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A B S T R A C T 

We present the first comprehensive halo occupation distribution (HOD) analysis of the Dark Energy Spectroscopic Instrument 
(DESI) One-Percent Surv e y luminous red galaxy (LRG) and Quasi Stellar Object (QSO) samples. We constrain the HOD of 
each sample and test possible HOD extensions by fitting the redshift-space galaxy 2-point correlation functions in 0.15 < r 
< 32 h 

−1 Mpc in a set of fiducial redshift bins. We use ABACUSSUMMIT cubic boxes at Planck 2018 cosmology as model 
templates and forward model galaxy clustering with the ABACUSHOD package. We achieve good fits with a standard HOD 

model with velocity bias, and we find no evidence for galaxy assembly bias or satellite profile modulation at the current level of 
statistical uncertainty. For LRGs in 0.4 < z < 0.6, we infer a satellite fraction of f sat = 11 ± 1 y per cent , a mean halo mass of 
log 10 M h /M � = 13 . 40 

+ 0 . 02 
−0 . 02 , and a linear bias of b lin = 1 . 93 

+ 0 . 06 
−0 . 04 . For LRGs in 0.6 < z < 0.8, we find f sat = 14 ± 1 per cent , 

log 10 M h /M � = 13 . 24 

+ 0 . 02 
−0 . 02 , and b lin = 2 . 08 

+ 0 . 03 
−0 . 03 . For QSOs, we infer f sat = 3 

+ 8 
−2 per cent , log 10 M h /M � = 12 . 65 

+ 0 . 09 
−0 . 04 , and b lin = 

2 . 63 

+ 0 . 37 
−0 . 26 in redshift range 0.8 < z < 2.1. Using these fits, we generate a large suite of high fidelity galaxy mocks, forming the 

basis of systematic tests for DESI Y1 cosmological analyses. We also study the redshift-evolution of the DESI LRG sample 
from z = 0.4 up to z = 1.1, revealling significant and interesting trends in mean halo mass, linear bias, and satellite fraction. 

Key words: methods: numerical – methods: statistical – galaxies: haloes – large-scale structure of Universe. 
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 I N T RO D U C T I O N  

alaxies are biased tracers of the underlying matter density field 
f the Universe, and their distribution is an important source of
osmological and astrophysical information. Ho we ver, while the 
istribution of dark matter is readily modelled by gravitational 
ollapse, the distribution of galaxies is significantly more complex 
ue to non-linear evolution and baryonic processes. Thus, to extract 
osmology and galaxy physics from the observed galaxy distribution, 
t is critical to model the connection between galaxies and their 
nderlying dark matter density field. 
A key piece of simplification in galaxy–dark matter connection 
odelling comes in what is known as the halo model, where 

imulations have shown that galaxies form and evolve in dense dark 
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atter clumps known as haloes (White & Rees 1978 ; Cooray &
heth 2002 ). Within the halo model, we can empirically model the
onnection between galaxies and haloes through a set of probabilistic 
odels known as the halo occupation distribution model (HOD; e.g. 
eacock & Smith 2000 ; Scoccimarro et al. 2001 ; White, Hernquist &
pringel 2001 ; Berlind & Weinberg 2002 ; Berlind et al. 2003 ; Zheng
t al. 2005 ; Zheng, Coil & Zehavi 2007 ). The HOD formalism has
een highly successful in characterizing magnitude-limited samples 
f bright galaxies in past galaxy redshift surv e ys (e.g. Zehavi et al.
011 ; Parejko et al. 2013 ; Guo et al. 2014 , 2015b ; Rodr ́ıguez-
orres et al. 2016 ; Alam et al. 2020 ; Avila et al. 2020 ; Yuan et al.
021b ). HOD studies are important because they reveal aspects of
alaxy evolution physics and test assumptions of galaxy–dark matter 
onnection (e.g. Lange et al. 2019 ; Alam et al. 2020 ; Yuan et al.
021a ; Linke et al. 2022 ; Wang et al. 2022 ). They are also important
n producing mocks that accurately reproduce the observed clustering 
nd thus enable robustness tests of cosmology pipelines (e.g. Smith 
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t al. 2020 ; Alam et al. 2021 ; Rossi et al. 2021 ). Most recently,
imulation-based forward-modelling approaches have also utilized
he flexibility of HODs to constrain cosmology from highly non-
inear scales that are otherwise inaccessible with standard analytical
pproaches (e.g. Chapman et al. 2022 ; Kobayashi et al. 2022 ; Lange
t al. 2022 ; Yuan et al. 2022a ; Zhai et al. 2023 ). 

The Dark Energy Spectroscopic Instrument (DESI) is a stage-IV
pectroscopic galaxy surv e y with the primary goal of determining
he nature of dark energy through the most precise measurement
f the expansion history of the universe ever obtained (Levi et al.
013 ; DESI Collaboration 2016 ). The baseline surv e y will obtain
pectroscopic measurements of 40 million galaxies and quasars
n a 14 000 deg 2 footprint in 5 yr. This represents an order-of-
agnitude impro v ement both in the volume surv e yed and the number

f galaxies measured o v er previous surv e ys. The DESI large-scale
tructure samples are divided into 4 target classes: the bright galaxy
ample (BGS), the luminous red galaxies (LRG), the emission line
alaxies (ELG), and the quasi-stellar objects (QSO). The auto- and
ross-correlations of and between the four tracers probe the large-
cale structure in increasing high redshift domains and combine to
roduce the most precise large-scale structure measurement from
edshift z = 0.1 all the way to z = 2.1. Additionally, quasars that
ave redshifts greater than 2.1 are used as sightlines for Lyma α
orest absorption, and the combination of ly α–ly α, ly α–QSO, and
SO–QSO correlations probe large-scale structure to z < 3.5. 
The Early Data Release (EDR) of the DESI surv e y consists of

ata in the so-called One-Percent Surv e y, collected during the Surv e y
alidation campaign (SV; DESI Collaboration 2024 ) before the start
f the main surv e y operations. The One-Percent Surv e y co v ered 20
elds totalling 140 deg 2 with final target selection algorithms similar

o those of the main surv e y (Raichoor et al. 2020 , 2023 ; Ruiz-Macias
t al. 2020 ; Y ̀eche et al. 2020 ; Zhou et al. 2020 ; Chaussidon et al.
023 ; Hahn et al. 2023 ; Zhou et al. 2023 ). The one-per cent surv e y
eaches higher completeness than the main surv e y and produces the
rst clustering measurements from DESI. Specifically, more than
5 per cent targets received fibers in the ELG sample, while more
han 99 per cent of targets in each of the BGS, LRG, and QSO
amples received fibers. 

In this paper, we present a comprehensive HOD analysis of the
ESI One-Percent Surv e y LRG and QSO samples. This paper is

mongst a series of papers analysing galaxy–halo connection models
ith DESI One-Percent Surv e y data. This paper addresses the more
ell-understood samples of LRG and QSO, while the more no v el
LG sample is analysed in a dedicated paper (Rocher et al. 2023 ). In
arallel, there are also several Subhalo-abundance matching (SHAM)
nalyses. Specifically, Prada et al. ( 2023 ) provide an overview of
he UCHUU -based SHAM analyses (Ishiyama et al. 2021 ). Yu et al.
 2024 ) present SHAM analyses based on the UNIT simulation
Chuang et al. 2019 ). Beyond the single-tracer analyses, Gao et al.
 2023 ) and Yuan et al. ( 2023 ) analyse the cross-correlation functions
etween the ELG and LRG tracers with multitracer SHAM and HOD
odels, respectively. These papers together present a significant

ariety of methodologies and mock products appropriate for a large
cope of applications. 

This paper is structured as the following. In Section 2 , we introduce
he observed samples and present their clustering measurements. In
ections 3 and 4 , we introduce the simulation suite and the HOD
odels. In Section 6 , we present LRG fits on both the projected

lustering measurements and the full-shape redshift-space clustering
easurements, and present the corresponding model constraints. We

lso present a first analysis of the redshift evolution of the DESI
RG sample and the physical implications. We present the QSO fits
NRAS 530, 947–965 (2024) 
n Section 7 . In Section 8 , we present a series of mock products as a
esult of this analysis. Finally, we conclude in Section 9 . 

Throughout this paper, we adopt the Planck 2018 � CDM
osmology, specifically the mean estimates of the Planck
T,TE,EE + lowE + lensing likelihood chains: �c h 2 = 0.1200,
b h 2 = 0.02237, σ 8 = 0.811355, n s = 0.9649, h = 0.6736, w 0 =
1, and w a = 0 (Planck Collaboration VI 2020 ). 

 DATA  

n this section, we describe the LRG and QSO samples and present
heir respective clustering measurements. 

DESI observed its One-Percent survey as the third and final
hase of its Surv e y Validation program in April and May of 2021.
bservation fields were chosen to be in twenty non-o v erlapping

rosettes’, where a high completeness was obtained by observing in
ach rosette at least 12 times (see DESI Collaboration ( 2024 , b ) for
ore details. 
Prior to beginning SV, the DESI instrument (DESI Collaboration

022 ) had pro v en its ability to simultaneously measure spectra at
000 specific sky locations, with fibers placed accurately using
obotic positioners populating the DESI focal plane (Silber et al.
022 ). During SV, the DESI data and operations teams’ (Schlafly
t al. 2023 ) pro v ed their ability to efficiently process the spectra
hrough the DESI spectroscopic pipeline (Guy et al. 2023 ). Thus,
ESI was able to start from an initial target list (Myers et al. 2023 )
uickly obtain a highly complete One-Percent Surv e y. 
The redshift measurements we use are available in the DESI

DR (DESI Collaboration 2023b ). 1 These were input to the large-
cale structure (LSS) catalogues, also described in the EDR (DESI
ollaboration 2023b ). Briefly, these LSS catalogues apply quality
uts to the data samples and provide matched random catalogues
hat trace the angular footprint and d N /d z of the data, at a total
ensity of 4.5 ×10 4 deg −2 . Lasker et al. (in preparation) describe
ow we compute the joint probabilities for a given set of targets to
e observed by simulating 128 alternative realizations of the DESI
ne-Percent Surv e y fiber assignment. We use this information to
etermine the pairwise-inverse-probability (Bianchi & Verde 2020 )
eights to use in our clustering measurements to correct for the

ffect of fiber collisions. We further apply angular up-weighting
PIP + ANG; Bianchi & Verde 2020 ). Mohammad et al. ( 2020 )
howed that this weighting scheme provides an unbiased clustering
own to 0 . 1 h −1 Mpc. 
The One-Percent Surv e y LSS catalogues also include the so-

alled ‘FKP’ (Feldman, Kaiser & Peacock 1994 ) weights in order
o properly weight each volume element with respect to how each
ample’s number density changes with redshift, 

 FKP = 1 / (1 + n ( z) P 0 ) (1) 

here n ( z) is the weighted number per volume, and P 0 is a fiducial
ower-spectrum amplitude. We use P 0 = 10 4 ( h −1 Mpc) 3 for LRG
nd P 0 = 6 × 10 3 ( h −1 Mpc) 3 for QSO. For a detailed description of
he weights and systematics treatment, we refer the readers to DESI
ollaboration ( 2023b ). 

