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ABSTRACT

Through the use of the piecewise-linearity condition of the total energy, we correct the self-interaction for the study of polarons by con-
structing nonempirical functionals at the semilocal level of theory. We consider two functionals, the γDFT and μDFT functionals, both of
which are based on the addition of a weak local potential to the semilocal Hamiltonian to enforce the piecewise-linearity condition.
We show that the resulting polaron properties are in good agreement with reference hybrid functional calculations. This supports the use of
semilocal functionals for calculating polaron properties.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0197658

I. INTRODUCTION

The electron self-interaction is a spurious interaction that arises
in density functional theory (DFT) due to inherent approximations
in the exchange-correlation functional. For a many-electron system,
two descriptions of the self-interaction can be distinguished. In an
orbital-dependent formulation, the one-body self-interaction results
from the self-terms of the Coulomb interaction and is found to
vanish in Hartree-Fock theory, where the Hartree and exchange self-
terms exactly compensate. The many-body self-interaction corre-
sponds to the deviation of the energy functional from the piecewise-
linearity condition upon electron addition.1–5 The piecewise linearity
is a property of the exact functional, as first emphasized by Perdew
et al.1 and by Yang et al.,4 with two complementary interpretations
based on ensemble states and on replicas, respectively. Standard
energy functionals deviate from the piecewise linearity, lacking deriv-
ative discontinuities at integer electron occupations.1,6 Suppressing
the many-body self-interaction coincides with restoring the piecewise
linearity of the total energy and thus with achieving derivative dis-
continuities of the energy at integer occupations.1,6

The piecewise-linearity condition holds implications for
systems involving integer number of electrons. For instance, in the
hydrogen cation system, a piecewise-linear functional yields equi-
librium bond length and dissociation energy closer to experiment
compared to standard semilocal functionals.2 Another significant
aspect is the ability of a functional to localize charges, which is
often not achieved by standard semilocal functionals. This is due to
the electron self-interaction, which causes charge delocalization. A
prototypical example of charge delocalization is represented by
polarons, which are quasiparticles consisting of a localized charge
coupled with self-induced lattice distortions.7 The critical role of
the self-interaction in determining the charge localization of polar-
onic states has led to extensive studies in the literature.8–14 In semi-
conductors or insulators, the formation of a polaron results in an
energy level within the bandgap. In particular, an electron polaron
is associated with an occupied energy level below the conduction
band, while a hole polaron is associated with an unoccupied energy
level above the valence band. The electron self-interaction reduces
the energy separation between the polaron state and the respective

Journal of
Applied Physics

TUTORIAL pubs.aip.org/aip/jap

J. Appl. Phys. 135, 131101 (2024); doi: 10.1063/5.0197658 135, 131101-1

© Author(s) 2024

 07 June 2024 08:38:31

https://doi.org/10.1063/5.0197658
https://doi.org/10.1063/5.0197658
https://pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0197658
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0197658&domain=pdf&date_stamp=2024-04-04
https://orcid.org/0000-0003-3971-5911
https://orcid.org/0000-0002-9142-2799
mailto:stefanofalletta@g.harvard.edu
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/5.0197658
https://pubs.aip.org/aip/jap


delocalized band edge, thus favoring charge delocalization. When
the energy cost of polaronic lattice distortions overcomes the
energy gain from charge localization, the polaron state destabilizes.
Consequently, the polaron charge delocalizes and the polaronic dis-
tortions vanish. These aspects are crucial when modeling small
polarons, which are localized over short length scales, comparable
to the extent of lattice bonds, and are associated with deep energy
levels in the bandgap. Suppressing the self-interaction, thus,
becomes essential in polaron calculations.

Various approaches have been proposed to address the self-
interaction in DFT. In 1981, Perdew and Zunger introduced a
method to suppress the self-interaction for each electronic state.15

Subsequently, approaches that specifically address the self-
interaction of excess charges were proposed.16,17 More recently, Sio
et al. introduced an ab initio formulation for polarons and derived
therefrom a self-interaction-corrected functional.11,12 However, it
remains unclear to which extent these approaches guarantee the
piecewise linearity of the energy functional. Meta-GGA functionals
partially tackle the absence of the derivative discountinuity but may
struggle with localizing polarons.18 Hybrid functionals, which
admix a fraction of Fock exchange to the semilocal exchange, can
be tuned to suppress the self-interaction leading to polaron
localization.6,8,10,19–35 However, the computational cost of hybrid
functional calculations significantly exceeds that of semilocal calcu-
lations, making them impractical for large systems.
Hubbard-corrected DFT+U functionals can suppress the many-
body self-interaction by introducing on-site Coulomb repulsion for
the occupation of specific orbitals.9,23,24,36–46 In the context of
polarons,9,23,24,46 these orbitals are selected in consideration of their
contribution to the polaron state. In another method, the
piecewise-linearity condition is enforced on each electron state.47,48

