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To those who inspired and encouraged my pursuit of knowledge

Let us think the unthinkable,
Let us do the undoable,

Let us prepare to grapple with the ineffable itself,
And see if we may not eff it after all.
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Abstract

Computer systems rely heavily on abstraction to manage the exponential growth of complexity
across hardware and software. Due to practical considerations of compatibility between components
of these complex systems across generations, developers have favoured stable interfaces at crucial
boundaries such as between hardware and software, or between the kernel and userspace. While
these interfaces have persisted across more than 20 years, the modern computing environment has
evolved significantly in terms of security and performance. Our increasingly connected systems
share code components of widely varying provenance and legacy interfaces are unable to counter
modern threats while maintaining strict performance objectives. Computing requires new interfaces
with stronger security guarantees which can also support high performance applications. First, the
kernel-user interface remains one of the primary vectors for inter-application attacks as compromising
the kernel gives an attacker total control over the system’s resources and to other applications
on the same system. Second, the virtual memory interface has newly emerged as another crucial
interface enabling attackers to remotely compromise systems as applications increasingly execute
third-party code, for example JavaScript scripts downloaded from the internet. In this thesis,
therefore, we investigate these two key interfaces to improve their security and performance limits.

The kernel-user system call interface suffers from double-fetch bugs for passed-by-reference
arguments stored in user memory. Double fetches allow malicious users to compromise the isolation
guaranteed at the kernel-user interface to illegally access memory, cause kernel crashes, or to
escalate their privileges. The modern multi-user, multiprocessing environment allows the user to
change the arguments read by the kernel by modifying the contents of memory from a concurrent
thread. Traditional testing techniques cannot eliminate all double-fetch bugs due to the complexity
and configurability of the kernel. The extensibility of the kernel further exacerbates the challenge
as third-party modules loaded by the kernel may further introduce double-fetches. We present
Midas, a systematic mitigation for kernel double-fetches which leverages the kernel’s interface
to read user memory to guarantee that every kernel read of a user object during a system call
will return the same value. Midas’s guarantee makes an implicit assumption by kernel developers
explicit, protecting the kernel against a class of bugs while incurring merely 3.4% overhead on
diverse workloads across the NPB and PTS benchmark suites.

Whereas modern systems software runs code from a plethora of sources with varying degrees of
trust, the traditional virtual memory abstraction lacks support for isolating untrusted parts of an
application within the same virtual address space. Since all code running within a process execute
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at the same trust level, buggy or malicious third-party code can compromise the process by directly
leaking or modifying memory used by other components of the application. We must redesign the
virtual memory interface to allow applications to be compartmentalized, essentially implementing the
principle of least privilege by isolating untrusted parts of the application within compartments with
limited access to the application’s resources. We present SecureCells, a novel architectural interface
for intra-address space compartmentalization. SecureCells enables applications to define hardware-
enforced memory views for application compartments with accelerated userspace instructions for
inter-compartment calls. In microbenchmarks, SecureCells enables a 5-stage in-order core to switch
compartments in only 8 cycles reducing the cost of transitions by an order of magnitude compared
to the state of the art. We also build a full-system prototype of SecureCells, based on the RISC-V
RocketChip core running the seL4 kernel to evaluate userspace benchmarks.

This thesis also presents the first systematization of knowledge for compartmentalization
mechanisms, evaluating both qualitative and quantitative properties. We describe relevant security
and performance properties for practical compartmentalization, and show how well each mechanism
provides each property. A comprehensive review of compartmentalization techniques aims to
enable computer systems developers to define a secure, performant and usable interface to support
widespread compartmentalization of applications in the future. Our systematization exposes
common shortcomings of these mechanisms, pointing future research efforts to opportunities for
more comprehensive compartmentalization support.

This thesis posits that legacy interfaces between components of modern computing systems
inhibits their security guarantees, and explores issues at two major interfaces. We show that principled
redesign of interfaces enables the implementation of more secure systems while supporting high-
performance application needs, with the design and implementation of Midas and SecureCells to
tackle challenges at the kernel-user and intra-process interfaces respectively.
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Résumé

Les systèmes informatiques font un lourd usage d’abstraction pour répondre à la croissance
exponentielle de la complexité du matériel et du logiciel. A cause des considérations pour maintenir
une compatibilité entre des éléments de différentes générations de ces systèmes complexes, les
développeurs ont favorisé des interfaces stables aux limites critiques tels que celles entre le matériel
et le logiciel ou entre les espaces utilisateurs et noyaux. Alors que ces interfaces perdurent depuis plus
de 20 ans, l’environnement informatique moderne a évolué significativement en termes de sécurité
et de performance. Ces systèmes sont de plus en plus connectés et partagent des composants de
provenance très diverses. Ces anciennes interfaces ne sont pas à même de contrer les menaces
modernes tout en maintenant des objectifs de performances stricts. L’informatique nécessite de
nouvelles interfaces garantissant une plus grande sécurité tout en gardant possible des applications
à haute performance. L’interface utilisateur-noyau reste un des vecteurs principaux d’attaques entre
applications car la compromission du noyau permet à l’attaquant de contrôler les ressources du
système ainsi que les autres applications installées. Au vue de l’augmentation de code tiers exécuté
par les applications, par exemple des scripts Javascript téléchargé depuis l’internet, l’interface de
la mémoire virtuelle est en train d’émerger comme une autre interface critique pouvant offrir à
des attaquants l’accès au système. Dans cette thèse, nous investiguons donc ces deux interfaces
critiques afin d’améliorer leurs limites de performances et de sécurité.

L’interface d’appel noyau-utilisateur souffre de bogues de double récupération pour les arguments
passés par référence stockés dans la mémoire utilisateur. Les double récupérations permettent à un
utilisateur malveillant de compromettre l’isolation garantie par l’interface noyau-utilisateur pour
accéder illégalement à la mémoire, provoquant des crashs du noyau, ou permettant l’escalade de
leurs privilèges. L’environnement moderne multi-utilisateur et multi-processus permet à l’utilisateur
de modifier les arguments lus par le noyau à différents moments en modifiant le contenu de la
mémoire à partir d’un fil concurrent. La complexité du noyau empêche les développeurs de trouver
et de corriger tous ses bogues. L’extensibilité du noyau aggrave encore le défi, car des modules
tiers chargés par le noyau peuvent également introduire des double récupérations. Nous présentons
Midas, une prévention systématique des double récupérations du noyau en exploitant son interface
pour accéder à la mémoire utilisateur afin de garantir que chaque lecture demandée par le noyau
d’un objet utilisateur lors d’un appel système renverra la même valeur. La garantie de Midas rend
explicite une hypothèse implicite des développeurs du noyau, protégeant le noyau contre une classe
de bogues tout en entraînant un coût de seulement 3,4% sur les charges de travail diverses des
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suites de benchmarks NPB et PTS.
Alors que les logiciels système modernes exécutent du code provenant de nombreuses sources

avec des degrés de confiance variables, l’abstraction traditionnelle de la mémoire virtuelle ne permet
pas l’isolation des parties non fiables d’une application partageant le même espace d’adressage virtuel.
Tout le code s’exécutant au sein d’un processus a le même niveau de confiance. Par conséquent,
un code tiers défectueux ou malveillant dans un processus peut compromettre le processus en
divulguant ou modifiant directement la mémoire utilisée par d’autres composants de l’application.
L’interface de la mémoire virtuelle doit être repensée pour permettre aux applications d’être
compartimentées, implémentant le principe du moindre privilège en isolant les parties non fiables
de l’application dans des compartiments avec un accès limité à certaines ressources de l’application.
Nous présentons SecureCells, une nouvelle interface architecturale pour la compartimentation intra-
espace d’adressage. SecureCells permet aux applications de définir des vues de mémoire garantie par
le matériel pour les compartiments d’application avec des instructions d’espace utilisateur accélérant
les appels inter-compartiments. Dans des microbenchmarks, SecureCells permet à un cœur ordré
à 5 étages de passer d’un compartiment à un autre en seulement 8 cycles, réduisant le coût des
transitions d’un ordre de grandeur par rapport aux meilleures alternatives. Nous construisons
également un prototype complet de SecureCells, basé sur le cœur RISC-V RocketChip exécutant le
noyau seL4, pour évaluer des benchmarks d’espace utilisateur.

De plus, cette thèse présente la première systématisation des connaissances sur les mécanismes
de compartimentation, évaluant à la fois les propriétés qualitatives et quantitatives. Nous décrivons
les propriétés de sécurité et de performance pertinentes pour une compartimentation pratique, et
montrons dans quelle mesure chaque mécanisme fournit chaque propriété. Une revue complète des
techniques de compartimentation vise à permettre aux développeurs de systèmes informatiques de
définir de future interfaces sécurisées, performantes et utilisables pour soutenir la compartimen-
tation généralisée des applications. Notre systématisation expose les lacunes communes de ces
mécanismes, orientant ainsi les efforts de recherche future vers des opportunités de soutien à une
compartimentation plus exhaustive.

Cette thèse soutient que les interfaces entre les composants des systèmes informatiques modernes
entravent leurs garanties de sécurité, et explore les problèmes de deux interfaces majeures. Nous
montrons qu’une refonte raisonnée de ces interfaces permet la mise en œuvre de systèmes plus
sécurisés tout en soutenant les besoins d’applications haute performance, avec la conception et la
mise en œuvre de Midas et SecureCells pour résoudre les défis aux interfaces noyau-utilisateur et
intra-processus respectivement.
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Chapter 1

Introduction

The computing landscape is one of rapidly growing software and hardware complexity. Modern
computing systems inherit many of the abstractions and interfaces developed at the inception
of personal computing and mainframe servers, but face a very different computing environment.
The complexity and scale of computing systems have increased exponentially over the decades,
far outscaling the ability for developers to exhaustively test and verify their systems, leading to
an abundance of bugs. Popular software runs hundreds of millions of lines of source code, with
millions of lines worth of changes every year. Linux, a widely-used operating system, itself currently
accounts for 23 million lines of code, roughly increasing 20x since the turn of the millennium.
Transistor counts for processors have roughly followed Moore’s law for the last 50 years, and a
modern Apple M2 chip has more than a 1011 transistors compared to the 104 transistors of the
Motorola 68k processor from 1979. This scaling in complexity relies on, and also enables, pervasive
code sharing. A web browser (e.g., Firefox) along with the underlying operating system (e.g., Linux)
accounts for hundreds of millions of lines of code including

• mainline kernel code written by a informal melange of developers distributed across the globe
with varying industrial/academic/governmental/individual affiliation,

• numerous device drivers written by the respective hardware vendors,

• shared libraries and modules developed independently and written in a plethora of languages,

• code from websites, often embedding other pages, written by their respective web developers.

Modern systems need to consider the threat of bugs in shared code compromising their security,
and implement the necessary mitigations. For example, a web developer must account for the
threat that any of the thousands of JavaScript packages their code depends on might be malicious,
currently or in the future. The security of computing is reliant on the security properties at the
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interfaces between components (trusted and untrusted). The abstractions and interfaces at the
core of computer systems need to enable systems to face up to today’s security challenges.

While computing systems have evolved significantly, interfaces between many parts of this
system have remained relatively unchanged. The designs of these interfaces reflect the requirements
and threat landscape from their respective design periods, but fail to adequately address modern
needs. Linux, for example, started development in the 1990s and is heavily inspired by Unix, initially
developed in the 1960s-70s. The Linux kernel system call interface is cognizant of the threat of
attacks or faults from untrusted userspace compromising the kernel, reflecting the contemporary
shared use of mainframes running applications for a limited set of known users. System calls,
therefore, typically check the validity of arguments passed from userspace. However, computing and
the associated threat vectors developed over the past 30 years, rendering Linux’ original system call
interface dated. Linux has evolved from being a hobby project to becoming the operating system
underlying critical computer infrastructure forming the backbone of industries and governments.
The threat model has simultaneously evolved from accidentally triggered bugs in applications leading
to crashes, to sophisticated exploits developed by experienced attackers targeting remote control of
the entire system. One consequence of the dated designs of key interfaces is that these interfaces
might not adequately mitigate threats that have arisen or worsened after the design of the interface.
Since the 1990s, computing has evolved to support increased concurrency and true parallelism, with
the rise in popularity of multicore CPUs and multi-threaded programs. For system call arguments
stored in user memory and passed by reference, this evolution has enabled data races if the user
program modifies the arguments from a second thread while the kernel executes a system call from
one thread. This trend extends to other interfaces with widespread usage. The C programming
language, dating back to the 1970s, remains in popular use despite the lack of memory safety by
default. The rise of the internet and corresponding emergence of cyber warfare has exacerbated
the effects malicious exploitation of memory safety bugs, leading to major vulnerabilities (e.g.,
Heartbleed [90], GHOST [91] and NetUSB [92]). A second consequence is that interfaces might not
provide the correct abstractions to efficiently support designs that reflect trust relations within parts
of modern applications. For example, the dominant abstraction for isolation within userspace code
is a process, and different applications typically execute in different processes to isolate applications
from bugs in other applications. The process virtual memory interface is supported by hardware
enforced page table permissions across major commercial instruction set architectures (x86, SPARC,
ARM) developed across the 1970s and 1980s. Process isolation is well suited to the historical
state of software development where software vendors wrote their own applications with limited
code sharing between vendors. Processes isolated code for one application, from one software
vendor, from other applications, from other software vendors or for another user. With more code
within applications originating from third-party developers and less trust in code run within a
single process, intra-process isolation has become crucial. Security-critical programs, like browsers,
microservices and microkernel operating systems (OSs), refactored to enforce intra-application
isolation using processes are limited by the high overheads of this abstraction, and only support
coarse-grained isolation to cap performance overheads [11, 86, 88].
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Recognizing emerging threats, key interfaces have gradually evolved, fixing bugs and introducing
new defense features. Most improvements tend to be incremental. By adding a NX/XD bit to
mark pages as non-executable, popular processor architectures added support for Data Execution
Prevention (DEP) and prevented code injection exploiting buffer overflows. Over the years, millions
of commits have added various patches to Linux. However, many improvements address individual
bugs while failing to comprehensively improve an interface’s security. Continuing industrial and
academic efforts have proposed various improvements to improve the kernel-user boundary and
add support for isolation within an application. The security of operating system kernels is an
area of active research, and many methodologies have been proposed to fix the issue of data
races at the system call interface, primarily focussing on finding and fixing instances of this class
of bugs. One group of proposals leverage static analysis [80, 136, 138, 147] to comb through
the kernel codebase looking for vulnerable double fetches. These static analysis techniques have
progressively improved from matching code against known double-fetch bug patterns to symbolic
execution-based analyzers. Alternative proposals leverage dynamic analysis to detect instances of
data races at runtime [59, 114, 143] by tracking kernel memory accesses while executing various
common workloads (for e.g., booting up, running a browser, playing multimedia). Eliminating
the discovered data race bugs by fixing source code allows the kernel to present a more secure
interface, though the invulnerability to data races remains an informal assumption rather than a
guarantee. Finally, a proposed mitigation [114] repurposes a CPU-specific feature designed for
accelerating database transactions to instead dynamically detect user updates between kernel double
fetches, rolling back the system call execution to prevent exploitation. Bug squashing techniques,
however, are insufficient — they can only fix bugs found — and both static and dynamic analysis
are incomplete. The significant churn in code further complicates the challenge, as every change
potentially introduces new double-fetch bugs. The proposed mitigation is also inadequate, since
the protection depends on a vendor-specific feature which has since also been deprecated on newer
processors. The system call interface requires a more principled and reliant mitigation against data
race attacks. Similarly, while researchers and processor vendors continue to propose mechanisms for
finer-grained isolation within a process’ address space, these mechanisms vary in their design goals,
and do not adequately support widespread adoption of compartmentalization. Mechanisms which
prioritize backward compatibility with existing systems [40, 52, 55, 69, 76] introduce the security
benefits of intra-address space isolation but continue to suffer the consequences of other legacy
design choices, such as expensive supervisor-mediated context switches. Some mechanisms [52, 96]
trade off performance for security, either providing weaker security than processes to provide better
performance or making restrictive assumptions on application use cases. A common approach
among researchers is to retrofit protections to vulnerable interfaces abusing the side effects of
unrelated mechanisms co-existing on the systems, bringing immediate protection to certain systems
at the cost of a few fundamental shortcomings. Researchers have applied this approach to both
mitigate double-fetch bugs [114] using Intel TSX and to implement compartmentalization [52, 69]
using Intel VT-x. This approach is limited by dependence on specific systems (using Intel CPUs,
for example) and potentially inhibits concurrently using applications requiring these features for
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their proper functioning. Most importantly, such defense mechanisms lack principled design and
resemble targeted protections rather than fundamental security guarantees baked into interface
design.

Security guarantees should inform the design of interfaces — either by extending or redesigning
interfaces. At the kernel-user interface, we see that data races require the kernel to access the same
argument in user memory at least twice, which allows the user to modify the data in the meantime.
In fact, such bugs which are generally called double-fetch bugs commonly (but not exclusively)
manifest from the same usage pattern. The kernel first loads arguments once to check their validity,
then loads them at a later time in order to use them. This pattern earns these bugs the popular
moniker of Time-of-Check to Time-of-Use (TOCTTOU) bugs. Double-fetch bugs contain an implicit
assumption by the developer that the fetched data is the same, which may be violated by another
thread through a concurrent modification. OS kernels generally use a software interface to access
user memory, to manage protections like Supervisor Memory Access Prevention (SMAP), and we
can extend this interface with a secure invariant. Within userspace applications, the requirements for
isolation have changed drastically: from isolating per-user processes which occupy millisecond-scale
scheduling slots to finer grained module or library-level isolation, which demands sub-microsecond
operations (for example, switching trust domains). An userspace process needs to be further
divided into isolated compartments which can communicate along well-defined APIs. OS-based
mechanisms are expensive — even supervisors optimized for inter-process communication (IPC) on
commodity hardware achieve microsecond-scale compartment switches at best. We notice that the
traditional trusted-computing base (TCB) includes the processor hardware alongside the supervisor.
Hence, we can securely delegate particular operations (access control, inter-compartment control,
and data flow) from the supervisor to the hardware, improving performance while maintaining
the same security guarantees. Improvements and trends in microarchitectural design, such as the
move towards virtual memory area-based access control in the core’s translation-lookaside buffer
(TLB) [51], greatly assist in this transition.

In this thesis, we present secure designs for the user-kernel interface used by processes, and
for interfaces between intra-process domains, both of which are security- and performance-critical.
Midas provides systematic protection to the user-kernel interfaces against double-fetch attacks by
maintaining an invariant: through a system call’s lifetime, every read to a userspace object will
return the same value. Midas can also be extended as a sanitizer, enabling detection of TOCTTOU
attacks against the kernel. To validate the design, we also present an implementation of Midas
on the Linux kernel. SecureCells, meanwhile, is a compartmentalization mechanism providing
isolation between interacting userspace compartments. SecureCells’ design is based on three pillars:
hardware-enforced access control for isolation, unprivileged instructions for accelerating common
operations and flexible software operations where necessary. SecureCells is the first mechanism to
combine the security and performance requirements for flexible fine-grained intra-address space
compartmentalization.
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1.1. Kernel TOCTTOU Protection Overview

User Process

Operating System
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Figure 1.1: Illustrating the double-fetch attack at the system call interface

1.1 Kernel TOCTTOU Protection Overview

The operating system (OS) kernel is a key component of modern computer systems, tasked with
multiplexing resources like memory, execution time and I/O among users on a shared machine,
or among different tasks by the same user. The kernel is part of the system’s trusted computing
base (TCB), and interacts with untrusted userspace processes through system calls (syscalls).
The userspace/kernel interface is a security-critical barrier, and forms the primary attack vector
for attacker processes to compromise an entire system. The kernel must, therefore, implement
extensive checks at this interface to protect itself from malicious arguments to syscalls. Most
modern OS kernels trace their heritage to systems designed or developed in the 1980’s and 90’s,
and inherit many of their system calls. The Linux, Darwin/XNU (used by MacOS) and FreeBSD
kernels are all mostly compatible with the POSIX interface, first defined in 1988 [9]. The POSIX
interface, itself, draws inspiration from the UNIX kernel first published in 1971. Over this time, the
computing landscape has evolved immensely. Whereas the original UNIX kernel was not designed for
multi-tasking, the modern desktop, server or mobile computing environment involves a multi-user,
multi-tasking, multi-processing systems connected via internal or internet interfaces. Kernel security
has come under ever-increasing threats, and requires stronger protection guarantees.

Untrusted userspace processes interact with the kernel using system calls, passing arguments
by value (through registers) or by reference (in memory), as illustrated in Figure 1.1. When an
argument is passed by reference, and the kernel loads the same value twice, an attacking user process
can leverage the temporal window between the loads to modify the value in memory, potentially
triggering a kernel bug. Double-fetch bugs plague operating system kernels, but also extend beyond
to the similar OS-hypervisor interface [26–32, 34–36]. For example, the user could pass a buffer,
and its corresponding length as arguments, then later maliciously change the length to influence the
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Figure 1.2: Illustrating intra-process trust components for an application

kernel to access memory outside the buffer. A time-of-check to time-of-use (TOCTTOU) violation
occurs when the first read is used to validate an argument (example, the length above) and the
second read is to use the argument. More generally, a double-fetch bug manifests as system call
code which reads the same argument (passed by a user application by reference) two or more times.
Double-fetch bugs might be particularly difficult to identify, as the two reads might be in entirely
different parts of the kernel, or even in external code loaded through the eBPF interface or as
modules. Additional kernel security, such as through system call filters like SecComp [115], could
also introduce double-fetches if extended to include “deep argument inspection” (i.e., arguments
passed by reference).

A systematic mitigation for double-fetch bugs must guarantee that a system call will always
read the same argument values. Therefore, the mitigation must prohibit or hide all concurrent
changes to memory objects accessed by the kernel during the execution of a system call, including
writes from threads in the same process, other processes, or from concurrently executing system
calls. The userspace memory access interface can be tasked with providing the required guarantee
for argument accesses.

1.2 Intra-address Space Compartmentalization Overview

The complexity and rapid pace of change of modern software systems inevitably leads to a plethora
of bugs across the stack. Open source projects regularly encounter and fix a steadily increasing
stream of bugs and vulnerabilities in their codebases [124–126]. System developers heavily rely on
abstraction and isolation to tackle application complexity stemming from interacting subsystems,
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an extensive list of shared libraries, plugins, interpreted code and on-demand downloaded code,
interacting over untrusted I/O interfaces such as the network, disks, various accelerators, and
peripherals. Each software component hides much of its complexity behind an accessible interface
(commonly called Application Programming Interfaces or APIs). Traditional threat models have
resulted in isolation at a few security-critical interfaces. The operating system (OS) kernel tasked
with system management is already isolated from userspace processes running untrusted applications.
Commercial hardware provides the abstraction of privilege levels, allowing the kernel to reliably
isolate itself within a separate level. The kernel isolates applications from different users and
different applications from the same user using a common abstraction: processes. Processes protect
applications from other faulting or malicious applications, with isolated per-process virtual memory
spaces and kernel resources. These abstractions provide systems crucial security and robustness
guarantees. Applications cannot access other applications’ memory spaces, or the kernel’s data.
The kernel can gracefully handle an application faulting, killing the corresponding process without
affecting itself or other applications. Essentially, these abstractions work to mirror the trust relations
between components of the massive code base. However, existing interfaces fail to protect systems
against more recent threat models.

Rapid development in computing, supercharged by the explosion of the internet, has resulted in
applications which cannot trust all code executing within its process. A bug in the one logging
module allowed attackers to leverage the Log4J vulnerability to compromise entire server applications,
and remotely take over the machines running these applications. A browser, for example, contains
hundreds of shared libraries and executes code downloaded from untrusted websites. To prevent
website code, controlled by a remote adversary, from directly accessing local resources, modern
browsers are already compartmentalized into two components: an internet-facing rendering engine
running in one process interacting with a separate local system-facing kernel process using a well-
defined API over remote procedure calls (RPCs). This architecture is motivated by the browser’s
strong security requirements, but remains limited by the coarse-grained abstraction of isolation
(processes) available on traditional systems. Bugs in the sandbox within the rendering engine
can still compromise all other components in the sandbox, including the just-in-time compiler.
The first key limitations of the process abstraction is that all code within a process is equally
privileged and can equally access all of that process’ resources including memory. The second
limitation of this abstraction is that interactions between processes require system calls incurring
microsecond-scale overheads. The first limitation prevents applications from implementing and
enforcing barriers expressing the complex trust relations between code components. Applications
rely on complex software isolation techniques like sandboxing and software fault isolation, which
are buggy at scale. The second downside limits how finely applications can be decomposed into
processes, due to performance overhead considerations. However, the process abstraction is flexible
and widely supported, and remains the mechanism of choice for usable isolation.

Modern software requires an intra-address space compartmentalization mechanism that provides
strong isolation for application components running within the same address space (see Figure 1.2),
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with low-overhead nanosecond-scale operations to support compartments with short nanosecond-
scale execution timescales, all while maintaining the flexibility to support a variety of software
trust relationships. In this thesis, we highlight that the limitations of the process abstraction stem
from the software-hardware design of virtual memory. First, page-based virtual memory requires
permission and translation tracking at page granularity, and near-core permission caching buffers
(TLBs) whose entry count cannot scale with the rate of growth of memory. Second, the privileged
kernel is tasked with changing between memory permissions (involving changing page tables) and
incurs the unacceptable cost of kernel entry and exits.

Systems can implement secure and performant compartmentalization by moving key checks
and operations from the supervisor into the hardware. While the hardware is part of the trusted-
computing base, its view of virtual memory remains rooted in the designs of the 80s. A compart-
mentalized abstraction of virtual memory, with the hardware capable of tracking compartments and
enforcing the requisite permissions to memory, can eliminate the kernel overheads while preserving
strong security checks. Further, the hardware can accelerate specific common compartmentalization
operations for data and control flow if it is aware of compartments. Finally, operations which do
not benefit from hardware acceleration can be retained in software, retaining the accompanying
flexibility.

1.3 Thesis Contributions

This thesis aims to protect systems by redesigning interfaces to satisfy the security and performance
requirements of modern and future computing systems, against emerging threat models. While
the security of current systems is of paramount importance, the performance of these systems
must also satisfy strict deployment requirements. Foremost, we prioritize the security of our
proposed interfaces, and consider performance as a crucial secondary requirement. For the user-
kernel interface, we consider compatibility with the existing system call semantics as an essential
requirement. For intra-address space compartmentalization, we deem the flexibility of the interface
to support varying software use-cases to be vital for adoption.

We present two redesigned security- and performance-critical interfaces, specifically the user-
kernel boundary and intra-process trust domain boundaries. We add strongly-guaranteed protection
against double-fetch bugs to the system call interface. Further, we introduce a intra-address space
mechanism for isolating untrusted application parts. Finally, we present a comprehensive survey
of existing and proposed compartmentalization mechanisms to enable a principled comparison of
these mechanisms.
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1.3. Thesis Contributions

1.3.1 Midas

Midas presents a multi-versioning concurrency control mechanism, inspired from database systems,
for maintaining a key invariant during user data accesses from system calls: through a system call’s
lifetime, every read to a userspace object will return the same value. A security property derived
from this invariant is enforced — Midas uses kernel metadata to track userspace pages accessed,
maintains page-table permissions to enforce immutability and leverages page faults to on-demand
duplicate pages where necessary to preserve an original copy for a system call. A correctness
property is also described in this thesis, showing how the system’s execution remains correct
under execution with Midas. Since, the user-kernel interface is performance-critical and affects the
system’s performance on syscall-intensive workloads, Midas’ design optimizes for low overheads. As
concurrent writes to system call arguments are practically non-existent for well-behaved programs,
Midas strives to minimize expensive page duplications and relies on snapshotting for protecting
accesses.

Midas has numerous use cases. First, Midas defends against existing, even potentially unknown,
double-fetch bugs on current and future systems. Second, Midas can protect the kernel against
double-fetch bugs in dynamically-added code such as modules and eBPF code. Third, Midas can
enable system call filters to securely examine arguments passed by reference without introducing
vulnerable double-fetches. Finally, Midas can protect older systems, where modules or other
vulnerable components lack bug-fixing updates, with a single update to the kernel core.

We have implemented a Midas prototype for the Linux kernel, demonstrating its practicality,
and evaluated the system’s performance during system-call dependent workloads from the NAS
Parallel Benchmark Suite (NPB) and the Phoronix Test Suite (PTS). Midas results in an average
performance overhead of 3.7% on NPB and 3.4% on PTS. We also perform a security evaluation
to demonstrate that Midas successfully stops an attack against a vulnerable system call.

1.3.2 SecureCells

In this work, we also present a comprehensive set of objectives for a compartmentalization mechanism
to support widespread adoption. SecureCells presents a novel virtual memory architecture for secure,
high-performance, flexible intra-address space compartmentalization. SecureCells maintains the
strong security guarantees of process-based isolation for fine-grained compartments within a process,
with a mix of hardware and software support. SecureCells tracks the compartment executing on a
core, and implements access control to memory regions based on a supervisor determined permission
table stored in memory. Additionally, SecureCells provides unprivileged instructions to implement
fast compartmentalization operations, specifically inter-compartment calls, zero-copy permission
transfer to data regions, and to manage lifetimes for data regions. Each of these instructions
includes specific checks and controls to maintain specific security properties, including preventing
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privilege escalation, code injection and data races. Finally, SecureCells delegates operations to
software when the corresponding hardware implementation would bring no advantage.

This work also describes our prototype SecureCells implementation, including the RTL description
of an in-order core based on the RISC-V RocketChip design, a QEMU port for quick emulation,
porting of the seL4 microkernel operating system, and simplified versions of server benchmarks. We
investigate the performance characteristics of our prototype core, using microbenchmarks designed
to test the limits of access control, compartment switching and dataflow between compartments,
and compare them to related work. SecureCells’ in-order core can switch between compartments
(a key performance metric) in as few as 8 cycles, which compares favorably to state-of-the-art
compartmentalization mechanisms and is orders of magnitude faster than the traditional process
abstraction. We also demonstrate that SecureCells can help isolate the networking and data
storage of a memcached-like benchmark with a small (< 3%) overhead even for the smallest requests.
These improvements are a direct consequence of tailoring the software-hardware interface to the
requirements of modern programs.

Thesis statement

Critical interfaces underlying computing systems must adapt to support mitigating emerging
threats and to enable the performance demanded by modern applications. Interfaces at
key trust boundaries, e.g., between untrusted intra-process components and at the kernel-
userspace border, especially require strong isolation at low overheads.

1.4 Thesis Organization and Details

Thesis Organization. This thesis is distributed across three chapters. Chapter 2 describes Midas,
the systematic mitigation to kernel double-fetch bugs. Chapter 3 describes SecureCells, a novel
secure and performant mechanism for intra-address space compartmentalization. Finally, Chapter 4
contains a comprehensive comparison of compartmentalization mechanisms along qualitative and
quantitative metrics.

Bibliographic Notes. This thesis was supervised by my advisors, Prof. Mathias Payer and Prof.
Babak Falsafi. Sections of the thesis describe projects conducted in collaboration with academic
peers, namely Uros Tesic, Florian Hofhammer, Yuanlong Li, Siddharth Gupta, and Andres Sanchez.
This thesis contains contributions from the following conference publications:
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Protection”. In: 31st USENIX Security Symposium, USENIX Security 2022, Boston, MA,
USA, August 10-12, 2022. Ed. by Kevin R. B. Butler and Kurt Thomas. USENIX Associ-
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Chapter 2

Midas: Systematic Kernel TOCTTOU
Protection

Double-fetch bugs are a plague across all major operating system kernels. These bugs occur when
data is fetched twice across the user/kernel trust boundary while allowing concurrent modification,
violating an implicit assumption at this interface. Double-fetches enable an attacker to illegally
access memory, cause denial of service, or to escalate privileges. So far, the only protection against
double-fetch bugs is to detect and fix them. However, existing methods to find double-fetch bugs
are incomplete. The double-fetch problem also fundamentally prohibits efficient, kernel-based
stateful system call filtering. Thus, we propose Midas to mitigate double-fetch bugs and secure the
system call interface. Midas creates on-demand snapshots and copies of accessed data, enforcing
the key invariant that throughout a system call’s lifetime, every read to a userspace object will
return the same value.

Midas shows no noticeable drop in performance when evaluated on compute-bound workloads.
On system call heavy workloads, Midas incurs 0.2–14% performance overhead, while protecting
the kernel against any TOCTTOU attacks. On average, Midas shows a 3.4% overhead on diverse
workloads across two benchmark suites.
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2.1 Introduction

The operating system (OS) kernel provides isolation between processes and is a key component of
the system’s trusted computing base. Each untrusted userspace process runs under a dedicated
user in its own address space and must request resources (such as communication channels or
changes to its address space) from the trusted kernel. The userspace/kernel interface forms an
explicit trust barrier; all data that crosses this boundary in either direction must be carefully checked
by the kernel. Userspace processes attack the kernel by issuing system calls (syscalls) that then
trigger kernel bugs, elevating the privileges of the process. A common class of kernel bugs are
so-called double-fetch bugs [117, 128, 137, 143]. They occur when higher-privileged code, such
as the kernel, reads the same data from the lower-privileged address space twice. Double-fetch
bugs are a race condition between threads of different privileges. A time-of-check to time-of-use
(TOCTTOU) violation occurs when the first read is used to check a condition while the second
read is used to modify state. An example of a double fetch bug is when the kernel reads the length
of a buffer from userspace, allocates a kernel buffer, then reads the length a second time to finally
copy the data from userspace to the kernel. An attacker may concurrently overwrite the length
of the buffer (with a larger number) after allocation, causing the memory copy to overflow the
kernel buffer. Double-fetch bugs are a frequent problem in kernels and hypervisors [26–32, 34–36].
Watson [140] blames an unfixable TOCTTOU constellation as a reason for the generic insecurity
of syscall wrappers. Syscall filtering wrappers require that data read from userspace for the initial
check remains the same when the kernel later uses it for computation. Therefore, such filters can
currently only check arguments passed by value. Midas enables “deep argument inspection” for
SecComp [115, 116] and Janus [134] (i.e., checks arguments passed by reference). Without Midas,
such inspection is impossible: these checks introduce double fetches, and consequently TOCTTOU
bugs.

