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Integrating low-power wearable systems into routine health monitoring is an ongoing challenge. Recent advances in the computation
capabilities of wearables make it possible to target complex scenarios by exploiting multiple biosignals and using high-performance
algorithms, such as Deep Neural Networks (DNNs). However, there is a trade-off between the algorithms’ performance and the
low-power requirements of platforms with limited resources. Besides, physically larger and multi-biosignal-based wearables bring
significant discomfort to the patients. Consequently, reducing power consumption and discomfort is necessary for patients to use
wearable devices continuously during everyday life. To overcome these challenges, in the context of epileptic seizure detection, we
propose the M2SKD (Multi-to-Single Knowledge Distillation) approach targeting single-biosignal processing in wearable systems.
The starting point is to train a highly-accurate multi-biosignal DNN, then apply M2SKD to develop a single-biosignal DNN solution
for wearable systems that achieves an accuracy comparable to the original multi-biosignal DNN. To assess the practicality of our
approach to real-life scenarios, we perform a comprehensive simulation experiment analysis on several edge computing platforms.
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1 INTRODUCTION

Epilepsy is amongst the five most common chronic diseases, and according toWHO, it is the most common chronic brain
disease affecting more than 50 million people of all ages [1]. Besides suffering an associated stigma and discrimination,
epilepsy represents the second neurological cause of years of potential life loss. The most life-threatening effect of
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Fig. 1. Structure of our proposed M2SKD for wearable systems. Our student model requires only the ECG signal and can be applied
on low-power wearable platforms to perform epileptic seizure detection. In the student model, the patient employs just one sensor,
which is comfortable, causes no social stigma, and achieves the detection accuracy of the more complex teacher model.

seizure attacks is Sudden Unexpected Death from Epilepsy (SUDEP) [2]. To reduce the aforementioned effects of such
attacks, we must continuously monitor these patients for long periods. With the widespread adoption of the Internet of
Things (IoT) [3] in electronic medical care, low-power and easy-to-use embedded platforms are growing in popularity.
Thus, we can perform long-term everyday patient monitoring [4] to inform their family members or caregivers in case
of emergency situations.

The current trend in pathology detection systems is based on deep neural networks (DNNs) [5], which are capable of
classifying large volumes of biomedical data. The ability of these networks to extract high-level and complex patterns
from biomedical signals makes them an attractive tool for epilepsy monitoring [6]. Wearable devices typically own
limited resources and cannot satisfy the computing requirement of complex DNNs. By addressing the challenges
regarding comfortability, complexity, and energy consumption, these systems can perfectly fit the criteria of epileptic
seizure detection systems [7]. This can be translated in using simpler and lighter networks, preferably with a smaller
number of acquired biosignals, to make them more comfortable and improve their energy efficiency regarding data
acquisition and processing.

According to the literature, monitoring the electroencephalogram (EEG) signal of the patients provides the standard
detection accuracy in case of epileptic seizures [8]. However, by simultaneously monitoring other biosignals, the
decision can become more accurate and robust, as each signal can reflect different effects of the seizures [9]. In this
paper, we first introduce our multi-modal detection system, which uses separate residual neural networks [10] for
different biosignals, namely, EEG and electrocardiogram (ECG) signals.

The overhead that comes with this multi-modal biosignal monitoring is an increase in the size of the detection
system, as we should use a separate network for each signal. This bigger size results in higher energy consumption [11],
which is problematic for wearable systems and long-term monitoring purposes. Besides, the synchronisation of signals
from multiple devices is challenging in real deployments. Finally, connecting several wearable devices to the patient
increases the stigma, especially in the case of EEG, where devices are usually bulky and draw a lot of attention [12].
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To address the challenges of multi-modal monitoring, we turn to the concept of knowledge distillation [13], a popular
technique in deep learning for model compression. Knowledge distillation involves training a smaller model, often
referred to as the ’student’, to emulate the behavior and predictions of a larger, more complex model, called the ’teacher’.
Imagine having an expert teacher (a large model) that knows a lot but is resource-heavy and a student (a smaller model)
that wants to learn as much as it can from this teacher but with fewer resources. In essence, the student tries to ’distill’
or capture the knowledge of the teacher. Typically, this is done by training the student model on a dataset, but instead
of using the original labels, the student aims to match the teacher’s outputs [14]. The benefit of this approach is that
the smaller student model can achieve performances comparable to the larger teacher model but at a fraction of the size
and computational cost.

In our proposed approach, named M2SKD (Multi-to-Single Knowledge Distillation), we employ knowledge distillation
for epileptic seizure detection. As illustrated in Fig. 1, we first create a teacher model—an ensemble deep neural network
(DNN) trained on synchronized EEG and ECG signals. Subsequently, we train a student model using only the ECG
biosignal, with the aim of achieving detection accuracy similar to that of the teacher but with reduced computational
overhead, making it suitable for low-power wearable devices.

In the teacher model, which is a complex model with high energy consumption, the patient uses multiple sensors,
which are not comfortable and cause stigma. Conversely, the student model contains a much simpler model resulting
in less energy consumption and enabling more prolonged monitoring with wearable devices, as it requires only the
ECG signal. This signal can be acquired using a chest strap, which is comfortable to use and removes the social stigma
entirely. At the same time, the student model achieves the detection accuracy of the more complex teacher model. To
the best of our knowledge, this work is different from the usual knowledge distillation frameworks that have been
proposed in the sense that other works propose to change the system structure, but the inputs are the same. On the
contrary, we are completely omitting the EEG in the student model and only require ECG inputs in our final system
design.

Thus, the main contributions of our work are as follows:

• We develop a knowledge distillation-based approach named M2SKD to develop high-precision low-power
wearable systems for epileptic seizure detection in real-time using only a single biosignal input. We show a
process to create a neural network trained from the knowledge of a multi-modal DNN system relying on both
EEG and ECG signals, while in the test phase, only the ECG signal is used as input. As a result, the synchronized
EEG signal is only used in the initial (offline) training phase. This approach reduces the system’s complexity
and EEG acquisition power requirements to better fit the design constraints of low-power wearable devices.
Moreover, we reduce the stigma and inconvenience of synchronizing multiple biosignals in real-life system
deployments.
• As initial teacher network for our approach, we design a new multi-modal and multi-channel seizure detection
DNN that increases the quality of seizure detection by acquiring information from both EEG and ECG. In this
first step, to limit the design complexity and highlight how to target different biosignal inputs, we conceive
independent 1-dimensional DNNs for each signal. Then, we use a weighted combination of the results to reach a
final decision. Compared with a network using only the ECG signal for training, we show that the proposed
multi-modal method increases the sensitivity by 6.12% and specificity by 16.07% when applied to the EPILEPSIAE
dataset [15]. Our approach increases seizure detection accuracy and reduces false alarms at the same time,
compared to using only the ECG signal.
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• By using M2SKD, we reduce the complexity of the initial teacher DNN system to result in an implementable
student network for a wearable device with considerably lower power capability. Our results show the distilled
model can be implemented on current wearable platforms. Using an edge AI platform, we show that the required
energy is reduced by 37.65%. This energy reduction is obtained while sensitivity and specificity are only reduced
by 1.5% and 1.3% in comparison with the initial (and very uncomfortable for the patient) multi-modal teacher
DNN.

The rest of this article is organized as follows. In Section 2, we review previous works on low-power embedded
wearable platforms, multi-modal seizure detection, and knowledge distillation. Section 4 presents a general overview
of our seizure detection systems and the different parts: preprocessing, initial multi-modal network architecture, and
our M2SKD approach targeting low-power IoT wearable systems. Then, Section 5 presents our experimental setup,
and in Section 6, we analyze the computational and energy consumption characteristics of the proposed M2SKD
implementation and compare it with other similar wearable architectures. Finally, in Section 7, we summarize the main
conclusions of this work.

2 RELATEDWORK

2.1 EEG-based Seizure Detection

The gold standard for non-invasive seizure detection is EEG monitoring [16], which has been used for decades in
highly specialized and costly hospital environments. EEG-based seizure detection has received noticeable attention
in the literature as brain activity is significantly affected during seizure attacks. In [17], the authors proposed the use
of spectral graphs to extract spatial-temporal patterns for seizure detection. In [18], they used the wavelet transform,
which has been applied to the time-frequency domain for the detection of epileptic activity. In [19], the authors proposed
an effective feature extraction algorithm named discrete short-time Fourier transform (DSTFT), which is an adaptive
generalization of the classical short-time Fourier transform (STFT). The authors in [20] use discrete wavelet transform
and statistical features to apply preprocessed EEG signals to a neural network classifier to detect epileptic seizures.

