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Abstract
In our study, we investigated the impact of changes in Mode I fracture toughness and stress barriers on fully developed planar, 
buoyant hydraulic fractures assuming linear elastic hydraulic fracture mechanics. We present scaling-based arguments to 
predict the interaction type and use numerical simulations to validate our findings. Through a two-dimensional simplification, 
we estimate the lower limit for the fracture to feel a change in fracture toughness (so-called immediate breakthrough). Our 
simulations show that this approach only captures the order of magnitude of the toughness jump necessary for immediate 
breakthrough compared to the actual value due to three-dimensional solid effects, emphasizing their importance in such 
systems. We show that we can estimate the occurrence of indefinite containment at depth by considering that lateral spread-
ing occurs at an approximately constant height. However, timing predictions in the case of a transient containment suffer 
from our simplified approach, which cannot model the injection history of the spreading constant height fracture. The same 
observations regarding immediate breakthrough and indefinite containment hold when considering stress barriers using 
pressure-scale-based arguments. Our study shows that the required toughness changes for fracture arrest are more significant 
than the observed values in the field. In contrast, stress barriers with a magnitude of around 1 MPa are generally sufficient 
to contain buoyant hydraulic fractures indefinitely. Stress barriers, in combination with other arrest mechanisms, are thus 
the most prominent mitigation factor of buoyant growth in industrially created hydraulic fractures.

Highlights

•	 Derivation of a 2D simplification to decide how 3D planar buoyant hydraulic fractures interact with changes in the Mode 
I fracture toughness.

•	 Derivation of the scaling for the approximately constant height spreading along a Mode I fracture toughness jump of a 
buoyant hydraulic fracture.

•	 Derivation of the limiting volume and injection rate to contain a buoyant hydraulic fracture below a change in Mode I 
fracture toughness.

•	 First-order estimation of the limits for containment and interaction type of buoyant hydraulic fractures at a change in 
confining stress.

•	 Validation of the derivations and first-order estimations through fully coupled planar 3D simulations of buoyant hydraulic 
fractures.
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1  Introduction

Hydraulic fracturing treatments are commonly used in the 
petroleum and geothermal industry. Such treatments are 
designed to create opening mode (Mode I), tensile fractures 
by the injection of pressurized fluid at depth, with the ulti-
mate goal to enhance the productivity of wells (Economides 
and Nolte 2000). Hydraulic fracturing is also used, albeit at a 
smaller scale, to determine the value of the minimum in-situ 
stress (Desroches and Thiercelin 1993). More recent applica-
tions in the subsurface also aim to use hydraulic fractures to 
store energy in the subsurface (Bunger et al. 2023; Hellström 
and Larson 2001). Hydraulic fractures are also observed nat-
urally in the form of propagating magmatic intrusions like 
sills and dikes (Rivalta et al. 2015; Spence et al. 1987; Lister 
and Kerr 1991) and water crevassing in glaciers (Weertman 
1971). In all these occurrences, hydraulic fractures propa-
gate in a pre-compressed formation, perpendicular to the 
minimum in-situ stress (Detournay 2016).

We focus hereafter on so-called “block injections”: fluid 
injected at a constant rate for a finite amount of time from 
a point source (see Fig. 1). The propagation phase of the 
resulting planar, radial (also called penny-shaped) hydraulic 
fracture is dependent on the interplay between the dominat-
ing energy dissipation mechanisms (fluid viscous dissipa-
tion versus fracture surface creation) and the amount of fluid 
leaking off through the fracture walls in the rock formation 
(storage versus leak-off) (Detournay 2016). In the case of 
radial hydraulic fractures, it has been shown by Savitski 

and Detournay (2002) that fractures transition from an early 
time regime where energy is predominantly dissipated in 
viscous flow (viscosity-dominated) to a late time regime 
where the energy to create new surfaces dominates (tough-
ness-dominated). Both limits feature previously obtained 
self-similar solutions (see Spence and Sharp (1985) for the 
viscosity-dominated and Abé et al. (1976) for the toughness-
dominated limits), and the transition between them is solely 
dependent on a dimensionless number (Savitski and Detour-
nay 2002). The second balance between the volume of the 
fracture and the volume lost to the environment has been 
shown to feature a similar transition from an early-time stor-
age-dominated (most of the fluid is still inside the fracture) 
to a late-time leak-off-dominated (most of the fluid has been 
lost to the formation) regime (Madyarova 2003). Similarly, 
the limiting regimes show self-similar solutions. The com-
bined effect of all four limits can be captured by combining 
the two balances in a propagation diagram with four vertex 
solutions. The fracture’s exact evolution can be captured 
using a single dimensionless number, the so-called trajectory 
parameter (Detournay 2016). Only recently, the behavior of 
such radial fractures after the end of the injection, also called 
in the pulse regime, has undergone detailed evaluations. 
Möri and Lecampion (2021), focused on the characteristics 
and conditions when the fracture stops to propagate. They 
could notably show that fracture propagation after the end 
of the fluid injection is possible. For such fracture propa-
gation, the fracture must be in the viscosity-storage-dom-
inated regime when the injection stops. The development 

Fig. 1   Schematic of the 
interaction between a buoyant 
hydraulic fracture and a change 
in the Mode I fracture tough-
ness. Shown are the different 
characteristics and dimensions 
of the problem investigated and 
the resulting fracture. (Color 
figure online)
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of appropriate asymptotes for the subsequent recession of a 
fracture has recently been derived by Peirce and Detournay 
(2022a), leading to the development of a late-time solution 
called the Sunset solution (Peirce and Detournay 2022b). In 
a coherent study including propagation, arrest, and recession 
of radial hydraulic fractures, Peirce (2022) demonstrated the 
appearance of the sunset solution.

The theoretical evolution of hydraulic fractures recalled 
above is based on the assumption of a homogeneous 
medium. However, most engineering applications occur in 
sedimentary basins, where formations generally show an 
intense layering with varying material properties between 
them. A similar variation is observed in the initial in-situ 
stresses. The study of the interaction with these layers has 
attracted much interest. It is worth noting that heterogenei-
ties also exist at smaller scales, which can be homogenized 
(see, e.g., the field experiments of Jeffrey et al. (2009)). Such 
homogenization consists of lumping these small-scale het-
erogeneities into apparent macroscopic material properties. 
In this contribution, we consider heterogeneities at the scale 
of the fracture itself. The fracture can change its dynamics 
and/or propagation directions in relation to changes in mate-
rial properties and confining stresses. Notably, the deviation 
along bedding planes, leading to so-called T-shape fractures, 
has been extensively studied (Bunger and Lecampion 2017; 
Xing 2018; Chen et al. 2015; Daneshy 1978, 2009; Chang 
et al. 2023). Here, we focus on the case where fracture prop-
agation remains planar, but its shape is affected by hetero-
geneities or stress changes. The containment of hydraulic 
fractures between two layers has already been accounted for 
in the earliest models. The well-known PKN-model, named 
after its developers (Perkins and Kern 1961; Nordgren 
1972), considered this case where the geological layering 
fixes the height of the fracture (sometimes also referred to 
as constant height or blade-like fractures). De Pater (2015) 
showed in a compilation of field observations that this frac-
ture type is observed in various applications in hydrocarbon 
reservoirs. Such “blade-like” models of fracture geometry 
have then been extended and investigated at length in mul-
tiple settings up to today (Sarvaramini and Garagash 2015; 
Kovalyshen and Detournay 2009; Dontsov and Peirce 2016; 
Zolfaghari et al. 2017; Dontsov and Peirce 2015; Xing et al. 
2017; Zia and Lecampion 2017; Dontsov 2022).

The discussion for the causes of fracture containment 
started in parallel with developing these models. Simon-
son et al. (1978) addressed the main factors leading to such 
confinement: stress or density contrasts between the layers 
or differences in elastic properties. Those factors and oth-
ers have been extensively validated and studied numerically 
and theoretically (Cleary 1978; Daneshy 1978; Hanson 
et al. 1981; Warpinski et al. 1982b; van Eekelen 1982). 
Changes in fracture toughness only have been identified as 
a secondary effect for fracture containment because of their 

limited variability between layers (van Eekelen 1982; Gu 
and Siebrits 2008; Da Fies et al. 2022a, b). The possibil-
ity that the sole change in fracture toughness could contain 
three-dimensional (3D) planar fractures was demonstrated 
by various authors (Thiercelin et al. 1989; Li and Keer 1992; 
Ho and Suo 1993) and led to the development of the tough-
ness-dominated PKN-solution, in contrast to the original 
viscosity-dominated, PKN-formulation (Sarvaramini and 
Garagash 2015). Linking the two regimes has only recently 
been done by Dontsov (2022), who showed that PKN frac-
tures transition from an early-time toughness- to a late-time 
viscosity-dominated regime. Very recently, Peruzzo (2023) 
re-investigated the problem accounting for this transition 
and demonstrated the conditions for a “breakthrough” of 
the containing layers. However, the mechanism considered 
as most effective in containing hydraulic fractures is given 
by differences in the confining stress (Harrison et al. 1954; 
Simonson et al. 1978; Nolte and Smith 1981; Warpinski 
et al. 1982a, b; Bunger and Lecampion 2017). The com-
monly adopted theory as of today is based on Adachi et al. 
(2010) and accounts for the necessary penetration into the 
higher confinement stress layer through a so-called equilib-
rium height. The equilibrium height is a penetration depth of 
constant value into the higher stress layer, which allows the 
derivation of the governing equations of lateral expansion 
of such fractures.

In parallel with the study of hydraulic fracture contain-
ment in industrial applications, gravitational effects have 
been investigated in relation to magmatic intrusions. How-
ever, the same buoyant effects are notably applicable in 
anthropogenic hydraulic fractures because, in sedimentary 
basins, where most of the petroleum activity occurs, the 
minimum compressive stress is usually horizontal, leading 
to fracture growth in vertical planes aligned with the grav-
ity vector (Hubbert and Willis 1957; Jaeger et al. 2007). 
Combining a significant fracture extent with the alignment 
with the gravity vector can lead to the emergence of so-
called buoyant fractures. Such fractures have been stud-
ied since the pioneering work of Weertman (1971). Most 
investigations simplified the problem by considering an 
inviscid fluid to track the propagation path (Dahm 2000a, 
b; Davis et al. 2023), studying semi-infinite or finite two-
dimensional (2D) configurations (Spence and Turcotte 
1985, 1990; Spence et al. 1987; Lister 1990b; Lister and 
Kerr 1991; Roper and Lister 2005, 2007; Furst et al. 2023), 
using a pseudo-3D approach (Lister 1990a), were limited 
to the emergence of buoyant fractures without considering 
their growth (Davis et al. 2020; Salimzadeh et al. 2020), or 
assumed a late-time behavior according to a blade-like frac-
ture of constant breadth (Garagash and Germanovich 2014, 
2022). Only recently, the investigations of Möri and Lecam-
pion (2022, 2023) have coherently clarified the typical three-
dimensional behavior of hydraulic fractures emerging from 
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a point source (constant fluid injection and finite volume) 
when transitioning from radial to buoyant propagation and 
their growth in the subsequent buoyant regime. Their results 
have shown that the entire propagation history of buoyant 
hydraulic fractures, in the absence of fluid-leak-off (e.g., in 
an impermeable media), is captured by only two dimension-
less numbers. The first relates to the dimensionless number 
governing radial growth when buoyant forces become of 
order one. The second relates the total fluid volume released 
to a critical volume derived from the pioneering work of 
Weertman (1971).

