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Abstract—Spike detection plays a central role in neural data
processing and brain-machine interfaces (BMIs). A challenge for
future-generation implantable BMIs is to build a spike detector
that features both low hardware cost and high performance.
In this work, we propose a novel hardware-efficient and high-
performance spike detector for implantable BMIs. The proposed
design is based on a dual-detector architecture with adaptive
threshold estimation. The dual-detector comprises two separate
TEO-based detectors that distinguish a spike occurrence based on
its discriminating features in both high and low noise scenarios.
We evaluated the proposed spike detection algorithm on the
Wave Clus dataset. It achieved an average detection accuracy of
98.9%, and over 95% in high-noise scenarios, ensuring the relia-
bility of our method. When realized in hardware with a sampling
rate of 16kHz and 7-bits resolution, the detection accuracy is
97.4%. Designed in 65nm TSMC process, a 256-channel detector
based on this architecture occupies only 682µm2/Channel and
consumes 0.07µW/Channel, improving over the state-of-the-art
spike detectors by 39.7% in power consumption and 78.8% in
area, while maintaining a high accuracy.

Index Terms—Spike detection, dual-detector, on-chip, neural
signal processing, high-density, brain-machine interface (BMI)

I. INTRODUCTION

In a brain network, neurons mainly communicate through
brief electrical pulses known as action potentials or spikes [1].
Traditionally, a brain-machine interface (BMI) records multi-
channel (100–200) neural activity from brain regions associ-
ated with a target task. Next, spike occurrences are detected as
the preliminary processing step for neural decoding. Future-
generation BMIs, on the other hand, will be implantable high-
density systems [2] with the capability of on-chip data process-
ing [2]–[5]. The detection accuracy should be high in various
signal scenarios to be reliable for clinical use. Furthermore, the
design should be low-power and area-efficient to be integrable
on next-generation highly-miniaturized neural microchips [6].

To date, various spike detectors have been proposed for
implantable BMIs [7]–[16]. The simple absolute thresholding
(AT) method compares the signal amplitude with a predefined
threshold level [10]. Despite being hardware-efficient, this
method is highly sensitive to noise, which leads to poor
performance at low signal-to-noise ratios (SNRs). To address
this issue, the dual vertex threshold (DVT) algorithm uses a
positive and a negative threshold for spike detection [15], [16].
Detectors based on data transformation techniques have also
been proposed to improve performance. In [9], the moving

Fig. 1. The generic block diagram of the proposed dual spike detector.

average energy (MAE), which calculates the instant signal en-
ergy over a sliding window, was proposed for spike detection.
The Teager energy operator (TEO) (a.k.a., nonlinear energy
operator, NEO) and its variants [11]–[13] are among the
popular data transformation techniques widely used in spike
detectors. Moreover, time-frequency analysis methods such
as discrete wavelet transform (DWT) and stationary wavelet
transform (SWT) have been reported for spike detection [7],
[17], [18]. Other designs combined wavelets and TEO to
achieve a high performance [8], [19]. However, such methods
are computationally complex for integration on implantable
devices with limited hardware resources [20]–[22].

Here, we present the design and implementation of a
hardware-efficient dual spike detector with online threshold
estimation. The dual detector smooths the neural signal to
reduce its high-frequency noise content. Next, TEO trans-
formation is applied to the original and smoothed signals to
enhance spike detectability. A spike is detected if either of
the aforementioned signals exceeds the associated threshold
level. The proposed dual detector achieves a high detection
accuracy even in high-noise scenarios thanks to the dual-path
detection method. To show the scalability of the design, we
implemented a 256-channel digital spike detector based on this
architecture, achieving state-of-the-art accuracy and hardware
efficiency. The remainder of this paper is organized as follows.
We introduce the proposed detection algorithm and adaptive
thresholding method in Section II. Section III presents the
hardware implementation. Simulation results are presented in
Section IV, followed by a conclusion in Section V.

