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A B S T R A C T 

We study the magneto-rotational instability (MRI) dynamo in a geometrically thin disc ( H / R � 1) using stratified zero net 
(vertical) flux shearing box simulations. We find that mean fields and electromotive forces (EMFs) oscillate with a primary 

frequency f dyn = 0.017 � (approximately nine orbital period), but also have higher harmonics at 3 f dyn . Correspondingly, the 
current helicity has two frequencies 2 f dyn and 4 f dyn , which appear to be the beat frequencies of mean fields and EMFs, respectively, 
as expected from the magnetic helicity density evolution equation. Further, we adopt a no v el inv ersion algorithm called the 
‘Iterativ e Remo val Of Sources’, to extract the turbulent dynamo coefficients in the mean-field closure using the mean magnetic 
fields and EMFs obtained from the shearing box simulation. We show that an α-effect ( αyy ) is predominantly responsible for the 
creation of the poloidal field from the toroidal field, while shear generates back a toroidal field from the poloidal field, indicating 

that an α–�-type dynamo is operative in MRI-driven accretion discs. We also find that both strong outflow ( ̄v z ) and turbulent 
pumping ( γ z ) transport mean fields away from the mid-plane. Instead of turbulent dif fusi vity, they are the principal sink terms 
in the mean magnetic energy evolution equation. We find encouraging evidence that a generative helicity flux is responsible for 
the ef fecti ve α-ef fect. Finally, we point out potential limitations of horizontal ( x − y ) averaging in defining the ‘mean’ on the 
extraction of dynamo coefficients and their physical interpretations. 

Key words: accretion, accretion discs – dynamo – instabilities – MHD – turbulence – methods: numerical. 
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 I N T RO D U C T I O N  

he problem of angular momentum transport is a key concept in
 rotationally supported accretion disc (for a re vie w, see Balbus &
a wle y 1998 ). The current consensus is that a weak magnetic field

nstability, namely magneto-rotational instability (MRI; Velikhov
959 ; Chandrasekhar 1960 ; Balbus & Ha wle y 1991 , 1992 ), is
esponsible for outward angular momentum transport and drives
ass accretion in a sufficiently ionized accretion disc (e.g. as in
-ray binaries, inner part of active galactic nucleus discs). Although

inear MRI ensures outward angular momentum transport, it must be
tudied in the non-linear phase to account for different observable
henomena in accretion discs. 
MRI in an accretion disc is either studied in a local set-up

shearing box; Balbus & Ha wle y 1992 ; Brandenburg et al. 1995 ;
a wle y, Gammie & Balbus 1995 ; Davis, Stone & Pessah 2010 ; Shi,
rolik & Hirose 2010 ; Bodo et al. 2014 ; Bhat, Ebrahimi & Blackman
016 ) or in a global simulation (Stone, Pringle & Begelman 1999 ;
a wle y 2001 ; Beckwith, Armitage & Simon 2011 ; Ha wle y et al.
013 ; Parkin & Bicknell 2013 ; Hogg & Reynolds 2016 ; Dhang &
harma 2019 ; Dhang, Bai & White 2023 ). While a global approach

s more desirable, it is computationally e xpensiv e. On the other
and, the shearing box approach offers an alternate path which is
 E-mail: prasundhang@gmail.com 
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Commons Attribution License ( https:// creativecommons.org/ licenses/ by/ 4.0/ ), whi
omputationally less costly and can provide deep insights into the
ocal processes in MRI-driven turbulence. 

In the shearing-box approach (Goldreich & Lynden-Bell 1965 ),
e expand fluid equations to the lowest order of H / R , where H is the
ensity scale height and R is the local radius. Therefore, this approach
s valid only for geometrically thin discs with H / R � 1. Depending on
hether the vertical component of gravity ( g z = −�2 z) (producing
 vertically stratified gas density) is considered in the momentum
quation or not, shearing box simulations are of two types: stratified
 g z �= 0) and unstratified ( g z = 0). Further, depending on whether
he computational domain can contain net vertical magnetic flux,
hearing box models can be classified into zero net flux (ZNF) and
et flux (NF) models. Therefore, four possible combinations of the
hearing-box model are (i) unstratified ZNF, (ii) unstratified NF, (iii)
tratified ZNF, and (iv) stratified NF. This work considers a stratified
NF shearing box model to explore the MRI dynamo in saturation. 
Shearing box simulations provide a wide range of behaviour

e.g. convergence, turbulence characteristics, etc.) depending on
he shearing box model used (for details, we refer to readers to
ee table 1 in Ryan et al. 2017 ). Ho we ver, it is to be noted that
e will restrict our discussion to the isothermal (i.e. sound speed

s constant) models where there is no explicit dissipation and the
umerical algorithms provide the dissipation through truncation error
t the grid scale. In the presence of an NF, unstratified shearing
ox simulations show a convergence (in terms of accretion stresses)
nd sustained turbulence (Ha wle y et al. 1995 ; Guan et al. 2009 ;
© 2024 The Author(s). 
ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 
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imon, Ha wle y & Beckwith 2009 ). On the other hand, stratified NF
imulations present different accretion stresses depending on the NF 

trength and sustained turbulence (Guan & Gammie 2011 ; Bai & 

tone 2013 ). Unstratified ZNF models showed intriguing behaviour. 
arlier isothermal unstratified ZNF studies (Fromang & Papaloizou 
007 ; Pessah, Chan & Psaltis 2007 ) found decreased accretion stress
nd turbulence with increased resolution, implying non-convergence. 
o we ver, later Shi, Stone & Huang ( 2016 ) reco v ered conv ergence
sing a box with a larger vertical extent than the radial extent. In
ontrast, earlier stratified ZNF models (Davis et al. 2010 ) suggested 
hat the models are converged till the resolution 128/ H ; ho we ver,
ecent studies (Bodo et al. 2011 ; Ryan et al. 2017 ) found the model
oses convergent properties at higher resolution. 

The convergence problem is closely related to the magnetic energy 
eneration process in the MRI-driven flow. For the ZNF (absence 
f NF) models, an MRI-driven dynamo must act to overcome the 
iffusion and sustain the zero NF in the accretion flow. Earlier ZNF
imulations in unstratified (Shi et al. 2016 ) and stratified (Davis 
t al. 2010 ; Bodo et al. 2014 ; Ryan et al. 2017 ) shearing boxes
ound MRI turbulence can self-generate large-scale magnetic fields 
ttaining quasi-stationarity and sustaining turbulence. Riols et al. 
 2013 ) suggested that the non-linear MRI does not behave like a linear
nstability; rather, it provides a pathway for saturation via a subcritical
ynamo process. This leads to the question of what kind of dynamo
an be sustained in the MRI-driven accretion flow, small-scale or 
arge-scale? The lack of convergence in ZNF models was attributed 
o the low numerical Prandtl number (Fromang & Papaloizou 2007 ; 
o we ver, see Simon et al. 2009 ) and hence the inefficiency of small-
cale dynamo to operate at small Prandtl number (Schekochihin et al. 
005 ; Bodo et al. 2011 ). Ho we ver, it is unclear what happens when
onv ergence is reco v ered in unstratified ZNF simulations with tall
oxes (Shi et al. 2016 ). 
Studying MRI dynamo is also important for understanding the 

eneration of coherent large-scale magnetic fields determining the 
evel of transport (Johansen, Youdin & Klahr 2009 ; Bai & Stone
013 ) and outflows from the accretion disc (von Rekowski et al. 2003 ;
tepanovs, Fendt & Sheikhnezami 2014 ; Mattia & Fendt 2022 ). MRI, 

n principle, can generate magnetic fields coherent o v er sev eral scale
eights (Dhang et al. 2023 ) and acts locally as a mean field in the
bsence of any external flux influencing convergence and the disc 
ynamics. 
Generally, stratified models generate a more coherent large- 

cale field o v er the unstratified models (for a comparison, see Shi
t al. 2016 ). Cyclic behaviour of azimuthally averaged magnetic 
elds (mean fields), popularly known as the butterfly diagram, is a 

ypical feature observed in the stratified shearing box simulations 
Brandenburg et al. 1995 ; Gressel 2010 ; Bodo et al. 2014 ; Ryan
t al. 2017 ; Gressel & Pessah 2022 ). Ho we ver, note that the presence
f a strong magnetic NF (Bai & Stone 2013 ; Salvesen et al. 2016 ),
onvection (Hirose et al. 2014 ; Coleman et al. 2017 ), etc. can alter the
eriodicity in the butterfly diagram. Although the cyclic behaviour 
f mean fields can be explained by invoking the interplay between 
hear and helicity (Brandenburg & Donner 1997 ; Gressel & Pessah
015 ), some features, such as upward migration of the mean fields,
till demand an explanation. 

Several studies attempted to understand the underlying mecha- 
isms of MRI dynamo using different approaches. While some of 
he studies (Lesur & Ogilvie 2008 ; Bai & Stone 2013 ; Shi et al.
016 ; Begelman & Armitage 2023 ) invoked toy models to complete
he generation cycles of radial and azimuthal fields, others (local: 
randenburg et al. 2008 ; Gressel 2010 ; Shi et al. 2016 ; Gressel &
essah 2022 ; Mondal & Bhat 2023 , global: Dhang et al. 2020 )
sed mean-field theory to investigate the large-scale field generation 
n the MRI-driven turbulent accretion flow. Most of the studies 
haracterizing the turbulent dynamo coefficients in the regime of 
ean-field dynamo theory used state-of-the-art ‘Test Field’ (TF) 
ethod (Gressel 2010 ; Gressel & Pessah 2015 ), while a few used

irect methods such as linear regression (Shi et al. 2016 ) and singular
alue decomposition (SVD; Dhang et al. 2020 ) to calculate dynamo
oefficients in post-process or statistical simulations to carry out 
ombined study of the large-scale dynamo and angular-momentum 

ransport in accretion discs (Mondal & Bhat 2023 ). In this work, we
se a direct method, a variant of the cleaning algorithm (H ̈ogbom
LEAN method; H ̈ogbom 1974 ), called ‘Iterative Removal Of 
ources’ (IROS; Hammersley, Ponman & Skinner 1992 ), mainly 
sed in astronomical image construction to analyse MRI-dynamo in 
he mean-field dynamo paradigm. We modified the IROS method 
ccording to our convenience (for details, see Section 2.3 , also see
endre et al. 2023 ) and used it to determine the dynamo coefficients
y post-processing the data obtained from the stratified ZNF shearing 
ox simulation. 
The paper is organized as follows. In Section 2 , we describe details

f shearing box simulations, basics of mean field closure used, and
echniques of the IROS method. Section 3 describes the evolution 
f MRI to a non-linear saturated state, spatio-temporal variations of 
ean magnetic fields, electromotive forces (EMFs), and periodicities 

resent in different observables. The spatial profiles of calculated 
urbulent dynamo coefficients, the reliability of the calculation 
ethod (using both EMF reconstruction and a 1D dynamo model), 

nd contributions of each coefficient to the mean magnetic energy 
quation are described in Section 2.3 . In Section 5 , we discuss the
lausible reasons behind different periodicities present (in mean 
agnetic fields, EMFs, and helicities), comparison of our work with 

he previous works, the possible importance of a generative helicity 
ux, and limitations of the averaging scheme and mean-field closure 
sed in decoupling contributions from different dynamo coefficients. 
inally we summarized our key results in Section 6 . 

