities.

Next we consider the unconstrained case. Here, we cannot appeal to a uniform bound
on ∇f(x). Instead, we use the idea from [APT20, Thm. 3.2] and bound a subset of iterates
before strong-convexity kicks in. The intuition being, when τ(f) is small, the first few
stepsizes will be relatively large and can lead to overflow. This is to be avoided. In some
sense one could interpret the multiphase algorithm as some restarting mechanism.

Theorem 5.2.6 (Convergence rate of Algorithm 1 (unconstrained) with noise). Let f ∈
Cω(D) be a τ(f)-strongly convex function satisfying Assumption 5.1.6. Suppose that f has
a Lipschitz gradient and Hessian, that is, (2.1.4) and (2.1.7) hold, for non-zero constants
L1(f) and L2(f), respectively. Let {xk}k∈Z>0 be the sequence of iterates generated by
Algorithm 1 (a) for

µk = 1
τ(f)K , δk = δK−1/6, k = 1, . . . ,K0,

µk = 2
τ(f)k , δk = δk−1/6, k = K0 + 1, . . . ,K,

with K0 =
⌊

8n2L1(f)2

τ(f)2

⌋
and δ ∈ (0, κδ̄] for some κ ∈ (0, 1). Then, if the oracle satisfies

Assumption 5.2.1 and K ≥ 2K0, we have for x̄K0,K = 1
K−K0

∑K
k=K0+1 xk that

E[f(x̄K0,K)− f(x?)] ≤ O
(
n2L1(f)2

τ(f)
‖x1 − x?‖22K−1

)
+O

(
n2σξ
τ(f)δ2

K−2/3

)
.

(5.2.11)

Proof. The proof will be similar to that of [APT20, Thm. 3.2]. Again, set ak = ‖xk−x?‖22,
then, similar to the proof of Theorem 5.2.5, use ab ≤ 1

2 (a2 + b2) together with τ(f)-strong
convexity, i.e., (5.1.21), to construct

nδ2
k‖xk − x?‖2 ≤ 1

2

(
2C1

τ(f)n
2δ4
k + τ(f)

2C1
‖xk − x?‖22

)
≤ C1

τ(f)n
2δ4
k + 1

2C1
(f(xk)− f(x?)).
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Next, let rk = E[ak] such that by ‖∇f(xk)‖22 ≤ L1(f)2‖xk − x?‖22 we can write

E[f(xk)− f(x?)] ≤ 1
µk

(rk − rk+1)− τ(f)rk + 2
τ(f)C

2
1n

2δ4
k + µkE[‖gδk(xk)‖22]

(5.2.2)
≤ 1

µk
(rk − rk+1)− τ(f)rk + 2

τ(f)C
2
1n

2δ4
k

+µk

(
C2n

2δ4
k + C3n

2δ4
k + 2n2L1(f)2rk + n2

δ2k
σξ

)
(5.2.12)

Where in the last step we used

δ2
k‖xk − x?‖2 ≤ 1

2

(
C3

2L1(f)δ
4
k + 2L1(f)

C3
‖xk − x?‖22

)
to rewrite (5.2.2). Now we use the step- and smoothing parameters for k = 1, . . . ,K0,
that is, µk = 1/(τ(f)K) and δk = δK−1/6 to observe from (5.2.12) that

rk+1 ≤ rk − τ(f)µkrk + 2µk
τ(f)C

2
1n

2δ4
k + µ2

k

(
C2n

2δ4
k + C3n

2δ4
k + 2n2L1(f)2rk + n2

δ2k
σξ

)
=
(

1− 1
K + 2L1(f)2

(τ(f)K)2n
2
)
rk + νK = AKrk + νK

for Ak as between brackets and νK defined as

νK = 2
τ(f)2KC

2
1n

2δ4
k + 1

(τ(f)K)2

(
C2n

2δ4
k + C3n

2δ4
k + n2

δ2k
σξ

)
≤ 1
τ(f)2K

(
n2δ4C4 + n2

δ2 σξ

)
K−2/3.

We now proceed with bounding rK0+1. As in [APT20], set

qK = 1 + 2L1(f)2

(τ(f)K)2n
2 ≥ AK ,

then, by iterating over rk it follows from a geometric series argument that

rK0+1 ≤ AK0

K r1 +
∑K0−1
i=0 AiKνK ≤

(
r1 + (τ(f)K)2

2L1(f)2n2 νK

)
qK0

K .

Now for b·c being the floor function, let K0 be as in the theorem. Then, as log(1+x) ≤ x,
on R≥0

qK0

K = exp
(
K0 log

(
1 + 2L1(f)2

(τ(f)K)2n
2
))
≤ exp

(
8n2L1(f)2

τ(f)2 log
(

1 + 2L1(f)2

(τ(f)K)2n
2
))

≤ exp
(

16n4L1(f)4

τ(f)4K2

)
.

Fix any Ce ∈ (0, 1
32 ), when

K =

√
8n4L1(f)4

τ(f)4Ce

then K ≥ 2K0 and qK0

K ≤ e2Ce = C5. As such,

rK0+1 ≤
(
r1 + (τ(f)K)2

2L1(f)2n2 νK

)
C5

≤
(
r1 + (τ(f)K)2

L1(f)2n2
1

τ(f)2K

(
n2δ4C4 + n2

δ2 σξ

)
K−2/3

)
C5

=
(
r1 + 1

L1(f)2n2

(
n2δ4C4 + n2

δ2 σξ

)
K1/3

)
C5.
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Now we return to our normal step- and smoothing parameters, that is µk = 2/(τ(f)k),
δk = δk−1/6, for k ≥ K0 + 1. By plugging this into (5.2.12) we get

(K −K0)E[f(x̄K0,K)− f(x?)] ≤
∑K
k=K0+1

τ(f)k
2 (rk − rk+1)− τ(f)rk + 4

τ(f)kn
2L1(f)2rk

+
∑K
k=K0+1

2
τ(f)C6n

2δ4k−2/3

+
∑K
k=K0+1

2
τ(f)k

n2

δ2 k
1/3σξ

By construction of K0 we have that for k ≥ K0 +1, τ(f)/2 ≥ (4n2L1(f)2)/(τ(f)k). Hence

(K −K0)E[f(x̄K0,K)− f(x?)] ≤ τ(f)
2

(∑K
k=K0+1 k(rk − rk+1)− rk

)
+ UK0,K .

where by Lemma 5.3.2

UK0,K =
∑K
k=K0+1

2
τ(f)C6n

2δ4k−2/3 + 2
τ(f)k

n2

δ2 k
1/3σξ

= 2n2

τ(f)

(
C6δ

4 + 1
δ2σξ

)∑K
k=K0+1 k

−2/3

≤ 2n2

τ(f)

(
C6δ

4 + 1
δ2σξ

)
3K1/3.

As demonstrated in [APT20], one can now construct the bound
∑K
k=K0+1 k(rk − rk+1)−

rk ≤ K0rK0+1 where the last term is exactly the term we could bound above. In combi-
nation with the bound on K0 itself, we find that

(K −K0)E[f(x̄K0,K)− f(x?)] ≤ τ(f)
2

8n2L1(f)2

τ(f)2

(
r1 + 1

L1(f)2n2

(
n2δ4C4 + n2

δ2 σξ

)
K1/3

)
C5

+ 2n2

τ(f)

(
C6δ

4 + 1
δ2σξ

)
3K1/3.

By our selection of Ce we have that K ≥ 2K0 and as such

E[f(x̄K0,K)− f(x?)] ≤ 8n2L1(f)2

τ(f)K

(
r1 + 1

L1(f)2

(
δ4C3 + 1

δ2σξ
)
K1/3

)
C5

+ 4n2

τ(f)K

(
C6δ

4 + 1
δ2σξ

)
3K1/3.

Now, reordering terms yields (5.2.11).

Optimal convergence rates

Now we consider the special case of f being quadratic. Here we improve upon the previous
section due to exploitation of the quadratic nature of f , that is, by using =(f(x+ iδu)) =
δ〈∇f(x), u〉 for any δ > 0.

Better yet, we see that for quadratic functions we incur optimal regret. Optimality
can be shown along the lines of [Sha13], or along the lines of [AWBR09] after observing
that in the quadratic case the gradient estimator gδ(x) becomes an unbiased estimator
for ∇f(x). The test function used in [APT20] is smooth but unfortunately not analytic9.
We start by providing the bound from below.

9Section 5.2.3 highlights that this might not be an obstruction.
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Theorem 5.2.7 (Bound from below). Any possibly randomized zeroth-order algorithm of
fixed length K ≥ 1, applying the estimator (5.2.1) under Assumption 5.2.1, cannot achieve
a rate faster than

Ω

(
n2

τ(f)K

)
,

uniformly over all τ(f)-strongly convex quadratic (real-analytic) functions.

Proof. We largely follow [Sha13, Thm. 3], but for the sake of completeness we highlight
the main arguments.

Recall that based on x1, x2, . . . , xK , in particular the function evaluations at those
points, we compute some point x′K (this could be a non-uniform average estimator). In
our case the function queries correspond to vk = =(f(xk + iδu)) for some choice of δ > 0,
u ∈ Sn−1 and with the possibility of being corrupted by additive noise ξ.

Now, consider the following Cω function over Rn

x 7→ fz(x) = τ
2‖x‖

2
2 − 〈z, x〉. (5.2.13)

The unique minimizer of fz(x) is given by x? = 1
τ z. Moreover, assume z is drawn uniformly

from {−ν, ν}n for some ν that will be specified later. It follows from the strong τ -convexity
of (5.2.13) that fz(x)− fz(x?) ≥ τ

2‖x−
1
τ z‖

2
2. As such, let x′i,K denote the ith element of

the vector x′K , then, for any randomized strategy

Ez[fz(x′K)− fz(x?)] ≥ τ
2Ez[‖x

′
K − 1

τ z‖
2
2] = τ

2Ez
[∑n

i=1(x′i,K − 1
τ zi)

2
]

≥ ν2

2τ Ez
[
1x′i,Kzi<0

]
,

where the expectation is taken over the quadratic functions of the form (5.2.13), that
is, over z. This means that we can construct a bound from below if we can get a grip
on the signs of each zi. To that end, we follow the proof of [Sha13, Thm. 3]. The idea
is to consider deterministic strategies that have only access to a sequence of function
evaluations. The KL-divergence will allow for relating these function evaluations and the
sign of zi.

