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Abstract
Machine learning (ML) enables artificial intelligent (AI) agents to learn autonomously
from data obtained from their environment to perform tasks. Modern ML systems
have proven to be extremely effective, reaching or even exceeding human intelligence.
Although these systems are highly effective at solving their specific tasks, they are not
very efficient, requiring massive and costly amounts of task-specific high-quality data to
reach that performance. In contrast, human intelligence can transfer knowledge from
previous experiences to learn new related concepts effectively and very efficiently, i.e.,
from mostly one or only a few examples of a new concept. Few-shot learning is the
ML area that deals with this. The research in this thesis focuses on investigating and
developing few-shot learning solutions for more effective and more efficient machine
learning model adaptation.
First, we investigate the existing linear regression meta-learning method R2D2 its
reproducibility. We find that the findings are mostly reproducible, but different backbone
models should be taken into consideration when comparing results of different methods.
Continuing with the methodology of linear regression, we introduce Regression Net-
works, a metric-learning few-shot classification approach. The metric is the embedded
regression error of a point to a subspace of shots. Regression Networks achieve
excellent results, especially when subspaces can be formed with multiple shots per class.
Subsequently, we address the inefficiency of needing many labeled training tasks by
leveraging advances in self-supervised learning. Our approach ProtoTransfer has
matching contrastive pre-training with prototypical task adaptation. We show that
ProtoTransfer outperforms state-of-the-art unsupervised methods and even matches
performance of supervised methods under domain-shift, at a fraction of the labeling cost.
Additionally, we design a meta-learning approach for survival analysis of rare diseases
based on high-dimensional RNA sequencing data. Addressing parameter count, a first-
order meta-learning algorithm is adopted together with a Cox survival loss. We show
that meta-learning is significantly more effective in this setting than regular fine-tuning.
Lastly, we go beyond single task adaptation with a model-agnostic learning to meta-learn
(MALTML) approach. Our algorithm enables a model to quickly exploit commonalities
among related tasks from an unseen task distribution, before quickly adapting to a
specific task. Our experiments show that MALTML generally improves adaptation.

Keywords: machine learning, deep learning, few-shot learning, meta-learning.
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Résumé

L’apprentissage automatique permet aux agents intelligents artificiels (IA) d’apprendre de
manière autonome à partir des données obtenues dans leur environnement afin d’effectuer
des tâches. Les systèmes modernes d’apprentissage automatique se sont révélés extrême-
ment efficaces, atteignant, voire dépassant, l’intelligence humaine. Bien que ces systèmes
soient très efficaces pour résoudre leurs tâches spécifiques, ils ne sont pas très efficients,
car ils nécessitent des quantités massives et coûteuses de données de haute qualité spéci-
fiques à la tâche pour atteindre cette performance. En revanche, l’intelligence humaine
peut transférer des connaissances à partir d’expériences antérieures pour apprendre de
nouveaux concepts connexes de manière efficace et très efficiente, c’est-à-dire à partir
d’un seul ou de quelques exemples seulement d’un nouveau concept. L’apprentissage à
partir d’un petit nombre d’exemples est le domaine de la ML qui traite de cette question.
La recherche dans cette thèse se concentre sur l’étude et le développement de solutions
d’apprentissage à court terme pour une adaptation plus efficace et plus efficiente des
modèles d’apprentissage automatique.
Tout d’abord, nous étudions la méthode de méta-apprentissage de régression linéaire
R2D2 et sa reproductibilité. Nous constatons que les résultats sont généralement repro-
ductibles, mais que les différentes architectures de réseaux neuronaux doivent être prises
en compte lors de la comparaison des résultats de différentes méthodes.
Poursuivant la méthodologie de la régression linéaire, nous présentons Regression
Networks, une approche de classification de quelques plans par apprentissage métrique.
La métrique est l’erreur de régression intégrée d’un point à un sous-espace de plans.
Regression Networks obtiennent d’excellents résultats, en particulier lorsque des
sous-espaces multidimensionnels peuvent être formés avec plusieurs plans par classe.
Ensuite, nous nous attaquons à l’inefficacité de la nécessité de nombreuses tâches d’ap-
prentissage étiquetées en tirant parti des progrès de l’apprentissage auto-supervisé. Notre
approche ProtoTransfer fait correspondre le pré-entraînement contrastif à l’adapta-
tion de tâches prototypiques. Nous démontrons que ProtoTransfer est plus performant
que les méthodes de méta-apprentissage non supervisé les plus récentes et qu’il atteint
même les performances des méthodes supervisées en cas de changement de domaine, mais
pour une fraction du coût d’étiquetage.
En outre, nous concevons une approche de méta-apprentissage pour l’analyse de survie
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des maladies rares basée sur des données de séquençage de l’ARN à haute dimension. En
ce qui concerne le nombre de paramètres, un algorithme de méta-apprentissage du premier
ordre est adopté avec une perte de survie de Cox. Nous démontrons que, comparé à un
réglage fin régulier, le méta-apprentissage est nettement plus efficace dans ce contexte.
Enfin, nous allons au-delà de l’adaptation à une seule tâche avec une approche d’ap-
prentissage de méta-apprentissage agnostique de modèle (MALTML). Notre algorithme
d’apprentissage permet à un modèle d’exploiter rapidement les points communs entre les
tâches connexes à partir d’une distribution de tâches inédite, avant de s’adapter rapide-
ment. Les expériences montrent que MALTML améliore généralement l’adaptation à
quelques tâches par rapport aux lignes de base.

Mots clefs : apprentissage automatique, apprentissage profond, apprentissage à court
terme, le méta-apprentissage.
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1 Introduction

Intelligence can be defined as "the ability to learn and perform suitable techniques to
solve problems and achieve goals, appropriate to the context in an uncertain, ever-varying
world" (Manning, 2020). In 1956, John McCarthy coined the term artificial intelligence
(AI) and defined it as "the science and engineering of making intelligent machines,
especially intelligent computer programs". This kind of intelligence is artificial (by design)
in contrast to the natural (inherent) intelligence of living beings, mainly humans. Russell
and Norvig (2010) further detail the definition of AI as "the study of [artificial] agents that
receive percepts from the environment and perform actions. Each such agent implements
a function that maps percept sequences to actions".

Within AI, machine learning (ML) is a subfield that focuses on enabling AI agents with
the capability to learn autonomously from data obtained from their environment to
perform tasks. Practically, this entails that computer programs that process inputs to
produce outputs can be learnt using ML algorithms on data instead of needing to be
explicitly programmed. Similar to how a computer compiler enables programs written in a
source language easy for humans to read to be translated into a binary computer-readable
language, machine learning enables one to go from data and a task specification to a
learned model (program) that processes inputs and produces outputs.

Modern machine learning systems have proven to be extremely effective, reaching or
even exceeding human intelligence, in tasks such as object image classification (He et
al., 2015) and the board game of Go (Silver et al., 2016). These breakthroughs have
been made possible mostly by employing the general and powerful deep neural network
model architecture combined with the stochastic gradient descent learning algorithm and
efficient computational implementations (Krizhevsky et al., 2012).

Although these deep learning systems are highly effective at solving their specific tasks,
they are not very efficient, requiring massive amounts of task-specific high-quality
data to reach that performance. For example, the popular object image classification
benchmark dataset ImageNet (Russakovsky et al., 2015a) consists of 1.28 million labeled
high-resolution images across 1,000 categories. For many tasks and organizations, it is

1



Chapter 1 Introduction

too expensive or even impossible to obtain this amount and quality of data. Yosinski
et al. (2014) show that trained deep learning models exhibit excellent transfer learning
capabilities; continuing training ("fine-tuning") on (part of) the parameters of a deep
neural network "pretrained" on a related source task benefits learning on a target task.
This enables to reduce the amount of data needed to collect for the target tasks. For
example, Esteva et al. (2017) leverage transfer learning from a pretrained ImageNet
model with an order of magnitude fewer examples (127,000 vs 1.28 million) across broadly
the same number of categories (757 vs 1000), in a skin cancer image classification setting,
to match the performance of human dermatologists.

Still, human intelligence can learn new related concepts effectively and very efficiently,
i.e., from mostly one or only a few examples of a new concept (B. Lake et al., 2011).
The area of Few-shot Learning covers adapting models with only one or a handful of
examples per new concept, based on knowledge from related concepts (Fei-Fei et al.,
2006; B. M. Lake et al., 2015). Few-shot learning is challenging since adapting sufficiently
to a new data set has to be balanced with overfitting to that small data set.

The research in this thesis focuses on investigating and developing few-shot learning
solutions for more effective and more efficient machine learning model adaptation. The
typical transfer learning solution is to fine-tune an off-the-shelf pre-trained deep neural
network model. Although this solution is efficient by avoiding the need for training a big
model from scratch, it requires carefully choosing a number of hyperparameters to be
effective as well. Determining these hyperparameters such as adaptation learning rate
and layers to freeze is challenging because of the very small datasets encountered.

Addressing the few-shot learning problem more methodologically is meta-learning, which
explicitly learns to learn few-shot tasks (Vinyals et al., 2016; Finn et al., 2017). This
paradigm uses a collection of few-shot learning tasks during training that relate to the
unknown few-shot testing goal tasks. Note that collecting many of these training few-shot
learning tasks, especially with labels, is an expensive inefficient task in its own respect,
which can be addressed by sampling from existing (single task) datasets (Vinyals et al.,
2016). Black-box meta-learning and optimization-based meta-learning approaches are
generally applicable across a variety of learning problems (e.g., classification, regression,
& reinforcement learning), but they also have challenging training problems including
second order gradients and high memory requirements (K. Li and Malik, 2017; Ravi
and Larochelle, 2017; Finn et al., 2017; Nichol et al., 2018). For the popular setting
of few-shot classification, these challenges are largely addressed by semi-parametric
meta-learning (Vinyals et al., 2016; Snell et al., 2017; Sung et al., 2018). Advances
in few-shot classification approaches mostly focus on formulating more expressive and
efficient class representations leading to more effective performance (Bertinetto et al.,
2019; Devos and Grossglauser, 2020; Medina et al., 2020). In this thesis, we investigate,
develop, and apply few-shot learning methods for effective and efficient machine learning
model adaptation.
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1.1 Research

Chapter 2 investigates the existing linear regression-based meta-learning method R2D2
(Bertinetto et al., 2019) its reproducibility (Devos et al., 2019). We find it to be generally
reproducible, with a few missing parameters. After bringing our work to the authors’
attention, they updated the original paper and released code. An official anonymous
reviewer publicly calls our work a "worthy contribution to science" (Anonymous, 2019).

Chapter 3 continues with the methodology of linear regression and introduces Regression
Networks (Devos and Grossglauser, 2020). Regression Networks is a few-shot
classification metric learning approach we develop that follows the line of research
of more expressive class representations. It extends the embedded single point class
representations of Prototypical Networks (Snell et al., 2017) with more expressive
class subspace representations. We meta-learn classification of embedded points by
regressing the closest approximation in every class subspace while using the regression
error as a distance metric. Regression Networks achieve excellent results, especially
when more aggregate class representations can be formed with multiple shots per class.

Chapter 4 addresses the costly requirement of having many labeled training tasks for
few-shot classification by introducing ProtoTransfer (Medina et al., 2020). Proto-
Transfer uses advances in self-supervised learning to construct a metric embedding
that clusters unlabeled prototypical samples and their augmentations together. This
pre-trained embedding is a starting point for few-shot classification by summarizing class
clusters and fine-tuning. We show that ProtoTranser outperforms state-of-the-art unsu-
pervised meta-learning methods on in-domain tasks, and even matches the performance
of supervised methods under domain-shift, but at a fraction of the labeling cost.

Chapter 5 focuses on an application of meta-learning for survival analysis of rare diseases
based on high-dimensional RNA sequencing data (Qiu et al., 2020). Addressing the high
parameter count, a first-order meta-learning algorithm is adapted together with a Cox
survival loss. We demonstrate that, compared to regular fine-tuning, meta-learning is
significantly more effective in this biomedical regression setting. We also show that the
meta-learning framework with a few samples can achieve competitive performance with
learning from scratch with a significantly larger number of samples.

Chapter 6 goes beyond single task adaptation to task distribution adaptation with a
model-agnostic learning to meta-learn (MALTML) approach (Devos and Dandi, 2021).
Concretely, our approach generalizes the seminal model-agnostic meta-learning (MAML)
work of Finn et al. (2017) to another level of learning. The algorithm enables any model
to quickly exploit commonalities among related tasks from an unseen task distribution,
before quickly adapting to specific tasks from that same distribution. Experiments on
image classification, (continual) regression, and reinforcement learning tasks demonstrate
that learning to meta-learn mostly improves adaptation.
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Chapter 1 Introduction

1.1.1 Organization

The aforementioned contributions are described in detail in the next five chapters. Each
chapter maps to a paper written by the author (with collaborators). Each chapter starts
with a preface, consisting of a summary of the work and a list of author contributions
using the CRediT framework (Brand et al., 2015). The appendices for all chapters are
collected at the end.

1.1.2 Papers related to the thesis

All the papers included as chapters in this thesis have been accepted at their respective
venues after peer-review. The chapter-paper mapping is as follows:

• Thesis Chapter 2:
Arnout Devos, Sylvain Chatel, and Matthias Grossglauser (May 2019). “[Re]
Meta-learning with differentiable closed-form solvers”. In: ReScience C Journal
5.2. #1. doi: 10.5281/zenodo.3160540

• Thesis Chapter 3:
Arnout Devos and Matthias Grossglauser (June 2020). “Regression Networks for
Meta-Learning Few-Shot Classification”. In: ICML 2020 Workshop on Automated
Machine Learning (AutoML). url: https://sites.google.com/view/automl2020/
accepted-papers_1

• Thesis Chapter 4:
Carlos Medina, Arnout Devos, and Matthias Grossglauser (June 2020). “Self-
supervised prototypical transfer learning for few-shot classification”. In: ICML
2020 Workshop on Automated Machine Learning (AutoML). url: https://sites.
google.com/view/automl2020/accepted-papers_1

• Thesis Chapter 5:
Yeping Lina Qiu, Hong Zheng, Arnout Devos, Heather Selby, and Olivier Gevaert
(Dec. 2020). “A meta-learning approach for genomic survival analysis”. In: Nature
communications 11.1, p. 6350. url: https://www.nature.com/articles/s41467-020-
20167-3

• Thesis Chapter 6:
Arnout Devos and Yatin Dandi (Dec. 2021). “Model-Agnostic Learning to Meta-
Learn”. In: Proceedings of Machine Learning Research. Vol. 148. PMLR, pp. 155–
175. url: https://proceedings.mlr.press/v148/devos21a.html
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Introduction Chapter 1

1.2 Innovation

The chapters in this thesis are a selection of research work that the author contributed
to during their PhD and that are related to machine learning model adaptation. Next
to research, the author also completed EPFL’s entrepreneurial PhD program as an
EPFLinnovators fellow in computer science (Licina, 2021). The program is officially
summarized as (Hunen, 2018):

EPFLinnovators is a four-year doctoral program based in the dynamic envi-
ronment of the EPFL campus. To develop the innovation potential of PhD
students, the EPFLinnovators programme integrates a six-months to two-year
secondment in the non-academic sector. Furthermore, the programme provides
the PhD students with the training, experience and advice they need to become
tomorrow’s entrepreneurs.

Hence, the author completed the following two secondments in the non-academic sector:

• At Amazon, we developed an approach for synthetic sensor data generation for
model training and evaluation of autonomous drones.

• At Spotify, we developed an approach for cold-start recommendation. The cold-start
setting relates to zero-shot learning, where using only auxiliary information (e.g.,
meta-data), a model should make adapted predictions (Jingjing Li et al., 2019).

Within the scope of the program, next to completing its 4 mandatory courses on
entrepreneurship, public speaking, and teaching, the author also co-founded the Sci-
encepreneurship Summer School (Devos and Wagner, 2023), the first of its kind in
Switzerland. The first edition was recognized by the official EPFL-ETH Zurich summer
school program and it took place in Zurich in April 2023. Qualitatively, the first edition
consisted of a week-long course (1 ECTS credit) gathering graduate students, experienced
sciencepreneurs, and ecosystem players. The course’s goal is to share knowledge, experi-
ences, and pitfalls about transforming scientific advances into societal impact through
entrepreneurship. Quantitatively, the first edition attracted 113 applicants, 30 student
participants (10 EPFL, 10 ETH Zurich, 10 others), of which over 40% identified as
women, and $45,000 in funding. After completing the course, one participant from the
student team of three that won the course’s pitching competition co-founded an ETH
Zurich spinoff and two others joined venture building programs in Germany and the UK.
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2 Reproducing Meta-learning with
differentiable closed-form solvers

2.1 Preface

Summary: In this paper, we present a reproduction of the paper of Bertinetto et al.
(2019) "Meta-learning with differentiable closed-form solvers" as part of the ICLR 2019
Reproducibility Challenge. In successfully reproducing the most crucial part of the paper,
we reach a performance that is comparable with or superior to the original paper on two
benchmarks for several settings. We evaluate new baseline results, using a new dataset
presented in the paper. Yet, we also provide multiple remarks and recommendations
about reproducibility and comparability. After we brought our reproducibility work to
the authors’ attention, they have updated the original paper on which this work is based
and released code as well. Our contributions mainly consist in reproducing the most
important results of their original paper, in giving insight in the reproducibility and in
providing a first open-source implementation.

This chapter is an edited version of Devos et al. (2019).

Code: https://github.com/ArnoutDevos/r2d2

Co-authors: Sylvian Chatel (SC) and Matthias Grossglauser (MG).

