
Journal of Scientific Computing (2024) 99:68
https://doi.org/10.1007/s10915-024-02525-1

Subspace Acceleration for a Sequence of Linear Systems and
Application to Plasma Simulation

Margherita Guido1,2 · Daniel Kressner1 · Paolo Ricci2

Received: 5 September 2023 / Revised: 14 March 2024 / Accepted: 24 March 2024 /
Published online: 23 April 2024
© The Author(s) 2024

Abstract
We present an acceleration method for sequences of large-scale linear systems, such as the
ones arising from the numerical solution of time-dependent partial differential equations
coupled with algebraic constraints. We discuss different approaches to leverage the subspace
containing the history of solutions computed at previous time steps in order to generate a good
initial guess for the iterative solver. In particular, we propose a novel combination of reduced-
order projection with randomized linear algebra techniques, which drastically reduces the
number of iterations needed for convergence. We analyze the accuracy of the initial guess
produced by the reduced-order projection when the coefficients of the linear system depend
analytically on time. Extending extrapolation results by Demanet and Townsend to a vector-
valued setting, we show that the accuracy improves rapidly as the size of the history increases,
a theoretical result confirmed by our numerical observations. In particular, we apply the
developed method to the simulation of plasma turbulence in the boundary of a fusion device,
showing that the time needed for solving the linear systems is significantly reduced.

Keywords Initial guess · Iterative solvers · Partial differential equations · Projection ·
Randomized linear algebra · Plasma simulation · Tokamak

B Margherita Guido
margherita.guido@epfl.ch

Daniel Kressner
daniel.kressner@epfl.ch

Paolo Ricci
paolo.ricci@epfl.ch

1 Institute of Mathematics, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne,
Switzerland

2 Swiss Plasma Center (SPC), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne,
Switzerland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-024-02525-1&domain=pdf
http://orcid.org/0000-0002-2923-0374

68 Page 2 of 18 Journal of Scientific Computing (2024) 99 :68

1 Introduction

The numerical solution of time-dependent partial differential equations (PDEs) often leads
to sequences of linear systems of the form

A(ti)x(ti) = b(ti) i = 0, 1, 2 · · · , (1)

where t0 < t1 < t2 < · · · is a discretization of time t , and both the system matrix A(ti) ∈
R
n×n and the right-hand side b(ti) ∈ R

n depend on time. Typically, the systems (1) are
available only consecutively. Such sequences of linear systems can arise in a number of
applications, including implicit time stepping schemes for the solution of PDEs or iterative
solutions of non-linear equations and optimization problems. A relevant example is given by
time-dependent PDEs solved in presence of algebraic constraints. In this case, even when
an explicit time stepping method is used to evolve the nonlinear PDE, the discretization
of the algebraic constraints leads to linear systems that need to be solved at every (sub-
)timestep. This is the case of the simulation of turbulent plasma dynamics [10], where a
linear constraint (Maxwell equations) is imposed upon the plasma dynamics described by a
set of non linear fluid or kinetics equations. The linear systems resulting from the discretized
algebraic constraints may feature millions of degrees of freedom, hence their solution is often
computationally very expensive.

One usually expects that the linear system (1) changes slowly in subsequent time steps.
This work is focused on exploiting this property to accelerate iterative solvers, such as
CG [17] for symmetric positive definite matrices and GMRES [24] for general matrices.
An obvious way to do so is to supply the iterative solver for the timestep ti+1 with the
solution of (1) at timestep ti , as initial guess. As a more advanced technique, in the context
of Krylov subspace methods, subspace recycling methods [26] such as GCROT [7] and
GMRES-DR [21] have been proposed. Such methods have been developed in the case of
a single linear system, to enrich the information when restarting the iterative solver. The
idea behind is often to accelerate the convergence by suppressing parts of the spectrum
of the matrix, including the corresponding approximate invariant subspace in the Krylov
minimization subspace. GCROT and GMRES-DR have then been adapted to sequences of
linear systems in [22], recycling selected subspaces from one system to the next. For this
class of methods to be efficient, it is necessary that the sequence of matrices undergoes
local changes only, that is, the difference A(ti+1) − A(ti) is computationally cheap to apply.
For example, one can expect this difference matrix to be sparse when time dependence is
restricted to a small part of the computational domain, e.g., through time-dependent boundary
conditions. We refer to [26] for a more complete survey of subspace recycling methods
and their applications. In [5], subspace recycling was combined with goal-oriented POD
(Proper Orthogonal Decomposition) in order to limit the size of the subspaces involved in
an augmented CG approach. Simplifications occur when the matrices A(ti) are actually a
fixed matrix A shifted by different scalar multiples of the identity matrix, because Krylov
subspaces are invariant under such shifts. In the context of subspace recycling, this property
has been exploited in, e.g., [27], and in [25] it is shown how a smoothly varying right-hand
side can be incorporated.

When A(ti) and b(ti) in (1) are samples of smooth matrix/vector-valued functions,
one expects that the subspace of the previously computed solutions contains a very good
approximation of the current one. This can be exploited to construct a better initial guess,
either explicitly through (polynomial) extrapolation, or implicitly through projection tech-
niques. Examples of the extrapolation approach include polynomial POD extrapolation [14],

123

Journal of Scientific Computing (2024) 99 :68 Page 3 of 18 68

weighted group extrapolationmethods [30] and a stabilized, least-squares polynomial extrap-
olation method [1], for the case that only the right-hand side evolves in time. For the same
setting, projection techniques have been introduced by Fischer [11]. Following this first
work, several approaches have been developed to extract an initial guess from the solution
of a reduced-order model, constructed from projecting the problem to a low-dimensional
subspace spanned by previous solutions. In [28], such an approach is applied to fully implicit
discretizations of nonlinear evolution problems, while [20] applies the same idea to the so
called IMPES scheme used for simulating two-phase flows through heterogeneous porous
media.

In this paper, we develop a new projection technique for solving sequences of linear
systems that combines projection with randomized linear algebra techniques, leading to
considerably reduced cost.Moreover, a novel convergence analysis of the algorithm is carried
out to show its efficiency. This is also proved numerically by applying the algorithm to the
numerical simulation of turbulent plasma in the boundary of a fusion device.

The rest of this paper is organized as follows. In Sect. 2, we first discuss general subspace
acceleration techniques based on solving a projected linear system and then explain how
randomized techniques can be used to speed up existing approaches. In Sect. 3, a convergence
analysis of these subspace acceleration techniques is presented. In Sect. 4 we first discuss
numerical results for a test case to demonstrate the improvements that can be attained by
the new algorithm in a somewhat idealistic setting. In Sect. 5 our algorithm is applied to
large-scale turbulent simulation of plasma in a tokamak, showing a significant reduction of
computational time.

