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Abstract 

Reinforcement learning (RL) is crucial for learning to adapt to new environments. In RL, 

the prediction error is an important component that compares the expected and actual rewards. 

Dopamine plays a critical role in encoding these prediction errors. In my thesis, I investigate how 

human behavior in RL can be explained by RL models that incorporate factors such as novelty and 

abnormalities in the dopamine system. To broaden our understanding of RL and decision-making, 

I extend the study to include neural correlates of social dominance, examining their impact on 

decision-making processes. First, our model suggests that humans tend to adopt novelty-seeking 

strategies in RL tasks. Indeed, behaviorally, participants are often distracted by the emergence of 

novel states, especially among those who are more optimistic about potential rewards. Given the 

critical role of dopamine in RL, we examined its impact on two populations typically associated 

with dopamine dysregulation: patients with schizophrenia and the elderly. Our model suggests that 

restricted dopamine levels lead to deficits in reward-based learning due to poor encoding of the 

reward prediction error. On the other hand, the model predicts that punishment-based learning 

abilities should be preserved or even enhanced compared to controls. We could verify this 

prediction. Older adults demonstrate robust RL capabilities, with no significant differences 

compared to young adults, challenging the common belief about cognitive decline in healthy 

ageing. Finally, we investigate the neural correlates of social dominance in female participants. 

Our findings reveal an EEG component in dominant females similar to the previously reported one 

in dominant males, suggesting a potential universal neuromarker for social dominance during 

decision-making scenarios. 

 

 

 

 

 

Keywords: Reinforcement learning, decision-making, aging, schizophrenia, dopamine, social 

dominance, EEG, neuromarker  



4 

 

Résumé 

Le reinforcemnet learning (RL) est essentiel pour apprendre à s'adapter à de nouveaux 

environnements. Dans le RL, l'erreur de prédiction est un composant important qui compare les 

récompenses attendues et réelles. La dopamine joue un rôle crucial dans le codage de ces erreurs 

de prédiction. Dans ma thèse, j'examine comment le comportement humain dans le RL peut être 

expliqué par des modèles de RL qui intègrent des facteurs tels que la nouveauté et les anomalies 

du système dopaminergique. Pour élargir notre compréhension du RL et de la prise de décision, 

j'étends l'étude pour inclure les corrélats neuronaux de la dominance sociale, en examinant leur 

impact sur les processus de prise de décision. Tout d'abord, notre modèle suggère que les humains 

ont tendance à adopter des stratégies de recherche de nouveauté dans les tâches de RL. En effet, 

d'un point de vue comportemental, les participants sont souvent distraits par l'émergence de 

nouveaux états, surtout parmi ceux qui sont plus optimistes quant aux récompenses potentielles. 

É tant donné le rôle crucial de la dopamine dans le RL, nous avons examiné son impact sur deux 

populations généralement associées à une dysrégulation de la dopamine : les patients atteints de 

schizophrénie et les personnes âgées. Notre modèle suggère que des niveaux restreints de 

dopamine entraînent des déficits dans l'apprentissage basé sur la récompense en raison d'un 

mauvais codage de l'erreur de prédiction de la récompense. D'autre part, le modèle prédit que les 

capacités d'apprentissage basées sur la punition devraient être préservées ou même améliorées par 

rapport aux contrôles. Nous avons pu vérifier cette prédiction. Les adultes plus âgés démontrent 

des capacités robustes de RL, sans différences significatives par rapport aux jeunes adultes, 

remettant en question la croyance commune sur le déclin cognitif dans le vieillissement sain. Enfin, 

nous étudions les corrélats neuronaux de la dominance sociale chez les participantes féminines. 

Nos résultats révèlent un composant EEG chez les femmes dominantes similaire à celui 

précédemment rapporté chez les hommes dominants, suggérant un neuromarqueur universel 

potentiel pour la dominance sociale lors de scénarios de prise de décision. 

 

 

Mots-clés: Apprentissage par renforcement, prise de décision, vieillissement, schizophrénie, 

dopamine, dominance sociale, EEG, neuromarqueur  
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1. Preface 

My Ph.D. research aimed to investigate various levels of RL and decision-making by focusing 

on diverse populations (patients, ageing, females) and utilizing diverse methodologies (behavior, 

EEG). In study I, we examined the impact of stochastic states on RL process among healthy 

participants and proposed an algorithm to explain human behavior. Conversely, in study II, we 

examined RL in patients with schizophrenia to illustrate the influence of abnormalities in the 

dopamine system on the RL process. As a bridging exploration, in study III, we assessed RL in an 

ageing population to understand potential differences between older and young adults, especially 

considering that the dopamine system in older individuals is not deficient but rather degraded. 

Finally, in study IV, we turned our attention to the intrinsic personality trait of social dominance. 

Our objective was to identify a universal neural marker for social dominance, with a specific 

emphasis on the female population, as it has not been studied in this context before. 

 

Study I: The curse of optimism: a persistent distraction by novelty. 

(1) Modirshanechi, A., Lin, W.-H., Xu, H.A., Herzog, M.H., and Gerstner, W. The curse of 

optimism: a persistent distraction by novelty (manuscript submitted) 

In this study, we aimed to understand how human learning is affected by novelty and internal 

beliefs about rewards. Beyond behavioral testing, we utilized computational modeling to 

determine which RL model best explains human behavior. 

My role in this study included implementing the experiment and consolidating all experiment-

related information. I also contributed to the discussion of the manuscript. 

Study II: Abnormal dopamine levels lead to deteriorated reward but enhanced 

punishment learning in schizophrenia patients 

(2) Lin, W.-H., Roinishvili, M., Okruashvili, M., Chkonia, E., and Herzog, M.H. Abnormal 

dopamine levels lead to deteriorated reward but enhanced punishment learning in 

schizophrenia patients. (manuscript submitted) 
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Here, we proposed an explanation, using the Q-learning framework, for how an abnormal 

dopamine system affects RL performance in schizophrenia patients in the domain of reward and 

punishment. We validated our theory through both behavioral experiments and simulation. 

I was responsible for data analysis and manuscript drafting for this project. 

Study III: Intact reinforcement learning in healthy ageing 

(3) Lin W.-H., Pilz, K.S., Herzog, M.H., and Kunchulia, M. Intact reinforcement learning in 

healthy ageing (manuscript submitted). 

In this study, we conducted RL experiments to explore differences in the RL abilities of older 

and younger adults, as existing literature does not offer uniformly conclusive findings on this topic. 

I was responsible for data analysis and manuscript drafting for this project. 

Study IV: Behavioral and Neural Markers of Social Dominance: A Female-

Focused Perspective 

(4) Lin, W.-H., da Cruz, J.R., Sandi, C., and Herzog M.H., and. Behavioral and neural markers of 

social dominance: A female-focused perspective. (in preparation) 

In this study, we investigated whether dominant females respond more quickly in decision-

making tasks. Additionally, we explored the presence of any EEG features that can be considered 

as neuromarkers for social dominance. 

I collected and analyzed the data and was responsible for drafting the manuscript for this 

project. 

Other publications not included in this thesis: 

(5) Gordillo, D., da Cruz, J.R., Chkonia, E., Lin, W.-H., Favrod, O., Brand, A., Figueiredo, P., 

Roinishvili, M., and Herzog, M.H. (2022). The EEG multiverse of schizophrenia. Cereb. 

Cortex, bhac309. 

I conducted the frequency, connectivity, and network analyses on the resting-state EEG data. 
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(6) Garobbio, S., Lin, W.-H., Kunchulia, M., Herzog, M.H. High correlations between neural 

correlates of visual tests, but no prediction of performance. (in preparation) 

I conducted the EEG analysis, focusing on extracting various ERP components and variance 

features from the EEG data, and also took responsibility for drafting the manuscript. 
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2. Introduction 

2.1 Reinforcement learning 

RL is mainly concerned with identifying the optimal policy for a given situation, which is 

often similar to navigating in an environment. Consider being a pioneer in an unfamiliar territory, 

navigating through unknown places in order to search for hidden resources or treasures. Initially, 

you can merely choose the direction randomly. However, upon unexpectedly discovering a reward, 

you not only update this information to memory, but also start to form patterns or strategies for 

further exploration. This is just an example for the classic situation (Sutton & Barto, 2018): an 

agent changes from one location in an environment (state) to another one by choosing  actions to 

find one or more goal states.  

Essentially, goal information is updated through the “prediction error”, which is the 

difference between the anticipated and actual reward. For example, finding unexpectedly a treasure 

in a certain location causes a significant prediction error since there was no expectation to find the 

treasure. The prediction error serves as the learning signal in RL. A classic algorithm that integrates 

all these elements is the Q-learning model (Watkins & Dayan, 1992). This model updates the value 

of each state-action pair based on the strength of the prediction error (formula 1).  

𝑄(𝑆, 𝐴) ← 𝑄(𝑆, 𝐴) + 𝛼 (𝑟 + max
𝑖
𝑄(𝑆𝑛𝑒𝑤 , 𝐴𝑖) − 𝑄(𝑆, 𝐴))  formula 1 

Numerous studies in humans, primates, and rodents tried to investigate the neural 

mechanism of the prediction error (Gläscher et al., 2010; Schultz et al., 1997). Evidence suggests 

that dopaminergic neurons play a pivotal role in encoding prediction error, with these neurons 

exhibiting greater activity in response to unexpected rewards compared to expected ones (Fig. 2.1). 

Subsequently, we will explore RL across various populations and investigate factors that may 

influence individual behavior. 
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Figure 2.1. Neural evidence of prediction error. Schultz et al. (1997) examined neural activity of 

dopamine neurons in primates. When an unexpected reward was presented (R in the figure), an increase in 

dopaminergic neuron activity was observed (left figure). Interestingly, when the acquisition of a reward 

was predicted, no such increase in activity was observed (right figure). This implies that the observed 

activity is not encoding the reward itself but rather the reward prediction error. 

 

2.2 Curiosity and novelty 

In addition to fundamental elements of RL, such as prediction error, other factors can 

influence learning. These include intrinsic motivations like curiosity (Gruber et al., 2019). Intrinsic 

motivation to engage in an environment is a crucial factor. Various studies have shown that 

curiosity triggers species to explore their surroundings (Berlyne, 1950). This concept can also be 

applied to the field of machine learning. Curiosity-driven RL algorithms are also considered 

essential to facilitate the learning of artificial intelligence (Burda et al., 2018). However, RL 

algorithms often don’t account for scenarios where agents get stuck in non-rewarding states, 

potentially due to factors like noise or novelty (Aubret et al., 2019). An agent based on an algorithm, 

such as information-gain, can efficiently escape from this situation since, over time, there is no 

more information to acquire. Conversely, algorithms such as novelty-seeking might struggle since 

they can be continuously attracted by new stimuli, even if these are not rewarding (Aubret et al., 

2019). Therefore, it would be valuable to further understand how humans behave in these contexts 

and to determine whether any existing algorithm align closely with human responses. 

 

2.3 Reinforcement learning and schizophrenia 

Dopamine is, as previously mentioned, a crucial neurotransmitter in RL and plays a vital role 

in encoding prediction error. Consequently, abnormalities in the dopamine system can 

significantly impact RL abilities. These abnormalities are critical in several psychiatric diseases, 
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especially in schizophrenia. For instance, dopamine D2 antagonists can reduce psychotic 

symptoms in schizophrenia patients, while dopamine agonists can induce the symptoms, even in 

healthy individuals. A key factor is the chronically elevated baseline dopamine levels observed in 

such patients, suggesting a relationship between the deficits in dopamine levels and psychiatric 

symptoms. 

Beyond these physiological aspects, patients with schizophrenia often demonstrate a range 

of cognitive deficits (Kuperberg & Heckers, 2000). Furthermore, they exhibit different types of 

symptoms, both positive and negative. Some studies have demonstrated that schizophrenia patients 

have deficits in RL. Specifically, these patients perform suboptimally in many tasks and exhibit 

greater perseveration, a persistent repetition of specific behaviors, a pattern commonly observed 

in these patients (A. G. Collins et al., 2014; Strauss et al., 2011; Waltz et al., 2007a). Such findings 

highlight the significance of studying schizophrenia to gain insights into how dopamine affects 

RL. 

2.4 Reinforcement learning and ageing 

Aging is a primary focus for many researchers, especially when investigating its impact on 

cognitive functions. While various studies suggest that learning abilities, including RL, 

deteriorates with age (Anguera et al., 2011; Salthouse, 2009; van de Vijver & Ligneul 2020), 

findings are not always consistent. For instance, Daniel et al. (2020) observed that older adults 

performed well in simple RL tasks. However, when the task involved multi-dimensional stimuli 

to determine a reward, older adults exhibited learning deficits, possibly due to increased attentional 

demands in the task. In contrast, Lighthall et al. (2018) manipulated the inter-stimuli interval (ISI) 

in an RL task to modulate the level of memory load, and found no performance difference between 

older and young adults. The results suggest that RL abilities remain intact in older individuals. 

This implies that, in some contexts, RL capabilities may be unaffected in the elderly. Therefore, 

further studies are essential to reconcile these differing results. 

2.5 Social dominance 

Studies have shown that learning and decision-making are influenced not only by one’s 

intrinsic abilities but also by external factors, such as the presence of others or the social context 

(Klucharev et al., 2009; Suzuki et al., 2012). Given this, it becomes intriguing to discern which 
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specific elements within a social context impact individual behavior. Among all the aspects, social 

dominance stands out as a potential key influencer. Though the exact definition of social 

dominance is elusive, it is often defined as one’s relative power or rank within a social group 

(Rowell, 1974). In fact, social dominance is frequently associated with higher-level behaviors such 

as decision-making or leadership (Zink et al., 2008; Guinote 2017; Johnson et al. 2012).  

However, an alternative perspective posits social dominance as a personality trait, suggesting 

that it might exist independently of any social context (Buss & Craik 1980). This raises the 

question: Is “social dominance” a characteristic that necessitates a social context for examination? 

da Cruz et al. (2018) used a questionnaire, rather than a social context to determine an individual’s 

dominance level. Participants were then asked to complete several different decision-making tasks. 

The study demonstrated that dominant males made decisions more quickly. Moreover, using EEG 

recordings, they also identified an N2/P2 EEG component that exhibited increased activity in 

dominant males, suggesting a potentially neural marker for social dominance. 
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3. Study I: The curse of optimism: a persistent distraction by novelty 

Curiosity is an essential factor in guiding the behavior of RL algorithms, and there is a 

substantial interest in understanding how it drives human learning. Some studies have proposed 

that curiosity works to reduce the uncertainty or stochasticity in the environment. For instance, 

research suggested that when children are presented with a novel toy without instructions, they 

exhibit increased engagement compared to a toy with instructions (Bonawitz et al., 2011; Kidd & 

Hayden, 2015). However, the pursuit of novelty may not always be optimal. Given that novelty 

can sometimes represent a reward-independent stochasticity, remaining in such a situation could 

preclude the opportunity to update rewards in alternative options (Aubret et al., 2019). 

Nevertheless, no studies have directly investigated the factors and models that explain how 

the existence of such stochasticity might affect human behavior. Therefore, in the first study, we 

sought to address two key aspects: 1) whether humans are distracted by reward-independent 

stochastic stimuli, and 2) the factors driving this behavior. To test the first question, we designed 

a RL task in which participants see different images (state), each with three options below it. They 

have to select one of the options (action) in order to proceed to the next image (Fig. 3.1A). They 

were told that a hidden reward (goal) might appear in the environment, and they had to find the 

reward five times in total. There are two important manipulations in the study. First, each of the 

participants were informed that three different levels of reward (low, medium, and high) can be 

found in the environment, thereby manipulating participants’ belief about potential payouts. 

Additionally, within the environment, we introduced a subregion continuously presenting novel 

states to the participants. This subregion acted as a “stochastic”, offering no rewards (Fig. 3.1B). 
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Figure 3.1. Experimental design of the RL task. (A) Elements of an episode. Participants were presented 

with an image accompanied by three gray disks below it. They had to press one of the buttons to transition 

to another image, continuing until they found the goal state, representing the end of an episode. (B) Structure 

of the RL environment. The environment incorporates a stochastic component where two of the actions 

consistently lead to the presentation of a new image, creating stochastic conditions for the participants. 

Our findings revealed that participants exhibited suboptimal performance, choosing to 

remain in novelty states. Notably, this behavior seemed to be influenced by the size of the 

anticipated reward, the smaller the expected monetary reward, the longer the participants chose to 

stay in novelty states. This addressed our first question, confirming that humans do exhibit 

suboptimal behavior by persisting in stochastic yet novel states. Furthermore, this suboptimal 

behavior correlates with participants’ beliefs about the payoffs available in the environment. 

Participants who were optimistic, believing in the possibility of high payoffs, were more prone to 

remain in the “stochastic” states, whereas those with less optimistic beliefs were more likely to 

avoid such conditions (Fig. 3.2A). Subsequently, we modeled human behavior to discern which 

RL models could most accurately capture these observed behaviors. We explored three possible 

models, novelty-seeking, surprise-seeking, and information-gain-seeking. Our results indicated 

that the novelty-seeking model provided the best fit for the observed human behaviors compared 

to the other models (Fig. 3.2B). This implies that the pursuit of novelty might be a key intrinsic 

motivation causing individuals to remain in suboptimal states. 

 

Figure 3.2. Results of behavioral analysis and model fitting. (A) Left: The number of actions performed 

in the RL task, with the three bars indicating the different monetary rewards received by the participants. 

Right: The fraction of time spent in stochastic part, with the y-axis showing the proportion of actions taken 

within the stochastic states. (B) The log-likelihood of the model fitting. We computed the log-likelihood to 
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determine which model best explained the observed behavior, with the bars representing three different 

models. 
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The curse of optimism: a persistent distraction by novelty 
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3.1 Abstract 
Human curiosity has been interpreted as a drive for exploration and modeled by intrinsically 

motivated reinforcement learning algorithms. An unresolved challenge in machine learning is that 

several of these algorithms get distracted by reward-independent stochastic stimuli. Here, we ask 

whether humans get distracted by the same stimuli as the algorithms. We design an experimental 

paradigm where human participants search for rewarding states in an environment with a highly 

‘stochastic’ but reward-free sub-region. We show that (i) participants get repeatedly and 

persistently distracted by novelty in the stochastic part of the environment; (ii) optimism about the 

availability of other rewards increases this distraction; and (iii) the observed distraction pattern is 

consistent with the predictions of algorithms driven by novelty but not with ‘optimal’ algorithms 

driven by information-gain. Our results suggest that humans use suboptimal but computationally 

cheap curiosity-driven policies for exploration in complex environments. 

  

mailto:alireza.modirshanechi@epfl.ch
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3.2 Introduction 

Curiosity drives humans and animals to explore their environments1–3 and to search for 

potentially more valuable sources of reward (e.g., more nutritious foods or better-paid jobs) than 

those currently available4,5. In computational neuroscience and psychology, intrinsically motivated 

reinforcement learning (RL) algorithms6,7 have been proposed as models of curiosity-driven 

behavior8–11 with novelty, surprise, or information-gain as intrinsic motivation in addition to the 

extrinsic motivation by nutritious or monetary reward11. These algorithms have been successful 

not only in explaining aspects of exploration in humans and animals12–18 but also in solving 

complex machine learning tasks with sparse or even no (extrinsic) rewards such as in computer 

games19–21 and high-dimensional control problems22–25. Despite their successes, these algorithms 

face a serious challenge: Intrinsically motivated agents are prone to distraction by reward-

independent stochasticity (the so-called ‘noisy TV’ problem)26,27, i.e., they are attracted to novel, 

surprising, or just noisy states independently of whether or not these states are rewarding28.  

The extent of distraction varies between different algorithms, and designing efficient noise-

robust algorithms is an ongoing line of research in machine learning 29–32. In particular, it is well-

known that artificial RL agents seeking information-gain eventually lose their interest in 

stochasticity when exploration yields no further information, whereas RL agents seeking surprise 

or novelty exhibit a persistent attraction by stochasticity26,27,33. Here, we ask (i) whether humans 

get distracted in the same situations as intrinsically motivated RL agents and, if so, (ii) whether 

this distraction vanishes (similar to seeking information-gain) or persists (similar to seeking 

surprise or novelty) over time. 

To answer these questions, we bring ideas from machine learning26,27 to behavioral 

neuroscience and design a novel experimental paradigm with a highly stochastic part. We test the 

predictions of three different intrinsically motivated algorithms (i.e., driven by novelty, surprise, 

and information-gain) against the behavior of human participants and show that human behavior 

is both qualitatively and quantitatively consistent with that of novelty-driven RL agents: Human 

participants exhibit a persistent distraction by novelty, and the degree of this distraction correlates 

with their degree of ‘reward optimism’, where reward optimism is defined by the experimental 

procedure. Our results provide evidence for (i) novelty-driven RL algorithms as models of human 

curiosity even when novelty-seeking is suboptimal and (ii) the influence of reward optimism on 

the relative importance of novelty-seeking versus reward-seeking in human decision making. 
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3.3 Methods 

Ethics Statement 

The data for human experiment were collected under CE 164/2014, and the protocol was 

approved by the ‘Commission cantonale d’´ethique de la recherche sur l’ˆetre humain’. All 

participants were informed that they could quit the experiment at any time, and they all signed a 

written informed consent. All procedures complied with the Declaration of Helsinki (except for 

pre-registration). 

Experimental procedure for human participants 

63 participants joined the experiment. Data of 6 participants were removed (see below) and, 

thus, data of 57 participants (27 females, mean age 24.1 ± 4.1 years) were included in the analyses. 

All participants were naïve to the purpose of the experiment and had normal or corrected-to-normal 

visual acuity. The experiment was scripted in MATLAB using the Psychophysics Toolbox96. 

Before starting the experiment, the participants were informed that they need to find either 

one of the 3 goal states 5 times. They were shown the 3 goal images and informed that different 

images had different reward values of 2 CHF, 3 CHF, and 4 CHF. Specifically, they were given 

the example that ‘if you find the 2 CHF goal twice, 3 CHF goal once, and 4 CHF goal twice, then 

you will be paid 2 × 2 + 1 × 3 + 2 × 4 = 15 CHF’; see ‘Informing RL agents of different goal states 

and modeling optimism’ for how simulated efficient agents and simulated participants were given 

this information. At each trial, participants were presented an image (state) and three grey disks 

below the image (Fig. 3.4.1C). Clicking on a disk (action) led participants to a subsequent image 

which was chosen based on the underlying graph of the environment in Fig. 3.4.1A-B (which was 

unknown to the participants). Participants clicked through the environment until they found one of 

the goal states which finished an episode (Fig. 3.4.1C). 

The assignment of images to states and disks to actions was random but kept fixed 

throughout the experiment and among participants. Exceptionally, we did not make the assignment 

for the actions in state 4 before the start of the experiment. Rather, for each participant, we assigned 

the disk that was chosen in the 1st encounter of state 4 to the stochastic action and the other two 

disks randomly to the bad and progressing actions, respectively (Fig. 3.4.1A). With this assignment, 
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we made sure that all human participants would visit the stochastic part at least once during episode 

1. The same protocol was used for simulated efficient agents and simulated participants. 

Before the start of the experiment, we randomly assigned the different goal images 

(corresponding to the three reward values) to different goal states G∗, G1, and G2 in Fig. 3.4.1A, 

separately for each participant. The image and hence the reward value were then kept fixed 

throughout the experiment. In other words, we randomly assigned different participants to different 

environments with the same structure but different assignments of reward values. We, therefore, 

ended up with 3 groups of participants: 23 in the 2 CHF group, 20 in the 3 CHF group, and 20 in 

the 4 CHF group. The probability of encountering a goal state other than 𝐺∗ is controlled by the 

parameters ε. We considered ε to be around machine precision 10−8, so we have (1 − ε)5×63 ≈ 1 − 

10−5 ≈ 1, meaning that all 63 participants would be taken almost surely to the goal state G∗ in all 5 

episodes. We note, however, that a participant could in principle observe any of the 3 goals if they 

could choose the progressing action at state 6 sufficiently many times because limt→∞(1 − ε)t = 0. 

2 participants (in the 2 CHF group) did not finish the experiment, and 4 participants (1 in 

the 3 CHF group and 3 in the 4 CHF group) took more than 3 times group-average number of 

actions in episodes 2-5 to finish the experiment. We considered this as a sign of being non-attentive 

and removed these 6 participants from further analyses. 

The sample size was determined by a power analysis performed on the data of the efficient 

simulations done for Fig. 3.4.2 (see ‘Efficient model-based planning for simulated participants’ 

for the simulation details). Our goal was to have a statistical power of more than 80% (with a 

significance level of 0.05) for correlations in panels Fig. 3.4.2A, C, and E as well as for the 

differences for the highest importance of intrinsic rewards in Fig. 3.4.2D and F. 

The correction for multiple hypotheses testing was done by controlling the False Discovery 

Rate at 0.0550 over all 22 null hypotheses that are tested in Fig. 3.4.3, Fig. 3.4.5, and Fig. 3.4.6 (p-

value threshold: 0.034). All Bayes Factors (abbreviated BF in the figures) were evaluated using 

Schwartz approximation49 to avoid any assumptions on the prior distribution. We note that 

evaluating the Bayes Factors using priors suggested by ref.97,98 does not change our conclusions. 

We also note that using the Spearman correlation instead of the Pearson correlation in Fig. 3.4.2A, 

C, and E, Fig. 3.4.3A, and Fig. 3.4.6A does not change our conclusions. 