Due to the analogy between rising magmatic intrusions 
and buoyant hydraulic fractures, the interaction of these frac-
tures with changes in lithology has a strong practical inter-
est. The main reason for this interest is to infer the possibility 
of an intrusion reaching the surface. The most commonly 
studied effects influencing the propagation of magmatic 
intrusion in this context are variations of elastic properties 
(see e.g., Fridleifsson 1977; Hyndman and Alt 1987; Rivalta 
et al. 2005; Kavanagh et al. 2006; Burchardt 2008; Gud-
mundsson 2011; Maccaferri et al. 2010; Furst et al. 2023) 
and density contrasts (see e.g., Lister 1990a, 1991; Lister 
and Kerr 1991; Muller et al. 2001; Watanabe et al. 2002; 
Pinel and Jaupart 2004; Taisne and Jaupart 2009; Taisne 
et al. 2011). Maccaferri et al. (2011) additionally investigate 
the influence of a weak interface (smaller energy release 
rate) between layers of different elastic compliance. Studies 
that mainly focused on the trajectory parameter have investi-
gated the effect of topographical loads and other heterogene-
ous stress states (see, e.g., Johnson and Pollard 1973; Pollard 
and Johnson 1973; Gudmundsson and Marinoni 1999; Dahm 
2000a; Menand et al. 2010; Menand 2011; Ferrante et al. 
2022). The interaction with different fracture toughness val-
ues or a stress jump has only obtained limited interest. The 
authors are, however, aware of an experimental study con-
ducted by Rivalta et al. (2005), which investigated the effect 
of toughness heterogeneities on propagating buoyant frac-
tures in gelatine. These experiments of air-filled cracks show 
that in the limit of large-fracture toughness, 2D approxima-
tions work fairly well in predicting the shape of buoyant 
fractures. Generally, the previously mentioned studies are 
either experimental and most often out of the well-defined 
limits for buoyant propagation defined in (Möri and Lecam-
pion 2023) or—if numerical—remain 2D approximations.

This study aims to combine the knowledge gained on 
buoyant hydraulic fractures with an understanding of 
the interaction of stress and toughness changes for pla-
nar hydraulic fractures. We thus want to investigate how 
buoyant hydraulic fractures in industrial applications 
interact with the layered nature of sedimentary basins. 
This study also aims to understand why magmatic intru-
sions regularly arise to full surface eruptions, whereas 
the same cannot be said about hydraulic fractures created 

by industrial injections. The study assumes linear elastic 
fracture mechanics in an elastic homogeneous, isotropic 
medium and perfectly planar hydraulic fractures. We 
account for a linear variation in the minimum compressive 
in-situ stress �o (see Fig. 1) unless stated otherwise. The 
viscous fluid flow inside the thin fracture is considered a 
parallel plate flow. This result comes from the assumption 
of lubrication flow and a width-averaged continuity equa-
tion for incompressible fluids, leading to the applicability 
of the cubic law (Batchelor 1967). The fracturing fluid 
is assumed to be Newtonian, and we consider the elastic 
medium as impermeable. Finally, the propagation condi-
tion follows the linear elastic hydraulic fracture mechanics 
tip-asymptotes (see, e.g., Detournay (2016) for a review), 
ensuring that the stress intensity factor at propagating seg-
ments of the fronts equals the Mode I fracture toughness 
(see Sect. 2.1 for more details). The resulting equations are 
solved using the in-house developed, open-source bound-
ary element solver PyFrac (Zia and Lecampion 2020). 
The code is a boundary element implementation of the 
implicit-level set algorithm (Peirce and Detournay 2008) 
and has been extensively tested. It has notably performed 
well for buoyancy-driven fractures (Möri and Lecampion 
2022, 2023) and problems including heterogeneities (Peru-
zzo 2023). This paper thus consists of an extension of the 
work of Möri et al. (2023b). They have investigated simi-
lar cases of stress and toughness contrasts and identified 
three possible modes of interaction between the fracture 
and these property changes, visualized in Fig. 2. The most 
straightforward interaction is an immediate breakthrough. 
In this scenario, the fracture does not feel the effect of 
the change and grows directly into the upper layer with-
out significant lateral growth. The other two limits are 
characterized by an arrest of the vertical growth and a 
subsequent spreading along the interface (see Fig. 2). The 
transient containment shows a so-called breakthrough 
sometimes after the fracture has reached the change in 
property/stress. Breakthrough is defined as a self-sustained 
buoyant fracture being able to develop in the upper layer. 
The third category of indefinite containment is a fracture 
which laterally spreads along the change of property/stress 
without ever generating a self-sustained buoyant fracture 
in the upper layer. Interestingly, the physical experiments 
performed in toughness-dominated conditions of Rivalta 
et al. (2005) have also shown these exact outputs for the 
values they considered.

In the remainder of this article, we will give a short descrip-
tion of the mathematical formulation (Sect. 2.1) followed 
by a discussion of past developments considering buoyant 
hydraulic fractures in a homogeneous medium (Sect. 2.2). 
We then introduce some representative cases studied in this 
contribution (Sect. 2.3. Using these representative values 
we then address changes in the value of fracture toughness 
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(Sect. 3) and develop scaling-based arguments for an immedi-
ate breakthrough (Sect. 3.1), and the limit between transient 
and indefinite containment (Sect. 3.2), which we validate 
through numerical simulations in Sects. 3.1.1 and 3.2.1. The 
same principles are then applied to a change in background 
stress (also called stress barriers—Sect. 4). We conclude the 
paper with a discussion of other possible arrest mechanisms 
and their combination (Sect. 5) before highlighting the main 
conclusions of this article (Sect. 6).

2 � Methods

2.1 � Mathematical Formulation

This contribution focuses on the case of pure opening mode 
(Mode I) fractures remaining planar during all their propaga-
tion history. As shown in Fig. 1, we consider fluid injections 
from a point source at a constant rate Qo for a finite amount of 
time ts . Consequently, Vo = Qots is the total volume injected. 
The propagation plane is vertical, so the gravity vector g is 
aligned with it. Thanks to these assumptions, the quasi-static 
balance of momentum in a linear elastic medium can be 
reduced to the following boundary integral equation over the 
fracture surface A(t) (Crouch and Starfield 1983; Hills et al. 
1996)

where E� = E∕
(
1 − �2

)
 is the materials plane strain Modu-

lus with E its Young’s Modulus and � its Poisson’s ratio, 
p(x, z, t) = pf(x, z, t) − �o(x, z) the net pressure in the fracture 
with pf(x, z, t) the fluid pressure and �o(x, z) the confining 
minimum horizontal stress, and w(x, z, t) the fracture open-
ing. The material is further considered impermeable, and we 
apply the thin film lubrication approximation for an incom-
pressible fluid to obtain the volume balance in the fracture 
(Batchelor 1967)

where vf(x, z) is the width averaged fluid velocity. We further 
assume laminar flow and Newtonian fluid rheology to obtain 
the flow in the fracture according to Poiseuille’s law

(1)

p(x, z, t) = pf(x, z, t) − �o(x, z)

= −
E�

8� ∫
A(t)

w
(
x�, z�, t

)

[
(x� − x)2 + (z� − z)2

]3∕2 dx
�dz�.

(2)
�w(x, z, t)

�t
+ ∇ ⋅

(
w(x, z, t)vf(x, z, t)

)
= �(x)�(z)Qo(t),

(3)
q(x, z, t) = w(x, z, t)vf(x, z, t)

= −
w(x, z, t)3

��

(
�pf(x, z, t) − �fg

)
,

Fig. 2   Possible outcomes of a 
buoyant hydraulic fracture inter-
acting with a toughness jump. 
From left to right, we have 
immediate breakthrough (the 
effect of the toughness jump is 
negligible), transient contain-
ment (the fracture spreads out 
at the interface but ultimately 
forms a fracture growing into 
the upper layer), and indefi-
nite containment (the fracture 
spreads out at the interface and 
never goes through). (Color 
figure online)



	 A. Möri et al.

where �� = 12� is the adapted fracturing fluids viscosity 
with � its viscosity and �f its density. Using again the fluid 
net pressure p(x, z, t) we obtain

where the fluid-solid system is subjected to the constant 
buoyancy

In Eq. (5), we have included the classical lateral earth pres-
sure coefficient in rocks � = �∕(1 − �) to calculate the sys-
tem’s buoyancy (Jaeger et al. 2007). We further assumed that 
the formation fluid has the density of water �F = �w and is 
thus approximately equal to the density of the injection fluid 
�f ≈ �w , that the gradient of the background stress is litho-
static (with �s the density of the solid), and that the back-
ground pore fluid pressure gradient is hydrostatic (Heidbach 
et al. 2018; Cornet 2015; Jaeger et al. 2007). In this study, 
we further consider that fractures are deep within the Earth’s 
crust such that the high confining stresses lead to a negli-
gible fluid lag (Garagash and Detournay 2000; Lecampion 
and Detournay 2007; Detournay 2016). Consequently, the 
boundary conditions are zero fracture width 

(
w
(
xc, zc

)
= 0

)
 

and a zero normal fluid flux 
(
q
(
xc, zc

)
= 0

)
 at the fracture 

front (Detournay and Peirce 2014).
In the framework of linear elastic hydraulic fracture 

mechanics, we assume propagation is in quasi-static equi-
librium such that the propagation condition becomes

for all 
(
xc, zc

)
∈ C(t) , meaning for all points on the fracture 

front. In this equation, vc
(
xc, zc

)
 is the local fracture veloc-

ity normal to the front, KI

(
xc, zc

)
 is the local stress intensity 

factor, and KIc the fracture toughness.

2.2 � Scalings of Buoyant Hydraulic Fractures

Under the assumptions lined out in Sect. 2.1, Möri and Lecam-
pion (2022, 2023) have demonstrated that the entire propaga-
tion history of a buoyancy-driven hydraulic fracture in homo-
geneous stress and material conditions depends on only two 
dimensionless numbers. The first dimensionless number is the 
dimensionless viscosity of a radial hydraulic fracture at the 
moment when buoyancy becomes of order one (e.g., the frac-
ture size approaches the buoyancy length scale �b)

(4)q(x, z, t) = −
w(x, z, t)3

��

(
�p(x, z, t) + ��

g

|g|

)
.

(5)�� =
(
�
(
�s − �f

)
+ �F − �f

)
g ≈ �

(
�s − �f

)
g.

(6)

(
KI

(
xc, zc

)
− KIc

)
vc

(
xc, zc

)
= 0 vc

(
xc, zc

) ≥ 0

KI

(
xc, zc

) ≤ KIc,

(7)M
k̂
= ��

QoE
�3��2∕3

K
14∕3

Ic

.

M
k̂
 describes the dominant energy dissipation mechanisms 

when the fracture transitions from the axisymmetric radial 
to the unidirectional buoyant growth. Möri and Lecampion 
(2022) have shown that it entirely governs the propagation 
history as long as the fluid injection takes place. The larger 
M

k̂
 gets, the more lateral fracture growth is possible thanks 

to additional energy dissipation by viscous flow. This large 
viscous energy drop leads to higher pressures, such that a 
laterally non-stabilized propagation regime with sub-linear 
fracture growth is possible for a long time. A second and 
more important interpretation of M

k̂
 is that it characterizes 

the amount of fluid a buoyant hydraulic fracture can store in 
its head (see Fig. 1 for a definition of the fracture head). This 
increase in head volume leads to a higher accumulation of 
elastic energy, which is necessary to overcome the additional 
energy required by the viscous flow. The combined effect of 
changing values of M

k̂
 on fracture velocity and head volume 

directly governs how the buoyant fracture interacts with a 
change in fracture toughness or confining stress.

