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Abstract
Hawking’s black hole area theoremwas proven using the null energy condition (NEC),
a pointwise condition violated by quantum fields. The violation of the NEC is usually
cited as the reason that black hole evaporation is allowed in the context of semiclassical
gravity. Here we provide two generalizations of the classical black hole area theorem:
first, a proof of the original theorem with an averaged condition, the weakest possible
energy condition to prove the theorem using focusing of null geodesics. Second, a
proof of an area-type result that allows for the shrinking of the black hole horizon but
provides a bound on it. This bound can be translated to a bound on the black hole
evaporation rate using a condition inspired from quantum energy inequalities. Finally,
we show how our bound can be applied to two cases that violate classical energy
conditions.

Keywords Energy conditions · Area theorem · Black holes · Quantum energy
inequalities
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1 Introduction

Hawking proved his famous black hole area theorem in 1971 [1], showing that, under
certain spacetime assumptions, the area of the black hole horizon can never decrease.
This important result in classical general relativity paved the way to the laws of black
hole thermodynamics [2]: the area of the black hole horizon is a measure of its entropy
and according to the second law it cannot decrease. It was again Hawking that a few
years later proved that black holes emit radiation [3], a result in tension with his
previous theorem: as black holes emit radiation their mass and thus the area of their
horizon decreases.

To interpret this violation of the area theoremwe need to look closely at its hypothe-
ses and in particular at the null energy condition (NEC). Energy conditions are bounds
on components of the stress-energy tensor and were introduced in general relativity as
reasonable assumptions for any matter model [4, 5]. They have been used as assump-
tions in a variety of classical relativity theorems including the singularity theorems [6,
7]. The NEC states that

TμνU
μU ν ≥ 0 , (1)

were Uμ is a null vector field. This condition is obeyed by most reasonable classical
theories. However, this and all pointwise conditions are violated by quantum fields as
Epstein et al. [8] showed.

Hawking radiation requires a semiclassical setting, quantum fields on a classical
curved background. Thus the usual interpretation for the failure of the area theorem
in a semiclassical setup is the violation of the NEC. But the negative energy that
expectation values of the stress-energy tensor can admit is not unbounded in the context
of a quantum field theory (QFT), at least when their averages are considered. Ford
[9] first introduced the concept of a quantum energy inequality (QEI), interestingly
as a way to prevent the violation of the second law of black hole thermodynamics.
In general, QEIs bound the magnitude and duration of any negative energy densities
or fluxes within a QFT. The most famous example is the bound on the renormalized
energy density averaged over a segment of a timelike geodesic inMinkowski spacetime
[10, 11]
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∫
γ

f 2(t)〈:ρ:〉dt ≥ − 1

16π2 ‖ f ′′(t)‖2 , (2)

where :ρ: is the normal ordered energy density. Throughout the manuscript we will
refer with ‖ . . . ‖ as the L2-norm for square-integrable functions; for f a smooth
compactly supported real-valued function, the lower bound is finite. QEIs have been
derived for free fields and a few interacting ones for flat and curved spacetimes (see
[4, 12] for reviews).

In recent years, QEIs have been used to prove semiclassical singularity theorems.
The idea is to first replace the pointwise energy conditions of the classical theorems
with a condition of the form of QEIs [13, 14]. Then show that there exist quantum
fields that obey such a condition [15, 16]. We should note that the singularity theorems
(as the area theorem) use a geometric condition, the null (or timelike) convergence
condition

RμνU
μU ν ≥ 0 , (3)

for Uμ null (or timelike). Classically, one can use the Einstein equation to go from
the NEC to the null convergence condition and back. Semiclassically, what is used to
connect the expectation values of the renormalized stress-energy tensor with classical
curvature is the semiclassical Einstein equation (SEE)

Gμν = 8π〈T ren
μν 〉ω . (4)

A complete solution to that equation should include a set of a metric gμν and a
quantum state ω. But solutions are notoriously difficult to find and their existence has
only been shown in highly symmetric cases (e.g. [17–19]). Its use in the generalization
of classical relativity theorems is much simpler: one uses the SEE directly to connect
the QEIs with a geometric condition.

The original singularity theorems aswell as the area theoremused theRaychaudhuri
equation to show convergence of the congruence of geodesics in their proofs. Some
generalizations of singularity theorems with weakened energy conditions also used
the Raychaudhuri equation and properties of Riccati inequalities [13, 20–22]. More
recently Fewster and Kontou [14] suggested the use of index form methods to prove
singularity theorems with conditions inspired by QEIs. This method is not new, it was
used by O’Neill to prove the orginal singularity theorems [23] and also by Chicone
and Ehrlich [24] to prove the existence of conjugate points along complete geodesics
using averaged energy conditions.

Fewster and Kontou used the method of Ref. [14] to prove the first semiclassical
singularity theorem [15] for timelike geodesic incompleteness using the quantum
strong energy inequality [25] of a minimally coupled quantum scalar field. While
Ref. [14] includes the proofs of singularity theorems for both timelike andnull geodesic
incompleteneness with conditions inspired by QEIs, the null case presents significant
difficulties. With a direct counterexample, Fewster and Roman [26] showed that the
renormalized expectation value of the null energy, averaged over a finite segment of
a null geodesic is unbounded from below. To overcome that problem, Freivogel and
Krommydas [27] introduced a UV cutoff to control the lower bound in these cases.
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Table 1 A summary of the conditions discussed in this manuscript. The null convergence condition was
used in the original Hawking area theorem. The second condition is the weakest condition we find that needs
to be obeyed for the original area result to hold. Here f is a real function, compactly supported on the null
geodesic γ . Finally, the third condition is a condition inspired by QEIs, where m is a positive integer. Here,
the constants Q0 and Qm are initially unspecified non-negative constants that become specific given the
model. This condition, obeyed by some quantum fields, is not sufficient to prove the original area theorem,
providing a bound on the evaporation rate instead

Condition Equation

Null convergence condition RμνU
μUν ≥ 0

Weakest condition for area theorem
∫
γ

f (λ)2RμνU
μUνdλ ≥ (n − 2)‖ f ′‖2

Condition inspired by QEIs
∫ �

0
dλ f (λ)2RμνU

μUν ≥ −Qm (γ )|| f (m)||2 − Q0(γ )|| f ||2

The QEI, called the smeared null energy condition (SNEC) has the form

∫
γ

f 2(λ)〈:TμνU
μU ν :〉dλ ≥ − 4B

GN
|| f ′||2 , (5)

where GN � �n−2
UV /N is the effective Newton’s constant, �UV, the UV cutoff of the

theory and N the number of quantum fields. B is a numerical constant whose value
will be discussed in Sect. 5.3. The SNEC has been proven for free fields in Minkowski
spacetime [28] and it was used to prove a semiclassical singularity theorem for null
geodesic incompleteness [16].

In this workwe apply themethod of Ref. [14] to the case of the area theorem. Unlike
the singularity theorems, which seem to hold semiclassically, we do not provide a
proof of the area theorem using QEI-inspired conditions. A proof like that would be
in contrast to the concept of black hole evaporation. Instead the goal of this paper is
two-fold:

• We find the weakest condition under which the classical area theorem proof holds
• We derive a bound on the evaporation rate of semiclassical black holes using
QEI-inspired conditions

The second result is effectively a semiclassical generalization of the area theo-
rem. The interpretation is straightforward: QFT allows for negative energy and so
the decrease of the black hole horizon area. However, the bounds on the amount of
negative energy provide a bound to the rate of its decrease. The conditions used are
briefly summarized on Table 1.