 M E T H O D  

his work involves performing shearing box simulations of MRI- 
riven accretion flow, along with extracting dynamo coefficients 
sing the mean-field dynamo model. In this section, we discuss 
etails of the shearing-box simulation set-up, an introduction to the 
ean-field dynamo model, and the IROS method used to determine 

urbulent dynamo coefficients using the simulated data. 

.1 Shearing-box simulation 

e perform stratified ZNF shearing box simulations to study the 
RI-driven dynamo in a geometrically thin disc ( H / R � 1). To do

hat, we solve ideal MHD equations in a Keplerian shearing box
iven by 

∂ ρ

∂ t 
+ ∇ · ( ρv ) = 0 , (1) 

∂ ρv 
∂ t 

+ ∇ · ( ρvv − BB ) + ∇P = ρg s − 2 �ˆ z × ρv , (2) 

∂ B 

∂ t 
= ∇ × ( v × B ) (3) 

sing the PLUTO code (Mignone et al. 2007 ) with x , y , and z as the
adial, azimuthal, and vertical directions, respectively. Here, ρ, P , v ,
nd B denote density, thermal pressure, velocity, and magnetic 
elds, respectively. The terms g s = �2 ( 2 qx ̂  x − z ̂ z ) and 2 �ˆ z × ρv 
MNRAS 530, 2778–2794 (2024) 
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epresent the tidal expansion of the ef fecti ve gravity and the Coriolis
orce, respectively, with � denoting orbital frequency. We use an
sothermal equation of state 

 = ρc 2 s . (4) 

herefore, we do not need to solve the energy equation. Additionally,
e use constrained transport (Gardiner & Stone 2005 ) to maintain
ivergence free condition 

 · B = 0 (5) 

or magnetic fields. We use the HLLD solver (Miyoshi & Kusano
005 ) with second-order slope-limited reconstruction. Second-order
unge–Kutta (RK2) is used for time integration with the CFL number
.33. Also note that despite our shearing-box model lacking explicit
issipation, we refer to it as the direct numerical simulation (DNS). 
We initialize an unmagnetized equilibrium solution with density

nd velocity given by 

= ρ0 exp 

(
− z 2 

2 H 

2 

)
, (6) 

 = −q � x ˆ y , (7) 

here q = 1.5 and ρ0 is the mid-plane ( z = 0) density and 

 = 

c s 

�
(8) 

s the thermal scale height. We set ρ0 = c s = � = 1, so that H = 1.
nless stated otherwise, all the length and time-scales are expressed

n units of H and �−1 , respectively. We initialize a ZNF magnetic
eld given by 

 = 

√ 

2 

β0 
sin 

(
2 πx 

L x 

)
ˆ z (9) 

ith β0 = 10 4 defining the strength of the field and L x , L y , L z denoting
he size of the shearing-box. 

Our computational domain extends from −L x /2 < x < L x /2, −L y /2
 y < L y /2, and −L z /2 < z < L z /2. It has been found in earlier studies

hat shearing box results depend on the domain size; larger boxes tend
o capture dynamo better than their smaller counterparts as well as
maller boxes demonstrate a transition to anomalous behaviour (see
.g. Simon, Beckwith & Armitage 2012 ; Shi et al. 2016 ). To a v oid
hese discrepancies, we choose a shearing box of size L x × L y ×
 z = 3 H × 12 H × 8 H with a grid resolution N x × N y × N z =
6 × 192 × 256 giving rise to a resolution of 32/ H in the vertical
irection. Ho we ver, we must admit that there exists an issue with the
onvergence in stratified ZNF models as discussed in the Section 1 .
e reserve the dependence of MRI dynamo on numerical resolution

s a topic of future research investigation. 
We use periodic and shearing-periodic (Ha wle y et al. 1995 )

oundary conditions in the y and x boundaries, respecti vely. Outflo w
oundary conditions are implemented in the vertical ( z) boundaries.
 gradient-free condition is maintained for scalars and tangential

omponents of vector fields at the boundaries. At the same time, v z 
0 for z > 0 and v z ≤ 0 for z < 0 are set to restrict mass inflow into

he domain at vertical boundaries. The z-component of the magnetic
eld is set by the divergence-free condition of the magnetic field. 
Turbulent dynamo coefficient estimation involves analysis of time

eries of mean magnetic fields and EMFs obtained in shearing box
imulation. Therefore, we dump the data quite frequently with data
umping interval 	 t = 0.2 �−1 and run it till t = 300 �−1 to have
nough number data points in the time series of mean magnetic fields
nd EMFs. 
NRAS 530, 2778–2794 (2024) 
.2 Mean field closure 

efore describing the details of mean field dynamo theory and the
losure used, we define what is meant by ‘mean’ and ‘fluctuation’ in
ur work. We define mean magnetic fields ( B ) as the x − y -averaged
alues as follows: 

¯
 ( z, t) = 

1 

L x L y 

∫ L x / 2 

−L x / 2 

∫ L y / 2 

−L y / 2 
B ( x, y, z, t) d x d y. (10) 

luctuating magnetic fields are defined as 

 

′ ( x , y , z, t) = B ( x , y , z, t) − B̄ ( z, t) . (11) 

ean and fluctuations of the x - and z-components of the velocity are
efined in the same way as those for magnetic fields, while the mean
nd fluctuation of y -component of velocity are defined as 

¯ y = −q�x, v ′ y = v y − v̄ y . (12) 

f we decompose the magnetic and velocity fields into mean and
uctuation and insert them into the magnetic field induction equation,
e obtain the mean-field equation 

∂ ̄B 

∂ t 
= ∇ × (

v̄ × B̄ 

) + ∇ × Ē , (13) 

here we assume that microscopic dif fusi vity is vanishingly small
ideal MHD limit). Here, mean EMF 

¯
 = v ′ × B 

′ (14) 

ppears as a source term in equation ( 13 ). The crux of the mean-field
ynamo theory is how to express mean EMF in terms of the mean
agnetic fields. In general, the usual mean-field closure (Raedler

980 ; Brandenburg & Subramanian 2005 ; Shukurov & Subramanian
021 ) is given by 

¯
 i ( z) = αij ( z) B̄ j ( z) − ηij ( z) J̄ j , (15) 

here we neglect higher than the first-order spatial deri v ati ves
nd time deri v ati ves of mean magnetic fields and αij , ηij are the
urbulent dynamo coefficients which characterize the dynamo, and
 ̄j = εjzl ∂ z B̄ l ( z) is the current. Further, while calculating turbulent
ynamo coefficients using direct methods [e.g. SVD (Bendre et al.
020 ; Dhang et al. 2020 ), linear regression (Shi et al. 2016 ; Squire &
hattacharjee 2016 )], it is also assumed that αij , ηij are constant

n time. Ho we ver, we find that in our simulation of MRI-driven
ccretion flow, the current helicity, which is potentially a primary
omponent determining the αij , shows a reasonably periodic change
 v er time with a period half the dynamo-period (for details, we refer
he reader to Section 3.3 ). This time-dependent feature of current
elicity leads to considering a heuristic mean field closure defined
s 

¯
 i ( z) = 

(
α0 

ij + α1 
ij cos (2 �dyn t + φ) 

)
B̄ j ( z) − ηij J̄ j (16) 

o capture the time dependence in αij . Here, α0 
ij and α1 

ij are the time-
ndependent (i.e. DC component) and time-dependent parts of αij ,
espectively, and �dyn = 2 π f dyn = 2 π / T dyn , with f dyn and T dyn being
he dynamo frequency and period, respectively. Further, one expects
ij to be dominated by a DC component, because ηij -s are generally
etermined by the turbulent intensity of the flow, not by helicities.
hus for simplicity, we adopt a time-independent ηij . 

.3 Dynamo coefficient extraction method – IROS 

e solve equation ( 16 ) in a least-square sense to extract the turbulent
ynamo coefficients ( α0 

ij , α
1 
ij , and ηij ) using mean magnetic fields
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¯
 i ( z, t) and EMFs Ē i ( z, t) (with i ∈ { x , y } ) obtained from shearing-
ox simulations described in Section 2.1 . Further, we assume that 
hese dynamo coefficients stay statistically unchanged during the 
uasi-stationary phase of evolution, i.e. the coefficients are indepen- 
ent of time. Hence, all the dynamo coefficients are only dependent 
n the vertical coordinate z. 
As a first step of coefficient determination in this underdetermined 

ystem, we construct the time series of length N , of mean EMFs
¯
 i ( z, t 1 . . . t N ), mean magnetic fields B̄ i ( z, t 1 . . . t N ), and currents
 ̄i ( z, t 1 . . . t N ) from the DNS ( i ∈ { x , y } ). With these time series,
e rewrite equation ( 16 ) at any particular z = z ′ as 

 ( z ′ , t) = A ( z ′ , t) X ( z ′ ) , (17) 

here the matrices y , A , and x are defined as 

Y ( z ′ , t) = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

E x ( z ′ , t 1 ) E y ( z ′ , t 1 ) 
E x ( z ′ , t 2 ) E y ( z ′ , t 1 ) 

. . . 
. . . 

E x ( z ′ , t N ) E y ( z ′ , t 1 ) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

 T

 ( z ′ , t) = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

B̄ x ( z ′ , t 1 ) B̄ x ( z ′ , t 2 ) . . . B̄ x ( z ′ , t N ) 

B̄ y ( z ′ , t 1 ) B̄ y ( z ′ , t 2 ) . . . B̄ y ( z ′ , t N ) 

C x ( z ′ , t 1 ) C x ( z ′ , t 2 ) . . . C x ( z ′ , t N ) 
C y ( z ′ , t 1 ) C y ( z ′ , t 2 ) . . . C y ( z ′ , t N ) 

−J̄ x ( z ′ , t 1 ) −J̄ x ( z ′ , t 2 ) . . . − J̄ x ( z ′ , t N ) 

−J̄ y ( z ′ , t 1 ) −J̄ y ( z ′ , t 2 ) . . . − J̄ y ( z ′ , t N ) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

X ( z ′ ) = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

α0 
xx ( z 

′ ) α0 
yx ( z 

′ ) 

α0 
xy ( z 

′ ) α0 
yx ( z 

′ ) 

α1 
xx ( z 

′ ) α1 
yx ( z 

′ ) 

α1 
xy ( z 

′ ) α1 
yx ( z 

′ ) 

ηxx ( z ′ ) ηyx ( z ′ ) 