2 Algorithm

The algorithm proposed in this work for accelerating the solution of the sequence of linear
systems (1) uses randomized techniques to lower the cost of a POD-based strategy, such as
the one proposed in [20]. Recall that we aim at solving the linear systems A(ti)x(ti) = b(ti)
consecutively for i = 0, 1, · · · . We make no assumption on the symmetry of A(ti) ∈ R

n×n

and thus GMRES is an appropriate choice for solving each linear system. Supposing that, at
the i th timestep, M previous solutions are available, we arrange them into the history matrix

X = [
x(ti−M) | · · · | x(ti−1)

] ∈ R
n×M .

where the notation on the right-hand side indicates the concatenation of columns. Instead of
using the complete history, which may contain redundant information, one usually selects a
subspace S ⊂ span(X) of lower dimension m ≤ M . Then, the initial guess for the i th linear
system is obtained from choosing the element of S that minimizes the residual:

min
s∈S ‖A(ti)s − b(ti)‖2 = min

z∈Rm
‖A(ti)Qz − b(ti)‖2,

where the columns of Q ∈ R
n×m contain an orthonormal basis of S. We use ‖ · ‖2 to denote

the Euclidean norm for vectors and the spectral norm for matrices. The described approach is
summarized in Algorithm 1, which is a template that needs to be completed by an appropriate
choice of the subspace S, in Sects. 2.1 and 2.2.

If the complete history is used, S = span(X), then computing Q via a QR decomposition
[13], as required in Step 2, costs O(M2n) operations. In addition, setting up the linear least-
squares problem in Step 3 of Algorithm 1 requires M (sparse) matrix–vector products in
order to compute A(ti)Q. The standard approach for solving the linear least-squares problem

123

68 Page 4 of 18 Journal of Scientific Computing (2024) 99 :68

Algorithm 1 Solution of i th linear system A(ti)x(ti) = b(ti)
Require: History of M solutions

{
x(ti−M), · · · , x(ti−1)

}

1: X = [
x(ti−M) | · · · | x(ti−1)

]

2: Generate Q ← orthonormal basis for S ⊆ span(X), dim(S) = m ≤ M

3: Compute s� = argmin
z∈Rm

‖A(ti)Qz − b(ti)‖2 ∈ S
4: Solve A(ti)x(ti) = b(ti) using GMRES with initial guess s� ∈ S

proceeds through the QR decomposition of that matrix and costs another O(M3 + M2n)

operations. This strong dependence of the cost on M effectively forces a rather small choice
of M , neglecting relevant components of the solutions that could be contained in older
solutions only. In the following, we discuss two strategies to overcome this problem.

2.1 Proper Orthogonal Decomposition

An existing strategy [20] to arrive at a low-dimensional subspace S ⊂ span(X) uses a POD
approach [19] and computes the orthonormal basis Q forS through a truncatedSVD(Singular
Value Decomposition) of X ; see Algorithm 2. Note that only the first m left singular vectors
�1, · · · ,�m need to be computed in Step 2.

Algorithm 2Method 1 (POD) to generate basis Q = QPOD

Require: History of M solutions
{
x(ti−M), · · · , x(ti−1)

}

1: X = [
x(ti−M) | · · · | x(ti−1)

]

2: Compute SVD of X : [�, �, �] = svd(X)

3: QPOD = [�1| · · · |�m] ∈ R
n×m

Thanks to basic properties of the SVD, the basis QPOD enjoys the following optimality
property [29]:

‖(I − QPODQ
T
POD)X‖2F =

M∑

k=m+1

σ 2
k = min

Q∈Rn×n

QT Q=Im

‖(I − QQT)X‖2F , (2)

where ‖ · ‖F denotes the Frobenius norm and σ1 ≥ σ2 ≥ · · · ≥ σM ≥ 0 are the singular
values of X . In words, the choice QPOD minimizes the error of orthogonally projecting the
columns of X onto an m–dimensional subspace. The relation to the singular values of X
established in (2) also allows one to choose m adaptively, e.g., by choosing m such that most
of the variability in the history matrix X is captured.

At every time step, the history matrix X gets modified by removing its first column and
appending a new last column. The most straightforward implementation of Algorithm 2
would compute the SVD needed of Step 2 from scratch at every time step, leading to a
complexity of O(nM2) operations. In principle, SVD updating techniques, such as the ones
presented in [4] and [6], could be used to reduce this complexity to O(mn + m3) for every
time step. However, in the context of our application, there is no need to update a complete
SVD (in particular, the right singular vectors are not needed) and the randomized techniques
discussed in the next section seem to be preferable.

123

Journal of Scientific Computing (2024) 99 :68 Page 5 of 18 68

2.2 Randomized Range Finder

In this section, an alternative to the POD method (Algorithm 1) for generating the low-
dimensional subspace S ⊂ span(X) is presented, relying on randomized techniques. The
randomized SVD from [16] applied to the n×M history matrix X proceeds as follows. First,
we draw an M ×m Gaussian random matrix Z , that is, the entries of Z are independent and
identically distributed (i.i.d) standard normal variables. Then the so-called sketch

� = X Z = [
x(ti−M) | · · · | x(ti−1)

]
Z (3)

is computed, followed by a reduced QR decomposition � = QR. This only involves the
n × m matrix �, which for m 	 M is a significant advantage compared to Algorithm 2,
which requires the SVD of an n × M matrix. The described procedure is contained in lines
2–4 and 11 of Algorithm 3 below.

According to [16, Theorem 10.5], the expected value (with respect to Z) of the error
returned by the randomized SVD satisfies

E‖(I − QQT)X‖F ≤
(
1 + r

p − 1

)1/2(∑

k>r

σ 2
k

)1/2
, (4)

where we partitionm = r+ p for a small oversampling parameter p ≥ 2. Also, the tail bound
from [16, Theorem 10.7] implies that it is highly unlikely that the error is much larger than
the upper bound (4). Comparing (4) with the error (2), we see that the randomized method
is only a factor

√
2 worse than the optimal basis of roughly half the size produced by POD.

As we also see in our experiments of Sect. 4, this bound is quite pessimistic and usually the
randomized SVD performs nearly as good as POD using bases of the same size.

Algorithm 3Method 2 (Randomized Range Finder) to generate basis Q

Require: History of M solutions
{
x(ti−M), · · · , x(ti−1)

}
.