Contributions:
AD: Conceptualization, Methodology, Software, Visualization, Investigation, Writing -
Original Draft.
SC: Conceptualization, Methodology, Software, Visualization, Investigation, Writing -
Original Draft.
MG: Supervision, Writing - Review and Editing, Project Administration.
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Chapter 2 Reproducing Meta-learning with differentiable closed-form solvers

2.2 Introduction

The ability to adapt to new situations and learn quickly is a cornerstone of human
intelligence. When given a previously unseen task, humans can use their previous
experience and learning abilities to perform well on this new task in a matter of seconds
and with a relatively small amount of new data. Artificial learning methods have been
shown to be very effective for specific tasks, often times surpassing human performance
(Silver et al., 2016; Esteva et al., 2017). However, by relying on standard supervised-
learning or reinforcement learning training paradigms, these artificial methods still require
much training data and training time to adapt to a new task.

An area of machine learning that learns and adapts from a small amount of data is
called few-shot learning. A shot corresponds to a single example, e.g. an image and its
label. In few-shot learning, the learning scope is expanded to a variety of tasks with
a few shots each, compared to the classic setting of a single task with many shots. A
promising approach for few-shot learning is the field of meta-learning. Meta-learning,
also known as learning-to-learn, is a paradigm that exploits cross-task information and
training experience to perform well on a new unseen task.

In this work we reproduce the paper of Bertinetto et al. (2019) (referenced as "their
paper"); it falls into the class of gradient-based meta-learning algorithms that learn a
model parameter initialization for rapid fine-tuning with a few shots (Finn et al., 2017;
Nichol et al., 2018). The authors present a new meta-learning method that combines
a deep neural network feature extractor with differentiable learning algorithms that
have closed-form solutions. This reduces the overall complexity of the gradient-based
meta-learning process, while advancing the state-of-the-art in terms of accuracy across
multiple few-shot benchmarks.

We interacted with the authors through OpenReviewI, bringing our reproducibility work
and TensorFlow codeII,III to their attention. Because of this, they have updated their
original paper with more details to facilitate reproduction and they have released an
official PyTorch implementationIV.

2.3 Background in meta-learning

The objective of few-shot meta-learning is to train a model that can quickly adapt to
a new task by using only a few datapoints and training iterations. In our work, we
will consider only classification tasks, but it should be noted that meta-learning is also
generally applicable to regression or reinforcement learning tasks (Finn et al., 2017).

Ihttps://openreview.net/forum?id=HyxnZh0ct7&noteId=BkxDPnDZMV
IIour R2D2 and R2D2*: https://github.com/ArnoutDevos/r2d2

IIIour MAML on CIFAR-FS: https://github.com/ArnoutDevos/maml-CIFAR-FS
IVBertinetto et al. (2019) code: https://github.com/bertinetto/r2d2
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Reproducing Meta-learning with differentiable closed-form solvers Chapter 2

In order to provide a solid definition of meta-learning, we need to define its different
components. We denote the set of tasks by T. A task Ti ∈ T corresponds to a
classification problem, with a probability distribution of example inputs x and (class)
labels y, (x, y) ∼ Ti. For each task, we are given training samples ZT = {(xi, yi)} ∼ T
with K shots per class and evaluation samples Z ′

T = {(x′
i, y′

i)} ∼ T with Q shots (queries)
per class, all sampled independently from the same distribution T . In meta-learning,
we reuse the learning experience used for tasks Ti, i ∈ [0, L] to learn a new task Tj ,
where j > L, from only K examples, for every single one of the N classes in the task.
Commonly, this is denoted as an N -way K-shot problem. To this end, in meta-learning
two different kinds of learners can be at play: (1) a base-learner that works at the task
level and learns a single task (e.g. classifier with N classes) and (2) a meta-learner that
produces those model parameters that enable the fastest average fine-tuning (using the
base-learner) on unseen tasks.

The authors put a specific view of meta-learning forward. Their meta-learning system
consists of a generic feature extractor Φ(x) that is parametrized by ω, and a task-specific
predictor fT (X) that is parametrized by wT and adapts separately to every task T ∈ T
based on the few shots available. In the case of a deep neural network architecture, this
task-specific predictor fT can be seen as the last layer(s) of the network and is specific to
a task T . The preceding layers Φ can be trained across tasks to provide the best feature
extraction on which the task-specific predictor can finetune with maximum performance.

The base-learning phase in their paper assumes that the parameters ω of the feature
extractor Φ are fixed and computes the parameters wT of fT through closed-form learning
process Λ. Λ, on its own, is parametrized by ρ. The meta-learning phase in the paper
learns a parametrization of Φ and Λ (respectively ω and ρ). In order to learn those
meta-parameters, the algorithm minimizes the expected loss on test sets from unseen
tasks in T with gradient descent. The base-learning and meta-learning phases are shown
in Figures 2.1 and 2.2, respectively.

Most of the recent meta-learning works are tested against image datasets and their
feature extractor consists of a convolutional neural network (CNN). The variability
between works resides mainly in the base learner fT and its parameter obtaining training
procedure Λ. Examples are an (unparametrized) k-nearest-neighbour algorithm (Vinyals
et al., 2016), a CNN with SGD (Mishra et al., 2017), and a nested SGD (Finn et al.,
2017). Systems in Vinyals et al. (2016) and Snell et al. (2017) are based on comparing new
examples in a learned metric space and rely on matching. In particular, MatchingNet
from Vinyals et al. (2016) uses neural networks augmented with memory and recurrence
with attention in a few-shot image recognition context. Mishra et al. (2017) build on
this attention technique by adding temporal convolutions to reuse information from past
tasks. Another example of a matching-based method is introduced in Garcia and Bruna
(2017), where a graph neural network learns the correspondence between the training and
testing sets. A different approach is to consider the SGD update as a learnable function
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Figure 2.1: Base-learning of the task-specific parameters wTi over p tasks following steps
3 to 6 of Algorithm 1.
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Figure 2.2: Meta-learning of the meta-parameters ω and ρ over the evaluation sets of
each task Z ′

Ti
using the previously learned wTi following steps 7 to 9 of Algorithm 1.

10



Reproducing Meta-learning with differentiable closed-form solvers Chapter 2

for meta-learning. In particular, sequential learning algorithms, such as recurrent neural
networks and LSTM-based methods, enable the use of long-term dependencies between
the data and gradient updates as pointed out by Ravi and Larochelle (2017). Finally,
Finn et al. (2017) introduce a technique called model-agnostic meta-learning (MAML).
In MAML, meta-learning is done by backpropagating through the fine-tuning stochastic
gradient descent update of the model parameters.

2.4 Analysis of the R2D2 Classifier

In their paper, Bertinetto et al. (2019) present a new approach that relies on using fast
and simple base learners such as ridge regression differentiable discriminator (R2D2) or
(regularized) logistic regression differentiable discriminator (LRD2). In our reproducibility
work we will focus on the R2D2 algorithm, because it is the only proposed algorithm
with a truly closed-form solver for the base-learner. For reproducibility purposes, we
transformed the original textual description of R2D2 in their paper into an algorithmic
description in Algorithm 1, elaborated upon in the following.

Algorithm 1 Ridge Regression Differentiable Discriminator (R2D2)
Require: Distribution of tasks T.
Require: Feature extractor Φ parameterized by ω.
Require: Finetuning predictor fT with base-learning algorithm Λ and task-specific

parameters wT , and meta-parameters ρ = (α, β, λ)
1: Initialize Φ, Λ, and fT with pre-trained or random parameters ω0 and ρ0
2: while not done do
3: Sample batch of tasks Ti ∼ T
4: for all Ti do
5: Sample K datapoints for every class from Ti and put in them in the training set
ZTi

6: Base-learn fTi using Λ:
7: Wi = wTi = Λ(ZTi) = XT

i (XiX
T
i + λ.I)−1Yi

8: with Xi = Φ(ZTi) and Yi the one-hot labels from ZTi .
9:

10: Sample datapoints for every class from Ti and put in them in the evaluation set
Z ′

Ti

11: end for
12: Update meta-parameters θ = (ω, ρ) through gradient descent :

θ ← θ − ε.
∑

i

∇θL(fTi(Φ(Z ′
Ti

)), Y ′
i )

with ε the learning rate, L the cross-entropy loss, and fTi(X ′
i) = αX ′

iWi + β.
13: end while

In R2D2, during base-learning with ZT , the linear predictor fT is adapted for each

11
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training task T , by using the learning algorithm Λ; and the meta-parameters ω (of Φ)
and ρ (of Λ) remain fixed. It is only in the meta-training phase that meta-parameters ω

and ρ are updated, by using Z ′
T . The linear predictor is seen as fT (x) = xW with W a

matrix of task-specific weights wT , and x the feature extracted version of x, x = Φ(x).
This approach leads to a ridge regression evaluation such that it learns the task weights
wT :

Λ(X, Y ) = arg min
W

∥XW − Y ∥2 + λ ∥W∥2 (2.1)

= (XT X + λI)−1XT Y (2.2)

where X contains all NK feature extracted inputs from the training set of the considered
task. A key insight in their paper is that the closed-form solution of Equation 2.2 can
be simplified using the Woodbury matrix identity yielding W = Λ(X, Y ) = XT (XXT +
λI)−1Y . This considerably reduces the complexity of the matrix calculations in the
special case of few-shot learning. Specifically, XXT is of size NK×NK, in the case of an
N -way K-shot task; this matrix will, together with the regularization, be relatively easily
inverted. Normally, regression is not adequate for classification, but the authors noticed
that it still has considerable performance. Therefore, in order to transform the regression
outputs (which are only effectively calculated when updating the meta-parameters using
Z ′

T ) to work with the cross-entropy loss function, the meta-parameters (α, β) ∈ R2 serve
as a scale and bias, respectively:

Ŷ ′ = αX ′
[
XT (XXT + λI)−1Y

]
+ β (2.3)

2.5 Reproducibility

As a first step in the reproducibility, we reproduce the results of a baseline algorithm on
different datasets used in their paper. In this perspective, we first consider the MAML
algorithm from Finn et al. (2017). We use the official TensorFlow implementation of
MAML (Finn et al., 2017) to reproduce the baseline’s results. Then, we amend this
MAML implementation to reproduce the results on the new CIFAR-FS dataset proposed
by their paper (Bertinetto et al., 2019).

When reproducing the R2D2 algorithm, our first consideration is that the feature
extractors in MAML and R2D2 are very different. MAML uses four convolutional blocks
with an organization of [32, 32, 32, 32] filters. Whereas, R2D2’s four blocks employ a [96,
192, 384, 512] scheme, as shown in Figure 2.3. In other words, the feature extractor in
R2D2 is more complex hence is expected to yield better results (Mhaskar et al., 2016).
In order to provide a meaningful comparison, we implement and evaluate both the simple
and more complex feature extractors for the R2D2 algorithm, denoted by R2D2* and
R2D2 respectively.
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Figure 2.3: Overall architecture of the R2D2 system considering [96, 192, 384, 512] filters
in the feature extractor with 4 convolutional blocks for the CIFAR-FS dataset.

In order to make a working reproduction of their paper we had to make the following
assumptions. We first considered the aforementioned complex architecture and feature
extractor. In particular, for the feature extractor, we made assumptions on the convolu-
tional block options. We considered a 3x3 convolution block with a ’same’ padding and a
stride of 1. For the 2x2 maximum pooling, we use a stride of 2 and no padding. Second,
concerning the ridge regression base-learner, we opted for a multinomial regression that
returns the class with the maximum value through one-hot encoding. Following the
guidelines for the feature extractor presented in Section 4.2 of their paper, we were
not successful in reproducing the exact number of features at the output of the feature
extractor. In their paper, the overall numbers of features at the output of the extractor
are 3584, 72576 and 8064 for Omniglot, miniImageNet and CIFAR-FS, respectively.
However, by implementing the feature extractor described in their paper, we obtain 3988,
51200 and 8192 respectively.

For comparison purposes, we use the same number of classes (e.g. 5) and shots during
(e.g. 1) training and testing, despite their paper using a higher number of classes
during training (16 for miniImageNet, 20 for CIFAR-FS) than during testing (5 for
miniImageNet and CIFAR-FS). Regarding the amount of shots, their paper uses a
random number of shots during training. This is different from the way most baselines
are trained using the same number of shots per class during training and testing (Finn
et al., 2017; Nichol et al., 2018; Vinyals et al., 2016). For comparability, it is paramount
to keep the training and testing procedures similar, if not the same. In particular, as in
their paper the 5-way results are exactly the same as those reported in MAML (Finn
et al., 2017), using the same number of classes and shots during training and testing
allows for a justifiable comparison.

Finally, a last assumption is made on the algorithm’s stopping criterion. In their paper,
the stopping criterion is vaguely defined as "the error on the meta-validation set does not
decrease meaningfully for 20,000 episodes". Therefore, in line with the MAML training
procedure, we meta-train using 60,000 iterations. To update the meta-parameters, in
line with their paper, we use the Adam optimizer (Kingma and J. L. Ba, 2015) with an
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Figure 2.4: N -way K-shot classification accuracies on CIFAR-FS. Detailed results in
Table 2.1.

Table 2.1: N -way K-shot classification accuracies on CIFAR-FS with 95% confidence
intervals.

Method MAML paper
Bertinetto et al. (2019)

MAML
ours

R2D2*
ours

R2D2
ours

R2D2 paper
Bertinetto et al. (2019)

5-way, 1-shot 58.9± 1.9% 56.8± 1.9% 54.3± 1.8% 60.2± 1.8% 65.3± 0.2%
5-way, 5-shot 71.5± 1.0% 70.8± 0.9% 69.7± 0.9% 70.9± 0.9% 79.4± 0.1%
2-way, 1-shot 82.8± 2.7% 83.1± 2.6% 78.3± 2.8% 83.6± 2.6% 83.4± 0.3%
2-way, 5-shot 88.3± 1.1% 88.5± 1.1% 87.7± 1.1% 89.0± 1.0% 91.1± 0.2%

initial learning rate of 0.005, dampened by 0.5 every 2,000 episodes. We use 15 examples
per class for evaluating the post-update meta-gradient. We use a meta batch-size of 4
and 2 tasks for 1-shot and 5-shot training respectively. For MAML we use a task-level
learning rate of 0.01, with 5 steps during training and 10 steps during testing.

2.6 Results and contributions

The results of the different implemented architectures and algorithms for several datasets
are shown in Figures 2.4 and 2.5. More detailed results with 95% confidence intervals
are shown in Tables 2.1 and 2.2. The first and last column correspond to the baselines in
original papers.

Table 2.2: N -way K-shot classification accuracies on miniImageNet with 95% confidence
intervals

Method MAML paper
Finn et al. (2017)

MAML code
Finn et al. (2017)

R2D2*
ours

R2D2
ours

R2D2 paper
Bertinetto et al. (2019)

5-way, 1-shot 48.7± 1.8% 47.6± 1.9% 45.7± 1.8% 51.7± 1.8% 51.5± 0.2%
5-way, 5-shot 63.1± 0.9% 62.3± 0.9% 63.7± 1.3% 63.3± 0.9% 68.8± 0.2%
2-way, 1-shot 74.9± 3.0% 78.8± 2.8% 74.7± 2.9% 74.6± 2.9% 76.7± 0.3%
2-way, 5-shot 84.4± 1.2% 82.6± 1.2% 83.0± 1.2% 84.6± 1.2% 86.8± 0.2%
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Figure 2.5: N -way K-shot classification accuracies on miniImageNet. Detailed results in
Table 2.2.

Our implementations were made in Python 3.6.2 and TensorFlow 1.8.0 (Abadi et al.,
2016). The source code of all implementations is availableV onlineVI. The simulations
were run on a machine with 24 Xeon e5 2680s at 2.5 GHz, 252GB RAM and a Titan X
GPU with 12 GB RAM.

Although our results differ slightly from the original paper of Bertinetto et al. (2019),
R2D2 (with its more complex network architecture) performs better than the MAML
method for most simulations. It is not a surprise that, in most of the cases, with a more
complex feature extractor better results are obtained for the same algorithm (R2D2 vs
R2D2*). Overall, our study confirms that the R2D2 meta-learning method, with its
corresponding complex architecture, yields better performance than basic MAML (with
its simpler architecture). The differences between reproduced results and reported values
might be due to our assumptions or the stopping criterion in the training. Also, as
expected, the complexity (N-ways) and the amount of data (K-shots) play a major role
in the classification accuracy. The accuracy drops when the number of ways increases
and number of shots decreases. An outlier worth mentioning is our MAML simulation
on miniImageNet: the 2-way 1-shot classification accuracy of 78.8± 2.8% is much better
than the 74.9± 3.0% reported in Finn et al. (2017).

In summary, we successfully reproduced the most important results presented in Bertinetto
et al. (2019). Although our reproduced results and their paper results differ slightly, the
general observations of the authors remain valid. Their meta-learning with differentiable
closed-form solvers yields state-of-the-art results and improves over another state-of-

VR2D2 and R2D2*: https://github.com/ArnoutDevos/r2d2
VIfinn2017model with CIFAR-FS: https://github.com/ArnoutDevos/maml-CIFAR-FS
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Chapter 2 Reproducing Meta-learning with differentiable closed-form solvers

the-art method. The assumptions made, however, could have been clarified in their
original paper. Indeed, these assumptions could be the source of the discrepancy in
the reproduction results. In this reproducibility work we did not focus on the logistic
regression based algorithm (LRD2) from their paper because the logistic regression solver
does not have a closed-form solution.

Overall, with this reproducibility project we make the following contributions:

• Algorithmic description of the R2D2 version of meta-learning with differentiable
closed-form solvers (Algorithm 1).

• Evaluation of the MAML pipeline from Finn et al. (2017) on two datasets: the
existing miniImageNet and new CIFAR-FS for different few-shot multi-class
settings.