II. SPIKE DETECTION METHOD

The proposed dual-detection method comprises two separate
spike detectors working in parallel. In one path, the TEO of
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Fig. 2. Block diagram of the on-chip standard deviation estimator for adaptive
threshold calculation.

the input neural signal is calculated to highlight sharp peaks,
followed by an adaptive thresholding procedure to distinguish
the spikes from background noise. The TEO transformation is
formulated as follows:

T {X}[k] = X [k]2 −X [k+1]X [k−1], (1)

where X [k] and T {X}[k] represent the input and TEO signals,
respectively [18]. Since TEO accentuates sharp signal varia-
tions, it is only helpful when the high-frequency background
noise is limited. To detect spiking activity even in the presence
of high-frequency noise, we included a second data path
in our design. In the second path, neural signals are first
smoothed to reduce the high-frequency noise. The smoothed
signal is then fed to a TEO-based spike detector. The larger
the window size, the better the smoothing function can be
performed. However, a large window size demands a larger
memory that increases hardware utilization. Considering the
trade-off between performance and hardware cost, we set the
window size to two samples in this design. Combining the
results from both paths, a spike event will be raised if either
detector captures above-threshold activities. Fig. 1 shows the
block diagram of the proposed method. As shown later in
this paper, the dual-detection strategy leads to a significant
improvement in detection accuracy, particularly in high-noise
scenarios.

In a neural interface, the recorded signals are susceptible
to drift over time. In order to adjust the detection threshold
to various changes in the signal, we designed an adaptive
threshold estimator to calculate the threshold level in an online
fashion on the chip. Due to the different characteristics of
TEO-augmented signals (XT EO, ST EO), specific threshold lev-
els are computed for each signal. We formulate the threshold
levels as follows:

T hrX =C1 ×σS,

T hrS =C2 ×σS +C3 ×σ
2
S ,

(2)

where T hrX and T hrS indicate the threshold levels for XT EO
and ST EO signals (shown in Fig. 1), respectively. σS denotes
the estimated standard deviation of signal ‘S’, C1, C2 and,
C3 are the coefficients calculated via co-optimization of the
hardware and detection accuracy. The typical values of these
coefficients are in the form of powers of 2 and can be

Fig. 3. The hardware architecture of the 256-channel dual spike detector.

Fig. 4. Hardware design optimization via area and power co-analysis.

implemented with only a few shifts and additions rather than
complex multiplications.

To calculate the statistical ‘standard deviation’ or std, many
signal samples are required which could increase the hardware
complexity. The number of data samples higher than std in a
large neural dataset is proportional to the statistical standard
deviation [7]. Therefore, based on this concept, we modified
the estimation method introduced in [7] to improve the hard-
ware efficiency for online std calculation. Fig. 2 illustrates
the block diagram of the std estimator. The smoothed signal
is first compared with an initial, predefined value of σS.
The counter then calculates the number of samples higher
than σS. This one-bit stream is subsequently accumulated
every 256 clock cycles, and the result is subtracted by a
‘convergence factor’ that is determined based on the empirical
data distribution. Following scaling, σS will be updated by
the difference between the number of σS-exceeded samples
and the associated convergence factor through the feedback
loop, as shown in Fig. 2. In other words, this feedback loop is
designed to ensure the convergence of the number of samples
exceeding σS to the convergence factor. The small values
of ‘convergence factor’ and ‘scaling factor’ could make the
σS-estimation process more stable, but at the cost of higher
latency. Here, we chose 20 and 0.001 for the convergence
and scaling factors, respectively. Following convergence, we
calculate two separate threshold values based on Eq. 2.

III. HARDWARE IMPLEMENTATION

Fig. 3 illustrates the modular architecture of the proposed
256-channel dual spike detector. In this design, arithmetic
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(a) (b) (c)
Fig. 5. The mean detection accuracy vs. (a) noise level, (b) data resolution, and (c) sampling rate for the proposed dual-detector and previous methods
(algorithm-level simulation). For (b) and (c) the noise level is fixed at 0.1.

operations are executed sequentially on the incoming channel
data (i.e., 256 digitized channels). In order to reduce the
hardware cost, the computational blocks such as TEO and
threshold calculator are shared among every 32 channels. Here,
five register banks store the channel data and threshold levels.
Also, a multiplexer is used to consolidate the outputs of the 32-
channel modules. As a result, the 1-bit data stream (detected
spikes) will be generated via multiplexing the module outputs
in the time domain. The original (X) and smoothed (S) neural
signals are truncated to 7 and 6 bits, respectively, to further
improve the hardware efficiency. Moreover, the TEO outputs
are truncated to 8-bit (XT EO) and 9-bit (ST EO) signals in order
to reduce the memory requirements for thresholds calculation.
This can significantly improve the hardware efficiency at the
cost of near 1% drop in detection accuracy.