Optional: x(ti−M−1), matrices � and Z from previous time step (see (5))

1: if � is computed from scratch then

2: X = [
x(ti−M)| · · · |x(ti−1)

] ∈ R
n×M

3: Draw Gaussian random matrix Z = [z1| · · · |zM]T ∈ R
M×m

4: � = X Z ∈ R
n×m

5: else

6: �=� − x(ti−M−1)z1 � � is updated

7: zk = zk+1 k = 1, · · · , M − 1

8: Draw new Gaussian random vector zM ∈ R
m

9: �=� + x(ti−1)zMT � � is updated

10: end if

11: [Q, R] =reduced QR of �

Instead of performing the randomized SVD from scratch in every timestep, one can easily
exploit the fact that only a small part of the history matrix is modified. To see this, let us
consider the sketch from the previous timestep:

�prev = [
x(ti−M−1) | · · · | x(ti−2)

]
Zprev. (5)

123

68 Page 6 of 18 Journal of Scientific Computing (2024) 99 :68

Comparing with (3), we see that the sketch� of the current timestep is obtained by removing
the contribution from the solution x(ti−M−1) and adding the contribution of x(ti−1). The
removal is accomplished in line 6 of Algorithm 3 by a rank-one update:

�prev − x(ti−M−1)z
prev
1 = [

0 | x(ti−M) | · · · | x(ti−2)
]
Zprev.

By a cyclic permutation, we can move the zero column to the last column,[
x(ti−M) | · · · | x(ti−2) | 0], updating Z as in line 7 of Algorithm 3. Finally, the contribution
of the latest solution is incorporated by adding the rank-one matrix x(ti−1)zMT , where zM
∈ R

m is a newly generated Gaussian random vector that is stored in the last row of Z . Under
the (idealistic) assumption that all solutions are exactly computed (and hence deterministic),
the described progressive updating procedure is mathematically equivalent to computing the
randomized SVD from scratch. In particular, the error bound (4) continues to hold.

Lines 6–9 ofAlgorithm 3 requireO(nm) operations.When using standard updating proce-
dures for QR decomposition [13], line 11 has the same complexity. This compares favorably
with the O(nM2) operations needed by Algorithm 2 per timestep.

When performing the progressive update of � over many timesteps, one can encounter
numerical issues due to numerical cancellation in the repeated subtraction and addition of
contributions to the sketch matrix. To avoid this, the progressive update is carried out only
for a fixed number of timesteps, after which a new randommatrix Z is periodically generated
and � is computed from scratch.

3 Convergence Analysis

Westart our convergence analysis of the algorithms from the preceding section by considering
analytical properties of the historymatrix X = [x(ti−M) | · · · | x(ti−1)]. After reparametriza-
tion, we may assume without loss of generality that each of the past timesteps is contained
in the interval [−1, 1]:

−1 = ti−M < · · · < ti−1 = 1.

For notational convenience, we define

X ≡ X(t) := [
x(ti−M) | · · · | x(ti−1)

]
, t = [

ti−M , · · · , ti−1
]
, (6)

where x(t) satisfies the (parametrized) linear system

A(t)x(t) = b(t), A : [−1, 1] → R
n×n, b : [−1, 1] → R

n, (7)

that is, each entry of A and b is a scalar function on the interval [−1, 1]. Indeed, for the
convergence analysis, we assume that each linear system of the sequence in (1) is obtained
by sampling the parametrized system in (7) in ti ∈ [−1, 1]. In many practical applications,
like the one described in Sect. 5, the time dependence in (7) arises from time-dependent
coefficients in the underlying PDEs. Frequently, this dependence is real analytic, which
prompts us to make the following smoothness assumption on A, b.

Assumption 1 Consider the openBernstein ellipse Eρ ⊂ C forρ > 1, that is, the open ellipse
with foci ±1 and semi-minor/-major axes summing up to ρ. We assume that A : [−1, 1] →
C
n×n and b : [−1, 1] → C

n admit extensions that are analytic on Eρ and continuous on Ēρ

(the closed Bernstein ellipse), such that A(t) is invertible for all t ∈ Ēρ . In particular, this
implies that x(t) = A−1(t)b(t) is analytic on Eρ and κρ := maxt∈∂Eρ ‖x(t)‖2 is finite.

123

Journal of Scientific Computing (2024) 99 :68 Page 7 of 18 68

3.1 Compressibility of the Solution Time History

The effectiveness of POD-based algorithms relies on the compressibility of the solution
history, that is, the columns of X can be well approximated by an m–dimensional subspace
with m 	 M . According to (2), this is equivalent to stating that the singular values of X
decrease rapidly to zero. Indeed, this property is implied by Assumption 1 as shown by the
following result, which was stated in [18] in the context of low-rank methods for solving
parametrized linear systems.

Theorem 2 ([18, Theorem 2.4]) Under Assumption 1, the kth largest singular value σk of
the history matrix X(t) from (6) satisfies

σk ≤ 2ρκρ

√
M

1 − ρ−1 ρ−k .

Combined with (2), Theorem 2 implies that the POD basis QPOD ∈ R
n×m satisfies the

error bound

‖(I − QPODQ
T
POD)X‖2F ≤ 4ρ2κ2

ρM

(1 − ρ−1)2
(ρ−(m+1) − ρ−(M+1)).

3.2 Quality of PredictionWithout Compression

Algorithm 1 determines the initial guess s∗ for the next time step ti > ti−1 = 1 by solving
the minimization problem

s∗ = argmin
s∈S

‖A(ti)s − b(ti)‖2. (8)

In this section, we will assume, additionally to Assumption (1), that S = span(X(t)), that is,
X(t) is not compressed. Our analysis focuses on uniform timesteps tequi = [

ti−M , · · · , ti−1
]

defined by

ti−M = −1, ti−M+1 = −1 + �t, · · · , ti−2 = 1 − �t, ti−1 = 1, �t = 2/(M − 1).

Note that the next timestep ti = 1 + �t satisfies ti ∈ Eρ if and only if ρ > ti +
√
t2i − 1 ≈

1+ √
2�t . The following result shows how the quality of the initial guess rapidly improves

(at a square root exponential rate, compared to the exponential rate of Theorem 2) as M , the
number of previous time steps in the history, increases.

Theorem 3 Under Assumption (1), the initial guess constructed by Algorithm 1 with S =
span(X) satisfies the error bound

‖A(ti)s∗ − b(ti)‖2 ≤ 2‖A(ti)‖2κρ

[1

1 − r
+ C(M, R)ρ

(ρ − 1)
√

ρ2r2 − 1

]
r R+1,

with C(M, R) = 5
√
5
√
2R + 1

√
M/

√
2(M − 1), for any R ≤ 1

2

√
M − 1, r = (ti +√

t2i − 1)/ρ < 1.

123

68 Page 8 of 18 Journal of Scientific Computing (2024) 99 :68

3.2.1 Proof of Theorem 3

The rest of this section is concerned with the proof of Theorem 3. We establish the result
by making a connection to vector-valued polynomial extrapolation and extending results by
Demanet and Townsend [8] on polynomial extrapolation to the vector-valued setting.

