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A B S T R A C T 

Numerical simulations have become one of the key tools used by theorists in all the fields of astrophysics and cosmology. 
The development of modern tools that target the largest existing computing systems and exploit state-of-the-art numerical 
methods and algorithms is thus crucial. In this paper, we introduce the fully open-source highly-parallel, versatile, and modular 
coupled hydrodynamics, gravity, cosmology, and galaxy-formation code SWIFT . The software package exploits hybrid shared- 
and distributed-memory task-based parallelism, asynchronous communications, and domain-decomposition algorithms based 

on balancing the workload, rather than the data, to efficiently exploit modern high-performance computing cluster architectures. 
Gravity is solved for using a fast-multipole-method, optionally coupled to a particle mesh solver in Fourier space to handle 
periodic volumes. For gas evolution, multiple modern flavours of Smoothed Particle Hydrodynamics are implemented. SWIFT 

also evolves neutrinos using a state-of-the-art particle-based method. Two complementary networks of sub-grid models for 
galaxy formation as well as extensions to simulate planetary physics are also released as part of the code. An e xtensiv e set of 
output options, including snapshots, light-cones, power spectra, and a coupling to structure finders are also included. We describe 
the o v erall code architecture, summarize the consistenc y and accurac y tests that were performed, and demonstrate the e xcellent 
weak-scaling performance of the code using a representative cosmological hydrodynamical problem with ≈300 billion particles. 
The code is released to the community alongside e xtensiv e documentation for both users and developers, a large selection of 
example test problems, and a suite of tools to aid in the analysis of large simulations run with SWIFT . 

Key words: methods: numerical – software: public release – software: simulations. 
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 I N T RO D U C T I O N  

ver the last four decades, numerical simulations have imposed
hemselves as the key tool of theoretical astrophysics. By allowing the
tudy of the highly non-linear regime of a model, or by allowing in-
ilico experiments of objects inaccessible to laboratories, simulations
re essential to the interpretation of data in the era of precision
strophysics and cosmology. This is particularly true in the field
f galaxy evolution and non-linear structure formation, where the
equirements of modern surv e ys are such that only large dedicated
ampaigns of numerical simulations can reach the necessary pre-
ision and accuracy targets. Hence, it is no surprise that this field
as seen a recent explosion in numerical tools, models, analysis
ethods and predictions (for re vie ws, see Somerville & Dav ́e 2015 ;
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Published by Oxford University Press on behalf of Royal Astronomical Socie
Commons Attribution License ( https:// creativecommons.org/ licenses/ by/ 4.0/ ), whi
aab & Ostriker 2017 ; Vogelsberger et al. 2020 ; Angulo & Hahn
022 ; Crain & van de Voort 2023 ). 
Meeting this growing demand and complexity of numerical sim-

lations requires increasingly efficient and robust tools to perform
uch calculations. For instance, these software involve more and more
oupled differential equations to approximate, themselves coupled
o increasingly complex networks of sub-grid models. At the same
ime, the evolution of computer architectures towards massively
arallel systems further complicates the software development task.
he details of the machine used, as well as an intimate knowledge
f parallelization libraries, are often required to achieve anywhere
ear optimal on these the systems. This, ho we ver, often puts an
dditional burden on scientists attempting to make small alterations
o the models they run and is often a barrier to the wider adoption of
oftware packages. Nevertheless, the significant ecological impact of
arge astrophysical simulations (Portegies Zwart 2020 ; Stevens et al.
020 ) make it imperative to address these technical challenges. 
© 2024 The Author(s). 
ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 
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Jointly, all these needs and sometimes orthogonal requirements 
ake constructing such numerical software packages a daunting 

ask. F or these reasons, dev eloping numerical software packages 
hat are both efficient and sufficiently flexible has now become a 
ask undertaken by large teams of contributors with mixed expertise, 
uch as our own. This, in turn, implies that better code development
ractices need to be adopted to allow for collaborative work on large
ode bases. 

Despite all this, the community has seen the arri v al of a number of
imulation software packages that rise to these challenges, many of 
hich have also been released publicly. This recent trend, guided by 
pen-science principles, is an important development allowing more 
cientists to run their own simulations, adapt them to their needs, 
nd modify the code base to solve new problems. The public release
f software is also an important step towards the reproducibility of
esults. Whilst some packages only offer the core solver freely to 
he community, some other collaborations have made the choice to 
ully release all their developments; we follow this latter choice here. 
his is an essential step that allows for more comparisons between 
odels (as well as between models and data) to be performed and

o help understand the advantages and shortcomings of the various 
ethods used. The characterization and inclusion of uncertainty on 
odel predictions, especially in the field of non-linear structure 

ormation, is now becoming common practice (for examples targeted 
o the needs of large cosmology surv e ys see Heitmann et al. 2008 ;
chneider et al. 2016 ; Gro v e et al. 2022 ). 
In this paper, we introduce the fully open-source code SWIFT . 1 

esigned to solve the coupled equations of gravity and hydrodynam- 
cs together with multiple networks of extensions specific to various 
ub-fields of astrophysics. The primary applications of the code are 
he evolution of cosmic large-scale structure, cluster and galaxy 
ormation, and planetary physics. A selection of results obtained 
ith the code is displayed in Fig. 1 . 
SWIFT was designed to be able to run the largest numerical 

roblems of interest to the large-scale structure, cosmology & 

alaxy formation communities by exploiting modern algorithms and 
arallelization techniques to make efficient use of both existing 
nd the latest CPU architectures. The scalability of the code was 
he core goal, alongside the flexibility to easily alter the physics

odules. Our effort is, of course, not unique and there is now a
ariety of codes exploiting many different numerical algorithms and 
argeted at different problems in the ever-growing field of structure 
ormation and galaxy evolution. Examples in regular use by the 
ommunity include ART (Kravtsov, Klypin & Khokhlov 1997 ), FAL- 
ON (Dehnen 2000 ), FLASH (Fryxell et al. 2000 ), RAMSES (Teyssier
002 ), GADGET-2 (Springel 2005 ), AREPO (Springel 2010b ), GREEM

Ishiyama, Nitadori & Makino 2012 ), PLUTO (Mignone et al. 2012 ),
UBEP 

3 M (Harnois-D ́eraps et al. 2013 ), 2HOT (Warren 2013 ), ENZO

Bryan et al. 2014 ), NYX (Almgren et al. 2013 ), CHANGA (Menon
t al. 2015 ), GEVOLUTION (Adamek et al. 2016 ), HACC (Habib et al.
016 ), GASOLINE-2 (Wadsley, Keller & Quinn 2017 ), PKDGRAV-3 
Potter, Stadel & Teyssier 2017 ), PHANTOM (Price et al. 2018 ),
THENA + + (Stone et al. 2020 ), ABACUS (Garrison et al. 2021 ),
nd GADGET-4 (Springel et al. 2021 ) as well as many extensions
nd variations based on these solv ers. The y e xploit a wide variety
f numerical methods and are designed to target a broad range of
stroph ysics, g alaxy formation, and cosmology problems. 

Besides exploiting modern parallelization concepts, SWIFT makes 
se of state-of-the-art implementations of the key numerical methods. 
 S PH W ith I nter-dependent F ine-grained T asking 2
he gravity solver relies on the algorithmically ideal fast-multipole 
ethod (see e.g. Greengard & Rokhlin 1987 ; Cheng, Greengard &
okhlin 1999 ; Dehnen 2014 ) and is optionally coupled to a particle-
esh method using the Fourier-space representation of the gravity 

quations to model periodic boundary conditions (See Springel 
t al. ( 2021 ) for a detailed discussion of the advantages of this
oupling o v er a pure tree approach). The hydrodynamics solv er
s based on the Smoothed Particle Hydrodynamics (SPH) method 
see e.g. Springel 2010a ; Price 2012 ) with multiple fla v ours from
he literature implemented as well as our own version ( SPHENIX ;
orrow et al. 2022 ). The code is also being extended towards other
nstructured hydrodynamics methods (such as moving mesh (see e.g. 
pringel 2010b ; Vandenbroucke & De Rijcke 2016 ), renormalized 
esh-free techniques or SPH-ALE (see e.g. Hopkins 2015 ), which 
ill be released in the future. For cosmological applications, SWIFT 

as extended to use the particle-based ‘delta-f’ method of Elbers 
t al. ( 2021 ) to evolve massive neutrinos, allowing us to explore
ariations of the � CDM model. On top of these core components,
he software package was extended to provide models for galaxy 
ormation. We mak e tw o such models available: one based on that
sed for the EAGLE project (Crain et al. 2015 ; Schaye et al. 2015 )
nd a second one based on the GEAR code (Re v az & Jablonka 2018 ;
ausammann 2021 ). These were designed to target very different 

cales and resolution ranges–massive galaxies and their large-scale 
nvironment for EAGLE , and dwarf galaxies for GEAR and are
ence highly complementary. The EAGLE model is additionally and 
ptionally extended with the implementation of jet feedback from 

ctive galactic nuclei by Hu ̌sko et al. ( 2022 ). 
Although SWIFT was originally developed for large-scale structure 

osmology and galaxy formation applications, it quickly became 
lear that the benefits of the impro v ed parallelization of the coupled
ravity–hydrodynamics solver could also be extended to other areas 
n astrophysics. In particular, the code has been extended to support
lanetary simulations by adding equations of state for the rele v ant
aterials. These extensions have been designed by expanding the 

xisting SPH schemes to allow for multiple materials to interact, 
ence opening the window to simulate the collisions and interactions 
f planets and other bodies made of various layers of different
aterials. 
Another, and to our knowledge unique, feature of SWIFT is the

xtent of the material distributed as part of the public release. 2 We
o not only distribute the core gravity and hydrodynamics solver but
lso offer the multiple modules for galaxy formation mentioned and 
ther applications abo v e, as well as the different fla v ours of SPH,
he full treatment of cosmological neutrinos, and more than 100 
eady-to-run example problems. All these elements are documented 
n detail, including developer instructions for extending the code. We 
mphasize too that the code is in acti ve de velopment and we expect
uture releases to further extend the physics modules presented here. 

This paper is arranged as follows. In Section 2 , we present
he o v erall SWIFT code design philosophy and core principles.
he equations of SPH that the code solves are summarized in
ection 3 . In Sections 4 and 5 , we introduce the equations for
ravity, neutrinos, and the cosmology framework used by the code. 
ections 6 and 7 are dedicated to the input & output strategy and
osmological structure finding respectively. In Section 8 , we present 
ome extensions including galaxy formation (sub-grid) models and 
lanetary physics models. We complete the code presentation in 
ection 9 with some implementation details and performance results. 
MNRAS 530, 2378–2419 (2024) 
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Figure 1. A selection of simulation results obtained with the SWIFT code, illustrating the huge range of problems that have already been targeted and the 
flexibility of the solver. The panels show: (a) a projection of the large-scale distribution of dark matter from a 10 Mpc h −1 slice of the (500 Mpc h ) −3 benchmark 
simulation of Schneider et al. ( 2016 , Section 5.5 ); (b) the temperature of the gas weighted by its velocity dispersion in a zoom-in simulation of a galaxy 
cluster using the SWIFT - EAGLE galaxy formation model (Section 8.1 ) extracted from the runs of Altamura et al. ( 2023 ); (c) an idealized isolated galaxy from 

the Agora -suite (Kim et al. 2016 ) simulated using the GEAR model (Section 8.2 ) rendered using PNBODY (Re v az 2013 ); and (d) a snapshot extracted from a 
Moon-forming giant impact simulation of Kegerreis et al. ( 2022 ) using the planetary physics extension of the code (Section 8.5 ) and rendered using the HOUDINI 

software. 
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inally, some conclusions are given and future plans are presented
n Section 10 . 

 C O D E  D E S I G N  A N D  IMPLEMENTATION  

H O I C E S  

e begin by laying out the core design principles of SWIFT , in
articular its strategy for making efficient use of massively parallel
hybrid shared and distributed memory) high-performance comput-
ng systems. 
NRAS 530, 2378–2419 (2024) 
.1 The case for a hydrodynamics-first approach 

strophysical codes solve complex networks of coupled differential
quations, often acting on a large dynamic range of temporal and
patial scales. Over time, these pieces of software frequently evolve
rom their original baseline, through the addition of increasingly
omplex equations and physical processes, some of them treated
s ‘sub-grid’ models. This process is often repeated multiple times
ith each new iteration of the code, leading to multiple layers of

dditions on top of one another. In many cases these layers do not
se the most appropriate algorithms or parallelization strategies,
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Figure 2. The Verlet-list method. By constructing a mesh structure with cell 
sizes matching the search radius H of particles, the neighbour-finding strategy 
is entirely set by the geometry of the cells and the list of potential candidates 
is thus exactly known. The particle in black only has potential neighbours 
in the cell where it resides or any of the 8 (26 in 3D) directly neighbouring 
cells (in grey). The smoothly varying nature of SPH leads to particles having 
similar H in nearby regions, with this scale only varying slowly o v er the 
whole simulated domain. 

Figure 3. An example of interactions between regions of different densities, 
i.e. particles with different search radii. Particle a will interact with the 
particles on the left and abo v e using the smaller cells. It will interact with the 
particles on the right using the larger cell. The particle b will only interact 
using the cells at the coarser level. Thanks to the nested grids, interactions 
happen at different levels in the hierarchy depending on the local search radius. 
Once the grid is constructed, all the possible interactions at the different levels 
are known without the need of a speculative tree-walk. 
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ut rather rely on the decisions made for the previous layers’
mplementations. 

A particularly rele v ant example of this issue is the generalized use
f a tree-code infrastructure (e.g. Barnes & Hut 1986 ), originally 
esigned to solve the equations of gravity, to also perform a 
eighbour-finding search for SPH (see e.g. Monaghan 1992 ; Price 
012 , for a re vie w). Similarly, this gas neighbour-finding code is then
ometimes reused to find neighbours of star particles (for feedback or
nrichment), although the two species are clustered very differently. 
hese kinds of infrastructure re-use are ubiquitous in contemporary 
imulation codes (e.g. Hernquist & Katz 1989 ; Couchman, Thomas & 

earce 1995 ; Dav ́e, Dubinski & Hernquist 1997 ; Springel, Yoshida &
hite 2001 ; Wadsley, Stadel & Quinn 2004 ; Springel 2005 , 2010b ;
ubber et al. 2011 ; Wadsley et al. 2017 ; Price et al. 2018 ; Springel

t al. 2021 ). Although appealing for its reduced complexity, and 
uccessful in the past, this approach can in some cases result in
oticeable sub-optimal computational efficiency, in particular for 
odern computing hardware. The data structure itself (a nested 

et of grids) are not the culprit here, the way it is traversed is the
imitation. F or e xample, tree walks typically involve frequent jumps
n memory moving up and down the tree, a pattern that is not ideal for

odern CPUs or GPUs. Such a pattern is particularly sub-optimal 
o make efficient use of the hierarchy of memory caches as most of
he data read will be discarded. Instead, modern hardware prefers to 
ccess memory linearly and predictably, which also allows for a more 
fficient utilization of the memory bandwidth and caches, but also 
nables vector instructions (SIMD). To exploit vector instructions, 
e need all the elements of the vector (e.g. particles) to follow

he same branching path. Thus, if an independent tree-walk has 
o be performed for each particle, and there is no obvious way to
eaningfully group the particles into batches that will follow the 

ame path in the tree, then it will seriously hinder our ability to
se such vector instructions in our algorithms. Such an approach 
ould hence, from the outset, forfeit 7/8 th 3 of the available computing 
erformance of a modern system. The loss of performance due to a
ree-walk’s inability to make use of the various cache levels is more
if ficult to quantify. Ho we ver, the recent trend in computing hardware 
o add more layers of caches is a clear sign that their use ought to
e maximized in order to extract performance out of the computing 
nits. To back up this intuition, we performed a detailed analysis of
he large cosmological simulations from the EAGLE project (Schaye 
t al. 2015 ), based on a heavily modified version of the GADGET -3
ode. It showed that the majority ( > 65 per cent ) of the computing
ime was spent in the neighbour-finding operations (both for gas and 
tars) performed via a tree walk. 

All these considerations suggest that a simulation code designed 
ith a hydrodynamics-first approach could achieve substantial 
erformance gains. In SPH-like methods, the neighbourhood is 
efined entirely by demanding a certain number N ngb ∼ 50–500 
f particles around the particle of interest from which to compute 
hysical quantities and their deri v ati v es. Similarly, man y sub-grid
mplementations (see e.g. Sections 8.1 , 8.2 , and 8.3 ) rely on the
ame neighbourhoods for most of their calculations. Hence, grouping 
articles in cells that contain a number of particles � N ngb will
aturally construct neighbourhoods of the required size. This will 
ead to the construction of a Cartesian grid with cells whose size is
imilar to the size of the search radius of the particles. The neighbour-
 On a computer using AVX2 instructions (i.e. a SIMD vector size of 8), which 
s typical of current hardware. We note ho we ver that such peak performance 
s rarely achieved in actual production simulations. 

a
 

c  

n
n  
nding algorithm can then be greatly simplified. Each particle only 
eeds to search for particles in the cell where it lies and any of the
irectly adjacent cells (Fig. 2 ). To ensure this property is al w ays
ulfilled, we force the cell sizes to not be smaller than the search
adii of the particles in a given region. If the condition is violated, this
riggers a reconstruction of the grid. This so-called Verlet-list method 
Verlet 1967 ) is the standard way neighbour-finding is performed in
olecular dynamics simulations. Once the cell structure has been 

onstructed, all the required information is known. There is no need
or any speculative tree-walk and the number of operations, as well
s the iteration through memory, are easily predictable. 

In the case of SPH for astrophysics, the picture is slightly more
omplex as the density of particles and hence the size of their
eighbourhoods can vary by orders of magnitude. The method can 
evertheless be adapted by employing a series of nested grids (Fig. 3 ).
MNRAS 530, 2378–2419 (2024) 
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nstead of constructing a single grid with a fixed cell size, we
ecursi vely di vide them, which leads to a structure similar to the ones
mployed by adaptive-mesh-refinement codes (see Section 9.1 ). As
e split the cells into eight children, this entire structure can also
e interpreted as an oct-tree. We emphasize, ho we ver, that we do
ot walk up and down the tree to identify neighbours; this is a key
ifference with respect to other packages. 
With the cells constructed, the entire SPH neighbour-related

orkload can then be decomposed into two sets of operations (or
wo sets of tasks ): the interactions between all particles within a
ingle cell and the interactions between all particles in directly
djacent cells. Each of these operations involves ∼ N 

2 
ngb particle

perations. For typical scenarios, that is an amount of work that can
asily be assigned to one single compute core with the required data
tting nicely in the associated memory cache. Furthermore, since the
perations are straightforward (no tree-walk), one can make full use
f vector instructions to parallelize the work at the lowest level. 
This approach, borrowed from molecular dynamics, was adapted

or multi-resolution SPH and e v aluated by Gonnet ( 2015 ) and
challer et al. ( 2016 ). It forms the basis of the SWIFT code described
ere. We emphasize that such an approach is not restricted to
ure SPH methods; other mesh-free schemes, such as the arbitrary
agrangian-Eulerian (ALE) renormalized mesh-free schemes (Vila
999 ; Gaburov & Nitadori 2011 ; Hopkins 2015 ; Alonso Asensio
t al. 2023 ), finite volume particle methods (e.g. Hietel et al. 2001 ,
005 ; Iv anov a et al. 2013 ), or moving mesh (Springel 2010b ;
andenbroucke & De Rijcke 2016 ) also naturally fit within this
aradigm as they also rely on the concepts of neighbourhoods and
ocalized interactions. 

As it turns out, the series of nested grids constructed to accom-
odate the distribution of particles also forms the perfect structure

n which to attach a gravity solver. We argued against such re-use at
he start of our presentation; the situation here is, ho we ver, slightly
ifferent. Unlike what is done for the hydrodynamics, the gravity
lgorithm we use requires a tree-walk and some amount of pointer-
hasing (jumps in memory) is thus una v oidable. We eliminated the
ree-walk for the identification of SPH neighbourhoods, which was
ur original goal. We can now use a much more classic structure
nd algorithm for the gravity part of the SWIFT solver. Viewing the
rid cells as tree nodes and leaves, we implement a Fast-Multipole-
ethod (FMM; see Greengard & Rokhlin 1987 ; Cheng et al. 1999 ;
ehnen 2002 , 2014 ; Springel et al. 2021 ) algorithm to compute the
ravitational interactions between particles. Here again, the work
an be decomposed into interactions between particles in the same
ell (tree-leaf), particles in neighbouring cells, or in distant cells.
nce the tree is constructed, all the information is available and
o new decision making is in principle necessary. The geometry of
he tree and the choice of opening angle entirely characterizes all
he operations that will need to be performed. All the arithmetic
perations can then be streamlined with the particles treated in
atches based on the tree-leaves they belong to. 

.2 Parallelization strategy: task-based parallelism 

ll modern computer architectures exploit multiple levels of paral-
elism. The trend o v er the last decade has been to increase the number
f computing units (CPUs, GPUs, or other accelerators) in a single
ystem rather than to speed up the calculations performed by each
ndividual unit. Scientific codes that target modern high-performance
omputing systems must thus embrace and exploit this massive
arallelism from the outset to get the most out of the underlying
ardware. 
NRAS 530, 2378–2419 (2024) 
As discussed in the previous section, the construction of a cell-
ased decomposition of the computational volume leads to natural
nits of work to be accomplished by the various compute cores. In
rinciple, no ordering of these operations is required: as long as all
he internal ( self i.e. particle-particle interactions of particles within
 single cell) and external ( pair i.e. particle-particle interactions of
articles residing in two different cells) interactions of these cells
ave been performed, all particles will have iterated over all their
eighbours. One can therefore list all these cell-based units of work
r tasks and use a piece of software that simply lets the different
ompute threads on a node fetch a task, e x ecute it, and indicate its
uccessful completion. Such tasks can e.g. take all the particles in
 cell and compute the N 

2 
cell SPH (or gravity) interactions between

hem; or take all the particles and drift them (i.e. integrate their
ositions) forward. This constitutes a very basic form of task-based
arallelism . In astrophysics, the CHANGA code (Menon et al. 2015 )
ses a similar parallel framework. 
Compared to the traditional ‘branch-and-bound’ approach in

hich all operations are carried out in a pre-specified order and
here all compute units perform the same operation concurrently,

s used by most other astrophysics simulation codes, this task-
ased approach has two major performance advantages. Firstly, it
ynamically balances the work load o v er the available compute cores.
n most simulations, the distribution of computational work o v er the
imulation domain is highly inhomogeneous, with a small part of the
olume typically dominating the total cost. Decomposing this work
 priori ( i.e. statically) is a very challenging problem, and practical
olutions inevitably lead to substantial work imbalance. By not pre-
ssigning regions to a specific computing unit, the task scheduler can
nstead naturally and dynamically assign fewer cells to an individual
omputing unit if they turn out to have a high computational cost,
nd vice versa. 

The second advantage of the task-based approach is that it naturally
llows the gravity and hydrodynamics computations to be performed
t the same time without the need for a global synchronization point
etween the two that typically leads to (sometimes substantial) idle
ime. The list of tasks simply contains both kinds of calculations and
he threads can pick any of them; there is no need for the code to wait
or all the gravity operations to be done before the SPH calculations
an begin, or vice versa (Fig. 4 ). 

This tasking approach forms the basis of SWIFT . In its form
iscussed abo v e; ho we v er, it is too simple for the comple x physics
ntering actual simulations. Most SPH implementations require
ultiple loops o v er the particles in their neighbourhoods. Sub-

rid models often require that some hydrodynamic quantities be
omputed before they can themselves operate. One could first
onstruct a list of all tasks related to the first loop and then distribute
he threads on it. A second list could then be constructed of all the
asks related to the second loop and the process repeated. This would,
o we ver, re-introduce global synchronization points between the
ndividual lists, leading to undesirable idle time. Instead, we construct
 single list but introduce so-called dependencies between operations
cting on a given cell (and hence its particles). For instance, all the
rst loop tasks have to be performed on a given cell before the tasks
ssociated with the second loop can be performed. This transforms
he list of tasks into an orientated graph with connections indicating
he localized ordering of the physical operations to perform. This
raph can now include all the operations, even the ones not requiring
eighbour loops (e.g. time integration). Different cells can thus
aturally progress in a given time step at different rates, leading
o no global barriers between each loop (Fig. 5 ). When a task has
ompleted, it reports this to all other tasks that depend on it. Once
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Figure 4. A simplified graph of the tasks acting on a given cell for SPH and gravity during one time step in SWIFT . Dependencies are depicted as arrows 
and conflicts by dotted lines. Once the particles have been drifted to the current point in time, the first loop o v er neighbours can be run. The so-called ‘ghost’ 
task serves mainly to reduce the number of dependencies between successive loops over the neighbours. Once the second loop has run, the time integration 
(Section 2.4 ) can be performed. In parallel to the SPH operations, the gravity tasks (condensed into a single one here for clarity) can be run as they act on 
different subsets of the data. To prevent different threads from o v erwriting each others’ data, the various SPH loop tasks (1 self and 26 pairs) are prevented 
from running concurrently via our conflict mechanism. Additional loops o v er neighbours, used for instance in more advanced SPH implementations, in sub-grid 
models or for radiative transfer, can be added by repeating the same pattern. They can also be placed after the time integration tasks if they correspond to terms 
entering the equations in an operator splitting way. 

Figure 5. The e x ecution of various tasks using 8 threads o v er the course of one time-step, extracted from a cosmological hydrodynamical simulation with 
2 × 128 3 particles using only gravity and hydrodynamics on a shared-memory system. The different rows correspond to the different threads on the compute 
node. The work each thread performs is coloured to correspond to the task type it e x ecutes. Yellow, for instance, corresponds to a self-task performing gravity 
operation on a cell, whereas navy blue corresponds to a pair-task performing a 3 rd SPH loop o v er two cells. Note that some tasks displayed in the legend do not 
actually run in this e xample. F or instance, no MPI -related send or recv tasks are e x ecuted here. We show them in the legend for consistency with Fig. 9 . The long 
bands are actually a series of the same task acting on different cells one after the others. There are for instance 512 yellow tasks. As desired, the threads display 
essentially no idle time (white gaps) between operations and all end their work at very nearly the same time. In other words, the load balancing is near-perfect 
with no parallel performance loss. The small gap at the start corresponds to cost of deciding what tasks to acti v ate for this step. Bands of a given colour can have 
different lengths, indicating that tasks can correspond to very different workloads depending on how many particles are present in the cell(s) on which they act. 
At a given point in time, different threads often process different task types, and hence solve a different set of equations. This is different from the traditional 
branch-and-bound parallelism approach where all threads perform the same action and have to wait until they have all completed it before moving to the next 
piece of physics. 
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ll dependencies for a task are satisfied (i.e. all the other tasks that
ust have run before it in the graph have completed), it is allowed to

un; it is placed in a queue from where it can be fetched by available
ompute threads. 