As shown in Fig. 4, there is a trade-off between the
occupied area and power consumption of the proposed 256-
channel spike detector. Hardware sharing decreases the area
per channel as the channel count increases. Similarly, the
power per channel decreases as a function of channel count at
low channel densities (i.e., <16). This trend changes at higher
channel counts where the dynamic power begins to dominate
the system power. By optimizing the area-power product, we
can find the optimal number of channels for hardware sharing
(32). The 256-channel detector thus contains eight modules
operating in parallel, each handling 32 channels. The system is
clocked at 4MHz, while the 32-channel detectors are activated
alternatively to reduce dynamic power.

IV. RESULTS

We used the Wave Clus dataset to assess the performance
of our spike detector [23]. The Wave Clus dataset includes
four different subsets named Easy1, Easy2, Difficult1, and
Difficult2 sampled at 24kS/s. Each subset has different noise
levels, ranging from 0.05 to 0.2 (for Easy1, it can be up to 0.4).
The noise level is defined as the standard deviation of noise
relative to the average magnitude of spikes. To evaluate the
spike detection performance, we used the ratio of correctly
detected spikes (true positives, TP) to the total number of
detected (TP+FP) and missed (FN) spikes as accuracy criteria.

Fig. 5(a) shows the detection accuracy of the proposed
algorithm and previous methods reported in literature versus
the noise level of the input signal. When the noise level is

at its minimum (0.05), all methods could detect the spikes
with high accuracy (>95%). However, by increasing the noise
level, the performances of MAE, AT, and DVT considerably
decreased. The mean accuracies of MAE, AT, and DVT are
87.7% (97.5-68.1%), 89.0% (96.1-71.2%), and 92.8% (96.3-
84.7%), respectively. TEO and SWT achieved a high mean
accuracy of 97.5% (97.8-96.5%), and 97.2% (97.8-95.7%).
The proposed dual detection method (with a mean accuracy
of 98.9%) outperformed all other methods, with accuracies
ranging from 99.1% (at high SNR) to 98.4% (at low SNR).

Furthermore, we investigated the impact of input data
resolution and sampling rate on the detection performance.
Fig. 5(b) shows the detection accuracy versus resolution at
a noise level of 0.1. The performances of TEO, AT and
SWT were high at high resolutions, with the performance
rapidly dropping for lower resolutions. This analysis shows
that the proposed method, DVT and MAE are less sensitive to
this parameter, obtaining accuracies above 90% even at 4-bit
resolution. Fig. 5(c) further illustrates the detection accuracy
versus sampling rate for various spike detection methods. As
shown in this figure, our proposed method and SWT are less
sensitive to sampling rate compared to other methods.

Table. I summarizes the design specifications, detection
accuracy, and hardware-level performance of the proposed
method and state-of-the-art spike detectors. References [9],
[10], [24], [25] present measured results, while the others
report simulated hardware results. We designed the 256-
channel dual spike detector in a 65nm TSMC process, with an

Fig. 6. The physical layout of the 256-channel dual spike detector. The area
of each 32-channel module is about 0.031mm2.
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TABLE I: The performance summary of the proposed method and state-of-the-art spike detectors.