Let PR ⊂ R
n[t] denote the subspace of vector-valued polynomials of length n and degree

at most R for some R ≤ M − 1. We recall that any v ∈ PR takes the form v(t) = v0 + v1t +
· · · + vRt R for constant vectors v0, · · · , vR ∈ R

n . Equivalently, each entry of v is a (scalar)
polynomial of degree at most R. In our analysis we consider vector-valued polynomials of
the particular form

p(t) = X(tequi) y(t), (9)

for a vector-valued polynomial y(t) of lengthM . A key observation is that the evaluation of p
in the next timestep ti satisfies p(ti) ∈ span(X(tequi)) = S. According to (8), s∗ minimizes
the residual over S. Hence, the residual can only increase when we replace s∗ by p(ti) in

‖A(ti)s∗ − b(ti)‖2 ≤ ‖A(ti) p(ti) − b(ti)‖2
≤ ‖A(ti)‖2‖ p(ti) − x(ti)‖2. (10)

Thus, it remains to find a polynomial of the form (9) for which we can establish convergence
of the extrapolation error ‖ p(ti) − x(ti)‖2. For this purpose, we will choose pR ∈ PR to be
the least-squares approximation of the M function samples contained in X(tequi):

pR := argmin
p∈PR

‖X(tequi) − P(tequi)‖F , P(tequi) = [
p(ti−M) | · · · | p(ti−1)

]
. (11)

We will represent the entries of pR in the Chebyshev polynomial basis:

pR(t) = q0(t)c0,p + q1(t)c1,p + · · · + qR(t)cR,p, (12)

where ck,p ∈ R
n and qk denotes the Chebyshev polynomial of degree k, that is, qk(t) =

cos(k cos−1 t) for t ∈ [−1, 1]. Setting
Cp = [

c0,p| · · · |cR,p
] ∈ R

n×(R+1), qR(t) = [q0(t), · · · , qR(t)]T , (13)

we can express (12) more compactly as pR(t) = CpqR(t). Thus,

PR(tequi) = CpQR(tequi), QR(tequi) = [
qR(t1)| · · · |qR(tM)

]
.

In view of (11), the matrix of coefficients Cp is determined by minimizing ‖X(tequi) −
CpQR(tequi)‖F . Because R ≤ M − 1, the matrix QR(tequi) has full row rank and thus
the solution of this least-squares problem is given by Cp = X(tequi)QR(tequi)† with
QR(tequi)† = QR(tequi)T (QR(tequi)QR(tequi)T)−1. In summary, we obtain that

pR(t) = CpqR(t) = X(tequi)QR(tequi)
†qR(t), (14)

which is of the form (9) and thus contained in span(X(tequi)), as desired.
In order to analyze the convergence of pR(t), we relate it to Chebyshev polynomial

interpolation of x. The following lemma follows from classical approximation theory, see,
e.g., [18, Lemma 2.2].

Lemma 4 Let qR(t) ∈ R
R+1 be defined as in (13), containing the Chebyshev polynomials

up to degree R. Under Assumption 1 there exists an approximation of the form

xR(t) = CxqR(t), Cx = [
c0,x , c1,x , · · · , cR,x

] ∈ R
n×(R+1),

123

Journal of Scientific Computing (2024) 99 :68 Page 9 of 18 68

such that ‖ck,x‖2 ≤ 2κρρ−k and

max
t∈[−1,1]

‖xR(t) − x(t)‖2 ≤ 2κρ

ρ − 1
ρ−R .

Following the arguments in [8] for scalar functions, Lemma 4 allows us to estimate the
extrapolation error for pR(t) if R ∼ √

M .

Theorem 5 Suppose that Assumption 1 holds and R ≤ 1
2

√
M − 1. Then the vector-valued

polynomial pR ∈ PR defined in (14) satisfies for every t ∈ (1, (ρ +ρ−1)/2) the error bound

‖x(t) − pR(t)‖2 ≤ 2κρ

[1

1 − r
+ C(M, R)ρ

(ρ − 1)
√

ρ2r2 − 1

]
r R+1,

with r = (t + √
t2 − 1)/ρ < 1 and C(M, R) defined as in Theorem 3.

Proof Letting xR be the polynomial from Lemma 4, we write

‖x(t) − pR(t)‖2 ≤ ‖x(t) − xR(t)‖2 + ‖xR(t) − pR(t)‖2

=
∥
∥
∥

∞∑

k=R+1

ck,xqk(t)
∥
∥
∥
2
+ ‖(Cx − Cp)qR(t)‖2

≤
∞∑

k=R+1

‖ck,x‖2|qk(t)| + ‖Cx − Cp‖2‖qR(t)‖2. (15)

To treat the second term in (15), first note that, by definition, we have

XR(tequi) = [
xR(ti−M) | · · · | xR(ti−1)

] = Cx QR(tequi)

and hence Cx = XR(tequi)QR(tequi)†. Setting σ := σmin(QR(tequi)) = 1/‖QR(tequi)†‖2,
we obtain

‖Cx − Cp‖2 = ‖(XR(tequi) − X(tequi))QR(tequi)
†‖2 ≤ ‖XR(tequi) − X(tequi)‖2/σ

≤
√
M

σ
· max
k=1,..,M

‖xR(tk) − x(tk)‖2 ≤
√
M

σ

2κρ

ρ − 1
ρ−R,

where we used Lemma 4 in the last inequality. Applying, once more, Lemma 4 to the first
term in (15) gives

‖x(t) − pR(t)‖2 ≤ 2κρ

[∞∑

k=R+1

ρ−k |qk(t)| +
√
M

σ

ρ−R

ρ − 1
‖qR(t)‖2

]
(16)

Because |qk(t)| ≤ (t + √
t2 − 1)k ≤ ρkrk for t > 1, we have that

‖qR(t)‖22 ≤
R∑

k=0

(ρr)2k = (ρr)2R
R∑

k=0

(ρr)−2k ≤ (ρr)2R+2

ρ2r2 − 1
. (17)

Inserted into (16), this gives

‖x(t) − pR(t)‖2 ≤ 2κρ

[∞∑

k=R+1

ρ−kρkrk +
√
M

σ

ρ−R(ρr)R+1

(ρ − 1)
√

ρ2r2 − 1

]

≤ 2κρ

[1

1 − r
+

√
Mρ

σ(ρ − 1)
√

ρ2r2 − 1

]
r R+1.

123

68 Page 10 of 18 Journal of Scientific Computing (2024) 99 :68

The proof is completed by inserting the lower bound

σ = σmin(QR(tequi)) ≥
√
2

5
√
5

√
M − 1√
2R + 1

, (18)

which holds when R ≤ 1
2

√
M − 1 according to [8, Theorem 4]. ��

Using Theorem 5with t = ti and inserting the result in (10), we have proven the statement
of Theorem 3.