In addition to this mechanism, the task scheduling engine in the 
WIFT code also uses the notion of conflicts (Fig. 4 ) to prevent

wo threads from working on the same cell at the same time. This
liminates the need to replicate data in different caches, which is
etrimental to performance. More crucially, it also ensures that 
ll work performed inside a single task is intrinsically thread-safe 
ithout the need to use atomic operations. Because the code e x ecuted
y a thread inside a task is guaranteed to run on a pri v ate piece of
ata, developers modifying the physics kernels need not worry about 
ll the usual complexities related to parallel programming. This 
educes the difficulty barrier inherent to programming on modern 
rchitectures and allows astrophysicists to easily modify and adapt 
MNRAS 530, 2378–2419 (2024) 
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Figure 6. Pseudo-Verlet list optimization for the interactions between all 
particles within a pair of neighbouring cells. Here the particles in the left cell 
receive contributions from the particles in the right cell. In the first phase, all 
particles are projected onto the axis linking the two cells (grey line) and sorted 
based on their projected coordinates. In the interaction phase, the particles 
iterate along this axis to identify candidates. For instance, the particle a (in 
black) will identify plausible neighbours (in light and dark grey) on this 
axis up to a distance H a (indicated by the black ruler). These candidates are 
then tested for 3D distance to verify whether they are genuine neighbours 
(i.e. within the dotted circle and highlighted in dark grey here) or not. With 
this technique, the number of false-positives (light grey) is greatly reduced 
compared to the total number of possible candidates in the right-hand cell 
(here, 3 vs. 11). The adv antage is e v en greater when considering the ne xt 
particle (from right to left) on the axis. Particle b knows that it will at most 
have to iterate on the axis up to the end of the ruler set by particle a , i.e. its list 
of candidates is at most as large as a ’s for the same value of H . Moving from 

particle to particle in the left-hand cell, we can also stop the whole operation 
as soon as the distance on the axis does not reach at least the first particle in 
the right-hand cell. Because particles mo v e only by small amounts between 
steps, the sorted list can be re-used multiple times provided a sufficient buffer 
is added to the length of the black ruler. Finally, the process is reversed to 
update the particles on the RHS with contributions from particles in the left 
cell. In 3D, even larger gains are achieved when the two cells share only an 
edge or just a corner. 
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he physics model in SWIFT to their needs. To our knowledge, the
ombination of dependency and conflict management in the tasking
ngine is a unique feature of SWIFT. 4 For a detailed description,
e refer the reader to Gonnet, Chalk & Schaller ( 2016 ), where a

tand-alone problem-agnostic version of this task scheduling engine
s introduced. 

One additional advantage of this conflict mechanism is the op-
ortunity to symmetrize the operations. As no other compute thread
s allowed to access the data within a cell, we can update both
articles that take part in an interaction simultaneously, ef fecti vely
alving the number of interactions to compute. This is typically not
ossible in a classic tree-walk scenario as each particle would need to
ndependently search for its neighbours. The same optimization can
e applied to the gravity interactions involving direct interactions of
articles, usually between two tree leaves. 
Last but not least, the thread-safe nature of the work performed

y the tasks, combined with the small memory footprint of the data
hey act on, leads to them being naturally cache efficient but also
rime candidates for SIMD optimization. The gravity calculations
re simple enough that modern compilers are able to automatically
enerate vector instructions and thus parallelize the loops over
airs of particles. For instance, on the realistic gravity-only test
roblem of Section 4.6 we obtain speed-ups of 1.96x, 2.5x, and
.14x on the entire calculation when switching on AVX , AVX2 , and
VX512 auto-vectorization on top of regular optimization levels.
his could also be the case for simple versions of the SPH loops

see discussion by Willis et al. 2018 ). The cut-off radius beyond
hich no interactions take place does, ho we ver, allo w for additional
ptimizations. Borrowing, once more, from molecular dynamics, we
mplement sorted interactions and pseudo-Verlet lists (Gonnet 2013 ).
nstead of considering all particles in neighbouring cells as potential
andidates for interactions, we first sort them along the axis linking
he cells’ centres. By walking along this axis, we drastically reduce
he number of checks on particles that are within neighbouring cells
ut outside each other’s interaction range, especially in the cases
here the cells only share an edge or a corner (Fig. 6 ). This way
f iterating through the particle pairs is much more complex and
ompilers are currently unable to recognize the pattern and generate
ppropriate vector instructions. We therefore implemented SIMD
ode directly in SWIFT , for some of the fla v ours of SPH, following
he method of Willis et al. ( 2018 ). This approach does, ho we ver,
reak down when more complex physics (such as galaxy formation
odels, see Section 8 ) are solved, as too many variables enter the

quations. 
Despite the advantages outlined abo v e, one possible dra wback

o the task-based approach, as implemented in SWIFT , is the lack of
eterminism. The ordering in which the tasks are run will be different
etween different runs, even on the same hardware and with the exact
ame e x ecutable. This can (and does) lead to small differences in the
ounding and truncation of floating point numbers throughout the
ode, which, in turn will lead to slightly different results each time.
his is, of course, not an issue on its own as every single one of

hese results was obtained using the same combination of operations
nd within the same set of floating point rules. As an example, the
tudy by Borrow et al. ( 2023 ) shows that the level of randomness
reated by the code is consistent with other studies varying random
eeds to generate different galaxy populations. The same differences
NRAS 530, 2378–2419 (2024) 

 The classical alternative to conflict management is to introduce explicit 
ependencies between tasks acting on the same data. This is less desirable as 
t introduces an ordering of the cells where no natural one exists. 
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etween runs can also arise in pure MPI codes or when using other
hreading approaches such as OpenMP as neither of these guarantee
he order of operations (at least in their default operating modes). Our
pproach merely exacerbates these differences. In practice, we find
hat the main drawback is the difficulty this intrinsic randomness can
enerate when debugging specific math-operation related problems.
e note that nothing prevents us from altering the task scheduling

ngine to force a specific order. This would come at a performance
ost, but could be implemented in a future iteration of the code to
elp with the aforementioned debugging scenario. 

.3 Beyond single-node systems 

o far, we have described the parallelization strategy within single
hared-memory compute nodes. To tackle actual high-performance
omputing (HPC) systems and run state-of-the-art calculations,
echanisms must be added to extend the computational domain to
ore than one node. The classic way to achieve this is to decompose

he physical volume simulated into a set of discrete chunks and
ssign one to each compute node or even each compute thread.
ommunications, typically using an MPI implementation, must then
e added to exchange information between these domains, or to
erform reduction operations o v er all domains. 
SWIFT exploits a variation of this approach, with tw o k ey guiding

rinciples: first, MPI communication is only used between different
ompute nodes, rather than between individual cores of the same
ode (who use the previously described tasking mechanism to share
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Figure 7. A pair interaction taking place o v er a domain boundary. The 
cell pair interaction in gre y involv es cells residing on either side of the 
domain boundary (thick black line), on two separate nodes. To allow for the 
interaction to happen, we create a set of proxy cells on the first node and create 
communication tasks (arrows) that import the rele v ant particles (in grey) from 

the second node. We also create a dependency between the communication 
and the pair task to ensure the data have arrived before the pair interaction 
can start. The pair task can then update the particles entirely locally, i.e. by 
e xploiting e xactly the same piece of code as for pairs that do not cross domain 
boundaries. A similar proxy exists on the other node to import particles in the 
opposite direction in order to process the pair also on that node and update 
its local particles. 
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ork and data between each other). Secondly, we base the MPI
omain decomposition on the same top-level grid structure as used 
or the neighbour finding, and aim to achieve a balanced distribution
f work, rather than data, between nodes. 
The base grid constructed for neighbour finding (Section 2.1 ) is

plit into regions that get assigned to individual compute nodes. The 
lgorithm used to decide how to split the domain will be described in
ection 9.3 ; we focus here on how the exchange of data is integrated

nto the task-based framework of SWIFT . 
As the domain decomposition assigns entire cells to compute 

odes, none of the tasks acting on a single cell require any changes;
ll their work is, by definition, purely local. We only need to consider
perations involving pairs of particles, and hence pairs of cells, such 
s SPH loops, gravitational force calculation by direct summation 
see Section 4.3 ), or sub-grid physics calculations (see Section 8 ). 

Consider a particle needing information from a neighbour residing 
n another node to update its own fields. There are generally two
ossible approaches here. The first one is to send the particle o v er
he network to the other node, perform a neighbour finding operation 
here, update the particle, and send the particle back to its original
ode. This may need to be repeated multiple times if the particle has
eighbours on many different nodes. The second approach instead 
onsists of importing all foreign neighbours to the node and then only
pdating the particles of interest local to the node once the foreign
eighbour particle data is present. We use this second approach in 
WIFT and construct a set of proxy cells to temporarily host the
oreign particles needed for the interactions. The advantage of this 
pproach is that it requires only a single communication, since no 
esults have to be reported back to the node hosting the neighbour
article. Also, since we constructed the grid cells in such a way that
e know a priori which particles can potentially be neighbours, and 

ince we attach the communications to the cells directly, we also 
now which particles to communicate. We do not need to add any
alk through a tree to identify which cells to communicate. 
As SWIFT exploits threads within nodes and only uses MPI 

omains and communications between nodes, we actually construct 
elatively large domains when compared to other MPI -only software 
ackages that must treat each core as a separate domain. This implies
hat each node’s own particle (or cell) volume is typically much larger
han any layer of proxy cells surrounding it. In typical applications, 
he memory o v erhead for import buffers of foreign particles is
herefore relatively small. Furthermore, the trend of the last decade 
n computing hardware is to have an ever larger number of cores and
emory on each node, which will increase the volume-to-surface 

atio of each domain yet further. Note, ho we ver, that some of these
rends are not followed by a proportional raise in memory bandwidth 
nd some architectures also display complex NUMA designs. On such 
ystems it may be beneficial to use a few MPI domains per node
ather than a single one. 

Once the proxy cells have been constructed, we create communi- 
ation tasks to import their particles (see Fig. 7 ). When the import is
one, the work within the pair task itself is identical to a purely local
air. Once again, users developing physics modules need therefore 
ot be concerned with the complexities of parallel computing when 
riting their code. 
The particles need to be communicated prior to the start of the

air interactions. After all, the correct up-to-data particle data needs 
o be present before the computation of the interactions for them 

o be correct. The commonly adopted strategy is to communicate all 
articles from each boundary region on all nodes to their correspond- 
ng proxy regions before the start of the calculations. This can be
ome what inef ficient, for two reasons. First, it typically saturates the
ommunication network and the memory bandwidth of the system, 
eading to poor performance, especially on smaller, mid-range, 
omputing facilities where the communication hardware is less 
owerful than in big national centres. Secondly, no other operations 
re performed by the code during this phase, even though particles far
rom any domain boundaries require no foreign neighbours at all and
ould therefore, in principle, have their interactions computed in the 
eantime. The traditional branch-and-bound approach prevents this, 

ut SWIFT treats the communications themselves as tasks that can 
aturally be e x ecuted concurrently with other types of calculation
see abo v e). 

At a technical le vel, we achie ve this concurrency by exploiting
he concept of non-blocking communications offered by the MPI 
tandard. 5 This allows one compute node to mark some data to be sent
nd then return to process other work. The data are silently transferred
n the background. On the receiving end, the same can be done and
 receive operation can be posted before the e x ecution returns to the
ain code. One can then probe the status of the communication itself,

.e. use the facilities offered by the MPI standard to know whether
he data have arrived or are still in transit. By using such a probe, we
an construct send and receive communication tasks that can then 
e inserted in the task graph where needed and behaving like any
f the other (computing) tasks. Once the data have arrived on the
eceiving side, the receive task can simply unlock its dependencies 
nd the work (pair tasks) that required the foreign data can now
e e x ecuted (Fig. 8 ). By adding the communications in the tasking
ystem, we essentially allow computational work to take place at 
he same time as communications. Note that the communication 
perations can be performed by any of the running threads. We do
ot reserve one thread for communications. The tasks not requiring 
oreign data can run as normal while the data for other pairs is being
xchanged, eliminating the performance loss incurred from waiting 
or all exchanges to complete in the traditional approach. The large
olume-to-surface ratio of our domains (see abo v e) implies that there
MNRAS 530, 2378–2419 (2024) 
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M

Figure 8. Extra communication tasks. The pair a –b task (SPH or gravity) 
corresponds to the grey pair in Fig. 7 . Each compute node has a task to drift 
its own local cell. The foreign node (here below the thick black line) then 
e x ecutes a send operation. On the local node, a receive task is run to get the 
data before unlocking the dependency (solid arrow) and letting the scheduler 
eventually run the pair a –b interaction task. The communication itself (dotted 
arrow) implicitly acts as a dependency between the nodes. The converse set 
of tasks exists on the other compute node to allow the pair b –a to also be run 
on that node. 
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re typically many more tasks that require no foreign data than ones
hat do. There is, hence, almost al w ays enough w ork to perform
uring the communication time and o v erheads. 
An example of task execution over multiple nodes is displayed

n Fig. 9 . This is running the same simulation as was shown on
ig. 5 but exploiting 4 nodes each using 8 threads. We show here

he full hybrid distributed and shared memory capability of SWIFT .
ere again, tasks of different kind are e x ecuted simultaneously by
ifferent threads. No large data exchange operation is performed at
NRAS 530, 2378–2419 (2024) 

igure 9. The same physics problem (2 × 128 3 particles cosmological simulation
.e. a combination of distributed and shared parallelism. This is the hybrid mode i
ach panel corresponds to a different compute node. Within each panel the differe
ach thread performs is coloured to correspond to the task type it e x ecutes using 
anel indicates the end of the time-step, which is determined by the point where t
ot perfect; some nodes complete their work slightly earlier. This is due to the MP
hich the domain decomposition algorithm (Section 9.3 ) can thus not compensat
ands). All required communication for the tasks occurs within this same figure, and
ependencies. All the exchanges happen whilst other tasks are running. The comm
er node o v erall compared to the shared-memory case, shown in Fig. 5 , it is easier 
ask types, and hence solve a different set of equations. 
he start of the step; the threads immediately start working on tasks
nvolving purely local data whilst the data are being transferred. The
ork and communication are thus ef fecti v ely o v erlapping. The four
odes complete their work at almost the same time and so do the
hreads within each node, hence showing near perfect utilization of
he system and thus the ability to scale well. 

The ability of SWIFT to perform computations concurrently with
PI communications reduces idle time, but the actual situation

s somewhat more complex. In reality, the MPI library as well
s the lower software layers interacting with the communication
ardware also need to use CPU cycles to process the messages and
erform the required copies in memory, so that a complete o v erlap
f communications and computations is not feasible. This is often
eferred to as the MPI progression problem. Such wasted time can for
nstance be seen as blank gaps between tasks on Fig. 9 . The extra cost
ncurred can vary dramatically between different implementations
f the MPI protocol and depending on the exact hardware used. A
imilar bottleneck can occur when certain sub-grid models requiring
any neighbour loops are used (e.g. Chaikin et al. 2023 ). These may

enerate many back-and-forth communications with only little work
o be done concurrently. 

We remark, ho we ver, that whilst the communications taking place
uring a time-step are all formally asynchronous, we still have a
ynchronization point at the end of a step where all the compute
odes have to wait. This is necessary as we need all nodes to agree
hat the next time-step size is for instance. This can be detrimental

n the cases where the time-step hierarchies become very deep
see below) and when only a handful of particles require updates
v ery step. A strate gy akin to the one used by the DISPATCH code
) as displayed on Fig. 5 but now split across 4 nodes, each using 8 threads, 
n which SWIFT is run for large calculations that do not fit on a single node. 
nt rows correspond to the different threads on the compute node. The work 
the same scheme as on Fig. 5 . The vertical dashed line on the right of each 
he last compute node finishes. As can be seen, the node-to-node balance is 
I library requiring some time to process messages in an unpredictable way, 
e for. This leads to small gaps in the e x ecution (white gaps in the coloured 
 o v erlaps (asynchronously) with work that only has local or already satisfied 
unications are o v erlapping with actual work. Note also that with less work 

to see here that a given point in time different threads often process different 
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6 With the exception of MPI , as its programming model dro v e man y of the 
design decisions. 
7 Documentation is available at http:// www.swiftsim.com/ docs 
8 These tools are all available on the SWIFT project GitHub page http://www. 
github.com/swiftsim 
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Ramsey, Haugbølle & Nordlund 2018 ), where regions can evolve at 
ndependent rates, would remo v e this last barrier. In practice, thanks
o our domain decomposition aiming to balance the work not the data
see Section 9.3 ), this barrier is typically not a bottleneck for steps
ith a lot of work as the nodes all take a similar amount of time to

each this end-of-step barrier. 

.4 Local time-step optimizations 

n most astrophysical simulations, not only do the length-scales of 
nterest span several orders of magnitude, but so too do the time-
cales. It would therefore typically, be prohibitively expensive to 
pdate all particles at every step; localized time-step sizes or even 
er-particle time-steps are essential. For a system governed by a 
amiltonian, it is possible to rewrite the classic leapfrog algorithm 

nd consider sub-cycles where only a fraction of the particles receive 
cceleration updates (a kick operation) whilst all other particles 
re only mo v ed (drifted) to the current point in time (Duncan,
evison & Lee 1998 ; Springel 2005 ). SWIFT exploits this mechanism
y first creating long time-steps for the long-range gravity interaction 
Section 4.5 ), where all the particles are updated, and then creating a
ierarchy of smaller steps using powers-of-two subdivisions, where 
nly the short-range gravity and hydrodynamic forces are updated 
Hernquist & Katz 1989 ). This hierarchy is implemented by mapping 
he physical time from start to end of a simulation to the range of
alues representable by an integer. A jump of one thus represents the
inimum time-step size reachable by a particle (e.g. ( t end − t begin )/2 32 

or a 32-bit integer.). Each actual time-step size is then a power-of-
wo multiple of this base quantum of time, hence ensuring exactly 
he hierarchy of time-steps we expected. Using a 64-bit integer, we 
et a maximal possible number of steps in a run of 2 64 ≈ 10 19 , much
ore than will be necessary. 
In real applications, this hierarchy can be more than 10 levels deep,
eaning that the longest time-step sizes can be > 1000 × larger than

he base time-step length (see e.g. Borrow et al. 2018 ). 
The speed gains obtained by updating only a small fraction of the

articles are immense. Ho we ver, at the le vel of code implementation
nd parallelization, this concept creates complicated challenges. 
irst, it requires added logic everywhere to decide which particle 
nd hence which cell needs updating. This can be detrimental on 
ome architectures (e.g. GPUs or SIMD vector units) where more 
treamlined operations are required. Secondly, and most importantly, 
t leads to global simulation steps where less computing time is spent
oving the system forward than is spent in overheads. This challenge 

annot simply be o v ercome by making the software more parallel;
here will be steps where there are fewer particles to update than there
re CPU threads running. As small steps (i.e. steps with a low number
f particles to update) are orders of magnitude more frequent than 
he base step, they can actually dominate the overall simulation run 
ime. It is hence of paramount importance to minimize all possible
 v erheads. 
One of the key overheads is the time spent communicating data 

cross the network. The domain decomposition algorithm used in 
WIFT (see Section 9.3 ) attempts to minimize this by not placing
requently active particles (or their cells) close to domain boundaries. 
f this is achieved, then entire steps can be performed without a
ingle message being exchanged. The other main overhead is the 
rift operation. In the classic sub-cycling leapfrog (e.g. Quinn et al. 
997 ; Springel 2005 ), only the active particles are kicked, but all
articles are drifted, since they could potentially be neighbours of 
he active ones. Whilst the drift is easily scalable, as it is a pure
er-particle operation, it would nevertheless be wasteful to mo v e 
ll particles for only the handful of them that are eventually found
n the neighbourhood of the fe w acti ve particles. In SWIFT , as is
lso done in some other modern codes, we alleviate this by first
dentifying the regions of the domain that contain active particles 
nd all their neighbours. We then acti v ate the drift task for these
ells and only them. We thus do not drift all the particles just the
equired ones, which is, to our knowledge, not an approach that
s discussed in the literature by other authors. This additional bit
f logic to determine the regions of interest is similar to a single
hallow tree-walk from the root of the tree down to the level where
articles will be active. The benefit of this reduced drift operation
s demonstrated by Borrow et al. ( 2018 ). We note that SWIFT can
evertheless be run in a more standard ‘drift-everything’ mode to 
llow for comparisons. 

.5 Language, implementation choices, and statistics 

he design described abo v e is, in principle, agnostic of the pro-
ramming language used and of the precise libraries exploited 6 to 
mplement the physics or parallelism approach. It was decided early 
n to write the code in the C language (specifically using the GNU99
ialect) for its ease of use, wide range of available libraries, speed
f compilation, and access to the lo w le v el threads, v ector units, and
emory management of the systems. 
The task engine exploited by SWIFT is available as a stand-alone

ool, QuickSched (Gonnet et al. 2016 ), and makes use of the
tandard POSIX threads available in all UNIX -based systems. The 
dvantage of using our own library o v er other e xisting alternativ e
e.g. Cilk (Blumofe et al. 1995 ), TBB (Reinders 2007 ), SMPSs
Perez, Badia & Labarta 2008 ), StarPU (Augonnet et al. 2011 ), or
he now standard OpenMP tasks) is that it is tailored to our specific
eeds and can be adapted to precisely match the code’s structure. We
lso require the use of task conflicts (see Section 2.2 ) and the ability
o interface with MPI calls (see Section 2.3 ), two requirements not
ulfilled by other alternatives when the project was started. 

By relying on simple and widely available tools, SWIFT can be (and
as been) run on a large variety of systems ranging from standard
86 CPUs, ARM-based computers, BlueGene architecture, and IBM 

ower microprocessors. 
The entirety of the source code release here comprises more 

han 150 000 lines of code and 90 000 lines of comments. These
arge numbers are on the one hand due to the high verbosity of
he C language and on the other hand due to the extent of the
aterial released and the modular nature of the code. The majority

f these lines are contained in the code extensions and i/o routines.
dditionally, about 30 000 lines of python scripts are provided to
enerate and analyse examples. The basic Cocomo model (Boehm 

000 ) applied to our code base returns an estimate of 61 person-years
or the development of the package. 

SWIFT was also designed, from the beginning, with a focus on an
pen and well-documented architecture both for ease of use within 
he development team but also for the community at large. For that
eason, we include fifteen thousand lines of narrative and theory 
ocumentation, 7 a user onboarding guide, and large open-source, 
ell-documented, and well-tested analysis tools. 8 
MNRAS 530, 2378–2419 (2024) 
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 S M O O  THED  PA R  TICLE  H Y D RO D  Y NA M I C S  

OLV ER  

aving discussed the mechanism used by SWIFT to perform loops
 v er neighbouring particles, we now turn to the specific forms of the
quations for hydrodynamics evolved in the code. 

SPHs (Gingold & Monaghan 1977 ; Lucy 1977 ) has been prized
or its adaptivity , simplicity , and Lagrangian nature. This makes it a
atural fit for simulations of galaxy formation, with these simulations
eeding to capture huge dynamic ranges in density (o v er four orders
f magnitude even for previous-generation simulations), and where
he coupling to gravity solvers is crucial. Future releases of SWIFT will
lso offer more modern hydrodynamics solver options (see Section
0.2 ). 
SWIFT implements a number of SPH solvers, all within the same

eighbour-finding and time-stepping framework. These solvers range
rom a basic re-implementation of equations from Monaghan ( 1992 )
n Sections 3.1 and 3.2 , to newer models including complex switches
or artificial conductivity and viscosity. We introduce our default
cheme SPHENIX in Section 3.3 and present our implementation
f a time-step limiter and of particle splitting in Sections 3.4 and
.5 , respectiv ely. F or completeness, we giv e the equations for the
dditional fla v ours of SPH a vailable in SWIFT in Appendix A . Note
lso that in this section, we limit ourselves to the equations of
ydrodynamics in a non-expanding frame. Information on comoving
ime integration is presented later in Section 5.4 . 

As comparing hydrodynamic models is complex, and often a
ignificant level of investigation is required even for a single test
roblem (e.g. Agertz et al. 2007 ; Braspenning et al. 2023 ), we
o not directly compare the implemented models in SWIFT here.
e limit our presentation to the classic ‘nIFTy cluster’ problem

Sembolini et al. 2016 , Section 3.6 ), which is directly rele v ant
o galaxy formation and cosmology applications. For our fiducial
cheme, SPHENIX , the results of many of the standard hydrodynamics
ests were presented by Borrow et al. ( 2022 ). The initial conditions
nd parameters for these tests, and many others, are distributed as
art of SWIFT and can be run with all the schemes introduced below.

.1 A brief introduction to SPH 

PH is frequently presented from two lenses: the first, a series of
quations of motion derived from a Lagrangian with the constraint
hat the particles must obey the laws of thermodynamics (see e.g.
elson & Papaloizou 1994 ; Monaghan & Price 2001 ; Springel &
ernquist 2002 ; Price 2012 ; Hopkins 2013 ); or a coarse-grained,

nterpolated, version of the Euler equations (as in Monaghan 1992 ). 
As the implemented methods in SWIFT originate from numer-

us sources, there are SPH models originally derived from, and
nterpreted through, both of these lenses. Here, we place all of the
quations of motion into a unified framework for easy comparison. 

SPH, fundamentally, begins with the kernel. 9 This kernel, which
ust be normalized, must have a central gradient of zero, and must

e isotropic, is usually truncated at a compact support radius H . We
escribe the kernel as a function of radius r and smoothing length h ,
hough all kernels implemented in SWIFT are primarily functions of
he ratio between radius and smoothing length r / h to ensure that the
unction remains scale-free. The kernel function 

 ( r , h ) = 

1 

h 

n d 
w( r /h ) (1) 
NRAS 530, 2378–2419 (2024) 

 An expanded discussion of the following is available in both Price ( 2012 ) 
nd Borrow, Schaller & Bower ( 2021 ). 

1

t

here here n d is the number of spatial dimensions and w( r / h ) is a
imensionless function that describes the form of the kernel. 
Throughout, SWIFT uses the Dehnen & Aly ( 2012 ) formalism,

here the smoothing length of a particle is independent of the kernel
sed, with the smoothing length given by h = 

√ 

2 ln 2 a, with a the
ull-width half maximum of a Gaussian. The cut-off radius H =
K h is given through a kernel-dependent γ K . We implement the
ernels from that same paper, notably the Wendland ( 1995 ) C2, C4,
nd C6 kernels, as well as the Cubic, Quartic, and Quintic splines
Monaghan & Lattanzio 1985 ) using their normalization coefficients.
enerally, we recommend that production simulations are performed
ith the Wendland-C2 or Quartic spline kernels for efficiency and

ccuracy reasons. 

.1.1 Constructing the number density and smoothing length 

he kernel can allow us to construct smoothed, volume-dependent
uantities from particle-carried quantities. Particle-carried quantities
re intrinsic to individual mass elements (e.g. mass, thermal energy,
nd so on), whereas smoothed quantities (here denoted with a hat)
re created from particle-carried quantities convolved with the kernel
cross the smoothing scale (e.g. mass density, thermal energy density,
nd so on). 

The most basic smoothed quantity is referred to as the particle
umber density, 

ˆ  ( r , h ) = 

∑ 

j 

W ( | r − r j | , h ) , (2) 

or a sum runs o v er neighbouring particles j . This is ef fecti vely a
artition of unity across the particle position domain when re-scaled
uch that 

ˆ  ( h ) 

(
h 

η

)n d 

= 1 , (3) 

or all positions r and constant smoothing scale η10 , assuming that
he smoothing length h is chosen to be large enough compared to the
nter-particle separation. 