Full hybrid model 
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We first present the most general case of our algorithm as visualized in Fig. 3.4.1D and 

then explain the special cases used for simulating efficient agents (Fig. 3.4.2) and for modeling 

human behavior (Fig. 3.4.4-Fig. 3.4.6). We used ideas from non-parametric Bayesian inference99 

to design an intrinsically motivated RL algorithm for environments where the total number of 

states is unknown. We present the final results here and present the derivations and pseudo-code 

in Supplementary Materials. 

We indicate the sequence of actions and states until time 𝑡 by 𝑠1:𝑡 and 𝑎1:𝑡, respectively, 

and define the set of all known states at time 𝑡 as 

𝒮(𝑡) = {𝑠: ∃𝑡′ ∈ {1,… , 𝑡} s.t. 𝑠 = 𝑠𝑡′} ∪ {�̃�0, �̃�1, �̃�2} (1) 

where �̃�𝑖 s are our three different goal states −�̃�0 corresponds to the 2CHF goal, �̃�1 to the 3CHF 

goal, and �̃�2 to the 4CHF goal. Note that {�̃�0, �̃�1, �̃�2} represents the images of the goal states and 

not their locations 𝐺∗, 𝐺1, and 𝐺2 and that the assignment of images to locations is unknown to the 

model. Hence, since 𝑡 = 0, the simulated efficient agents and the simulated participants are aware 

of the existence of multiple goal states in the environment. In a more general setting, {�̃�0, �̃�1, �̃�2} 

should be replaced by the set of all states whose images were shown to participants prior to the 

start of the experiment. After a transition to state 𝑠𝑡+1 = 𝑠
′ resulting from taking action 𝑎𝑡 = 𝑎 at 

state 𝑠𝑡 = 𝑠, the reward functions 𝑅ext  and 𝑅int ,𝑡 evaluate the reward values 𝑟ext ,𝑡+1 and 𝑟int,𝑡+1. 

We define the extrinsic reward function 𝑅ext as 

𝑅ext (𝑠, 𝑎 → 𝑠′) = 𝛿𝑠′,�̃�0 + 𝑟1
∗𝛿𝑠′,�̃�1 + 𝑟2

∗𝛿𝑠′,�̃�2   (2) 

where 𝛿 is the Kronecker delta function, and we assume (without loss of generality) a subjective 

extrinsic reward value of 1 for �̃�0 ( 2CHF goal) and subjective extrinsic reward values of 𝑟1
∗ ≥ 1 

and 𝑟2
∗ ≥ 1 for �̃�1 and �̃�2, respectively. The prior information of human participants about the 

difference in the monetary reward values of different goal states can be modeled in simulated 

participants by varying 𝑟1
∗ and 𝑟2

∗ (see 'Informing RL agents of different goal states and modeling 

optimism'). We discuss choices of 𝑅int ,𝑡 in the next section. 

As a general choice for the RL algorithm in Fig. 1D, we consider a hybrid of model-based 

and model-free policy18,36,38,52  The model-free (MF) component uses the sequence of states 𝑠1:𝑡, 

actions 𝑎1:𝑡, extrinsic rewards 𝑟ext 1:𝑡, and intrinsic rewards 𝑟int,1:t  (in the two parallel branches in 

Fig. 1D) and estimates the extrinsic and intrinsic 𝑄 -values 𝑄MF,ext 

(𝑡)
 and 𝑄MF,int 

(𝑡)
, respectively. 
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Traditionally, MF algorithms do not need the total number of states37, thus the MF component of 

our algorithm remains similar to that of previous studies18,35 : At the beginning of episode 1 , we 

initialize 𝑄-values at 𝑄MF,ext 

(0)
 and 𝑄MF, int 

(0)
. Then, the estimates are updated recursively after each 

new observation. After the transition (𝑠𝑡 , 𝑎𝑡) → 𝑠𝑡+1, the agent computes extrinsic and intrinsic 

reward prediction errors 𝑅𝑃𝐸ext,𝑡+1 and 𝑅𝑃𝐸int,𝑡+1, respectively: 

𝑅𝑃𝐸ext,𝑡+1 = 𝑟ext,𝑡+1 + 𝜆ext𝑉MF,ext
(𝑡) (𝑠𝑡+1) − 𝑄MF,ext

(𝑡) (𝑠𝑡 , 𝑎𝑡)

𝑅𝑃𝐸int,𝑡+1 = 𝑟int,𝑡+1 + 𝜆int𝑉MF,int
(𝑡) (𝑠𝑡+1) − 𝑄MF,int

(𝑡) (𝑠𝑡 , 𝑎𝑡),
 (3) 

where 𝜆ext  and 𝜆int ∈ [0,1) are the discount factors for extrinsic and intrinsic reward seeking, 

respectively, and 𝑉MF,ext
(𝑡) (𝑠𝑡+1) = max𝑎′  𝑄MF,ext

(𝑡) (𝑠𝑡+1, 𝑎
′)  and 𝑉MF, int 

(𝑡) (𝑠𝑡+1) =

max𝑎′  𝑄MF, int 

(𝑡) (𝑠𝑡+1, 𝑎
′) are the extrinsic and intrinsic 𝑉-values37 of the state 𝑠𝑡+1, respectively. 

We use two separate eligibility traces35,37 for the update of 𝑄-values, one for extrinsic reward 𝑒ext ,𝑡 

and one for intrinsic reward 𝑒int,𝑡, both initialized at zero at the beginning of each episode. The 

update rules for the eligibility traces after taking action 𝑎𝑡 at state 𝑠𝑡 is 

𝑒ext,𝑡+1(𝑠, 𝑎) = {
1  if 𝑠 = 𝑠𝑡 , 𝑎 = 𝑎𝑡
𝜆ext𝜇ext𝑒ext,𝑡(𝑠, 𝑎)  otherwise 

𝑒int,𝑡+1(𝑠, 𝑎) = {
1  if 𝑠 = 𝑠𝑡 , 𝑎 = 𝑎𝑡
𝜆int𝜇int𝑒int,𝑡(𝑠, 𝑎)  otherwise 

 (4) 

where 𝜆ext  and 𝜆int  are the discount factors defined above, and 𝜇ext  and 𝜇int ∈ [0,1] are the decay 

factors of the eligibility traces for the extrinsic and intrinsic rewards, respectively. The update rule 

is then Δ𝑄MF
(𝑡+1)

(𝑠, 𝑎) = 𝜌𝑒𝑡+1(𝑠, 𝑎)𝑅𝑃𝐸𝑡+1, where 𝑒𝑡+1 is the eligibility trace (i.e., either 𝑒ext,𝑡+1 

or 𝑒int,𝑡+1), 𝑅𝑃𝐸𝑡+1 is the reward prediction error (i.e., either 𝑅𝑃𝐸ext,𝑡+1 or 𝑅𝑃𝐸int,𝑡+1 ), and 𝜌 ∈

[0,1) is the learning rate. 

The model-based (MB) component builds a world-model that summarizes the structure of 

the environment by estimating the probability 𝑝(𝑡)(𝑠′ ∣ 𝑠, 𝑎) of the transition (𝑠, 𝑎) → 𝑠′. To do so, 

an agent counts the transition (𝑠, 𝑎) → 𝑠′ recursively and using a leaky integration100,101: 

�̃�
𝑠,𝑎,𝑠′
(𝑡+1)

= {
𝜅�̃�

𝑠,𝑎,𝑠′
(𝑡)

+ 𝛿𝑠′,𝑠𝑡+1  if 𝑠 = 𝑠𝑡 , 𝑎 = 𝑎𝑡

�̃�
𝑠,𝑎,𝑠′
(𝑡)

 otherwise 
 (5) 
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where 𝛿  is the Kronecker delta function, �̃�
𝑠,𝑎,𝑠′
(0)

= 0 , and 𝜅 ∈ [0,1] is the leak parameter and 

accounts for imperfect memory and model-building in humans. If 𝜅 = 1, then �̃�
𝑠,𝑎,𝑠′
(𝑡+1)

 is the exact 

count of transition (𝑠, 𝑎) → 𝑠′. These counts are used to estimate the transition probabilities 

𝑝(𝑡)(𝑠′ ∣ 𝑠, 𝑎) =

{
 

 
𝜖obs+�̃�𝑠,𝑎,𝑠′

(𝑡)

𝜖new +𝜖obs|𝒮
(𝑡)|+�̃�𝑠,𝑎

(𝑡)  if  𝑠′ ∈ 𝒮(𝑡)

𝜖new 

𝜖new +𝜖obs|𝒮
(𝑡)|+�̃�𝑠,𝑎

(𝑡)  if  𝑠′ = 𝑠new 

 (6) 

where �̃�𝑠,𝑎
(𝑡)
= ∑𝑠′  �̃�𝑠,𝑎,𝑠′

(𝑡)
 is the counts of taking action 𝑎 at state 𝑠, 𝜖obs ∈ ℝ

+is a free parameter for 

the prior probability of transition to a known state (i.e., states in 𝒮(𝑡) ), and 𝜖new ∈ ℝ
+is a free 

parameter for the prior probability of transition to a new state (i.e., states not in 𝒮(𝑡)  ) - see 

Supplementary Materials for derivations. Choosing 𝜖new = 0 is equivalent to assuming there is no 

unknown state in the environment, for which the estimate in Eq. 6 is reduced to the classic 

Bayesian estimate of transition probabilities in bounded discrete environments18,36. The transition 

probabilities are then used in a novel variant of prioritized sweeping37,40 adapted to deal with an 

unknown number of states. The prioritized sweeping algorithm computes a pair of 𝑄-values, i.e., 

𝑄MB, ext 

(𝑡)
 for extrinsic and 𝑄MB,int 

(𝑡)
 for intrinsic rewards, by solving the corresponding Bellman 

equations37 with 𝑇𝑃𝑆,ext  and 𝑇𝑃𝑆,int  iterations, respectively for 𝑄MB,ext 

(𝑡)
 and 𝑄MB, int 

(𝑡)
. See 

Supplementary Material for details. 

Finally, actions are chosen by a hybrid softmax policy37 : The probability of taking action 

𝑎 in state 𝑠 at time 𝑡 is 

𝜋𝑡(𝑎 ∣ 𝑠) ∝ exp [𝛽MB,ext𝑄MB,ext
(𝑡)

(𝑠, 𝑎) + 𝛽MF,ext𝑄MF,ext
(𝑡)

(𝑠, 𝑎) +

𝛽MB,int𝑄MB,int
(𝑡)

(𝑠, 𝑎) + 𝛽MF,int𝑄MF,int
(𝑡)

(𝑠, 𝑎)] ,
 (7) 

where 𝛽MB,ext ∈ ℝ
+, 𝛽MF, ext ∈ ℝ

+, 𝛽MB, int ∈ ℝ
+ , and 𝛽MF, int ∈ ℝ

+ are free parameters (i.e., 

inverse temperatures of the softmax policy37) expressing the contribution of each 𝑄-value to 

actionselection. For Fig. 3.4.1D, we defined 

𝜋ext,𝑡(𝑎 ∣ 𝑠) ∝ exp [
𝛽MB,ext

𝛽MB,ext+𝛽MF,ext
𝑄MB,ext
(𝑡)

(𝑠, 𝑎) +
𝛽MF,ext

𝛽MB,ext+𝛽MF,ext
𝑄MF,ext
(𝑡)

(𝑠, 𝑎)]

𝜋int,𝑡(𝑎 ∣ 𝑠) ∝ exp [
𝛽MB,int

𝛽MB,int+𝛽MF,int
𝑄MB,int
(𝑡)

(𝑠, 𝑎) +
𝛽MF,int

𝛽MB,int+𝛽MF,int
𝑄MF, int 

(𝑡)
(𝑠, 𝑎)] ,

 (8) 

and as a result 𝜋𝑡 ∝ 𝜋ext,𝑡
𝛽MB,ext+𝛽MF,ext ⋅ 𝜋int,𝑡

𝛽MB,int+𝛽MF,int
. 
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In general, the contribution of seeking extrinsic reward and seeking intrinsic reward as well 

as the MB and MF branches to action-selection depends on different factors, including time passed 

since the beginning of the experiment39,52, cognitive load102, and whether the location of reward is 

known18. Here, we make a simplistic assumption that these contributions (expressed as the 4 

inverse temperatures) are constant within but potentially different between the two phases of the 

experiment: 

Phase 1: Before finding the goal state in episode 1 , we consider 𝛽MB,ext =

𝛽MB,ext
(1)

, 𝛽MF,ext =  𝛽MF,ext
(1)

, 𝛽MB, int = 𝛽MB,int
(1)

, and 𝛽MF, int = 𝛽MF, int 

(1)
 as four independent free 

parameters chosen independently for each agent. 

Phase 2: After finding the goal, i.e., in all episodes after episode 1, we consider 𝛽MB,ext = 

𝛽MB, ext 

(2)
, 𝛽MF,ext = 𝛽MF, ext 

(2)
, 𝛽MB, int = 𝛽MB, int 

(2)
, and 𝛽MF, int = 𝛽MF, int 

(2)
 as another four independent 

free parameters chosen independently for each agent. 

See 'Relative importance of novelty in action-selection' for how these inverse temperatures 

relate to the influence of intrinsic and extrinsic rewards on action-choices (Fig. 3.4.5C and Fig. 

3.4.6). 

Summary of free parameters: To summarize, the full hybrid algorithm has 22 free 

parameters: 

Φ = {𝑟1
∗, 𝑟2

∗, 𝑄MF,ext
(0)

, 𝑄MF, int 

(0)
, 𝜆ext , 𝜆int , 𝜇ext , 𝜇int , 𝜌, 𝜅, 𝜖new , 𝜖obs , 𝑇𝑃𝑆, ext , 𝑇𝑃𝑆, int ,

𝛽MB, ext 

(1)
, 𝛽MB, ext 

(2)
, 𝛽MB, int 

(1)
, 𝛽MB, int 

(2)
, 𝛽MF, ext 

(1)
, 𝛽MF, ext 

(2)
, 𝛽MF, int 

(1)
, 𝛽MF, int 

(2)
},

 (9) 

where 𝑟1
∗ and 𝑟2

∗ are subjective values of the 3CHF goal and the 4CHF goal, respectively (with the 

2 CHF goal being the reference goal with a value of 1), 𝑄MF,ext 

(0)
 and 𝑄MF,int 

(0)
 are the initial values 

for MF 𝑄-values, 𝜆ext  and 𝜆int  are the discount factors, 𝜇ext  and 𝜇int  are the decay rates of the 

eligibility traces, 𝜌 is the MF learning rate, 𝜅 is the leak parameter for model-building, 𝜖new  and 

𝜖obs  are prior parameters for model-building, 𝑇𝑃𝑆,ext  and 𝑇𝑃𝑆,int  are the numbers of iterations for 

prioritized sweeping, and 𝛽MB,ext
(1)

, 𝛽MB,ext
(2)

, 𝛽MB, int 

(1)
, 𝛽MB, int 

(2)
, 𝛽MF,ext

(1)
, 𝛽MF,ext

(2)
, 𝛽MF, int 

(1)
, and 𝛽MF, int 

(2)
 

are the inverse temperatures of the softmax policy. 

Different choices of intrinsic reward 
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The intrinsic reward function 𝑅int ,𝑡  maps a transition (𝑠, 𝑎) → 𝑠′  to an intrinsic reward 

value, i.e., 𝑟int ,𝑡+1 = 𝑅int ,𝑡(𝑠𝑡 , 𝑎𝑡 → 𝑠𝑡+1). In this section, we present our 3 choices of 𝑅int ,𝑡. 

Novelty: For an agent seeking novelty (red in Fig. 3.4.2, Fig. 3.4.4, and Fig. 3.4.5), we 

define the intrinsic reward function as 

𝑅int,𝑡(𝑠, 𝑎 → 𝑠′) = −log 𝑝𝑁
(𝑡)(𝑠′) (10) 

where 𝑝𝑁
(𝑡)(𝑠′) =

1+�̃�
𝑠′
(𝑡)

1+|𝒮(𝑡)|+∑𝑠′′  �̃�𝑠′′
(𝑡) is the state frequency with �̃�

𝑠′
(𝑡)

 the pseudo-count of encounters 

of state 𝑠′  up to time 𝑡  (similar to Eq. 5): �̃�
𝑠′
(𝑡+1)

= 𝜅�̃�
𝑠′
(𝑡)
+ 𝛿𝑠′,𝑠𝑡+1  with �̃�

𝑠′
(0)
= 0 . With this 

definition, that generalizes earlier works18 to the case where the number of states is unknown, the 

least novel states are those that have been encountered most often (i.e., with highest �̃�
𝑠′
(𝑡)

 ). 

Moreover, novelty is at its highest value for the unobserved states as we have �̃�
𝑠′
(𝑡)
= 0 for any 

unobserved state 𝑠′ ∉ 𝒮(𝑡). Similar intrinsic rewards have been used in machine learning  19,20. 

Surprise: For an agent seeking surprise (orange in Fig. 3.4.2, Fig. 3.4.4, and Fig. 3.4.5), we define 

the intrinsic reward function as the Shannon surprise (a.k.a. surprisal)44  

𝑅int,𝑡(𝑠, 𝑎 → 𝑠′) = −log 𝑝(𝑡)(𝑠′ ∣ 𝑠, 𝑎), (11) 

where 𝑝(𝑡)(𝑠′ ∣ 𝑠, 𝑎) is defined in Eq. 6. With this definition, the expected (over 𝑠′  ) intrinsic 

reward of taking action 𝑎 at state 𝑠 is equal to the entropy of the distribution 𝑝(𝑡)(𝑠′ ∣ 𝑠, 𝑎)103. If 

𝜖new < 𝜖obs , then the most surprising transitions are the ones to unobserved states. Similar intrinsic 

rewards have been used in machine learning21,28. 

Information-gain: For an agent seeking information-gain (green in Fig. 3.4.2, Fig. 3.4.4, 

and Fig. 3.4.5), we define the intrinsic reward function as 

𝑅int ,𝑡(𝑠, 𝑎 → 𝑠′) = DKL[𝑝
(𝑡)(. ∣ 𝑠, 𝑎) ∥ 𝑝(𝑡+1)(. ∣ 𝑠, 𝑎)], (12) 

where DKL  is the Kullback-Leibler divergence103, and 𝑝(𝑡+1)  is the updated world-model upon 

observing (𝑠, 𝑎) → 𝑠′. The dots in Eq. 12 denote the dummy variable over which we integrate to 

evaluate the Kullback-Leibler divergence. Note that if 𝑠′ ∉ 𝒮(𝑡), then there are some technical 

problems in the naïve computation of DKL − since 𝑝(𝑡) and 𝑝(𝑡+1) have different supports. We 

deal with these problems using a more fundamental definition of DKL using the Radon-Nikodym 

derivative; see Supplementary Materials for derivations and see ref. 42 for an alternative heuristic 

solution. Note that the information-gain in Eq. 12 has been also interpreted as a measure of surprise 
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(called 'Postdictive surprise'92), but it has a behavior radically different from that of the Shannon 

surprise introduced above (Eq. 11) - see ref. 44 for an elaborate treatment of the topic. Importantly, 

the expected (over 𝑠′ ) information-gain corresponding to a state-action pair (𝑠, 𝑎) converges to 0 

as �̃�𝑠,𝑎
(𝑡)
→ ∞ (see Supplementary Materials for the proof). Similar intrinsic rewards have been used 

in machine learning23,29,33,42.  

Informing RL agents of different goal states and modeling 
optimism 

Human participants had been informed that there were different goal states in the 

environment with different monetary reward values. This information was aimed to motivate 

participants to further explore the environment after they received the first reward at the end of 

episode one. This information is incorporated into our hybrid algorithms through a few 

mechanisms, where some include explicit information about the goal states but some others only 

an implicit notion of optimism. 

Our main focus throughout the paper has been on modeling reward optimism by balancing 

intrinsic rewards against extrinsic rewards (Fig. 3.4.2, Fig. 3.4.5, and Fig. 3.4.6). In particular, 

assigning different values to 𝛽MB, ext , 𝛽MF, ext , 𝛽MB, int , and 𝛽MF,int  (c.f. Eq. 7) during the two 

phases of the experiment enables us to implicitly make the relative importance of intrinsic rewards 

depend on the difference between the reward value of the discovered goal 𝑟𝐺∗  and the known 

reward values 𝑟1
∗  and 𝑟2

∗  of the other goal states (Eq. 2). Our results for the fitted relative 

importance of intrinsic reward across different groups of human participants (Fig. 3.4.6A) support 

this very assumption, which implies that the influence of reward optimism on the action-choices 

is via regulation of the balance between two separate policies, one for seeking intrinsic and one 

for seeking extrinsic rewards. 

However, there are two other alternative mechanisms, purely based on seeking extrinsic 

rewards, that can contribute to reward-optimism in our hybrid algorithms: The model-based and 

model-free optimistic initialization. In this section, we discuss these mechanisms and how they 

balance exploration versus exploitation. We note that our results in Fig. 3.4.4 and Fig. 3.4.6 

(particularly Fig. 3.4.6B) show that these two mechanisms alone are not enough and that a novelty-

seeking module is necessary to explain the behavior of human participants; otherwise, all three 

intrinsically motivated algorithms would have the same probability of generating human data - 
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because the purely reward-seeking algorithm with optimistic initialization is a special case of all 

three intrinsically motivated algorithms that we compared. In other words, if optimistic 

initialization alone were sufficient to explain human behavior, then all three algorithms would 

perform equally well in Fig. 3.4.4 and the best fit would indicate a relative importance of 0 for 

novelty in Fig. 3.4.6. 

Model-based optimistic initialization. MB optimistic initialization is an explicit approach to 

model reward-optimism through designing the world-model. The MB branch of the hybrid 

algorithm finds the extrinsic 𝑄-values 𝑄MB,ext 

(𝑡)
 by solving the Bellman equations 

𝑄MB,ext
(𝑡)

(𝑠, 𝑎) = 𝑅‾ext
(𝑡)
(𝑠, 𝑎) + 𝜆ext∑  𝑠′ 𝑝

(𝑡)(𝑠′ ∣ 𝑠, 𝑎)max
𝑎′
 𝑄MB,ext
(𝑡) (𝑠′, 𝑎′) (13) 

where 𝑝(𝑡)(𝑠′ ∣ 𝑠, 𝑎) is estimated transition probability in Eq. 6, and 

𝑅‾ext
(𝑡)
(𝑠, 𝑎) = ∑  𝑠′  𝑝

(𝑡)(𝑠′ ∣ 𝑠, 𝑎)𝑅ext(𝑠, 𝑎 → 𝑠′)

 = 𝑝(𝑡)(�̃�0 ∣ 𝑠, 𝑎) + 𝑟1
∗𝑝(𝑡)(�̃�1 ∣ 𝑠, 𝑎) + 𝑟2

∗𝑝(𝑡)(�̃�2 ∣ 𝑠, 𝑎)
 (14) 

is the average immediate extrinsic reward expected to be collected by taking action 𝑎 in state 𝑠 

(see Eq. 2). Hence, the knowledge of the existence of three different goal states with three different 

rewards has an explicit influence on the MB branch of our algorithms. For example, because no 

transitions to any of the goal states have been experienced during episode 1, we have 

𝑅‾ext
(𝑡)
(𝑠, 𝑎) =

𝜖obs(1+𝑟1
∗+𝑟2

∗)

𝜖new+𝜖obs|𝒮
(𝑡)|+�̃�𝑠,𝑎

(𝑡) (15) 

This equation has two important implications. First, 𝑅‾ext 

(𝑡)
(𝑠, 𝑎) is an increasing function of 𝜖obs . 

This implies that the expected reward of a transition during episode 1 increases by increasing the 

prior probability of transition to states in 𝒮(𝑡) . This is a direct consequence of our Bayesian 

approach to estimating the world-model. Second, 𝑅‾ext 

(𝑡)
(𝑠, 𝑎) is a decreasing function of �̃�𝑠,𝑎

(𝑡)
. This 

implies that the expected reward of a state-action pair decreases by experience. Importantly, 

𝑅‾ext 

(𝑡)
(𝑠, 𝑎) converges to 0 as �̃�𝑠,𝑎

(𝑡)
→ ∞, which makes a link between exploration driven by the MB 

optimistic initialization and exploration driven by information-gain. 

During episodes 2-5, the exact theoretical analysis of the MB optimistic initialization is 

rather complex. However, using a few approximation steps for episode 2, we can find a condition 

for whether the MB extrinsic 𝑄-values show a preference for exploring or leaving the stochastic 

part (Supplementary Materials). The condition involves a comparison between the discounted 
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reward value of the discovered goal state 𝜆ext 
2 𝑟𝐺∗ and an optimistic estimate of a reward-to-be-

found 𝑅Stoch. 

(𝑡)
 in the stochastic part that depends on 𝑟1

∗, 𝑟2
∗, 𝜆ext , 𝜖obs , |𝒮

(𝑡)|, and the average pseudo-

count 𝐶‾(𝑡) of state-action pairs in the stochastic part (Supplementary Materials). We can show that 

if 𝑟𝐺∗ < 𝑟2
∗, then increasing 𝑟2

∗ would eventually result in a preference for staying in the stochastic 

part: If the reward value of a goal state is much greater than the value of the discovered goal state, 

then the agent prefers to keep exploring the stochastic part. However, for any value of 𝑟2
∗ and 𝑟𝐺∗, 

increasing 𝐶‾(𝑡) would eventually result in a preference for leaving the stochastic part and going 

towards the already discovered goal: After a sufficiently long and unsuccessful exploration phase, 

agents will eventually give up exploration. This is another qualitative link between exploration 

based on the MB optimistic initialization and exploration driven by information-gain. This 

qualitative link leads to the conclusion that an agent with only the MB optimistic initialization 

cannot explain human behavior for the same reason that an agent with intrinsic reward based on 

information gain cannot explain human behavior. 