ηxy ( z ′ ) ηyy ( z ′ ) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (18) 

ere, the terms C i ( z ′ , t l ) = B̄ i ( z ′ , t l ) cos (2 �dyn t l + φ) ( ∀ i ∈ { x , y } )
hich take into account the time-dependent part of αij . For simplicity,
e assume φ to be zero. 
Our task is to determine the dynamo coefficients ( x ) by pseudo-

nverting equation ( 17 ). This task is complicated first by the fact that
oth components of mean field and current hav e additiv e correlated
oise and secondly by the fact that the y -component of the mean
eld is typically much stronger compared to the x -component, due 

o the rotational shear (and by consequence the x -component of
urrent is much stronger than its y -component). Typical schemes of
he least square minimization in such cases tend to underestimate 
he dynamo coefficients that are associated with the x -component of
ean field (i.e. the coefficients α0 

ix and α1 
ix ), and those with the y -

omponent of mean current (i.e. the coefficients ηiy ). To circumvent 
hese issues, we rely upon the IROS method (Hammersley et al. 1992 )
hat we have recently adapted for such inversions in the dynamo 
ontext (Bendre et al. 2023 ). This method is based on H ̈ogbom
lean algorithm (H ̈ogbom 1974 ) used in radio astronomy to construct
n image by convolving multiple beams, iteratively locating and 
ubtracting out the strongest source to model the rest of the dirty
mage. It is particularly useful when the relative contribution of 
ome of the beams to the final image happens to be negligible. Such
 situation is analogous to have only a few of the columns of A
the beams) largely contribute to y (an image). A brief outline of the
ethod is as follows. 
First, at any particular z = z ′ we set all the dynamo coefficients
0 
ij ( z 

′ ), α1 
ij ( z 

′ ), and ηij ( z ′ ) to zero, (i.e we set X ( z ′ ) = 0). Then to
ompute these coefficients, we iteratively estimate their magnitudes 
s follows. To derive the zeroth-order estimates of these coefficients 
e fit every i th column of Y ( z ′ , t ) denoted as Y i ( z ′ , t )), against

he individual columns of A ( z ′ ) (denoted as A k ( z ′ )) separately as
ines. Slopes and chi-square errors ( χ2 

ik ( z 
′ )) associated with each

t are recorded. The individual chi-square errors are defined as 
2 
ik ( z 

′ ) = 

∑ 

i ( Y i − A k X ik ) 2 ). Then the best-fitting dynamo coeffi-
ient (the one which has the least chi-square error) is updated by
dding to it its zeroth-order estimate multiplied by a small factor ( ε
 1), called the loop-gain, while other coefficients are kept constant.
 or e xample, if the chi-squared error associated with the line fit
 x ( z ′ , t 1 . . . t N ) versus B̄ y ( z ′ , t 1 . . . t N ) (i.e. χ2 

12 ( z 
′ )) is the least and if

he slope is m then X 2, 1 ( z ′ ) (i.e. α0 
xy ) is updated by adding to it a

actor of m ε. Subsequently, the contribution to the EMF associated
ith the best-fitting coefficient, also multiplied by the ε, is subtracted

rom the corresponding EMF component. For instance, using the 
ame example, a factor of ε αxy ( z ′ ) B̄ y ( z ′ , t 1 . . . t N ) is subtracted from
 x ( z ′ , t 1 . . . t N ). This residual EMF is then used as an actual EMF
omponent to further compute higher order estimates of dynamo 
oefficients, and this process is repeated a suitable number of times
ntil either all the dynamo coefficients converge to their respective 
onstant values or all four chi-squared errors get smaller than a
ertain pre-defined threshold. All the aforementioned steps are then 
epeated at every z = z ′ . 

We apply this method with ε = 0.1 for 500 refinement loops to
he time series of EMFs, mean fields, and currents obtained from the
NS data. While constructing these time series (from t = 100 to 300
−1 ) with data dumping interval 	 t dump = 0.2 �−1 we make sure

hat they correspond to the quasi-stationary phase of the magnetic 
eld evolution. 
The IROS method does not provide an estimate of errors on the

alculated coefficients directly. We therefore calculate a statistical 
rror of the dynamo coefficient by considering the five different 
ealizations of time series. We construct five different time series 
f mean fields, currents, and EMFs by skipping four data points
n the time series. Specifically, the time series ( t 1 , t 2 , . . . t N ) (of all
omponents of mean field, current, and EMF) are split into ( t 1 , t 6 . . . ),
 t 2 , t 7 . . . ), ( t 3 , t 8 . . . ), ( t 4 , t 9 . . . ), and ( t 5 , t 10 . . . ). We use these time
eries to calculate five sets of dynamo coefficients and calculate 
heir standard deviations to represent the errors on the calculated 
oefficients. 

 RESULTS:  SA  T U R A  T I O N  O F  MRI ,  MEAN  

IELDS,  A N D  EMF-S  

e now turn to the results of our shearing box simulation of MRI
n a geometrically thin disc, and investigate its dynamo action in
ddition to discussing several important properties which illuminate 
he nature of the MRI dynamo. Most of our analysis of magnetic
eld generation will focus on the saturated state of MRI, when the
isc is in the quasi-stationary phase. 

.1 Saturation of MRI 

irst, consider the time evolution of accretion stresses and magnetic 
nergies. This will also allow us to determine the quasi-stationary 
hase of the MRI-driven turbulence. The top panel of Fig. 1 shows
he time history of accretion stresses (Reynolds and Maxwell). 
ormalized Reynolds and Maxwell stresses are defined as 
MNRAS 530, 2778–2794 (2024) 
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Figure 1. Top panel: time history of Reynolds ( W Rey ) and Maxwell ( W Max ) 
stresses. Bottom panel: time history of the v olume-a veraged mean ( ̄B 

2 ) and 
fluctuating ( B 

′ 2 ) magnetic energies. 
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 Rey = 

〈 ρv ′ x v ′ y 〉 V 
〈 p g 〉 z , (19) 

 Max = 

〈 ̄B x B̄ y 〉 z + 〈 B 

′ 
x B 

′ 
y 〉 z 

〈 p g 〉 z , (20) 

here the averages are done o v er the whole volume. Here, .̄ and
 . 〉 z indicate the average over x − y and z, respectiv ely. Re ynolds
tress is due to the correlation of fluctuating velocity fields, while
axwell stress is composed of a correlation between the fluctuating

omponents as well as that between the mean components of the
agnetic fields. Both the stresses grow exponentially during the

inear regime of MRI, and eventually saturate around an average
alue when MRI enters into the non-linear regime. In our simulation,
e find the volume- and time-averaged [within the interval t = (100–
00) �−1 )] values of Reynolds and Maxwell stresses to be W Rey, av =
.0048 and W Max, av = 0.0167, respectively. The ratio of Maxwell
o Reynolds stress is W Max, av / W Rey, av = 3.5, close to 4, as predicted
y Pessah, Chan & Psaltis ( 2006 ) for q = 1.5 and similar to what
s found in earlier numerical simulations (Gressel & Pessah 2015 ;
auman & Blackman 2015 ). 
The bottom panel of Fig. 1 sho ws ho w the v olume-a veraged mean

 〈 ̄B 

2 〉 z ) and fluctuating ( 〈 B 

′ 2 〉 z ) magnetic energies evolve over time.
ike accretion stresses, magnetic energies oscillate about an average
alue in the quasi-stationary phase after the initial exponentially
rowing phase. It is also worth noting that the mean part of the
agnetic field shows a larger time variation than the fluctuating part

f the magnetic field. We point out an important point that the fluc-
uating magnetic field is stronger than the mean magnetic field, and
he implication of this will be discussed in the latter part of the paper.

We see in Fig. 1 that the accretion stresses and magnetic energies
tart saturating around t = 40 �−1 . Ho we ver , to remain safer , we
onsider the simulation in the time range t = (100–300) �−1 for
ynamo coefficient calculation in the quasi-stationary state. 

.2 Evolution of mean fields and EMFs 

he most preliminary diagnostic of the dynamo is to look at the
patio-temporal variation of the mean magnetic fields, popularly
NRAS 530, 2778–2794 (2024) 
nown as the butterfly diagram (see e.g. the re vie w by Brandenburg &
ubramanian 2005 ). Fig. 2 shows the butterfly diagrams for mean
agnetic fields B̄ x and B̄ y along with the mean EMFs Ē x and Ē y .
ere, we note that the mean EMF acts as a source term in the
ean magnetic field energy evolution equation. In particular, Ē y is

esponsible for the generation of poloidal field (here B̄ x ) from a
oroidal one due to an α-effect, which itself naturally emerges by
 combined action of stratification and rotation (Krause & Raedler
980 ) in our stratified shearing box simulation. At an early stage of
volution (around t ≈ 2 orbital period), both mean fields and EMFs
how lateral stretches with changing the sign in the vertical direction,
hich is clearly due to channel modes of MRI (Balbus & Ha wle y
992 ; Balbus & Ha wle y 1998 ). During saturation, both mean fields
nd EMFs show a coherent vertical structure which changes signs in
ime with a definite period. We find that magnetic field components
 y and EMF Ē x show a very coherent spatio-temporal variation with
 time period of approximately nine orbital period (2 π / �), similar
o the earlier studies of MRI dynamo (Brandenburg et al. 1995 ;
avis et al. 2010 ; Gressel 2010 ; Gressel & Pessah 2015 ; Ryan et al.
017 ). This periodicity is semitransparent in the butterfly diagram
f B̄ x , while this is hardly apparent for Ē y . Ho we ver, we note that
eriodicities exist in all components of mean fields and EMFs as will
ecome clear below (see section 3.5). 

.3 Evolution of kinetic and current helicities 

he generation of large-scale magnetic fields by a dynamo action is
ften associated with helicity in the fluid velocity field. Assuming
sotropic homogeneous turbulence, Krause & Raedler ( 1980 ) sug-
ested a kinetic α-effect defined by 

kin = − τc 

3 
K hel = − τc 

3 
v ′ . ∇ × v ′ (21) 

esponsible for magnetic field generation, where τ c is the correlation
ime and K hel = v ′ . ∇ × v ′ is the kinetic helicity. It is suggested that
kin accounting for the effects of the helical velocity field takes the

ole of driver, while αmag (Pouquet, Frisch & Leorat 1976 ), defined by 

dyn 
mag ( z, t) = 

τc 

3 
C hel = 

τc 

3 
v ′ A . ∇ × v ′ A , (22) 

s the non-linear response arising due to the Lorentz force feedback,
radually increasing and ultimately quenching the kinetic- α
Blackman & Brandenburg 2002 ; Subramanian 2002 ). Here,
 

′ 
A = 

√ 

B 

′ 2 /ρ is the Alfv`en velocity and C hel = v ′ A . ∇ × v ′ A is
he current helicity . Ideally , the ef fecti ve α-ef fect, responsible for
oloidal field generation, is supposed to be αdyn = αkin + αmag . 
Fig. 3 shows the spatio-temporal variation of αkin and αmag . We

ssume correlation time τ c to be same for both α-s and τ c = �−1 .
he αmag changes sign with a time-period approximately five orbital
eriod (2 π / �), roughly half of the dynamo period, with which the
ean fields and EMFs change sign, while αkin does not show any

xplicit periodicity. We will postpone a detailed discussion on the
eriodicity of helicities to Section 3.5 where we discuss periodicities
ssociated with all important variables. 