3.3 Optimality of the Prediction with Compression

When the matrix X(t) is compressed via POD (Algorithm 2) or the randomized range
finder (Algorithm 3), the orthonormal basis Q ∈ R

n×m used in Algorithm 1 spans a
lower-dimensional subspace S ⊆ span(X).

Corollary 6 Suppose thatAlgorithm 1 is used with an orthonormal basis satisfying ‖(QQT −
I)X(tequi)‖2 ≤ ε for some tolerance ε > 0. Under Assumption 1, the initial guess s∗
constructed by the algorithm satisfies the error bound

‖A(ti)s∗ − b(ti)‖2 ≤ 2‖A(ti)‖2κρ

[
1

1 − r
+ C(M, R)ρ

√
ρ2r2 − 1

(
1

ρ − 1
+ ερR

2
√
Mκρ

)]

r R+1

for any R ≤ 1
2

√
M − 1.

Proof Let pR(t) = X(tequi)QR(tequi)†qR(t) be the polynomial constructed in (14). Using
that s∗ satisfies the minimization problem (8) and QQT x(ti) ∈ S = span(Q), we obtain:

‖A(ti)s∗ − b(ti)‖2 ≤ ‖A(ti)QQT x(ti) − b(ti)‖2
≤ ‖A(ti)‖2

[‖(QQT − I)(x(ti) − pR(ti))‖2
+ ‖(QQT − I) pR(ti)‖2

]

≤ ‖A(ti)‖2
[‖x(ti) − pR(ti)‖2

+ ‖(QQT − I)X(tequi)QR(tequi)
†qR(ti)‖2

]
.

The first term is bounded using Theorem 5 with t = ti . For the second term, we use the
bound in (17) on ‖qR(tM+1)‖ to obtain

‖(QQT − I)X(tequi)QR(tequi)
†qR(t)‖2 ≤ ‖(QQT − I)X(tequi)‖2‖qR(tM+1)‖2/σ

≤ ε(ρr)R+1

σ
√

ρ2r2 − 1
,

with σ := σmin(QR(tequi)). The proof is completed using the lower bound (18) on σ . ��

4 Numerical Results: Test Case

To test the subspace acceleration algorithms proposed in Sect. 2, we first consider a simplified
setting, an elliptic PDEwith an explicitly given time- and space-dependent coefficient a(x, t)

123

Journal of Scientific Computing (2024) 99 :68 Page 11 of 18 68

0 20 40 60 80 100 120 140 160 180 200

Timestep

0

10

20

30

40

50

60

70

80

90
G

M
R

E
S

 it
er

at
io

ns

Baseline
POD, M = 20 m = 10
RAND, M = 20 m = 10

(a) Δt = 10−5

0 20 40 60 80 100 120 140 160 180 200

Timestep

0

10

20

30

40

50

60

70

80

90

G
M

R
E

S
 it

er
at

io
ns

Baseline
POD, M = 35 m = 20
RAND, M = 35 m = 20

(b) Δt = 10−3

Fig. 1 GMRES iterations per timestep when solving Eq. (20) with different initial guesses

and source term g(x, t):
{

∇ · (a(x, t)∇ f (x, t)) = g(x, t) in �

f (x, t) = 0 on ∂�
(19)

We consider the domain� = [0, 1]2 ⊂ R
2 and discretize (19) on a uniform two-dimensional

Cartesian grid using a centered finite difference scheme of order 4. This leads to a linear
system for the vector of unknowns f (t), for which both the matrix and the right-hand side
depend on t :

A(t) f (t) = g(t). (20)

We discretize the time variable on the interval
[
t0, t f

]
with a uniform timestep �t on Nt

points, such that t f = t0 + Nt�t . Evaluating (20) in these Nt instants, we obtain a sequence
of linear systems of the same type as (1).

We set a(x, t) = exp
[−(x−0.5)2−(y−0.5)2

]
cos(t x) + 2.1 and choose the right-hand side

g(x, t) such that

f (x, t) = sin(4π yt) sin(15πxt)
[
1 + sin(15πxt) cos(3π yt) exp

[
(x−0.5)2+(y−0.5)2−0.252

]]

is the exact solution of (19). The tests are performed using MATLAB 2023a on an M1
MacbookPro. We employ GMRES as iterative solver for the linear system, with tolerance
10−7 and incomplete LU factorization as preconditioner.We start the simulations at t0 = 2.3 s
and perform Nt = 200 timesteps.

The results reported in Fig. 1 use a spatial grid of dimension 100 × 100, leading to linear
systems of size n = 10000. Different values of M , the number of previous solutions retained
in the history matrix X , and m, the dimension of the reduced-order model, were tested. We
found that the choices M = 20, m = 10 and M = 35, m = 20 lead to good performance for
�t = 10−5 and �t = 10−3, respectively. The baseline is (preconditioned) GMRES with the
previous solution used as initial guess; the resulting number of iterations is indicated with the
solid blue line (“Baseline”) in Fig. 1. This is compared to the number of iterations obtained by
applyingGMRESwhenAlgorithm 1 is employed to compute the initial guess, in combination
with both the POD basis in Algorithm 2 (“POD” in the graph) and the Randomized Range
Finder in Algorithm 3 (“RAND” in the graph). For the Randomized Range Finder algorithm,

123

68 Page 12 of 18 Journal of Scientific Computing (2024) 99 :68

0 20 40 60 80 100 120 140 160 180 200

Timestep

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Ti

m
e

Baseline
RAND, M = 20 m = 10

(a) Δt = 10−5

0 20 40 60 80 100 120 140 160 180 200

Timestep

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Ti
m

e

Baseline
RAND, M = 35 m = 20

(b) Δt = 10−3

Fig. 2 Computational time per timestep corresponding to Fig. 1a and b. The average speedup per iteration of
the randomized method with respect to the baseline is a factor 9 for�t = 10−5 and a factor 10 for�t = 10−3

the matrix � is computed from scratch only every 50 timesteps, while in the other timesteps
is updated as described in Algorithm 3, resulting in a computationally efficient version of
the algorithm. Both the POD and Randomized versions of the acceleration method give a
remarkable gain in computational time with respect to the baseline.

When employing �t = 10−5, in Fig. 1a, the number of iterations computed by the linear
solver vanishes most of the time, since the initial residual computed with the new initial
guess is already below the tolerance, set to 10−7 in this case. It is worth noticing that the
new randomized method gives an acceleration comparable to the existing POD one, but it
requires a much lower computational cost, as described in Sect. 2.