.1 DESI One-Percent Sur v ey LRG and QSO samples 

he LRGs are an important type of galaxies for large-scale structure
tudies, and are specifically selected for observations due to two main

https://data.desi.lbl.gov/public/edr/spectro/redux/fuji
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Figure 1. The DESI One-Percent Surv e y LRG and QSO mean number 
density as a function of redshift. The dashed vertical lines show the fiducial 
LRG redshift bin edges of z = 0.6, z = 0.8, and the maximum redshift we 
consider for the QSO sample z = 2.1. 
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dvantages: (1) they are bright galaxies with the prominent 4000 Å
reak in their spectra, thus allowing for relatively easy target selection
nd redshift measurements; and (2) they are highly biased tracers 
f the large-scale structure, thus yielding a higher S/N per-object 
or the baryon acoustic oscillation (BAO) measurement compared to 
ypical galaxies. The LRG sample is drawn from a parent photometric 
ample, where the SV target selection is defined in Zhou et al. ( 2020 ).
he sample has a target density of 605 deg −2 in 0.4 < z < 0.8,
ignificantly higher than previous LRG surv e ys (BOSS and eBOSS; 
awson et al. 2013 , 2016 ), while the sample also extends to z ∼
. Within EDR, the LRG main sample consists of 89 059 galaxies,
3 269 in the northern footprint and 45 790 in the southern footprint.
Quasi-stellar objects (a.k.a. Quasars, or QSOs) are the tracers of 

hoice to study large-scale structures at high redshift due to the 
act that they are some of the most luminous extragalactic sources.
ESI aims to obtain spectra of nearly three million quasars, reaching 

imiting magnitudes r ∼ 23 and an average density of ∼310 targets 
er deg 2 . Within EDR, the QSO selection yields 24 182 quasars
ithin redshift range 0.8 < z < 2.1, and an additional 11 603 Ly α
uasars at higher redshift. For this study, we focus on the quasars at
 < 2.1 which will be used for quasar clustering analysis. 

Fig. 1 shows the DESI One-Percent Surv e y LRG and QSO mean
ensity as a funtion of redshift n ( z). The vertical dashed lines
orrespond to fiducial bin edges defined for DESI cosmology studies. 
or the LRG sample, the number density remains fairly constant 
rom z = 0.4 to z = 0.8 at approximately 5 × 10 −4 h 3 Mpc −3 . At
 > 0.8, the LRG density drops off quickly, suggesting increasing 
ncompleteness and strong redshift evolution. To clarify, the redshift 
volution in the selected LRG sample is likely mostly due to the
pecific colour selection used in DESI instead of evolution in the 
nderlying sample. For the fiducial HOD analysis presented in 
ection 6 , we examine the sample in two redshift bins: 0.4 < z <

.6 and 0.6 < z < 0.8. These two bins are designated as the sample
or DESI Y1 cosmology analyses, thus it is important to produce 
igh fidelity mocks in these two bins to enable careful systematics
ests for cosmology . Additionally , Section 6.3 presents a preliminary 
nalysis of the redshift evolution of the LRGs at z > 0.8. This high
edshift sample is not yet used for cosmology, but is interesting in
tudying the properties and evolution of massive galaxies at z ∼ 1. 

The QSO sample delivers roughly constant number density from 

 = 0.8 to z = 2.1, at 2 × 10 −5 h 3 Mpc −3 . In this analysis, we treat this
ntire redshift range as one single bin to achieve a reasonably large
ample size for clustering measurements. We nev ertheless e xpect at 
east some degree of redshift ev olution, b ut we defer the analysis
f QSO redshift evolution to a future paper when a larger sample
ecomes available. 

.2 Clustering measurements 

or this analysis, we consider the 2-point correlation function 
2PCF) as our summary statistic of the galaxy clustering. We start
y introducing the redshift-space 2PCF ξ ( r p , r π ), which can be
omputed using the Landy & Szalay ( 1993 ) estimator: 

( r p , r π ) = 

D D − 2 D R + R R 

RR 

, (2) 

here DD , DR , and RR are the normalized numbers of data–data,
ata–random, and random–random pair counts in each bin of ( r p ,
 π ). r p and r π are transverse and line-of-sight (LoS) separations in
omoving units. The redshift-space ξ ( r p , r π ) in principle represents
he full information content of the 2PCF. The dependence on trans-
erse separation r p describes the transition from 1-halo clustering 
o 2-halo clustering, whereas the dependence on LoS separaton r π
etails the velocity distributions and the small-scale finger-of-god 
ffect. Yuan et al. ( 2021b ) showed that the ξ ( r p , r π ) on small scales
ield strong constraints on the HOD. In this paper, we consider ξ ( r p ,
 π ) as our primary summary data vector for constraining the LRG
nd QSO HOD. 

Ho we ver, ξ ( r p , r π ) is often compressed to the projected galaxy
PCF w p , which is the line-of-sight integral of ξ ( r p , r π ), 

 p ( r p ) = 2 
∫ r π, max 

0 
ξ ( r p , r π )d r π , (3) 

y definition, w p is strictly less informative than ξ ( r p , r π ) as it loses
ut on the velocity information that is encoded in the LoS clustering.
o we ver, w p also of fer se veral key advantages: it is easy to visualize

s a 1D function; it is easy to obtain covariance matrix for; analysing
 p a v oids the complexities of modelling galaxy v elocities. F or these

easons, we present w p -only results alongside the ξ ( r p , r π ) results in
he following analysis. 

Fig. 2 shows the projected autocorrelation function of the DESI 
ne-Percent Surv e y LRG and QSO samples, using the fiducial

edshift bins we defined abo v e. Throughout the rest of this analysis,
e adopt 14 logarithmic bins along the projected separation r p from
.15 to 32 h −1 Mpc. The projected scale range is designed to capture
oth the 1-halo regime and the 1–2 halo transition regime, while
imiting our exposure to large-scale modes due to the small footprint
n the One-Percent Surv e y. Along the line-of-sight (LoS) direction,
e adopt a linear binning scheme from 0 to 32 h −1 Mpc with bin size
 r π = 4 h −1 Mpc to capture the structure of the finger-of-god effect
ithout blowing up the size of the data v ector. F or w p , we set r π ,max =
2 h −1 Mpc. The redshift multipole measurements are visualized in 
ater figures (Fig. 8 and 13 ). The errorbars displayed alongside the
ata measurements are calculated with 128 jack-knife regions of 
he One-Percent Surv e y footprint. All clustering measurements on 
ESI One-Percent Surv e y data are done using the PYCORR package 2 

Mohammad & Perci v al 2022 ). 

 SI MULATI ONS  

o model the underlying dark matter density field, we use the
BACUSSUMMIT simulation suite, which is a set of large, high- 

ccuracy cosmological N -body simulations using the ABACUS N - 
ody code (Garrison, Eisenstein & Pinto 2019 ; Garrison et al.
MNRAS 530, 947–965 (2024) 

https://github.com/cosmodesi/pycorr
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M

(a) LRG sample (b) QSO sample

Figure 2. The DESI One-Percent Surv e y LRG and QSO projected autocorrelation functions multiplied by the projected separation r p . Here, we are only 
showing LRG clustering in two fiducial redshift bins: 0.4 < z < 0.6 and 0.6 < z < 0.8. For QSOs, we consider one large redshift bin 0.8 < z < 2.1 to achieve a 
reasonable sample size. 
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021 ; Maksimova et al. 2021 ). This suite is designed to meet the
osmological Simulation Requirements of DESI. ABACUSSUMMIT

onsists of o v er 150 simulations, containing approximately 60
rillion particles at 97 different cosmologies. A base simulation box
ontains 6912 3 particles within a (2 h −1 Gpc) 3 volume, which yields
 particle mass of 2.1 × 10 9 h −1 M �. 3 All analyses in this paper
re done e xclusiv ely at the fiducial Planck 2018 cosmology with the
bacusSummit base c000 ph000 box. 
The simulation output is organized into discrete redshift snapshots.

pecifically, we use the z = 0.5 and z = 0.8 snapshots for LRGs at
 < 0.8, and the z = 0.8 and z = 1.1 snapshots for LRGs at z >
.8. For the QSO analysis, due to the very limited sample size, we
hoose not to divide the sample into multiple redshift bins. Instead,
e use the z = 1.4 snapshot for the single redshift bin 0.8 < z < 2.1.
 more nuanced analysis of the QSO sample is planned when more
ata become available. 
The dark matter haloes are identified with the COMPASO halo

nder, which is a highly efficient on-the-fly group finder specifically
esigned for the ABACUSSUMMIT simulations (Hadzhiyska et al.
022a ). COMPASO builds on the existing spherical o v erdensity (SO)
lgorithm by taking into consideration the tidal radius around a
maller halo before competitively assigning halo membership to the
articles in an effort to more effectively deblend haloes. Among
ther features, the COMPASO finder also allows for the formation of
ew haloes on the outskirts of growing haloes, which alleviates a
nown issue of configuration-space halo finders of failing to identify
aloes close to the centers of larger haloes. We also run a post-
rocessing ‘cleaning’ procedure that leverages the halo merger trees
o ‘re-merge’ a subset of haloes. This is done both to remo v e
 v er-deblended haloes in the spherical o v erdensity finder, and to
ntentionally merge physically associated haloes that have merged
nd then physically separated (Bose et al. 2022 ). 

In addition to periodic boxes, the simulation suite also provides a
et of simulation light-cones at the fiducial cosmology (Hadzhiyska
t al. 2022b ). The basic algorithm associates the haloes from a set
NRAS 530, 947–965 (2024) 

 For more details, see https:// abacussummit.readthedocs.io/ en/ latest/ 
bacussummit.html 

C  

2
 

H  
f coarsely spaced snapshots with their positions at the time of
ight-cone crossing by matching halo particles to on-the-fly light-
one particles. The resulting halo catalogues are reliable at M halo >

.1 × 10 11 h −1 M �, more than sufficient for LRGs and QSOs. As part
f the data products, we take the best-fitting HODs across different
edshift snapshots and construct redshift-dependent LRG mocks on
he 25 base light-cones. Each light-cone co v ering an octant of the
k y ( ∼5156 de g 2 ) up to z ∼ 0.8. We clarify that in this analysis, we
nly use the cubic boxes to conduct our analysis, the light-cones are
nly used to produce redshift-dependent mocks as part of the data
roducts. 