We can comment on the physical significance of these results. Firstly, for the failure
of the classical area theorem violation of NEC may not be sufficient, the violation
of a weaker condition than the NEC is required. Such a condition is not expected
to be obeyed by quantum fields in general but could be obeyed by specific field
configurations that violate the NEC.

Secondly, the bound on the evaporation rate is expected to be obeyed by at least
some quantum fields, and in particular free scalars. Thus we can check if the models
of evaporation respect that bound and a check for their validity.
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The paper is organized in the followingmanner. In Sect. 2 we review the index form
method for null geodesics. In Sect. 3 we prove the original Hawking black hole area
theorem using the index form method and find the weakest energy condition under
which it holds. In Sect. 4 we prove the main result of our paper, a bound on the rate
of evaporation of semiclassical black holes. In Sect. 5 we apply the theorem in two
examples that violate the NEC, the classical non-minimally coupled scalar field and
the quantumminimally coupled scalar using SNEC. In both cases we comparewith the
calculated evaporation rate. We conclude in Sect. 6 and provide two additional results
on the location of the trapped surface in semiclassical black holes in Appendix A and
the allowed duration of negative energy in Appendix B.

Conventions: The units are c = G = 1 except in part of Sec. 5 and we work in n
spacetime dimensions unless otherwise stated. We use the [−,+,+] sign convention
from Misner, Thorne and Wheeler [29], which stands for:

• the chosen metric signature is (+,−,−, . . . ,−).
• The Riemann tensor in components is defined as:

Rμ
ναβ = ∂α�

μ
νβ − ∂β�μ

να + �μ
ατ�

τ
νβ − �

μ
βτ�

τ
να.

In particular, it’s true that:

[∇U ,∇V ]Wμ = Rμ
ναβW

νUαV β.

• Einstein equations are Rμν − 1
2 Rgμν = 8πTμν .

2 The index formmethod

In this section we briefly review the notion of the index form for null geodesics and
how it is used to prove the formation of focal points. We loosely follow Ref. [23].

2.1 Variation of the action integral

To begin, as we want to study null geodesics that have zero proper time, we study the
action or energy functional. Given a curve γ : [0, �] → M affinely parameterized by
λ, E is defined as1

E[γ ] := 1

2

∫ l

0
g(γ ′(λ), γ ′(λ))dλ . (6)

Let P be a spacelike submanifold of M of co-dimension 2 and consider the set of
all piecewise smooth curves joining P to q, �(P, q). Then the family of curves
γs(λ) := ζ(λ, s) in �(P, q), varies smoothly in s. The tangent and the transverse
vector fields are defined as Uμ = γ ′(λ) and Vμ = ∂γs/∂s|s=0. The second variation
of E[γs] or Hessian H[V ] is found to be [14, 23]

1 Here g(γ ′(λ), γ ′(λ)) is a coordinate independent way of expressing the metric contracted with the null
tangent of the geodesic γ .
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H[V ] ≡ ∂2E[γs]
∂s2

∣∣∣
s=0

=
∫ �

0

[
(∇UVμ)(∇UV

μ) + RμναβU
μV νV αUβ

]
dλ

−Uμ∇V∇UVμ

∣∣∣l
0
. (7)

The second variation of the length functional, used for timelike geodesics is called the
index form, from which the method takes its name.

Let now ei with i = 1, . . . , n − 2 be an orthonormal basis of Tγ (0)P , and parallel
transport it along γ to generate {Ei }i=1,...,n−2. Then, take f a smooth function with
f (0) = 1 and f (l) = 0. Calculating the Hessian for f Ei gives

H( f Ei , f Ei )=
∫ �

0

(
− f ′(λ)2+ f (λ)2RμναβU

μEν
i E

α
i U

β
)
dλ−UμII

μ(Ei , Ei )
∣∣∣
γ (0)

, (8)

where II is the shape tensor or second fundamental form. We then sum over all i =
1, . . . , n − 2 to get:

n−2∑
i=1

H( f Ei , f Ei )=−
∫ �

0

(
(n − 2) f ′(λ)2− f (λ)2RμνU

μUν
)
dλ−(n−2)UμH

μ
∣∣∣
γ (0)

.

(9)

Here

Hμ = 1

n − 2

n−2∑
i=1

IIμ(Ei , Ei ) , (10)

is the mean normal curvature vector field of P .

2.2 Formation of focal points

A focal point on a causal geodesic is defined formally as follows

Definition 2.1 Let γ be a causal geodesic of M normal to P ⊂ M . Then γ (r), where
r �= 0, is a focal point of P along γ provided there is a nonzero P-Jacobi field V on
γ , with V (r) = 0.

More informally, a focal point of a submanifold P along a normal geodesic γ is an
almost-meeting point of nearby P-normal geodesics of the same causal character of
γ .

For timelike geodesics, after a focal point, the curves cease to extremize length.
For null geodesics, to have an analogous statement we need the notion of promptness.
The term was introduced by Witten [30] who defined a causal path from q to p as
“prompt” if there is no causal path from q to a point r near p and just to its past.
More informally, there is no causal path, starting from q, that arrives sooner to p. The
notion is similar when we have null geodesics emanating normally from a spacelike
hypersurface. As in the case of timelike geodesics, a null geodesic is not prompt after
a focal point.
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To determine the existence or not of a focal point we use the Hessian calculated in
Sect. 2.1. In particular

Proposition 2.1 If there are no focal points of P ⊂ M along a normal null geodesic
γ ∈ �(P, q), then H[V ] is negative semidefinite on T⊥

γ � = {V ∈ Tγ � ∧ V ⊥ γ }.
Furthermore if V ∈ T⊥

γ � and H[V ] = 0 then V is tangent to γ .

The proof of Proposition 2.1 can be found in Ref. [23] (Proposition 10.41). Then using
Eq. (9) the proof of the following proposition is immediate.

Proposition 2.2 Let P be a spacelike submanifold of M of co-dimension 2 and let γ

be a null geodesic joining p ∈ P to q ∈ J+(P)2. Let γ be affinely parameterized by
λ ∈ [0, �]. If there exist a smooth (− 1

2 )-density f which is non vanishing at p but is
null at q, and such that

∫ �

0

(
(n − 2) f ′(λ)2 − f (λ)2RμνU

μU ν
)
dλ ≤ −(n − 2)UμH

μ
∣∣
γ (0) (11)

then there is a focal point to P along γ . If the inequality holds strictly then the focal
point is located before q.

For a discussion on the invariance of Eq. (11) see Ref. [14]. Before we proceed we
should address the issue of parametrization of null geodesics. Following Ref. [14] we
fix the affine parameter λ by requiring

Ĥμ

dγ μ

dλ
= 1 , (12)

where Ĥμ is a unit timelike vector defined as Hμ = H Ĥμ where Hμ is the mean
normal curvature of P . Now we can state the main result of this section, the classical
focusing theorem (see Ref. [23] Prop. 10.43).

Theorem 2.1 (Classical focusing theorem) Let P be a spacelike submanifold of codi-
mension 2. Choose γ a null geodesic parametrized by λ ∈ [0, �] such that ĤμUμ = 1,
where Uμ is the tangent vector to γ . Suppose that

(i) P is future converging, meaning that H < 0;
(ii) the null-convergence condition

RμνU
μU ν ≥ 0 , (13)

holds everywhere on γ .