All the works mentioned above propose power-hungry algorithms that use a complete set of EEG channels. Therefore,
if these methods are applied to real-life IoT wearable systems, patients would suffer from the social stigma of wearing a
cap with electrodes on the head. Yet, our work presents a knowledge distillation to remove the most invasive signals
used in continuous monitoring, leading to a more straightforward, more energy-efficient, and less stigmatizing setup
applicable to IoT wearable systems.

2.2 Energy Optimization in Wearable Systems

To optimize energy consumption, in [21] a hierarchical architecture with a wide set of near-sensor processing kernels
is presented. They have shown that, due to their power management techniques, their architecture is suitable for
IoT wearable systems. In [22], the authors have used optimization and parallelization techniques besides integration
of domain-specific accelerators with the goal of improving the mapping and reducing the energy consumption of
biomedical applications. The technique that we are targeting here is knowledge distillation, which is originally a model
compression technique. This enables us to train smaller and less complex DNNs with comparable performance. To
interpret DNNs for epileptic seizure detection on EEG signals, in [6], they associate certain properties of the model
behavior with the expert medical knowledge. They have come up with online seizure event characterization able to
handle inter-patient variability.
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2.3 Addressing Social Stigma in Wearable Systems

To overcome the social stigma problem in IoT wearable systems using EEG caps, in [23], a wearable system based on
the temporal EEG electrodes for the detection of epileptic seizures is presented. By reducing the acquired signals to
four, the system could be implemented on glasses, which can be easily worn by patients. Although these glasses solve
the social stigma issue, they use only EEG signals for the seizure detection task, which are hard to obtain compared to
other biomedical signals. In contrast, our work uses the knowledge of EEG and ECG signals, while the final model uses
only the ECG signal to detect seizures more effortlessly than with EEG signals.

2.4 Multi-modal Seizure Detection

Besides EEG, other biosignals can also get affected by epileptic seizures and provide additional information about the
occurrence of such attacks. For example, seizures are often associated with cardiovascular alterations, and measures
related to the heart rate are known to be useful clinical signs of an epileptic discharge [24–28]. Thus, combining other
biosignals with EEG can result in better detection of different types of seizures, especially those that are not easily detected
with just the EEG. Multi-modal seizure detection has been done previously in several works. In [29], a combination of
electrodermal activity and accelerometer signals is used. In [30], the authors have used EEG, Electromyography (EMG)
and ECG signals and have shown that the average sensitivity is improved in comparison with using each individual
sensor separately. In [31], a combination of linear discriminant models extracted from EEG and ECG features is used to
detect seizures in newborn infants. In [32], an SVMmodel is used with both EEG and ECG signals and could achieve high
accuracy being tested on three patients. In [33], seizure detection is done using an SVM model on multi-channel EEG
and single-channel ECG separately and then fusing them into one final decision. The effect of using this multi-modal
method is then shown on the number of false alarms and detection delay. Recently, in [34], convolutional neural
networks (CNN) are used in combination of EEG, ECG and respiration. They have observed that the multi-modal system
outperforms systems with individual signals. The reduced deep convolutional stack autoencoder is used in another
work using 18 channels of EEG signal, which has resulted in very high performance; but yet, the system cannot be
implemented on IoT wearable devices and is intrusive [35].

2.5 Knowledge Distillation in Neural Networks

Knowledge distillation in neural networks was first introduced in 2015 [14], where a single model is trained from an
ensemble of models (known as specialists or experts). The key aspect of knowledge distillation is learning not from
the discrete labels of the dataset, but from the continuous output of the "expert" models. This concept has not only
been tested on speech and images [36, 37] but has also shown satisfying results in certain healthcare applications. In
that work, it is demonstrated that we can benefit from the knowledge distillation method to efficiently regularize the
smaller network and achieve better generalization than directly training the network using the labels of the training
set [38, 39]. In [40], authors have used gradient boosting trees as the experts to train their deep learning model on a
real-world clinical time-series dataset, showing an improvement in the performance with respect to their initial deep
learning model.

In [41], multi-modal segmentation of computerized tomography (CT) and magnetic resonance imaging (MRI) is
compacted by distilling knowledge from cross-modal information of these images. Similarly, in [42], the student model
learns from both labeled target data (e.g., CT), and unlabeled target data and labeled source data (e.g., MR) by two
teacher models. They have shown that their approach can utilize unlabeled data and cross-modality data with superior
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performance, outperforming semi-supervised learning and domain adaptation methods with a large margin. Based
on the reviewed state-of-the-art works, we hypothesise that distilling the knowledge from a multi-modal epileptic
seizure detection system to a single-input system, can improve the performance of the single-input network. Thus, in
the following section, we will leverage this concept and introduce first our multi-modal system and, after that, our
distilled single-input system.

3 BACKGROUND ANDMOTIVATION

3.1 Epileptic Seizures: Understanding Their Nature and Classifications

Epileptic seizures are spontaneous surges of electrical activity in the brain. They result from the brain’s neurons firing
in an abnormal, synchronized manner. The manifestations of these seizures vary significantly depending on their type
and origin within the brain. From barely noticeable episodes, such as staring spells, to more severe forms like vigorous
shaking and loss of consciousness, the range of symptoms is vast. This complexity not only affects an individual’s motor
functions and sensory perceptions but also has profound implications on behavior, emotions, and overall awareness.
Understanding the distinct types of seizures is paramount for clinicians to diagnose and devise appropriate treatment
strategies.

Focal onset seizures begin in a specific brain region and may remain confined or spread. Symptoms vary widely,
from physical jerks to confusion and unusual feelings. Generalized onset seizures, involving both brain hemispheres,
present more severe symptoms such as tonic-clonic convulsions or absence seizures. Seizures of unknown onset pose a
diagnostic challenge; they lack identifiable origins, but advancements in diagnostics may allow reclassification as either
focal or generalized. This summary clarifies the distinct origins and manifestations of seizure types, highlighting the
potential for diagnostic evolution [43].

Epilepsy underscores a pressing healthcare challenge. Rapid and precise detection of seizures isn’t just a medical
imperative; it’s a lifeline. Timely diagnosis paves the way for suitable interventions, potentially mitigating the severity
of episodes and enhancing the overall quality of life for those affected.

3.2 Diagnostic Instruments: EEG and ECG Role in Seizure Detection

Historically, the diagnosis and assessment of epileptic seizures have been centered on neurological explorations.
However, emerging research has spotlighted the complex relationship between brain neural activity and heart function
during seizure episodes. This revelation underscores the value of a holistic diagnostic approach. Taking into account
this, we examine how electroencephalography (EEG), a method of recording brain activity, has been used for a long
time to directly check brain function. We also examine the growing importance of electrocardiography (ECG), a way of
recording heart activity, to understand how seizures can affect the heart.

(a) Electroencephalography (EEG): In the domain of neurological diagnostics, Electroencephalography (EEG) is
fundamental, recording the complex electrical activity of the brain. This tool provides detailed waveforms that
allow for a deep understanding of a person’s neurological state. Particularly in the treatment of epilepsy, EEG
is crucial for diagnosis, monitoring seizures, and informing treatment strategies. However, interpreting the EEG
data presents challenges. Specialists face difficulties such as interference from external noise, the ever-changing
patterns of brain signals, and the complexity of the data, which is rich in detail and multi-layered.

(b) Electrocardiography (ECG): mainly used for cardiac diagnostics, carefully records the heart’s electrical rhythm
regularly. In the context of epilepsy, seizures can cause noticeable changes in ECG readings, highlighting the
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Fig. 2. The overall flow of the proposed M2SKD for epileptic seizure detection. The teacher DNN is an ensemble composed of three
Res1DCNN to extract valuable information from the training set. Making epileptic seizure detection using the teacher DNN is heavy
to compute as it requires both ECG and EEG signals and is not suitable for wearable systems. The student DNN is a single Res1DCNN
that requires only an ECG signal. Thus, it is less computationally intensive. The Kendryte K210, Raspberry Pi Zero system, or the latest
multi-core edge AI architectures (e.g., smartwatches or PULP SoC [22]) perform the epileptic seizure detection using the student
DNN on ECG signal acquired by a chest strap.

interconnected behavior of brain neural activity and heart rhythms. It is vital to notice these changes in heart
activity because doing so improves seizure detection and reveals the effects of seizures on cardiovascular health,
providing a more complete view of the general well-being of a patient.

Epileptic seizures’ complex nature, with its affects reaching both neurological and cardiac domains, necessitates
a synthesized diagnostic methodology. By combining information from EEG and ECG, healthcare providers are in a
better position to improve treatment plans. This combined approach is expected to lead to a better understanding, more
accurate diagnosis, and a more detailed plan for treating epilepsy.