To mitigate double-fetch bugs in the kernel, a system must prohibit concurrent changes1to
memory accessed by the syscall. Attackers may find crafty ways to trigger such concurrent writes,
including: i) direct writes from userspace (e.g., from concurrent threads), ii) kernel writes from
syscalls (e.g., from concurrent syscalls), iii) modifying address space mappings, iv) concurrent
write syscalls to a file that alters mapped file pages, and v) storing arguments on device-backed
pages, leveraging devices to trigger concurrent writes. To prevent attacks, all concurrent writes
must be prohibited.

“Through a syscall’s lifetime, every read to a userspace object will return the same value.”

We base our defense on one key invariant, stated above. From this invariant we derive a security
property ensuring that every read during the execution of a syscall is tracked. Subsequent reads

1The attacker model includes both concurrent and parallel writes. For readability, this chapter refers to both
writes as “concurrent”.
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from the same address will always return the same value. For performance, multiple versions of
an object may exist simultaneously, depending on when the syscall was started and how many
concurrent syscalls are in flight. Orthogonally, we derive a correctness property that ensures the
sharing of the correct version among inflight syscalls. All writes end up on the most recent version
of the objects, guaranteeing forward progress. While we implement this invariant in our Midas
prototype for the Linux kernel, this defense applies to any modern OS kernel.

Our evaluation of Midas demonstrates low performance overhead. On workloads from the NAS
Parallel Benchmarks suite, Midas shows an average performance overhead of 3.7%. Similarly, its
performance overhead on more kernel-intensive workloads from the Phoronix Test Suite is 3.4%

(with negligible memory overhead). Our security evaluation demonstrates how Midas successfully
stops all attacks against vulnerable syscalls. Our contributions are:

• Distillation of TOCTTOU attack vectors into an invariant that protects the kernel against
malicious concurrent modifications,

• Midas, a design that prohibits and detects TOCTTOU attacks against modern kernels,
prohibiting their exploitation, enabling developers to detect TOCTTOU bugs, and providing
the foundation for safe syscall interposition and validation, and

• An efficient implementation of Midas for the Linux kernel that exhibits low (3.4%) performance
overhead.

2.2 Background

Midas orchestrates several mechanisms within the Linux memory subsystem to provide its protection
guarantees. Linux uses architecturally defined per-address space page tables to define mappings to
pages. Midas protects these pages by temporarily marking them read-only in the page tables. This
section provides background information necessary to reason about why and how Midas protects
syscalls from concurrent writes.

2.2.1 Page Tables and Memory Protection

Virtually all contemporary architectures (e.g., x86, ARM, SPARC, and RISC-V) implement separate
virtual and physical address spaces (AS) based on fixed-size regions called pages. Programs execute
in their virtual address space while caches and main memory are accessed with physical addresses.
Architectures rely on page tables orchestrated by the operating system to translate between these
address spaces and to protect memory accesses. Page tables are arranged as radix trees, where
different bits of the virtual address are used as indices into successive levels of the page table.
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At the leaf page table, a unique page table entry (PTE) stores the translation and protection
information for a page.

A PTE in x86-64 is a 64-bit value holding, among others, the following metadata: a Present
bit (P) to mark the PTE’s validity; Protection bits (NX, R/W, U/S) to restrict the type of access
and the privilege level of the accessing code; Software-usable bits (SW1-SW4) that are ignored by
the MMU and used by the operating system to store metadata; and a Page Frame Number (PFN)
to identify the page’s physical address. The U/S separates kernel (supervisor) pages from user
pages. The R/W controls whether pages are writable or not.

An access using a virtual address first reads the corresponding PTE’s present bit to check its
validity. Then, the access checks whether the access is allowed from the executing code’s privilege
level by checking the U/S bit and whether the read/write access is allowed by checking the R/W
bit. When all checks pass, the processor uses the PFN to find the data in the caches or in memory.
When a check fails, the processor raises a protection fault/exception and moves control to an
OS-specified exception handler.

Reading PTEs from a multi-level page table is an expensive operation, and modern processors
cache PTEs in caches known as Translation Lookaside Buffers (TLBs) to reduce the cost of
subsequent accesses. On most architectures, the OS is responsible for keeping TLBs coherent
with the page table, necessitating entries to be flushed from TLBs when the corresponding PTE
is updated. Modern multiprocessing CPUs have a TLB for each core, and PTE information may
be cached in one or more TLBs. Therefore, when the OS changes a PTE value, the OS is also
responsible for flushing remote TLBs (i.e., on another cores) as required. Commercial-off-the-shelf
systems typically rely on an inter-process interrupt (IPI) to the OS running on a remote core followed
by a local TLB invalidation. Due to the scalability limitations of broadcasting IPIs to remote cores,
the TLB invalidation process is highly optimized in software, and has received dedicated hardware
support in more recent processors and in research proposals [108, 132, 150].

2.2.2 Linux Memory Subsystem

Linux implements various abstractions—including processes, files, and shared memory—using
the architecture’s page tables. All threads within a Linux process share a single address space,
and consequently use the same page table for translation and protection. Each page within
the process’ virtual address space may be mapped or unmapped. Mapped pages have separate
read/write/execute permissions. Programs typically have write-execute exclusion, meaning code
pages cannot be written to and data pages cannot be executed. These permissions map directly
to page-table bits. Pages in Linux may also be copy-on-write (COW) pages, which are mapped
read-only in multiple address spaces, but duplicated when any process writes to it, resulting in a
separate copy.
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Linux maintains userspace and kernel mappings to memory in distinct parts of the virtual address
space. The PTE entries for kernel mappings, located in the top half of the address space, have the
U /S bit set. These kernel mappings are identical for all address spaces, and are kept consistent
across the corresponding page tables. In contrast, the PTE entries for userspace mappings, located
in the bottom half of the address space, have the U /S bit reset. A userspace page has at least one
userspace mapping and at least one kernel mapping. Shared userspace memory is implemented by
mapping a page in more than one address space.

Files in Linux occupy a separate namespace (rooted at /). However, when files are read or
written, parts of the file are cached in the kernel’s page cache (which consists of pages mapped in
the kernel’s address space). Moreover, programs can explicitly map pages from a file, in which
case the corresponding pages from the page cache are also mapped at userspace addresses in the
process’ page table. Mapped file pages can therefore be accessed by the file-system driver using
kernel addresses, and userspace programs using userspace addresses. Userspace pages not backed
by a file are called anonymous pages.

Processes in Linux can also share memory pages, which might be set up implicitly by memory
mapping pages from the same files, or explicitly through named shared memory objects. The same
physical page might be mapped in two or more processes’ virtual address spaces, and be accessible
through the respective virtual addresses in each process. Linux maintains a reverse map for each
physical page mapped to user virtual memory, linking from the pages’ metadata to the PTEs for
each mapping. Reverse mappings enable Midas to precisely and efficiently identify all possible
addresses that may be used to modify the contents of an user page.

2.2.3 Supervisor Memory Protection

Kernel accesses to userspace memory use userspace mappings, introducing the risk of the kernel
confusing userspace data structures for kernel data structures. An attacker can exploit this behavior
via bugs in the kernel. Essentially, the attacker needs to set up either data structures or code within
its accessible memory, then exploit a kernel bug to make the kernel use these data structures, or
execute this code. This class of attacks is known as confused-deputy attacks, since the privileged
software (kernel) tasked with isolating userspace processes confuses its own code/data with the
user’s.

Architectures and OSs have mitigated these vulnerabilities by introducing supervisor memory
protection. Under supervisor memory protection, kernel read/write/execute access to userspace
memory raises a fault (depending on the state of a per-core system register). On x86-64, these
features are known as Supervisor Memory Access Protection (SMAP) for data accesses, and
Supervisor Memory Execution Protection (SMEP) for code accesses. Bits in the CR4 register track
whether these protections are active, and the privileged stac/clac instructions are used to quickly
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Target thread Attacker threadMemory state

Enter a syscall

Read(X) = 42

Read(X) = 0

X=42

X=0 Write(X, 0)

Exploit

X=0

Figure 2.1: Example of a double-fetch bug.

enable and disable SMAP. In the OS, all accesses to userspace memory are made explicit, using
transfer functions to read from and write to userspace memory. Any unintended access outside
these functions causes a hardware fault, indicating a kernel bug or an attack. Linux implements
the copy_{from/to}_user functions, which use the access control instructions to disable SMAP
before accessing userspace data, and then re-enable SMAP afterwards. Transfer functions make
kernel accesses to userspace data explicit, allowing Midas to reliably track and protect every kernel
fetches from userspace memory.

2.2.4 Double-Fetch Bugs

Double-fetch bugs occur when a privileged environment (such as the kernel) reads untrusted memory
multiple times, returning different values each time. Such a situation is depicted in Figure 2.1,
where the value of X in memory is changed by an attacker between two reads by the target thread.
Exploiting such a bug requires a race condition i.e. accesses to memory in a particular order
across threads. A specific variety is the time-of-check to time-of-use (TOCTTOU) bug which
occurs when the first fetch validates an object’s value and the second fetch uses the same object’s
value. TOCTTOU bugs are widely studied in file systems, where the API makes it possible to
swap the file after validating the access rights [43, 97, 103, 127, 141]. TOCTTOU bugs affect
both kernel [59, 137] and dynamically-loaded driver code [32, 33]. Wang et al. [137] showed that
double fetches appear not only in kernels, but wherever there is a trust boundary to cross (e.g.,
kernel—hypervisor [143] and hardware—kernel boundaries [79]).
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Userspace Kernel Device

Intra AS User mapping DMAExisting
mapping Cross AS Kernel mapping MMIO page

mmap mm_populate New
clone DMA/New

mapping
swap MMIO page

Table 2.1: Attack vector classification for TOCTTOU exploits.

2.3 Threat Model

The attacker has access to a user account on the target machine. They can execute arbitrary
userspace code, including syscalls. Some system calls have double-fetch vulnerabilities which
the attacker wishes to exploit (e.g., for privilege escalation). The attacker may execute arbitrary
sequences of syscalls on multiple CPU cores in parallel, or concurrently on the same core. However,
the attacker is not allowed direct access to devices, as only the privileged root user is permitted
this capability.

Midas mitigates any unintended corruption or information leakage in the kernel or in other user
processes that arises through double-fetch bugs. Hardware attacks such as Rowhammer [89] or
side-channels [65], and file-system TOCTTOU attacks [97, 103, 127, 141] are out of scope.

2.4 Attack Classification

Midas guards data processed during a syscall’s execution against concurrent modification. We
label the data fetched twice as vulnerable data. In this section, we classify attacks based on two
criteria: the privilege level of the writer, and whether the mapping used for writing exists at the
time of the first read. Table 2.1 summarizes our classification. Importantly, this classification helps
understand existing attacks and how to protect against them, and where future attacks (bugs) may
arise. The device column corresponds to attacks where a device (e.g., a network card, GPU, FPGA)
is responsible for modifying vulnerable data. Watson [140] describes a subset of the following
attack vectors.

Existing userspace mappings to a page can be used to modify vulnerable data which the targeted
syscall is reading. Userspace can directly write to a mapped page, irrespective of whether the
mapping is in the same address space or not. Alternatively, a concurrently executing syscall can
also modify the vulnerable data in a confused-deputy attack. When the attacker passes a pointer
to the vulnerable data to the syscall as a user buffer in which the syscall can return some data, the
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kernel’s write to the buffer can modify vulnerable data. For example, the read syscall takes an
argument pointing to a user buffer where the contents of a file will be copied to. Another example
is rt_sigaction, where the kernel writes to a user buffer pointed to by the oldact argument. In
both of these attacks, the malicious write uses a userspace mapping. A protection mechanism
must account for all userspace mappings to pages containing vulnerable data at the time of the
targeted syscall’s first read.

Existing kernel mappings to a page also mapped in userspace can be leveraged by an attacker
in a confused-deputy attack. Here, the attacker maps a file-backed page from the page cache into
a userspace process and then passes as an argument in this page to the target syscall. The attacker
then triggers a concurrent write syscall to modify the vulnerable data using kernel mappings for
the page cache pages. The kernel does not explicitly track kernel addresses mapping to a page,
but the file-system driver does explicitly find the page before writing to it. A protection mechanism
must instrument file-system drivers to account for writes via kernel mappings to vulnerable data.

The kernel might create new mappings to the vulnerable data between the double fetches by
the target syscall, bypassing any protective permissions installed by the transfer function in PTEs
at the time of first read. An attacker can call mmap and clone to create a new mapping to the
vulnerable data before writing to it. The page-table mapping might not be created at the time of
the malicious syscall, but lazily when the attacker writes to the vulnerable data due to demand
paging. In a more involved variant, the attacker can use the kernel as a confused deputy which
touches the unmapped page and maps it in, then writes to the vulnerable data. In all the above
vectors, the function populating pages for a process (mm_populate on Linux) is creating the new
mapping. A protection mechanism must instrument any syscalls and other kernel mechanisms
which can create new mappings.

Swapping may also create a new page-mapping. If the attacker writes to a page that was
previously swapped to disk, but later swapped in to be read by the target syscall in a different
address space, the kernel might lazily reinstate the attacker’s mapping to the page. The swapping
mechanism must be protected.

Midas protects against all the previously-listed attack vectors. In the absence of any other
syscall which can create new userspace mappings to vulnerable data, Midas’ protection is complete
against writes from both user and kernel code.

Finally, a device might modify vulnerable data if it is either allowed to DMA (direct memory
access) to the page, or if the page is memory mapped (MMIO) and is actually backed by the device.
In the latter case, external factors can change the vulnerable data. Existing discretionary access
control rules typically prevent users (except a superuser) from mapping device-backed pages into
their address spaces. Such users are also disallowed from configuring DMA devices. Thus, device
modifications to vulnerable data fall outside our threat model and are not protected by Midas.
However, Midas can be extended to protect against modifications by DMA devices on processors
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supporting IOMMUs or similar methods for access control [94]. As a superuser can modify kernel
code via kernel modules, protecting against attacks from this user falls outside our threat model.

2.5 Midas Design

Midas maintains a single, core, invariant: through a syscall’s lifetime, every read to a userspace
object will return the same value. By construction, the invariant guarantees that double-fetches
in syscall code will read the same data, eliminating TOCTTOU bugs. Midas maintains the invariant
by tracking snapshots of objects when first accessed, lazily making copies when the object is
concurrently written and accessing the correct copy on subsequent reads. Copies are only maintained
during syscalls’ lifetimes, and are released as soon as no syscall needs it. Consequently, each
userspace object has a single copy when no syscalls are running. The invariant also means that only
accesses to userspace objects by the kernel need to be protected. Accesses to userspace objects
from userspace and kernel objects by kernel code remains unaffected.

Midas’ implementation builds on the protection mechanisms provided by existing virtual memory
implementations. On modern platforms, virtual memory protection is set up by the OS at page
granularity by setting bits in page table entries (PTEs). These permission bits are checked by
the hardware on memory access, efficiently enforcing the permissions, and raising a fault when
they are violated. For performance, Midas implements its invariant at page granularity, not object
granularity: when a syscall reads from userspace, every page touched by that read is covered, not
merely the bytes read. Page-granularity protections are conservative compared to byte-granularity
protection and Midas maintains its invariant. As a side effect of its implementation, Midas does
not distinguish accesses to different parts of a page (intra-page false sharing). False sharing leads
to unnecessary page duplications, incurring performance overhead on highly shared pages, but does
not affect correctness.

For an object spanning multiple pages, Midas’ design sequentially protects each page before
reading from it. The leading pages containing the object are protected before the later pages,
allowing an attacker to potentially modify the later pages before the syscall first reads them.
However, the attacker is prevented from modifying any of these pages after the syscall’s first read,
ensuring that double fetches respect the invariant. If the syscall code contains a TOCTTOU bug,
the modification will be visible to the first fetch itself (which is used for checking for validity of
the data) and will lead to the data being rejected straightaway. Midas’ invariant therefore prevent
exploitation of double-fetch vulnerabilities even when the fetched objects span multiple pages. We
elaborate on this case with an example in Section 2.5.2.

A major requirement for Midas is to allow concurrent access to pages by user/kernel code
running in parallel with a syscall which reads from the same pages. This requirement prevents
deadlocks and improves performance vis-a-vis a naïve design which blocks all other tasks writing to
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pages already read by a syscall until the syscall completes. The naïve design can deadlock because
it introduces dependencies between tasks for forward progress, which we illustrate in the following
example of a system with two tasks (A and B):

• Task A issues a blocking syscall which reads a user page and blocks, then

• Task B writes to the same user page before issuing a syscall which resumes task A.

In this case, if Task A’s read to the page precedes Task B’s write, Task B will be blocked waiting for
A to complete its syscall. Task A will also remain blocked waiting for Task B’s syscall, introducing
a circular dependency, leading to deadlock. The naïve design also introduces unnecessary delays in
other cases, such as the one described below, again with two tasks (C and D):

• Task C reads from a page and sleeps for a long while, but does not read from the page a
second time, then

• Task D writes to the same page after task C has read from it, and blocks until Task C
completes and is unnecessarily delayed.

A more performant approach is to duplicate the concurrently accessed page: the copy is kept for
task C for future fetches, and task D can write to the original and proceed without delays.

Midas must maintain multiple versions of a page read by a syscall to maintain its invariant in
the face of concurrent writes. Midas introduces snapshots and copies to keep track of page versions.
Snapshots are logical views of the page’s contents at a particular time, while the actual contents
are stored in one of many copies. Each snapshot maps to a copy, allowing the contents of the page
at the time of creating the snapshot to be read. If multiple snapshots are taken without intervening
writes to the page, these snapshots will map to a single copy, reducing Midas’ space overheads
and performance overheads for creating copies. Midas maintains a snapshot of every page when
first read by a syscall. On a double fetch by the same syscall, the copy mapped to the snapshot is
accessed, ensuring that the data read is the same as the first time. The latest copy of the page is
used for all writes, by the syscall as well as from concurrently running tasks, updating the page as
seen from userspace. Midas’ design draws parallels to multi-version concurrency control methods
for databases based on snapshot isolation [146]. Transactions read from a snapshot of the database
state from when they started, and writes update the up-to-date state of the database. Essentially,
Midas is a multi-versioning system for pages where syscalls read from immutable versions to prevent
TOCTTOU bugs, and syscalls and userspace both write to a single mutable version holding the
latest state of the page.

22



2.5. Midas Design

C0(r) C0(r)

unprotected
unduplicated

protected
unduplicated

new
syscall read

syscall end

unprotected
duplicated

u/s write

protected
duplicated

u read, u/s write u/s read

release snapshots/copies

CL(w)

States

C = {CL}

CL(r)

C = {CL}

CL(w)

C = {C0, CL}Copies (C)

Snapshots (S)

CL(r)

C = {C0, CL}

u/s read

0 1 2 3

L{   } {S0,S1,S2,L}{S0,S1,L}{S0,S1,L}

syscall
read

u/s
write

u read, u/s write,
old syscall read

Figure 2.2: State diagram for a page in Midas. Reads/writes from userspace/syscall code are
marked (u)/(s) respectively. Shading is used to represent the mapping from snapshots to copies.

2.5.1 Page State Machine

To track multiple versions of the contents of a page when being concurrently accessed by numerous
tasks, from userspace or during a syscall, Midas implicitly maintains a per-user page state machine.
For a page, its corresponding state machine i) tracks snapshots for currently executing syscalls
which have read it, ii) tracks copies of the page, and iii) maintains the mapping between snapshots
and copies necessary for providing the correct contents to subsequent reads.

Figure 2.2 shows the state machine for a single page. At every state, the page has two associated
sets:

1. the copies set C = {CL ,C0, . . . } holds multiple copies of the page over time, and

2. the snapshots set S = {L,S0,S1, . . . } tracks logical versions of the page, each corresponding to
one executing syscall and each mapping to a copy.

Reads from kernel code in a syscall use the snapshot’s corresponding copy. Writes from user/kernel
code and reads from userspace access the latest copy CL, which is mapped in processes’ address
spaces. All other copies are read-only (no matter what the original page protection is), and are
used for providing snapshots to syscalls. Read-only pages only use states 0 and 1, and writes lead
to segmentation faults (as they do on non-Midas systems). Knowing which state the page is in
allows Midas to differentiate between faults due to Midas protecting pages and faults due to actual
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Figure 2.3: Diagram illustrating Midas preventing exploitation of a double fetch of object X.

permissions violations in userspace programs or the kernel. The latest copy CL of read-only pages
remains read-only in both protected states (1 and 3). In the following paragraphs, we describe
how the state machine for a single, writable user page transitions between its states, what triggers
each transition, and what changes are made to the copies and snapshot sets on a transition. In
Figure 2.3, we illustrate how the state machine protects the syscall from Figure 2.1.

State 0. A page starts as (unprotected, unduplicated). In this state, there is a single
copy CL and a single “snapshot” L. The snapshot L refers to the latest version of the page which
changes over time, and is the only mutable snapshot. All processes where this page is mapped have
unrestricted userspace read and write access, and unrestricted kernel write access. The remaining
operation, a read from kernel code, triggers a transition to State 1. In Figure 2.3, the snapshot L

initially contains the value 42.

State 1. The page in State 0 transitions to the (protected, unduplicated) state as soon
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as a syscall reads from it. First, Midas marks the page’s latest copy CL read-only in all processes
where the page is mapped, trapping writes to the page but permitting concurrent userspace reads
to continue. A new snapshot, S0 linked to this syscall is allocated for this page. For the rest of its
lifetime, this syscall will only read this page from this snapshot. Both snapshots S0 and L refer to
the same copy CL (shown by the blue cross-thatch in Figure 2.2). Prior to any writes to this page,
any other syscalls which also read the page get their own snapshots (e.g., S1) all pointing to the
single copy CL. The page’s read-only status causes the hardware to fault on any write, notifying
Midas to transition the page to State 2. In Figure 2.3, the page transitions to State 1 when the
syscall first reads it, and adds a snapshot S0.

State 2. A page in State 1 transitions to the (unprotected, duplicated) state on any
write from user or kernel code. Midas duplicates the old contents of the page from copy CL,
creating a read-only copy C0 (shown by green shading in Figure 2.2). Snapshots except L (i.e. S0

and S1) previously mapping to CL are mapped to the copy C0. The write then modifies the latest
copy CL, which is made writable again. Note how, in this state, any read using the snapshots S0

or S1 reads from the unmodified copy C0 while writes directly affect CL. Certain syscalls such as
rt_sigaction both read and write from the same user page. A write by rt_sigaction to the page
it has previously read will update the page’s latest copy CL, but not the duplicate copy C0. Midas’
write policy ensures that the copy CL always holds the latest contents of the page, up-to-date
with all the writes to the page, from both user and kernel code. Further, Midas does not need to
merge writes from userspace and syscall code on a syscall’s completion, since both directly modify
the same copy CL. All other copies Ci are immutable. When the attacker writes to the page in
Figure 2.3, the page moves to State 2, linking the snapshot S0 to a copy holding the original value
42. The writes from both the attacker and the syscall itself both affect the copy CL, but the read
from the syscall accesses the snapshot S0 and reads the same value as the first time.

State 3. A separate syscall subsequently reading the page in State 2 transitions it to the
(protected, duplicated) state. The new snapshot, S2, points to the latest copy CL. State 3 is
similar to State 1, except that there are different copies of the page used for reading by different
syscalls. The syscall for which S0 was allocated will read from the copy C0, while the syscall for
which S2 was allocated will read from copy CL. On a write, the page transitions to State 2 and is
duplicated again, creating another copy C1: snapshot S2 maps to C1 while snapshots S1 and S0

continue to map to C0.

Releasing snapshots. Midas uses snapshots to enable a syscall to read the same data from
a page during its lifetime and releases snapshots when syscalls complete. Releasing a snapshot
is possibly accompanied by a state transition and the release of the mapped copy. If Si mapped
to the latest copy CL, Midas cannot free the copy since userspace is using it. In this case, the
page must be in State 1 or 3, and CL is read-only. After removing Si , if L is the sole remaining
snapshot mapped to CL, Midas makes the page writable, moving to State 0 or 2 from State 1
or 3 respectively. If Si is mapped to any other duplicate Ci , Midas frees the copy along with the
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snapshot if Si is the last remaining snapshot mapped to Ci . If the page was in State 2, CL was
writable and unmapped by any snapshot, so Midas changes the page to State 0. This transition is
shown in Figure 2.3, where the snapshot S0 and the copy C0 are both discarded. If the page was in
State 3, CL was read-only and mapped by some other snapshot, so Midas moves the page to State
1. Recall that all snapshots Si except L are immutable. Any data written by the syscalls directly
affect L. Therefore, dropping a snapshot Si is trivial and does not require writes from the syscall
to be merged into the latest copy.

2.5.2 Discussion

Correctness of syscalls directly updating snapshot L. Midas’ design lets all writes, including
those from syscalls, to directly update the latest copy of the page CL and this property maintains
correctness of system execution. We now show that there is a valid safe execution trace of a system
not protected by Midas which generates the same sequence of writes to the page, and therefore
generates the same contents of the page when the syscall ends. We define a safe trace as one
that has no writes to vulnerable data between double fetches by the kernel, and therefore does not
trigger any existing TOCTTOU bugs. By showing that the final contents of memory after a Midas
syscall has a corresponding execution without Midas (which we assume to be correct) leading to
the same contents, we can conclude that the execution of the Midas syscall is also correct. For this
proof, we assume that no syscall reads the same object after writing to it (r-w-r pattern). Such
syscalls do not exist in the Linux kernel, and are discussed below. Therefore, our syscalls write to
an object after completing all of their reads of that object.

Consider a page holding a single-byte object O0, and the sequence of operations to this byte
during a Midas syscall be Ops = {Op0,Op1, . . . }. Each operation is a tuple (r /w,k/u) specifying
whether the operation was a read or a write, and whether the operation was due to a user or kernel
instruction. Suppose there was no attempt to exploit a TOCTTOU bug, i.e., between any two read
operations by the same syscall, there was no write to this object. In this case, Midas reads the
same value from its snapshot of the object as is present on the latest version. The same sequence
of operations on a non-Midas system would be valid and safe, since the object value does not
change between the kernel’s double fetch and the syscall reads the same value on this system.

Assume there was an attempt to exploit a TOCTTOU bug: a write Op1 exists between two
syscall reads Op0 and Op2. Midas protects the syscall ensuring that Op2 does not see the effect of
Op1 by reading from a snapshot instead of the latest copy CL. Since our syscalls are assumed to
not contain any r-w-r pattern, any writes by the syscall happen after Op2. Let us assume that the
syscall’s write is Op3. We can generate a valid, safe execution on a non-Midas system by moving
the attacker’s write to after the last read by the syscall, i.e., Ops = {Op0,Op2,Op1,Op3}. The
syscall in this system reads the same value both times, and hence has the same execution as that
in the Midas case. The value of the object when the syscall completes is that written by Op3 in
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System Call Exemption reason

futex Relies on concurrent write
execve Remaps address space
write Invulnerable, improves performance

Table 2.2: System calls uninstrumented by Midas.

both cases (or that written by Op1 when the syscall does not have a final write). Since the syscall
has the same execution and the final value of the object is the same, the execution of the Midas
system is the same as that of the non-Midas system. In general, any trace of operations on a
Midas system can be translated to a valid, safe trace on a non-Midas system by moving malicious
writes to an object to just after the last double fetch of that object. Multiple syscalls in Midas can
therefore write to the same object without affecting correctness, because an equivalent, valid, safe
non-Midas trace exists where all the writes have been postponed, in the same order to after the
double fetch reads.

Exemptions. Syscalls such as futex rely on user data changing between double fetches to
implement their functionality and cannot be protected by Midas. These syscalls are listed in
Table 2.2. The futex syscall implements a fast synchronization mechanism for userspace and relies
on atomic writes from concurrent userspace threads to update a condition the syscall is waiting
for. Subjecting a futex syscall to Midas’ invariant will prevent it from ever waking up the waiting
task. Such syscalls cannot be protected by Midas, and we implement an exemption list to prevent
transitions in the state machines of pages read by these syscalls. The code for exempted syscalls
must be manually inspected for double-fetch vulnerabilities. Crucially, exempting these syscalls
from Midas’ protection does not affect the security of other syscalls containing double fetches.
Any writes from these syscalls are subject to the same rules described in the state machine, and
cannot break Midas’ invariant. Midas can also implement finer-grained exemptions based on syscall
parameters. Those were not necessary for Linux.

Syscalls with read-write-read patterns. A (hypothetical) syscall that reads from an object,
writes to it, and then reads back the updated object cannot be protected using Midas. Midas’
invariant will ensure that the second read is identical to the first, and does not reflect the intermediate
write. Such syscalls must remain exempt from Midas’ instrumentation. During extensive tests, we
did not find any other syscall which exhibits this behavior in the Linux kernel.

Syscalls with false sharing. Another hypothetical type of syscall could struggle with Midas’
instrumentation due to false sharing. Suppose a page contains two objects, O0 and O1, and a
syscall sequentially reads O0 then O1. Due to Midas’ invariant being enforced at page granularity
and false sharing of the page between these objects, Midas guarantees that the value of object
O1 read is the same as what was contained when it first read object O0. A syscall requiring the
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Figure 2.4: Diagram illustrating Midas preventing exploitation of a double fetch of an object X
spanning two pages.

value of O1 to change between these two points in time would not work with Midas’ protections.
Such a hypothetical syscall, requiring concurrent modifications to its arguments, could exist to
support some synchronization mechanism similar to a futex and can be safely exempt from Midas’
invariant. During extensive tests, we did not find any other syscall which exhibits this behavior in
the Linux kernel.

Example: Objects spanning multiple pages. Figure 2.4 shows Midas protecting a syscall
which has a double fetch for an object spanning multiple pages. Here, the two pages containing the
object X are accessed as X[0] and X[1]. The attacker tries to attack the syscall by changing the
value of the second page: i) between the syscall’s first reads of X[0] and X[1], and ii) between the
first and second fetches of X. Midas ensures both fetches return X=(42,0). Critically, any existing
TOCTTOU bugs are not triggered since both fetches read the same, possibly invalid, value of the
object. Note how the situation is identical to one where the malicious write to X[1] happens before
the syscall starts.

Preventing deadlocks by design. Midas’ design is free of deadlocks, and exempts syscalls
which require violation of its invariant from triggering particular state-machine transitions. Userspace
reads always succeed, using the latest copy CL of the accessed page. Writes from userspace and
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kernel code succeed directly if the page is in State 0 or 2, and trigger a fault otherwise. Handling
these faults involves creating a new copy of the page and setting the page writable. Reading
from kernel code involves creating a new snapshot and setting the page read-only. None of the
aforementioned operations relies on other operations on the same page to complete and all are
finite time. None of the operations on a page rely on operations on other pages. A single, per-page
lock can serialize operations on that page and assure forward progress.

Detecting double fetches. Midas’ state machine for pages enables the precise detection of
double fetch bugs, turning it into an effective sanitizer and developer debugging tool in addition to
being an efficient mitigation. When a syscall first reads from a user page, it creates a snapshot
of that page. On future reads, the snapshot is used in order to maintain the invariant. While
reading from a page, implementations must check if a snapshot exists for the syscall: if yes, the
snapshot is used for the read, otherwise a new snapshot is created and then used for the read. The
existence of a snapshot means the syscall had previously read from this page and had then created
this snapshot, implying a double fetch. Unfortunately, this approach is prone to false positives due
to false sharing. The two reads might read from the same page, but access entirely disjoint bytes.
Midas currently reports double fetches at page granularity. A precise sanitizer could maintain a
bitmask of accessed bytes to prune false positives.

Double-fetch exploition using speculative execution. Speculative execution attacks (SEA)
on modern processors leverage speculative execution of instructions to bypass permission checks
and illegally access and leak information. Assuming the presence of specific microarchitectural
optimizations, an attacker may speculatively bypass Midas’ protection, and leverage a double-fetch
bug to leak information from the kernel. However, an attacker cannot mount an SEA to corrupt
kernel state as processors eventually discard the results from incorrect speculation and roll back to
the correct execution path where Midas prevents double fetch exploitation. Moreover, the SEA
attack relies on load-to-store forwarding between logical threads on a simultaneously multi-threaded
(SMT) processor, an optimization described in an academic proposal [54] but not implemented
in contemporary commercial processors. Finally, the entire sequence from the attacker’s illegal
write to the victim syscall leaking sensitive kernel information must complete within the attacking
thread’s speculative window, typically lasting up to a couple of hundred cycles. Consequently, the
victim syscall must use the value from the second read immediately after userspace memory copy.
Given the requirements for this attack, including experimental hardware optimizations, strict timing
requirements and the need for specific code patterns, we consider this attack theoretical, rather
than practical. A hardware fix for this attack scenario is possible, restricting results from potentially
faulting writes from being speculatively forwarded to a different thread. When the attacker and
victim execute on separate physical cores, this attack is impossible as speculative writes are not
forwarded across cores. Next, we describe the steps of this potential attack vector.

For this attack, we assume that the attacker and victim run on two logical hardware threads
running on a single physical core on an SMT processor. The steps of the attack are described
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Figure 2.5: Illustration of a theoretical speculative leakage attack against Midas’ protection. The
attacker uses the core’s shared load-store queue (LSQ) to forward the value from the attacker’s
illegal speculative write to a protected page to the victim syscall’s read. The incorrect speculation
will be rolled back, but can be used to transiently leak a kernel secret into a side-channel.
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below, and illustrated in Figure 2.5.

1. The victim syscall fetches a user object for the first time, marking the corresponding page as
protected (State 1),

2. The attacker thread starts speculation behind a long-latency operation (e.g., a last-level
cache miss for a data read),

3. The attacker speculatively writes to the protected page,

4. The attacker’s write is held in the core’s shared load-store queue, and the page fault (for
writing to a read-only page) is delayed till the commit phase,

5. The victim syscall initiates the second fetch, and speculatively reads the attacker’s write from
the shared load-store queue,

6. The result from the speculative read is forwarded to dependent instructions in the victim,
causing a side-channel leakage of kernel secrets.

7. The attacker finishes the long-latency instruction and ends speculation,

8. The core rolls back the attacker execution, including the illegal write,

9. The core rolls back the victim’s execution based on the illegal read, and

10. Both the attacker and victim continue on an architecturally legal execution path. The attacker
reads the victim’s secret from a side-channel.