.4 Co-existence of small- and large-scale dynamos 

oth kinetic and magnetic- α-s are small close to the mid-plane as
hown in Fig. 3 , while this is not true of the random kinetic and
agnetic energies (see e.g. section 4.1, where we discuss vertical

rofiles of rms value of random fluid velocity and Alfven velocity).
t the same time, the amplitudes of the helicities increase away from

he mid-plane. These features suggest that both small-scale dynamo
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Figure 2. Spatio-temporal variation of mean magnetic fields B̄ x (top left panel) and B̄ y (bottom left panel) and mean EMFs Ē x (top right panel) and Ē y (bottom 

right panel). Mean magnetic field component B̄ y and y-component of EMF Ē x show a coherent change in space and time [with a time period approximately 
nine orbital period (2 π / �)], while the spatio-temporal patterns in B̄ x and Ē y are less coherent. 

Figure 3. Spatio-temporal variation of αdyn 
kin ( z, t) and αdyn 

mag ( z, t) assuming 
τ c = �−1 . Both the helicities are small close to the mid-plane, and become 
lar ger at lar ger heights. The αmag flips sign with a time period approximately 
five orbital period (2 π / �), roughly half the dynamo period, while αkin does 
not show any periodicity. 
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when magnetic field grows because of the random stretching and 
wisting of the magnetic fields due to turbulent fluid motion) and 
arge-scale dynamo (when magnetic field grows under the action 
f helicities) co-exist in MRI-driven dynamo (Blackman & Tan 
004 ; Gressel 2010 ). The MRI-driven small-scale dynamo dominates 
agnetic field generation close to the disc mid-plane where stratifi- 

ation is unimportant and helicities are small. In contrast, at larger
eights where stratification becomes important, and helicities are 
ar ge, a helicity-driven lar ge-scale dynamo go v erns the magnetic field
eneration (Dhang & Sharma 2019 ; Dhang et al. 2020 ). Ho we ver, it
s to be noted that αmag is larger than αkin by one order of magnitude,
nd hence it is very likely that the ef fecti ve- α will be predominantly
ue to αmag . 

.5 Power spectra of mean fields, EMFs, and helicities 

he butterfly diagrams shown in the previous sections depict the 
pparent periodicities of mean fields, EMFs, and helicities. We look 
t the power spectrum defined by 

 q ( f ) = 

1 

z 2 − z 1 

∫ z 2 

z 1 

d z 

∣∣∣∣
∫ 

q̄ ( z, t )e if t d t 

∣∣∣∣
2 

, (23) 

here q̄ ( z, t) is any generic quantity to investigate the periodicities in
reater detail. Here, the spatial average is done over different heights,
amely z = 0 − H , z = H − 2 H , and z = 2 H − 3.5 H to study the
ariation of periodicities at different scale heights. 

Fig. 4 shows the power spectra of mean fields B̄ x , B̄ y (top panels),
ean EMFs Ē x , Ē y (middle panels), and helicities K hel , C hel (bottom

anels). It is noticeable that power spectra for mean fields and
pectra peaks at the primary frequency f dyn = 0.017 � (equi v alent
o approximately nine orbital period), which was also visible in 
he butterfly diagrams. In addition to the primary frequency, the 
ower spectra also show the presence of higher harmonics (at 3 f dyn ),
hich went unnoticed in the earlier works of MRI dynamo. Similarly,
ower spectra of current helicity C hel also show the presence of higher
armonics (at 4 f dyn ) in addition to the primary frequency at 2 f dyn . We
lso note that dynamo frequency remains almost constant at different 
MNRAS 530, 2778–2794 (2024) 
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Figure 4. Power spectra of mean fields B̄ x , B̄ y (top panels), mean EMFs Ē x , Ē y (middle panels), and helicities K hel , C hel (bottom panels). Spatial averages are 
done o v er different heights: z = 0 − H (black lines), z = H − 2 H (green lines), and z = 2 H − 3.5 H (red lines). The zeroth frequency values are denoted by 
‘asterisks’. The vertical dashed lines denote the dynamo frequency f dyn = 0.017 and its multiples. 
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eights. Ho we ver, kinetic helicity does not show any periodicity.
resence of a strong time variation in αmag and its dominance o v er
kin necessarily leads to the expectation that turbulent dynamo coef-
cients ( α − coefficients) should harbour a time-dependent part ( α1 

ij )
long with the traditional time-independent part ( α0 

ij ) as discussed in
ection 2.3 . 

 RESULTS:  DY NA MO  COEFFICIENTS  F RO M  

RO S  

e obtained mean fields ( ̄B x , B̄ y ) and EMFs ( ̄E x , Ē y ) from the
hearing-box simulation and use a modified version of the IROS
ethod (see Section 2.3 ) to calculate time-independent and time-

ependent turbulent dynamo coefficients characterizing the MRI
ynamo. Ho we ver, we find the x − y -averaging cannot remo v e all
NRAS 530, 2778–2794 (2024) 
he signatures of the small-scale dynamo. The small-scale dynamo
s expected to have a shorter correlation time of the order of few �−1 

nd contribute noise at the higher frequency end compared to the
arge-scale dynamo. Therefore, we further smooth the mean fields
nd EMFs using a low-pass Fourier filter and remo v e contributions
rom the frequencies f > f c . We consider three cases: (i) f c = 0.05 �
 ≈3 f dyn ), (ii) f c = 0.12 � ( ≈6 f dyn ), and (iii) f c → ∞ (unfiltered)
o assess the effects of the small-scale dynamo on the dynamo
oefficient extraction. 

.1 Time-independent dynamo coefficients 

ig. 5 shows the vertical profiles of time-independent dynamo
oefficients α0 

ij and ηij for different values of f c . Four pan-
ls at the top illustrate the vertical profiles of coefficients
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Figure 5. Vertical profiles of time-independent turbulent dynamo coefficients ( α0 
ij , η

0 
ij ) in MRI simulation calculated using the IROS method. A low-pass 

Fourier filter with a cut-off frequency f c removes the contribution from the small-scale dynamo. We used two values of f c : f c = 0.05 � and f c = 0.12 �. The 
results are compared to the case when IROS is applied to the unfiltered data obtained from DNS. The shaded regions associated with each line in the plot 
represent ±1 σ statistical error on calculated coefficient as described in Section 2.3 . 
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 α0 
xx , α0 

xy , ηxx , ηxy ) associated with the x-component of EMF
¯
 x , while four panels at the bottom show profiles of those 
 α0 

yx , α0 
yy , ηyx , ηyy ) associated with the y-component of 

MF Ē y . 
The ‘coefficient of most interest’ out of the calculated ones is

0 
yy , which plays a vital role in producing the poloidal field (here

¯
 x ) out of the toroidal field ( ̄B y ) (also see Section 4.4 ) via an α-
ffect, associated with the helicities (see Section 3.3 ). The coefficient 
0 
yy shows an antisymmetric behaviour about the z = 0 plane, with 
 ne gativ e (positiv e) sign in the upper (lower)-half plane (for | z|
 2). For | z| > 2, the sign of α0 

yy tends to be positive (negative)
n the upper (lower)-half plane. Earlier studies of MRI dynamo in 
ocal (Brandenburg 2008 ; Gressel 2010 ; Gressel & Pessah 2015 ) and
lobal (Dhang et al. 2020 ) frameworks also found a similar trend
n α0 

yy . Ho we ver, it is to be noted that our study suggests a stronger
e gativ e α0 

yy in the upper half plane compared to that in the earlier
tudies. The ne gativ e sign in the upper half plane is attributed to
he buoyant rise of magnetic flux tubes under the combined action 
f magnetic buoyancy and shear (Brandenburg & Schmitt 1998 ; 
randenburg & Subramanian 2005 ; see also Tharakkal et al. 2023 ).
randenburg & Schmitt ( 1998 ) also suggested that ne gativ e αyy is
esponsible for the upward propagation direction of dynamo waves 
een in the butterfly diagrams of MRI-driven dynamo simulations 
see e.g. Fig. 2 ). Another different way of looking at the origin of the
f fecti ve α is to link it to the helicity flux as envisaged by Vishniac
 2015 ) and Gopalakrishnan & Subramanian ( 2023 ). We discuss this
ossibility in Section 5.3 . 
The off-diagonal terms of the α-coefficients are related to turbulent 

umping. This effect is responsible for transporting large-scale 
agnetic fields from the turbulent region to the laminar region. 
e found α0 

xy and α0 
yx to be antisymmetric and α0 

xy > α0 
yx unlike 

he previous studies (Brandenburg 2008 ; Gressel & Pessah 2015 )
hich found α0 

yx ≈ α0 
xy . This resulted in a strong turbulent pumping 

z = ( α0 
yx − α0 

xy ) / 2, transporting large-scale magnetic fields from 

he disc to the corona as shown in the top panel of Fig. 6 . We also
ompare the relative importance of turbulent pumping ( γ z ) and wind
 ̄v z ) in advecting the magnetic field upwards (in the upper half-plane)
t different heights. The vertical profiles of γ z and v̄ z in the top panel
f Fig. 6 shows that at low heights ( | z| < 2.5), turbulent pumping is
he dominant effect o v er the wind, while the effects of wind become
MNRAS 530, 2778–2794 (2024) 
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Figure 6. Top panel: profiles of turbulent pumping ( γ z ) and mean vertical 
outflow ( ̄v z ). They act in the same direction, transporting mean fields vertically 
outwards. Bottom panel: vertical profiles of average fluctuating velocity ( v ′ 2 ) 
and fluctuating Alfven speed v ′ 2 A = B 

′ 2 / ρ. Minimal τ approximation and 

profiles of v ′ 2 , v ′ 2 A suggest similar sign of γ z as calculated using IROS. 
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omparable or larger than the pumping term at large scale heights
see also section 4.4). 

The theory of isotropic kinematically forced turbulence predicts
hat γ z is supposed to be in the direction of ne gativ e gradient of
urbulent intensity ( v 

′ 2 ) (Krause & Raedler 1980 ), that is, in the
e gativ e z-direction (in the upper half plane) in our simulation. This
s opposite to what has been found in Fig. 6 . Ho we ver, it is to be
oted that MRI turbulence in a stratified medium is neither isotropic
or homogeneous. Minimal τ -approximation (MTA) suggests that in
 stratification and rotation-induced anisotropic turbulent medium,
hich includes the quasi-linear back reaction due to Lorentz forces, 

MTA 
z = −1 

6 
τ∇ z ( v ′ 2 − B 

′ 2 ) − 1 

6 
τ 2 �ˆ z × ∇ z ( v ′ 2 + B 

′ 2 ) , (24) 

here τ is the correlation time and it is assumed that ρ = 1 (see
quation 10.59 in Brandenburg & Subramanian 2005 ). The last term
n equation ( 24 ) vanishes because all the variables are functions of
 alone. Therefore, equation ( 24 ) together with the bottom panel of
ig. 6 illustrating the vertical profiles of v ′ 2 and v ′ 2 A imply that sign of

urbulent pumping obtained from MTA supports that obtained from
xtracted dynamo coefficients. 