4 PROPOSED M2SKD APPROACH

This section describes the elements of our proposed feature-based M2SKD approach for epileptic seizure detection.
The overall flow is presented in Fig. 2. Our proposed approach includes a pipeline divided into three phases: signal
acquisition and pre-processing, multi-modal CNNs framework, and distilling the knowledge from the more extensive
teacher network to the lighter student network. The teacher network requires both ECG and EEG signals and has a
more complex network architecture than the student network, which results in more energy consumption. Thus, it
is not convenient to be deployed on wearable devices or low-power platforms with limited resources for long-term
monitoring. On the other hand, the student network receives only the ECG signal, has fewer parameters, requires lower
computational costs, and performs real-time epileptic seizure detection without losing validity. Thus, it is suitable to be
deployed in edge platforms and wearable devices.
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Fig. 3. Electrodes locations of 𝐹7𝑇3 and 𝐹8𝑇4 for EEG monitoring using the e-Glass wearable system for epileptic seizure detection
[23].

4.1 Signal Acquisition and Pre-Processing

In our introduced M2SKD framework, both a teacher and a student network exist. The formation of the teacher network
relies on EEG and ECG data sampled with a frequency of 256 Hz, while the student network utilizes solely the ECG
signal. The EEG data for the teacher network is acquired through two channels, namely 𝐹7𝑇3 and 𝐹8𝑇4, using four
specific electrodes, illustrated in Figure 3. These electrodes were purposefully chosen to interface with e-Glass, a
wearable system tailored for real-time applications, harnessing the potential of these four EEG electrodes [23]. e-Glass
aims to offer a discreet solution, allowing users to avoid the social challenges often associated with conventional EEG
head caps. As detailed in section 6.2, we validate the capability of the teacher or student network in real-time epileptic
seizure detection when implemented on edge AI platforms.

We opted for the 𝐹7𝑇3 and 𝐹8𝑇4 EEG channels in our seizure detection system due to several reasons, taking into
account the diverse ways seizures can present in patients:

(1) Seizure Localization: The 𝐹7𝑇3 and 𝐹8𝑇4 channels are situated in the frontotemporal regions of the brain, which
are frequently implicated in seizure phenomena. These channels are adept at recognizing a variety of seizure
forms.

(2) Signal Quality: Signals from these channels are notably clear, with minimal noise or disruptions from muscular
actions or ocular activities, thereby boost detection precision.

(3) Computational Efficacy: Limiting to two EEG channels, the computational demands are reduced, enabling
real-time seizure detection, even on resource-constrained wearable devices.

(4) Societal Acceptance: Using the 𝐹7𝑇3 and 𝐹8𝑇4 channels in devices like e-Glass provides a less noticeable alternative
compared to traditional EEG gear, reducing potential discomfort for patients.

(5) Generalizability: Despite the variations in seizure types, the combination of these channels with our system
design ensures reliable detection across a wide array of patients.

Training a deep neural network (DNN) like the teacher DNN necessitates a significant amount of data. However,
actual data pertaining to epileptic seizures for a specific patient is typically scarce. To address this, recent studies have
employed data augmentation techniques to enhance both the volume and variety of epilepsy-related data [44, 45]. Our
research leverages data augmentation by segmenting and overlapping synchronized ECG and EEG signals. Given the
critical role of interpreting QRS complexes in ECG signal processing, we adopt 3-second intervals to guarantee the
Manuscript accepted in ACM Transactions on Intelligent Systems and Technology
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Fig. 4. Segmentation of ECG, EEG𝐹7𝑇3 and EEG𝐹8𝑇4 signals sampled with a frequency of 256 Hz using slots of 3-seconds with 100
samples overlap. In our framework, ECG, EEG𝐹7𝑇3 and EEG𝐹8𝑇4 signals are synchronized to train the teacher DNN. In other words,
both ECG and EEG signals are acquired and measured in parallel. Therefore, we have the corresponding ECG signal when there is a
seizure in the EEG signal. Moreover, note that in latest edge AI architectures deployed in the medical IoT ecosystem (e.g., multi-core
PULP system [22]), it is possible to process the signal in less than one second, and during the remaining time the system can be in
sleep mode.

inclusion of at least two QRS complexes. These intervals are extracted by sliding a fixed-length window—with an
overlap of 100 samples—across the entire signal. The segmentation method for ECG and EEG signals is illustrated in
Figure 4.

To train DNN models both effectively and efficiently, pre-processing techniques are indispensable and have been
employed across various applications [46]. In this context, we introduce a straightforward pre-processing approach for
each segment following signal segmentation. The pre-processing procedures for ECG and EEG segments are delineated
in Algorithm 1 and Algorithm 2, respectively.

Algorithm 1 Pre-processing of ECG Segment

Require: ECG segment 𝑥
Ensure: Standardized ECG segment 𝑥standardized

1: Step 1: Apply 10th-order Low-pass Butterworth Filter
2: 𝑥filtered ← ButterworthFilter(𝑥, order = 10, cutoff = 50)

3: Step 2: Perform Linear Detrending
4: Fit a linear model 𝑦 = 𝑎𝑥 + 𝑏 to 𝑥filtered.
5: Subtract the fit from the initial data: 𝑥detrended ← 𝑥filtered − (𝑎𝑥 + 𝑏).

6: Step 3: Standardize the Detrended ECG Segment
7: Compute the mean 𝜇 and standard deviation 𝜎 of 𝑥detrended.
8: 𝑥standardized ←

𝑥detrended−𝜇
𝜎

In bioelectrical recordings, particularly ECG measurements, 50Hz noise is a dominant concern. Often dubbed "power-
line interference" due to its association with standard electrical frequencies in many areas, this interference significantly
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Algorithm 2 Pre-processing of EEG Segment

Require: EEG segment 𝑥
Ensure: Standardized EEG segment 𝑥standardized

1: Step 1: Apply 10th-order Low-pass Butterworth Filter
2: 𝑥filtered ← ButterworthFilter(𝑥, order = 10, cutoff = 50)

3: Step 2: Standardize the Filtered EEG Segment
4: Compute the mean 𝜇 and standard deviation 𝜎 of 𝑥filtered.
5: 𝑥standardized ←

𝑥filtered−𝜇
𝜎

impedes the automatic detection and classification of arrhythmias [47]. Therefore, during ECG preprocessing, emphasis
is placed on eliminating baseline wandering, a slow shift in the ECG trace. This wandering can result from respiratory
effects, mismatches in electrode-skin impedance, and motion artifacts. Breathing affects the ECG baseline due to the
movement of the heart and chest structures. Variations in electrode-skin contact and patient movements can introduce
further disturbances [48]. Our decision to standardize ECG data on a per-window basis, rather than across the entire
training set, acknowledges the variability in ECG baselines over time. This approach accommodates differing activity
levels and mitigates the influence of outliers on data standardization.

4.2 Epileptic Seizure Detection DNN

In this section, we introduce the Deep Neural Network (DNN) adopted for seizure detection, dubbed Res1DCNN. This
design stems from our preceding investigations, as elucidated in [49].

Let’s consider a series of data samples represented as {𝑥1, ..., 𝑥𝑇 }, where each 𝑥𝑖 belongs to R𝑟 , and 𝑟 typifies the
count of samples within an individual window. For any designated data sample 𝑥𝑖 , Res1DCNN processes it, yielding a
feature map labeled as z𝑖 ∈ R𝐿 , where 𝐿 characterizes the feature map’s span. Subsequently, a simplistic fully-connected
layer transforms this feature map to procure 𝑦𝑖 , which predicts whether it’s a seizure or a non-seizure episode.

The decision to employ Res1DCNNwas spurred by its proficiency in delivering consistent seizure detection outcomes,
all the while being computationally efficient. A major benefit of the Res1DCNN is its low energy consumption, which is
particularly effective on mobile devices where energy efficiency is critical. For instance, our detailed evaluations in
Section 6 and the battery longevity assessments in Table 3 provide empirical validation of its energy-efficient stance.
On devices like the Raspberry Pi Zero and Kendryte K210, the architecture showcased extended runtimes on a singular
battery charge, underscoring its applicability for real-world scenarios with energy constraints.

The blueprint of our Res1DCNN is illustrated in Figure 5. Drawing inspiration from the Residual Neural Networks
[10], it incorporates multiple skip connections. These connections ensure the norm is preserved within the residual
blocks, which in turn aids in seamless information flow across the network’s depth, thereby guaranteeing a stable
training phase. Additionally, with its concise construct of merely 14 weight layers, Res1DCNN is a commendable
candidate for battery-driven edge AI platforms with circumscribed computational capabilities.