 H A L O  O C C U PAT I O N  DI STRI BU TI ON  

o propagate the simulated matter density field to galaxy distribu-
ions, we adopt the HOD model, which probabilistically populate
ark matter haloes with galaxies according to a set of halo proper-
ies. Statistically, the HOD can be summarized as a probabilitistic
istribution P ( n g | X h ), where n g is the number of galaxies of the
iven halo, and X h is some set of halo properties. 
In the vanilla HOD model, halo mass is assumed to be the only

ele v ant halo property X h = M h (Zheng et al. 2005 ; Zheng, Coil &
ehavi 2007 ). This vanilla HOD separates the galaxies into central
nd satellite galaxies, and assumes the central galaxy occupation
ollows a Bernoulli distribution whereas the satellites follow a
oisson distribution, in which case one only needs to specify the
ean occupation per halo n̄ cent and n̄ sat . Beyond the vanilla model,

alaxy occupation can also depend on secondary halo properties
eyond halo mass, an phenomenon commonly referred to as galaxy
ssembly bias or galaxy secondary bias (see Wechsler & Tinker
018 , for a re vie w). While galaxy assembly bias is well physically
oti v ated, man y studies hav e looked for it both in simulations and

ata (e.g. Wechsler et al. 2002 ; Croton, Gao & White 2007 ; Gao &
hite 2007 ; Lin et al. 2016 ; Hadzhiyska et al. 2020 ; Xu, Zehavi &

ontreras 2021a ; Xu et al. 2021b ; Delgado et al. 2022 ; Salcedo et al.
022 ; Wang et al. 2022 ; Yuan et al. 2022b ) with mixed results. 
For this analysis, we use the ABACUSHOD code to find best-fitting

ODs and sample HOD posteriors. ABACUSHOD is a highly efficient

https://abacussummit.readthedocs.io/en/latest/abacussummit.html


LRG HOD 951 

H
(  

A

E
e

4

F  

m  

r

n

n

w
M  

g  

g  

n
o  

a  

t  

h
p  

n  

w  

a

r  

t  

a

n

s
g
c  

s
(  

r
s

 

a  

i
a
t  

b
c  

V
a
e

t  

4

s
f
c

a  

a

v

w
v  

p
B  

a  

d

h  

l
b

v

w
a
n  

t

 

i  

p  

(

4

A
e  

f  

e  

f

p  

g  

n
o
c

p
i  

o  

i
a

t
t  

s  

t  

p

 

8
W  

f  

W  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/530/1/947/7643636 by EPF Lausanne user on 07 June 2024
OD implementation that enables a large set of HOD extensions 
Yuan et al. 2021b ). The code is publicly available as a part of the
BACUSUTILS package at https:// github.com/ abacusorg/ abacusutils . 
xample usage can be found at https://abacusutils.readthedocs.io/ 
n/ latest/ hod.html . 

.1 Baseline model 

or a LRG sample, the HOD is well approximated by a vanilla
odel given by (originally shown in Zheng, Coil & Zehavi 2007 and

eferred to as Zheng07 or vanilla later in the text): 

¯ LRG 
cent ( M) = 

f ic 
2 erfc 

[ 
log 10 ( M cut /M) √ 

2 σ

] 
, (4) 

¯ LRG 
sat ( M) = 

[ 
M −κM cut 

M 1 

] α
n̄ LRG 

cent ( M) , (5) 

here the five vanilla parameters characterizing the model are M cut , 
 1 , σ , α, κ . M cut sets the minimum halo mass to host a central

alaxy. M 1 roughly sets the typical halo mass that hosts one satellite
alaxy. σ controls the steepness of the transition from 0 to 1 in the
umber of central galaxies. α is the power-law index on the number 
f satellite galaxies. κM cut gives the minimum halo mass to host
 satellite galaxy. We have added a modulation term n̄ LRG 

cent ( M) to
he satellite occupation function to mostly remo v e satellites from
aloes without centrals. 4 We have also included an incompleteness 
arameter f ic , which is a downsampling factor controlling the o v erall
umber density of the mock galaxies. This parameter is rele v ant
hen trying to match the observed mean density of the galaxies in

ddition to clustering measurements. By definition, 0 < f ic ≤ 1. 
For QSOs, we adopt essentially the same HOD model except we 

emo v e the central modulation term in the satellite occupation as
here is no evidence that the existence of satellite QSOs are strongly
ssociated with central QSOs. Thus, for satellite QSOs, we have 

¯ QSO 
sat ( M) = 

[ 
M −κM cut 

M 1 

] α
. (6) 

In addition to determining the number of galaxies per halo, the 
tandard HOD model also dictates the position and velocity of the 
alaxies. In the vanilla model, the position and velocity of the 
entral galaxy are set to be the same as those of the halo center,
pecifically the L2 subhalo centre-of-mass for the COMPASO haloes 
see Hadzhiyska et al. 2022a ). For the satellite galaxies, they are
andomly assigned to halo particles with uniform weights, each 
atellite inheriting the position and velocity of its host particle. 

Because we are modelling the full-shape ξ ( r p , r π ), we also include
n additional level of flexibility in the velocity model known as veloc-
ty bias in the baseline model. Velocity bias essentially parametrizes 
ny biases the velocities of the central and satellite galaxies relative 
o their, respectively, host haloes and particles. This is shown to to
e a necessary ingredient in modelling BOSS LRG redshift-space 
lustering on small scales (e.g. Guo et al. 2015a ; Yuan et al. 2021b ).
elocity bias has also been identified in hydrodynamical simulations 
nd measured to be consistent with observational constraints (e.g. Ye 
t al. 2017 ; Yuan et al. 2022b ). 

We parametrize velocity bias through two additional parameters: 

(i) αvel,c is the central velocity bias parameter, which modulates 
he peculiar velocity of the central galaxy relative to the halo centre
 There is evidence that such central-less satellites may exist in a realistic 
tellar-mass selected catalogue (Jim ́enez et al. 2019 ). We include this term 

or consistency with previous works, but it should have minimal impact on 
lustering. 

s

4

H
p  
long the LoS. Specifically in this model, the central galaxy velocity
long the LoS is thus given by 

 cent, z = v L2 , z + αvel , c δv ( σLoS ) , (7) 

here v L2,z denotes the LoS component of the central subhalo 
elocity, δv ( σ LoS ) denotes the Gaussian scatter of the host halo
article velocities, and αvel,c is the central velocity bias parameter. 
y definition, αvel,c = 0 corresponds to no central velocity bias. We
lso define αvel,c as non-ne gativ e, as ne gativ e and positive αc are fully
egenerate observationally. 
(ii) αvel,s is the satellite velocity bias parameter, which modulates 

ow the satellite galaxy peculiar velocity deviates from that of the
ocal dark matter particle. Specifically, the satellite velocity is given 
y 

 sat, z = v L2 , z + αvel , s ( v p , z − v L2 , z ) , (8) 

here v p,z denotes the line-of-sight component of particle velocity, 
nd αvel,s is the satellite velocity bias parameter. αvel,s = 1 indicates 
o satellite velocity bias, i.e. satellites perfectly track the velocity of
heir underlying particles. 

To summarize, the baseline HOD model for both LRGs and QSOs
s fully specified with the following 8 parameters: (1) 5 vanilla HOD
arameters M cut , M 1 , σ , α, κ; (2) an incompleteness parameter f ic ;
3) velocity bias parameters αvel,c and αvel,s . 

.2 Model extensions 

BACUSHOD also enables additional physically moti v ated HOD 

xtensions. In the following analysis, we will test whether the data
a v our the inclusion of such extensions. We summarize the rele v ant
xtensions for LRGs here and refer the readers to Yuan et al. ( 2021b )
or more details: 

(i) A cent or A sat are the concentration-based secondary bias 
arameters for centrals and satellites, respecti vely. Also kno wn as
alaxy assembly bias parameters. A cent = 0 and A sat = 0 indicate
o concentration-based secondary bias in the centrals and satellites 
ccupation, respecti vely. A positi ve A indicates a preference for lower 
oncentration haloes, and vice versa. 

(ii) B cent or B sat are the environment-based secondary bias 
arameters for centrals and satellites, respectively. The environment 
s defined as the mass density within a r env = 5 h −1 Mpc tophat
f the halo centre, excluding the halo itself. B cent = 0 and B sat = 0
ndicate no environment-based secondary bias. A positive B indicates 
 preference for haloes in less dense environments, and vice versa. 

(iii) s is the satellite profile bias parameter, which modulates how 

he radial distribution of satellite galaxies within haloes deviate from 

he radial profile of the halo (potentially due to baryonic effects).
 = 0 indicates no radial bias, i.e. satellites are uniformly assigned
o halo particles. s > 0 indicates a more extended (less concentrated)
rofile of satellites relative to the halo, and vice versa. 

For this paper, we will add each of these extensions on to the
-parameter baseline HOD model and conduct fits on the data. 
e compare the fits to study whether any of these extensions are

a v oured. Ho we ver, we only test these extensions on the LRG sample.
hile similar extensions might also apply for QSOs, we lack the

ufficient sample size to meaningfully constrain such effects. 

.3 Redshift-space distortion 

aving generated the mock galaxy catalogues with each HOD 

rescription, we need to compute the 2PCF to compare to the data.
MNRAS 530, 947–965 (2024) 

https://github.com/abacusorg/abacusutils
https://abacusutils.readthedocs.io/en/latest/hod.html
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Figure 3. The projected autocorrelation function w p of the 1800 boxes after 
tuning vanilla HOD parameters to match the clustering of One-Percent Surv e y 
LRGs in 0.4 < z < 0.6. See Section 5 for details. 

t  

b  

t  

i  

c  

1  

F  

b  

e  

 

t  

a  

s  

c  

t
 

1  

ξ  

(  

t  

a  

a  

a  

w  

d
 

s  

f  

<  

s  

v  

a  

d  

c
 

r  

c  

t  

i  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/530/1/947/7643636 by EPF Lausanne user on 07 June 2024
o we ver, because the data is in redshift space, meaning the observed
oS positions of galaxies are shifted by their peculiar velocity divided
y the Hubble constant, we need to incorporate this effect in our
odel too. Thus, we impose RSD on the z-axis positions of the
ock galaxies by amount 

 redshift = Z real + 

v pec , Z (1 + z) 

H ( z) 
, (9) 

here Z real and Z redshift are the real and redshift-space z-axis positions
f the galaxies. v pec, Z is the galaxy peculiar velocity projected along
he z -axis. H ( z ) is the Hubble parameter at redshift z . The 1 + z

caling converts the coordinates into comoving units. 
Finally, we compute the model predicted ξ ( r p , r π ) directly from
ocks, assuming z-axis as the LoS direction. We use the grid-based

PCF calculator CORRFUNC (Sinha & Garrison 2020 ) for efficiency.

 L I K E L I H O O D  M O D E L  A N D  C OVA R I A N C E  

AT RIX  

o perform the subsequent optimizations and sampling of the HOD
arameters, we need to construct a likelihood function. In this
nalysis, we assume a simple Gaussian likelihood and utilize the
2 statistic: 

2 
ξ = ( ξmodel − ξdata ) 

T C 

−1 ( ξmodel − ξdata ) , (10) 

here the ξmodel is the model predicted ξ ( r p , π ) and ξ data is the DESI
easurement. C is the covariance matrix. 
We also include in the likelihood model an additional term related

o the mean number density of the sample, 

2 
n g 

= 

{ (
n mock −n data 

σn 

)2 
( n mock < n data ) 

0 ( n mock ≥ n data ) . 
(11) 

n is the uncertainty of the galaxy number density. The χ2 
n g 

is a half
ormal around the observed number density n data . When the mock
umber density is less than the data number density ( n mock < n data ),
e set the completeness to f ic = 1 and give a Gaussian-type penalty
n the difference between n mock and n data . When the mock number
ensity is higher than data number density ( n mock ≥ n data ), then we set
 ic = n data / n mock such that the mock galaxies catalogue is uniformly
ownsampled to match the data number density. In this case, we
mpose no penalty. This definition of χ2 

n g 
allows for incompleteness

n the observed galaxy sample while penalizing HOD models that
roduce insufficient galaxy number density. For the rest of this paper,
e assume σ n = 0.1 n data . 
Finally, the full χ2 is given by 

2 = χ2 
ξ + χ2 

n g 
. (12) 

To obtain the covariance matrix, one could divide the observed
ample into jackknife regions and compute the clustering in each
ssuming they are independent realizations. Ho we ver, gi ven the
nite size of the One-Percent Surv e y footprint and the relatively

arge number of bins in the ξ ( r p , r π ) statistic, the resulting jackknife
ovariances are noisy and close to singular. Instead, we opt to use the
800 500 h −1 Mpc boxes with varying phases in the ABACUSSUMMIT

uite to generate mock-based covariance matrices. Specifically, each
mall box shares the same particle resolution as the base boxes and
s 500 h −1 Mpc per side, which is sufficient for the scales we analyse.