Given a disordered particle arrangement (i.e. any arrangement
ith non-uniform particle spacing in all dimensions), it is possible to

nvert equation ( 3 ) with a fixed value of η to calculate the expected
moothing length given a measured number density from the current
article arrangement. In principle, this is possible for all values of η,
ut in practice there is a (kernel dependent, see Dehnen & Aly 2012 )
ower limit on η which gives acceptable sampling of the particle
istribution (typically η > 1.2). Higher values of η give a smoother
eld, and can provide more accurate gradient estimates, but lead to
n increase in computational cost. For some kernels, high values of
can also lead to occurrences of the pairing instability (Dehnen &
ly 2012 ; Price 2012 ). 
Given a computation of ˆ n i at the position of a particle r i , for

 given smoothing length h i , an expected particle number density
an be computed from equation ( 3 ). In addition, we compute the
eri v ati ve 

d ̂  n i 
d h 

= −
∑ 

j 

(
n d 

h i 

W ij + 

r ij 

h i 

∇ i W ij 

)
, (4) 

here here r ij ≡ | r i − r j | , and W ij ≡ W ( r ij , h i ), with ∇ i implying a
patial deri v ati ve with respect to r i . This gradient is used, along with
0 Relationships between the classic ‘number of neighbours’ definition and 
he smoothing scale η are described in Price ( 2012 ). 
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he difference between the expected density and measured density, 
ithin a Newton–Raphson scheme to ensure that the smoothing 

ength h i corresponds to equation ( 3 ) to within a relative factor of
0 −4 by default. 
We calculate the mass density of the system in a similar fashion,

ith this forming our fundamental interpolant: 

ˆ i = 

∑ 

j 

m j W ij , (5) 

here here m j is the particle mass. We choose to use the particle
umber density in the smoothing length calculation, rather than mass, 
o ensure adequate sampling for cases where particle masses may be 
ery different, which was common in prior galaxy formation models 
ue to stellar enrichment sub-grid implementations. 
SWIFT calculates (for most implemented fla v ours of SPH) the 

ressure of particles based upon their smoothed density and their 
nternal energy per unit mass u , or adiabat A , with 

 i = ( γ − 1) u i ̂  ρi = A i ̂  ρ
γ

i , (6) 

here γ is the ratio of specific heats. 

.1.2 Creating general smoothed quantities 

eyond calculating the density, any quantity can be convolved with 
he kernel to calculate a smoothed quantity. For a general particle- 
arried quantity Q , 

ˆ 
 i = 

1 

ˆ ρi 

∑ 

j 

m j Q j W ij , (7) 

ith spatial deri v ati ves 

 · ˆ Q i = 

1 

ˆ ρi 

∑ 

j 

m j Q j · ∇W ij , (8) 

 × ˆ Q i = 

1 

ˆ ρi 

∑ 

j 

m j Q j × ∇W ij , (9) 

rovide basic estimates of smoothed quantities. Better estimators 
xist, and are used in specialized cases (see e.g. Price 2012 ), but in
ll other cases when we refer to a smoothed quantity these are the
nterpolants we rely on. 

.1.3 SPH equations of motion 

ollowing Hopkins ( 2013 ), we write equations of motion for SPH in
erms of two variables describing a volume element for conserving 
eighbour number ( ̃  x in their formalism, here we use a ) and a volume
lement for the thermodynamical system ( x in their formalism, here 
e use b ). We then can write the conserv ati ve equations of motion

or SPH as derived from a Lagrangian as follows: 

d v i 
d t 

= −
∑ 

j 

b i b j 

[ 

f ij P i 

ˆ b 2 i 
∇ i W ij + 

f ji P j 

ˆ b 2 j 
∇ j W ji 

] 

, (10) 

here here the factors f ij are given by 

 ij = 1 − a j 

b j 

( 

h i 

n d ̂  b i 

∂ ̂  b i 

∂ h i 

) (
1 + 

h i 

n d ̂  a i 

∂ ̂ a i 

∂ h i 

)−1 

. (11) 

he second equation of motion, i.e. the one evolving the thermo- 
ynamic variable ( u or A ) depends on the exact fla v our of SPH, as
escribed below. 
.2 Basic SPH flavours 

WIFT includes two so-called traditional SPH solvers, named MIN- 
MAL (based on Price ( 2012 )) and GADGET2 (based on Springel
 2005 )), which are Density–Energy and Density–Entropy-based 
olv ers, respectiv ely. This means that they use the particle mass
s the variable b in equation ( 10 ) and evolve the internal energy u or,
espectively the adiabat A (equation ( 6 )), as thermodynamic variable.
hese two solvers use a basic prescription for artificial viscosity that

s not explicitly time-varying. They are included in the code mainly
or comparison to existing literature and to serve as basis for new
evelopments. 
These two solvers share the same equation of motion for velocity

nd internal energy, 

d v i 
d t 

= −
∑ 

j 

m j 

[ 

f i P i 

ˆ ρ2 
i 

∇ i W ij + 

f j P j 

ˆ ρ2 
j 

∇ i W ij 

] 

, (12) 

d u i 

d t 
= 

∑ 

j 

m j 

f i P i 

ˆ ρ2 
i 

v ij · ∇ i W ij (13) 

ut as they each track different thermodynamic variables ( u , internal
nergy per unit mass for MINIMAL , and entropy/adiabat A for
ADGET2 ). In this latter fla v our, the equation for the adiabat is

bsent as d A /d t = 0 in the absence of additional source terms. In
he equations abo v e we also defined, v ij ≡ v i − v j , and 

 i = 

(
1 + 

h i 

n d ̂  ρi 

∂ ̂  ρi 

∂ h 

)
, (14) 

hich is known as the ‘f-factor’ or ‘h-factor’ to account for non-
niform smoothing lengths. 
In addition to these conserv ati ve equations, the two basic SPH

olvers include a simple viscosity prescription, implemented as 
n additional equation of motion for velocity and internal energy 
entropy). The artificial viscosity implementation corresponds to the 
quations 101, 103, and 104 of Price ( 2012 ), with αu = 0 and β =
. We solve the following equations of motion 

d v i 
d t 

∣∣∣∣
visc 

= −
∑ 

j 

m j 

νij 

2 

(
f i ∇ W ij + f j ∇ W ji 

)
, (15) 

d u i 

d t 

∣∣∣∣
visc 

= 

∑ 

j 

m j 

νij 

4 
f i v ij · ∇W ij , (16) 

here the interaction-dependent factor 

ij = −αV ,ij μij v sig ,ij 

ˆ ρi ̂  ρj 

, (17) 

ij = 

{ 

v ij ·x ij 
| x ij | if v ij · x ij < 0 , 

0 otherwise . 
(18) 

hese rely on the signal velocity between all particles, which is also
sed in the time-step calculation, and is defined in these models as 

 sig ,ij = c s ,i + c s ,j − βμij , (19) 

here the constant β = 3. 
Finally, the viscosity is modulated using the Balsara ( 1989 ) switch,

hich remo v es viscosity in shear flows. The switch is applied to the
iscosity constants αV, ij is as follows: 

V ,ij = αV , i = αV B i , (20) 

 i = 

|∇ · v i | 
|∇ · v i | + |∇ × v i | + εc s ,i /h i 

, (21) 

here here αV = 0.8 is a fixed constant, c s, i is the gas sound speed,
nd ε = 0.0001 is a small dimensionless constant preventing divisions 
y zero. 
MNRAS 530, 2378–2419 (2024) 
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.3 The SPHENIX flavour of SPH 

he SPHENIX fla v our of SPH is the default fla v our in SWIFT , and was
escribed in detail by Borrow et al. ( 2022 ). SPHENIX inherits from
he Density–Energy formulation of SPH, uses similar discontinuity
reatments and limiters as the ANARCHY scheme use in the EAGLE

osmological simulations (see Schaller et al. 2015 ; Schaye et al.
015 , and Appendix A4 ), and uses a no v el limiter for feedback events.
PHENIX was designed with galaxy formation applications in mind.
s the scheme uses the Density–Energy equation of motion and
ot a pressure-smoothed implementation (Section A3 ), it must use a
omparatively higher amount of conduction at contact discontinuities
o a v oid spurious pressure forces (e.g. Agertz et al. 2007 ; Price 2008 ,
012 ). As such, removing the additional conduction in scenarios
here it is not warranted (in particular strong shocks) becomes

rucial for accurate modelling and to not dissipate energy where
ot desired. 
As such, the major equations of motion are the same as described

bo v e in the tradition SPH case, with the dissipationless component
eing identical to equation ( 13 ). The artificial viscosity term, how-
ver, is more complex. We no longer use a constant αV in equation
 17 ). We follow the framework of Morris & Monaghan ( 1997 ) and
urn it into a time-evolving particle-carried quantity. This scalar
arameter is integrated forward in time using 

V ,i ( t + �t) = αV ,i ( t) − αV , loc ,i exp 

(
−� · c s ,i 

H i 

�t 

)
, (22) 

ith H i = γ K h i the kernel cut-off radius, and where 

V , loc ,i = αV , max 
S i 

v 2 sig , i + S i 
, (23) 

 i = H 

2 
i · max 

(
0 , −∇̇ · v i 

)
, (24) 

hich ensures that αV, i decays away from shocks. In these expres-
ions, � = 0.05 is the viscosity decay length, and αV, max = 2.0 is the
aximal value of the artificial viscosity parameter. The S i term is a

hock indicator (see Cullen & Dehnen 2010 ) which we use here to
apidly increase the viscosity in their vicinity. For this detector, we
alculate the time differential of the velocity divergence using the
alue from the previous time-step, 

˙
 · v i ( t + �t) = 

∇ · v i ( t + �t) − ∇ · v i ( t) 
�t 

. (25) 

Additionally, If αV, loc, i > αV, i ( t ), then αV, i ( t + � t ) is set to αV, loc, i 

o ensure a rapid increase in viscosity when a shock front approaches.
he value of the parameter entering the usual viscosity term (equation
 17 ) is then 

V ,ij = 

αV ,i + αV ,j 

2 
· B i + B j 

2 
, (26) 

hich exploits the Balsara ( 1989 ) switch so that we can rapidly shut
own viscosity in shear flows. Note that, by construction, these terms
nsure that the interaction remains fully symmetric. 

In SPHENIX , we also implement a thermal conduction (also known
s artificial diffusion) model following Price ( 2008 ), by adding an
dditional equation of motion for internal energy 

d u i 

d t 

∣∣∣∣
diff 

= 

∑ 

j 

αc ,ij v c ,ij m j ( u i − u j ) 
f ij ∇ i W ij + f ij ∇ j W ji 

ρi + ρj 

, (27) 

here here the new dimensionless parameter for the artificial
onduction strength is constructed using a pressure weighting of
he contribution of both interacting particles: 

c ,ij = 

P i αc ,i + P j αc ,j 

P i + P j 

. (28) 
NRAS 530, 2378–2419 (2024) 
ith the αc, i evolved on a particle-by-particle basis with a similar
ime dependency to the artificial viscosity parameter. The artificial
onduction uses the Laplacian of internal energy as a source term, in
n effort to remo v e nonlinear gradients of internal energy o v er the
ernel width, with 

d αc ,i 

d t 
= βc H i 

∇ 

2 u i √ 

u i 

− ( αc ,i − αc , min ) 
v c ,i 

H i 

, (29) 

here here βc = 1 is a dimensionless parameter, and αc, i , min = 0 is the
inimal value of the artificial conduction coefficient. The artificial

onduction parameter is bounded by a maximal value of αc, i , min =
 in all cases. The value of βc is high compared to other schemes to
nsure the conduction parameter can vary on short timescales. Note
hat the velocity entering the last term of equation ( 29 ) is not the
ignal velocity but we instead follow Price et al. ( 2018 ) and write 

 c ,ij = 

| v ij · x ij | 
| x ij | + 

√ 

2 
| P i − P j | 

ˆ ρj + ˆ ρj 

. (30) 

his is a combination of the signal velocities used by Price et al.
 2018 ) for the cases with and without gravity. As the thermal con-
uction term (equation ( 27 )) is manifestly symmetric, no equation of
otion for velocity is required to ensure energy conservation. 
Finally, we ensure that the conduction is limited in regions

ndergoing strong shocks, limiting αc by applying 

c , max ,i = αc , max 

(
1 − αV , max ,i 

αV , max 

)
, (31) 

ith αc , max = 1 a constant, and 

c ,i = 

{
αc ,i αc ,i < αc , max 

αc , max αc ,i > αc , max . 
(32) 

ote the explicit appearance of the viscosity parameters αV, i in these
xpressions. More information on the moti v ation behind the limiter,
nd its implementation, are presented by Borrow et al. ( 2022 ). 

.4 Time-step limiter 

or all these schemes, a necessary condition to ensure energy
onservation, especially when additional source terms such as stellar
eedback are in use, is to impose some form of limit between the time-
tep size of neighbouring particles. This allows for information to be
orrectly propagated between particles (see Durier & Dalla Vecchia
012 ). In SWIFT , we use three different mechanisms to achieve the
esired outcome; these are all called ‘time-step limiters’ in different
arts of the literature. We describe them here briefly. 
The first limit we impose is to limit the time-step of active particles.
hen a particle computes the size of its next time-step, typically

sing the CFL condition, it also additionally considers the time-
tep size of all the particles it interacted within the loop computing
ccelerations. We then demand that the particle of interest’s time-
tep size is not larger than a factor � of the minimum of all the
eighbours’ values. We typically use � = 4 which fits naturally
ithin the binary structure of the time-steps in the code. This first
echanism is al w ays acti v ated in SWIFT and does not require any

dditional loops or tasks; it is, ho we ver, not suf ficient to ensure energy
onservation in all cases. 

The time-step limiter proposed by Saitoh & Makino ( 2009 ) is
lso implemented in SWIFT and is a recommended option for all
imulations not using a fixed time-step size for all particles. This
xtends the simple mechanism described above by also considering
nactive particles and waking them up if one of their active neighbours
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Figure 10. Top panel : The gas density profile of the nIFTy cluster when 
simulated with five models within SWIFT (thick solid lines of various colours), 
and three external codes (dashed thin lines), shown at redshift z = 0. Middle 
panel : Gas entropy profile of the cluster (as extracted from the temperature 
and electron density profiles). Bottom panel : Gas temperature profile of the 
cluster with the same models. 
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11 Depending on how the IDs are distributed in the initial conditions, we either 
generate a new random ID or append one to the maximal ID already present 
in the simulation. 
12 We remind the reader that all solvers are independent re-implementations 
within SWIFT rather than using their original codes, and all use the same 
neighbour-finding and time-step limiting procedures. 
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ses a much smaller time-step size. This is implemented by means 
f an additional loop o v er the neighbours at the end of the regular
equence (Fig. 4 ). Once an active particle has computed its time-
tep length for the next step, we perform an additional loop o v er its
eighbours and acti v ate any particles whose time-step length differs
y more than a factor � (usually also set to 4). As shown by Saitoh &
akino ( 2009 ), this is necessary to conserve energy and hence

ield the correct solution even in purely hydrodynamics problems 
uch as a Sedov–Taylor blast wave. The additional loop over the 
eighbours is implemented by duplicating the already existing tasks 
nd changing the content of the particle interactions to acti v ate the
equested neighbours. 
The third mechanism we implement is a synchronization step to 
hange the time-step of particles that have been directly affected 
y external source terms, typically feedback events. Durier & Dalla 
ecchia ( 2012 ) showed that the Saitoh & Makino ( 2009 ) mechanism
as not sufficient in scenarios where particles receive energy in 

he middle of their regular time-step. When particles are affected 
y feedback (see Sections 8.1 , 8.2 , and 8.3 ), we flag them for
ync hronization . A final pass o v er the particles, implemented as a
ask acting on any cell which was drifted to the current time, takes
hese flagged particles, interrupts their current step to terminate it 
t the current time and forces them back onto the timeline (Section
.4 ) at the current step. They then recompute their time-step and get
ntegrated forward in time as if they were on a short time-step all
long. This guarantees a correct propagation of energy and hence an
fficient implementation of feedback. The use of this mechanism is 
l w ays recommended in simulations with external source terms. 

.5 Particle splitting 

n some scenarios, particles can see their mass increase by large
mounts. This is particularly the case in galaxy formation sim- 
lations, where some processes such as enrichment from stellar 
volution (see Section 8.1.3 ) can increase some particle masses by
arge, sometimes unwanted, factors. To mitigate this problem, the 
WIFT code can optionally be run with a mechanism to split particles

hat reach a specific mass. We note that this is a mere mitigation tool
nd should not be confused for a more comprehensive multiresolution 
lgorithm where particle would adapt their masses dynamically in 
ifferent regions of the simulation volume and/or based on refinement 
riteria. 

When a particle reaches a user-defined mass m thresh , we split the
article into two equal mass particles. The two particles are exact
opies of each other but they are displaced in a random direction
y a distance 0.2 h . All the rele v ant particle-carried properties are
lso halved in this process. One of the two particles then receives a
ew unique identifier. 11 To keep track of the particles’ history, we
ecord the number of splits a particle has undergone o v er its lifetime
nd the ID of the original progenitor of the particle present in the
nitial conditions. Combined with a binary tree of all the splits, also
tored in the particle, this leads to fully traceable, unique, identifier
or every particle in the simulation volume. 

.6 The nIFTy cluster 

n Fig. 10 , we demonstrate the performance of a selection of the
ydrodynamics solvers within SWIFT on the (non-radiative) nIFTy 
luster (Sembolini et al. 2016 ) benchmark. The initial conditions used 
o perform this test are available for download as part of the SWIFT

ackage in hdf5 format. All necessary data, like the parameter file
equired to run the test, is also provided in the repository as a ready-
o-go example. 

In the figure, we demonstrate the performance of five models 
rom SWIFT [Density–Energy (Section 3.2 ) in green, ANARCHY -PU 

Section A4 ) in blue, SPHENIX (Section 3.3 ) in orange, PHANTOM

Section A3 ) in purple, and GASOLINE -2 (Appendix A4 ) in red]. 12 
MNRAS 530, 2378–2419 (2024) 
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13 Note the factor of 3 in the definition of ρ( | x | ) differs from the factor 2.8 used 
for the cubic spline kernel, as a consequence of the change of the functional 
form of W . 
14 A Plummer softening would also be branch-free but would have undesirable 
consequences on the dynamics (see e.g. Dehnen 2001 ). 
15 Note that switching off all optimization levels slows down the code by a 
factor 3.6x compared to the non-vectorized baseline. 
16 For more details about how these are constructed see Section 2 of Price & 

Monaghan ( 2007 ). 
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ll simulations use the same Wendland-C2 kernel and η = 1.2. For
omparison purposes, we display the results on this problem from
he GADGET -2 fla v our of ANARCHY (based upon Pressure-Entropy;
2-ANARCHY in dashed blue), the AREPO code and moving mesh-
ased solver (dashed purple), and a more standard SPH fla v our
mplemented in GADGET -3 ( G3-MUSIC ). These additional curves
ere extracted from the original Sembolini et al. ( 2016 ) work. 
Outside of radius R > 0.5 Mpc, all models show very similar

ehaviour. Internally to this radius, ho we ver, two classes of hydrody-
amics model are revealed: those that form a flat entropy profile (i.e.
he entropy tends towards very low values within the centre, driven by
igh densities and low temperatures), or a declining entropy profile
entropy flattens to a level of k B T n −2 / 3 

e ≈ 10 2 . 5 cm 

2 keV, driven
y a low central density and high temperature). There has been
uch debate o v er the specific reasons for this difference between

olvers. Here, we see that we form a flat profile with the GASOLINE -
-like (GDF) and Density-Energy models within SWIFT , and the
3-MUSIC code. These models have relatively lo w le vels of diffusion
r conduction (or none at all, in the case of Density–Energy and G3-
USIC ). For instance, within our GASOLINE -2-like implementation,
e choose the standard value of the conduction parameter C =
.03, consistent with the original implementation. Using a similar
odel Wadsley, Veeravalli & Couchman ( 2008 ) demonstrated that

he formation of flat or declining entropy profiles was sensitive to
he exact choice of this parameter (only forming flat profiles for
.1 < C < 1.0), and it is likely that this is the case within our
WIFT implementation too, though any such tuning and parameter
xploration is out of the scope of this technical paper. 

 G R AV I T Y  SOLV ER  

e now turn our attention towards the equations solved in SWIFT to
ccount for self-gravity (see Dehnen & Read 2011 ; Angulo & Hahn
022 , for re vie ws). We start by introducing the gravity softening
ernels (Section 4.1 ), then mo v e on to summarize the Fast-Multipole-
ethod at the core of the algorithm (Section 4.2 ), and describe how it

s implemented in our task-based framework (Section 4.3 ). We then
resent our choice of opening angle (Section 4.4 ) and the coupling
f the method to a traditional Particle-Mesh algorithm (Section 4.5 ).
e finish by showing a selection of test results (Section 4.6 ) before

iscussing how massive neutrinos are treated (Section 4.7 ). 

.1 Gravitational softening 

o a v oid artificial two-body relaxation and a v oid singularities when
articles get too close, the Dirac δ-distribution of the density field
orresponding to each particle is convolved with a softening kernel
f a given fixed, but possibly time-varying, scale-length H . Beyond
 , a purely Newtonian regime is recovered. 
Instead of the commonly used spline kernel of Monaghan &

attanzio ( 1985 ) we use a C2 kernel (Wendland 1995 ), which leads to
n expression for the force that is cheaper to compute whilst yielding
 very similar overall shape. We modify the density field generated
y a point-like particle ˜ δ( r ) = ρ( | r | ) = W ( | r | , 3 εPlummer ), where 

 ( r, H ) = 

21 

2 πH 

3 

{ 

4 u 

5 − 15 u 

4 + 20 u 

3 − 10 u 

2 + 1 if u < 1 , 

0 if u ≥ 1 , 

(33) 

ith u = r / H , and εPlummer is a free parameter linked to the resolution
f the simulation (e.g. Power et al. 2003 ; Ludlow, Schaye & Bower
019 ). The potential ϕ( r , H ) corresponding to this density distribution
NRAS 530, 2378–2419 (2024) 
eads 

( r, H ) = 

{
f 
(

r 
H 

) × H 

−1 if r < H , 

r −1 if r ≥ H , 
(34) 

ith f ( u ) ≡ −3 u 7 + 15 u 6 − 28 u 5 + 21 u 4 − 7 u 2 + 3. These choices
ead to a potential at | x | = 0 that is equal to the central potential of
 Plummer ( 1911 ) sphere (i.e. ϕ( r = 0) = 1/ εPlummer ). 13 From this
xpression the softened gravitational force can be easily obtained: 

ϕ( r, H ) = r ·
{

g( r 
H 

) × H 

−3 if r < H , 

r −3 if r ≥ H , 
(35) 

ith g ( u ) ≡ f ′ ( u )/ u = −21 u 5 + 90 u 4 − 140 u 3 + 84 u 2 − 14. This
ast expression has the advantage of not containing any divisions
r branching (besides the al w ays necessary check for r < H ),
aking it faster to e v aluate than the softened force derived from the
onaghan & Lattanzio ( 1985 ) spline kernel. 14 It is hence well suited

o target modern hardware, for instance to exploit SIMD instructions.
n particular, the use of a C2 kernel here allows most of the commonly
sed compilers to automatically generate vectorized code, which is
ot the case when using a spline-based kernel with branches. On the
ealistic scenario used as a convergence test of Section 4.6 , we get a
peed-up of 2.5x when using AVX2 vectorization over the regularly
ptimized code. 15 The same code using a spline kernel forfeits that
peed-up and is even slightly slower due to the extra operations even
n the non-vectorized case. 

The softened density profile, with its corresponding potential and
esulting forces 16 are shown in Fig. 11 . For comparison purposes,
e also implemented the more traditional spline-kernel softening in
WIFT . For a recent discussion of the impact of different softening
ernel shapes see section 8 of Hopkins et al. ( 2023 ). 

.2 Evaluating the forces using the Fast Multipole Method 

he algorithmically challenging aspect of the N -body problem is to
enerate the potential and associated forces received by each particle
n the system from every other particle in the system. Mathematically,
his means e v aluating 

( x a ) = 

∑ 

b 	= a 

G N m b ϕ( x a − x b ) ∀ a ∈ N (36) 

fficiently for large numbers of particles N (with G N the gravitational
onstant). In the case of collisionless dynamics, the particles are a
ere Monte–Carlo sampling of the underlying coarse-grained phase-

pace distribution (e.g. Dehnen & Read 2011 ), which justifies the
se of approximate methods to e v aluate equation ( 36 ). The Fast
ultipole Method (FMM Greengard & Rokhlin 1987 ; Cheng et al.

999 ) is an O( N ) approximation of equation ( 36 ), popularized in
stronomy and adapted specifically for gravity solvers by Dehnen
 2000 , 2002 ) (see also Warren & Salmon ( 1995 ) for related ideas).
he FMM works by expanding the potential in a Taylor series
round both x a and x b and grouping similar terms arising from
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Figure 11. The density, potential, force, and force ratio to the Newtonian 
case generated by a point unit mass in our softened gravitational scheme. 
We use distances in units of the kernel cut-off H to normalize the figures. 
A Plummer-equi v alent sphere is shown for comparison. The spline kernel of 
Monaghan & Lattanzio ( 1985 ) is depicted for comparison but note that it has 
not been normalized to match the Plummer-sphere potential at r = 0 (as is 
done in simulations) but rather normalized to the Newtonian potential at r = 

H to better highlight the differences in shapes. 
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Figure 12. The basics of the Fast Multipole Method: The potential generated 
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Barnes & Hut ( 1986 ) tree-code, all the particles in the cell A receive direct 
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earby particles to compute long-distance interactions between well- 
eparated groups only once. In other words, we consider groups of
articles with a large enough separation that the forces between them 

an be approximated well enough by just the forces between their 
entres of mass. Higher-order expressions, as used in SWIFT and other 
MM codes, then not only approximate these groups as interacting 
oint masses, but also take into account their shape, i.e. use the next
rder terms such as inertia tensors and beyond. A more rigorous
eri v ation is given below. 
The convergence of FMM and its applicability to a large range of

ravity problems have been explored extensively (see e.g. Dehnen 
002 , 2014 ; Potter et al. 2017 ; Garrison et al. 2021 ; Springel et al.
021 ). For comparison, a Barnes & Hut ( 1986 ) tree-code, used in
ther modern codes such as 2HOT (Warren 2013 ) and GADGET -4
Springel et al. 2021 , in its default operating mode), only expands
he potential around the sources x b . The formal complexity of such
 method is O( N log N ). 

.2.1 Double expansion of the potential 

n this section, we use the compact multi-index notation of Dehnen 
 2014 ) (repeated in appendix B for completeness) to simplify
xpressions and ease comparisons with other published work. In 
hat follows k , m , and n denote the multi-indices and r , R , x , y ,

nd z are vectors, whilst a and b denote particle indices. Note that no
ssumptions are made on the specific functional form of the potential 
. 
For a single pair of particles a and b located in respective cells

 and B with centres of mass z A and z B , as shown in Fig. 12 , the
otential generated by b at the location of a can be written as 

( x a − x b ) = ϕ ( x a − z A − x b + z B + z A − z B ) 

= ϕ ( r a − r b + R ) 

= 

∑ 

k 

1 

k ! 
( r a − r b ) k ∇ 

k ϕ( R ) 

= 

∑ 

k 

1 

k ! 

∑ 

n < k 

(
k 

n 

)
r n a ( −r b ) k −n ∇ 

k ϕ( R ) 

= 

∑ 

n 

1 

n ! 
r n a 

∑ 

m 

1 

m ! 
( −r b ) m ∇ 

n + m ϕ( R ) , (37) 

here the Taylor expansion of ϕ around R ≡ z A − z B was used on
he third line, r a ≡ x a − z A , r b ≡ x b − z B is defined throughout, and
 ≡ k − n is defined for the last line. Expanding the series only up

o order p , we get 

( x a − x b ) ≈
p ∑ 

n 

1 

n ! 
r n a 

p−| n | ∑ 

m 

1 

m ! 
( −r b ) m ∇ 

n + m ϕ( R ) , (38) 

ith the approximation converging towards the correct value pro- 
ided | R | > | r a + r b | as p → ∞ . If we now consider all the particles
ithin B and combine their contributions to the potential at location
 a in cell A , we get 

BA ( x a ) = 

∑ 

b∈ B 
G N m b ϕ( x a − x b ) 

≈ G N 

p ∑ 

n 

1 

n ! 
r n a 

p−| n | ∑ 

m 

1 

m ! 