The results obtained for larger timesteps, in Fig. 1b, are slightly worse, as expected, since
it is less easy to predict new solutions using the previous ones when they are further apart in
time. Nevertheless, the gain of the acceleration method is still visible, obtaining always less
than half iterations with respect to the baseline and adding the solution of a reduced-order
system of dimension m = 20 only, compared to the full solution of dimension 10000. The
resulting advantage of the new method can indeed be observed in Fig. 2, which compares the
computational time needed by the solver using the baseline approach with the one obtained
by using the new guess (this includes the time employed to compute the guess). The timings
showed are the ones needed to produce the results in Fig. 1. The time employed by the POD
method has not been included since it is significantly higher than the baseline, as predicted
by the analysis in Sect. 2.1.

5 Numerical Results: Plasma Simulation

In this Section, we apply the subspace acceleration method to the numerical simulation of
plasma turbulence in the outermost plasma region of tokamaks, where the plasma enters in
contact with the surrounding external solid walls, resulting in strongly non-linear phenomena
occurring on a large range of time and length scales.

In this work, we consider GBS (Global Braginskii Solver) [12, 23], a three-dimensional,
flux-driven, two-fluid code developed for the simulation of the plasma dynamics in the bound-
ary of a fusion device. GBS implements the Braginskii two-fluid model [3], which describes

123

Journal of Scientific Computing (2024) 99 :68 Page 13 of 18 68

Fig. 3 GBS computational domain. The toroidal direction is along ϕ, the radial direction is along R, and the
vertical direction is along Z . The domain consists of Nϕ rectangular poloidal planes, each discretized on a
NR × NZ Cartesian grid

a quasi-neutral plasma through the conservation of density, momentum, and energy. This
results in six coupled three-dimensional time-evolving non-linear equations which evolve
the plasma dynamics in �, a 3D toroidal domain with rectangular poloidal cross section, as
represented in Fig. 3. The fluid equations are coupled with Maxwell equations, specifically
Poisson and Ampére, elliptic equations for the electromagnetic variables of the plasma. In
the limit considered here the elliptic equations reduce to a set of two-dimensional algebraic
constraints decoupled along the toroidal direction, therefore to be satisfied independently on
each poloidal plane. The differential equations are spatially discretized on a uniform Carte-
sian grid employing a finite difference method, resulting in a system of differential-algebraic
equations of index one [15]:

{
∂t f (t) = Y(f (t), x(t)) in �

Ak(f (t))xk(t) = bk(f (t)) for each kth poloidal plane
(21)

where Y(f (t), x(t)) is a non-linear, 6-dimensional differential operator and

x(t) = [
x1(t), · · · , xk(t) · · · , xNZ (t)

] ∈ R
NRNϕNZ ,

f (t) = [
f 1(t), · · · , f k(t) · · · , f NZ

(t)
] ∈ R

NRNϕNZ

are the vector of, respectively, the electromagnetic and fluid quantities solved for by GBS,
where the solutions of all the NZ poloidal planes are stacked together.More precisely, the time
evolution of the fluid variables, f , is coupled with the set of linear systems Ak(f (t))xk(t) =
bk(f (t)) which result from the discretization of Maxwell equations. Indeed, the matrix
Ak ∈ R

NRNZ×NRNZ and right-hand side bk ∈ R
NRNZ depend on time through f .

In GBS, system (21) is integrated using a Runge–Kutta scheme of order four, on the
discrete times {ti }Nt

i=1, with step-size �t . Given f i and xi , the value of f and x at time ti , the
computation of f i+1, requires performing three intermediate substeps where the quantities
f i+1, j for j = 1, 2, 3 are computed. To guarantee the consistency and convergence of the
Runge–Kutta integration method [15], the algebraic constraints are solved at every substep,
computing xi+1, j

k for j = 1, 2, 3 and for each k−th poloidal plane. As a consequence, the
linear systems Ak(f (t))xk(t) = bk(f (t)) are assembled and solved four times for each of
the Nϕ poloidal planes, to advance the full system (21) by one timestep. Since the timestep
�t is constrained to be small from the stiff nature of the GBS model, the solution of the
linear systems is among the most computationally expensive part of GBS simulations.

123

68 Page 14 of 18 Journal of Scientific Computing (2024) 99 :68

20 40 60 80 100 120 140 160 180

Timestep

0

1

2

3

4

5

6

7

8

9
G

M
R

E
S

 it
er

at
io

ns

Baseline
RAND, M = 15 m = 10

(a) GMRES iterations per timestep

20 40 60 80 100 120 140 160 180

Timestep

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Ti
m

e

Baseline
RAND, M = 15 m = 10

(b) Computational time per timestep

Fig. 4 Performance of the algorithm applied to the solution of Poisson equation in GBS simulations. The time
for the RAND algorithm is on average approximately one fourth of the time for the baseline

In GBS, the linear system is solved using GMRES, with the algebraic multigrid pre-
conditioner boomerAMG from the HYPRE library [9], a choice motivated by previous
investigations [12]. The subspace acceleration algorithm proposed in Sect. 2 is implemented
in the GBS code and, given the results shown in Sect. 4, the randomized version of the algo-
rithm is chosen. The results reported are obtained from GBS simulations on one computing
node. The poloidal planes of the computational domain are distributed among 16 cores,
specifically of type Intel(R) Core i7-10700F CPU at 2.90GHz. GBS is implemented in For-
tran 90, and relies on the PETSc library [2] for the linear solver and Intel MPI 19.1 for the
parallelization.

We consider the simulation setting described in [12], taking as initial conditions the results
of a simulation in a turbulent state. We use a Cartesian grid of size of NR = 150, NZ = 300
and Nϕ = 64,with additional 4 ghost points in the Z and R directions. Therefore, the imposed
algebraic constraints result in 64 sequences of linear systems of dimension NRNZ ×NRNZ =
46816×46816. The timestep employed is�t = 0.7×10−5. The sequence of linear systems
we consider represents the solution of the Poisson equation on one fixed poloidal plane, but
the same considerations apply to the discretization of Ampére equation.

In Fig. 4a the number of iterations obtained with the method proposed in Sect. 2, denoted
as “RAND” is compared with the ones obtained using the previous step solution as initial
guess, depicted in blue as “Baseline”. We notice that, employing the acceleration method,
the number of GMRES iterations needed for each solution of the linear system is reduced
by a factor 2.9, on average, at the cost of computing a solution of an m × m reduced-order
system. In Fig. 4b the wall clock time required for the solution of the systems is shown. The
baseline approach is compared to the accelerated method, where we also take into account
the cost of computing the initial guess. Thanks to the randomized method employed, the
process of generating the guess is fast enough to provide a time speed up of a factor of 6.5
per iteration.