2.6 Midas Implementation

Our Midas prototype implements the state machine described in Section 2.5 on Linux version 5.11,
targeting the x86-64 architecture. A page protected by Midas transitions between states on either
a kernel read to user memory, or when user or kernel code writes to protected, read-only memory
(see Figure 2.2). Midas can be implemented on any operating system kernel that i) systematically
uses transfer functions for reading from userspace, and ii) on any architecture which implements
hardware-controlled access control to memory through page tables. The first requirement enables
Midas to implement transitions on kernel reads from user memory. The Linux kernel uses the
raw_copy_from_user interface which we instrument for our prototype. The second requirement
causes the hardware to raise a fault on writes to Midas-protected pages, directing execution on the
processor to a pre-defined exception handler in the OS. Our prototype instruments Linux’ fault
handler in the function handle_pte_fault to implement the write-triggered transmissions from
states 2 and 4. Overall, our prototype adds around 1,100 lines of code and modifies 17. Our design
allows the changes to be mostly limited to the memory subsystem, and in general does not require
individual syscalls to be modified. Only one syscall (clone) required code modification.
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2.6.1 Tracking Page State

Midas needs to track the state for every userspace page, including its snapshot and copy sets.
Figure 2.6 shows the data structures used to track a page’s state in our prototype. Linux maintains
a struct page object for every frame of physical memory. We augment struct page with a list
holding the snapshots for this page, excluding the latest snapshot L. Each snapshot has a pointer
to its copy. In the figure, the snapshots S1 and S0 share the copy C0. We are aware of the strong
aversion of the Linux kernel developer community towards increasing the size of struct page. An
alternate implementation can use a hashmap to map from a page’s frame number to its snapshots
list or reuse existing data members (e.g., struct list_head lru which can be used as a generic
list by page owners).

Each page table entry for a user page in different address spaces maps the copy CL, enabling
userspace to directly access the page with reads (and writes for writable pages). We use one
software-controlled bit (SW3) in the page table entries to track the protection status of the page,
and another (SW2)2 to track the original protections for the page. SW3 is set whenever the page
is in one of the two protected states (1 and 3). On a write-triggered protection fault, SW3 can
be read to efficiently determine if the fault was due to Midas’ protection mechanisms, triggering
a state change, or due to buggy software accessing a page with illegal permissions, triggering a
signal to the task. Other architectures might have fewer software-usable bits in the page table, and
implementations of Midas would require storing the protection status of pages in a separate data
structure. The duplication status of the page is implicitly encoded in the snapshots: the page is
duplicated when any of its snapshots holds a pointer to a copy other than CL.

Changing a page’s protection state requires PTE updates in all address spaces where the page
is mapped. The page’s struct page structure includes a reverse-map listing for all of these pages,
and the corresponding virtual address in each. Our prototype uses this mapping to change PTE
permissions across all address spaces for a page.

2.6.2 Kernel Reads from User Memory

Syscalls reading from user memory the first time triggers the allocation of a new snapshot. If the
page is not protected (states 1 and 3), the read also triggers a state change where the kernel
protects the page in all address space that it is mapped in. Figure 2.7 shows the flowchart of the
steps implemented by the kernel function raw_copy_from_user for reading from user memory. This
function also uses the kernel’s mark_page_accessed interface to move the page to the “Active”
state for the kernel’s swapping mechanism, making the page ineligible for being swapped out. We
also implement get_user and unsafe_get_user (used by the kernel for small reads) as a call to

2The SW2 bit is alternatively used by the experimental Software Dirty Pages feature of Linux, and cannot be run
alongside Midas in our prototype.
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34



2.6. Midas Implementation

raw_copy_from_user.

Exemptions. Our prototype Midas kernel exempts a couple of functions from Midas’ in-
variant (in addition to those described in Section 2.5.2), and these functions are therefore
not instrumented to follow the aforementioned steps while accessing userspace memory. First,
raw_copy_from_user_inatomic is a special transfer function used by the kernel to read user memory
in special situations such as a kernel oops3 where the kernel reads user memory to provide a call
backtrace. In this severe situation, the kernel’s goal is to collect debug information before its
imminent termination and no TOCTTOU protection is needed. Second, we also exempt the
write system call’s reads from user memory from instrumentation. The write syscall takes three
arguments: a file descriptor passed as a register, a pointer to a user buffer and a count of bytes
to be written to the file. While the write to the file’s pages is sensitive, and Midas takes care to
ensure that it follows the page state machine, the read from the userspace buffer is not. The syscall
reads from userspace only once, and its data is only used for copying into the file. An attacker who
modifies the user buffer concurrently with the syscall only manages to change the contents written
to file, which it could have done anyway since it has access to this buffer. A kernel developer can
similarly exempt other syscall which they can prove to be secure from double-fetch bugs.

2.6.3 Handling Faults

The memory management unit generates a fault when kernel or user code accesses a page without
having the correct permission in the corresponding PTE. Midas marks writable pages read-only to
protect them in states 1 and 3, allowing the kernel to detect writes to these pages. A common OS
mechanism, copy-on-write (COW) pages, also uses permissions in the PTE to detect when COW
pages need to be copied. The PTE’s present bit are used to store pointers to file-backed pages
when they are swapped to disk. Figure 2.8 shows the flowchart implemented by handle_pte_fault
to handle faults for userspace addresses.

The page-fault handler first checks if the PTE is NULL, and if so knows that it must allocate
a page. If the required page is anonymous, the page can be allocated as usual. Otherwise, for
file-backed pages, the handler has to check if the page is already in a protected state (states 1 and
3) by reading the SW3 bit of the PTE and if so, transitions to the required state and allocates a
new copy. Pages in states 0 and 2 can be directly mapped, and subsequently accessed.

For non-NULL PTEs, the handler checks if the PTE indicates that the page is present. Non-
present pages need to be swapped in. After finding the page, Midas then checks if the page was
previously swapped in by any other task and is now in a protected state. For protected pages, Midas
implements the required state change based on whether the faulting access was a read or a write.

3A kernel oops is triggered when the kernel detects a problem while running which can affect its proper functioning,
such as corrupted data structures. A more severe version, a kernel panic, causes the kernel to stop executing,
expecting data loss or damage if it does.
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In the remaining case, faults for a present page indicate a permission fault (for example, a write
to a read-only page). If the page is not a COW page, the handler then checks if the page is in a
protected state by checking the SW3 bit. If the page was protected, a new copy is allocated and
the page transitions to the following state. For non-protected pages, however, the fault implies a
real access violation, sending a signal to the process.

COW pages represent separate virtual pages from different address spaces mapped to the same
physical page. An example of a COW page protected by Midas is shown in Figure 2.9, where
logically-separate pages A and B are actually mapped to the COW page. COW pages cannot be in
states 2 or 3, since they cannot have multiple Midas copies. COW pages in state 0 can be dealt with
by the kernel’s standard duplication method (not Midas’ duplication). For a COW page in state 1,
its list of snapshots can correspond to reads from syscalls for threads in different address spaces. In
Figure 2.9, we show snapshots S A and SB corresponding to syscalls for threads in different address
spaces (containing A and B respectively). These snapshots correspond to different logical pages,
but are all squashed into the snapshots list of the single COW page. Therefore, after the kernel
duplicates the COW page (new page B created, in Figure 2.9), Midas moves the snapshots for the
faulting process (SB ) to the new page. Here, Midas also updates the protected page list in the
affected syscalls’ task_structs so that these structures correctly refer to the new page. Finally,
the new page is transitioned to its next state to allow for the write to occur, creating a new copy
(C0) for the snapshot SB to read from.

We ensure that Midas’ modifications to the fault handler correctly handle concurrent faults
and do not cause additional nested faults. During concurrent faults for the same page, only one
thread changes the page’s state whereas the other directly uses the new state. The kernel’s split
page-table lock is reused to serialize state changes. We also ensure that the only additional accesses
to user memory within the handler (used for duplication) happen when the page is assured to be in
memory and correctly mapped. All nested faults are therefore caused by existing kernel code and
do not interact with Midas’ modifications.

2.6.4 Syscall Completion

On syscall completion, Midas cleans up snapshots allocated for the syscall by instrumenting the
end of do_syscall_64. Midas goes through the list of all the pages for which the executing syscall
has a snapshot, and frees those snapshots. For snapshots which were the last to point to a copy,
that copy is also freed.
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2.6.5 File System Writes

Midas instruments file-system writes to protect the kernel from modifications via kernel mappings.
When a write syscall writes to a file, it actually writes to copies of pages of the file stored in
memory within a page cache. In the spirit of abstraction, the kernel does not directly write to these
pages, but calls the relevant file-system (FS) driver instead. The FS driver will access the page using
kernel mappings when writing to pages in the page cache. Since Midas only protects userspace
mappings for protected pages, writes by FS drivers will not raise a fault. To comprehensively protect
the page, any implementation needs to instrument FS drivers’ write functions. Fortunately, FS
drivers provided with the kernel follow a simple recipe: for pages not in the page cache, the driver
executes FS-specific code to read the page into the page cache and then call a generic function
(generic_file_write_iter) to actually write the data into the page. Instrumenting this generic
function, therefore, protects the kernel for a wide range of common file-systems (including ext4,
nfs and ntfs). 4 The added instrumentation checks whether the target page is protected, and if so,
transitions it to the next state and creates a copy of the page before writing to the latest copy.

Our current prototype does not, however, protect out-of-tree drivers which are not distributed
with the kernel if they do not use the generic_file_write_iter function. A user with superuser
privileges can load a insecure module implementing a FS driver which does not implement Midas
checks. A malicious superuser is, however, outside our threat model.

2.6.6 New Mappings to Protected Pages

Our Midas prototype preserves the state machine for user pages across operations which create
new mappings to a page to prevent attacks which rely on mappings being created between double
fetches. The mmap syscall is responsible for creating new virtual memory mappings for processes,
and requires instrumentation. When mmap is called with the MAP_POPULATE flag, or on the first
access to the page, the mm_populate function is responsible for actually mapping the correct page
in the page table. In our prototype, we check if the page being mapped is protected, and if so,
correctly protect the new mapping too. Another syscall, clone, duplicates a process’ address space
when called without the CLONE_VM flag, creating new mappings to pages. We instrument clone to
ensure that new mappings for protected pages are also correctly protected.

A class of syscalls can be used to modify user memory using temporary mappings generated
by the kernel. Connor et. al. [25] investigated the semantics of the Linux syscall interface in the
context of bypassing access control for intra-address space compartmentalization. For example,
process_vm_writev can be used to modify a process’ virtual memory from a separate process

4A more comprehensive list of kernel-provided FS drivers protected via generic_file_write_iter includes
v9fs, ADFS, AFFS, AFS, BFS, CIFS, eCryptfs, extFAT, ext2, F2FS, FAT, FUSE, HFS, HFS+, hostfs, HPFS, JFS,
JFFS2, Minix, NILFS2, OMFS, OrangeFS, ramfs, ReiserFS, SystemV, UBIFS, UDF, UFS, VboxSF, shmem.
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executed by the same user as the target process. Our Midas prototype currently lacks protection
for modifications using these temporary mappings. We leave the manual inspection of each syscall,
required to block this attack vector, for future work.

2.6.7 Discussion

Optimizations on capable hardware. To protect a page in an address space, a Midas imple-
mentation needs to change the permissions in the page table for that page. Modern CPUs cache
virtual memory translations in per-core Translation Lookaside Buffers (TLBs) which need to be
(partially) flushed on page-table updates (TLB shootdown). On most CPUs, the core updating
permissions will perform a global shootdown to ensure that other TLBs for cores executing in
the same address space are also updated. Implemented with inter-processor interrupts, global
shootdowns are expensive. In our evaluation, 21% of the runtime of the load generator bombardier
used for stressing the Nginx server was spent performing TLB shootdowns when running on the
Midas kernel.

A more efficient solution would be to have special hardware support for invalidating TLB
entries globally, not just on the executing core. The AMD64 architecture manual [6] lists such an
instruction (INVLPGB), though it is only implemented on a limited selection of server processors
only (e.g., 3rd Generation AMD EPYC). The ARM v8-A architecture manual [78] lists similar
instructions TLBI ASIDE1IS and TLBI ASIDE1OS which invalidate all PTEs of a page within a cluster
of cores but not for cores in other clusters (Inner Shareable Domain) and cores across clusters
(Outer Shareable Domain) respectively. Academic proposals for hardware TLB coherence [108, 132,
150] would also benefit Midas by reducing the overheads for PTE modification.

Alternate architectures [22, 51] with a single, system-wide translation table would also benefit
Midas by having a single page table to update instead of multiple page tables for each address
space a page is mapped in.

Porting to other OSs. Midas can provide TOCTTOU protection on other operating systems
by tracking the states of each page and implementing state transitions as required. OSs track page
state in per-page state structures, such as vm_state_t for BSD-based OSs (*BSD) such as FreeBSD
and XNU. An implementation on these OSs must instrument the read transfer function(copyin for
*BSD) to transition to states 1 and 3. The OS’ fault handler (vm_fault on *BSD) will trap on
writes to protected pages, and needs to be modified to implement the required page duplication
and state change.

The remaining OS modifications for Midas support depends on the OS’ features. If an OS
allows userspace to map file pages, filesystem code to write to these page needs to be modified.
Other syscalls which create/modify mappings to userspace pages will also have to be instrumented
to ensure that the new mapping respects the page’s state. Such modifications are OS-specific,
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1 // First fetch
2 if( get_user (count ,&argp -> dest_count ))
3 {...}
4 // Using first fetch
5 size = offsetof (... , info[count ]);
6 // Secong fetch
7 same = memdup_user (argp , size );
8 + //Added check for bug
9 + if(same->dest_count != count)

10 + printk("Bug triggered");
11 + // Fix: copy over original count
12 + same->dest_count = count;
13 // Using second fetch
14 ret = vfs_dedupe_file_range (file ,same );

Listing 2.1: CVE-2016-6516: Vulnerable double fetch in ioctl_file_dedupe_range. Lines in green
show the fix and testing code.

making it difficult to recommend a generic methodology.

2.7 Evaluation

In this section, we empirically verify Midas’ ability to mitigate a known double fetch vulnerability, and
quantify Midas’ overhead on workloads with different characteristics including both compute-bound
applications which rarely use syscalls and a mix of syscall-heavy applications which heavily rely on
the kernel’s performance.

2.7.1 Mitigation of CVE-2016-6516

CVE-2016-6516 is a known vulnerability in kernels prior to version 4.7 in a file-system ioctl.
The vulnerable code is shown in Listing 2.1 and is triggered when the value of the dest_count
object differs between the two fetches (in lines 2 and 7). memdup_user uses the value from the
first fetch for allocating a buffer and copying in an array of descriptors from the user in line 7.
memdup_user also contains the second fetch of dest_count which is later used in the function
vfs_dedupe_file_range. An attacker who increases the size of dest_count between the two fetches
will cause the kernel to access the copied array out-of-bounds, causing a heap buffer overflow.

For verifying Midas’ defense, we introduce a non-faulting assertion check into the function (lines
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9–10) and run a known exploit.5 The condition checks whether the fetched value of the user
object (dest_count) had changed, indicating a successful attack, and prints a message. Finally,
we re-introduce the fix for the bug (line 12), fixing the value of dest_count in same to that from
the first fetch. In this setup, we can detect when the conditions for triggering the bug are met,
but also revert to a correct state allowing the kernel to safely continue. The exploit was able to
successfully trigger the bug on the baseline kernel every time over 10 runs. With Midas enabled,
the exploit was never triggered, i.e., both fetches returned the same value on every call.

2.7.2 Performance evaluation

We evaluate Midas on i) microbenchmarks targeting specific common syscalls, ii) workloads from
two benchmark suites: the NAS Parallel Benchmark (NPB) [10] and select workloads from the
Phoronix Test Suite (PTS) [99], and iii) the webserver Nginx. NPB includes compute-intensive
multiprocessing workloads with a low, but non-negligible syscall rate. NPB therefore demonstrates
the ability of Midas to scale to systems where pages are protected across numerous address spaces.
PTS includes a variety of benchmarks, both compute bound and I/O bound representative of both
desktop and server workloads. PTS includes syscall-heavy applications with varying degrees of
parallelism. The Nginx webserver is capable of both high request service rates and scalability with
multiple worker processes. We do not include the SPEC CPU2017 benchmarks as they are heavily
compute bound and designed to isolate userspace performance without syscalls, and are impervious
to kernel performance. SPEC benchmarks would unfairly bias performance in favor of Midas.

The testbench for the evaluation consists of a desktop machine with an 8-core Intel i7-9700
processor and 16GB DRAM running Ubuntu 20.04 LTS. This configuration and CPU is commonly
used on desktop machines and workstations. To eliminate the effect of dynamic frequency and
voltage scaling (DVFS), we set the processor to run at constant frequency of 3.0GHz which is this
model’s base frequency. In the baseline configuration, we run the testbench with the mainline kernel
v5.11 available from Ubuntu’s package repository. The Midas configuration runs our prototype
Midas kernel also based on kernel v5.11. For particular benchmarks, we also run the Midas+write
configuration which also runs our prototype Midas kernel but instruments all syscalls including
write.

Microbenchmarks. We test Midas on microbenchmarks from OSBench [95]. The programs
use libc interfaces such as fopen, pthread_create, fork and malloc for creating files, threads,
processes and for memory allocation respectively. Table 2.3 lists the prominent syscall usage for
these workloads. Figure 2.10 shows Midas’ performance (time per operation) on OSBench relative
to the baseline kernel, with overheads ranging from zero to 5.3%.

5https://github.com/wpengfei/CVE-2016-6516-exploit/tree/master/Scott%20Bauer
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Figure 2.10: Midas’ performance on microbenchmarks, NPB and PTS benchmarks relative to the
baseline kernel.

Microbenchmark Top syscalls used

File creation openat, fstat, write, close
Thread/Process creation mmap, clone, exit, wait
Program launch mmap, execvereadlink, openat
Memory allocation brk

Table 2.3: Prominent syscalls used by OSBench microbenchmarks.

NAS Parallel Benchmarks. NAS Parallel Benchmarks (NPB) [10] is a benchmark introduced
by NASA. NPB consists of several parallel programs using different communication patterns and
is available for two frameworks for parallel programming: OpenMP and MPI. OpenMP [37] is a
compiler extension that splits a program’s execution to multiple threads. All threads still use the
same address space, keeping the overhead minimal. MPI [122] implements parallel execution by
launching multiple processes which communicate by message passing. The two technology stacks
have different frequency of syscalls due to different communication methods. Communication
through kernel syscalls for either stack will incur overhead due to Midas’ protection. Additional global
TLB shootdowns (for snapshot synchronization) added by Midas will also affect the performance of
such parallel benchmarks.

We run NPB benchmarks of class A on our testbench, executing 4 threads or processes in
parallel. The benchmarks’ runtime varies between 10 seconds and 8 minutes, and are all long
enough for the kernel to reach equilibrium. Certain benchmarks require a parallelism number which
is a perfect square. On our 8-core CPU, having 4 compute-bound threads/processes instead of 16
allows all threads to run without time sharing. Figure 2.10 shows Midas’ performance for both MPI
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and OpenMP, normalized to the performance of the baseline system with the same parallelization
framework. On average, Midas achieved 96.3% of the baseline system’s performance on both
frameworks. Midas’ performance for the ep (Embarrassingly Parallel) benchmark is closest to that
of the baseline, since it has low communication overheads. Midas shows low overhead (3.7%) for
compute-intensive, parallel workloads.

Phoronix Test Suite. The Phoronix Test Suite (PTS) [99] includes a large set (> 500) of
open-source benchmarks, of which we have chosen a range of benchmarks suitable for evaluating
both desktop and server performance. We bias the selection to benchmarks that require (heavy)
kernel activity to test the overhead of Midas’ instrumentation. A sole benchmark, OpenSSL, is
included to represent single-threaded, compute-bound workloads for which kernel performance is less
relevant. The benchmarks are also varied, ranging from single-threaded (Pybench) to multi-threaded,
multi-process workloads (Apache). At the extreme, we have an inter-process communication (IPC)
benchmark transferring tiny, 128-byte buffers between processes which spends all of its time in
syscalls and whose performance is entirely dependent on kernel IPC performance.

We plot Midas’ performance relative to the baseline kernel on these benchmarks in Figure 2.10,
roughly ordering workloads in increasing order of syscall dependence from left to right. For
benchmarks for which PTS reports runtime, we compute the inverse of the runtime as performance.
Benchmarks with low syscall frequency such as OpenSSL, Pybench and Git have correspondingly
low dependence on kernel performance. Accordingly, these benchmarks see a negligible overhead
when running on our prototype kernel. The benchmark titled “Linux” represents compilation of
the Linux kernel. While compilation is mostly compute bound, compiling the Linux kernel requires
accessing a large number of source files, resulting in the creation of many compiler processes each
of which read and create files. Midas experiences a small, but non-negligible overhead of 3.5%

on this workload. Redis requires syscalls for receiving and replying to requests, but processes its
transaction entirely in-memory. Our evaluation prototype achieves practically identical results as the
baseline, highlighting the final prototype’s competitive performance. The webservers, Apache and
Nginx require network and file-system I/O, and rely heavily on syscall performance. We see that
Nginx, which is a higher-performance webserver, sees a larger overhead. IPC, which implements
128 byte transfers between two processes over a TCP connection, is almost entirely bound by kernel
performance and sees a performance overhead of 3.4% on Midas.

Our prototype Midas kernel benefits significantly from exempting particular, proven-safe syscalls
from instrumentation. While we exclude write-like syscalls from Midas because they are not
vulnerable to double-fetch bugs, we also evaluated the performance cost of an unoptimized
implementation (Midas+write) which also instruments these syscalls. To highlight the worst-case
performance of the unoptimized implementation, we evaluate the performance of the IPC benchmark
on Midas+write due to its high frequency of write syscalls. With Midas+write, the performance
of the IPC benchmark falls to 12.6% of the baseline, a further degradation of 84% compared to
Midas, showing that developer effort towards properly exempting frequently called safe syscalls
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Figure 2.11: Classification of overheads for various benchmarks due to Midas.

from Midas protections is crucial towards for implementations to maintain competitive performance
compared to the baseline.

Memory overhead. Our prototype incurs memory overhead due to metadata, tracking page
snapshots and copies. At any instant, the memory overhead mainly depends on the number of
executing syscalls (limited by the core count) and the number of page copies for these syscalls.
On average, for every 1000 syscalls issued by the PTS benchmarks, our prototype created 236
snapshots (32B each) and 54 copies (4KB each). We can see that the occurrence of copies is low,
resulting in negligible memory overhead.

2.7.3 Overhead breakdown

In this section, we explore the sources of Midas’ overhead by analyzing perf traces for three
workloads: thread creation from OSBench, linux compilation from PTS, and Nginx. We aim
to classify overheads into the various kernel function we instrumented: i) user copy in transfer
function, ii) page duplication on page fault, iii) metadata cleanup on syscall end, and iv) filesystem
operations.
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To estimate the time spent in each function, we create FlameGraphs for each workload[46]
using samples of processor state, including the call stack, collected over 30 second periods by
perf record. After identifying one binary for the workload from the FlameGraph, we estimate the
overhead for a function as the difference in execution time attributed to that function between the
baseline and Midas systems. The total overhead is estimated from the throughput figures obtained
from Section 2.7.2.

Figure 2.11 shows the breakdown of overheads for three workloads. As expected, metadata
tracking and duplication causes most overheads for the user copy and fault handling functions
respectively. The results for the Linux build breakdown differs from the other workloads in the
large portion of the unaccounted overhead (labelled “Other”). This anomaly stems for the fact
that Linux’s compilation runs a large number (1000s) of processes, of which the compiler accounts
for less than 50% of the total execution time. The reported breakdown accounts for overheads on
the compiler, but not all the other processes.

Both page faults and user copies cause state changes for a page, and thereby change the page’s
access permissions in the PTE. The resulting TLB flush accounts for 0.3%, 0% and 1.1% overhead
for thread creation, compilation, and Nginx respectively. The load generator bombardier used for
loading Nginx, however, sees a much larger overhead for TLB flushing, accounting for 21% of its
execution time.

2.7.4 Case study: Nginx

To better understand Midas’ behavior under varying syscall rates and different core configurations,
we study Nginx’s (version 1.18) throughput while varying payload sizes and different worker counts.
Each worker is single threaded and uses one core. The server is loaded with requests from a
separate machine running a load generator (bombardier) with 100 concurrent connections (chosen
to maximize throughput) over a 1Gbps link. The clients send http requests for files ranging between
20B and 10000B.

In Figure 2.12, we plot the request rate and throughput for Nginx servers running with one and
eight workers. For all configurations, we can see that the rate of requests served remains almost
constant while increasing payload size until the network link reaches saturation. Under a saturated
network, the request rates for Midas match that of the baseline system. With a single worker,
Midas’ overheads cause a consistent 13–14% overhead on the request rate for small packet sizes.
However, we see that Midas has practically no overhead when serving requests with 8 workers even
when packet sizes are too small to saturate the network link. In this case, both Midas and the
baseline system are limited by the scalability of the Linux networking stack.
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Figure 2.12: Request rates and throughput served by the Nginx server for static pages.

2.8 Related Work

Early work on double-fetch bugs relied primarily on manual code analysis to identify bugs in kernel
code [128, 151] or in syscall wrappers [140]. Realizing the limited scalability of this approach,
particularly when applied to large codebases such as the Linux kernel, subsequent work focussed on
automated techniques based on static or dynamic analysis techniques, and on leveraging hardware
features to mitigate such bugs.

Static analysis. Static analysis proposals use code analysis to find and fix double fetch
vulnerabilities. DFTinker [80] improves the coverage of pattern matching rules for detecting double
fetches in code as initially proposed by Wang et al. [136]. Deadline [147] and DFTracker [138]
further generalize the analysis by leveraging symbolic execution.

However, static analysis is severely limited by its requirement for source code, which eliminates
possibility of protecting of analyzing binary-only modules for which code is not available. In contrast,
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Midas can also protect such modules since well-behaving module use the kernel transfer functions
to access user memory. Symbolic execution solves the generality problem of pattern-matching
approaches but has its limitations (path explosion, function pointers, modelling numerous library
functions, etc.). Deadline [147] specifically requires the additional assumption that pointer syscall
argument do not alias, an assumption that can wilfully be violated by our adversarial model.

Additionally, the protection allowed by static analysis methods are limited: only the bugs
which are detected can be fixed, and static analyses are necessarily incomplete. In contrast, Midas
mitigates all TOCTTOU vulnerabilities. Further, specific cases of double fetches, such as in syscall
wrappers cannot be fixed in code, and require a versioning system such as Midas in order to enable
deep argument inspection.

Dynamic Analysis. Dynamic analysis techniques leverage runtime information and values to
detect double fetches, and are notable in their ability to find bugs in binaries.

To enable the search for various classes of bugs, Google Project Zero’s Bochspwn project [59]
introduced a comprehensive emulator for x86 with callbacks to allow tracing of kernel operations,
including memory accesses. When paired with a syscall fuzzer, Bochspwn successfully detected
and reported double fetches from these access logs, but suffered from a high rate of false positives.
Another major shortcoming of Bochspwn was its low execution throughput of 40-80MIPS which
limited its ability to explore code paths. Xenpwn [143] extended Bochspwn’s trace-driven approach
to fuzz hypervisors for double-fetch bugs. Xenpwn found three double fetches in the Xen hypervisor,
but no critical vulnerabilities in KVM.

DECAF [114] inverts Midas’ adversarial model, leveraging concurrent access to syscall parameters
from userspace to detect kernel accesses via a cache side-channel. DECAF is strongly reliant on
CPU-specific behavior, which is sensitive to CPU parameters, subject to changes from generation
to generation (or even from core to core) and prone to noise and false sharing. Following the
discovery of transient-execution attacks [65], proposals such as InvisiSpec [61, 148] have tried to
prevent information leakage via cache side-channels. Future generations might entirely close this
channel, or introduce constraints that limits this information flow.

Dynamic analysis techniques can only detect vulnerabilities on executed code paths, and
therefore typically rely on a fuzzer to extensively cover kernel code. However, fuzzers are inherently
incomplete, limiting the ability of dynamic analysis to find bugs.

Mitigations. Previous attempts [80, 114] to eliminate double fetch vulnerabilities rely on Intel
TSX, a hardware transactional memory implementation, to detect malicious writes to data read
by the kernel. A defense based on TSX improves upon Midas by reducing the scope for false
sharing from a page size to a cache line size. However, TSX suffers from major limitations which
restrict its useability for general kernel implementations. Of note, TSX requires that the data
working set for the critical section experiences no L1 cache evictions, even due to contention
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from a simultaneously-multithreaded (hyperthreading) core. Further, TSX is deprecated and
limited to processors from a specific manufacturer (Intel), leaving the vast majority of computing
devices (mobile, IoT, AMD processors) unprotected.

2.9 Midas Summary

Midas mitigates double-fetch bugs in system calls and protects the operating system interface by
enforcing the invariant: through a syscall’s lifetime, every read to a userspace object will return the
same value. Our Midas implementation creates on-demand snapshots and copies of pages that are
read and merges any writes through the execution of the system call. Our mitigation protects the
core kernel, as well as drivers by carefully instrumenting functions that interact with the process
address space. While our implementation focuses on Linux for x86-64, our concept is generic and
empowers other kernels to protect themselves against notoriously hard-to-find and easy-to-exploit
double fetch bugs.

The performance evaluation of our prototype implementation is promising. Compute-bound
benchmarks have negligible overhead and even syscall-intensive benchmarks exhibit low overhead.
On one hand, Midas mitigates all double fetch bugs in the kernel and gives developers a tool to
locate such bugs. On the other hand, Midas sets the foundation for efficient, stateful system call
filtering and validation. We have released the source code of our prototype as open-source at
https://hexhive.epfl.ch/midas/.
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Chapter 3

SecureCells: A Secure
Compartmentalized Architecture

Modern programs are monolithic, combining code of varied provenance without isolation, all the
while running on network-connected devices. A vulnerability in any component may compromise
code and data of all other components. Compartmentalization separates programs into fault domains
with limited policy-defined permissions, following the principle of least privilege, preventing arbitrary
interactions between components. Unfortunately, existing compartmentalization mechanisms target
weak attacker models, incur high overheads, or overfit to specific use cases, precluding their general
adoption. The need of the hour is a secure, performant, and flexible mechanism on which developers
can reliably implement an arsenal of compartmentalized software.

We present SecureCells, a novel architecture for intra-address space compartmentalization.
SecureCells enforces per-Virtual Memory Area (VMA) permissions for secure and scalable access
control, and introduces new userspace instructions for secure and fast compartment switching
with hardware-enforced call gates and zero-copy permission transfers. SecureCells enables novel
software mechanisms for call stack maintenance and register context isolation. In microbenchmarks,
SecureCells switches compartments in only 8 cycles on a 5-stage in-order processor, reducing
the switching cost by an order of magnitude compared to the state-of-the-art. Consequently,
SecureCells helps secure high-performance software such as an in-memory key-value store with
negligible overhead of less than 3%.
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3.1 Introduction

Modern software systems are complex but monolithic, comprising multiple interacting subsystems,
incorporating third-party code like libraries, plugins, or interpreted code, while interacting over
untrusted interfaces including networks, shared memory, file systems, or user input. The lack
of isolation between the components of a monolithic program allows vulnerabilities to have far-
reaching consequences. An attacker who exploits one component can corrupt other parts — for
example, a buggy Linux driver can compromise core kernel data structures. The traditional process
abstraction for running monolithic software violates the principle of least privilege [111] which
requires components to only have access to the data necessary for their operation. Instead, all
code running within a process’ address space has equal permissions to all data and code regions
allowing attackers to subvert pre-defined interfaces between components. For example, calls between
components can jump to an arbitrary address bypassing checks on function call arguments.

Intra-address space compartmentalization allows developers to isolate components of a program
within compartments, only granting each compartment permissions to access their own data.
When compromised, a buggy component cannot access another component’s data. Conversely,
a component is guaranteed integrity of its private data against other corrupted compartments.
Compartmentalization is a key defense mechanism that leverages the inherent modularity of code to
fortify the cloud [20, 87, 120] and desktop [100] sandboxed environments, programs with third-party
libraries [44]and underpins the design of security-focused microkernel operating systems [45, 53,
70, 109]. Compartmentalization constrains the negative effects of the myriad possible faults in
software, including memory safety violations and logic errors, to compartment boundaries. For
example, the Log4Shell exploit (CVE-2021-44228 [93]) which allowed attackers to exfiltrate secrets
and inject arbitrary code in memory-safe programs can be mitigated by isolating the vulnerable
Log4j framework in a separate compartment.

The compartmentalization mechanism enforcing the rules of access and communication be-
tween the program’s components must be secure, performant and flexible. To be secure, the
mechanism must enforce policy-dependent restrictions on memory accesses and inter-compartment
calls in the face of powerful attackers. Particularly, the mechanism must prevent compromised
compartments from escalating their memory access rights or from bypassing inter-compartment
call gates. Developers for performance- and security-critical software such as operating systems
constantly trade off the benefits of protection mechanisms against their overheads. The mechanism
must implement low overhead checks and operations to support fine-grained compartmentalization
for such programs. Faster compartment switching, for example, enables developers to refactor
programs into smaller compartments with more frequent compartment switches, improving security
while maintaining the same performance. Finally, a flexible mechanism which is able to support the
wide variety of desired compartmentalization policies will bolster developer adoption.

Existing compartmentalization mechanisms lack one or more desirable features, often trading
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security for performance, or flexibility for backward compatibility or implementation simplicity.
Traditional, process-based isolation [64, 76, 144] only permits costly, microsecond-scale compartment
switches. On the other end of the spectrum, protection-key [50] based mechanisms [96, 113, 129]
are performant, with nanosecond-scale switches, but fail to deter attackers with code-injection
capabilities. Mechanisms co-locating permissions with page-based virtual memory [40, 52, 67, 69,
113, 129] improve compatibility with existing page-tables but inherit the limited reach of modern
Translation Lookaside Buffers (TLBs), incurring overheads for programs with large working sets.
Finally, other mechanisms [42, 67] target simpler policies, such as protecting a single trusted
compartment from an untrusted compartment.

SecureCells achieves the trifecta of secure, flexible, and high-performance compartmentalization
by embedding compartmentalization into the architectural virtual memory abstraction. SecureCells
proposes i) TCB-maintained VMA-granularity access control, and ii) unprivileged (i.e., userspace)
instructions implementing securely-bounded compartmentalization primitives, with iii) software
implementing call gates, call stacks, and context isolation. Related efforts towards languages,
compilers and libraries for compartmentalization can extend these benefits to developers by using
SecureCells as the underlying isolation mechanism.