First, we generate mocks on the 1800 boxes that produce the
ame clustering as that measured in data. Specifically, we take a
aseline HOD model and fit the observed ξ ( r p , r π ) with just the
ackknife errors measured on the data, assuming all off-diagonal
NRAS 530, 947–965 (2024) 
erms in the covariance matrices are zero. We achieve good fits for
oth tracers and in all redshift bins. We do not present the values of
his fit to a v oid confusion with the final ‘full covariance’ fit presented
n Table 3 , but the parameter values are consistent with the ‘full
ovariance’ fits. We then take the best-fitting HOD and populate the
800 covariance boxes, from which compute the covariance matrices.
inally, we renormalize the covariance matrix by keeping the mock-
ased correlation matrix and using the data-based jackknife diagonal
rrors to convert the correlation matrix to the final covariance matrix.

Fig. 3 serves as a visualization of the 1800 realizations after tuning
o match the observed ξ ( r p , r π ), where we overlay the projected
utocorrelation functions of the 1800 boxes on the observation. We
ee that the mock realizations do well in producing the observed
lustering, and the spread in the mock clustering is consistent in
rend with the data jackknife errorbars. 

Fig. 4 shows the resulting correlation matrix computed from the
800 mocks for the LRG ξ ( r p , r π ) in 0.4 < z < 0.6. The 2D bins of
( r p , r π ) are collapsed in this representation as a column-wise stack
the bin number is strictly increasing in r p and periodic in r π ). We see
hat the off-diagonal terms are determined with high signal-to-noise,
 result of the large number of realizations and the large volume
vailable with the 1800 boxes. The large-scale bins are correlated
s they become sample variance dominated by large-scale structure,
hereas the small-scale bins are largely independent, as they are
ominated by the shot noise of galaxy occupation. 
We similarly generate mock covariance matrices for the LRG

ample in 0.6 < z < 0.8 and the QSO sample. We omit those plots
or brevity. The covariance matrix for the LRG sample in 0.6 < z

 0.8 share essentially the same structure as the lower redshift LRG
ample, with shot noise dominating the smallest scales and sample
ariance becoming significant at larger scales. For QSOs, all scales
re dominated by shot noise and the covariance matrix is essentially
iagonal. Throughout the rest of this paper, we use these set of mock
ovariance matrices for model comparison and posterior sampling. 

Having defined the likelihood function, we use optimization
outines and posterior samplers to e v aluate the best-fits and posterior
onstraints, respectively . Finally , we note that a correction term
o the likelihood is applied to correct for the finite number of
ndependent realizations used to calculate the covariance matrix
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Figure 4. The correlation matrix of One-Percent Surv e y LRG ξ ( r p , r π ) in 0.4 
< z < 0.6, generated from the 1800 boxes after tuning to match the observed 
clustering. The 2D bins of ξ ( r p , r π ) are collapsed in this representation as a 
column-wise stack (the bin number is strictly increasing in r p and periodic in 
r π ). 
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Figure 5. The One-Percent Surv e y LRG ξ ( r p , r π ) in 0.4 < z < 0.6. r p and r π
denote the transverse and LoS separation of the galaxies in comoving units. 
For this analysis, we only utilize the transverse scales 0.15–32 h −1 Mpc. The 
white section corresponds to ne gativ e values, which do not show up on the 
log scale. 

Table 1. Comparing LRG HOD model extensions in both redshift bins. The 
baseline model refers to the standard vanilla 5-parameter model plus velocity 
bias and incompleteness. A refers to galaxy assembly bias parametrized in 
terms of halo concentration. B refers to galaxy assembly bias parametrized in 
terms of the local environment. s refers to 1-halo satellite profile modulations. 
The AIC scores suggest that none of the extended models are preferred o v er 
the baseline model. More details of the best-fits are given in Table 3 . 

LRG 0.4 < z < 0.6 0.6 < z < 0.8 

Model χ2 /d.o.f. AIC χ2 /d.o.f. AIC 

Baseline 1.03 130 0.99 125 
Baseline + A 1.05 133 0.98 125 
Baseline + B 1.05 133 0.99 126 
Baseline + s 1.06 131 1.01 126 
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Hartlap, Simon & Schneider 2007 ). Due to a large number of mock
ealizations ( ∼1800), the correction factor is small but not negligible 
 ∼ 6 per cent ). 

 L R G  H O D  RESULTS  

n this section, we present the results of the One-Percent Surv e y LRG
OD analysis by deriving the HOD best fits, testing possible model 

xtensions, and presenting the posterior constraints. 

.1 LRG at z < 0.8 

e first examine the LRG main sample at z < 0.8, where the number
ensity remains relatively constant. This is also the LRG sample that 
ill be used for DESI Y1 fiducial cosmology analyses. We analyse 

his sample in two separate redshift bins: 0.4 < z < 0.6 and 0.6 <
 < 0.8, using the z = 0.5 and z = 0.8 snapshots, respectively. We
arget the ξ ( r p , r π ) + n ( z) data vector in each bin and incorporate the
ull covariance matrix built on mocks. Fig. 5 shows the LRG ξ ( r p ,
 π ) data vector in 0.4 < z < 0.6. We omit the visualizations for the
ther redshift bin for brevity. We only utilize the transverse scales 
.15–32 h −1 Mpc and LoS separation from 0 to 32 h −1 Mpc. 
We first test for potential extensions to the 8-parameter baseline 

OD model (5-parameter vanilla HOD plus velocity bias plus 
ncompleteness). Specifically, we run optimizations with extended 
odels that include either galaxy assembly bias or satellite radial 

rofile parameter in addition to the baseline parameters. We use 
 global optimization routine called Covariance matrix adaptation 
volution strategy (CMA-ES) with 400 random w alk ers. We compute 
he model Akaike Information Criterion (AIC) scores from the best- 
tting χ2 and summarize the results in Table 1 . The AIC scores
ssentially calculates the best-fit χ2 but compensating for the number 
f parameters. Models with lower AIC scores are preferred by the 
ata, and a 	 AIC = 1 roughly corresponds to 1 σ significance. 
Our tests show no evidence for either fla v ours of galaxy assembly

ias or a satellite radial profile parameter. We conclude that the 
urrent data vectors fa v our the baseline model, and we will conduct
he rest of this analysis with just the baseline HOD model. Ho we ver,
uan et al. ( 2021b ) found significant evidence for galaxy assembly
ias in a similar HOD analysis of BOSS CMASS LRGs. This
iscrepancy is explained by the significantly larger sample size in 
MASS ( ∼600 000). The factor 10 decrease in sample size translates

o a factor 3 increase in statistical error, which in turn downgrades an
ssembly bias signal as detected in Yuan et al. ( 2021b ) to less than
 σ significance. 
Next, we obtain the parameter posteriors for the baseline model in

ach redshift bin. To sample the HOD posterior, we use the efficient
YNESTY nested sampler (Speagle & Barbary 2018 ; Speagle 2020 ).
gain, we use ξ ( r p , r π ) as our primary data vector in each redshift bin

nd include the full covariance matrix in the likelihood e v aluation.
e incorporate broad multi v ariate Gaussian priors as quoted in
 able 2 . W e specifically test our choice of Gaussian priors will not
ignificantly bias our main results (see Appendix B for details). We
lso impose bounds to limit the range explored by the sampler (also
ocumented in Table 2 ). The resulting marginalized posteriors are 
resented in Fig. 6 and summarized in Table 3 . We visualize the
orresponding HOD posteriors in Fig. 7 , where the shaded bands
enote the 1 σ and 2 σ constraints (68 and 95 per cent intervals). 
MNRAS 530, 947–965 (2024) 
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M

Table 2. Priors used for LRG and QSO HOD fits. We use broad Gaussian 
priors on all parameters. We also quote the bounds we impose in addition to 
the Gaussian priors. Units of mass are in h −1 M �. 

Params LRG QSO 

Prior Bounds Prior Bounds 

log M cut N (13 . 0 , 1 . 0) [12,13.8] N (12 . 7 , 1) [11.2, 14.0] 
log M 1 N (14 . 0 , 1 . 0) [12.5,15.5] N (15 . 0 , 1) [12.0, 16.0] 
σ N (0 . 5 , 0 . 5) [0.0,3.0] N (0 . 5 , 0 . 5) [0.0, 3.0] 
α N (1 . 0 , 0 . 5) [0.0,2.0] N (1 . 0 , 0 . 5) [0.3, 2.0] 
κ N (0 . 5 , 0 . 5) [0.0,10.0] N (0 . 5 , 0 . 5) [0.3, 3.0] 
αc N (0 . 4 , 0 . 4) [0.0, 1.0] N (1 . 5 , 1 . 0) [0.0, 2.0] 
αs N (0 . 8 , 0 . 4) [0.0, 2.0] N (0 . 2 , 1 . 0) [0.0, 2.0] 
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Fig. 6 sho ws se v eral interesting de generacies. Perhaps the most
rominent de generac y is between parameter log M cut and σ . Both
arameters control the occupation distribution of the centrals, which
or LRGs translates to controlling the clustering amplitude of the
-halo term on large scales. log M cut controls the mass scale whereas
controls the slope of the N cent turn-on. Thus, it makes sense that

he two are somewhat degenerate as either a slower turn on (larger σ )
r a lower mass scale would decrease the mean bias of the sample. 
Similarly, we see a de generac y between the completeness pa-

ameter f ic and the central occupation parameters log M cut and σ .
his is due to the constraints on the average density of the galaxy
ample. Lower typical halo masses for the galaxies would mean a
ower completeness. There is also an interesting de generac y between
og M cut and log M 1 , which has been previously discussed in Avila
t al. ( 2020 ). This is interesting because log M 1 controls the halo
ass of the satellite galaxies. Thus, a de generac y between these two

arameters suggests a strong constraint on the satellite fraction, and
y extension a strong constraint on the relative amplitude of the
-halo clustering and 2-halo clustering. 
The inferred satellite fraction is 11 ± 1 per cent for LRGs in 0.4
 z < 0.6 and 14 ± 1 per cent in 0.6 < z < 0.8, consistent with 11

er cent inferred for the CMASS sample in 0.45 < z < 0.6 (Yuan et al.
021b ) and 13 ± 3 per cent inferred with eBOSS LRGs between 0.6
 z < 0.9 (Zhai et al. 2017 ). 5 The mean halo mass of the LRGs

s strongly constrained. We find log 10 M h = 13 . 40 + 0 . 02 
−0 . 02 for 0.4 < z

 0.6 and log 10 M h = 13 . 24 + 0 . 02 
−0 . 02 for 0.6 < z < 0.8. In comparison,

uan et al. ( 2021a ) found log 10 M h = 13 . 60 for the CMASS sample,
nd Zhai et al. ( 2017 ) found log 10 M h = 13 . 4 for the higher redshift
BOSS sample. Both values are higher than the average halo mass
nferred for DESI One-Percent Surv e y LRGs. This is expected as the
ESI sample is fainter and higher number density, thus occupying

ess massive haloes. Our results also compare well with earlier results
rom CMASS DR10, which reported a 9–10 per cent satellite fraction
or a red luminosity-limited sample with half the DESI density (Guo
t al. 2014 ). The difference in average halo mass between the two
edshift bins can simply be attributed to halo growth at fixed density.