The key difference with respect to [Sha13], however, is the estimator. Given some
point xk, our function evaluation vk is of the form vk = =(f(xk+ iδu))+ξ for some δ > 0,
u ∈ Sn−1 and noise realization ξ. Now observe that =(fz(x + iδu)) = δ(τ〈x, u〉 − 〈z, u〉).
Hence, conditioning on zi > 0 we get vk = δ(τ〈xk, u〉 −

∑
j 6=i zjuj) − νui + ξ whereas

conditioning on zi < 0 yields vk = δ(τ〈xk, u〉−
∑
j 6=i zjuj)+νui+ξ. Under the assumption

that ξ is Gaussian, which complies with Assumption 5.2.1, one can now bound the KL-
divergence (between these two functions evaluations) by (2νui)

2/(2σξ), e.g., see [Sha13,
Lem. 5]. Using the fact that u ∈ Sn−1 one can then exploit [Sha13, Lem. 4] and show that

ν2

2τ Ez[1x′i,Kzi<0] ≥ nν2

4τ

(
1−

√
2ν2K
nσξ

)
.

As such, selecting ν =
√

(nσξ)/(4K) yields the desired result.

In the light of Theorem 5.2.7 and [RSS12] (α-suffix averaging), the following algorithms
are rate optimal. More specifically, one can show that the dependence on σξ is also optimal.
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Note that for quadratic functions we should not simply appeal to Theorem 5.2.5, as that
result is true for a larger class of objective functions.

Theorem 5.2.8 (Convergence rate of Algorithm 1 (constrained) with noise, f being
quadratic). Let f ∈ Cω(D) be a τ(f)-strongly convex function satisfying Assumption 5.1.6,
let K ⊂ D be a compact convex set and suppose that f has a constant Hessian over
K. Let {xk}k∈Z>0

be the sequence of iterates generated by Algorithm 1 (b) with stepsize
µk = 2/(τ(f)k) and constant smoothing parameter δk = δ with δ ∈ (0, κδ̄] for some
κ ∈ (0, 1). Then, if the oracle satisfies Assumption 5.2.1 and K ≥ 1, x̄K = K−1

∑K
k=1 xk

satisfies

E[f(x̄K)− f(x?)] ≤ O
(

n

τ(f)
K−1

)
+ Õ

(
n2σξ
τ(f)δ2

K−1

)
.

Proof. We can mainly follow the proof of Theorem 5.2.5, which relies itself largely on [APT20].
To that end, let again supx∈K ‖∇f(x)‖2 ≤ G and set ak = ‖xk − x?‖22 such that

E[f(xk)− f(x?)|Fk] ≤ ‖E[gδk(xk)|Fk]−∇f(xk)‖2 ‖xk − x
?‖2

− τ(f)
2 E[ak|Fk] + 1

2µk
E[ak − ak+1|xk]

+µk
2 E[‖gδk(xk)‖22|Fk]

(5.1.14)
≤ 1

2µk
E[ak − ak+1|Fk] + µk

2 E[‖gδk(xk)‖22|Fk]− τ(f)
2 ak.

Note, here we already use that f is quadratic cf. (5.1.14). Next, let rk = E[ak] such that
we can write

E[f(xk)− f(x?)] ≤ 1
2µk

(rk − rk+1)− τ(f)
2 rk + µk

2 E[‖gδk(xk)‖22]. (5.2.14)

To allow for an identical stepsize as before, we replace −τ(f)/2 with −τ(f)/4. Sum-
ming (5.2.14) over k yields∑K

k=1 E[f(xk)− f(x?)] ≤ 1
2

∑K
k=1

(
1
µk

(rk − rk+1)− τ(f)
2 rk

)
+
∑K
k=1

µk
2 E[‖gδk(xk)‖22].

As we selected µk = 2/(τ(f)k) we can simplify the above by using (again) the same
reasoning as in [APT20]:∑K

k=1

(
1
µk

(rk − rk+1)− τ(f)
2 rk

)
≤r1

(
1
µ1
− τ(f)

2

)
+
∑K
k=2 rk

(
1
µk
− 1

µk−1
− τ(f)

2

)
= 0.

Indeed, without the scaling of τ(f) our stepsize would have been µk = 1/(τ(f)k). Note
that we rely on the τ(f)-strong convexity. Using the observation from above and plugging
in the stepsize µk elsewhere yields∑K

k=1 E[f(xk)− f(x?)] ≤ 1
τ(f)

∑K
k=1

1
kE[‖gδk(xk)‖22]

(5.2.2)
≤ n2

τ(f)

∑K
k=1

1
k

[
1
n‖∇f(xk)‖22 + 1

δ2k
σξ

]
.
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Now, minimizing over {δk}k∈Z>0
clearly yields a desire to pick a larger and constant δk

cf. Theorem 5.2.5. Combining this with the bound on ∇f(xk) yields by (5.3.1)

KE[f(x̄k)− f(x?)] ≤
∑K
k=1 E[f(xk)− f(x?)] ≤ n2

τ(f)

[
1
nG

2 + 1
δ2σξ

]
(log(K) + 1).

See [Jon21, Ex. 4.5] for a comparison between Theorem 5.2.8 (CS algorithm) against a
state-of-the-art multi-point method [APT20, Thm. 5.1]. It turns out that for sufficiently
small δk, the multi-point method diverges. Similar to Theorem 5.2.6, we can analyze
unconstrained zeroth-order optimization when f is quadratic and obtain a rate-optimal
algorithm [Jon21, Thm. 4.6].

Further remarks

Another somewhat straight-forward extension is to consider online optimization, see [BP16].
Less straight-forward is the extension to nonconvex objective functions. We provide

the first steps in [Jon21, Thm. 5.1], with [Jon21, Ex. 5.2] showing the importance of
taking the noise into account.

5.2.3 Discussion

On the necessity of leaving the real numbers

Given the results from the previous section, one might wonder if this “complex-lifting”
is needed. Real single-point gradient estimators evidently exist, cf. [FKM04], but with
problematic variance bounds for δ → 0+. The common solution is to bring back some
relation with the (directional) derivative [ADX10, NS17]. Hence, one might wonder if
there is a purely real analogue to the complex-step derivative. The next proposition
strongly hints at a negative answer.

Proposition 5.2.9 (On the necessity of leaving the real numbers). Consider some non-
empty, open, set D ⊆ Rn. Then, there does not exist a continuous map G : R → R such
that for all real-analytic functions f : D → R

G (f(x+ δy)) = 〈∇f(x), δy〉+ o(δ) ∀x ∈ D, y ∈ Sn−1.

Proof. As f ∈ Cω(D) we can construct, for sufficiently small δ and any y ∈ Sn−1, the
convergent Taylor series of f(x+ δy) around x and as such G must satisfy

G (f(x) + 〈∇f(x), δy〉+ o(δ)) = 〈∇f(x), δy〉+ o(δ) ∀x ∈ D, y ∈ Sn−1.

Evidently, there is no map G that can satisfy the above for all f ∈ Cω(D).

We remark that there is recent work studying zeroth-order optimization without as-
suming bounded variance [KSL+23].
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Comment on C∞-smooth imaginary zeroth-order optimization

Consider the smooth function ψ : R → R defined by ψ(x) = |x|2. When evaluating ψ at
some complex point z = x + iy ∈ C one finds that ψ(z) = x2 + y2, as such, ψ does not
satisfy the Cauchy-Riemann equations and is nowhere (complex) analytic. This, however,
means that one cannot appeal to the complex-step framework from above. On the other
hand, the function ϕ : R→ R defined by

ϕ(x) =

{
exp

(
−x−4

)
if x > 0

0 otherwise
.

is widely known not to be analytic, yet, ϕ does satisfy the Cauchy-Riemann equations,
see [GM78]. Hence, although ϕ ∈ C∞\Cω, the complex-step framework is not obstructed.

It turns out that from a topological point of view, the function ϕ is somewhat of a
special case. Let X be a topological space. Then the set M ⊂ X is of the first category,
in the sense of Baire, when M is a countable union of nowhere dense sets in X. A set
A ⊆ X is said to be nowhere dense when cl(A)c is dense in X, or equivalently, when
int(cl(A)) = ∅. Now one can show that under a sup-metric, the complement to the space
of nowhere differentiable functions in C0([0, 1]) is of the first category [Fol99, Ch. 5].
Differently put, almost every continuous function on [0, 1] is nowhere differentiable. A
similar topological statement can be made about nowhere analytic functions in the space
of smooth functions C∞([0, 1]) under a sup-metric, e.g., see10 [Dar73, Cat84]. Again,
bluntly put, almost every smooth function is nowhere analytic. An important question
that comes with such an observation is where in the space of smooth functions optimization
takes place? What is the right topology?

5.3 Appendix
This appendix contains auxiliary results related to the work above.

The following two results are well-known and follow from a Darboux argument, that is,
∑J
j=1

1
j
≤∫ J

1 (1/x)dx+ 1 and
∑J
j=1 j

−1+1/β ≤
∫ J
1 x−1+1/βdx+ 1.

Lemma 5.3.1 (Logarithm bound). For any J ∈ Z>0 one has∑J
j=1

1
j
≤ log(J) + 1. (5.3.1)

Lemma 5.3.2 (Fractional bound). For any β ≥ 1 one has∑J
j=1 j

−1+1/β ≤ βJ1/β . (5.3.2)

The following result allows for showing consistency, i.e., limδ→0+ ∇fδ(x) = ∇f(x).

Lemma 5.3.3 (Integration over the (n− 1)-sphere). Given any x ∈ Rn, then

n

vol(Sn−1)
·
∫
Sn−1

〈x, u〉udV (u) = x. (5.3.3)

Although this result is well-known, for completeness we also provide the proof.

10See in particular this post https://web.archive.org/web/20161009194815/mathforum.org/kb/

message.jspa?messageID=387148 by Dave L. Renfro for more context.

https://web.archive.org/web/20161009194815/mathforum.org/kb/message.jspa?messageID=387148
https://web.archive.org/web/20161009194815/mathforum.org/kb/message.jspa?messageID=387148
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Proof. First, rewrite part of (5.3.3) as n ·
∫
Sn−1 uu

TdV (u)x by recalling that uuTx = 〈x, u〉u. Now we
would like to show that n ·

∫
Sn−1 uu

TdV (u) = vol(Sn−1) · In. To that end, use the “geometric tracing
identity”11 n ·

∫
Sn−1 〈Xu, u〉dV (u) = Tr(X) · vol(Sn−1) [GHL04, Lem. 3.100], differentiating both sides

with respect to X ∈ Sn yields n ·
∫
Sn−1 uu

TdV (u) = vol(Sn−1) · In indeed.
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6

Topological obstructions to stability

“To appreciate what we are hinting at it might be good
to reflect that if electronics was purely linear, ..., we
would have no fun with transistors, ..., in fact you
would not be reading these lines.”