The employed values of M = 15, the number of previous solutions retained, andm = 10,
the dimension of the reduced-order model, are the ones found to give a good balance between
the decrease in the number of iterations and the computational cost of the reduced-order
model. In Table 1 the results for different values of M andm are reported. It is worth noticing
that an average number of GMRES iterations per timestep smaller than one implies that often
the initial residual obtained with the initial guess is below the tolerance set for the solver. It

123

Journal of Scientific Computing (2024) 99 :68 Page 15 of 18 68

Ta
bl
e
1

G
B
S
si
m
ul
at
io
ns

re
su
lt
co
rr
es
po

nd
in
g
to

di
ff
er
en
tv

al
ue
s
of

M
an
d
m

M
m

A
ve
ra
ge

tim
e
pe
r
tim

es
te
p
(s
)

T
im

e
sp
ee
du
p

A
ve
ra
ge

G
M
R
E
S
ite
ra
tio

ns
pe
r
tim

es
te
p

It
er
at
io
ns

sp
ee
du
p

15
6

0.
04

52
2.
17

97
2.
01

83
2.
47

43

15
8

0.
03

47
2.
83

52
1.
10

98
4.
5

15
10

0.
03

39
2.
90

71
0.
76

6.
55

2

20
10

0.
03

58
2.
74

68
0.
78

62
6.
33

6

20
15

0.
04

35
2.
25

72
0.
50

31
9.
9

30
8

0.
04

85
2.
02

55
1.
69

8
2.
93

28

30
12

0.
03

75
2.
61

85
0.
37

58
13

.2
5

30
15

0.
05

1.
96

33
0.
57

9
8.
33

71

T
he

ite
ra
tio

n
an
d
tim

e
sp
ee
du
ps

ar
e
co
m
pu
te
d
on

th
e
to
ta
lo

f
18
0
lin

ea
r
sy
st
em

s,
w
ith

re
sp
ec
tt
o
th
e
ba
se
lin

e,
th
at
ha
s
an

av
er
ag
e
nu
m
be
r
of

5
G
M
R
E
S
ite
ra
tio

ns
an
d
an

av
er
ag
e

tim
e
pe
r
tim

es
te
p
of

0.
08

28
s.
T
he

hi
gh

lig
ht
ed

ro
w
co
rr
es
po

nd
s
to

th
e
be
st
re
su
lt
ob

ta
in
ed

in
te
rm

s
of

tim
e
sp
ee
du

p

123

68 Page 16 of 18 Journal of Scientific Computing (2024) 99 :68

is possible to notice that higher values of m lead to very small number of iterations, but the
overall time speedup is reduced since the computation of the guess becomes more expensive.

6 Conclusions

In this paper, we propose a novel approach for accelerating the solution of a sequence of
large-scale linear systems that arises from, e.g., the discretization of time-dependent PDEs.
Our method generates an initial guess from the solution of a reduced-order model, obtained
by extracting relevant components of previously computed solutions using dimensionality
reduction techniques. Starting from an existing POD-like approach, we accelerate the process
by employing a randomized algorithm. A convergence analysis is performed, which applies
to both approaches, POD and the randomized algorithm and shows how the accuracy of the
method increases with the history size. A test case displays how POD leads to a noticeable
decrease in the number of iterations, but at the same time a nearly equal decrease is achieved
by the cheaper randomized method, that leads to a time speedup per iteration of a factor 9.
In real applications such as the plasma simulations described in Sect. 5, the speedup is more
modest, given the stiff nature of the problem which constrains the timestep of the explicit
integration method to be very small, but still practically relevant.

Acknowledgements The authors thank the anonymous reviewers for helpful feedback. This work has been
carried out within the framework of the EUROfusion Consortium, via the Euratom Research and Training
Programme (Grant Agreement No 101052200 - EUROfusion) and funded by the Swiss State Secretariat for
Education, Research and Innovation (SERI). Views and opinions expressed are however those of the author(s)
only and do not necessarily reflect those of the European Union, the European Commission, or SERI. Neither
the European Union nor the European Commission nor SERI can be held responsible for them.

Funding Open access funding provided by EPFL Lausanne The authors have not disclosed any funding.

Data Availability The data that support the findings of this study are available upon reasonable request from
the authors.

Declarations

Conflict of interest The authors have not disclosed any competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Austin, A.P., Chalmers, N., Warburton, T.: Initial guesses for sequences of linear systems in a GPU-
accelerated incompressible flow solver. SIAM J. Sci. Comput. 43(4), C259–C289 (2021). https://doi.org/
10.1137/20M1368677

2. Balay, S., et al: PETSc, the portable, extensible toolkit for scientific computation. Vol. 2. 17. Argonne
National Laboratory, (1998)

3. Braginskii, S.I.: Transport Processes in a Plasma. Rev. Plasma Phys. 1, 205 (1965)

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1137/20M1368677
https://doi.org/10.1137/20M1368677

Journal of Scientific Computing (2024) 99 :68 Page 17 of 18 68

4. Brand, M.: Fast low-rank modifications of the thin singular value decomposition. Linear Algebra Appl.
415(1), 20–30 (2006). https://doi.org/10.1016/j.laa.2005.07.021

5. Carlberg, K., Forstall, V., Tuminaro, R.: Krylov-subspace recycling via the POD-augmented conjugate-
gradient method. SIAM J. Matrix Anal. Appl. 37(3), 1304–1336 (2016). https://doi.org/10.1137/
16M1057693

6. Chen, G., Zhang, Y., Zuo, D.: An Incremental SVD Method for Non-Fickian Flows in Porous Media:
Addressing Storage and Computational Challenges. (2023). arXiv:2308.15409 [math.NA]

7. De Sturler, E.: Truncation strategies for optimal Krylov subspace methods. SIAM J. Numer. Anal. 36(3),
864–889 (1999). https://doi.org/10.1137/S0036142997315950

8. Demanet, L., Townsend, A.: Stable extrapolation of analytic functions. Found. Comput. Math. 19(2),
297–331 (2019). https://doi.org/10.1007/s10208-018-9384-1

9. Falgout, R.D., Yang, U.M.: hypre: A Library of High Performance Preconditioners. In: L Peter, MA Sloot
et al. (eds.) International Conference on computational science ICCS 2002. Springer, Berlin, 632–641
(2002)

10. Fasoli, A., et al.: Computational challenges in magnetic-confinement fusion physics. Nat. Phys. 12(5),
411–423 (2016). https://doi.org/10.1038/NPHYS3744

11. Fischer, P.F.: Projection techniques for iterative solution of Ax = b with successive right-hand
sides. Comput. Methods Appl. Mech. Eng. 163(1–4), 193–204 (1998). https://doi.org/10.1016/S0045-
7825(98)00012-7