• Implementation of R2D2* in TensorFlow on the pipeline following Algorithm 1
with the original MAML feature extractor.

• Implementation of R2D2 in TensorFlow on the pipeline following Algorithm 1 with
the Figure 2.3 architecture as mimicked from in the original paper (Bertinetto
et al., 2019).

• Evaluation and insights in the reproducibility of Bertinetto et al. (2019).

2.7 Conclusion

In this work we have presented a reproducibility analysis of the ICLR 2019 paper
"Meta-learning with differentiable closed-form solvers" by Bertinetto et al. (2019). Some
parameters and training methodologies, which would be required for full reproducibility,
such as stride and padding of the convolutional filters, and a clear stopping criterion, are
not mentioned in the original paper or in its appendix (Bertinetto et al., 2019)). However,
by making reasonable assumptions, we have been able to reproduce the most important
parts of the paper and to achieve similar results. Most importantly we have succeeded in
reproducing the increase in performance of the proposed method over some reproduced
baseline results, which supports the conclusions of the original paper. However, the
different neural network architectures should be taken into consideration when comparing
results.
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3 Regression Networks for Meta-
Learning Few-Shot Classification

3.1 Preface

Summary: We propose regression networks for the problem of few-shot classification,
where a classifier must generalize to new classes not seen in the training set, given
only a small number of examples of each class. In high dimensional embedding spaces
the direction of data generally contains richer information than magnitude. Next to
this, state-of-the-art few-shot metric methods that compare distances with aggregated
class representations, have shown superior performance. Combining these two insights,
we propose to meta-learn classification of embedded points by regressing the closest
approximation in every class subspace while using the regression error as a distance
metric. Similarly to recent approaches for few-shot learning, regression networks reflect
a simple inductive bias that is beneficial in this limited-data regime and they achieve
excellent results, especially when more aggregate class representations can be formed
with multiple shots.

This chapter is an edited version of Devos and Grossglauser (2020).

Code: https://github.com/ArnoutDevos/RegressionNet

Co-author: Matthias Grossglauser (MG).

Contributions:
AD: Conceptualization, Methodology, Software, Visualization, Investigation, Writing -
Original Draft.
MG: Supervision, Writing - Review and Editing, Project Administration.
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Figure 3.1: Few-shot learning process (top) and metric-learning based methods (bottom),
with S the support set (colored circles), Q the query set (white circle), Ỹ the output
distribution over classes for the query points, fϕ a neural embedding function, and hθ a
neural network based distance function. Figure inspired by W.-Y. Chen et al. (2019).

3.2 Introduction

The ability to adapt quickly to new situations is a cornerstone of human intelligence.
Artificial learning methods have been shown to be very effective for specific tasks, often
surpassing human performance (Silver et al., 2016; Esteva et al., 2017). However, by
relying on standard training paradigms for supervised learning or reinforcement learning,
these artificial methods still require much training data and training time to adapt to a
new task.

An area of machine learning that learns and adapts from a small amount of data is called
few-shot learning (Fei-Fei et al., 2006). A shot corresponds to a single example, e.g.,
an image and its label. In few-shot learning the learning scope is expanded from the
classic setting of a single task with many shots to a variety of tasks with a few shots each.
Several machine learning approaches have been used for this, including metric-learning
(Vinyals et al., 2016; Snell et al., 2017; Sung et al., 2018), meta-learning (Finn et al.,
2017; Ravi and Larochelle, 2017), and generative models (Fei-Fei et al., 2006; B. M. Lake
et al., 2015).

W.-Y. Chen et al. (2019) show that a metric-learning based method called prototypical
networks (Snell et al., 2017), although simple in nature, achieves competitive performance
with state-of-the-art meta-learning approaches such as MAML (Finn et al., 2017) and
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other metric-learning methods. Metric-learning methods approach the few-shot classifi-
cation problem by "learning to compare". To learn high capacity nonlinear comparison
models, most modern few-shot metric-learning methods use a neural embedding space to
measure distance.

In image classification with neural embeddings, the embedding dimensions are usually
high: e.g., 1600 for a Conv-4 backbone (used later). In high dimensional image vector
spaces "direction" of data generally contains richer information than "magnitude" (Zhe
et al., 2019). MatchingNet (Vinyals et al., 2016) leverages purely directional information
whereas ProtoNet (Snell et al., 2017) and RelationNet (Sung et al., 2018) mostly improve
on this by comparing with aggregated class representations.

We propose regression networks which combine the good properties of directional infor-
mation in high-dimensional vector spaces with rich aggregate class information. The
proposed method is based on the idea that there exists an embedding in which every
point from the same class can be approximated by a linear combination of other points
in that same class. In order to do this, we learn a nonlinear mapping of the input
space to an embedding space by using a neural network and regress the best embedded
approximation, for each example. Classification of an embedded query point is then
performed by simply finding the nearest class subspace by comparing regression errors.

Subspaces have been used to model images for decades in computer vision and machine
learning (Fitzgibbon and Zisserman, 2003; Naseem et al., 2010). For example, the linear
regression classification (LRC) method (Naseem et al., 2010) relies on the fact that the set
of all reflectance functions produced by Lambertian objects, which parts of natural images
are composed of, lie near a low-dimensional vector subspace (Basri and Jacobs, 2003).
More recently, Simon et al. (2019) have explored few-shot learning with affine subspaces.
Unlike our approach with vector subspaces, affine subspaces cannot be constructed with
1-shot learning, a key few-shot learning problem.

Figure 3.1 shows an overview of the few-shot learning process and a comparison of the
proposed method with comparable state-of-the-art metric-learning based approaches.

3.3 Regression Networks

3.3.1 Notation

We formulate the N -way K-shot classification problem in an episodic way. Every episode
has a small support set of N classes with K labeled examples S = {(x11, y11), . . . , (xNK , yNK)},
and a query set of Q different examplesQ = {(x1(K+1), y1(K+1)), . . . , (xN(K+Q), yN(K+Q))}.
Note that the query set contains labels only during training, and the goal is to predict the
labels of the query set during testing. In S and Q each xij ∈ RD is the D-dimensional
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feature vector of an example and yij ∈ {1, . . . , N} is the corresponding label.

3.3.2 Model

Regression networks perform classification by regressing the best approximation to
an embedding point in each aggregated class representation and subsequently using
the regression error as a measure of distance. For this we start by constructing a K-
dimensional embedded subspace Sn of each class n, given K shots per class, through an
embedding function fϕ : RD → RM with learnable parameters ϕ. With slight abuse of
notation, every class is represented by its subspace matrix Sn ∈ RM×K , that contains
the K vectors of the embedded class support points:

Sn =
[
fϕ(xn1) . . . fϕ(xnK)

]
(3.1)

The regression-error distance d̃(ei, Sn) of a point ei ∈ RM in the embedding space to
a class subspace Sn can be measured by regressing the closest point in the subspace
in terms of a certain distance metric. The closest point can be constructed with a
linear combination (represented by vector a ∈ RK×1) of the embedded support examples
spanning that space. By using a Euclidean distance metric, this can be formulated as a
quadratic optimization problem in a of the following form:

d̃(ei, Sn) = min
a

d(ei, Sna) = min
a
∥ei − Sna∥2 (3.2)

The associated learning problem with this few-shot (K) high-dimensional (M) overde-
terminded system is least-squares linear regression. Given that M ≥ K, this is a well
conditioned system, and it admits a differentiable closed-form solution (Friedman et al.,
2001):

d̃(ei, Sn) =
∥∥∥∥ei − Sn

(
ST

n Sn

)−1
ST

n ei

∥∥∥∥
2

(3.3)

= ∥ei −Pnei∥2 (3.4)

where it is important to note that the matrix to be inverted is of size K ×K and the
number of shots K is usually small. The transformation matrix Pn projects the point ei

orthogonally onto the subspace spanned by the columns of Sn (Koç and Barkana, 2014).
Note that this transformation matrix Pn has to be computed only for every class, not
every example, which speeds up practical computation. Because the embedding function
fϕ can output linearly dependent embeddings for different support examples, a small
term λ1 > 0 is added to avoid singularity:

d̃(ei, Sn) =
∥∥∥∥ei − Sn

(
ST

n Sn + λ1I
)−1

ST
n ei

∥∥∥∥
2

(3.5)
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With this point-to-subspace distance function d̃ : RM × RM×K → [0, +∞), regression
networks give a distribution over classes for a query point x based on a softmax over
distances to each of the class subspaces in the embedding space:

pϕ(y = n | x) =
exp

(
−d̃(fϕ(x), Sn)

)
∑

n′ exp
(
−d̃(fϕ(x), Sn′)

) (3.6)

Meta-learning continues by minimizing the negative log-probability function Lbase(ϕ) =
− log pϕ(y = n | x) of the true class n via stochastic gradient descent (SGD). Training
episodes are formed by randomly sampling a subset of N classes from the training set.
Then, a subset of K examples within each class is chosen as the support set S, and a
subset of Q examples within each class is chosen as the query set Q.

3.3.3 Subspace Orthogonalization

The K-dimensional class vector subspaces live in a much larger M -dimensional space.
Therefore, we can exploit this freedom during training by making subspaces as di-
rectionally different as possible. Concretely, we propose to add a pairwise subspace
orthogonolization term to the loss function:

LT = Lbase + λ2

N∑
i ̸=j

∥∥∥ST
i Sj

∥∥∥2

F

∥Si∥2F ∥Sj∥2F
(3.7)

where ∥·∥F is the Frobenius norm and λ2 is a scaling hyperparameter. Section 3.4.2
studies the effect of this term. We have also experimented with principal angles between
vector subspaces (Bjorck and Golub, 1973), because they only depend on the subspaces,
not on the (non-unique) set of points that define the subspaces as in Equation (3.7). Their
results were comparable with our current approach, but come at a higher computational
cost with a singular value decomposition.

Algorithm 5 in Appendix A.1 details the complete regression networks training procedure.

3.4 Experiments

In terms of few-shot learning evaluation, we focus on the natural image-based mini-
ImageNet (Vinyals et al., 2016) dataset. To ensure a fair comparison with other methods,
we perform experiments under the same conditions using the verified re-implementation
(W.-Y. Chen et al., 2019) of MatchingNet, ProtoNet, RelationNet, MAML and extend it
with R2D2 (Bertinetto et al., 2019). Compared to our direct approach, R2D2 is a meta-
learning technique which leverages the closed-form solution of multinomial regression
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Conv-4 ResNet-10

Method 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

MatchingNet 48.14±0.78 63.28±0.68 54.49±0.81 69.14±0.69
ProtoNet 44.42±0.84 65.15±0.67 51.98±0.84 73.77±0.64
RelationNet 49.31±0.85 65.33±0.70 52.19±0.83 69.97±0.68
MAML 46.47±0.82 62.71±0.71 54.69±0.89 66.62±0.83
R2D2 50.07±0.79 65.66±0.69 55.71±0.78 71.69±0.63
RegressionNet (ours) 47.02±0.77 67.09±0.69 55.44±0.86 76.29±0.59

Table 3.1: Average accuracies (%) of mini-ImageNet test tasks with 95% confidence
intervals.

indirectly for classification (See Section 3.5). We decide to compare with these methods in
particular, because they serve as the basis of many state-of-the-art few-shot classification
algorithms (Oreshkin et al., 2018; Xing et al., 2019), and our method is easily interchanged
with them. Experimental details can be found in Appendix A.2.

In this section, next to performance evaluation, we address the following research
questions: (i) Can regression networks benefit from richer class representations and
higher dimensions? (Section 3.4.1). (ii) How much effect does subspace orthogonalization
have? (Section 3.4.2).

3.4.1 Few-shot Image Classification: mini-ImageNet

Table 3.1 shows the results for 5-way classification for mini-ImageNet for a different
number of shots and backbones.

First, because regression networks are expected to benefit more from better subspace
representations when more support examples are available per class, we investigate the
effect of the number of shots. As expected, when increasing the number of shots K per
class from 1 to 5, the classification accuracies increase for all methods. In the 5-shot case,
RegressionNet significantly outperforms all other methods, showing the benefit of using
rich class representations.

Secondly, as the backbone gets deeper, regression networks and prototypical networks
begin to perform significantly better than matching networks and relation networks with
R2D2 following close. Although the performance difference is small for mini-Imagenet,
given a relatively deep feature extractor ResNet-10, regression networks outperform all
other meta-learning and metric-learning methods when enough shots are available.
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N -way K-shot λ2 = 0 λ2 > 0

5-way 1-shot 54.83±0.83 55.44±0.86
5-way 5-shot 74.03±0.68 76.29±0.59

Table 3.2: Ablation study of effect of subspace orthogonalization stimulation (Equation
(3.7)) using a ResNet-10 backbone on mini-ImageNet. 1-shot: λ2 = 10−3, 5-shot:
λ2 = 10−2

3.4.2 Ablation study

In order to evaluate the effect of adding the subspace orthogonalization stimulating term
to the loss function discussed in Section 3.3.3, we conduct an experiment without it.
The results, comparing a ResNet-10 model trained with subspace orthogonalization and
without, are shown in Table 3.2. All ablation experiments use ResNet-10 as a backbone.

Under all settings considered, subspace orthogonalization gives a classification accuracy
improvement (up to 2%). Note that, even without subspace orthogonalization, our
proposed method is still competitive with all other methods in Table 3.1.

3.5 Related work

In addition to the reproduced metric (meta-)learning based few-shot methods (Snell
et al., 2017; Vinyals et al., 2016; Sung et al., 2018; Bertinetto et al., 2019), there is a
large body of work on few-shot learning and metric (meta-)learning. We discuss work
that is more closely related to regression networks in particular.

Our approach shows similarities to the linear regression classification (LRC) method
(Naseem et al., 2010), where each class is represented by the vector subspace spanned by
its examples. LRC was developed for face recognition, where only a few examples are
available, however it relies on a linear embedding. Our approach also uses few examples,
but it incorporates neural networks in order to nonlinearly embed examples and we
couple this with episodic training to handle the meta-learning few-shot scenario.

Simon et al. (2019) have explored affine subspace representations for few-shot learning.
In contrast to our closed-form linear regression approach, they make use of a truncated
singular value decomposition (SVD) of the support example matrix. Affine subspaces
cannot be constructed with 1-shot learning, a key few-shot learning problem. In contrast,
our closed-form linear regression approach relies on vector subspaces, which can be
constructed with 1-shot learning.

Bertinetto et al. (2019) propose to use regularized linear regression as a classifier on top
of the embedding function. Doing so, they directly approach a classification problem
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with a regression method, but they show competitive results. To achieve this, they
introduce learnable scalars that scale and shift the regression outputs for them to be
used in the cross-entropy loss. Regression networks rely on the same closed-form solver
for linear regression to compute the transformation matrices, but are inherently designed
for classification problems because of their similarity to the LRC method (Naseem et al.,
2010).

3.6 Conclusion

We have proposed regression networks for meta-learning few-shot classification. The
method assumes that for any embedded point we can regress the closest approximation in
every class representation and use the error as a distance measure. Classes are represented
by their embedded vector subspaces, which are spanned by their examples. The approach
produces better results than other state-of-the-art metric-learning based methods, when
rich class representations can be formed with multiple shots. Stimulating subspace
orthogonality consistently improves performance. A direction for future work is to study
the effect of using a low-rank approximation of the class subspace. Overall, the simplicity
and effectiveness of regression networks makes it a promising approach for metric-based
few-shot classification.
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4 Self-Supervised Prototypical
Transfer Learning for Few-Shot
Classification
4.1 Preface

Summary: Most approaches in few-shot learning rely on costly annotated data related
to the goal task domain during (pre-)training. Recently, unsupervised meta-learning
methods have exchanged the annotation requirement for a reduction in few-shot classi-
fication performance. Simultaneously, in settings with realistic domain shift, common
transfer learning has been shown to outperform supervised meta-learning. Building on
these insights and on advances in self-supervised learning, we propose a transfer learning
approach which constructs a metric embedding that clusters unlabeled prototypical
samples and their augmentations closely together. This pre-trained embedding is a
starting point for few-shot classification by summarizing class clusters and fine-tuning.
We demonstrate that our self-supervised prototypical transfer learning approach Proto-
Transfer outperforms state-of-the-art unsupervised meta-learning methods on few-shot
tasks from the mini-ImageNet dataset. In few-shot experiments with domain shift, our
approach even has comparable performance to supervised methods, but requires orders
of magnitude fewer labels.

This chapter is an edited version of Medina et al. (2020).

Code: https://github.com/indy-lab/ProtoTransfer

Co-authors: Carlos Medina (CM), Matthias Grossglauser (MG).

Contributions:
AD: Conceptualization, Methodology, Visualization, Investigation, Writing - Original
Draft, Supervision.
CM: Conceptualization, Methodology, Software, Visualization, Investigation, Writing -
Original Draft.
MG: Supervision, Writing - Review & Editing, Project Administration.
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4.2 Introduction

Few-shot classification (Fei-Fei et al., 2006) is a learning task in which a classifier must
adapt to distinguish novel classes not seen during training, given only a few examples
(shots) of these classes. Meta-learning (Finn et al., 2017; Ren et al., 2018) is a popular
approach for few-shot classification by mimicking the test setting during training through
so-called episodes of learning with few examples from the training classes. However, several
works (W.-Y. Chen et al., 2019; Guo et al., 2019) show that common (non-episodical)
transfer learning outperforms meta-learning methods on the realistic cross-domain setting,
where training and novel classes come from different distributions.

Nevertheless, most few-shot classification methods still require much annotated data
for pre-training. Recently, several unsupervised meta-learning approaches, constructing
episodes via pseudo-labeling (Hsu et al., 2019; Ji et al., 2019) or image augmentations
(Khodadadeh et al., 2019; Antoniou and Storkey, 2019; Qin et al., 2020), have addressed
this problem. To our knowledge, unsupervised non-episodical techniques for transfer
learning to few-shot tasks have not yet been explored.