Model-free optimistic initialization. As opposed to the MB branch of the hybrid algorithm, the 

MF branch does not have any explicit knowledge about the existence of different goal states and 

their values. However, the initial value 𝑄MF,ext 

(0)
 of the MF extrinsic 𝑄 -values quantifies an 

expectation of the reward values in the environment prior to any interaction with the environment. 

During episode 1, no extrinsic reward is received by the agent, hence, for a small enough learning 

rate 𝜌  and an optimistic initialization 𝑄MF,ext 

(0)
> 0 , the extrinsic reward prediction errors are 

always negative (Eq. 3). As a result, 𝑄MF, ext 

(𝑡)
(𝑠, 𝑎) decreases as an agent keeps taking action 𝑎 in 

state 𝑠, which motivates the agent to try new actions. This is a well-known mechanism for directed 

exploration in the machine learning community  37. Similar to the MB optimistic initialization, the 

effect of the MF optimistic initialization fades out over time - which makes them both similar to 

exploration driven by information-gain. 

During episode 2-5, the exact theoretical analysis of the MF optimistic initialization is 

complex and dependent on an agent's exact trajectory (because of the eligibility traces). However, 

whether the MF extrinsic 𝑄-values show a preference for exploring or leaving the stochastic part 

essentially depends on the reward value of the discovered goal state 𝑟𝐺∗ and the initialization value 

𝑄MF.ext 

(0)
. For example, if an agent, starting at 𝑠1, takes the perfect trajectory of 𝑠1 → 𝑠2 → 𝑠3 →
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𝑠4 → 𝑠5 → 𝑠6 → 𝐺∗ in episode 1 , then, given a unit decay rate of the eligibility traces (i.e., 𝜇ext =

1 ), it is easy to see that, in the 1st visit of state 4 in episode 2 , the agent prefers the stochastic/bad 

action over the progressing action if 𝑟𝐺∗ <
1

𝜆ext 
2 (1 − 𝜆ext )(1 + 𝜆ext + 𝜆ext 

2 )𝑄MF,ext 

(0)
. This implies 

that, even though the MF branch is not explicitly aware of different goal states and their reward 

values, it is still able to model a type of reward optimism through initialization of 𝑄-values. 

Nevertheless, since model fitting reveals an importance factor significantly greater than 0.5 (Fig. 

3.4.6), the effective reward optimism generated by optimistic initialization is not strong enough to 

explain human behavior. 

Efficient model-based planning for simulated participants 

For simulating efficient agents in Fig. 3.4.2, we set 휀 = 0 (see Fig. 3.4.1A) and used a pure 

MB version of our algorithm with 13 parameters: 

{𝑟1
∗, 𝑟2

∗, 𝜆ext, 𝜆int, 𝜅, 𝜖new, 𝜖obs, 𝑇𝑃𝑆,ext, 𝑇𝑃𝑆,int, 𝛽MB,ext
(1)

, 𝛽MB,ext
(2)

, 𝛽MB,int
(1)

, 𝛽MB,int
(2)

} (16) 

We considered perfect model-building by assuming 𝜅 = 1  and almost perfect planning by 

assuming 𝑇𝑃𝑆, ext = 𝑇𝑃𝑆, int = 100 . We chose discount factors 𝜆ext  and 𝜆int  as well as prior 

parameters 𝜖new  and 𝜖obs  in the range of fitted parameters reported by Xu et al. (2021)  18: 𝜆ext =

0.95, 𝜆int = 0.70, 𝜖new = 10
−5 and 𝜖obs = 10

−4. To relatively separate the effect of optimistic 

initialization  37 from seeking intrinsic reward in episode 2 − 5, we assumed the same value of 

reward for all goals, i.e., 𝑟1
∗ = 𝑟2

∗ = 1. Finally, we considered 𝛽MB,ext
(1)

= 0 to have pure intrinsic 

reward seeking in episode 1 . 

After fixing parameter values for 10 out of 13 parameters in Eq. 16, we fine-tuned 𝛽MB,int 

(1)
 

to minimize the average length of episode 1 (to find the goal as fast as possible; see Supplementary 

Materials). For episodes 2-5, we first set 𝛽MB, int 

(2)
= 0  and 𝛽MB, ext 

(2)
= 10  to have a non-

deterministic policy for purely seeking extrinsic reward after the 1st encounter of the goal (the 

lightest shade of colors in Fig. 2). Different shades of color in Fig. 2 corresponds to different 

choices of 𝜔 ∈ [0,1]  for 𝛽MB, int 

(2)
= 𝜔𝛽MB, int 

(1)
 and 𝛽MB, ext 

(2)
= (1 − 𝜔) ⋅ 10 . More precisely, we 

used 𝜔 = 0 for the darkest color (pure extrinsic reward seeking), 𝜔 = 1 for the lightest color (pure 

intrinsic reward seeking), and 𝜔 = 0.7 for the one in between. Higher values of 𝜔 indicates higher 

relative importance of the intrinsic reward. 
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Model-fitting and model-comparison 

To compare seeking different intrinsic rewards based on their explanatory power, we 

considered our full hybrid (with both MF and MB components) algorithm - except that we put 

𝑇𝑃𝑆, ext = 𝑇𝑃𝑆, int = 100 to decrease number of parameters, based on the results of Xu et al. (2021) 

 18 showing the negligible importance of this parameter. As a result, we had 20 free parameters for 

each of the three intrinsic rewards (i.e., novelty, information-gain, and surprise). For each intrinsic 

reward 𝑅 ∈ {novelty, inf-gain, surprise } and for each participant 𝑛 ∈ {1,… ,57}, we estimated the 

algorithm's parameters by maximizing likelihood of data given parameters: 

Φ̂𝑛,𝑅 = arg max
Φ
 𝑃(𝐷𝑛 ∣ Φ, 𝑅𝑛 = 𝑅) (17) 

where 𝐷𝑛  is the data of participant 𝑛, 𝑅𝑛  is the intrinsic reward assigned to participant 𝑛 , 

𝑃(𝐷𝑛 ∣ Φ, 𝑅𝑛 = 𝑅)  is the probability of 𝐷𝑛  being generated by our intrinsically motivated 

algorithm seeking 𝑅𝑛 = 𝑅  with its parameter equal to Φ  (see Eq. 9), and Φ̂𝑛,𝑅  is the set of 

estimated parameters that maximizes that probability. For optimization, we used Subplex 

algorithm104 as implemented in Julia NLopt package105. 

Because all algorithms have the same number of parameters, we considered the maximum 

loglikelihood as the model log-evidence, i.e., for intrinsic reward 𝑅 and participant 𝑛, we consider 

log 𝑃(𝐷𝑛 ∣ 𝑅𝑛 = 𝑅) ≈ log 𝑃(𝐷𝑛 ∣ Φ̂𝑛,𝑅, 𝑅𝑛 = 𝑅)  - which is equal to a shifted Schwarz 

approximation of the model log-evidence (also called BIC)49,53. Fig. 4A1 shows the total log-

evidence ∑𝑛  log 𝑃(𝐷𝑛 ∣ 𝑅𝑛 = 𝑅). With the fixed effects assumption at the level of models (i.e., 

assuming that 𝑅1 = 𝑅2 = ⋯ = 𝑅57 = 𝑅
∗  ), the total log-evidence is equal to the log posterior 

probability log 𝑃(𝑅∗ = 𝑅 ∣ 𝐷1:57) of 𝑅 being the intrinsic reward used by all participants (plus a 

constant). See ref. 53,55 for tutorials. 

We also considered the Bayesian model selection method of ref.54 with the random effects 

assumption, i.e., assuming that participant 𝑛  uses the intrinsic reward 𝑅𝑛 = 𝑅 , which is not 

necessarily the same as the one used by other participants, with probability 𝑃𝑅. We performed 

Markov Chain Monte Carlo sampling (using Metropolis Hasting algorithm50 with uniform prior 

and 40 chains of length 10′000 ) for inference and estimated the joint posterior distribution 

𝑃(𝑅1:57, 𝑃novelty , 𝑃inf-gain , 𝑃surprise ∣ 𝐷1:57).  
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Fig. 3.4.4A2 shows the expected posterior probability 𝔼[𝑃𝑅 ∣ 𝐷1:57]  as well as the protected 

exceedance probabilities 𝑃(𝑃𝑅 > 𝑃𝑅′ for all 𝑅′ ≠ 𝑅 ∣ 𝐷1:57) computed by using the participant-

wise log-evidences. 

The boxplots of the fitted parameters of novelty-seeking are shown in Supplementary Materials. 

The same set of parameters were used for model-recovery in Fig. 3.4.4B, posterior predictive 

checks in Fig. 3.4.5, computing the relative importance of novelty in Fig. 3.4.6A-B (see 'Relative 

importance of novelty in action-selection'), and parameter recovery in Fig. 3.4.6C. 

Posterior predictive checks, model-recovery, and parameter-
recovery 

For each intrinsic reward 𝑅 ∈  {novelty, inf-gain, surprise }  and participant group 𝒢 ∈

{2CHF, 3CHF, 4CHF, we repeated the following two steps 500 times: 1 . We sampled participant 

𝑛 from group 𝒢 with probability 
𝑃(𝑅𝑛=𝑅∣𝐷1:57)

∑𝑚∈𝒢  𝑃(𝑅𝑚=𝑅∣𝐷1:57)
. 2. We ran a 5 -episode simulations in our 

environment using the intrinsic reward 𝑅 and the parameter Φ̂𝑛,𝑅, i.e., we sampled a trajectory 𝐷 

from 𝑃(𝐷 ∣ Φ̂𝑛,𝑅 , 𝑅𝑛 = 𝑅) (with the 𝐺∗ of the environment corresponding to the group 𝒢 ). As a 

result, we ended up with 1500 simulated participants (with randomly sampled parameters) for each 

algorithm. 

We considered the simulated participants who took more than 3000 actions in any of the 5 

episodes to be similar to the human participants who quit the experiment and excluded them from 

further analyses: 238(∼ 16%) of simulated participants seeking novelty, 166(∼ 11%) of those 

seeking information-gain, and 374(∼ 25%) of those seeking surprise. We note that, even with the 

marginal influence of surprise on action-selection (Fig. 3.4.5C), one fourth of participants seeking 

surprise cannot escape the stochastic part in less than 3000 actions. Moreover, we excluded, 

separately for each algorithm, the simulated participants who took more than 3 times group-

average number of actions in episodes 2-5 to finish the experiment (i.e., the same criterion that we 

used to detect nonattentive human participants): 45 ( 3%) of simulated participants seeking novelty, 

77(∼ 5%) of those seeking information-gain, and 27(∼ 2%) of those seeking surprise. We then 

analyzed the remaining participants (1217 simulated participants seeking novelty, 1257 seeking 

informationgain, and 1099 seeking surprise) as if they were real human participants. Fig. 3.4.5 and 
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its supplements in Supplementary Materials show the data statistics of simulated participants in 

comparison to human participants. 

Given the participants simulated by each of the three intrinsically motivated algorithms, 

we fitted all three algorithms to the action-choices of 150 simulated participants (50 from each 

participant group, i.e., 2CHF, 3CHF, and 4CHF ). Then, we applied the Bayesian model selection 

method of ref.54 to 5 randomly chosen sub-populations of these 150 simulated participants (each 

with 60 participants, i.e., 20 from each participant group). Fig. 3.4.4B shows the results of the 

model comparison averaged over these 5 repetitions. Fig. 3.4.6C shows the relative importance of 

novelty in action-selection (see Eq. 18) for each of the 150 simulated participants estimated using 

the original parameters (which were used for simulations) and the recovered parameters (which 

were found by re-fitting the algorithms to the simulated data). 

Relative importance of novelty in action-selection 

The relative importance of novelty in action-selection depends not only on the inverse-

temperatures 𝛽MB, ext , 𝛽MF, ext , 𝛽MB, int , and 𝛽MF,int  but also on the variability of 𝑄 -values; for 

example, if the extrinsic 𝑄-values 𝑄MB, ext 

(𝑡)
(𝑠, 𝑎) and 𝑄MF, ext 

(𝑡)
(𝑠, 𝑎) are the same for all state-action 

pairs, then, independently of the values of the inverse-temperatures, the action is taken by a pure 

novelty-seeking policy - because the policy in Eq. 7 can be re-written as 𝜋(𝑡)(𝑎 ∣ 𝑠) ∝

exp [𝛽MB, int 𝑄MB, int 

(𝑡)
(𝑠, 𝑎) + 𝛽MF, int 𝑄MF, int 

(𝑡)
(𝑠, 𝑎)]. Thus, to measure the contribution of different 

components of action-selection to the final policy, we need to consider the variations in their 𝑄-

values as well. 

In this section, we propose a variable 𝜔i2e ∈ [0,1] for quantifying the relative importance 

of seeking intrinsic reward in comparison to seeking extrinsic reward. We first define total intrinsic 

and extrinsic 𝑄 -values as 𝑄ext
(𝑡)
(𝑠, 𝑎) = 𝛽MB,ext𝑄MB,ext

(𝑡)
(𝑠, 𝑎) + 𝛽MF,ext𝑄MF,ext

(𝑡)
(𝑠, 𝑎)  and 

𝑄int
(𝑡)
(𝑠, 𝑎) = 𝛽MB, int 𝑄MB, int 

(𝑡)
(𝑠, 𝑎) + 𝛽MF, int 𝑄MF, int 

(𝑡)
(𝑠, 𝑎) , respectively. We further define the 

state-dependent variations in 𝑄 -values as Δ𝑄ext 

(𝑡)
(𝑠) = max𝑎  𝑄ext 

(𝑡)
(𝑠, 𝑎) − min𝑎  𝑄ext 

(𝑡)
(𝑠, 𝑎)  and 

Δ𝑄int 

(𝑡)
(𝑠) = max𝑎  𝑄int 

(𝑡)
(𝑠, 𝑎) −  min𝑎  𝑄int

(𝑡)
(𝑠, 𝑎)  as well as their temporal average Δ𝑄‾ext =

⟨Δ𝑄ext
(𝑡)(𝑠𝑡)⟩  and Δ𝑄‾int = ⟨Δ𝑄int

(𝑡)(𝑠𝑡)⟩ , where ⟨ . ⟩𝑠ℎ𝑜𝑤𝑠𝑡ℎ𝑒𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝑎𝑣𝑒𝑟𝑎𝑔𝑒. Δ𝑄‾ext  and Δ𝑄‾int  

show the average difference between the most and least preferred action with respect to seeking 
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extrinsic and intrinsic reward, respectively. Therefore, a feasible way to measure the influence of 

seeking intrinsic reward on action-selection is to define 𝜔i2e as 

𝜔i2e =
Δ𝑄‾int

Δ𝑄‾ext + Δ𝑄‾int
 

Fig. 3.4.6 A shows the value 𝜔i2e  in episode 2 − 5 computed for each human participant (dots) 

and averaged over different groups (bars), and Fig. 3.4.6B shows the same for episode 1. Fig. 

3.4.5C shows the value 𝜔i2e in episode 2 − 5 for the 2 CHF group of simulated participants. See 

Supplementary Materials for a similar approach for quantifying the relative importance of the MB 

and MF policies in action-selection. 
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3.4 Results 

Experimental Paradigm 

We first design an experimental paradigm for human participants that allows us dissociate 

predictions of different intrinsically motivated RL algorithms. We employ a sequential decision-

making paradigm34–36 for navigation in an environment with 58 states plus three goal states (Fig. 

3.4.1A-B). Three actions are available in each non-goal state, and agents can move from one state 

to another by choosing these actions (arrows in Fig. 3.4.1A-B). We use the term ‘agents’ to refer 

to either human participants or agents simulated by RL algorithms. In the human experiments, 

states are represented by images on a computer screen and actions by three disks below each image 

(Fig. 1C); for simulated participants, both states and actions are abstract entities (i.e., we consider 

RL in a tabular setting37). The assignment of images to states and disks to actions is random but 

fixed throughout the experiment. Agents are informed that there are three different goal states in 

the environment (G∗, G1, or G2 in Fig. 3.4.1A) and that their task is to find a goal state 5 times; 

see Methods for how this information is incorporated in the RL algorithms. Importantly, neither 

human participants nor RL agents are aware of the total number of states or the structure of the 

environment (i.e., how states are connected to each other). 

The 58 states of the environment can be classified into three groups: Progressing states (1 

to 6 in Fig. 3.4.1A), trap states (7 and 8 in Fig. 3.4.1A), and stochastic states (S-1 to S-50 in Fig. 

3.4.1B, shown as a dashed oval in Fig. 3.4.1A). In each progressing state, one action (‘progressing’ 

action) takes agents one step closer to the goals and another action (‘bad’ action) takes them to one 

of the trap states. The third action in states 1-3 and 5-6 is a ‘self-looping’ action that makes agents 

stay at the same state. Except for the progressing action in state 6, all these actions are deterministic, 

meaning that they always lead to the same next state. The progressing action in state 6 is almost 

deterministic: It takes participants to the ‘likely’ goal state G∗ with a probability of 1 − ε and to the 

‘unlikely’ goal states G1 and G2 with equal probabilities of  
ε

2
 « 1. In state 4, instead of a self-

looping action, there is a ‘stochastic’ action that takes agents to a randomly chosen (with equal 

probability) stochastic state (Fig. 3.4.1B1). In each stochastic state, one action takes agents back 

to state 4 and two stochastic actions take them to another randomly chosen stochastic state (Fig. 

1B2). In each trap state, all three actions are deterministic: Two actions bring agents to either the 

same or the other trap state and one action to state 1. 
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The stochastic part of the environment – which is inspired by the machine-learning 

literature and mimics the main features of a ‘noisy TV’28 – is a crucial difference to existing 

paradigms in the literature of behavioral neuroscience18,38,39. Without the stochastic part, intrinsic 

motivation helps agents to avoid the trap states and find the goal18, hence it helps exploration 

before and does not harm exploitation after finding a goal. By adding the stochastic part, we aim 

to quantify how much exploitation of the discovered goal is reduced because of the distraction by 

the stochastic states. 

We organize the experiment in 5 episodes: Agents are randomly initialized at state 1 or 2 

and are instructed to find a goal 5 times. After finding a goal, agents are randomly re-initialized at 

state 1 or 2. We choose a small enough ε (Fig. 3.4.1A) to safely assume that all agents visit only 

G∗ while being aware that G1 and G2 exist (Methods). 

 

Figure 3.4.1: Experimental paradigm and computational model. A. Structure of the environment 

with the stochastic states merged together (dashed oval; see B). Each circle represents a state and each 

solid arrow an action. All actions except for the ones to the stochastic part or to the goal states are 

deterministic. Dashed arrows indicate random transitions; values (e.g., 1 − ε) show probabilities of each 

transition. We choose ε « 1 (see Methods). B. Structure of the stochastic part of the environment (states S-

1 to S-50), i.e., the dashed oval in A. B1. In state 4, one action takes agents randomly (with uniform 

distribution) to one of the stochastic states. B2. In each stochastic state (e.g., state S-1 in the figure), one 

action takes agents back to state 4 and two actions to another randomly chosen stochastic state. C. Time-

line of one episode in human experiments. The states are represented by images on a computer screen 

and actions by disks below each image. An episode ends when a goal image (i.e., ‘3 CHF’ image in this 

example) is found. D. Block diagram of the intrinsically motivated RL algorithm. Given the state st at 

time t, the intrinsic reward rint,t (i.e., novelty, information-gain, or surprise) and the extrinsic reward rext,t 

(i.e., the monetary reward value of st) are evaluated by a reward function and passed to two identical (except 
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for the reward signals) parallel RL algorithms. The two algorithms compute two policies, one for seeking 

intrinsic reward πint,t and one for seeking extrinsic reward πext,t. The two policies are then weighted 

according to the relative importance of the intrinsic reward and are combined to make a single hybrid 

policy πt. The next action at is selected by sampling from πt. See Methods for details. 

 

Simulating intrinsically motivated agents with efficient 
algorithms 

To formulate qualitative predictions for human behavior, we simulate three intrinsically 

motivated RL algorithms.  Intrinsic motivation is described in each algorithm by ‘intrinsic rewards’ 

that agents give to themselves upon visiting ‘novel’, ‘surprising’, or ‘informative’ states (see 

Methods for details). Extrinsic rewards, on the other hand, are received only when visiting the 

three goal states. Agents simulated by each algorithm are able to navigate in an environment with 

an unknown number of states by seeking a combination of extrinsic and intrinsic rewards (Fig. 

3.4.1D): At each time t, an agent observes state st and evaluates an extrinsic reward value rext,t 

(which is zero except at the goal states) and an intrinsic reward value rint,t (e.g., novelty of state st). 

Extrinsic and intrinsic reward values are then passed to two parallel blocks of RL, each working 

with a single reward signal. Independently of each other, the two blocks use efficient model-based 

planning40,41 to propose a policy πext,t that maximizes future extrinsic rewards and πint,t that 

maximizes future intrinsic rewards18,26, respectively. The two policies are combined into a hybrid 

policy πt for taking the next action at, controlled by a set of free parameters that indicate the relative 

importance of intrinsic over extrinsic rewards (Methods). The degree of exploration is high if πint,t 

dominates πext,t during action-selection. 

For the intrinsic reward rint,t, we choose one option from each of the three main categories 

of intrinsic rewards in machine learning26,27: (i) novelty18–20 quantifies how infrequent the state st 

has been until time t; (ii) information-gain23,25,42,43 quantifies how much the agent updates its belief 

about the structure of the environment upon observing the transition from the state-action pair (st−1, 

at−1) to state st; and (iii) surprise21,28,44 quantifies how unexpected it is to observe state st after taking 

action at−1 at state st−1. 

The three different intrinsic reward signals lead to three efficient intrinsically motivated 

algorithms and to three groups of simulated efficient agents: those (i) seeking novelty, (ii) seeking 

information-gain, and (iii) seeking surprise. In the following section, we focus on episodes 2-5 and 
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formulate the qualitative predictions of different intrinsically motivated RL algorithms for human 

behavior by characterizing the behavior of these simulated efficient agents. We note that these 

predictions are made by using efficient RL algorithms with perfect memory and high 

computational power. Thus these efficient agents are a starting point and used only (i) to test 

whether our experimental paradigm dissociates action-choices of different intrinsically motivated 

RL algorithms and (ii) to gain insights about their principal differences; a more realistic simulation 

of human behavior is presented in a later section. 

Different intrinsically motivated algorithms exhibit principally 
different behavioral patterns 

To avoid arbitrariness in the choice of parameters, we fine-tune the parameters of each 

algorithm to have on average the lowest number of actions in episode 1 (to have the most efficient 

exploration; Methods). As a result, different algorithms achieve a similar performance during 

episode 1 and find the goal G∗ almost equally fast (Supplementary Materials). Hence, exploration 

policies driven by different intrinsic rewards cannot be qualitatively distinguished during episode 

1. 

Given the same set of parameters, we study how different simulated efficient agents behave 

in episodes 2-5 (Fig. 3.4.2). After finding the goal G∗ for the 1st time, an agent has two options: (i) 

return to the discovered goal state G∗ (exploitation) or (ii) search for the other goal states G1 and 

G2 (exploration).  In our simulations, we consider three choices for the trade-off between 

exploration and exploitation by changing the relative importance of πint,t over πext,t (Fig. 3.4.1D): 

pure exploitation (the action policy does not depend on intrinsic rewards, i.e., πt = πext,t), pure 

exploration (the action policy does not depend on extrinsic rewards, i.e., πt = πint,t), and a mixture 

of both (different shades of each color in Fig. 3.4.2). If the extrinsic reward value assigned to G1 

or G2 is higher than the one assigned to G∗, then the policy πext,t for seeking extrinsic rewards can 

also contribute to exploration in episodes 2-5 (Methods). In order to characterize qualitative 

features essential to exploration driven by different intrinsic rewards, we assume a symmetry 

between the three goal states in the simulated efficient agents and assign the same extrinsic reward 

value to all goals (Methods); we drop this assumption in the next sections and quantify the 

additional but negligible contribution of πext,t to explaining human exploration. 
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For all three groups of simulated efficient agents, decreasing the relative importance of intrinsic 

rewards decreases both the search duration (Fig. 3.4.2A1, C1, and E1) and the fraction of time 

spent in the stochastic part (Fig. 3.4.2A2, C2, and E2). This observation implies that intrinsically 

motivated exploration leads to an attraction to the stochastic part of the environment, effectively 

keeping the simulated efficient agents away from the goal region beyond state 6 (Fig. 3.4.1A). Our 

results thus confirm earlier findings in machine learning26,28 that intrinsically motivated agents get 

distracted by noisy reward-independent stimuli. 

While all three groups of simulated efficient agents get distracted by the stochastic part, 

their degree of distraction is different (different colors in Fig. 3.4.2A3, C3, and E3). For efficient 

agents that purely seek information-gain (i.e., pure exploration), the time spent in the stochastic 

part decreases over episodes (Fig. 3.4.2C3), whereas we observe the opposite pattern for efficient 

agents that purely seek novelty (Fig. 3.4.2A3) or surprise (Fig. 3.4.2E3). In particular, efficient 

agents that purely seek surprise get most often (i.e., in > 50% of simulations in episode 5) stuck in 

the stochastic part and do not escape it within 3000 actions (Fig. 3.4.2E3). These observations 

confirm the inefficiency of seeking surprise and the efficiency of seeking information-gain in 

dealing with noise26. 