For the first pillar, access control, SecureCells introduces the first VMA-granular permissions
table consolidating permissions for all compartments into a single data structure designed for
efficient permission lookups. In contrast, previous mechanisms use per-compartment permission
tables with either duplicate VMA bounds information [144], duplicate per-page permissions within a
VMA [113, 129], or both [40, 76]. Deduplicating VMA bounds accelerates compartment switching,
eliminating the need to re-load bounds for the target compartment. VMA-scale permission tracking
requires smaller VMA-based permission lookaside buffers while also overcoming TLB-reach limits.

For the second pillar, SecureCells accelerates common compartmentalization operations with
novel, low-cost unprivileged instructions. Particularly, SecureCells is the first mechanism to allow
generic, unprivileged permission transfer from userspace. SecureCells maintains the integrity of
permissions by bounding the semantics of untrusted userspace operations to known-safe parameters
— the hardware checks the compartment switch instruction to enforce call gates, and permission
transfer instructions to prevent privilege escalation.

SecureCells’ final pillar leverages the flexibility of software for operations where possible without
compromising security or performance (context isolation, call gates and call stack maintenance).
SecureCells shows the first software mechanism for restoring register context following a compartment
switch, necessary for isolating compartment contexts, without trusting any general-purpose registers.

In this chapter, we:

• define SecureCells’ key security and performance objectives and survey how related mechanisms
meet these goals,
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• propose SecureCells, a novel, secure, flexible, and performant mechanism which introduces
compartments into the architectural virtual memory abstraction,

• apply SecureCells to typical application scenarios,

• present a hardware implementation of SecureCells based on the 5-stage in-order RISC-V
RocketChip, and

• characterize SecureCells’ performance for compartmentalizing micro- and macro-benchmarks.

3.2 Background

Compartmentalization is built on a few basic principles: modularity, least privilege, and defense
in depth. Compartmentalization mechanisms implement these principles to provide security to
applications through two major properties, isolation of compartments and controlled communication
between compartments. In these section, we will explain the principles supporting compartmen-
talization and see how these principles lead to security properties. The following sections list key
objectives for a compartmentalization mechanism in order to guarantee these security properties.

3.2.1 Principles supporting compartmentalization

Abstraction and modularity. Both software and hardware engineering rely heavily on abstraction,
and the related principle of modularity to manage the every exploding complexity of computer
systems. Logical parts of systems, for example, are separated into modules, each of which hide
internal complexity behind well defined interfaces (commonly called application programming
interfaces, or APIs). One module can use abstract functionality implemented by a separate module
using the module’s API without being aware of much of the implementation complexity. Modules
are typically structured around a specific functionality, and each module is distributed as a single
package. Common examples of modules include libraries for implementing cryptographic processing,
threading, mathematical operations, compression and standard language features. Modularity
can also be used to separate instances of the same code running on logically separate data.
For example different connections being handled by a server can be separated into individual
modules, as is done by the Apache webserver. Modularity lends itself to extensibility, allowing
the functionality of applications to be gradually extended beyond its original purpose as more
and more code modules get added. Modularity has two consequences which greatly benefits
compartmentalization efforts. First, developers need to develop well-defined interfaces for modules
to enable inter-module communication. These interfaces can be reused as interfaces if modules are
isolated within compartments. Second, modules often need to define dependencies or privileges
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required to function. A compartmentalized system should limit a compartmentalized module’s
privileges to those necessary for functioning.

Least privilege. Least privilege, defined by Saltzer [111], states that every part of a system
should operate using the least set of privileges necessary to perform their function. This principle
aims to control the consequences resulting from a malicious or buggy module by limiting the
potential interactions each module is allowed to perform. For example, a media decoding module
running on a smartphone application might be allowed to access the file system to read media files,
but should be denied access to the device’s location or to the internet. Further, an application
which downloads media from the internet and plays it can be split to isolate the two privileges to
separate modules. One module can be allowed to use the internet and save media to a file, and
the second module can be allowed to play media from that file and write to the device’s screen.
A compromised media decoding module, therefore, will be unable to directly leak information to
the internet. Least privileges also applies to the ability to call functions in other modules. For
example, a media decoder should be allowed to call functions to open and read media files, but
not to other file system operations like modifying a file’s permissions or owner. The principle of
least privilege should also restrict a module’s permissions to the temporal period where it requires
specific privileges. Privileged programs (like webservers) typically drop elevated privileges when no
longer required, following this principle.

Least privileges require applications to be decomposed into modules implementing logically
different functionality or working on logically different data. Implementing least privilege for modern
applications can leverage the modularity on which systems are already built.

Defense in depth. Defense in depth poses that systems should not rely on a single layer
of defense, instead using multiple protective measures for the same objective. Defense in depth
mitigates possible shortcomings in a particular defense by relying on one of the other defenses to
mitigate attacks. This principle essentially removes the single point of failure for defenses. For
systems software, developers should rely on more than one defense mechanism to provide stronger
security guarantees. While compartmentalization and memory safety, for example, can both defend
against some memory corruption attacks, each of them can protect against attacks which the other
cannot. For example, compartmentalization provides no defense against a function overflowing one
of its stack objects into another, which is prevented with memory safety. However, memory safety
mechanisms might not detect a malicious arbitrary write from one module to another module’s
data, but this attack should be mitigated through compartmentalization. In general, defense in
depth posits that mitigations for memory safety and compartmentalization complement each other,
rather than replacing each other.
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3.2.2 Compartmentalization properties

A compartmentalized program consists of compartments, each of which is isolated from other
compartments but can communicate through well-defined APIs. Isolation and controlled communi-
cation aim to limit unintended interactions between compartments, limiting the damage from such
interactions.

Isolation. Compartmentalization provides isolation between compartments. Essentially, each
compartment has access permitted to a subset of a system’s resources, including memory, ability
to call other compartments, and OS resources like files, execution threads or I/O. Compartments
can have private resources, for which no other compartment has permissions, or resources shared
between a subset of compartments. The compartmentalization mechanism then guarantees that
no compartment without permission can use these resources. Essentially, a compartment’s private
resources are isolated from access or use by other compartments.

With isolation, a compartment is protected from data and control flow attacks from misbehaving
compartments. With fault isolation or fault handling, an application can also ensure that faults in
one compartment only crash that compartment and not the entire application. Hence, isolation is
the first key feature of compartmentalization.

Controlled Communication. For functionality, compartments require processing by other
compartments. Similar to remote procedure calls, a compartmentalized program requires support
for inter-compartment calls. Compartments have interfaces, from which other compartments
can request processing. A compartment’s interface represents the main attack surface for the
compartment, and requires protection. First, compartments must only be allowed to call authorized
compartments. Second, inter compartment calls must enter the callee at fixed entry points, allowing
call gates to be implemented. Call gates allow a compartment to ensure the validity of arguments
and switch context, if required, before processing a request. Therefore, controlled communication
is a second key feature of compartmentalized programs.

3.3 Objectives For Architectural Isolation

Compartmentalization mechanisms are characterized by a specific set of objectives, which we
introduce in this section. We demonstrate how SecureCells’ objectives benefit compartmentalization
using two representative programs described below and discuss how alternate goals lead to the
differing designs of related mechanisms.

The characteristics of a compartmentalization mechanism determine its applicability. Primarily,
the mechanism must be secure (O1) and enforce the restrictions on data access and communication
despite arbitrarily compromised compartments. Second, the mechanism must be performant (O2),
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with low overhead for enforcing its checks and restrictions. A performant mechanism allows
high-performance software to be compartmentalized without violating performance targets. Finally,
a mechanism must be flexible (O3) in order to support the varying needs of software across security
and performance criticality, and their corresponding isolation policies. A flexible mechanism does not
make additional assumptions such as a hierarchical trust structure among compartments, and allows
data to be shared in an arbitrary fashion. We concretize these objectives, based on insights from
existing and candidate compartmentalized programs and related work, in the following subsections.
We justify each objectives’ importance using the two characteristic programs described below.

Use case: Browser. The first program, a browser (Figure 3.1), consists of a just-in-time
(JIT) compilation engine (Engine), a sandboxed web application (WebApp) compiled and executed
by the Engine, and a cryptographic library (CryptoLib) storing a secret key for encryption. The
compartmentalization policy aims to isolate the Engine’s data and CryptoLib’s secret from the
possibly malicious WebApp. Borrowing the threat model for browsers, we assume that the WebApp
can exploit bugs in the Engine’s compiler to generate and execute arbitrary code as the WebApp
compartment, ultimately aiming to leak the browser’s data or the cryptographic secret. The
developer aims to prevent unauthorized inter-compartment data accesses by enforcing the per-
compartment permissions shown in the figure. To maintain similar performance to the monolithic
version, the developer desires minimal overhead from operations added due to compartmentalization:
context switching and compartment switching.

Use case: Network Function Virtualization. The second program is a virtual network function
pipeline (Figure 3.2) consisting of three stages progressively performing processing steps on a
stream of packets. In particular, this pipeline has three compartmentalized stages, implementing the
network card driver (Driver) which generates packets, a network address translation (NAT) stage
which translates IP addresses in the header based on a translation table, and a firewall stage that
implements checks on the packet headers based on a rule table. In this example, we omit further
stages for simplicity. Middleboxes in datacenters and the internet [83] commonly contain virtual
network functions sharing a buffer pool in uncompartmentalized dataflow pipelines. Translation and
rule tables in the NAT and Firewall compartments must be isolated in private regions, protecting
them from potential bugs in the Driver compartment that processes input from untrusted traffic
from external sources. The programmer requires isolation of network stages for high reliability of
the middlebox and low cost for passing packets between stages for line-rate packet processing,
enabled by zero-copy packet flow through permission transfer.

3.3.1 Threat Model

Our threat model assumes an attacker who wants to compromise a compartmentalized program
with multiple communicating compartments. We assume that the attacker has compromised one
or more compartments, and gained the ability to both generate arbitrary code and execute it, but
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is restricted to the compromised compartments. The attacker wishes to compromise confidentiality,
integrity, or gain code execution in other compartments. For example, the attacker might try to:

• gain permissions and directly access (load/store) another compartment’s private memory,

• inject unsolicited code/data regions in another compartment’s memory,

• execute unintended code in another compartment,

• create new compartments, or

• achieve any combination of the above.

The policy used for compartmentalization is assumed to be sound, and the software implementa-
tions of the modules comprising compartments are assumed to be free of bugs that can be exploited
via only their exposed communication interfaces. For example, we assume that each compartment
validates arguments for incoming cross-compartment calls. SecureCells’ trusted computing base
(TCB) consists of the hardware implementation and the supervisor. Exploitable bugs in the policy
or TCB can lead to a compromise irrespective of the compartmentalization mechanism. While
speculative side-channel attacks are outside the scope of our threat model, we discuss SecureCells’
speculative resiliency in Section 3.7.

3.3.2 Security Objectives

A secure mechanism must enforce restrictions on a compartmentalized program, as described below.

Obj. O1a. Mechanisms must implement access control, validating every memory access against
the policy. For the browser in Figure 3.1, the table holds policy-defined permissions for each
compartment and memory region. Mechanisms must, for example, prevent all accesses by the
compromised WebApp from reading the Engine or CryptoLib’s private regions as per the policy.
Mechanisms must also prevent corruption of policy-defined permissions stored in memory or registers.
Intel MPK-based protection [96], for example, loads permissions from a user-controlled register
when executing a wrpkru instruction, allowing a compartment to corrupt its own permissions.

Obj. O1b. Inter-compartment communication consisting of cross-compartment calls demand
validity checks. Relevant validity checks include checking that i) the entry point is valid, ii) the
calling compartment is allowed to call the target compartment, iii) the return respects the call stack,
and iv) the passed arguments are valid. Compartment switches from the WebApp to the Engine
must use valid entry points which are followed by argument-validating code. Failure to enforce this
constraint enables control-flow attacks such as return-oriented programming (ROP). Vanilla Intel
MPK-based protection also lacks such entry-point checks to accompany wrpkru instructions.
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Obj. O1c. Context isolation accompanying a cross-compartment call is essential for protecting
mutually distrusting compartments. After a cross-compartment call, the callee compartment (for
example, the Engine) must be able to fetch its context without trusting the registers which are
controlled by the caller (correspondingly, the WebApp), representing an attack vector. The WebApp,
for example, could try to switch to the Engine with a malicious stack pointer register, attempting
to corrupt the Engine by reading from the wrong stack. CODOMs [131], for example, uses the
migrating thread model, and is consequently vulnerable to an attack involving an invalid register
state on compartment transitions.

Obj. O1d. Mechanisms that allow untrusted compartments to modify or transfer their per-
missions must prevent privilege escalation through TCB-imposed limitations on these operations.
Specifically, compartments should only be allowed to surrender access permissions or transfer
existing permissions to other compartments. A stage in the network function pipeline, for example,
should not be allowed to grant write permissions for a packet to the next stage if it has read-only
permissions. Transferring permissions between compartments must also be mutual, requiring explicit
actions from both compartments. One-directional permission transfers studied by Lipton et. al. [75]
allow compartments to either steal other compartments’ permissions (violating confidentiality)
or inject illegal data or code into other compartments (violating integrity). Linux, which allows
processes to specify their own permissions when mmaping shared regions, violates this objective
without syscall mechanisms like SECCOMP.

Obj. O1e. Temporary exclusive access to otherwise shared data regions enables compartments
to use data regions safely, preventing exploitation of double-fetches. With exclusive access to a
packet, the Firewall stage of the network function pipeline can safely validate and use addresses in
the packet header in-place (without copying), with the assurance that another corrupt stage cannot
concurrently modify the packet. XPC [40] recognizes this objective, allowing exclusive access to a
single region tracked by the Relay Segment register.

Obj. O1f. Auditability, the ability to easily determine the global access permissions, facilitates
auditing compliance to a compartmentalization policy by checking which compartments have
access to which memory region. A browser might regularly audit its permissions to ensure that the
WebApp has not escalated its privileges. An audit for a mechanism with a centralized permissions
store, such as page tables, must only check this store simplifying audits. In contrast, an audit for
CHERI [139] requires an expensive, full-memory scan since the set of memory regions accessible to
a compartment is the transitive closure of capabilities held in its registers, along with capabilities
held in any memory region accessible through these registers.

3.3.3 Performance Objectives

Low-overhead checks and operations allow performance-critical programs to be compartmentalized.
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Obj. O2a. Single-cycle access verification in the common case is essential for core throughput.
While most mechanisms meet this objective in the best (not common) case, page-table based
isolation mechanisms suffer from the limited scalability of Translation Lookaside Buffers (TLBs)
used to cache permissions. Programs with large datasets can incur high TLB miss rates, with
correspondingly high verification latency in the common case due to page-table walks. UNIX
process-based protection particularly suffers from this limitation since modern Address Space ID
(ASID)-tagged TLBs will effectively contain duplicate entries for a shared page with separate
permission for each compartment, effectively dividing an already capacity-limited structure among
compartments [55]. This objective implicitly requires the mechanism to support a sufficiently large
number of compartments and data regions. A mechanism with small limits, like Intel MPK which
is restricted to 16 colors for data regions, will incur overheads from software workarounds required
to virtualize the corresponding resource [96].

Obj. O2b. Cross-compartment calls are essential and frequent for communication between fine-
grained compartments necessitating fast compartment switches. Fine-grained library isolation [44]
requires compartment switches accompanying every function call to an untrusted library. A program
isolating short-running functions, such as AES encryption using hardware AES-NI extensions, can
incur a compartment switch every tens or hundreds of cycles [3]. Specialized hardware instructions
accessible from userspace are essential for cheap compartment switches in tens of cycles. Even the
fastest supervisor-mediated compartment switch still costs hundreds of cycles [139].

Obj. O2c. Fast, zero-copy permission transfer enables programs to efficiently move data
between compartments. Data copying for passing large buffers during compartment calls can
overwhelm high-performance programs, such as our example network function pipeline. Such
applications typically pass packets by reference between unisolated stages profiting from zero-
copy. Cheap permission transfers, within ten to hundred cycles, enable such applications to be
compartmentalized with performance comparable to the monolithic versions. UNIX process-based
permission transfers instead involve microsecond-scale system calls, precluding their use for practical
compartmentalization.

3.3.4 Flexibility

A mechanism demands flexibility to be suitable to compartmentalization across a variety of
application domains.

Obj. O3a. For flexibility, a mechanism must support arbitrary sharing of data regions, requiring
independent per-compartment per-region permissions. A private region, for example, should be
accessible by only a single compartment. Another shared region might allow read access to one
compartment, write access to another, and execute permissions to a third. Mechanisms that
target hierarchical security, for example, limit flexibility — the trusted compartment implicitly
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has permission to access an untrusted compartment’s data — and exclude wide applicability. In
contrast, even if the WebApp in the browser trusts the Engine, the Engine is denied execute
permissions to the WebApp’s code. A mechanism must support, but not be exclusive to, specific
trust models such as nested compartments.

Obj. O3b. To scale performance overheads with security objectives, we introduce a desirable
property, security-proportionality. A security-proportional mechanism allows policies to trade-off
overheads for security when unnecessary. Despite not trusting the WebApp, transitions from
the WebApp to CryptoLib can elide context switching required for register isolation under a
specific condition. Verification approaches [23, 66] can be used to prove that a small function in
CryptoLib does not leak the key under the assumption that entry points are enforced, and that
the function’s code overwrites registers used to store the key before returning to the WebApp.
By using the cheaper migrating thread model [41], a security-proportional mechanism can reduce
overheads where acceptable. Process-based isolation, for example, is not security-proportional since
every compartment switch incurs the same non-negotiable overheads (including context switching,
page-table switching, or scheduling).

3.3.5 Alternate Visions for Compartmentalization

SecureCells envisions a future where the mechanism supports widespread application compartmental-
ization efforts, with consequently differing goals and designs compared to related mechanisms. First,
some mechanisms only support custom-tailored use cases such as differentiating between single
trusted-untrusted compartments [52, 62, 67], or a binary classification of data as (in)sensitive [42].
CODOMs [131] link code addresses to compartments, restricting code sharing that is abundant in
modern programming. Specialization allows simpler hardware mechanisms, but do not support a
broad spectrum of applications. Second, SecureCells does not aim to compartmentalize existing
software with zero-modifications. While automated isolation techniques provide a crucial first step
towards compartmentalized programs [63, 107, 130], security-critical software requires refactoring to
fully realize the benefits of proper compartmentalization. Finally, related works target compatibility
with legacy hardware or existing or upcoming software/hardware mechanisms and abstractions for
isolation. Numerous mechanisms try to compartmentalize using process-based isolation implemented
by the OS [40, 64, 76], retrofitting compartmentalization onto an abstraction originally designed
for multiprogramming on unicore processors. Others leverage Intel MPK [52, 67, 129] or similar
protection-key based mechanisms [113], synergizing with traditional page table-based virtual memory.
Targeting immediate adoption, Hodor [52] and LOTRx86 [69] (ab)used existing processor features
intended for other purposes to isolate compartments. HAKC [85] leverages state-of-the-art ARM
extensions, PAC and MTE, to compartmentalize the Linux kernel, but requires a two-level clustering
of closely-connected compartments to overcome MTE’s compartment scaling limitations and still
incurs a significant performance hit. With the sole exception of Mondrian [144], proposals assume
current page-based virtual memory. Meanwhile, trends in applications and memory architectures
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O1 O2 O3
a b c d e f a b c a b

UNIX ✓ ✓ ✓ N/A ✓ ✓
Mondrian ✓ ✓ ✓ N/A ✓ ✓ ✓
lwC ✓ ✓ ✓ N/A ✓ ✓
CODOMs ✓ ✓ N/A ✓ ✓ ✓
XPC ✓ ✓ ✓ ✓ ✓ ✓ ✓ ∼ ✓
MPK ∼ ✓ ✓ ✓ ✓
ERIM ∼ ∼ ∼ ✓ ✓ ✓ ✓
Donky ∼ ✓ N/A ✓ ✓ ✓ ✓
CHERI ✓ ✓ ✓ ✓ ✓
SecureCells ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 3.1: Comparison of compartmentalization mechanisms based on compliance with the objectives
described in Section 3.3. Limited compliance is marked with “∼”.

have led to a resurgence in range-based translations and protections among academic proposals [12,
51, 60, 98, 149] and commercial processors including AMD’s Zen lineup [14]. Table 3.1 summarizes
the objectives satisfied by related mechanisms (justification in Appendix B.2). We discuss related
mechanisms further in Section 3.6.

Complementary requirements. To satisfy application requirements, programs compartmen-
talized with SecureCells’ mechanisms require complementary properties from other parts of the
system including secure compartmentalization policies, a secure and performant supervisor interface,
and formal verification of application-level properties aided by programming conventions. For
example, supervisors might include a syscall for microsecond-scale compartment creation [76]. Safe
calling conventions can provide formal guarantees against inadvertent information leakage from the
stack [121]. These investigations are outside the scope of this thesis.

SecureCells overview. SecureCells is a compartmentalization mechanism designed to satisfy
the above objectives across a wide array of programs, providing flexibility and performance without
compromising on security. SecureCells stores permissions in a centralized permissions table accessible
only by the supervisor and hardware. A novel, range-based memory management unit (MMU)
and lookaside buffer design (Section 3.4.1) allows single-cycle access control on the fast path
satisfying objectives O1a, O1f, O2a, and O3a. SecureCells introduces fast, userspace instructions
for common compartmentalization operations (see Table 3.2): switching compartments, transferring
permissions and validating exclusive access for data regions (Section 3.4.2). These instructions
satisfy requirements O1b, O1e, O2b, O2c. SecureCells delegates context isolation, call-stack
maintenance, and argument validation to software. Section 3.4.3 outlines how software can securely
and efficiently implement context isolation and call-stack maintenance. Software implementing
these functions satisfy security (O1b, O1c) and flexibility (O3a, O3b) objectives.
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3.4 SecureCells

SecureCells proposes hardware-software co-design to satisfy the manifold objectives for efficient
and secure compartmentalization. The key insight that compartmentalization operations from
untrusted userspace are secure with TCB-maintained permission checks allows SecureCells to
implement compartment switch and permission transfer through trusted hardware-checked userspace
instructions which are hundred to thousand times faster compared to traditional supervisor calls.
Pragmatically, SecureCells retains software for operations such as context switching which, while
common, would not benefit significantly from hardware support. Software implementations of such
operations achieve higher flexibility and resilience to implementation errors at negligible or low
additional performance cost compared to a hardware implementation. For example, both hardware
and software context switching can saturate the L1 data cache bandwidth, achieving similar
performance. The second insight is that VMA-based permission tracking eliminates permission
duplication inherent in page-table entries for pages within a VMA. SecureCells leverages this insight,
eliminating overheads for permission storage (compared to equivalent page tables) and allowing
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hundred-times smaller core-side lookaside buffers.

SecureCells protects compartments, application-defined mutually untrusting parts of a program,
by controlling their access to memory regions. Each compartment is allocated a Security Divi-
sion (SD) with individual permissions to each VMA-granularity data region (cell). The Browser
(Figure 3.1), for example, has three compartments (Engine, WebApp and CryptoLib) allocated
SD1-SD3, and four cells. SecureCells augments each core with a read-only register (SD I D) tracking
the currently executing compartment. Along with a table for storing permissions (PTable) and a
modified MMU for enforcing the permissions, SecureCells implements single-cycle access control.
The WebApp SD has executable permissions to one code cell and read-write permission to one data
cell. Userspace instructions (see Table 3.2) enable secure compartment switching and permission
surrender/transfer. Another per-core read-only register (RI D) tracks the caller after a compartment
switch, allowing the callee to securely identify its caller. During permissions transfer, a granted
permissions table (GTable) tracks outstanding permissions. Further, the design implements context
isolation and secure call stacks in software leveraging the above hardware primitives. Figure 3.3
summarizes SecureCells’s architecture. The detailed layout of cell descriptors, the PTable, and the
GTable are shown in Appendix B.1.

3.4.1 Access control

The Permissions Table (PTable) stores per-cell, per-SD permissions for the compartmentalized
program. For each cell, the permissions for each SD are independent and define the degree of
sharing for that cell. Compartment-private data stores allow only one SD non-null permissions
in this table. Shared cells can be readable, writable, or executable by more than one SD. For a
JIT compiler, the cell holding generated data will be writable by the compiler SD, while being
executable by the sandboxed code’s SD. The PTable is stored in privileged supervisor memory,
restricting accesses (including stores) from userspace. Figure 3.1 shows the permissions for the
three browser compartments, assigned to separate SDs, to the four data regions, similarly assigned
to cells. SecureCells’ current PTable design supports a large number of SDs and cells (229 and
232 respectively), vastly exceeding application requirements. A finely-compartmentalized modern
browser, for example, will only require a few hundred compartments, isolating each loaded shared
library (around 100 on the author’s Firefox installation) and per-tab rendering compartments [11].

SecureCells replaces the core’s MMU with a PTable walker and range-based lookaside buffers for
permissions and translations. The MMU checks access permissions based on the accessed address
and the executing SD identified by the core’s SD I D register. The lookaside buffers track a small
number of frequently accessed cells, along with SD I D-tagged permissions. In the common case,
access control verifies permissions from entries in this buffer. When accesses miss in this buffer, the
PTable walker reads the required permission from the PTable. The walker first performs a (fast)
binary search in a sorted list of permissions to find the correct cell containing the accessed address,
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Instruction Purpose

SDSwitch Switch to another SD
SCProt Change current SD’s permission to cell
SCInval Mark a cell invalid
SCReval Revalidate an invalid cell
SCGrant Grant cell permissions to another SD
SCRecv Accept granted cell permissions
SCTfer Grant and drop cell permissions
SCExcl Check for exclusive access to a cell

Table 3.2: Overview of SecureCells’ userspace instructions.

then reads the correct permission from the PTable for that cell. The location of the permission in
the PTable is found through very simple arithmetic.

SecureCells’ PTable layout and MMU design has three key advantages: fast PTable walks,
scalability to large data working sets, and low silicon cost. The PTable layout aids fast permission
lookups by sorting the cell descriptors, allowing a binary search for the cell descriptor containing an
address, and the contiguous layout of the permissions for a particular SD, which improves spatial
locality for PTable walks. Range-based lookaside buffers also enable scalability for programs with
large datasets, since permissions should be verified against TLB entries in the common case. With
growing dataset sizes, traditional processors require larger TLBs in order to track additional page
translations and permissions. Importantly, all permissions for pages within a VMA are the same,
leading to duplication in TLB entries’ permissions. However, the growth of program datasets has
exceeded the TLB reach of modern processors, leading to attempts at range-based translations
(explicitly managed by the supervisor [149], or implicitly through coalescing [98]). In contrast,
as dataset sizes grow, the cell count remains constant and the size of cells increases. Previous
work in range-based translation caching [51, 149] have also demonstrated that processors require
hundred-times smaller range-based lookaside buffers than in traditional systems, drastically reducing
silicon cost. Research proposals [51, 154] have also tackled external fragmentation from range-based
translations by introducing a system-wide page table after the last-level cache.

3.4.2 Userspace Instructions

SecureCells introduces 8 new serializing userspace instructions for accelerating common compart-
mentalization operations (Table 3.2). These instructions, formally defined in Figure 3.4, implement
speculation-free compartment switching with checked entry points, permission surrender and transfer
for zero-copy dataflow.

The SDSwitch instruction targets secure, low-overhead compartment switching within userspace.
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SecureCells Program State
1: S = Set of M SDs incl. supervisor SDsup

2: C = Set of N cells, each valid or invalid
3: Per-core register SD I D

4: Per-core register RI D
5: PTable PT : S ×C 7→P({r, w, x })
6: GTable GT : S ×C 7→ S ×P({r, w, x })

Instruction 1 SDSwitch(addr , SD t g t )
Switch to SD t g t at instruction pointer addr

1: ci ← cel l (addr )
2: assert val i d(ci )
3: assert instruction at addr is SDEntr y
4: assert x ∈ PT (SD t g t ,ci )
5: instruction pointer ← addr
6: RI D ← SD I D
7: SD I D ← SD t g t

Instruction 2 SCProt(addr , per m)
Restrict rights to addr to per m

1: ci ← cel l (addr )
2: assert val i d(ci )
3: pi ,cur ← PT (SDcur ,ci )
4: assert per m ⊆ pi ,cur

5: PT (SDcur ,ci ) ← per m

Instruction 3 SCGrant(addr , SD t g t , per m)
Grant SD t g t per m rights to addr

1: ci ← cel l (addr )
2: assert val i d(ci )∧per m ̸=φ

3: pi ,cur ← PT (SDcur ,ci )
4: assert per m ⊆ pi ,cur

5: GT (SDcur ,ci ) ← (SD t g t , pt g t )

Instruction 4 SCRecv(addr , SDsr c , per m)
Accept per m rights to addr from SDsr c

1: ci ← cel l (addr )
2: assert val i d(ci )∧per m ̸=φ

3: (SD t g t , g pt g t ) ←GT (SDsr c ,ci )
4: pi ,cur ← PT (SDcur ,ci )
5: assert SDcur = SD t g t ∧per m ⊆ g pt g t

6: if per m = g pt g t then
7: GT (SDsr c ,ci ) ← (SDi nv ,φ)
8: else
9: GT (SDsr c ,ci ) ← (SD t g t , g pt g t −per m)

10: end if
11: PT (SDcur ,ci ) ← per m ∪pi ,cur

Instruction 5 SCTfer (addr , SD t g t , per m)
Transfer all per m rights for addr to SD t g t

1: SCGrant(addr , SD t g t , per m)
2: SCProtect (addr , φ)

Instruction 6 SCReval(addr , per m)
Re-validate address addr with per m rights

1: ci ← cel l (addr )
2: assert i nval i d(ci )∧per m ̸=φ

3: Validate ci

4: PT (SDcur ,ci ) ← per m

Instruction 7 SCInval(addr )
Invalidate addr cell

1: ci ← cel l (addr )
2: assert val i d(ci )
3: for all SD j ∈ S − {SDsup ,SDcur } do
4: pi , j ← PT (SD j ,ci )
5: (SD t g t , g pt g t ) ←GT (SD j ,ci )
6: assert (pi , j =φ)∧(g pt g t =φ)∧(SD t g t =

SDi nv )
7: end for
8: PT (SDsr c ,ci ) ←φ

9: GT (SDcur ,ci ) ← (SDi nv ,φ)
10: Invalidate ci

Instruction 8 SCExcl(addr , per m)
Verify exclusive per m rights to addr

1: ci ← cel l (addr )
2: assert val i d(ci )∧per m ̸=φ

3: pi ,cur ← PT (SDcur ,ci )
4: assert per m ⊆ pi ,cur

5: (SD t g t , g pt g t ) ←GT (SDcur ,ci )
6: if per m ∩ g pt g t ̸=φ then
7: return F al se
8: end if
9: excl ← Tr ue

10: for all SD j ∈ S − {SDsup ,SDcur } do
11: pi , j ← PT (SD j ,ci )
12: (SD t g t , g pt g t ) ←GT (SD j ,ci )
13: if per m ∩ pi , j ̸= φ∨ per m ∩ g pt g t ̸= φ

then
14: excl ← F al se
15: end if
16: end for
17: return excl

Figure 3.4: SecureCells’ state and userspace instructions.
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SDSwitch resembles function call instructions, with direct and indirect variants, additionally switching
the core’s SD I D register and saving the caller’s SD I D to RI D. Since the SD I D register is not
writable from userspace, inter-compartment calls must use SDSwitch. The cost of executing an
SDSwitch is essentially the cost of pipeline serialization, plus the negligible cost of updating core
registers, making it extremely cheap. For an in-order 5-stage pipeline, an SDSwitch instruction
completes in around 8 cycles. For an out-of-order processor, pipeline serialization is an essential
cost incurred by all related mechanisms to prevent Spectre-like [65] speculative execution attacks,
typically requiring 50-100 cycles. For example, serialization dominates ERIM’s MPK-based 99-cycle
switch latency. Compared to supervisor-controlled compartment switching, SDSwitch eliminates
the cost of serialization on supervisor entry, context switches on entry and exit, syscall dispatch,
scheduling, and accounting costs.

SecureCells requires SDSwitch instructions for both forward and backward edges on cross-
compartment calls. We show how software can implement cheap, secure call stacks in Section 3.4.3.
Programs are also allowed more flexibility, and can implement both remote procedure call (RPC)-like
call-and-return (as in Figure 3.1) and circular function call graphs with one-way switches (as in
Figure 3.2).

SDSwitch instructions impose an additional restriction over function calls in order to enforce
call gates — the instruction at the target address must be an executable SDEntry instruction for
the target SD. This requirement limits the valid entry points for a compartment to the executable
SDEntry instructions in its code, and is conceptually similar to Intel’s CET [56]. A compartment can
mark valid entry points with SDEntry instructions, and implement call gates directly afterwards. Note
that while our attacker can inject arbitrary code into a compromised SD, it cannot write code into
any other SD, protecting uncompromised SDs from attack via code injection containing unintended
entry points. The only remaining way for an attacker to propagate between compartments is
by using valid interfaces. Proper input validation, which is always crucial for compartmentalized
programs, protects against this attack vector. In contrast, Intel MPK-based methods allow an
attacker to inject and execute a wrpkru instruction into a compromised compartment to elevate its
privileges to access all memory. Further, the core executing SDSwitch updates the RI D register
with the caller’s SD I D, allowing the callee to identify and validate the caller.

The SCProt instruction allows a SD to update its permissions to a cell, with the restriction that
the new permissions are a strict subset of existing permissions. Essentially, SCProt allows a SD to
surrender permissions when no longer needed. This instruction supports a common paradigm in
secure software where a program drops permissions as soon as possible.

An SCGrant-SCRecv instruction pair, executed by separate compartments, allows permissions
for a cell to be transmitted between them. When the granting SD executes SCGrant, the targeted
SD I D and permissions are stored in the GTable. A SD is only allowed to grant permissions it already
has. Only the targeted SD can later accept these permissions by executing an SCRecv, specifying
the SD it expects to receive permissions from. Mutual involvement in permission transfers prevents
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SDs from “stealing” from or “injecting” into other SDs’ permissions, ensuring confidentiality and
integrity respectively. Note how this prevents malicious code injection in particular, including
where an attacker might try to inject new entry points (SDEntry instructions). Recognizing a
common software pattern where a SD hands over its permissions to the next stage and drops its
own permissions, SecureCells introduces the SCTfer instruction. Unlike SCGrant, a SD executing
SCTfer also drops its own permissions to the cell involved. The semantics of SCTfer are identical
to consecutive SCGrant and SCProt instructions, but SCTfer deduplicates permission checks. All
data transfer instructions (SCProt, SCGrant, SCTfer, SCRecv) also flush the relevant entry from the
MMU’s lookaside buffer. The network function is dependent on these instructions to progressively
transfer permissions to a packet between stages, as illustrated in Figure 3.2. However, a SD can
only have a single outstanding grant for a particular cell. If a SD grants a second set of permissions
to a cell before the first set of permissions to the same cell is accepted, the first grant will be
overwritten in the GTable.