Among previous approaches to address the self-interaction at the
semilocal level, it is also worth mentioning a scheme relying on the
electron chemical potential as slope of the total energy.27

The γDFT semilocal functional49,50 corrects for the self-
interaction error through the addition of a weak local potential
solely dependent on the polaron density rather than on specific
orbitals. The polaron properties obtained with hybrid functionals,
DFT+U , and γDFT have been extensively compared.46,49–51

Notably, it has been observed that enforcing the piecewise-linearity
condition offers the advantage of yielding ground state and trans-
port properties of polarons that remain robust irrespective of the
adopted functional.46,49–51 Moreover, this robustness becomes
pivotal for the reliability of theoretical predictions, particularly in
the case of polarons, which often lack experimental data.

When addressing the self-interaction, it is important to distin-
guish between one-electron and many-electron systems. For a
one-electron system, the exact functional is free from one-electron
self-interaction.6,15 For a many-electron system, one-body and
many-body forms of self-interaction can be defined. When using
hybrid functionals or semilocal functionals, the description of the
many-body self-interaction is in competition with the description
of the one-body self-interaction.49 To illustrate this, we consider
the global hybrid functional PBE0(α),52 which admixes a fraction α
of Fock exchange with a fraction 1� α of Perdew–Burke–
Ernzerhof (PBE) exchange.53 For α ¼ 1, the PBE0(α) functional
reduces to a Hartree–Fock-like functional, thus suppressing the

one-body self-interaction. At variance, for a fraction α ¼ αk of
Fock exchange, the total energy becomes piecewise linear, thereby
suppressing the many-body self-interaction.49,50 Within this
context, it has been shown that for a many-electron system, one
should correct for the many-body self-interaction, as this allows
one to include electron screening effects, which are not accounted
for when correcting for the one-body self-interaction.49,50

Specifically, for the PBE0(α) hybrid functional, the many-body self-
interaction energy correction can be expressed as the one-body
self-interaction energy correction divided by the high-frequency
dielectric constant.49,50

In this work, we construct nonempirical semilocal functionals
to model polarons by suppressing the many-body self-interaction
in the polaron state. We here introduce the μDFT functional,
which is conceptually similar to the γDFT functional developed
previously.49,50 In both functionals, a weak local potential, which is
linearly dependent on the polaron density, is added to the semilocal
Hamiltonian. In the γDFT functional, the localizing potential is
constructed as a derivative of the exchange-correlation functional
with respect to the polaron charge, modulated by a strength γ. In
the μDFT functional, the localizing potential is taken to be propor-
tional to the polaron density modulated by a strength μ. The
parameters γ and μ are nonempirically fixed by enforcing the
piecewise-linearity condition of the total energy. This is achieved
by imposing the condition of constant polaron level upon charge
addition, after the inclusion of proper finite-size corrections in the
energetics. We show that both functionals yield polaron properties
in agreement with reference hybrid functional calculations, despite
their semilocal functional form. This supports the use of nonempir-
ical semilocal functionals to study polarons in DFT calculations.

II. PIECEWISE-LINEAR FUNCTIONALS

We illustrate our schemes for localizing polarons at the semi-
local level of theory. The fundamental concept behind these
schemes is that polaron localization can be achieved by introducing
a weak local potential to the semilocal Hamiltonian, promoting
localization over delocalization. This stems from the observation
that localized and delocalized states are often in close energetic
competition.54,55

The notion that a localized potential could effectively address
the self-interaction by enforcing the piecewise-linearity condition
has previously been employed in the DFT+U scheme45 and in the
approach proposed by Lany and Zunger.9 In both these schemes,
the U correction is applied to specific atomic orbitals. In contrast,
the γDFT and μDFT functionals are based on adding to the semilo-
cal Hamiltonian a weak local potential that self-consistently origi-
nates from the polaron density and affects all states of the system,
rather than being limited to selected atomic orbitals.