When the fluid injection is finite, a second dimensionless 
number must be considered to quantify the propagation his-
tory of buoyant hydraulic fractures. Möri and Lecampion 
(2023) decided to use the dimensionless buoyancy of the 
radial, toughness-dominated regime (K-regime) at the moment 
when the injection stops

The physical interpretation of Bks is that it measures the total 
amount of fluid injected Vo compared to the minimum vol-
ume necessary for buoyant propagation to occur in the first 
place. This volume has been identified by various contribu-
tors (Davis et al. 2020; Salimzadeh et al. 2020; Garagash and 
Germanovich 2022; Möri and Lecampion 2023). It is the 
equivalent volume of radial, hydrostatically loaded hydraulic 
fractures with a maximum stress intensity factor equal to the 
Mode I fracture toughness at one extremity and zero at the 
other. Once the injection has stopped, the buoyant fracture 
head will always shrink during its ascent until it reaches 
that minimum volume. For small values of M

k̂
 (toughness-

dominated buoyant fractures K̂-regime), the head volume is 
already equivalent to the limiting volume. In all other cases, 
the head volume shrinks until it reaches this volume. The 
toughness-dominated buoyant finite volume regime ( ̂K[V]

-regime) is thus the late-time solution of all finite volume 
buoyant hydraulic fractures. Due to these links, the two 
numbers Bks (8) and M

k̂
 (7) can be used to describe the 

propagation history of these fractures entirely. The resulting 
parametric space is shown in figure 2 of Möri and Lecam-
pion (2023). The parametric space and table 1 of Möri and 
Lecampion (2023) quantify the limiting regimes a fracture 

(8)Bks = ��
V
3∕5
o E�3∕5

K
8∕5

Ic

.
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will encounter during its propagation and can hence give at 
which time the respective regime will be dominant.

In this study, we investigate the interaction with hetero-
geneities. These interactions have been shown to strongly 
depend on the fracture’s dominating energy dissipation 
mechanism at the moment when the buoyant fracture 
reaches the change in property/stress (Peruzzo 2023; Möri 
et al. 2023b). For the problem sketched in Fig. 1, this means 
when the upper fracture tip reaches the interface between 
two properties. We thus require an additional component to 
study the interaction: the time of contact or, alternatively, the 
distance between the injection point and this interface. We 
decide herein to choose the latter, a quantity easier to grasp, 
which can be related to the time using the buoyant hydraulic 
fracture scalings developed in Möri and Lecampion (2022, 
2023). We thus introduce a third dimensionless number, the 
dimensionless distance

This dimensionless distance D is the ratio between the 
physical initial distance d between the injection point and 
the interface and the toughness buoyancy length scale 
�b = K

2∕3

Ic
∕��2∕3 (Weertman 1971; Lister and Kerr 1991). It 

is also the length scale attached to the limiting volume and, 
thus, the size of the fracture head in the late-time solution. 
We reproduce a slightly adapted version of figure 2 of Möri 
and Lecampion (2023) in Fig. 3, which together with Fig. 4 
indicates in which state the buoyant hydraulic fracture will 
be when it encounters the change.

We note that Fig. 3 only contains the part relevant for 
fractures which are buoyant Bks ≥ 1 . According to table 1 
of Möri and Lecampion (2023), the three regions reproduced 
indicate propagation histories containing all possible buoy-
ant regimes. We perform at this stage a brief recall of the 
respective characteristics of buoyant hydraulic fractures in 
these limiting regimes. Note that the limits for the applica-
tion given in the paragraph titles are approximations, and 
more in-depth analysis according to the work presented 

(9)D = d
��2∕3

K
2∕3

Ic

.

in Möri and Lecampion (2022, 2023) would be necessary 
to definitively distinguish the respective limits.

K̂-regime M�k ≪ 1 and t < ts The toughness-dominated 
regime in an ongoing injection case shows the classical 
"blade-like" fracture with a head of constant volume and 
shape and a tail of uniform breadth with constant opening 
(see Sect. 4 of (Möri and Lecampion 2022) for more details). 
For a constant injection rate, such a buoyant fracture propa-
gates at a constant velocity in the direction of the buoy-
ant force. If the change in property/stress is reached in this 
regime, the distance d does not influence the interaction type 
as the velocity is constant.

M̂-regime and M̂stab-regime M�k ≫ 1 , t < ts The vis-
cosity-dominated regime without lateral stabilization M̂
-regime in an ongoing injection case shows fractures with 
an inverse cudgel size that continue to grow laterally (e.g., 
no fixed breadth). Their lateral growth leads to a sub-linear 
vertical growth and a reduction of the size of the fracture 
head (see Sect. 5.1 of (Möri and Lecampion 2022) for 
more details). The distance between the injection point and 
the interface thus affects, through a change in the fracture 
velocity and the head volume, how the interaction between 
the fracture and the change will be. Lateral growth is 
bounded if the toughness is finite, and the so-called stabi-
lized viscosity-dominated buoyant regime emerges M̂stab

-regime. Here, the head becomes of constant volume and 
shape again, and propagation returns to a linear growth in 
time. The constant velocity thus again leads to independ-
ence of the interaction type on the distance d (see Sect. 6 
of (Möri and Lecampion 2022) for more details).

K̂[V]-regime M�k ≪ 1 , t > ts : The fractures in this regime 
are similar to the K̂-regime "blade-like" with the exact 
same head volume and shape. The only difference is that 
the injection has stopped, and fractures grow sub-linearly 
by depleting the fluid volume from the tail (see Sect. 5.1 
of Möri and Lecampion (2023) for more details). This sub-
linear creates again a dependence of the interaction with 
the distance d.

M̂[V]-regime M�k ≫ 1 , t > ts : Buoyant fractures in this 
regime show a head with a volume exceeding the one of 

Fig. 3   Parametric space of 
buoyant hydraulic fractures. 
Indicated are related dimension-
less numbers and the regions 
3–6 from Möri and Lecampion 
(2023) (full-colored regions). 
In dashed, we indicate three 
regions (1–3) for which we dif-
ferentiate the fracture regimes 
when interacting with a change 
of property in Fig. 4.(Color 
figure online)
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toughness-dominated fractures and a non-uniform breadth 
of the tail. During their ongoing propagation forced by a 
depletion of the tail, the head of these fractures shrinks to 
reach the minimum size given by the head volume of the K̂[V]

-regime and K̂-regime. The propagation in between these 
limits can be faster than at the end but remains sub-linear in 
all conditions (see Sect. 5.2 of Möri and Lecampion (2023) 
for more details). Finally, the distance d will always be an 
important factor for such fractures in accessing the interac-
tion with the property/stress change.

Figure 4 shows the variety of possible states a fracture 
could be in when encountering a change of the rock property 
or in the background stress. From this variety of possible 
interactions, we can conclude that exploiting all these differ-
ent limits in detail using fully planar 3D simulations would 
be exhaustive. We thus identify two representative combina-
tions of parameters for industrial applications hereafter and 
try to investigate their possible interaction with a stress and 
fracture toughness jump. We will investigate the two cases 
numerically and through scaling arguments.

2.3 � Representative Cases

We have compiled a study of multiple shale formations 
focusing on those in the United States. The estimation of 
the mechanical properties of the formation is primarily taken 
from  Dobson and Houseworth (2013) and other authors 
(Schwartz et al. 2019; Kong et al. 2023; Zhou et al. 2023; 
Jin et al. 2018; Jiang et al. 2018). We assume a slickwater 
injection into horizontal wells. In particular, we focus on a 
single-stage injection and do not consider the addition of 
proppant in our model. The average rock density is taken as 
�s = 2485 kg/m3, and we consider a Poisson’s coefficient of 
� = 0.2 . Including these values into (5), the values for Δ� 
reported in Table 1 are obtained.

From the compiled rock formation data, we define two 
scenarios with the respective upper and lower limits of esti-
mated injections. We consider a “strong” formation (large 
fracture toughness and Young’s modulus) in which we inject 
a large volume at a high rate and a “weak” formation (small 
fracture toughness and Young’s modulus) in which we inject 

Fig. 4   Regime of the fracture 
when reaching the change of 
properties/stress. Start in the left 
top corner (blue circle) and then 
follow the different conditions 
until you reach a red square 
marking the regime of interac-
tion observed for the given 
parameter combination. (Color 
figure online)
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a small volume at a low rate. The resulting values of the 
dimensionless numbers M

k̂
 (7) and Bks (8) and the respec-

tive values of the parameters can be found in Table 1.
The first observation of the compiled data and the 

dimensionless coefficients calculated is that both injec-
tions should theoretically become buoyant and ascend 
(e.g., Bks ≥ 1 ). In Table 1, we further list the buoyancy 
length scale. The buoyancy length scale is crucial to esti-
mate the dimensionless coefficient D (9), which we need 
to estimate the fractures’s regime when it encounters the 
change. Our compilation of data with a focus on the work 
of Dobson and Houseworth (2013) has given us an aver-
age maximum height of rock formations of about 300–350 
m (1000–1500 ft) and a minimum height that can be as 
low as 50 m (about 150 ft). Neglecting heterogeneities 
and bedding planes inside the rock formation, we can esti-
mate that the major changes in properties occur at the 
boundary of these formations. Comparing the 50 m of the 
“small” formations to the buoyancy length scale, we 
obtain a dimensionless distance of D50 m = 2.98 for the 
weak and 0.75 for the strong formation. From Fig. 3, we 
estimate that both sets fall into the second region and thus 
require the condition that D ≥ M

1∕7

k̂
 to be buoyant when 

encountering the limit. For both parameter combinations, 
this condition is not met. We can note here that three 
combinations of scenarios are possible. First, the fracture 
can encounter the heterogeneity when buoyant forces are 
negligible �b ≫ d . Such cases have been extensively stud-
ied, and their main conclusions state that the most effec-
tive ways to contain such fractures are changes in the 
confining stress and/or differences in elastic properties 
(see the Sect. 1 for references). Second, it might be that 
the distance between the injection point and the hetero-
geneity and buoyancy are on the same order �b ∼ d . This 
is the case here; no clear distinction between limiting 
regimes can be made in this limit, and their investigation 
must most likely follow a numerical approach. Third, a 
fully established buoyant fracture encounters the change 
�b ≪ d . This third category of fractures is what we are 

interested in this contribution. We can observe this case 
when taking the upper limit of the rock formation height. 
More precisely, we assume here that the fluid injection 
occurs at the centre of the layer such that we have d = 175 
m leading to a dimensionless distance of D175 m = 10.4 for 
the weak and 2.61 for the strong formation. Following 
now the evaluation path described in Fig. 4, we obtain 
that both combinations lead to a buoyant hydraulic frac-
ture encountering the change in the viscosity-dominated 
buoyant injection regime ( M̂-regime).