Then if � ≥ 1/|H | there is a focal point on γ .

Proof In the chosen coordinates, pick f (λ) = 1 − λ/�. Then using the fact that the
null convergence condition holds on γ the inequality of Eq. (11) is true if � ≥ 1/|H |.
Then γ has a focal point before λ = �. ��
2 By J+(A) we mean the causal future of A: J+(A) = {q ∈ M : ∃p ∈ A such that p � q}, or, in words,
that there is a future pointing causal curve connecting p to q.
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3 The classical black hole area theorem

In this section we first present a proof of the original Hawking black hole area theorem
using the index form method presented in Sect. 2. Then we prove the area theorem
using theweakest possible condition for thismethod that does not allow for any horizon
decrease.

3.1 The Hawking black hole area theorem

Here we follow the notation and part of the proof structure of Wald [31]. However,
we note that both the original paper [1] and Ref. [31] use the Raychaudhuri equation
which is avoided here.

Theorem 3.1 (Black Hole Area Theorem) Suppose that

(i) (M, gμν) is a strongly asymptotically predictable spacetime;
(ii) the null convergence condition

RμνU
μU ν ≥ 0 (14)

holds for all null vectors Uμ.

Let �1 and �2 be spacelike Cauchy surfaces for the globally hyperbolic region Ṽ
such that �2 ⊂ I+(�1), and given the event horizon H we define

H1 = H ∩ �1 , and H2 = H ∩ �2 . (15)

Then the area of H2 is greater or equal than the area of H1.

Proof Let�1 be anyCauchy hypersurface for Ṽ through p andHμ be themean normal
curvature vector field of H1. We will prove by contradiction that for Uμ the tangent
field of the null generators of the horizon H , it holds everywhere that:

HμUμ ≥ 0. (16)

Suppose instead thatHμUμ < 0 at p ∈ H1.We thenwant to extend the functionHμUμ

in a continuous way on �1 in a neighborhood of p. We take any small deformation
of H1 outward on �1, say H ′

1 and call K the closed region on �1 between H1 and
H ′

1 ; the boundary of its future ∂ J+(K ) is a null hypersurface of co-dimension 1, and
hence comes with its own null generators, with tangent field U ′μ. This allows us to
define the extended function in p′ ∈ H ′

1 as simply the contraction H′μU ′
μ (with H′μ

the mean normal curvature of H ′
1 ). There are multiple possible extensions, but we

only need the existence of a smooth one3. The deformed area is shown in Fig. 1.

3 In order to guarantee for such a smooth limit to exist, some regularity conditions on Hμ need to be
imposed. As far as we are aware, the minimal hypotheses were worked out in [32]; it is important to remark
that these regularity assumptions aremuchweaker than just piecewise smoothness of the horizon and should
probably be satisfied for every reasonable physical setting.
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K
Σ1

p

p′

H

H1

∂J+(K)

Fig. 1 The smooth deformation ofH1 on �1. The shaded area K is the closed region betweenH1 andH
′
1

Given that extension, there exists a neighborhood of p in which H′μU ′
μ < 0. Then

we can always choose a deformation H1 outward on �1, toH ′
1 , such that

{
J−(I +) ∩ H ′

1 �= ∅;
H′μU ′

μ < 0 everywhere on J−(I +) ∩ H ′
1 .

(17)

Next we choose a point q ∈ I + ∩ ∂ J+(K ). The null geodesic generator through
q will meetH ′

1 orthogonally. Now we can apply Theorem 2.1 for γ the null geodesic

generator through q with γ (λ = 0) = p′ and setting Ĥ′μU ′
μ = 1. Since for H ′

1 we
have U ′

μH
′μ = H ′ < 0, assumption (i) holds. Then a focal point will develop before

� = 1/|H ′| and so before q. This is impossible, because orthogonal null generators
are prompt curves, and so cannot contain any focal points, hence

∀p ∈ H , HμUμ(p) ≥ 0 . (18)

To conclude, it is enough to observe that each p ∈ H1 lies on a null generator γ

contained in H . As �2 is a Cauchy hypersurface as well, γ must intersect �2 in a
point q ∈ H2. Then, the flow along null generators maps H1 into a portion of H2.
But we know that under deformation along the flow of a vector field, the area of a
submanifold evolves as ([33] and [34])

δU AH1 =
∫
H1

Hμ(p)Vμ ≥ 0 . (19)
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Thus when we modify H1 along the flow of the null generators the area of H1 can
never decrease. ��

3.2 Amore general condition

At the heart of the area theorem (as for singularity theorems) is the focusing theorem.
The original Hawking area theorem - as we showed in the previous subsection—used
the null convergence condition to deduce the formation of focal points of the null
generators of the horizon. But using Prop. 2.2 we can easily prove the classical area
theorem with a more general, averaged energy condition. In fact, this is the weakest
condition for this method that does not allow the horizon area to decrease and so
forbids black hole evaporation.4

Theorem 3.2 Suppose that

(i) (M, gμν) is a strongly asymptotically predictable spacetime;
(ii) for H the event horizon, Uμ the tangent field of its null generators γ (λ), and Hμ

the mean normal curvature ofH = � ∩ H, where � is a Cauchy surface for the
globally hyperbolic region Ṽ , the following inequality holds

∫
γ

f (λ)2RμνU
μU νdλ ≥ (n − 2)‖ f ′‖2 , (20)

where f ∈ C∞
1,0[0, �] such that f (0) = 1 and f (�) = 0.

Let �1 and �2 be spacelike Cauchy surfaces for the globally hyperbolic region Ṽ
such that �2 ⊂ I+(�1), and given the event horizon H we define

H1 = H ∩ �1 H2 = H ∩ �2 . (21)

Then the area of H2 is greater or equal than the area of H1.

Proof The beginning of the proof is similar as in Theorem 3.1 but instead of Theo-
rem 2.1 we apply Prop. 2.2 to deduce that there is a focal point. In particular using
condition (ii) and Prop. 2.2 we conclude there is a focal point before q if H ′μU ′

μ < 0.
Thus ∀p ∈ H , HμUμ(p) ≥ 0 and the proof is concluded. ��
Remark 1 Assumption (ii) can be strengthened if instead of Eq. (20) we use

inf
f ∈C∞

1,0[0,�]
J�[ f ] ≤ 0 , (22)

with

J�[ f ] =
∫

γ

(
(n − 2) f ′(λ)2 − f (λ)2RμνU

μU ν
)
dλ . (23)

4 Of course there may be weaker energy conditions by changing for example the causality or spacetime
assumptions.
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A special case of condition (20) is the damped averaged null energy condition
(dANEC) introduced by Lesourd [35] who proved the area theorem using methods
from Ref. [36]. Both references use the Raychaudhuri equation. Picking f = e−cλ/2

where c > 0 Eq. (20) for n = 4 becomes

∫
γ

e−cλRμνU
μU νdλ − c

2
≥ 0 , (24)

which becomes the dANEC for future complete null geodesics. 5 It is interesting to
note that for c = 0 this condition reduces to half-ANEC

∫
γ

RμνU
μU νdλ ≥ 0 . (25)

Even though those conditions are significantly weaker than the null convergence con-
dition, we don’t expect them to be satisfied by quantum fields. In general, the energy
density (or the null energy) of quantum fields is not necessarily positive over portions
of causal geodesics. Even the half-ANEC can be easily violated by having negative
energy concentrated in one half of the geodesic, even though the ANEC is generally
obeyed. Nevertheless, it is evident that it is not sufficient that quantum fields violate
the NEC to allow black hole evaporation but instead they need to violate the average
energy condition of Eq. (20).