∑ 

b∈ B 
m b ( −r b ) m ∇ 

n + m ϕ( R ) . (39) 

his last equation forms the basis of the FMM. The algorithm
ecomposes equation ( 36 ) into three separated sums, e v aluated at
ifferent stages. 

.2.2 The FMM algorithm 

s a first step, multipoles are constructed from the innermost sum.
or each cell, we compute up to order p all the necessary multipoles
i.e. all terms M whose norm of the multi-index m ≤ p ) 

 m 

( z B ) = 

1 

m ! 

∑ 

b∈ B 
m b ( −r b ) m = 

∑ 

b∈ B 
m b X m 

( −r b ) , (40) 

here we re-used the tensors X m 

( r b ) ≡ 1 
m ! r 

m 

b to simplify the no-
ation. This is the first kernel of the method, commonly labelled as
2M (particle to multipole). In a second step, we compute the second
MNRAS 530, 2378–2419 (2024) 
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ernel, M2L (multipole to local expansion), which corresponds to the
nteraction of a cell with another one: 

 n ( z A ) = G N 

p−| n | ∑ 

m 

M m 

( z B ) D n + m 

( R ) , (41) 

here D n + m 

( R ) ≡ ∇ 

n + m ϕ( R ) is an order n + m deri v ati ve of the
otential. This is the computationally e xpensiv e step of the FMM
lgorithm, as the number of operations in a naive implementation
sing Cartesian coordinates scales as O( p 

6 ). More advanced tech-
iques (e.g. Dehnen 2014 ) can bring the cost down to O( p 

3 ), albeit at
 considerable algebraic cost. In the case of collisionless dynamics,
ccuracy down to machine precision for the forces is not required,
nd low values of p are thus sufficient, which maintains a reasonable
omputational cost for the M2L kernel (even in the Cartesian form).

Finally, the potential is propagated from the local expansion centre
ack to the particles (L2P kernel) using 

BA ( x a ) = 

p ∑ 

n 

1 

n ! 
r n a F n ( z A ) = 

p ∑ 

n 

X n ( r a ) F n ( z A ) . (42) 

his expression is purely local, and can be efficiently implemented
n a loop that updates all the particles in cell A . 

In summary, the potential generated by a cell B on the particles in
ell A is obtained by the successive application of the P2M, M2L,
nd L2P kernels. The P2M and L2P kernels need only be applied
nce per particle, whilst one M2L calculation must be performed for
ach pair of cells. 

The forces applied to the particles are obtained by the same
rocedure, now using an extra order in the Taylor expansion. For
nstance, for the acceleration along the x -axis, we have: 

 x ( x a ) = 

p−1 ∑ 

n 

X n ( r a ) F n + ( 1 , 0 , 0 ) ( z A ) . (43) 

igher-order terms, such as tidal tensors, can be constructed using
he same logic. Note that only the last step in the process, the L2P
ernel, needs to be modified for the accelerations or tidal tensors.
he first two steps of the FMM, and in particular the e xpensiv e M2L
hase, remain identical. 
In practice, the multipoles can be constructed recursively from the

eaves of the tree to the root, and the local expansions from the root
o the leaves by shifting the M and F tensors and adding their con-
ributions to their parent or child cell’s tensors respectively. This can
e done during the tree construction phase, for instance. Similarly,
he local expansion tensors ( F ) can be propagated downwards using
he opposite expressions. 

While constructing the multipoles M , we also collect the centre
f mass velocity of the particles in the cells. This allows us to drift
he multipoles forward in time. This is only first-order accurate,
ut is sufficient in most circumstances, especially since once the
articles have moved too much a full reconstruction of the tree (and
ence of the multipoles) is triggered. Here, we follow the same
ogic as employed in many codes (e.g. GADGET Springel 2005 ) and
orce a tree reconstruction once a fixed cumulative fraction (typically
 per cent) of the particles have received an update to their forces. 
One final useful expression that enters some of the interactions

etween tree-leaves is the P2M kernel. This directly applies the
otential due to a multipole expansion in cell B to a particle in cell A
ithout using the expansion of the potential F at the centre of mass
f cell A. This kernel is obtained by setting r a to zero in equation
 37 ), re-defining R ≡ x a − z B , and constructing the same M and D 

ensors as for the other kernels: 
NRAS 530, 2378–2419 (2024) 
Ba ( x a ) = G 

p ∑ 

m 

M m 

D m 

( R ) , (44) 

 x ( x a ) = G 

p ∑ 

m 

M m 

D m + ( 1 , 0 , 0 ) ( R ) . (45) 

he P2M kernel acts identically to traditional Barnes & Hut ( 1986 )
ree-codes, which use solely that kernel to obtain the forces from the
ultipoles (or often just monopoles, i.e. setting p = 0 throughout) to

he particles. 
With all the kernels defined, we can construct a tree walk by

ecursively applying the M2L operation in a similar fashion to the
ouble tree-walk introduced by Dehnen ( 2000 ). 

.2.3 Implementation choices 

ll the kernels (equations ( 40 –45 ) are rather straightforward to
 v aluate as they are only made of additions and multiplications
provided D can be e v aluated quickly), which are extremely efficient
nstructions on modern architectures. Ho we v er, the fully e xpanded
ums can lead to rather large, and prone to typos, expressions. To
 v oid any mishaps, we use a python script to generate the C code
n which all the sums are unrolled, ensuring they are correct by
onstruction. This script is distributed as part of the code repository.
n SWIFT , FMM kernels are implemented up to order p = 5, more
han accurate enough for our purposes (see Section 4.6 ), but this
ould be extended to higher order easily. At order p = 5, this implies
toring 56 numbers per cell for each M and F plus three numbers
or the location of the centre of mass. Our default choice is to use
ultipoles up to order p = 4; higher or lower implementations can

e chosen at compile time. For leaf-cells with large numbers of
articles, as in SWIFT , this is a small memory o v erhead. One further
mall impro v ement consists in choosing z A to be the centre of mass
f cell A rather than its geometrical centre. The first order multipoles
 M 100 , M 010 , M 001 ) then vanish by construction. This allows us to
implify some of the expressions and helps reduce, albeit by a small
raction, the memory footprint of the tree structure. 

.3 The tree walk and task-parallel implementation 

he three main kernels of the FMM methods (equations ( 40 , 41 , and
2 ) are e v aluated in dif ferent sections of the code. The construction
f the multipoles is done during the tree building phase. This is
erformed outside of the task-based section of the code. As there is
o need to handle dependencies or conflicts during the construction,
e use a simple parallelization o v er the threads for this phase. As

s done in other codes, this is achieved by recursively accumulating
nformation from the tree leaves to the root level. 

Once the tree and associated multipoles have been constructed, the
emaining work to be performed is laid out. In a similar fashion to the
ydrodynamics case (Section 2.2 ), all the calculations (M2L kernels
nd direct leaf-leaf interactions) can, in principle, be listed. The
nly difference lies in the definition of which cells need to interact
sing which kernel. This is based on the distance between the cells
nd information gathered from the multipoles (see Section 4.4 for
he exact expression). In the case of a calculation using multiple
odes, the multipole information of neighbouring cells located on
nother node is exchanged after the tree construction (see Section
.2 ). Whilst in the SPH case, the cells were constructed such that
nly direct neighbours need to be considered, one may, here, need to
onsider longer-range pairs of cells. 
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Figure 13. The basic decomposition of the FMM tree-walk into tasks for a 
set of particles in their cells, shown in 2D for clarity. The operations involving 
the red cell are as follows: (1) one self task computing the gravity kernels 
within the cell itself, (2) eight pair tasks computing the kernels for each pair 
of the red-green pairs of cells (the arrows), and (3) a single long-range task 
computing the M2L kernel contribution of all the blue cells to the red cell. In a 
realistic example, there will be many more blue cells beyond what is depicted 
here, but all their contributions to the cell of interest’s potential will be handled 
by a single task looping o v er all of them. The green cells are too close, based 
on the criterion of Section 4.4 to use a multipole-multipole (M2L) interaction; 
their interactions with the red cell are hence treated as individual tasks as they 
contain a substantial amount of calculation to perform. In some cases, the 
distance criterion may be such that cells slightly further away also need to be 
treated by the pair tasks rather than just the directly neighbouring layer. This 
depends on the exact particle configuration and on the user’s opening angle 
choices. 
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17 See also Springel et al. ( 2001 ) for similar ideas in the regular tree case, 
based on the detailed error analysis of the tree code by Salmon & Warren 
( 1994 ). 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/530/2/2378/7637788 by Bibliotheque C
om

m
une D

e C
him

ie U
N

IL - EPFL user on 07 June 2024
In practice, we start from the top-level grid of cells and identify
ll the pairs of cells that cannot interact via the M2L kernel. We then
onstruct a pair task for each of them. Each cell also gets a self task
hich will take care of all the operations inside itself. Finally, for

ach cell, we create a long-range task, which will take care of all the
nteractions involving this cell and any cell far enough that the M2L
ernel can be directly used. This third task is generally very cheap
o e v aluate as it involves only the e v aluation of equation ( 41 ). This
s illustrated on Fig. 13 for a simple case. 

In most cases, the number of operations to perform within a single
elf or pair task is large. These cells are also very likely to be split
nto smaller cells in the tree. The tasks will hence attempt to recurse
own the tree and perform the operations at the level that is most
uitable. To this end, they use a double tree-walk logic akin to the one
ntroduced by Dehnen ( 2002 ). At each lev el, we v erify whether the
hildren cells are far enough from each other based on the opening
ngle criterion (Section 4.4 ). If that is the case, then the M2L kernel
s used. If not, then we mo v e further down the tree and follow the
ame logic at the next level. The algorithm terminates when reaching 
 leaf cell. At this point, we either apply the M2P kernel, if allowed
y the criterion, or default to the basic direct summation (P2P kernel)
alculation. 
Finally, the L2P kernel is applied on a cell-by-cell basis from
he root to the leaves of the tree using a per-cell task. These tasks
re only allowed to run once all of the self, pair, and long-range
ravity tasks described abo v e hav e run on the cell of interest. This
s achieved using the dependency mechanism of the task scheduling 
ibrary. 

As the gravity calculation updates different particle fields (or 
 ven dif ferent particles) from the SPH tasks, we do not impose
n y dependenc y between the gravity and hydrodynamics operations. 
oth sets of tasks can run at the same time on the same cells and
articles. This differs from other codes where an ordering is imposed.
ur choice allows for better load-balancing since we do not need

o wait for all the gravity operations (say) to complete before the
ydrodynamics ones. 

.4 The multipole acceptance criterion 

he main remaining question is to decide when two cells are far
nough from each others that the truncated Taylor expansion used as
pproximation for the potential (equation ( 37 )) is accurate enough.
he criterion used to make that decision is called the multipole
cceptance criterion (MAC). 
We know that equation ( 37 ) converges towards the correct answer

s p increases provided that 1 > | r a + r b | / | R | . This is hence the most
asic (and al w ays necessary) MAC that can be designed. If this ratio
s lower, the accuracy (at a fix ed e xpansion order) is impro v ed and it
s hence common practice to define a critical opening angle θ cr and
llow the use of the multipole approximation between two cells of
ize ρA and ρB if 

cr > 

ρA + ρB 

| R | . (46) 

his lets users have a second handle on the accuracy on the gravity
alculation besides the much more involved change in the expansion 
rder p of the FMM method. Typical values for the opening angle are
n the range [0.3, 0.7], with the cost of the simulation growing as θ cr 

ecreases. Note that this MAC reduces to the original Barnes &
ut ( 1986 ) criterion when individual particles are considered 

i.e. ρA = 0). 
This method has the drawback of using a uniform criterion across

he entire simulation volume and time evolution, which means that 
he chosen value of θ cr could be too small in some regions (leading
o too many operations for the e xpected accurac y) and too large in
ome other ones (leading to a lower level of accuracy than expected).
WIFT instead uses a more adaptive criterion to decide when the
ultipole approximation can be used. This is based on the error

nalysis of FMM by Dehnen ( 2014 ) and is summarized below for
ompleteness. 17 The key idea is to exploit the additional information 
bout the distribution of particles that is encoded in the higher-order
ultipole terms. 
We start by defining the scalar quantity P A, n , the power of the
ultipole of order n of the particles in cell A , via 

 

2 
A , n = 

∑ 

| m |= n 

m ! 

| m | ! M 

2 
A, m 

, (47) 
MNRAS 530, 2378–2419 (2024) 
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here the sum runs o v er all multipole terms of order n in the cell. 18 

his quantity is a simple upper bound for the amplitude of the
ultipole ( M A, m 

< P A , | m | / | m | !) and can hence be used to estimate
he importance of the terms of a given order in the Taylor series of
he potential. Following Dehnen ( 2014 ), we then consider a sink cell
 and a source cell B (Fig. 12 ) for which we e v aluate at order p the
calar 

 BA , p = 

1 

M B | R | p 
p ∑ 

n = 0 

(
p 

n 

)
P B , n ρ

p−n 

A , (48) 

ith M B ≡ M B , (0 , 0 , 0) , the sum of the mass of the particles in cell B .
ote that since P B , n ≤ M B ρ

n 
B , we have E BA, p ≤ (( ρA + ρB )/ | R | ) p ,

here the right-hand side is the expression used in the basic opening
ngle condition (equation 46 ). We finally scale the E BA, p ’s by the
elative size of the two cells to define the error estimator ˜ E BA , p : 

˜ 
 BA , p = 8 

max ( ρA , ρB ) 

ρA + ρB 
E BA , p . (49) 

s shown by Dehnen ( 2014 ), these quantities are excellent estimators
f the error made in computing the accelerations between two cells
sing the M2L and M2P kernels at a given order. We can hence use
his property to design a new MAC by demanding that the estimated
cceleration error is no larger than a certain fraction of the smallest
cceleration in the sink cell A . This means we can use the FMM
pproximation to obtain the accelerations in cell A due to the particles
n cell B if 

˜ 
 BA , p 

M B 

| R | 2 < εFMM 

min 
a∈ A 

( | a a | ) and 
ρA + ρB 

| R | < 1 , (50) 

here a a is the acceleration of the particles in cell A and εFMM 

is
 tolerance parameter. Since this is self-referencing (i.e. we need
he accelerations to decide how to compute the accelerations), we
eed to use a an estimator of | a a | . In SWIFT , we follow the strategy
ommonly used in other software packages and use the acceleration
f the previous time-step. 19 The minimal norm of the acceleration in a
iven cell can be computed at the same time as the P2M kernels which
re obtained in the tree construction phase. The second condition in
quation 50 is necessary to ensure the convergence of the Taylor
xpansion. 

One important difference between this criterion and the purely
eometric one (equation ( 46 )) is that it is not symmetric in A ↔ B (i.e.
 AB, p 	= E BA, p ). This implies that there are cases where a multipole

n cell A can be used to compute the field tensors in cell B but the
ultipole in B cannot be used to compute the F values of cell A

nd vice versa. This affects the tree walk by breaking the symmetry
nd potentially leading to cells of different sizes interacting. That is
andled smoothly by the tasking mechanism which naturally adapts
o the amount of work required. Note that an alternative approach
ould be to force the symmetry by allowing the multipoles to interact

t a given level only if the criterion is satisfied in both directions.
e additionally remark that this breaking of the symmetry formally

eads to a breaking of the momentum-conserving property of the
MM method. We, ho we v er, do not re gard this as an important issue
s the momentum conservation is already broken by the use of per-
article time-step sizes. 
NRAS 530, 2378–2419 (2024) 

8 Note that P 0 ≡ M (0 , 0 , 0) is just the mass of the cell and since SWIFT uses 
he centre of mass as the centre of expansion of the multipoles, P 1 = 0. 
9 On the first time-step of a simulation this value has not been computed 
et. We hence run a f ak e ‘zeroth’ time-step with the simpler MAC (equation 
 46 )), which is good enough to obtain approximations of the accelerations. 
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(  

(  

p  

2

a

.5 Coupling the FMM to a mesh for periodic long-range forces

o account for periodic boundary conditions in the gravity solver,
he two main techniques present in the literature are: (1) apply an
wald ( 1921 )-type correction to every interaction (e.g. Hernquist &
atz 1989 ; Klessen 1997 ; Springel et al. 2001 , 2021 ; Springel 2005 ;
ubber et al. 2011 ; Potter et al. 2017 ; Garrison et al. 2021 ); and (2)

plit the potential in two (or more) components with one of them
olved for in Fourier space and thus accounting for the periodicity
e.g. Xu 1995 ; Bagla 2002 ; Springel 2005 ; Habib et al. 2016 ; Springel
t al. 2021 ). We implement the latter of these two options in SWIFT

nd follow the same formalism as presented by Bagla & Ray ( 2003 ),
dapted for FMM. 

We start by truncating the potential and forces computed via the
MM using a smooth function that drops quickly to zero at some
cale r s set by the size of the gravity mesh. The Newtonian potential
n equation ( 36 ) is ef fecti vely replaced by 

s ( r ) = 

1 

r 
· χ ( r , r s ) ≡ 1 

r 
· erfc 

(
1 

2 

r 

r s 

)
, (51) 

here the subscript s indicates that this is the short-range part
f the potential. As χ ( r , r s ) rapidly drops to negligible values,
he potential and forces need only be computed via the tree walk
or distances up to r cut = βr s ; interactions at larger distances are
onsidered to contribute exactly zero to the potential. Following
pringel ( 2005 ), we use β = 4.5 as our default. 20 This maximal
istance for tree interaction means that the long-range task (the
ne taking care of all the blue cells in Fig. 13 ) only needs to
terate o v er the cells up to a distance βr s . This reduces further the
mount of work to be performed for the long-range operations by the
ree. 

The long-range part of the potential 
(
φl ( r) = 

1 
r 

× erf 
(

1 
2 

r 
r s 

))
s solved using a traditional particle-mesh (PM, see Hockney &
astwood 1988 ) method. We assign all the particles onto a regular
rid of N 

3 
mesh cells using a cloud-in-cell (CIC) algorithm. The mesh

lso sets the cut-off size r s ≡ αL / N mesh , where α is a dimensionless
rder-unity factor and L is the size-length of the simulation volume.
e use α = 1.25 as our default parameter value. In a second phase,
e apply a Fourier transform to this density field using the Fast-
ourier-Transform (FFT) algorithm implemented in the fftw library
Frigo & Johnson 2005 ). 

With the potential in Fourier space, Poisson’s equation is solved
y multiplying each cell’s value by the transform of the long-range
otential 

ˆ l ( k) = −4 πG N 

| k | 2 · exp 
(−| k | 2 r 2 s 

)
. (52) 

e then deconvolve the CIC kernel twice (once for the assignment,
nce for the potential interpolation) and apply an inverse (fast)
ourier transform to recover the potential in real space on the mesh.
inally, the particles’ individual potential and forces are obtained by

nterpolating from the mesh using the CIC method. 
The functional form of equation ( 51 ) might, at first, appear sub-

ptimal. The error function is notoriously e xpensiv e to e v aluate
umerically. In our formulation, we must e v aluate it for every pair of
nteractions (P2P or M2L) at every step. On the other hand, equation
 52 ) needs to be e v aluated only N 

3 
mesh times at every global step

see below). Typically, N mesh ∼ N 

1/3 but each of the N particles will
erform many P2P kernel calls every single step. Using a simpler
0 At this distance, the suppression is almost three orders of magnitude already, 
s χ (4.5 r s , r s ) < 1.5 × 10 −3 . 
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orm for χ in real space with a more e xpensiv e one to e v aluate
orrection in k -space may hence seem like an impro v ement. We
xperimented with sigmoid-like options such as 

( r, r s ) = 

[
2 − 2 σ

(
2 r 

r s 

)]
, σ ( w) ≡ e w 

1 + e w 
(53) 

ut found little benefit o v erall. The solution we adopted instead
s to stick with equation ( 51 ) and use an approximation to erfc
ufficient for our needs. Specifically, we used equation 7.1.26 of 
bramowitz & Stegun ( 1965 ). Over the range of interest, ( r ≤ 4.5 r s ),

his approximation has a relative error of less than 10 −4 and the
rror tends to 0 as r → 0. An alternative would be to store exact
alues in a table and interpolate between entries, but that approach 
as the disadvantage of requiring non-local memory accesses to this 
able shared between threads. Comparing simulations run with an 
xact erfc to simulations using the approximation abo v e, we find no
ifferences in the results. 
Time integration of the forces arising from the long-range gravita- 

ional potential is performed using a long time step and the symplectic 
lgorithm for sub-cycling of Duncan et al. ( 1998 ). We split the
amiltonian in long and short timescales, corresponding to the 

ong- and short-range gravity forces. The short-range Hamiltonian 
lso contains the hydrodynamics forces. The time-steps then follow 

 sequence of kick & drift operators for the short-range forces
mbedded in-between two long-range kick operators (see also Quinn 
t al. 1997 ; Springel 2005 ; Springel et al. 2021 ). 

As the mesh forces involve all particles and require all compute 
ores to perform the FFT together, we decided to implement the PM
alculation (i.e. the CIC density interpolation, the calculation of the 
otential via Fourier space, and the interpolation of the accelerations 
ack onto the particles) outside of the tasking system. In large 
alculations, the PM steps are rare (i.e. the long-range, global, time- 
tep size is long compared to the smallest individual particle short-
ange time-step sizes). These steps are also where all particles will 
ave to update their short-range forces, which will trigger a full tree
eb uild. Ha ving the PM calculation then perform a global operation
utside of the tasking framework whilst locking all the threads is
ence not an issue. To speed up operations, the PM calculation also
ses parallel operations. The assignment of the particles onto the 
ensity grid is performed using a simple threading mechanism on 
ach compute node. The Fourier transforms themselves are then 
erformed using the MPI + threads version of the fftw library. All
odes and cores participate in the calculation. Once the potential grid 
as been obtained, the assignment of accelerations to the particles is
one using the same basic per-node threading mechanism used for 
he construction of the density. 

.6 Conv er gence tests 

he fast multipole method has been thoroughly tested both in the 
ontext of collisional dynamics and for collisionless applications 
see e.g. Dehnen 2014 ; Springel et al. 2021 ). Many tests of simple
cenarios, including cells with uniform particle distributions or 
solated halos with different profiles can be found in the literature. 
s the behaviour of the method is well established and since our

mplementation does not differ from other reference codes besides 
he parallelization aspects, we do not repeat such a detailed study
ere. We report having successfully tested the FMM implementation 
n SWIFT on a wide range of cases, most of which are distributed as
art of the examples in the code. We thus verified that the code
onverges towards the correct solution and presents the correct 
ehaviour when the free parameters (e.g. the MAC or the gravity 
esh parameters) are varied. We report here on one such experiment
ith potential rele v ance to end users. Our test setup is a snapshot

rom a cosmological simulation of the EAGLE (Schaye et al. 2015 )
uite. We take the z = 0.1 snapshot from their (25 Mpc) 3 volume.
his setup comprises 2 × 376 3 ≈ 10 7 particles with a very high
egree of clustering and is hence directly rele v ant to all galaxy
ormation applications of the code. The combination of haloes and 
oids present in the test allows us to test SWIFT ’s accuracy in a
ariety of regimes. We randomly select 1 per cent of the particles
or which the exact forces are computed using a direct summation
lgorithm. An Ewald ( 1921 ) correction is applied to take into account
he periodicity of the volume. We then run SWIFT and compute the
orces via the FMM-PM code described abo v e. We finally compute
he relative force error for our sample of particles and e v aluate the
9 th percentile ( f 99 ) of the error distribution. We chose to show the
9 th percentile error o v er lower ones as it provides better guidance
or users for their accuracy requirements by taking into account 
utliers. We show this error percentile as a function of the opening
ngle parameters in Fig. 14 for the case where periodic boundary
onditions have been switched off. In this test, only the FMM part
f the code is thus e x ercised. The left panel corresponds to the case
f a purely geometric MAC (equation 46 ) and the right panel to
he case of the adaptive MAC (equation 50 ). On both panels, we
ho w dif ferent orders of the method using dif ferent line colours.
he dotted line is used to indicate the 1 per cent-error level. We
nd that, as expected, the forces converge towards the correct, 
irect-summation-based, solution when the accuracy parameters are 
ightened. Similarly, when using the geometric MAC the relationship 
etween f 99 and θ cr is found to be a power law whose slope steepens
or higher values of p as predicted by theoretical arguments (e.g.
ehnen 2014 ; Springel et al. 2021 ). These expectations are displayed
n the figure using thin dash-dotted lines. In the geometric case, the
xpected behaviour is recovered. The deviation from a power law at
cr < 0.3 for p = 5 is taking place in the regime where the results
tart to be affected by single precision floating-point truncation. We 
av e v erified that when switching to double precision the power-
aw behaviour continues for smaller values of θ cr , demonstrating 
hat our implementation of the FMM algorithm matches theoretical 
xpectations. In practice, this truncation error takes place much 
elow the regime used in production runs. In the adaptive MAC
ase, the theoretical expectation is for the scheme to converge as
 99 ∝ εFMM 

for all orders p . This is shown as a thin black dash-dotted
ine on the figure. The current SWIFT implementation converges at a
ate below these theoretical predictions. Our recommended default 
alue for the adaptive MAC parameter is shown as a green arrow
n the right panel. Using our default setup where we construct
ultipoles to fourth order, 99 per cent of the particles have a

elative error of less than 5 × 10 −3 for their force calculation. For
omparison with the often used in the literature 90 th percentile of
he error (e.g. Springel et al. 2021 ), we additionally show it using
 dashed line on the right panel for our default fourth-order FMM
etup. 

We repeat the same e x ercise but with periodic boundaries switched
n and display the results in Fig. 15 . The FMM part of the algorithm
s unchanged, we only additionally add the PM part using a grid
f 512 3 cells and a smoothing factor of a smooth = 1.25 (our default
alue). In this case, the force error reaches a plateau for low values
f the opening angle θ cr or adaptive MAC parameter εFMM 

. This is
here the algorithm reaches the accuracy limit of the PM part of

he method. This is illustrated on the right panel by the dashed line
hich corresponds to the same run but with a smooth = 3. In our default

etup (fourth-order FMM, εFMM 

= 10 −3 , a smooth = 1.25) indicated 
MNRAS 530, 2378–2419 (2024) 
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Figure 14. Accuracy of the gravity calculation (solid lines) for the two multipole acceptance criteria (MAC) on a low-redshift ( z = 0.1) 2 × 376 3 particles, 
25 Mpc cosmological hydrodynamical simulation extracted from the EAGLE suite. For 1 in every 100 particles, we calculated the exact forces using direct 
summation for comparison with the FMM-obtained prediction. We switch off periodic boundary conditions, and hence the gravity mesh, for this test. The 99 th 

percentile of the relative force error distribution is plotted against the geometric MAC, the classic tree opening angle, on the left, and against the adaptive MAC 

parameter on the right. Various multipole calculation orders p are shown using different colours. Theoretical predictions for the convergence rates ( f 99 ∝ θp for 
the geometric and f 99 ∝ εFMM 

for the adaptive case at all orders) are shown using thin dot–dashed lines in the background (only one line for the adaptive case as 
the predictions is independent of p ). The horizontal dotted line indicates where 99 per cent of the particles achieve a relativ e accurac y of better than 1 per cent, a 
commonly adopted accuracy target. Our default MAC choice, indicated by an arrow on the right panel, corresponds to a 99 th percentile of the relative error of 
5 × 10 −3 for our standard setup using the 4 th order FMM implementation. We additionally show the 90 th percentile of the error ( f 90 ) for the order four adaptive 
MAC case using a dashed line. The SWIFT implementation converges at a lower rate than theoretical expectations in the adaptive case. In the geometric case, the 
deviation from the theoretically expected power-law behaviour for θ cr < 0.3 and p = 5 is due to truncation errors in single precision. 