In order to further dissociate action-choices of different algorithms, we analyze the action 

preferences of simulated efficient agents in state 4 during episode 2 (Fig. 3.4.2B, D, and F). For 

all three 
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Figure 3.4.2: Qualitative predictions for episodes 2-5 with efficient algorithms seeking novelty (A-

B), surprise (C-D), and information-gain (E-F) as intrinsic rewards. We consider three levels of 

importance for intrinsic rewards (Fig. 3.4.1D): high (dark colors), medium (shaded colors), and no (light 

colors). For each level, we run 500 simulations of each algorithm. A1, C1, and E1. Median number 

of actions over episodes 2-5. Error bars show the standard error of the median (SEMed; evaluated by 

bootstrapping). Single dots show the data of 20 (randomly chosen out of 500) individual simulations to 

illustrate variabilities among simulations. Simulations stopped after 3000 actions even if a goal state was 
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not reached. The Pearson correlation between the search duration and the degree of exploitation is negative 

(red numbers), indicating that search duration decreases if the degree of exploitation increases (Methods). 

A2, C2, and E2. Average fraction of time spent in the stochastic part of the environment during episodes 

2-5. The Pearson correlation between the fraction of time spent in the stochastic part and the degree of 

exploitation is negative (Methods). Error bars show the standard error of the mean (SEMean) and single 

dots the data of 20 individual simulations. A3, C3, and E3. Median number of actions in episodes 2-5 for 

simulated efficient agents purely driven by intrinsic rewards (i.e., pure exploration). The Pearson 

correlation between the search duration and episode number is positive for seeking novelty or surprise but 

is negative for seeking information-gain. Error bars show the SEMed and single dots the data of 20 

individual simulations. B, D, and F. Fraction of time taking the progressing action (PA) and the 

stochastic action (SA) when encountering state 4 during episode 2. Purely seeking novelty shows a 

smaller difference between the preference for SA and PA in state 4 compared to purely seeking 

information-gain or surprise. Error bars show the SEMean. 

groups of efficient agents, increasing the relative importance of intrinsic rewards increases their 

preference for the stochastic action.  However, for the highest importance of intrinsic rewards, the 

probability of choosing the progressing action is substantially lower than the probability of 

choosing the stochastic action for seeking surprise or information-gain (15% vs. 85%; Fig. 3.4.2D 

and F), whereas this difference is much smaller for seeking novelty (40% vs. 60%; Fig. 3.4.2B). 

This distinct behavior of novelty-seeking is due to the fact that novelty is defined for states, 

whereas surprise and information-gain are defined for transitions (i.e., state-action pairs; see 

Methods): By the end of episode 1, the goal state has been observed only once and remains, during 

episode 2, relatively novel (and hence attractive for an efficient novelty-seeking agent) compared 

to most stochastic states, whereas there are many actions between the stochastic states that have 

rarely or potentially never been chosen and are, thus, attractive for an efficient agent seeking 

surprise or information-gain. 

To summarize, different intrinsically motivated algorithms exhibit principally different 

behavioral patterns in our experimental paradigm. We consider these behavioral patterns as 

qualitative predictions for human behavior. 

Human participants 

To test the predictions of intrinsically motivated algorithms, we first compare the 

exploratory behavior of human participants with that of simulated efficient agents.  For simulated 

efficient agents, the relative importance of the intrinsic reward for action-selection (Fig. 3.4.1D) 

determines the balance of exploration versus exploitation. A challenge in human experiments is 

that we do not have explicit control over the variable that controls the relative importance of 
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intrinsic rewards compared to extrinsic rewards. Inspired by earlier studies45–47, we conjecture that 

human participants who are more optimistic about finding a goal with a high value of reward are 

more curious to explore the environment than human participants who are less optimistic.  In other 

words, we hypothesize that the relative importance of intrinsic rewards in human participants is 

positively correlated with their degree of ‘reward optimism’, where we define reward optimism as 

the expectancy of finding a goal of higher value than those already discovered. 

Based on this hypothesis, we include a novel reward manipulation in the instructions given 

at the beginning of the experiment: We inform human participants that there are three different 

possible reward states corresponding to values of 2 Swiss Franc (CHF), 3 CHF, and 4 CHF, 

represented by three different images (Methods). At the beginning of the experiment, we randomly 

assign the three different reward values to the goal states G∗, G1, and G2 in Fig. 3.4.1A, separately 

for each participant (without informing them), and keep the assignment fixed throughout the 

experiment. After this random assignment, G∗ has a different value for different participants. Even 

though all participants receive the same instructions, participants who are randomly assigned to an 

environment with 4 CHF reward value for G∗ do not have any monetary incentive to further explore 

in episodes 2-5 (= a low degree of reward optimism), whereas participants who are assigned to an 

environment with 2 CHF reward value for G∗ are likely to keep searching for more valuable goals 

in episodes 2-5 (= a high degree of reward optimism). Therefore, we have three different groups 

of participants with three different levels of reward optimism in episodes 2-5; see Methods for how 

this information is incorporated in the RL algorithms. We note that our definition of reward 

optimism in the context of our experiment is in line but independent of the notion of general 

optimism that is quantified for individual participants in psychology48. 

Following a power analysis based on the data of simulated efficient agents (Methods), we 

recruited 63 human participants and collected their action-choices during the 5 episodes of our 

experiment: 23 participants in an environment with 2 CHF reward value for G∗ and two times 20 

human participants in environments with 3 CHF and 4 CHF reward value for G∗, respectively. In 

the rest of the manuscript, we refer to each group by their reward value of G∗, e.g., the 3 CHF 

group is the group of human participants who were assigned to 3 CHF reward value for G∗ (as in 

Fig. 3.4.1C). We excluded the data of 6 human participants from further analyses since they either 

did not finish the experiment or had an abnormal performance (Methods). 



42 

 

Human participants exhibit a persistent distraction by 
stochasticity 

We perform the same series of analyses on the behavior of human participants as those 

performed on the behavior of simulated efficient agents (Fig. 3.4.3). In episodes 2-5, the search 

duration of human participants (Fig. 3.4.3A1) and the fraction of time they spend in the stochastic 

part (Fig. 3.4.3A2) are both negatively correlated with the goal value of their environment, e.g., 

the 2 CHF group has a longer search duration and spends more time in the stochastic part than the 

other two groups. Moreover, increasing the goal value increases the preference of human 

participants for the progressing action in state 4 during episode 2 (Fig. 3.4.3B). These observations 

support our hypothesis that increasing the degree of reward optimism influences the behavior of 

human participants in the same way as increasing the relative importance of intrinsic rewards 

influences the behavior of simulated efficient agents (e.g., compare Fig. 3.4.3A1, A2, and B with 

Fig. 3.4.2A1, A2, and B, respectively). 

The behavior of the 2 CHF group is particularly interesting since they are the most 

optimistic group of participants. The 2 CHF group exhibits a constant search duration over 

episodes 2-5 (zero correlation accepted by Bayesian hypothesis testing49; Fig. 3.4.3A3). This 

implies that they 

 

Figure 3.4.3: Human participants persistently explore the stochastic part if they are highly optimistic. 

A. Search duration in episodes 2-5. A1. Median number of actions over episodes 2-5 for the three different 

groups: 2 CHF (dark), 3 CHF (medium), and 4 CHF (light). Error bars show the SEMed (evaluated by 

bootstrapping) and single dots the data of individual participants. The Pearson correlation between the 

search duration and the goal value is negative (correlation test; t = −4.2; 95% Confidence Interval (CI) = 

(−0.67, −0.27); Degree of Freedom (DF) = 55; Methods). A2. Average fraction of time spent in the 
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stochastic part of the environment during episodes 2-5. The Pearson correlation between the fraction of 

time spent in the stochastic part and the goal value is negative (correlation test; t = −4.7; 95% CI = (−0.70, 

−0.32); DF = 55; Methods). Error bars show the SEMean and single dots the data of individual participants. 

A3. Median number of actions in episodes 2-5 for the 2 CHF group. A Bayes Factor (BF) of 1/3.7 in favor 

of the null hypothesis 49 suggests a zero Pearson correlation between the search duration and the episode 

number (one-sample t-test on individual correlations; t = 0.63; 95% CI = (−0.20, 0.37); DF = 20). Error 

bars show the SEMed and single dots the data of individual participants. B. Fraction of time choosing the 

progressing action (PA) and the stochastic action (SA) when encountering state 4 during episode 2; see 

Supplementary Materials for other progressing states. Error bars show the SEMean. The difference between 

PA and SA for the 4 CHF group is significant (one-sample t-test; t = 2.99; 95% CI = (0.14, 0.81); DF = 16). 

A BF of 1/4.6 in favor of the null hypothesis49 suggests an equal average between PA and SA for the 2 CHF 

group (one-sample t-test; t = 0.039; 95% CI = (−0.25, 0.26); DF = 20). The test for 3 CHF group is 

inconclusive (one-sample t-test; t = 1.17; 95% CI = (−0.13, 0.47); DF = 18). Red p-values: Significant 

effects with False Discovery Rate controlled at 0.0550 (see Methods). Red BFs: Significant evidence in 

favor of the alternative hypothesis (BF≥ 3). Blue BFs: Significant evidence in favor of the null hypothesis 

(BF≤ 1/3). 

persistently explore the stochastic part. Moreover, during episode 2, the 2 CHF group chooses the 

progressing and the stochastic actions equally often (no-difference in means accepted by Bayesian 

hypothesis testing49; Fig. 3.4.3B). If we assume that the high degree of reward optimism in the 2 

CHF group results in a policy that is driven dominantly by intrinsic rewards (driving exploration) 

and only marginally by extrinsic rewards, then these observations are more similar to the 

qualitative predictions of seeking novelty than those of seeking information-gain or surprise 

(compare Fig. 3.4.3B against Fig. 3.4.2B, D, and F). 
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Figure 3.4.4: Novelty-seeking is the most probable model of human behavior. A. Human participants’ 

action-choices are best explained by novelty-seeking (see Methods for details). A1. Model log-evidence 

summed over all participants (i.e., assuming that different participants have the same exploration strategy 

but can have different parameters53) is significantly higher for seeking novelty than seeking information-

gain or surprise. High values indicate good performance, and differences greater than 10 are traditionally50 

considered as strongly significant. A2. The expected posterior model probability with random effects 

assumption54 (i.e., assuming that different participants can have different exploration strategies and 

different parameters) given the data of all participants. PXP stands for Protected Exceedance Probability54, 

i.e., the probability of one model being more probable than the others. Error bars show the standard 

deviation of the posterior distribution. B. Confusion matrix from the model recovery procedure: Each row 

shows the results of applying our model-fitting and -comparison procedure (as in A2) to the action-choices 

of simulated participants by one of the three algorithms (with their parameters fitted to human data; see 

Methods). Color-code shows the expected posterior probability and numbers in parentheses the PXP (both 

averaged over 5 sets of 60 simulated participants). We could always recover the model that had generated 

the data (PXP ≥ 0.98), using almost the same number of simulated participants (60) as human participants 

(57). 

Novelty-seeking is the most probable model of human 
exploration 

In the previous section, we observed that human participants exhibit patterns of behavior 

qualitatively similar to those of novelty-seeking simulated efficient agents. However, the 

qualitative predictions in Fig. 3.4.2 were made based on the assumptions of (i) using efficient RL 

algorithms with perfect memory and high computational power, (ii) using parameters that were 

optimized for the best performance in episode 1, and (iii) assigning the same extrinsic reward value 

to different goal states. In this section, we use a more realistic model of behavior than that of 

efficient agents in Fig. 3.4.2: In order to model the behavior of human participants, we use a hybrid 

RL model18,36,38,51 combining model-based planning41 and model-free habit-formation52, account 

for imperfect memory and suboptimal choice of parameters, and allow our algorithms to assign 
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different extrinsic reward values to different goal states (Methods). We fit the parameters of our 

three intrinsically motivated algorithms to the action-choices of each individual participant by 

maximizing the likelihood of data given parameters (Methods). Such a flexible modeling approach 

allows each of the three algorithms to find its closest version to the behavior of human participants, 

constrained on using one specific intrinsic reward signal (i.e., novelty, surprise, or information-

gain). 

Given the fitted algorithms, we use Bayesian model-comparison53,54 to quantitatively test 

whether human behavior is explained better by seeking novelty than seeking information-gain or 

surprise 

 

Figure 3.4.5: Seeking novelty, but not surprise or information-gain, can reproduce data statistics. For 

each of the three intrinsic rewards, we run 1500 simulations of algorithms with parameters fitted to 

individual human participants; random seeds are different in each simulation. We divide the simulated 

participants into three groups (corresponding to the 2 CHF, 3 CHF, and 4 CHF goal values) and use the 

same criteria as we used for human participants to detect and remove outliers among simulated participants 

(Methods). A. Average fraction of time during episodes 2-5 spent by the 2 CHF group of human participants 

(blue circles, same data as in Fig. 3A2) and the simulated participants (bars). Error bars: SEMean. P-value 

and BF: Comparison between the simulated and human participants (unequal variances t-test). Human 

participants spend a significantly greater fraction of their time in the stochastic part than simulated 

participants seeking information-gain (t = 4.4; 95% CI = (0.08, 0.23); DF = 21.2) or surprise (t = 6.3; 95% 

CI = (0.15, 0.30); DF = 21.6). No significant difference was observed for novelty seeking (t = 1.0; 95% CI 

= (−0.04, 0.11); DF = 22.3). B. Pearson correlation between the fraction of time during episodes 2-5 spent 

in the stochastic part and the goal value. Human participants’ data shows the same correlation value as 

reported in Fig. 3A2. Error bars: Standard deviation evaluated by bootstrapping. P-values are from 

permutation tests (1000 sampled permutations; Bayesian testing was not applicable). C. The relative 

contribution of intrinsic rewards (i.e., dominance of πint,t over πext,t; Eq. 18 in Methods) in episodes 2-5 for 

the 2 CHF group of simulated participants. P-value and BF: Comparison with 0.5 (one-sample t-test). We 

observe a dominance of πint,t for seeking novelty (t = 58.2; 95% CI = (0.88, 0.91); DF = 416) and 

information-gain (t = 12.7; 95% CI = (0.63, 0.67); DF = 379) but a dominance of πext,t for seeking surprise 

(t = −14.6; 95% CI = (0.27, 0.32); DF = 327). Red p-values: Significant effects with False Discovery Rate 
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controlled at 0.0550 (see Methods). Red BFs: Significant evidence in favor of the alternative hypothesis 

(BF≥ 3). 

(Methods). Our model-comparison results show that seeking novelty is the most probable model 

for the majority of human participants, followed by seeking information-gain as the 2nd most 

probable model (Fig. 3.4.4A; Protected Exceedance Probability54 = 0.99 and 0.01 for seeking 

novelty and information-gain, respectively). This result shows that seeking novelty describes the 

behavior of human participants better than seeking information-gain and surprise, but it does not 

tell us which aspects of data statistics cannot be explained by algorithms driven by information-

gain or surprise. To investigate this question, we use our three intrinsically motivated algorithms 

with their fitted parameters and simulate new participants, i.e., we perform Posterior Predictive 

Checks (PPC)55,56. As opposed to the simulations in Fig. 3.4.2, we do not freely choose the level 

of exploration in simulations for PPC. Rather, the level of exploration of each newly simulated 

participant is completely determined by the previously fitted parameters from one of the 57 human 

participants; specifically, each simulated participant belongs to one of the three groups of human 

participants (e.g., the 3 CHF group), and its action-choices are simulated using a set of parameters 

fitted to the action-choices of one human participant randomly selected from the participants in 

that group (Methods). 

Given the PPC results, we first perform model-recovery55 on the data from the simulated 

participants: Indeed, model recovery confirms that we can infer which algorithm has generated the 

action-choices of simulated participants (by repeating our model-fitting and -comparison; Fig. 

3.4.4B). This implies that even the versions of different algorithms that are closest to human data 

can be dissociated in our experimental paradigm (average Protected Exceedance Probability54 ≥ 

0.98 for the true model in Fig. 3.4.4B). Next, we perform a systematic comparison between the 

statistics of the action-choices of human participants and those of the simulated participants (the 

two most discriminating statistics are reported in Fig. 3.4.5A-B and a systematic analysis in 

Supplementary Materials). Our results show that simulated participants using novelty as intrinsic 

rewards reproduce all data statistics (including the zero correlation observed in Fig. 3.4.3A3; see 

Supplementary Materials), whereas simulated participants using information-gain or surprise fail 

to do so. The failure of algorithms using information-gain or surprise is most evident regarding the 

fraction of time spent in the stochastic part during episodes 2-5: 1. We observe that the 2 CHF 

group of simulated participants who seek information-gain or surprise spends a significantly 
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smaller fraction of their time (less than half) in the stochastic part of the environment than the 2 

CHF group of human participants (Fig. 3.4.5A). 2. Simulated participants using information-gain 

or surprise fail to reproduce the observed negative correlation between the goal value and the 

fraction of time spent in the stochastic part (Fig. 3.4.5B). We emphasize that both shortcomings 

are observed despite the fact that parameters of the algorithms had been previously optimized to 

explain as best as possible the sequence of action choices across the whole experiment. 

The failure of surprise-seeking algorithms to reproduce these statistics is due to the 

detrimental consequences of seeking surprise in the presence of stochasticity (e.g., as observed for 

the simulated efficient agents in Episode 5 of Fig. 3.4.2E3). Hence, to stop the simulated 

participants from spending an enormous amount of time during episode 5 in the stochastic part of 

the environment, fitting surprise-seeking to action-choices of human participants yields a set of 

parameters that causes action-choices to be dominated by extrinsic reward (relative importance of 

surprise-seeking about 0.3 for the 2 CHF group; Fig. 3.4.5C), which in turn cannot explain the 

overall high level of exploration observed in the 2 CHF group of human participants (Fig. 3.4.5A). 

Similarly, the relative importance of information-gain is around 0.65 when parameters of a hybrid 

algorithm driven by information-gain are optimized to fit human behavior. A higher value of 

relative importance would make, during episode 2, the algorithm too attracted to the stochastic 

action in state 4 compared to humans (compare Fig. 3.4.2D with Fig. 3.4.3B). With such reduced 

importance of information-gain, the hybrid algorithm cannot, however, explain the specific 

behavioral features in Fig. 3.4.5A and B. Therefore, the attraction of human participants to the 

stochastic part has specific characteristics that are explained by seeking novelty but not by seeking 

surprise or information-grain. 

Taken together our results with simulated participants provide strong quantitative evidence 

for novelty-seeking as a model of human exploration in our experiment. 

Reward optimism correlates with relative importance of novelty 

Using novelty-seeking as the most probable model of human behavior, we can now 

explicitly test our hypothesis that reward optimism increases the relative importance of intrinsic 

rewards. 
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Figure 3.4.6: Reward optimism increases the relative importance of novelty in action-selection. A. 

The relative importance of novelty-seeking in episodes 2-5 is computed for each participant after fitting the 

model to data (similar to Fig. 3.4.5C but using action-choices of human participants instead of simulated 

participants; Methods). Error bars show the SEMean and single dots the data of individual participants. We 

observe a significant negative correlation between the relative importance of novelty and the goal value 

(correlation test; t = −3.6; 95% CI = (−0.63, −0.20); DF = 55). P-values and BFs on top: Comparison with 

0.5 (one-sample t-test). We observe a significant dominance of πint,t for the 2 CHF group (t = 5.9; 95% CI 

= (0.70, 0.92); DF = 20). A BF of 1/4.0 in favor of the null hypothesis49 suggests an equal contribution of 

πext,t and πint,t for the 4 CHF group (t = −0.23; 95% CI = (0.35, 0.62); DF = 16). The test for 3 CHF group is 

inconclusive (t = 1.8; 95% CI = (0.48, 0.80); DF = 18). B. The relative importance of novelty-seeking in 

episode 1 implies a significant dominance of novelty-seeking against optimistic initialization for 

exploration (t = 7.3; 95% CI = (0.68, 0.82); DF = 56). C. Parameter-recovery55 using the action-choices of 

150 (= 50 per group) simulated participants seeking novelty (Methods). The comparison between the true 

contribution of novelty-seeking to action-selection (computed with the parameters used for simulations) 

and the recovered contribution (computed with the parameters fitted to the simulated action-choices) shows 

that the relative importance of novelty-seeking is on average identifiable in our experimental paradigm: 

Positive correlations both for episode 1 (t = 9.0; 95% CI = (0.48, 0.70); DF = 148) and episodes 2-5 (t = 12; 

95% CI = (0.63, 0.79); DF = 148). Red p-values: Significant effects with False Discovery Rate controlled 

at 0.0550 (see Methods). Red BFs: Significant evidence in favor of the alternative hypothesis (BF≥ 3). Blue 

BFs: Significant evidence in favor of the null hypothesis (BF≤ 1/3). 

By analyzing the parameters of our novelty-seeking algorithm fitted to the behavioral data, 

we observe, in agreement with our hypothesis, a significant negative correlation between the 

relative importance of novelty during action-selection (in episodes 2-5) and the goal value 

participants found in episode 1 (Fig. 3.4.6A; parameter-recovery55 in Fig. 3.4.6C). Moreover, the 

participants in the 2 CHF group continue with an almost fully exploratory policy in episodes 2-5 

indicating that they have only a small bias towards exploiting the small but known reward (Fig. 

3.4.6A). 
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Since our simulated participants are informed that there are three different goal states in the 

environment, the reward-seeking component πext,t of the action-policy can also contribute to 

exploratory behavior, e.g., through optimistic initialization of Q-values37 or prior assumptions 

about the state-transitions (see Methods for a theoretical analysis). To study the extent of this 

contribution, we focus on episode 1 where this effect is most easily detectable: We observe a 

dominant influence of novelty-seeking on action-selection (Fig. 3.4.6B). This implies that, to 

explain human behavior, the knowledge of the existence of different goal states must drive 

exploration through a novelty-seeking policy instead of the optimistic initialization of a reward-

seeking policy. 
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3.5 Discussion 

We designed a novel experimental paradigm to study human curiosity-driven exploration in 

the presence of stochasticity. We made two main observations: (i) Human participants who are 

optimistic about finding higher rewards than those already discovered are persistently distracted 

by stochasticity; and (ii) this persistent pattern of distraction is explained better by seeking novelty 

than seeking information-gain or surprise, even though seeking information-gain is theoretically 

more robust in dealing with stochasticity. 

How humans deal with the exploration-exploitation trade-off has been a long-lasting question 

in neuroscience and psychology57,58. Experimental studies have shown that humans use a 

combination of random and directed exploration13,16, potentially linked to different neural 

mechanisms59–61. However, there are multiple distinct theoretical models to describe directed 

exploration5,10,26,62–65, and it has been debated which one is best suited to explain human behavior. 

In a general setting, human exploration is driven by multiple motivational signals15,65, but it has 

been also shown that a particular signal can dominate exploration in specific tasks3,17,45,66–68. In an 

earlier work18, we have shown that novelty signals dominantly drive human exploration in 

situations where one needs to search for rewarding states in unknown but deterministic 

environments. Observations (i) and (ii) above provide further evidence for novelty as the dominant 

drive of human search strategy even in situations where seeking novelty is not optimal and leads 

to distraction by reward-independent stochasticity. Further experimental studies are needed to 

investigate the role novelty in other types of human exploratory behavior. 

Observation (ii) is particularly surprising as it has been believed that humans are not prone to 

the ‘noisy TV’ problem4,31,33. Our results with human participants challenge the idea of defining 

curiosity as a normative solution to the exploration-exploitation trade-off3,6; hence, algorithmic 

advances in machine learning do not necessarily help finding better models of human exploration. 

However, we note that, for computing novelty, an agent only needs to track the state frequencies 

over time and does not need any knowledge of the environment’s structure (Methods); hence 

computing novelty is computationally cheaper than computing information-gain. This suggests 

that a potentially higher level of distraction by noise in humans may be the price of spending less 

computational power. In other words, novelty-seeking in the presence of stochasticity may not be 

a globally optimal strategy for exploration but can be an optimal strategy given a set of prior 

assumptions and computational constraints, i.e., a ‘resource rational’ policy69–71. 
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The core assumption of using intrinsically motivated algorithms as models of human curiosity 

is the existence of an intrinsic exploration reward parallel to the extrinsic reward. There are, 

however, multiple ways to incorporate intrinsic rewards into the RL framework 26. The common 

practice is to use a weighted sum of the intrinsic and the extrinsic reward as a single scalar reward 

signal driving action-selection8,19,28. An alternative approach is to treat different reward signals in 

parallel and compute separate action-policies which are combined to drive action-selection later 

in the processing stream18,72,73. The latter approach provides higher flexibility to arbitrate between 

different policies based on changes in the relative importance of intrinsic versus extrinsic rewards 

because it does not need re-planning or re-evaluation of already learned policies. Parallel 

processing paths are compatible with the rapid change of behavior observed in our human 

participants after finding a goal at the end of episode 1 (Fig. 3.4.3B1-2) and also consistent with 

experimental evidence for partially separate neural pathways of novelty- and reward-induced 

behaviors18,74–78. 