In the γDFT functional,49,50 the weak local potential is essen-
tially the first derivative of the exchange-correlation potential with
respect to charge addition, modulated by a strength γ. This results
in the following expression:

Hγ
σ ¼ H0

σ þ qγ
@Vxcσ

@q
, (1)

where H0
σ is the PBE Hamiltonian,53 Vxσ is the PBE exchange-
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correlation potential, q is the polaron charge, and σ is the spin. The
total energy corresponding to the Hamiltonian in Eq. (1) is51

Eγ ¼ E0 þ q2

2
γ
X
σ

ð
dr

@Vxcσ

@q
dnγσ(r)
dq

, (2)

where E0 is the semilocal PBE energy and nγσ is the total electron
density in the spin channel σ. In Eqs. (1) and (2), the derivative of
the exchange-correlation potential is calculated by taking the finite
difference of two exchange-correlation potentials, which are con-
structed by including or excluding the polaron density in the total
density at fixed valence wave functions.

Inspired by the same idea, we introduce an alternative semilo-
cal functional, denoted μDFT, in which the added potential to the
PBE Hamiltonian depends directly on the polaron density, modu-
lated by a strength μ, namely,

Hμ
σ ¼ H0

σ þ qμnμpδσ,σp , (3)

where nμp is the polaron density, σp is the spin channel containing
the polaron, and δσ;σp is the Kronecker delta. The parameter μ
carries dimensions to ensure that the added term in Eq. (3) is a
potential. The polaron density is obtained by taking the square
modulus of the polaron wave function, which corresponds to the
highest-occupied state in the case of electron polarons and to the
lowest unoccupied state in the case of hole polarons. The total
energy corresponding to the Hamiltonian in Eq. (3) is

Eμ ¼ E0 þ q2

2
μ

ð
dr nμp(r)

dnμσp
(r)

dq
: (4)

The γDFT and μDFT functionals share several properties.
First, electron and hole polarons are treated analogously since the
localizing potential acts on all states in the same way. Moreover, for
q ¼ 0, the localizing potential vanishes and the electronic structure
coincides with that of a regular PBE calculation. In Eqs. (2)
and (4), the response of the total electron density upon the addi-
tion of the polaron charge is calculated by finite differences, which
requires performing two successive calculations. The γDFT and
μDFT schemes also have several practical advantages. First, the
same Hamiltonian is applied to all the electronic orbitals of the
system, which ensures that the orthogonality of the wave functions
can be achieved through the use of standard diagonalization algo-
rithms. Second, the localized nature of the additional potential
facilitates a smooth convergence of the Kohn–Sham equations.
Third, it is rather straightforward to implement a local potential in
existing DFT codes.

We now discuss how to enforce the piecewise-linearity condi-
tion when using γDFT and μDFT functionals. Given the similarity
of these functionals, we use ξ to commonly denote the parameters
γ and μ. The piecewise-linearity condition can be enforced by
setting ξ ¼ ξk such that the second derivative of the total energy
with respect to q vanishes. Through Janak’s theorem,56 this corre-
sponds to a polaron energy level ϵξp being constant with respect to

fractional electron occupation, namely,

d2

dq2
Eξ(q)

����
ξ¼ξk

Janak¼ � d
dq

ϵξp(q)

����
ξ¼ξk

¼ 0: (5)

Under the assumption of the total energy being quadratic with
respect to the polaron charge,50 the condition in Eq. (5) is
achieved when the neutral and charged polaron levels coincide,
namely, ϵξkp (q) ¼ ϵξkp (0). We here illustrate the workflow to find ξk
in the case of an electron polaron, which corresponds to the addi-
tion of an electron (q ¼ �1). The case of a hole polaron is analo-
gous and corresponds to the removal of an electron (q ¼ þ1).
First, one considers an initial structure in which the symmetry of
the lattice is broken to accomodate the polaron lattice distortions.
This is a crucial step since localized and delocalized polaronic
states can be found in close energetic competition. For instance,
for an electron polaron, the energy level of the extra electron coin-
cides with the minimum of the conduction band if the symmetry
of the lattice is not broken. In this case, the energy gain due to
electron localization vanishes, and a structural relaxation would
yield the delocalized state. The distortion can be imagined on the
basis of how the lattice would respond to polaron charge localiza-
tion at a given site. Once the structure is distorted, one makes an
initial guess of the parameter ξ to localize the polaron. For the
chosen value of the parameter ξ, one performs structural and elec-
tronic relaxations. We note that the evaluation of the energy in
Eq. (2) is not required in the search of the polaronic structure.
Hence, the costs of γDFT and μDFT structural relaxations essen-
tially coincide with that of PBE calculations. For a sufficiently large
value of ξ, the relaxed structure is characterized by polaronic struc-
tural distortions, which we denote Rξ