4 The generalized black hole area theorem

In the previous section we proved theorems where the black hole horizon area was not
allowed to decrease. In this section we use the structure of the Hawking area theorem
to provide a bound on the evaporation rate. We further show the structure of the bound
for conditions of the form of QEIs.

4.1 A bound on the evaporation rate

Instead of requiring an energy condition to hold, we can use the causality assumption,
which forbids the formation of focal points on null generators, to impose a bound on
the black hole horizon area decrease. The following theorem directly uses Prop. 2.2

Theorem 4.1 Suppose that (M, gμν) is a strongly asymptotically predictable space-
time. Let H be the black hole horizon, Uμ the tangent field of its null generators γ (λ),
and Hμ the mean normal curvature ofH = � ∩ H, where � is a Cauchy surface for
the globally hyperbolic region Ṽ . Then the following inequality holds

5 The half-ANEC and ANEC are usually conditions on the stress-energy tensor Tμν . The conditions on the
curvature that are used in the singularity theorems and the area theorem can be obtained classically with
the use of the Einstein Equation.
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δUAH =
∫
H

Hμ(p)Uμ ≥ − 1

n − 2

(
inf

f ∈C∞
1,0[0,�]

J�[ f ]
)

· AH . (26)

where

J�[ f ] =
∫ �

0

(
(n − 2) f ′(λ)2 − f (λ)2RμνU

μU ν
)
dλ . (27)

Proof By contradiction, suppose there exists a point p on the horizon H where

UμH
μ < − 1

n − 2
inf

f ∈C∞
1,0[0,�]

J�[ f ] . (28)

Similarly to the proof of Theorem 3.1 there exists a deformation ofH on the Cauchy
surface� in a neighborhood of p where this inequality holds everywhere. For the null
generators of ∂ J+(K ), equation (26) implies that there exist � > 0 and f ∈ C∞

1,0[0, �]
so that condition (11) is satisfied. But this leads to a contradiction in the same way as
in Theorem 3.1 because we are in a globally hyperbolic spacetime, and null generators
are not allowed to contain any focal point. The proof is concluded by noting that the
change of the black hole horizon area is

δUAH =
∫
H

Hμ(p)Uμ . (29)

��
Remark 1 The rate of change of the horizon can be interpreted directly as a rate of
change of the mass only in the case of Schwarzschild black holes. However, even in
more general configurations, we expect a term in the expression for the horizon to
be proportional to the mass of the black hole; in that sense, the rate of change of the
horizon can be interpreted as a rate of change of the mass of the black hole. As this is
a lower bound, it can then be translated to a bound on the evaporation rate.

Remark 2 Theorem 4.1 assumes global hyperbolicity of the full spacetime in order to
reach the conclusion that black holes might evaporate, a phenomenon in tension with
global hyperbolicity itself (see [37] and [38]). However, this shouldn’t be a problem
for our theorem, at least as far as we are dealing with single black hole spacetimes,
because we only use global hyperbolicity to guarantee for the completeness of the null
generators of future boundaries ∂ J+(K ) outside the black hole region, a region which
remains non vicious even when the black hole evaporates.

Moreover, it needs to be mentioned that the theorem should hold even for more
general spacetimes, as the global hyperbolicity condition can be weakened to past
reflectivity. This development is due toMinguzzi, who defines it as a topological, rather
than causal, condition [39], and proves a generalised form of Penrose’s singularity
theorem [40]. We believe that the same framework can be adopted for our theorem,
establishing it with the same degree of generality.

Now that some subtleties about the assumptions have been clarified, let us examine
in the next subsection, how the result of Theorem 4.1 can be used to bound the rate of
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change of the area of the black hole horizon, starting fromenergy conditions potentially
obeyed by quantum fields.

4.2 A condition inspired by QEIs

Let P be a spacelike submanifold of M of co-dimension 2 with mean normal
curvature vector field Hμ. Suppose that γ (λ) is a future-directed null geodesic ema-
nating normally from P . Fix the parametrization of the affine parameter λ so that
Ĥμdγ μ/dλ = 1. Then for every smooth compactly supported (−1/2)-density g on
γ , and some choice of smooth non-negative constants Q0 and Qm we assume

∫ �

0
dλ g(λ)2RμνU

μU ν ≥ −Qm(γ )||g(m)||2 − Q0(γ )||g||2 . (30)

This condition is of the kind we call inspired by QEIs. Meaning, at this point,
it has not been proven for any particular field but it is of the form of conditions
previously derived for the stress-tensor after we apply the classical or semiclassical
Einstein equation. One example is the SNEC of Eq. (5) and the classical null inequality
for non-minimally coupled scalars discussed in Sect. 5. The SNEC for non-minimally
coupled fields [41] also has that form, as it was shown after thework for thismanuscript
was completed. QEIs for free fields with curvature corrections are also expected to
have that form as shown by the work done in [42].

We would like to use this condition along with the condition for the formation
of a focal point Eq. (11) and specify the lower bound of the horizon area change
of Eq. (26). We should note that the two smooth functions g and f need different
boundary conditions: for the bound of the energy condition of Eq. (30) to be finite, g
needs to obey the generalised Dirichlet boundary conditions g(k)(0) = g(k)(�) = 0 for
all 0 ≤ k ≤ m − 1. However, the condition for the formation of focal points Eq. (11)
requires f (0) = 1 and f (�) = 0.

To address that problem, we follow the method of Ref. [14]. First, we pick a point
0 < �0 < � on the geodesic. Then, we define two C∞ functions f and ϕ in the
following way: f (λ) = 1 for 0 ≤ λ < �0 and f (�) = 0 while ϕ(λ) = 1 for
�0 ≤ λ ≤ � and ϕ(0) = 0. So we can test Eq. (11) on f and Eq. (30) for g = f ϕ.

The only issue that remains is estimating the null energy for 0 ≤ λ ≤ �0. This can
be done with a pointwise estimate of the form

RμνU
μU ν

∣∣
γ (λ)

≥ ρ0 , ∀λ ∈ [0, �0] , (31)

where ρ0 is a real constant that can be positive or negative. Even though this is a
pointwise condition, the result is still stronger than having just the NEC. In this case
indeed, the ρ0 is allowed to be negative and it is only assumed to hold for finite values
of the affine parameter on the geodesic.