Our approach ProtoTransfer performs self-supervised pre-training on an unlabeled training
domain and can transfer to few-shot target domain tasks. During pre-training, we
minimize a pairwise distance loss in order to learn an embedding that clusters noisy
transformations of the same image around the original image. Our pre-training loss
can be seen as a self-supervised version of the prototypical loss in Snell et al. (2017)
in line with contrastive learning, which has driven recent advances in self-supervised
representation learning (Ye et al., 2019; T. Chen et al., 2020; He et al., 2019). In the
few-shot target task, in line with pre-training, we summarize class information in class
prototypes for nearest neighbor inference similar to ProtoNet (Snell et al., 2017) and we
support fine-tuning to improve performance when multiple examples are available per
class.

We highlight our main contributions and results:

1. We show that our approach outperforms state-of-the-art unsupervised meta-learning
methods by 5% to 8% on mini-ImageNet few-shot classification tasks and has
competitive performance on Omniglot.

2. Compared to the fully supervised setting, our approach achieves competitive
performance on mini-ImageNet and multiple datasets from the cross-domain transfer
learning CDFSL benchmark, with the benefit of not requiring labels during training.

3. In an ablation study and cross-domain experiments we show that using a larger
number of equivalent training classes than commonly possible with episodical meta-
learning, and parametric fine-tuning are key to obtaining performance matching
supervised approaches.
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Figure 4.1: Self-Supervised Prototypical Transfer Learning. (a): In the embedding,
original images xi serve as class prototypes around which their Q augmented views x̃i,q

should cluster. (b): Prototypes cn are the means of embedded support examples for each
class n and initialize a final linear layer for fine-tuning. An embedded query point q is
classified via a softmax over the fine-tuned linear layer.

4.3 A Self-Supervised Prototypical Transfer Learning Al-
gorithm

Section 4.3.1 introduces the few-shot classification setting and relevant terminology.
Further, we describe ProtoTransfer’s pre-training stage, ProtoCLR, in Section 4.3.2 and
its fine-tuning stage, ProtoTune, in Section 4.3.3. Figure 4.1 illustrates the procedure.

4.3.1 Preliminaries

The goal of few-shot classification is to predict classes for a set of unlabeled points (the
query set) given a small set of labeled examples (the support set) from the same classes.
Few-shot classification approaches commonly consist of two subsequent learning phases,
each using its own set of classes.

The first learning phase utilizes samples from Nb base (training) classes contained within
a training set Db = {(x, y)} ⊂ I×Yb, where x ∈ I is a sample with label y in label set Yb.
An important aspect of our specific unsupervised learning setting is that the first phase
has no access to the per-sample label information, the distribution of classes, nor the
size of the label set Yb, for pre-training. This first phase serves as a preparation for the
actual few-shot learning in the target domain, i.e. the second learning phase. This second
supervised learning phase contains Nn novel (testing) classes as Dn = {(x, y)} ⊂ I × Yn,
where only few examples for each of the classes in Yn are available. Concretely, an Nn-way
K-shot classification task consists of K labeled examples for each of the Nn novel classes.
In the few-shot learning literature a task is also commonly referred to as an episode.
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Algorithm 2 Self-Supervised Prototypical Pre-Training (ProtoCLR)
1: input: batch size N , augmentations size Q, embedding function fθ, set of random

transformations T , step size α, distance function d[·, ·]
2: Randomly initialize θ
3: while not done do
4: Sample minibatch {xi}Ni=1
5: for all i ∈ {1, . . . , N} do
6: for all q ∈ {1, . . . , Q} do
7: draw a random transformation t∼T
8: x̃i,q = t(xi)
9: end for

10: end for
11: let ℓ(i, q) = − log exp(−d[f(x̃i,q),f(xi)])∑N

k=1 exp(−d[f(x̃i,q),f(xk)])
12:
13: L = 1

NQ

∑N
i=1

∑Q
q=1 ℓ(i, q)

14: θ ← θ − α∇θL
15: end while
16: return embedding function fθ(·)

4.3.2 Self-Supervised Prototypical Pre-Training: ProtoCLR

Similar to the few-shot target tasks, we frame every ProtoCLR pre-training learning
step as an N -way 1-shot classification task optimized by a contrastive loss function
as described below. In this, we draw inspiration from recent progress in unsupervised
meta-learning (Khodadadeh et al., 2019) and self-supervised visual contrastive learning
of representations (T. Chen et al., 2020; Ye et al., 2019).

Algorithm 2 details ProtoCLR and it comprises the following parts:

• Batch generation (Algorithm 2 lines 4-10): Each mini-batch contains N random
samples {xi}i=1...N from the training set. As our self-supervised setting does not
assume any knowledge about the base class labels Yb, we treat each sample as
it’s own class. Thus, each sample xi serves as a 1-shot support sample and class
prototype. For each prototype xi, Q different randomly augmented versions x̃i,q

are used as query samples.

• Contrastive prototypical loss optimization (Algorithm 2 lines 11-13): The pre-
training loss encourages clustering of augmented query samples {x̃i,q} around their
prototype xi in the embedding space through a distance metric d[·, ·]. The softmax
cross-entropy loss over N classes is minimized with respect to the embedding
parameters θ with mini-batch stochastic gradient descent (SGD).

Commonly, unsupervised pre-training approaches for few-shot classification (Hsu et al.,

28



Self-Supervised Prototypical Transfer Learning for Few-Shot Classification Chapter 4

2019; Khodadadeh et al., 2019; Antoniou and Storkey, 2019; Qin et al., 2020; Ji et al.,
2019) rely on meta-learning. Thus, they are required to create small artificial N -way
(K-shot) tasks identical to the downstream few-shot classification tasks. Our approach
does not use meta-learning and can use any batch size N . Larger batch sizes have
been shown to help self-supervised representation learning (T. Chen et al., 2020) and
supervised pre-training for few-shot classification (Snell et al., 2017). We also find that
larger batches yield a significant performance improvement for our approach (see Section
4.4.3). To generate the query examples, we use image augmentations similar to (T. Chen
et al., 2020) and adjust them for every dataset. The exact transformations are listed in
Appendix B.1.3. Following Snell et al. (2017), we use the Euclidean distance, but our
method is generic and works with any metric.

4.3.3 Supervised Prototypical Fine-Tuning: ProtoTune

After pre-training the metric embedding fθ(·), we address the target task of few-shot
classification. For this, we extend the prototypical nearest-neighbor classifier ProtoNet
(Snell et al., 2017) with prototypical fine-tuning of a final classification layer, which we
refer to as ProtoTune. First, the class prototypes cn are computed as the mean of the
class samples in the support set S of the few-shot task:

cn = 1
|Sn|

∑
(xi,yi=n)∈S

fθ(xi).

ProtoNet uses non-parametric nearest-neighbor classification with respect to cn and can
be interpreted as a linear classifier applied to a learned representation fθ(x). Following the
derivation in Snell et al. (2017), we initialize a final linear layer with weights Wn = 2cn

and biases bn = −||cn||2. Then, this final layer is fine-tuned with a softmax cross-
entropy loss on samples from S, while keeping the embedding function parameters θ fixed.
Triantafillou et al. (2020) proposed a similar fine-tuning approach with prototypical
initialization, but their approach always fine-tunes all model parameters.

4.4 Experiments

We carry out several experiments to benchmark and analyze ProtoTransfer. In Section
4.4.1, we conduct in-domain classification experiments on the Omniglot (B. Lake et al.,
2011) and mini-ImageNet (Vinyals et al., 2016) benchmarks to compare to state-of-the-art
unsupervised few-shot learning approaches and methods with supervised pre-training. In
Section 4.4.2, we test our method on a more challenging cross-domain few-shot learning
benchmark (Guo et al., 2019). Section 4.4.3 contains an ablation study showing how
the different components of ProtoTransfer contribute to its performance. In Section
4.4.4, we study how pre-training with varying class diversities affects performance. In
Section 4.4.5, we give insight in generalization from training classes to novel classes from
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both unsupervised and supervised perspectives. Experimental details can be found in
Appendix B.1 and code is made availableI.

4.4.1 In-Domain Few-shot Classification: Omniglot and mini-ImageNet

For our in-domain experiments, where the disjoint training class set and novel class
set come from the same distribution, we used the popular few-shot datasets Omniglot
(B. Lake et al., 2011) and mini-ImageNet (Vinyals et al., 2016). For comparability we
use the Conv-4 architecture proposed in Vinyals et al. (2016). Specifics on the datasets,
architecture and optmization can be found in Appendices B.1.1 and B.1.2. We apply
limited hyperparameter tuning, as suggested in Oliver et al. (2018), and use a batch size
of N = 50 and number of query augmentations Q = 3 for all datasets.

In Table 4.1, we report few-shot accuracies on the mini-ImageNet and Omniglot bench-
marks. We compare to unsupervised clustering based methods CACTUs (Hsu et al.,
2019) and UFLST (Ji et al., 2019) as well as the augmentation based methods UMTRA
(Khodadadeh et al., 2019), AAL (Antoniou and Storkey, 2019) and ULDA (Qin et al.,
2020). More details on how these approaches compare to ours can be found in Section
4.5. Pre+Linear represents classical supervised transfer learning, where a deep neural
network classifier is (pre)trained on the training classes and then only the last linear
layer is fine-tuned on the novel classes. On mini-ImageNet, ProtoTransfer outperforms
all other state-of-the-art unsupervised pre-training approaches by at least 5% up to 8%
and mostly outperforms the supervised meta-learning method MAML (Finn et al., 2017),
while requiring orders of magnitude fewer labels (NK vs 38400 + NK). On Omniglot,
ProtoTransfer shows competitive performance with most unsupervised meta-learning
approaches.

4.4.2 Cross-domain Few-Shot Classification: CDFSL benchmark

For our cross-domain experiments, where training and novel classes come from different
distributions, we turn to the CDFSL benchmark (Guo et al., 2019). This benchmark
specifically tests how well methods trained on mini-ImageNet can transfer to few-shot
tasks with only limited similarity to mini-ImageNet. In order of decreasing similarity,
the four datasets are plant disease images from CropDiseases (Mohanty et al., 2016),
satellite images from EuroSAT (Helber et al., 2019), dermatological images from ISIC2018
(Tschandl et al., 2018; Codella et al., 2019) and grayscale chest X-ray images from ChestX
(Wang et al., 2017). Following Guo et al. (2019), we use a ResNet-10 neural network
architecture. As there is no validation data available for the target tasks in CDFSL,
we keep the same ProtoTransfer hyperparameters N = 50, Q = 3 as used in the
mini-ImageNet experiments. Experimental details are listed in Appendices B.1.1 and

IOur code and pre-trained models are available at https://www.github.com/indy-lab/ProtoTransfer
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Table 4.1: Accuracy (%) of unsupervised pre-training methods on N -way K-shot classi-
fication tasks on Omniglot and mini-Imagenet on a Conv-4 architecture. For detailed
results, see Tables B.2 and B.3 in the Appendix. Results style: best and second best.

Method (N,K) (5,1) (5,5) (20,1) (20,5) (5,1) (5,5) (5,20) (5,50)

Omniglot mini-ImageNet

Training (scratch) 52.50 74.78 24.91 47.62 27.59 38.48 51.53 59.63

CACTUs-MAML 68.84 87.78 48.09 73.36 39.90 53.97 63.84 69.64
CACTUs-ProtoNet 68.12 83.58 47.75 66.27 39.18 53.36 61.54 63.55
UMTRA 83.80 95.43 74.25 92.12 39.93 50.73 61.11 67.15
AAL-ProtoNet 84.66 89.14 68.79 74.28 37.67 40.29 - -
AAL-MAML++ 88.40 97.96 70.21 88.32 34.57 49.18 - -
UFLST 97.03 99.19 91.28 97.37 33.77 45.03 53.35 56.72
ULDA-ProtoNet - - - - 40.63 55.41 63.16 65.20
ULDA-MetaOptNet - - - - 40.71 54.49 63.58 67.65
ProtoTransfer (ours) 88.00 96.48 72.27 89.08 45.67 62.99 72.34 77.22

Supervised training
MAML 94.46 98.83 84.60 96.29 46.81 62.13 71.03 75.54
ProtoNet 97.70 99.28 94.40 98.39 46.44 66.33 76.73 78.91
Pre+Linear 94.30 99.08 86.05 97.11 43.87 63.01 75.46 80.17

B.1.2.

For comparison to unsupervised meta-learning, we include our results on UMTRA-
ProtoNet and its fine-tuned version UMTRA-ProtoTune (Khodadadeh et al., 2019).
Both use our augmentations instead of those from (Khodadadeh et al., 2019). For further
comparison, we include ProtoNet (Snell et al., 2017) for supervised few-shot learning
and Pre+Mean-Centroid and Pre+Linear as the best-on-average performing transfer
learning approaches from Guo et al. (2019). As the CDFSL benchmark presents a large
domain shift with respect to mini-ImageNet, all model parameters are fine-tuned in
ProtoTransfer during the few-shot fine-tuning phase with ProtoTune.

We report results on the CDFSL benchmark in Table 4.2. ProtoTransfer consistently
outperforms its meta-learned counterparts by at least 0.7% up to 19% and performs
mostly on par with the supervised transfer learning approaches. Comparing the results
of UMTRA-ProtoNet and UMTRA-ProtoTune, starting from 5 shots, parametric fine-
tuning gives improvements ranging from 1% to 13%. Notably, on the dataset with the
largest domain shift (ChestX), ProtoTransfer outperforms all other approaches.
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Table 4.2: Accuracy (%) of methods on N -way K-shot (N ,K) classification tasks of the
CDFSL benchmark (Guo et al., 2019). Both our results on methods with unsupervised
pre-training (UnSup) and results on methods with supervised pre-training from CDFSL
are listed. All models are trained on mini-ImageNet with ResNet-10. For detailed results,
see Appendix Table B.4. Results style: best and second best.

Method UnSup (5,5) (5,20) (5,50) (5,5) (5,20) (5,50)

ChestX ISIC

ProtoNet 24.05 28.21 29.32 39.57 49.50 51.99
Pre+Mean-Centroid 26.31 30.41 34.68 47.16 56.40 61.57
Pre+Linear 25.97 31.32 35.49 48.11 59.31 66.48
UMTRA-ProtoNet ✓ 24.94 28.04 29.88 39.21 44.62 46.48
UMTRA-ProtoTune ✓ 25.00 30.41 35.63 38.47 51.60 60.12
ProtoTransfer (ours) ✓ 26.71 33.82 39.35 45.19 59.07 66.15

EuroSat CropDiseases

ProtoNet 73.29 82.27 80.48 79.72 88.15 90.81
Pre+Mean-Centroid 82.21 87.62 88.24 87.61 93.87 94.77
Pre+Linear 79.08 87.64 91.34 89.25 95.51 97.68
UMTRA-ProtoNet ✓ 74.91 80.42 82.24 79.81 86.84 88.44
UMTRA-ProtoTune ✓ 68.11 81.56 85.05 82.67 92.04 95.46
ProtoTransfer (ours) ✓ 75.62 86.80 90.46 86.53 95.06 97.01

4.4.3 Ablation Study: Batch Size, Number of Queries, and Fine-Tuning

We conduct an ablation study of ProtoTransfer’s components to see how they contribute
to its performance. Starting from ProtoTransfer we successively remove components
to arrive at the equivalent UMTRA-ProtoNet which shows similar performance to the
original UMTRA approach (Khodadadeh et al., 2019) on mini-ImageNet. As a reference,
we provide results of a ProtoNet classifier on top of a fixed randomly initialized network.

Table 4.3 shows that increasing the batch size from N = 5 for UMTRA-ProtoNet to 50
for ProtoCLR-ProtoNet, keeping everything else equal, is crucial to our approach and
yields a 5% to 9% performance improvement. Importantly, UMTRA-ProtoNet uses our
augmentations instead of those from (Khodadadeh et al., 2019). Thus, this improvement
cannot be attributed to using different augmentations than UMTRA. Increasing the
training query number to Q = 3 gives better gradient information and yields a relatively
small but consistent performance improvement. Fine-tuning in the target domain does
not always give a net improvement. Generally, when many shots are available, fine-tuning
gives a significant boost in performance as exemplified by ProtoCLR-ProtoTune and
UMTRA-MAML in the 50-shot case. Interestingly, our approach reaches competitive
performance in the few-shot regime even before fine-tuning.
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Table 4.3: Accuracy (%) of methods on N -way K-shot (N, K) classification tasks on
mini-ImageNet with a Conv-4 architecture for different training image batch sizes, number
of training queries (Q) and optional finetuning on target tasks (FT). UMTRA-MAML
results are taken from Khodadadeh et al. (2019), where UMTRA uses AutoAugment
(Cubuk et al., 2019) augmentations. For detailed results see Table B.5 in the Appendix.
Results style: best and second best.

Training Testing batch size Q FT (5,1) (5,5) (5,20) (5,50)

n.a. ProtoNet n.a. n.a. no 27.05 34.12 39.68 41.40
UMTRA MAML N(= 5) 1 yes 39.93 50.73 61.11 67.15
UMTRA ProtoNet N(= 5) 1 no 39.17 53.78 62.41 64.40
ProtoCLR ProtoNet 50 1 no 44.53 62.88 70.86 73.93
ProtoCLR ProtoNet 50 3 no 44.89 63.35 72.27 74.31
ProtoCLR ProtoTune 50 3 yes 45.67 62.99 72.34 77.22

4.4.4 Number of Training Classes and Samples

While ProtoTransfer already does not require any labels during pre-training, for some
applications, e.g. rare medical conditions, even the collection of sufficiently similar data
might be difficult. Thus, we test our approach when reducing the total number of
available training images under the controlled setting of mini-ImageNet. Moreover, not
all training datasets will have such a diverse set of classes to learn from as the different
animals, vehicles and objects in mini-ImageNet. Therefore, we also test the effect of
reducing the number of training classes and thereby the class diversity. To contrast the
effects of reducing the number of classes or reducing the number of samples, we either
remove whole classes from the mini-ImageNet training set or remove the corresponding
amount of samples randomly from all classes. The number of samples are decreased in
multiples of 600 as each mini-ImageNet class contains exactly 600 samples. We compare
the mini-ImageNet few-shot classification accuracies of ProtoTransfer to the popular
supervised transfer learning baseline Pre+Linear in Figure 4.2.