We found that the relative importance of novelty- and reward-induced behaviors in human 

participants is correlated with the degree of reward optimism. This is in line with the known 

influence of environmental variables on an agent’s preference for novelty45,46,76. In particular, 

theories of ‘motivation crowding effect’79 and ‘undermining effect’80,81 suggest that the absolute 

value of extrinsic reward might contribute, in addition to the reward optimism, to the observed 

negative correlation in Fig. 3.4.6A, predicting that even if participants were confident that there is 

no other goal state in the environment, the 2 CHF group would spend more time in the stochastic 

part than the 4 CHF group – simply because 2 CHF is not an attractive reward anyway. A potential 

future direction to investigate the interplay of novelty and reward is to study human behavior in 

various environments with different reward distributions and different sources of stochasticity. 

Optimism in psychology has been defined as a ‘variable that reflects the extent to which 

people hold generalized favorable expectancies for their future’48 and has been linked to several 

neural and behavioral characteristics48,82,83. While the traditional approach to measure optimism is 

through self-tests84, more recently statistical inference using RL85 and Bayesian86,87 models of 

behavior have been proposed to quantify variables correlated with traditional measurements. 

While there are multiple traditional ways to incorporate the notion of optimism into the RL 

framework (Methods), seeking intrinsic rewards has also been interpreted in the machine learning 

community as an ‘optimistic policy’ for exploration62. Our results show that the preference for an 
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intrinsic reward is indeed correlated with a notion of optimism defined in the context of our 

experiment as the expectancy of finding a goal of higher value in episodes 2-5 (‘reward optimism’ 

in Fig. 3.4.6A). Moreover, the persistent exploration of the stochastic part of our environment 

observed in the behavior of human participants (Fig. 3.4.3B3) is consistent with the known 

phenomena of optimism bias88 and optimistic belief updating in humans82,89,90. 

Even though notions of ‘novelty’, ‘surprise’, and ‘information-gain’ are frequently used in 

neuroscience18,91,92, psychology93,94, and machine learning26,27,33, there is no consensus on the 

precise definitions of these notions as scientific terms 44,95.  Our results in this paper are based on 

the specific mathematical formulations that we have chosen (Methods), but we expect our 

conclusions to be invariant with respect to the precise choice of definitions as long as (i) novelty 

quantifies infrequency of states18, e.g., defined based on density models in machine learning19,20; 

(ii) surprise quantifies mismatches between observations and agents’ expectations, where the 

expectations are made based on the previous state-action pair, including all measure of prediction 

surprise44 and typical measures of prediction error in machine learning21,28; and (iii) information-

gain quantifies improvements in the agents’ world-model and vanishes by accumulation of 

experience, e.g., including Bayesian91 and Postdictive surprise92 and measures of disagreement 

and progress-rate in machine learning23–25,29. 

In conclusion, our results show (i) that human decision-making is influenced by an interplay 

of intrinsic with extrinsic rewards that is controlled by reward optimism and (ii) that novelty-

seeking RL algorithms can successfully model this interplay in tasks where humans search for 

rewarding states. 
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4. Study II: Abnormal dopamine levels lead to deteriorated reward but 
enhanced punishment learning in schizophrenia patients 

In our first study, we aimed to examine how abnormalities in the dopamine system affect 

an individual’s ability in RL. Previous research has reported abnormally elevated dopamine levels 

in patients with schizophrenia. However, there has been no direct explanation of how such deficits 

affect RL. We propose that elevated dopamine levels restrict the dopamine transient, leading to 

diminished neural activity for encoding the prediction error. This decrease in the prediction error 

signal could affect the reward update process, resulting in suboptimal action selection in RL. 

Additionally, our model suggests that elevated dopamine levels might not impact punishment 

learning, as the negative prediction error is unaffected by elevated baseline dopamine levels. 

Therefore, our hypotheses are: 1) Schizophrenia patients will exhibit deficits in reward-based 

learning, and 2) these patients will demonstrate intact punishment-based learning.  

To validate these hypotheses, we designed an RL task in which participants were presented 

with an image (state) and four circles (action) below it. Participants had to click one circle to 

transition to another state, until a predefined goal state was reached. Our results indicated that the 

patients were less accurate compared to the healthy controls, and the cause is primarily due to 

increased perseverative behavior. This pattern was also revealed in our computer simulations. 

Second, when punishment is introduced into the RL environment, the patients performed better 

compared to the reward condition, supporting our second hypothesis.  
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4.1 Abstract 

Dopamine (DA) is a critical neurotransmitter in reinforcement learning (RL) processes 

(Schultz et al., 1997), and its aberrantly high levels in striatal region are pivotal in schizophrenia. 

However, the link between the learning deficits observed in schizophrenia and dopamine 

dysregulation has remained a puzzle. In this study, we propose a novel hypothesis that compressed 

transient dopamine signals, resulting from the elevated dopamine levels in schizophrenia patients, 

disrupt learning. Our theoretical model generates three predictions, all of which are supported by 

our results. First, we observe that patients exhibit suboptimal performance in RL tasks. Second, 

our computational simulations suggest that the compression of transient dopamine signals induces 

perseverative behavior in patients, thereby explaining their impaired task performance. Third, both 

our theoretical predictions and empirical data indicate that schizophrenia patients have preserved, 

or even enhanced, RL capabilities in tasks that involve punishment rather than reward. 
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4.2 Introduction 

Dopamine is essential to reinforcement learning (RL). Notably, dopaminergic neurons in the 

pars compacta of the substantia nigra exhibit robust firing in response to unexpected rewards and 

diminished firing for anticipated ones, regardless of the reward’s magnitude (Schultz et al., 1997). 

Such neural activities illustrate the concept of reward prediction error, a fundamental component 

of all RL models. This prediction error is typically characterized as the difference between the 

anticipated and received rewards. A plethora of research supports the notion that transient 

fluctuations in dopamine concentrations significantly influence synaptic neural plasticity 

(Calabresi et al., 2007; Centonze et al., 2001; Shen et al., 2008; van der Schaaf et al., 2014).  

Dysfunctions in the dopamine system are frequently implicated as a critical factor in 

psychiatric disorders, and more specifically in schizophrenia (Kapur et al., 2005; Howes and Kapur, 

2009a). For instance, D2 receptor antagonists have been found to alleviate psychotic symptoms 

(Abi-Dargham et al., 1998; Davidson et al., 1987), whereas dopamine agonists can induce 

psychotic symptoms even in healthy individuals (Janowsky and Risch, 1979; Sekine et al., 2001). 

Research by Seeman (2013) suggests that psychosis may arise when D2 receptors adopt a high-

affinity state, pointing to these receptors as potential mediators of learning effects. This aligns with 

the hypothesis that excessive dopamine uptake by neurons, facilitated by these D2 receptors, 

correlates with the issues related to dopamine transients that we’ve highlighted. As a result, many 

therapeutic approaches for schizophrenia predominantly focus on modulating dopamine D2 

receptors to stabilize aberrant dopamine levels (Howes et al., 2012; Howes and Kapur, 2009b). 

Nonetheless, the precise effects of dopamine in schizophrenia are multifaceted and remain 

inadequately understood. 

Elevated baseline striatal dopamine levels have been consistently observed in patients with 

schizophrenia (Kesby et al., 2018; Seeman, 2011; Davis et al., 1991; Laruelle and Abi-Dargham, 

1999). We proposed that these anomalously high levels lead to a compressed encoding of the 

prediction error (Fig. 4.4.1A), resulting in the learning deficits observed in these patients. 

Specifically, this elevated baseline may diminish the contrast between baseline and peak dopamine 

levels, thus reducing the precision of prediction error encoding and subsequently slowing the RL 

process in patients. To explore this hypothesis, we have modified the standard Q-learning model, 

a method wherein an agent iteratively navigates an environment, taking actions that transition from 

one state to another and updating values based on prediction errors following each action. We 



64 

 

introduced a term to represent the effect of compressed dopamine transients on prediction 

error: 

𝑄(𝑆, 𝐴) ← 𝑄(𝑆, 𝐴) + 𝛼 (𝛽(𝑟 − 𝑄(𝑆, 𝐴)) + max
𝑖
𝑄(𝑆𝑛𝑒𝑤, 𝐴𝑖)) 

In the equation, 𝑄(𝑆, 𝐴) represents the value updated for each state (S) and action (A). The 

parameter 𝛽 serves as a scaling factor to modulate the prediction error (𝑟 − 𝑄(𝑆, 𝐴)), where r is 

the reward. A smaller 𝛽 implies greater compression of the prediction error signal, reflecting the 

hypothesized effect of abnormal dopamine transients. 𝛼 is the learning rate. The latter part of the 

update rule, max
𝑖
𝑄(𝑆𝑛𝑒𝑤, 𝐴𝑖), specifies the maximum expected Q-value in the next state (𝑆𝑛𝑒𝑤), 

over all possible actions (𝐴𝑖). This component serves as an estimate of future value, guiding the 

agent towards actions that are expected to yield the highest rewards in subsequent states. 

To validate our model and formulate predictions, we incorporated it into a behavioral RL 

paradigm. In this paradigm, participants are presented with an image (state) accompanied by four 

gray buttons (Fig 4.4.1; Tartaglia et al., 2017). Participants select a button (action), prompting the 

appearance of a subsequent image. This process is repeated until a target image appears. The 

sequence and nature of these images, representing the “environment”, resists simplification into a 

straightforward 2D map. For instance, pressing the right button might transition from a cherry 

image to a house image, but no single action brings the display back to the cherry. We specifically 

designed this paradigm to prevent participants from forming cognitive maps, thus ensuring our 

setup closely mirrors fundamental RL scenarios while minimizing cognitive demands. 

In our simulation, we adjusted 𝛽 to either 75% or 50% of its maximum value and ran the 

simulation in the same environment as that used for human participants. Our analyses considered 

the average number of repeated state-action pairs, the maximum number of repetitions within an 

episode, and the length of the repeating patterns. Our findings suggest that compressed prediction 

errors may lead to increased perseveration behavior (Fig. 4.4.2), a characteristic commonly 

observed in schizophrenia patients (Crider, 1997; Ersche et al. 2011). Additionally, our model 

suggests that patients might perform better in RL with negative rewards – particularly punishments 

– compared to positive ones. This is due to a potentially larger prediction error signal with negative 

rewards, which we expressed as “max dopamine level - 𝛽*baseline dopamine level”. Since we 

presume 𝛽 for patients is less than one, this calculation yields a larger discrepancy than in controls. 

This implies that patients could potentially outperform controls in scenarios driven by punishment. 
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To validate these hypotheses, we conducted two experiments using the aforementioned paradigm, 

with 20 schizophrenia patients and 20 controls, respectively.  

  

 

 
Figure 4.4.1. The RL task. (A): Model overview. The depicted model showcases differential baseline 

dopamine levels in healthy controls (left) versus schizophrenia patients (right). Due to elevated baseline 

levels in patients, the range of dopamine transients that encode the reward prediction error (RPE) is 

comparatively compressed. Conversely, when considering punishments, the dynamics are inverted. (B): 

Illustration of a single episode in the experimental environment. Participants encountered an initial image, 

for instance, a house, accompanied by four gray buttons. Upon selecting a button (an action), they 

transitioned to a subsequent image, like the telephone. This progression continued until participants reached 

the “Yeah!” image. The succession of images and corresponding button presses leading to the “Yeah!” 

image is termed an episode. Participants endeavored to finish as many episodes as possible within a 

designated timeframe. Image inter-stimulus intervals (ISI) vary between 0.5s and 6s depending on the 

experimental conditions. (C): State-action connectivity representation. Each node symbolizes an image, 

with arrows indicating potential actions. The environment structure is notably irregular. As an illustration, 

while there’s a path from the house image to the cherries, no direct return link exists. Mathematically, this 

environment cannot be simplified into a 2D map, a design intended to suppress cognitive factors (Tartaglia 

et al., 2017). 
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4.3 Methods 

Participants  

We recruited 20 schizophrenia patients and 20 age-matched healthy controls from the 

Asatiani Psychiatric Institute in Tbilisi, Georgia, for experiments 1 and 2, respectively. Patient 

diagnoses adhered to DSM-IV, determined through a combination of SCID-based interviews, staff 

input, and a review of patient records. Psychopathology was assessed by the Scales for the 

Assessment of Negative and Positive Symptoms (SANS, SAPS respectively; Andreasen, 1989, 

1984). Demographic details are presented in Table 1. All participating patients were under 

neuroleptic treatment. Chlorpromazine equivalents (CPZ) are shown in Table 1.  

 Experiment 1 Experiment 2 

 Patients Controls Patients Controls 

Gender (F/M) 1/19 10/10 3/17 5/15 

Age 40.6 ± 8.4 29.9 ± 7.3 43.9 ± 8 44 ± 6.1 

Education 14.1 ± 3.2 16.6 ± 3.8 12.6 ± 2.6 14.3 ± 3.4 

Illness duration 17.9 ± 8 -- 20.5 ± 8.9 -- 

SANS 11.1 ± 4.6 -- 10.8 ± 5.1 -- 

SAPS 8.8 ± 2.7 -- 8.8 ± 3.4 -- 

CPZ 525.3±416.3 -- 559.5 ± 328.6 -- 

Table 1. Average Statistics (±SD) of Schizophrenic Patients and Healthy Controls. Abbreviations: 

SANS, Scale for the Assessment of Negative Symptoms; SAPS, Scale for the Assessment of Positive 

Symptoms, CPZ, Chlorpromazine equivalents. 

Procedure: Experiment 1 

Each participant was first presented with a screen containing all nine images used in the 

experiment, with a gray button positioned at the bottom. This button served as the start button for 

the experiment. Once initiated, the participant was presented with one image centered on the screen 

and with four gray buttons below. Selecting one of these buttons brought the participant to another 

image until the goal image, labeled with the word “Yeah!”, was found (Fig. 1, top).  

We refer to the sequence of images (states) and mouse clicks (actions) leading up to and 

including the “Yeah!” (goal) as one episode. We used two inter-stimulus-intervals (ISIs) of 0.5 

seconds and 6 seconds between the observers’ response and the next image presentation. The task 

was to find the goal state as often as possible in 8 minutes for the 0.5-second ISI condition, and 30 

minutes for the 6-second ISI condition.  
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Procedure: Experiment 2 

 Experiment 2 was similar to experiment 1 but incorporated both reward and punishment 

conditions, with an ISI of 0.5 seconds. In the reward condition, participants aimed to reach the 

goal state 15 times, with each successful attempt earning a monetary reward of 1 CHF, for a 

potential total of 15 CHF. Conversely, the punishment condition imposed monetary penalties for 

each fourth “incorrect” action within six pre-specific states. Participants were alerted with the 

message “Wrong way” and incurred a loss of 1 CHF for every fourth occurrence of entering a 

punishment state. This condition was also completed after 15 episodes. Notably, these punishment 

states were positioned at least two steps away from the goal state. The order of the two conditions 

was pseudo-randomized among participants, ensuring that half began with the reward condition 

and the other half with the punishment condition. 

Analysis 

Number of Episodes and proportion of optimal actions 

Performance was quantified by the number of episodes each participant completed within 

the given timeframe, with a higher episode count indicating better performance. Since observers 

varied in reaction times, leading to differences in episode completion, we standardized this metric. 

We identified the minimum number of total actions performed by any participant in each condition. 

Subsequently, for each participant, we considered only this minimum number of actions, 

disregarding any actions beyond this group minimum. One patient was excluded from the analysis 

due to completing fewer than 1st percentile of the number of actions relative to other participants. 

Additionally, we evaluated performance based on the proportion of optimal actions taken 

by each participant. This was calculated by dividing the number optimal actions by the total 

number of actions. An action was deemed optimal if it minimized the distance from the current 

state to the goal state. 

Perseveration 

Schizophrenia patients are known to exhibit perseverative behavior, characterized by their 

tendency to engage in repetitive, non-optimal action sequences. For instance, they might 

repeatedly perform actions such as “1, 2, 3, 1, 2, 3, 4, 2 …”. To quantify this behavior, we 

computed the frequency and the length of repeating segments within each action sequence for 
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every participant in each episode. A repeating segment is defined as a sequence of actions that 

occurs more than once (e.g., “1, 2, 3” in the above sequence, which has a length of three). In 

instances of multiple repeating segments within an episode, our analysis focused on the segment 

that was repeated most frequently (Fig. S1).  

Q-learning 

In our experimental setup, we defined an environment comprising s = 10 states, each with 

a = 4 possible actions. To calculate the probability q of selecting each of the four possible actions 

(indexed by i), we utilized the softmax selection rule: 

𝑞(𝑖) =
𝑒𝑥𝑝 (

𝑄(𝑆, 𝐴𝑖)
𝜏 )

∑ 𝑒𝑥𝑝 (
𝑄(𝑆, 𝐴𝑗)

𝜏
)𝑗

 

Here, q(i) specifies the probability of selecting action Ai when in state S, while τ denotes the 

exploration rate (higher τ values signify increased exploration). The Q-matrix is updated as follows: 

𝑄(𝑆, 𝐴) ← 𝑄(𝑆, 𝐴) + 𝛼 (𝑟 + max
𝑖
𝑄(𝑆𝑛𝑒𝑤, 𝐴𝑖) − 𝑄(𝑆, 𝐴))  

The methodology allowed us to extract the maximum likelihood estimates for the 

parameters α (learning rate) and τ (exploration rate) from each participant’s data.  

Hypothesis and simulation 

To model the compressed dopamine transient characteristic of schizophrenia, we employed 

a Q-learning algorithm across 100 simulations, introducing a specific modification to the Q-update 

rule as follows: 

𝑄(𝑆, 𝐴) ← 𝑄(𝑆, 𝐴) + 𝛼 (𝛽(𝑟 − 𝑄(𝑆, 𝐴)) + max
𝑖
𝑄(𝑆𝑛𝑒𝑤, 𝐴𝑖)) 

Here, β represents a scalar that varies from zero to one, indicating the proportion of the 

dopaminergic error signal (r-Q(S,A)) that is accessible for reinforcement learning. A β value of 

one signifies full availability of the dopaminergic error signal, while zero implies complete 

unavailability. Contrary to constraining the model to follow participants’ actions, we allowed it to 

autonomously select actions based on the aforementioned soft-max selection rule. This was 

simulated by setting the scaling factor, β, to either 0.75 or 0.5, corresponding to a 25% or 50% 
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reduction in the maximum error signal. We then assessed the maximum perseveration values and 

analyzed the distribution of perseveration values across different β settings. This analysis was 

aimed at understanding the impact of the compressed maximum error signal on perseveration 

behavior (Fig. 4.4.2). 
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4.4 Results 

Simulations 

Our simulation’s findings underscore that compressing the prediction error augments 

perseverative behavior. The model unveiled a higher proportion of repeated state-action pairs when 

error signals were compressed (Fig. 4.4.2A; left: F(2,297) = 45.05, p < 0.001, partial η2 = 0.23, 

post-hoc analysis: t0% - 25% = -6.11, p < 0.001, t25% - 50% = -3.23, p = 0.004; Fig. 4.4.2B; left: F(2,297) 

= 98.49, p < 0.001, partial η2 = 0.4, post-hoc analysis: t0% - 25% = -9.91, p < 0.001, t25% - 50% = -3.65, 

p < 0.001). Additionally, the distribution for both the proportion of repeated state-action pairs and 

repeated lengths was more prominent when the prediction error remained uncompressed, in 

comparison to when compressed to 75% or 50% (as per the 𝛽  parameter in our Q-learning 

adjustment). The Kolmogorov-Smirnov (KS) test corroborated these findings (Fig 4.4.2A; right: 

KS0% vs. 25% = 0.57, p < 0.001, KS25% vs. 50% = 0.47, p < 0.001, KS0% vs. 50% = 0.85, p < 0.001; Fig 

4.4.2B; right: KS0% vs. 25% = 0.94, p < 0.05, KS25% vs. 50% = 0.48, p < 0.001, KS0% vs. 50% = 0.97, p < 

0.001). 
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Figure 4.4.2. Simulations. (A): Repeated length. Left: The maximum repeated length as a function of the 

percentage of error signal compressed. Right. The cumulative probability density of the distribution of the 

simulated repeated length. (B): Proportion of repeated state-action pairs. Left: The maximum proportion of 

repeated state-action pair as a function of the percentage of error signal compressed. Right. The cumulative 

probability density of the distribution of the simulated proportion of repeated state-action pair. Error bars 

represent ±1 SEM. 

 

Experiment 1 

Effects of ISI. A 2 × 2 ANOVA (Illness: healthy, schizophrenia; ISI: 0.5s, 6s) revealed a significant 

main effect of illness (F(1,37) = 29.94, p < 0.001, partial η2 = 0.45) and ISI (F(1,37) = 6.45, p = 

0.02, partial η2 = 0.15; Fig. 4.4.3A). The interaction between illness and ISI was marginally 

significant (F(1,37) = 3.87, p = 0.06, partial η2 = 0.01). Fig. 4.4.3B shows that patients took fewer 

optimal actions than healthy controls (F(1,37) = 32.78, p < 0.001, partial η2 = 0.47) and a main 

effect of ISI (F(1,37) = 6.2, p = 0.02, partial η2 = 0.14).  
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Figure 4.4.3. Performance in the RL task. (A): Number of completed episodes as a function of ISI for 

patients with schizophrenia and healthy controls. There is a significant difference in the number of 

completed episodes between the two groups at both ISI conditions. (B): Proportion of optimal action as a 

function of ISI for patients with schizophrenia and healthy controls. There is a significant difference in the 

proportion of optimal actions between the two groups at both ISI conditions. Error bars represent ±1 SEM. 

Stars indicate the main effect of groups (patient vs. control, p < 0.05). 

 

Exploration and Perseverations. Exploration was quantified as the mean number of actions taken 

at each state. Given that there are four potential actions per state, this average can range from a 

maximum of four (if all actions were chosen at least one) to a minimum of zero (for states that 

were never visited). Patients with schizophrenia exhibited greater exploration compared to the 

controls (Fig. 4.4.4A; F(1,37) = 4.89, p = 0.03, partial η2 = 0.12). As the ISI lengthened, 

exploration also increased (F(1,37) = 12.62, p = 0.001, partial η2 = 0.25). A marginal interaction 

was observed between the illness and ISI (F(1,37) = 3.97, p = 0.054, partial η2 = 0.1).  

While patients with schizophrenia explored more than controls, their exploration was often 

inefficient, frequently neglecting optimal actions (Fig. 4.4.3B). Possible explanations for this 

include a tendency to perseverate or potential memory impairments. To assess the degree of 

participants’ perseverative behavior, we evaluated the average number of times each participant 

revisited the same state-action pair within an episode. Revisiting a particular state within the same 

episode inherently indicates a suboptimal strategy, as optimal task navigation eliminates the need 
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for such repetition. Fig. 4.4.4B revealed that the probability of patients with schizophrenia 

repeating state-action pairs was not statistically different from that of healthy controls (F(1,37) = 

2.62, p = 0.11, partial η2 = 0.07). However, the patient group demonstrated a longer sequence of 

repeated actions (F(1,37) = 6.66, p = 0.01, partial η2 = 0.15) than controls (Fig. 4.4.4C). These 

results suggest that patients with schizophrenia not only engage in heightened exploration but also 

exhibit more pronounced perseveration tendencies compared to healthy controls. 

While we cannot entirely rule out the potential influence of memory deficits on participants’ 

ability to recall previously chosen actions upon revisiting a state, we believe such deficits have a 

minimal impact. This assertion is based on our observation that performance in conditions with a 

long ISI was not significantly different from that in conditions with a short ISI. 

The pronounced tendency of patients to perseverate could account for their sub-optimal 

performance. We also observed that patients often shift between repetitive patterns across episodes, 

which accounts for their elevated exploration rates. They initiate a sequence of state-action choices, 

but instead of progressing towards the goal, they become trapped in recurrent cycles, struggling to 

escape. In subsequent episodes, they initiate new cycles that incorporate different states, thereby 

expanding the variety of state-action pairs they engage with. However, these new patterns do not 

lead to improved performance, as they too fail to effectively guide patients towards the goal state. 

 

 

Figure 4.4.4. Exploration and perseveration. (A): Proportion of actions visited per state at both ISI 

conditions. A main effect of illness was observed, indicating that the patients explored more actions 

compared to controls. (B): Mean number of repeated cycles per episode at both ISI conditions. No 

significant difference was observed between the two groups. (C): Mean length of repeating segment 

averaged over episodes at both ISI conditions. A significant difference was observed in the repeated action 

length between the two groups for both ISIs. Error bars represent ±1 SEM. Stars indicate the main effect of 

groups (patient vs. control, p < 0.05). 
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Q-learning. A strength of our experimental paradigm is its compatibility with reinforcement 

learning models, which enable us to dissect the impact of various factors on performance. We 

derived parameter estimates by fitting the trial-by-trial decisions of each participant across 

episodes, yielding exceptionally robust estimates. The reinforcement learning model employed in 

this study, Q-learning, has two parameters: learning rate (alpha) and exploratory rate (tau). Our 

findings reveal no significant main effect of illness on the learning rate (Fig. 4.4.5A; F(1,37) = 

0.26, p = 0.61, partial η2 = 0.007). However, there is a significant effect of illness on the 

exploration rate (Fig. 4.4.5B; F(1,37) = 26.47, p < 0.001, partial η2 = 0.42), with patients exhibiting 

higher exploration rates compared to healthy controls. 

 

 

Figure 4.4.5. Q-learning parameters. (A): Learning rates. (B): Exploration rates. The plots show that 

patients with schizophrenia have very similar learning rates as control, but exhibit more exploratory 

behavior. Error bars represent ±1 SEM. Stars indicate the main effect of groups (patient vs. control, p < 

0.05). 