Figure 15. The same as Fig. 14 , but now considering periodic boundary conditions. A gravity mesh of size N mesh = 512 with a smooth = 1.25 was used. The 
99 th percentile of the relative error rapidly reaches a plateau set by the accuracy of the force calculations computed by the PM part of the algorithm. The dashed 
line on the right panel corresponds to the order four scheme but using a smooth = 3, illustrating the effect of the mesh parameters on the calculation’s accuracy. 
For our default setup (green arrow), the scheme reaches a relative force accuracy of better than 6 × 10 −3 for 99 per cent of the particles, a level only reached 
with very small opening angle values in the geometric case. 
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21 Note that ˜ w ( z) ≡ ∫ z 
0 

1 + w( z ′ ) 
1 + z ′ d z ′ , which leads to the analytic expression we 

use. 
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y the green arrow, 99 per cent of the particles have a relative force
ccuracy of better than 6 × 10 −3 . 

.7 Treatment of massi v e neutrinos 

ccurately modelling neutrinos is of great interest for large-scale 
tructure simulations, due to their outsized effect on matter clustering 
see Lesgourgues & Pastor 2006 for a re vie w). We implemented two
chemes for the treatment of neutrino effects in SWIFT : one based on
he linear response method (Ali-Ha ̈ımoud & Bird 2013 ) and another
ased on the δf method (Elbers et al. 2021 ). In terms of the total
atter power spectrum they produce, the two schemes are in good 

greement. 
The linear response method is a grid-based approach that accounts 

or the presence of neutrino perturbations by applying a linear 
orrection factor in Fourier space to the long-range gravitational 
otential: 

ˆ 
l ( k ) = 

ˆ φl, cb ( k ) ·
[

1 + 

f ν

f cb 

δlin 
ν ( k) 

δlin 
cb ( k) 

]
, (54) 

here ˆ φl, cb is the long-range gravitational potential computed from 

he cold dark matter and baryon particles (Section 4.5 ). The correc-
ion factor depends on the ratio of linear theory transfer functions 
 δ) for neutrinos and cold dark matter plus baryons, as well as their
elative mass fractions ( f ). 

The second scheme, based on the δf method, actively solves for
he neutrino perturbations. It is a hybrid approach that combines a 
article-based Monte Carlo sampling of the neutrino phase-space 
istribution with an analytical background solution. The aim is 
o solve for the nonlinear gravitational evolution of the neutrinos, 
hile suppressing the shot noise that plagues traditional particle 

mplementations. In this method, the non-linear phase-space density 
 of neutrinos is decomposed as 

 ( x , p , t) = f̄ ( p, t) + δf ( x , p , t) , (55) 

here f̄ ( p, t) = ( 1 + exp ( p/k B T ν) ) −1 is the background Fermi–
irac distribution (expressed in terms of the neutrino temperature T ν)

nd δf is a possibly non-linear perturbation. In contrast to traditional, 
ure particle, implementations, only δf is estimated from the particles 
ence reducing the shot noise. To achieve this decomposition, the 
ontribution of neutrino particles to the mass density is statistically 
eighted. The weight of particle i is given by 

 i = 

δf i 

f i 
= 

f i − f̄ i 

f i 
, (56) 

here f i is the phase-space density at its location. Weights express
he deviation from the background, they can be positive or ne gativ e,
nd are ideally small. The reduction in shot noise is proportional to
 w 

2 〉 for the neutrino power spectrum. The weights must be updated
n the fly, which involves a single loop o v er neutrino particles. We
ake use of the fact that f̄ i depends only on the current particle
omentum, while the value of f i is conserved. To a v oid storing f i ,

WIFT uses the particle ID as a deterministic pseudo-random seed 
o sample the initial Fermi–Dirac momentum. The value of f i is
hen recomputed when needed. As a result, the memory footprint 
f neutrinos is identical to that of cold dark matter particles. The
eutrino particles then enter the gravity calculation identically to all 
he other species but see their mass multiplied by their weight. 

The possibility of ne gativ ely weighted particles requires some 
ttention. In exceptional circumstances, which nevertheless occur for 
imulations involving billions of particles and thousands of steps, the 
entre of mass of a group of neutrinos can lie far beyond the geometric
erimeter of the particles. Since SWIFT uses a multipole expansion 
round the centre of mass, this possibility causes a breakdown of
he multipole expansion in equation ( 38 ), when truncated at finite p .
lthough the multipole expansion could, in principle, be performed 

round another point (Elbers et al. 2021 ), we instead additionally
mplemented a version of the δf method that only applies the weights
n the long-range PM gravity calculation. This choice ensures that 
he spurious back-reaction of neutrino shot noise, which is most 
rominent on large scales and therefore feeds through the long- 
ange force, is eliminated, while the possibility of neutrinos affecting 
maller scales through short-range forces is not excluded. An added 
enefit is that PM steps are rare for large calculations, such that the
omputational o v erhead of the δf step is minimal. 

In addition, the δf weights are al w ays used to reduce the noise
n on-the-fly power spectra and are provided in snapshots for use in
ost processing. 
A final point concerns the relativistic nature of neutrino particles 

t high redshift. To ensure that neutrino velocities do not exceed
he speed of light and to reco v er the correct free streaming lengths,
e apply the relativistic correction factor c / 

√ 

c 2 + ( v/a) 2 to neu- 
rino drifts, where v is the internal velocity variable described in
ection 5.3 and a is the scale factor. Relativistic corrections to

he acceleration can be neglected in the time frame typical for
osmological simulations (Elbers 2022 ). 

 C O S M O L O G I C A L  I N T E G R AT I O N  

.1 Background evolution 

n SWIFT , we assume a standard FLRW metric for the evolution
f the background density of the Universe and use the Friedmann
quations to describe the evolution of the scale-factor a ( t ). We scale
 such that its present-day value is a 0 ≡ a ( t = t now ) = 1. We also
efine redshift z ≡ 1/ a − 1 and the Hubble parameter 

 ( t ) ≡ ȧ ( t ) 

a( t ) 
, (57) 

ith its present-day value denoted as H 0 ≡ H ( t = t now ). Following
sual conventions we write H 0 = 100 h km · s −1 · Mpc −1 and use h
s the input parameter for the Hubble constant. 

To allow for general expansion histories, we use the full Friedmann
quations and write 

 ( a) ≡ H 0 E( a) , (58) 

( a) ≡ √ 

�m 

a −3 + �r a −4 + �k a −2 + �� 

exp ( 3 ̃  w ( a) ) , (59) 

˜  ( a) = ( a − 1) w a − (1 + w 0 + w a ) log ( a ) , (60) 

here we followed Linder & Jenkins ( 2003 ) to parametrize the
volution of the dark-energy equation of state 21 as: 

( a) ≡ w 0 + w a (1 − a) . (61) 

he cosmological model is hence fully defined by specifying the 
imensionless constants �m 

, �r , �k , �� 

, h , w 0 , and w a as well as
he starting redshift (or scale-factor of the simulation) a start and final
ime a . 
MNRAS 530, 2378–2419 (2024) 
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At any scale-factor a age , the time t age since the Big Bang (age of
he Universe) is computed as (e.g. Wright 2006 ): 

 age = 

∫ a age 

0 
d t = 

∫ a age 

0 

d a 

a H ( a ) 
= 

1 

H 0 

∫ a age 

0 

d a 

a E( a ) 
. (62) 

or a general set of cosmological parameters, this integral can only be
 v aluated numerically, which is too slow to be e v aluated accurately
uring a run. At the start of the simulation we tabulate this integral for
0 4 values of a age equally spaced between log ( a start ) and log ( a end ).
he values are obtained via adaptive quadrature using the 61-points
auss–Konrod rule implemented in the GSL library (Gough 2009 )
ith a relative error limit of ε = 10 −10 . The value for a specific
 (o v er the course of a simulation run) is then obtained by linear
nterpolation of the table. 

.2 Addition of neutrinos 

assiv e neutrinos behav e like radiation at early times, but become
on-relativistic around a −1 ≈ 1890( m ν /1eV). This changes the
ubble rate E ( a ) and therefore most integrated quantities described in

he previous section. We optionally include this effect by specifying
he number of massive neutrino species N ν and their non-zero
eutrino masses m ν, i in eV ( m ν, i 	= 0, i = 1, . . . , N ν). Multiple species
ith the same mass can be included efficiently by specifying mass
egeneracies g i . In addition, the present-day neutrino temperature
 ν, 0 must also be set 22 as well as an ef fecti ve number of ultra-
elativistic (massless) species N ur . Together with the present-day
MB temperature T CMB, 0 , these parameters are used to compute the
hoton density �γ , the ultra-relativistic species density �ur , and the
assive neutrino density �ν( a ), replacing the total radiation density

arameter �r . In our conventions, the massive neutrino contribution
t a = 1 is not included in the present-day matter density �m 

=
cdm 

+ �b . The radiation term appearing in equation ( 59 ) is simply
eplaced by 

r a 
−4 = 

[
�γ + �ur + �ν( a) 

]
a −4 . (63) 

n this expression, the constant �γ describes the CMB density and
s given by 

γ = 

π2 

15 

( k B T CMB,0 ) 4 

( � c) 3 
1 

ρcrit c 2 
, (64) 

hile the ultra-relativistic neutrino density is given by 

ur = 

7 

8 

(
4 

11 

)4 / 3 

N ur �γ . (65) 

ote that we assume instantaneous decoupling for the ultra-
elativistic species. The time-dependent massive neutrino density
arameter is (Zennaro et al. 2017 ): 

ν( a) = �γ

N ν∑ 

i= 1 

15 

π4 
g i 

(
T ν, 0 

T CMB 

)4 

F 

(
am ν,i 

k B T ν, 0 

)
, (66) 

here the function F is given by the momentum integral 

( y) = 

∫ ∞ 

0 

x 2 
√ 

x 2 + y 2 

1 + e x 
d x. (67) 

s �ν( a ) is needed to compute other cosmological integrals, this
unction should be calculated with sufficient accuracy. At the start of
NRAS 530, 2378–2419 (2024) 

2 To match the neutrino density from an accurate calculation of decoupling 
Mangano et al. 2005 ), one can use the value T ν, 0 / T CMB, 0 = 0.71599 
Lesgourgues & Tram 2011 ). 

2

2

v

he simulation, values of equation ( 66 ) are tabulated on a piece-wise
inear grid of 2 × 3 × 10 4 values of a spaced between log ( a ν, begin ),
og ( a ν, mid ), and log ( a ν, end ) = log (1) = 0. The value of a ν, begin is
utomatically chosen such that the neutrinos are still relativistic at
he start of the table. The value of log ( a ν, mid ) is chosen just before
he start of the simulation. The integrals F ( y) are e v aluated using the
1-points Gauss–Konrod rule implemented in the GSL library with a
elative error limit of ε = 10 −13 . Tabulated values are then linearly
nterpolated whenever E ( a ) is computed. 

Besides affecting the background evolution, neutrinos also play a
ole at the perturbation level. These effects can be included in SWIFT

sing the linear response method of Ali-Ha ̈ımoud & Bird ( 2013 ) or
he particle-based δf method of Elbers et al. ( 2021 ), as described in
ection 4.7 . 

.3 Choice of co-moving coordinates 

ote that, unlike many other solvers, we do not express quantities
ith ‘little h’ ( h ) included 23 ; for instance units of length are expressed

n units of Mpc and not Mpc/ h . As a consequence, the time integration
perators (see below) also include an h -factor via the explicit
ppearance of the Hubble constant. 

In physical coordinates, the Lagrangian for a particle i in an energy-
ased fla v our of SPH with gra vity reads 

 = 

1 

2 
m i ̇r 2 i − m i u i − m i φi . (68) 

ntroducing the comoving positions r ′ such that r = a ( t ) r ′ , we get 

 = 

1 

2 
m i 

(
a ̇r ′ i + ȧ r ′ i 

)2 − m i 

u 

′ 
i 

a 3( γ−1) 
− m i φ, (69) 

here the comoving internal energy u ′ = ua 3( γ − 1) is chosen such
hat the equation of state for the gas and thermodynamic relations
etween quantities have the same form (i.e. are scale-factor free) in
he primed frame as well. Together with the definition of comoving
ensities ρ ′ ≡ a 3 ( t ) ρ, this implies 

 

′ = a 3 γ P , A 

′ = A, c ′ = a 3( γ−1) / 2 c, (70) 

or the pressure, entropy, and sound-speed respectiv ely. F ollowing
eebles ( 1980 ; chapter 7), we introduce the gauge transformation
 → L + 

d 
dt 

� with � ≡ 1 
2 a ̇a r 

2 
i and obtain 

L = 

1 

2 
m i a 

2 ṙ ′ 2 i − m i 

u 

′ 
i 

a 3( γ−1) 
− φ′ 

a 
, (71) 

φ′ = a φ + 

1 

2 
a 2 ä r ′ 2 i , 

nd call φ′ the peculiar potential. Finally, we introduce the velocities
sed internally by the code: 

 

′ ≡ a 2 ṙ ′ , (72) 

llowing us to simplify the first term in the Lagrangian. Note that
hese velocities do not have a direct physical interpretation. We
aution that they are not the peculiar velocities ( v p ≡ a ̇r ′ = 

1 
a 

v ′ ),
or the Hubble flow ( v H ≡ ȧ r ′ ), nor the total velocities ( v tot ≡
 p + v H = ȧ r ′ + 

1 
a 

v ′ ) and also differ from the convention used in
utputs produced by GADGET (Springel 2005 ; Springel et al. 2021 )
nd other related simulation codes ( v out, Gadget = 

√ 

a ̇r ′ ). 24 
3 See e.g. Croton ( 2013 ) for a rational. 
4 One inconvenience of our choice of generalized coordinates is that our 
elocities v ′ and sound-speed c ′ do not have the same dependencies on the 
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.3.1 SPH equations 

sing the SPH definition of density, ˆ ρ ′ 
i = 

∑ 

j m j W ( r ′ j − r ′ i , h 

′ 
i ) =

 

j m j W 

′ 
ij ( h 

′ 
i ), we follow Price ( 2012 ) and apply the Euler-Lagrange

quations to write 

˙
 

′ 
i = 

1 

a 2 
v ′ i , (73) 

˙
 

′ 
i = −

∑ 

j 

m j 

[
1 

a 3( γ−1) 
f ′ i P 

′ 
i ˆ ρ ′−2 

i ∇ 

′ 
i W 

′ 
ij ( h i ) 

+ 

1 

a 3( γ−1) 
f ′ j P 

′ 
j ˆ ρ ′−2 

j ∇ 

′ 
i W 

′ 
ij ( h j ) + 

1 

a 
∇ 

′ 
i φ

′ 
]

, (74) 

ith 

 

′ 
i = 

[
1 + 

h 

′ 
i 

3 ρ ′ 
i 

∂ ρ ′ 
i 

∂ h 

′ 
i 

]−1 

, ∇ 

′ 
i ≡

∂ 

∂ r ′ i 
. 

hese correspond to the equations of motion for density-entropy 
PH (e.g. Equation 14 of Hopkins 2013 ) with cosmological and 
ravitational terms. Similarly, the equation of motion describing the 
volution of u ′ is expressed as: 

˙ ′ i = 

1 

a 2 

P 

′ 
i 

ˆ ρ ′ 2 
i 

f ′ i 
∑ 

j 

m j 

(
v ′ i − v ′ j 

) · ∇ 

′ 
i W 

′ 
ij ( h i ) . (75) 

n all these cases, the scale-factors appearing in the equations are 
ater absorbed in the time-integration operators such that the RHS 

f the equations of motions is identical for the primed quantities 
o the ones obtained in the non-cosmological case for the physical 
uantities. Additional terms in the SPH equations of motion (e.g. 
iscosity switches) often rely on the velocity divergence and curl. 
e do not give a full deri v ation here but the co-moving version of all

hese terms can easily be constructed following the same procedure 
e employed here. 

.4 Time-integration operators 

or the choice of cosmological coordinates made in SWIFT , the 
ormal kick and drift operators get modified to account for the 
xpansion of the Universe. The rest of the leapfrog algorithm is
dentical to the non-comoving case. The deri v ation of these operators
rom the system’s Lagrangian is given in appendix A of Quinn et al.
 1997 ) for the collisionless case. We do not repeat that deri v ation
ere but, for completeness, give the expressions we use as well as the
nes used for the hydrodynamics. The drift operator gets modified 
uch that � t for a time-step running from a scale-factor a n to a n + 1 

ecomes 

t drift ≡
∫ a n + 1 

a n 

d t 

a 2 
= 

1 

H 0 

∫ a n + 1 

a n 

d a 

a 3 E( a) 
, (76) 

ith E ( a ) given by equation ( 60 ) and the a −2 chosen to absorb the
ne appearing in equation ( 73 ). Similarly, the time-step-entering kick 
perator for collisionless acceleration reads 

t kick, g ≡
∫ a n + 1 

a n 

d t 

a 
= 

1 

H 0 

∫ a n + 1 

a n 

d a 

a 2 E( a) 
. (77) 

o we ver, for the case of gas dynamics, given our choice of coordi-
ates, the kick operator has a second variant that reads 

t kick, h ≡
∫ a n + 1 

a n 

d t 

a 3( γ−1) 
= 

1 

H 0 

∫ a n + 1 

a n 

d a 

a 3 γ−2 E( a) 
. (78) 
cale-factor. The signal velocity entering the time-step calculation will hence 
ead v sig = a ̇r ′ + c = 

1 
a 

(| v ′ | + a (5 −3 γ ) / 2 c ′ 
)
. 

2

t

ccelerations arising from hydrodynamic forces (first and second 
erm in equation ( 74 )) are integrated forward in time using � t kick, h ,
hilst the accelerations given by the gravity forces [third term in

quation ( 74 )] use � t kick, g . The internal energy (equation ( 75 )) is
ntegrated forward in time using � t kick, u = � t drift . 

Following the same method as for the age of the Universe (Section
.1 ), these three non-trivial integrals are e v aluated numerically at the
tart of the simulation for a series 10 4 values of a placed at regular
ntervals between log ( a begin ) and log ( a end ). The values for a specific
air of scale-factors a n and a n + 1 are then obtained by interpolating
hat table linearly. 

.5 Validation 

o assess the level of accuracy of SWIFT , it is important to compare
esults with other codes. This lets us assess the level of systematic
ifferences and uncertainties left in the code. This is especially 
mportant for the studies of non-linear structure formation, as there 
s no possibility to use an exact solution to compare against. One
uch benchmark was proposed by Schneider et al. ( 2016 ) in the
ontext of the preparation for the EUCLID surv e y. Their goal was to
ssess whether cosmological codes can converge towards the same 
olution, within the targeted 1 per cent accuracy of the survey. They
ocused on the matter density power spectrum as their observable 
nd used three different N -body codes for their study . Importantly ,
heir work utilized three codes using three different algorithms 
o solve for the gravity forces: RAMSES (Teyssier 2002 , multigrid
echnique), PKDGRAV3 (Potter et al. 2017 , FMM tree algorithm), and

ADGET-3 (Springel 2005 , tree-PM technique). The setup evolves a 
osmological simulation in a (500 Mpc/ h ) 3 volume from z = 49
o z = 0, assuming a � CDM cosmology, sampled using 2048 3 

articles. The setup only considers gravitational interactions and 
omoving time integration. The same setup was later adopted by 
arrison, Eisenstein & Pinto ( 2019 ) to compare their ABACUS code

nd by Springel et al. ( 2021 ) for the GADGET-4 code. 25 It is a
estimony to the advances of the field in general and to the increase in
v ailable computing po wer that a run akin to the then-record-breaking 

ILLENNIUM simulation (Springel et al. 2005b ) is nowadays used as
 mere benchmarking e x ercise. 

We ran SWIFT on the same initial conditions and analysed the
esults as described below. The exact configuration used for the 
WIFT run is released as part of the code package, namely: a 2048 3 

ravity mesh for the PM code, the adaptive MAC with εFMM 

= 10 −3 ,
nd a Plummer-equi v alent softening length ε = 10/ h kpc. The top-left
anel of Fig. 1 shows the projection of the matter density field in a
0 Mpc h −1 slice rendered using the SWIFTsimIO tool (Borrow &
orrisov 2020 ). To ease the comparison to published results and
liminate any possible discrepancy coming from binning choices 
r exact definitions, we used the power-spectrum measurement tool 
mbedded in the GADGET -4 code on our output to allow for a direct
omparison with the data presented by Springel et al. ( 2021 ) (who
ad also reanalysed the other runs with their tool). We show our
esults alongside the published measurements from other codes in 
ig. 16 , each presented as ratios to the SWIFT prediction. The shaded
egions correspond to ±0.25 per cent and ±1 per cent differences
ith respect to our results. Over the range of wavelengths of interest

or this problem, the SWIFT results are in excellent agreement with
he other codes. This agreement extends from the linear regime to the
MNRAS 530, 2378–2419 (2024) 

5 We thank Lehman Garrison and Volker Springel for graciously providing 
heir data and analysis tools. 
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M

Figure 16. Comparison of the matter power-spectra as a function of scale 
for four different n -body codes (see text) relative to the SWIFT prediction 
on the test problem introduced by Schneider et al. ( 2016 ). The simulation 
evolves 2048 3 dark matter particles in a (500 Mpc h ) −3 volume run from 

z = 49 to z = 0 assuming a � CDM cosmology. All power spectra were 
measured using the same tool (see text). The dark- and light-shaded regions 
correspond to ±0 . 25 per cent and ±1 per cent level agreement between 
codes. The fundamental mode (left) and the Nyquist frequency (right) are 
indicated using vertical dashed lines. Over the range of interest for modern 
cosmological applications, all codes agree to within 1 per cent. 
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26 https:// github.com/ SWIFTSIM/ swiftsimio 
27 https:// github.com/ jkeger/ seagen 
28 https:// github.com/ srbonilla/ WoMa 
29 https:// yt-project.org/ 
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on-linear regime ( k � 0 . 1 Mpc / h). This confirms SWIFT ’s ability to
ake solid predictions for modern cosmological applications. 
Note also that a similar e x ercise was independently presented by

ro v e et al. ( 2022 ) in the context of the DESI survey code comparison
ffort, for which SWIFT , ABACUS , and GADGET-2 were compared.
omparing outputs at z = 1 and z = 2, they obtained results in
xcellent agreement with the ones presented here. 

 INPUT  A N D  O U T P U T  STRATEGY  

e now turn our attention towards the input and output strategy used
y the SWIFT code. 

.1 Initial conditions 

o ease the use of the code and given the large number of le gac y
nitial conditions (ICs) existing in the community using this format,
e adopt the same file format for input as the ‘mode 3’ option of

he GADGET -2 code (Springel 2005 ), i.e. the mode based on the
df5 library (The HDF Group 2022 ). SWIFT is fully compatible
ith any valid GADGET -2 set of initial conditions, but we also
rovide additional optional features. First, we allow for different
nits to be used internally and in the ICs. SWIFT would then
erform a conversion upon start-up to the internal units. This
an be convenient when a certain set of ICs uses a range of
alues problematic when represented in single-precision. Secondly,
or cosmological runs, SWIFT can also apply the necessary h -
 actor and a -f actor corrections (see Section 5.3 ) to convert to the
ystem of co-moving coordinates adopted internally. A departure
rom the strict GADGET -2 format is that SWIFT only allows for
he data to be distributed o v er a single file; we do, ho we ver,
rovide scripts to transform such distributed input files to our
ormat. 
NRAS 530, 2378–2419 (2024) 
Some tools also exist to directly generate SWIFT ICs with all
he optional features added. The SWIFTsimIO . 26 python package
Borrow & Borrisov 2020 ) can be used to generate simple setups.
he SEAGen 27 (Kegerreis et al. 2019 ) and WoMa 28 (Ruiz-Bonilla
t al. 2021 ) packages are designed to generate spherical or spinning
lanetary bodies in equilibrium for collision problems (See Section
.5 ). For cosmological simulations, the public version of the state-
f-the-art ICs code MONOFONIC (Hahn, Rampf & Uhlemann 2021 ;
ichaux et al. 2021 ) has been extended to be able to produce files

hat are directly compatible with the format expected by SWIFT . In
articular, information about the adopted cosmological parameters,
hases, and all the information required to re-generate the ICs are
dded to the files, read by SWIFT , and propagated to the snapshots.
his allows for runs to be reproduced based solely on the information
iven in the SWIFT outputs. 

.2 Snapshots 

or the same convenience reasons as for the ICs, we also adopt
n output file format designed as a fully-compatible extension to
he GADGET -2 (Springel 2005 ) ‘mode 3’ format based on the hdf5
ibrary (The HDF Group 2022 ). We extend the format by creating new
article groups for the species not existing in the original GADGET -2
ode. We also add to the snapshots a full copy of the parameters
sed to perform the simulation, information about the version of
he code, details of the cosmological models, and information about
he ICs. Another noteworthy extension is the e xtensiv e use of units
etadata in the snapshots. We attach full units information to every
eld in the snapshots. That information includes human-friendly and
achine-readable conversion factors to the cgs system, as well as

he conversion factor needed to move between the co-moving and
hysical frame (see Section 5.3 ). These metadata can be read by
ython packages such as SWIFTsimIO (Borrow & Borrisov 2020 )
o then propagate this information through the simulation analysis.
his mechanism is based on the unyt (Goldbaum et al. 2018 ) library.
he particles are stored in the snapshots in order of the domain cells

hey belong to (see Section 9.1 ). Ef ficiently retrie ving the particles
ocated in a small sub-region of the computational domain is hence
ossible; for instance extracting the particles in the region around
 single halo only. In large simulations, this is much more efficient
han reading all the randomly ordered particles and then masking out
he ones that do not fall in the region of interest. Metadata to ease
uch reading patterns are added to the snapshots. That information
s picked up by tools such as SWIFTsimIO to aid analysis of these

assive simulations. The commonly used visualization package yt 29 

Turk et al. 2011 ) has also been extended to directly read in SWIFT

napshots, including the rele v ant meta-data. 
The snapshots can either be written into one single file, with

ll nodes writing collectively to the same data set in parallel, or
y splitting the data such that each node writes a file with its
ocal subset of particles. That second option is preferable when
sing file systems that are not able to handle parallel writes to a
ingle file efficiently. When writing such a distributed snapshot, an
dditional meta-snapshot is written; it contains all the information
f a regular single-file snapshot, but uses hdf5 ’s virtual data set
nfrastructure to present the data distributed o v er man y files as a

https://github.com/SWIFTSIM/swiftsimio
https://github.com/jkeger/seagen
https://github.com/srbonilla/WoMa
https://yt-project.org/
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ingle contiguous array. The links between files are handled in 
he background by the library. These meta-snapshots can then be 
ead as if they were standard snapshots, for instance via tools
ike Gadgetviewer 30 SWIFT can also optionally apply lossless 
ompression to the snapshots (via hdf5 ’s own gzip filter) as well
s a per-field lossy compression where the number of bits in the
antissa of the numbers can be reduced to save disk space. This

ption is particularly interesting when considering particle fields 
here the 23 bits of relative precision (i.e. ≈7 decimal digits) of a

tandard float type are more than sufficient for standard analysis. 31 

imilar filters can be applied to double -precision variables. Finally, 
WIFT implements an option to down-sample the particles of a given 

ype in the snapshots by writing only a fraction of the particles chosen
t random. 