— Fliess [FH86, p. xi].

The previous century saw a surge in nonlinear analysis, as illustrated by the edited
book containing the quotation from above. In contrast to the linear case, a substantial
amount of results are not constructive and instead try to improve our understanding by
looking at necessary conditions, e.g., for stability. For these conditions to be useful, they
cannot rely on very precise knowledge of the problem, hence we put emphasis on non-
trivial conditions only relying on coarse information, e.g., one needs only knowledge of
attractors, state spaces, vector fields and so forth, up to homotopy equivalences.

The purpose of one of our works was to show that this point of view leads to a princi-
pled, yet indeed coarse, nonlinear analysis [JM23]. In fact, the crux was that most results
can either can be shown via Borsuk’s retraction theory [Bor67] or via a generalization of
the index theoretic work from Krasnosel’skĭı and Zabreiko [KZ84].

In what follows we provide new retraction-based results in Section 6.1 and—given the
length of [JM23]—we highlight only very briefly the index theoretic way of thinking in
Section 6.2, providing a few new examples. The vector field index already appeared in
Section 2.2.3 and Section 2.4.1, however, in Section 6.2 we elaborate on further theory
and ramifications.
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6.1 Topological properties of compact attractors on
Hausdorff spaces

In this section we characterize when a compact, invariant, asymptotically stable attractor
on a locally compact Hausdorff space is a strong deformation retract of its domain of
attraction.

6.1.1 Introduction
The purpose of this section is to improve our understanding of topological properties of
compact asymptotically stable attractors and their respective domain of attraction. Here,
we will almost exclusively appeal to topological tools pioneered by Borsuk [Dyd12]. In
particular, we will elaborate on the retraction theoretic work by Moulay and Bhat [MB10],
which itself is a generalization of the seminal works [Son98, Thm. 21], [BB00] and [Bha67,
Thm. 4.1].

After Poincaré and Lyapunov, the modern qualitative study of attractors was largely
propelled through the monographs by Birkhoff [Bir27] and Nemytskii and Stepanov [NS60],
with influential follow-up works by Auslander, Bhatia and Siebert [ABS64], Wilson [WJ67],
Hahn [Hah67], Bhatia and Szegö [BS70], Conley [Con78], Milnor [Mil85] and many others,
e.g., see [JM23, Ch. 1].

Lately, attractors have been extensively studied through the lens of shape theory, e.g.,
see [Gar91, GMDPS01, GS09] and [KK22, Prop. 1], with the seminal work of Günther and
Segal showing that a finite-dimensional compact subset of a manifold can be an attractor
if and only if it has the shape of a finite polyhedron [GS93].

The interest in understanding topological properties of attractors and their respective
domain of attraction stems from the simple observation that if a certain dynamical system
does not exist, then certainly there is no feedback law resulting in a closed-loop dynamical
system with precisely those dynamics.

Indeed, this type of study often provides necessary conditions of the form that an
attractor must be equivalent in some sense to its domain of attraction. With that in
mind, one seeks a notion of equivalence that is weak enough to cover many dynamical
systems, yet also strong enough to obtain insights, e.g., obstructions. Hence, although
shape equivalence is more widely applicable [KR00] and in that sense more fundamental,
we focus on homotopy equivalence with the aim of recovering stronger necessary conditions.

In the same spirit, by further restricting the problem class, one could even look for
stronger notions of equivalence as recently done in [YLAC23]. There, in the context of
a vector-field guided path-following problem, homotopy equivalences have been strength-
ened to topological equivalences (homeomorphisms).

Although we focus on continuous dynamical systems, one can link work of this form to
families of differential inclusions [MT11]. Indeed, further partial generalizations of [MB10]
to nonsmooth dynamical system are presented in [LQ12].

Notation and technical preliminaries: The identity map on a space X is denoted by
idX , that is, idX : x 7→ x ∀x ∈ X. The (embedded) n-sphere is the set Sn := {x ∈
Rn+1 : 〈x, x〉 = 1}, with the (closed) n-disk being Dn := {x ∈ Rn : 〈x, x〉 ≤ 1}. The
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topological boundary of a space X is denoted by ∂X, e.g., ∂Dn+1 = Sn. We use 'h to
denote homotopy (equivalence), see Section. 6.1.2.

A topological space X is said to be a locally compact Hausdorff space when: (i)
for any x ∈ X there is a compact set K ⊆ X containing an open neighbourhood U of x
and; (ii) for any x1, x2 ∈ X there are open neighbourhoods U1 3 x1 and U2 3 x2 such
that U1 ∩ U2 = ∅, e.g., see [Lee11, p. 31, 104]. Examples of locally compact Hausdorff
spaces are: Rn, topological manifolds, the Hilbert cube, any discrete space and so forth. In
particular, any compact Hausdorff space is locally compact. Regarding counterexamples, a
space X with the trivial topology τ = {X, ∅} is not Hausdorff and any infinite-dimensional
Hilbert space is a Hausdorff topological vector space, yet, it fails to be locally compact,
see also [Mun14, Thm. 29.1].

6.1.2 Continuous dynamical systems
In this section we study continuous (global) semi-dynamical systems compromised
of the triple Σ := (M, ϕ,R≥0). Here, M is a locally compact Hausdorff space and ϕ :
R≥0 × M → M is a (global) semi-flow, that is, a continuous map that satisfies for any
x ∈ M:

(i) ϕ(0, x) = x (identity axiom); and

(ii) (ϕ(s, ϕ(t, x)) = ϕ(t+ s, x) ∀s, t ∈ R≥0 := {t ∈ R : t ≥ 0} (semi-group axiom).

We will usually write ϕt instead of ϕ(t, ·).
We say that a point x ∈ M is a start point (under Σ) if ∀(t, y) ∈ R>0 ×M we have

that ϕt(y) 6= x. Differently put, x ∈ M is a starting point when a flow starting from x
cannot be extended backwards, see [BH06, Ex. 5.14] for an example. To avoid confusion,
the evaluation of an integral curve at 0 is sometimes called a “starting point” [Lee12,
p. 206], which is not what we are talking about here. Then, to eliminate the existence
of start points we appeal to [BH06, Prop. 1.7], for instance, we can consider semi-flows
generated by a smooth vector field. Concretely, let F ∈ Γ∞(TM) be a smooth vector field
on a smooth manifold M. It is well-known that under these conditions, for each p ∈ M
there is a ε > 0 such that γ : (−ε, ε)→ M is an integral curve of F with γ(0) = p [Lee12,
Prop. 9.2], that is, in terms of the (local) flow ϕ : (−ε, ε)×M→ M we have

d

dt
ϕt(p)

∣∣∣∣
t=s

= F (ϕs(p)) , s ∈ (−ε, ε).

Hence, with the previous observation in mind we will assume the following throughout
the remainder of this section.

Assumption 6.1.1 (Start points). The set of start points under the semi-dynamical sys-
tem Σ is empty.

Stability

We will exclusively focus on a subclass of semi-dynamical systems with practically relevant
stability properties, as introduced in Chapter 2.
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Definition 6.1.2 (Attractor). Given some global semi-dynamical system Σ = (M, ϕ,R≥0),
then, a compact set A ⊆ M is said to be an invariant, local asymptotically stable, attractor
when

(i) ϕ(R, A) = A (invariance); and

(ii) for any open neighbourhood Uε ⊆ M of A there is an open neighbourhood Uδ ⊆
Uε ⊆ M of A such that ϕ(R≥0, Uδ) ⊆ Uε (Lyapunov stability), plus, there is an open
neighbourhood W ⊆ M of A such that all semi-flows initialized in W converge to
A (local attractivity), that is, for any p ∈W and any open neighbourhood V ⊆ M of
A there is a T ≥ 0 such that ϕt(p) ∈ V ∀t ≥ T .

The combination of Lyapunov stability and local attractivity is referred to as local
asymptotic stability. When the neighbourhood W in Item (ii) can be chosen to be all of
M we speak of global asymptotic stability. Local asymptotic stability is also captured by
the existence of an open neighbourhood U ⊆ M of A such that ∩t≥0ϕ

t(U) = A [Hur82,
Lem. 1.6]

On can find several definitions of “attractors” in the literature, see for instance [BS70,
Def. V.1.5], [Mil85] and [KR00, Sec. 2.2].

Definition 6.1.3 (Domain of attraction). Let the compact set A ⊆ M be an invariant,
local asymptotically stable attractor under the semi-dynamical system Σ = (M, ϕ,R≥0),
then, its domain of attraction is

DΣ(A) = {p ∈ M : for any open neighbourhood U ⊆ M of A
there is a T ≥ 0 such that ϕt(p) ∈ U ∀t ≥ T}.

Definition 6.1.3 can be equivalently written in terms of convergent subsequences.
Topological properties of attractors A ⊆ M and their respective domain of attraction
DΣ(A) ⊆ M are an active topic of study since the 1960s [BS70, JM23].

To elaborate on the introduction, the interest stems from the observation that the
(numerical) analysis or synthesis, e.g., via feedback control, of dynamical systems Σ can
be involved, while topological properties of the pair (DΣ(A), A) might be readily available.
Here, topological knowledge of DΣ(A) is frequently used to study if some “desirable”
domain of attraction is admissible. For instance, one can show that no point p ∈ S1

can be a global asymptotically stable attractor under any Σ = (S1, ϕ,R≥0), e.g., see
Theorem 6.1.5 below. The intuition being that for this to be true the circle S1 needs
to be torn apart, which is obstructed by demanding ϕ to be continuous, see also [JM23,
Fig. 1.1]. Again, we emphasize that conclusions of this form emerge without involved
analysis of any particular system Σ.

Retraction theory

The previous example can be understood through S1 not being contractible, that is, S1 is
not homotopy equivalent to a point p. Formally, two topological spaces X and Y are said
to have the same homotopy type when they are homotopy equivalent1, that is, there are

1More abstractly, homotopies are isomorphisms in the homotopy category of topological spaces.
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continuous maps f : X → Y and g : Y → X such that f ◦ g 'h idY and g ◦ f 'h idX . In
some sense, this notion is a more general version of a deformation retract—which we recall
below, and is most naturally understood through invariance in differential- [GP10] and
algebraic topology [Hat02]. As alluded to, now, we recall that A ⊆ X is a retract of X
when there is a map r : X → A such that r ◦ ιA = idA, for ιA : A ↪→ X the inclusion map.
The set A is said be a deformation retract of X when A is a retract and additionally
ιA ◦ r 'h idX , implying that X is homotopy equivalent to A. When, additionally, the
homotopy is stationary relative to A, we speak of a strong deformation retract.