 

Experiment 2 

Effects of punishment. We conducted a second experiment, building upon our hypothesis that 

patients demonstrate superior performance under punishment conditions compared to rewards. 
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This is attributed to elevated baseline levels of dopamine, which we propose leads to more effective 

encoding of negative prediction errors (Fig. 4.4.1A). The aim of this study was to assess how 

reward and punishment differentially impact RL performance in patients. 

 First, we observed significant differences between conditions concerning both the number 

of episodes completed (Fig. 4.4.6A; t(19) = -2.74, p = 0.01, Cohen’s d = 0.61) and the proportion 

of optimal actions (Fig. 4.4.6B; t(19) = 2.71, p = 0.01, Cohen’s d = 0.61). These findings suggest 

that overall accuracy was higher in conditions involving punishment compared to those with 

rewards. Additionally, we investigated the influence of these conditions on perseveration behavior. 

Interestingly, no significant differences were found in the levels of perseveration, indicating that 

both reward and punishment may impact perseveration similarly (Fig. 4.4.6C; t(19) = 1.74, p = 

0.1, Cohen’s d = 0.39). However, the data indicate a trend towards reduced perseverative behaviors 

in the punishment condition as compared to the reward condition among patients. 

 Patients with schizophrenia exhibited distinct responses to the reward and punishment 

conditions (Fig. 4.4.6), a difference that might be attributed to the experimental design itself. To 

determine if this effect was specific to the patient population, we conducted tests with an age-

matched healthy control group, using identical procedures and measurements. Interestingly, in the 

control group, we observed no significant differences in either accuracy (Fig. 4.4.S2A; t(19) = -

0.97, p = 0.35, Cohen’s d = 0.22) or perseveration behavior (Fig. 4.4.S2B; t(19) = 0.74, p = 0.46, 

Cohen’s d = 0.17) across the two conditions. These results suggest that the two experimental 

conditions were indeed comparable for the control group. 

Notably, the performance of the healthy control group varied between experiment 1 and 2. 

This discrepancy may be due to the inherent nature of the tasks, since we implemented 

preprocessing to equalize the number of actions performed by participants within each experiment. 

With 71 actions for experiment 1 and 53 actions for experiment 2, a direct comparison between 

these experiments is not feasible. Furthermore, as the hypothesis and objectives for each 

experiment were distinct, it would be inappropriate to directly compare the two experiments, 

considering they served different purposes. 
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Figure 4.4.6. Performance in the RL task. (A) The number of episodes completed by patients with 

schizophrenia in reward and punishment conditions. Patients completed more episodes in the punishment 

condition compared to the reward condition. (B): The proportion of optimal actions of patients with 

schizophrenia in reward and punishment conditions. Patients had a higher proportion of optimal actions in 

the punishment condition compared to the reward condition. (C): The length of repeated actions of patients 

with schizophrenia in reward and punishment conditions. There is no difference in the perseveration 

behavior of patients between the reward and punishment conditions. Error bars represent ±1 SEM. Stars 

indicate a significant difference between the two experimental conditions (p < 0.05). 

 

Q-learning. In line with the first experiment, we utilized the Q-learning model to quantify the 

performance of the patients. First, we did not observe significant differences in learning rates 

between the reward and punishment conditions, suggesting comparable learning across conditions 

(Fig. 4.4.7A; t(19) = -0.35, p = 0.73, Cohen’s d = 0.08). Furthermore, no differences were observed 

in the exploration rate between the two conditions (Fig. 4.4.7B; t(19) = 1.17, p = 0.26, Cohen’s d 

= 0.26), reinforcing the idea that patients’ action selection remains consistent with the RL task, 

irrespective of the experimental conditions. 
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Figure 4.4.7. Q-learning parameters. (A): Learning rates. (B): Exploration rate. Patients with 

schizophrenia have very similar learning rates and exploration rates in the two experimental conditions. 

Error bars represent ±1 SEM. 
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4.5 Discussion 

Elevated striatal dopamine levels are widely believed to play a pivotal role in schizophrenia, 

especially given that psychotic symptoms can be alleviated by dopamine antagonists and most 

medications target the D2 receptor. However, the precise mechanism linking elevated dopamine 

levels to symptoms remains unclear. Dopamine is known to encode the prediction error, i.e., the 

difference between the actual and expected reward, which is, for this reason, the crucial component 

in most RL models. Individuals with schizophrenia show significant impairments in RL. Here, we 

suggested that a modified RL model can account for these deficits. The key idea is that elevated 

baseline levels of dopamine lead to less efficient encoding of the prediction error due to the reduced 

range between the baseline and the maximal level compared to controls. Our model makes three 

predictions: 1) patients with schizophrenia perform sub-optimally in RL compared to healthy 

controls with positive reward, 2) this poor performance emerges from action choice, and 3) patients 

exhibit minimal or no deficits in RL with negative rewards, i.e., punishments. We confirmed these 

predictions. 

Perseveration, which is characterized by the repetition of specific action sequences 

regardless of their outcomes, is a typical behavioral pattern in patients with schizophrenia and was 

observed in both experiments conducted here. In the Q-learning model, such perseveration is 

attributed to a diminished encoding of prediction errors, leading to reduced magnitude of updating 

values associated with state-action pairs and consequently slower learning. In the model, the 

inverse temperature parameter (exploration rate) is higher in patients compared to controls. As a 

result, unlike controls, patients tend to wander through the environment until they happen to hit 

the goal by chance. We suggest that the model effectively replicates the underlying mechanisms 

in these patients. 

An alternative explanation for the observed perseverations is memory deficits, i.e., patients 

do not remember well previous actions. In our RL task, we had two different ISIs of 0.5s and 6s. 

Should memory deficits be a primary issue, we would expect performance to deteriorate in the 

long ISI condition relative to the short ISI condition. However, there were no major differences.  

In the results of experiment 2, patients had significantly higher accuracy in the punishment 

condition compared to the reward condition. Our results are in line with previous studies, which 

found impairments in RL with positive reward but not with punishment (Abohamza et al., 2020; 

Cheng et al., 2012; Waltz et al., 2007). Another study found deficits in forming new stimulus-
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reward associations, yet the patients performed normally when forming new stimulus-punishment 

associations (Waltz et al., 2007). 

 Maia and Frank (2017) proposed that spontaneous transient increase of dopamine lead to 

false associations between stimuli and outcomes (Pankow et al., 2015; Roiser et al., 2013), 

potentially correlating with positive symptoms. Conversely, diminished transient responses to 

relevant stimuli (Deserno et al., 2013; Winton-Brown et al., 2014) might contribute to negative 

symptoms.  

  Here, we demonstrated that elevated baseline levels of dopamine lead to impoverished 

reinforcement learning in patients with schizophrenia. As a speculation, we propose that imprecise 

encoding of predictions could also explain a variety of deficits observed in schizophrenia. Future 

work needs to investigate how these learning deficits can be linked to psychotic symptoms. 
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Supplementary figure 

 
Figure 4.4.S1. Calculation of two measurements of perseveration. (A) The length of repeated actions. 

(B) The proportion of repeated state-action pairs. 
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Figure 4.4.S2. Performance on the RL task – Healthy controls. (A) The number of episodes completed 

by healthy controls in reward and punishment conditions. (B): The repeated length of healthy controls in 

reward and punishment conditions. Error bars represent ±1 SEM. 
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5. Study III: Intact reinforcement learning in healthy ageing 

 Daniel et al. (2020) demonstrated that older adults performed less accurately than the 

younger individuals when tasks were complex, attributing this discrepancy to the increased 

attentional load affecting the older adults. However, this claim is largely based on a ceiling effect 

and a non-significant interaction effect, which do not eliminate the possibility that the simple task 

is not a suitable control in this context. Moreover, we believe there is a universal issue in RL tasks, 

which are typically too simple, often comprising two images, each representing different 

probabilities of receiving a reward, thereby allowing for only two states and two actions. 

Consequently, some studies might not find performance differences between older and young 

adults simply due to the simplistic nature of the task. To bridge the gap between these varying 

results, we employed an RL task in Study II that featured a more realistic design compared to those 

used in other studies. By using this task, we were able to test our primary hypothesis of whether 

older adults performed less optimally compared to young adults. 

In the first experiment in the Study III, we applied the same RL task as Study II to both 

older and young adults. We here majorly focused on the manipulation of the length of ISI to vary 

the memory load, with a longer inter-stimulus interval (ISI) requiring a higher memory load in 

order to retain the stimulus in the memory system. We extracted four behavioral parameters and 

two parameters (learning and exploration rates) from a classic Q-learning model. We merely 

observed one of the measurements demonstrating difference between the two age groups (Fig. 

5.1A). This gives us confidence to assert that older adults can perform as well as the young 

population in RL, even when the environment is considerably more complex. 

Nevertheless, there might be a possibility that we did not observe a sufficient number of 

actions to draw a conclusive result. Hence, in the second experiment, we increased the number of 

actions that participants had to perform in the task. We did observe a difference emerge, but only 

in two specific behavioral parameters, suggesting that the performance of young adults improved 

and outperformed the older ones, potentially due to a greater improvement in selecting the optimal 

actions among the young adults (Fig. 5.1B).  
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Figure 5.1. Improvement in performance across age groups in two ISI conditions. (A) Measurements 

from experiment 1 in Study III, with the two color bars indicating the two different age groups. The y-axis 

represents the difference between the number of episodes completed in the last and first halves of the 

experiment. (B) The same measurements applied to experiment 2. * indicates p < 0.05. 

Taking these results together, we conclude that older adults generally exhibit intact RL 

capabilities comparable to young adults. We believe these findings offer several important 

perspectives in studies related to aging. Firstly, it is imperative to employ more realistic tasks to 

accurately find out the true effects. Secondly, and most importantly, we emphasize the criticality 

of publishing null results in research to avert potential biases that may suggest older adults 

invariably exhibit certain cognitive deficits. 
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5.1 Abstract 

What does age in ageing? Results in reinforcement learning (RL) are mixed. Some studies 

found deteriorated performance in older participants compared to younger controls whereas other 

studies did not. Daniel et al. (2020) suggested that task demand can explain these differences, with 

less demanding tasks showing no effect of age. Here, we increased the task demand of previous 

studies turning them into tasks that resemble navigation. We extracted 4 behavioral parameters 

and 2 parameters (learning and exploration rates) of a classic Q-learning model. Except for one 

specific parameter, all other parameters showed no group differences, i.e., RL turned out to be 

intact in older individuals also with higher task demands. It is important to publish such null results 

to avoid the stigmatizing impression of an overall performance deficit among older people.  
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5.2 Introduction 

To understand the mechanisms of ageing, it is of great importance to understand first what 

functions decline and which do not. Learning is often thought to significantly decay with age 

(Anguera et al., 2011; Salthouse, 2009). However, evidence is mixed. In reinforcement learning 

(RL), for example, a clear decline was found by Daniel et al. (2020) and van de Vijver & Ligneul 

(2020), whereas other studies found intact RL even though paradigms were rather similar 

(Eppinger et al., 2008; Lighthall et al., 2018). In these paradigms, an image is presented and 

participants push one of two buttons to receive a positive, negative, or neutral reward. Then, the 

next image is presented randomly from a set of given images, and so on. The task in these studies 

is not very demanding, provoking only light deficits in both the young and old group. For this 

reason, Daniel et al. (2020) have proposed that deficits of older people are only found in demanding 

tasks.   

Here, we used a more demanding paradigm, where the presentation of image n was not 

chosen randomly, as in the above studies, but depended on the choice made by the participants at 

image n-1. One image was a goal image, and participants were asked to find it as often as possible 

within a certain period of time (Fig. 5.2.1). Hence, the experiment mimics a navigation task, which 

is more realistic than the above paradigms and involves additional aspects such as a systematic 

exploration of the RL environment, linking states not only to actions but also to other states. To 

increase task demand, we tested not only a short (0.5s) but also a longer (6s) inter-stimulus 

intervals (ISI) between images. Various parameters were extracted from the participants’ 

performance and a Q-learning model was fitted. To preface our results, with one exception, older 

participants’ performance was comparable to that of younger controls.  
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Figure 5.2.1. RL task. (A) An image was presented to the participants. Participants chose one of the disks 

below the image to proceed to the next image (state) until they found the goal state (“Yeah!”). Each 

participant performed under two different Inter-stimulus intervals (ISI) conditions, the short (0.5s) and long 

(6s). In experiment 1, participants had to reach the goal state as many times as possible within a limited 

duration (8 minutes for the short ISI and 30 minutes for the long ISI condition). In experiment 2, they had 

to find as many as possible goal states within 150 actions. Details can be found in the Methods and Materials. 

(B) Structure of the RL environment. Each image represents a state, and the direction of the arrow indicates 

the connection between different states. Green arrows indicate the path leading to the goal state. Importantly, 

the structure of the environment is very irregular in the sense that observers may go directly from image A 

to image B but not necessarily back. In all of the experiments, there are a total of nine states plus one goal 

state. As primary measures, we extracted 6 parameters including the number of episodes completed, the 

proportion of optimal actions, the improvement in both the number of episodes completed and the 

proportion of optimal actions, the learning rate and exploration rate (detailed in the Methods and Materials). 
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5.3 Methods 

Experiment 1 

Participants 

 Forty older healthy adults and thirty healthy young adults were recruited from the Free 

University of Tbilisi, Georgia. Detailed demographical information is presented in Table 5.3.1.  

 

Task 

Participants performed a reinforcement learning task (Fig. 5.2.1). Participants were 

presented with one image in the center of the screen, accompanied by four gray disks below. 

Clicking on one of the disks brought the participants to the next image. We call the clicks 

sometimes “actions” and the images “states” in accordance with RL terminology. Participants had 

no time limit for choosing a disk. The objective was to find a goal image, labeled with the word 

“Yeah!”. Before the start of the experiment, all nine possible images were presented on the screen. 

The goal image was not presented but participants were informed about it. Observers initiated the 

experiment by clicking on a gray disk at the bottom of the screen.  

We used two inter-stimulus intervals (ISI) of 0.5 seconds (short ISI condition) and 6 

seconds (long ISI condition) between the participant’s responses and the next state, respectively. 

The objective of the task was to reach the goal state as frequently as possible within a limited time 

of 8 minutes for the short ISI condition, and 30 minutes for the long ISI condition. The order of 

the two ISI conditions was counterbalanced among the participants, i.e., half began with the short 

ISI condition and the half started with the long ISI condition. There is one distinct transition matrix 

for each of the ISI condition, determining the transitions from one image to the next depending on 

the actions of the participants. Therefore, each participant is associated with two such matrices, 

which are identical across all participants. 

 

Experiment 2 
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Participants 

 Twenty older healthy adults and twenty young healthy adults were recruited from the Free 

University of Tbilisi, Georgia. Individual who had previously taken part in the first experiment 

were no eligible. Detailed demographical information is presented in Table 5.3.1.  

Experiment Experiment 1 Experiment 2 

Group Young Old Young Old 

Age 25.03±4.2 68.75±8.3 21.8±3.1 66.3±5.5 

Gender M=14, F=16 M=17, F=23 M=9, F=11 M=5, F=15 

Education years 17.2±2.7 14.26±3.3 15.15±1.9 13.95±2.8 

MoCa NA 27.18±1.1 NA 27.75±1.5 

Table 5.3.1. The demographic information of participants. 

Task 

Experiment 2 follows a similar procedure as experiment 1, with the difference that, instead 

of a fixed duration of 8 min, the number of trials was fixed at 150 for each of the ISI condition. 

Accordingly, the objective of the task was to reach the goal state as many times as possible within 

the given number of trials. Furthermore, the order of the two ISI conditions was fixed, with the 

long ISI condition always coming after the short ISI condition.  

Immediately after the RL task, a memory task was given to the participants. In total, there 

were eighteen images. Twelve of these images were the same as in the RL task, the other six 

images were novel. For each of the images, participants were asked 1) to indicate whether the 

given image appeared in the RL task, and 2) to rate their confidence in question one, on a 4-Likert 

scale. 

Behavioral analysis 

Data pre-processing. In experiment 1, participants were instructed to reach the goal state as often 

as possible within 8min. Due to the nature of the task, different observers visited a different number 

of images ranging from 30 to 200 due to differences in decision-making and reaction times. To 
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ensure the comparability of the data among the participants, only the first 58 trials (the fifth 

percentile of the total number of trials among all participants) were used. Any trials exceeding this 

threshold were discarded. Four participants from the older population were removed from the 

study, as their total number of trials was lower than 59 trials. It is important to note that this pre-

processing procedure only applied to experiment 1 as in experiment 2 the number of trials was 

fixed for all participants. 

Behavioral performance. We determined the number of episodes completed and the proportion 

of optimal actions taken. The number of episodes completed refers to the number of times the 

participants reached the goal state. The proportion of optimal actions is the number of times a 

participant chose the action that optimally reduced the distance to the goal state from the current 

state divided by the total number of actions performed in the task. Furthermore, we assessed their 

improvement in performance by calculating the difference in the last and first 29 actions for the 

number of episodes completed and the proportion of optimal actions. A larger difference indicates 

better improvement, thereby implying enhanced learning. These four measures are our primary 

measures. Please note, these measures are not independent of each other. To gain further insights 

we used a number of secondary measures that are also not independent from the primary measures 

and can be seen as sub-measures.  

First, the nine states of the environment were further categorized into adjacent and distant 

states. Adjacent states are states that were only one step away from the goal state. The six distant 

states were at least two steps away from the goal state. We analyzed performance separately for 

the two measures.  

Second, to gain more insight into how performance progressed over time, we calculated 

the cumulative probability of optimal action across all trials. For each participant, we fitted a log 

function to estimate the intercept and the slope of the performance curve: 

𝑦 = 𝑎 + 𝑏 ∗ 𝑙𝑜𝑔 (𝑥)  

𝑥  represents trial numbers, 𝑎  and 𝑏  are the intercept and the slope, respectively, 𝑦  is the 

cumulative proportion of optimal actions in each trial. 
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Third, we tested perseveration behavior. It is essential to efficiently select the optimal 

actions for a given state in order to achieve superior performance. Choosing repeatedly a non-

optimal action in a given state is suboptimal and may be related to perseverative behavior or 

memory deficits. We determined perseverations in two ways. First, we determined the average 

length of repeating action sequences. We averaged the length of these repetitions of actions across 

all episodes for each participant. For instance, an episode with the actions “1,2,3,1,2,3,4,2,1” has 

an average perseveration of two because the action sequence “1,2,3” appeared twice. Second, we 

calculated the proportion of repeated state-action pairs. In an episode, we extracted all the states 

and the corresponding actions to determine the probability that the same state-action pair has been 

visited within the same episode. In order to be considered optimal, a state should not be visited 

multiple times within an episode.  

Fourth we determined the action entropy, measuring the randomness of the actions chosen. 

The theoretical max entropy is 

𝐸𝑚𝑎𝑥 = −∑(𝑝𝑚𝑎𝑥,𝑗 ∗ 𝑙𝑜𝑔2𝑝𝑚𝑎𝑥,𝑗) 

The probability distribution of completing each of the four actions was then determined for each 

state. The entropy of each state is 

𝐸𝑖 = −∑(𝑝(𝑖,𝑗) ∗ 𝑙𝑜𝑔2𝑝(𝑖,𝑗)) / 𝐸𝑚𝑎𝑥 

Here, i represents states, ranging from one to nine, while j represents actions, ranging from one to 

four. Averaging the action entropy across all states was computed for each participant. High action 

entropies indicate poor action choices (Sojitra et al., 2018). 

Furthermore, we calculated the occupancy map for each state-action pair. Each cell in the 

matrices represents the number of times a participant engaged with a given state-action pair. Thus, 

a higher number in a cell indicates more frequent engagement with that specific state-action pair 

by the participant. Consequently, each participant will have two maps: one for the short ISI 

condition and one for the long ISI condition. To assess the similarity between these two maps for 

each participant, we used the cosine distance, calculated as follows: 



93 

 

Cosine distance = 1- 
∑ 𝐴𝑖𝐵𝑖
𝑛
𝑖=1

√∑ 𝐴𝑖
2𝑛

𝑖=1 ∗√∑ 𝐵𝑖
2𝑛

𝑖=1

 

where 𝐴𝑖  and 𝐵𝑖  are the elements of vectors A and B, respectively, with each element 

corresponding to the occupancy counts for a specific state-action pair. Given that there are nine 

different states and four possible actions from each state, the total number of unique state-action 

pairs is 36. 

Computational modelling. A Q-learning model (Sutton & Barto, 2018) was used to quantify 

learning: 

(𝑆, 𝐴) ← 𝑄(𝑆, 𝐴) + 𝛼(𝛥) 

S represents the state of the current trial, A is the action taken in the current trial, 𝛥 is the prediction 

error, Q is the Q-value for the given state and action, and 𝛼 is the free parameter of the learning 

rate. Whenever a participant performed a new action, the Q value was updated by the prediction 

error, which is defined as the difference between the current reward and the expected reward: 

𝛥 =  𝑟 + max
𝑖
𝑄(𝑆𝑛𝑒𝑤, 𝐴𝑖) − 𝑄(𝑆, 𝐴) 

r stands for the reward, 𝑆𝑁𝑒𝑤 is the new state after performing action A in the given state S. The 

probability of choosing an action is then determined by a soft-max rule: 

𝑞(𝑆, 𝐴𝑖) =
𝑒
𝑄(𝑆,𝐴𝑖)

𝜏

∑ 𝑒
𝑄(𝑆,𝐴𝑗)

𝜏
𝑗

 

q is the probability of choosing action A given state S. 𝜏 is the free parameter normally referred to 

as inverse temperature which corresponds to the exploration rate.  

Statistical analysis. We conducted a two-by-two repeated measures ANOVA with age group (old 

and young) and ISI (short and long) as independent variables. We quantified the relationship 

between measurements using Pearson correlations, except for the relationship between 

measurements and Q-learning model parameters, which were calculated with Spearman’s 

correlation due to the non-normal distribution of the parameters.  
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 The primary parameters, focusing on performance, learning, and Q-learning model in RL, 

are presented in the main text. The secondary parameters, are found in the supplementary figures. 

All details are summarized in Table 5.4.S1, Table 5.4.S2, and Table 5.4.S3.  
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5.4 Results 

Experiment 1 

Effects of ISI and age. First, we examined whether performance was affected by age. Surprisingly, 

the number of episodes completed (Fig. 5.4.2A) and the proportion of optimal actions (Fig. 5.4.2B) 

did not differ significantly between young and old adults. Furthermore, the Bayes factor provide 

evidence in favor of the null hypothesis. 

 

Figure 5.4.2. Performance in the RL task. (A) The number of episodes completed in each ISI condition 

for each age group. Dots indicate the performance of individual participants. (B) The proportion of optimal 

actions in each ISI condition for each age group. The dashed lines in the figures indicate baseline 

performance. 

 

Improvement of performance. We next investigated the improvement of performance during the 

RL task by dividing the trials into two sets, the first 29 trials and the last 29 trials of each observer. 

There was a significant interaction between the two groups and ISI when it came to the number of 

episodes completed. A post-hoc test showed that the long ISI condition drove the interaction (Fig. 

5.4.3A). A slight trend but no statistically significant improvement in performance was observed 
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(Fig. 5.4.3B). However, none of the Bayes factors for these results suggest support for the 

alternative hypothesis. For a closer examination, we fitted the accuracy data across trials with a 

log function which yielded two parameters, the slope and intercept. Both the intercept and the 

slope did not differ between the groups (Fig. 5.4.S2A).  

 

 

Figure 5.4.3. Improvement of performance. The improvement in the accuracy for each age group and 

ISI condition. (A) The improvement in number of episodes. *: p < 0.05 by post-hoc Tukey’s test. (B) 

Improvement in proportion of optimal actions.  

 

Perseveration behavior and action entropy. We assessed the extent of suboptimal action selection 

by quantifying the action entropy, which is a measure of the randomness of actions. Older adults 

had a lower improvement in action entropy compared to young adults (Fig. 5.4.S2B). We suggest 

below that the difference may be caused by memory deficits. 

Additionally, we also examined the perseveration behavior, which is characterized by a 

persistent repetition of suboptimal actions. There were no significant differences between young 

and older adults (Fig. 5.4.S2C, left; Fig. 5.4.S2C, middle). Furthermore, the improvement in 

perseveration behavior was not significant across the age groups (Fig. 5.4.S2C, right). 
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Our findings indicate a difference in the improvement of action entropy between age groups, 

with the older group showing less improvement compared to the younger group, regardless of the 

ISI condition. 

 

Q-learning. Both learning rates (Fig. 5.4.4A, top) and the inverse temperature (Fig. 5.4.4A, bottom) 

did not show significant differences between the two age groups. The learning rate reflects the 

speed of learning, and the inverse temperature reflects the randomness of choices or exploration 

rate. The results suggest that both groups revealed similar learning efficiency and exploration 

through the RL environment.  

We next linked performance to the Q-learning model to study whether there are 

correlations between the model parameters and the improvement in performance. Interestingly, we 

found that only the learning rate in the long ISI condition positively correlated with improvement 

in performance (Fig. 5.4.4B, Bottom left). The inverse temperature was negatively correlated with 

improvement in performance merely in the short ISI condition (Fig. 5.4.4B, Top right), though the 

same negative trend was also present in the long ISI condition (Fig. 5.4.4B, Bottom right). 