As an example of i/o performance in a realistic scenario, the 
napshots for the recent flagship FLAMINGO run (Schaye et al. 2023 )
ere written in 200 seconds. They contain 2.65 × 10 11 particles of
ifferent types spread o v er 960 files totalling 39 terabytes of data.
his corresponds to a writing speed of 200 GB / s. As this test only
sed 65 per cent of the systems’ nodes, this compares fa v ourably
o the raw capability (350 GB / s) of the full cluster. Compressing
he data using both lossy and lossless filters reduces the snapshot
ize to 11 terabytes but the writing time increases to 1260 s. This
orresponds to a sustained writing speed of 9 GB / s; the difference
s due to the compression algorithm embedded within the hdf5 
ibrary . Additionally , by making use of the library’s parallel writing
apability, we can repeat the uncompressed test but with all nodes 
riting to a single file. In this configuration, we require 463 s,

f fecti vely achie ving a sustained parallel writing speed of 86 GB / s. 
Snapshots can be written at regular intervals in time or change 

n scale-factor. Alternatively, the user can provide a list of outputs 
n order to specify output times more precisely. This list can be
ccompanied by a list of fields (or of entire particle types) the
ser does not want to be written to a snapshot. This allows for
he production of reduced snapshots at high-frequency; for instance 
o finely track black holes. Any of the structure finders (Section 7 )
an be run prior to the data being written to disk to include halo
embership information of the particles in the outputs. 

.3 Check-pointing mechanism 

hen running simulations at large computing centres, limits on the 
ength of a given compute job are often imposed. Many simulations
ill need to run for longer than these limits and a mechanism to

leanly stop and resume a simulation is thus needed. This check- 
ointing mechanism can also be used to store backups of the 
imulation’s progress in case one needs to reco v er from a software
r hardware failure. Such a mechanism is different from the writing 
f science-ready snapshots as all the information currently in the 
emory needs to be saved; not just the interesting fields carried by

he particles. These outputs are thus typically much larger than the 
napshots and are of the same size as the memory used for the run. 

In SWIFT , we choose to write one file per MPI rank. No pre-
rocessing of any kind is done during writing. Each of the code’s
odules writes its current memory state one after the other. This

ncludes the raw particle arrays, the cells, the tasks, and the content
f the extensions (see Section 8 ) among many other objects. At
he start each module’s writing job we include a small header with
0 https:// github.com/ jchelly/ gadgetviewer/ 
1 Classic examples are the temperature field or the particles’ metallicity. 

c  

A  

a  

t

ome information about the size of the data written. This allows
s to verify that the data was read in properly when resuming a
imulation. As these are simple, unformatted, large, and distributed 
riting operations, the code typically achieves close to the maximal 
riting speed of the system. For the same FLAMINGO run mentioned

bo v e, the whole procedure took 260 s for 64 TB of data in 960 files.
his corresponds to a raw writing speed of 250 GB / s . As the check-
ointing is fast, it is convenient to write files at regular intervals (e.g.
 very fe w hours) to serve as a backup. 

When restarting a simulation from a check-point file, the opposite 
peration is performed. Each rank reads one file and restores the
ontent of the memory. At this point, the simulation is in exactly
he same state as it was when the files were written. The regular
perations can thus resume as if no stoppage and restarting operation
ad ever occurred. 

As is the case in many software packages, our implementation is
ugmented with a few practical options such as the ability to stop an
n-going run or to ask the simulation to run for a set wall-clock time
efore writing a check-point file and stopping itself. 

.4 Line-of-sight outputs 

n addition to full-box snapshots, SWIFT can also produce so- 
alled line-of-sight outputs. Randomly positioned rays (typically 
erpendicular to a face) are cast through the simulation volume and
ll gas particles whose volumes are crossed by the infinitely thin
ays are stored in a list. We then write all the properties of these
articles for each ray to a snapshot with a format similar to the one
escribed abo v e b ut much reduced in v olume. These outputs can then
e used to produce spectra via tools such as SPECWIZARD (Schaye
t al. 2003 ; Tepper-Garc ́ıa et al. 2011 ). Thanks to their small data
ootprints, these line-of-sight snapshots are typically produced at 
igh time frequencies o v er the course of a run. This type of output
s particularly interesting for simulations of the IGM and Lyman- α
orest (see Section 8.4 ). 

.5 Lightcone outputs 

o bring the cosmological simulation outputs closer to observation 
ock catalogs, SWIFT implements two separate mechanisms to 

ecord information as particles cross the past light cone of a selection
f observers placed in the simulation box. The first mechanism writes
he particles to disk as they reach a distance from the observer
orresponding to the light-travel distance of the look-back time to the
utputs. The second mechanism accumulates particle information in 
edshift shells onto pixels to directly construct maps as the simulation
uns. See the appendix of Schaye et al. ( 2023 ) for a detailed use case
f both these mechanisms. 

.5.1 Particle data 

he position of each observer, the redshift range o v er which light-
one particle output will be generated, and the opening angle of
he cone are specified at run time. At each time-step we compute the
arliest and latest times that any particles could be integrated forward
o and the corresponding co-moving distances. This defines a shell 
round each observer in which particles might cross the past light
one as a result of drift operations carried out during this time-step.
n additional boundary layer is added to the inside of the shell to

ccount for particles that mo v e during the time-step and assuming
hat they have sub-luminal speeds. 
MNRAS 530, 2378–2419 (2024) 

https://github.com/jchelly/gadgetviewer/
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For simulations employing periodic boundary conditions, we must
dditionally output any periodic copy of a particle which crosses the
bserver’s light cone. We therefore generate a list of all periodic
opies of the simulation volume that o v erlap the shell around the
bserv er. Then, whenev er a particle is mo v ed, we check ev ery
eriodic copy for a possible o v erlap with an y of the shells. If so,
he particle’s position is interpolated to the exact redshift at which
t crossed the lightcone and the particle is added to a writing buffer.

hen the buffer reaches a pre-defined size, we write out the particles
ncluding all their properties to disk. 

To optimize the whole process, we take advantage of the way
hat SWIFT internally arranges the particles in a cubic grid of cells
Section 9.1 ). We can use this structure to identify which tree cells
 v erlap with the current lightcone shells. This allows us to reduce
he number of periodic replications to check for every particle. Only
he particles in the cells previously identified need to undergo this
rocess. 
In most cases, the raw data generated by the particle lightcone

equires some post-processing; for instance to reorganize the parti-
les inside the files in terms of angular coordinates on the sky and
edshift. 

.5.2 HEALPix maps 

ight-cone particle outputs as well as the internal memory require-
ent rapidly grow in size as the upper redshift limit is increased, es-

ecially if many box replications occur, and can become impractical
o store. SWIFT therefore also contains a scheme to store spherical
aps of arbitrary quantities on the light cone with user specified

pening angle, angular resolution, and redshift bins. 
To this end, the observer’s past light cone is split into a set of

oncentric spherical shells in co-moving distance. For each shell
e create one full-sky HEALPix (G ́orski et al. 2005 ) map for each
uantity to be recorded. Whenever a particle is found to have entered
ne of these shells, we accumulate the particles’ contributions to the
EALPix maps for that shell. Typical examples are the construction
f mass or luminosity maps. Particles can also, optionally, be
moothed onto the maps using an SPH kernel. 

As the maps do not o v erlap in redshift, it is not necessary to
tore all of the shells simultaneously in memory. Each map is only
llocated and initialized when the simulation first reaches the time
orresponding to the outer edge of the shell. It is then written to disk
nd its memory freed once all the particles have been integrated to
imes past that corresponding to the light travel time to the inner
dge of the shell. In practice, the code will hence only need to have
 maximum of two maps in memory at any point in time. 

.6 On-the-fly power spectra 

inally, SWIFT can compute a variety of auto- and cross- power
pectra at user-specified intervals. These include the mass density in
ifferent particle species (and combinations thereof) as well as the
lectron pressure. For the neutrino density, we also implement the
ption to randomly select one half of the particles only or the other.
his helps reduce the shot-noise by computing a cross-spectrum
etween the two halves. 

The calculation is performed on a regular grid (usually of size
56 3 and hence allowing for the Fourier transform to be performed
n a single node). Foldings (Jenkins et al. 1998 ) are used to extend
he range probed to smaller scales with a typical folding factor
f 4 between iterations. Dif ferent windo w functions from nearest-
rid-point, to CIC, to triangular-shaped-clouds can be used and are
NRAS 530, 2378–2419 (2024) 
ompensated for self-consistently (see e.g. Colombi et al. 2009 ).
his could easily be extended to higher-order schemes and to more
article properties. 

.7 Continuous non-blocking adapti v e output strategy 

n SWIFT we also include a no v el output strategy called the Contin-
ous Simulation Data Stream (CSDS), described by Hausammann,
onnet & Schaller ( 2022 ). The key principles are summarized here

for related ideas, see Faber et al. 2010 ; Rein & Tamayo 2017 ). 
In classic output strategies (Section 6.2 ), the simulation is stopped

t fixed time intervals and the current state of the system is written to
isk, similar to the frames of a movie. This is an expensive operation
here all the compute nodes suddenly stop processing the physics

nd instead put an enormous stress on the communication network
nd file-system. During these operations, the state of the system
s not advanced, leading to an o v erall loss in performance as the
hole simulation has to wait until the i/o operations have completed.
urthermore, in simulations with deep time-step hierarchies, only
ew particles are active on most steps, with most particles just
rifting forward. In a cosmological context, a large fraction of the
articles have fairly simple trajectories, barely departing from first-
r second-order perturbation theory tracks. Only the small fraction
f particles deep inside haloes follow complex trajectories. For the
rst group of particles, simulations typically have more snapshots

han necessary to trace them, whilst for the second group, even one
housand snapshots (say) o v er a Hubble time may not be sufficient
o accurately re-create their trajectory. It is hence natural to consider
 more adaptive approach. 

The CSDS departs from the snapshot idea by instead creating a
ata base of updates. At the start of a simulation an entry is written for
ach particle. We then start the simulation and progress the particles
long. In its simplest form, the CSDS then adds an entry for a particle
o the data base every few ( ∼10) particle updates. As the writing is
one on a particle-by-particle basis, it can easily be embedded in
he tasking system. Writing is no longer a global operation where
he whole simulation stops; rather updates are made continuously.
y writing an update e very fe w particle steps, the trajectory of each
article is, by construction, well-sampled, irrespective of whether it
s in a very active region (e.g. haloes) or not (e.g. in voids). With
his mechanism, particles outside of structures can have as little as
wo entries (start time and end time of the simulation) whilst some
articles will have thousands of entries. Since the time-step size of
 particle is designed to correctly evolve a particle, relying on this
nformation to decide when to write a data base entry guarantees
hat the particles’ evolution can later be faithfully recreated. Each
ntry for a particle contains a pointer to the previous entry such that
articles can easily be followed in time. 
An impro v ed v ersion of this approach would be to write a data base

ntry every time a particle field has changed by some pre-defined
raction ε. This is an important philosophical change; instead of
reating frames at fixed intervals, we can demand that the evolution of
ny quantity be reconstructed to some accuracy from the output and
et the CSDS to create the individual particle entries at the required
imes. The somewhat arbitrary choice of time interval between
napshot is hence replaced by an objective accuracy threshold. 

This data base of particle updates allows for many new simulation
nalysis options. The trajectory and evolution of any particle can
e reconstructed to the desired accuracy; that is we have all the
nformation for a high time-resolution tracking of all the objects in
 run. The first use is to produce classic snapshots at any position in
ime. We simply interpolate all the particle entries to that fixed time.
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ut, one can also demand to construct slices in space-time, i.e. a light-
one from the output. New possibilities arising from this new output 
ormat will undoubtedly appear in the future. Tools to perform the 
asic operations described here are part of the CSDS package linked 
o SWIFT . The tools, and most of the analysis performed thus far,
re currently focused on dark-matter simulations, but we expect to 
xtend this to more complex scenarios in the future. 

 STRU C TURE  FINDING  

.1 Friends-Of-Friends group finder 

he classic algorithm to identify structures in simulations is Friends- 
f-Friends (FOF, see e.g. Davis et al. 1985 ). Particles are linked

ogether if they are within a fixed distance (linking length) of each
ther. Chains of links form groups, which in a cosmological context 
re identified as haloes. For a linking length of 0.2 of the mean
nter-particle separation, the haloes found are close (by mass) to the 
irialized structures identified by more sophisticated methods. The 
OF method falls into the wider class of Union-Find algorithms 
Galler & Fisher 1964 ) and very efficient implementations have been 
roposed o v er the last decade for a variety of computing architectures
e.g. Creasey 2018 ). 

The implementation in SWIFT is fully described by Willis et al. 
 2020 ). In brief, the algorithm operates on a list of disjoint sets. The
nion operation merges two sets and the Find operation identifies 

he set a given element resides in. Initially, each set contains a single
lement (one particle), which plays the role of the set identifier. The
lgorithm then searches for any two pairs of particles within range 
f each other. When such a pair is identified, the Find operation
s used to identify which set they belong to. The Union operation
s then performed to merge the sets if the particles do not already
elong to the same one. To speed-up the pair-finding process, we use
he same base principles as the ones discussed in Section 2 . More
recisely, by using the linking length as the search radius, we can
onstruct a series of nested grids down to that scale. The search
or links between particles can then be split between interactions 
ithin cells and between pairs of neighbouring cells. The tasking 

nfrastructure can then be used to distribute the work o v er the
arious threads and nodes. When running a simulation o v er multiple
ompute nodes, the group search is first performed locally, then 
ragments of groups are merged together across domains in a second 
hase. This is ho we v er v ery different from other particle-particle
nteractions like the ones used for e.g. hydrodynamics, where the 
nteractions are performed simultaneously, i.e. strictly within a single 
hase. Additional optimizations are described by Willis et al. ( 2020 ),
longside scaling results demonstrating excellent strong and weak 
caling of the implementation. 

Structures identified via SWIFT ’s internal FOF can either be used 
o seed black holes (see Section 8.1.4 ) or be written as a halo or group
atalogue output. Additionally, the FOF code can be run as stand-
lone software to post-process an existing snapshot and produce the 
orresponding group catalogue. 

.2 Coupling to VELOCIraptor 

any algorithms have been proposed to identify bound structures 
nd sub-structures inside FOF objects (for a re vie w, see Knebe
t al. 2013 ). Many of them can be run on simulation snapshots
n a post-processing phase. Ho we ver, that is often inefficient as
t involves substantial i/o work. In some cases, it can also be
eneficial to have access to some of the (sub-)halo membership 
nformation of a particle inside the simulation itself. For these 
easons, the SWIFT code contains an interface to couple with the
ELOCIraptor code (Elahi, Thacker & Widrow 2011 ; Elahi et al.
019 ). VELOCIraptor uses phase-space information to identify 
tructures using a 6D FOF algorithm. An initial 3D FOF is performed
o identify haloes, ho we ver, this process may artificially join haloes
ogether via a single particle, which is known as a particle bridge .
hese haloes are split apart by running a 6D FOF to identify particle
ridges based upon their velocity dispersion. Large mergers are 
hen identified in an iterative search for dense phase-space cores. 
ravitationally unbound particles can optionally be remo v ed from 

he identified structures. Such a substructure algorithm has the 
dvantage o v er pure configuration-space algorithms of being able 
o identify sub-haloes deep within a host halo, where the density (or
otential) contrasts relative to the background are small. 
Over the course of a SWIFT run, the VELOCIraptor code can

e invoked to identify haloes and sub-haloes. To this end, the public
ersion of the structure finder was modified to be used as a library.
t user-specified intervals (typically at the same time as snapshots), 
WIFT will create a copy of the particle information and format it to be
assed to VELOCIraptor . This process leads to some duplication 
f data but the o v erheads are small as only a small subset of the full
article-carried information is required to perform the phase-space 
nding. This is particularly the case for simulations which employ a
ull galaxy-formation model, where particles carry many additional 
racers irrele v ant to this process. 

When the structure identification is completed, the list of structures 
nd the particle membership information is passed back from the 
ibrary to SWIFT . This information can then either be added to
napshots or be acted upon if any of the sub-grid models so require. 

As an example, we ran SWIFT with VELOCIraptor halo finding 
n the benchmark simulation of Schneider et al. ( 2016 ) introduced
n Section 5.5 . The resulting halo mass function is shown on Fig. 17
longside the reference fitting function of Tinker et al. ( 2010 ) for
he same cosmology. Our results are in excellent agreement with the
redictions from the literature. 

 EXTENSI ONS  

esides the coupled hydrodynamics and gravity solver, the SWIFT 

ode also contains a series of extensions. These include complete 
alaxy formation models, AGN models, multimaterial planetary 
odels, and a series of external potentials. These features are briefly

ummarized o v er the ne xt pages. 

.1 The SWIFT-EAGLE galaxy formation model 

n implementation of an evolution of the sub-grid models used for
he EAGLE project (Crain et al. 2015 ; Schaye et al. 2015 ) is part
f the SWIFT code. The model is broadly similar to the original
ADGET -based implementation but was impro v ed in several areas.
ome of these changes also arose from the change of SPH fla v our
rom a pressure-based formulation (see Schaller et al. 2015 , for
he version used in EAGLE ) to the SPHENIX energy-based fla v our
ailored specifically for galaxy formation simulations (Section 3.3 ). 

e summarize here the main components of the model. All the
arameters presented below have values that can be adjusted for 
pecific simulation campaigns and are stored in parameter files that 
WIFT reads in upon startup. The example parameter files provided 

n the SWIFT repository contain the parameter values for this model
hat were obtained via the calibration procedure of Borrow et al. (in
reparation). 
MNRAS 530, 2378–2419 (2024) 
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M

Figure 17. The halo mass function, computed using VELOCIraptor as 
the structure finder, extracted from the benchmark cosmological simulation 
of Schneider et al. ( 2016 ) run with SWIFT (See Section 5.5 ) and compared 
with the fitting function of Tinker et al. ( 2010 ). The shaded region depicts 
the 1 − σ Poisson errors on the counts, while the arrow indicates the mass 
corresponding to 100 particles. 

8

T  

e  

p  

a  

m  

s  

c  

(  

w  

P  

m  

a  

U  

b  

p  

r  

fi

8

I  

n  

m  

a  

i  

n  

p
 

D  

s  

b  

u  

o  

S  

t  

t  

a  

(  

l
 

c  

e  

f  

w  

o  

n  

b  

t  

g

8

S  

A  

l  

v  

t  

t  

t  

e  

fi  

e  

t  

w  

e  

o  

f  

d

8

B  

p  

c  

g  

(  

t  

G  

p  

a  

A  

w  

o  

2  

i  

S

8

T  

d  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/530/2/2378/7637788 by Bibliotheque C
om

m
une D

e C
him

ie U
N

IL - EPFL user on 07 June 2024
.1.1 Radiative cooling and heating 

he radiative cooling and heating rates are pre-calculated on an
lement-by-element basis given the element abundance of each
article. The gas mass fractions of H, He, C, N, O, Ne, Mg, Si,
nd Fe are explicitly tracked in the code and directly affected by
etal enrichment, while the abundance of S and Ca is assumed to

cale with the abundance of Si using solar abundance ratios. SWIFT

an use the tabulated cooling rates from Wiersma, Schaye & Smith
 2009a ) (W09) for optically thin gas from the original EAGLE runs, as
ell as the various public tables from Ploeckinger & Schaye ( 2020 ;
S20). Compared to W09, the PS20 tables are computed with a
ore recent version of Cloudy: c07 (Ferland et al. 1998 ) in W09

nd c17 (Ferland et al. 2017 ) in PS20, use an updated version of the
V and X-ray background (Haardt & Madau ( 2001 ) in W09 and a
ackground based on Faucher-Gigu ̀ere ( 2020 ) in PS20 and include
hysical processes rele v ant for optically thick gas, such as cosmic
ays, dust, molecules, self shielding, and an interstellar radiation
eld. 

.1.2 Entropy floor and star formation 

n typical EAGLE -like simulations, the resolution of the model is
ot sufficient to resolve the cold dense phase of the ISM, its frag-
entation, and the star formation that ensues. We hence implement

n entropy floor following Schaye & Dalla Vecchia ( 2008 ), which
s typically set with a normalization of 8000 K at a density of
 H = 0 . 1 cm 

−3 with a slope expressed by the equation of state for
ressure as P ∝ ρ4/3 . 
The star formation model uses the pressure-law model of Schaye &

alla Vecchia ( 2008 ) which relates the star formation rates to the
urface density of gas. Particles are made eligible for star formation
NRAS 530, 2378–2419 (2024) 
ased on two different models. The first one follows EAGLE and
ses a metallicity-dependent density threshold based on the results
f Schaye ( 2004 ). The second model exploits the Ploeckinger &
chaye ( 2020 ) tables. By assuming pressure equilibrium, we find

he density and temperatures on the thermal equilibrium curve for
he particles limited by the entropy floor. A combination of density
nd temperature threshold is then used with these sub-grid quantities
typically n H > 10 cm 

−3 and T < 1000 K). In practice, both models
ead to broadly similar results. 

Once a gas particle has passed the threshold for star formation, we
ompute its star formation rate based on two different models. We
ither assume a Schmidt ( 1959 ) law with a fixed efficiency per free-
all time, or use the pressure-law of Schaye & Dalla Vecchia ( 2008 ),
hich is designed to reproduce the Kennicutt ( 1998 ) relation. Based
n the particle masses and computed star formation rate, random
umbers are then drawn to decide whether the particles will indeed
e converted into a star particle or not. The star particles formed in
his manner inherit the metal content and unique ID of their parent
as particle. 

.1.3 Stellar enrichment & feedback 

tellar enrichment is implemented for the SNIa, core-collapse, and
GB channels using the age- and metal-dependent yields compi-

ation of Wiersma et al. ( 2009b ). The light emitted by the stars in
arious filters, based on the model of Trayford et al. ( 2015 ), is written
o the snapshots. Stellar feedback is implemented using a stochastic
hermal form (Dalla Vecchia & Schaye 2012 ) with various options
o choose which neighbour in a star particle’s kernel to heat (Chaikin
t al. 2022 ). The energy per supernova injection can either be kept
xed or be modulated by the local metallicity or density (Crain
t al. 2015 ). Additionally, SWIFT includes the modified version of
he stochastic kinetic feedback model of Chaikin et al. ( 2023 ) that
as used in the FLAMINGO simulations (Kugel et al. 2023 ; Schaye

t al. 2023 ). The SNe can either inject their energy after a fixed delay
r can stochastically sample the stars’ lifetimes. The energy injection
rom SNIa is done by heating all the particles in the stars’ SPH kernel
uring each enrichment step. 

.1.4 Black holes & AGN feedback 

lack hole (BH) particles are created by converting the densest gas
article in FOF-identified haloes (see Section 7.1 ) that do not yet
ontain a BH and are abo v e a user-defined mass threshold. BHs
row by accreting mass from their neighbourhood, using a Bondi
 1952 ) model, possibly augmented by density-dependent boosting
erms (Booth & Schaye 2009 ) or angular-momentum terms (Rosas-
ue v ara et al. 2015 ). BH particles can swallow neighbouring gas
articles when the y hav e accreted enough mass or can ‘nibble’ small
mounts of mass from them (see Bah ́e et al. 2022 ). Feedback from
GN is implemented using a stochastic thermal heating mechanism
here energy is first stored into a reservoir until a pre-defined number
f particles can be heated to a set temperature (Booth & Schaye
009 ). Finally, the various modes of repositioning BHs presented
n Bah ́e et al. ( 2022 ) are available as part of the EAGLE model in
WIFT . 

.1.5 Results 

he model and the calibration of its free parameters are fully
escribed by Borrow et al. (in preparation), alongside a com-
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Figure 18. The galaxy stellar mass function, computed using VELOCI- 
raptor as the structure finder and measured in 50 kpc spherical apertures, 
extracted from a (25 Mpc ) 3 volume run with SWIFT - EAGLE model and 
compared to the Driver et al. ( 2022 ) data inferred from the GAMA survey. 
The shaded region on the simulation corresponds to Poisson error counts in 
each 0 . 2 dex mass bin. 

p
z  

i  

(  

b  

t
w
D  

f  

r  

a  

a
e  

t
f  

F
 

s

8

T
m  

2  

c
2  

(  

b
(  

J  

e  

m
H  

e  

8

R  

l  

i
s
b
M
i  

b
(
o  

t

8

T
l  

B  

t  

n
n
i  

(  

T
v
(

P

w
a  

t
s  

1  

m

8

S  

t  

H  

G  

p  

p
r
u

ρ

A  

i
t  

d
s  

n
 

p  

(

p

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/530/2/2378/7637788 by Bibliotheque C
om

m
une D

e C
him

ie U
N

IL - EPFL user on 07 June 2024
rehensive set of results. For completeness, we show here the 
 = 0 galaxy stellar mass function measured in 50 kpc spher-
cal apertures (see appendix of de Graaff et al. 2022 ) from a
25 Mpc ) 3 simulation with 2 × 376 3 particles in Fig. 18 . The
aryon particle mass in this simulation is m gas = 1 . 81 × 10 6 M �,
he resolution of the EAGLE simulations and the resolution at 
hich the model was calibrated. For comparison, we show the 
river et al. ( 2022 ) estimates of the mass function obtained

rom the GAMA surv e y. Ov er the range where the masses are
esolved and the galaxies are not too rare to feature in such
 small volume, the SWIFT - EAGLE model produces is in good
greement with the data. That same model was used by Altamura 
t al. ( 2023 ) for their studies of groups and clusters; a map of
he gas temperature weighted by its velocity dispersion extracted 
rom one of their simulated clusters is displayed on panel (b) of
ig. 1 . 
We note that the exact parameters and initial conditions for this

imulation are provided as part of the code release. 

.2 GEAR -like galaxy formation model 

he GEAR physical model implemented in SWIFT is based on the 
odel initially implemented in the GEAR code (Re v az & Jablonka

012 ; Re v az et al. 2016 ; Re v az & Jablonka 2018 ), a fully parallel
hemo-dynamical Tree/SPH code based on GADGET -2 (Springel 
005 ). While GEAR can be used to simulate Milky Way-like galaxies
Kim et al. 2016 ; Roca-F ̀abrega et al. 2021 ) its physical model has
een mainly calibrated to reproduce Local Group dwarf galaxies 
Harv e y et al. 2018 ; Re v az & Jablonka 2018 ; Hausammann, Re v az &
ablonka 2019 ; Sanati et al. 2020 ) and ultra-faint dwarfs (Sanati
t al. 2023 ). We re vie w hereafter the main features of the model;
ore details about the SWIFT implementation can be found in 
ausammann ( 2021 ). An example galaxy from the Agora -suite (Kim

t al. 2016 ) run using SWIFT - GEAR is displayed in panel (c) of Fig. 1 .
.2.1 Gas radiative cooling and heating 

adiative gas cooling and heating is computed using the Grackle
ibrary (Smith et al. 2017 ). In addition to primordial gas cooling, it
ncludes metal-lines cooling, obtained by interpolating tables, and 
caled according to the gas metallicity. Grackle also includes UV- 
ackground radiation heating based on the prediction from Haardt & 

adau ( 2012 ). Hydrogen self-shielding against the ionizing radiation 
s incorporated. Two shielding options can be used: (1) the UV-
ackground heating for gas densities abo v e n H = 0.007 cm 

−3 

Aubert & Teyssier 2010 ), and (2) the semi-analytic prescriptions 
f Rahmati et al. ( 2013 ) directly included in the Grackle cooling
ables. 