We can write f 2 = (ϕ f )2 + (1 − ϕ2) and then we have
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∫ �

0
f (λ)2RμνU

μU ν ≥
∫ �0

0
(1 − ϕ(λ)2)(RμνU

μU ν)dλ − Qm(γ )||(ϕ f )(m)||2

− Q0(γ )||ϕ f ||2
≥ ρ0�0 − ρ0‖ϕ‖2 − Qm(γ )||(g)(m)||2 − Q0(γ )||g||2 , (32)

where we used Eqs. (30) and (31). Then

J�[ f ] ≤ −ρ0�0 +ρ0‖ϕ‖2 + (n− 2)‖ f ′‖2 + Qm(γ )||(g)(m)||2 + Q0(γ )||g||2 . (33)

Note that this expression no longer depends on the curvature, but the constants originate
in the energy condition and the choice of functions f andϕ.Oneway tofind appropriate
functions f and ϕ is to solve the two variational problems:

inf
ϕ∈C∞[0,�0)

∫ �0

0

(
Qm(γ )(ϕ(m))2 + (ρ0 + Q0(γ ))ϕ2

)
dλ , (34)

for ϕ, and

inf
f ∈C∞(�0,�]

∫ �

�0

(
Qm(γ )( f (m))2 + (n − 2)( f ′)2 + Q0(γ ) f 2

)
dλ , (35)

for f . The boundary conditions are ϕ(k)(0) = 0, ϕ(�0) = 1, f (�0) = 1 and f (k)(�) =
0 for all 0 ≤ k ≤ m − 1. The two variational problems are very complex for general
number of derivatives m. In Ref. [14] incomplete beta functions were chosen as their
Sobolev norms can be computed in a closed form for general m. We also note that
in two applications with null-integrated energy conditions, the maximum number of
derivatives is 1. In that case we can solve the variational problems exactly and find the
optimal f and φ. We present both methods below.

Theorem 4.2 Suppose that

(i) (M, gμν) is a strongly asymptotically predictable spacetime;
(ii) for H the event horizon, Uμ the tangent field of its null generators γ (λ), and

Hμ the mean normal curvature of H = � ∩ H, where � is a Cauchy surface
for the globally hyperbolic region Ṽ Eq. (30) holds, and additionally there exist
0 < �0 ≤ � and ρ0 ∈ R such that

RμνU
μU ν

∣∣
γ (λ)

≥ ρ0 . (36)

Then

δUAH =
∫
H

Hμ(p)Uμ ≥ − 1

n − 2
ν(Qm(γ ), Q0(γ ), �, �0, ρ0) · AH , (37)

where
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ν(Qm(γ ), Q0(γ ), �, �0, ρ0) = −(1 − Am)ρ0�0 + QmCm

�2m−1
0

+ Q0Am� + (n − 2)Bm

� − �0

+ QmCm

(� − �0)2m−1 , (38)

and

Am = 1

2
− (2m)!4
4(4m)!m!4 , Bm = (2m − 2)!2(2m − 1)!2

(4m − 3)!(m − 1)! , Cm = (2m − 2)!(2m − 1)!
(m − 1)!2 .

(39)

Proof The first part of the proof is similar to Lemma 4.5 of Ref. [14].We pick functions

f (λ) =
{
1 λ ∈ [0, �0)
I
(
m,m; �−λ

�−�0

)
λ ∈ [�0, �] ,

(40)

and

ϕ(λ) =
{
I
(
m,m; λ

�0

)
λ ∈ [0, �0)

1 λ ∈ [�0, �] ,
(41)

noting that they satisfy the requirements explained above. Then J�[ f ] obeys Eq. (33).
From Appendix A of Ref. [14] we have that

||ϕ f ||2 = Am�0 + Am(� − �0) , ||(ϕ f )(m)||2 = Cm

�2m−1
0

+ Cm

(� − �0)2m−1 ,

|| f ′||2 = Bm

� − �0
, (42)

where the constants are given by Eq. (39). Then J�[ f ] ≤ ν(Qm(γ ), Q0(γ ), �, �0, ρ0).
The rest of the proof follows Theorem 4.1 concluding via contradiction that
Hμ(p)Uμ ≥ −(1/(n − 2))ν(Qm(γ ), Q0(γ ), �, �0, ρ0). ��

Now we turn to the m = 1 case. We can prove the following theorem

Theorem 4.3 Suppose that

(i) (M, gμν) is a strongly asymptotically predictable spacetime;
(ii) for H the event horizon, Uμ the tangent field of its null generators γ (λ), and Hμ

the mean normal curvature ofH = � ∩ H, where � is a Cauchy surface for the
globally hyperbolic region Ṽ ,

∫ �

0
g(λ)2RμνU

μU ν ≥ −Q1(γ )||g′||2 − Q0(γ )||g||2 . (43)

holds, and additionally there exist 0 < �0 ≤ � and ρ0 ∈ R such that

RμνU
μU ν

∣∣
γ (λ)

≥ ρ0 for λ ∈ [0, l0] . (44)
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Then

δUAH =
∫
H

Hμ(p)Uμ ≥ − 1

n − 2
ν1(Q1(γ ), Q0(γ ), �, �0, ρ0) · AH , (45)

where

ν1(Q1(γ ), Q0(γ ), �, �0, ρ0) = −ρ0�0

+√
Q0(γ )(Q1(γ )+n−2) coth

(
(�−�0)

√
Q0(γ )√

Q1(γ ) + n−2

)

+√
Q1(γ )(Q0(γ )+ρ0) coth

(
�0

√
Q0(γ )+ρ0√
Q1(γ )

)
.

(46)

Proof From Eq. (33) and assumption (i) we have

J�[ f ] ≤ −ρ0�0 + inf
ϕ∈C∞[0,�0)

∫ �0

0

(
Q1(γ )(ϕ′)2 + (ρ0 + Q0(γ ))ϕ2

)
dλ

+ inf
f ∈C∞(�0,�]

∫ �

�0

(
(Q1(γ ) + n − 2)( f ′)2 + Q0(γ ) f 2

)
dλ. (47)

The solutions to the two variational problems with boundary conditions f (�0) = 1,
f (�) = 0 and ϕ(0) = 0, ϕ(�0) = 1 give the functions

f (λ) =
{
1 λ ∈ [0, �0)
csch [α(� − �0)] sinh [α(� − λ)] λ ∈ [�0, �] α =

√
Q0(γ )

Q1(γ ) + n − 2
,

(48)
and

ϕ(λ) =
{
csch (β�0) sinh (βλ) λ ∈ [0, �0)
1 λ ∈ [�0, �] ,

β =
√

Q0(γ ) + ρ0

Q1(γ )
(49)

where in the special case Q0(γ ) + ρ0 = 0,

ϕ(λ) =
{

1
�0

λ ∈ [0, �0)
1 λ ∈ [�0, �] .

(50)

A plot of the functions is given in Fig. 2. Whenever Q0(γ )+ρ0 < 0 the hyperbolic
functions in the definition of ϕ become trigonometric functions.

With these functions we have J�[ f ] ≤ ν1(Q1(γ ), Q0(γ ), �, �0, ρ0). The rest of
the proof follows Theorems 4.2 and 4.1. It is worth pointing out how in the limit
Q0 + ρ0 → 0 the upper bound reduces to:
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Fig. 2 The functions f (λ) and ϕ(λ) given in Eq. (48) and (49) for specific values of the parameters

ν1(Q1(γ ), Q0(γ ), �, �0, ρ0)

= −ρ0�0 + √
Q0(γ )(Q1(γ ) + n − 2) coth

(
(� − �0)

√
Q0(γ )√

Q1(γ ) + n − 2

)
+ Q1(γ )

�0
,

(51)

so no divergence appears, and additionally ν1 is continuous, as expected. ��

5 Applications

In this section we will use twomodels of field theories, one classical and one quantum,
that violate the NEC as well as the more general condition of Theorem 3.2, thus allow-
ing for black hole evaporation. For those two models we will compare the bound on
the evaporation rate given by Theorem 4.3 with the explicit evaporation rate calculated
for spherically symmetric spacetimes. Throughout the section we slightly simplify the
notation, implying for the coefficients that Qi = Qi (γ ).