�1. Given the structure Rξ
�1,

one evaluates the extent by which the piecewise-linearity condition
is satisfied. The polaron level ϵξp(�1) is found as the Kohn–Sham
level of the last occupied state in a calculation with q ¼ �1 and
structure Rξ

�1. The polaron level ϵξp(0) is found as the Kohn–Sham
level of the first unoccupied state in a calculation with q ¼ 0 and
structure Rξ

�1. We note that the neutral energy level ϵξp(0) is equal
to the PBE level ϵ0p(0) because of the prefactor q in Eqs. (1) and (3).
Then, one repeats the same procedure for another value of ξ that
leads to polaronic lattice distortions. Assuming the linearity of
polaron levels with ξ,50 one can find an initial estimate of ξk, such
that ϵξkp (�1) ¼ ϵξkp (0). The structure is then optimized for such
value of ξk, and the procedure is repeated until ξk converges.

In the search of ξk, the polaron level ϵξp(q) could be close to
that of a delocalized band state. In particular, the electron polaron
level could overlap with the valence band levels. Similarly, the hole
polaron level could overlap with the conduction band levels. This
issue can be overcome through the use of a self-consistent scissor
operator,51 which is added to the Hamiltonian to shift the energy
levels of the band resonating with the polaron state. Such a scissor
operator can be constructed as a sum of projectors defined with the
wave functions ψξ

iσ obtained during the self-consistent optimization
of the Kohn–Sham equations, namely,

Sσ ¼ Δ
X
i[Mξ

σ

jψξ
iσihψξ

iσ j, (6)

Journal of
Applied Physics

TUTORIAL pubs.aip.org/aip/jap

J. Appl. Phys. 135, 131101 (2024); doi: 10.1063/5.0197658 135, 131101-3

© Author(s) 2024

 07 June 2024 08:38:31

https://pubs.aip.org/aip/jap


where Δ is the energy shift and Mξ
σ is the manifold of band states

affected by the scissor operator, namely, the valence band manifold
for electron polarons and the conduction band manifold for hole
polarons. The inclusion of the scissor operator Sσ in the
Hamiltonian shifts the total energy by a contribution NΔ, where N
is the number of valence electrons.

The polaron stability can be measured through the concept of
formation energy. This is defined as57

Eξ
f (q) ¼ Eξ(q)� Eξ

ref (0)þ qϵξb, (7)

where Eξ(q) is the total energy of the polaron system, Eξ
ref (0) is the

total energy of the neutral undistorted system, and ϵξb is the band
level corresponding to the delocalized state. For electron polarons,
ϵξb is the energy level of the conduction band minimum, while for
hole polarons, ϵξb is the energy level of the valence band maximum.
When the piecewise linearity condition holds [Eq. (5)], the total
energy can be rewritten as50

Eξk (q) ¼ E0(0)� qϵξkp , (8)

which leads to the following expression for the polaron formation
energy:50

Eξk
f (q) ¼ q(ϵξkb � ϵξkp )þ Eξk (0)� Eξk

ref (0)
h i

: (9)

For the formation energy in Eq. (9), the calculation of the total
energies in Eqs. (2) and (4) is not required, making the computa-
tional cost of γDFT and μDFT calculations effectively equivalent to
that of a PBE calculation. Additionally, we remark that the expres-
sion in Eq. (9) carries a transparent physical meaning. Indeed,
q(ϵξkb � ϵξkp ) is the energy of a vertical excitation from the polaron
state to the delocalized state, while Eξk (0)� Eξk

ref (0) is the cost of
the involved lattice distortions.