Remark 6.1.1 (Deformation retracts). The literature does not agree on what a “defor-
mation retract” is. For instance, Hatcher calls strong deformation retracts simply defor-
mation retracts and speaks of “deformation retracts in the weak sense” where we would
speak of simply a deformation retract [Hat02, Ch. 0]. This should be contrasted with for
instance the 1965 text of Hu [Hu65, Sec. 1.11].

Next, a set A ⊆ X is said to be a weak deformation retract of X when every open
neighbourhood U ⊇ A contains a strong deformation retract V ⊇ A of X.

In this section we will elaborate on the following result due to Moulay and Bhat. In
particular, we aim to understand when DΣ(A) strongly deformation retracts onto A and
not just to a subset of a neighbourhood around A.

Theorem 6.1.4 ([MB10, Thm. 5]). Suppose that the compact set A ⊆ M is an invariant,
local asymptotically stable attractor under the semi-dynamical system Σ = (M, ϕ,R≥0),
then, A is a weak deformation retract of DΣ(A).

It is well-known that when M is a smooth manifold and A is an embedded submanifold
of M, then, A is a strong neighbourhood deformation retract of M and thus A is homotopic
to DΣ(A) [MB10, Prop. 10], see also [LYC22]. Our aim is to provide further, especially
weaker, conditions for this to be true.

Indeed, Theorem 6.1.4 can be seen as a generalization of the following well-known
result due to Sontag.

Theorem 6.1.5 ([Son98, Thm. 21]). Suppose that the point A := {p} ⊆ M is an invariant,
global asymptotically stable attractor under the semi-dynamical system Σ = (M, ϕ,R≥0),
then, DΣ(A) is contractible.

We aim to strengthen this generalization. We do this by appealing to neighbourhood
retracts. A set A ⊆ X is a neighbourhood retract of X when there is an open neigh-
bourhood U ⊆ X of A such that A is retract of U . This definition extends naturally to
(strong) deformation retracts. Now indeed, if for instance M weakly deformation retracts
onto A ⊆ M while A is a neighbourhood deformation retract of M, then M deformation
retracts onto A and thus A 'h M [MB10, Thm. 4].

In this section we focus on homotopy equivalence, a similar but weaker notion is
that of shape equivalence, understood as being for Čech (co)homology what homotopy
theory is for singular (co)homology. Indeed, only for sufficiently “nice” spaces, singular
cohomology and Čech cohomology agree. For a concise introduction to shape theory, in
the sense of Fox [Fox72], we refer the reader to [KR00, Sec. 3]. The crux is to work with
open neighbourhoods of a set and not solely with the set itself. For instance, the Warsaw



148 Chapter 6. Topological obstructions to stability

circle W1, as studied below in Example 6.1.3 is not homotopy equivalent to the circle S1

but the two spaces are shape equivalent.

6.1.3 Cofibrations
It follows from Theorem 6.1.4 that for A to be homotopy equivalent to DΣ(A) , it suffices
for A to be a neighbourhood deformation retract of DΣ(A). We will appeal to cofibrations
to capture this property.

The theory of cofibrations emerges from the so-called “extension problem”, that is,
understanding when a continuous map f : A ⊆ X → Y can be extended from A to all of
X. A typical counterexample is any map f : ∂Dn → Y of nonzero (topological) degree,
that is, when deg(f) 6= 0, f cannot be extended from the n-sphere Sn ' ∂Dn+1 to the
(n+ 1)-disk Dn+1 [GP10, Sec. 2.4].

Now, cofibrations tell us, loosely speaking, if maps that can be extended, lead to
homotopies that can be extended. To define this, we need the following. Let X be a
topological space and A ⊆ X, then, a pair (X,A) has the homotopy extension property
(HEP) when, for any Y , the diagram

(A× [0, 1]) ∪ (X × {0}) Y

X × [0, 1]

(6.1.1)

can always be completed (the dotted arrow can be found) to be commutative. Dif-
ferently put, given a a homotopy H : A × [0, 1] → Y and some map g : X → Y such
that H(·, 0) = g|A, one needs to be able to extend the homotopy from A to X. Pick
Y = (A × [0, 1]) ∪ (X × {0}), then we see that (X,A) having the HEP implies that
(A × [0, 1]) ∪ (X × {0}) is a retract of X × [0, 1]. On the other hand, one can show that
the existence of such a retract implies that (X,A) has the HEP, that is, these two notions
are equivalent, see Theorem 6.1.7 below. See also [Str66, p. 13] for a stronger result.

Then, a continuous map i : A→ X is said be a cofibration2 if the following commuta-
tive diagram

A× {0} A× [0, 1]

X × {0} X × [0, 1]

Y

(6.1.2)

can be completed for any Y . Loosely speaking, the map i is a cofibration when it has the
HEP3.

2Our notion of cofibration is aligned with the so-called Hurewicz cofibration. We will not discuss Serre
cofibrations, which are most easily understood through fibrations, a notion dual to that of cofibrations, e.g.,
see [May99, Ch. 7].

3We focus on pairs (X,A) such that A ⊆ X, this inclusion is, however, not required for a cofibration
to be well-defined. Nevertheless, to make sense of (6.1.1) one should work with (A× [0, 1]) ∪i X instead
of (A× [0, 1]) ∪ (X × {0}), that is, with the so-called “mapping cylinder” as further discussed below.
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Next, we need a slight variation of the aforementioned notions of retraction, that of a
neighbourhood deformation retract pair (NDR pair).

Definition 6.1.6 (NDR pair). A pair (X,A) is said to be an NDR pair if:

(i) there is a continuous map u : X → [0, 1] such that A = u−1(0); and

(ii) there is a homotopy H : X×[0, 1]→ X such that H(·, 0) = idX , H(x, s) = x ∀x ∈ A,
∀s ∈ [0, 1] and H(x, 1) ∈ A if u(x) < 1.

See that if u(x) < 1 ∀x ∈ X, then, A is a strong deformation retract of X. In general,
however, we cannot assume u to be of this form. See that for (X,A) to be an NDR pair,
A must be closed. Now, a useful result is the following.

Theorem 6.1.7 ([May99, Ch. 6]). Let A be closed in X, then, the following are equivalent:

(i) the inclusion ιA : A ↪→ X is a cofibration;

(ii) (A× [0, 1]) ∪ (X × {0}) is a retract of X × [0, 1];

(iii) (X,A) is an NDR pair.

To be somewhat self-contained, we provide intuition regarding Item (ii) and Item (iii).
In particular, we highlight continuity.

Proof (sketch). Suppose we have the retract r : X × [0, 1] → (A × [0, 1]) ∪ (X × {0}).
Define the projections π1 : X × [0, 1] → X and π2 : X × [0, 1] → [0, 1]. Next, define the
map u : X → [0, 1] via

u(x) = sup
τ∈[0,1]

{τ − π2(r(x, τ))}, (6.1.3)

where the supremum is attained since [0, 1] is compact and π2 and r are continuous. Now
define the homotopy H : X× [0, 1]→ X by H(x, s) = π1(r(x, s)). Indeed, one can readily
check that the pair (u,H) satisfies the properties required for (X,A) to be an NDR pair.
Note that since the retract r is continuous, we have that u is not identically 0 when
X \ A 6= ∅. The map u constructed through (6.1.3) is in fact continuous since [0, 1] is
compact and both π2 and r are continuous, e.g., one can appeal to the simplest setting of
Berge’s maximum theorem [Ber63].

Note that in general, (A× [0, 1])∪ (X×{0}) will be equivalent to the mapping cylinder
under the inclusion map ιA : A ↪→ X, that is, MιA = ((A× [0, 1]) ∪X)/ ∼ with (a, 0) ∼
ιA(a) for all a ∈ A, also denoted by (A× [0, 1])∪ιA X. Equivalence can possibly fail when
the product and quotient topologies under consideration do not match.

For illustrative purposes, we end this section with the collection of a powerful result.
Omitting the details, we recall that X is a CW complex when X can be constructed via
iteratively “glueing” n-cells, being (closed) topological disks Dn, along their boundary to
a (n−1)-dimensional CW complex, with a 0-dimensional CW complex being simply a set
of discrete points. For instance, the circle S1 can be constructed from a single point and
the interval. Then, a set A ⊆ X is a subcomplex of the CW complex X when it is closed
and a union of (open) cells of X. For more on CW complices, we refer to [Hat02, Ch. 0]
and [Lee11, Ch. 5].
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Proposition 6.1.8 (CW complices [Hat02, Prop. 0.16]). Let X be a CW complex and
A ⊆ X a subcomplex, then, the inclusion map ιA : A ↪→ X is a cofibration.

Proposition 6.1.8 hinges on ιSn−1 : Sn−1 ↪→ Dn being a cofibration, which can be
shown via showing that (Dn,Sn−1) is an NDR pair, however, using a strategy of more
general use, one can show there is a (strong deformation) retract from Dn × [0, 1] onto
(∂Dn× [0, 1])∪ (Dn×{0}) [Hat02, p. 15], e.g., consider some point (0, c) ∈ Dn×R≥2 and
project (0, c) onto (∂Dn× [0, 1]), then, the line between (0, c) and this projection provides
for the homotopy.

CW complices are fairly general, yet, properties that obstruct X admitting a CW
decomposition are for instance: (i) X failing to be locally contractible [Hat02, Prop. A4];
and (2) X failing to adhere to Whitehead’s theorem cf. Example 6.1.3.

Main result

Now, we have collected all ingredients to prove the following.

Lemma 6.1.9 (⇐ Cofibration). Let A ⊆ M be a compact, invariant, asymptotically stable,
attractor with domain of attraction DΣ(A). If ιA : A ↪→ DΣ(A) is a cofibration, then, A
is a strong deformation retract of DΣ(A).