The SCInval-SCReval instruction pair allows dataflow pipelines to optimize the end and beginning
of dataflow pipelines such as the aforementioned network function pipeline. The pipeline stages
progressively drop permissions to the cell holding a packet, and finally wish to drop all permissions
after the final stage. However, dataflow pipelines reuse the cells to hold packets, implying that the
Driver SD must find a way to regain write permission to the cell to write a new packet’s contents to
it. While this use case seems to require an illegal privilege escalation prima facie, the fact that the
end of the pipeline “discarded” the cell holding the packet implies that its contents are trash, and
allowing another SD escalated permissions to the cell is secure. To support such usage, SecureCells
introduces the concept of validity for a cell. The SCInval allows a compartment to explicitly state
that a cell holds trash and is available for reuse. On executing this instruction, this cell becomes
unavailable for memory accesses and cannot be used by any instruction apart from SCReval. The
SCReval allows any compartment to re-validate and use an invalid cell with arbitrary permissions.
SecureCells imposes a key restriction in order to secure cell reuses. A SD can only invalidate a cell
when it has exclusive access to it, requiring all other sharers to explicitly drop their permissions to
this cell. This restriction ensures that a malicious SD cannot indirectly elevate its privilege to a
shared cell by using an SCInval-SCReval sequence.

Exclusive access to a data region is critical to security and performance, and SecureCells
introduces the SCExcl instruction for this purpose. Apart from enabling invalidation of a cell,
exclusive access is also important for safety in concurrent programming. Concurrent access to data
regions enables double fetch vulnerabilities (such as time-of-check-to-time-of-use or TOCTTOU).
The SCExcl instruction allows a SD to check whether it has exclusive access to a cell. With exclusive
access, a SD can skip making private copies of data for double fetches, improving performance.
Conversely, when the policy dictates that a SD should have exclusive access to a cell, that SD can
verify compliance with the policy using SCExcl.
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entry0:
  SDEntry

  jump to return addr. 

foo:
  ... 
  setup args 

  trampoline(SD1,bar) 
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Figure 3.5: Cross-compartment procedure call in SecureCells.

3.4.3 Software Mechanisms

SecureCells delegates certain operations to software: argument validation for call gates, maintaining
call stacks, and context switching for register context isolation. Of these, argument validation
is arbitrarily variable based on the compartmentalization policy and best left for software checks
in hardware-enforced call gates. SDs can determine their caller by reading the RI D register, and
find arguments in register or memory, and implement software checks as necessary. Software
maintained call stacks for inter-compartment calls allow flexibility of calling models, simplifies
hardware and remains secure. The software can securely restore with the same performance as
hardware, making a hardware implementation unnecessary. In-software operations also improve
SecureCells’ security-proportionality as these operations can be skipped for lower overheads when
safe to do so.

Both forward and return edges on RPC-like cross-compartment calls use SDSwitch instructions,
as illustrated in Figure 3.5 where function foo makes a cross-compartment call to bar. Arguments
are passed in registers. In this example, the caller uses a trampoline to hide its return address
before switching to SD1 (Step 1) and uses this address on the return path (Step 4). SD0 is able
to hide its calling address from SD1, just leaking the address of the generic trampoline. Further,
following the return switch to its entry point, SD0 can read RI D to verify that the return is indeed
from the called SD, not any other. On the other side, the callee (SD1) can store its caller and
switch back to the caller’s entry point on the backward edge. If SD1 contains nested calls to other
compartments, it merely needs to remember its caller somewhere in its memory. The dispatch
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(Step 2) secures the forward edge to bar with call gates. While this example is secure, the flexibility
of software allows other calling patterns.

Context isolation requires the caller to save non-argument/return registers to a state store
before a SDSwitch and restore the same state on the return edge. The second step (context restore)
is challenging since it requires the SD to find its state store without trusting any register state,
since the register state prior to the SDSwitch persists. We propose an array of per-SD private cells
as state stores, indexed by SD I D. The base of this array is easily constructed with instruction
pointer-relative instructions following an entry point. Simple arithmetic involving the readable
SD I D register allows a SD to locate its state store, and consequently restore the register state.
The latency of in-software context saving to memory is limited by the core’s bandwidth to the L1
cache, the same as for any potential hardware implementation. Therefore, delegating this operation
to software has no performance impact. Context switching also switches the stack pointer between
per-compartment private stacks.

3.4.4 Implementation

Our implementation of SecureCells augments and modifies the RocketChip [8] core and firmware.
An overview of the implementation is shown in Figure 3.3, with additions to the existing processor
highlighted in grey. RISC-V provides the ideal, open platform for implementing fully-functional
prototypes of experimental architectures. SecureCells permits a range of implementations for
single and multi-core processors containing in-order and/or out-of-order cores depending on the
application’s requirements: from firmware implementations on low-power embedded processors
through hardware or microcode implementations on mobile, desktop, and server processors. We
discuss the trade-offs in detail in Appendix B.4. To match the RocketChip’s simple, in-order
pipeline, we implement access control and compartment switching in hardware within the pipeline
and emulate the remaining instructions in firmware.

SecureCells provides an alternate virtual memory mode, replacing SV-39 and SV-48. We
replace the core’s MMU with a range-based TLB and a PTable walker (replacing the traditional
page-table walker). We design the layout of the two-dimensional tables (PTable and GTable) in
memory to accelerate cell lookups and maximize spatial locality within the cache hierarchy when
accessing permissions. We add SD I D and RI D to the core’s Control-Status Registers (CSRs), and
implement SDSwitch in the core pipeline. The remaining instructions are implemented through
hardware-assisted firmware by modifying OpenSBI [123].

The unified PTable-GTable in memory starts with a sorted list of cell descriptions, followed by
the permissions held in the PTable, and then the mappings for the GTable. Appendix B.1 shows the
layout in detail. Each cell is described by the base and bound virtual addresses, the corresponding
physical address base, and a single bit denoting validity. The sorted list of cell descriptions allows
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the PTable walker to perform a binary search when looking for the cell which contains a particular
address, greatly accelerating lookups. The row-major layout of the PTable groups permissions for
the same SD in contiguous cache lines, resulting in intra-cache line spatial locality for permission
lookups, and synergizing well with next-line prefetchers. As a result, most MMU permission lookups
are likely to be served by the L1 cache. The unified PTable-GTable together occupies ∼ 160kB to
track permissions to 1024 cells with 64 SDs, equal to the memory used by leaf page-table entries
to map 80MB of data.

The range-based lookaside buffer holds a few cell descriptions and the corresponding permissions
tagged by SD I D. The implementation of these structures is inspired by recent forays into range-
based translation caches [12, 51, 149], primarily aimed at tackling the limited reach of modern
page-based translation lookaside buffers (TLBs). Midgard [51] has shown that such lookaside
buffers can sufficiently cover the working set of large applications with a few (∼ 16) entries.

SecureCells’ userspace instructions are implemented through hardware-software co-design. The
SDSwitch instruction is implemented purely in hardware, and the remaining permission-modifying
instructions are emulated through firmware. Additional hardware helpers, designed to aid operations
trivially achieved in hardware but costly in software, simplify and accelerate the emulation. We
describe these hardware modifications in detail in Section B.6. One notable operation is the lookup
of the cell’s index in the PTable, which is common for all added instructions. While a binary
search in software is expensive, the MMU already holds this information. We add an instruction,
only accessible in RISC-V’s machine mode and similar to the AT instruction in ARMv8-A ISA [5],
to directly query the MMU. We envision that higher performance processors with microcode
sequencers can implement these instructions in microcode, and leave the investigation of the
requirements of such an implementation to future work.

3.5 Evaluation

In this section, we evaluate key metrics for SecureCells’ security and performance. First, we show
how SecureCells provides security for the Browser described in Section 3.3. Second, we measure
the latency of the SecureCells’ userspace instructions in microbenchmarks, particularly comparing
compartment switching latency to related work. We finally measure SecureCells’ performance
for two representative workloads highlighting the effect of range-based access control and using
userspace instructions for compartment switching and permissions transfer.

Testbench. We ran the security evaluation on a QEMU implementation of SecureCells, which
faithfully models its functional behavior, and the performance experiments on our hardware
implementation of SecureCells, which uses cycle-accurate Register-Transfer Level (RTL) simulation
to accurately measure its timing behavior. The core configuration, described in Table 3.3, resembles
ARM’s Cortex-A75. Our baseline is an identical core using a traditional page-based MMU and
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Component Configuration
Baseline SecureCells

Core 1 × Rocket, 6-stage, in-order
L1 - D/I TLB 32-entry, fully-assoc. 16(D)/8(I)-entry, fully-assoc.
L2 TLB 1024-entry, 4-way assoc. 32-entry, fully-assoc.
L1 D/I-cache 32KB, 8-way associative
L2 cache 16MB, 16-way associative
Main memory DDR3, 800MHz, 1GB

Table 3.3: HW configuration of the SecureCells prototype.

Traditional SecureCells
LUTs FFs SRAM LUTs FFs SRAM

L1 ITLB 1915 1886 0 1529 869 0
L1 DTLB 2613 2048 0 1272 1903 0
L2 TLB + PTW 5000 3428 18KiB 3826 4596 0
MMU Total 9528 7362 18KiB 6627 6200 0

Table 3.4: FPGA resource utilization for SecureCells’ MMU

TLBs instead of SecureCells. Table 3.4 shows the FPGA resource utilization for both the baseline
and SecureCells MMUs. SecureCells’ PTable walker contains simpler logic than the baseline, as
evidenced by the fewer LUTs required in the design. Additionally, the much smaller range TLB
eliminates the 18KiB block SRAM required to store 1,024 entries in the baseline L2 TLB. We
run our benchmarks on a seL4 kernel ported to use SecureCells’ memory protections. To evaluate
realistic workloads on the seL4 kernel, we faithfully ported core functionality of benchmarks, carefully
limiting system calls.

3.5.1 Security Evaluation

To evaluate SecureCells’ security claims, we test that a properly compartmentalized SecureCells
program prevents common attack vectors for monolithic software. We also include an in-depth
analysis of SecureCells’ instruction semantics afterwards.

Access Control. We evaluate SecureCells’ access control on a mock Browser, modeling the
example described in Section 3.3. The Browser contains a simple compiler Engine that generates
code for sandboxed WebApp applications. The WebApp can allocate arrays, and read/write
elements in the array through get/set instructions. We emulate a buggy Engine that generates
vulnerable WebApp code lacking bounds checks on array accesses, allowing the WebApp arbitrary
reads and writes. With the monolithic Browser, an attacker WebApp could leak/modify the Engine’s

71



Chapter 3. SecureCells: A Secure Compartmentalized Architecture

data as well as that of a second sandboxed WebApp. When compartmentalized with SecureCells
with the permissions shown in Figure 3.1, illegal accesses by the attacker WebApp outside its data
cell instead raise load/store access faults. SecureCells’ access control also prevents arbitrary code
injection by the WebApp by preventing the WebApp from writing to either its or the Engine’s code
regions.

Context Isolation and Call Gates. When uncompartmentalized, the WebApp can modify
the Engine’s stack enabling control- and data-flow attacks like ROP [118]. Using SecureCells for
separation, inter-compartment calls between the Engine and the WebApp are protected through
call gates implementing context isolation (Section 3.4.3) including stack switching. SecureCells
successfully prevents the WebApp from accessing the Engine’s stack.

Formal Description and Security Analysis of SecureCells’ Userspace Instructions

We define the semantics of SecureCells’ unprivileged instructions in Figure 3.4 and discuss their
corresponding security checks below.

SDSwitch. This instruction checks that the jump target is valid, and holds an SDEntry instruction
executable by the target SD. With the precondition that the caller SD does not have writable
permission to any cell executable by the target SD, SDSwitch guarantees compartment entry at
previously defined entry points (helping implement call gates).

SCProt. This instruction checks that the target cell is accessible by the SD, and the new
permissions are a subset of the existing permissions. After this instruction, the SD is assured to
have no more permissions than before.

SCGrant, SCRecv and SCTfer. SCGrant checks that the granting SD has permissions to the cell,
and that the granted permissions are a subset of its existing permissions. SCRecv, in turn, checks
that the SD is receiving permissions for a valid cell, that the permissions were previously granted
by the specific SD that the receiving SD expects, and that the received permissions are a subset of
the permissions granted. SCTfer includes the checks of both SCGrant and SCProt. The granting
and receiving SDs must cooperate in order to transfer permissions, and together finish with the
same or fewer permissions than they began with.

A correct compartment is defined to not grant or receive any permissions or invalidate cells
that it is not required to grant as per a correct compartmentalization policy. Considering a set
of compromised attacker SDs and their permissions to cells and assuming that uncompromised
compartments are correct, SecureCells guarantees that the attackers can neither gain any new
permissions through any sequence of permission transfer instructions nor elevate the permissions
of any uncompromised compartment. Using SCGrant and SCRecv instructions, the compromised
compartments can transfer permissions between themselves but those grants cannot include

72



3.5. Evaluation

Round-trip Cycles CPU
Switch Context Saving Total OoO1 Model

l wC 2×6000 12000 ✓ SkyLake
seL4 2×514 1027 RocketChip
CHERI 2542 1293 425 CHERI
ERIM 2×99 Opt5 198 ✓ Xeon
XPC 824 Opt5 82 RocketChip
SecureCells 2×8 Opt5 16 RocketChip
1 Out-of-order CPUs incur higher pipeline serialization costs
2 In-kernel time
3 Userspace time (caller, libcheri)
4 XPC call + return + TLB miss
5 Optional, software-implemented context switch

Table 3.5: Compartment switching cost of various compartmentalization mechanisms.

permissions which none of the attackers had initially. The only way for the attackers to gain
permissions is from an uncompromised SD either granting permissions to a cell or from invalidating
a private cell which one of the attackers can validate with SCReval. The only way for the attackers
to inject permissions is to have an uncompromised SD receive them. By definition, uncompromised
compartments will do neither of the above. Once again, we stress on the importance of a correct
compartmentalization policy. No mechanism, including SecureCells, can protect against an insecure
policy where compartments transfer permissions from/to untrusted compartments without proper
validation.

SCInval. This instruction allows a SD to invalidate a cell to which it has exclusive access, and
to which no outstanding permission grants exist. The first condition can be true for a private
region, or for one which other SDs have willingly dropped permissions. Consequently, no other SD
will unwittingly lose permissions to the invalidated cell as a consequence of SCInval. The second
condition provides the assurance that no compartment can regain permissions to the cell without
executing SCReval.

SCReval. This instruction checks that the address corresponds to an existing cell and that it is
currently invalid. Due to the initial invalidity of the cell, no SDs could have access to the cell to be
revalidated.

SCExcl. This instruction does not modify any permissions, only allowing a SD to check if it has
exclusive access to a cell to which it already has access to.
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Instruction Trap entry Dispatch Emulation Total Cycles

SCProt 79 32 33 144
SCInval 79 35 68 182
SCReval 79 39 44 162
SCRecv 79 54 69 202
SCGrant 79 52 63 194
SCTfer 79 61 62 202
SCExcl 79 57 67 203

Table 3.6: Cycles for emulating SecureCells instructions.

3.5.2 Performance Microbenchmarks

First, we create microbenchmarks to measure the latency of each userspace instruction introduced
by SecureCells, of which SDSwitch is directly implemented in hardware, and the other instructions
are emulated in firmware.

In Table 3.5, we compare SecureCells’ compartment switching cost with that of related
mechanisms, particularly for a round-trip cross-compartment call. SecureCells’ userspace SDSwitch
enables 8-cycle compartment switches, with optional software context saving costs, which is more
than 5× faster than XPC’s switch. SDSwitch’s latency consists of pipeline serialization (5 cycles), an
instruction permission check (2 cycles) and a single cycle for the targeted SDEntry instruction. Of
course, both XPC and SecureCells would incur higher pipeline serialization costs on an out-of-order
core, putting SecureCells on par with, or better than, the MPK-based ERIM. Note that ERIM
requires stringent code integrity and control-flow integrity guarantees while SecureCells does not
impose any code requirements for its compartmentalization guarantees.

All instructions other than SDSwitch and SDEntry are emulated by the firmware, and therefore
incur the costs of context saving, firmware entry and exit handlers, and dispatch to the correct
emulation function. Table 3.6 shows the latency of each instruction, breaking down the cycles spent
on each of the above overheads. A microcode implementation of SecureCells would allow the core to
use internal registers for storage, eliminating the context switch, and directly lookup the microcode
ROM to find the emulation microcode, eliminating dispatch. Consequently, a microcode-based
implementation would reduce SecureCells’ cost to that of the core emulation code only.

3.5.3 Compartment Switching and Access Control

To evaluate SecureCells’ practical performance, we create a simplified benchmark representative
of a popular server workload, memcached, accurately modelling the workload’s memory access
patterns across varying dataset sizes. Our benchmark implements the core hashtable-based storage
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Figure 3.6: Comparison of cycles-per-request, cycles-per-instruction (CPI), and TLB miss rate
while executing compartmentalized memcached benchmark on SecureCells, compared to the uncom-
partmentalized version on RocketChip (lower is better).

and the common query path loaded by an in-process load generator function and omits system
call-dependent features (networking, dynamic resizing), and the global LRU list. The benchmark
isolates the data store from the vulnerable external interface — attackers might send malformed
requests to trick the interface into directly accessing the data store — by assigning them to
separate SDs. The interface deserializes incoming requests, queries the data store by switching
compartments using SDSwitch, and serializes the outgoing response. For simplicity, this benchmark
utilizes the migrating thread model.

Compartmentalizing the server allows us to measure the overheads of frequent compartment
switches, while varying the program’s dataset size allows us to compare SecureCells’ scalability. We
scale the dataset size by sweeping the number of fixed-size (64B) entries stored in the data store, all
of which are accessed randomly by the load generator. We compare the compartmentalized server
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running on SecureCells’ implementation to an uncompartmentalized server running on an unmodified
RocketChip core by measuring the average count of instructions retired and cycles used to process
each request. To compare against another emerging compartmentalization architecture, we also
conservatively model CHERI’s performance on this benchmark, adding the costs of supervisor-
mediated compartment switches with hardware support, as reported in the CHERI paper [139].
We model each compartment switch as 191 instructions requiring 254 cycles, excluding the costs
of context switching and ignoring other microarchitectural overheads. In Figure 3.6, we plot the
average per-request cycle count and the cycles-per-instruction (CPI) for the server.

SecureCells implements fast compartment switching, and the cost of switching to and from the
data store compartment for each request (16 cycles) is minuscule (< 3%) compared to the request
processing time (minimum 532 cycles). Consequently, SecureCells’ performance closely tracks that
of the baseline even for small dataset sizes. In contrast, CHERI’s compartment switching overwhelms
the request processing time, only approaching the baseline’s performance for large dataset sizes.
While CHERI’s performance for compartmentalization compares favorably to that of traditional
OS-based isolation techniques, it offers unacceptable overheads for finer, function-granularity
compartmentalization (up to 95.5%).

The CPI graph highlights the baseline system’s limited TLB reach. As the dataset exceeds the
TLB reach of 4MB, the baseline starts to encounter TLB misses on accesses to the data store.
Consequently, the baseline CPI starts to degrade compared to SecureCells, and only worsens as the
dataset increases past the CPU’s last-level cache capacity. In contrast, SecureCells’ range-based
lookaside buffer comfortably scales to large datasets, allowing the memcached server to serve requests
9.3% faster for a 32MB dataset.

3.5.4 Compartmentalized pipeline

To illustrate SecureCells’ zero-copy permission transfer performance, we implement the virtual
network function pipeline presented in Figure 3.2. The Driver stage generates a “packet” by writing
a UDP/IP packet of varying length into a packet buffer, whereas the Firewall and NAT read and
modify the IP and UDP headers respectively, but ignore the packet’s payload.

Representing the ideal performance target, we include the “uncompartmentalized” configuration
that passes the packet by reference, incurring no overheads for data transfer. The second configu-
ration, “compartmentalized-copy”, compartmentalizes pipeline stages and uses shared buffers to
transfer packets by copy. The third, zero-copy “SecureCells ZC” configuration isolates stages, and
uses userspace instructions to transfer access permissions to packets, each of which occupies a
different cell. Finally, the “SecureCells ZC-µcode” configuration models the possible performance of
a microcode implementation of SecureCells’ dataflow instructions by mitigating trapping overheads
to the firmware and dispatch. This model is conservative, ignoring possible optimizations from
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Figure 3.7: Packet processing cycles-per-byte comparison.

parallelizing checks in microcode.

In Figure 3.7, we plot the average number of cycles required by the benchmark to process a
byte of a packet as the packet size grows. Fixed costs, such as a function call, compartment switch
or permission transfer, have diminishing impacts as the packet size grows. The costs for generating
and copying the packet, however, grows linearly with packet size, and add a constant vertical
offset in the graph. The “compartmentalized-copy” configuration incurs additional costs over the
uncompartmentalized baseline due to compartment switches (4.4% for small packets) and packet
copy (51.1%). The “SecureCells ZC” configuration trades-off linearly-growing packet copying costs
with fixed-cost permission transfers and (in)validations. While the ∼ 250-cycle average latency of
SecureCells’ permission-modifying instructions causes a massive 199% overhead for the smallest
packets, this fixed cost quickly gets amortized for larger packets. Indeed, this configuration overtakes
the “compartmentalized-copy” configuration for 600B packets and above, and approaches the
performance of the uncompartmentalized configuration (2.0% overhead) for 16kB packets. Finally,
the “SecureCells ZC-µcode” configuration highlights SecureCells’ performance potential, with
(average) 69-cycle operations for transferring permissions which lowers the break-even threshold to
200B packets.
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3.6 Related Work

A variety of compartmentalization techniques exist, both in software and leveraging hardware,
targeting differing goals and with consequently different designs.

Attacks often target specific, sensitive data for leakage or corruption (e.g., keys or flags).
Consequently, various proposals such as IMIX [42], ERIM [129], and MemSentry [67] introduced
mechanisms to specifically protect such data from untrusted or unsafe code. However, these
mechanisms fail to apply to more generic scenarios, with more than two compartments, per-
compartment sensitive or private data, and non-hierarchical trust models. COde-centric memory
DOMains [131] proposed an architecture where the instruction pointer identifies the running
compartment, in a bid to isolate untrusted libraries. However, this proposal is unable to support
the extensive code sharing in modern programs, including shared libraries like libc.

Compatibility with existing systems brings immediate security benefits. By mapping the same
physical pages across separate per-compartment page tables with different permissions, the existing
virtual memory implementation can mimic intra-address space compartmentalization. Typically, such
mechanisms require costly supervisor intervention to switch compartments limiting the temporal
granularity of compartmentalization. SMV [55] introduced an API for creating intra-address
space memory views, but relied on the supervisor for compartment transitions. Light-Weight
Contexts (l wC) [76] proposed a new OS abstraction enabling a fast-path in the supervisor for
compartment switching, essentially eliminating overheads from unnecessary tasks such as scheduling.
l wC successfully reduces the cost of a compartment switch from 4 to 2µs, but remains an order
of magnitude away from nanosecond-scale switching. Hodor [52] uses the VMFUNC instruction,
introduced for virtual machines, to instead switch page tables in a few hundred cycles, eliminating
supervisor overheads but consequently inherits the additional costs of two-dimensional page table
walks. LOTRx86 [69] repurposed unused x86 rings to introduce a privileged userspace for storing
sensitive data. XPC [40] prioritized software compatibility, choosing to accelerate the remote-
procedure call (RPC) interface used for process-based compartmentalization with new userspace
instructions. To achieve this goal, XPC cores track a complicated system of metadata across the
cores and memory, storing a list of compartments, entry points, valid caller-callee pairs, and a
caller stack. XPC is secure, performant, and can allow exclusive access to a single data memory
range at almost zero cost. However, XPC requires additional caches for dedicated storage of
its metadata, does not allow permissions to be transferred, and requires hardware to implement
features cheaply implementable in software (e.g., call stacks), and cannot support non-RPC like
compartment switches. With page table-based virtual memory, such proposals all inevitably suffer
from the scalability limitations of modern TLBs [12, 98, 149].

Existing architectures have introduced features for intra-address space isolation, e.g., Intel’s
MPK and ARM’s MTE extensions, with fast compartment switching (< 100 cycles) in the common
case. These extensions enforce additional permissions, but are insecure under stronger threat
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models due to designs which prioritize compatibility with existing processors. MPK, for example, is
defeated by arbitrary code injection. ERIM [129] requires complicated code scanning to prevent
code injection, and Donky [113] requires hardware modifications to introduce an additional trusted
privilege level within userspace. Since neither ERIM nor Donky validates code accesses, an attacker
targeting cross-compartment code injection need not make the malicious code executable for the
target before tricking the target into executing this code. Memory keys also architecturally limit
the number of memory regions for which permissions can be efficiently tracked, leaving no room
for future microarchitectural advances to improve code performance. These systems also inherit
the TLB-reach issues of modern TLBs.

Range-based permission tracking tackling the TLB-reach issue appeared in Mondrian Memory
Protection (MMP) [144]. MMP proposed a virtual memory architecture tracking segment-based
permissions for compartments within an address space, simulating zero-copy for networking through
redundant mappings for packet buffers with different, static permissions. MMP only implements
access permission checks in hardware, delegating other operations, including compartment switches,
to the supervisor, precluding high-performance applications. MMP also uses different permissions
tables for each compartment, reading duplicated range boundaries on each switch.

CHERI refers to hardware-enforced memory capabilities [145], and an eponymous compart-
mentalization mechanism reusing the same capabilities [139]. The original proposal for memory
capabilities offers a practical mechanism to mitigate spatial safety bugs, restricting the ability of
pointers to access memory beyond bounds. We recognize that CHERI’s capabilities can prevent
memory corruption within a compartment, motivating integration with SecureCells to together
improve security. CHERI compartmentalization encapsulates capabilities to a compartment’s code
and data, relying on costly supervisor-mediated compartment switches. CHERI lacks auditability
since capabilities are spread throughout memory, and a bug resulting in a capability being leaked
cannot be cheaply detected and fixed. CHERI’s switching costs are not security-proportional,
lacking the ability to skip context switching costs when acceptable. Finally, CHERI’s permissions
are built on traditional page-based translations, and inherit TLB limitations. Nonetheless, CHERI
allows more granular per-object capabilities as compared to SecureCells’ per-VMA permissions.

Along with mechanisms, policy research is equally important. Researchers have attempted
to formalize a compartment program’s guarantees [58], determine the scope of access following
permission transfers under the take-grant model [75], automatically infer isolation policies from
programs [63, 107, 130], provide hints to programmers on isolation boundaries based on automated
analysis [49], and reason about what guarantees remain when one or more compartments are
compromised [2].
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3.7 Discussion

Legacy program/OS support. SecureCells is compatible with existing pre-emptive operating
systems which already separate architecture-specific memory management code. SecureCells also
supports page-based memory management (demand paging, swapping) when integrated with
upcoming intermediate-address space memory architectures [51, 154]. Since SecureCells preserves
the VMA-based view of virtual memory, an OS can present a legacy userspace environment
for existing monolithic applications by allocating a single compartment in the PTable. Legacy
applications will also benefit from SecureCells’ improved TLB-reach with range-based address
translations.

Adopting SecureCells. SecureCells faces the daunting task of changes across the software and
hardware stack. Nonetheless, library and compiler support for software development can greatly
aid developer adoption. We developed a prototype library (scthreads) to support compartments
with isolated contexts, and envision that most software can be ported through compilation with a
SecureCells-compatible C/C++ library. We compartmentalized the example Browser (∼1kLoC),
initially developed and tested on an x86 machine, in approximately two additional days. Software
such as browsers desiring the full benefits of compartmentalization will still require rewriting (to
refactor monolithic code into compartments). SecureCells’ userspace instructions map to common
compartmentalized applications’ operations, evidenced by strong parallels between SecureCells’
instructions and APIs in related mechanisms or language-level operations in compartmentalization
frameworks (Table 3.7). This mapping will simplify porting existing compartmentalized applications,
such as Nginx-lwC [76], to run on SecureCells by replacing existing operations with the SecureCells
equivalent (e.g., substitute SDSwitch in place of lwSwitch). Existing software compartmentalization
libraries and compilers [55] can also use SecureCells as a backing mechanism. For example,
consider a SecureCells backend for the LitterBox sandbox, used by the compartmentalizing compiler
Enclosures [44] to isolate untrusted Go libraries, improving performance and security over the
existing Intel VT-x and MPK backends respectively. Enclosure switching (Prolog and Epilog) map
to SDSwitch instructions whereas data movement (transfer) maps to a SCTfer-SCRecv pair.

System call semantics with SecureCells. Recent work [25] has demonstrated that the Linux
system call interface can be used to compromise userspace compartmentalization. Modifications of
the syscall interface, such as those proposed in Jenny [112], are orthogonal to the compartmental-
ization mechanism and can be applied to SecureCells. We leave a systematic evaluation of kernel
performance and system call semantics with SecureCells to future work.

Advantages for microkernels and system calls. Fast compartmentalization is the key
objective for practical microkernel operating systems. By running the OS kernel and drivers in
SDs, SecureCells improves over a modern microkernel’s switching time by two orders of magnitude.
Similarly, userspace programs can benefit from significantly faster system calls if the kernel is
assigned a compartment within each program’s address space. Essentially, the costly system call
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Instruction Analogous API
Linux MPK Donky CHERI Enclosures lwC

SDSwitch dcall
CCall
CReturn

Prolog/Epilog lwSwitch

SCProt mprotect mpk_mprotect dk_mprotect CAndPerm
SCInval munmap mpk_free dk_munmap
SCReval mmap mpk_mmap dk_mmap
SCGrant
SCRecv
SCTfer

mmap
dk_domain
_assign_key

Transfer lwOverlay

SCExcl

Table 3.7: Mapping SecureCells instructions to related mechanisms, libraries and language features.

entrances can be replaced by cheaper SDSwitch instructions into the kernel.

Speculative-execution attacks (SEA). We consider the threat of speculative side-channel
attacks like Spectre [65] in SecureCells’ design, despite omitting such attacks from our attacker
model. SecureCells introduces additional mechanisms for changing an executing thread’s permissions,
through userspace compartment switching and permission transfers. Fault-based attacks like
Meltdown [74] must be prevented in implementations by preventing faulting loads from accessing
memory or forwarding their data to subsequent instructions [142].

SecureCells does not mitigate existing SEA, but takes care not to introduce vulnerabilities.
SecureCells specifies that userspace instructions are serializing, precluding speculative permission
changes. An attacker cannot, for example, speculatively switch to a victim SD using an SDSwitch
following a long-latency branch and read the victim’s private data using the victim’s permissions.
SecureCells’ permission transfer instructions are atomic, preventing visibility or exploitation of any
intermediate permission state. An attacker SD cannot, for example, drop permissions for a cell
using SCProt while transferring the same permissions using SCTfer in parallel. Our firmware (and
future microcode) implementation use load-linked store-conditional atomic operations commonly
available across architectures to ensure atomicity.

SecureCells’ access control limits the leakage scope of Spectre attacks to a compartment’s
accessible cells, weakening SEA. SecureCells allows the pipeline to speculate as usual within a
compartment’s execution, and speculative accesses are also subject to access control by the MMU
and cannot illegally access any cell. Access control, therefore, also limits the leakage potential of
existing Spectre gadgets. Whereas a Spectre gadget on a traditional processor can address and
access any user memory in the process’ address space, the same Spectre gadget can only access
memory within the compartment’s cells. SecureCells also limits the code (speculatively) executable
within a compartment, further restricting the availability of Spectre gadgets.
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3.8 SecureCells Summary

Compartmentalization requires labor-intensive code restructuring, deterring developers from adopt-
ing piecemeal solutions which provide partial protection or which cripple performance. This chapter
introduces SecureCells, a secure, flexible and performance-focused compartmentalization archi-
tecture to underpin future software compartmentalization efforts. Further work is required, for
scaling our FPGA prototype to an out-of-order, multicore processor, investigating implementations
of higher-level abstractions on SecureCells’ mechanisms, developing software conventions to de-
velop correctly compartmentalized programs for SecureCells, and to improve OS support for the
architecture.

Nevertheless, SecureCells enables practical, effective, and efficient compartmentalization by
tackling the core architectural requirements for a mechanism. SecureCells strictly enforces access
controls and protects permissions from corruption, while supporting secure 8-cycle compartment
switching. SecureCells constrains inter-compartment control flow to respect call gates, protecting
these interfaces from fault propagation. SecureCells is also an enabler for data processing pipelines
with userspace zero-copy data transfers. SecureCells remains flexible, eschewing policy-specific spe-
cializations. We have published the SecureCells prototype, benchmarks and supporting infrastructure
at https://hexhive.epfl.ch/securecells.
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Chapter 4

SoK: Classifying Compartmentalization
Mechanisms

Compartmentalization is the next major frontier of defense for modern applications, providing security
based on the principles of least privilege and defense in depth in the modern era of extensive code
sharing and internet-connected devices. Compartmentalized applications rely on isolation between
compartments, enforced by mechanisms through checks restricting a compartment’s operations to
those allowed by a policy. These checks aim to limit each compartment’s privileges and ensure
that interactions between compartments conform to the developer’s intentions. Practically, the
assorted commercial and research offerings for compartmentalization mechanisms vary greatly in
their design goals and offer support for restricting different classes of privileges, and to different
degrees. This fragmentation hinders the development of hardware based on a common mechanism
for greater adoption within the application ecosystem.