.2.2 Pr essur e floor 

o prevent gas from artificially fragmenting at high density and 
ow temperature, i.e. when the Jeans length is not resolved (Bate &
urkert 1997 ; Owen & Villumsen 1997 ; Truelo v e et al. 1997 ),

he gas’ normal adiabatic equation of state is supplemented by a
on-thermal pressure term. This additional term, interpreted as the 
on-thermal pressure of the unresolved ISM turbulence, artificially 
ncreases the Jeans length to make it comparable to the gas resolution
Robertson & Kravtsov 2008 ; Schaye & Dalla Vecchia 2008 ).
he GEAR model uses the following pressure floor, a modified 
ersion of the formulation proposed by Hopkins, Quataert & Murray 
 2011 ): 

 Jeans = 

ρ

γ

(
4 

π
Gh 

2 ρN 

2 / 3 
Jeans − σ 2 

)
, (79) 

here G is the universal gravitational constant and, γ the adi- 
batic index of the gas fixed to 5/3. h , ρ, and σ are respec-
ively the SPH smoothing length, density, and velocity disper- 
ion of the gas particle. The parameter N Jeans (usually set to
0) is the ratio between the SPH mass resolution and the Jeans
ass. 

.2.3 Star formation and pr essur e floor 

tar formation is modelled using a modified version of the stochas-
ic prescription proposed by Katz ( 1992 ) and Katz, Weinberg &
ernquist ( 1996 ) that reproduces the Schmidt ( 1959 ) law. In the
EAR model star formation proceeds only in dense and cold gas
hases where the physics is unresolved, i.e. where the artificial Jeans
ressure dominates. Inverting equation ( 79 ), the temperature and 
esolution-dependent density threshold that delimits the resolved and 
nresolved gas phases is defined: 

SFR , i = 

π

4 
G 

−1 N 

−2 / 3 
Jeans h 

−2 
i 

(
γ

k B 

μm H 
T + σ 2 

i 

)
. (80) 

bo v e this limit, the gas particles are eligible to form stars. It
s possible to supplement this threshold with a constant density 
hreshold, which prevents the stars from forming in cold and low-
ensity gas regions, or by a temperature threshold, which prevents 
tars from forming in hot phases. Finally, only particles with a
e gativ e div ergence of the velocity are eligible to form stars. 
Once a particle of mass m g is eligible, it will have a probability

 � to form a stellar particle of mass m � during a time interval � t
Springel & Hernquist 2003 ): 

 � = 

m g 

m � 

[
1 − exp 

(
− c � 

t g 
�t 

)]
, (81) 
MNRAS 530, 2378–2419 (2024) 
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here c � is a free parameter and t g the local free fall time. Each gas
article can form a maximal number N � of stellar particles o v er the
hole simulation. N � is a free parameter set by default to 4. 
The GEAR model can use a critical metallicity [ Fe / H ] c parameter

o differentiate stellar populations. Below [ Fe / H ] c , a stellar particle
ill represent a Pop III (metal-free) population and abo v e the critical
etallicity, it will be considered a Pop II star. Both populations

re characterized by different initial mass functions (IMF), stellar
ields, stellar lifetimes, and energies of superno va e xplosions. All
his information is provided to SWIFT by tables that can be generated
y the PYCHEM . 32 utility. 

.2.4 Stellar feedback, chemical evolution , and metal mixing 

t each time step following the creation of a stellar particle, the IMF
nd stellar lifetimes-dependent number of e xploding superno va (core
ollapse and Type Ia) is computed. This number that can be less than
ne and is turned into an integer number using a stochastic procedure
alled the random discrete IMF sampling (RIMFS) scheme in which
he IMF is considered as a probability distribution (Re v az et al. 2016 ).
nce a supernova explodes, its energy and synthesized elements are

njected into the surrounding gas particles using weights provided
y the SPH kernel. A parameter εSN may be used to decide the
f fecti ve energy that will impact the ISM, implicitly assuming that
he remainder will be radiated away. 

To a v oid instantaneous radiation of the injected energy, the delayed
ooling method, which consists in disabling gas cooling for a short
eriod of time of about 5 Myr (Stinson et al. 2006 ), is used. 
The released chemical elements are further mixed in the ISM using

ither the smooth metallicity scheme (Okamoto et al. 2005 ; Tornatore
t al. 2007 ; Wiersma et al. 2009b ) or explicitly solving a diffusion
quation using the method proposed by Greif et al. ( 2009 ). 

.3 Spin-dri v en AGN jet feedback 

his model for AGN feedback is fully described by Hu ̌sko et al.
 2022 ) and Hu ̌sko et al. ( 2024 ). We summarize here its main features.
his sub-grid model only contains a prescription for AGN and can
e used in combination with the EAGLE -like model described abo v e
or the rest of the galaxy formation processes. 

In this model for AGN feedback, additional sub-grid physics
elated to accretion disks is included, allowing the evolution of spin
angular momentum) for each black hole in the simulation. This in
urn means that one can use the spin-dependent radiative efficiency,
nstead of using a constant value (e.g. 10 per cent) for the thermal
eedback channel employed in the fiducial model. More significantly,
racking black hole spins also allows for the inclusion of an additional

ode of AGN feedback in the form of kinetic jets. The hydrodynamic
spects of the jets and their interaction with the CGM were tested by
u ̌sko & Lacey ( 2023 ). These jets are included in a self-consistent
ay by using realistic jet efficiencies (that depend strongly on spin),

nd by accounting for the jet-induced spindown of black holes.
n the standard version of the model, at high accretion rates it is
ssumed that thermal feedback corresponds to radiation from sub-
rid thin, radiati vely-ef ficient accretion discs (Shakura & Sunyaev
973 ). At low accretion rates, jets are launched from unresolved,
hick, advection-dominated accretion disks (Narayan & Yi 1994 ).
n more complicated fla v ours of the model, jets are also launched at
igh accretion rates and radiation (thermal feedback) at low accretion
NRAS 530, 2378–2419 (2024) 

2 http:// lastro.epfl.ch/ projects/ PyChem 

I  

f  

S  
ates, as well as strong jets and thermal feedback from slim discs at
uper-Eddington accretion rates—all of which is moti v ated by either
bservational findings or simulations. 
These modifications to the AGN feedback may lead to more

ealistic populations of galaxies, although they probably have a
tronger impact on the properties of the CGM/ICM. Although
he model comes with the price of a more complicated feedback
rescription (which involves some number of free parameters), it
lso opens an avenue for further observational comparisons between
imulations and observations. The model yields predictions such as
he spin–mass relation for black holes or the AGN radio luminosity
unction. These relations can be used to constrain or discriminate
etween versions of the model. 

.4 Quick-Lyman-alpha implementation 

esides galaxy formation models, another popular application of
osmological hydrodynamical simulations is the study of the inter-
alactic medium (IGM) via the Lyman- α forest. So-called ‘Quick-
yman-alpha’ codes have been developed (e.g. Viel, Haehnelt &
pringel 2004 ; Regan, Haehnelt & Viel 2007 ) to simulate the rele v ant
hysics. As the focus of such simulations is largely on the low-density
egions of the cosmic web, a very simplified network of sub-grid
odel can be employed. In particular, for basic applications at least,

he chemistry and cooling can be limited to only take into account the
rimordial elements. Similarly, any high-density gas can be turned
nto dark matter particles as soon as the gas reaches a certain o v er-
ensity (typically � = 1000). In such a case, no computing time is
asted on evolving the interior of haloes, which allows for a much

hallower time-step hierarchy than in a full galaxy formation model
nd thus much shorter run times. 

We implement such a model in SWIFT . The ‘star formation’ is
esigned as described abo v e: an y gas particle reaching an o v er-
ensity larger than a certain threshold is turned into a dark matter
article. The cooling makes use of the table interpolation originally
esigned for the SWIFT - EAGLE model (Section 8.1 ). Either the W09
r the P20 tables can be used. Of particular interest for Quick-
yman-alpha applications, these are based on two different models
f the evolution of the UV background: Haardt & Madau ( 2001 )
nd F aucher-Gigu ̀ere ( 2020 ), respectiv ely. A simulation using the

09 tables would be similar to the ones performed by Garzilli et al.
 2019 ). 

.5 Material extensions and planetary applications 

WIFT also includes features that can be used to model systems
ith more complicated and/or multiple equations of state (EoS),

nd to better deal with density discontinuities. They are organized
nder a nominal ‘planetary’ label, given their initial application
o giant impacts (Kegerreis et al. 2019 ). These extensions can be
pplied either onto a ‘ MINIMAL ’-like solver, with the inclusion of the
alsara ( 1995 ) viscosity switch, or in combination with the other,
ore sophisticated SPH modifications described below. 

.5.1 Equations of state 

any applications of SPH involve materials for which an ideal gas
s not appropriate, and may also require multiple different materials.
ncluded in SWIFT are a wide variety of EoS, which use either direct
ormulae (e.g. Tillotson 1962 ) or interpolation of tabulated data (e.g.
tewart et al. 2020 ; Chabrier & Debras 2021 ) to compute the required

http://lastro.epfl.ch/projects/PyChem
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some more technical details here. 

33 M 200 , cr is the mass within the radius R 200, cr , at which the average internal 
density 〈 ρ〉 = 200 ρcrit , and ρcrit is the critical density of the Universe. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/530/2/2378/7637788 by Bibliotheque C
om

m
une D

e C
him

ie U
N

IL - EPFL user on 07 June 2024
hermodynamic v ariables. Each indi vidual SPH particle is assigned a 
aterial ID that determines the EoS it will use. By default, no special

reatment is applied when particles of different EoS are neighbours: 
he smoothed densities are estimated as before, and the pressure, 
ound speed, and other thermodynamic variables are then computed 
y each particle using its own EoS. 
Currently implemented are EoS for several types of rocks, metals, 

ces, and gases. Custom user-provided EoS can also be used. Some 
aterials can, for example, yield much more dramatic changes in 

he pressure for moderate changes in density than an ideal gas, and
an also account for multiple phase states. In practice, in spite of the
omparativ e comple xity of some of these EoS, invoking them does
ot have a significant effect on the simulation run speed, because 
hey are called only by individual particles instead of scaling over 

ultiple neighbours. 
Some input EoS may include a tension regime, where the pressure

s ne gativ e for a cold, low-density material. This is usually undesired
ehaviour in a typical SPH simulation and/or implies an unphysical 
epresentation of the material in this state as a fluid, and can lead to
articles accelerating towards each other and o v erlapping in space. 
s such, by default, a minimum pressure of zero for these EoS is

pplied. 

.5.2 Special treatment for initial conditions 

rior to running a simulation, it is a common practice to first perform
 ‘settling’ run to relax the initial configuration of particles. This
s particularly pertinent to planetary and similar applications, where 
he attempted placement of particles to model a spherical or spinning 
ody will inevitably lead to imperfect initial SPH densities (Kegerreis 
t al. 2019 ; Ruiz-Bonilla et al. 2021 ). If the applied EoS includes
pecific entropies, then SWIFT can explicitly enforce the settling to 
e adiabatic, which may be a convenient way to maintain an entropy
rofile while the particles relax towards equilibrium. 

.5.3 Improvements for mixing and discontinuities 

tandard SPH formulations assume a continuous density field, so 
an struggle to model contact discontinuities and to resolve mixing 
cross them (e.g. Price 2008 ). Ho we ver, density discontinuities 
ppear frequently in nature. For example, in a planetary context, 
harp density jumps might appear both between a core and mantle 
f different materials, and at the outer vacuum boundary. Smoothing 
articles’ densities o v er these desired discontinuities can lead to 
arge, spurious pressure jumps, especially with complex EoS. 

We hav e dev eloped two approaches to alleviate these issues
n SWIFT , briefly summarized here, in addition to the significant 
enefits of using more SPH particles for higher resolutions than 
ere previously feasible. First, a simple statistic can be used to 

dentify particles near to material and/or density discontinuities and 
o modify their estimated densities to mitigate the artificial forces 
nd suppressed mixing (Ruiz-Bonilla et al. 2022 ). This method is
ost ef fecti ve when combined with the geometric density-average 

orce (GDF) equations of motion (Wadsley et al. 2017 ). 
Second, a more advanced scheme in which density discontinuities 

re addressed by directly reducing the effects of established sources 
f SPH error (Sandnes et al., in preparation). This combines a range of
o v el methods with recent SPH developments, such as gradient esti-
ates based on linear-order reproducing kernels (Frontiere, Raskin & 

wen 2017 ). The treatment of mixing in simulations with either 
ne or multiple equations of state is significantly impro v ed both in
tandard hydrodynamics tests such as Kelvin–Helmholtz instabilities 
nd in planetary applications (Sandnes et al., in preparation). 

Each of these modifications may be switched on and off in SWIFT

n isolation. Further impro v ements are also in activ e dev elopment—
ncluding the implementation of additional features such as material 
trength models. 

.6 External potentials 

ev eral e xternal potentials intended for use in idealized simulations
re implemented in SWIFT . The simplest external potentials include 
n unsoftened point mass, a softened point mass (i.e. a Plummer
 1911 ) sphere), an isothermal sphere, a Navarro, Frenk & White
 1997 ) (NFW) halo, and a constant gravitational field. 

Besides these traditional options, SWIFT includes two Hernquist 
 1990 ) profiles that are matched to a NFW potential. The matching
an be performed in one of two ways: (1) we demand that the
ass within R 200, cr is M 200, cr 

33 for the Hernquist ( 1990 ) profile,
.e. M Hern ( R match ) = M NFW 

( R 200, cr ) at some specific matching radius.
2) We demand that the density profile in the centre is equi v alent
.e. ρHern ( r ) = ρNFW 

( r ) for r � R 200, cr / c , where c is the NFW
oncentration of the halo. 

The first of these profiles follows Springel, Di Matteo & Hernquist
 2005a ) and uses M Hern ( r → ∞ ) = M NFW 

( R 200, cr ) = M 200, cr and
Hern ( r ) = ρNFW 

( r ). Using this they can derive a matched scale factor
ith the assumption that a / R 200, cr � 1 of the halo given by a =
 

b R 200 , cr where 

 = 

2 

c 2 

(
ln ( 1 + c ) − c 

1 + c 

)
(82) 

he second profile follows Nobels et al. ( 2023 ), who match
 Hern ( R 200, cr ) = M NFW 

( R 200, cr ), ρHern ( r ) = ρNFW 

( r ) and do not
ssume a a / R 200, cr � 1. This gives a different Hernquist ( 1990 )
cale length and M Hern ( R 200, cr ), producing a better match with the
FW profile. Both approaches are similar for haloes with large 

oncentration parameters. 
In order to reduce errors in the integration of orbits, each of

he spherically-symmetric potentials optionally imposes a minimum 

ime-step to each particle (see e.g. Nobels et al. 2022 ). We compute
he distance from the centre r of each particle and the corresponding
ircular velocity V circ ( r ). We then impose a minimum time-step of
t pot = ε pot 

r 
V circ ( r) , where ε pot is a free parameter typically defaulting

o ε pot = 0.01 (i.e. 100 time-steps per orbit). 

 IMPLEMENT  AT I O N  D E T  AI LS  &  

ARALLELI ZATI ON  

n this Section, we present some of the important implementation de-
ails, especially surrounding the multi-node parallelism, and discuss 
he results of a scaling test on a realistic problem testing the entirety
f the code modules. 

.1 Details of the cells & tasking system 

he basic decomposition of the computational domain in 
eaningfully-sized cells was introduced in Section 2.1 . We present 
MNRAS 530, 2378–2419 (2024) 
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In all the calculations we perform, we start by laying a Cartesian
rid on top of the domain. This defines the most basic level in the cell
ierarchy and is referred to as the top-level grid. 34 The size of this
rid varies from about 8 cells on a side for small simple test runs to
4 elements for large calculations. In most cases, there will be many
housands or millions of particles per cell. We then use a standard oct-
ree construction method to recursively split the cells into 8 children
ells until we reach a number of particles per cell smaller than a
et limit, typically 400. This leads to a relati vely shallo w tree when
ompared to other codes which create tree nodes (cells) down to a
ingle particle, and implies a much smaller memory footprint for the
ree itself than for other codes. As discussed in Section 2.1 , SWIFT

an perform interactions between cells of different size. 
Once the tree has been fully constructed, we sort the particles

nto their cells. By using a depth-first ordering, we can guarantee
hat the particles occupy a contiguous section of memory for all
he cells in the tree and at any level. This greatly helps streamline
perations on single or pairs of cells as all the particles will simply
e located between two known addresses in memory; no speculative
alk will be necessary to find all the particles we need for a set of

nteractions. This sorting of particles can be relativ ely e xpensiv e on
he very first step as we inherit whatever order the particles were listed
n the initial conditions. Ho we ver, in the subsequent constructions,
his will be much cheaper because the particles only mo v e by small
mounts with respect to their cells in between constructions. This
s also thanks to the relatively shallow tree we build, which permits
or comparatively large cell sizes. For this reason, we use a parallel
erge sort here to sort the particles in their cells as it is an efficient
ay to sort almost-sorted lists, which is the case in all but the first

tep. Recall also that we do not need to sort the particles very finely,
hanks to the high number of them we accept in tree leaves. Whilst this
peration is technically a sort, we refer to it as binning of the particles
n what follows to a v oid confusion with the sorting of particles on
he interaction axis used by the pseudo-Verlet algorithm. 

With the tree constructed and the particles all in their cell hierar-
hies, we have all the information required to decide which cells will
eed to interact for SPH (based on the cells’ maximum smoothing
engths) and for gravity (based on the multipoles). All the quantities
equired for this decision making were gathered while binning the
articles. We start by constructing the tasks on the top-level grid
nly, as described in Section 2.2 and Section 4.3 for SPH and gravity
espectively. In most non-trivial cases, however, this will lead to tasks
ith very large numbers of particles and hence a large amount of work

o perform. If there are only a fe w expensi ve tasks, then the scheduler
ill not be able to load-balance the work optimally as its options are

imited. We ideally want significantly more tasks to be enqueued and
aiting for e x ecution than there are compute cores. It is hence key

o fine-grain the problem further. To achieve this, we attempt to split
he tasks into smaller units. For instance, a task acting on a single
ell might be split into eight tasks, each acting on its eight children
ells independently. For some tasks, in particular when there are no
article-particle interactions involved, this is trivially done (e.g. time
ntegration or for a cooling sub-grid model) but other tasks may lead
o more complex scenarios. An SPH task for instance cannot be split
nto smaller tasks if the smoothing length of the particles is larger
han the size of the children cells. In most non-pathological cases,
o we ver, the tasks can be moved down the tree by several levels,
NRAS 530, 2378–2419 (2024) 

4 Note that this grid is not related to the one used for the periodic gravity 
alculation (Section 4.5 ). It is, ho we ver, the base grid used to retrieve particles 
fficiently in small sections of the snapshots (Section 6.2 ). 
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l  
hus multiplying their o v erall number man y times o v er and ultimately
atisfying our request to hav e man y more tasks than computing units.
n cases where more than one loop o v er the neighbours are needed,
nly the tasks corresponding to the first loop are mo v ed down the
ree levels by assessing whether refinement criteria are met. The
asks corresponding to the subsequent interaction loops ho we ver are
reated by duplicating the already existing tasks of the first loop.
s an example, the SPH force loop is created by copying all the

asks needed for the density loop and relabelling them. Similarly,
ll the sub-grid feedback or black hole-related loops are created in
his fashion. This approach has the advantage of keeping the task-
reation code as simple as possible. While duplicating the loops, we
lso set dependencies between tasks to impose the logical order of
perations between them (see Fig. 4 ). 
With the tasks created, the code is ready to perform many time-

teps. That is, we can re-use the infrastructure created abo v e until
he geometrical conditions are violated by particle mo v ement. F or
PH, these conditions would be too large a change in smoothing

ength or a particle moving too far out of its cell meaning that the
ssumption that all the neighbours are in the same cell or any directly
djacent one is broken. For gravity, this would be too large a particle
o v ement, leading to it being impossible to recompute multipoles
ithout changing the cell geometry. Our shallow tree with large

eaves has the advantage of remaining valid for many steps. We also
ote that other criteria (such as a global mesh gravity step or a certain
umber of particle updates leading to a tree rebuild) do, in practice,
rigger a tree and tasks construction more often than these. 

At the start of each step, we perform a quick tree walk starting,
n parallel, in each of the man y top-lev el cells. In this walk, we
imply identify which cells contain active particles (i.e. particles
hich need to be integrated forward in time on this step) and acti v ate

he corresponding tasks. This operation is very rapid (much less than
 per cent of the total runtime in production runs) and can easily
e parallelized given the large number of cells present in a run.
nce all the tasks have been acti v ated, they are handed over to the
uickSched engine which will launch them when ready. 
As described by Gonnet et al. ( 2016 ), the tasks whose dependen-

ies are all satisfied (i.e. for which all the tasks taking place earlier
n the graph have already run) are placed in queues. We typically use
ne of these queues per thread and assign the tasks to the queues (and
ence threads) either randomly or based on their physical location
n the compute domain. The threads then run through their queues
nd attempt to fetch a task. When doing so the y hav e to v erify that
he tasks they get are not conflicting with another, already-running
peration. To this end, a mechanism of per-cell locks and semaphores
s used. If a thread cannot acquire the lock on a given cell, it abandons
his task and attempts to fetch the next one in the queue. If it can
cquire a task, it will run the physics operations and upon completion
ill unlock all the dependencies associated with this task, hence

nabling the next tasks to be placed in the queues. We highlight once
ore that the physics operations themselves are taking place inside a

ingle thread and that no other thread can access the same data at the
ame time. This places the physics and maths operations taking place
n a very safe space, allowing users with only limited programming
xperience to easily modify or extend the physics contained inside
he tasks. No intimate knowledge of parallel programming or even
f task-based parallelism is needed to alter the content of a task. If a
hread reaches the end of its queue, it starts again from the beginning
ntil there are no more tasks it can process. When that happens, the
hread will attempt to steal work from the other threads’ queues, a
nique feature, at the time this project started, of the QuickSched
ibrary. Once all tasks in all queues have been processed, the time-
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Figure 19. The representation of the top-level cells as a graph to be split 
o v er domains. The cells of the grid (on the left) correspond to the vertices 
of the graph (on the right), while the tasks spanning two cells constitute its 
edges (dashed and dotted lines). For simplicity, we consider here a 4 × 4 
non-periodic grid in 2D and only show the pair tasks for cells that share an 
edge. Each v erte x and graph edge has a weight associated with it, shown 
here as the numbers on each v erte x and edge. The weights correspond to 
the cost of the task e x ecution. If a pair operation is taking place o v er the 
network (shown here using dashed lines), its cost will be increased since 
communications will have to take place and the task will be e x ecuted on both 
of the involved ranks. The domain decomposition algorithm splits the graph 
so that the work (vertices and edges) is as evenly distributed as possible among 
all computing ranks (the four colours), minimizing the total cost by creating 
as few communications as possible. In the case shown here, this corresponds 
to the domain decomposition presented on the left. Note in particular that the 
number of cells assigned to each domain may not necessarily be the same. 
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tep has been completed and the threads are paused until the start of
he next step. 

.2 Multi-node strategy 

he top-level grid described in the previous section serves as the base
ecomposition unit of the simulated domain. When decomposing the 
roblem into multiple domains, which would be necessary to run a 
imulation o v er multiple compute nodes, we assign a certain number
f these cells to each of them. The tree construction algorithm is then
un in parallel in each domain for each cell. The only addition is the
ossible exchange of particles which have left their domain entirely. 
hey are sent to their new region and placed in the appropriate cells.
With the tree fully constructed, we send the sections of the trees

the cell geometry information and multipoles, not the particles) that 
order a domain to the nodes on the other side of the divide. Each
ompute node has henceforth full knowledge of its own trees and of
ny of the directly adjacent ones. With that information in hand, each
ode will be able to construct all of its tasks, as described abo v e. It
ill do so for all the purely local cells as well as for the pair tasks
perating on one local cell and one foreign cell. The compute node
n the other side of the divide will create the exact same task as it
ases its decision-making on exactly the same information. The only 
emaining operation is the creation of send and receive tasks for each
ask pair o v erlapping with a domain edge. By adding the appropriate
ependencies, we create a task graph similar to the one depicted in
ig. 8 . 
With this logic, any task spanning a pair of cells that belong to

he same partition needs only to be e v aluated on that rank/partition,
hilst tasks spanning more than one partition need to be e v aluated
n both ranks/partitions. This is done in the shallow tree walk that
erforms the task acti v ation at the start of a step. A minor optimization
an be used in the cases where only one of the two cells in a pair task
ontains active particles. In that situation, we can skip the sending 
nd receiving of data to the node hosting the inactive cell since it will
ot be using it for any local updates. 
All the tasks are put in queues in exactly the same way as in

he single-node case. The only difference applies to the commu- 
ication tasks. These are treated slightly differently. As soon as 
heir dependencies are satisfied, the data is sent asynchronously . 
imilarly, as soon as the receiving node is ready, it will post a call to
n asynchronous receive operation. Note that these communication 
asks are treated like any other task; in particular, any of the threads
an act on them and thus perform the inter-node communications. 
e then use the conflict mechanism of the queues to ask the MPI

ommunication library whether the data has ef fecti vely been sent or
ecei ved, respecti vely. Once that has happened, we simply unlock the
orresponding tasks’ dependencies and the received data can safely 
e used from that point onward. This allows us to ef fecti vely hide
ll the communications in the background and perform local work 
hile the data mo v e. We also note that once the data have arrived,
othing distinguishes them from data that were al w ays on that node.
his means that the physics operations in tasks can be agnostic of
hich data they work on. There is no need for special treatment when
ealing with remote data; once more helping developers of physics 
odules to focus on the equations they implement rather than on the

echnicalities of distributed parallelism. 

.3 Domain decomposition 

hen running a large simulation o v er MPI using many ranks, an
mportant question is how to share the workload across all the 
anks and their host compute nodes. This is important, beyond the
bvious reasons like limited memory and CPU cores per node, 
s the progression of a simulation with synchronization points is 
etermined by the slowest part. 
The simulation workload consists of not just particles and their 
emory, but also the associated computation, which can vary 

epending on the types of particles, the current state and environment
f the particles, as well as the costs of inter-node communication. 
ll these elements play their part. 
A representation of the workload and communication can be 

onstructed by considering the hyper-graph of all top-level cells, 
here graph vertices represent cells and the edges represent the 

onnections to the nearest neighbours (so each v erte x has up to 26
dges). In this graph the vertices represent the computation done by
he cell’s tasks and the edges represent only the computation done
n pair-interaction tasks. This follows since pair interactions are the 
nly ones that could involve non-local data, so the computation 
n tasks spanning an edge should be related to the communication 
eeded. Now, any partition of this graph represents a partition of the
omputation and communication, i.e. the graph nodes belonging to 
ach partition will belong to an MPI rank, and the data belonging
o each cell resides on the rank to which it was assigned. Such a
ecomposition is shown in Fig. 19 for a simple toy example. 
The weighting of the vertices and edges now needs to reflect

he actual work and time expected to be used for communication. 
nitially, the only knowledge we have of the necessary weights is the
ssociation of particles and cells, so we only have vertex weights.
o we ver, when a simulation is running, every task is timed to CPU

ick accuracy and thus has a direct wall-clock measurement to reflect
he computation. This will never be perfect, as other effects like
nterruptions from other processes will add time, but should be good
nough. Note that it also naturally accounts for unknowns, like CPU
peed and compiler optimizations, that a non-timed system would 
eed to know about for all the different task types. So, once all the
MNRAS 530, 2378–2419 (2024) 
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M

Figure 20. Weak-scaling performance of the SWIFT code on a representative 
cosmological simulation test problem. We use a 400 3 Mpc 3 volume extracted 
from the FLAMINGO series with 720 3 baryon, 720 3 dark matter, and 144 3 

neutrino particles at z = 1. That base unit is then replicated periodically in 
all three directions; the top-level grid, as well as the gravity mesh, are also 
scaled alongside the replications. The number of compute nodes is grown 
proportionally, starting from a single node (128 cores) for the base volume. 
The top axis indicates the total number of particles used in each of the tests. 
When scaling the problem by a factor 7 3 = 343, the total runtime (black 
line) increases by only 15 per cent, as shown on the top panel (note the linear 
y-axis). The bottom panel shows the breakdown of the total time in different 
categories (note the log y -axis). The time spent in the tasks (aka. actually 
solving physics equations, blue line) is remarkably constant as the problem 

size increases. The task time can be further subdivided in gravity (the FMM 

part) and SPH operations (dotted and dashed lines); all other tasks, including 
the sub-grid operations, correspond to a negligible fraction of the runtime. 
The ‘mesh gravity’ category corresponds to all the operations performed by 
the PM-part of the algorithm. The loss of performance is dominated by the 
lack of scalability of some operations within the tree construction (yellow) as 
well as by the accumulation of residual imbalance between nodes (purple). 
The domain decomposition itself (green) only requires a negligible amount 
of time. 
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35 The cosma-8 system is run by DiRAC ( www.dirac.ac.uk) and hosted by 
the University of Durham, UK. The system is made of 360 compute nodes 
with 1 TB RAM and dual 64-core AMD EPYC 7H12 at 2.6 GHz (4 NUMA 
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asks of a simulation have run, we then know how long they take and
an then use these real-world weights in the graph. 