Effect size and statistical values can be found in Table 5.4.S1. 
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Figure 5.4.4. Q-learning model. The two parameters retrieved from the Q-learning model for each 

condition and for each age group: (A) Top: The learning rate; Bottom: The inverse temperature. The 

conventions are the same as in Fig. 2. (B) Correlation between the parameters and the improvement in 

performance. Top panel: The correlation between the improvement in performance and the learning rate 

(left) and the inverse temperature (right) in the short ISI condition. Bottom panel: The correlation between 

the improvement in performance and the learning rate (left) and the inverse temperature (right) in the long 

ISI condition. The black line is the linear regression fit of the parameters and performance improvement 

combined for both older and young adults. 

 

Experiment 2 

Effects of ISI and age. Contrary to experiment 1, a significant interaction of ISI and age was 

observed in the proportion of optimal actions (Fig. 5.4.5A, right), but a marginal difference in the 

number of episodes completed (Fig. 5.4.5A, left).   
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 Moreover, there was a significant difference in improvement in performance in the long 

ISI between older and young adults (Fig. 5.4.5B). The Bayes factors also demonstrated moderate 

effects that support the alternative hypothesis. 

The results indicate that only in the long ISI condition older and younger adults performed 

differently. We did not find significant differences in the behavioral patterns between the two 

groups, suggesting that similar strategies are used to perform the RL task (Fig. S1B, left, t(38) = 

1.19, p = 0.241, Cohen’s d = 0.38). Furthermore, we observed that the levels of similarity correlate 

with performance in both older and young participants. Hence, the measurements capture 

individual differences in task accuracy (Fig. 5.4.S1B, right ryoung(18) = 0.772, rold(18) = 0.731). 

 

 

Figure 5.4.5. Performance in experiment 2. The conventions are the same as Fig. 5.4.1. (A) Left: The 

number of episodes completed in each ISI condition for each age group. Right: The proportion of optimal 

action in each ISI condition for each age group. *: p < 0.05 post-hoc Tukey’s test. The dashed lines in the 



100 

 

figures indicate baseline performance (B) The improvement in the accuracy for each age group and ISI 

condition. Left: The improvement in number of episodes. Right: Improvement in proportion of optimal 

actions. *: p < 0.05 by post-hoc Tukey’s test. 

 

Questionnaire. The results of the questionnaire revealed that both older and young adults were 

able to accurately recognize the images used in the RL task, with no participants making mistakes. 

Next, we measured the confidence rating of their answers. The confidence ratings were based on 

a scale where a rating of 1 represented high confidence and a rating of 4 indicated high uncertainty. 

Interestingly, there was no significant difference in the confidence ratings between older and 

young adults in the adjacent states (Fig. 5.4.S3B, left). However, a clear main effect of age in the 

distant states (Fig. 5.4.S3B, right). 

 

Q-learning. Similar to the results of experiment 1, both learning rates (Fig. 5.4.6A, top) and the 

inverse temperature (Fig. 5.4.6A, bottom) did not differ between the two age groups. This suggests 

that, while there may be some subtle differences in the learning processes of older and younger 

adults, overall there is not significant difference in the parameters used for Q-learning. However, 

despite the absence of group differences, the inverse temperature was found to be significantly 

correlated with accuracy (Fig. 5.4.6B, Top right) rather than learning rate (Fig. 5.4.6B, Top left). 

This indicates that while the learning rate may not have a direct effect on performance, the inverse 

temperature, which controls the exploration-exploitation trade-off, does affect the accuracy. 

Effect size and statistical values can be found in Table 5.4.S2. 
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Figure 5.4.6. Q-learning model and the performance – experiment 2. The conventions are the same as 

in Fig. 5.4.4. A Q-learning model was fitted to the data and two parameters retrieved from the model for 

each condition and for each age group: (A) Top: The learning rate; Bottom: The inverse temperature. (B) 

The correlation between the parameters and the proportion of optimal actions. Top panel: The correlation 

between the proportion of optimal actions and the learning rate (left) and the inverse temperature (right) in 

the short ISI condition. Bottom panel: The correlation between the proportion of optimal actions and the 

learning rate (left) and the inverse temperature (right) in the long ISI condition.  
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5.5 Discussion 

In the current study, we aimed to investigate whether older adults exhibit deficits in RL. In 

experiment 1, older adults performed as well as young adults with the number of episodes 

completed, proportion of optimal actions, improvement in proportion of optimal actions, learning 

rate and the exploration rate. In experiment 2, we found significant differences in the long ISI 

condition for improvement in accuracy and the secondary measures derived from this measure. 

Overall, the results of our study are consistent with previous studies (Lighthall et al., 2018; 

Pietschmann et al., 2011) but not others (Daniel et al., 2020). Hence, RL is largely intact in older 

observers with our paradigm. 

Moderate to large effects were observed in the measurements reflecting the performance 

differences between the two age groups in the long ISI condition. There are several explanations: 

a genuine RL deficit, a working memory deficit, or stronger fatigue. First, none of the parameters 

of the Q-learning model was abnormal in the older participants, including learning and exploration 

rates, which speaks rather against an RL deficit. 

Second, in the memory questionnaire, older adults demonstrated less confidence in 

recognizing distant states. In addition, the improvement of action entropy was less pronounced. 

These findings may speak indeed to a slight memory deficit. Lighthall et al. (2018), employed a 

RL task also with short and long ISIs. Although the authors did not observe behavioral differences 

between the two age groups for either ISI condition, they found a significant difference in the 

hippocampal activity pattern between the age groups in the long ISI condition. Potentially the 

higher memory load in the long ISI condition leads to differences in hippocampal activation, but 

does not manifest on the behavioral level because of the simpler task. Furthermore, we did not 

observe significant differences in the similarity of occupancy maps across the two ISI conditions 

between the age groups, indicating that both groups performed in a similar manner. More 

interestingly, this measure can capture individual differences in accuracy.  

Third, it is well known that older people fatigue more quickly than younger ones (Enoka 

& Duchateau, 2016). Hence, instead of memory load, higher fatigue in the older population may 

explain the results in the long ISI condition. However, our analysis of adjacent and distant states 

shows that only the distant states exhibited differences in terms of the proportion of optimal actions, 
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indicating that the older adults were still able to locate the correct actions when the goal state was 

close enough. Hence, a memory deficit seems to be the best explanation at the moment. 

As mentioned in the introduction, Daniel et al. (2020) claimed that older people perform 

worse than younger ones in demanding but not simpler tasks. The study had an easy and a harder 

condition and found no performance differences in the easy condition but a trend for a group 

comparison in the hard condition. However, the conclusion is potentially not valid because of a 

ceiling effect in the easy condition (performance between younger and older controls: 97% vs. 

94%). Potentially, there is a group effect also in the easy condition but definitely in the harder 

condition. Since task demand seems not to be the crucial aspect, there must be other reasons for 

the differences in the paradigms.  

One of the limitations in the ageing field is that the older population exhibits a high variance 

due to differences in ageing. In addition, the mean age is often different. Small sample sizes may 

lead naturally to sampling biases, which may lead to different outcomes. In addition, there are 

demoscopical, socio-economical, and cultural differences. Hence, it may simply be the case that 

our and others null results come from a too “healthy” and/or still too “young” population (our 

mean age was 68 and 66 years and in Daniel et al. (2020) it was 70 years). Thus, not the paradigms 

and differences between paradigms are key but sampling of the population. 

Next to performance, learning and exploration rate, we also tested for perseverations, a 

behavioral pattern where individuals continue to perform repeated action sequences regardless of 

whether they are optimal or not. We did not find an increased perseveration rate in older adults, 

contrary to previous results, for example, in the Wisconsin Card Sorting test (Shaqiri et al., 2019). 

With the very same paradigm used in this study, we tested schizophrenia patients and found 

evidence for perseverations compared to age-matched controls. Hence, our paradigm is sensitive 

to perseverations. Perseveration of schizophrenia patients are often attributed to abnormal 

dopamine levels leading to suboptimal action selection (Durstewitz & Seamans, 2008). In RL 

models, dopamine levels are classically related to the learning rate (Sutton & Barto, 2018) and 

prediction error (Schultz et al., 1997; Wise & Rompre, 1989). If this were all true, our results 

indicate an intact dopaminergic system. 
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In summary, our findings indicate that reinforcement learning can remain relatively 

preserved during ageing. This holds true for a large range of outcome measures we determined 

including learning and exploration rate in classic Q-learning models. We emphasize the 

importance to publish such null results. Suppressing null results may, otherwise, create the 

impression that older people are deficient in almost all paradigms, which does not seem to be true.  
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Supplementary figures 

 
Figure 5.4.S1. The similarity between the two ISI conditions predicts RL performance. (A) The 

average occupancy map for both age groups. The values in each cell represent the average counts for 

performing specific state-action pairs. (B) Left: The similarity of the maps between the two ISI conditions 

for each age group. Right: The correlation between the proportion of optimal actions and the levels of 

similarity. 
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Figure 5.4.S2. Perseveration behavior and action entropy for experiment 1. (A) Left: The cumulative 

proportion of optimal actions across time. The two ISI conditions and age groups were plotted separately. 

Each dot represents the average cumulative proportion of optimal actions across the participants in each 

age group. The solid line shows the fit of the log function. Right: The two bar graphs depict the slopes and 

intercepts of the fitted log function. (B) The improvement in action entropy. A main effect of age is 

presented. *: p < 0.05. (C) Left: The proportion of repeated state-action pair of each age group in each ISI 

condition. Middle: The repeated action length of each age group in each ISI condition. Right: The 

improvement in the repeated action length. 

 

 
Figure 5.4.S3. Secondary measurements for experiment 2. (A) The adjacent state is indicated in purple, 

and refers to a state that is directly connected to the goal state. Distant states, indicated in blue, are those 

that require multiple steps to reach to the goal state. (B) Confidence ratings of the questionnaire. Left: The 

average confidence ratings in adjacent states for each age group in each ISI condition. Right: The average 

confidence ratings in distant states for each age group in each ISI condition. 
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Table 5.4.S1. Summary of parameters for experiment 1. 
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Table 5.4.S2. Summary of parameters for experiment 2. 

 

 
Table 5.4.S3. Summary of all correlation measurements. 
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6. Study IV: Behavioral and Neural Markers of Social Dominance: A 
Female-Focused Perspective 

In the last study, we aimed to identify universal behavioral and neural markers for social 

dominance. Given that da Cruz et al. (2018) exclusively examined male participants, our focus 

was specifically on the female population. We thus adopted the same procedure as in da Cruz et 

al. (2018), which combined an emotion discrimination task with EEG recording. Additionally, we 

included a resting state EEG session to ascertain any differences between the high and low 

dominance groups without involvement of task. While there was a trend indicating dominant 

females responded faster, this difference in response times was not statistically significant. 

Surprisingly, we observed a similar EEG N2/P2 component in the female participants as in the 

male population, suggesting that this could be a general neural marker for social dominance. 

Furthermore, resting state EEG data showed higher connectivity in the high dominant group 

compared to the low dominance group, suggesting intrinsic differences in brain network 

connectivity between the two groups, independent of task demands. 
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6.1 Abstract 

Social interactions are crucial in human life, with social dominance being a key factor. We 

have previously shown that dominant males were faster in decision-making tasks than non-

dominant ones, even in the absence of a social context such as competition. In addition, dominant 

males had a much higher N2/P2 EEG component, which is associated with the allocation of 

resources for decision-making. The EEG component provide evidence of an inherent trait and, 

thus, may serve as a neuromarker for social dominance. In our current study, we show that 

dominant females also have a larger N2/P2 EEG component compared to less dominant females. 

The latency and amplitude of this component closely mirrored those observed in the previous study 

with males. Additionally, we analyzed resting-state EEG and observed a higher whole-brain 

network density in the dominant females compared to less dominant ones, potentially representing 

a marker for social dominance, detectable at baseline (i.e., without a task challenge).  
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6.2 Introduction 

Social dominance is a fundamental component of social groups, often manifesting in deep 

hierarchical structures observed within diverse socio-political and economic systems (Pratto et al., 

1994; Redhead et al., 2019).  

Classically, social dominance has been investigated in paradigms where, for example, two 

or more participants compete for different ranks, and performance becomes the defining criterion 

for the dominance level. In these studies, elevated activity in the dorso-lateral prefontal cortex 

(dlPFC) and the striatum correlate with superior hierarchical positions among participants (Ligneul 

et al., 2016; Santamaría-García et al., 2014; Zhou et al., 2018; Zink et al., 2008). A key insight 

from these studies is that social dominance is a relative scale, fundamentally relying on the 

comparison with others. 

However, several studies have suggested that social dominance is a distinct personality 

trait (Hall et al., 2005; Schutz, 1958). Dominant individuals often exhibit characteristic behaviors, 

including extended speaking durations (Mast, 2002) and a higher perception of competence 

(Anderson and Kilduff, 2009). These findings imply that intense social interaction or competition 

might not be prerequisites for assessing social dominance; instead, it may be an intrinsic trait. This 

hypothesis received support from our previous study (da Cruz et al., 2018) where male participants 

were faster in complex decision making, but not in simple reaction, tasks than less dominant males. 

In addition, a higher N2/P2 EEG component was observed in high dominant males when 

performing an emotion discrimination task. This indicates that dominant males allocate more 

resources when making decisions (Mudar et al., 2016). 

Social dominance is predominantly studied in male participants (da Cruz et al., 2018; 

Ligneul et al., 2016). While some studies have suggested an interplay between levels of social 

dominance and gender in stress behavior (Karamihalev et al., 2020) and in political attitudes 

(Pratto et al., 1997), other research, such as Scheggia et al. (2022), reports no gender differences 

in social-decision making scenarios. Notably, these prior investigations neither systematically 

explored whether gender interacts with social dominance in certain behaviors, nor incorporated 

neuroimaging to identify potential neuromarkers for social dominance. To address this gap, we 

adopted the procedure from da Cruz et al. (2018) and tested exclusively female participants to 
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investigate: 1) if dominant females respond more quickly to decision-making tasks, and 2) whether 

the N2/P2 EEG component, previously identified in males, is also evident in females. Additionally, 

we included resting-state EEG recordings to explore potential differences in brain network 

connectivity in the absence of task engagement. 
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6.3 Methods 

Participants 

We recruited twenty-six female participants from both the Swiss Federal Institute of 

Technology in Lausanne (EPFL) and the University of Lausanne (UNIL). Participants completed 

a standardized handedness questionnaire (Oldfield 1971). We then evaluated their visual acuity in 

both eyes using the Freiburg Visual Acuity Test (Bach 1996), stipulating a minimum acuity of 1.0 

for both eyes as a requisite for participation. As compensation for their participation, they received 

30 CHF per hour for EEG sessions, and 25 CHF per hour for behavioral sessions. To ensure 

uniform cortisol levels, EEG experiment sessions were scheduled between 1 PM and 7 PM. 

 

Personality measurements 

Before the experiment, participants completed a series of four questionnaires to assess 

social dominance motivation, state-trait anxiety, and menstrual cycle status. The questionnaires 

included the Personality Research Form dominance (PRF-D; Jackson, 1974), two aspects of 

Speilberger’s State-Trait Anxiety Inventory (Spielberger, 1983), and a menstrual cycle status 

questionnaire. Each was administrated individually through the online experimental platform, 

Gorilla (Anwyl-Irvine et al., 2020). To negate potential order effects, we randomized both the 

questionnaire sequence and the item order within each. 

We gauged participants’ social dominance motivation using the PRF-D, which they 

completed at least three days before the experiment. This 16-item form contains both positive and 

negative items, utilizing a true/false response format. Speilberger’s State-Trait Anxiety Inventory 

(STAI) assesses both trait (STAI-T) and state (STAI-S) anxiety via two separate sections, each 

containing 20 items. Participants respond on a 4-point Likert scale, ranging from 1 (completely 

disagree) to 4 (completely agree). Scores can vary from 20 (minimal anxiety) to 80 (extreme 

anxiety).  

Lastly, we presented a two-part questionnaire about menstrual cycle status. The first 

question discerned if participants were on medications or treatments influencing hormone levels. 
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The second estimated the time since their last menstrual cycle, offering responses ranging from 

less than a week to three weeks. 

 

EEG Experiment 

The present study was conducted based on the protocol of Experiment 5 of da Cruz et al. 

(2018). We employed 40 emotional faces, both male and female, exhibiting happiness, sadness, 

anger, and neutrality. Faces displaying happiness and sadness were sourced from Ekman and 

Friesen’s Pictures of Facial Affect Series (Ekman and Friesen 1976). In contrast, the angry and the 

neutral expressions were derived from FACES (Ebner et al. 2010), Radboud Faces Database 

(Langner et al. 2010) and the Karolinska Directed Emotional Faces (Lundqvist et al. 1998). Face 

were presented on a grey background and the luminance was below 1 cd/m2. Participants were 

positioned 50 cm away from the monitor inside a dimly lit Faraday cage. We utilized The Eye 

Tribe ©  eye tracker to monitor gaze consistently, and a chin rest was used to stabilize participants’ 

heads. 

 At the start of each trial, participants were asked to fixate a cross at the center of the screen, 

with an interval varying randomly between 0.5 to 1.5 seconds. A face image was then presented 

for 0.1 seconds at 26° either to the left or right of the center. Participants had up to 3 seconds to 

identify the depicted emotion using one of two buttons, each held in a different hand. Failure to 

respond triggered a short buzzer. The trial was repeated at the end of the block. 

The experiment comprised two separate conditions with their order randomized for 

participants. Condition 1 utilized happy and sad faces (Happy vs. Sad) as stimuli, whereas 

condition 2 featured angry and neutral expressions (Angry vs. Neutral). The association between 

response side and emotional valence was counterbalanced among participants. Each condition 

started with a 10-trial practice round, succeeded by five experimental blocks comprising 80 trials 

each. Instructions were displayed on the screen before each condition began. Participants were 

instructed to respond as quickly and accurately as possible, and maintaining their gaze on the 

central fixation cross.  
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At the end of the experiment, we captured a 5-minute resting state EEG with participants 

keeping their eyes closed.  

 

EEG Recording and Data Pre-processing  

EEG data was acquired using an Active Two system (BioSemi, The Netherlands) equipped 

with 128 Ag-AgCl sintered active electrodes, all referenced to the common mode sense (CMS) 

electrode. The cap’s size and placement were individually adjusted to ensure a proper fit for each 

participant. The cap was positioned so that the A1 electrode came to lie midway between the inion 

and the nasion, ensuring a balanced electrode coverage of frontal and occipital regions. 

Electrooculogram (EOG) recording were captured using electrodes placed 1 cm above and below 

the right eye and 1 cm lateral to the outer canthus. The EEG recording sampling rate was 2048 Hz. 

Data was downsampled offline to 512 Hz and underwent a comprehensive pre-processing pipeline 

based on the protocol by da Cruz et al. (2018). This included bandpass filtering from 1 to 50 Hz 

via a 3rd order Butterworth filter, line-noise removal with CleanLine (www. 

nitrc.org/projects/cleanline), re-referencing to the bi-weight mean estimate of all channels 

(Hoaglin et al. 1982), elimination of bad channels followed by 3D spline interpolation, removal of 

bad epochs, and artifact removal using independent component analysis (ICA). EEG epochs were 

extracted from 100 ms pre-stimulus onset (baseline) to 500 ms post-stimulus onset, and averaged 

epochs for each participant were baseline corrected. For further artifact reduction, we used the 

Multiple Artifact Rejection Algorithm (MARA; Winkler et al. 2011), an ICA-based tool, which 

allowed us to semi-automatically remove potential noise components. 

 

Global Field Power Analysis 

The global field power (GFP) serves as metric for the reference-independent strength of a 

neuronal response and is calculated by determining the standard deviation of potentials across all 

electrodes (Lehmann and Skrandies 1980). For our study, we computed the GFP individually for 

each participant and each condition. Subsequent analyses involved repeated-measures ANOVAs 

at each GFP time point, using group (high and low dominance) and condition (Happy vs. Sad, 
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Angry vs. Neutral) as the factors. Notably, we only regarded effects as reliable if they exhibited 

continuous significance over a span of 10 ms (Guthrie and Buchwald 1991).  

 

Distributed Electrical Source Imaging  

Source analysis was conducted by using the Fieldtrip software (Oostenveld et al., 2011). 

As we did not have fMRI scans for our experiment, we utilized the head and source models 

provided directly by Fieldtrip. The layout of the electrodes was aligned to the head model to 

generate a 3D electrode map. Subsequently, the EEG data was reconstructed using the linearly 

constrained minimum variance (LCMV) beamformer method, as integrated within the Fieldtrip 

package. Our primary objective was to pinpoint the disparities in source-space activity between 

the high and low dominance groups, particularly during the instances where the GFP peaks were 

observed. Hence, we employed two statistical analyses: a 2x2 ANOVA to assess the main effects 

of experimental conditions and dominance groups, as well as their interaction. Secondly, an 

independent t-test was applied to the reconstructed EEG data at each voxel, contrasting the activity 

levels between the two dominance groups. To correct for multiple comparisons, we used a spatial 

criterion requiring clusters to contain at least 15 neighboring solution points with significant effects 

(p < 0.05) (da Cruz et al., 2018). 

 

Frequency and network analysis 

In our resting state EEG data analysis, we employed Fieldtrip (Oostenveld et al., 2011) to 

perform frequency analysis utilizing Welch’s method. This approach was applied across the entire 

5-minute EEG dataset. The time series was segmented into 4-second windows, with each segment 

overlapping its neighboring window by 50%. Within each window, a fast Fourier transform was 

executed using a DPSS (discrete prolate spheroidal sequences) taper. By averaging over these 

windows, we obtained a comprehensive spectral estimate. The spectral data was then organized 

into four distinct frequency bands – delta (1-4Hz), theta (4-8Hz), alpha (8-12Hz), and beta (12-

30Hz). The power was quantified for each band and subsequently averaged across all electrodes. 
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 Further, we delved into the functional connectivity in the EEG data within the frequency 

domain. Leveraging Fieldtrip, we calculated coherence among electrode pairs for each frequency 

band. To mitigate potential artifacts from volume conduction, we considered only the imaginary 

part of coherence. The resulting coherence values gave rise to an assessment of network density, 

which served as a holistic representation of the overall connectivity in the EEG dataset. 

 For our statistical approach, we conducted a 4x2 ANOVA on both the power and network 

density values. This was aimed to identify the main effects associated with frequency bands and 

dominance groups, as well as any interaction effects between these two factors. 

 

Mediation analysis 

We first divided the brain topography into four lobes, frontal, parietal, temporal, and 

occipital (Bian et al., 2014). We then averaged the neural activities within each region and 

computed correlations between these activities and the PRF-D scores as well as reaction times, at 

each time points, to identify regions and times of interest. 

 Next, we conducted mediation analysis using PRF-D scores as the independent variable, 

reaction time as the dependent variable, and the difference between frontal and occipital activities 

as the mediating factor. Statistical analysis was performed using the Python toolbox ‘penguin’ to 

determine direct, indirect, and total effects, employing a bootstrapping method with 1000 iterations 

(Vallat, 2018). 

 

Behavioral Experiments 

A simple reaction time and a Go/NoGo task were performed by the participants (Fig. 6.4.2). 

In the simple reaction time task, a grey square appeared either to the left or right of the central 

cross. The inter-trial interval varied randomly between 0.15 and 1.5 seconds. Participants were 

instructed to press the spacebar as soon as the square appeared, irrespective of its position. If no 

response was given within 0.5 seconds, the square disappeared. A practice session of ten trials was 

given before the experiment proper, comprising 200 stimuli. To avoid fatigue, short breaks were 

introduced after every 50 trials. The task typically was performed in about 10 minutes. 
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In the Go/NoGo task, participants were presented with either a square or a triangle, serving 

distinctively as the Go or NoGo stimulus. Upon the display of the Go stimulus, participants were 

asked to hit the spacebar within 0.5 seconds. Conversely, they were to abstain from any response 

when confronted with the NoGo stimulus. Maintaining a 70:30 ratio, the Go stimulus was shown 

in 70% of the trials. Following the same procedure as the simple reaction time task, after a practice 

block of ten trials, a block of 200 stimuli was presented. Breaks were introduced every 50 trials, 

and the entire task took approximately 10 minutes. 

To prevent any sequence bias, the order of the two tasks was pseudo-randomized, with half 

of the participants starting with the simple reaction time task and the other half commencing with 

the Go/NoGo task. 

 

Salivary Cortisol Analyses  

Participants provided three saliva samples during the study. The first immediately after they 

signed the consent form, the second at the beginning of condition 2, and the third approximately 

20 minutes after the end of the second condition. The time interval between each collection was 

approximately 1 hour. Each collection gathered approximately 0.8 to 1.4 mL of saliva into 10 mL 

polypropylene tubes, which were then stored in a freezing environment below -20 °C until 

processing. Subsequently, these samples were centrifuged at a speed of 3000 rpm for a duration of 

15 minutes under room temperature conditions. The resulting salivary cortisol and testosterone 

concentrations were measured using an enzyme immunoassay, following the guidelines provided 

by the manufacturer, Salimetrics. To account for cortisol’s circadian rhythm, we ensured all 

experimental sessions took place between 1 PM and 7PM.  

Cortisol and testosterone reactivity was evaluated by computing the indices for the area under 

the curve with respect to ground (AUCg) and the area under the curve with respect to increase 

(AUCi), following the methodology outlined by Pruessner et al. (2003). Given that the time 

intervals between each saliva collection were identical, we used the following formula to calculate 

AUCg: 
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𝐴𝑈𝐶𝑔 = ∑
(𝑚(𝑖+1) +𝑚𝑖)

2

𝑛−1

𝑖=1

 

where n is the total number of measurements (in our case, n = 3), and 𝑚𝑖  is the individual 

measurement of cortisol or testosterone. We calculated AUCi using the formula: 

𝐴𝑈𝐶𝑖 = 𝐴𝑈𝐶𝑔 − (𝑛 − 1) ∗ 𝑚1 

with the same notation as for AUCg. 