Spike Detector This work [10] [7] [9] [12] [13] [14] [15] [24] [25]
CMOS Process (nm) 65 130 130 180 130 180 40 40 65 22
Method Dual-

detection
AT SWT MAE TEO ED§ PBOTM* DVT N/A TEO

Adaptive Threshold ✓ ✓ ✓ × ✓ ✓ × × N/A ×
Channel Count 256 10 16 8 64(max) N/A 16 16 1024 16
Resolution (bits) 7 16 6 8 10 N/A N/A 12 10 9
Sample Rate (kS/s) 16 20 25 30 20 16 12 24 20 25
Power per Channel (µW/Ch) 0.07 2.96 † 1.71 0.116 0.05‡‡ 5.1 19.0†† 8.09† 2.72 0.29
Area per Channel (mm2/Ch) 6.82×10−4 0.08†† 0.014 0.27 1.6×10−3‡‡ 0.018 0.0175†† N/A 0.02 3.22×10−3

Accuracy 97.4% 97.8% ‡ 98%∼99%¶ 97%‡ 95%‡ 95% 98.3%** 98.12%** N/A N/A
‡ A different dataset was used.
§ ED represents the energy of derivative method that is an approximated calculation of TEO designed in analog.
* PBOTM refers to the preselection Bayes optimal template matching that simultaneously performs spike detection and spike sorting.
¶ Overlapping spikes were excluded in the calculation of detection accuracy.
‡‡ Memory blocks were excluded in the estimation of power and area.
** False positives were not considered in the calculation of detection accuracy.
† Power is estimated based on the power breakdown in the paper.
†† Power or area was reported for the whole design, which also includes the spike sorting block, compression block or others.

active area of 0.25mm2 and power consumption of 17.55µW at
a 1.1V supply. Fig. 6 shows the layout of the 256-channel dual
spike detector introduced in Fig. 3. The simulated dynamic
and leakage powers are 10.8µW and 6.74µW at 16kHz,
respectively. The area and power breakdowns are shown in
Fig. 7. The register banks (i.e., memory) are the dominant
block in terms of both power and area usage, consuming over
68% of the hardware resources in this design.

For a fair comparison against the state-of-the-art, the per-
channel area and power consumption of the proposed detector
and other similar designs are presented in Table I. The
area and power of the dual-detector are 682µm2/Channel
and 70nW/Channel, respectively. These results show 78.8%
and 39.7% improvements in area utilization and power con-
sumption, respectively, over the state-of-the-art spike detectors
[9], [25]. This comparison confirms that our proposed spike
detector is the most hardware-efficient design reported so far.
This is a result of extensive hardware optimizations (e.g., block
sharing and data truncation). It is worth mentioning that the
power consumption of 50nW/Channel reported in [12] did not
include the power consumed by memory banks, which could
be significant in high-density BMIs.

From the standpoint of detection performance, the proposed
dual detector achieved an overall accuracy of 97.4% after
hardware optimization. This performance is comparable to
the state-of-the-art spike detectors while being achieved at a
significantly lower hardware cost. The high accuracy of ∼99%
reported in [7] was achieved by excluding the overlapping
spikes in the dataset. Moreover, the detection accuracies of
[14] and [15], which are slightly higher than our detector,
were calculated with a different definition (i.e., the ratio of
true positives to the sum of true positives and false negatives).
Thus, false positives were discarded in their calculations. In
addition, these performances were achieved at significantly
higher hardware costs compared to our proposed detector.

V. CONCLUSION

This paper presents a novel spike detector that benefits from
a dual detection architecture. This algorithm achieved nearly
99% accuracy in software simulations, and 97.4% using an
efficient hardware implementation. To improve the hardware
efficiency, we optimized our system for low sampling rate and

(a) (b)

Fig. 7. (a) The area, and (b) power breakdowns of the proposed dual detector.
The memory bank contains register banks for storing the internal values,
clock gating, and threshold estimation. The computational units represent
the hardware responsible for computations such as TEO, smoothing, and
comparators. The threshold calculator contains the logic to implement the
architecture in Fig. 2 (excluding the registers).

data resolution as well as optimal channel count for hardware
sharing. In 65nm TSMC process, the dual-detector occupies
only 682µm2/Channel and consumes only 0.07µW/Channel,
making it a proper candidate for implantable BMIs. The
proposed spike detector outperforms current state-of-the-art
spike detectors in terms of hardware efficiency.
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