4.3 Teacher Network: Multi-modal Res1DCNN

In this work, the teacher network uses the Res1DCNN architecture. The teacher takes synchronized ECG and 2-channel
EEG segments as inputs and trains three analogous Res1DCNN models for every input. This method is an ensemble
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Pre-processed 3-seconds signal (768, 1)

conv1D, filter size = 7, 1 → 64, /2 output: (381, 64)

max pooling, pool size = 3, /2 output: (190, 64)

conv1D, filter size = 3, 64 → 64, /2 output: (94, 64)

conv1D, filter size = 3, 64 → 64 output: (92, 64)

conv1D, filter size = 7, 64 → 64, /2
output: (92, 64)

+

conv1D, filter size = 3, 64 → 128, /2 output: (45, 128)

conv1D, filter size = 3, 128 → 128 output: (43, 128)

conv1D, filter size = 7, 64 → 128, /2
output: (43, 128)

+
conv1D, filter size = 3, 128 → 256, /2 output: (21, 256)

conv1D, filter size = 3, 256 → 256 output: (19, 256)

conv1D, filter size = 7, 128 → 256, /2
output: (19, 256)

+

conv1D, filter size = 3, 256 → 512, /2 output: (9, 512)

conv1D, filter size = 3, 512 → 512 output: (7, 512)
conv1D, filter size = 7, 256 → 512, /2

output: (7, 512)

+
dense layer, 7 × 512 → 2 output: (2)

Fig. 5. The architecture of the Res1DCNN [49]. The network contains 14 convolutional layers with skip connections followed by a
dense layer. Here, ‘/2’ denotes the downsampling operator using a strided convolution with a factor of 2. ‘→’ denotes the transition
from the input to output channels.

learning technique where various DNN models are combined and trained to solve the same problem [50]. As shown in
Section 6.1, by using our proposed ensemble learning method named Multi-modal Res1DCNN, we have a more accurate
DNN model to perform epileptic seizure detection. Since we studied and experimented with a wearable system, we
considered only two EEG channels where the signals can be acquired from e-Glass [23], as shown in Fig. 3.

In this network, the inputs are EEG and ECG segments {𝑥ECG
𝑖

, 𝑥EEG1
𝑖

, 𝑥EEG2
𝑖
}. We extract features from the inputs by

passing each of them through Res1DCNN’s feature extractor to obtain {zECG
𝑖

, zEEG1
𝑖

, zEEG2
𝑖
}. We merge these feature

maps into a single z𝑇
𝑖
∈ R𝐿 using a linear combination of the features. More formally, z𝑇

𝑖
= 𝑓 (zECG

𝑖
, zEEG1
𝑖

, zEEG2
𝑖

;𝜃 ),
where 𝜃 is the trainable weight for the linear combination. When z𝑇

𝑖
is obtained, we train a simple fully-connected

layer that predicts the output 𝑦𝑖 from z𝑇
𝑖
. Finally, a softmax layer outputs the predicted value. The softmax layer is a

generalization of the logistic layer that highlights the largest values in a vector while suppressing the values significantly
below the maximum.

4.4 Student Network: Distilling the Knowledge

In machine learning (ML) methods, training an ensemble of various models using the same data is a solution to
improve performance [51]. However, making predictions using most DNNs and ensemble models requires significant
storage and is too computationally expensive. Consequently, as our goal is to implement the epileptic seizure detection
algorithm into a wearable medical platform that runs on a battery, the teacher network is not an appropriate model for
implementation. Moreover, as described in Section 4.3, the teacher DNN uses different input data, such as EEG and
ECG. However, in a real-world scenario, acquiring EEG signal is complex and uncomfortable for the patient. In this
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work, to address the abovementioned problems, we introduce a student network that gets only ECG signals as its input.
As demonstrated in [52], it is achievable to compress the knowledge from an ensemble model into a single student
model. This process enables the model to run on embedded devices, considering these devices’ stringent energy and
memory constraints.

As illustrated in Fig. 2, our approach leverages knowledge distillation—a technique where a compact student DNN
is taught to mimic the behavior of a pre-trained, larger teacher DNN[14, 53, 54]. This methodology is often termed
"Teacher-Student", with the teacher being the expansive DNN and the student as the more streamlined one. For our
system, the student network, characterized by a single Res1DCNN, processes solely the 𝑥ECG

𝑖
as its input, generating

a feature map z𝑆
𝑖
∈ R𝐿 as output. The primary aim during the distillation phase is to harmonize this feature map

with that of the teacher network. To this end, our loss function is expressed as the distance L2 between z𝑆
𝑖
and z𝑇

𝑖
. By

minimizing this loss, we ensure that the student’s feature map aligns closely with the teacher’s. Due to the effective
alignment of these feature maps, we can directly employ the fully-connected layer of the teacher within the student
framework, obviating the need for additional training. It’s worth noting that the convolutional component of the student
is fine-tuned during the distillation to produce a matching feature map with the teacher. The teacher’s feature map 𝑧𝑇

𝑖

is explicitly used in the loss definition due to its enhanced signal intensity and spatial correlation characteristics.
The L2 distance serves as the loss function in our framework to maintain feature fidelity, ensuring the student model

accurately mirrors the teacher’s features for better generalization. It also promotes stability and smoothness in model
training, offering a gradual error landscape, unlike the more volatile cross-entropy loss. Lastly, it supports alignment
with human perception, as it reflects human sensitivity to differences in images and audio.

M2SKD, in this work, enables us to use only ECG segments as the input for our wearable system in real-life operation.
Thus the student network only processes the ECG inputs, and the Res1DCNN is instantiated only once, while in the
teacher, we have three parallel Res1DCNN models. Consequently, the amount of computation is considerably decreased
while the network’s performance is maintained. Furthermore, using the student network, we can translate the proposed
application into a real-life scenario that can benefit patients, clinicians, etc. This is done by removing the necessity to
permanently wear a cap to monitor EEG outside the hospital, which causes social stigma and discomfort for patients.

5 EXPERIMENTAL SETUP

In this section, we present the experimental setup to evaluate our proposed feature-based M2SKD approach in terms of
epileptic seizure detection performance and energy consumption.

5.1 Epileptic Seizures Dataset

In our research, we employ the renowned EPILEPSIAE dataset [15], a compilation of single-lead ECG and 19-channel
EEG recordings from 30 patients, meticulously annotated by medical professionals for seizure detection and forecasting.
This extensive dataset originates from a routine clinical setting, covering an array of seizure types such as complex
partial (CP), simple partial (SP), secondarily generalized (SG), and Unclassified (UC). For a particular patient in this
dataset, a disparity in the lengths of the ECG and EEG signals made them unsynchronizable. Consequently, we excluded
this patient’s signals and focused on the data from 29 patients, totaling 4603 hours with 277 seizures. This data boasts a
sampling rate of 256 Hz and 16-bit resolution.

For our experiments, we used both the ECG and the EEG signals to create the teacher network, while the student
network only used the ECG signal. Our framework acquired EEG signals for the teacher network from two channels,
𝐹7𝑇3 and 𝐹8𝑇4, as showcased in Figure 3. This specific channel choice enabled EEG signal capture through the e-Glass
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Fig. 6. EPILEPSIAE database

system, an innovative wearable based on four EEG electrodes, striving to alleviate the societal stigma associated with
traditional EEG head caps [23]. The design emphasizes both inconspicuousness and real-time functionality.

The EPILEPSIAE dataset covers a diverse set of seizure types, illustrated in Figure 6, including:

(1) Complex Partial (CP) Seizures
• EEG Electrodes
– Often originate from a specific region, frequently the temporal lobe.
– Temporal electrodes, like T3 and T4, are particularly relevant. If originating from the frontal lobe, Fp1, Fp2,
F3, F4, F7, and F8 may be informative.

• ECG Effects
– Can affect the autonomic nervous system, leading to tachycardia or bradycardia.
– ECG changes are more likely if the seizure generalizes or affects areas of the brain involved in autonomic
regulation.

(2) Simple Partial (SP) Seizures
• EEG Electrodes
– Start in a localized region of the brain.
– Electrode relevance depends on the specific area affected. If it’s temporal, T3 and T4 are essential; if frontal,
the aforementioned F electrodes would be crucial.

• ECG Effects
– Generally less common than with CP seizures due to the localized nature and lack of consciousness
impairment.

– Mild tachycardia or bradycardia might occur if the seizure focus influences the autonomic system.
(3) Secondarily Generalized (SG) Seizures
• EEG Electrodes
– Begin as a focal seizure (either SP or CP) and then spread to involve broader brain regions.
– In the focal phase, electrodes relevant to SP or CP seizures are crucial. As the seizure generalizes, more
electrodes across the scalp become relevant to capture the widespread activity.
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• ECG Effects
– Tachycardia is common, especially during the generalized phase.
– Rarely, significant bradycardia or ictal asystole can be seen, particularly if the seizure involves areas tied to
autonomic function.

(4) Unclassified (UC) Seizures
• EEG Electrodes
– Given their ambiguous nature, having a broad range of electrodes from various brain regions can assist in
capturing and understanding these seizures.

• ECG Effects
– Predicting ECG changes can be challenging due to the non-specific nature of these seizures.
– Any changes would depend on the particular characteristics of the seizure and the brain regions affected.