3 � Change in Fracture Toughness

We first investigate the effect of a sudden change in frac-
ture toughness on fracture propagation. For this type of 
heterogeneity, we define the limit of immediate break-
through as validated if the fracture height growth does 
not stop at any moment ��(t)∕�t ≠ 0,∀t . For a transient 
containment along a jump in fracture toughness, the 
spreading leads to an increase of the fracture opening at 
the point of contact such that the stress-intensity factor 
there increases up to the resistance of the higher tough-
ness layer. Once this point is reached, the fracture breaks 
through into the upper layer, and grows there as a buoyant 
fracture. The discussion on a similar effect, when PKN 
fractures transition from their early-time toughness-
dominated behavior to the late-time viscosity-dominated 
behavior, has been investigated in Dontsov (2022); Peru-
zzo (2023). On the other hand, once the fluid injection 
ends, the opening and stress-intensity factor at the point 
of contact can no longer increase. If the fracture has not 
yet broken through when the injection stops, the fracture 
will be indefinitely contained. In their study with dif-
ferent parameter sets at an arbitrary distance of d = 250 
m ( d = 820 ft), Möri et  al. (2023b) have observed all 
three regimes as a function of typical toughness jumps 
between KIc-2∕KIc-1 = 2–5. Hereafter, we are interested in 

Table 1   Two limiting cases of material properties for a weak and a strong formation

E � KIc � �� Qo Vo

GPa MPa m1/2 Pa s Pa / m m3/s BPM m3 Gals

Weak 7.50 0.2 0.25 0.005 3643 0.12 60 1514 4 × 105

Strong 18.0 0.2 2.00 0.005 3643 0.24 120 5678 1.5 × 106

M
k̂

Bks �b Immediate breakthrough Indef. containment

m ft KIc-2∕KIc-1|d=175 KIc-2∕KIc-1|d=175

Weak 5.21 × 104 587 16.8 55.1 10.86 18.7
Strong 87.9 78.7 67.1 220 2.89 4.97
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distinguishing the limits between the three regimes pre-
sented more analytically.

3.1 � Limit of Immediate Breakthrough

We follow hereafter the procedure outlined in Peruzzo 
(2023) to derive the necessary limit for an immediate 
breakthrough of the fracture. In chapter 5 of his work, 
Peruzzo (2023) uses the fact that the hydraulic fracture 
can be assumed as a plane-strain semi-infinite, steadily 
moving hydraulic fracture at the propagating edge. This 
fundamental assumption, inherent to the implicit level-set 
scheme (Peirce and Detournay 2008; Zia and Lecampion 
2020), allows the author to perform a local energy balance 
for a semi-infinite fracture (see equation (5.8) of Peruzzo 
(2023)). His derivations neglect the presence of gravity. 
Incorporating a gravity effect as outlined in Fig. 1 would 
lead to an additional term in the power balance of the 
semi-infinite steadily moving fracture, leading to

In Eq. 10, we have used the ⋅̂  notation to indicate that all 
quantities are considered in a moving frame at a constant 
velocity V. ŵ and p̂ = p̂f − �o are the opening and net pres-
sure, with p̂f the fluid pressure, in the moving coordinate sys-
tem based on the fracture tip and h is a characteristic height 
over which the integrals are to be evaluated. We further use 
G for the elastic fracture mechanics energy release rate (Rice 
1972). It has been pointed out by Garagash (2009); Garagash 
et al. (2011) that at the fracture tip we have the condition 
ŵ(0)p̂(0) = 0 . Applying this condition to Eq. 10, dividing 
by V, and applying the resulting equation to the propagation 
condition (6) (e.g., the energy release rate equals the critical 
energy release rate G = Gc = K2

Ic
∕E� ) we obtain

which holds for the condition that V ≥ 0 . We follow the pro-
cedure of Peruzzo (2023) again and consider the fracture as 
a semi-infinite steadily moving fracture when it encounters 
a change in fracture toughness (see Fig. 5). We now distin-
guish between a state just before the fracture touches the 
interface (state ⋅[−] ) and one just after the contact (state ⋅[+] ). 
Adopting the assumption that the change in energy enter-
ing the system at the injection point ẑ = d , the change in 
the external elastic energy ŵp̂ , and the change in the poten-
tial energy related to buoyancy between the two states are 
negligible

(10)
��V2∫o

h
1

ŵ
d̂s + G × V + V

1

2∫o

h
d

d̂s

(
ŵp̂

)
d̂s

= −VΔ�∫o

h

ŵd̂s + Vŵ(h)p̂(h).

(11)−Δ�∫o

h

ŵd̂s − ��V∫o

h
1

ŵ
d̂s +

1

2
ŵ(h)p̂(h) − Gc = 0,

where td is the time the fracture tip reaches the interface at a 
distance d. The combination of Eqs. (11) and (12) allows us 
to define the limit where the fracture velocity after touching 
the interface becomes zero V [+] = 0 . We define this case 
as an immediate breakthrough because the fracture never 
stops growing (Peruzzo 2023). Using the total energy dis-
sipated (Eq. (11) for states ⋅[−] and ⋅[+] ) with the assumption 
of non-penetration into the higher toughness layer (e.g., 
V [+] = 0 ) we can obtain the following relation between 
fracture energies

For co-planar fractures in an elastically homogenous 
medium, we can express this equation in function of the 
respective fracture toughness

In Peruzzo (2023), a similar equation to (14) (see his equa-
tion (5.16)) is cast into a non-dimensional form using the 
typical scales of semi-infinite hydraulic fractures shown 
in Garagash (2009); Garagash et al. (2011). We follow a 
similar path using semi-infinite buoyant hydraulic fracture 
scales slightly adapted from the supplemental material 
of Möri and Lecampion (2022)

In Eq. (15), w3D
∗

 is the 3D scale of the tail at the moment 
when the switch between two- and three-dimensions is per-
formed. Roper and Lister (2005, 2007) have shown in their 
work that a dimensionless toughness can characterize such a 
semi-infinite fracture. They presented a limiting solution in 
the toughness-dominated regime and solved it numerically 
for finite toughness cases. We use here a slightly different 
definition of the dimensionless tip-toughness as

We will use the same solver as presented in the supplemental 
material of Möri and Lecampion (2022), which has been 
validated there against the limiting solutions presented 
by Roper and Lister (2005, 2007) and a zero-toughness 

(12)

1

2
ŵ[−](h)p̂[−](h) − Δ�∫o

h

ŵ[−]d

= −Δ�∫o

h

ŵ[+]d +
1

2
ŵ[+](h)p̂[+](h), at: t = td,

(13)Gc-2 ≥ Gc-1 + ��V [−]�o

h
1

ŵ[−]
d̂s.

(14)
(
KIc-2

KIc-1

)2

= 1 +
��V [−]E�

K2
Ic-1

∫o

h
1

ŵ[−]
d̂s.

(15)

�
2D
b

=
E�1∕2Q

1∕6

2D
��1∕6

��2∕3
, w2D

b
=

Q
1∕3

2D
��1∕3

��1∕3
, with Q2D = Vw3D

∗
.

(16)� =
KIc

E�3∕4��1∕4Q
1∕4

2D

.
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solution shown in Lister (1990b). Using the scaling of 
Eqs. (15), (16), and H = h∕�2D

b
 , we can obtain a dimen-

sionless equation giving the maximum change in fracture 
toughness leading to an immediate breakthrough

In Eq.  (17), we have used the following two scales 
Ω̂ = ŵ∕w2D

b
 and �̂ = ŝ∕�2D

b
 . It is possible to show that the 

term V [−]��1∕3∕
(
Q

2∕3

2D
��1∕3

)
= 1 is valid in all scalings of 

buoyant hydraulic fractures, such that we can further sim-
plify Eq. (17) to

This equation allows us to obtain the limiting solution in 
function of the corresponding dimensionless tip-toughness 
by solving numerically for the corresponding opening. As 
Möri and Lecampion (2022) have shown that the complete 
3D solution approaches the 2D solution relatively well in 
the toughness-dominated limit (see their figure 3) and very 
well in the viscosity-dominated limit (see their figure 7), it is 
possible to derive the limit of immediate breakthrough from 
Eq. (18) when a scaling based expression of � is possible.

3.1.1 � Results for the Representative Cases

For the cases presented in Table 1, both fractures encoun-
ter the toughness jump in the viscosity-dominated buoyant 
injection regime ( M̂-regime). For this regime we can derive 
the value of � as a function of the dimensionless viscosity 

(17)
(
KIc-2

KIc-1

)2

= 1 + �−2 V [−]��1∕3

Q
2∕3

2D
��1∕3∫o

H
1

Ω̂[−]
d�̂.

(18)
(
KIc-2

KIc-1

)2

= 1 + �−2∫o

H
1

Ω̂[−]
d�̂.

M
k̂
 (7) and the dimensionless distance D (9) (see Appen-

dix 1 for its value in other regimes)

Note that we have not considered any pre-factor when per-
forming the derivation of �m̂ . The remaining question per-
tains to the choice of the characteristic distance H to take 
for the integral. Möri and Lecampion (2022, 2023) have 
demonstrated that the behavior of the head dominates buoy-
ant hydraulic fractures. We thus consider that the relevant 
length over which energy is dissipated to promote buoy-
ant growth is the characteristic length of the head. When 
the fracture propagates in the M̂-regime, the corresponding 
dimensionless head length is given as �head

m̂

(
td
)
∕�2D

b
= 1 . 

From this knowledge, we can derive the limit for immediate 
breakthrough according to Eq. (18) considering the higher 
distance of d = 175 m. The results are respectively given by 
KIc-2∕KIc-1|d=175 ≤ 10.86 for the weak formation and 2.89 for 
the strong formation, as reported in Table 1.

We test these predictions through numerical simulations 
and present the results in Fig. 6. First, we perform simula-
tions on the weak formation (see Fig. 6) and test with a 
value of KIc-2∕KIc-1 = 14.6 , above the calculated limit of 
10.86. The corresponding 3D simulation shows that this 
value, supposed to give an immediate breakthrough, leads 
to transient containment. We then gradually reduce the 
value of the jump to observe when we obtain an immedi-
ate breakthrough. The moment when the behavior changes 
from transient containment to immediate breakthrough is 
between 5.00 and 6.50. If we take a limiting value of 5.75, 
our prediction overestimates the necessary jump for an 
immediate breakthrough by approximately a factor of 2. To 
investigate why we have this overestimation, we compare 

(19)�m̂ = D
3∕40

M
−9∕40

k̂
.