The use of supercells for modeling polarons implies spurious
finite-size effects in the energetics. Indeed, the electrostatic poten-
tial generated by a polaronic defect interacts with that of periodic
replicas and with the background charge in the system, thereby
affecting the total energy and the polaron energy levels.58 These
effects are present for both the charged and neutral polaronic
states.59 To overcome these issues, finite-size electrostatic correc-
tions need to be applied.57–60 This can be achieved using the
scheme introduced by Falletta, Wiktor, and Pasquarello,59 which
extends the finite-size correction scheme of Freysoldt, Neugebauer,
and Van de Walle60 to the case of defects involving built-in lattice
distortions. The correction for the total energy of a calculation with
polaronic charge q0 is59

Ecor(q
0, Rq) ¼ Em(q, ε0)� Em(qþ qpol, ε1)

þ Em(q
0 þ qpol, ε1), (10)

where Em(q, ε) is the correction to the total energy of a system of
charge q and screening described by a dielectric constant ε,58,60 ε1
is the high-frequency dielectric constant, and ε0 is the static dielec-
tric constant, and qpol ¼ �q(1� ε1=ε0) is the ionic polarization
charge associated to the polaron lattice distortions. The charge q is
set to �1 for electron polarons and to þ1 for hole polarons. The
charge q0 is set to 0 for the neutral polaronic state, to �1 for the

electron polaron state, and to þ1 for the hole polaron state.
The correction for the polaron level is obtained through Janak’s
theorem and is given by59

ϵcor(q
0, Rq) ¼ �2

Em(q0 þ qpol, ε1)
q0 þ qpol

: (11)

The code for performing these corrections is freely available.61,62

Without the inclusion of such finite-size corrections, the polaron
formation energies would be noticeably underestimated.46,50 For
simplicity, we here include these corrections in the calculated ener-
getics, without explicitly showing them in the equations.

III. RESULTS

The calculations are performed with the QUANTUM ESPRESSO

suite.63 The implementations of the γDFT functional and of the
self-consistent scissor operator are available in version 7.2, while
the implementation of the μDFT functional will be made available
for incorporation in the next official release of the code. The core–
valence interactions are described by normconserving pseudopo-
tentials.64 We consider the electron polaron in BiVO4 and the hole
polaron in MgO. We model BiVO4 with a 96-atom orthorhombic
supercell (a ¼ 10:34 Å, b ¼ 10:34 Å, c ¼ 11:79 Å) and MgO with a
64-atom cubic supercell (a ¼ 8:45 Å). The energy cutoff is set to
100 Ry in all calculations. The lattice parameters are determined
at the PBE level of theory for the pristine system. The Brillouin
zone is sampled at the Γ point. Convergence tests involving larger
simulations cells and denser k-point samplings have shown that
the polaron formation energies obtained with the present compu-
tational setup are accurate within 0.06 eV.50 Through the applica-
tion of finite electric fields65 at the PBE level of theory, we

TABLE I. The parameters γk, μk, and αk that enforce the piecewise-linearity condi-
tion on the polaron state for the γDFT, μDFT, and PBE0(α) functionals, respectively.
The values of μk are given in Ry⋅bohr−3.

System γk μk αk

BiVO4 1.80 2.85 0.14
MgO 1.96 10.90 0.34

FIG. 1. Polaron energy levels ϵμp (q) and ϵμp (0) for the structure Rμk
q as a func-

tion of μ for (a) the electron polaron in BiVO4 and (b) the hole polaron in MgO.
The polaron levels are identified by their respective polaron charge. The value
μk is found such that ϵ

μk
p (q) ¼ ϵμkp (0). The charge q is �1 for electron polarons

and þ1 for hole polarons.
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determine the high-frequency and static dielectric constants,
which are used for the finite-size corrections. For BiVO4, our cal-
culations give ε1 ¼ 5:83 and ε0 ¼ 64:95. For MgO, we obtain
ε1 ¼ 2:77 and ε0 ¼ 10:73. In the following, we perform polaron
calculations with the γDFT and μDFT semilocal functionals and
compare them with reference PBE0(α) hybrid functional
calculations.49,50

First, we determine the parameters of the functionals such
that the piecewise-linearity condition in Eq. (5) is satisfied. With
this aim, we initialize the structure with polaronic distortions that
break the symmetry of the lattice. For the electron polaron in
BiVO4, we elongate the V–O bonds around a V atom. For the
hole polaron in MgO, we elongate the O–Mg bonds around an O
atom. Next, we perform electronic and structural relaxations to
find the parameter ξk and the corresponding structure Rξk

q , as
described in Sec. II. The parameters found with this procedure
are given in Table I. As an example, we show in Fig. 1 the
charged and neutral polaron levels obtained with the μDFT
functional at the geometry Rξk

q . We remark that the neutral level
ϵμp(0) is essentially independent of μ since the Hamiltonian Hμ

σ(0)
depends on μ only through the structure Rμ

q , which varies only
marginally with μ.