The linear bias factor is also calculated in our study by comparing
he real-space clustering amplitudes of galaxies with predictions
ade by the linear theory, specifically 

 lin = ( ξgal /ξlin ) 
1 / 2 , (13) 

here ξ gal denotes the real-space two-point correlation functions of
alaxies, and ξ lin denotes the theoretical linear matter correlation
unction at the mean redshift in the respective redshift bin. We
NRAS 530, 947–965 (2024) 

 We clarify that the reported satellite fraction refers to the fraction of LRGs 
hat are satellites. We are not making statements about intrinsic halo richness. 

f  

w  

d  

t  
ompute correlation function using 40 linear bins from 40 to 80
 

−1 Mpc. ξ lin is measured with CLASS (Lesgourgues 2011 ). For
ach sample of the MCMC chain, ξ gal is measured through the
eneration of a real-space mock, based on the corresponding HOD
arameters. b lin is then calculated by performing a constant fitting
cross all 40 bins, under the assumption of uniform weighting. This
rocess renders b lin a derived parameter of the full posterior, which
e summarize with mean and standard deviation. The LRG linear
ias is 1.88 ± 0.03 in the redshift range of 0.4 < z < 0.6 and
.06 ± 0.02 for LRGs in 0.6 < z < 0.8. We present a more detailed
escription of redshift evolution in Section 6.3 . 
The velocity bias constraints are also mostly consistent with BOSS

nd eBOSS studies. For the 0.4 < z < 0.6 bin, we find significant
entral velocity bias at 33 + 5 

−7 per cent , indicating that the peculiar
elocity of the central galaxies relative to the central subhaloes
re approximately 30 per cent of the halo velocity dispersion. This
s qualitatively consistent with previous studies that also found
ignificant central velocity bias, but somewhat larger in amplitude
han the CMASS constraints at 22 ± 2 per cent (Guo et al. 2015a ;
uan et al. 2022b ). We also find ne gativ e satellite v elocity bias
0 ± 7 per cent , indicating that the velocity dispersion of satellite
alaxies within haloes are 20 per cent less than that of the halo
articles at the same radii. This is consistent with Guo et al. ( 2015a ),
ho found 86 per cent in CMASS, whereas Yuan et al. ( 2022b ) found

ess significant velocity bias at 98 per cent. In the higher redshift
in 0.6 < z < 0.8, we find a central velocity bias of 19 + 6 

−9 per cent
nd a satellite velocity bias 95 + 7 

−6 per cent . We do not have eBOSS
onstraints to compare against, but we can check with simulated
ESI samples presented in Yuan et al. ( 2022b ), where we applied
ESI photometric selection to ILLUSTRISTNG galaxies (Nelson et al.
018 ; Pillepich et al. 2018 ; Springel et al. 2018 ). There, we found
hat the mock DESI LRG sample at z = 0.8 has a velocity bias of
c = 0.14 and αs = 0.92, consistent with our constraints here. 
We also run the equi v alent analyses on the projected 2PCF w p ,

here we follow the same procedure as for ξ ( r p , r π ), but we exclude
he two velocity bias parameters from the HOD model. We also
mploy a tabulation scheme to accelerate the HOD forward model
alculation for these w p fits (details in Appendix A ). We include the
 p marginalized constraints in Table 3 . Ho we ver, for bre vity, we skip

heir visualization. Comparing the marginalized posteriors in Table 3 ,
he w p results are consistent with the ξ ( r p , r π ) results. In terms of
nferred quantities, the two data vectors also yield mostly consistent
esults. The only minor discrepancy between the two fits is that the
 p fits fa v our larger M cut and M 1 parameters, and as a result a larger

 ic . Ho we ver, this is compensated by differences in the σ constraints,
esulting in essentially identical mean halo mass constraints. In other
ords, both data vectors place strong constraints on the mean halo
ass of the galaxies, but neither breaks the M cut versus σ degeneracy

nd fa v our slightly different loci along this de generac y. 
Comparing the posterior means in the two redshift bins, we see

everal interesting trends. The average halo mass of the LRG sample
ncreases o v er time. It is e xpected giv en that haloes accrete mass o v er
ime, and a fixed density sample at lower redshift w ould occup y the

ore massive haloes. The satellite fraction also decreases over time.
his trend is not as significant but might be interpreted as a result
f galaxy mergers. We discuss redshift evolution in more detail in
ection 6.3 . 
Finally, Fig. 8 showcases the predicted distribution of the 2PCF

rom the ξ ( r p , r π ) posteriors. For this visualization, we choose the
 p + ξ 0 + ξ 2 projections of the redshift-space 2PCF because it is
ifficult to visualize comparisons of the 2D ξ ( r p , r π ) function. w p is
he projected 2PCF, whereas ξ 0, 2 are the monopole and quadruple
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Figure 6. The DESI One-Percent Surv e y LRG HOD posterior. The red and blue contours correspond to the marginalized posteriors for LRGs in the 0.4 < z 

< 0.6 and 0.6 < z < 0.8 bins, respectively. We are showing only the 1 σ and 2 σ contours for clarity. The fact that the blue contours are smaller than the red 
contours is simply due to the larger sample size in the 0.6 < z < 0.8 bin (sample number density, larger volume). The offset between the contours may suggest 
mild evolution effects.. 
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oments of the redshift-space 2PCF. The blue curves represent the 
ne-Percent Surv e y measurements, with jackknife errorbars. The 
range shaded regions denote the 1 σ and 2 σ posterior constraints. 
he solid orange line showcases the posterior mean. Again, we see 

hat the best-fitting models are consistent with the observed clustering 
ell in both redshift bins. Ho we ver, in the w p comparisons, the
odel predicts a larger amplitude than the data at the 1-halo and

-halo transition regime ( r p ∼ 1 h −1 Mpc) in both redshift bins. This
s not a significant discrepancy with the current sample size but 
otentially points to limitations of halo boundary definitions and 
ossibly environment-dependent galaxy occupation. 
.2 LRG at z > 0.8 

s shown in Fig. 1 , the number density of the LRG main sample
xperiences a significant decline beyond a redshift of 0.8, indicating 
 marked change in the properties of this population due to the
mposed colour selection. To further investigate the HOD and shed 
ight on the evolution of the LRG sample in this redshift range, we
ubdivide the high-redshift LRGs into two redshift intervals, 0.8 < z 

 0.95 and 0.95 < z < 1.1. We use the z = 0.8 and z = 1.1 snapshots
nd employ the Zheng07 + f ic model to fit w p + n z data vector using
he tabulation method for this aspect of the analysis. 
MNRAS 530, 947–965 (2024) 
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Table 3. LRG and QSO marginalized posteriors, with different models and different measurements. The error bars are 
1 σ uncertainties. We also display se veral deri ved parameters, specifically the marginalized satellite fraction f sat , the sample 
completeness f ic , the average halo mass per galaxy log M h , and the linear bias b lin . Units of mass are given in h −1 M �. 

Tracer LRG 0.4 < z < 0.6 LRG 0.6 < z < 0.8 QSO 0.8 < z < 2.1 

Model Zheng07 + f ic Zheng07 + f ic Zheng07 + f ic Zheng07 + f ic Zheng07 + f ic Zheng07 + f ic 
+ αc + αs + αc + αs + αc + αs 

Data w p + n z ξ ( r p , r π ) + n z w p + n z ξ ( r p , r π ) + n z w p + n z ξ ( r p , r π ) + n z 

log M cut 12.89 + 0 . 11 
−0 . 09 12.79 + 0 . 15 

−0 . 07 12.78 + 0 . 10 
−0 . 08 12.64 + 0 . 17 

−0 . 05 12.67 + 0 . 71 
−0 . 36 12.2 + 0 . 6 −0 . 1 

log M 1 14.08 + 0 . 10 
−0 . 10 13.88 + 0 . 11 

−0 . 11 13.94 + 0 . 14 
−0 . 11 13.71 + 0 . 07 

−0 . 07 15.00 + 0 . 62 
−0 . 64 14.7 + 0 . 6 −0 . 6 

σ 0.19 + 0 . 12 
−0 . 12 0.21 + 0 . 11 

−0 . 10 0.17 + 0 . 10 
−0 . 11 0.09 + 0 . 09 

−0 . 05 0.42 + 0 . 26 
−0 . 25 0.12 + 0 . 28 

−0 . 06 

α 1.20 + 0 . 15 
−0 . 19 1.07 + 0 . 13 

−0 . 16 1.07 + 0 . 16 
−0 . 21 1.18 + 0 . 08 

−0 . 13 1.09 + 0 . 43 
−0 . 37 0.8 + 0 . 4 −0 . 2 

κ 0.65 + 0 . 45 
−0 . 39 1.4 + 0 . 6 −0 . 5 0.55 + 0 . 42 

−0 . 34 0.6 + 0 . 4 −0 . 2 0.74 + 0 . 41 
−0 . 29 0.6 + 0 . 8 −0 . 2 

αc – 0.33 + 0 . 05 
−0 . 07 – 0.19 + 0 . 06 

−0 . 09 – 1.54 + 0 . 17 
−0 . 08 

αs – 0.80 + 0 . 07 
−0 . 07 – 0.95 + 0 . 07 

−0 . 06 – 0.6 + 0 . 6 −0 . 3 

f ic 0.92 + 0 . 08 
−0 . 17 0.70 + 0 . 15 

−0 . 09 0.89 + 0 . 11 
−0 . 14 0.62 + 0 . 07 

−0 . 06 0.041 + 0 . 066 
−0 . 016 0.019 + 0 . 029 

−0 . 004 

f sat 0.089 + 0 . 013 
−0 . 010 0.106 + 0 . 011 

−0 . 012 0.104 + 0 . 013 
−0 . 010 0.136 + 0 . 011 

−0 . 010 0.05 + 0 . 26 
−0 . 05 0.03 + 0 . 08 

−0 . 02 

log M h 13.42 + 0 . 02 
−0 . 02 13.40 + 0 . 02 

−0 . 02 13.26 + 0 . 02 
−0 . 02 13.24 + 0 . 02 

−0 . 02 12.84 + 0 . 14 
−0 . 08 12.65 + 0 . 09 

−0 . 04 

b lin 1 . 94 + 0 . 04 
−0 . 04 1 . 88 + 0 . 03 

−0 . 03 2 . 11 + 0 . 03 
−0 . 04 2 . 06 + 0 . 02 

−0 . 02 2 . 50 + 0 . 22 
−0 . 10 2 . 31 + 0 . 06 

−0 . 05 

χ2 /d.o.f 4.5/(14-5) 108/(112-7) 19.6/(14-5) 104/(112-7) 16.0/(14-5) 101/(112-7) 