Fig. 5   Sketch of a semi-infinite, 
buoyant hydraulic fracture 
encountering a change in 
fracture toughness. All other 
parameters remain the same. 
(Color figure online)
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in Fig. 7 the effective opening obtained to the 2D one. The 
first observation is that in both cases, up to the distance of 
ẑ∕�2D

b
 , the actual opening is smaller than the 2D predic-

tion. In Fig. 7b, we additionally see that the fracture has 
not yet grown up to the full size of the head. In addition to 
the opening, we calculate the actual velocity Vnum ≈ 0.33 
m/s (scaling-based 0.43 m/s) from the time derivative of 
the fracture height growth and estimate the actual tail open-
ing of the 3D simulation to obtain Q2D ≈ 9.40 × 10−4 m2/s 
(scaling-based 1.19 × 10−3 m2/s). Taking these effective 
numerical values of the 3D simulations in the 2D estimate 
of Eq. (18) gives a slightly different limit for an immedi-
ate breakthrough of KIc-2∕KIc-1|d=175,num ≤ 9.56 . Even the 
numerically taken approximation along the centre line is still 
nearly double the observed value of about 5.75. We inter-
pret this discrepancy to be related to a strong 3D effect. The 
same approximated 2D estimation works considerably better 
in the radial case presented in Peruzzo (2023). One reason 
for this is that the symmetry over the injection point allows 
them to match the opening of the semi-infinite fracture very 
well onto the radial, finite fracture. The situation is quite 
different for a non-axisymmetric configuration like the one 
presented in this contribution. Due to the finite extent paral-
lel to the jump, local effects have a strong influence. Fur-
thermore, we have neglected all pre-factors from previous 
numerical studies, and fewer semi- or analytical solutions 
are available. Nonetheless, the poor match, when compared 
to the numerically obtained opening, emphasizes that the 

difference stems mostly from the significant 3D effects. We 
can highlight this using the second parameter combination 
for the case of a strong rock formation. Albeit, the numeri-
cal limit obtained here is only slightly smaller than the 
scaling-based one KIc-2∕KIc-1|d=175,num ≤ 2.43 . For this set, 
Fig. 6 shows that the immediate breakthrough is observed 
for KIc-2∕KIc-1 = 2.00 and 1.50 but a transient containment 
exists already for KIc-2∕KIc-1 = 3.00 . We would thus set the 
limit numerically at KIc-2∕KIc-1 = 2.50 , which corresponds 
very well to the numerical 2D-prediction. Differences, in 
this case, are a mismatch of the velocities and that the frac-
ture is still very close to its source point (the source point is 
at about ẑ∕�2D

b
≈ 1.36).

We use the simulations presented in Möri et al. (2023b) 
to validate further our estimations of the limits for an 
immediate breakthrough. Set number 1 of  Möri et  al. 
(2023b) encounters the toughness jump similarly in the M̂
-regime. The calculated limit for immediate breakthrough 
in this case would be KIc-2∕KIc-1 = 3.20 . Their simulations 
show that effectively the simulation with a small jump of 
KIc-2∕KIc-1 = 2.00 leads to an immediate breakthrough, and 
with a value of 5.00 the fracture becomes temporarily con-
tained. No data points are available in between such that 
we cannot state how far their limit is from the simulation 
results. To further investigate this limit, we have performed 
different simulations that reach the jump in the M̂-regime. 
We notably ran simulations with dimensionless values of 
M

k̂
= 1.00 × 105 (7), Bks = 500 (8), and D = 50 (9) where 

Fig. 6   Testing of the limit for 
immediate breakthrough calcu-
lated using Eq.  (18). a Simu-
lations for the “weak” case of 
Table  1. Simulations are done 
for a toughness jump of 14.6 
(red), 10.0 (dark red), 6.50 (light 
green), and 5.00 (brown). b Sim-
ulations for the “strong” case of 
Table  1 with K

Ic-2
∕K

Ic-1
= 3.00 

(red), 2.00 (light green), and 1.50 
(brown). (Color figure online)

Fig. 7   Comparison of the 
2D opening profile (black-
dashed line) with the open-
ing profile obtained from the 
3D simulation just before the 
fracture reaches the toughness 
jump. a Simulation for the 
“weak” case of Table 1 with a 
K
Ic-2

∕K
Ic-1

= 14.6 . b Simula-
tions for the "strong" case of 
Table 1 with K

Ic-2
∕K

Ic-1
= 3.00
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we have a predicted limit for immediate breakthrough of 
KIc-2∕KIc-1 = 11.18 . Our simulations show that the real value 
must lay somewhere between KIc-2∕KIc-1 = 7.00 and 14.00. 
We see the same tendency for a set of simulations with 
M

k̂
= 1.00 × 105 (7), Bks = 250 (8), and D = 25 (9). When 

applying the observation to the second parameter set of Möri 
et al. (2023b), we can investigate if our findings also work in 
a different regime upon the interaction between the fracture 
and the jump, in this case, the M̂[V]-regime. In this configu-
ration, the dimensionless tip-toughness is no longer given 
by Eq. 19 and depends now on the dimensionless buoyancy 
Bks (8) and the distance D (9) as �[V]

m̂
= B

−15∕16

ks
D

3∕4 . The 
limit one obtains in this case is given by KIc-2∕KIc-1 = 5.39 . 
This value presents a significant overestimation, as already 
a value of KIc-2∕KIc-1 = 5 leads to an indefinite containment 
(Möri et al. 2023b). We get similar observations when look-
ing at a toughness-dominated case with the interaction in 
the pulse buoyant regime ( ̂K[V]-regime). For a combina-
tion of M

k̂
= 1.00 , Bks = 1.25 , and D = 2.00 we predict an 

immediate breakthrough for KIc-2∕KIc-1 = 1.21 . We observe 
immediate breakthroughs up to jumps of KIc-2∕KIc-1 = 1.125 . 
For larger values, a second mechanism becomes important. 
Changing the fracture toughness means changing the mini-
mum volume required for buoyant propagation. We can 
relate the dimensionless buoyancy of the higher toughness 
to its counterpart in the injection layer as

For the presented toughness-dominated case, values of 
KIc-2∕KIc-1 ≥ 1.15 lead to a Bks-2 < 1 and do thus not allow 
for any further buoyant propagation in the upper layer. This 
second additional condition is generally valid and would 
prevent growth in the upper layer.

From the observations in three different interaction 
regimes ( M̂ -, M̂[V] -, and K̂[V]-regime) we can say that the 
prediction of immediate breakthrough versus containment 
based on the energy balance of a 2D semi-infinite buoyant 
hydraulic fracture generally over-estimates the necessary 
jump. This means that a toughness jump seems more effi-
cient in arresting buoyant hydraulic fractures, as predicted 
by this method. The numerical results obtained show that 
the absolute value of the necessary jump to avoid immedi-
ate breakthrough usually correspond to high, respectively 
very high, values of the fracture toughness (weak rock 
KIc-2 ≈ 1.60 MPa m1/2, strong rock KIc-2 ≈ 5.00 MPa m1/2).

3.2 � Limit of Indefinite Containment

The previous paragraph enlightens the limits of an imme-
diate breakthrough without distinguishing if the obtained 

(20)Bks-2 =

(
KIc-2

KIc-1

)−8∕5

Bks-1.

containment, if such is observed, is transient or indefinite. We 
look at Fig. 2 to study the potential indefinite containment. For 
both containment cases, one can identify that the spreading 
along the interface occurs at a slowly varying fracture height. 
A similar observation was made by Möri et al. (2023a) and 
is inherent to the assumption of PKN-fractures (Perkins and 
Kern 1961; Nordgren 1972). As discussed in the introduc-
tion, the problem of PKN-fractures has obtained recent interest 
by Dontsov (2022) and Peruzzo (2023). The two discuss the 
transition from a toughness- to a viscosity-dominated PKN 
regime and investigate the conditions for which the fracture 
can penetrate the higher toughness layer. We follow a mixture 
of the approaches presented in chapter 6 of Peruzzo (2023) 
and Dontsov (2022). Our evaluations assume that we can adopt 
a local 2D plane strain approximation within the spreading 
fracture with a linear pressure gradient, also known as Weert-
man’s pulse (Weertman 1971). Such a linear loading can be 
obtained by combining the buoyancy contrast’s gradient �� 
and a characteristic constant pressure p∗ . In this approach, we 
hypothesize that the stress-intensity factor at the lower end 
of this fracture equals zero min

{
KIc

}
= 0 . This assumption 

allows us to relate the fracture height directly to p∗ and �� 
(see Eq. (37)).

We first investigate the toughness-dominated case. We 
assume that upward growth is not possible (this is the rea-
son for the spreading). Downward growth is limited by 
min

{
KIc

}
= 0 such that the fracture can only grow laterally. 

We use the local energy balance to calculate for which char-
acteristic pressure p∗ lateral growth occurs. For the case of 
no fluid flow (purely toughness-dominated), it is possible to 
match the elastic energy stored in the 2D cross-section Ups 
with the energy release rate Gc-H necessary to obtain lateral 
fracture growth

where p
(
h, p∗

)
 is the pressure given as a combination of p∗ 

and �� . We observe that the obtained scale is equivalent 
to the pressure scale in the head of a toughness-dominated 
hydraulic fracture (Möri and Lecampion 2022, 2023). Using 
the global volume balance, we can directly obtain scales for 
the opening, fracture height, and length from the pressure 
scale. In the case of a continuous injection, we obtain

(21)

Ups =
1

2 ∫2H

w
(
h, p∗

)
p
(
h, p∗

)
H
(
p∗
)
dh = 2H

K2
Ic-1

E�
= Gc-H

↓

p
PKN-̂k

= K
2∕3

Ic-1
��1∕3,

(22)w
PKN-̂k

=
K

4∕3

Ic-1

E���1∕3
,

(23)p
PKN-k̂

= K
2∕3

Ic-1
��1∕3,
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Note that to obtain these scales, we have assumed that the 
volume entering the spreading fracture corresponds pre-
cisely to the volume injected, and we did not consider that 
lateral spreading only starts after the fracture reaches the 
interface at t = td . As pointed out by Möri and Lecampion 
(2021) and Peirce (2022), we can obtain the equivalent scale 
for a finite volume release by simply replacing Qo with Vo∕t . 
We must evaluate the maximum value of the stress-intensity 
factor at the interface to evaluate if the fracture suffers from 
a breakthrough into the upper layer during this growth. As 
the pressure, height, and opening all along the fracture are 
constant, the stress intensity factor does not change. This 
value can be obtained from a Weertman’s pulse approxima-
tion (Weertman 1971) by propagating pre-factors as

This would mean that lateral propagation is energetically not 
favorable for any smaller change in toughness, and break-
through would be nearly immediate. We have so far not got-
ten any simulations indicating a different behavior, as all 
simulations with a toughness-jump of KIc-2∕KIc-1 < 4∕

√
3 

(see for example the simulations shown in  Möri et  al. 
(2023b)) always lead to an immediate breakthrough, if 
in parallel the condition of Eq. (20) is satisfied. We also 
observe that if the fracture remains toughness-dominated, 
no breakthrough could ever happen if fracture containment 
is present initially.

However, the transition from the early time tough-
ness- to the late time viscosity-dominated regime has 
recently been shown by Dontsov (2022); Peruzzo (2023), 
and Garagash (2023). As we consider a similar behavior 
for the PKN-like fracture along the interface, we follow 
the approach of Dontsov (2022) and approach the problem 
from a balance of momentum of the lateral flow, neglect-
ing any contribution of fracture energy. With our base 
assumptions, we can obtain the average opening in the 2D 
section as a function of this p∗ and derive the expression 
of lateral flow in this PKN-like fracture. We then obtain 
an expression similar to equation (8) of Dontsov (2022) 
(see Eq. (40)) for a semi-infinite fracture propagating later-
ally. We apply the procedure outlined in Sect. 4 of Dont-
sov (2022) to obtain the relevant scales of lateral fracture 
growth along the interface.

(24)�
PKN-k̂

=
E�Qot��

K2
Ic-1

,

(25)h
PKN-̂k

= �b-1 =

(
KIc-1

��

)2∕3

.

(26)max
�
KI

�
=

4
√
3
KIc-1.