We found turbulent diffusion tensor ηij to be anisotropic with ηxx 

 ηyy and having a significant contribution from the off-diagonal
omponents ηxy and ηyx . Different values of diagonal components
f ηij imply that mean field components B̄ x and B̄ y are affected
ifferently by the vertical diffusion (also see Section 4.4 ). It is worth
entioning that ηyy ≈ 0 for the f c = 0.05 case, while it is slightly

e gativ e for the other two cases. This is some what dif ferent from
he earlier studies (Gressel 2010 ; Gressel & Pessah 2015 ), which
alculated dynamo coefficients using the TF method and found ηxx 

ηyy > 0. Out of the two off-diagonal terms of the diffusion tensor,
yx is of particular interest. It is suggested that a ne gativ e value of
NRAS 530, 2778–2794 (2024) 
yx can generate poloidal fields by the shear-current effect (Squire &
hattacharjee 2016 ). Ho we ver, we find ηyx to be al w ays positive,
ullifying the presence of a shear-current effect in our stratified MRI
imulation. 

Finally, we discuss the effects of filtering the time series of mean
agnetic fields and EMFs on the extracted dynamo coefficients.
ig. 5 illustrates how the dynamo coefficients vary if we filter out the
ontribution abo v e a cut-off frequenc y f c with (i) f c = 0.05 � ( ≈3 f dyn ),
ii) f c = 0.12 � ( ≈6 f dyn ), and (iii) f c → ∞ (unfiltered). Broadly
peaking, while the coefficients ( α0 

xx , α
0 
yx , ηxy , ηyy ) associated with

¯
 x and its deri v ati ve in the mean-field closure (equation 16 ) show

arger variations at higher heights with f c , those ( α0 
xy , α

0 
yy , ηxx , ηyx )

ssociated with B̄ y and its deri v ati ve are less affected by the filtering
rocess. Especially, ηyy tends to be more positive with f c = 0.05,
hich is more desirable. To summarize, filtering out the time series
f mean magnetic fields and EMFs helps to remo v e the signature of
he small-scale dynamo and to obtain noise free coefficients. 

.2 Time-dependent dynamo coefficients 

e discussed the time-dependent nature of αmag in the previous
ections. Ef fecti ve α-ef fect is expected to be determined by αmag ,
specially at the larger scale heights where it is of larger amplitude.

hile α tensor is expected to have the time-dependent part, η-tensor
s supposed to have only the time-independent part, as it only depends
n the turbulent intensity (see Section 2.3 ). Fig. 7 shows the vertical
rofiles of time-dependent α-tensor components for the fiducial f c =
.05 � case. For comparison, we also plot vertical profiles of the
ime-independent α −s in Fig. 7 . We find that the coefficients αxx 

nd αyx associated with B̄ x in the mean-field closure (equation 16 )
ave stronger time-dependence compared to those coefficients ( αxy 

nd αyy ) associated with B̄ y . Overall, the amplitudes of α1 
ij are

uch smaller than the α0 
ij implying that the time-independent α

s are predominantly go v erning the dynamo action. Additionally,
e observed that (not shown in Fig. 7 ) α1 

ij -s in the fiducial case ( f c =
.05) are relatively smaller than the other two cases ( f c = 0.12 and
nfiltered). 

.3 Verification of method 

o verify the reliability of the determined dynamo coefficients we
econstruct the EMFs using the calculated coefficients and run a 1D
ynamo model. 

.3.1 Reconstruction of EMFs 

ig. 8 shows butterfly diagrams of the EMFs ( ̄E x,f , Ē y,f ) used
o determine the turbulent dynamo coefficients and the EMFs
 ̄E x,r , Ē y,r ) reconstructed using calculated coefficients and mean
elds for f c = 0.05. Here, it is to be noted that Ē x,f , Ē y,f are the
moothed EMFs obtained by filtering (using a low-pass filter) EMFs
¯
 x , Ē y from DNS, respectively. We can see a close match between

he broad features, such as the dynamo cycle period, in the smoothed
nd reconstructed EMFs, implying the goodness of fit. 

Further , we in vestigate the residual of the filtered and reconstructed
MFs, defined by 

Ē i = Ē i,f − Ē i,r , i ∈ x , y . (25) 

ig. 9 shows the histograms of the normalized residuals δĒ x / | ̄E x |
nd δĒ y / | ̄E y | calculated within the region of different heights,
amely between 0 − H , H − 2 H , and 2 H − 3 H , for the f c =
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Figure 7. Vertical profiles of time-dependent turbulent dynamo coefficients ( α1 
ij ) in MRI simulation calculated using the IROS method for f c = 0.05. The 

shaded regions associated with each line in the plot represent ±1 σ statistical error on calculated coefficient as described in Section 2.3 . The time-dependent α
−s are compared to time-independent α − for the same value of cut-off frequency f c = 0.05 �. Smaller amplitudes of α1 

ij compared to that of α0 
ij implies that 

that the time-independent α −s are predominantly go v erning the dynamo action. 

Figure 8. Left panels: comparison between x-component of EMF Ē x,f used to determine the turbulent dynamo coefficients, and EMF Ē x,r reconstructed using 
the turbulent dynamo coefficients. Right panels: same as figures in left panels, but for the y-component of EMF. 
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M

Figure 9. Histograms of the residual EMFs, δĒ i = Ē i,f − Ē i,r calculated within region of different heights for f c = 0.05 case. We normalize δĒ i with the 
absolute values of the corresponding EMFs at the respective points. The red dashed line shows a normal distribution fitting the histogram. 

Figure 10. Butterfly diagrams of the mean magnetic fields B̄ x and B̄ y 

obtained by running 1D dynamo model. Both B̄ x and B̄ y flip sign regularly 
with a cycle of approximately nine orbital period, similar to that found in 
shearing box simulations (see Fig. 2 ). 
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.05 � case. All the histograms peak about the region close to zero.
o we ver, a Gaussian fit of the histograms shows that the mean of

he distribution al w ays deviates from zero. Additionally, a careful
omparison of histograms of δĒ x / | ̄E x | and δĒ y / | ̄E y | tells that fit is
etter for Ē x than that for Ē y , especially at larger scale heights. Better
uality fit for Ē x o v er Ē y is e xpected as Ē x obtained from DNS
hows a more regular, coherent space-time variation when compared
o Ē y . 

.3.2 1D dynamo model 

e additionally run a 1D dynamo model using the calculated
ynamo coefficients and mean velocity field v̄ z . In particular we
olve equation ( 13 ), or in component form 

∂ ̄B x 

∂ t 
= 

∂ 

∂ z 

[
−( ̄v z + α0 

yx ) ̄B x − α0 
yy B̄ y + ηyy 

∂ ̄B x 

∂ z 
− ηyx 

∂ ̄B y 

∂ z 

]

∂ ̄B y 

∂ t 
= 

∂ 

∂ z 

[
−( ̄v z − α0 

xy ) ̄B y − α0 
xx B̄ x + ηxx 

∂ ̄B y 

∂ z 
− ηxy 

∂ ̄B x 

∂ z 

]
+ q� B̄ x . (26) 
NRAS 530, 2778–2794 (2024) 
or B̄ x and B̄ y with α0 
ij and ηij obtained using the IROS method. We

ote that B̄ z = 0 as a consequence of the ZNF assumption in our
odel. The initial profiles of B̄ x and B̄ y are taken directly from the
NS, at time t = 100 �−1 roughly consistent with the beginning of

he quasi-stationary phase in the DNS. The vertical profile of v̄ z is
aken as a constant throughout the evolution and is also extracted from
he direct simulations by averaging it o v er time throughout the quasi-
tationary phase, o v er which it roughly stays constant. Additionally,
or the profiles of dynamo coefficients α0 

ij ( z) and ηij ( z), we first
mooth them with a box filter and also cut them off abo v e and below
hree scale heights, and use them in the 1D dynamo model. We do this

ainly to a v oid the numerical instability at boundaries noting that
hese profiles are sharply flayed outside of that range. Note that only
he time-independent parts of the dynamo coefficients are used in
he mean field equations, since the contributions of α1 

ij are negligible
ompared to the time-independent part. 

Furthermore, it must be noted that there is a contribution to the
iffusion from the mesh grids. We do a rough estimation of numerical
iffusion as follows: η0 = v ′ rms 	x, where we consider the smallest
ne among the rele v ant velocities ( v ′ rms , c s , v A ) in the problem.
herefore, we add a correction term η0 ≈ 10 −3 (with 	 x = 1/32
nd v ′ rms = 0 . 1) to the diagonal components of dif fusi vity tensor ηij 

o consider the contribution from the mesh to the magnetic field
iffusion. This also helps us to stabilize the 1D dynamo solution. 
With this set-up, we solve the system of equations (equation 26 )

ith a finite difference method o v er a staggered grid of resolution
z = 1/32, same as the z resolution of DNS. The outcome of this

nalysis is presented in Fig. 10 , where the top and bottom panels
how the butterfly diagrams of B̄ x and B̄ y obtained using the 1D
ynamo model, respectively. We find both x and y-components
f mean fields flip sign regularly with a cycle of approximately
ine orbital period, similar to what is found in DNS (see Fig. 2 ).
hus, applying calculated coefficients to the 1D dynamo model
uccessfully reproduces broad features of spatio-temporal variations
ean magnetic fields. 

.4 Mean magnetic energy equations 

t is challenging to calculate dynamo coefficients uniquely in the
resence of both shear and rotation (Brandenburg et al. 2008 ) as there
re many unknowns (see also discussion in Section 5.4 ). Therefore,
t is worth seeing ho w dif ferent terms involving turbulent dynamo
oefficients contribute to the mean magnetic energy equation to make
hysical sense. The mean magnetic energy evolution equation is ob-
ained by taking the dot product of the mean-field equation (equation
3 ) with the mean magnetic field B and given by 

∂ 

∂ t 

(
1 

2 
B̄ 

2 
x 

)
= T B x ,v z + T αyx 

+ T αyy 
+ T ηyx 

+ T ηyy 
, (27) 
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∂ 

∂ t 

(
1 

2 
B̄ 

2 
y 

)
= T B y ,v z + T αxy 

+ T αxx 
+ T ηxy 

+ T ηxx 
+ T S , (28) 

here 

T B x ,v z = −1 

2 
B̄ x 

∂ 

∂ z 

(
v̄ z B̄ x 

)
, 

T αyx 
= −1 

2 
B̄ x 

∂ 

∂ z 

(
αyx B̄ x 

)
, 

T αyy 
= −1 

2 
B̄ x 

∂ 

∂ z 

(
αyy B̄ y 

)
, 

T ηyx 
= −1 

2 
B̄ x 

∂ 

∂ z 

(
ηyx 

∂ 

∂ z 
B̄ y 

)
, 

T ηyy 
= 

1 

2 
B̄ x 

∂ 

∂ z 

(
ηyy 

∂ 

∂ z 
B̄ x 

)
, 

T B y ,v z = −1 

2 
B̄ y 

∂ 

∂ z 

(
v̄ z B̄ y 

)
, 

T αxy 
= 

1 

2 
B̄ y 

∂ 

∂ z 

(
αxy B̄ y 

)
, 

T αxx 
= 

1 

2 
B̄ y 

∂ 

∂ z 

(
αxy B̄ y 

)
, 

T ηxy 
= −1 

2 
B̄ y 

∂ 

∂ z 

(
ηxy 

∂ 

∂ z 
B̄ x 

)
, 

T ηxx 
= 

1 

2 
B̄ y 

∂ 

∂ z 

(
ηxx 

∂ 

∂ z 
B̄ y 

)
, 

T S = 

1 

2 
q� B̄ x B̄ y . (29) 