Upon testing with the multi-modal DNN teacher network, we discerned the considerable significance of the ECG
component for seizure detection. By refining this for the single-biosignal student network via M2SKD, we achieved
a performance equivalent to the combined ECG+EEG system, underlining ECG’s potential for standalone seizure
detection in wearable technology.

In Section 6.2, we discerned the feasibility of epilepsy detection using the teacher network in real-time on various
edge AI systems, such as the Raspberry PI Zero [55] or the PULP multi-core system [22]. However, the teacher network’s
complexity demands more energy and isn’t viable on low-power platforms with limited resources. In contrast, the
student network’s reduced complexity makes it optimal for prolonged wearable usage, especially since it matches the
teacher network’s performance using only the ECG signal, simplifying signal acquisition for patients.

In our study, seizure and non-seizure events were segmented into overlapping 3-second windows, which were
subsequently fed into the proposed architecture, with a particular emphasis on addressing the challenge of epileptic
seizure detection in real-world applications [56]. Notably, the training set predominantly comprised non-seizure
segments as compared to seizure segments. Addressing this significant class imbalance is of paramount importance in
real-world datasets. To mitigate this, we applied undersampling, selecting from the majority class (non-seizure) an
equivalent number of segments to the minority class (seizure). This method effectively maintained the class probability
distribution during the training process.

We structured the dataset to facilitate both Global and Personalized Model Training Strategies, ensuring a compre-
hensive evaluation of our proposed models under different scenarios.

(1) Global Model Training Strategy: Under this approach, we designed the composition of the data set to encompass
data from each patient in training, validation, and test sets. This strategy ensures that our model is exposed to a
wide range of data variations, reflective of all participating individuals, enhancing its generalization capability.
Notably, the test set comprises a mix of the latter half of both seizure and non-seizure recordings from each
patient. A fundamental aspect of our approach is the strict division of data according to recording sessions. This
separation guarantees that the data allocated to the training, validation and testing phases come from completely
different recording sessions. This separation is vital in mitigating potential data leakage and ensuring that our
evaluation metrics accurately reflect the true predictive performance of our models.

(2) Personalized Model Training Strategy: In alignment with personalized healthcare objectives, this strategy tailors
the training process to individual patient profiles, enhancing model specificity and applicability to individual
needs. In addition to the standard accuracy metric, we incorporated sensitivity, specificity, G-mean, F1-score,
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and AUC, especially for the personalized model test set. This diverse set of metrics provided a thorough and
detailed assessment in scenarios characterized by class imbalances. Further solidifying the robustness of our
M2SKD methodology in diverse contexts, we have:
• Multiple Experiments for Each Patient: As stated, for each of the 29 patients from the EPILEPSIAE dataset, we
conducted three distinct experiments:
– Teacher Network (ECG+EEG): To establish a baseline performance.
– Student Network (ECG without M2SKD): To benchmark the potential of ECG-only seizure detection without
knowledge distillation.

– Student Network (ECGwithM2SKD): To validate the efficacy of our proposedM2SKD approach in harnessing
information from ECG for seizure detection.

• Practical Real-world Scenario: For each patient, we emulated a real-world scenario by splitting the data such
that half of the seizures and non-seizures recordings were used for testing, as delineated in Table 1. This split
inherently creates a highly imbalanced dataset, resembling realistic conditions where seizures are infrequent
events. The performance of our model under these conditions speaks to its utility in actual deployments.

In sum, our comprehensive approach underscores the model’s theoretical soundness and its adaptability to authentic
challenges, bolstering its prospective utility in the realm of epileptic seizure detection.

Table 1. Number of Seizure and Non-Seizure Segments per Patient in Test Sets

Patient Test Set Patient Test Set
Non-seizures Seizures Non-seizures Seizures

#1 111,540 155 #16 122,299 56
#2 184,930 93 #17 110,487 266
#3 114,024 83 #18 111,558 76
#4 97,606 110 #19 107,095 108
#5 124,352 55 #20 109,282 113
#6 95,092 74 #21 67,464 132
#7 65,713 77 #22 94,198 157
#8 80,132 77 #23 166,254 62
#9 80,052 23 #24 108,924 193
#10 93,756 104 #25 110,511 91
#11 94,743 175 #26 116,426 368
#12 110,427 58 #27 108,146 388
#13 104,364 152 #28 105,716 164
#14 80,232 77 #29 70,361 298
#15 65,306 38

5.2 Detection Performance Metrics

To evaluate the detection performance of our proposed framework, we considered six different metrics. Sensitivity (Sen)
(Eq. (1)) represents the percentage of ictal samples that are labeled correctly. Specificity (Spe) (Eq. (2)) shows the
percentage of inter-ictal samples that are labeled correctly. These metrics are defined as follows:

𝑆𝑒𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 , (1)
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𝑆𝑝𝑒 =
𝑇𝑁

𝐹𝑃 +𝑇𝑁 , (2)

where TP, TN, FP and FN are true positive, true negative, false positive and false negative, respectively.
Geometric mean (Gmean) (Eq. (3)) [57] reflects both sensitivity and specificity, and measures the balance between

classification performance in both classes. A low geometric mean indicates poor performance in classifying the seizure
cases, even if the non-seizures cases are correctly classified.

𝐺𝑚𝑒𝑎𝑛 =
√︁
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑆𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐𝑖𝑡𝑦. (3)

F1 score (Eq. (4)), which is the harmonic mean of precision and recall. It gives a better measure of the incorrectly
classified cases than the accuracy.

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2 𝑇𝑃

2 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 . (4)

Finally, we use the Area Under the Receiver Operating Characteristic Curve (AUC-ROC), which is a metric that
quantifies a model’s ability to discriminate between positive and negative classes across all decision thresholds.

AUC =

∫ 1

0
TPR(𝑡) 𝑑𝑡 (5)

where TPR(𝑡) is the True Positive Rate (sensitivity) at threshold 𝑡 .

5.3 Edge AI Evaluation Platform

Wearable devices have small batteries and low-power processors compared to desktop processors. In this work, we
use the Kendryte K210 [58] and Raspberry Pi Zero [55] to analyze and compare the energy consumption and timing
requirements for continuous execution of the proposed approach. Note that the proposed approach must be executed
repeatedly in real-time. The Raspberry Pi Zero includes an ARM11 CPU running at 1 GHz, has 512MB RAM, and
performs the inference process of a given DNN with power supplied via a micro USB connector. The Kendryte K210 is a
chip system with specific circuits/components for machine vision and ML. This chip system employs advanced ultra-low
processing with the help of a 64-bit dual-core processor equipped with a high-performance hardware accelerator of the
CNN. It supports convolution kernels, any form of activation function, and neural network parameter size up to 6 MB
for real-time application.

We used Otii Arc [59] as a power analyzer and power supply for the inference process of our proposed approach.
Otii Arc is a measurement tool for designing highly energy-efficient algorithms. It is powered via USB from the laptop
and records both current and voltage, and it displays them in real-time for analysis and comparison. It provides up to 5
V output voltage and runs high-resolution current measurements with a sample rate up to 4 kHz for the range of 1
𝜇A-5 A. Figure 7 shows the hardware setup of our energy consumption measurement.

We considered the Kendryte K210 chip and Raspberry Pi Zero as they have comparable processing capabilities
to modern wearable architectures [21]. We also discuss the potential benefit of using PULP-based ultra-low-power
platforms and architectures proposed in [22] for wearable biomedical systems to further reduce power consumption.
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Raspberry PI Zero

Kendryte K210

Fig. 7. Hardware setup for the energy consumption measurement. Otii Arc is connected to the computer using a USB cable. The main
output of the Otii Arc is connected to the voltage supply input of the wearable platform. The current provided by the computer’s USB
port is used to power both the Otii Arc and edge AI platform. The Otii desktop application enables us to measure and analyze the
energy consumption of the edge AI platform. In our evaluation, we considered a development system, which uses AI technologies
embedded on a Kendryte K210 chip used in different wearable systems [58] or Raspberry Pi Zero.

5.4 Learning Parameters

We trained our proposed networks from scratch using pre-processed 3-second EEG and/or ECG segments. The weights
of the layers were initialized following a normal distribution with a zero mean and a standard deviation of 0.01. All
biases were set to zero at initialization.

During training, the network adjusts its parameters to capture the correlation between the input segments and
the output, which consists of two nodes. The aim is to minimize the cross-entropy loss. While it’s possible for binary
classification to use a DNNwith a single output and a threshold, we opted for a configurationwith two-node outputs. This
approach aligns with a multi-class classification setup having two classes, facilitating easy extensibility to multi-class
problems in potential future work.

For the optimization phase, we used the Adam optimizer [60] with a mini-batch size of 16 across all patients. A
learning rate of 10−5 was chosen based on empirical observations, ensuring stable convergence for our setup.