In the process of obtaining these scales, we dropped pre-
factors and abstain from explicitly solving for the evolution 
of pressure, opening, and height along the fracture (e.g., 
we do not solve for the functional f (�) given in Dontsov 
(2022)). From the scales (27)–(30), we see that the frac-
ture height and pressure increase with time. Consequently, 
the maximum stress intensity factor (at the interface) will 
also increase. We get the scale of the evolution of the stress 
intensity factor as

We expect breakthrough to occur once we have 
max

{
KI(t)

}
= KIc-2 . By equalizing KIc-2 to Eq. (31) we can 

obtain the breakthrough time tbt

The implications of the scales  (27)–(30) leading to the 
derivation of a breakthrough time is that breakthrough will 
always occur if the injection is not finite. The fracture neces-
sarily goes from toughness- to viscosity-dominated propa-
gation and will grow in this regime until a breakthrough 
occurs. This observation is not astonishing and has similarly 
been demonstrated by Peruzzo (2023) for the case without 
buoyancy effects. The only possibility to become indefinitely 
contained is thus given by the finite volume of the injection.

As in the radial case and for the PKN-K̂-regime, the 
finite volume scales of the PKN-M̂-regime can be obtained 
from the scales (27)-(30) by substituting Qo with Vo∕t . 
We thus immediately observe that the opening, pressure, 
and height start to reduce with time. Consequently, the 
maximum stress intensity factor will also be reduced (see 
Appendix 2 for the details). In this regime, the fracture 
will transition from viscosity- to toughness-dominated, 
where it finally stops spreading laterally. A direct conse-
quence of this reduction in stress-intensity factor is that 
breakthroughs can only happen during the injection, mean-
ing that we can obtain the limiting volume necessary for 

(27)wPKN-m̂ =
Q

4∕11
o ��1∕11��2∕11t2∕11

E�3∕11
,

(28)pPKN-m̂ = E�4∕11Q2∕11
o

��6∕11��1∕11t1∕11,

(29)�PKN-m̂ =
Q

5∕11
o ��4∕11t8∕11

E�1∕11��3∕11
,

(30)hPKN-m̂ =
E�4∕11Q

2∕11
o ��1∕11t1∕11

��5∕11
.

(31)max
{
KI(t)

}
= E�6∕11Q3∕11

o
��7∕22��3∕22t3∕22.

(32)tbt =
K

22∕3

Ic-2

E�4Q2
o
��7∕3��

.
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the fracture to breakthrough for a given toughness jump 
by comparing the time of shut-in ts with the breakthrough 
time tbt (32)

The inequality resulting from this comparison, right of the 
arrow in (33), gives the predicted limit for which a fracture 
can still break through.

3.2.1 � Results for the Representative Cases

We now validate this limit again using the weak and 
strong rock parameter sets. The limits for the two cases are 
respectively given by KIc-2∕KIc-1 = 18.7 for the weak and 
KIc-2∕KIc-1 = 4.97 for the strong formation. Observation 
of Fig. 9a) shows that we effectively observe a indefinite 
containment for a toughness jump of KIc-2∕KIc-1 = 18.75 
just above the limit and a breakthrough (transient con-
tainment) for the value just below ( KIc-2∕KIc-1 = 18.65 ). 
In fact, Fig. 8b, c show the excellent agreement between 
the 2D plane-strain prediction of the Weertman’s pulse 
(Weertman 1971) with regard to the opening and pres-
sure in the horizontal cross-section. In this comparison, 
we have matched the fracture height to the numerical 

(33)
tbt

ts
=

K
22∕3

Ic-2

E�4Q2
o
ts��

7∕3��
≤ 1 →

KIc-2

KIc-1

≤ M
3∕22

k̂
B
5∕22

ks
.

results of the 3D simulation and taken the characteristic 
pressure p∗ from the numerical average over the fracture 
height. The pressure gradient thus matches �� perfectly, 
and the plane-strain assumption becomes valid. We further 
observe that the opening at the centre of the PKN-like 
spreading seems to follow the predicted power law very 
well (Fig. 8d). The same seems to hold for the evolution 
of the breadth b, representing the length �PKN of the PKN-
like fracture. The initial phase closely resembles the pre-
dicted toughness-dominated behavior before the spreading 
tends to follow the viscosity-dominated prediction. Going 
back to Fig. 9a, the prediction of the breakthrough time 
works nearly perfectly for the case of KIc-2∕KIc-1 = 18.65 
( tbt∕ts|num ≈ 0.974 and tbt∕ts|scaling = 0.972 ) but presents 
a larger difference for the case when KIc-2∕KIc-1 = 14.6 
( tbt∕ts|num ≈ 0.217 and tbt∕ts|scaling = 0.161 ). There are sev-
eral factors explaining this difference. The first and prob-
ably strongest effect stems from the limited lateral extent/
aspect ratio at the moment of breakthrough for the simu-
lation with the smaller toughness jump. Peruzzo (2023) 
has recently demonstrated through numerical simulations 
that the plane-strain assumption becomes more valid the 
higher the aspect ratio of the fracture becomes (theoreti-
cally shown by Hills et al. (1996)). It is also worth noting 
that the fracture, in this case, is still transitioning from the 
PKN-K̂ to the PKN-M̂ regime, further limiting the validity 

Fig. 8   Extracted results from a 
simulation of the weak forma-
tion with K

Ic-2
∕K

Ic-1
= 18.65 to 

compare the lateral spreading 
to the scaling-based results. a 
Footprint with opening distribu-
tion indicating the PKN-like 
area. Dashed vertical lines show 
where the opening (b) and pres-
sure (c) profiles are extracted. 
b Opening profile (colored 
lines) with discretization (dots) 
and prediction according to the 
Weertman’s pulse (Weertman 
1971) (PS-solution, red-dashed 
lines). c Pressure profiles with 
predicted pressure. d Evolu-
tion of the opening close to the 
breakthrough point (location 
indicated in a). The dashed 
line shows the tendency of the 
evolution in the PKN-M̂ regime. 
e Evolution of the maximum 
breadth, tracking the evolution 
of the �PKN−∗ with indicated 
expected power-laws of growth. 
For the PS-solutions of b, c, 
the values of p∗ and h are taken 
from the numerical simulations. 
(Color figure online)
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of the underlying assumptions. Finally, we can also note 
that we pick the breakthrough as the moment when the 
fracture at the centre accelerates significantly. The fracture 
does penetrate the higher toughness layer already before. 
The moment of this first penetration is difficult to grasp but 
might be more representative of the definition of break-
through adopted. For the strong rock formation, the con-
clusions do not significantly differ. This time, we observe 
a breakthrough for a value of the jump slightly above the 
predicted limit KIc-2∕KIc-1 = 5.00 but still see the confine-
ment for a value similarly greater than in the weak forma-
tion. In this case, we have an overestimation of the break-
through time ( tbt∕ts|num ≈ 0.814 and tbt∕ts|scaling = 1.051 ). 
The overestimation is a direct consequence of the jump 
leading to the breakthrough being above the calculated 
limit. Necessarily, the fracture must break through before 
its predicted time, or else the breakthrough will not occur. 
The fact that the theory, despite a significant spreading, 
might not hold for this case is within the assumption of 
the injection history. We simplified the lateral spreading 
to a maximum and considered that the injection follows 
the same history and timing as at the injection point. Of 
course, a delay occurs between the injection start and 
when the fracture starts to spread laterally. Additionally, 
the initial injection rate will be non-uniform and will not 
decrease sharply to zero. Instead, fluid will flow from the 
tail at a decreasing rate into the spreading part. As such, 
the stress-intensity factor must not necessarily decrease 
immediately at shut-in and could continue to increase for a 
limited time. This ongoing increase might lead to a break-
through after the predicted breakthrough time.

We recheck our theory for the two cases presented 
in Möri et al. (2023b). For their Set 1, the predicted limit 
would be at KIc-2∕KIc-1 = 5.40 . Effectively, the simula-
tion ran with KIc-2∕KIc-1 = 5.00 shows a transient con-
tainment where the predicted breakthrough time in this 
case is similar to the actual breakthrough time observed 
( tbt∕ts|num ≈ 0.567 and tbt∕ts|scaling = 0.875 ). The study of 
their second case is somewhat different as the interaction 
occurs in the pulse M̂[V]-regime. The consequence is that 
the fracture either breaks through immediately or not at 

all. As soon as containment exists, we expect a decreas-
ing stress intensity factor. Thus, no more breakthroughs are 
possible, indicating that Eq. (33) is only valid if the forma-
tion of a PKN-∗̂ (constant height fracture with "high" aspect 
ratio) crack during the fluid release occurs. We use again 
our simulations with the different parameter-set leading to 
M

k̂
= 1.00 × 105  (7), Bks = 500  (8), and D = 50  (9). For 

these simulations, we observe lateral spreading during the 
injection and would predict with Eq. (33) a limiting value 
of KIc-2∕KIc-1 = 19.7 . The numerically found value is close 
to this limit and is at approximately KIc-2∕KIc-1 = 18.25 . The 
prediction of the breakthrough time for the corresponding 
transient containment cases is again within the order of 
magnitude and ( tbt∕ts|num ≈ 1.115 and tbt∕ts|scaling = 0.509 
fo r  KIc-2∕KIc-1 = 18.00  a n d  tbt∕ts|num ≈ 0.873 a n d 
tbt∕ts|pred = 0.269 for KIc-2∕KIc-1 = 16.5).

3.3 � Main Findings

We regroup the findings regarding the immediate break-
through and the indefinite containment of buoyant hydrau-
lic fractures reaching a change in fracture toughness in 
Fig. 10. Figure 10a compares the scaling-based predicted 
limit for immediate breakthrough based on the 2D, semi-
infinite assumption compared to the effectively obtained 
numerical value from full 3D simulations. We use the mid-
point between simulations where immediate breakthrough 
occurred and the closest value showing a fracture con-
tainment. The colors of the dots indicate the dominating 
regime upon the interaction with the toughness jump. In 
most cases, the scaling-based approach overestimates the 
obtained value. Nonetheless, the order of magnitude is 
well captured and most predictions are off by only about 
30%. Some evaluations might however show discrepancies 
up to a factor of two regarding the prediction. Another 
observation is that for most evaluations, a value close 
to the maximum toughness jump observed in laboratory 
measurements of sedimentary rock beddings identified 
by Peruzzo (2023) of KIc-2∕KIc-1 = 5.00 leads to an imme-
diate breakthrough and can hardly arrest a fracture. The 
exception is notably the toughness-dominated case where 

Fig. 9   Testing of the limit 
for indefinite containment 
calculated using Eq. (33). a 
Simulations for the “weak” case 
of Table 1. Simulations are done 
for a toughness jump of 18.75 
(red), 18.65 (light green), and 
14.6 (brown). b Simulations 
for the “strong” case of Table 1 
with K

Ic-2
∕K

Ic-1
= 5.25 (red) 

and 5.00 (light green). (Color 
figure online)
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a value of KIc-2∕KIc-1 ≈ 1.14 is already sufficient. The work 
of Möri and Lecampion (2022, 2023) has shown that this 
regime is difficult to obtain in real-world applications. 
Interestingly, the evaluation of the limit for indefinite 
containment, Fig. 10b, seems to be very well captured by 
the PKN-∗̂ developments. The only exception here is the 
case where the fracture reaches the interface in the M̂[V]

-regime. In this case, a lateral spreading according to the 
PKN-∗̂ approach is, however, not possible, and the limit 
for indefinite containment is given by the limit for immedi-
ate breakthrough. Despite the good match in predicting the 
limiting value for indefinite containment, the prediction of 
the breakthrough time (32) seems to lead to a significant 
underestimation. However, we expect underestimation to 
diminish if we consider the differences in the injection 
history of the laterally growing fracture compared to the 
overall fracture injection history.