Proof. We know from Theorem 6.1.4 that A is a weak deformation retract of DΣ(A).
Since ιA : A ↪→ DΣ(A) is a cofibration, we also know from Theorem 6.1.7 that (DΣ(A), A)
is an NDR pair. Then, recall Definition 6.1.6 and recall the proof of Theorem 6.1.7. Now,
let W := u−1([0, 1)) ⊃ A, which is open since u : DΣ(A) → [0, 1] is continuous, and
consider the map H|W×[0,1]. It is imperative to remark that this map does not provide
a strong deformation retract from W onto A in general. The reason why we cannot
conclude on the existence of such a map is that we cannot guarantee that throughout
the homotopy we have H(x, s) ∈ W for any (x, s) ∈ W × [0, 1]. Indeed, we have a
map H|W×[0,1] : W × [0, 1] → DΣ(A) ⊇ W , the codomain cannot be assumed to be W .
Precisely this detail was already known to Strøm cf. [Str66, Thm. 2], see also [Bre93,
p. 432]. Nevertheless, since A is a weak deformation retract of DΣ(A) we know that
W contains a set V ⊇ A such that DΣ(A) strongly deformation retracts onto V , that
is, there is map H̄ : DΣ(A) × [0, 1] → DΣ(A) such that H̄(x, 0) = x ∀x ∈ DΣ(A),
H̄(x, 1) ∈ V ∀x ∈ DΣ(A) and H̄(x, s) = x ∀(x, s) ∈ V × [0, 1]. Hence, the continuous map
H̃ : DΣ(A)× [0, 1]→ DΣ(A) defined by

(x, s) 7→ H̃(x, s) :=

{
H̄(x, 2s) s ∈ [0, 1

2 ]

H
(
H̄(x, 1), 2s− 1

)
s ∈ ( 1

2 , 1]

is a homotopy and provides for the strong deformation retract of DΣ(A) onto A.

To continue, we need a converse result.

Lemma 6.1.10 (⇒ Cofibration). Suppose that M is a locally compact Hausdorff space,
that Σ satisfies Assumption 6.1.1 and let A ⊆ M be a compact, invariant, asymptotically
stable, attractor with domain of attraction DΣ(A). If A is a strong deformation retract of
DΣ(A), then, ιA : A ↪→ DΣ(A) is a cofibration.
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Proof. We will appeal to the characterization of a cofibration as given by Theorem 6.1.7.
As A is a strong deformation retract of DΣ(A) by assumption, then, to conclude on
(DΣ(A), A) being an NDR pair, we need to construct the map u : DΣ(A) → [0, 1]. As A
is a compact, invariant, asymptotically stable attractor, M is a locally compact Hausdorff
space and Σ satisfies Assumption 6.1.1, there is a Lyapunov function of precisely this
form [BH06, Thm. 10.6].

Theorem 6.1.11 (Cofibrations). Suppose that M is a locally compact Hausdorff space,
that Σ satisfies Assumption 6.1.1 and let A ⊆ M be a compact, invariant, asymptotically
stable, attractor with domain of attraction DΣ(A). Then, A is a strong deformation retract
of DΣ(A) if and only if the inclusion ιA : A ↪→ DΣ(A) is a cofibration,

Proof. The results follow directly by combining Lemma 6.1.9 and Lemma 6.1.10.

Examples

Regarding ramifications of Theorem 6.1.11, we start with a sanity check. We know that
for a a linear ODE ẋ = Fx with F ∈ Rn×n a Hurwitz matrix, A = {0} and DΣ(A) = Rn.
Hence, we remark that: (i) ι{0} : {0} ↪→ Rn is a cofibration, e.g., since (Rn, {0}) is an
NDR pair under the map x 7→ u(x) := 1 − e−〈x,x〉; and (ii) Rn strongly deformation
retracts onto 0 ∈ Rn via the map Rn × [0, 1] 3 (x, s) 7→ H(x, s) := (1− s) · x.

Cofibrations that are not strong deformation retracts are abundant. We start with a
well-known example.

Example 6.1.2 (Spheres and disks). It can be shown that the inclusion ιSn : Sn ↪→
Dn+1 is a cofibration, e.g., see the remark on CW complices above. However, Dn+1

cannot strongly deformation retract onto Sn since Sn and Dn+1 are not even homotopy
equivalent, e.g., χ(Sn) 6= χ(Dn+1). Hence, Sn cannot be a global, asymptotically stable,
attractor under any semi-dynamical system Σ = (Dn+1, ϕ,R≥0).

We proceed with an example where we obtain topological insights through dynamical
systems knowledge.

Example 6.1.3 (TheWarsaw circle). LetW1 := {(0, x2) ∈ R2 : x2 ∈ [−1, 1]}∪{(x1, sin(x−1
1 )) ∈

R2 : x1 ∈ (0, π−1)} ∪ {arc from (0,−1) to (π−1, 0)} denote the so-called “Warsaw cir-
cle” (e.g., see Figure 1.2). The set W1 is compact, but not a manifold since W1 is
not locally connected. Hastings showed4 that W1 can be rendered a compact, invari-
ant, locally asymptotically stable attractor with an annular neighbourhood A ⊂ R2 as
DΣ(W1) [Has79]. Although the circle S1 ⊂ R2 and W1 ⊂ R2 are shape equivalent, they
are not homotopy equivalent since π1(W1) ' 0 while π1(S1) ' Z and the fundamental
group π1(·) is homotopy invariant [Lee11, Thm. 7.40]. As such, W1 cannot be a strong de-
formation retract of any annulus A ⊂ R2 it embeds in. Then, according to Theorem 6.1.11,
ιW1 : W1 ↪→ A cannot be a cofibration.

We recall that for inclusion maps ιA : A ↪→ X to not be a cofibration, the pair
(X,A) cannot be too regular, e.g., by Proposition 6.1.8 (X,A) cannot be a CW pair.

4Although a substantial part of the proof is left to the reader.
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Indeed, by the Whitehead theorem [Hat02, Thm. 4.5], The Warsaw circle W1 is not
homotopy equivalent to a CW complex. This could also be concluded by observing that
CW complices must be locally path-connected.

Next, we provide an example inspired by an example from [tDKP70, p. 78–79]. Here
we gain dynamical insights via topological knowledge. Before doing so, we recall the
difference between the box and product topology. Let Xα be a topological space indexed
by a ∈ A, then, if we endow a topological space of the form X =

∏
α∈AXα with the

product topology, open sets are of the form
∏
α∈A Uα with Uα open in Xα and all but

finitely many Uα = Xα. The box topology, on the other hand, does not require the last
constraint to hold and open sets are simply of the form

∏
α∈A Uα with Uα open in Xα.

When A is finite, these topologies are equivalent, however, the box topology is finer than
the product topology in general.

Example 6.1.4 (The Tychonoff cube). Let Ω > ℵ0, then, define the Tychonoff cube as
[0, 1]Ω, that is, as a uncountably infinite product of the unit interval. Here we endow [0, 1]
with the standard topology and [0, 1]Ω with the product topology. As such, [0, 1]Ω is a
compact Hausdorff space by Tychonoff’s theorem [Mun14, Thm. 37.3] and the fact that
any product of Hausdorff spaces is Hausdorff [Mun14, Thm. 19.4]. Exploiting compact-
ness, {0}Ω ∈ [0, 1]Ω can be shown to be a strong deformation retract of [0, 1]Ω. Indeed,
one can simply use the map [0, 1]Ω × [0, 1] 3 (x, s) 7→ H(x, s) := (1− s) · x, which would
be continuous in the product topology, but not in the box topology. Despite the strong
deformation retraction, ι0 : {0}Ω ↪→ [0, 1]Ω is not a cofibration since otherwise, by Defi-
nition 6.1.6 and Theorem 6.1.7, there must be a continuous map u : [0, 1]Ω → [0, 1] such
that {0}Ω = u−1(0). However, it can be shown that such a map fails to exist due to
Ω being uncountable [tDKP70, p. 78–79]. This is precisely where the product topology
enters5. Hence, Theorem 6.1.11 implies that {0}Ω ∈ [0, 1]Ω cannot be an asymptotically
stable attractor, for any continuous—with respect to the product topology on [0, 1]Ω —
semi-dynamical system Σ = ([0, 1]Ω, ϕ,R≥0). Note that if Ω would be finite, then, the
map u does exist and can be chosen to be u : (x1, . . . , xΩ) 7→ maxi=1,...,Ω{xi}.

Note that Example 6.1.4 is essentially saying that despite seemingly convenient prop-
erties of Σ = ([0, 1]Ω, ϕ,R≥0), a Lyapunov function fails to exist for {0}Ω ∈ [0, 1]Ω.
Concurrently, this example shows that even a strong notion of homotopy equivalence can
be insufficient to conclude on the existence of an asymptotically stable attractor.

Although, in general, a metrizable space must be merely countably locally finite (σ-
locally finite) [Mun14, Thm. 40.3], compact metric spaces must be second countable.
Hence, [0, 1]Ω>ℵ0 is not metrizable since Ω > ℵ0 obstructs second countability. Similarly,
one can consider the topology of pointwise convergence. Regardless, Example 6.1.4 illus-
trates where to look for counterexamples. Indeed, as [0, 1]Ω>ℵ0 is not a normed space and

5As the reference is in German, we provide a sketch of the proof. Suppose that u does ex-
ist. Let {0} = ∩∞n=1[0, 1/n) ∈ [0, 1] and note that all [0, 1/n) are open in [0, 1]. It follows that
u−1(0) = ∩∞n=1u

−1([0, 1/n)), with u−1([0, 1/n)) an open neighbourhood of {0}Ω. Then, consider the
identification [0, 1]Ω ' [0, 1]Ωn × [0, 1]Ω−Ωn . Now we know from the product topology, that there must
be a finite Ωn such that u−1([0, 1/n)) ⊇ {0}Ωn × [0, 1]Ω−Ωn . However, if we do this for any n we find
that ∩∞n=1u

−1([0, 1/n)) ⊇ {0}Ω′ × [0, 1]Ω
′−Ω, for Ω′ = ∪∞n=1Ωn, which is countable. This leads to a

contradiction since for u−1(0) = {0}Ω we must have Ω = Ω′, where Ω is uncoutable.
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in particular not a Hilbert space, it does not fit into common analysis frameworks, e.g.,
[CZ12].

It turns out that Theorem 6.1.11 covers known results in case A is an embedded
submanifold of M. We will assume all our manifolds under consideration to be C∞-
smooth and second countable. In that case, let A ⊆ M be a closed embedded submanifold,
then, one appeals to the existence of a tubular neighbourhood [Lee12, Thm. 6.24] to show
that (DΣ(A), A) comprises an NDR pair. Hence, using the following proposition, [MB10,
Prop. 10] follows as a corollary to Theorem 6.1.11, see also [LYC22].

Proposition 6.1.12 (Submanifolds). Let A be a compact embedded submanifold of M,
then, ιA : A ↪→ M is a cofibration.

Our last example pertains to compositions, indicating that Theorem 6.1.11 can be
applied to subsystems.