As expected, when uniformily reducing the number of images from all classes (Figure 4.2a),
the few-shot classification accuracy is reduced as well. The performance of ProtoTransfer
and the supervised baseline closely match in this case. When reducing the number of
training classes in Figure 4.2b, ProtoTransfer consistently and significantly outperforms
the supervised baseline when the number of mini-ImageNet training classes drops below 16.
For example in the 20-shot case with only two training classes, ProtoTransfer outperforms
the supervised baseline by a large margin of 16.9% (64.59% vs 47.68%). Comparing
ProtoTransfer in Figures 4.2a and 4.2b, there is only a small difference between reducing
images randomly from all classes or taking entire classes away. In contrast, the supervised
baseline performance suffers substantially from having fewer classes.

To validate these in-domain observations in a cross-domain setting, following Devos and
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Figure 4.2: 5-way K-shot accuracies with 95% confidence intervals on mini-ImageNet
as a function of training images and classes. Methods: ProtoTransfer ( ), transfer
learning baseline Pre+Linear ( ). Note the logarithmic scale. Detailed results available
in Table B.6 in the appendix.

Grossglauser (2020), we compare few-shot classification performance when training on
CUB (Welinder et al., 2010; Wah et al., 2011) and testing on mini-ImageNet (Vinyals et
al., 2016). CUB consists of 200 classes of birds, while only three of the 64 mini-ImageNet
training classes are birds (see B.1.1, B.1.2 for details on CUB). Thus CUB possesses a
lower class diversity than mini-ImageNet. Table 4.4 confirms our previous observation
numerically and shows that ProtoTransfer has a superior transfer accuracy of 2% to 4%
over the supervised approach when limited diversity is available in the training classes.

We conjecture that this difference is due to the fact that our self-supervised approach
does not make a difference between samples coming from the same or different (latent)
classes during training. Thus, we expect it to learn discriminative features despite a
low training class diversity. In contrast, the supervised case forces multiple images with
rich features into the same classes. We thus expect the generalization gap between tasks
coming from training classes and testing classes to be smaller with self-supervision. We
provide evidence to support this conjecture in Section 4.4.5.

4.4.5 Task Generalization Gap

To compare the generalization of ProtoCLR with its supervised embedding learning
counterpart ProtoNet (Snell et al., 2017), we visualize the learned embedding spaces
with t-SNE (Maaten and G. Hinton, 2008) in Figure 4.3. We compare both methods on
samples from 5 random classes from the training and testing sets of mini-ImageNet. In
Figures 4.3a and 4.3b we observe that, for the same training classes, ProtoNet shows
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Table 4.4: Accuracy (%) on N -way K-shot (N, K) classification tasks on mini-ImageNet
for methods trained on the CUB training set (5885 images) with a Conv-4 architecture.
All results indicate 95% confidence intervals over 600 randomly generated test episodes.
Results style: best and second best.

Training Testing (5,1) (5,5) (5,20) (5,50)

ProtoCLR ProtoNet 34.56 ± 0.61 52.76 ± 0.63 62.76 ± 0.59 66.01 ± 0.55
ProtoCLR ProtoTune 35.37 ± 0.63 52.38 ± 0.66 63.82 ± 0.59 68.95 ± 0.57
Pre(training) Linear 33.10 ± 0.60 47.01 ± 0.65 59.94 ± 0.62 65.75 ± 0.63

Training classes 1 2 3 4 5 Testing classes 6 7 8 9 10

(a) ProtoCLR
training

(b) ProtoNet
training

(c) ProtoCLR testing (d) ProtoNet testing

Figure 4.3: t-SNE plots of trained embeddings on 5 classes from the training and testing
sets of mini-ImageNet. Trained embeddings considered are self-supervised ProtoCLR
and supervised 20-way 5-shot ProtoNet. For details on the depicted classes, please refer
to Appendix B.1.4.

more structure. Comparing all subfigures in Figure 4.3, ProtoCLR shows more closely
related embeddings in Figures 4.3a and 4.3c than ProtoNet in Figures 4.3b and 4.3d.

These visual observations are supported numerically in Table 4.5. Self-supervised embed-
ding approaches, such as UMTRA and our ProtoCLR approach, show a much smaller task
generalization gap than supervised ProtoNet. ProtoCLR shows virtually no classification
performance drop. However, supervised ProtoNet suffers a significant accuracy reduction
of 6% to 12%.

4.5 Related Work

Unsupervised meta-learning: Both CACTUs (Hsu et al., 2019) and UFLST (Ji et al.,
2019) alternate between clustering for support and query set generation and employing
standard meta-learning. In contrast, our method unifies self-supervised clustering and
inference in a single model. Khodadadeh et al. (2019) propose an unsupervised model-
agnostic meta-learning approach (UMTRA), where artifical N -way 1-shot tasks are
generated by randomly sampling N support examples from the training set and generating
N corresponding queries by augmentation. Antoniou and Storkey (2019) (AAL) generalize
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Table 4.5: Accuracy (%) of N -way K-shot (N,K) classification tasks from the training
and testing split of mini-ImageNet. Following Snell et al. (2017), ProtoNet is trained with
30-way 1-shot for 1-shot tasks and 20-way K-shot otherwise. All results use a Conv-4
architecture. All results show 95% confidence intervals over 600 randomly generated
episodes.

Training Testing Data (5,1) (5,5) (5,20) (5,50)

ProtoNet ProtoNet Train 53.74 ± 0.95 79.09 ± 0.69 85.53 ± 0.53 86.62 ± 0.48
ProtoNet ProtoNet Val 46.62 ± 0.82 67.34 ± 0.69 76.44 ± 0.57 79.00 ± 0.53
ProtoNet ProtoNet Test 46.44 ± 0.78 66.33 ± 0.68 76.73 ± 0.54 78.91 ± 0.57

UMTRA ProtoNet Train 41.03 ± 0.79 56.43 ± 0.78 64.48 ± 0.71 66.28 ± 0.66
UMTRA ProtoNet Test 38.92 ± 0.69 53.37 ± 0.68 61.69 ± 0.66 65.12 ± 0.59

ProtoCLR ProtoNet Train 45.33 ± 0.63 63.47 ± 0.58 71.51 ± 0.51 73.99 ± 0.49
ProtoCLR ProtoNet Test 44.89 ± 0.58 63.35 ± 0.54 72.27 ± 0.45 74.31 ± 0.45

this approach to more support shots by randomly grouping augmented images into classes
for classification tasks. ULDA (Qin et al., 2020) induce a distribution shift between the
support and query set by applying different types of augmentations to each. In contrast,
ProtoTransfer uses a single un-augmented support sample, similar to Khodadadeh et al.
(2019), but extends to several query samples for better gradient signals and steps away
from artificial few-shot task sampling by using larger batch sizes, which is key to learning
stronger embeddings.

Supervised meta-learning aided by self-supervision: Several works have proposed
to use a self-supervised loss either alongside supervised meta-learning episodes (Gidaris
et al., 2019; S. Liu et al., 2019) or to initialize a model prior to supervised meta-learning
on the source domain (D. Chen et al., 2019; Su et al., 2019). In contrast, we do not
require any labels during training.

Fine-tuning for few-shot classification: W.-Y. Chen et al. (2019) show that adap-
tation on the target task is key for good cross-domain few-shot classification performance.
Similar to ProtoTune, Triantafillou et al. (2020) also initialize a final layer with prototypes
after supervised meta-learning, but always fine-tune all parameters of the model.

Contrastive loss learning: Contrastive losses have fueled recent progress in learning
strong embedding functions (Ye et al., 2019; T. Chen et al., 2020; He et al., 2019; Tian
et al., 2020; Junnan Li et al., 2020). Most similar to our approach is Ye et al. (2019).
They propose a per-batch contrastive loss that minimizes the distance between an image
and an augmented version of it. Different to us, they do not generalize to using multiple
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augmented query images per prototype and use 2 extra fully connected layers during
training. Concurrently, Junnan Li et al. (2020) also use a prototype-based contrastive
loss. They compute the prototypes as centroids after clustering augmented images via
k-Means. They also separate learning and clustering procedures, which ProtoTransfer
achieves in a single procedure.

4.6 Conclusion

In this work, we proposed ProtoTransfer for few-shot classification. ProtoTransfer
performs transfer learning from an unlabeled source domain to a target domain with only
a few labeled examples. Our experiments show that on mini-ImageNet it outperforms all
prior unsupervised few-shot learning approaches by a large margin. On a more challenging
cross-domain few-shot classification benchmark, ProtoTransfer shows similar performance
to fully supervised approaches. Our ablation studies show that large batch sizes are
crucial to learning good representations for downstream few-shot classification tasks and
that parametric fine-tuning on target tasks can significantly boost performance.
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5 A meta-learning approach for
genomic survival analysis

5.1 Preface

Summary: RNA sequencing has emerged as a promising approach in cancer prognosis
as sequencing data becomes more easily and affordably accessible. It is challenging in
biomedical settings to build good predictive models since commonly the sample size is
limited and the number of features is high. To address these limitations, we propose a
meta-learning framework based on neural networks for survival analysis and evaluate
it in a genomic cancer research setting. We demonstrate that, compared to regular
transfer-learning, meta-learning is a significantly more effective paradigm in this setting.
We show that our genomic framework achieves competitive performance with few samples
compared to learning from scratch with a significantly larger number of samples. Finally,
we demonstrate that the framework implicitly prioritizes genes based on their contribution
to survival prediction and allows to identify important pathways in cancer.

This chapter is an edited version of Qiu et al. (2020). It is reproduced with permission of
Springer Nature as well as its Creative Commons Attribution 4.0 International License:
https://www.nature.com/articles/s41467-020-20167-3

Code: https://github.com/gevaertlab/metalearning_survival

Co-authors: Yeping Lina Qiu (YLQ), Hong Zheng (HZ), Heather Selby (HS), and
Olivier Gevaert (OG)

Contributions:
AD: Conceptualization, Methodology, Software, Writing - Original Draft
YLQ: Conceptualization, Methodology, Software, Investigation, Visualization, Writing -
Original draft
HZ: Investigation, Writing - Original Draft
HS: Data curation, Writing - Review & Editing.
OG: Supervision, Conceptualization, Writing - Review & Editing, Project Administration.
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5.2 Introduction

Cancer is a leading cause of death in the world. Accurate prediction of its survival
outcome has been an interesting and challenging problem in cancer research over the
past decades. Quantitative methods have been developed to model the relationship
between multiple explanatory variables and survival outcome, including fully parametric
models (Hosmer et al., 2008; J. P. Klein and Moeschberger, 2006) and semi-parametric
models such as the Cox proportional hazards model (Cox, 1972). The Cox model makes
a parametric assumption about how the predictors affect the hazard function, but makes
no assumption about the baseline hazard function itself (Harrell et al., 1982). In most
real world scenarios, the form of the true hazard function is either unknown or too
complex to model, making the Cox model the most popular method in survival analysis
(Kleinbaum and M. Klein, 2012).

In clinical practice, historically, survival analysis has relied on low-dimensional pa-
tient characteristics such as age, sex, and other clinical features in combination with
histopathological evaluations such as stage and grade (Louis et al., 2016). With advances
in high-throughput sequencing technology, a greater amount of high-dimensional genomic
data is now available and more molecular biomarkers can be discovered to determine
survival and improve treatment. With the cost of RNA sequencing coming down sig-
nificantly, from an average of $100M per genome in 2001 to $1k per genome in 2015
(S. T. Park and J. Kim, 2016), it is becoming more feasible to use this technology to
prognosticate. Such genomic data often has tens of thousands of variables which requires
the development of new algorithms that work well with data of high dimensionality.

To address these challenges, several implementations of regularized Cox models have
been proposed (Goeman, 2010; M. Y. Park and Hastie, 2007; Wong et al., 2018). A
regularized model adds a model complexity penalty to the Cox partial likelihood to
reduce the chance of overfitting. More recently, the increasing modeling power of deep
learning networks has aided in developing suitable survival analysis platforms for high
dimensional feature spaces. For example, autoencoder architectures have been employed
to extract features from genomic data for liver cancer prognosis prediction (Chaudhary
et al., 2018). The Cox model has also been integrated in a neural network setting to
allow greater modeling flexibility (Cheerla and Gevaert, 2019; Ching et al., 2018; Luck
et al., 2017; Yousefi et al., 2017).

In studying a specific rare cancer’s survival outcome, one interesting problem is whether
it is possible to make use of the abundant data that is available for more common relevant
cancers and leverage that information to improve the survival prediction. This problem
is commonly approached with transfer-learning (Pratt, 1993), where a model which has
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been trained on a single task (e.g., 1 or more abundant cancers) is used to fine-tune on
a related target task (rare cancer). In survival analysis, transfer-learning has shown to
significantly improve prediction performance (Y. Li et al., 2016). Deep neural networks
used to analyze biomedical imaging data can also take advantage of information transfer
from data in other settings. For example, multiple studies show that convolutional neural
networks pretrained on ImageNet data can be used to build performant survival models
with histology images (Deng et al., 2009; Mobadersany et al., 2018).

In this context, meta-learning is an area in deep learning research that has gained much
attention in recent years which addresses the problem of “learning to learn” (Finn et al.,
2017; Vilalta and Drissi, 2002). A meta-learning model explicitly learns to adapt to new
tasks quickly and efficiently, usually with a limited exposure to the new task environment.
Such a framework may potentially adapt better than the traditional transfer-learning
setting where there is no explicit adaptation incorporated in the pre-training algorithm.
This problem setting with limited exposure to a new task is also known as few-shot
learning: learn to generalize well, given very few examples (called shots) of a new task
(Y. Li et al., 2016). Recent advances in meta-learning have shown that, compared to
transfer-learning, it is a more effective approach to few-shot classification (X. Chen et al.,
2017; Devos and Grossglauser, 2020), regression (Finn et al., 2017), and reinforcement
learning (Duan et al., 2016; Finn et al., 2017). In this study, we propose a meta-learning
framework based on neural networks for survival analysis applied in a cancer research
setting. Specifically, for the application of predicting survival outcome, we demonstrate
that our method is a preferable choice compared to regular transfer-learning pre-training
and other competing methods on three cancer datasets when the number of training
samples from the specific target cancer is very limited. Finally, we demonstrate that the
meta-learning model implicitly prioritizes genes based on their contribution to survival
prediction and allows us to uncover biological pathways associated with cancer survival
outcome.

5.3 Methods

5.3.1 Datasets

We use the RNA sequencing data from The Cancer Genome Atlas (TCGA) pan-cancer
datasets (Tomczak et al., 2015). We remove the genes with NA values and normalized the
data by log transformation and z-score transformation. The feature dimension is 17176
genes after preprocessing. The data contains 9707 samples from 33 cancer types. The
outcome is the length of survival time in months. 78% of the patients are censored, which
means that the subject leaves the study before an event occurs or the study terminates
before an event occurs to the subject.
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5.3.2 Survival prediction model

To describe the effect of categorical or quantitative variables on survival time, several
approaches are commonly considered (Ching et al., 2018). The most popular method
is the Cox-PH model (Cox, 1972), which is a semi-parametric proportional hazards
model, where the patient hazards depend linearly on the patient features and the relative
risks of the patients are expressed in the hazard ratios. Survival trees and random
survival forests are an attractive alternative approach to the Cox models (Ishwaran et al.,
2008). They are an extension of classification and regression trees and random forests for
time-to-event data, and are fully non-parametric and flexible. Artificial Neural networks
(ANNs) based models have also been used to predict survival, but the survival time is
often converted to a binary variable or discrete variables and the prediction is framed
as a classification problem (Petalidis et al., 2008; Chi et al., 2007). To overcome the
potential loss of accuracy in the previous methods, ANNs based on proportional hazards
are recently developed. It is shown that when applied to high dimensional RNA-seq
data, the neural network extension of the Cox model achieves better performance than
the Cox-PH (including Ridge and LASSO regularization), random survival trees, and
other ANN based models (Ching et al., 2018). It can directly integrate the meta-learning
optimization algorithm and is therefore the most suitable choice of model structure in
our framework.

5.3.3 Meta-learning

Our proposed survival prediction framework is based on a neural network extension
of the Cox regression model that relies on semi-parametric modeling by using a Cox
loss (Ching et al., 2018). The model consists of two modules: the feature extraction
network and the Cox loss module (Figure 5.1). We use a neural network with two hidden
layers to extract features from the RNA sequencing data input, which yields a lower
dimensional feature vector for each patient. The features are then fed to the Cox loss
module, which performs survival prediction by doing a Cox regression with the features
as linear predictors of the hazard (Cox, 1972). The parameters of the Cox loss module β

are optimized by minimizing the negative of the partial log-likelihood:

L(β) = −
∑

yi=uncensored

ziβ − log

 ∑
yj≥yi

ezjβ

 (5.1)

where yi is the survival length for patient i, zi contains the extracted features for patient
i, and β is the coefficient weight vector between the features and the output. Since zi is
the output of the feature extraction module, it can be further represented by:
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zi = fφ (xi) (5.2)

where xi is the input predictor of patient i, f denotes a nonlinear mapping that the
neural network learns to extract features form the predictor, and φ denotes the model
parameters including the weights and biases of each neural network layer. The feature
extraction module parameters φ and Cox loss module parameters β are jointly trained
in the model. For convenience in the following discussion we denote the combined
parameters as θ.