Fig. 11 shows the space-time plots of different terms involving 
ean flow ( ̄v z ) and turbulent dynamo coefficients ( αij , ηij ) in the
ean magnetic energy evolution equations. The top six panels in 
ig. 11 describe the terms in the x-component of the magnetic energy
quation (equation 27 ), while the bottom seven panels illustrate terms
n the y-component of the magnetic energy equation ( 28 ) at different
eights and times. 
Fig. 11 provides a fairly complicated picture to account for the 

eneration-diffusion scenario of the mean magnetic fields. Broadly 
peaking, the poloidal field ( ̄B x ) is predominantly generated by an 
-effect (the term T αyy 

in Fig. 11 ). However, there is a significant
ontribution from αyx (the term T αyx 

in Fig. 11 ) in generating B̄ x in
arger scale heights. Toroidal field generation is mainly due to the 
resence of shear, here differential rotation ( T S in Fig. 11 ), which
onverts poloidal fields into the toroidal fields. Ho we ver, it is worth
oting that there is a minute contribution from the αxx , generating a
oroidal field out of the poloidal field by an α-effect (as in an α2 –�

ynamo). The dominance of α-effect in generating a poloidal field 
nd that of �-effect (shear) in generating a toroidal field imply the
resence of an α–�-type dynamo in MRI-driven geometrically thin 
ccretion disc. This is similar to what has been found in the study
f the dynamo in an MRI-driven geometrically thick accretion disc 
Dhang et al. 2020 ), implying universal action of α–�-dynamo in 

RI-driven accretion flows. 
Generally, it is expected that diagonal components of the diffusion 

ensor, ηyy and ηxx , are primarily responsible for the diffusion of B̄ x 

nd B̄ y , respecti vely. Ho we ver, our simulation finds that winds carry
ean fields out of the computational box and act as a sink in the
ean magnetic energy evolution equation, not the η-s. 
 DI SCUSSI ON  

.1 Periodicities in the dynamo cycle 

nvestigations of spatio-temporal variation of dif ferent v ariables in 
ur stratified shearing box simulations show a diverse range of 
eriodicities. We observed that mean magnetic fields and EMFs 
scillate with a primary frequency f dyn = 0.017 (equi v alent to
ine orbital periods), similar to what was found in earlier studies
Brandenburg et al. 1995 ; Gammie 1996 ; Davis et al. 2010 ; Gressel
010 ; Ryan et al. 2017 ). The primary frequency is determined
y the ef fecti ve dispersion relation of the α–� dynamo (see e.g.
quation 6.40 in Brandenburg & Subramanian 2005 and section 
.2 in Gressel & Pessah 2015 ) with the α dominated by the time-
ndependent (DC) value of αyy . The plausible origin of this DC value
f αyy is discussed below in Section 5.3 . 
Additionally, we observed the presence of higher harmonics at 

 f dyn , which went unnoticed in earlier MRI simulations (see Section
.5 ). Unlike the mean fields and EMFs, current helicity shows
eriodicities at different frequencies 2 f dyn and 4 f dyn , respectively.
he presence of the frequencies in the mean EMFs, mean fields, and
urrent helicities can be understood better if we follow the magnetic
elicity density evolution equation (see e.g. Blackman & Field 2000 ;
ubramanian & Brandenburg 2006 ; Kleeorin & Rogachevskii 2022 ; 
opalakrishnan & Subramanian 2023 ), 

1 

2 

∂ h 

b 

∂ t 
= −Ē · B̄ − η0 C hel − 1 

2 
∇ · F H 

, (30) 

here h b = 〈 A 

′ . B 

′ 〉 is magnetic helicity density, A 

′ is the fluctuating
ector potential, and F H 

is the helicity flux. Roughly speaking, 
agnetic helicity is related to current helicity (and αmag , see equation

2 ) by some length-scale and therefore we can investigate equation
 30 ) to shed light on the time variation of current helicity. 

The component of the EMF along the mean magnetic field 
enerates mean magnetic and associated current helicities. Now to 
onsider the effect of the DC term in αyy , we assume that this is
he dominant term in generating the poloidal field, which is a valid
pproximation, as we noted in Section 4.4 (also see Fig. 11 ). Then,
¯
 . ̄B ≈ α0 

yy B̄ 

2 
y , which is a source term in equation ( 30 ). Now, e.g.

or simplicity, if we assume B̄ y ∼ sin (2 πf dyn t), then magnetic and
urrent helicities, which are ∝ B̄ 

2 
y , will have primary frequency of

 f dyn . This explains the generation of magnetic and current helicities
t a primary frequency, twice that of B̄ y , i.e. 2 f dyn . This current
elicity can now add to the α-effect, which combined with the mean
eld in the dynamo equation ( 13 ) can lead to secondary EMF and
ean fields components oscillating at 3 f dyn which in turn sources

elicity components at 4 f dyn and so on. These primary and secondary
requency components, limited by noise, are indeed seen from the 
nalysis of our simulations. 

.2 Dynamo coefficients, comparison with earlier studies 

arlier studies calculating turbulent dynamo coefficients using the 
imulation data and the mean field closure (equation 16 ) in the
ocal (Brandenburg et al. 1995 ; Brandenburg 2008 ; Gressel 2010 ;
ressel & Pessah 2015 ; Shi et al. 2016 ) and global (Flock et al.
012 ; Hogg & Reynolds 2018 ; Dhang & Sharma 2019 ; Dhang
t al. 2020 ) simulations of MRI-driven accretion discs used different
ethods. Earlier local (Brandenburg et al. 1995 ; Davis et al. 2010 )

nd most of the global (Flock et al. 2012 ; Hogg & Reynolds 2018 )
tudies calculated only the ‘coefficient of interest’ αφφ ( α − effect) 
y neglecting the contributions of other terms in the mean-field 
MNRAS 530, 2778–2794 (2024) 
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Figure 11. Contributions of different terms involving mean flow ( ̄v z ) and turbulent dynamo coefficients ( αij , ηij ) to the x-(top six panels) and y-(bottom seven 
panels) components of mean magnetic energy evolution equation (equations 27 and 28 ). Each term in the poloidal and toroidal magnetic energy equations are 
multiplied by the factors 10 6 and 10 4 , respectively. Poloidal field ( ̄B x ) generation is primarily attributed to an α-effect (the term T αyy ), while shear (the term T S ) 
dominates the toroidal field generation, thus implying an α–�-type of dynamo. Winds carry mean fields out of the computational box and contribute largely as 
the sink term in the mean magnetic energy evolution equation. 
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losure. Many of the local studies (Brandenburg 2008 ; Gressel 2010 ;
ressel & Pessah 2015 ) use the linear TF method during the run-

ime to calculate all the coef ficients. A fe w local (e.g. Shi et al. 2016 ;
issing et al. 2022 ; Zier & Springel 2022 , this work) and global

Dhang et al. 2020 ) studies used direct methods to quantify dynamo
oef ficients. Ho we ver, it is important to note that while several
uthors used a linear regression method assuming few constraints
n the diffusion coefficients (namely, ηxx = ηyy ), we use the IROS
ethod without any constraints on the coefficients. 
Like most of the earlier local and global studies, we find a ne gativ e

yy close to the mid-plane in the upper half-plane. Ho we ver, direct
NRAS 530, 2778–2794 (2024) 
ethods seem to capture ne gativ e signs better than TF, which can
e realized by comparing αyy profiles in our work (also in Shi et al.
016 and in Gressel 2010 ). Additionally, we find stronger turbulent
umping (compared to that in the TF method), transporting large-
cale magnetic fields from the disc to the corona, similar to that found
n global MRI-dynamo studies (Dhang et al. 2020 ). 

Additionally, for the first time, we ventured to calculate the time-
ependent part of αij inspired by the periodic behaviour of αmag .
o we ver, we found that the amplitudes of the time-dependent part
f α −s ( α1 

ij ) are much smaller than that of the time-independent α
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Figure 12. Vertical profiles of α0 
yy (for f c = 0.05 case) obtained from IROS 

inversion and ( α0 
yy ) h c , expected from helicity flux. 
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s ( α0 
ij ). Therefore, we suspect that the time-independent α −s are 

redominantly go v erning the dynamo action. 
Dif fusi vity coef ficients ηij in our work are found to be quite

ifferent from that in the earlier local studies (Brandenburg 2008 ; 
ressel 2010 ; Gressel & Pessah 2015 ; Shi et al. 2016 ), with ηxx �=

yy and ηyy ≈ 0. Several earlier studies (Shi et al. 2016 ; Zier &
pringel 2022 ) found ηyx < 0 in their unstratified and stratified
RI simulations after imposing a few constraints on the coefficients 

e.g. ηyy = ηxx , ηxy = 0, etc.) and they proposed shear-current 
ffect (Raedler 1980 ; Rogachevskii & Kleeorin 2004 ; Squire & 

hattacharjee 2016 ) generating poloidal fields in addition to α-effect. 
ecently, Mondal & Bhat ( 2023 ) carried out statistical simulations
f MRI in an unstratified ZNF shearing box and found ηyx < 0
roposing ‘rotation- shear-current effect’ and the ‘rotation-shear- 
orticity effect’ responsible for generating the radial and vertical 
agnetic fields, respecti vely. Ho we ver, like some other studies

TF: Brandenburg 2008 ; Gressel 2010 ; Gressel & Pessah 2015 ,
PH:Wissing et al. 2022 ), we find ηyx ≥ 0, unless we impose a
onstraint on ηyy being a positive fraction of ηxx . If we assume ηyy =
 η ηxx while calculating the coefficients, we find negativity of ηyx is 
n increasing function of the factor f η (see Fig. A1 and Appendix).
o we ver, we find that the quality of fit is compromised slightly and
istograms of the residual of filtered (input) and reconstructed EMFs 
et broader (with higher standard deviation) with the assumption 
yy = f η ηxx . We refer the reader to see Appendix for details. 

.3 Helicity flux and the DC α-effect 

he coefficient α0 
yy represents the α-effect responsible for poloidal 

agnetic field generation out of the toroidal field. We found an 
ntisymmetric profile of α0 

yy about the disc-mid-plane similar to the 
arlier studies (see e.g. Brandenburg 2008 ; Gressel 2010 ). Ho we ver,
t is to be noted that understanding of the physical mechanism deter-
ining the vertical profile of α0 

yy is incomplete. E.g. Brandenburg & 

chmitt ( 1998 ) proposed a buoyanc y-driv en dynamo to explain the
e gativ e sign of αyy in the upper half plane. Here, we propose a
ifferent way of looking at the origin of α-effect by connecting it to
 generative helicity flux. 