Example 6.1.5 (Compositions). Cofibrations are closed under composition. Let i1 : A→
B and i2 : B → C be cofibrations, then, i := i2 ◦ i1 : A→ C is a cofibration. To see this,
consider the diagram

A× {0} A× [0, 1]

B × {0} B × [0, 1]

C × {0} C × [0, 1]

Y

α1

α2

β1

β2

. (6.1.4)

For any triple (Y, α1, α2) there is some appropriate map β1 completing (6.1.2) for the
cofibration i1 : A→ B, but for any triple (Y, β1, β2) the diagram (6.1.4) can be completed
since i2 : B → C is a cofibration.

6.2 Some applications of intersection theory
Now, we focus again on topological obstructions, yet based on results from differential
topology and in particular intersection theory [GP10]. As mentioned before, we are de-
cidedly brief.

6.2.1 Multistability
Early work concerned with global stabilization focused on topological obstructions with
respect to global, continuous, asymptotic stabilization of a single point, e.g., see [Son98,
BB00], with the typical obstruction being that the state space is not contractible (cf.
Example 1.1.2). Continuing this line of research, instead of stabilizing a single point, one
could consider stabilizing a connected submanifold, e.g., see [Man07, Man10] or look at
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general compact attractors, e.g., see [MB10]. Another question—which is the one we focus
on—is when simultaneous stabilization of multiple equilibrium points is possible.

Understanding this scenario is closely related to switched systems, do you need several
local controllers and switch between them, or is there a single continuous controller with
the same qualitative behaviour?

Loosely speaking, when dealing with multiple attractors we speak of multistability.
What is more, having multiple attractors means that disturbances can qualitatively change
the nominal behaviour, moving from one attractor to another.

Figure 6.1: Cover (ii) and focus solely on (i) for a few seconds. Most likely, one experiences the
uncontrolled switching between A and B.

As the literature does not provide a consistent definition, we follow Angeli, Forni and
coworkers to further clarify the concept.

Multistability: “While most contributions focus on Lyapunov stability of a single
connected attractor, e.g. an equilibrium point, several applications in system biology,
mechanics, and electronics, have called for a global analysis of the so-called “multistable”
systems. The term encompasses a variety of non-trivial dynamical behaviours - almost
global stability, multiple equilibria, periodicity, almost periodicity, chaos - and commonly
refers to the existence of a compact invariant set which is simultaneously globally attractive
and decomposable in a finite number of smaller compact invariant sets.” [FA17].

Multistability appears for example in the study of laser dynamics [AMPT82] and neural
networks [CLS06], with the importance of multistability being especially acknowledged in
biology, e.g., see [May77, LK99, AFS04, VNS07, CEA08] and also [PF14, FPS18] for an
overview.

Example 6.2.1 (The Necker cube). Multistability appears in a variety of contexts. In
this example, originally due to Necker, the reader is invited to experience this phenomenon
firsthand. Please find Figure 6.1. While looking at (i) one observes that configuration
A and B are attractive, yet unstable, states. This phenomenon is commonly referred
to as bistable perception and is a form of multistability. The switching dynamics can be
modelled as a two-state Markov chain, but in a similar vein one could consider a model on
the circle S1 (say, with some external disturbances), see Figure 6.2. It will be shown below
that if one accepts the model on S1, then, by the topology of S1, both configurations A
and B cannot be simultaneously locally stable indeed.

Akin to Example 6.2.1, a more profound illustration would be Parkinson’s disease,
were multiple (undesirable) stationary states coexist. In fact, multistability is commonly
observed experimentally, e.g., see [PF14] for an overview.



6.2. Some applications of intersection theory 155

Figure 6.2: Two methods of modelling the behaviour from Figure 6.1.

Theoretically handling multistability is usually done via a variation of classical Lya-
punov theory [Ang04, Efi12], e.g., by passing to the dual density formulation as proposed
in [Ran01]. There, global requirements are relaxed to almost global requirements. By
doing so, topological obstructions are surmounted at the cost of introducing singularities.

This section briefly elaborates on the interplay between topology and the manifestation
of multistability.

A global obstruction to multistability

Suppose we construct a vector field over some manifold and verify that some desirable
equilibrium points are all asymptotically stable. In general, we cannot be certain about
the behaviour of the dynamical system outside of the regions of attraction of these points.
However, if we suppose that our manifold is compact, then, all local behaviour, must
add up to certain global invariants. Think of squeezing a balloon on one side, pressure
builds up elsewhere. On the contrary, throwing a stone into an infinitely large pool causes
ripples, yet ripples that disappear into the infinite.

Poincaré was largely responsible for the initiation of this type of work, with important
formalizations by the likes of Brouwer and Hopf. In particular, starting from the trian-
gulization of spaces, a deep connection between the Euler characteristic, denoted χ(·), of
a compact set (global invariant) and the local behaviour around all equilibrium points
of a vector field on this set, was discovered. This is the Poincaré-Hopf theorem. The
vector field index was introduced before (see Section 2.2.3), but to comment on the Euler
characteristic, for polyhedra P2 ⊂ R3 we have that χ(P2) = #(V − E + F ), that is, the
number of vertices, plus the number of faces, minus the number of edges. For convex
polyhedra this number is always equal to 2 (like S2). Now, this alternating formula can
be generalized in several ways. For instance, let Xn be a finite CW complex (e.g., see
[Lee11, Ch. 5]), then, the Euler characteristic of Xn is defined as

χ(Xn) =
∑n
k=0(−1)knk, (6.2.1)

for nk the number of (open) k-cells ('t Bk) of Xn. Crucial to the wide applicability of this
number is its homotopy invariance [Lee11, Thm. 13.36]. Note, for the homotopy invariance
it is crucial that Xn is a finite CW complex, that is, such that Xn is compact. For otherwise,
consider (0, 1), which is not a finite CW complex (e.g., construct [ 1

2 , 1) via intervals
[1− 1

n−1 , 1−
1
n ] for n = 3, 4, . . . ), and see that χ([0, 1]) = 1 while χ((0, 1)) = −1, despite

[0, 1] 'h (0, 1). Similar to (6.2.1), one can use the definition from homology [Hat02, Thm.
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2.44]. Or, when Xn is an orientable closed manifold (compact and without boundary), the
definition form intersection theory [GP10, p. 116].

Now, this global invariant χ(M) dictates how local behaviour of any vector field on M
must be complementary in the following sense.

Theorem 6.2.1 (Poincaré-Hopf theorem [Mil65, p. 35]). Let M be a smooth, compact,
oriented, boundaryless manifold. Then, for any smooth vector field X ∈ Γ∞(TM) with
only isolated equilibrium points {p?i }i∈I ⊂ M one has

χ(M) =
∑
i∈I indp?i (X). (6.2.2)

For simplicity we focus on the smooth setting, but note that under completeness, most
results extend via standard homotopy arguments to the continuous setting. The theorem
can also be adapted to work with non-trivial boundaries and to compensate for a lack of
orientability (using a covering argument), see the commentary in [JM23].

The relation to stability is provided via the following result: the Krasnosel’skĭı-Zabrĕıko
(Bobylev) theorem.

Theorem 6.2.2 (Index of local asymptotic stability [Kra68, Ch. II], [KZ84, Thm. 52.1].).
Let p? ∈ Mn be an isolated asymptotically stable equilibrium point of X ∈ Γ∞(TMn), then,
indp?(X) = (−1)n.

It is interesting to note that such a clear topological characterization is not yet known
for other notions of stability, e.g., for Lyapunov stability. Moreover, it was shown by
Zabczyk [Zab89], that through Theorem 6.2.2 one recovers Brockett’s seminal necessary
condition for a local, continuous, asymptotically stabilizing controller to exist [Bro83].

Now, the following result is somewhat immediate.

Theorem 6.2.3 (A global necessary condition for local stability). Let Mn be a closed,
smooth manifold. Then, Mn admits a smooth vector field X with z ∈ N zeroes, all of
which are isolated and locally asymptotically stable, if and only if χ(Mn) = z.

Proof. The special case of z = 0 is well-known, so let z > 0. For the “only if ” direction, as
the index of these locally asymptotically stable equilibrium points is (−1)n, χ(Mn) must
equal z(−1)n. This cannot be true for odd-dimensional manifolds (i.e., χ(M2n+1) = 0 for
all n ∈ N>0 [Hat02, Cor. 3.37]). Therefore χ(Mn) = z.

For the “if ” direction one can follow the same line of arguments as used to show
existence of non-vanishing vector fields on Mn with χ(Mn) = 0, e.g., see [GP10, p. 141–
148].

An immediate ramification is that since χ(S1) = 0, we cannot just have two locally
asymptotically stable equilibrium points cf. Example 6.2.1. As for manifolds like any
odd-dimensional sphere S2n+1, or a product thereof like the n-torus, and any Lie group,
χ(M) = 0. Hence, for many spaces, local asymptotic multistability is simply impossible.
This is of importance in many dynamical systems grounded in mechanics as they can be
frequently identified with Lie groups [Arn88, Sas99, MLS94, BL04].

Note, results of this form go beyond simply looking at a gradient flow on a compact
set and stating that since we have a maximum and minimum, we cannot have a globally
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asymptotically stable point. For instance, as χ(S2) = 2, you can have vector fields with
just two equilibrium points which are both locally asymptotically stable. This is resolved
by having an unstable periodic orbit in between.

Next, we consider a setting that is becoming increasingly relevant due to applications
in system identification [UM14] and data-driven control, in particular, when taking the
behavioural point of view [MD21, PCVW+22].

Let Gr(k, n) denote the (real) Grassmann manifold, that is, the set of k-dimensional
subspaces of Rn. Using Schubert cells [MS74, Sec. 5–6], one can show that

χ(Gr(k, n)) =


0 n even, k odd(
bn2 c
bk2 c

)
otherwise.

(6.2.3)

As Gr(k, n) is compact, global stabilization of any point is obstructed, yet, instead one
could consider stabilizing some compact set, e.g., think of optimizing over behaviours.
Now, in this context of behavioural systems theory, we do usually have some freedom
in selecting the precise Grassmannian. Then equation 6.2.3 shows how these degrees
of freedom immediately impact the underlying topology, e.g., when we change n. It is
interesting future work to see how to align the precise choice of Grassmannian with system-
and control objectives.