This chapter classifies the checks mitigating various attack vectors for inter-compartment
attacks into three major heads: restrictions on executable operations, their operands, and the
resources accessed by these operations. We systematically score 12 mechanisms, chosen from
commercially available and state-of-the-art proposals, on axes measuring how comprehensively they
implement checks for each category of restrictions listed above, how fast these checks are, and the
limitations of these checks. From this comparison, we highlight the commonalities and difference
between the surveyed mechanisms, and underscore common weaknesses to highlight opportunities
for future mechanisms to improve upon.
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4.1 Introduction

Modern software architecture, where a majority of applications are monolithic, stands in stark
contrast to the fragmented nature of software development. Applications run code from diverse
authors and varied sources, trusted to different degrees, with little to no expression of these trust
relations. Within a process, all parts of an application execute with the same privileges, without
isolation between parts. Applications often comprise dependencies and libraries automatically pulled
from software repositories, inheriting the bugs in this software. Security-critical software can be
dynamically extended with third-party modules, perhaps written by developers lacking the same
security consciousness as the original application’s developers. Further, the code churn over time
due to updates of the main application as well as all of its dependencies makes a comprehensive
analysis to eliminate all bugs or vulnerabilities infeasible [68, 156]. Attackers can exploit a bug or
malicious code in any component to compromise the entire application. Working under the realistic
assumption that all code contains exploitable vulnerabilities, compartmentalization is a principled
approach to mitigating the propagation of faults or exploits between components of applications.

Compartmentalization relies on isolating components of applications within separate com-
partments, each with access to the minimal set of privileges to function, preventing malicious
or otherwise unintended interactions between components. When an attacker compromises any
component, exploiting a bug in its code and bypassing existing mitigations (for memory safety, for
example), additional restrictions on the compartment’s privileges hinders the attacker by limiting
the set of malicious operations they can execute to propagate and compromise other compartments.
Compartmentalization is based on principles tracing their heritage to security research in the 1970s:
least privilege [110] and defense in depth.

Compartmentalization fundamentally changes software architecture, requiring developers to
write applications with well-defined components each of which will be isolated within a sepa-
rate compartment with restrictions enforced on each compartment’s privileges. The definition
of compartments and allocation of application functionality to compartments is specified by a
compartmentalization policy. A compartmentalization mechanism is tasked with upholding the
isolation properties and restrictions defined by the policy.

Identifying the need for compartmentalization, academic and industrial projects have tried
to introduce mechanisms enforcing compartment-wise checks on operations and resource access.
Proposed mechanisms involve changes to the software [76], hardware [15, 40, 96, 113, 129, 131]
or both [139]. While these mechanisms are built for compartmentalization, each one targets a
different set of design requirements leading to designs with a significant range of security and
performance characteristics and practicality. More backward-compatible designs [76, 96, 129] either
suffer from high overheads or provide limited security at low overheads. With clean-slate designs [15,
139, 153], proposals have been able to mitigate these shortcomings by introducing fundamental
changes to hardware/software interfaces. However, there is a significant adoption cost for new
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interfaces, particularly for hardware, and these proposals are often more exploratory than practical.
Consequently, there is no accepted standard mechanism to support compartmentalization, hindering
the rate of application adoption. A comprehensive systematization of compartmentalization
mechanisms is essential to understand the strengths and weaknesses of existing mechanisms, and
to identify the key remaining common shortcomings.

In this chapter, we first describe a generic compartmentalized application and list the attacker
model mechanisms attempt to defend against (Section 4.2). Next, we systematically list the
avenues for cross-compartment attacks, and categorize the privileges for operations involved in
these attacks (see Figure 4.2). We then propose a categorization to classify the restrictions required
to mitigate these attacks at different points, and define security metrics for mechanisms based on
how many restrictions mechanisms implement and how strong these restrictions are (Section 4.3).
We also define a categorization for the performance properties of mechanisms for implementing the
checks required to enforce these restrictions (Section 4.4). Finally, we compare 12 mechanisms
to find which attacker models they can protect against, and which restrictions they support to
isolate compartments (Section 4.5). To compare mechanisms quantitatively, we create a scale for
scoring mechanisms’ security and practicality, based on their security properties and their practical
limitations including performance overheads. The scores for each mechanism are illustrated in
Figure 4.3 (security) and Figure 4.4 (practicality). We find that

• supervisor abstractions (processes and newer proposals) are secure but have higher performance
overheads,

• newer mechanisms are pushing the performance limits of mechanisms,

• clean-slate designs improve the performance-security pareto frontier leveraging new interfaces
and improved hardware capabilities, and

• there are significant areas of missing protections across all surveyed mechanisms.

Our systematization allows us to gain insights on the range of mechanisms, and to highlight
improvement opportunities for future mechanisms in Section 4.6.1.

4.2 Compartmentalization: A Deeper Dive

To understand the security properties of compartmentalization mechanisms, we need to first
understand how compartmentalization expresses trust relationships within applications, and how
privilege restrictions help enforce isolation as demanded by trust relationships. Therefore, this
section illustrates a practical application as an example to walk readers through the steps of
compartmentalization.
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Compartmentalization involves composing applications from communicating components with
well-defined roles, where each component is restricted to exclusively the privileges required to
implement their functionality. To build a compartmentalized application, a developer must identify
separate components in their application, define their privileges, and specify interfaces allowing
communication between compartments respecting the trust relationships between compartments.
The modern Chromium browser, for example, is compartmentalized into a browser kernel and a
rendering engine that communicate over inter-process communication (IPC) calls [11]. Only the
kernel compartment can interact with local system resources like files. To protect the local system,
the kernel compartment distrusts the rendering engine compartment which handles sandboxing
untrusted, and possibly malicious, JavaScript code from websites. Practically, building a compart-
mentalized application may rely on a varying mix of manual programming effort and automated
toolchains based on program analysis or developer annotations.

The security of compartmentalized applications relies on limiting how compartments interact,
reducing the surface area available for attacks between application components. Whereas com-
ponents of a typical uncompartmentalized, or monolithic, application can directly interact and
affect each other, compartments are restricted to only interact via defined and secured interfaces.
Monolithic browsers suffer from severe security issues since code compiled from untrusted JavaScript
downloaded from a website shares the process’ address space with key trusted compiler components
with the same access permissions. Consequently, if a bug in the browser resulted in an arbitrary
read/write primitive for a malicious JavaScript application, that application could directly leak/-
modify any browser data, or execute any code including system calls [101, 102]. Modern browsers
therefore compartmentalize the JavaScript engine and all JavaScript code. Compartmentalized
Chromium removes this interaction by using separate processes, and hence separate memory address
spaces, for the kernel and renderer compartments. An attacker must instead use the more limited
IPC interface to exploit separate bugs in the kernel component to corrupt its memory or execute
malicious system calls, making similar exploits harder.

Compartmentalization mechanisms empower the idea of least privilege by enforcing restrictions
on which operations each compartment can execute. Commonly, existing and proposed mechanisms
restrict what memory compartments may access, what system calls they may use, and what
supervisor resources compartments may access through those system calls. For memory access
restrictions, mechanisms support either separate per-compartment memory address spaces or per-
compartment permissions for intra-address space compartmentalization. Mechanisms also rely on
incarnations of system call filtering to restrict system calls and access to supervisor resources. The
limitations listed above are not comprehensive: applications may also require other restrictions
such as the ability to freeze privileges (essentially limiting temporal permission changes), limits on
inter-compartment control flow, the ability for compartments to influence other compartments’
register contexts, and more. We will later explore useful restrictions comprehensively in Section 4.3.

In reality, mechanisms offer varying support for restrictions and their security properties differ
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Figure 4.1: Architecture of a compartmentalized Browser .

as a consequence. For example, some mechanisms integrate support for system call filtering (e.g.,
Donky [113], ERIM [129]), while others provide the supervisor the necessary support (SecureCells [15],
CHERI [139]), and some mechanisms are inherently unable to support this restriction (MPK [96],
CAPSTONE [153]). The differences arise from different design goals, like prioritizing backward
compatibility with minimal hardware/software changes over clean-slate designs, and trading-off
security checks for greater performance.

4.2.1 Example: Browser Compartmentalization

We shall use a fictional architecture for a browser (Figure 4.1) to illustrate how the properties of
compartmentalization mechanisms affect realistic applications. Our browser roughly resembles a
modern Chromium [11] or Firefox [88, 100] browser, with separate compartments facing the internet
and the local system, and also includes novel aspects designed to illustrate desirable features for
future applications.

Our Browser is built from compartments implementing different functionality and executing
with the requisite privileges. The Local compartment is responsible for handling interactions
with the local system, like accessing files and creating threads. The Renderer compartment
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handles the management of sandboxes for running untrusted code (like JavaScript apps) from
websites, including possible communication between mutually distrustful sandboxes. The browser
isolates web application code from separate sources (e.g., separate websites) into per-Sandbox
compartments. Finally, we allow a Sandbox to further sandbox a part of itself, effectively creating
a Nested sandbox. This models the situation where web application developers themselves rely
on untrusted code, for example, JavaScript code imported by a package manager. A trusted
memory Manager compartment handles memory management for the application and can directly
update the system/hardware configuration to reflect (de)allocations or permission changes. The
Manager helps model applications with trusted and privileged user components directly managing
system-level configurations traditionally restricted to the supervisor. Future supervisors, with
different compartments responsible for different subsystems and having the privilege to modify the
relevant system configurations, may also require support for Manager -like compartments.

Functionality. Our browser maintains functionality similar to modern browsers. The Local
compartment handles I/O including user inputs and the networking stack, and passes inputs for
a website over to the Renderer . The Renderer renders the site, including running the site’s
dynamic code. The Renderer either interprets the site’s code or creates sandboxes for running
compiled/generated versions of the same code. Each Sandbox generates website elements while
running, which are communicated to the Renderer . The Renderer generates bitmaps visualizing
each website and communicates these bitmaps to the Local compartment which finally sends
the image to the display device. The Manager handles memory management, ensuring separate
regions for each compartment when required, and can use privileged operations to modify hardware
configuration as required. During this process, compartments within the browser communicate by
calling other compartments and sharing data as arguments.

Threats. A browser runs code controlled by many parties and manages different threats. The
attacker might control a malicious website and send code when the victim uses the browser to
access the website crafted to exploit bugs in the Renderer ’s code generation engine. The Browser
attempts to protect the local system from such malicious code by having Renderer and Local
components. In another attack scenario, a web application generates code attempting to access a
different website Sandbox ’s data. Our browser uses per-website Sandboxes to address this threat.
A third attack scenario considers the maintainer of a popular JavaScript package used by many
websites. The rogue maintainer can make a malicious update to the package which gets pulled by
many unsuspecting website developers, and spread to visitors of many websites. The malicious
package runs code which tries to access data from the website’s application (perhaps the website
user’s data) and leaks it as a request to another server. Web developers attempt to mitigate this
threat by using Nested sandboxes for code from untrusted packages.

Trust Relations. The browser described above requires various trust relationships. The Local
compartment distrusts the Renderer since it faces the internet. For simplicity, we assume that
the distrust is mutual, and the Renderer likewise distrusts the Local compartment. In this non-
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hierarchical setup, two compartments must interact without trusting the other. The sandboxes,
however, create a hierarchy of unidirectional trust where the Renderer is trusted by each Sandbox ,
which in turn are trusted by their Nested sandboxes. The Renderer distrusts each Sandbox .
Likewise, each Sandbox distrusts Nested compartments. The Manager is trusted but distrusts its
callers: the Renderer and Local compartments.

Privileges Expressing Trust Relationships and Functionality. The browser’s compartmen-
talization policy defines privileges for each compartment to express the trust relations described
above. A mechanism must implement the restrictions defined below to support the Browser ’s
requirements. Each Sandbox must execute in a highly restricted environment, maintaining access
to defined code and data memory regions and the privilege to call into the Renderer to request
services like allocating more memory or managing Nested compartments. Each Sandbox must
be allowed to only call the Renderer and its Nested sandboxes. The Renderer and Sandboxes
(including Nested sandboxes) are all prohibited from using arbitrary system calls. The Renderer
can implement its functionality, like drawing to the screen, by requesting services from the Local
compartment. However, the Renderer is trusted by each Sandbox , and is allowed to directly access
their memory regions including modifying their code. The Local compartment has greater privileges
to use generic system calls. However, the Local compartment must be restricted to also filter out
system calls which enable direct access to the Renderer ’s resources (like memory). An untrusted
caller must be prevented from controlling the callee’s register context after a cross-compartment
call. Therefore, a secure context switch is required when calling from the Renderer into the
Local compartment, but is unnecessary when the Renderer calls into a Sandbox . To prevent
side-channel attacks, specific compartments, like the Sandboxes, must be restricted from executing
microarchitecture-management instructions (like x86’s clflush) or reading specific (high-precision)
timers. Since the Manager compartment can modify memory configuration, only that compartment
should be allowed to execute instructions that change privileged registers, access permission tables,
and/or maintain hardware permission cache (e.g., translation-lookaside buffer or TLB) coherence.

Performance. Our Browser must be able to provide a responsive browsing experience to its users,
while incurring overheads from the supporting mechanism associated with checks implementing
the restrictions described above. Since applications have performance targets, developers seeking
to introduce security through compartmentalization must architect their applications considering
the overheads of the underlying mechanism. The Sandboxes and Nested libraries have short
execution periods, and cross-compartment calls can execute in sub-microsecond timescales. The
Manager compartment must manage (de)allocations equally quickly, to match web application
performance. Consequently, our Browser demands a proportionally fast mechanism. To run on
slower mechanisms, we must redesign our browser with larger compartment which execute longer.
The coarse-grained compartmentalization employed by the Chromium browser is a result of the
significant microsecond-scale overheads of compartmentalization [76] built on traditional processes
(besides factors like code complexity). Chromium must limit switches between its compartments,
since each inter-process call (IPC) typically costs around ten microseconds.
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Higher-performance use-cases for compartmentalization also exist, pushing the need for mech-
anisms supporting crucial operations like checks on memory accesses, compartment switching,
memory (de)allocation, and permission changes/transfers/revocation within hundreds, tens, or
even single nanoseconds/cycles. Server applications are prime candidates for improved security
from compartmentalization, and are are composed of smaller (often micro-) services, each of which
executes under strict microsecond-scale latency/quality-of-service targets. At datacenter scales,
even microsecond-scale delays in a few components can balloon into perceptible changes for the
end user [39, 71]. The performance characteristics of mechanisms are of paramount importance to
developers considering compartmentalization for datacenter applications.

4.2.2 Execution Model and Threat Model

We assume that the system being protected is a modern general-purpose CPU or system-on-
chip. Particularly, the system contains one or more general-purpose processors (called cores) and
specialized processors (called accelerators). Processors may be time-shared between different
applications and between different compartments of the same application. Processors have private
hardware resources (like caches) and shared hardware resources (shared caches, network-on-chip,
main memory). The use of or access to special resources (like timing units, devices, or shared
registers) requires special instructions or system calls to privileged supervisor software. The trusted
computing base (TCB) includes the hardware, the supervisor software (unless specified otherwise),
and (occasionally) privileged userspace libraries.

The system executes a compartmentalized application, consisting of communicating com-
partments executing as per a secure and well-defined compartmentalization policy which defines
privileges for each compartment. The policy must be secure, as insecure policies allow applications to
be compromised irrespective of the underlying mechanism, and would not allow us to compare mech-
anisms’ properties. We also assume that the application has been initialized properly, i.e., that the
software-hardware configurations express the correct compartments, and correct per-compartment
privileges to the extent permitted by the mechanism. We assume that compartments secure their
communication interfaces, the primary remaining attack surface, with necessary checks to prevent
confused-deputy attacks. The above assumptions mean that compartments cannot be compromised
using any sequence of legitimate calls into the compartments (indicating a shortcoming in the
compartmentalization policy, not the mechanism). We assume that the developer tries to reasonably
implement the same checks across mechanisms. For example, consider two mechanisms which
check memory permissions for 4KB pages and byte-granularity objects, respectively. A developer
can reasonably isolate data from two compartments by assigning them to separate 4KB pages on
the first mechanism. However, developers will consider the memory overhead of assigning each
object on a separate page unreasonable, preventing access control between two objects on the
same page.
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We consider an attacker who controls the code and/or data accessible to a "compromised"
compartment of the target application. The attacker aims to compromise the other compartments
of the application, to either corrupt their execution (integrity) or leak information (confidentiality).
The attacker must exploit a weakness of the compartmentalization mechanism, not the policy. The
attacker can also try to maliciously influence the victim’s execution environment, including the
core’s microarchitectural state. The attacker is allowed to execute any operation permitted by the
mechanism, as per the policy. Executing ISA instructions, special register accesses, and system
calls are examples of possible operations. The attacker might attempt to: i) execute specific
instructions including special instructions like system calls or permission modification instructions,
ii) access/modify specific resources including virtual memory addresses, physical memory addresses,
supervisor resources, and/or physical resources, iii) execute instructions or operations with specific
operands.

4.3 Mechanisms Implement Restrictions

Compartmentalization mechanisms support the least privilege principle by restricting the abilities of
individual compartments. Attackers rely on an arsenal of different abilities which can allow them to
maliciously leak or corrupt a victim compartment. In Figure 4.2, we show how an attacker executing
within a compromised compartment can try to compromise other compartments or the executing
system. In the figure, we highlight the classes of restrictions that mechanisms can implement to
prevent cross-compartment attacks. Mechanisms can either limit the instructions or operations
that a compartment can execute, limit the resources accessible by using operations, or limit the
range of arguments that compartments can use for operations.

In this section, we describe abilities available for compartments, whose use might be limited
by compartmentalization mechanisms. These abilities are summarized in Table 4.1. Generally,
abilities are classified into restrictions on i ) resources accessible through instructions or operations,
ii ) arguments to instructions, and iii ) instructions/operations compartments can execute. We
discuss each of these abilities below.

4.3.1 Resource Access

Applications require restrictions to limit resources accessible to compartments, aimed at preventing
cross-compartment corruption where one compartment can directly access to leak or modify other
compartments’ resources. For example, each Sandbox in our Browser is only allowed access to
its own private state, holding the values of the objects being used by the website code running
in that Sandbox . An attacker in a different compromised Sandbox with an arbitrary read/write
primitive can attempt to access a target Sandbox ’s data directly. One website running code
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Privilege Type and Restriction Summary

Resource

Virtual memory
Physical memory
Supervisor resources, e.g., file handles
System resources, e.g., RNG, timers
Register contexts

Arguments

Mem. access type (read/write/execute)
Inter-compartment call target
Compartment entry point, for call gates
Perm. transfers: perms., target, granularity
Permission revocation type

Operations

Microarch. configuration (e.g., clflush)
System calls/Traps to the supervisor
Permission mod./transfers/revocation
Cross-compartment calls
Memory (de)allocation

Table 4.1: Summary of privileges restricted by compartmentalization mechanisms

from an attacker-controlled website might attempt to read the login password used for a different
website running in a separate tab temporarily stored in memory, for example. Alternatively, the
attacker might try to access files on the host system’s disk, either to read private files used by other
compartments or to compromise the host system itself. The mechanism should prevent both of the
above attacks. In Figure 4.2, we show how attackers can attempt to dereference corrupted pointers
to read/write across compartments and use system calls to access prohibited supervisor resources.

Common resources requiring access control include virtual memory (VM), supervisor resources,
access to input/output interfaces, and special registers. Sandboxes, for example, must be limited
to only have access to their own data and code regions. Therefore, virtual memory permissions
are a key aspect of intra-address space compartmentalization mechanisms. The alignment and
granularity requirements for virtual memory permissions greatly determine a mechanism’s security.
Kernel resources, including files, networking, or devices, are also crucial for isolating compartments.
Essentially, the two aforementioned restrictions stem from restrictions on the resources accessible
through load/store instructions and system calls, respectively. Mechanisms might also restrict
resources accessible through input/output instructions. However, the ubiquity of memory-mapped
I/O allows mechanisms to also restrict I/O by restricting memory access. Alongside virtual memory,
mechanisms might also rely on restricting access to physical memory regions to prevent concurrent
access to data due to aliasing in virtual memory translations. Since the execution of compartments
is often temporally multiplexed on the same physical thread running on a core, compartments might
also ensure isolation of register contexts available to compartments. Finally, compartmentalization
might restrict access to system-wide or privileged resources or registers such as random number
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generators or those controlling permissions (e.g., RISC-V’s Physical Memory Protection registers).

4.3.2 Operation Arguments

Applications also require limits on how compartments are allowed to use available operations.
Figure 4.2 shows how operation arguments can help cross-compartment attackers bypass call
gates or inject code and data. For example, system call filters can implement checks on which
calls compartments can execute. Compartments might have permission to use the write system
call in Linux for writing to the terminal window but are only allowed to write to the stdout file
descriptor and denied access to other open files. The Sandbox compartment in our example
Browser must communicate with the Renderer compartment, and hence has the privilege to use
the compartment switch/cross-compartment call operation. The mechanism might limit the target
compartment, ensuring that only transitions to the Renderer are allowed while denying attempts
to directly call into other Sandboxes. Further, when calling into the Renderer , the execution
must enter at predetermined entry points allowing the Renderer to implement call gates. The
mechanism must prevent cross-compartment switches to arbitrary code points in the target. A
mechanism might restrict permission modification operations so that the new permissions are
lesser than the original permissions, to prevent privilege escalation. For mechanisms supporting the
transfer of memory permissions between compartments, similar limits can be applied to prevent
arbitrary permission transfers. Mechanisms can allow permissions to be transferred unilaterally or
require bilateral consensus between the granting and receiving compartments. Systems supporting
permission revocation may limit when granted permissions can be revoked, and in which order.
Finally, mechanisms could limit permitted operands for instructions (e.g., x86’s CPUID, RISC-V’s
csrr/w) for accessing system resources (e.g., control-status registers in RISC-V) as per an allowlist.

4.3.3 Instructions and Operations

Mechanisms might altogether restrict access to ISA instructions or other operations, to limit
non-general purpose computation (e.g., arithmetic) possible by compartments. In Figure 4.2, we
show how different classes of instructions enables different cross-compartment attack vectors. These
restrictions can prevent select compartments from using instructions/operations with dangerous
effects on the environment. For example, a sandboxing engine might rely on a mechanism to
restrict sandboxes from executing system calls altogether. Mechanisms might restrict instructions
which control microarchitectural configurations, such as a cache-line flush instruction (clflush)
or processor halt. Instructions controlling microarchitectural state are crucial for some microar-
chitectural side-channel attacks [47, 152]. Generic compartmentalization can also benefit from
mechanisms restricting the ability to use instructions/operations for modifying, transferring or
revoking permissions to specific compartments to only those compartments requiring dynamic
permission changes, and to instructions triggering cross-core interrupts. Compartments requiring
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deterministic execution might also be barred from special randomness-generating instructions like
x86’s rdrand, which might enable attackers to access special shared resources [104] or reverse-
engineer the generator seed [7, 24]. While traditional architectural privilege levels already restrict
which instructions are available at different levels, compartmentalization can bring a similar security
benefit between userspace compartments. When offloading traditionally supervisor functions to
userspace, mechanisms must also enable limiting the use of traditionally privileged instructions (like
flushing TLB entries) to authorized compartments only. Our Browser would benefit from such a
restriction, ensuring that a compromised Sandbox with injected code can never modify memory
configurations like the Manager is permitted to.

4.4 Practical Considerations

Using a mechanism to compartmentalize an application leads to the application inheriting the
mechanism’s performance overheads and other practical limitations. These limitations may arise
from the architectural design of the mechanism or from an implementation’s microarchitectural
limits. Limitations can lead to either situations where an application cannot be supported by a
mechanism, or where the application suffers additional overheads beyond a limit. In this section,
we will discuss various limitations of mechanisms, and what overhead applications will incur as a
result.

Limitations. Mechanisms targeting a wide range of applications offers the best path towards
adoption, and must support varying use cases, policies and performance requirements. Our
Browser , for example, spawns a varying number of Sandboxes, and requires mechanisms which can
allow for many compartments and many memory regions for these compartments. Our Browser
also requires different models of trust, including mutual distrust and hierarchical trust between
compartments. Mechanisms built for hierarchical trust only are unsuitable. Other possible limitations
are dependence on a specific architecture, limiting common software practices like code sharing
between compartments, or preventing integration with other orthogonal security mechanisms.

Memory Access Control. The most frequent check implemented by compartmentalization
mechanisms is access control to memory, for loads/stores and for fetching instructions. Our example
Browser ’s memory footprint can scale from megabytes to gigabytes and beyond, and mechanisms
must limit access control overheads in the face of scaling data set sizes. Modern high-performance
desktop and server cores are highly sensitive to delays in accessing memory, and computer architects
strive to enable fast, single-cycle permission checks. This criterion has only gained importance
since the discovery of the Meltdown [74] attack, and puts permission checking on the critical
path of the memory access to prevent illegal memory accesses from speculatively leaking data
through side channels. All modern protection mechanisms depend heavily on metadata caching in
microarchitectural structures near the core to enable single-cycle checks in the common case, and
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the performance of a mechanism is determined by how much data can be accessed through cached
permissions. The performance of permission caching depends on the number of permissions the
mechanism needs to track, which is determined by the granularity of permission enforcement and
the count of individual permissions. Where mechanisms rely on permissions stored in in-memory
data structures (page table entries, for example, store permissions in a radix tree) permissions
are often cached in lookaside buffers near the core. The size of these buffers and the size of
memory represented by each permission entry determines the buffer’s reach, i.e., the size of memory
for which permissions can be effectively cached. Permission tables for fixed-size memory regions
like pages (traditional virtual memory), hugepages or words require more permission entries and
incur more costs/overheads than permissions for variable memory ranges, which can scale to
cover arbitrarily large regions. The choice of granularity of permission also affects performance.
Mechanisms with permission to variable-sized memory ranges can target storing permissions for
each object or for each virtual memory area (VMA). Applications can require a million times more
objects (100’s of millions) vs a few hundred to thousand VMAs. An alternate class of designs
uses hardware capabilities to memory, stored in memory, and used for validating accesses. These
mechanisms must also be able to validate the access against the presented capability within a single
cycle. However, capability-based mechanisms typically target per-object capability storage leading
to significant storage overheads and pressure on the small core-private data caches shared between
data and cached capabilities. Fortuitously, capability systems benefit from the better scaling trends
of L1 data caches compared to TLBs, allowing more permissions to be cached close to the core.
Alternate capability-based designs storing per-page permissions can scale to efficiently protect even
larger regions.

Compartment Switching. Compartment switching using inter-compartment calls is expected
to also be a frequent operation, and its latency can significantly affect application performance. A
Sandbox might use the services of a library in a Nested sandbox at sub-microsecond timescales.
Assuming fine-grained compartmentalization where small snippets of code, corresponding to library
calls or sandboxes, are isolated in compartments, efficiently servicing a sub-microsecond cross-
compartment call requires the mechanism to support fast compartment switching within tens
or up to a hundred nanoseconds. Conversely, a mechanism requiring tens of microseconds to
switch between compartments will only efficiently support applications where compartments execute
for longer timescales (perhaps milliseconds). Inter-process communication system calls require
microseconds on modern commercial operating systems like Linux or seL4, and this cost limits
compartmentalization for applications like browsers, microservices or virtualized network functions
in the cloud. The need for faster switching times is a key motivator for proposals for alternate OS
isolation abstractions and even for hardware-accelerated switches.

Instruction Execution Control. Another conceptually frequent check would be to limit which
instructions a compartment can execute. Currently, few mechanisms implement such functionality
for general instruction classes. Only restrictions on instructions based on an executing thread’s
privilege level are widespread. Restricting instructions might require changes to a core’s decode stage,
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which is responsible for reading and decoding multiple instructions every cycle on desktop/server
processors. Given the complexity of the decode stage, modifications might introduce delays leading
to significant performance overheads. However, systems with specific use cases might reap sufficient
benefit from delegating common privileged tasks to trusted userspace compartments to justify this
cost. The Manager compartment, for example, would enable secure memory management while
securely manipulating memory-management unit (MMU) configuration registers.

Exclusive Access. Certain mechanisms offer additional features, like the ability to maintain
exclusive access to memory regions, transfer permissions to memory regions between compartments
and revoke such grants. Each of these operations also has a performance cost which will impact how
often applications will use them. Mechanisms with centralized permission tables and permission
lookaside buffers will suffer the cost of not only modifying permissions, but propagating these
changes between cores to maintain coherence with their private lookaside buffers. In contrast,
compartments can transfer permissions by passing capabilities in registers on supported systems.
These mechanisms can offer significantly faster permission transfer operations. In contrast, revoking
granted permissions can be simpler on mechanisms with a centralized permissions table, which
only needs to modify one set of permissions when compared to capability-based systems which
might need to scan all memory regions for copies of the revoked capability. Memory scanning
significantly hurts application performance due to large and unpredictable delays when a scan is
triggered. Limiting the spread of permission storage within CPU registers or limiting duplication of
capabilities also helps revocation performance.

4.5 Evaluating Mechanisms

In this SoK, we compare the security and performance characteristics of the mechanisms listed
below in Section 4.5.1. The comparison aims to illustrate common strengths and weaknesses
between mechanisms. Further, we aim to expose the main missing features that we consider
useful for future proposals for comprehensive compartmentalization. We score mechanisms on
features introduced in Section 4.3 and Section 4.4. The basis for our scores is presented in detail
in Section C.1 and summarized in Figure 4.3 and Figure 4.4.

4.5.1 Mechanisms Compared

In our SoK, we have tried to include a variety of mechanisms across a variety of design points. These
mechanisms are listed in Table 4.2. As our baseline, we include process-based compartmentalization
on traditional operating systems, which is commercially used for software compartmentalization.
Labeled “TRAD”, our baseline includes traditional monolithic operating systems like Linux, FreeBSD,
and Darwin as well as commercial microkernels like seL4. In the “HW/Sup”, we classify what
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Mechanism HW/
Sup

Perm.
Storage

Runtime
TCB

Perm.
Grain

TRAD NA PT Sup Fixed
l wC [76] Sup PT Sup Fixed
CODOMs [131] HW PT+Cap HW Fixed
XPC [40] HW PT HW Both
ARMlock [155] Sup PT+Reg HW-Sup Fixed
MPK [96] NA PT+Reg HW Fixed
ERIM [129] NA PT+Reg HW Fixed
Donky [113] Both PT+Reg HW-User Fixed
MMP [144] Both PT Sup Range
SecureCells [15] Both PT HW Range
CHERI [139] Both Cap HW Range
CAPSTONE [153] Both Cap HW Range

Table 4.2: Summary classifying surveyed compartmentalization mechanisms characteristics. Columns
are described in Section 4.5.1.

changes are required for each mechanism. Among research proposals, we include mechanisms
which can run on commercial-off-the-shelf hardware with no changes (NA), mechanisms requiring
supervisor code changes (“Sup”), hardware modifications (“HW”) or both. We have chosen
mechanisms to span the range from designs targeting full backward compatibility to designs aiming
for minimal changes to clean slate designs. Surveyed mechanisms rely on a trusted computing base
at runtime dependent on the supervisor (“Sup”), hardware (“HW”) or even privileged userspace
libraries (“User”). The variation continues with implementations of permission storage, including
mechanisms relying on variations of permissions tables (“PT”), special permissions registers (“Reg”),
capabilities (“Cap”), or a mix of the above. Finally, we find mechanisms using permissions for
fixed-size memory regions (pages, words), variable-sized regions (objects, segments and virtual
memory areas), and even both.

In our comparison, we have omitted other compartmentalization mechanisms solely based on
software-based checks [135] which are incapable of protecting against strong attacks as defined in
Section 4.2.2 as they do not add any protection beyond that provided by traditional processes. We
have also excluded mechanisms based on virtualization [13, 67, 77, 84, 119] as they provide similar
protections as processes, but at a higher cost and protect against potentially rogue supervisors. We
have also omitted other mechanisms based on novel OS abstractions due to a lack of space [19, 23,
38, 55]. We also exclude mechanisms abusing non-security hardware features for non-systematic
point protections [48, 52]. Finally, we exclude mechanisms with very limited protections [42].
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Process-based compartmentalization (TRAD)

The traditional (TRAD) abstraction of isolation is based on OS processes. We will describe
process-based compartmentalization in UNIX-like OSs (particularly Linux), though the concepts
generalize to other OS kernels.

The process abstraction was introduced to isolate different applications running on multi-user
machines. Each process has an isolated memory space (architecturally-defined virtual memory)
and individual OS resources, such as file descriptors, I/O handles or capabilities. The OS kernel
time-multiplexes processes onto one or more processing cores. A process can have one or more
kernel threads, corresponding to independent threads of execution, but sharing the same address
space and OS resources. Everything within a process shares the same permissions to access its
memory and its OS resources, including the application’s executable, libraries, and loaded modules.
The OS relies on hardware enforced permissions for virtual memory, typically implemented by
per-core memory-management units (MMUs) reading permissions from a per-process page table
structure.

A developer can compartmentalize an application by isolating each compartment in a separate
process. Each process will have its own private memory address space, and its own OS resources.
One process cannot name a separate process’ resources since they each have separate namespaces,
and hence cannot directly access another process’ resource. OS resources require an open-like step,
ensuring that each process in the application only accesses allowed resources. Processes cannot
arbitrarily gain capabilities. Processes can, additionally, share memory and specific OS resources
for communication. Shared memory must be set up with explicit system calls, and are subject
to syscall filtering. The generated code region can be shared between the JIT and sandboxes,
along with code sections for shared libraries. Processes can also communicate using inter-process
communication (IPC) system calls (like sendmsg/recvmsg). A remote (cross-process) procedure
call typically consists of serialization of arguments into a buffer, sending the buffer across using a
system call, and then deserialization of the arguments on the receiving side followed by the requisite
processing based on the arguments. The cost of inter-process switching contributes a great deal to
the expensive nature of compartmentalization with processes.

A Browser can be compartmentalized using processes by isolating sensitive components in
separate compartments, each of which runs in a separate process. For example, the Renderer can
occupy one process and each Sandbox can be assigned a separate process. Microsoft’s ChakraCore
JavaScript engine [86], for example, used such an architecture to isolate itself from untrusted
sandboxes. A shared memory region between the Renderer and each Sandbox holds the Sandbox ’s
code. This region is mapped as executable in the Sandbox , and writable in the Renderer . The
Renderer and sandboxes can communicate using the kernel’s inter-process message passing system
calls. The Chromium web browser further implements a Local compartment, isolating parts of the
Browser interacting with the local system [11].