12. Giacomin, M., et al.: The GBS code for the self-consistent simulation of plasma turbulence and kinetic
neutral dynamics in the tokamak boundary. J. Comput. Phys. 463, 111294 (2022). https://doi.org/10.
1016/j.jcp.2022.111294

13. Golub, G.H., Van L., Charles F.:Matrix computations. Fourth. Johns Hopkins Studies in theMathematical
Sciences. Johns Hopkins University Press, Baltimore, MD, (2013)

14. Grinberg, L., Karniadakis, G.E.: Extrapolation-based acceleration of iterative solvers: application to simu-
lation of 3D flows. Commun. Comput. Phys. 9(3), 607–626 (2011). https://doi.org/10.4208/cicp.301109.
080410s

15. Hairer, E., Lubich, C., Roche, M.: The numerical solution of differential-algebraic systems by Runge–
Kutta methods. Vol. 1409. Lecture Notes in Mathematics. Springer-Verlag, Berlin, pp. viii+139 (1989)
https://doi.org/10.1007/BFb0093947

16. Halko, N., Martinsson, P.G., Tropp, J.A.: Finding structure with randomness: probabilistic algorithms for
constructing approximate matrix decompositions. SIAM Rev. 53(2), 217–288 (2011). https://doi.org/10.
1137/090771806

17. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur.
Stand. 49(6), 409 (1952). https://doi.org/10.6028/jres.049.044

18. Kressner, D., Tobler, C.: Low-rank tensor Krylov subspace methods for parametrized linear systems.
SIAM J. Matrix Anal. Appl. 32(4), 1288–1316 (2011). https://doi.org/10.1137/100799010

19. Kunisch, K., Volkwein, S.: Control of the Burgers equation by a reduced-order approach using proper
orthogonal decomposition. J. Optim. Theory Appl. 102(2), 345–371 (1999). https://doi.org/10.1023/A:
1021732508059

20. Markovinović, R., Jansen, J.D.: Accelerating iterative solution methods using reduced-order models as
solution predictors. Int. J. Numer. Methods Eng. 68(5), 525–541 (2006). https://doi.org/10.1002/nme.
1721

21. Morgan, R.B.: Implicitly restarted GMRES and Arnoldi methods for nonsymmetric systems of equations.
SIAM J. Matrix Anal. Appl. 21(4), 1112–1135 (2000). https://doi.org/10.1137/S0895479897321362

22. Parks, M.L., et al.: Recycling Krylov subspaces for sequences of linear systems. SIAM J. Sci. Comput.
28(5), 1651–1674 (2006). https://doi.org/10.1137/040607277

23. Ricci, P., et al.: Simulation of plasma turbulence in scrape-off layer conditions: the GBS code, simulation
results and code validation. Plasma Phys. Control. Fusion (2012). https://doi.org/10.1088/0741-3335/54/
12/124047

24. Saad, Y., Schultz,M.H.: GMRES:AGeneralizedMinimal Residual Algorithm for SolvingNonsymmetric
Linear Systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986). https://doi.org/10.1137/0907058

25. Soodhalter, K.M.: Block Krylov subspace recycling for shifted systems with unrelated right-hand sides.
SIAM J. Sci. Comput. 38(1), A302–A324 (2016). https://doi.org/10.1137/140998214

26. Soodhalter, K.M., de Sturler, E., Kilmer,M.E.: A survey of subspace recycling iterativemethods. GAMM-
Mitt 43(4), e202000016 (2020). https://doi.org/10.1002/gamm.202000016

27. Soodhalter, K.M., Szyld, D.B., Xue, F.: Krylov subspace recycling for sequences of shifted linear systems.
Appl. Numer.Math. 81, 105–118 (2014). https://doi.org/10.1016/j.apnum.2014.02.006. arXiv:1301.2650

123

https://doi.org/10.1016/j.laa.2005.07.021
https://doi.org/10.1137/16M1057693
https://doi.org/10.1137/16M1057693
http://arxiv.org/abs/2308.15409
https://doi.org/10.1137/S0036142997315950
https://doi.org/10.1007/s10208-018-9384-1
https://doi.org/10.1038/NPHYS3744
https://doi.org/10.1016/S0045-7825(98)00012-7
https://doi.org/10.1016/S0045-7825(98)00012-7
https://doi.org/10.1016/j.jcp.2022.111294
https://doi.org/10.1016/j.jcp.2022.111294
https://doi.org/10.4208/cicp.301109.080410s
https://doi.org/10.4208/cicp.301109.080410s
https://doi.org/10.1007/BFb0093947
https://doi.org/10.1137/090771806
https://doi.org/10.1137/090771806
https://doi.org/10.6028/jres.049.044
https://doi.org/10.1137/100799010
https://doi.org/10.1023/A:1021732508059
https://doi.org/10.1023/A:1021732508059
https://doi.org/10.1002/nme.1721
https://doi.org/10.1002/nme.1721
https://doi.org/10.1137/S0895479897321362
https://doi.org/10.1137/040607277
https://doi.org/10.1088/0741-3335/54/12/124047
https://doi.org/10.1088/0741-3335/54/12/124047
https://doi.org/10.1137/0907058
https://doi.org/10.1137/140998214
https://doi.org/10.1002/gamm.202000016
https://doi.org/10.1016/j.apnum.2014.02.006
http://arxiv.org/abs/1301.2650

68 Page 18 of 18 Journal of Scientific Computing (2024) 99 :68

28. Tromeur-Dervout, D., Vassilevski, Y.: Choice of initial guess in iterative solution of series of systems
arising in fluid flow simulations. J. Comput. Phys. 219(1), 210–227 (2006). https://doi.org/10.1016/j.jcp.
2006.03.014

29. Volkwein, S.: Proper orthogonal decomposition: Theory and reduced-order modelling. Lect. Notes, Univ.
Konstanz 4, p. 4 (2013)

30. Ye, S., et al.: Improving initial guess for the iterative solution of linear equation systems in incompressible
flow. Mathematics 8(1), 1–20 (2020). https://doi.org/10.3390/math8010119

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1016/j.jcp.2006.03.014
https://doi.org/10.1016/j.jcp.2006.03.014
https://doi.org/10.3390/math8010119

	Subspace Acceleration for a Sequence of Linear Systems and Application to Plasma Simulation
	Abstract
	1 Introduction
	2 Algorithm
	2.1 Proper Orthogonal Decomposition
	2.2 Randomized Range Finder

	3 Convergence Analysis
	3.1 Compressibility of the Solution Time History
	3.2 Quality of Prediction Without Compression
	3.2.1 Proof of Theorem 3

	3.3 Optimality of the Prediction with Compression

	4 Numerical Results: Test Case
	5 Numerical Results: Plasma Simulation
	6 Conclusions
	Acknowledgements
	References