We discuss one particular Grassmannian setting in more detail, elaborating on [JM23].
Example 6.2.2 (The Grassmann manifold Gr(2, 3)). By identifying points in Gr(2, 3)
with their normals, we see that Gr(2, 3) 't RP2 't S2/ ∼ for p ∼ q when p and q are
antipodal (p = −q). This identification leads to a better understanding of admissible
behaviour on Gr(2, 3). Either from this identification (χ(S2) = 2 and S2 is a double cover
of RP2) or from (6.2.3) we observe that χ(Gr(2, 3)) = 1. Hence, by Theorem 6.2.3, there
must be some vector field on Gr(2, 3) such that we have a single equilibrium point being
locally asymptotically stable. What happens elsewhere? To make this precise, we need
to discuss limit sets. The ω-limit set of a point p, under a flow ϕ is defined as

ω(ϕ, p) = ∩T≥0cl ∪t≥T {ϕt(p)},

by reversing time we get the α-limit set (instead of ω and α one might see ω+ and
ω− instead). Now, let p? be some locally asymptotically stable equilibrium point of
X ∈ Γ∞(RP2), that is, we consider a dynamical system Σ = (RP2, ϕX ,R). Although RP2

cannot be embedded in R3, we illustrate our envisioned dynamical system in Figure 6.3
via its flat representation. This gives the impression that besides the equilibrium point, we
must have an unstable periodic orbit. To show this, recall that the domain of attraction
DΣ(p?) is open, so its complement is closed and even compact (since RP2 is compact).
However, then we know that both the ω- and α-limit sets of DΣ(p?)c are non-empty,
compact and connected [Tes12, Ch. 9]. This means that indeed, we will have an unstable
limit set as alluded to by Figure 6.3.

An odd-dimensional obstruction

Although topological information is a mild request, it might happen that one has no access
to χ(M). Then, the following condition is useful in situations where χ(M) is unavailable
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Figure 6.3: Example 6.2.2: (i) flat representation of the torus; (ii) flat representation of RP2

(see the we cannot simply embed RP2 into R3; and (iii) a sketch of p? being locally asymptotically
stable under some vector field on RP2, we observe the emergence of some unstable limit set.

and/or one has no knowledge of the number of equilibrium points of X ∈ Γr(TM), but
one does have some local information.

Motivated by the discussion on structural stability in Section 2.3, we solely consider
the case of hyperbolic equilibrium points. Here, we useWu(ϕX , p

?) to denote the unstable
“manifold” corresponding to an equilibrium point p? of some vector field X (e.g., consider
the eigenspaces after linearization).

Theorem 6.2.4 (Odd-number obstruction to local asymptotic multistabilization). Let M
be a compact, smooth manifold for which all equilibrium points of some vector field X ∈
Γr(TM) correspond to the non-empty set {p?i }i∈I of isolated hyperbolic equilibria. Given
a control system Σ = (M, F,U) in the sense of Section 2.2.6, then, the set {p?i }i∈I can
be locally asymptotically stabilized by continuous feedback µ ∈ Γ0(U), without introducing
new equilibria, only if dim(Wu(ϕX , p

?
i )) is even for all i ∈ I.

Proof. Without loss of generality, we will consider an even-dimensional manifold as the
odd case cannot be handled regardless, i.e., χ(M2k+1) = 0 for all k ∈ N≥0. If dim(Wu(ϕX , p

?
i ))

is odd, then indp?i (X) = −1 and as such, by the Poincaré-Hopf theorem and the hyper-
bolic index results from [KZ84, Sec. 6], |I| 6= χ(M). Hence, by Theorem 6.2.3, this set
cannot be locally asymptotically stabilized by means of continuous state-feedback.

Remark 6.2.3 (Coordinate invariance). As hinted at, the condition of
Theorem 6.2.4 is equivalent to constraining the orientation (see Section 2.3.1) of the
differential DXp?i

: Tp?iM
n → Tp?iM

n for all p?i . That is, instead of demanding that
dim(Wu(ϕX , p

?
i )) is not odd, one could equivalently demand that, in coordinates, the

differential of the uncontrolled vector field X satisfies DXp?i
∈ GL+(n,R) for all i ∈ I, that

is, indp?i (X) = 1 for all i ∈ I. As the orientation of a map is a topological invariant [Lee11,
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Ch. 6], this implies that the statement of Theorem 6.2.4 is topologically invariant, that
is, it does not rely on a selection of coordinates for the computation of DXp?i

.

Theorem 6.2.4 is somewhat counter-intuitive as it implies that there are situations
where to be able to continuously render a set of equilibrium points {p?i }i∈I ⊂ M locally
asymptotically stable, one might need to enlarge the unstable manifold of some p?j . As
stated before, Theorem 6.2.4 is of use when χ(M) is unknown or one has partial knowledge
about the points that need to be stabilized. For instance, let us be given the task of
stabilizing all equilibrium points of a vector field X ∈ Γr(S2) and suppose we do not know
the Euler characteristic of S2, then, if just one if those points is a saddle, we know we
cannot perform the task.

For more on similar phenomenona, see [HA12, AH13, dWS21].
See also [TWLC07, Cor. 5] for an odd-number obstruction in the context of network

control and [Chr17, Thm. 1] for odd-number results in the context of optimization.

6.2.2 Submanifold stabilization
In the previous section we were concerned with points, now we provide commentary on
the stabilization of manifolds.

The seminal necessary condition by Bhat and Bernstein states that there is no con-
tinuous dynamical system on a vector bundle, with a closed (i.e., compact and without
boundary) base manifold, such that some point is globally asymptotically stable [BB00].
The intuition being that a vector bundle deformation retracts to its base (formally, a set
homeomorphic to the base), which itself is not contractible by assumption, hence, the
overall space fails to be contractible, obstructing global asymptotic stability.

One might hope that the situation changes when we aim to stabilize more involved
submanifolds, not just points. We will briefly argue why this is not the case.

First, recall the notions of retractions as defined in Section 6.1.2. In particular, recall
the zero section Z(M) of the tangent bundle TM from Section 2.3. One can show that
the zero section of a general vector bundle π : E→ B—so, not just TM—is a deformation
retract of the total space E, see [JM23, Ex. 3.1]. The intuition being that you retract
along the fibers. Next, using (mod 2) degree theory (intersection theory), one can show
that a closed manifold M cannot deformatoin retract on any of its proper subsets [JM23,
Lem. 3.2]. For instance, S2 cannot deformation retract onto S1 ↪→ S2.

Now, let π : M → B be a vector bundle over a smooth, closed and connected base
manifold B. For simplicity, suppose now that A ⊆ M is a compact, embedded submanifold.
We know from above (e.g., see Proposition 6.1.12) that for A to be a global attractor under
some dynamical system Σ, it must be a deformation retract of M. Suppose now that A is
a subset of the zero section Z(B). By the discussion above and the transitive properties
of homotopies [JM23, Lem 2.1], all of this implies that Z(B) deformation retracts onto A,
but due to the properties of B, this can only be true if A = Z(B).

Summarizing the above, we have the following. We note that results of this form
are particularly relevant as mechanical systems can be often identified with dynamical
systems on vector bundles over compact spaces.
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Figure 6.4: Example 6.2.4: (i) global asymptotic stabilization of a periodic orbit for the the
single-link pendulum; and (ii) a multi-link pendulum, only actuated at the bottom link, moving
with a constant angular velocity when seen as a whole.

Theorem 6.2.5 (Obstruction to submanifold stabilizaiton). Let π : M → B be a vector
bundle over a smooth, closed and connected base manifold B. Then, the embedded sub-
manifold A ⊆ Z(B) is a global attractor of some continuous dynamical system on M only
if A = Z(B).

Example 6.2.4 (Multi-link pendulum). As an example, consider again the (mathemat-
ical) pendulum, that is, Example 2.2.7, yet, suppose that the pendulum is actuated.
However, also attach an additional unactuated link on the top of the first link, that is,
we create the so-called “pendubot. Clearly, for the single-link pendulum we can globally
asymptotically stabilize a periodic orbit with constant angular velocity, e.g., see Figure 6.4
(i). This is in line with Theorem 6.2.5 (i.e., such a periodic orbit is to be understood as a
zero section of the tangent bundle TS1, yet after a change of coordinates to accomodate
a non-zero angular velocity), since if we consider the controlled pendulum

d

dt

(
x1(t)
x2(t)

)
=

(
x2(t)

− 1
2 sin(x1(t))− x2(t) + µ(x),

)
for µ(x) = 1

2 sin(x1) + ω, we stabilize a periodic orbit with angular velocity ω. Going
back to our pendubot, if we want to generalize the above, we might want to synthesize
a continuous, global and asymptotically stabilizing controller such that the pendubot
rotates with a constant angular velocity, while the multi-link system behaves as a solid
rod (see Figure 6.4 (ii)). Such an attractor, as understood on TT2, is of the form (S1 ×
{0})×({0}×{0}), and is clearly not even homotopy equivalent to the zero section of TT2.
Hence, the stabilization task is obstructed via Theorem 6.2.5.
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7
On the future

“... if such rough equations are to be of use it is
necessary to study them in rough terms ...”

— Conley [Con78, p. 1].

Most of Kalman his pioneering work was done in the 1960s and around that time
computers were not widely available. In fact, the first commercial microprocessor, the
4004 by Intel, only appeared in the early 70s and clocked well below 1MHz. In contrast,
this thesis is written on a laptop with a 4 GHz CPU and 16 GB of RAM. As control theory
cannot be understood without its applications one must see the popularity of linear state
space tools also in the light of the available computational power at the time.

Or as put by Vidyasagar, almost 30 years ago, “Up to now, the design of control
laws has proceeded on the assumption that a linear time-invariant control law is easier
to implement than any other. What happens if this fundamental assumption is chal-
lenged?” [BGL95].

Willems’ behavioural systems theory is appealing in that respect. This author is
particularly curious about applications to nonlinear problems. The first steps beyond
a purely linear behaviour are taken in [PDL23], yet, there are no results beyond conic
(contractible) behaviours.

However, this brings us to the main roadblock. Any form of stability analysis beyond
physics (mechanics) is largely hampered by a lack of (sufficiently expressive) models and
data. For instance, state-of-the-art models in ecology are practically linear, concurrently,
measurements are scarce [CWL23]. Then, so-called “model-free” approaches are ought
to be promising, yet, they are never model-free; they might not identify a particular
model, but they work within a model class, e.g., LTI models. We believe it is crucial to
identify more relevant model classes, or better yet, strive for the same understanding of
the problem at hand as is common in physics. We believe that a certain level of domain
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knowledge is crucial.
This also means that our tools must evolve to meet those applications. Several populair

assumptions should be challenged. We need to focus more on transients, constraints
(especially inputs), digital implementations (controller synthesis that matches), optimal
control objectives (from performance criteria to objective, not the other way around),
modelling errors (challenging linearity and time-invariance) and most and for all model
classes (behaviour).