Instead of a fixed iteration count, we implemented early stopping based on the validation set performance. While
allowing for up to 104 iterations, this approach ensures halting the training once there is an observable plateau in the
validation performance, thus preventing overfitting.

All models and training methodologies were crafted using Tensorflow 1.14.0 [61].

5.5 Baselines Description

• Teacher Network (ECG+EEG): The Teacher Network uses both ECG (heart data) and EEG (brain data). For the EEG,
we took data from two specific channels: 𝐹7𝑇3 and 𝐹8𝑇4. Electrocardiograms (ECG) capture the heart’s electrical
activity, while Electroencephalograms (EEG) record the brain’s electrical patterns. By integrating these two types of
data, the Teacher Network aims to establish a robust and comprehensive baseline for seizure detection. This combined
approach takes advantage of the rich information present in both cardiac and brain signals, potentially offering
greater accuracy and specificity in identifying and distinguishing seizure events.
• Student Network (ECG without M2SKD): The Student Network exclusively utilizes ECG data, without incorporating
the knowledge distillation process from M2SKD. This network’s primary goal is to evaluate the inherent capabilities
of ECG-only data in detecting seizures. By excluding EEG input and M2SKD, the model offers a simplified, yet
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Pre-processed 3-seconds signal (768, 1)

conv1D, filter size = 7, 1 → 64, /2

max pooling, pool size = 3, /2

conv1D, filter size = 3, 64 → 64, /2

conv1D, filter size = 3, 64 → 64
conv1D, filter size = 7, 64 → 64, /2

output: (92, 64)

+
conv1D, filter size = 3, 64 → 128, /2

conv1D, filter size = 3, 128 → 128
conv1D, filter size = 7, 64 → 128, /2

output: (43, 128)

+
conv1D, filter size = 3, 128 → 256, /2

conv1D, filter size = 3, 256 → 256
conv1D, filter size = 7, 128 → 256, /2

output: (19, 256)

+

conv1D, filter size = 3, 256 → 512, /2

conv1D, filter size = 3, 512 → 512
conv1D, filter size = 7, 256 → 512, /2

output: (7, 512)

+

transposed conv1D, filter size = 7, 64 → 1, *2

max unpooling, pool size = 3, *2

transposed conv1D, filter size = 3, 64 → 64, *2

transposed conv1D, filter size = 3, 64 → 64

+
transposed conv1D, filter size = 3, 64 → 64, *2

transposed conv1D, filter size = 3, 128 → 64

+
transposed conv1D, filter size = 3, 128 → 128, *2

transposed conv1D, filter size = 3, 256 → 128

+

transposed conv1D, filter size = 3, 256 → 256, *2

transposed conv1D, filter size = 3, 512 → 256

+

Reconstructed 3-seconds signal (768, 1)
Encoder – transferred to Res1DCNN

Fig. 8. Schematic of the Proposed Autoencoder Architecture with Integrated Res1DCNN. This figure illustrates the dual-section
design, comprising an encoder that mirrors the structure of Res1DCNN for efficient knowledge transfer, and a decoder consisting of
nine layers dedicated to reconstructing the data back to its original dimensions. Special emphasis is placed on the ’skip connections’
between corresponding layers, underscoring their vital role in preserving details through the encoding process. The efficacy of this
architecture is quantified using mean squared error for reconstruction accuracy and cross-entropy loss for Res1DCNN training.

insightful, perspective. It becomes imperative to understand the standalone value of cardiac signals in the realm of
seizure detection and to contrast its performance with the combined ECG + EEG approach of the Teacher Network.
• SimCLR: In the context of our study with two types of signals—epileptic and non-epileptic seizures—we applied a
contrastive learning framework [62]. This approach was used to train an encoder network on datasets from a single
sensor (ECG). The framework’s objective is to refine the encoder’s ability to closely align augmented versions of the
same type of signal—whether epileptic or non-epileptic—in the representation space. In contrast, it aims to separate
the representations of the two different signal types. The goal is to develop a system that can identify and distinguish
between epileptic and non-epileptic seizure signals.
• Autoencoder: Autoencoders are a type of neural network designed to learn a compact representation of data. They
work by condensing the data into a simpler form and then using that condensed form to recreate the original input
[63]. A well-known version of this technology is the U-Net, which maintains a close relationship between its encoding
and decoding segments [64]. In U-Net, ’skip connections’ are special links that join the initial, less complex layers
directly to the later, more complex layers. These connections are crucial because they allow the network to preserve
detailed information through the encoding process.
The autoencoder architecture we propose is illustrated in Fig. 8. This network is divided into two sections: an encoder
and a decoder. The encoder is an exact copy of another network known as Res1DCNN. This design choice allows the
knowledge acquired during the autoencoder’s training to be transferred to the Res1DCNN. The decoder consists of
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Training data Test data

Fig. 9. Global Model Training Strategy: This figure illustrates the comprehensive approach to training the global model, where data
from each patient is included across the training, validation, and test sets. Distinct recording sessions are utilized for each set to
eliminate temporal bias, ensuring robust model performance across varied scenarios.

Training data Test data

Fig. 10. Personalized Model Training Strategy: This figure shows the personalized approach to model training, focusing on tailoring
the training process to individual patients. Using data specific to each patient and ensuring that there is no overlap between training,
validation, and test sets, this strategy improves model specificity and adaptability to individual patient profiles.

nine layers that enlarge the condensed data back to its original size.
To evaluate the performance of our autoencoder, we use the mean squared error, which quantifies how close the
reconstructed data is to the original input. For training Res1DCNN, we employ cross-entropy loss.

6 EVALUATION

In this section, the assessment of the seizure detection performance and energy consumption of the proposed M2SKD
approach on the Kendryte K210 and the Raspberry Pi Zero units is presented. The approach incorporates two distinct
training strategies, referred to as the Global Model Training Strategy and the Personalized Model Training Strategy,
to enhance the robustness and applicability of the deep neural network (DNN) models. These strategies and their
implications are shown in Fig. 9 and 10 for clarity.

6.1 Detection Performance Analysis

6.1.1 Global Model Training Strategy: In the Global Model Training Strategy, illustrated in Fig. 9, we considered
the composition of the data set to include each patient in the training, validation and test sets. A critical aspect of our
methodology is the careful separation of data based on recording sessions. This distinction ensures that the sets used for
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Fig. 11. Global Model Training Strategy: Performance Metrics for Imbalanced Test Set — This figure contrasts the capabilities of the
multi-modal Res1DCNN (Teacher network) with single Res1DCNNs (Student networks) with and without M2SKD in the context of
epileptic seizure detection. The metrics show how M2SKD effectively transfers critical knowledge from a larger ensemble DNN that
uses both ECG and EEG, to a more compact DNN that operates solely on ECG data. Despite the imbalanced nature of the test set,
the M2SKD-enhanced student network demonstrates a respectable preservation of detection sensitivity and specificity, affirming its
practicality in real-world applications where rapid and efficient processing is paramount.

training, validation, and testing are extracted from entirely different recording sessions. Such an approach is critical to
reduce potential biases present in time-series data, where sequential observations may not be statistically independent.
By segregating the data according to recording sessions, we effectively eliminate the risk of temporal bias, ensuring
that the performance of our model is not artificially affected by the sequential nature of the data.

To address the substantial data requirements necessary to train a robust DNN, we implemented a data enhancement
strategy. This was achieved by segmenting the signals into windows of 300 samples, with an overlap of 100 samples
between consecutive windows. Importantly, this augmentation process respects the boundaries set by our recording
session-based data separation; as such, there is no overlap of segmented windows across the training, validation, and
test sets. This strict separation helps us to make sure that our evaluation process is reliable. It prevents overfitting,
ensuring that our model’s performance truly shows how well it can work with new, unseen data.

Figure 11 illustrates the performance of epileptic seizure detection for the proposed multi-modal Res1DCNN (Teacher
network) using both ECG and EEG segments. This is compared against the performance of the single Res1DCNN
(Student network) without M2SKD, which utilizes only ECG segments. Our proposed multi-modal Res1DCNN achieves
a geometric mean of 84.60%. This performance is competitive when compared to other state-of-the-art CNN results
applied to EEG signals. The multi-modal Res1DCNN surpasses the single Res1DCNN without M2SKD—which is trained
solely on ECG—by 6.34% in terms of the Gmean. This demonstrates that the use of additional features from EEG signals
improves the efficiency of seizure detection.