Figure 7. The LRG HOD best fit the posterior. The shaded regions correspond to 1 σ and 2 σ posteriors (68 and 95 per cent intervals centred around the median 
prediction). The horizontal dotted line denotes N gal = 1. 
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Fig. 9 shows the 1 σ and 2 σ confidence level contours for the HOD
arameters. Due to the higher number density, the fit from the lower
edshift interval displays a much tighter constraint as compared to the
igher redshift interval, as anticipated. We find similar degeneracies
etween log M cut and σ , log M cut and log M 1 as LRGs at z < 0.8.
he 1D distribution depicts a change in the mean value of each
arameter in the Zheng07 model as the redshift increases. This trend
s consistent with the comparison of the 0.4 < z < 0.6 and 0.6 <
 < 0.8 bins in Fig. 6 . The most notable difference is observed in
he incompleteness parameter f ic . As f ic can ef fecti vely control the
umber density of the mock galaxies, it decreases significantly as the
umber density of the sample decreases, indicating a drastic increase
n incompleteness. 
NRAS 530, 947–965 (2024) 
The results of our analysis provide a compelling reason for
onducting a detailed study of the HOD of high-redshift LRGs.
s shown in Fig. 10 , the 1 σ and 2 σ uncertainty bands of the HOD

unction for the high-redshift LRG sample have a minimal o v erlap for
he range 12.8 < log M halo < 14.2, indicating a significant difference
n the HOD between the two redshift intervals. Furthermore, Table 4
ummarizes the marginalized statistics for the high-redshift LRG
ain sample, which show differences in the mean completeness

 ic (from 92 to 19 per cent), the satellite fraction f sat (from 11.0 to
5.1 per cent), mean halo mass log 10 M h (from 13.29 to 13.00) and
inear bias b lin (from 2.31 to 2.13). These results indicate that the
OD of the high-redshift LRG main sample evolves with redshift,

nd that DESI LRGs at z > 0.95 might have be a physically different
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(a) LRG 0.4 0.6

(b) LRG 0.6 0.8

Figure 8. The LRG w p and multipoles posterior predicatives compared to the data. The blue lines correspond to the One-Percent Surv e y measurement with 
jack-knife error bars. The solid orange line denotes the posterior mean. The orange shaded regions correspond to the 1 σ and 2 σ full posterior using the full 
mock covariance matrix. 
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ample than the lower redshift LRG sample. We describe several 
ossible explanations in the following subsection. 

.3 Redshift evolution of DESI LRG HOD 

he evolution of HOD and derived parameters of LRGs across all 
edshift bins are shown in Fig. 11 . We only use data vector w p +
 ( z) in this part of the analysis for consistency. The central galaxy
ost halo mass threshold ( M cut ) does not exhibit any significant trend
ith redshift within the uncertainties. The scatter in the halo mass

hreshold ( σ ) tends to increase with increasing redshift, indicating 
 smoother transition in the central HOD on high redshift. In terms
f satellite parameters, both M 1 and α show a declining trend with 
edshift, while κ shows little variation with redshift and is weakly 
onstrained by the data. 

The satellite fraction ( f sat ) shows a mild trend of increasing with
edshift at z < 0.95, rising from f sat � 9 per cent at z � 0.5 to
 sat � 11 per cent at z � 0.9. This increase in satellite fraction can
e interpreted as a result of the merging of galaxies o v er time. At z
 0.95, the satellite fraction increases substantially to 15 per cent, 

ut the significance is low. 
The mean halo mass does not exhibit a clear trend except at z >

.95, where the mean halo mass drops off substantially. A similar
ehaviour is seen for the galaxy bias, which increases with redshift
t z < 0.95 (consistent with studies of DESI-like photometric LRGs
n Zhou et al. 2020 ) but drops off at z > 0.95. Furthermore, the
ighest redshift bin also exhibits a drastic drop in completeness. 
hese comparisons serve as strong evidence that that the LRG sample 
t z > 0.95 is physically different from the LRGs at z < 0.95. 

Zhou et al. ( 2023 ) showed that the DESI LRG selection should
ield a highly stellar mass complete sample at log 10 M ∗ > 11.5
etween redshift 0.4 < z < 0.9. At z > 0.9 the completeness at
he high mass end starts to deviate from 1 and drops further at z >
. This point is confirmed by explicitly computing the stellar mass
unctions of DESI SV3 LRGs via SED fitting in Gao et al. ( 2023 ),
here a substantial incompleteness at log 10 M ∗ > 11.5 is observed at
 > 1. This incompleteness at the high-mass end can partially explain
he drop in the inferred bias and halo mass in the highest redshift bin.

Another potential contributing effect is that the DESI LRG 

election employs a sliding colour–magnitude cut in r − W 1 versus
 1 that turns o v er at W 1 = ∼ − 19 to include more galaxies at the

igh redshift end (see fig. 3 of Zhou et al. ( 2023 )). Ho we ver, this turn
 v er also includes red galaxies with very faint W 1 magnitudes into
he LRG sample, thus possibly decreasing the mean halo mass and
ean galaxy bias. 
Separately, Setton et al. ( 2023 ) inferred star formation histories

rom DESI SV1 LRG SEDs and found evidence that recently 
uenched (post-starburst) galaxies constitute a growing fraction of 
he massive galaxy population with increasing redshift. The study 
howed that these galaxies are significantly brighter than the parent 
RG sample at fixed stellar mass. Thus, at fixed brightness, these
alaxies likely have lower halo masses and lower biases compared 
o the parent LRG sample. If these galaxies are indeed a significant
raction of high redshift LRGs, then they would contribute to the
rop in the mean halo mass and bias. This could also explain the
MNRAS 530, 947–965 (2024) 
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Figure 9. The DESI One-Percent Surv e y LRG at z > 0.8 HOD posterior. The results from 0.8 < z < 0.95 and 0.95 < z < 1.1 are shown in red and blue, 
respectively. The contours represent 68 and 95 per cent confidence levels. 1D marginalized distribution for each parameter is shown at the top of each column. 
Note that the axes do not share the same range as Fig. 6 . These contours are also not directly comparable to those in Fig. 6 as we are using a simpler model and 
a more limited data vector for this high redshift sample. The same note applies to Fig. 10 . 
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elative high satellite fraction as recently accreted satellites are also
ikely to have been recently quenched. 

An important caveat to consider in the interpretation of the mean
alo masses relates to the use of fixed redshift snapshots in this
nalysis. To obtain an unbiased HOD parameter estimation, the mean
edshift of the redshift bin must remain close to the snapshot redshift.
o we ver, the choice of snapshots is limited to several primary

edshifts provided by the ABACUSSUMMIT simulation. For instance,
e use the snapshot at z = 0.8 for both 0.6 < z < 0.8 and 0.8
 z < 0.95 redshift bins, resulting in mean sample redshifts that

re lower and higher than the snapshot redshift, respectively. As a
esult, the mean halo mass has been o v erestimated for 0.8 < z <

.95 and underestimated for 0.6 < z < 0.8. This effect is particularly
ronounced for the 0.95 < z < 1.1 redshift bin, as the drop in number
NRAS 530, 947–965 (2024) 
ensity results in a more significant bias of the mean sample redshift
rom the snapshot redshift of z = 1.1. Mitigating this effect could, to
ome e xtent, resolv e the non-monotonic shape in the mean halo mass
 volution. Ne vertheless, we maintain that this effect does not fully
xplains the drop in halo mass in the highest redshift bin because
he drop in linear bias is agnostic to simulation snapshots as the
nderlying clustering amplitude is computed at the mean redshift of
he sample instead of the simulation snapshot. 

This systematic highlights the need for future redshift evolution
tudies to use more accurate redshifts. The shift in the mean value
f HOD and derived parameters also provide a strong scientific
ncentive to conduct a detailed study of LRGs using the halo
ight-cone catalogues in combination with a redshift-evolved HOD

odel. 
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Figure 10. The HOD posterior band (central + satellite) of LRG sample at 
z > 0.8. The results from 0.8 < z < 0.95 and 0.95 < z < 1.1 are shown 
in red and blue, respectively. The shaded regions correspond to 1 σ and 2 σ
posteriors. 

Table 4. The results for the fits to high-z LRG sample with two redshift bin: 
0.8 < z < 0.95 and 0.95 < z < 1.1. We show the mean ±1 σ error for HOD 

and derived parameters. We also list the average comoving number density 
in units of 10 −4 ( h −1 Mpc) −3 . Masses are in units of h −1 M �. 

Params LRG 0.8 < z < 1.1 
0.8 < z < 0.95 0.95 < z < 1.1 

log M cut 12.89 + 0 . 12 
−0 . 13 12.68 + 0 . 38 

−0 . 26 

log M 1 13.96 + 0 . 15 
−0 . 14 13.60 + 0 . 47 

−0 . 29 

σ 0.26 + 0 . 09 
−0 . 13 0.37 + 0 . 18 

−0 . 20 

α 0.91 + 0 . 18 
−0 . 22 0.72 + 0 . 31 

−0 . 34 

κ 0.74 + 0 . 46 
−0 . 42 0.51 + 0 . 43 

−0 . 33 

f ic 0.92 + 0 . 08 
−0 . 18 0.19 + 0 . 14 

−0 . 07 

f sat 0.110 + 0 . 016 
−0 . 012 0.151 + 0 . 048 

−0 . 041 

log 10 M h 13.29 + 0 . 02 
−0 . 02 13.00 + 0 . 03 

−0 . 03 

b lin 2 . 31 + 0 . 04 
−0 . 04 2 . 13 + 0 . 05 

−0 . 05 

n z 4.56 1.84 
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 QSO  H O D  RESULTS  

e analyse the QSO sample following the same procedure. First, 
e construct the mock-based covariance matrix by fitting a baseline 
OD on the QSO ξ ( r p , r π ) measurement. Ho we ver, we find that
irectly fitting ξ ( r p , r π ) returns poor fits because the QSO ξ ( r p , r π )
easurement below r p ∼ 1 h −1 Mpc have particularly low signal-to- 

oise, and the corresponding jackknife errors do not behave properly. 
nstead, we fit just the projected w p with the 5-parameter + in-
ompleteness model, where we do achieve a good fit. Then we 
ndependently tune the two velocity bias parameters to match the 
( r p , r π ) signal at r p > 1 h −1 Mpc. We again obtain a good fit. With

hat, we populate the 1800 small boxes and generate a mock-based 
ovariance matrix for QSO ξ ( r p , r π ). 