Decomposing such graphs is a standard problem in computer
cience and multiple packages exist in the literature. We chose to
se Metis and ParMetis (Karypis & Kumar 1998 ). 
Using this simple weights scheme is sufficient, as shown in the

ext section. Note also that we are not demanding a perfect partition
f the graph. In typical simulations, the workload evolves with
ime (which task times naturally take into account), and it is hence
ounterproductive to spend a large amount of time identifying the
erfect partition. We prefer to use a partition that is good enough but
uick to obtain. For realistic simulations, we find that we can maintain
he imbalance between compute domains to less than 10 per cent (see
lso Schaller et al. 2016 , and Fig. 20 below). We caution that this
pproach does not explicitly consider any geometric constraints, nor
oes it attempt to distribute the data uniformly. The only criterion
NRAS 530, 2378–2419 (2024) 
s the relative computational cost of each domain, for which the
ask decomposition provides a convenient model. We are therefore
artitioning the computation, as opposed to just the data. There could,
n principle, be cases where the work-based decomposition leads to
roblematic data distributions leading to the code running out of
emory on a given compute node. We have so far never encountered

uch a situation in practice. 
In addition to this default mechanism, SWIFT also offers other

omain decomposition algorithms. The first one just attempts to
plit the data evenly between the compute nodes, so maintains the
nitial state. This is similar to what other simulation packages do,
hough here it is based on the top-level cells. This is also used as a
ackup mechanism in case the work-based decomposition leads to
oo much data imbalance. Finally, a mode where the top-level grid is
imply split into regular chunks is also implemented. This is never
ecommended but the code will default to this if the Metis library
s not available. 

.4 Scaling results AND code performance 

he scaling performance of the SWIFT code on various test problems
as been reported in different publications thus far. We give a quick
 v erview here and complement it with a test exploiting the full
osmological simulation engine in a realistic scenario. 

In their original SWIFT feasibility study, Schaller et al. ( 2016 )
nalysed the original SPH-only code’s performance on cosmological
est box es. The y reported a strong-scaling efficienc y of 60 per cent
hen scaling a problem from 512 cores to 131 072 cores of a
lueGene system. This demonstrated the viability of the task-
ased approach combined with a graph-based domain decomposition
echanism and set the foundation for the current version of the code.
In their analysis, Borrow et al. ( 2018 ) took low-redshift cosmo-

ogical simulations from the EAGLE suite and ran strong- and weak-
caling tests of the code. They focused on the scaling of the SPH
perations by running only the hydrodynamics tasks. Ho we ver, by
sing late-time cosmological box es, the y analysed the performance
f the code with a realistic density (and hence time-step) distribution.
hey demonstrated the importance of running the drift operation only
n the region of the volumes that directly contribute to the calculation.
Finally, Rogers et al. ( 2022 ) analysed the performance of SWIFT in

he context of future exa-scale developments with engineering-type
PH applications in mind. To this end, they ran a fixed time-step,
airly uniform, test volume with more than 5.5 × 10 11 gas particles
nd demonstrated excellent weak-scaling performance up to the size
f their test cluster ( ≈ 50 000 cores). 
To complement these earlier tests, we present here a scaling test

xploiting all the main physics modules, including a galaxy formation
odel. To be as representative as possible, we use a z = 1 setup

uch that the density structure and hence time-step hierarchy is well
eveloped. We use a 400 3 Mpc 3 volume with 720 3 baryon, 720 3 dark
atter, and 144 3 neutrino particles extracted from the FLAMINGO

Schaye et al. 2023 ) suite and run it for 1024 time-steps. The sub-
rid model is broadly similar to the one described in Section 8.1
ut with parameters calibrated to match observational data sets at a
ower resolution than EAGLE did (for details, see Kugel et al. 2023 ).

e use this volume as a base unit and run it on a single node (128
ores) of the cosma-8 system. 35 We use 4 MPI ranks per node

file:www.dirac.ac.uk
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ven when running on a single node to include the MPI o v erheads
lso in the smallest run. The 4 MPI ranks are distributed o v er the
arious NUMA regions of the node. We then scale up the problem by
eplicating the box periodically along the three axes and increasing 
he number of nodes proportionally. We also use 8 top-level cells per
nit volume and an FFT gravity mesh of size 512 3 . Both are scaled
p when increasing the problem size. We increase the problem size 
y a factor 7 3 = 343, which corresponds to the largest setup we can
t on the system. The results of this test are shown in Fig. 20 , where
e plot the time to solution in units of the time taken on one node.
erfect weak-scaling hence corresponds to horizontal lines. When 

he problem size is increased by a factor 343, the performance loss is
nly 15 per cent. We also decompose the time spent in the main code
ections. The tasks (i.e. physics operations, blue line) dominate the 
un time and display an excellent scaling performance. Decomposing 
he task work into the gravity and SPH parts, we see that gravity is the
ominant component, validating the hydrodynamics-first approach 
f the o v erall code design. All other operations, including all of
he sub-grid model tasks, are a negligible contribution to the total. 
he loss of performance when scaling up comes from the tree 
onstruction (orange) and from the o v erall imbalance between the 
ifferent nodes (purple) due to an imperfect domain decomposition 
eading to slightly non-uniform work-load between the nodes despite 
he problem being theoretically identical. As discussed in Section 9.3 , 
e can maintain the node-to-node imbalance below 10 per cent. We 

lso report that the time spent deciding how to distribute the domains
nd performing the corresponding exchange of particles (green line) 
s a negligible fraction of the total runtime. 

Finally, we note that the right-most points in Fig. 20 correspond to a
est as large as the largest cosmological hydrodynamical simulation 
by particle number) ever run to z = 0 (the flagship 2 × 5040 3 

LAMINGO volume of Schaye et al. 2023 ), demonstrating SWIFT ’s 
apability to tackle the largest problems of interest to the community. 

We started the presentation of the design decisions that lead 
o the architecture of SWIFT in Section 2 by a brief discussion
f the performance of the previous generation of cosmological 
ydrodynamical simulations and in particular of the EAGLE suite. 
o demonstrate impro v ements we could hav e repeated the flagship
imulation of Schaye et al. ( 2015 ) with SWIFT using our updated
PH implementation and the EAGLE -like model of Section 8.1 . 
ven with SWIFT ’s enhanced performance, this would still be a 

arge commitment of resources for a benchmarking e x ercise, so
e decided to instead compare the time taken by the codes on a

maller simulation volume using the same model. The (25 Mpc) 3 

olume run with 2 × 376 3 particles presented in Section 8.1.5 took 
59 hours using 28 compute cores of the cosma-7 system 

36 ; this
orresponds to a total of 4452 CPU core hours. The GADGET -based
un, using the same initial conditions, from the original EAGLE 

uite took 32 900 CPU core hours, meaning that our software is
 7 × faster on that problem. Recall ho we ver, that the fla v ours of
PH and the implementation of the sub-grid models are different 
egions / CPU) with AVX2 vector capability. The interconnect is Mellanox 
DR, 200GBit/s, with a non-blocking fat-tree topology. The machine has a 

heoretical 1.9 PF peak performance and achieved 1.3 PF on the standard 
PL benchmark. 

6 The cosma-7 system is run by DiRAC ( www.dirac.ac.uk) and hosted by 
he University of Durham, UK. The system is made of 448 compute nodes 
ith 512 GB RAM and dual 14-core Intel Xeon Gold 5120 CPU at 2.2 GHz 

1 NUMA region/CPU) with AVX512 vector capability. The interconnect is 
ellanox EDR, 100GBit/s, using a fat tree topology with a 2:1 blocking 

onfiguration. 
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rom the original EAGLE code making a more detailed comparison 
ifficult. 
We also note that this SWIFT -based EAGLE -like run only required

2 GB of memory meaning that it would easily fit in the memory
f a single compute node of most modern facilities. By contrast, the
ADGET -based EAGLE run required 345 GB of memory; a factor of
early 4x more. 

.5 Random number generator 

an y e xtensions of the base solvers, in particular sub-grid models
or galaxy formation, make use of (pseudo-)random numbers in their 
lgorithms. Examples of this are stochastic star formation models 
r feedback processes (see Sections 8.1.2 and 8.1.3 for such models
n SWIFT ). Simulation packages can generate random numbers in 
arious ways, often based on direct calls to a generator such as the
ase one part of UNIX or the more advanced ones in GSL (Gough
009 ). To speed things up or to make the sequence independent of
he number of MPI nodes, these calls can then be bundled into tables
nd regenerated every so often. The particles and physics modules 
hen access these tables to retrieve a random number. This approach
an lead to different issues of reproducibility between runs if the
articles or modules are not calling the generator in the same order.
hese issues can arise due to task ordering choices. 37 Additionally, 
hen bundling random numbers in small tables, great care has to be

ak en to mak e sure the indexing mechanism is sufficiently uniform
o as to not bias the results. 38 

In SWIFT , despite the intrinsic lack of ordering of the operations
ue to the tasking, we decided to a v oid these pitfalls by viewing
he generation of random numbers as a hashing of four unique
uantities which are then used to construct the mantissa of a
umber in the interval [0,1). We combine the ID of the particle (64-
it), the current location on the integer timeline (64-bit), a unique
dentifier for this random process (64-bit), and a general seed (16-
it). By doing so, we al w ays get the same random number for a
iven particle at the same point in simulation time. Since each
rocess also gets a unique identifier, we can draw uncorrelated 
umbers between modules for the same particle in the same step.
inally, the global seed can be altered if one wanted to actually
hange the whole sequence to study the effect of a particular set
f randoms (see Borrow et al. 2023 , for an example using SWIFT

nd the EAGLE -like model). The combined 144 bits thus generated
re passed through a succession of XOR and random generator 
eed evolution functions to create a final source of entropy. We
se this source as a seed for our last UNIX random number call,
rand48() , whose output bits are interpreted as the mantissa of
ur result. 
We have thoroughly verified that this entire mechanism generates 

erfectly uniform numbers. We also verified that there is no correla-
ion between calls using the same particle and time-step but varying
he identifier of the random process. 
MNRAS 530, 2378–2419 (2024) 

7 Note that in MPI codes, the same order-of-operations-issue can also occur 
f rounding choices change the time-step size of a particle, thus altering 
he sequence of numbers. The ordering of operations is not guaranteed for 
eduction operations, or in the directly SWIFT -rele v ant case, for asynchronous 
ommunications in a multi-threaded environment, unless the developers 
mplemented explicit mechanisms to force this (often slower) behaviour. 
8 A common mistake is to index the tables based on particle IDs when these 
Ds themselves encode some information (e.g. only even numbers for gas, or 
 position in the ICs). 
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0  SU M M A RY  A N D  C O N C L U S I O N  

0.1 Summary 

n this paper, we have presented the algorithms and numerical
ethods exploited in the open-source astrophysical code, SWIFT .
e have presented various test problems performed with the code,

s well as demonstrated its scaling capability to reach the largest
roblems targeted by the community. In addition, we described the
ub-grid models and other features made available alongside the
ode, and the various output strategies allowing the users to make
he most efficient use of their simulations. 

The core design strategy of the SWIFT code was to focus on
 hydrodynamics-first approach, with a gravity solver added on
op. In tandem with this, the parallelization strategy departs from
raditional methods by exploiting a task-based parallelism method
ith dependencies and conflicts. This allows for the efficient load-
alancing of problems by letting the runtime scheduler dynamically
hift work between the different compute units. This approach,
oupled to a domain decomposition method focusing on distributing
ork and not data, is specifically designed to adhere to the best
ractices for efficient use of modern hardware. 
Various modern fla v ours of SPHs are implemented, alongside two

ets of flexible sub-grid models for galaxy formation, a modern
ay of evolving cosmological neutrinos, and extensions to handle
lanetary simulations. These additional components are presented
nd released publicly along with the base code. 

Besides testing and benchmarking (in simulations using more than
 × 10 12 particles), the SWIFT software package has already been
xploited to perform extremely challenging scientific calculations.
hese include the very large dark-matter-only ‘zoom-in’ ( > 10 11 

articles in the high resolution region) of the SIBELIUS project
McAlpine et al. 2022 ), the large cosmological hydrodynamics runs
up to 2 × 5040 3 particles) of the FLAMINGO project (Schaye et al.
023 ), and the highest ever resolution Moon-formation simulations
Kegerreis et al. 2022 ). We envision that the public release of the
ode and its future developments will lead to more projects adopting
t as their backbone solver for the most difficult and largest numerical
strophysics and cosmology problems. 

0.2 Future developments 

he SWIFT code is in constant development and we expect it to evolve
onsiderably in the future. This paper describes the first full public
elease of the software and we expect improvements to the numerical
spects to be made, new models to be added, as well as new computer
rchitectures to be targeted in the future. 

One of the current grand challenges in high-performance com-
uting is the jump towards so-called exa-scale systems. It is widely
elieved that such computing power can only be reached via the
se of accelerators such as GPUs. This is a challenge for methods
uch as SPH and generally for algorithms including deep time-step
ierarchies due to the low arithmetic intensity of these methods
nd the use of largely irregular memory access patterns. In the
onte xt of SWIFT , e xploiting efficiently both CPUs and GPUs via
 unified tasking approach is an additional challenge. Some avenues
nd possible solutions are discussed by Bower, Rogers & Schaller
 2022 ), where some early work porting specific computationally-
ntensive tasks to GPUs is also described. 

In terms of physics models, we expect the public code to be soon
xpanded to include the self-interacting dark matter model of Correa
t al. ( 2022 ). This will expand the range of cosmological models that
an be probed with the SWIFT package. Work on other extensions
NRAS 530, 2378–2419 (2024) 
eyond vanilla � CDM will likely follow . Similarly , additional sub-
rid models for galaxy formation and cosmological applications are
n the process of being included in the main code base and will be
eleased in the future. 

The code is also being expanded to include material strength
odels, as well as further new equations of state, for planetary and

ther applications. 
The various hydrodynamics solvers in the code are currently all

ariations of SPH. This family of methods is known to have some
imitations in the rate of convergence towards analytic solutions
n certain scenarios. In future releases of the SWIFT package, we
hus intend to supplement this with additional SPH variations (e.g.
osswog 2020 ), renormalized mesh-free methods (e.g. Vila 1999 ;
opkins 2015 ; Alonso Asensio et al. 2023 ), and a moving mesh

mplementation akin to Vandenbroucke & De Rijcke ( 2016 ). These
ethods all use unstructured particles with neighbourhoods as their

ase algorithmic tool, which makes them very suitable to fit within
he framework currently existing in the SWIFT code. Developments
n top of the SPH fla v ours to include magneto-hydrodynamics terms
re also under way both using a direct induction formulation (e.g.
rice et al. 2018 ) and a vector-potential formulation (e.g. Stasyszyn &
lstner 2015 ). 
The code is also being expanded to include radiative transfer
odules, starting with the SPH-based formalism of Chan et al. ( 2021 )

ased on the M1-closure method and a coupling to the CHIMES
on-equilibrium thermo-chemical solver (Richings, Schaye & Op-
enheimer 2014a , b ). Developments to include sub-cycling steps, in
n even deeper hierarchy than in the gravity + hydro case (Duncan
t al. 1998 ), for the exchange of photons are also on-going, which
oupled to the task-based approach embraced by SWIFT should lead
o significant gains o v er more classic methods (Ivkovic 2023 ). 

Finally, an impro v ed domain decomposition strate gy for the
pecial case of zoom-in simulations with high-resolution regions
mall compared to the parent box but too large to find in a single
ode’s memory will be introduced by Roper et al. (in preparation) [;
ee also chapter 2 of Roper ( 2023 ) for a preliminary discussion]. 

By publicly releasing the code and its extensions to the community,
e also hope to encourage external contributors to share their models
uilt on top of the version described here to other researchers by
hemselves making their work public. 
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PPENDI X  A :  A D D I T I O NA L  SPH  SCHEMES  

or completeness, we summarize here the equations of motion for 
he the additional modern SPH schemes present in SWIFT . These are
e-implementation of schemes from the literature and can be used to
erform comparisons between models in a framework where the rest 
f the solver’s infrastructure is kept exactly fixed. 

1 Pr essur e-smoothed SPH 

ressure-smoothed SPH solves the same generic equation of mo- 
ion as described in equation 10 , but with a different choice of
undamental variables a and b . In general, instead of smoothing
he density ˆ ρ, we introduce a smoothed pressure ˆ P that is generated
hrough loops o v er neighbours (as described below). This approach is
ommonplace in astrophysics, with it described and used in Saitoh &
akino ( 2013 ), Hopkins ( 2013 ), and Hu et al. ( 2014 ), among others.
For the two choices of thermodynamic variable, internal energy 

per unit mass) u , or entropy A , we generate two different (but
qui v alent) smoothed pressures, 

ˆ 
 i = ( γ − 1) 

∑ 

j 

m j u j W ij , (A1) 

ˆ 
 i = 

⎡ 

⎣ 

∑ 

j 

m j A 

1 /γ
j W ij 

⎤ 

⎦ 

γ

, (A2) 

espectively. As described by Borrow et al. ( 2021 ), this then leads
o issues integrating the pressure in simulations with multiple time- 
tepping, especially in scenarios where there is a high u̇ (for instance
n the presence of a strong cooling term in the sub-grid physics), as
e should use 

d ˆ P i 

d t 
= ( γ − 1) 

∑ 

j 

m j 

(
W ij 

d u j 

d t 
+ u j v ij · ∇ j W ij 

)
(A3) 
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or the evolution of ˆ P i , which would formally require an extra
oop o v er the neighbours. As such, we do not recommend these
chemes for practical use, but we implement them in SWIFT

or cross-compatibility with the original GADGET -based EAGLE

ode. 
The changes in the smoothed variable give rise to a different

quation of motion, 

d v i 
d t 

= −u i ( γ − 1) 2 
∑ 

j 

m j u j 

[
f ij 

ˆ P i 

∇ i W ij + 

f ji 

ˆ P j 

∇ j W ji 

]
, (A4) 

hown for the internal energy variant (Pressure–Energy) only for
revity. 39 The factors f ij read 

 ij = 1 − 1 

m j u j 

[ 

∂ ˆ P i 

∂h i 

h i 

( γ − 1) n d ̂  n i 

] [
1 + 

h i 

n d ̂  n i 

∂ ̂  n i 

∂h i 

]−1 

(A5) 

s, in practice, we do not make an additional loop o v er neighbours
o calculate the deri v ati ve in the smoothed pressure, we use a simple
hain rule, 

d ˆ P i 

d t 
= ρi 

d u i 

d t 
+ u i 

d ρi 

d t 
, (A6) 

o integrate the smoothed pressure with time. This is commonplace
mong pressure-SPH schemes implemented in real codes, as it is
mpractical from a performance perspective to require an additional
oop solely for the reconstruction of the smoothed pressure time
ifferential. 
There are base Pressure–Entropy and Pressure–Energy schemes

vailable in SWIFT that use the same equations of motion for artificial
iscosity as the Density-based schemes (equation 16 ). 

2 ANARCHY -SPH 

n addition to these base schemes, we implement ‘ ANARCHY-PU ’,
hich is a Pressure–Energy-based variant of the original ANARCHY

cheme used for EAGLE (see Schaller et al. 2015 and appendix A
f Schaye et al. 2015 ) which used entropy as the thermodynamic
ariable to evolve. We reformulate the base equations of motions
n terms of internal energy in SWIFT as described in the previous
ection. 

ANARCHY-PU uses the same artificial viscosity implementation
s SPHENIX (equations 22 –26 ) but uses a slightly different value of
ecay length � = 0.25. 

The artificial conduction differs more markedly. The base equation
equations 27 and 29 ) remain unchanged w.r.t SPHENIX but three of
he ingredients are altered. First, ANARCHY-PU does not pressure-
eight the contributions of both interacting particles and thus 

ij = 

αc ,i + αc ,j 

2 
. (A7) 

econdly, the conduction velocity is changed to 

 c ,ij = c s ,i + v c ,j + μij , (A8) 

hich is similar to the signal velocity entering viscosity but with the
ign of μ reversed. Thirdly, the dimensionless constant βc entering
he time evolution of the conduction parameter (equation 29 ) is
owered to βc = 0.01. This is because ANARCHY-PU uses a smoothed-
ressure implementation and thus a lower amount of conduction is
equired. 
NRAS 530, 2378–2419 (2024) 

9 Expanded deri v ations and definitions are available in the theory documen- 
ation provided with the SWIFT code. 

w

V

Finally, the conduction limiter in strong shocks (equation 31 ) is not
sed. Our implementation is consistent with the original ANARCHY

cheme. 

3 PHANTOM -like flavour 

WIFT includes a reduced, and slightly modified, version of the
HANTOM SPH scheme (Price et al. 2018 ). It employs the same
ensity–Energy SPH scheme as SPHENIX and also implements
ariable artificial conduction and viscosity parameters. At present,
ur implementation in SWIFT is hydrodynamics only, but an extension
o include magnetohydrodynamical effects is planned for the future.

Our PHANTOM artificial viscosity implementation is the same as
PHENIX and ANARCHY , with � = 0.25. This differs slightly from

he original PHANTOM description, where a modified version of the
alsara ( 1989 ) switch is also used. For artificial conduction, a fixed
c = 1 is used for all particles, ef fecti v ely remo ving the need for
quation 29 . The conduction speed is given as 

 c ,i = 

√ 

2 
| P i − P j | 

ˆ ρi + ˆ ρj 

, (A9) 

ith the PHANTOM implementation only designed for use with
urely hydrodynamical simulations. Price et al. ( 2018 ) recommend
 different conduction speed in simulations involving self-gravity. 

4 GASOLINE-2 -like (GDF-like) flavour 

WIFT also includes a re-implementation of the equations of the
ASOLINE -2 model presented by Wadsley et al. ( 2017 ). The imple-
entation and default parameters follow the paper closely, though

here are minor dif ferences. We gi ve the equations here for complete-
ess but refer the reader to the original Wadsley et al. ( 2017 ) work
or the moti v ation behind their deri v ation. 

The equation of motion in Gasoline uses the so-called ‘Geometric
ensity Force’ (GDF) formulation, and is as follows: 

d v i 
d t 

= −
∑ 

j 

m j 

(
P i + P j 

ˆ ρi ̂  ρj 

)
∇ i W̄ ij , (A10) 

d u i 

d t 
= 

∑ 

j 

m j 

(
P i 

ˆ ρi ̂  ρj 

)
v ij · ∇ i W̄ ij , (A11) 

here 

 i W̄ ij = 

1 

2 
f i ∇ i W 

(
r ij , h i 

) + 

1 

2 
f j ∇ j W 

(
r ij , h j 

)
, (A12) 

s the symmetric average of both usual kernel contributions, and the
ariable smoothing length correction terms read: 

 i = 

∑ 

j 

m j 

ˆ ρi 
r 2 ij W ij ∑ 

j 

m j 

ˆ ρj 
r 2 ij W ij 

. (A13) 

The artificial viscosity and conduction implementations use matrix
alculations based on local pressure gradients. Here, 

P i = ( γ − 1) 
∑ 

j m j u j ∇ i W ij , (A14) 

 i = 

∇P i 
|∇P i | , (A15) 

d v i 
d n i 

= 

∑ 

α,β n i,αV αβ,i n i,β , (A16) 

ith the velocity gradient tensor 

 αβ,i = 

∑ 

j 

(
v αi − v αj 

) (
r βi − r βj 

)
m j W ij 

1 
3 

∑ 

j r 
2 
ij m j W ij 

, (A17) 
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nd the shock detector 

 i = 

3 

2 

[
d v i 
d n i 

+ max 

(
−1 

3 
∇ · v i , 0 

)]
(A18) 

ith α and β indices along the Cartesian axes in our case. These give
ise to the evolution equation for the artificial viscosity parameter, 
hich is evolved in a similar manner to ANARCHY , SPHENIX , and
HANTOM : 

V , loc ,i = αV , max 
A i 

A i + v 2 sig ,i 

(A19) 

 i = 2 h 

2 
i B i max 

(
−d D i 

d t 
, 0 

)
(A20) 

d αi 

d t 
= 0 . 2 c s ,i 

(
αV , loc ,i − αV ,i 

)
/h i . (A21) 

e note that the SWIFT implementation again uses the Balsara ( 1989 )
witch (the B i term) rather than the Cullen & Dehnen ( 2010 ) style
imiter used in the original GASOLINE -2 paper. 

Artificial conduction is implemented using the trace-free shear 
ensor, 

 

2 
α,β,i = 

V α,β,i + V β,α,i 

2 
− δα,β∇ · v i 

3 
, (A22) 

nd the conduction parameter: 

c ,i = C| S | h 

2 
i , (A23) 

 S | = 

∑ 

α,β

S 

2 
α,β , (A24) 

ith the fixed parameter C = 0.03. Note that unlike the other schemes
c, i is not dimensionless. These then get added to the equation of
otion for thermal energy using 

d u i 

d t 
= −

∑ 

j 

m j 

(
αc ,i + αc ,j 

) (
u i − u j 

) (
r ij · ∇ i W̄ ij 

)
1 
2 

(
ρi + ρj 

)
r 2 ij 

, (A25) 

hich is very similar to the other schemes presented above. 

PPEN D IX  B:  MULTI- INDEX  N OTAT I O N  

ollowing Dehnen ( 2014 ), we define a multi-index n as a triplet of
on-ne gativ e inte gers: 

 ≡ (
n x , n y , n z 

)
, n i ∈ N , (B1) 

ith a norm n given by 

 = | n | ≡ n x + n y + n z . (B2) 

e also define the exponentiation of a vector r = ( r x , r y , r z ) by a
ulti-index n as 

 

n ≡ r n x x · r 
n y 
y · r n z z , (B3) 

hich for a scalar α reduces to 

n = αn . (B4) 

inally, the factorial of a multi-index is defined to be 

 ! ≡ n x ! · n y ! · n z ! , (B5) 
2024 The Author(s). 
ublished by Oxford University Press on behalf of Royal Astronomical Society. This is an Open
 https://cr eativecommons.or g/licenses/by/4.0/), which permits unrestricted reuse, distribution, and rep
hich leads to a simple expression for the binomial coefficients of
wo multi-indices entering Taylor expansions: 

n 

k 

)
= 

(
n x 

k x 

)(
n y 

k y 

)(
n z 

k z 

)
. (B6) 

hen appearing as the index in a sum, a multi-index represents all
alues that the triplet can take up to a given norm. For instance, 

∑ p 

n 
ndicates that the sum runs o v er all possible multi-indices whose
orm is ≤p . 
MNRAS 530, 2378–2419 (2024) 
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