However, the deployability of large DNN models like the multi-modal Res1DCNN can be limited by the memory
constraints of embedded medical platforms, as highlighted in [65]. In response, M2SKD serves as a compression
technique, aiming to minimize the hardware footprint of a DNN model and, as a result, reduce its inference latency
without significantly compromising inference accuracy. The efficiency of the M2SKD framework when applied to the
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Fig. 12. Global Model Training Strategy for Imbalanced Test Set: Energy Consumption vs. Accuracy Trade-off in Teacher Networks —
This figure illustrates a comparison between the original multi-modal Res1DCNN (Teacher network) and an optimized Teacher network
utilizing a single Res1DCNN with a three-channel input configuration. The latter design, aimed at reducing energy consumption,
processes combined ECG and EEG signals through a modified first layer to accommodate three distinct channels. While this innovative
approach offers significant energy savings, it results in a slight decrease in detection accuracy, with sensitivity and specificity dropping
by 1.32% and 1.97%, respectively, compared to the traditional multi-channel setup. This trade-off underscores our commitment to
developing a high-precision teacher network for epileptic seizure detection.

multi-modal Res1DCNN is further detailed in Figure 11. Notably, this scheme successfully distills a collection of DNN
models, such as the multi-modal Res1DCNN, into a solitary DNN model. This single model demonstrates superior
performance compared to a DNN model of equivalent size that is trained directly using the same data.

Examining the results, the multi-modal Res1DCNN boasts a geometric mean of 84.6% when both ECG and EEG
signals are employed in training and inference. On the other hand, the geometric mean for the single Res1DCNN
(student network) with M2SKD, which undergoes training directly on the ECG, dips by only 1.98%.

We also considered two scenarios to evaluate the trade-off between energy consumption, social stigma, and accuracy.

(1) Teacher Network: A Trade-off Between Energy Consumption and Accuracy. Our primary teacher network
diverges from the use of three identical Res1DCNNs for EEG1, EEG2, and ECG signals. Instead, it employs a
singular DNN capable of processing a three-channel input. To accommodate this, we altered the first layer of the
Res1DCNN to handle three distinct channels.
This configuration presents an interesting trade-off: a reduction in energy consumption at the cost of decreased
accuracy. Specifically, the detection accuracy of this unified model (sensitivity and specificity) decreased by 1.32%
and 1.97% respectively, when compared to the more complex model comprising three distinct Res1DCNNs. The
results discussed above are summarized in Fig. 12. Despite the energy savings offered by the teacher model using
single Res1DCNN, our primary objective was to craft an energy-efficient wearable system (student model) with
high precision using only a single-biosignal input (ECG). To this end, we opted for a teacher model that employs
separate 1D networks for each biosignal, ensuring optimal seizure detection.

(2) Student Network: Balancing Accuracy Against Social Considerations. In exploring alternative configurations, we
considered a student network solely reliant on EEG signals (EEG1 and EEG2). A distilled DNN (student model)
incorporating both EEG signals demonstrated a marginal increase in detection accuracy, specifically 0.71% and
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Fig. 13. Global Model Training Strategy for Imbalanced Test Set: ECG vs. EEG in Student Networks — Balancing Accuracy and Social
Acceptability. This figure presents a comparison between student networks utilizing ECG and EEG signals, both enhanced with
M2SKD, highlighting a detailed approach to epileptic seizure detection. Incorporating both EEG signals (EEG1 and EEG2) into the
student model slightly improves detection accuracy, with increases of 0.71% in sensitivity and 1.02% in specificity over the ECG-only
model. Despite these gains, the use of EEG signals is accompanied by concerns over social discomfort and stigma due to the necessity
of wearing EEG head caps. In response, our research pivots towards ECG-based detection, striking a balance by offering accuracy on
par with EEG systems while significantly enhancing user comfort and social acceptance. ECG’s lower energy requirements and global
availability further ensure broad applicability and the potential for prolonged monitoring across diverse patient populations.

1.02% in sensitivity and specificity, respectively, when compared against training solely on ECG. To facilitate a
straightforward comparison, we have consolidated the discussed results in Fig. 13.
Yet, EEG-based approaches come with notable caveats. EEG head caps, while effective, often lead to social
discomfort and stigma for patients. Recognizing these challenges, we developed a framework focused on epileptic
seizure detection exclusively using ECG signals. This offers a dual advantage: maintaining the accuracy levels
comparable to combined EEG and ECG systems while mitigating patient discomfort. The advantages of using
ECG-based detection are that it uses less energy and ECG machines are found all over the world. This means that
more people, including those in different areas, can use this technology to monitor epilepsy for longer periods.

Figure 14 shows the comparative performance of different training methodologies applied to a Single Res1DCNN
(Student network) focusing solely on ECG signals within the context of epileptic seizure detection, especially under the
constraints of an imbalanced test set in a Global Model Training Strategy. The methods evaluated include the baseline
approach without any knowledge distillation, the utilization of SimCLR, an Autoencoder approach, and our proposed
M2SKD.

The baseline student network, without the aid of knowledge distillation, achieved sensitivity (Sen) and specificity (Spe)
rates of 76.76% and 79.8%, respectively. Incorporating SimCLR into the training process yielded a slight improvement,
indicating the potential benefits of self-supervised learning methods in enhancing model performance. The Autoencoder
method showed similar trends with modest gains, highlighting the utility of unsupervised feature learning in this
domain. However, a significant leap in performance is observed with our proposed M2SKD framework. The Single
Res1DCNN (Student network) with M2SKD demonstrated remarkable improvements, clearly outpacing the other
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Fig. 14. Global Model Training Strategy: Performance Metrics for Imbalanced Test Set — This figure outlines a comprehensive
comparison between four different training approaches applied to the Single Res1DCNN (Student network), focusing on ECG signal
processing for epileptic seizure detection. The compared methods include the conventional approach without knowledge distillation,
as well as those utilizing SimCLR and Autoencoder techniques, alongside our proposed M2SKD framework. The data illustrates
that, while standard and self-supervised learning strategies yield some benefits, the M2SKD-enhanced Student network significantly
outperforms them in all key metrics: sensitivity, specificity, geometric mean, and AUC. This notable performance leap underscores
the effectiveness of the M2SKD method in improving and leveraging knowledge for the complex task of seizure detection, especially
in the context of an imbalanced test set.

methods. This underscores the efficacy of the M2SKD framework in leveraging distilled knowledge for seizure detection,
thereby enhancing the accuracy and reliability of the model.

6.1.2 Personalized Model Training Strategy: In our Personalized Model Training Strategy, illustrated in Fig.
10, we customized the training process for each patient to significantly enhance the model’s specificity and practical
relevance to individual health profiles. This approach allows for the development of models finely tuned to the fine
distinction of each patient’s data. For constructing a tailored model for a specific patient, we uniquely assembled the
validation and test sets from the data exclusive to that individual. On the contrary, the training set was enriched by
combining the data of the specific patient with the collective data of all other participants.

It’s crucial to note that our dataset consisted of 29 patients. To demonstrate how effective our method is and to
guarantee that it is highly customized for individuals, we carried out thorough and systematic training, conducting the
training process separately for each patient. This resulted in a total of 29 unique training iterations for each of the three
distinct models within our framework: the "teacher network," the "student network without M2SKD," and the "student
network with M2SKD."

As before, a critical component of our methodology is the strategic separation of data based on distinct recording
sessions for training, validation and test sets. Therefore, the segmented windows created for the training, validation, and
test sets from these different sessions did not overlap. This separation is vital to mitigating biases in time-series medical
data. By utilizing data from different recording sessions for each of the sets, we effectively eliminate the potential for
temporal bias, ensuring a fair and unbiased evaluation of the model’s capabilities.

As shown in Figure 15, we provide a thorough comparison of their detection abilities using pivotal metrics: Sensitivity
(Sen), Specificity (Spe), Geometric Mean (Gmean), F1 score, and the Area Under the Curve (AUC).
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Fig. 15. Personalized Model Training Strategy: Performance Evaluation on an Imbalanced Test Set — This figure provides a detailed
performance comparison for epileptic seizure detection using different neural network configurations within our personalized
model framework: a multi-modal Res1DCNN (Teacher network) and single Res1DCNN (Student networks), both with and without
the implementation of M2SKD. The evaluation is based on a real-world imbalanced dataset and reflects the cumulative results
from 29 unique training iterations conducted for each of the three distinct models: the ’Teacher network,’ the ’Student network
without M2SKD,’ and the ’Student network with M2SKD.’ The analysis reveals that the M2SKD approach significantly enhances the
performance of the Student network, enabling it to approach the effectiveness of the more complex Teacher network that utilizes
both ECG and EEG signals, while benefiting from a substantially reduced inference time of 0.720 seconds. These findings highlight
the effectiveness of M2SKD in distilling crucial knowledge into a more efficient model, proving its value in personalized, real-time
medical monitoring applications.