“We must place renewed emphasis on stating and teaching the principles of our subject
clearly and well. The applications out there are simply too serious for us to hide from
responsibility under a cloak of mathematics.”—Stein [Ste03, p. 25].

7.1 Future work
Now we highlight, for all the chapters, a few key directions of future work. It turns out
that for most chapters the central question is what the right topology is.

7.1.1 Chapter 3, large deviations theory
One of the key benefits of the large deviations principle (LDP) as used in Chapter 3 was
the exact and flexible characterization of “convergence” of the stochastic process at hand
cf. Definition 3.1.5. However, large deviations theory also comes somewhat naturally with
a mechanism to handle a rather weak notion of “a change of coordinates” (the contraction
principle), as we used in the proof of Proposition 3.1.6. In principle, this allows to go
beyond Θ, that is, consider further structural knowledge.

Recently, we developed a large deviation (upper bound), for the iterates of a policy
gradient algorithm in the context of reinforcement learning (RL) [JKL23]. We recover
known rates when applied to tabular, regularized RL with a softmax policy parametriza-
tion, however, the benefit of the large deviations viewpoint is that the ambiguity of the
policy parametrization can somewhat be overcome through the contraction principle, that
is, we recover large deviation upper bounds for all families of policy parametrizations that
can be “continuously related” to the softmax parametrization. Of course, there is no
free lunch, one needs to check that such a bound is non-trivial and relates to meaningful
statistics.

In [JKL23]—by building heavily upon [BJK23]—we took the first steps, effectively
providing a large deviations upper bound for stochastic gradient descent under a PL con-
dition. Future work aims at getting a better grip on when a continuous transformation
leads to a non-trivial LDP, studying different classes of algorithms (momentum, multi-
phase, adaptive and so forth) and different notions of uncertainty, e.g., bounded noise
instead of sub-Gaussian noise.

7.1.2 Chapter 4, spaces of stable systems
Given the results from Section 4.1, we believe we should strive for improving our un-
derstanding when it comes to selecting a cost. Mere optimality is not enough, but so is
stability without understanding. Design-specifics and other performance metrics should



7.1. Future work 167

enter the picture again. We write “again” since the early frequency-domain days of control
saw a significantly more direct focus on performance (applications). Evidently, MPC is
very promising here.

Regarding Section 4.2, we showed that the space of dynamical systems over Rn with 0
being GAS subject to the existence of a (generalized) convex Lyapunov function is path-
connected, see Section 4.2.4. As a byproduct we derived necessary conditions for smooth,
convex (control) Lyapunov functions to exist.

There is recent work regarding paths in the space of stable dynamical systems in the
context of linear optimal control [BMFM19, JK21], but further extensions are largely
lacking. We hope the chapter inspires more work.

We focused on the complete C0 setting with the emphasis on Rn, future work aims at
studying dynamical control systems under weaker regularity assumptions in more general
spaces with the focus on more general attractors.

Also, this work focused on the exploitation of a g-convex structure, however, more
general structures have been proposed and studied, e.g., a compositional structure [Grü21].
It seems worthwhile to study more structural assumptions along the lines of this article
and previous work by Aeyels and Sepulchre [SA96]. For instance, one could consider weak
convexity, e.g., see [DD19], and similarly, one might consider other stability notions that
provide for more structure, like exponential stability cf. [Vid22].

Another direction of future work is to elaborate on the work by Grüne, Sontag and
Wirth [GSW99]. In the remaining subsections we identify more concrete directions of
future work.

Invexity

Let W ⊆ Rn be open. A function f ∈ C1(W ;R) is said to be invex when there is a map
η : W ×W → Rn such that f(y) ≥ f(x) + 〈∇f(x), η(x, y)〉 for any x, y ∈ W . Differently
put, invex functions are such that critical points, i.e., x◦ ∈ W such that ∇f(x◦) = 0,
are global minima. The map η is sometimes referred to as the kernel and f is said to
be invex with respect to this kernel η. Let x◦ be a critical point of some invex function
f ∈ C1(W ;R), then f(x) ≥ f(x◦) for all x ∈ X. Conversely, let f ∈ C1(W ;R) be such
that every critical point is a global minimizer, then we can define η : W ×W → Rn by

η(x, y) =

0 if ∇f(x) = 0
(f(y)− f(x))∇f(x)

〈∇f(x),∇f(x)〉
otherwise.

This construction shows that indeed f ∈ C1(W ;R) is invex if and only if every critical
point is a global minimizer. So far, we have not said anything about the space of kernels,
and in that sense, η is unconstrained and not equipped with any structure. Indeed, invexity
has been the subject of controversy [Zăl14, Bor17], mainly due to vacuous generalizations.
Nevertheless, continuity of η has been studied [Sma96] and a further study might allow for
generalizing several arguments from above. A similar viewpoint can be found in [BSH23],
where the authors identify mild assumptions on η such that first-order invex optimization
algorithms provably converge.
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Convex envelopes

Suppose 0 is GAS under a vector field F on Rn, hence, there is a C∞ Lyapunov function
V and we know that there is a homotopy between F and −∇V (x) such that along the
homotopy 0 remains GAS. Now, construct the convex envelope of V as conv(V )(x) :=
sup{g(x) : g is convex and g ≤ V on Rn}. It can be shown that conv(V ) is C1 by our
assumptions on V [KK01]. It readily follows that, with respect to ż = −∇conv(V )(z),
conv(V ) satisfies Properties (V-i)-(V-iii), as such, 0 is GAS under ż = −∇conv(V )(z).
Therefore, a homotopy between V and conv(V ) that preserves regularity and invexity
would allow for solving the main research question of Section 4.2 for equilibrium points of
vector fields on Rn. A similar question has been studied in the context of Hamilton-Jacobi
equations. Omitting details, Vese showed in 1999 that the PDE

∂u

∂t
=
√

1 + ‖∇xu‖22 min{0, λmin(∇2
xu)} (7.1.1)

converges to precisely the convex envelope of u(0, x) [Ves99]. This observation has been
used in the context of homotopy methods for nonconvex optimization [MF15], see also [STP21,
HWFO23]. It is, however, not clear if regularity and invexity, perhaps after adapt-
ing (7.1.1), are indeed preserved along a solution u(t, x). We believe this is interesting
future work.

7.1.3 Chapter 5, zeroth-order optimization
Chapter 5 exploits smoothness to be able to appeal to the Cauchy-Riemann equations.
Other work, like [PT90, BP16, APT20, NG22] exploit the knowledge of smoothness and
construct kernels to (optimally) filter out (all) low-order errors. For increasing smoothness,
however, we observe numerical instability in this approach, that is, the kernels become ill-
defined. It would be worthwhile to further study how to exploit smoothness while taking
the implementation into consideration.

Also, our work is mostly positioned within the scope of randomized methods via Propo-
sition 5.1.8. Recent work indicated that in fact non-randomized methods can outperform
their randomized/smoothed counterparts [BCCS21, Sch22]. This provides for interesting
future work, especially when smoothness parameters are not (precisely) available and in
the presence of noise. Estimating the noise statistics itself also provides for relevant future
work as it allows for a more appropriately scaled sequence of smoothing parameters.

Then, as was recently (Nov. 2023) pointed out by Russ Tedrake1, RL might be able to
handle discontinuous objectives since the noise acts like smoothing through randomization.
Formalizations are certainly exciting here.

Another exciting area is ODE/PDE-based optimization, as we briefly touched upon
in [JYK21], by considering the Lorenz system (attractor).

At last, we point out that the algorithm deserves a full numerical study, since no
cancellation does not imply the full pipeline is numerically stable [Hig02].

1See https://www.youtube.com/watch?v=whpK0HDtOJ0&ab_channel=IntelligentRobotMotionLab

https://www.youtube.com/watch?v=whpK0HDtOJ0&ab_channel=IntelligentRobotMotionLab
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7.1.4 Chapter 6, topological obstructions

Several directions of future work are: (i) discrete systems of the form Σ = (M, ϕ,Z≥0);
(ii) exploiting duality (fibrations); (iii) extensions to other notions of stability; (iv) de-
veloping computational tools (homology); (v) relaxing the invariance assumption; (vi)
addressing stochastic systems in a meaningful way; and most importantly (vii) leveraging
the obstructive insights to develop a constructive and practical nonlinear control theory.

We highlight two areas in particular.

Closed attractors

Several results hold when the compactness assumption on A ⊆ M is relaxed to A being
merely closed, e.g., see [LSW96, BH06], this generalization is future work. We do em-
phasize that the generalization is not trivial. Consider for instance [LYC22, Ex. 22] with
M = R2 \ {(1, 0)} and A = S1 \ {(1, 0)} ⊂ M. There, the authors construct a vector field
on M such that A is an asymptotically stable attractor, with DΣ(A) = M \ {(0, 0)}. So,
although A is an attractor and ιA : A ↪→ DΣ(A) is a cofibration due to Proposition 6.1.12,
A cannot be a strong deformation retract of DΣ(A) since those sets are not homotopy
equivalent. Indeed, A is not compact and one cannot simply appeal to Theorem 6.1.4.
The intuition is that for attractors of this form, limits need not be attained and as such
stability does not provide for a homotopy between A and DΣ(A). Formally speaking, the
proof of Theorem 6.1.4 exploits compactness of the sublevel sets of the corresponding Lya-
punov function and implicitly Cantor’s intersection theorem, which fails to be generally
true for closed sets. See also [YLAC23, Counterex. 1].

Hybrid systems

As we wrote in the introduction, in times where guanrantees are increasingly important
we should develop tools that can provide some. To that end, a global analysis becomes
important, or at least, an analysis not concerned with some unknown arbitarily small
neighbourhood. We saw that to work within the realm of continuous feedback is restrictive.
Solutions can be found by means of time-varying feedback or within the framework of
hybrid systems. Typically, hybrid systems are motivated by practical applications that
are naturally hybrid (e.g. a walking robot), however, topological obstructions to stability
can also be naturally linked to a hybrid system; a hybrid system that overcomes these
obstructions. With this in mind, to have a solid basis, recent work aims at bringing
hybrid systems theory on equal footing with (Cr≥0) dynamical systems theory [KGK21].
Then, towards a principled controller synthesis, we must understand how to bring in
these hybrid elements, e.g., “how many switches do we need?” [Bar21] and how to do this
robustly [May10]? In general we lack computational tools, a fruiful approach appears to
be a combinatorial abstraction of the nonlinear system [VGS+22].

Most and for all, and this is true with respect to all chapters and our field in general,
the future is exciting, but we might want to reconsider the art of the state [Sep22], pause,
and accept some feedback [SBB+20].
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