Having selected the parameter of the functional in a nonem-
pirical way to suppress the many-body self-interaction, we now
compare the electronic and structural properties of the obtained
polarons. In particular, we consider the polaron densities obtained
with γDFT, μDFT, and PBE0(αk). In Fig. 2, we show these densities
integrated over the xy planes, namely,

np(z) ¼
ð
dxdy np(x, y, z) (12)

and find an excellent agreement among the three considered
piecewise-linear functionals. We then consider the polaronic

lattice distortions and find that the polaronic bonds obtained
with γDFT and μDFT essentially concide and are in very good
agreement with PBE0(αk) results, with deviations of at most
0.02 Å (cf. Table II).

We verify that the localizing potential in μDFT is indeed
weak. For this purpose, we compare this potential with the Hartree
potential generated by the polaron charge density. In Fig. 3, we
show these potentials averaged over xy planes as a function of the z
coordinate, i.e.,

V(z) ¼ 1
Axy

ð
dxdy V(x, y, z), (13)

where V is the potential, and Axy is the area of xy planes in the
supercell. We see that the added localizing potential in μDFT is
weak and carries an opposite sign with respect to the electrostatic
potential, thus favoring polaron localization. The fact that the
added potential in μDFT is more localized than the Hartree poten-
tial generated by the polaron density facilitates the self-consistent
solution of the Kohn–Sham equations.

Finally, we compare the formation energies obtained with the
piecewise-linear functionals using the expression in Eq. (9). We
find that the formation energies obtained with γDFT and μDFT are
very close, with deviations of at most 0.03 eV (cf. Table III). A
good agreement is also found with the PBE0(αk) results. This
further corroborates the finding that upon enforcing the piecewise-
linearity condition the polaron properties turn out to weakly
depend on the adopted functional.46,49–51 This is particularly rele-
vant in the case of the hole polaron in MgO, for which the experi-
mental characterization remains inconclusive66,67 and the
theoretical description contentious.8,10,50,59,68

FIG. 2. Polaron densities for (a) the electron polaron in BiVO4 and (b) the hole
polaron in MgO as obtained with the piecewise-linear functionals γDFT, μDFT,
and PBE0(αk). The polaron densities are integrated over xy-planes.

TABLE II. V–O and Mg–O bond lengths (in Å) of the distorted polaronic structures
as obtained with the piecewise-linear functionals γDFT, μDFT, and PBE0(αk) for
electron and hole polarons in BiVO4 and MgO, respectively.

System γDFT μDFT PBE0 (αk)

BiVO4 1.82 1.82 1.80
MgO 2.23 2.23 2.20

FIG. 3. Electrostatic potential Velec ¼ VH[qn
μk
p ] and μDFT localizing potential

Vμk
σp

¼ qμkn
μk
p averaged over xy-planes for (a) the electron polaron in BiVO4

and (b) the hole polaron in MgO. The charge q is �1 for electron polarons and
þ1 for hole polarons.

TABLE III. Polaron formation energies (in eV) obtained with the piecewise-linear
functionals γDFT, μDFT, and PBE0(αk). A negative formation energy indicates
polaron stability.

γDFT μDFT PBE0(αk)

BiVO4 −0.44 −0.44 −0.63
MgO −0.50 −0.47 −0.53
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IV. CONCLUSIONS

We investigate in this work the performance of suitably con-
structed semilocal density functionals in addressing polaron prop-
erties. As case studies, we consider both electron and hole
polarons, for which our approach works in an equivalent manner.
The two considered semilocal functionals, denoted γDFT and
μDFT, depend on a single parameter, which we fix in a nonempiri-
cal fashion by enforcing the piecewise-linearity condition and thus
suppressing the many-body self-interaction. Both functionals are
successful in achieving polaron localization. We find that the
achieved results are in excellent agreement with those of reference
hybrid-functional calculations. The present analysis encompasses
both electronic and structural polaron properties, such as polaron
densities, polaronic bond distortions, and polaron formation ener-
gies. This corroborates the finding that these polaron properties are
robust and that they only weakly depend on the functional
adopted, provided the piecewise-linearity condition is satisfied.
Overall, our study shows that polaron properties can be accurately
described through the use of semilocal functionals, without resort-
ing to computationally more expensive hybrid-functional
calculations.
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