The optimization of parameters θ consists of two stages: a meta-learning stage, and a
final learning stage. The meta-learning stage is the key process, where the model aims to
learn a suitable parameter initialization for the final learning stage, so that during final
learning the model can adapt efficiently to previously unseen tasks with a few training
samples (Nichol et al., 2018). In order to reach the desired intermediate state, a first
order gradient-based meta-learning algorithm is used to train the network during the
meta-learning stage (Finn et al., 2017; Nichol et al., 2018).

Specifically, at the beginning of meta-learning training, the model is randomly initialized
with parameter θ. Consider that the training samples for the meta-learning stage consist
of n tasks Tτ , τ = 1, 2 . . . n. A task is defined as a common learning theme shared by a
subgroup of samples. Concretely, these samples come from a distribution on which we
want to carry out a classification task, regression task or reinforcement learning task.
The algorithm continues by sampling a task Tτ and using samples of Tτ to update the
inner-learner. The inner-learner learns Tτ by taking k steps of stochastic gradient descent
(SGD) and updating the parameters to θk

τ :

θ0
τ = θ

θ1
τ ← θ0

τ − αL′
τ,0

(
θ0

τ

)
θ2

τ ← θ1
τ − αL′

τ.1

(
θ1

τ

)
. . .

θk
τ ← θk−1

τ − αL′
τ,k−1

(
θk−1

τ

)
(5.3)

where θk
τ is the model parameter at step k for learning task τ , Lτ,k−1 is the loss computed

on the kth minibatch sampled from task τ , Lτ,1 is the loss computed on the second
minibatch sampled from task τ and so on. The ‘prime’ symbol denotes differentiation,
and α is the inner learner step size. Note that this learning process is the separate for all
tasks, starting from the same initialization θ.
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After an arbitrary m (< n) number of tasks are independently learnt by the above k-step
SGD process, and obtaining θk

τ , τ =1, 2, . . . m, we make one update across all these m

tasks with the meta-learner to get a better initialization θ:

θ ← θ + γ
1
m

m∑
τ=1

(θk
τ − θ) (5.4)

where γ is the learning step of the meta-learner. The term 1
m

∑m
τ=1(θk

τ − θ) can be
considered as a gradient, so that for example a popular optimization algorithm such as
Adam (Kingma and J. L. Ba, 2015) can be used by the meta-learner to self-adjust learning
rates for each parameter. The entire process of inner-learner update and meta-learner
update is repeated until a chosen maximum number of meta-learning epochs is reached.
This algorithm is shown to encourage the gradients of different minibatches of a given
task to align in the same direction, thereby improving generalization and efficient learning
later on (Nichol et al., 2018).

In the final learning stage, the model is provided with a few-sample dataset of a new
task. First, the model is initialized with the meta-learnt parameters θ, which are then
fine-tuned with the new task training data to θk′

τ and finally the fine-tuned model is
evaluated with testing data from the new task. The training procedure of final learning
does not require a special algorithm, and can be conducted with regular mini-batch
stochastic gradient descent. This final learning stage is equal to the inner-learning loop
for a single task in Equation (5.3) without any outer loop.

Algorithm 3 summarizes the complete procedure.

Algorithm 3 Meta-Learning for Few-Shot Survival Prediction
1: Initialize randomly θ = {ϕ, β}, the feature extractor and Cox model parameters,

respectively
2: Let the (inner) survival loss function be defined as in Equation (5.1): L =
−

∑
yi=uncensored

[
fφ(xi)β − log

(∑
yj≥yi

efφ(xj)β
)]

3: for i = 0 to n do
4: for m randomly sampled tasks Tτ do
5: Compute θk

τ , denoting k update steps with L, as in Equation (5.3)
6: end for
7: Update θ ← θ + γ 1

m

∑m
τ=1(θk

τ − θ)
8: i← i + m
9: end for

10: return θ
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Figure 5.1: Schematic showing the survival prediction model architecture.

5.3.4 Experimental setup

In order to assess the meta-learning method’s performance, we compare it with several
alternative training schemes based on the same neural network architecture: regular
pre-training, combined learning, and direct learning. First, meta-learning initially learns
general knowledge from a dataset containing tasks that are relevant but not directly
related to the target, and then learns task-specific knowledge from a very small target
task dataset. We define the first dataset as the “multi-task training data”, and the
second as the “target task training data”. Secondly, regular pre-training also has a two-
stage learning process on the same datasets, but unlike meta-learning without explicitly
focusing on learning to reach an initialization that is easy to adapt to new tasks. Thirdly,
combined learning does not involve a two-stage learning process, but also leverages
knowledge from the relevant tasks by combining the multi-task training data and the
target task training data together in one dataset to train a prediction model. Direct
learning on the other hand, only uses the target task training samples. To illustrate the
effectiveness of the methods with few samples, we consider three cases of direct learning:
a large sample size, a medium sample size, and a small sample size which is the same size
as the “target task training data” used for the other methods (i.e. regular pre-training,
combined learning and meta-learning) (Figure 5.2).

In our experiments, the “multi-task training data” is the pan-cancer RNA sequencing
data containing samples from any cancer sites except one cancer site that we define as
the target cancer site. The associated target cancer data is considered as the “target
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Figure 5.2: Data flow for meta-learning, regular pre-training, and combined learning
frameworks

task data”. This target task dataset is split into training data and testing data, stratified
by disease sub-type and censoring status. For meta-learning, regular pre-training, and
combined learning we will not use all of the training set for the target task, as we want to
assess the performances when the algorithm is exposed to only a small number of target
task training samples. Therefore, we will randomly draw 20 samples from the training
dataset as one “target task training data”. We choose a small sample size of 20 because it
is a possible case in real life situations where the target task is the study of rare diseases
(Hee et al., 2017), or where new technologies are used to produce data which only have
the capacity to produce a small sample. For direct learning, we randomly draw three
different sizes from the training datasets to form training data, 20 for the small size,
150 for the medium size, and 250 for the large size. All methods are evaluated on the
common testing data of the target task.

Finally, as a linear baseline, we use the combined learning training sample (multi-task
training data and target task training data) to train a linear cox regression model. We
conduct 25 experiment trials for each method, where each trial is trained with a randomly
drawn “target task training dataset” as described above.
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5.3.5 Evaluation

We evaluate the survival prediction model performances with two commonly used evalua-
tion metrics: the concordance index (C-index) (Harrell et al., 1982) and the integrated
Brier score (IBS) (Brier, 1950). Fistly, the C-index is a standard performance measure of
a model’s predictive ability in survival analysis. It is calculated by dividing the number of
all pairs of subjects whose predicted survival times are correctly ordered, by the number
of pairs of subjects that can possibly be ordered. A pair cannot be ordered if the earlier
time in the pair is censored or both events in the pair are censored. A C-index value
of 1.0 indicates perfect prediction where all the predicted pairs are correctly ordered,
and a value of 0.5 indicates random prediction. Secondly, the integrated Brier score is
used to evaluate the error of survival prediction and is represented by the mean squared
differences between observed survival status and the predicted survival probability at
a given time point. The IBS provides an overall calculation of the model performance
at all available times. An IBS value of 0 indicates perfect prediction, while 1 indicates
entirely inaccurate prediction.

We select target cancer sites from TCGA with the following two inclusion criteria: (1) a
minimum of 450 samples, providing enough training samples for different benchmarking
training schemes and (2) a minimum of 30% non-censoring samples, enabling more
accurate evaluation than more heavily censored cohorts. This results in the following
cancers: glioma, including glioblastoma (GBM) and low-grade-glioma (LGG); non-
small cell lung cancer, including lung adenocarcinoma (LUAD) and lung squamous cell
carcinoma (LUSC), and head-neck squamous cell carcinoma (HNSC). These three types
of cancers are also of clinical interest, because gliomas are the most common type of
malignant brain tumor, and lung cancer is the deadliest cancer in the world (Ceccarelli
et al., 2016; Herbst and Lippman, 2007). HNSC, on the other hand, is a less widely
studied type of cancer, which nonetheless attracted growing attention in the recent decade
since the release of the publicly available largest dataset in HNSC by TCGA (Brennan
et al., 2017; Tonella et al., 2017).

In addition, to further validate the model in the small sample training setting, we select
an additional rare cancer cohort, mesothelioma (MESO), with less than 90 samples in
total. Due to the small sample size, we do not compare to the medium or large sample
direct learning, but only compare to the small sample direct learning.

Finally, we use a fully independent testing cohort to validate the model. We use a non-
small cell lung cancer cohort consisting of 129 patient samples collected from the Stanford
University School of Medicine and Palo Alto Veterans Affairs Healthcare System (Bakr
et al., 2018). The data is available at National Center for Biotechnology Information
Gene Expression Omnibus (NCBI GEO) (Barrett et al., 2009). For the meta-learning,
regular pre-training and combined learning methods, we use the same meta-learnt and
pre-trained models that are trained with TCGA data for testing the non-small cell lung
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cancer. The final training and testing is done on the independent dataset. Due to the
small sample size, we also only include small sample direct learning for comparison.

For the three large target cancer cohorts, 20% of the target data is used for testing, and
we evaluate the C-index and IBS in 25 experimental trials for each method. For the
small cancer cohort and independent data cohort, 50% of the data is used for testing,
and we conduct 10 trials for each method due to limited training samples for sampling.

5.3.6 Hyper-parameter selection

To avoid overfitting, we do not conduct a separate hyper-parameter search for each of
the cancer datasets. Instead, we search for hyper-parameters on one type of cancer and
apply the chosen parameters to all experiments. We select the largest cancer cohort,
glioma, and use 5-fold cross-validation for hyper-parameter selection. For each given
set of hyper-parameters, we average the results from five validation sets (each is 20% of
training data). Since there is similarity in the algorithm between methods (combined
learning, direct learning, and regular pre-training), we share hyper-parameters between
experiments when it makes sense, as detailed below.

All methods use the same neural network architecture with two hidden fully connected
layers of size 6000 and 2000, and an output fully connected feature layer of size 200.
Each layer uses the ReLU activation function (Nair and G. E. Hinton, 2010). Initially
we experiment with 4 different structures: 1 or 2 hidden layers with feature size of 200
or 50, respectively. We chose the optimal structure detailed before and use it as the
architecture for all methods in our subsequent discussion.

For the regular pre-training model, we search for hyper-parameters for the pre-training
stage and fine-tuning stage separately. For both stages, we test the mini-batch gradient
descent and Adam optimizers, and determine learning rates with grid search on a grid of
[.1, .05, .01, .005, .001] for SGD and a grid of [.001, .0005, .0001,.00005, .00001] for Adam.
We test batch sizes of 50, 100, 200, and 800 for pre-training. The selected parameters for
the pre-train stage are: an SGD optimizer with learning rate of .001, L2 regularization
scale of 0.1 and batch size of 800. The selected parameters for the fine-tune stage are:
an SGD optimizer with learning rate of .001, L2 regularization scale of 0.1, and batch
size of 20 which is the size of each target cancer training dataset. For the combined
learning model and direct learning model, since the algorithm is very similar to the
regular pre-training model’s pre-train stage, we use the same parameters selected for the
pre-train. The batch sizes for direct learning is half of the size of training data.

For the meta-learning model, we search for hyper-parameters for the meta-learning only.
For the final learning stage, we use the same hyper-parameters as in the fine-tune stage
of the regular pre-training model, as both methods can use similar algorithms in the
last stage of training. From our previous discussion, in the meta-learning stage an SGD

48



A meta-learning approach for genomic survival analysis Chapter 5

Hyper-parameter Value
Task-level optimizer SGD
Task-level learning rate 0.01
Task-level gradient steps 5
Task-level Batch size 100
Meta-level optimizer ADAM
Meta-level learning rate 0.0001
Meta-level tasks batch size 10
L2 regularization scale 0.1

Table 5.1: Selected hyper-parameters for meta-learning’s meta-learning stage

Method Glioma Lung cancer HNSC
Direct (250 samples) 0.24 ± 0.02 0.19 ± 0.01 0.20 ± 0.01
Direct (150 samples) 0.25 ± 0.01 0.19 ± 0.01 0.21 ± 0.01

Direct 0.30 ± 0.02 0.24 ± 0.02 0.30 ± 0.02
Combined 0.29 ± 0.02 0.21 ± 0.02 0.26 ± 0.02

Pre-training 0.31 ± 0.02 0.23 ± 0.02 0.26 ± 0.02
Meta-learning 0.28 ± 0.01 0.16 ± 0.01 0.16 ± 0.00

Table 5.2: Integrated Brier scores (IBS) with 95% confidence intervals (n=25 trials) for
target cancer survival prediction with 20 samples, unless specified otherwise. Lower value
is better. Best performing method in bold.

optimizer and an Adam optimizer are suitable for the inner learner and meta-learner
respectively. For the learning rates, we perform grid search on a grid of [.1, .05, .01, .005,
.001] for SGD and a grid of [.001, .0005, .0001,.00005, .00001] for Adam. Batch size is
searched from [50, 100, 200, 800], the number of tasks for averaging one meta-learner
update is searched from [5, 10, 20], and the number of gradient descent steps for the
inner-learner is searched from [3, 5, 10, 20]. The selected parameters for the meta-learning
stage are shown in Table 5.1.

Finally, in order to evaluate the effect of fluctuations of the meta-learning hyper-
parameters, and ensure that our results reflect the average performance over fluctuations,
we conduct a series of tests on the validation data where in each experiment we vary one
of the five unique meta-learning hyper-parameters from the chosen value by tuning it
up or down by one grid, obtaining ten sets of varied hyper-parameters. We do 5-fold
cross-validation for each set of varied hyper-parameters and compute the concordance
index from the resulting fifty experiments. We also do fifty random experiments using
the selected hyper-parameters and compare the average results of varied versus selected
hyper-parameters. We conduct a two-sample t-test on the two results, and conclude
that the results obtained by varied parameters do not have a significant difference from
the results obtained by the chosen parameters (mean concordance index difference of
0.005 with p value 0.50). Therefore, our results are robust with respect to fluctuations of
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the hyper-parameters and our conclusions are not based on excessive hyper-parameter
tuning.

5.3.7 Interpretation of the genes prioritized by the meta-learning model

We apply risk score backpropagation (Yousefi et al., 2017) to the meta-learned models to
investigate the feature importance of genes for each of the three target cancer sites. For a
given sample, each input feature is assigned a risk score by taking the partial derivatives
of the risk with respect to the feature. A positive risk score with high absolute value
means the feature is important in poor prediction (high risk), and a negative risk score
with high absolute value means the feature is important in good prediction (low risk).
The features are ranked by the average of risk score across all samples.

Two approaches were adopted for annotating the genes with ranked risk scores generated
by the meta-learning model. Firstly, the top 10% high-risk genes (genes with positive
risk scores) and the top 10% low-risk genes (genes with negative risk scores) from each
cancer type were subjected to gene set over-representation analysis, by comparing the
genes against the gene sets annotated with well-defined biological functions and processes.
We model the association between the genes and each gene set using a hypergeometric
distribution and Fisher’s exact test. Secondly, instead of arbitrary thresholding in the
first approach, all the genes, together with their ranked risk scores were incorporated in
the gene set enrichment analysis with the fgsea R package (Sergushichev, 2016) which
calculates a cumulative gene set enrichment statistic value for each gene set. The gene
set databases used in this analysis include Kyoto Encyclopedia of Genes and Genomes
(KEGG) (Kanehisa and Goto, 2000), The Reactome Pathway Knowledgebase (Croft
et al., 2014) and WikiPathways (Slenter et al., 2018).

5.4 Results

5.4.1 Meta-learning outperforms regular pre-training and combined
learning

For all of the large target cancer sites, meta-learning achieves similar or better performance
than regular pre-training or combined learning (Figure 5.3; Table 5.2). For the glioma
cohort, the mean C-index for meta-learning is 0.86 (0.85-0.86 95% CI), compared to 0.84
(0.83-0.85 95% CI) for regular pre-training and 0.81 (0.81-0.82 95% CI) for combined
training. For the lung cancer cohort, the mean C-index is 0.65 (0.65-0.66 95% CI) for
meta-learning, 0.60 (0.58-0.61 95% CI) for regular pre-training, and 0.62 (0.62-0.63 95%
CI) for combined training. For the HNSC cohort, the result is 0.61 (0.59-0.63 95% CI) for
meta-learning, 0.59 (0.57-0.61 95% CI) for regular pre-training and 0.62 (0.61-0.64 95%
CI) for combined training. Note that, the variance of the meta-learning results across 25
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Figure 5.3: C-Index for target cancer survival prediction, comparing combined learning,
regular pre-training and meta-learning

random trials also tends to be the smallest, which is most observable for the lung cancer
and glioma cohorts. In addition, each of these multi-layer neural networks also shows
better performance on average than a linear baseline model. The linear baseline model
achieves a C-index of 0.61 for lung cancer (0.60-0.62 95% CI), 0.77 for glioma (0.74-0.80
95% CI), and 0.59 for HNSC (0.58-0.62 95% CI).