Again, we sample the baseline HOD parameter to obtain marginal- 
zed posteriors for the QSO HOD. The results are visualized in Fig.
2 and summarized towards the bottom of Table 3 . Fig. 14 shows the
orresponding HOD posterior. In general, the QSO HOD parameters 
re much less constrained than the LRG parameters due to the limited
ample size. For the same reason, we also do not test additional model
xtensions as we already achieve an excellent best-fitting χ2 with the 
aseline model. We will conduct such tests when a significantly larger 
ample of QSOs become available. We also showcase the w p -only
onstraints in Table 3 , and we find them to be consistent with the
( r p , r π ) constraints. 
The HOD constraints compare well with those inferred for eBOSS 

SOs as presented in table 1 of Alam et al. ( 2020 ). Specifically,
hey found log M cut = 12.2 and log M 1 = 14.1, consistent with our
ndings. Perhaps the most unexpected parameter constraint is the 
entral velocity bias, where we find αc = 1 . 54 + 0 . 17 

−0 . 08 , meaning that
he central galaxies exhibit large peculiar velocities relative to the 
alo centre. There are several potential explanations for this. While 
ne possibility is that it points towards energetic processes within 
he AGN. We speculate that this may also be due to the rather
arge redshift uncertainties with the QSO sample (Yu et al. 2024 ).
hese redshift errors are made worse by the fact that QSO primary
pectral lines such as Mg II line to C IV suffer from large systematic
elocity shifts caused by astrophysical effects (e.g. Richards et al. 
002 , 2011 ; Zarrouk et al. 2018 ). Another potential explanation is
hat QSOs preferentially occupy recently merged haloes, resulting 
n large velocity dispersion relative to the halo centre-of-mass. In 
he following paragraph, we also show that uncertainties in satellite 
raction can also be degenerate with velocity bias. Thus, the large
elocity bias in the QSO sample could be due to redshift uncer-
ainties, AGN physics and mergers, and/or uncertainties in satellite 
raction. 

In terms of derived quantities, we infer a mean halo mass of
og 10 M h = 12 . 65 + 0 . 09 

−0 . 04 for the DESI QSO sample, consistent with
he log 10 M h = 12 . 7 found for the eBOSS QSO sample in both
odr ́ıguez-Torres et al. ( 2017 ) and Alam et al. ( 2020 ). We report
 linear bias of b lin = 2 . 31 + 0 . 06 

−0 . 05 at z � 1.5 for the DESI QSO sample,
hich is slightly lower than the first-year eBOSS quasar sample 
ith b lin = 2.45 ± 0.05 at z = 1.55, as found by Laurent et al.

 2017 ). Ho we ver, considering the error bar, the results are consistent.
e infer a satellite fraction of 3 + 8 

−2 per cent for the QSO sample,
onsistent with f sat = 5 per cent found in Rodr ́ıguez-Torres et al.
 2017 ) using a subhalo abundance matching model but significantly
ower than the 30 per cent inferred with a multitracer HOD fit in
lam et al. ( 2020 ). The large satellite fraction inferred in Alam

t al. ( 2020 ) is directly a result of a small inferred α = 0.4, which
esults in a large number of satellites in low mass haloes. Ho we ver,
e speculate that this result might in fact be degenerate with our
nding as most of these satellites in low mass haloes do not have
ompanion centrals due to the low completeness. These ‘rogue’ 
atellites are ill defined in the vanilla HOD context, and can simply
e re-classified as centrals. This could also be connected to the
arge central velocity bias we found, which could disappear if we
e-classify some centrals as satellites, which would naturally have 
arger velocity dispersion. Our results compare well with earlier 
DSS Quasar HOD fits. Shen et al. ( 2013 ) obtained a satellite
raction of 7–10 per cent and found the inferred satellite fraction
o be dependent on the assumed HOD model. Richardson et al.
 2012 ) obtained a lower satellite fraction of ∼ 0 . 1 per cent for z ∼
.4 quasars. 
These types of questions also show that the QSO–halo connection 

hysics is poorly understood. In fact, we use the standard 5-parameter
odel in this analysis simply because we have no evidence that
 different model is fa v oured. We reserve a more comprehensive
nalysis of QSO HOD for a future paper when a much larger sample
f QSOs becomes available. 
MNRAS 530, 947–965 (2024) 
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Figure 11. The marginalized results of HOD and derived parameters of LRG main sample for each redshift bin. Markers and error bars show the mean of the 
fits and 1 σ error. The numerical results of this plot are also listed in Tables 3 and 4 . 
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 M O C K  P ROD U CTS  

e apply the best-fitting HODs obtained for the LRG and QSO
amples to all 25 base boxes available in ABACUSSUMMIT at Planck
osmology to create high fidelity mocks. For each tracer at each
edshift snapshot, the total sample volume is 200 h −3 Gpc 3 comoving.
he volume provided by ABACUSSUMMIT is an order of magnitude

arger than other simulations of comparable resolution, reaching
–10 times the volume expected to be observed by DESI. Given
he volume and resolution, these mocks are critical for testing and
alibrating DESI cosmology pipelines at the necessary precision. 

In addition to using just the best-fitting HODs, we also create
dditional mocks where we perturb the HOD parameters around the
est fit to generate mocks that share the same cosmology but differ in
ias prescriptions. The perturbations are sampled from the 3 σ region
f the parameter space around the best-fitting values. We repeat this
rocedure for both the baseline HOD model and an extended HOD
odel that also includes environment-based assembly bias B and

atellite radial profile parameter s , resulting in a set of mocks that
ncompass a diverse range of possible HODs. 

These variety mocks enable key robustness tests of large-scale
osmology inference pipelines against galaxy–halo connection sys-
ematics. Specifically, large-scale cosmology pipelines that utilize
he BAO/RSD features or full-shape information often assume a
uch simpler bias model. As a result, complexities in galaxy–halo

onnection modeling could become degenerate with cosmology and
hus result in systematic bias in the inferred cosmology. Thus, it
s essential to test cosmology inference pipelines against a range of
ocks with varying bias models and demonstrate that the cosmology

nference remains unbiased. We defer a detailed discussion of these
ests to a dedicated paper (DESI Collaboration, in preparation). 

In addition to constructing cubic mocks, we utilize our best
ts to construct redshift-dependent mocks on the ABACUSSUM-
IT light-cones (Hadzhiyska et al. 2022b ). The benefit of hav-

ng mocks on the light-cone is that the y pro vide an accurate
ynthetic map of the sky, which is crucial for testing out sys-
ematic and observational effects such as fiber collisions. Light-
ones also enable explicit modeling of redshift evolution, such
s in the forward-modelling pipelines being developed for novel
ummary statistics (e.g. Hahn et al. 2022 ; Yuan, Hadzhiyska &
bel 2023 ). Our procedure for generating light-cone mocks is as

ollows: 
NRAS 530, 947–965 (2024) 

o  
(i) Adopting the ABACUSHOD algorithm, we first subsample
he halo light-cone catalogues assuming the same envelope as the
ubic boxes and pre-compute various assembly bias parameters and
ecorations to the HOD model. 
(ii) We read in the best-fitting parameters as we found in Section 6 .
e linearly interpolate the HOD parameters as a function of redshift,

ivoting on the two best-fits in the two redshift bins. 
(iii) Finally, we generate the galaxy mocks for all tracers/the

RGs at all available redshifts of the 25 fiducial cosmologies,
.e. AbacusSummit c000 ph000-024 . We note that due to the
eometry, each of our mocks provides an octant of the sky until z ≈
.8, decreasing gradually as we go to higher redshifts. 

All said mocks will be made publicly available at a future date as
 part of DESI EDR. 

 C O N C L U S I O N S  

n this paper, we present a comprehensive analysis of the HOD of
he DESI One-Percent Surv e y LRG and QSO samples using the

BACUSSUMMIT cubic boxes. 
For LRGs, we study the sample in two fiducial redshift bins 0.4
 z < 0.6, 0.6 < z < 0.8, which are the bins used for DESI Y1

osmology analyses. We also present analyses of LRGs at higher
edshift in 0.8 < z < 1.1, which constitutes a significant fraction
f the DESI LRG sample, but is not yet utilized for cosmology due
o significant evolution due to selection. In the two fiducial bins,
e compare the baseline HOD model with extended models with
alaxy assembly bias and satellite profile bias. We find no evidence
or model extensions at current precisions and the baseline model
s fa v oured by the data. For both redshift bins, we constrain the
aseline parameter posteriors with the ξ ( r p , r π ) data vector and mock-
ased covariance matrix. The resulting model posteriors produce
he correct redshift–space clustering. We find strong constraints on
nferred properties such as the average halo mass and the satellite
raction, which are broadly consistent with results from eBOSS and
OSS. We also find consistency between ξ ( r p , r π ) fit and w p -only fit.
he marginalized posterior constraints are summarized in Table 3 .
o highlight a few key constraints: the LRG sample in 0.4 < z < 0.6
ields a satellite fraction of 11 ± 1 per cent and a mean halo mass
f log 10 M h = 13 . 40 + 0 . 02 

−0 . 02 , whereas the 0.6 < z < 0.8 sample results
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Figure 12. The DESI One-Percent Surv e y QSO HOD posterior. The red contours correspond to the 1 σ and 2 σ marginalized posteriors for QSOs in the 0.8 < 

z < 2.1 bin. 

Figure 13. The QSO w p and multipoles posterior predictives compared to the data. The blue lines correspond to the One-Percent Surv e y measurement with 
jackknife error bars. The solid orange line denotes the prediction corresponding to the posterior mean. The orange shaded regions correspond to the 1 σ and 2 σ
full posterior using the full mock covariance matrix. 
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M

Figure 14. The HOD posterior for the QSO sample. The shaded regions 
correspond to 1 σ and 2 σ posteriors. 
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n a satellite fraction of 14 ± 1 per cent and a mean halo mass of
og 10 M h = 13 . 24 + 0 . 02 

−0 . 02 in 0.6 < z < 0.8. 
Combining the fiducial analysis at z < 0.8 and high redshift

nalysis at z > 0.8, we find clear trends of evolution, especially
n physical parameters like satellite fraction and mean halo mass.
pecifically, the mean halo mass decreases with redshift whereas

he satellite fraction increases with redshift. This moti v ates future
edshift evolution studies that should shed light on the physics of the
volution of massive galaxies. The marginalized posterior constraints
re summarized in T able 4 . W e also find the properties of the LRG
ample at z > 0.95 to deviate significantly from lower redshift LRG
ample. Specifically, the LRGs at z > 0.95 display significantly lower
ean halo mass, a very low completeness, a lower mean bias while

howing a somewhat high satellite fraction. We offer a few plausible
xplanations of these differences. 

The QSO sample is limited by sample size, and we are not able
o conduct meaningful comparisons between different HOD models.
e gardless, we deriv e good fits on the data and present posterior
onstraints. The marginalized posterior constraints are summarized
n Table 3 . We infer a satellite fraction of 3 + 8 

−2 per cent and a mean
alo mass of log 10 M h = 12 . 65 + 0 . 09 

−0 . 04 in redshift range 0.8 < z < 2.1.
he inferred mean halo mass is consistent with previous results, but

here is some discrepancy in the satellite fraction. We speculate that
uch discrepancy is model dependent and we intend to revisit of this
ssue when a significantly larger sample of QSOs become available.