The evaporation rate of a black hole, the rate at which its mass is decreasing due to
Hawking radiation, was computed early on for non-rotating black holes that evaporate
adiabatically, by Page [43]

1

M

dM

dt
= −�c4α

G2

1

M3 , (52)

where α is a numerical coefficient that depends on the particle species emitted. In
terms of the Hawking temperature

νev = − 1

M

dM

dt
= (8π)3α

(
k

T 2
pl�

)
T 3 . (53)

For a static, neutral spherically symmetric black holes, the rate of change of the mass
coincides with the rate of decrease of the black hole horizon up to a multiplicative

123



62 Page 18 of 30 E.-A. Kontou, V. Sacchi

constant6
δUAH

AH
= (n − 1)

δUM

M
= −(n − 1)νev. (54)

5.1 Optimization

Before discussing any of the examples, we will examine the dependence of ν1 on the
affine length parameters � and �0. It is rather immediate to see that ν1 in (46) realizes
its minimum for � → ∞ as the only �-dependence is in the hyperbolic cotangent
term, which is monotonically decreasing towards 1. Unlike the singularity theorems
case, where a finite � was giving information about the location of the singularity,
here we can take � → ∞ and simplify the derived bound. Beyond this intuition, it
makes physical sense to require an energy condition of the form (43) to be obeyed
for � → +∞; the geodesics considered all extend to an infinite value of the affine
parameter, due to the causality condition, and there is no reason to expect we should
restrict to looking at only a sub-portion of it. In other words, taking � → +∞ should
be seen as equivalent to taking into account as much information as we have access
to, and hence retrieve the best possible bound.

Turning to �0, the matter is a bit more subtle. We will divide the discussion in three
cases:
(i) ρ0 > 0
In this case we can always find a finite �0 that makes ν1 = 0. In particular the value
of �0 is the solution of

−|ρ0|�0 +√
Q0(Q1 + n − 2)+√

Q1|Q0 + ρ0| coth
(

�0
√|Q0 + ρ0|√

Q1

)
= 0 . (55)

This is the case where the original Hawking area theorem applies and evaporation is
prohibited. However, if the problem provides a value of �0 smaller than this critical
value then evaporation is allowed and an evaporation bound can be computed.
(ii) ρ0 ≤ 0 and ρ0 + Q0 ≥ 0
The minimum of ν1 is found when �0 = �̃0 where

�̃0 =
√

Q1

|Q0 + ρ0| arcsinh
(√

|Q0 + ρ0|
|ρ0|

)
, (56)

which in this case is a global minimum. The case of ρ0 = 0 gives an asymptotic
minimum value of ν1 equal to

√
Q0(Q1 + n − 2) + √

Q1Q0 for �0 → ∞.
(iii) ρ0 < 0 and ρ0 + Q0 < 0

6 This result is approximate for slowly evaporating, dynamical black holes [44].
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In this case, the hyperbolic cotangent of Eq. (46) turns into a trigonometric one,
and there always exist a finite value of �0 which makes ν1 divergent, namely

�0 = π

√
Q1

|Q0 + ρ0| . (57)

However, this value should be excluded. The reason is, it lies in a regime where
the pointwise energy condition RμνUμU ν ≥ −|ρ0| contradicts the averaged energy
condition of Eq. (43) as we analyze in Appendix B. In particular we find that the upper
bound for �0 in this case is

�0 ≤ π

2

√
Q1

|Q0 + ρ0| , (58)

which not only excludes all the divergent values of ν1, but also all its negative val-
ues, consistently proving that this set of energy conditions doesn’t forbid black hole
evaporation. The only minimum of ν1 in the allowed region is

�̃0 =
√

Q1

|ρ0 + Q0| arcsin
(√

|ρ0 + Q0|
|ρ0|

)
, (59)

which is the analytic continuation of the expression for �̃0 given in (56). Thus �̃0 is
continuous for all values of ρ0 + Q0. The �̃0 is always less than the upper bound of
Eq. (58) as the function arcsin x has a maximum value of π/2. The three cases are
visualized in Fig. 3.

From now onwewill assume that ρ0 < 0 which is the case of interest for black hole
evaporation, although, as we discussed, our method is also applicable for non-negative
ρ0. The optimized evaporation bound for four-dimensions (n = 4) reduces to

νopt(Q0, Q1, ρ0) = √
Q0(2 + Q1) + √

Q1Q0

+|ρ0|
√

Q1

Q0 + ρ0
arcsinh

(√
Q0 + ρ0

|ρ0|

)
, (60)

which includes both cases (ii) and (iii). The constantsQ0 andQ1 will include the details
of the specific matter model we use via the relevant energy condition. The pointwise
bound ρ0 is generally undetermined as quantum fields have no pointwise lower bounds
for all states.However, for applications,we can get a reasonable value for it considering
estimations of the null energy density around the black hole horizon. For that purpose
we use the numerical results of Levi and Ori [45] for the renormalized stress-energy
tensor of a minimally coupled scalar field near the horizon of a Schwarzschild black
hole. They find the value of the null energy on the r = 3M geodesic to be

ρ0 ≈ −2.7 × 10−7 �c9

G4M4 , (61)
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Fig. 3 Sample plots of ν1 for the
three cases of constant values. In
graph (a) the �max represents the
value �0 for which the
evaporation rate becomes zero
and the original theorem applies.
in graph (b) there is a global
minimum, �̃0 given in Eq. (56).
in graph (c) there is a maximum
value of �0 after which the QEI
is not obeyed (see Appendix B).
In the allowed range there is a
local minimum �̃0 given in
Eq. (59)
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in SI units. TheM−4 dependence preceded by a negative coefficient—themost relevant
features of (61)—can also be found using the semi-analytical model of Visser [46]
for conformally coupled quantum scalar fields7. Thus we will proceed to bound the
pointwise null energy near the black hole horizon using Eq.(61).

Using the expression for Hawking temperature

TH = �c3

8πGMk
, (62)

where k is the Boltzmann constant, we can write ρ0 in terms of TH

ρ0 ≈ −0.1
k4

�3c3
T 4 . (63)

5.2 The non-minimally coupled classical Einstein–Klein–Gordon theory

Non-minimally coupled scalar fields is the typical classical example that violate the
NEC [4], and thus the original black hole area theorem doesn’t apply. These scalar
fields are described by the Lagrangian density

L[φ] = −1

2

[
∇μφ∇μφ − (m2 − ξ R)φ2

]
, (64)

where ξ is the coupling constant and m the mass of the field. The corresponding
stress-energy tensor acquired by varying the action is

Tμν = ∇μφ∇νφ − 1

2
gμν

[
∇ρφ∇ρφ − m2φ2

]
+ ξ

(
gμν�g − ∇μ∇ν + Gμν

)
φ2 .

(65)
If we use the Einstein equation and move the pure curvature terms on the left-hand
side and all field terms on the other side we have

Gμν = 8πGT eff
μν , (66)

where we have temporarily reinstated G and

T eff
μν = 1

1 − 8πGξφ2

(
∇μφ∇νφ − 1

2
gμν

[
∇ρφ∇ρφ − m2φ2

]

+ξ
(
gμν�g − ∇μ∇ν

)
φ2

)
. (67)

Then the quantityG/1−8πGξφ2 can be interpreted as an effective Newton’s constant.
A change of its sign means a change in the sign of the Einstein equation and thus it

7 The stress tensor averaged over the Unruh vacuum is analytically constrained up to some coefficients that
Ref. [46] determines numerically; relying on the same framework, but changing to Kruskal coordinates,
we have been able to compute the contraction TμνUμUν on the horizon of a Schwarzschild black hole, in
presence of scalar fields conformally coupled to the metric. This process was also described in [47].
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is considered unphysical. For a more detailed discussion on field values and effective
field theory see Ref. [41].