4 � Stress Barrier

The previous section has shown that substantial changes in 
stress-intensity factors are usually necessary to contain a frac-
ture indefinitely, making it a very inefficient arrest mechanism. 
For radial fractures, the mechanism considered as most effi-
cient are differences in the confining stress, so-called stress 
jumps (Harrison et al. 1954; Simonson et al. 1978; Adachi 
et al. 2010). For the case of buoyant hydraulic fractures, Möri 
et al. (2023b) have similarly hinted toward the high efficiency 
of such stress changes. For the cases they studied, stress jumps 
of �� ∼ 1.00 MPa were sufficient to arrest the fracture. The 
range of possible stress jumps can be identified to lay some-
where between 1.00 and 20.0 MPa (see e.g., (Haimson and 

Lee 1980; Leeman 1965; Adachi et al. 2007)). This indicates 
that stress jumps are more efficient and, in practice, the more 
realistic component leading to the arrest of buoyant hydraulic 
fractures. Möri et al. (2023b) proposed to non-dimensionalize 
the necessary stress jump using the characteristic pressure in 
the head of a toughness-dominated buoyant hydraulic fracture

We observe here that this is strictly equivalent to the charac-
teristic pressure of a laterally spreading PKN-K̂ fracture. We 
further notice that the characteristic pressure in the head of a 
viscosity-dominated buoyant fracture can always be related 
to this characteristic pressure of the hydrostatically loaded 
2D fracture. As this configuration has been shown to rep-
resent the limit for buoyant propagation in a given forma-
tion (Weertman 1971; Spence and Turcotte 1985; Lister and 
Kerr 1991; Möri and Lecampion 2023), we should be able 
to characterize the possibility of a stress barrier to arrest 
buoyant hydraulic fractures by comparing the value of the 
dimensionless stress jump to the characteristic pressure in 
the head of this fracture. With this analysis, we would inves-
tigate the possibility of the fracture to break through the 
barrier immediately. The terminology of possible outcomes 
for stress barriers differs from the toughness jump case. The 
fracture must penetrate the upper layer to "feel" the stress 
change. The fracture thus always breaks into the higher for-
mat. In the case of a stress barrier, we thus adopt a slightly 
different definition of immediate breakthrough, which is now 
defined by not having a significant acceleration phase in the 
higher stress layer (see the characteristic velocity change in 
Fig. 11e).

(34)S =
��

phead
k̂

=
��

K
2∕3

Ic
��1∕3

.

Fig. 10   Overview of comparing the scaling-based predictions based 
on numerous simplifications compared to the results of full 3D 
simulations. Dots correspond to single evaluations where the color 
indicates the regime upon impact (blue—M̂ , cyan—M̂[V] , red—K̂ , 
orange—K̂[V] ). a Predicted limit for immediate breakthrough  (18) 

compared to results of numerical simulations. b Predicted limit for 
indefinite containment (33) compared to results of numerical simula-
tions. c Predicted breakthrough time t

bt
 (32) compared to the numeri-

cally observed breakthrough time. (Color figure online)
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As discussed before, the two combinations of param-
eters presented in Table 1 lead to an interaction with the 
stress jump in the M̂-regime. According to  Möri and 
Lecampion (2022), the head pressure in this regime is 
related to the characteristic pressure of a hydrostatically 
loaded fracture as

Note that the −1 in Eq. (35) is because the residual pres-
sure in the upper layer must remain larger or equal to the 
necessary characteristic head pressure, which is the one of a 
hydrostatically loaded radial fracture (Möri and Lecampion 
2023). Similar to the concept of the change in stress inten-
sity factor developed in Eqs. (31) to (33), we can assume 
a PKN-like behavior in the spreading. For a validation of 
this assumption, see Fig. 11b–d. Instead of evaluating the 
stress intensity factor, we set the pressure scale to the stress 
change ( + the characteristic head pressure) to obtain the 
breakthrough time and limit for indefinite containment

(35)

phead
m̂

(
td
)

phead
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Note the similarities in the breakthrough time between 
Eqs. (32) and (36). The two only differ in their expression 
related to the property which changes. This is because the 
stress intensity factor depends directly on the pressure. As 
such, the two yield very similar results.

We numerically check for these two estimations of 
limits using our strong and weak rock formations. The 
respective limits of immediate breakthrough are given as 
S ≤ 0.87 (strong) and S ≤ 3.53 (weak) and the ones for the 
indefinite containment as S ≤ 2.91 (strong) and S ≤ 7.05 
(weak). Figure 12 shows the evaluation of the two limits 
for the weak formation. In Fig. 12b, we can see that no 
acceleration is observed for a value of S ≤ 2.46 and starts 
to become more pronounced for S ≤ 4.50 , making the 
predicted limit fairly accurate. The limit for an indefinite 
containment, on the other hand, seems to be an under-
estimation of the necessary stress jump (numerics give 
S ≈ 10 ). It is important to note that the absolute value of 
the necessary stress jumps for indefinite containment is 
only about 0.625 MPa. This low value is way below the 
typical differences observed in the field. It also shows the 
enhanced capability in comparison to toughness jumps, as 
the value of the toughness jump necessary for indefinite 
containment of this case was KIc-2∕KIc-1 ≈ 18.70 . Similar 
observations hold for the strong rock formation. Indefi-
nite containment is observed for a stress barrier with a 

Fig. 11   Extracted results from 
a simulation of the strong 
formation with S = 4.09 (34) 
to compare the lateral spread-
ing to the scaling approach. a 
Footprint with opening distribu-
tion indicating the PKN-like 
area. Dashed vertical lines show 
where the opening (b) and pres-
sure (c) profiles are extracted. 
b Opening profile (colored 
lines) with discretization (dots) 
and prediction according 
to the 2D plane strain solu-
tion (PS-solution, red-dashed 
lines). c Pressure profiles with 
predicted pressure. d Evolu-
tion of the pressure close to the 
breakthrough point (location 
indicated in a). The dashed 
line shows the power law of 
the evolution in the PKN-M̂ 
regime. e Evolution of the 
penetration depth �p (defined in 
a) as the height of the fracture 
in the high-stress layer). For the 
PS-solutions of b, c, the values 
of p∗ and h are taken from the 
numerical simulations. (Color 
figure online)
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magnitude of about S ≈ 4.25 , such that the predicted 
value overestimates the actual limit. The evaluation of 
the immediate breakthrough shows that for a value of 
S ≈ 1.64 is already observed. This value is fairly close 
to the S ≤ 1.05 prediction. For both limits and cases, we 
can thus see that the ad-hoc predictions based on the head 
pressure and pressure in a lateral PKN-like fracture are 
fairly accurate in predicting the interaction of a buoyant 
hydraulic fracture with a stress barrier. The absolute value 
of the stress jump necessary in this case is �� ∼ 1 MPa. 
This value is slightly higher than the limit required in the 
weak case but still at the lower end of actual stress jumps 
observed. It also aligns well with the observations of Möri 
et al. (2023b), which give the same order for the abso-
lute value of the stress barrier. We can similarly adopt 
estimations for their second parameter set. For this case, 
we need to adapt the estimation for immediate break-
through using the pressure evolution in the M̂[V]-regime. 
The limit for immediate breakthrough is thus given by 
S ≤ B

5∕8

ks
D

−1∕2 = 5.25 . This limit overestimates the neces-
sary stress jump to limit immediate breakthrough. In Möri 
et al. (2023b) the limit is somewhere between �� = 0.50 
MPa and �� = 0.75 MPa, which corresponds to S between 
2.20 and 3.30. As the interaction is in a pulse regime, our 
theory does not allow for transient containment, so we do 
not have to calculate such a limit.

This section shows that a simple prediction of the neces-
sary magnitude of a stress barrier for the arrest of buoyant 
hydraulic fractures is possible using the same PKN-∗̂ scaling 
to investigate the necessary toughness jump (see Sect. 3). It 
also demonstrates that stress barriers are highly efficient in 
arresting buoyant hydraulic fractures for representative val-
ues observed in the field (see e.g., (Haimson and Lee 1980; 
Leeman 1965; Adachi et al. 2007)) (Fig. 13).

5 � Discussion

We have investigated two possible mechanisms that could 
arrest buoyant hydraulic fractures: a jump in fracture tough-
ness and stress. However, many other possible mechanisms 
of fracture arrest exist. We can notably list changes in the 
stress orientation, in elastic properties of the material (e.g., 
changes in E and � ), fluid leak-off (i.e., rock permeability), 
and changes of the fracture toughness as a function of frac-
ture velocity or fracture size. In other studies (Möri et al. 
2023b; Möri 2023), the authors have already performed 
preliminary investigations of fluid leak-off and the role of a 
fracture size-dependent toughness. Hereafter, we will briefly 
discuss the effect of these two mechanisms and the combina-
tion of different arrest mechanisms.

5.1 � The Effect of Fluid Leak‑Off

In industrial hydraulic fracturing applications, the most com-
monly adopted fluid leak-off model is Carter’s model (Carter 
1957). For a discussion of the model’s validity, assumptions, 
and extensions to account for poroelasticity and pressure-
dependent leak-off see, for example, Lecampion et  al. 
(2018); Kovalyshen (2010); Kanin et al. (2020); Dontsov 
(2021); Gao and Detournay (2020, 2021). In the context of 
buoyant hydraulic fractures, the problem has obtained inter-
est in volcanology thanks to the analogy between Carter’s 
leak-off model (Carter 1957) and the solidification of mag-
matic intrusions (Dontsov 2016). The analogy is based on 
the assumption of negligible advection in the fluid and a 
negligible excess temperature of the magma compared 
to the host rock. Bruce and Huppert (1990) applied these 
assumptions to obtain the velocity of the inward-moving 
solidification front, which has the same temporal depend-
ence as Carter’s leak-off model. It is thus possible to model 

Fig. 12   Numerical evaluation of the limits for immediate break-
through  (35) and indefinite containment  (36) of the “weak” case of 
Table  1 for a given stress barrier S at a distance d. a Evolution of 

fracture height. Simulations are done for S = 16.38 , 12.28, 10.65, 
9.83, 8.19, 5.00, 4.50, and 2.46 (red–green–gray). b Evolution of the 
penetration depth for the same simulations. (Color figure online)
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this solidification as a general loss of fluid, equivalently 
to the case of fluid leak-off (Turcotte and Schubert 2002; 
Bruce and Huppert 1990; Delaney and Pollard 1982; Pet-
ford et al. 1994; Rubin 1993). Another interesting study 
on semi-infinite buoyant hydraulic fractures has been per-
formed by Dontsov (2016), who investigated the non-steady 
propagation of such fractures under a continuous release in 
2D configurations. Möri (2023) observed a similar non-
steady behavior for 3D planar buoyant hydraulic fractures 
for an ongoing fluid injection. These previous contributions 
also indicate that in the case of a finite volume injection, 
fluid leak-off will always arrest the buoyant propagation of 
hydraulic fractures. Möri et al. (2023b) performed several 
simulations on their representative cases, showing that mod-
erate leak-off alone could already arrest the fracture. They 
also demonstrated that changes in the leak-off velocity are 
even more efficient in arresting fractures. As soon as a frac-
ture is in a leak-off dominated regime, radial or buoyant, 
and the injection stops, the propagation of the fracture will 
come to a halt (Möri and Lecampion 2021; Peirce 2022; 
Peirce and Detournay 2022b). The fluid loss further reduces 
head volume, making the buoyant fracture more toughness-
dominated. In toughness-dominated cases, smaller values 
of stress barriers and toughness jumps are usually required 
to arrest the fracture.