Finally, we leverage our HOD fits to generate a large suite of
ESI-like mocks. We highlight mocks with varied HODs that test

he robustness of large-scale cosmology pipelines, and light-cone-
ased mocks that are important for building realism and testing
bservational systematics. 
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s.io/ en/latest/ . The ABACUSHOD code package is publicly available
s a part of the ABACUSUTILS package at ht tp://ht tps://github.com/a
acusorg/abacusutils . Example usage can be found at https://abac
sut ils.readthedocs.io/en/latest /hod.html . All mock products will be
ade available at https://data.desi.lbl.gov . 
The MCMC chains generated, along with the clustering measure-
ents used in this study – encompassing correlation functions and
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PPENDI X  A :  AC C E L E R AT I N G  H O D  FITTING  

I TH  TA BU LATI ON  M E T H O D  

n the standard procedure for fitting the HOD model, galaxy mock
opulations are generated for each set of HOD parameters that have
een sampled. The clustering statistic of interest is subsequently 
easured and compared to measurements obtained from the data in 

rder to estimate the likelihood. This procedure is repeated multiple 
imes for various HOD parameters until the posterior likelihood has 
een thoroughly explored. An alternative approach, known as the 
abulation method, was first proposed by Neistein et al. ( 2011 ) and
ater expanded upon by Zheng & Guo ( 2016 ). This method reverses
he order of applying the HOD model and measuring the clustering.
pecifically, the clustering of haloes is pre-computed prior to the 
arkov Chain Monte Carlo (MCMC) stage, and the HOD population 

cheme is subsequently applied by combining weights with the halo 
lustering. This approach significantly impro v es the efficiency of 
he HOD fitting process, as the most computationally intensive step 
s mo v ed outside of the MCMC loop. We summarize the tabulation
ethod for the ABACUSSUMMIT simulation below but refer the reader 

o Zhang et al. ( 2022 ) for more details. 
We take projected 2PCF w p here as an example and assume our

OD model only depend on the mass of the host halo. To match
he behaviour of ABACUSHOD , where we populate the satellite with
articles, we first divide the halo catalogue and particle catalogue 
ttached to the haloes into N b bins. Then the galaxy correlation
unction w p,gg is given by a weighted sum over different mass bin
ross-correlations. 

 p , gg ( r p ) = 

N b ∑ 

i,j 

w cent ( M i ) w cent ( M j ) w p , hh ( r p , M i , M j ) 

+ 2 
N b ∑ 

i,j 

w cent ( M i ) w sat ( M j ) w p , hp ( r p , M i , M j ) 

+ 

N b ∑ 

i,j 

w sat ( M i ) w sat ( M j ) w p , pp ( r p , M i , M j ) , (A1) 

here w p,hh ( r p , M i , M j ) is the two-point cross-correlation function of
MNRAS 530, 947–965 (2024) 

http://dx.doi.org/10.1093/mnras/stab2980
http://dx.doi.org/10.1093/mnras/stab3066
http://arxiv.org/abs/2211.00723
http://dx.doi.org/10.3847/1538-3881/accff8
http://dx.doi.org/10.1051/0004-6361:20066170
http://dx.doi.org/10.1093/mnras/stab1755
http://dx.doi.org/10.1093/mnras/stz2790
http://dx.doi.org/10.1103/PhysRevD.105.083517
http://dx.doi.org/10.1086/172900
http://dx.doi.org/10.1093/mnras/stz2124
http://dx.doi.org/10.1093/mnras/stab3111
http://arxiv.org/abs/1104.2932
http://arxiv.org/abs/1308.0847
http://dx.doi.org/10.3847/0004-637X/819/2/119
http://dx.doi.org/10.1051/0004-6361/202243711
http://dx.doi.org/doi.org/10.1093/mnras/stab2484
http://dx.doi.org/10.1093/mnras/stac1458
http://dx.doi.org/10.1093/mnras/staa2344
http://dx.doi.org/10.3847/1538-3881/aca5f9
http://dx.doi.org/10.1111/j.1365-2966.2011.19145.x
http://dx.doi.org/10.1093/mnras/stx3040
http://dx.doi.org/10.1093/mnras/sts314
http://dx.doi.org/10.1046/j.1365-8711.2000.03779.x
http://dx.doi.org/10.1093/mnras/stx3112
http://dx.doi.org/10.1051/0004-6361/201833910
http://arxiv.org/abs/2306.06315
http://dx.doi.org/10.3847/2515-5172/abc078
http://dx.doi.org/10.3847/1538-3881/acb213
http://dx.doi.org/10.1086/341167
http://dx.doi.org/10.1088/0004-6256/141/5/167
http://dx.doi.org/10.1088/0004-637X/755/1/30
http://dx.doi.org/10.1088/1475-7516/2023/10/016
http://dx.doi.org/10.1093/mnras/stw1014
http://dx.doi.org/10.1093/mnras/stx454
http://dx.doi.org/10.1093/mnras/staa3955
http://dx.doi.org/10.3847/2515-5172/abc25a
http://dx.doi.org/10.1007/s11433-022-1955-7
http://dx.doi.org/10.3847/1538-3881/ad0832
http://dx.doi.org/10.1086/318261
http://dx.doi.org/10.3847/2041-8213/acc9b5
http://dx.doi.org/10.1088/0004-637X/778/2/98
http://dx.doi.org/10.3847/1538-3881/ac9ab1
http://dx.doi.org/10.1093/mnras/stz3157
http://dx.doi.org/10.1093/mnras/staa2825
http://dx.doi.org/10.1093/mnras/staa278
http://dx.doi.org/10.1093/mnras/stx3304
http://dx.doi.org/10.1093/mnras/stac2465
http://dx.doi.org/10.1146/annurev-astro-081817-051756
http://dx.doi.org/10.1086/338765
http://dx.doi.org/10.1093/mnras/183.3.341
http://dx.doi.org/10.1086/319644
http://dx.doi.org/10.1093/mnras/stab100
http://dx.doi.org/10.1093/mnras/stab2464
http://dx.doi.org/10.3847/1538-4357/aa70e7
http://dx.doi.org/10.3847/2515-5172/abc0e9
http://dx.doi.org/10.1093/mnras/stad3559
http://dx.doi.org/10.1093/mnras/stab235
http://dx.doi.org/10.1093/mnras/stab3355
http://dx.doi.org/10.1093/mnras/stac830
http://dx.doi.org/10.1093/mnras/stad550
http://arxiv.org/abs/2310.09329)
http://dx.doi.org/10.1093/mnras/sty506
http://dx.doi.org/10.1088/0004-637X/736/1/59
http://dx.doi.org/10.3847/1538-4357/aa8eee
http://dx.doi.org/10.3847/1538-4357/acc65b
http://dx.doi.org/10.1093/mnras/stac2147
http://dx.doi.org/10.1093/mnras/stw523
http://dx.doi.org/10.1086/466510
http://dx.doi.org/10.1086/521074
http://dx.doi.org/10.3847/2515-5172/abc0f4
http://dx.doi.org/10.3847/1538-3881/aca5fb


964 S. Yuan et al. 

M

h  

p  

w

w

w

w  

b  

a  

s  

t  

o
 

i  

b  

t  

H  

v  

d  

t  

t  

u  

o

A

T  

t  

H  

t  

2  

o  

a
 

n
a  

d  

d  

l  

r  

t  

i  

p  

i

F
r
d

D
ow

nloaded from
 https://academ

ic.o
aloes in the i th and j th mass bins (similarly for the halo–article and
article–particle correlation functions) and naively we could take the
eight as 

 cent ( M i ) = n̄ cent ( M i ) , (A2) 

 sat ( M i ) = n̄ sat ( M i ) 
N 

i 
h 

N 

i 
p 

. (A3) 

here N 

i 
h and N 

i 
p are numbers of haloes and particles in i th mass

in. Equation ( A1 ) gives an average value of clustering expected for
 given HOD model instead of a specific realisation that includes
tochastic noise and further reduces the bias of HOD fitting. We also
est and confirm that the mean prediction is consistent with the output
f the standard ABACUSHOD approach. 
While the tabulation method can accelerate the fitting of HOD,

t also limits the flexibility of extending the HOD model. The
aseline HOD model relies solely on halo mass, making it easy
o prepare tabulated halo and particle pair counts across mass bins.
o we ver, when dealing with more complex HOD models that involve
elocity bias and assembly bias extensions, additional dimensions of
ependency can significantly increase the complexity of preparing
abulated halo and particle pair counts. Therefore, we only employ
he tabulation method to quickly e v aluate the HOD posterior when
NRAS 530, 947–965 (2024) 

igur e B1. Mar ginalized probability distribution of HOD parameters for LRG sam
esults using Gaussian prior and flat prior are shown in red and blue, respectively. T
istribution for each parameter is shown at the top of each column. 
sing the Zheng07 + f ic model to fit the w p + n z data v ector. F or all
ther cases, we use the standard ABACUSHOD approach. 

PPENDI X  B:  C H O I C E  O F  P R I O R  

he selection of priors for the HOD parameters can potentially impact
he inferred constraints. In order to eliminate extreme values of the
OD parameters and gain a more comprehensive understanding of

he Galaxy–Halo connection model, Gaussian priors shown in Table
 were applied to the HOD parameters in the primary analysis. In
rder to assess the potential impact of these priors on the results,
dditional MCMC analyses were conducted using only flat priors. 

In this test, we employ the Zheng07 + f ic model to fit w p +
 z of LRG at redshift 0.6 < z < 0.8. Fig. B1 illustrates the 1 σ
nd 2 σ confidence level contours for the HOD parameters when
ifferent priors are applied. It is clear that the fit with a Gaussian prior
isplays a tighter contour, particularly for the satellite parameters
og 10 M 1 , α, and κ . The Gaussian prior helps to eliminate isolated
egions in the contour, where the data have limited power to constrain
he parameters. The 1D distribution of each parameter in Fig. B1
ndicates that the Gaussian prior has a smaller impact on the central
arameters as compared to the satellite parameters and hardly any
mpact on incompleteness. 
ple at 0.6 < z < 0.8 with and without Gaussian priors listed in Table 2 . The 
he contours represent 68 and 95 per cent confidence levels. 1D marginalized 
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igure B2. 2 σ band of LRG sample HOD at 0.6 < z < 0.8 with and without
aussian prior. The red is the 95 per cent CL uncertainty from fit using
aussian priors, the blue is the 95 per cent CL uncertainty from fit using flat
riors. Lines are the corresponding best fit. 

Fig. B2 shows the 2 σ uncertainty band of HOD posterior and best
t for both cases. The two bands o v erlap heavily with each other.
he Gaussian prior fit has a slightly narrower band for log 10 M cut >

4.2, where the satellite parameters have a larger impact on the HOD.
dditionally, the Gaussian prior presents a smoother best fit than the 
at prior, which exhibits a distinct step on the lower mass end. As a
esult, our choice of Gaussian prior help remo v es non-physical HOD
ithout altering any of our main conclusions. 
Finally, we expect the difference from choices of priors to be 

urther reduced as we achieve tighter constraints with more precise 
easurements using larger samples in the future. 
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