Then it is reasonable to assume that the non-minimally coupled scalar field
obeys the bound φ2 < 1/8πξ . Furthermore, we assume that the coupling con-
stant is ξ ∈ [0, 1/4], where 1/4 is always larger that the conformal coupling
ξc = (n − 2)/(4(n − 1)). Then we can state the following bound proven in Ref. [48]
(and applying semiclassical Einstein Equations):

∫
γ

g2RμνU
μU ν ≥ −Q

(
‖g′‖2 + Q̃2‖g‖2

)
, (68)

where

Q = 32πξφ2
max

1 − 8πξφ2
max

, Q̃ = 8πξφmaxφ
′
max

1 − 8πξφ2
max

. (69)

and
φmax = sup

γ
|φ| , φ′

max = sup
γ

|φ′(λ)| . (70)

Then this is a bound of the form of Eq. (30) with m = 1, Q0 = QQ̃2 and Q1 = Q.
To proceed, we need to estimate the values of φmax and φ′

max. In principle the
field values may be not bounded, however it is reasonable to connect the scale of
the field magnitude with a temperature. In order to accomplice that we follow the
hybrid approach of Refs. [14, 48]. We take for φmax as the value of the Wick square
〈:φ2:〉ω in Minkowski spacetime, where ω is some state of the quantum field theory.
Then we specify ω to be a thermal equilibrium KMS state [49], and connect φmax to
a temperature T . The result for massless fields was derived in Ref. [48]

φ2
max ∼ 〈:φ2:〉T = lim

x ′→x

[
WT (x, x ′) − W0(x, x

′)
] = T n−2

2n−2π
n−1
2

�(n − 2)

�
( n−1

2

) ζ(n − 2) .

(71)
HereWT is the two point function of the state with temperature T and ζ is the Riemann
zeta function. Similarly for the φ′

max and U
μ any null vector with U 0 = 1 we have

(φ′
max)

2 ∼ 〈:(Uμ∇μφ)(U ν∇νφ):〉T = nT n

2n−1π
n−1
2

�(n)

�
( n+1

2

)ζ(n) . (72)

Substituting n = 4 we have

φ2
max ∼ T 2

12
, (φ′

max)
2 ∼ 2π2T 4

45
, (73)

and the corresponding coefficients

Q1 = 8πξ(T /Tpl)2

3(1 − (2/3)πξ(T /Tpl)2)
, Q0 = 256π5ξ3(T 8/T 6

pl)

405(1 − (2/3)πξ(T /Tpl)2)

(
k

�

)2

,

(74)
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where we have restored the units. Here Tpl is the Planck temperature and we note that
Q1 is dimensionless while Q0 has dimensions of s−2.

For the ρ0 we will use the value of Eq. (63). Even though that calculation was
conducted within a semi-classical framework, here we only aim for an estimate for a
pointwise value of the null energy at the black hole horizon.

With these considerations we can explicitly express the bound of Eq. (60), in terms
of the background temperature. Consistently with the semi-classical approximation,
we assume the temperature of the black hole to be far below the Planck scale, and so
we expand ν in terms of (T /Tpl), obtaining at leading order:

νopt(T , ξ) =
√

π3

15

√
ξ

(
k

�T 2
pl

)
T 3 + O(T /Tpl)

4 . (75)

Interestingly this temperature dependence is the same as that of the evaporation rate
for spherically symmetric black holes computed in Eq. (53). We note that this result
is not given trivially by dimensional analysis, as T /Tpl is dimensionless. As usual,
this can also be recasted into the typical semiclassical expansion, by expressing Tpl

in terms of G.
The numerical coefficients can allow us to explicit how strong are the constraints

on the evaporation rate. The first observation is that the larger the coupling constant ξ
the larger the allowed evaporation rate. This is expected as classical fields with ξ = 0
respect Eq. (20), and so the classical picture applies. The maximum value of ξ for
which νopt ≤ νev is

ξmax = 1.2 × 108α2 . (76)

For large black holes α ∼ 2 × 10−4 as shown in Ref. [43] so ξmax ∼ 4.8. Thus
values of ξ ∈ [0, ξc] provide an additional bound to the evaporation rate. Of course
we should note that this largely depends on the assumptions made for the pointwise
energy condition and ρ0. Additionally, the energy condition is for a classical field, only
providing an analogy of how this condition could look for a quantum non-minimally
coupled scalar. So this result merely showcases how our theorem can be used in
principle to constrain the black hole evaporation rate for certain models.

5.3 The smeared null energy condition

In this example we will use the smeared null energy condition (SNEC) of Eq. (5) as
our energy assumption. As mentioned in the introduction, to use that condition for
classical relativity theorems we need to convert it to a curvature condition using the
semiclassical Einstein Equation of Eq. (4)

∫
γ

g2(λ)RμνU
μU ν ≥ −32πB‖g′‖2 . (77)

This is an equation of the form of Eq. (30) with Q1 = 32πB and Q0 = 0.
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This equation has been proven for minimally coupled quantum scalar fields only
for Minkowski spacetime [28] and the coefficient Q1 depends on the undetermined
constant B. Its value depends on the cutoff scale �UV as when

NGN � �d−2
UV . (78)

is saturated, meaning �UV is the Planck length scale, B = 1/32π . That was found in
the induced gravity proof of [50]. When (78) is not saturated, such as in controlled
effective theory constructions, we have B � 1. In these cases �UV is far above the
Planck length scale. This issue is also discussed in detail in Ref. [16].

We should briefly comment on the use of a Minkowski spacetime condition for
a theorem on curved spacetimes. While the current SNEC proof cannot be extended
to spacetimes with curvature, it is reasonable to believe that such a condition has a
generalizedversion for curved spacetimes. In particular, it is expected that the curvature
appears as correction terms as in the case of the energy density [42]. In that sense the
use of SNEC in this example is the following: the quantum field generates classical
curvature and it obeys a condition that is not exact, but it captures the dominant
contribution to the bound.

Using these values for Q1 and Q0 as well as the estimated value of ρ0 from Eq. (63)
we have for νopt of Eq. (60)

νopt(B, T ) = 2
√
2π3

√
5

√
B

(
k

�Tpl

)
T 2 . (79)

Wenote two things about that expression: First the smaller the constant B the stricter
the bound on the evaporation rate. That makes sense as the further away the UV cutoff
is from the Planck scale, the more “classical” the theory is. Second, the temperature
dependence is T 2, different from the estimated evaporation rate of Eq. (53) where the
dependence is T 3. That means eventually the black hole evaporation rate as computed
through the Page ansatz will lay in the forbidden region for high enough temperatures.
Given the regime of validity of SNEC, it sounds reasonable to expect such crossing
happens beyond the Planck scale, resulting in the bound on B

Bmax ≤ 1.63 × 105π3α2 . (80)

For large black holes α ∼ 2 × 10−4 and Bmax = 0.20, which is larger than the
maximum allowed value for B of 1/32π . This means for a variety of effective field
theories the derived evaporation bound can provide stricter restrictions than simply
applying Page formula. The result for B = 1/32π is shown in Fig. 4.