99



Chapter 4. SoK: Classifying Compartmentalization Mechanisms

Mondrian Memory Protection (MMP)

MMP [144] tackles the challenge of flexible, fine-grained intra-address space isolation. Intra-address
space compartmentalization differs from previous mechanisms, all of which have separate memory
address spaces for each compartment. In contrast, compartments in MMP (and the following
mechanisms) all share the same address space. Isolation between compartments relies on different
memory views, i.e., different permissions to the same address for different compartments. Intra-
address space compartmentalization can simplify the process of porting monolithic applications to
compartmentalize them, and allow smaller compartments with fine-grained memory permissions.
Data transfer for intra-address space compartmentalization can be simpler than with IPC, since
addresses remain valid across compartments.

Each compartment in a application compartmentalized under MMP maps to a protection
domain, with an unique Domain ID. The virtual address space is split into a number of segments.
Each compartment has its own permission table which holds per-segment permissions, essentially
allowing the domain to have its own view of permissions to memory. The permission tables can be
configured to allow segments to be private (only one domain has permissions), or shared. MMP
also describes different structures for the permissions table in memory, and the hardware structures
to read and cache permissions. MMP’s permissions tables separate permissions from translation,
and are independent of page tables. Crucially, MMPs permission tables allow segments starting and
ending at word boundaries instead of page boundaries, allowing spatially fine-grained permissions.
Compartments in MMP can call each other through system calls or traps, which also modify the
permissions table base pointer register in hardware. The paper also proposes that hardware can
be used to accelerate this switch, though the mechanism is not clearly explained. MMP requires
call gates to prevent control flow attacks at inter-compartment boundaries. Data can also be
passed between domains during switching, by marshalling data into copied buffers. However, MMP
also introduces the concept of zero-copy data passing between compartments by modifying the
permissions to the segments holding passed data. However, few details on maintaining coherence
of on-chip permission buffers are discussed.

In MMP, the Browser fits in a single address space with separate protection domains assigned
to the Renderer , Local compartment, the Manager and for each of the Sandboxes. For each
Sandbox , the generated code can be assigned a separate segment which has different permissions
for the Renderer (writable), and for the Sandbox domain (executable). Further, transitions between
compartments use protected calls with call gates which ensure proper checks on these transitions.

Light-weight contexts: An OS abstraction for safety and performance

This proposal [76] introduces a new eponymous OS abstraction, Light-weight contexts (l wCs),
which are independent units of isolated execution. Contexts, like processes, have separate memory
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address spaces, OS resources, and capabilities. However, contexts remain part of a single process
and share metadata in the kernel, resembling kernel threads. Contexts offer the primary advantage
that switching contexts within a process is faster than switching processes, or even kernel threads
within the same process. l wC achieves faster switching between contexts by eliminating unnecessary
kernel processing due to the kernel scheduler and resource accounting.

Contexts diverge from the point of calling lwCreate which acts like the clone system call,
where each resulting context has an independent memory address space and OS resource handles.
Like processes, OS resource handles can persist across a lwCreate, or be invalidated in the child.
Further shared resources can be generated using the lwOverlay system call. During an application’s
setup phase, numerous contexts may be created, each of which can perform private setup steps or
further restrict their resource rights using lwRestrict. Execution of contexts resembles processes,
merely replacing inter-process system calls with the faster inter-context switches.

A Browser compartmentalized using l wC looks essentially the same as using UNIX processes.
The Renderer and each Sandbox occupy separate contexts, instead of processes. With l wC ,
message passing system calls will be replaced by lwSwitch system calls.

Code-centric Memory Domains (CODOMs)

CODOMs [131] enabled fine-grained intra-address space compartmentalization with a novel archi-
tecture where domains are identified by the executing instruction pointer (hence the "code-centric"
name), and with permissions to data regions determined by the executing domain. Essentially, bits
of page table entries identify the domain owning that page. Executing an instruction from a page
tagged with a domain ID equates to executing as that domain.

Domains in CODOMs each have permission to specific pages of memory: those tagged with
that domain’s tag in the corresponding page-table entry. A domain cannot access data belonging to
other domains, except if explicitly allowed during access protection lists (APLs). Compartments can
communicate with function calls, which implicitly cause compartment switches when the domain of
the target address page differs from that of the source. APLs specify the ability of some domains
to call other compartment, as well as for the caller to share their data with the callee. While APLs
allow domains to permanently share data with other domains, CODOMs also proposes the use of
capabilities to temporarily share permissions to data during cross-compartment calls.

Under CODOMs, a Browser must have separate pages corresponding to the Renderer and
for each Sandbox . Each domain’s pages must be correctly tagged in the page table to allow the
domain to be identified by the hardware. Each Sandbox must own the pages holding their code
regions, and have executable permissions in the page tables. The Renderer can generate new code
using additional permissions specified in the APLs, where the Renderer should be granted write
permission to each Sandbox ’s code pages.
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XPC: Architectural support for secure and efficient cross process call

XPC [40] shares much of the abstractions from the process-based isolation, but attempts to
accelerate inter-process calls, in particular, while maintaining the same interface. Backward
compatibility is a major design directive. Particularly, XPC replaces the system calls used for IPC
with hardware instructions supported by state machines implementing the same functionality. XPC
aims to reduce the cost of IPC compared to kernel software, also eliminating software dispatch and
scheduling overheads in the common case. XPC also focusses on cheap zero-copy data movement
between processes, dedicating a single relay segment for the purpose.

A compartmentalized application running under XPC looks essentially identical to that using
processes. Just like previously, each process has their own address space and OS resources and
capabilities. The XPC hardware engine tracks the page-table pointer and capability pointer for
each process of a compartmentalized application in an x-entry held in an in-memory X-Entry
Table. The OS sets up the X-Entry Table during an application launch. While a process is running,
the XPC engine ensures that the hardware uses the correct page table pointer and capabilities.
XPC accelerates remote procedure calls, introducing the xcall and xret instructions to replace
sendmsg. On executing xcall, the hardware fetches and installs the relevant page table pointer and
capabilities for the target process, and put an entry for the caller on a Link Stack. Executing xret
allows the callee to return to the caller, and the hardware engine pops the caller’s information and
installs it in the corresponding system registers (including the return address). XPC eliminates the
OS kernel from inter-compartment calls, relying on the hardware to implement traditional kernel
functionality. Additionally, data passed between processes can use the relay segment, which is a
single dedicated segment mapping memory separately from the page tables.

A Browser compartmentalized using XPC looks essentially the same as using UNIX processes.
The Renderer and each Sandbox occupy separate processes. The major difference is that IPC
system calls are replaced by faster xcall/xret pairs.

ARMlock

ARMlock is a mechanism for hardware-supported intra-process sandboxing, based on ARM’s support
for memory domains. ARMlock leverages four bits in the page table entries to partition the process’
virtual address space into 16 memory domains. At runtime, a core’s permissions to each of these
domains is dictated by the privileged domain access control register (DACR). The value in DACR
allows each domain to be in one of three states: inaccessible, accessible as per page table permissions
(Client), or accessible without restrictions (Manager). A system call is used to change permissions
to memory domains, by writing to the DACR register.

ARMlock supports intra-process compartmentalization by dividing the memory space into
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memory domains, and by setting the DACR register to properly limit accessible memory during each
compartment’s execution. A memory domain can be private to a compartment, where the DACR
register bits for that domain are set to inaccessible whenever any other compartment is executing.
Similarly, compartments can share a memory domain as equals if the DACR permissions are set to
Client during each of their executions. ARMlock, however, assigns and restricts each unprivileged
compartment to a single domain, and restricts sharing. The Manager permission setting allows
ARMlock to implement support for a privileged compartment which has unrestricted access to
domains. Finally, ARMlock implements a specialized stub including context switching during the
system call used to switch compartments.

A Browser can implement isolation between the Renderer and each Sandbox with ARMlock,
by assigning each Sandbox a separate domain. During a Sandbox ’s execution, the DACR register
permits accesses to the Sandbox ’s domain, with read-write data permissions or read-execute code
permissions as per the page table permissions. The Renderer , however, must generate code and
write to the Sandbox ’s code region, and must set the DACR register to Manager mode for the
corresponding Sandbox ’s memory domain. However, ARMlock cannot prohibit a buggy Renderer
from executing a Sandbox ’s code since the domain is accessed with Manager permissions. ARMlock
can also isolate separate privileged compartments, such as the Manager and Local , from the
Renderer . The Renderer has Manager permissions for Sandbox ’s domains, but no access to
Manager and Local memory domains.

Intel Memory Protection Keys (MPK)

Memory Protection Keys assign keys to regions of memory, and maintain a separate set of access
permissions for each key. While previous implementations in ARM, PA-RISC, Itanium and POWER-6
rely on supervisor managed protection key permissions, Intel’s MPK extension makes permission
changes cheap by allowing userspace modification to permissions. MPK uses bits of the page
table entry to assign each page a 4-bit color key, and uses permission bits in the per-core PKRU
register to control permissions to each page color. PKRU permissions can be arbitrarily changed by
userspace, using a special instruction (wrpkru). A software library (libmpk [96]), can be used to
virtualize page colors, allowing for more than 16 page colors.

When executing a compartment, MPK uses permissions in the PKRU register to enforce
additional restrictions on memory access. Each core’s PKRU register should only have permissions
for page colors as per the compartment executing on that core. Compartments in MPK can
implicitly switch between each other using the wrpkru instruction to change the core’s accessible
page colors. Along with the permission changes, the application can also use function calls to
implement cross-compartment procedure calls. Data can be transferred between compartments
using shared page colors. Changing page colors requires page table entry modifications, implying a
system call, and cannot be done as fast as PKRU writes. MPK lacks call gates, and software must
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ensure control flow integrity between compartments.

A Browser can be compartmentalized with MPK, with one page color for the Renderer and
different colors for each of the Sandbox regions. The PTEs for all generated code regions must
have writable and executable permissions, since PTE permissions are also enforced. During the
Renderer ’s execution, the PKRU register holds writable permissions for the Sandbox code regions.
During Sandbox execution, the PKRU register holds executable permissions for that Sandbox ’s
code region, and no permissions for any non-Sandbox regions.

ERIM: Secure, efficient in-process isolation with protection keys

ERIM [129] builds on top of Intel MPK to implement strict call gates for compartment switching,
mitigating a major shortcoming with Intel’s MPK technology. Essentially, ERIM limits the existence
of instructions which can modify the PKRU value (wrpkru and xrstor) to within software call
gates. However, ERIM must inspect all newly loaded code, including shared library or module
loading, to ensure that new instructions which modify the PKRU register are not injected.

ERIM relies on the same set of MPK permissions described above to isolate compartments.
ERIM’s main differentiating feature are its call gates, which should be the only parts in the
application with executable wrpkru or xrstor instructions. The key feature of ERIM’s call gates
are that wrpkru instructions are immediately followed by a call to trusted code, or by a condition
which checks the value in the PKRU register. The latter check allows control flow attacks which
try to load invalid permissions to be immediately detected.

A Browser compartmentalized with ERIM essentially looks the same as with MPK, with
the Renderer occupying a trusted compartment, and each Sandbox occupying one untrusted
compartment. Data can be passed through pointers directly, just as with MPK, though compartment
transitions use ERIM’s aforementioned call gates.

Donky: Domain keys - Efficient in-process isolation for RISC-V and x86

Donky [113] aims to retain MPK’s primary performance advantage, by allowing changing memory
views in userspace, while mitigating its main weakness, where an attacker with arbitrary code
execution can immediately bypass MPK’s protections. Donky replaces Intel’s PKRU register register
with a new DKRU register which cannot be directly modified by userspace. Donky effectively
introduces a new privilege level within userspace, running a special software monitor called the
Donky monitor solely capable of modifying the DKRU register. The Donky monitor can be
trapped-into by userspace software, enabling the monitor to serve inter-compartment call requests,
among other requests which modify memory keys. While Donky’s monitor does not run within
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the supervisor privilege level, its design of entry-exit through hardware traps and ability to modify
registers not accessible to normal userspace code makes the Donky monitor similar to previous
works of supervisor-mediated compartmentalization.

Compartments in Donky use separate regions of memory, with permission enforced as per the
DKRU register, similar to compartmentalization with MPK. These permissions allow memory
isolation for compartmentalization. Compartments can call each other using dcalls, essentially
trapping into the monitor which modifies permissions in the DKRU register and sanitizes register
values before dropping into the callee.

A Browser compartmentalized with Donky uses separate Donky domains for the Renderer and
for each Sandbox , created by calls to the Donky monitor. The Browser can also install dcalls
between the Renderer and each Sandbox , but prohibit dcalls between sandboxed domains directly.
Each transition between domains using a dcall is interposed by the monitor. Inter-compartment
dcalls ensure that compartments are entered at valid entry points. Arguments must be passed
through either registers, or through shared memory between domains.

CHERI: A hybrid capability-system architecture for scalable software compartmentalization

CHERI [145] introduces architectural support for memory capabilities. Architecturally, pointers
are replaced by capabilities, which track spatial bounds of memory accessible using that capability.
CHERI compartmentalization [139] repurposes CHERI capabilities, with a customized CheriBSD
kernel to provide intra address-space compartmentalization. CHERI provides compartmentalization
based on the object-capability model, where each compartment is represented as an object encapsu-
lating capabilities for the compartment’s code and data regions. CHERI is drastically different from
the previously mentioned mechanisms, as access permissions for a compartment are not stored
in a centralized permissions table or permissions register. Instead, CHERI relies on capabilities
distributed within a compartment’s registers and data regions.

CHERI uses the capabilities to memory to spatially limit the memory regions accessible to
a compartment. When executing, CHERI requires one or more code and data capabilities. For
compartmentalization, each compartment encapsulates its code and data capability within an object,
and sealed by an object type capability field (otype). When running as that compartment, those
capabilities are installed in CPU capability registers, allowing the compartment to only access its
code and data. Compartments can call each other using a system call to the CheriBSD kernel, which
securely saves the caller’s state to its object, and unseals the callee’s code and data capabilities and
installs them in the core’s registers before dropping into the callee. Further, CHERI’s capabilities
greatly simplify passing permission to arguments during an inter-compartment call. A CHERI
caller can simply pass a capability to the argument in memory during the call, allowing the callee
to use the capability to access the corresponding memory. One consequence, which the caller
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must be careful about, is that the callee can use any capabilities stored in this argument memory
region to further access other regions of memory. CHERI compartmentalization, though, lacks a
mechanism for revocation, instead suggesting the use of garbage collectors for eventual revocation.
A key concern for developers using CHERI is the possibility of capabilities being leaked during
inter-compartment calls.

With CHERI, each of a Browser ’s compartments must be allocated a separate object encapsu-
lating that compartment’s code and data. The Renderer would be an object, and each Sandbox
will be implemented as a separate object. Both the Renderer and Sandboxes must each hold
capabilities to the Sandbox ’s code region. The Renderer can use its own capability to a Sandbox ’s
code region, permitting write operations to generate new code for the Sandbox . The Sandbox ’s
own capability for this region must only allow executable operations. Finally, the Renderer can
pass temporary capabilities to Sandboxes when they are required to process certain data, including
new data packets, with zero-copy.

SecureCells: A Secure Compartmentalized Architecture

SecureCells [15] introduces a compartmentalization mechanism based on hardware access control to
variable-sized regions of memory, hardware tracked compartment identifiers, a unified permissions
table for all compartments, and unprivileged instructions for securely accelerating common operations.
SecureCells’ permissions table stores permissions for each compartment to each data region. Further,
SecureCells’ userspace instructions enable control flow and zero-copy data movement between
compartments with unprivileged instructions. SecureCells’ unprivileged instructions implement
hardware checks in order to prevent privilege escalation.

Each compartment in SecureCells is assigned a SD, whose accesses to memory regions are
checked with an in-memory permissions table. Properly configured permissions allow compartments
to have private regions to which on that compartment has permission, and selectively shared regions
with specific other compartments having permission. When executing code for a compartment, a
core tracks the executing compartment identifier in a system register, and accordingly presents a
view of memory. Compartments can also interact with unprivileged SDSwitch instructions which
atomically switch to a different compartment and jump to the callee’s entry point. To aid zero-copy
data transfer, SecureCells also includes unprivileged instructions which move permissions for regions
between compartments.

A Browser compartmentalized with SecureCells will require separate SDs for each Sandbox
and for the Renderer . The permissions table is set up with per-Sandbox private regions, to which
only each Sandbox and the Renderer have permission. The permissions can allow the Renderer
write access and a Sandbox execute access to that Sandbox ’s code region. The Renderer can
use SDSwitch to enter and exit Sandboxes. Compartments must use the SDEntry instruction to
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mark valid entry points leading to call gates to switch context and check inter-compartment call
arguments. If arguments are isolated within a memory region, compartments with SecureCells can
also move these arguments between compartments without copying by transferring permissions.

CAPSTONE

CAPSTONE is a proposal introducing linear hardware capabilities for memory. Hardware capabilities
in CAPSTONE limit the memory range accessible using that capability. The CAPSTONE instruction
set and hardware additionally provides a uniqueness property for each linear capability, guaranteeing
the absence of any other capability in the system allowing access to the same region of physical
memory. Linearity of capabilities solves a major shortcoming in older capability systems like CHERI:
the potential of capability leakage. Further, linear capabilities allow a core to assume exclusive
access to memory regions, removing the chance of data races and implementing hardware guarantees
similar to Rust’s ownership model. Finally, CAPSTONE introduces a revocation tree to enable
compartments to generate revocation capabilities corresponding to linear capabilities, and later
use a revocation operation to revoke capabilities transferred to other compartments. However,
each memory access under CAPSTONE using a linear capability is accompanied by a second
corresponding access to the revocation tree to verify the temporal validity of the capability.

Like other capability systems, CAPSTONE can implement compartmentalization by limiting
the memory regions accessible during a compartment’s execution to the regions accessible using
capabilities held in processor registers and memory accessible through those registers. Compartments
can also call other compartments using a special call operation on sealed capabilities representing
the capabilities of the target compartment. The hardware is responsible for securely and atomically
switching the caller and callee’s register contexts (including capabilities) between memory and
the core’s register file during an inter-compartment call. A calling convention preserves specific
registers over the call, allowing capabilities to arguments to be passed between compartments.

A Browser compartmentalized with CAPSTONE will resemble a Browser compartmentalized
with CHERI, with a few key differences mandated by the use of linear capabilities. For example,
linear capabilities prohibit the Renderer and a Sandbox to simultaneously hold capabilities for the
Sandbox ’s code region. Consequently, the Browser must pass the corresponding capability between
the two compartments — the Renderer passses the capability to the Sandbox when launching the
Sandbox , and the Sandbox returns the capability to the Renderer when new code needs to be
generated. A naïve Browser implementation requires that a read-write-execute capability to allow
the Renderer to write code to the same region executed by the Sandbox .
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4.5.2 Methodology and Rationale

We classify mechanisms on the axes described in Section 4.3, essentially trying to measure how
well each mechanism supports per-compartment restrictions to executable operations, resources
accessible by those operations, and arguments to those operations. Each mechanism is individually
scored on each axis, and the results are shown as a radar plot (see Figure 4.3 and Figure 4.4).
To measure a mechanism’s score on an axis, we essentially add scores corresponding to various
restrictions that could be implemented on that axis. For each restriction, mechanisms are scored
by whether that mechanism supports that restriction, and how well it supports the restriction
compared to the other mechanisms. For example, when scoring a mechanism on resource access
restrictions, we add scores corresponding to limits on memory accesses and supervisor resource
accesses. When scoring mechanisms on virtual memory controls, we consider whether mechanisms
restrict instruction accesses (execute) as well as data fetches (load/stores). For data access,
mechanisms that support finer-grained access control checks, such as per-object permissions, score
more than mechanisms that enforce page-granular access control.

4.5.3 Comparison

The scores for mechanisms on two aspects, security and practicality, are illustrated in Figure 4.3
and Figure 4.4, respectively. In this section, we focus on insights gained from broadly comparing
mechanisms. Overall, we find that the most secure mechanisms are designed for strong attacker
models, including using operating-system abstraction (TRAD, l wC), capabilities (CHERI, CAP-
STONE) and hardware permission checks (MMP, XPC, SecureCells). Further, hardware changes
designed for compartmentalization are essential for high-performance mechanisms (XPC, CHERI,
SecureCells and CAPSTONE).

We postulate that a mechanism’s design greatly influences its security characteristics. Given
that mechanisms are designed for different threat models, their security scores for our powerful
attacker model can seem lacking. Mechanisms targeting strong attacker models (TRAD, l wC ,
XPC, CHERI, SecureCells, CAPSTONE) present strong scores on restricting access to resources
and operations. Other mechanisms (CODOMs, MPK, ERIM, and Donky) have simpler designs
trading off security for simplicity and performance. For example, MPK only checks the data access
path. A more secure version of MPK, also checking code fetches, would require changes to the
core’s (complicated) fetch stage, and require additional bits in the permissions key register (PKRU)
for permission storage.

Access control for memory varies on two factors, the granularity of targeted permissions and
alignment requirements for regions. Finer, object-level permissions are supported with permission
tables (MMP, SecureCells) but are more suitable for capability systems. Most permission table-based
mechanisms target access control for larger fixed-size (2MiB, 4KiB or 16KiB) pages or memory
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regions (virtual memory areas in SecureCells). Systems with range-based permissions (MMP,
CHERI, SecureCells and CAPSTONE) support memory ranges starting and ending at any byte
(or word) boundary. Meanwhile, page tables also impose a page-sized alignment requirement for
regions of memory. Fine-grained permissions allow developers to shrink the size of compartments,
and better isolate components of their applications. However, the spatial granularity of permissions
trades off security and performance as the mechanism is responsible for tracking and enforcing
permissions for more regions as the granularity of permissions shrinks. Whereas modern browsers
hold hundreds of millions of objects, they use millions of pages, and thousands of virtual memory
areas. Most mechanisms also support an almost arbitrarily large number of memory regions. Key
exceptions are mechanisms based on protection keys or page colors. ARMlock, based on ARM’s
memory domains feature, and MPK-based mechanisms support only 16 different colors, and Donky
improves the limit slightly to support up to 1024 different colors.

Access control to virtual memory is a common feature across most of the mechanisms considered.
Virtual memory permissions can prevent spatial memory safety violations, a major and relatively
simple attack vector, from propagating beyond compartments. Traditional, OS-based mechanisms
have a strong score for controls on memory access, since compartments are assigned separate
processes which present the abstraction of isolated virtual memory spaces. Similar high scores
are achieved by other research proposals with strong emphasis on security. However, commercial
mechanisms trading off performance for security, such as Intel’s MPK and mechanisms built on
MPK, show lower scores here. Particularly, MPK only prevents illegal data access (read/write)
to pages of a different color, protected by a register directly and arbitrarily writable by userspace.
ARMlock, however, also checks code fetches. ERIM and Donky improve on MPK’s design, adding
integrity for compartment transitions and protection key updates, respectively. However, each of
these mechanisms scores better than MPK, but still score poorly for virtual memory protection due
to lacking execute permission checks and support for exclusive access. ERIM also lacks of support
for context isolation, like MPK.

Support for access control to physical memory is scarce among the surveyed mechanisms,
with only CAPSTONE providing capabilities for physical memory, and XPC providing a relay
segment which the supervisor points to separate per-core physical memory regions. Permissions
for physical memory alleviate the possibility of attackers leveraging aliasing in physical-to-virtual
address translations to bypass memory protection and access prohibited physical memory. Practically,
controlling permission to physical memory is inherently difficult as applications operate with virtual
addresses and physical addresses are hidden from userspace and controlled by operating-system-
managed translation tables. CAPSTONE reveals physical addresses to user applications, possibly
simplifying attacks on physical memory like Rowhammer [89]. Further, a core designed to perform
protection checks on physical addresses after translation stands to suffer a significant performance
hit from the increased latency to access memory. RISC-V specifies Physical Memory Protection
(PMP) registers, ranges of physical memory with specific addresses, but their current design is
more suited for confidential computing than compartmentalization. PMP registers can only be
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modified by the machine-mode firmware, and are often sealed at boot time to predetermined
processor-private memory regions. Instead, future mechanisms can focus on providing guarantees
against aliasing for virtual-physical translations for data regions, preventing this class of attacks.

Access control to supervisor resources varies more between mechanisms. Assuming per-
compartment system call filtering rules are implemented, the supervisor must be able to securely
identify the calling compartment to perform the correct set of checks. Donky and ARMlock
explicitly present system call filtering as part of the mechanism. Mechanisms where compartments
switch using a system call (TRAD, MMP, l wC , CODOMs, ARMlock and CHERI) indirectly allow
the supervisor to identify the caller. Linux, for example, stores a pointer to a process’ super-
visor metadata in a privileged register when the corresponding user process executes, allowing
the supervisor to identify process on traps. Mechanisms which explicitly identify the executing
compartment (XPC, SecureCells) enable the supervisor to directly identify the compartment. With
Intel’s MPK and ERIM, the supervisor may be able to indirectly identify the caller by the value of
the permission-key register, if unique. Finally, compartments in CAPSTONE are implicit, relying
on capabilities stored in registers and hardware calls for switching to compartments with sealed
capabilities. The supervisor has no direct or indirect mechanism to identify the caller, since the
caller’s state is also sealed on traps. CAPSTONE, therefore, cannot implement system call filtering.

We notice that support for restricting per-compartment instructions or operations are a common
shortcoming among most mechanisms. These restrictions are crucial to enable future systems
offloading supervisor functionality to userspace, primarily for high-performance server applications,
or for compartmentalizing supervisor kernels. These applications would benefit from limiting system
management code with the corresponding privileges within individual compartments for each aspect
of management (memory, per-device drivers, scheduling). Only traditional operating systems can
selectively disable processor features, like the x87 floating-point unit, though this feature exists as
a side-effect of power-saving features in the CPU or due to the requirement to disable faulty CPU
functional units. We notice that researchers focus on memory isolation and build on a simplified
system model with only computing elements (like cores) and memory. Future proposals should also
consider restrictions to the many accessible system-wide resources on commercial CPUs.

Mechanisms are also designed to support different classes of applications. Traditional appli-
cations (specially desktop/mobile applications) are compartmentalized with processes reusing an
existing operating system abstraction for isolating users and applications running on a shared
machine, and assume the performance costs of using a mechanism not designed for fine-grained
compartmentalization. Meanwhile, applications can also benefit from any additional security for data
accesses introduced by commercially available mechanisms (MPK, ARM’s memory domains). MPK
deliberately enables userspace modification of permissions, as opposed to the supervisor (ARMlock),
for improved performance. However, high-performance software like supervisor kernels and some
server software require secure but high-performance mechanisms and may be better supported
by research proposals. Compartments mapped to processes (TRAD, l wC) use separate address
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spaces and permissions stored in page-table entries to securely isolate memory. Consequently,
page-table entries across compartments share capacity within an already size-constrained microar-
chitectural buffer. Commercial compartmentalization based on Intel’s MPK also use page-table
entries for storing translations and page colors, but rely on permissions stored in the PKRU register,
slightly relieving TLB pressure. ARMlock slightly alleviates this pressure by storing colors for 2MiB
hugepages. Due to the reliance on TLBs for permission metadata, mechanisms based around
traditional computer architectures and page tables score poorly on performance for access control
to memory. Two approaches to alleviate this pressure exist. First, MMP separates permissions from
translations, implementing a separate permissions table and caching buffer. Second, MMP and
SecureCells include support for storing permissions to variable-sized regions, ideal for separating
permissions for virtual memory areas ubiquitous in modern applications. Technically, CODOMs
removes TLB pressure by only allowing a single compartment access to each page, though this
approach comes with flexibility constraints. Finally, capability systems move the microarchitectural
bottleneck from the TLB to the core’s data caches, by moving permissions into capabilities held in
memory. Single-cycle memory access checks in capability systems (CHERI, CAPSTONE) relies on
having capabilities available in registers, or within the L1 data cache. Fortuitously, core-private
L1 data caches scale slightly better than TLBs. Capability systems also have a larger memory
footprint due to inflating the size of each pointer held in memory. The memory system of capability
systems also have to track a tag bit marking capabilities in memory, with these systems incurring a
significant cost for the additional memory required and for redesigning the entire memory hierarchy.
We can see that capability-based systems support fine-grained memory permissions with easy
permission transfer between compartments, but offer these at a performance cost.

Surveyed mechanisms do not sufficiently solve the challenge of supporting efficient revocation.
Each memory access with CAPSTONE, which is designed to support efficient capability revocation,
also incurs an additional memory access to check the capability’s revocation status. While the
authors claim that the revocation check can be performed in parallel with data accesses, a Spectre-
safe implementation requires permission checks prior to data accesses, putting the revocation check
on the critical path to each memory access. The significantly increased latency to memory, due to
the additional checks as well as increased L1-cache bandwidth required, will likely massively inflate
average memory access times on CAPSTONE.

Switching compartments is another performance-critical operation and newer proposals have
aimed at reducing the latency of switches to sub-microsecond scales requiring hundreds (CHERI,
Donky) or even tens of cycles (SecureCells, XPC). Despite optimized fast paths, supervisor-controlled
switches between compartments on commercial hardware only achieve relatively expensive switches
in a few microseconds. Sub-microsecond switching time requires hardware support, as offered
by some newer mechanisms. For a compartment switch on mechanisms with nanosecond-scale
switches (XPC, SecureCells, CHERI, CAPSTONE), the costs of flushing the processor pipeline
(to stop speculative side-channel attacks) and a full context switch (storing and restoring up to
32 registers in popular ISAs), become a major overhead. Microarchitectural optimizations will be
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crucial to approach the ideal compartment switch at function call latencies.

At compartment boundaries, passing permissions to memory regions holding arguments supports
zero-copy computation on the same data between an application’s compartments. Capabilities
offer the fastest way to transfer permissions, by simply passing a capability to the target memory
region during a cross-compartment call. Capabilities conveniently allow passing permissions to
a complicated data structure fragmented throughout memory by passing a capability to the
structure’s entry point, such as a pointer to the head of a linked list. On capability systems,
the target compartment can use the original capability but also load further capabilities stored
in the transferred region, recursively, to access further elements of the data structure. However,
this method of passing data must be used with care to prevent accidental permission leakage -
application-level bugs causing an unintended capability from being transferred on cross compartment
calls. Leaks can stem from the initial capability passed at the calling interface, or through any
part of the complex data structures that may be referenced by that capability. On the other
hand, systems with a centralized permissions table (as opposed to capabilities distributed through
memory) offer the potential for faster permission transfers, as only a single permission needs to
be changed for each transfer. Since permission tables are only accessible to the supervisor, the
cost of the system call often dominates the cost of zero-copy permission transfers. Linux offers
the vmsplice system call for zero-copy transfers. SecureCells also offers a hardware permission
transfers costing a few hundred cycles. Unilateral permission transfers also open the door to
confused-deputy data/code attacks. Traditional OS-based compartmentalization, that requires
the receiving compartment to use a system call to receive data, and SecureCells, which requires
receivers to use a special instruction, satisfy this criterion for security.

4.6 Discussion

Compartmentalization relies on strong isolation policies implemented on capable mechanisms.
However, none of the mechanisms we compare in this chapter achieved strong scores in all surveyed
restrictions, calling for future research on improved mechanisms. In this section, we will discuss
opportunities we identified for future mechanisms to introduce comprehensive security, and discuss
the limitations of our approach.

4.6.1 Opportunities

This SoK explores the main areas where future compartmentalization mechanisms can add value.
We find that performance is the primary shortcoming for isolation with traditional processes. Newer,
lighter supervisor abstractions [23, 76] offer a promising improvements. These mechanisms benefit
from architectural improvement towards faster traps, faster hardware coherence for translations

114



4.6. Discussion

and permissions cached in TLBs across manycore systems, and better fast paths in supervisor
software for compartmentalization operations. On the other end of the spectrum, lightweight
security features like MPK suffer from severe security limitations. Further limitations on which and
how compartments can modify the permissions register can help improve MPK’s security.

Research proposals for future mechanisms can also improve on the operations described below.
Mechanisms lack support for isolating instruction execution (specially traditionally privileged
instructions) to specific compartments. This feature will allow supervisors to offload functionality
to userspace libraries, eliminating the costs for system calls, and to even compartmentalize the
supervisor itself. Low-overhead exclusive access to physical memory can provide stronger security
than exclusive access to virtual memory. Many mechanisms (SecureCells) only give exclusive
access to virtual memory, which can suffer from virtual-to-physical aliasing, and may be bypassed.
CAPSTONE provides this feature, but might suffer from having to expose physical addresses to
userspace, and increased costs for normal memory accesses. An intermediate address space used as
a non-aliasing layer of indirection may offer a solution. We currently lack a mechanism with support
for low-overhead revocation for transferred permissions without making normal memory accesses
more expensive. Mechanisms might also explore the implications of introducing the concept of
ownership for data, and the opportunities this feature provides for efficient revocation.

4.6.2 Limitations of our Methodology

In this section, we discuss some of the limitations of our comparison, and suggest that com-
partmentalization mechanism proposals require more standardized evaluation to enable a fair
comparison.

Benchmark Suite for Compartmentalization. Publications for compartmentalization mecha-
nisms vary greatly in the choice of benchmark software used to evaluate their performance. Most
mechanisms present microbenchmarks measuring compartment switching latency with a few papers
notably lacking this measurement (e.g., CAPSTONE). Even among mechanisms measuring switch-
ing, the exact methodology varies. CHERI, for example, includes the cost of context switching,
whereas XPC and SecureCells do not. The Apache and Nginx webservers have been used by a
few papers, whereas others have used SPEC, Binder, V8, NaCl, memcached, and a variety of
systems libraries (XML parsing, Mbed TLS, SQLite, zlib). These applications vary greatly in their
characteristics, and some require no compartmentalization whatsoever. To enable future research
into compartmentalization mechanisms, security researchers need a comprehensive suite of common
benchmarks spanning the varying use cases for compartmentalization. The benchmarks must include
desktop (e.g., browsers) and server (e.g., Apache, Nginx, memcached) workloads spanning a range
of performance requirements, from millisecond-scale compartment execution to nanosecond-scale
execution for library isolation to highlight possible design trade-offs for mechanisms.
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Evaluation Testbench. We were unable to reproduce and test the various mechanisms due
to the wide range of experimental designs, and their different implementations. Only l wC and
ERIM can be run on commercial machines without hardware changes. Other proposals have
presented varying implementations based on microarchitectural simulators (geM5), experimental
silicon (CHERI), and FPGA RTL for prototypes. With each mechanism requiring a highly customized
setup, reproducibility is limited. We hope that future proposals will standardize the evaluation
setup and implementation to allow comparisons with other mechanisms. Due to the complexity of
creating RTL prototypes, we propose the use of full system simulator (like geM5) models.