• Multi-modal Res1DCNN Teacher Network (EEG and ECG signals):
The Teacher DNN, when supplied with both EEG and ECG signals, showcased superior performance across all metrics.
With median Sensitivity and Specificity values of 88% and 94.85%, respectively, this network attained a Gmean of
approximately 90.24%, an F1 score of 88.95%, and an AUC of 91.35%. Such consistent performance emphasizes the
advantages of integrating EEG and ECG signals in seizure detection.
• Single Res1DCNN Student Network without M2SKD (Only ECG signals):
Transitioning to the Student Network without knowledge distillation revealed a noticeable performance decrease.
Relying exclusively on ECG signals, this network registered median metrics of 78% for Sensitivity, 85.3% for Specificity,
79.89% for Gmean, 81.7% for the F1 score, and 84.65% for AUC. These outcomes illustrate the challenges of using ECG
as the sole input without the guidance of a teacher network.
• Single Student Network with M2SKD (Only ECG signals):
Implementing the M2SKD approach into the Student Network yielded significant improvements. With median values
of 84.5% for Sensitivity and 91.9% for Specificity, this network surpassed its non-M2SKD counterpart. Moreover,
the Gmean rose to approximately 87.1%, while the AUC climbed to 88.9%, marking notable gains over the Student
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Table 2. Quantitative evaluation results of run-time for every 3-second segment in different network architectures.

Method Platform Run time (millisec.)
Multi-modal Res1DCNN

(Teacher network) Raspberry Pi Zero 2,080.56 ± 12.56

Single Res1DCNN
(Student network)
without M2SKD

Raspberry Pi Zero 720.15 ± 32.46

Single Res1DCNN
(Student network)

with M2SKD
Raspberry Pi Zero 720.15 ± 32.46

Single Res1DCNN
(Student network)

with M2SKD
Kendryte K210 1,040.64 ± 5.67

Network without M2SKD by 7.21% and 4.25%, respectively. Additionally, the F1 score settled at an average of 85.44%,
showcasing an effective harmony between precision and recall.

Our analysis offers several key insights:

• The combination of EEG and ECG signals in the Teacher Network establishes a high standard for seizure detection.
• Relying solely on ECG signals, as observed in the Student Network without M2SKD, results in compromised
performance, highlighting the limitations of using only ECG input.
• The M2SKD approach’s potency is evident in the Student Network with M2SKD. This network not only recovers
from the performance drop seen in the Student Network without M2SKD but also approaches the benchmarks set by
the Teacher Network.

In summation, although the combination of EEG and ECG signals offers premier performance, employing the M2SKD
method within a Student Network proves highly effective, particularly when limited to ECG signals. The knowledge
distillation mechanism evidently harnesses crucial features, positioning it as a promising substitute when EEG data is
unavailable.

6.2 Energy Consumption Analysis

A key challenge for low-energy embedded medical platforms with limited computational resources is designing and
implementing an epileptic seizure detection algorithm based on DNNs for long-term patient monitoring. For instance,
the e-Glass wearable system [23] shown in Fig. 3 contains a 570 mAh battery and features an ultra-low-power 32-bit
microcontroller STM32L151 [66] with an ARM® Cortex®-M3 with 48 KB RAM and 384 KB Flash. In the case of an
epileptic seizure, e-Glass communicates with a smartphone or smartwatch using Bluetooth low energy (nRF8001) [67]
and sends a warning to the caregivers.

In this paper, to analyze the complexity, lifetime, and energy efficiency of our approach, we consider the Kendryte
K210 and Raspberry Pi Zero platforms. In the implementation code, all the computations and storage are in 16-bit
fixed-point. We chose 13 bits for the fractional part using the results of the validation set. We observed that dedicating
more bits to the fractional part causes overflows in the computations. On the other hand, reducing the number of
fraction bits gives rise to a considerable accuracy drop. Since we use the fixed-point representation of numbers, we save
the amount of storage by a factor of 4 compared to 64-bit floating-point operations. This compression is crucial because
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Fig. 16. Real-time energy consumption monitoring on Raspberry Pi Zero. Raspberry Pi Zero performs epileptic seizure detection
using the single Res1DCNN (Student network) with M2SKD of a 3-seconds segment in 720 milliseconds and then goes to idle mode.
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Fig. 17. Real-time energy consumption monitoring on the Kendryte K210. The Kendryte K210 performs epileptic seizure detection
using the single Res1DCNN (Student network) with M2SKD of a 3-seconds segment in 1,036 milliseconds and then goes to idle mode
with considerably lower energy consumption.

it enables our network to be applicable on various memory-limited embedded devices. However, the total accuracy of
the model is reduced by 0.9% because of the quantization in 16-bit.

Table 2 shows the seizure detection execution time per 3-second segment for each DNN. The represented numbers
are obtained by running the experiments for the whole test set, including 1568 segments of 3-second segments. We
observe that due to fewer parameters, the network obtained by proposed M2SKD, which requires only the ECG signal,
runs 2.9 times faster than the multi-modal Res1DCNN on the Raspberry Pi Zero. At the same time, the proposed
network achieves a detection performance comparable to multi-modal Res1DCNN (see Fig. 15). In addition to the
reduced memory and computational burden, the most relevant advantage of the proposed approach is that it avoids
the acquisition and process of EEG data. We also observe that the network’s end-to-end response time for a 3-second
segment is only 720 milliseconds on the Raspberry Pi Zero and 1,040 milliseconds on the Kendryte K210; thus, we can
continuously monitor the patients in real-time.

Epilepsy is characterized by unpredictable seizures and can cause other health problems; thus, the patients have
to be monitored on a long-term basis. Table 3 evaluates the battery lifetime of DNN obtained by proposed M2SKD
using the battery of the e-Glass [23], which is 570 mAh. We observe that our proposed M2SKD results in a model that
operates for 7.86 hours on the Raspberry Pi Zero and 16.29 hours on the Kendryte K210 on a single charge to perform
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Table 3. Battery life of an edge device using the e-Glass [23] battery for running each network architecture to perform patient
monitoring.

Method Platform Battery life (hours)
Multi-modal Res1DCNN

(Teacher network) Raspberry Pi Zero 5.71 ± 0.01

Single Res1DCNN
(Student network)
without M2SKD

Raspberry Pi Zero 7.86 ± 0.09

Single Res1DCNN
(Student network)

with M2SKD
Raspberry Pi Zero 7.86 ± 0.09

Single Res1DCNN
(Student network)

with M2SKD
Kendryte K210 16.29 ± 0.06

real-time epileptic seizure detection. The proposed distilled network achieves a 37.65% energy reduction sacrificing
just 1.5% of the accuracy. The battery life is measured considering the real-time energy consumption shown in Fig. 16
and 17. We observe that the Raspberry Pi Zero executes the inference of the 3-seconds segment in 720 ms, then goes to
idle mode and waits for the next 3-seconds segment. As Fig. 16 shows, the Raspberry Pi Zero consumes a considerable
amount of energy in idle mode. Therefore, as shown in Fig. 17 we considered other wearable platforms, such as the
Kendryte K210, that consume less power in the idle mode which would be very beneficial for the patients to perform
long-term monitoring. We can improve the battery life of the edge device by using the PULP-based ultra-low-power
wearable platform proposed in [22], which consumes only 0.76 mA when the system is clock gated with respect to
23.58 mA when the system is running at 110 MHz, at the lowest energy point of the platform 0.8 V. In this scenario,
assuming that the inference time will be similar for the PULP after parallelization [68], we can achieve a battery life of
91.33 hours with the same battery capacity.

7 CONCLUSION

The development of wearable systems that can accurately detect complex pathologies, such as brain disorders, in the
long term and with minimal discomfort is still an open challenge. In this work, we have proposed a new knowledge
distillation approach (M2SKD) to develop high-precision and low-power wearable systems using single-biosignal input
for epileptic seizure detection. As the starting point for our teacher network, we have designed a multi-modal DNN,
using information from both ECG and EEG signals, that relies on independent 1-dimensional networks for each biosignal
to maximize the detection performance. Then, we used M2SKD to develop a compressed student network that relies
exclusively on ECG data during the run-time operation of the wearable system. Besides reducing energy consumption,
moving from multi-biosignal to single-biosignal has resulted in removing other major drawbacks in wearable devices
when they need to be deployed in real-life setups, such as discomfort, stigma, and synchronization problems where
multiple biosignals need to be acquired. Indeed, these benefits are achieved for our distilled network design considering
wearable setups while achieving a comparable detection performance with respect to the multi-modal teacher DNN
system. The results of our approach, implemented on different edge AI platforms for the wearable context, and tested on
the EPILEPSIAE dataset, have shown a 37.65% reduction in energy consumption. In comparison, the resulted sensitivity
and specificity are only 1.5% and 1.3% lower than in the initial multi-modal DNN teacher system. Thus, our proposed
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approach is ideal for the development of wearable setups as it removes the burden of acquiring and synchronizing
multiple devices to make valid medical assessments.
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