5.2 � The Role of a Fracture Size Dependent 
Toughness

In industrial applications (Rutledge et al. 2004; Mayerhofer 
et al. 2000; Garagash 2023) as in the context of magmatic 
intrusions (Delaney and Pollard 1981; Reches and Fink 
1988; Pollard and Muller 1976) observations indicate that 
the energy required to fracture rock increases with the size 
of the fracture. In Möri et al. (2023b), the authors followed 
the approach of Liu et al. (2019) where the apparent frac-
ture toughness is taken as a power law of the characteristic 

length scale of the fracture (see equation (1) of Möri et al. 
(2023b)). In the case of buoyant hydraulic fractures, Möri 
et al. (2023b) showed that this could only prevent the frac-
ture from becoming buoyant but could not arrest an already 
buoyant fracture. They demonstrate that equivalent values 
of the dimensionless buoyancy Bks (8) and the dimensionless 
viscosity M

k̂
 (7) which govern the problem as outlined in 

Sect. 2.2. Concerning the cases studied herein of the arrest 
of already buoyant fractures, the fracture size-dependent 
toughness has similar effects to fluid-leak-off in making 
fractures approaching the toughness-dominated regime. For 
toughness-dominated fractures, we repeat that the required 
changes in properties must be smaller to ultimately arrest 
the fracture.

5.3 � Combination of Arresting Mechanisms

We have studied and discussed several mechanisms capable 
of arresting buoyant hydraulic fractures separately. In almost 
all cases, multiple mechanisms will be present simultaneously. 
For example, changes in the fracture toughness KIc-2∕KIc-1 
will most likely be due to a lithology change. Such a lithol-
ogy change will affect the toughness, elastic properties, and, 
most often, the confining stress. Furthermore, it affects the 
density of the solid, which will change the buoyancy, which 
we assumed constant herein. All these effects might favor con-
tainment or promote buoyant propagation (think, i.e., about 
a negative stress jump, which will accelerate the fracture). 
One main contributor to these considerations is fluid leak-off. 
Albeit potentially small, fluid leak-off is always present in 
industrial applications (as is solidification in volcanological 
considerations) and thus necessarily reduces the necessary 
strength of other mechanisms to arrest fractures potentially. 
From the individual analysis performed herein, we can already 
demonstrate that mechanisms like stress barriers are very 
efficient in arresting buoyant hydraulic fractures. If they are 

Fig. 13   Numerical evaluation of the limits for immediate break-
through  (35) and indefinite containment  (36) of the “weak” case of 
Table  1 for a given stress barrier S at a distance d. a Evolution of 

fracture height. Simulations are done for a S = 5.12 , 4.42, 4.09, 3.28, 
and 1.64 (red–green–gray). b Evolution of the penetration depth for 
the same simulations. (Color figure online)
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combined with leak-off and maybe a size-dependent tough-
ness, the risk of industrially created hydraulic fractures trave-
ling over significant vertical distances as buoyant fractures is 
extremely low. This differs from the observation of magmatic 
intrusion, which can also be modeled as hydraulic fractures. 
One possible explanation is that, when considering labora-
tory values for the fracture toughness, magmatic intrusions 
are more inclined to be in viscosity-dominated regimes (Davis 
et al. 2023; Möri and Lecampion 2023). Based on the obser-
vations on the higher capacity of such fractures to penetrate 
through heterogeneities, such a difference might partly explain 
the discrepancy between the frequently observed uprising of 
magmatic dykes and the fact that no records of industrial 
hydraulic fractures reaching the surface are known to date. It 
is, however, noteworthy that the actual value of the fracture 
toughness for large-scale magmatic intrusions is a big debate 
(see e.g., Heimpel and Olson (1994); Rivalta et al. (2015) 
and references therein). Furthermore, such fractures can be 
considered as having no leak-off thanks to the high fracturing 
fluid viscosity.

6 � Conclusions

We have studied the effect of increases in Mode I fracture 
toughness and stress barriers on fully developed buoyant 
hydraulic fractures. We note that our study does not con-
sider any change in the elastic properties of the formation. 
We used the 3D planar hydraulic fracture solver PyFrac (Zia 
and Lecampion 2020) to validate scaling arguments and 
considered each mechanism separately. We distinguished 
between three possible interactions. Immediate break-
through: The fracture does not significantly slow down 
at the location of the change in property/stress nor spread 
laterally along the interface of the change to a significant 
extent. Transient containment: The fracture stops (slows 
down significantly) its buoyant growth and spreads along 
the interface of the property/stress change before finally 
breaking through into the subsequent formation. Indefinite 
containment: The fracture stops its buoyant growth entirely 
and becomes arrested below (around) the location of the 
change in property/stress.

Our study shows that the derived simplified 2D develop-
ment to estimate the necessary toughness jump for immedi-
ate breakthrough often overestimates the values observed in 
numerical evaluations. The approximate approach is based 

on reducing the planar 3D analysis to a 2D semi-infinite 
buoyant hydraulic fracture just before the contact with the 
interface of property changes. Despite the good agreement 
in the cross-sectional opening profile (see Fig. 7), the predic-
tion for immediate breakthrough is off by nearly a factor of 
two in some cases (see Fig. 10a). We interpret this to be 
intrinsically linked to the 3D effects at play in this configura-
tion. Our second development considered that the lateral 
spreading along the interface of fracture toughness changes 
can be approximated as a constant-height fracture and 
showed, in most cases studied herein, good agreement with 
the full 3D planar simulations (see Fig. 10b). As a result, it 
is possible to predict the necessary toughness jump for an 
indefinite containment as KIc-2∕KIc-1 > M

3∕22

�k
B
5∕22

ks
 (33). On 

the other hand, the timing of the predicted breakthrough, in 
the case of a transient containment, shows similar errors to 
the estimation given for immediate breakthrough (see 
Fig. 10c). The reason is that the timing depends much more 
on the injection history into the constant-height fracture than 
the breakthrough itself (see similar observations in Möri and 
Lecampion (2021, 2023)). To get a better estimation of this 
phenomenon, more advanced considerations on the lateral 
spreading would be necessary.

In the case of a stress barrier, the observations from our 
numerical simulations compared to scaling developments to 
predict the corresponding limits are similar. Like in the case 
of a toughness jump, the 2D simplification fails, whereas the 
constant-height approximation provides an accurate estimate 
of the limiting value necessary for indefinite containment 

𝛥𝜎∕
(
K

2∕3

Ic
𝛥𝛾1∕3

)
>
(
M�kB

5∕3

ks
− 1

)1∕11

 (36). Again, a refine-
ment of the theoretical considerations would be possible, but 
the first-order effect is very well captured.

Our numerical evaluation also shows that the necessary 
toughness changes to arrest buoyant hydraulic fractures are 
usually higher than what is commonly observed in nature. 
On the other hand, stress barriers on the order of 1 MPa are 
most often sufficient to arrest buoyant hydraulic fractures. 
Such small values for stress variations are at the lower end 
of positive stress jumps observed in industrially stimu-
lated reservoirs. In conclusion, they are likely one of the 
reasons why buoyant hydraulic fractures are not observed 
in industrial applications. Finally, combining these arrest 
mechanisms with others, like fluid leak-off, changes in the 
mechanical properties, a change of buoyancy, and more, 
explains why anthropogenic hydraulic fractures do not 

Table 2   Dimensionless tip-
toughness and head length as 
a function of the dominating 
regime of the buoyant hydraulic 
fracture

Dominating regime K̂ K̂[V] M̂ M̂stabilized M̂[V]

�∗ M
−1∕4

k̂
D

3∕4
B
−5∕4

ks
D

3∕40
M

−9∕40

k̂
M

−3∕20

k̂
D

3∕4
B
−15∕16

ks

�
head

∗
∕�2D

b M
−1∕6

k̂
D

1∕2
B
−5∕6

ks
1 1 1
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propagate over significant vertical distances upon cessa-
tion of the injection.

Appendix 1. Dimensionless Tip‑Toughness 
in Various Regimes

In Sect. 3.1, we have shown how the limit of immediate 
breakthrough can be related to the propagation of a 2D plane 
strain steadily moving semi-infinite hydraulic fracture. This 
type of fracture has been shown to depend on a dimension-
less toughness given by Eq. (16) (Roper and Lister 2005, 
2007), which can be related to the dimensionless num-
bers (7)–(9) as a function of the propagation regime of the 
buoyant hydraulic fracture. We present the corresponding 
tip-toughnesses in all regimes in Table 2 (see as an exam-
ple (19)). We also define the dimensionless head length in 
the 2D semi-infinite scaling �head

∗
∕�2D

b
 (15)

Appendix 2. Buoyant PKN‑Like 
Viscosity‑Dominated Scaling

Weertman (1971) solves for the possible propagation of a finite 
length, 2D, plane strain loaded by combining a constant pres-
sure and a linear pressure gradient. The solution is based on 
fixing the maximum stress intensity factor at one end to the 

Mode I fracture toughness and the minimum stress intensity 
factor to zero. In this way, the fracture could propagate at the 
maximum stress-intensity factor because it would close where 
the minimum stress-intensity factor is. For the case presented 
herein, we consider a 2D cross-section of the buoyant fracture 
spreading along the interface. We assume that the PKN-like 
(Perkins and Kern 1961; Nordgren 1972) does not penetrate 
the layer with the changed property. In the context of a change 
in Mode I fracture toughness, we have to slightly adapt the 
approach of Weertman (1971) as we do not know the value of 
the maximum-stress intensity factor (it is somewhere between 
KIc-1 and KIc-2 ). Setting the minimum stress intensity factor to 
zero relates the fracture half height h to the average pressure 
p∗ and the gradient ��

we assume that the buoyancy �� gives the linear pressure 
gradient. We can then obtain the average opening in the 
cross-section by elastic superposition and integration as

from which we can derive the lateral flow along the interface.

(37)min
�
KIc

�
=
√
�h

�
p∗(x) −

1

2
��h

�
→ h =

2p∗(x)

��
,

(38)w = 2�
p∗(x)

2

E���
,

Table 3   Scales of the laterally 
spreading buoyant PKN fracture
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Table 4   Transition scales of buoyant PKN-like fractures in the continuous injection and finite volume scale
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Following now the approach of Dontsov (2022), we estab-
lish the lateral volume balance of the flow in a semi-infinite 
framework to get

If we solve Eq. (40) under the boundary condition that pres-
sure at the tip is zero, we can obtain the pressure in function 
of the coordinate x (dropping pre-factors)

Replacing the coordinate x with a scaled coordi-
nate � = x∕�(t)PKN−∗ and introduce the substitution of 
x = (1 − �)f (�) . After this substitution we replace the defi-
nition of p∗(x) (41) in Eqs. (37) and (38) to solve the volume 
balance

where we have dropped all pre-factors and do not explicitly 
solve for the function f (�) . Trough back substitution into 
Eqs. (37), (38), and (41), we obtain the scales (30) to (27).

Finally, we can obtain the maximum stress-intensity fac-
tor in the PKN fracture as

from which we can derive the breakthrough time given in 
Eq. (32).

We present all scales of the lateral PKN scaling and asso-
ciated transition times in Tables 3 and 4.
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