Scoring mechanisms. This thesis uses a scoring scheme to compare mechanisms quantitatively,
as described in Section 4.5. Our comparison gives equal weight to mechanisms for implementing
orthogonal checks for instruction fetches and for microarchitecture management instructions. The
lack of execute-permission checks makes code injection trivial whereas the lack of restrictions on
flushing the data cache enables side-channel attacks leaking data across compartments. A better
comparison would assign weights to security features based on how effective they were at preventing
attacks. The lack of a standardized set of bugs and exploits hinders the systematic assignment of
weights.

4.7 Summary

Compartmentalization is a crucial mitigation for systems security, and a steady stream of mechanisms
has emerged to support applications requiring isolation between untrusted components. To align
the wildly varying mechanism designs emerging from the variety of design requirements and enable
a principled comparison of mechanisms along common axes, this chapter presents a systematization
of the restrictions required by mechanisms to mitigate cross-compartment attack vectors, and their
performance and flexibility characteristics. This systematization allows us to trade-offs present in
existing mechanisms, and to highlight common shortcomings. Finally, we offer sketches for how
future mechanisms can more comprehensively guarantee security by addressing these shortcomings.
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Future Work

The improvements proposed in this thesis are just the first step towards securing modern sytems.
Further effort is required to both enable developers to implement and adopt the proposed interfaces,
and to keep these interfaces concurrent with ever-emerging threats. Developers also need to adopt
our proposed interfaces to their target systems. Future research can investigate how emerging
hardware features can help improve our implementations of the proposed interfaces. Finally, we
describe other improvements to the interfaces investigated in this thesis, and potential avenues to
realize these improvements.

5.1 Beyond Midas: Double-fetch Protection and More

While Midas provides systematic double-fetch protection to the kernel interface, here we propose
future use cases for Midas and suggest further improvements to its protection and performance
guarantees.

Besides providing double-fetch protection, Midas can be used as a sanitizer for finding double-
fetch bugs during dynamic testing of a OS kernel and for enabling deep-argument checks for system
call filters. For example, Midas can be used as a sanitizer with Syzkaller [133] while fuzzing the
kernel interface. System call filters like SECCOMP add hooks to checks which validate system call
arguments before a system call executes, restricting processes from using potentially harmful system
calls. Midas can help fix a major shortcoming for modern system call filtering mechanisms: the lack
of deep-argument inspection. Essentially, the filters cannot “check” any by-reference arguments
stored in user memory without creating a TOCTTOU instance since these arguments will later be
“used” by the kernel. The introduced TOCTTOU bug makes the filtering check ineffective. Midas,
however, can be used to eliminate the TOCTTOU condition. When running with Midas, the kernel
would transparently create a snapshot when system call filters inspect userspace objects, with the
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same snapshots serving data during the system call itself. Midas, therefore, can make system call
filtering more capable and enable better isolation of userspace processes.

Midas will benefit from hardware protection for physical memory ranges for preserving snapshots
of accessed memory objects. Particularly, Midas can reduce the cost of creating snapshots, which
potentially incurs the cost of changing page table permissions across each virtual address space
where an accessed page is mapped, and the cost of corresponding TLB shootdowns. Virtual
page-based snapshotting also introduces false-positives due to false-sharing of objects on the same
page, as described in Section 2.5. New and upcoming hardware architectures can provide the
physical memory protection mechanisms required to implement snapshotting at low cost. First,
RISC-V’s Physical Memory Protection (PMP) mechanism is ideal for protecting a small number of
physical memory ranges, only requiring updates to per-core protection registers optionally accessible
by the privileged supervisor. PMPs are also flexible, allowing specifying protections for naturally
aligned power-of-2 address ranges enabling supervisors to protect memory at a smaller granularity
than pages. However, PMP updates must be propagated across cores in order to protect against
cross-core attacks. Midas can also benefit from architectures like Midgard, where a system wide page
table stores permissions to physical frames applicable across all virtual address spaces. Essentially,
Midas can leverage Midgard’s backside-page table entries to make a single permission change for
a snapshot. Finally, Midas can leverage proposed linear capability systems like Capstone [153].
Capstone guarantees that only a single active capability to an object in the physical address space
exists at any point in time. During a system call, the kernel possessing a linear capability to a user
object can be assured that userspace cannot simultaneously hold a capability to the same object,
guaranteeing that the object remains unmodified.

Considering the increasing use of on- and off-chip accelerators accessible to userspace appli-
cations, future work can extend Midas’ protection to include the threat of snapshot corruption
through direct memory access (DMA) from accelerators. One strategy would be to use existing
protection mechanisms for DMA, including I/O Memory Management Units (IOMMUs) to protect
snapshots. Linux’s reverse mapping must also be modified to include mappings for DMA-capable
devices.

Hypervisor interfaces also require double-fetch protection, and can benefit from Midas’ protection.
We leave the investigation of double-fetch protection of hypervisors to future research.

5.2 Widespread Compartmentalization with SecureCells

Following the eras of battling memory corruption, code injection and control-flow attacks, we
believe that the next frontier of defenses lies with compartmentalization. Particularly, this thesis
highlights the need for isolation within application components sharing a virtual memory space,
and how the architectural interface for virtual memory is crucial for supporting isolation of memory
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accesses.

Ushering the era of well-compartmentalized applications requires secure policies for decomposing
applications into compartments, secure and performant mechanisms for implementing the policies,
and developer-friendly toolchains for supporting the process. In this thesis, we propose SecureCells
as a supporting mechanism and present a systematization of knowledge of related mechanisms
in Chapter 4. Future work in compartmentalization is required to address the shortcomings
of SecureCells, implement SecureCells as a back-end supporting existing compartmentalization
toolchains and improve software support for SecureCells. We believe that parallel efforts into
developing secure compartmentalization policies for existing programs plays an equally crucial part
in realizing our vision of a compartmentalized future.

Our comparison of compartmentalization mechanisms shows potential for improving SecureCells.
Particularly, SecureCells focuses on the issue of memory isolation. Future work can add supervisor
support for isolating kernel resources to SecureCells, perhaps involving system call filtering. The
granularity of passing data between compartments with zero-copy with SecureCells is a virtual
memory area, which can be unsuitable for applications where compartments communicate with
arguments held in fragmented data structures which do not map to a VMA. Improvements can
consider integrating CHERI’s capability model for fine-grained access to memory objects with
SecureCells to support cheap permission granting for complicated and fragmented data structures.
Finally, more research is required to investigate the requirement for revocation of granted permissions,
and the addition of this feature to SecureCells. SecureCells’ cell description table, for example, can
be used to encode a VMA’s owner, opening the potential for the implementation of an unprivileged
instruction allowing a VMA’s owner to revoke another compartment’s permissions to that memory
region.

Software support for emerging architectures is crucial for their adoption. We envision that
future efforts will improve operating system support for SecureCells, along with porting of the
requisite compiler toolchains and libraries. Automated or compiler-generated compartmentalization
will be crucial to compartmentalization efforts, and SecureCells can be used as a backend to tools
like Enclosures [44].

Finally, compartmentalization can improve microarchitectural security for applications by helping
the hardware identify untrusted program components and limiting microarchitectural interactions
or leakage channels between their compartments. Hardware mitigations for side channels, typically
adopted at transitions at crucial boundaries such as during system calls, can also be introduced
when transitioning between compartment. Hardware or software partitioning techniques typically
used to microarchitecturally isolate untrusted code in separate processes or privilege levels can
also bring benefits to isolating compartments within an application. However, applications will
typically involve more compartment switches than system calls, and the performance overheads of
introducing intra-application microarchitectural isolation remains to be determined and is left for
future work.
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Conclusion

Systems security is a continuous arms race between attackers and defenses. This thesis highlights
two key interfaces in modern systems which lag behind in this race, and proposes interfaces designed
to mitigate attacks exploiting the user-kernel system call interface, and the userspace virtual memory
interface.

Midas focuses on the vulnerability introduced by double-fetch bugs in privileged software like
OS kernels, and describes a systematic mitigation mechanism to block this attack vector. Midas
identifies the implicit assumption underlying the existing system call interface’s design and secures
the interface by elevating the assumption to an explicit guarantee. This thesis also shows a practical
implementation of Midas’ design for a popular OS running on commercial off-the-shelf hardware In
general, Midas highlights the security implications of implicit assumptions made by system designers,
and how changing computing systems can invalidate assumptions. Comprehensive defense, instead,
can be achieved through well-defined and explicit security properties enforced across interfaces.
Midas guarantees a security invariant preserving the values of userspace data objects accessed
during system calls, ensuring that all reads to the same objects return the same value.

SecureCells investigates the mechanisms supporting userspace application compartmentalization
and makes the case for a mechanism enabling secure, performant and flexible intra-address
space compartmentalization. SecureCells identifies the requirements supporting the three key
application objectives, and proposes a mechanism designed to support widespread application
compartmentalization. SecureCells provides strong isolation between compartments for data
accesses based on permissions stored in a permissions table storing per-compartment per-memory
region permissions. SecureCells introduces unprivileged instructions for implementing frequent
operations in compartmentalized applications, like inter-compartment control flow and zero-copy
permission transfers at sub-microsecond time scales while also implementing strict security conditions.
This thesis also describes our full-system prototype for SecureCells based on modified RISC-V
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RocketChip cores, the secure seL4 microkernel OS and userspace benchmarks used for evaluating
our design. We are optimistic that SecureCells will add momentum to the ongoing push towards
compartmentalization, improving interfaces within userspace applications to reflect the varying trust
relationships between application components. This thesis also contributes a survey comparing
state-of-the-art and commercially used compartmentalization mechanisms. This survey explores
the design space across reviewed mechanisms and highlight the key security and performance ideals
which mechanisms strive to provide.

To support the ideal of open science, the code and other artifacts supporting this thesis are
available openly and freely. Detailed documentation for Midas is maintained on the project’s website
https://hexhive.epfl.ch/midas. The evaluation results for Midas were submitted for artifact
evaluation, earning badges qualifying the artifact as “Available”, “Functional” and “Reproduced”.
SecureCells’ prototype, benchmarks, supporting infrastructure and requisite documentation are also
available at https://hexhive.epfl.ch/securecells.
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Appendix A

Midas Artifact

Detailed documentation for Midas is available on the project website https://hexhive.epfl.
ch/midas.

A.1 Artifact Appendix

For Midas, we present an artifact including the source code and binaries for the prototype based
on Linux, an exploit which demonstrate that Midas mitigates a real CVE, and benchmarks for
evaluating Midas’ performance, and scripts which simplify the process. In the following sections,
we describe the artifact, its requirements and how to run it, and what the expected results are.

A.1.1 Description

The primary artifact for this project is the code implementing Midas on the Linux kernel (v5.11),
available on GitHub. We also provide a disk image suitable for recreating experiments from this
project, containing the kernel as both source code and as compiled binaries. The disk image
contains the CVE exploit used to test correctness in the project, all benchmarks evaluated in this
project, and scripts to run these. This image allows recreation of all empirical evidence presented
in the project’s evaluation. Finally, we provide further information on the project website including
a detailed description of the artifact, its contents, how to run it and expected outputs.

• Source code: https://github.com/HexHive/midas

• Disk image: https://zenodo.org/record/5753026
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• Project website: https://hexhive.epfl.ch/midas

Hardware Dependencies

You can run the disk image within a QEMU virtual machine to test functionality. The host machine
requires around 100GiB free disk space and at least 8GiB memory. You should run the disk image
on a real machine for performance tests. Our Midas prototype supports machines with 64-bit
x86 processors, and the results in the project were obtained on a machine with an Intel i7-9700
CPU. Further, the real machine requires an empty 1TiB disk, and a EUFI-enabled motherboard. In
both setups, a SSD is preferred for storage, as it leads to faster compilation should you choose to
re-compile the kernel. Evaluating the Nginx benchmark requires a second, networked machine to
act as a load generator.

Software Dependencies

Running the Midas disk image requires a guest operating system which supports running QEMU.
The image was tested on QEMU version 4.2.1 on a machine running Ubuntu 20.04 with Linux
kernel version 5.4.0-88-generic. Other virtualization software should also be supported, but the
instructions focus on QEMU. Running the disk image on real hardware requires no special software
support, apart from a tool to write the image to a disk. On Linux, we can use dd.

A.1.2 Installation

The installation procedure includes downloading and uncompressing the provided compressed disk
image, then either running a VM directly from this image, or by writing the image to a disk and
booting from it.

On Linux, the following command extracts the image.

pv ae.img.xz | unxz -T <num threads> > ae.img

The uncompressed disk image can then either be run with QEMU, or written to a real disk. To run
with QEMU, an example command is shown below.

qemu-system-x86_64 \
-m 4G \
-cpu host \
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-machine type=q35,accel=kvm \
-smp 4 \
-drive format=raw,file=ae.img \
-display default \
-vga virtio \
-show-cursor \
-bios /usr/share/ovmf/OVMF.fd \
-net user,hostfwd=tcp::2222-:22 \
-net nic

To run on real hardware, copy the image to a real disk using the command shown below, then
install into the machine and start it.

dd if=ae.img of=/dev/<disk> bs=100M

A.1.3 Experiment Workflow

The experimental workflow compares the modified Midas kernel with the baseline Linux kernel.
Detailed steps are available on the website at https://hexhive.epfl.ch/midas/docs/ae.html.
You can validate the artifact by executing the following steps:

• Check that the code modifications described in the project correspond to the code.

• Compile the code to re-create the kernel binary.

• Run a script to check that a CVE exploit is mitigated, as claimed in the project.

• Run scripts to execute the benchmarks presented in the project, to verify their reported
performance.

For the CVE exploitation test, the dmesg output must be checked to ensure that Midas prevents
exploitation. For the performance experiments, the results must be compiled and compared to get
the Midas’ relative performance. The general workflow is:

• boot with the correct kernel (baseline or Midas),

• run the script for the benchmark/CVE exploit,

• reboot with the other kernel, and

• run the same script again.
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A.1.4 Expected Results

Midas is evaluated to demonstrate effective mitigation of double-fetch bugs with low overhead.
The artifact enables you to verify this claim, that the prototype provides the claimed protection
and that it performs as claimed. We demonstrate the first property by including checks in the
kernel and running an exploit for CVE-2016-6516 to demonstrate its mitigation. The remaining
benchmarks measure performance, either as operations per second or as time taken to finish each
operation. Below, we describe how to interpret the outputs of running the exploit and benchmarks.

Midas protects the kernel against double-fetch bugs, and in particular mitigates an exploit for
CVE-2016-6516. In our prototype, you will execute the exploit with and without Midas’ protections.
When run with the baseline kernel, the exploit is triggered, and the string "Triggered bug: CVE-2016-6516!"
will be printed to dmesg output. With the Midas kernel, the string is never printed.

We also run kernel-intensive benchmarks which demonstrate that Midas has a low runtime over-
head. Our artifact also contains the performance benchmarks used for testing Midas’ performance.
The benchmarks must be run separately with both the baseline and Midas kernel. We include
a script to plot the relative performance vs. the baseline kernel. Midas’ performance is strongly
dependent on the CPU used for evaluation, and exact performance values can vary significantly.
However, we expect the trends of performance across benchmarks to roughly follow the following
limits.

• Microbenchmarks see results in line with Chapter 2.

• NPB benchmarks experience 0-5% overhead, and should follow the numbers from Chapter 2.

• PTS benchmarks - openssl, git, pybench, redis see an overhead <1%.

• PTS benchmarks - apache sees a overhead < 10-15%.

• PTS benchmarks - IPC benchmark sees overhead < 5%.

• Nginx shows a constant overhead as request size changes, until the network link is saturated.

The setup for breaking down Midas’ overhead is complicated, and omitted from this artifact.

A.1.5 Artifact meta-information

• Program: NASA Parallel Benchmarks (NPB), Phoronix Test Suite (PTS), Nginx, the Linux
kernel, and exploits for CVE-2016-6516. All benchmarks and code are publicly available, and
are installed in the provided disk image.
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• Binaries: The disk image provides the compiled Linux kernel (v5.11) with and without
Midas’ protections.

• Hardware: For functionality evaluation, one machine with 100GiB free disk space, and
QEMU (version 4.2). For results reproduction, one machine with modern Intel x86 CPU, and
a free 1TiB disk. In both setups, a SSD is preferred.

• Run-time state: The disk image includes a program for fixing CPU frequency, eliminating
run-time variance. This only works on native hardware, not QEMU.

• Metrics: NPB workloads report execution rate. PTS workloads report either execution time
or operation rate. Nginx reports both request rate and throughput.

• Output: Most benchmarks and tests output to a console.

• Experiments: Experiments have been prepared within the disk image, and can be run using
provided scripts.

• How much time is needed to prepare workflow (approximately)?: 3-4 hours, on a
machine with an SSD.

• How much time is needed to complete experiments (approximately)?: For performance
evaluation, approx. 8 hours.

• Publicly available?: All code is publicly available.

• Code license: GPL v2.0

• Archived?: DOI 10.5281/zenodo.5753026 available at https://zenodo.org/record/
5753026.
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SecureCells Details

Detailed documentation for SecureCells’ prototype and code artifacts is available on the project
website https://hexhive.epfl.ch/securecells.

B.1 Memory layout of the unified PTable-GTable

Figure B.1 shows the detailed implementation of the unified PTable-GTable in our prototype
SecureCells implementation.

The table contains a sorted list of cell descriptors, including a metadata “cell” used for storing
its sizing parameters. As described in Section 3.4.4, each cell descriptor stores virtual and physical
frame numbers uniquely identifying a VMA, as well as a validity flag to track the cell’s current
validity. The metadata cell tracks the number of allocated cells (N), the number of SDs (M), and
sizing factors T (upper bound on cell count) and R (upper bound on SD count). When software
requires additional SDs or cells, it must request the supervisor via a system call. If the request
overflows the bounds imposed by factors R and T , the supervisor must resize this table as required.
The cell descriptor list is followed by the PTable, and then by the GTable. This layout assumes,
and is optimized, for a cache line size of 64 bytes.

The size of parameters M and N , holding the current number of cells and SDs, in the metadata
cell is 32 bits each. The maximum supported number of cells in our implementation, therefore, is
232. The number of SDs, however, are limited by the grant table layout. The 32-bit grant table
entries use 29 bits for grantee SD identifiers, thereby limiting the maximum number of SDs to 229.
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Figure B.1: Layout of SecureCells’ unified PTable-GTable.
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B.2 Justification for Table 3.1

Obj. O1a. MPK, ERIM and Donky do not check permissions for instruction fetches, simplifying
code injection. Under our threat model, an attacker can inject wrpkru instructions to corrupt
permissions.

Obj. O1b. Through code injection, call gates in MPK and ERIM can be bypassed.

Obj. O1c. CODOM requires migrating threads without context isolation. MPK, ERIM and
Donky rely on call gates if context isolation is desired. However, MPK and ERIM cannot enforce
call gates under our threat model. Donky gives no mechanism for a compartment to restore its
state without trusting general-purpose registers. Further, Donky cannot adopt a SecureCells-like
software approach because a compartment has no way to identify itself.

Obj. O1d. CHERI allows one compartment to unilaterally send a capability to another
compartment, unchecked by the TCB and unacknowledged by the receiver.

Obj. O1e. No mechanism except XPC considers the challenge of exclusive access.

Obj. O1f. A compartment in MPK and ERIM cannot check the value of the pkru register for
another compartment, hindering audits. Cross-core pkru reads are not possible. CHERI requires an
expensive full memory scan for capabilities to perform an audit.

Obj. O2a. Page-table based translation and permission checking encounter TLB-reach limits
leading to multi-cycle common case access verification for many widely-used programs including
memcached. The mechanisms relying on such page tables for either translation or permission
checking fail this requirement.

Obj. O2b. Supervisor-mediated cross-compartment calls in UNIX-like OSs, Mondrian, lwC and
CHERI require 100s or 1000s of cycles to complete.

Obj. O2c. Supervisor-mediated permission transfers are slow (UNIX, MMP, lwC). MMP
proposes the use of redundant mappings with different permissions to implement a form of zero-copy
transfer which is not generic. CODOM does not really support permission transfers. XPC restricts
permission transfer to a single relay segment.

Obj. O3a. CODOM identifies the executing compartment by the instruction pointer, limiting
the flexibility to share code/data regions between compartments.

Obj. O3b. UNIX, MMP, lwC, XPC and CHERI cannot eliminate context switching when a
permissive policy allows migrating threading between compartments.

133



Appendix B. SecureCells Details

B.3 Existing mechanisms with SecureCells

Many existing performance or security mechanisms can be integrated with SecureCells, either
unmodified or with modifications described in this section.

Physical Memory Protections. SecureCells enforces permissions on the virtual address space,
and is therefore trivially compatible with physical memory protection schemes including RISC-V’s
Physical Memory Protection (PMP) mechanism, processor reserved memory for Intel’s SGX and
vendor-specific protections like Qualcomm’s XPU [72]. These mechanisms will apply to the physical
address output by SecureCells’ MMU after PTable access control checks.

Pointer authentication and capabilities. ARM’s pointer authentication code (PAC) feature
and CHERI’s capabilities improve memory safety by protecting pointers from illegal modifications
(overwriting when stored in memory and out-of-bound increment respectively). Both mechanisms
are orthogonal to, and can integrate with SecureCells, which checks accesses against PTable
permissions when the pointers protected by these mechanisms are finally dereferenced, providing
another layer of protection against attacks like PACMAN [105].

Hardware and Software Control Flow Integrity. Hardware (e.g., Intel CET) and software (e.g.,
LLVM-CFI) control-flow protections can integrate with SecureCells, improving intra-compartment
control-flow protection to complement SecureCells’ inter-compartment call gates (SDEntry). CET
can continue to check indirect call targets for endbr instructions. LLVM’s and other fine-grained
CFI pointer checks are implemented in software, orthogonal to hardware control flow checks.

Page-based mechanisms. By itself, SecureCells restricts popular mechanisms (e.g., guard
pages, swapping) operating on pages and page tables since translations and protections are tracked
at cell granularity. However, SecureCells can be integrated with upcoming intermediate address-
space systems like Midgard re-enabling programmers to implement these crucial features. Midgard
couples SecureCells-like range-based translation at the core with a second level of page-granularity
translations at the backside of the last-level cache. Guard pages and swapping can both be
implemented by unmapping the requisite pages in the backside translation.

B.4 SecureCells Implementation Trade-Offs

SecureCells permits a range of implementations scaling from simple microcontrollers with firmware
emulation for added userspace instructions to server grade processors with microcode or hardware
implementations. In this section, we describe the trade-offs and justify our implementation in
Section 3.4.4.

Firmware. On the simplest side of the spectrum, instructions can be emulated by firmware
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using trap-and-emulate. Firmware is programmable code which runs in a privileged execution mode
and uses native ISA instructions. SecureCells’ instructions will trap into firmware, and be dispatched
to the emulation code. Firmware implementations are cheap, requiring no additional hardware,
but slower than alternate implementations. For the simple RISC-V RocketChip microcontroller,
we choose firmware emulation for permission transfer instructions. Note that the firmware can
also forward traps to be emulated by either the supervisor or even a privileged userspace library.
However, the additional security risk of emulation by less trusted software risk and the overhead of
forwarding traps makes such implementations less attractive.

Hardware. Alternatively, instructions can be implemented in hardware with finite-state machine
circuits. While this design option implies better performance, designing complex hardware comes
with silicon and power costs and substantial complexity. Hardware bug fixes incur the significant
cost of the tape-out process. Server and desktop processors generally include beefy cores with large
silicon area, where hardware implementations may match the processor’s targeted performance.
We implement the crucial SDSwitch instruction in hardware to reap the performance advantage,
and because of the simplicity of its design.

Microcode. A third option, microcode, is programmable code provided by the processor
manufacturer, built from low level operations including ones not available through the ISA interface.
When a instruction implemented in microcode is encountered, a microcode sequencer fetches
microcode from an on-chip RAM and executes them in the pipeline. Microcode eliminates the cost of
trapping and dispatch encountered in firmware emulation (77% of the latency of emulating SCProt),
and can also leverage hardware-specific optimizations. Microcode is popular for implementing
complicated instructions with high performance like SGX’s EENTER/EEXIT instructions. Microcode
also has the advantage of being programmable, and have been leveraged to fix processor errata and
bugs. While the simple RocketChip lacks a microcode sequencer, we envision microcode to be ideal
for implementing SecureCells’ permission transfer instructions for high-performance processors.

B.5 SecureCells ISA definitions

Below, we describe the definitions of SecureCells’ instructions used in our RISC-V prototype.

Virtual memory mode. SecureCells describes an custom virtual memory mode for RISC-V,
using the 0xf value for the Mode field.

Instruction encodings. SecureCells uses existing spaces left for custom extensions to RISC-V
to implement the added unprivileged instructions. Our added instructions occupy the custom-0
and custom-1 spots in RISC-V’s instruction encoding map. Table B.2 shows the encoding formats
for all added instructions.
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SecureCells
instruction Arguments Output Prototype

instruction Arguments Mapping

SDSwitch addr, SDt g t return addr JALS addr = pc + imm, SDt g t = rs
SDSwitch addr, SDt g t return addr JALRS addr = rs1, SDt g t = rs2
SDEntry ENTRY
SCProt addr, perm PROT addr = rs1, perm = rs2
SCGrant addr, SDt g t , perm GRANT addr = rs1, SDt g t = rs2, perm = imm
SCRecv addr, SDsr c , perm RECV addr = rs1, SDsr c = rs2, perm = imm
SCTfer addr, SDt g t , perm TFER addr = rs1, SDt g t = rs2, perm = imm
SCReval addr, perm REVAL addr = rs1, perm = rs2
SCInval addr INVAL addr = rs1
SCExcl addr, perm True/False EXCL addr = rs1, perm = rs2

Table B.1: Mapping SecureCells instructions and arguments to the RISC-V prototype instructions.
Instructions returning values write to the rd register

Instruction Fields Type

func7 rs2 rs1 func3 rd opcode R-type
imm[11:0] rs1 func3 rd opcode I-type

imm[11:5] rs2 rs1 func3 imm[4:0] opcode S-type
imm[20|10:1|11|19:12] rd opcode J-type

Encodings Instruction

imm[20:1] rs/rd 0101011 JALS(rs, imm) = rd
0000000 rs2 rs1 000 rd 0001011 JALRS(rs1, rs2) = rd

000000000000 rs1 = 0 001 rd = 0 0001011 ENTRY
1000000 rs2 = 0 rs1 010 rd = 0 0001011 INVAL(rs1)
0000000 rs2 rs1 010 rd = 0 0001011 REVAL(rs1, rs2)
0000000 rs2 rs1 011 rd = 0 0001011 PROT(rs1, rs2)

imm[11:5] rs2 rs1 100 imm[4:0] 0001011 GRANT(rs1, rs2, imm)
imm[11:5] rs2 rs1 101 imm[4:0] 0001011 TFER(rs1, rs2, imm)
imm[11:5] rs2 rs1 110 imm[4:0] 0001011 RECV(rs1, rs2, imm)
0000000 rs2 rs1 111 rd 0001011 EXCL(rs1, rs2) = rd

Table B.2: Instruction encodings for SecureCells’ prototype. The first part shows the four instruction
encoding types supported by RISC-V.
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Exception details. SecureCells also adds new exceptions, corresponding to failed security
checks while executing the added unprivileged instructions. Table B.3 lists the added exceptions,
and the corresponding values for the scause and stval registers storing exception details.

B.6 Accelerating SecureCells Instruction Emulation

B.6.1 Generic Trap-and-Emulate Acceleration

The RISC-V architecture embraces the trap-and-emulate mechanism for maintaining software
compatibility across a wide range of hardware. Essentially, beefier cores can implement complex
instructions in hardware where leaner cores can rely on traps into the firmware which emulates the
same instructions in software. SecureCells’ prototype utilizes the trap-and-emulate mechanism for
implementing permission modification and transfer instructions (SCProt, SCGrant, SCRecv, SCTfer,
SCReval, SCInval, SCExcl), in line with the complexity of the RocketChip core which resembles
an embedded processor. To accelerate the instruction emulation, our prototype also introduces a
mechanism for accelerating the trap-and-emulate mechanism. The mechanism described below is
generic, and not restricted to emulating SecureCells’ instructions.

The naive trap-and-emulate mechanism relies on saving the core’s entire general-purpose
register (GPR) context to memory, to later read argument registers for the emulated instruction.
Consequently, the trap-and-emulate mechanism is relatively costly, consuming almost a hundred
cycles to just switch contexts. Since the firmware can only find the argument register after reading
the trapping instruction, decoding the instruction in software and finding the argument register
fields, saving every register is essential.

While illegal instruction traps can originate from actually illegal byte sequences in code, the
trap-and-emulate mechanism applies to actually valid instruction encodings. These instructions are
fetched, and pass through the decode stage, which deciphers the instruction’s encoding and the
argument register names before raising the illegal instruction trap. We realized that the hardware
can, therefore, read and save the relevant argument registers to special system registers allowing
the firmware to directly access register arguments. Moreover, traps cause a pipeline flush, allowing
the decode stage to ensure that the most recent value of the architectural register is saved to the
special registers, even in an out-of-order core. The firmware, therefore, can include fast paths for
trap-and-emulate, only storing the registers overwritten by the firmware during emulation to save
tens of cycles. The firmware also saves cycles used for entirely decoding instructions to find their
argument registers. For instructions which can be emulated in tens or a hundred cycles, including
the aforementioned SecureCells instructions, saving tens of cycles during trap entry and exit can
account for a significant speedup of up to 70%.
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Our FPGA prototype, therefore, implements five extra machine-mode control-and-status registers
(CSRs) for handling instruction arguments for trapping instructions. Three read-only registers,
mtirs1, mtirs2 and mtiimm store the argument register values, and the immediate value as relevant
to the trapping instruction. These registers can directly be read by the firmware during emulation.
A fourth read-only register, mtird stores the name of the destination register, if required by the
trapped instruction. A write-only register, mtirdval can be written to by the firmware during
instruction emulation, representing the value generated by the instruction. When the trap returns,
the mret instruction writes the returned value into the correct destination register. Instructions
without an output will have the mtird register pointing to the x0 register, which is hardware pinned
to the value zero.

B.6.2 SecureCells-specific PTable-GTable Access Helpers

SecureCells’ PTable structure is designed to specifically make lookups for cell descriptions and
permissions straightforward. The addresses of permissions and descriptions can be generated
with simple arithmetic involving addition and bit-shift operations. Our prototype exposes single
instructions for generating addresses within the PTable and for checking permissions in the PTable,
implemented as simple hardware arithmetic circuits. The four instructions are listed below.

• Check cell The SCCCK instruction resembles ARM’s AT instruction [5], and allows the firmware
to check whether a instruction has a valid translation by accessing the core’s range-TLB.

• Cell Address Generates the address for the cell description for a cell with a specified index.

• Permission Address Generates the address for the permissions byte within the PTable for a
specific cell and SD.

• Grant Address Generates the address for the grant table entry within the GTable for a
specific cell and SD.
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Instruction Exception Cause scause code stval

EXCL Illegal address _ILL_ADDR addr

EXCL Illegal permissions _ILL_PERM

(type ≪ 8) | perm

type =


0 if perm not in RWX
1 if perm is zero

2 if SDcur has insufficient
perms

EXCL Cell description invalid _INV_CELL_STATE 0 if cell is invalid
GRANT Illegal address _ILL_ADDR addr
GRANT Target too high _INV_SDID SDt g t

GRANT Illegal permissions _ILL_PERM

(type ≪ 8) | perm

type =


0 if perm not in RWX
1 if perm is zero

2 if SDcur has insufficient
perms

GRANT Cell description invalid _INV_CELL_STATE 0 if cell is invalid
RECV Illegal address _ILL_ADDR addr
RECV Cell description invalid _INV_CELL_STATE 0 if cell is invalid

RECV Illegal permissions _ILL_PERM

(type ≪ 8) | perm

type =


0 if perm not in RWX
1 if perm is zero

3 if requested perms not
subset of granted perms

RECV Invalid SD _INV_SDID

(type ≪ 32) | SD

type =


0 if SD source too high

or SD=SDsr c

1 if grant SD != SDcur

or SD=SDcur

PROT Illegal address _ILL_ADDR addr

PROT Illegal permissions _ILL_PERM

(type ≪ 8) | perm

type =


0 if perm not in RWX

2 if SDcur has insufficient
perms

PROT Cell description invalid _INV_CELL_STATE 0 if cell is invalid
TFER Illegal address _ILL_ADDR addr
TFER Target too high _INV_SDID SDt g t

TFER Illegal permissions _ILL_PERM

(type ≪ 8) | perm

type =


0 if perm not in RWX
1 if perm is zero

2 if SDcur has insufficient
perms

Table B.3: Exception causes, scause and stval register values for SecureCells exceptions
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Instruction Exception Cause scause code stval

TFER Cell description invalid _INV_CELL_STATE 0 if cell is invalid
INVAL Illegal address _ILL_ADDR addr

INVAL Cell description invalid _INV_CELL_STATE

type

type =


0 if cell is already invalid
2 if other SD has non-zero perms
3 outstanding grants for cell

REVAL Illegal address _ILL_ADDR addr
REVAL Cell description invalid _INV_CELL_STATE 1 if cell is already valid

REVAL Illegal permissions _ILL_PERM

(type ≪ 8) | perm

type =
{

0 if perm not in RWX
1 if perm is zero

JAL(R)S Target too high _INV_SDID SDt g t

JAL(R)S Illegal target instruction _ILL_TGT Target addr

Table B.3: (cont.) Exception causes, scause code and stval register values for SecureCells
exceptions

scause code Value

_ILL_ADDR 0x18
_ILL_PERM 0x19
_INV_SDID 0x1a
_INV_CELL_STATE 0x1b
_ILL_TGT 0x1c

Table B.4: Mapping SecureCells exception codes to values
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Appendix C

Details for SoK on
Compartmentalization Mechanisms

C.1 Classification Data

Below, we present the data used for creating the scoring diagrams in Figure 4.3 and Figure 4.4.
We include descriptions for each column, which is a separate scoring factor, and show how each
mechanism scores on this feature. For each feature, the mechanism fully satisfying the feature,
or achieving the best performance in a category gets a full circle. Partially-filled circles show the
relative score assigned to a mechanism for a feature, compared to the max score for that feature.
Red circles indicate a negative score, awarded when a mechanism has a negative contribution to a
feature.
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Table C.2: Scoring matrix for mechanisms for performance and flexibility metrics
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