5.4.2 Meta-learning achieves competitive predictive performance com-
pared to direct learning

Next, we compare our meta-learning approach with regular direct learning on the target
task training samples with different cohort sizes. The performance of direct learning
drops significantly when the number of training samples decreases from 250 to 20,
which is anticipated because a great amount of information is lost and the model can
hardly learn well. However, meta-learning and pre-training can compensate for such
lack of information by transferring knowledge from the pan-cancer data explicitly and
implicitly, respectively. We show that meta-learning achieves similar or better prediction
performance than large-sample direct training in lung cancer and HNSC, and reaches
comparable performance with medium-sample direct training in glioma (Figure 5.4; Table
5.2). For the lung cancer cohort, the mean C-index is 0.57 (0.56-0.58 95% CI) for large
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Figure 5.4: C-Index for target cancer survival prediction, comparing direct learning with
large (250), medium (150) and small (20) size samples and meta-learning.

sample direct learning, 0.54 (0.52-0.56 95% CI) for medium sample direct learning, 0.53
(0.50-0.55 95% CI) for small sample direct learning, and 0.65 (0.65-0.66 95% CI) for
meta-learning. For the glioma cohort, the mean C-indices for large sample, medium
sample and small sample direct learning are 0.86 (0.86-0.87 95% CI), 0.85 (0.85-0.86
95% CI), and 0.82 (0.81-0.84 95% CI) respectively, and for meta-learning the mean
C-index is 0.86 (0.85-0.86 95% CI). For the HNSC cohort, the mean C-index is 0.62
(0.60-0.64 95% CI) for large sample direct learning, 0.57 (0.54-0.59 95% CI) for medium
sample direct learning, 0.53 (0.49-0.56 95% CI) for small sample direct learning, and
0.61 (0.59-0.63 95% CI) for meta-learning. Thus, in all three cancer sites, meta-learning
reaches competitive performances as large sample direct learning and can outperform it
in certain cases.

5.4.3 Risk score ranked genes are enriched in key cancer pathways

Next, we investigated for each cancer site what genes are most important in the meta-
learning model (Figure 5.5, Supplementary Tables 1 - 6). In gliomas, the high-risk genes
are associated with viral carcinogenesis (p value 0.002), Herpes simplex infection (p
value 0.007), cell cycle (p value 0.03), apoptosis (p value 0.03), DNA damage response (p
value 0.04), all of which are also enriched in gene set enrichment analysis with positive
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enrichment scores (Figure 5.5a). The low-risk genes are associated with HSF1 activation
(p value 0.02) which is involved in hypoxia pathway, and tryptophan metabolism (p value
0.04), the latter is also enriched in gene set enrichment analysis with negative enrich-
ment score. Tryptophan catabolism has been increasingly recognized as an important
microenvironmental factor in anti-tumor immune responses (Platten et al., 2012) and it
is a common therapeutic target in cancer and neurodegeneration diseases (Platten et al.,
2019).

In head and neck cancer, the high-risk genes are associated with PTK6 signaling (p value
0.01), which regulates cell cycle and growth, and cytokines and inflammatory response
(p value 0.009). The low-risk genes are associated with autophagy (p value 0.02), which
is also enriched in gene set enrichment analysis. Other enriched pathways include B cell
receptor signaling pathway, cell cycle, and interleukin 1 signaling pathway (Figure 5.5b).
Interleukin 1 is an inflammatory cytokine which plays a key role in carcinogenesis and
tumor progression (Mantovani et al., 2018).

In lung cancer, the top high-risk genes are associated with "non-small cell lung cancer"
pathway (p value 0.01), tuberculosis (p value 0.008), Hepatitis B and C virus infection (p
value 0.03), and many pathways implicated previously in cancer. These pathways are also
enriched in gene set enrichment analysis (Figure 5.5c). Pulmonary tuberculosis has been
shown to increase the risk of lung cancer (C.-Y. Wu et al., 2011; Yu et al., 2011). The
low-risk genes are associated with energy metabolism (p value 0.03), ferroptosis (p value
0.037) and AMPK signaling pathway (p value 0.046), all related to energy metabolism,
particularly lipid metabolism. AMPK signaling pathway activation by an AMPK agonist
was shown to suppresses non-small cell lung cancer through inhibition of lipid metabolism
(X. Chen et al., 2017). AMPK signaling and energy metabolism are also enriched in gene
set enrichment analysis. Other enriched pathways include Notch signaling, interleukin
signaling, ErbB signaling, and signaling pathways regulating pluripotency of stem cells.

5.4.4 Validation on the small sample rare cancer cohort

Next we conduct validation on the small sample rare cancer cohort. It is shown that
meta-learning achieves similar or better performance than regular pre-training, combined
learning, or small sample direct learning (Figure 5.6). The mean C-index for meta-
learning is 0.66 (0.63-0.69 95% CI), compared to 0.62 (0.59-0.64 95% CI) for regular
pre-training, 0.65 (0.63-0.67 95% CI) for combined training, and 0.60 (0.59-0.62 95% CI)
for small sample direct learning.

5.4.5 Validation on the independent lung cancer cohort

Finally we test on the independent lung cancer cohort. We use the same meta-learnt
and pre-trained models that are trained with TCGA data for the lung cancer target
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Pathway Gene ranks NES pval
Renin−angiotensin system,KEGG 1.71 1.0e−02

Viral carcinogenesis,KEGG 1.53 1.4e−03
Hepatitis C,KEGG 1.51 4.6e−03

Phototransduction,KEGG 1.51 4.2e−02
Epstein−Barr virus infection,KEGG 1.49 3.4e−03

Small cell lung cancer,KEGG 1.40 3.0e−02
Herpes simplex infection,KEGG 1.38 2.1e−02

p53 signaling pathway,KEGG 1.37 4.9e−02
Cushing syndrome,KEGG 1.30 5.0e−02

Tryptophan metabolism,KEGG −1.55 2.3e−02
TP53 Regulates Transcription of Cell Death Genes 1.92 1.1e−03

Mitotic G1−G1−S phases 1.65 1.7e−02
Apoptosis 1.65 2.5e−03

Integrated Breast Cancer Pathway 1.62 6.3e−03
Prostaglandin Synthesis and Regulation 1.60 1.2e−02

Oxidative Damage 1.57 1.7e−02
Interferon alpha−beta signaling 1.53 3.9e−02

G1 to S cell cycle control 1.50 2.0e−02
Preimplantation Embryo 1.50 2.7e−02
IL17 signaling pathway 1.47 4.7e−02
BDNF−TrkB Signaling 1.46 4.4e−02

DNA Damage Response 1.42 3.3e−02
Cell Cycle 1.34 3.9e−02

Protein alkylation leading to liver fibrosis −1.42 4.5e−02
Peptide GPCRs −1.42 4.2e−02

Tryptophan metabolism −1.45 4.0e−02
Transcription factor regulation in adipogenesis −1.57 2.8e−02

0 4000 8000 12000 16000

(a) Glioma
Pathway Gene ranks NES pval

African trypanosomiasis,KEGG 1.71 6.4e−03
Proteasome,KEGG 1.61 1.1e−02

Cell cycle,KEGG 1.52 6.4e−03
beta−Alanine metabolism,KEGG 1.50 3.8e−02

Pathogenic Escherichia coli infection,KEGG 1.48 2.8e−02
Mineral absorption,KEGG 1.45 4.0e−02

Proteoglycans in cancer,KEGG 1.35 1.8e−02
Protein processing in endoplasmic reticulum,KEGG 1.34 2.9e−02

Hepatocellular carcinoma,KEGG 1.30 4.0e−02
cAMP signaling pathway,KEGG −1.32 3.1e−02

Toxoplasmosis,KEGG −1.36 3.6e−02
FoxO signaling pathway,KEGG −1.39 2.2e−02

Autophagy,KEGG −1.48 9.7e−03
Fc epsilon RI signaling pathway,KEGG −1.54 1.4e−02

B cell receptor signaling pathway,KEGG −1.56 9.6e−03
Autophagy,KEGG −1.48 9.7e−03

NAD+ biosynthetic pathways 1.68 1.4e−02
Cell Cycle 1.56 4.0e−03

Cytokines and Inflammatory Response 1.52 4.4e−02
Photodynamic therapy−induced NF−kB survival signaling 1.50 3.5e−02

Tumor suppressor activity of SMARCB1 1.50 3.7e−02
Pathogenic Escherichia coli infection 1.48 2.8e−02

Interleukin−4 and Interleukin−13 signaling 1.44 2.1e−02
Proteasome Degradation 1.44 3.1e−02

Parkin−Ubiquitin Proteasomal System pathway 1.37 5.0e−02
Structural Pathway of Interleukin 1 (IL−1) −1.42 4.8e−02
MicroRNAs in cardiomyocyte hypertrophy −1.49 1.6e−02

Hematopoietic Stem Cell Gene Regulation by GABP alpha−beta Complex −1.51 4.4e−02
miRNA regulation of prostate cancer signaling pathways −1.53 3.1e−02

IL−1 signaling pathway −1.54 1.4e−02
Differentiation of white and brown adipocyte −1.56 2.9e−02

Type II diabetes mellitus −1.67 1.6e−02
Fatty Acid Biosynthesis −1.84 3.0e−03

0 4000 8000 12000 16000

(b) Head and neck cancer
Pathway Gene ranks NES pval

Pentose phosphate pathway,KEGG 1.99 5.6e−04
Chronic myeloid leukemia,KEGG 1.73 1.3e−03

Glioma,KEGG 1.70 2.0e−03
Bladder cancer,KEGG 1.68 6.3e−03

Melanoma,KEGG 1.68 3.2e−03
Tuberculosis,KEGG 1.52 2.9e−03

Phospholipase D signaling pathway,KEGG 1.50 5.6e−03
MicroRNAs in cancer,KEGG 1.45 9.7e−03

Type I diabetes mellitus,KEGG −1.67 7.7e−03
Mammary gland development pathway − Pregnancy and lactation (Stage 3 of 4) 1.97 5.6e−04

Retinoblastoma Gene in Cancer 1.89 4.0e−05
Non−genomic actions of 1,25 dihydroxyvitamin D3 1.88 3.2e−04

LTF danger signal response pathway 1.75 8.9e−03
Fluoropyrimidine Activity 1.71 7.2e−03

Signaling of Hepatocyte Growth Factor Receptor 1.67 8.3e−03
Non−small cell lung cancer 1.58 9.0e−03

Nanoparticle triggered autophagic cell death −1.83 3.7e−03
0 4000 8000 12000 16000

(c) Lung cancer

Figure 5.5: Gene set enrichment analysis of the ranked gene list in (a) Glioma (b)
Head and neck cancer (c) Lung cancer. The gene set databases used in this analysis
included Kyoto Encyclopedia of Genes and Genomes (KEGG) and WikiPathways. Pval,
enrichment p-value; NES, normalized enrichment score. In (a) and (b) the enriched
pathways with p value below 0.05 were displayed. In (c) the enriched pathways with p
value below 0.01 were displayed.
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Figure 5.6: C-Index for survival prediction on the mesothelioma cohort, comparing
small (20) size sample direct learning, combined learning, regular pre-training and meta-
learning.

55



Chapter 5 A meta-learning approach for genomic survival analysis

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

0.45

0.50

0.55

0.60

0.65

Direct 20

Combined learning

Pre−training

Meta−learning

C
on

co
rd

an
ce

 in
de

x 
(C

−
in

de
x)

●

●

●

●

Direct 20

Combined learning

Pre−training

Meta−learning

Figure 5.7: C-Index for survival prediction on the independent lung cancer cohort,
comparing small (20) size sample direct learning, combined learning, regular pre-training
and meta-learning.

site. On this cohort, it is shown that meta-learning has better performance than regular
pre-training, combined learning, or small sample direct learning (Figure 5.7). The mean
C-index for meta-learning is 0.63 (0.61-0.65 95% CI), compared to 0.58 (0.55-0.61 95%
CI) for regular pre-training, 0.59 (0.55-0.64 95% CI) for combined training, and 0.54
(0.50-0.58 95% CI) for small sample direct learning.

5.5 Discussion

Previous studies have shown that when analyzing high-dimensional genomic data, deep
learning survival models can achieve comparable or superior performance compared to
other methods (e.g., Cox elastic net regression, random survival forests) (D. W. Kim
et al., 2019). However, the performance of deep learning is often limited by the relatively
small amount of available data (Yousefi et al., 2017). To address this issue, our work
investigates different deep learning paradigms to improve the performance of deep survival
models, especially in the setting of small size training data.

In previous studies the most common way to build deep survival models is to train neural
networks with a large number of target task training samples from scratch, a process we
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call direct training. Direct training with a large sample size (e.g. n = 250) can thus be
considered as a baseline. As expected, the performance of direct training drops when
the number of training samples decreases (e.g. from n = 150 to n = 20). On the other
hand, combined learning, regular pre-training, and meta-learning all leverage additional
data from other sources, thereby enabling them to achieve better performances when
the training sample size is small. We use a small number of target cancer site training
samples (e.g. n = 20) with these methods and investigate their performance.

When only small (task) sample sizes are available for meta-training, a Bayesian approach
to meta-learning is an option (Finn et al., 2018; Yoon et al., 2018). Although Bayesian
meta-learning with few(er) training tasks has shown less meta-overfitting (on training
tasks) and performance improvements over regular meta-learning in low-dimensional
settings, in high-dimensional settings the improvement is marginal (Yoon et al., 2018).

It is important to note that combined learning, regular pre-training and meta-learning are
exposed to exactly the same information, but differ only in their algorithms. Combined
learning is a one-stage learning process, whereas pre-training and meta-learning are
two-stage learning methods. Meta-learning shows better predictive performance than
combined or regular pre-training, indicating that it is able to adapt to a new task more
effectively due to the improved optimization algorithm targeting the few-sample training
environment.

It has been shown that methods which use only target task data (direct learning with
different size samples) and methods which use additional information (combined, pre-
training and meta-learning) perform differently, and one type of approach may be better
than the other on different cancer sites. For example, on glioma, direct learning tends to
do better overall; whereas on lung cancer, the other methods outperform direct learning.
This may be due to that fact that the amount of information that can be learnt from
related data versus from the target data is different for each cancer site. If there is
significant information within the target cancer samples alone, then direct training will
be more effective than learning from other cancer samples. On all three cancer sites
we observe that meta-learning achieves similar or better performance than medium-size
direct training, and outperforms large-size direct training in some cases. However, the
advantage of meta-learning may not generalize to every cancer site. Certain cancers
may have very unique characteristics so that transfer of information from other cancers
may not help in prediction regardless of improved adaptivity. For the three cancer sites,
the affinity of each target cancer to other types of cancers in the pan-cancer data aids
the performance of meta-learning, which efficiently transfers the information from other
cancers to the target cancers. On the other hand, some cancers are more dissimilar from
other cancer sites which makes information transfer difficult. For example, for another
cancer site, kidney cancer, specifically kidney renal clear cell carcinoma (KIRC) and
kidney renal papillary cell carcinoma (KIRP), both meta-learning and pre-training do
not produce good survival prediction. This can be visualized in Supplementary Fig.
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1, comparing the affinity between different target cancers with the rest of the cancers
on a t-distributed stochastic neighbor embedding (t-SNE) graph. Therefore, in order
for meta-learning to achieve good performance, the related tasks training data need to
contain a reasonable amount of transferable information to the target task.

The performance of meta-learning can be explained by the learned learning algorithm at
the meta-learning stage where the model learns from related tasks. We further investigate
how to optimize meta-learning performance. We examine results from two sampling
approaches when forming one task, where we either draw samples only from one cancer,
or draw samples from multiple types of cancer. It is a more natural choice to consider
each cancer type as a separate task, but we found that the latter leads to improved
performance. To explain this improvement, we examine the gradient of the meta-learning
loss function. It can be shown that the gradient of the loss function contains a term
that encourages the gradients from different minibatches for a given task to align in the
same direction (Appendix A). If the two minibatches contain samples from the same
type of cancer, their gradient might already be very similar and thus this higher order
term would not have a large effect. On the other hand, if the second minibatch contains
samples from a different type of cancer than the first, the algorithm will learn something
that is common to both of them and thereby help to improve generalization.

From a molecular point of view, certain cancer types are related to each other and there
is an inherent presence of inter-dependency. For example, colon and rectal cancers are
found to have considerably similar patterns of genomic alteration (Network et al., 2012).
In our work, the multi-task training data contains many cancer sites including cancer sites
that may have inter-dependencies. We did not focus on modeling the inter-dependencies
within the multi-task training data, but on transferring information from the multi-task
data to the new tasks. However, handling cross-task relations in meta-learning is an
interesting topic that could potentially improve generalization further. Recent work has
proposed methods to accommodate the relations between tasks (Yao et al., 2020). This
would be worth investigating in future work.

The gene set enrichment analysis results validate our model for prioritizing the genes for
survival predication. In the three cancer types investigated, the resulting gene lists are
enriched in key pathways in cancer including cell cycle regulation, DNA damage response,
cell death, interleukin signaling, and NOTCH signaling pathway, etc.

Apart from the well-recognized cancer pathways, our results also reveal potential players
affecting cancer development and prognosis, that are not well-studied yet. Viruses have
been linked to the carcinogenesis of several cancers, including human papilloma virus
in cervical cancer, hepatitis B and C viruses in liver cancer, and Epstein-Barr virus in
several lymphomas and nasopharyngeal carcinoma (Martin and Gutkind, 2008). Our
results further suggest that viruses might also play a role in glioma and lung cancer, where
the high-risk genes are enriched in several viral carcinogenesis pathways. In gliomas, the
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enriched pathways that are unfavorable for survival include Epstein-Barr virus and herpes
simplex infection. In lung cancer, both hepatitis B and C virus infection pathways are
enriched. This suggests that that hepatotropic viruses may affect the respiratory system,
including the association with lung cancer. For example, hepatitis B virus infection
has been associated with poor prognosis in patients with advanced non-small cell lung
cancer (Peng et al., 2015). The role of Epstein-Barr virus in gliomagenesis have also been
studied but the results remain inconclusive (Akhtar et al., 2018). Whether these viruses
do play a role in carcinogenesis and further affect cancer prognosis, or the association
we observed reflects an abnormal immune system that is unfavorable for the survival of
cancer patients remains to be investigated.