6 Discussion

In this work we derived two generalizations of the Hawking black hole area theorem:
First we provided a more general condition than the null energy condition for which
the conclusion of the original theorem still holds. Second for conditions inspired by
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Fig. 4 Theevaporation rate for spherical blackholes (blue) given inEq. (53) and theboundon the evaporation
rate from our theorem using SNEC as the energy condition. Here we set the B as its maximum value of
1/32π . Here the axes are displayedwith a bi-logarithmic scale to enhance the different power-law behaviour,
on the y-axis being the rates units

quantum energy inequalities (QEIs) we proved a more general version of the theorem
that, instead of prohibiting black hole evaporation, provides a bound on the black hole
evaporation rate. For the last case we applied our theorem to two field theories that
allow for shrinking of the black hole horizon: the classical non-minimally coupled
scalar and the quantumminimally coupled scalar for a theory with a UV cutoff. While
these are both toy models due to the classical nature of the field (in the first case)
and lack of curvature corrections (in the second case) they provide an example of
how our theorem could provide a meaningfully bound to the semiclassical black hole
evaporation.

A significant obstacle to a realistic application in quantum field theory is the lack of
a general finite bound on the energy integrated on a finite null segment, as discussed
in the introduction. The smeared null energy condition bound used in our applications
suffers from the need of a theory dependent UV cutoff. Additionally the only existing
proof is for Minkowski spacetimes [28]. A better bound is that of the double smeared
null energy condition, where the null energy is averaged over the two null directions
[51]. Unfortunately, it is unclear how such an inequality could be applied to a proof of
the generalized area theorem. However, a recent derivation in the timelike case showed
how a worldvolume inequality can be used in the proof of a singularity theorem [52]
using segment inequalities and area comparison results. This work points to a way
forward in the null case.

A different extension of this work would be to compare our results with the gener-
alized second law of black hole thermodynamics generalized second law (GSL). The
GSL can be stated as the change of entropy is always positive if we take into account
the entropy of the black hole and the entropy of the Hawking radiation. Schematically

S′
tot ≥ 0 ⇒ S′

BH + S′
rad ≥ 0 . (81)

The change of the black hole entropy is connected to the change of the area of the
horizon for an evaporating black hole. As we showed here, this rate is connected to a
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QEI-type condition. It has been shown that the second law can be used to derive the
averaged null energy condition [53]. Could a QEI be used to derive the GSL?

Hayward [54] provided a generalized notion of a black hole using the future outer
trapping horizon. He showed, using the null convergence condition that future outer
trapping horizons have non-decreasing area form, similar to the event horizons. A
generalization of this result using the weaker condition from our paper would be of
interest.8

Finally we should stress out that our result does only constraint the evaporation
rate and it does not provide a mechanism for evaporation. More importantly the black
holes with matter that violate the condition (20) for the classical area theorem are
merely allowed to evaporate but do not necessarily do so. For example there is no
known mechanism for classical fields to produce Hawking radiation, not even for
the ones that violate the condition (20). A recent work on semiclassical black hole
evaporation [55] showed that it is induced by a QEI-type condition which remains
generally unproven. A connection of this work with our result could provide new
insights.

Appendix A: Location of the trapped surface

The Penrose singularity theorem [6] uses an initial condition, namely the presence of
a trapped surface, or a surface whose mean normal curvature is negative

HμUμ < 0 , (A.1)

for all Uμ future pointing null vectors.
It has been shown that a trapped surface lies inside the horizon of a classical black

hole. In particular [31]

Proposition A.1 Let (M, gμν) be a strongly asymptotically predictable spacetime for
which the null convergence condition holds. Suppose M contains a trapped surface
T . Then T ⊂ B, where B is the black hole region of spacetime.

The proof is straightforward as under the validity of the null convergence condi-
tion, the classical area theorem holds and any surface outside the horizon must fulfill
HμUμ ≥ 0. With the possibility of an evaporating horizon this is not true anymore,
as surfaces outside the horizon are allowed to shrink too. However, under the weaker
energy conditions that allow an horizon to evaporate, the initial condition to prove a
singularity theorem must be strengthened, namely that it is not enough to start from a
trapped surface, but a “sufficiently trapped” surface is needed [16]. Then a proposition
similar to A.1 can be proven.

Proposition A.2 Let (M, gμν) be a strongly asymptotically predictable spacetime. Let
T a co-dimension-2 spacelike hypersurfacewithmean normal curvature Hμ satisfying
Eq. (28) so it is sufficient to prove null geodesic incompleteness for null geodesics

8 We would like to thank an anonymous referee of this manuscript for pointing out this connection.
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γ emanating normally from T . Then T ⊂ B, where B is the black hole region of
spacetime.

Proof Focal points form along every normal null geodesic γ emanating normally from
T if and only if

UμH
μ
∣∣
γ (0) ≤ − 1

n − 2

∫
γ

(
(n − 2) f ′(λ)2 − f (λ)2RμνU

μU ν
)
dλ , (A.2)

holds for any Uμ. This is necessary to prove the contradiction to prove null geodesic
incompleteness. However, outside the horizon the null generators of the boundary of
the future of T must satisfy

UμH
μ ≥ − 1

n − 2

∫
γ

(
(n − 2) f ′(λ)2 − f (λ)2RμνU

μU ν
)
dλ . (A.3)

The reason is that null generators are prompt curves, containing no focal points. Thus
any surface T must lie inside the black hole region. ��

This is a generalization of proposition 12.2.2 of [31]. However, in the classical case
the null convergence condition is required. Here no energy condition is necessary: this
is indeed only a statement about geometric properties of the spacetime.

Such a result is in accordance with the proof of singularity theorems for evaporating
black holes [16]. There, it was estimated how far inside the black hole is the sufficiently
trapped surface to prove null geodesic incompleteness.

Appendix B: Compatibility of pointwise condition with QEI

Independently from the area theorem, it is necessary to impose that the hypotheses
required for Theorem 4.3 are consistent with each other. This comes naturally when
Q0 + ρ0 ≥ 0, while it requires a bit more meditation when Q0 + ρ0 < 0.

In this second case, we consider λ ∈ [0, �0] where RμνUμU ν ≥ −|ρ0|. This
pointwise condition allows RμνUμU ν = −|ρ0| for all λ ∈ [0, �0]. But for large �0
this can be incompatible with the QEI

∫ �0

0
g(λ)2RμνU

μU ν ≥ −Q1(γ )||g′||2 − Q0(γ )||g||2 . (B.4)

that should hold in the same regime. So for g compactly supported in [0, �0] we need
to have

− |ρ0|||g||2 ≥ −Q0||g||2 − Q1||g′||2 . (B.5)

To check this in the case that ρ0 + Q0 < 0 we study the functional K [g, g′] =
−|Q0 + ρ0|||g||2 + Q1||g′||2. Imposing the boundary condition g(0) = 0) its Euler-
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Lagrange equation gives us the minimal functions

g̃(λ) = A sin

(
λ

√
|Q0 + ρ0|

Q1

)
, (B.6)

where A is an irrelevant constant. So the minimal values of K are:

K
[
g̃, g̃′] = Q1g̃g̃

′
∣∣∣�0
0

= A2

2

√
Q1|Q0 + ρ0| sin

(
2�0

√
|Q0 + ρ0|

Q1

)
. (B.7)

Therefore, to always have K non-negative we need

�0 ≤ π

2

√
Q1

|Q0 + ρ0| , (B.8)

which imposes an upper bound on �0.
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