 

Mixed-effect models 

To understand the influence of various factors on the participants’ behavioral performance, 

we applied mixed-effect models to incorporate potential variables with JASP. In Model 1 for 

reaction times, we included accuracy, trait anxiety, experimental conditions, and dominance 

groups as fixed effects. Model 2 was extended to incorporate an interaction term between 

experimental conditions and dominance groups.  
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6.4 Results 

 Participants with scores greater than or equal to the median were defined as the high 

dominance group, and those with scores less than the median are assigned to the low dominance 

group. First, we did not find that dominant females are faster than less dominant ones (Fig. 6.4.1B, 

F(1,22.36)=2.47, p=0.13, partial η2 = 0.1), contrary to the male population in da Cruz et al. (2018). 

Despite lacking statistical significance, the direction of the differences aligns with observations 

within the male population. This trend is further shown in the correlation between the level of 

dominance and reaction time, especially in the Happy-Sad condition (Fig. 6.4.1D, r(24) = -0.36, p 

= 0.068). 

 In addition to reaction time, we also utilized the mixed-effect model to analyze accuracy. 

A significant main effect was observed for the condition on accuracy. Specifically, the participants 

demonstrated higher accuracy in the Happy-Sad condition when compared to the Angry-Neutral 

condition (Fig. 6.4.1C, F(1,22)=48.28, p<0.01, partial η2 = 0.66). However, we observed no main 

effect of dominance group on accuracy (Fig. 6.4.1C, F(1,21.35)=1.59, p=0.22, partial η2 = 0.069). 
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Figure 6.4.1. Behavioral results in the emotion discrimination task. (A) The experimental design of the 

task. There are two experimental conditions: Happy-Sad and Angry-Neutral. Participants are required to 

press one of the two buttons corresponding to the emotion they perceived as soon and as accurate as possible. 

(B) Violin plots showing the reaction times of both the high and low dominant group in the two 

experimental conditions. (C) Violin plot showing the accuracy of both the high and low dominant group in 

the two experimental condition. (D) Scatter plot displaying the correlation between PRF-D scores and 

reaction times. 

 

 Nevertheless, following the same approach as da Cruz et al. (2018), we employed a simple 

reaction time task to examine if motor ability differences existed between the dominance groups 

(Fig. 6.4.2A). Although a trend suggested that individuals with high dominance responded slower 

than those with lower dominance, no significant differences emerged in the reaction times between 

the two dominance groups, suggesting comparable motor skills (Fig. 6.4.2B, t(24) = 1.31, p = 0.2, 

Cohen’s d = 0.52). We further examined any potential differences in impulsivity between the 

groups by conducting a Go/No-Go task (Fig. 6.4.2C). We observed no significant differences in 

the reaction times for hit trials (t(24) = 0.87, p = 0.4, Cohen’s d = 0.34) or in the d-prime score 

(t(24) = -0.42, p = 0.68, Cohen’s d = 0.17) between the groups (Fig. 6.4.2D). These findings 
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indicate that superior motor abilities or increased impulsivity are not characteristics that 

discriminate the high dominance group. 

 The relationship between hormone levels and dominance has been reported previously. For 

instance, Mehta and Josephs (2010) demonstrated that testosterone is positively correlated with 

dominance, but only in individuals with low levels of cortisol. Therefore, we evaluated if relevant 

hormonal differences existed between the two dominance groups. Specifically, we calculated the 

area under the curve with respect to the ground (AUCg) and the increase (AUCi) for two hormones, 

cortisol and testosterone (Fig. 6.4.S1). There were no significant differences between the two 

groups. 

 

 

Figure 6.4.2. Results of simple reaction time and Go/NoGo tasks. (A) The experimental design of the 

simple reaction time task. Participants pressed the spacebar as soon as they noticed the onset of a square on 

the screen. (B) Violin plots showing the reaction times of both the high and low dominant groups. (C) The 

experimental design of the Go/No-Go task. A Go or a No-Go stimuli appeared on the screen. Participants 

were required to press the spacebar when a Go stimulus was presented and withhold their response when 

the No-Go stimulus was presented (D) Left: Violin plot showing the reaction times of hit trials both high 

and low dominant groups. Right: Violin plot showing the d-prime of both high and low dominant groups. 
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EEG analysis. To understand the neural mechanism underlying social dominance, we recorded 

EEG signals while participants performed the emotion discrimination task. We found differences 

in the GFP between the two dominance groups. These differences emerged within a time interval, 

ranging from 238ms to 251ms after the stimulus presentation (Fig. 6.4.3A). Our findings align 

with the results reported previously in the male population (da Cruz et al., 2018).  

To better understand which electrodes contribute to the difference observed in the GFP, we 

conducted a repeated measures ANOVA on the neural activity averaged across the previously 

reported period (238-251ms) for each electrode (128 electrodes), with dominance level and 

experimental conditions as factors. A main effect of the dominance factor was observed in six 

electrodes, while an interaction between dominance level and experimental conditions was evident 

in twenty electrodes. (Fig. 6.4.3B, top). Although the previously mentioned effects (six for the 

main effect of dominance and twenty for interaction effect) did not survive correction for multiple 

comparisons, several demonstrated large effect sizes. This suggests that these regions may encode 

different levels of dominance and could contribute to the differences in the GFP we observed. 

 We also carried out an exploratory analysis aimed to determine if there were any EEG 

components that linked dominance levels to behavior, particularly reaction time. We observed 

significant correlations between both PRF-D scores (r(24) = -0.445, p = 0.023) and reaction times 

(r(24) = 0.57, p = 0.002) with the differences in neural activities between frontal and occipital 

lobes from 62ms to 76ms after stimulus presentation (Fig. 6.4.S2B). Subsequently, we applied a 

mediation analysis and observed a significant indirect effect along the path, with PRF-D as the 

independent variable, reaction time as the dependent variable, and the difference between the two 

brain regions as the mediation factor. This suggests that the dominance level is not a direct cause 

of reaction time, but is mediated by the neural activities, which in turn affect the response speed 

(Fig. 6.4.S1C). 

Furthermore, source level analysis localizes the differences in the left intraparietal sulcus 

(IPS) (Fig. 6.4.3B). To capture the differences at the neural level more effectively, we compared 

the high and low dominance groups separately across the two experimental conditions. In the 
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Happy-Sad condition, differences were linked to regions in the striatum. Conversely, in the Angry-

Neutral condition, differences were associated with the temporal regions (Fig. 6.4.S3). 

 

Figure 6.4.3. High dominant females exhibit a distinctive EEG component. (A) Top: The GFP traces 

for the two groups in the two experimental conditions. The gray region marks the time points that show the 

main effect of Group. Bottom: The averaged topographies of the two groups. (B) Left: The main effect of 

the groups at topographic and source levels. Right: The interaction effect of groups and condition at the 

topographic and source level. 

 

 After the main experiment, we administered a 5-minute session of resting state EEG 

recording. While we observed no significant differences in the power across frequency bands in 

the two groups (Fig. 6.4.4A, F(1,96) = 1.51, p = 0.22, partial η2 = 0.015), the whole-brain network 

density, which was computed from the connectivity analysis, revealed a main effect associated 

with dominance groups (Fig. 6.4.4B, F(1,96) = 5.17, p = 0.025, partial η2 = 0.051). These findings 

suggested that the high dominance group exhibited a greater network density relative to the low 

dominance group. 
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Figure 6.4.4. Social dominance and resting state EEG. (A) The power of frequency bands on the two 

groups in four frequency bands. (B) The network density in the two groups for four frequency bands. 
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6.5 Discussion 

Previous work showed that dominant males respond faster in complex decision-making 

paradigms compared to subordinate ones, but such differences do not hold in simpler reaction time 

paradigms (da Cruz et al., 2018). During these complex tasks, the EEG N2/P2 component was 

notably stronger in high dominant males than in less dominant ones. In the current study, we tested 

whether similar patterns occur in female participants. The amplitude and peak time of the N2/P2 

component in dominant females closely resembles those in dominant males. However, we did not 

find a significant reaction time benefit for high dominance vs. low dominant females. These results 

further support again the view that the N2/P2 component is a trait marker for dominance, evident 

even in the absence of social interactions. 

 We additionally observed that activity around 70ms after stimulus presentation seemed to 

be important for the linkage between dominance levels and behavior, especially involving the 

frontal and occipital lobe. It was reported that the N70 is more pronounced in females than in males 

(Breton et al., 2019). In addition, the N70 also seems to relate to the processing of emotional faces 

(Santos et al., 2008; Zotto and Pegna, 2015). These studies relate to our findings that the EEG 

component around 70ms after the presentation of an emotional facial stimulus might be associated 

with processing speed of emotional stimuli, particularly in female participants. 

While we did not observe a statistically significant difference in reaction times, there was 

a noticeable correlation between dominance scores and reaction time. This suggests a trend for 

dominant females to respond more quickly. Some studies suggest that social dominance may be 

positively linked to impulsivity (Lesch and Merschdorf, 2000) To address the possibility and to 

control for the motor ability, participants performed two additional behavioral tasks, the simple 

reaction time and the Go/NoGo tasks. There were no significant differences between the two 

groups in these tasks.  

Behaviorally, we did not observe faster reaction times in dominant females, unlike the 

observation from da Cruz et al., (2018) with males. This discrepancy might be attributed to 

differences in the sampling methods applied in the studies. da Cruz et al., (2018) used an extreme 

sampling approach, selecting participants from the two ends of the dominance spectrum (very high 

and very low). In contrast, our study utilized a random sampling method, resulting in a normally 
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distributed range of dominance levels among participants. This difference in sampling strategy 

could contribute to the smaller effect size observed in our behavioral results. 

On the other hand, in the female population, we observed an N2/P2 EEG component that 

is almost identical to the study by da Cruz et al., (2018) in both amplitude and latency. There are 

studies showing that the N2/P2 component is related to attention (Schindler and Bublatzky, 2020). 

Therefore, it may be that dominant individuals have higher attention resources. We performed 

source localization to identify the brain regions that contributed to the observed differences in the 

N2/P2 EEG component between the two dominance groups. Our findings indicate that the IPS 

plays a significant role in these differences. The IPS, a region previously implicated in the 

encoding of social status, exhibits stronger activity when recognizing stimuli associated with a 

higher social hierarchy (Chiao et al., 2009; Farrow et al., 2011). This finding may be reflected in 

our study, suggesting that high dominant females might allocate more attention resources to social 

judgments during our task. When contrasting the neural activities under the two experimental 

conditions separately, we observed that regions in striatum (Happy-Sad condition) and temporal 

sulcus (Angry-Neutral) exhibited differences between the high and low dominant groups. These 

brain regions were also reported in the study by da Cruz et al. (2018). This result suggests that 

different process might be occurring in the two conditions. The temporal sulcus, crucial for 

encoding facial information (Å hs et al., 2014), showed higher activity in high dominant females, 

which could be interpreted as indicative of increased attention resources used for discriminating 

faces. On the other hand, the greater response in the striatum might be related to heightened 

perception of social rewards (Chakrabarti et al., 2006), potentially linked to the presence of happy 

faces, eliciting a stronger reaction in high dominant females. 

The resting-state EEG is an effective measurement for assessing fundamental neural 

processing in the brain. For this purpose, we analyzed resting-state EEG data to determine whether 

significant differences existed between the two levels of dominance in the female participants. 

Focusing on the connectivity between electrodes, we observed a significant difference in 

connectivity density – the high dominant group demonstrated denser connectivity compared to the 

low dominant group. While there have been studies utilizing resting-state EEG to examine trait 

aggressive tendencies (Hofman and Schutter, 2012) and combining the lateralized resting activity 

with questionnaire (BIS/BAS) to make prediction of neural responses when view emotional faces 
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(Balconi et al., 2017), no previous studies have directly investigated the relationship between 

social dominance and resting-state brain connectivity. Thus, our study provides a new direction by 

showing that inherent differences in brain connectivity can be indicative of an individual’s level 

of social dominance, independent of task engagement. 

In conclusion, our study provides evidence that dominant females have a higher N2/P2 

EEG component compared to the low dominant females during decision-making. This mirrors the 

findings of da Cruz et al. (2018), where the same component was presented in males. This gives a 

strong evidence of a general neuromarker for social dominance. Social dominance is often 

associated with leadership and decision-making ability. Our results provide evidence that such 

tendencies might be innate, suggesting that some individuals could be naturally predisposed to 

leadership. Moreover, these tendencies are not confined to demographic factors like gender, rather, 

they appear to be a general property. 
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Supplementary results 

 

Figure 6.4.S1. Hormonal levels. (A) Violin plot showing the AUCg and AUCi of cortisol of both high and 

low dominant groups. (B) Violin plot showing the AUCg and AUCi of testosterone of both high and low 

dominant groups. Further details can be found in the Method: Salivary Cortisol Analyses’ section. 
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Figure 6.4.S2. Mediation analysis. (A) Division of EEG topography into four regions. (B) Correlation 

between the differences in average activities of the frontal and occipital lobes with the PRF-D scores and 

reaction times. (C) Diagram illustrating the mediation analysis. 
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Figure 6.4.S3. Condition-specific source analysis. (A) The contrast of source between the high and low 

dominance groups during the Happy-Sad condition. (B) The contrast of source between the high and low 

dominance groups during the Angry-Neutral condition.  
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7. Discussion 

In our fast-changing environment, possessing the abilities to learn and make decisions is 

crucial. In the thesis, we provide evidence from behavioral and neural perspectives to understand 

how various factors affect these capabilities. 

Novelty seeking is important for reinforcement learning 

In study I, we introduced a unique experimental paradigm to investigate human exploration 

driven by curiosity under stochastic conditions. Two key findings arose from this study: 1) 

Participants who exhibited optimism about encountering greater rewards than those already found 

consistently displayed distraction due to stochastic elements; and 2) this continuous distraction 

pattern was more effectively attributed to the novelty seeking rather than the pursuit of 

information-gain or surprise, despite the theoretical robustness of information-gain in managing 

stochastic scenarios. 

Reward is a crucial component in various forms of learning (Berridge & Robinson, 1998). 

The expectation of rewards hidden in an environment often evokes optimism in humans, as it leads 

to more positive expectations about the future outcomes (Carver et al., 2010). In our experiment, 

we implicitly manipulated participants’ levels of optimism by varying the magnitude of the 

rewards they encountered. Indeed, our results demonstrated that participants with higher optimism 

(holding the expectation of finding better reward) tended to explore more in stochastic states, likely 

influenced by an optimism bias (Sharot, 2011).  

In the realm of reinforcement learning, the exploration-exploitation trade-off is a crucial 

concept extensively explored across psychology, neuroscience, and machine learning (Cohen et 

al., 2007; Dubey & Griffiths, 2020). Numerous theories and models have been developed to 

understand how humans formulate strategies to explore the environment (Ghavamzadeh et al., 

2016; Schulz & Gershman, 2019). In our studies, we specifically evaluated three prominent models 

centered on novelty, surprise, and information-gain. We discovered that high levels of exploration 

in stochastic states are most accurately explained by the novelty-seeking model. This finding 

implies that humans might employ a less complex algorithm in such scenarios, as they only need 

to track state frequencies over time without requiring knowledge of the environmental structure. 
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Therefore, while this approach may not always be optimally efficient, it is less demanding 

cognitively (Xu et al., 2021). 

The link between dopamine and reinforcement learning 

As highlighted in the introduction, dopamine is one of the most crucial neurotransmitters 

related to RL (Schultz et al., 1997). Accordingly, our subsequent studies aimed to investigate how 

potential deficit in the dopamine system might impact an individual’s RL ability. Our primary 

focus was on two populations: the elderly and patients with schizophrenia. 

In study II, we introduced a model based on classical Q-learning, modified to simulate 

elevated dopamine levels in schizophrenia. We proposed three hypotheses: 1) Patients with 

schizophrenia would reveal suboptimal RL performance compared to healthy controls when faced 

with positive rewards; 2) This suboptimal performance would stem from poor action selection; 

and 3) These patients would exhibit minimal or no deficits in RL tasks involving negative rewards, 

i.e., punishments.  

Our results indicate that the suboptimal accuracy in patients could be due to high 

perseverative behavior. Within the Q-learning framework, such perseveration is linked to a 

reduced encoding of prediction errors, leading to a diminished magnitude of updates in the values 

associated with state-action pairs and, consequently, slower learning. In the model, the inverse 

temperature parameter (indicating exploration rate) is higher in patients than in controls. Thus, 

unlike controls, patients tend to meander through the environment until they fortuitously achieved 

the goal. We suggest that the model effectively reflects the underlying mechanisms in these 

patients. Our results are consistent with the studies demonstrating that patients exhibit deficits in 

reward-based learning (Strauss et al., 2011, 2014). 

In experiment 2 of the same study, patients exhibit significantly higher accuracy in the 

punishment condition than in the reward condition. These findings align with previous research, 

which reported impairments in RL with positive rewards but not with punishments (Abohamza et 

al., 2020; G. L. F. Cheng et al., 2012; Waltz et al., 2007b). Another study observed deficits in 

forming new stimulus-reward associations, whereas patients performed normally in tasks 

involving new stimulus-punishment associations (Waltz et al., 2007b). 
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In study III, our objective was to explore potential deficits in RL among older adults. In 

the first experiment, no significant differences in RL abilities are observed between young and 

older adults. Even when increasing the number of trials, as in experiment 2, we merely observe a 

difference in one of the ISI conditions  These results suggest that, generally, older adults do not 

exhibit inferior RL abilities compared to young adults, aligning with the findings from previous 

studies (Lighthall et al., 2018; Pietschmann et al., 2011).  

However, other research has shown that older adults may demonstrate reduced RL in more 

demanding tasks (Daniel et al., 2020). This conclusion might be influenced by a ceiling effect in a 

simpler condition. It is possible that group effects are present in both the easier and more 

challenging conditions, suggesting that the difficulty does not appear to be a determining factor. 

Our findings imply that RL abilities are largely preserved in older adults within our experimental 

framework. Importantly, our study underscores the significance of reporting null results in aging 

research, as they are crucial in accurately understanding the impact of aging on human cognition. 

Different effects of aging and schizophrenia on the ability to engage in RL 

In study II and III, we utilized the same RL task to two distinct populations: patients with 

schizophrenia and older adults. Our analysis enabled us to distinguish and observe differences in 

their behavior. Among the patient population, we observed a higher tendency for perseveration 

compared to the healthy controls, which appear to result from dysfunctions in the dopamine system. 

One could argue that such perseveration might also arise from reduced working memory capacity, 

leading to confusion about which actions are appropriate. To address this, we examined 

performance under two different ISI conditions within the experiment. We observed no interaction 

effects indicating that patients and controls performed differently in the two ISI conditions. Given 

that the long ISI condition demands greater memory capacity, the absence of any significant 

differences suggests that the suboptimal performance is not attribute to deficiencies in the memory 

system. 

In the study III, we found significant performance differences between young and older 

adults in the long ISI condition. This could be due to several factors: actual RL deficits, memory 

issues, or greater fatigue in older adults. First, the Q-learning model showed no abnormal learning 

or exploration rates in older participants, suggesting that RL deficits are unlikely. Second, older 
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adults showed less confidence in memory tasks involving distant states and had less improvement 

in decision variability, hinting at possible memory challenges. Similar studies, like Lighthall et al. 

(2018), have found differences in brain activity but not in behavior between age groups, suggesting 

that memory load might affect the brain but not always be evident in behavior. Third, it's known 

that older people tire faster (Enoka & Duchateau, 2016), which could explain the differences in 

long ISI tasks. However, our analysis showed that older adults struggled more with tasks involving 

distant goals but not with closer ones. This pattern points more towards a memory deficit being 

the main issue rather than fatigue. 

In sum, we identified deficits in RL in both populations, though the strength and the causes 

of these deficits varied. Patients with schizophrenia exhibited more pronounced deficits, likely 

resulting from increased perseveration due to abnormally high dopamine levels. On the other hand, 

the ageing population showed subtler differences, potentially arising from issues within the 

memory system. 

After exploring how novelty, illness, and aging influence RL and decision-making, we now 

shift our focus to a more intrinsic factor: personality traits. Our aim is to determine whether and 

how these traits impact behavior. 

How social dominance, as a trait, affects behavior 

Humans inhabit a society that is highly interconnected. Within this context, hierarchical 

structures and the concept of social dominance emerge (Sidanius & Pratto, 1999). These concepts, 

crucial in defining the ranks among individuals, significantly influence human behavior, including 

learning and decision making (Hall et al., 2005; Ligneul et al., 2017; Zink et al., 2008). 

Nevertheless, some research has shown that social dominance can be considered as a trait, 

independent of social context. For instance, dominant male participants have demonstrated faster 

responses in complex decision-making paradigms compared to simpler reaction time tasks (da 

Cruz et al., 2018). In these complex tasks, the EEG N2/P2 component was more pronounced in 

highly dominant males than in less dominant ones. Building on this, study IV aimed to explore 

whether female participants exhibit similar patterns, both behaviorally and neurologically. 

We utilized the same emotion discrimination task with EEG recordings as in da Cruz et al. 

(2018) to test the female participants. The EEG results showed that the amplitude and peak latency 
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of the N2/P2 component in dominant females closely resembles those in dominant males. However, 

we did not observe a reaction time advantage for high dominance compared to low dominance in 

females. Additionally, participants undertook two other behavioral tasks: the simple reaction time 

and the Go/NoGo tasks. No significant differences were found between the two dominance groups 

in these tasks. We also examined the resting-state EEG recordings. Dominant females exhibited 

increased network density across all frequency bands. 

The N2/P2 component observed in EEG recordings is thought to represent the allocation 

of cognitive resources towards the detection, categorization of target stimuli, and associated 

decision-making processes (Mudar et al. 2016). It may also reflect the intentional effort required 

to execute the task (Winterer et al. 2002). Consequently, variations in N2/P2 activation related to 

dominance could indicate differences in the mobilization of these cognitive resources. The intrinsic 

disparities in brain processes might underpin distinctive cognitive styles that contribute to the 

establishment of dominance hierarchies and leader-follower dynamics in social settings. 

The results of our study are in line with those found by da Cruz et al. (2018). We observed 

an increased N2/P2 EEG component in dominant females, suggesting that this component could 

serve as a general neuromarker for social dominance, even in the absence of a social context. 

Furthermore, our findings revealed increased whole-brain connectivity in dominant females during 

resting state. This observation suggests fundamental neural wiring differences between individuals 

of high and low dominance even without task engagement. 

General discussion 

The results of this thesis provide several insights into the fields of RL and decision-making. 

Firstly, we analyzed the source of reduced RL performance, distinguishing between the effects of 

dopamine and memory. This was achieved by studying both patients with schizophrenia and a 

healthy aging population. Previous studies such as Strauss et al. (2011) and Dowd et al. (2016) 

have found that patients show less accuracy in RL tasks involving rewards. Furthermore, studies 

by Waltz et al. (2007a) and Cheng et al. (2012) demonstrated better performance by these patients 

in RL tasks involving punishment. Our findings not only corroborate the observed deficits in 

reward learning but also suggest intact performance in punishment learning. The discovery of 

unimpaired performance in punishment learning is astonishing and strengthens the proposition of 
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our model. It provides a clear explanation by applying Q-learning model to illustrate the impact of 

abnormal dopamine concentrations. While some studies have suggested that the ageing population 

demonstrates less accuracy in RL due to issues in dopamine (Chowdhury et al., 2013; Sojitra et 

al., 2018), the results are not consistent. Lighthall et al. (2018) and Eppinger et al. (2008), for 

instance, found no significant or only subtle differences in RL accuracy between older and young 

individuals. Our results align more with the latter, as we observed only minor differences in 

performance between the young and older adults. We determined that the RL deficits in 

schizophrenia are linked to how dopamine encodes information, while the ageing population is 

primarily affected by a reduced memory capacity, which influences their ability to choose the 

correct actions.  

Another key finding of our studies concerns intrinsic motivation and its influence on our 

interactions with environment. Previous studies have demonstrated that humans are naturally 

drawn to novelty or surprising elements, which enhances exploratory behavior in the RL 

framework (Houillon et al., 2013; Itti & Baldi, 2009; Wittmann et al., 2008). Furthermore, humans 

generally exhibit optimism, often phrased as optimistic bias, when expecting better outcomes 

(Lefebvre et al., 2017). Our research revealed that, despite being suboptimal, humans tend to seek 

novelty, and the expected rewards reinforces such behavior. This tendency is also captured in our 

RL model. These results not only align with previous findings but also provide a computational 

perspective for explanation. Finally, shifting our focus to individual traits, numerous studies have 

shown that the level of social dominance significantly affects the decision-making process. 

Dominance is often defined within competition scenarios (Ligneul et al., 2017; Zink et al., 2008),  

and a higher level of dominance may correlate with better performance (Santamaría-García et al., 

2014). Combining our findings with those of da Cruz et al. (2018), we offered a different 

perspective and concluded that social dominance can be considered a personality trait, emerging 

independently of social context. Moreover, through neuroimaging techniques, we identified 

neuromarkers associated with the dominance trait, potentially linked to the motivation driving 

response speed, irrespective of gender. 

As a final note, the ability to learn and make decisions is crucial for navigating complex 

real-world scenarios (Collins & Shenhav, 2022), making it a fascinating area of study. I believe 

this understanding is key to unraveling the evolutionary process that has shaped us (Dukas, 1998). 
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