In order to understand the DC value (time-independent) of the 
-effect, we take the time average of equation ( 30 ). The term ∂ h b / ∂ t 

verages to zero, and one gets the well-known constraint (Blackman 
016 ; Shukurov & Subramanian 2021 ) 

 ̄E · B̄ 〉 = −η0 〈 C hel 〉 − 1 

2 
∇ · 〈 F H 

〉 , (31) 

here 〈〉 indicates a time average. This shows that in the absence
f helicity fluxes, the average EMF parallel to the mean field, 
esponsible for the generation of poloidal from the toroidal mean 
eld, is resistively (or catastrophically) quenched. Of the several 
elicity fluxes discussed in the literature, the generative helicity 
uxes as envisaged in Vishniac ( 2015 ) and in Gopalakrishnan &
ubramanian ( 2023 ) can source the DC component of Ē · B̄ without 

he pre-existence of any mean field or initial helicities. Using 
quation (17) of Gopalakrishnan & Subramanian ( 2023 ), with mean 
orticity �(2 − q ) ̂ z and noting that αyy B̄ 

2 
y dominates Ē · B̄ , we 

stimate 

 α0 
yy ) h c ≈ − �τ 2 

4 〈 ̄B 

2 
y 〉 

[(
C 1 v 

′ 2 
A + C 3 v 

′ 2 + C 4 
λ2 

τ 2 

)
∂ b ′ 2 

∂ z 
+ C 2 b 

′ 2 ∂ v 
′ 2 

∂ z 

]
, 

(32) 

here ( C 1 , C 2 , C 3 , C 4 ) = (7/45, −203/5400, 403/8100, −1/6) and
e have taken q = 3/2. Adopting estimates for the correlation time
∼ �−1 , correlation length λ ∼ H /2, and using the vertical profiles 
f various physical variables from the simulation, we calculate the 
ertical profile of 

(
α0 

yy 

)
h c 

due to the generative helicity flux. This 
s shown as a solid line in Fig. 12 and for comparison, we also
how 10 α0 

yy (for f c = 0.05 case) from the IR OS in version. It is
ncouraging that the ( α0 

yy ) h c predicted by the generative helicity flux
s ne gativ e in the upper half plane of the disc and has a qualitatively
imilar vertical profile as that determined from IROS inversion. The 
mplitude, ho we ver , is larger , which perhaps indicates the importance
lso of the neglected dif fusi ve and advective helicity fluxes which
ct as sink terms in equation ( 31 ). 

.4 Vanishing ηyy , missing information? 

n Section 4.4 we pointed out that wind carries away the mean
agnetic field and acts as the ef fecti ve sink of its energy. Ho we ver,

he poloidal field is also expected to be diffused by ηyy , and a positive
yy is required for diffusion. Instead, we find a vanishingly small (in
ome re gions ev en ne gativ e) ηyy , which leads us to two possible
houghts: either it is impossible to reco v er ηyy in the direct methods,
r there is incompleteness in the closure we used to retrieve the
oefficients. Here, we discuss both possibilities. 

It is clear from equation ( 16 ) that the turbulent diffusion coeffi-
ients are associated with the currents, which are calculated by taking
he z-deri v ati ve of mean magnetic field components. Calculating
eri v ati ve makes the currents noisy, especially J y , as it involves a
eri v ati ve of B̄ x , which is fairly incoherent over space and time, as
an be seen from the butterfly diagram of B̄ x (Fig. 2 ). Additionally,
lso note that the y -component of EMF is also noisy. Thus, the
oefficients associated with J y and Ē y turned out to be error-prone 
nd difficult to calculate. This pattern has been noticed by earlier
orks (Squire & Bhattacharjee 2016 ), which used direct methods 
ther than IROS, used in this work. 
In general, mean EMF can be expressed in terms of symmetric,

ntisymmetric tensors and mean fields as follows: 

¯
 i = ˜ αij B̄ j + 

(
˜ γ × B̄ 

)
i 
− ˜ ηij J̄ j −

(
˜ δ × J̄ 

)
i 
− ˜ κijk 

∂ ̄B j 

∂ x k 
, (33) 

here we neglect the higher than first-order spatial deri v ati ves and
ime deri v ati ves of mean fields (Raedler 1980 ; Brandenburg &
ubramanian 2005 ; Schrinner et al. 2007 ; Simard, Charbonneau &
ub ́e 2016 ). The coefficients ˜ α and ˜ γ represent the symmetric and
MNRAS 530, 2778–2794 (2024) 
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ntisymmetric parts of αij tensor in equation ( 13 ). The coefficients ̃  αij 

s related to αxx and αyy , while ˜ γ represents turbulent pumping. The
erm ˜ η is a rank-two tensor representing dif fusi vity. The coef ficient
˜ is interpreted as a magnetic field generating term (Raedler 1980 ).

he ˜ κ-term is a third-rank tensor having a complicated influence on
ean fields. 
If we define mean fields and EMFs as the x − y -averaged quantities,

hen mean field closure reduces to equation ( 15 ). The symmetrized
oefficients in equation ( 33 ) and non-symmetrized coefficients in
quation ( 15 ) are related as 

˜ αxx = αxx , 

˜ αyy = αyy , 

˜ γz = 

1 

2 

(
αyx − αxy 

)
, 

˜ ηxx + ˜ κxyz = ηxx , 

˜ ηyy − ˜ κy x z = ηyy , 

˜ δz = 

1 

2 

(
ηxy − ηyx 

) + 

1 

2 

(
˜ κx x z + ˜ κyyz 

)
. (34) 

herefore, it is evident from equation ( 34 ) that it is impossible to
ecouple a few coefficients (coefficients in the last three identities)
s there are more unknown coefficients than independent variables
 ̄B , Ē ) and the actual dif fusion coef ficients ( ̃  ηij ) might be different
rom the calculated ones ( ηij ). 

 SUMMARY  

e carried out stratified ZNF shearing-box simulations of MRI
sing ideal MHD approximation. We characterized the MRI-driven
ynamo using the language of mean field dynamo theory. The
urbulent dynamo coefficients in the mean-field closure are calculated
sing the mean magnetic fields and EMFs obtained from the shearing
ox simulation. For this purpose, we used a cleaning (or inversion)
lgorithm, namely IROS, adapted to extract the dynamo coefficients.
e verified the reliability of extracted coefficients by reconstructing

he EMFs and reproducing the cyclic pattern in mean magnetic fields
y running a 1D dynamo model. Here, we list the key findings of our
ork: 

(i) We find that mean fields and EMFs oscillate with a primary
requency f dyn = 0.017 � (approximately nine orbital period).
dditionally, the y hav e higher harmonics at 3 f dyn . Current helicity
mag has two frequencies: 2 f dyn and 4 f dyn . These frequencies can
e understood from mean-field dynamo ef fecti ve dispersion relation
nd helicity density e volution equation, respecti vely (for details, see
ection 5.1 ). 
(ii) Our unbiased inversion and subsequent analysis show that an

-effect ( αyy ) is predominantly responsible for the generation of
oloidal field (here B̄ x ) from the toroidal field ( ̄B y ). The differential
otation creates a toroidal field from the poloidal field completing
he cycle, indicating that an α–�-type dynamo is operative in MRI-
riven accretion disc. 
(iii) We find encouraging evidence that the effective DC α-effect

an be due to a generative helicity flux (Section 5.3 ). 
(iv) We find that strong wind ( ̄v z ) and turbulent pumping ( γ z )

arry out mean fields away from the mid-plane. Interestingly, they
ct as the principal sink terms in the mean magnetic energy evolution
quation instead of the turbulent dif fusi vity terms. 

(v) The unbiased inversion finds an almost vanishing ηyy , while
xx and ηyx are positive. Although ηyx and ηyy are strongly correlated,

f one imposes an arbitrary prior that ηyy = f ηηxx , then one finds, for
ncreasing f η, an increasingly ne gativ e ηyx which has been interpreted
NRAS 530, 2778–2794 (2024) 
s evidence of shear-current effect for generating poloidal fields (see
ppendix A ). 
(vi) We point out that defining mean fields by planar averaging can

ecessarily introduce de generac y in determining all the turbulent dy-
amo coefficients uniquely. This may have important consequences
or the physical interpretation of the dynamo coefficients (see Section
.4 ). 

C K N OW L E D G E M E N T S  

e thank Prateek Sharma, Oliver Gressel, Dipankar Bhattacharya,
nd Xuening Bai for valuable discussions on numerical set-up,
ynamo, and IROS. We especially thank Dmitri Udzensky for his
areful comments on the manuscript. We also thank the anonymous
eferee for useful suggestions which impro v e the clarity of the paper.
ll the simulations are run using the Computing facility at IUCAA. 

ATA  AVAI LABI LI TY  

he data underlying this article will be shared on reasonable request
o the corresponding author. 

EFERENCES  

ai X.-N. , Stone J. M., 2013, ApJ , 767, 30 
albus S. A. , Ha wle y J. F., 1991, ApJ , 376, 214 
albus S. A. , Ha wle y J. F., 1992, ApJ , 392, 662 
albus S. A. , Ha wle y J. F., 1998, Rev. Mod. Phys. , 70, 1 
eckwith K. , Armitage P. J., Simon J. B., 2011, MNRAS , 416, 361 
egelman M. C. , Armitage P. J., 2023, MNRAS , 521, 5952 
endre A. B. , Subramanian K., Elstner D., Gressel O., 2020, MNRAS , 491,

3870 
endre A. B. , Schober J., Dhang P., Subramanian K., 2023, MNRAS , preprint

( arXiv:2308.00059 ) 
hat P. , Ebrahimi F., Blackman E. G., 2016, MNRAS , 462, 818 
lackman E. G. , 2016, in Balogh A., Bykov A., Eastwood J., Kaastra

J.eds, Vol. 51, Multi-scale Structure Formation and Dynamics in Cosmic
Plasmas. Springer Science + Business Media, New York, p. 59 

lackman E. G. , Brandenburg A., 2002, ApJ , 579, 359 
lackman E. G. , Field G. B., 2000, ApJ , 534, 984 
lackman E. G. , Tan J. C., 2004, Ap&SS , 292, 395 
odo G. , Cattaneo F., Ferrari A., Mignone A., Rossi P., 2011, ApJ , 739, 82 
odo G. , Cattaneo F., Mignone A., Rossi P., 2014, ApJ , 787, L13 
randenburg A. , 2008, Astron. Nachr. , 329, 725 
randenburg A. , Donner K. J., 1997, MNRAS , 288, L29 
randenburg A. , Schmitt D., 1998, A&A, 338, L55 
randenburg A. , Subramanian K., 2005, Phys. Rep. , 417, 1 
randenburg A. , Nordlund A., Stein R. F ., T orkelsson U., 1995, ApJ , 446,

741 
randenburg A. , R ̈adler K. H., Rheinhardt M., K ̈apyl ̈a P. J., 2008, ApJ , 676,

740 
handrasekhar S. , 1960, Proc. Natl. Acad. Sci. , 46, 253 
oleman M. S. B. , Yerger E., Blaes O., Salvesen G., Hirose S., 2017, MNRAS ,

467, 2625 
avis S. W. , Stone J. M., Pessah M. E., 2010, ApJ , 713, 52 
hang P. , Sharma P., 2019, MNRAS , 482, 848 
hang P. , Bendre A., Sharma P., Subramanian K., 2020, MNRAS , 494, 4854
hang P. , Bai X.-N., White C. J., 2023, ApJ , 944, 182 
lock M. , Dzyurkevich N., Klahr H., Turner N., Henning T., 2012, ApJ , 744,

144 
romang S. , Papaloizou J., 2007, A&A , 476, 1113 
ammie C. F. , 1996, ApJ , 457, 355 
ardiner T. A. , Stone J. M., 2005, J. Comput. Phys. , 205, 509 
oldreich P. , Lynden-Bell D., 1965, MNRAS , 130, 125 
opalakrishnan K. , Subramanian K., 2023, ApJ , 943, 66 

http://dx.doi.org/10.1088/0004-637X/767/1/30
http://dx.doi.org/10.1086/170270
http://dx.doi.org/10.1086/171467
http://dx.doi.org/10.1103/RevModPhys.70.1
http://dx.doi.org/10.1111/j.1365-2966.2011.19043.x
http://dx.doi.org/10.1093/mnras/stad914
http://dx.doi.org/10.1093/mnras/stz3267
http://dx.doi.org/10.48550/arXiv.2308.00059
http://arxiv.org/abs/2308.00059
http://dx.doi.org/10.1093/mnras/stw1619
http://dx.doi.org/10.1086/342705
http://dx.doi.org/10.1086/308767
http://dx.doi.org/10.1023/B:ASTR.0000045043.87692.4a
http://dx.doi.org/10.1088/0004-637X/739/2/82
http://dx.doi.org/10.1088/2041-8205/787/1/L13
http://dx.doi.org/10.1002/asna.200811027
http://dx.doi.org/10.1093/mnras/288.2.L29
http://dx.doi.org/10.1016/j.physrep.2005.06.005
http://dx.doi.org/10.1086/175831
http://dx.doi.org/10.1086/527373
http://dx.doi.org/10.1073/pnas.46.2.253
http://dx.doi.org/10.1093/mnras/stx268
http://dx.doi.org/10.1088/0004-637X/713/1/52
http://dx.doi.org/10.1093/mnras/sty2692
http://dx.doi.org/10.1093/mnras/staa996
http://dx.doi.org/10.3847/1538-4357/acb534
http://dx.doi.org/10.1088/0004-637X/744/2/144
http://dx.doi.org/10.1051/0004-6361:20077942
http://dx.doi.org/10.1086/176735
http://dx.doi.org/10.1016/j.jcp.2004.11.016
http://dx.doi.org/10.1093/mnras/130.2.125
http://dx.doi.org/10.3847/1538-4357/aca808


MRI-driven dynamo 2793 

G
G
G
G
G
H  

H
H
H
H  

H
H
H
J
K
K

L
M
M  

M
M
N
P
P
P
P
R
R  

R
R
S  

S  

S  

S
S
S

S
S
S
S

S
S
S
S
T  

V
V

v  

W
Z

A
C

D  

l  

m  

a  

(  

2  

η  

c  

f  

 

i  

t
g
o  

a  

p  

f
c  

t  

n
a

a  

c
w  

T
t  

c

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/530/3/2778/7646091 by EPF Lausanne user on 0
ressel O. , 2010, MNRAS , 405, 41 
ressel O. , Pessah M. E., 2015, ApJ , 810, 59 
ressel O. , Pessah M. E., 2022, ApJ , 928, 118 
uan X. , Gammie C. F., 2011, ApJ , 728, 130 
uan X. , Gammie C. F., Simon J. B., Johnson B. M., 2009, ApJ , 694, 1010 
ammersley A. , Ponman T., Skinner G., 1992, Nucl. Instrum. Methods Phys.

Res. A , 311, 585 
a wle y J. F. , 2001, ApJ , 554, 534 
a wle y J. F. , Gammie C. F., Balbus S. A., 1995, ApJ , 440, 742 
a wle y J. F. , Richers S. A., Guan X., Krolik J. H., 2013, ApJ , 772, 102 
irose S. , Blaes O., Krolik J. H., Coleman M. S. B., Sano T., 2014, ApJ , 787,

1 
 ̈ogbom J. A. , 1974, A&AS, 15, 417 
ogg J. D. , Reynolds C. S., 2016, ApJ , 826, 40 
ogg J. D. , Reynolds C. S., 2018, ApJ , 861, 24 

ohansen A. , Youdin A., Klahr H., 2009, ApJ , 697, 1269 
leeorin N. , Rogachevskii I., 2022, MNRAS , 515, 5437 
rause F. , Raedler K. H., 1980, Mean-Field Magnetohydrodynamics and 

Dynamo Theory. Oxford: Pergamon Press 
esur G. , Ogilvie G. I., 2008, A&A , 488, 451 
attia G. , Fendt C., 2022, ApJ , 935, 22 
ignone A. , Bodo G., Massaglia S., Matsakos T., Tesileanu O., Zanni C.,

Ferrari A., 2007, ApJS , 170, 228 
iyoshi T. , Kusano K., 2005, J. Comput. Phys. , 208, 315 
ondal T. , Bhat P., 2023, Phys. Rev. E , 108, 065201 
auman F. , Blackman E. G., 2015, MNRAS , 446, 2102 
arkin E. R. , Bicknell G. V., 2013, MNRAS , 435, 2281 
essah M. E. , Chan C.-K., Psaltis D., 2006, Phys. Rev. Lett. , 97, 221103 
essah M. E. , Chan C.-k., Psaltis D., 2007, ApJ , 668, L51 
ouquet A. , Frisch U., Leorat J., 1976, J. Fluid Mech. , 77, 321 
aedler K. H. , 1980, Astron. Nachr. , 301, 101 
iols A. , Rincon F., Cossu C., Lesur G., Longaretti P. Y., Ogilvie G. I., Herault

J., 2013, J. Fluid Mech. , 731, 1 
ogachevskii I. , Kleeorin N., 2004, Phys. Rev. E , 70, 046310 
yan B. R. , Gammie C. F., Fromang S., Kestener P., 2017, ApJ , 840, 6 
alvesen G. , Simon J. B., Armitage P. J., Begelman M. C., 2016, MNRAS ,

457, 857 
chekochihin A. A. , Haugen N. E. L., Brandenburg A., Cowley S. C., Maron

J. L., McWilliams J. C., 2005, ApJ , 625, L115 
chrinner M. , R ̈adler K.-H., Schmitt D., Rheinhardt M., Christensen U. R.,

2007, Geophys. Astrophys. Fluid Dyn. , 101, 81 
hi J. , Krolik J. H., Hirose S., 2010, ApJ , 708, 1716 
hi J.-M. , Stone J. M., Huang C. X., 2016, MNRAS , 456, 2273 
hukurov A. , Subramanian K., 2021, Astrophysical Magnetic Fields: From 

Galaxies to the Early Universe. Cambridge Astrophysics, Cambridge 
Univ. Press, Cambridge 

imard C. , Charbonneau P., Dub ́e C., 2016, Adv. Space Res. , 58, 1522 
imon J. B. , Ha wle y J. F., Beckwith K., 2009, ApJ , 690, 974 
imon J. B. , Beckwith K., Armitage P. J., 2012, MNRAS , 422, 2685 
quire J. , Bhattacharjee A., 2016, J. Plasma Phys. , 82, 535820201 
tepanovs D. , Fendt C., Sheikhnezami S., 2014, ApJ , 796, 29 
tone J. M. , Pringle J. E., Begelman M. C., 1999, MNRAS , 310, 1002 
ubramanian K. , 2002, Bull. Astron. Soc. India , 30, 715 
ubramanian K. , Brandenburg A., 2006, ApJ , 648, L71 
harakkal D. , Shukurov A., Gent F. A., Sarson G. R., Snodin A., 2023,

MNRAS , 525, 2972 
elikhov E. , 1959, Sov. Phys. JETP, 36, 995 
ishniac E. T. , 2015, in American Astronomical Society Meeting Abstracts 

#225. p. 229.08 
on Rekowski B. , Brandenburg A., Dobler W., Dobler W., Shukurov A., 2003,

A&A , 398, 825 
issing R. , Shen S., Wadsley J., Quinn T., 2022, A&A , 659, A91 

ier O. , Springel V., 2022, MNRAS , 517, 2639 

PPENDI X  A :  DY NA MO  COEFFI CI ENTS  W ITH  

O N S T R A I N T S  O N  ηyy 

if fusi vities are challenging to calculate in any direct methods (SVD,
inear regression, IROS), as they involve the spatial deri v ati ves of the
ean fields. Primarily, we find that ηyy and ηxy are noisy as they

re related to spatial deri v ati ves of B̄ x , which is itself quite noisy
see e.g. butterfly diagram in Fig. 2 ). Some earlier studies (Shi et al.
016 ; Squire & Bhattacharjee 2016 ) put constraints on calculating
-s, trying to alleviate this issue. E.g. Shi et al. ( 2016 ) imposed the
onstraint that ηyy = ηxx in the shearing box simulation of MRI and
ound a ne gativ e ηyx , implying the presence of a shear-current effect.

We have, on the other hand, done an unbiased inversion, as it
s not clear if such constraints are actually obeyed by MRI-driven
urbulence. Nevertheless, for completeness, we explore here a more 
eneralized constraint on ηyy , given by ηyy = f η ηxx , and calculate 
nly those coefficients that appear in the mean-field closure for Ē y ,
s those related to Ē x remain unaffected. Fig. A1 shows the vertical
rofiles of α0 

yx , α
0 
yy , ηyx , and ηyy for different values of f η and for

 c = 0.05. The coefficients αij remain almost unaffected, while ηij 

hange significantly with change in f η. There is a clear trend that
he more positive the ηyy (or larger the imposed f η) is, the more
e gativ e the ηyx is. This implies a clear correlation between ηyx 

nd ηyy . 
Further , we in vestigate the histograms of the residual EMFs δĒ i 

s shown in Fig. A2 to check the goodness of the fits. The x -
omponents of the residual EMFs remain unaffected as expected, 
hile histograms for δĒ y get slightly broader with the increase in f η.
his implies that the imposition of constraints on ηyy compromises 

he quality of fits, but not greatly because αij are the significant
ontributors in the fitting of EMFs, not the ηij . 
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Figure A1. Vertical profiles of the time-independent αij and ηij related to the Ē y calculated imposing the constraint ηyy = ηxx for f c = 0.05 case. As expected, 
αij are not affected with the change in f η , but ηij s are. A clear trend has been found; more positive the ηyy is, more negative the ηyx is. 

Figure A2. Histograms of the residual EMFs δĒ x (top panels) and δĒ y (bottom panels) for f eta = 0 and f η = 1. We consider the f c = 0.05 case. Imposition of 
constraints on ηyy compromises the quality of fits, but not significantly because αij are the main contributors in the fitting of EMFs, not the ηij . 
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