While it would be interesting to decipher the mechanisms of viral infections in tumori-
genesis in these cancers, it is difficult to establish a direct link using genomic analysis
from currently available data. More well-designed experiments are needed. That being
said, the field of viral infections in tumorigenesis is under active research now and there
are several interesting studies that suggest a wider role of viral infections in cancer. The
recent study of viral landscape in cancer by Pan-Cancer Analysis of Whole Genomes
(PCAWG) Consortium (Zapatka et al., 2020) examined whole genome and whole tran-
scriptome sequencing data from 2,658 cancers across 38 tumor types. Apart from the
well-known viral etiology in cancer (HPV in cervical cancer and head and neck cancer,
HBV in liver cancer, and EBV in gastric cancer), the study also found frequent appear-
ance of herpesviruses (EBV and HHV-6B) in brain cancers. A 2018 study in Neuron
(Rizzo, 2020) found frequent presence of herpesviruses in the brain tissues. Although this
study is designed to study Alzheimer’s disease, the fact that herpesviruses are frequently
found in brain tissues warrants further research of the role of herpesviruses in not only
neurodegenerative diseases, but also cancer. A 2018 study in Cancer Research (Varn
et al., 2018) found virus infection shapes the tumor immune microenvironment and
genetic architecture of 6 virus-associated tumor types. They found that EBV infection
was associated with decreased receptor diversity in multiple cancers. The altered immune
profile in the tumor microenvironment may affect tumor progression and patient survival,
but more study is needed to confirm it.

As for the enriched pathways that are favorable for cancer survival, we identified pathways
related to metabolism, in particular, lipid metabolism, in all the three cancer types
investigated. In glioma, the top enriched pathway favorable for cancer survival is
adipogenesis regulation. In head and neck cancer, differentiation of adopocyte and
fatty acid biosynthesis are top enriched favorable pathways. In lung cancer, ferroptosis
and AMPK signaling pathway are both related to energy metabolism. Ferroptosis is a
process driven by accumulated iron-dependent lipid ROS that leads to cell death. Small
molecules-induced ferroptosis has a strong inhibition of tumor growth and enhances the
sensitivity of chemotherapeutic drugs, especially in drug resistance (Lu et al., 2018).
AMPK plays a central role in the control of cell growth, proliferation and autophagy
through the regulation of mTOR activity and lipid metabolism (X. Chen et al., 2017;
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Han et al., 2013). The link between cancer and metabolism is worth investigating in
future studies.

To conclude, in survival analyses one problem that researchers have encountered is the
insufficient amount of training samples for machine learning algorithms to achieve good
performances. We address this problem by adapting a meta-learning approach which
learns effectively with only a small number of target task training samples. We show that
the meta-learning framework is able to achieve similar performance as learning from a
significantly larger number of samples by using an efficient knowledge transfer. Moreover,
in the context of limited training sample exposure, we demonstrate that this framework
achieves superior predictive performance over both regular pre-training and combined
learning methods on two types of target cancer sites. Finally, we show that meta-learning
models are interpretable and can be used to investigate biological phenomena associated
with cancer survival outcome.

The problem of small data size may be a limiting factor in many biomedical analyses,
especially when studies are conducted with data that is expensive to produce, or in the
case of multi-modal data (Cheerla and Gevaert, 2019). Our work shows the promise
of meta-learning for biomedical applications to alleviate the problem of limited data.
In future work, we intend to extend this approach to analysis with medical imaging
data, such as histopathology data and radiology data, for building predictive models on
multi-modal data with limited sets of patients.

5.6 Data Availability

All data used in this manuscript are publicly available. The TCGA Gene expression
data is version 2 of the adjusted pan-cancer gene expression data obtained from Synapse:
https://www.synapse.org/#!Synapse:syn4976369.2. The independent lung cancer data
can be obtained from: https://wiki.cancerimagingarchive.net/display/Public/NSCLC+
Radiogenomics. The databases used in gene set enrichment analysis are publicly available:
Kyoto Encyclopedia of Genes and Genomes (KEGG) at https://www.genome.jp/kegg/;
the Reactome Pathway Knowledgebase at https://reactome.org/download-data; and
WikiPathways at https://www.wikipathways.org/index.php/Download_Pathways. The
remaining data are available within the Article, Supplementary Information or available
from the authors upon request.

60

https://www.synapse.org/#!Synapse:syn4976369.2
https://wiki.cancerimagingarchive.net/display/Public/NSCLC+Radiogenomics
https://wiki.cancerimagingarchive.net/display/Public/NSCLC+Radiogenomics
https://www.genome.jp/kegg/
https://reactome.org/download-data
https://www.wikipathways.org/index.php/Download_Pathways


6 Model-Agnostic Learning to
Meta-Learn

6.1 Preface

Summary: We propose a learning algorithm that enables a model to quickly exploit
commonalities among related tasks from an unseen task distribution, before quickly
adapting to specific tasks from that same distribution. We investigate how learning with
different task distributions can first improve adaptability by meta-finetuning on related
tasks before improving goal task generalization with finetuning. Synthetic regression
experiments validate the intuition that learning to meta-learn improves adaptability
and consecutively generalization. Experiments on more complex image classification,
continual regression, and reinforcement learning tasks demonstrate that learning to
meta-learn generally improves task-specific adaptation. The methodology, setup, and
hypotheses in this proposal were positively evaluated by peer review before conclusive
experiments were carried out.

This chapter is an edited version of Devos and Dandi (2021).

Co-author: Yatin Dandi (YD)

Contributions:
AD: Conceptualization, Methodology, Software, Visualization, Investigation, Writing -
Original Draft
YD: Conceptualization, Methodology, Software, Visualization, Investigation, Writing -
Original Draft
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6.2 Introduction

Recent years have seen encouraging developments in meta-learning-based approaches for
deep neural networks and their successful application to various domains (Finn et al.,
2017; Rajeswaran et al., 2019; Nichol et al., 2018). These approaches typically assume a
distribution over tasks and aim to exploit the shared properties across tasks to learn a
model that can adapt to unknown tasks from this distribution using only a few training
data points. Unfortunately, their adaptive capabilities do not generalize well to unseen
tasks from related but different task distributions (W.-Y. Chen et al., 2019).

A number of recent works have proposed addressing the presence of different sets of
related tasks by explicitly factoring in the heterogeneous nature of the task distribution
in the design of the architecture and update rule (Requeima et al., 2019; Yao et al.,
2020; Yao et al., 2019; Vuorio et al., 2019). However, these approaches still assume a
fixed task distribution, such as tasks sampled from a fixed set of families of functions
or a multi-modal distribution arising out of a fixed set of task datasets. We argue that
generalizing across unknown datasets and task distributions is a fundamentally more
difficult problem than fixed distribution meta-learning. With a new task distribution
or dataset, it is unrealistic to expect the model to quickly adapt to any arbitrary task
from such a distribution. Instead, we expect the model to quickly learn to adapt to any
task from the new task distribution after being exposed to only a few tasks of it. This
generalizes the notion of few-shot learning to few-task (few-shot) learning. Changes in
task distributions might also arise due to natural or artificial transformations of the data.
With different task distributions arising from a "distribution over task distributions", it
is not only desirable to "quickly adapt" to unseen tasks but also "quickly learn to adapt"
to unseen task distributions.

We propose a general framework for adapting to unseen task distributions by "learning
to meta-learn" on different task distributions during training. Thus, the heterogeneity of
tasks in our approach is not fixed but flexibly modeled through hierarchical sampling
from a distribution over task distributions. Similar to MAML (Finn et al., 2017), we
propose a general framework to learn a suitable initialization for a single set of parameters.
Unlike MAML, which only trains a model to quickly adapt the parameters on a new
task using few task-specific gradient steps, our model is also trained to quickly adapt its
initialization to a new task distribution using few meta gradient steps on this unseen
task distribution (see Figure 6.1). We hypothesize that our approach would allow models
to transfer learn capabilities across datasets in supervised and unsupervised learning,
and new environments in reinforcement learning as well as quickly adapt to unseen
augmentations and distortions at test time.
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6.3 Related Work

Model-Agnostic Meta-Learning (MAML) by Finn et al. (2017) is a seminal work in
few-shot meta-learning which seeks a common model initialization that allows the
model to perform well on any goal task from the training task distribution with few
gradient steps (and samples). Multimodal MAML (MMAML) by Vuorio et al. (2019)
extends MAML with the capability to identify tasks sampled from a multimodal task
distribution and adapt quickly through gradient updates. Yao et al. (2019) proposed
the hierarchically structured meta-learning (HSML) algorithm that explicitly tailors
the transferable knowledge to different clusters of tasks. Automated Relational Meta-
Learning (ARML) by Yao et al. (2020) extracts the cross-task relations and constructs a
meta-knowledge graph. When a new task arrives, it can quickly find the most relevant
structure and tailor the learned structure knowledge to the meta-learner. Still, MMAML,
HSML, and ARML only learn to learn from a fixed task distribution. Unlike our approach,
they are not expected to generalize to new task distributions.

Research on improving meta-learning algorithms is vast, and we will highlight work
most related to our approach. Following MAML, Z. Li et al. (2017) and Antoniou et al.
(2019) learn the inner learning rate in the outer loop to improve performance, while
reducing the hyperparameter tuning requirement. Finn et al. (2017) proposed a first-order
approximation of MAML (fo-MAML) to scale to larger models, which was subsequently
improved upon by Nichol et al. (2018) with a first-order method called Reptile. Reptile
can naturally be extended to our proposed approach, making it scalable and efficient.
Yinbo Chen et al. (2020) found that with increasingly deep architectures, common pre-
training and transfer learning can outperform meta-learning from scratch in the visual
classification domain. Based on this, they proposed to combine regular pre-training with
subsequent meta-learning, which empirically gives a further performance improvement.
Raghu et al. (2020) found that feature reuse is a dominant factor in MAML, and proposed
a variant called Almost no Inner Loop (ANIL) which learns to only fine-tune the last
layer linear classifier. On the contrary, Oh et al. (2021) came to the opposite conclusion
that fast learning is crucial, and proposed a Body Only update in Inner Loop (BOIL)
algorithm. These works motivate several of our research questions for the experiments.

6.4 Methodology

We aim to train models that can quickly change their adaptability before rapid adaptation.
We formalize this setting as few-task few-shot learning. In this section, we will clarify
the problem setup and we will formalize this learning to meta-learn problem setting for
supervised learning, but it can easily be generalized to unsupervised and reinforcement
learning (RL).
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Figure 6.1: Illustration of our model-agnostic learning to meta-learn algorithm
(MALTML), which optimizes for a representation θ that can quickly adapt to new
task distributions j and consecutively to their tasks τ . Illustrated with single gradient
steps for the meta-learning and learn/adapt phases.

6.4.1 Learning to Meta-Learn Problem Setup

In our learning to meta-learn scenario, we consider a distribution p(j) over task distribu-
tions such as families of related functions or datasets with similarities. Our goal is to
allow the model to adapt to unseen task distributions as well as specific tasks within such
distributions. In the L-task K-shot setting, the model is trained to meta-learn a new
task distribution jd from only L tasks with only K examples each for task-learning and Q

examples for meta-learning, before learning a single goal task Ti drawn from pjd
(T ) from

only K samples. The model f is then improved by considering how the test error on new
(validation) data from Ti changes with respect to the original parameters. This test error
on the final goal tasks serves as the training error of the learning to meta-learn process.
At the end of training, new families are sampled from p(jd) and the model’s learning to
meta-learn performance is measured by the model’s performance after meta-finetuning
on L tasks with K + Q examples and finetuning on one or multiple goal tasks from the
same family with K examples.

6.4.2 A Model-Agnostic Learning to Meta-Learn Algorithm

We propose a method that can learn the parameters of any model via learning to meta-
learn in such a way as to prepare that model to first quickly change its adaptation
capability (initialization) and consecutively adapt quickly to a goal task. The intuition
behind this approach is that some internal representations are more transferable to meta-
learn with. For example, a neural network could learn features that are broadly applicable
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to all tasks in the distribution over task distributions p(j) and can then specialize to
an individual task distribution pjd

(T ), rather than to a single task distribution or task.
We assume no specific form of the model, other than that it is parametrized by some
parameter set θ, and that the loss functions are sufficiently smooth in θ such that we can
employ gradient-based learning techniques.

Formally, we consider a model represented by a parametrized function fθ with parameters
θ. When adjusting the adaptability to a new task family jd, the model’s parameters θ

become θ′
jd

, and consecutively when adapting (finetuning) to a new task Tc ∼ pjd
(T ) the

model’s parameters θ′
jd

become θ′
c. In our approach, the updated parameter vector θ′

jd

is obtained by few (inner) meta-learning steps on few tasks from dataset jd, also called
meta-finetuning. Each meta-finetuning step is taken across few task-finetuning steps. A
single (r = 1) task gradient step with step size α is:

θ′
Ti

= U r=1,α
Ti

(θ) = θ − α∇θLTi(fθ). (6.1)

Then, the family-specific meta-finetuning update, with one (r = 1) task-level parameter
update as in Equation (6.1) and one (m = 1) meta-level update across tasks from jd

with step size β, is:

θ′
jd

= V m=1,β
jd

(θ) = θ − β∇θ

 ∑
Ti∼pjd

(T )
LTi(fUr=1,α

Ti
(θ))

 . (6.2)

Consecutively, the updated task-specific parameter vector θ′
c is obtained by taking few

gradient descent steps, with learning rate γ, on tasks Tc ∼ pjd
(T ), starting from θ′

jd
. For

example, using Equation (6.1), with 1 gradient step: θ′
c = U r=1,γ

Tc
(θ′

jd
). Note that using

the same r for meta-finetuning and goal task finetuning is a natural choice, but can be
deviated from. The step-sizes α, β, and γ may be fixed as hyperparameters or learned on
the outer learning loop (see below).

Finally, the global model parameters θ are optimized to perform well after this two-
step (meta-learn, then learn) process. Specifically, the model parameters are trained
by optimizing the performance of every fθ′

c
on its task Tc. This is done across task

distributions sampled from p(j) and tasks sampled from them (Tc ∼ pjd
(T )). Concretely,

the learning-to-meta-learn objective is:
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min
θ

∑
jd∼p(j)

∑
Tc∼pjd

(T )
LTc(fθ′

c
) = min

θ

∑
jd∼p(j)

∑
Tc∼pjd

(T )
LTc

(
U r,γ

Tc
(V m,β

jd
(θ))

)

Note that the learning to meta-learn optimization is performed over the model parameters
θ, whereas the learning to meta-learn objective itself is computed using the updated
model parameters θ′

c.

The outer optimization across task distributions is performed via stochastic gradient
descent (SGD), such that the model parameters θ are updated as follows:

θ ← θ − η∇θ

∑
jd∼p(j)

∑
Tc∼pjd

(T )
LTc(fθ′

c
) (6.3)

where η is the outer step size. The full algorithm, in the general case, is outlined in
Algorithm 4.

The MALTML outer gradient update yields a third-order gradient with respect to θ.
To make MALTML computationally usable for high-dimensional models, we propose a
first-order approximation. Concretely, following Nichol et al. (2018), for every family jd

we employ multiple first-order meta-learning updates θ′
jd

= Ṽ m>1
jd

(θ), before updating
the model parameters with θ ← θ + η

∑
jd

(θ′
jd
− θ). Note that in this case, due to the

nature of our two-level first-order approximation, goal task finetuning is not required
anymore.

6.5 Experimental Protocol

The goal of our experimentals is to get conclusive results in different learning domains
on whether MALTML can enable a quick and significant change of adaptability to goal
tasks from new task distributions. Moreover, we wish to examine whether fast learning
(to meta-learn) (Oh et al., 2021) or feature reuse (Raghu et al., 2020) is the dominant
factor in the performance.

All the learning to meta-learn problems we consider require some form of change in
adaptability and subsequent adaptation to new tasks at test time. When possible, we will
compare our results to an oracle that receives the identities of the family and goal task as
an additional input or a MAML oracle that is able to meta-finetune on a large number of
tasks from the new task distribution, as upper bounds on the performance of the models.
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Algorithm 4 Model-Agnostic Learning to Meta-Learn
Require: p(j): distribution over task distributions parameter j
Require: α, β, γ, η: step size hyperparameters

1: randomly initialize θ
2: while not done do
3: Sample batch of task distributions jd ∼ p(j)
4: for all jd do
5: Sample L tasks Ti ∼ pjd (T )
6: for all Ti do
7: Evaluate ∇θLTi (fθ) with respect to K examples
8: Compute adapted parameters with gradient descent: θ′

i = θ − α∇θLTi (fθ)
9: end for

10: Update θ′
jd
← θ − β∇θ

∑
Ti
LTi (fθ′

i
) using Q examples per task

11: Sample batch of tasks Tc ∼ pjd (T )
12: for all Tc do
13: Evaluate ∇θ′

jd

LTc (fθ′
jd

) with respect to K examples
14: Compute adapted parameters with gradient descent: θ′

c = θ′
jd
− γ∇θ′

jd

LTc (fθ′
jd

)
15: end for
16: end for
17: Update θ ← θ − η∇θ

∑
jd∼p(j)

∑
Tc∼pjd

(T ) LTc (fθ′
c
)

18: end while

Regarding model architecture and optimization, we will follow Finn et al. (2017). We will
use insights from Antoniou et al. (2019) to stabilize training where applicable and follow
its hierarchical hyperparameter search methodology. We will carry out the experiments
in PyTorch (Paszke et al., 2019), using the torchmeta package (Deleu et al., 2019).

6.5.1 Illustrative preliminary experiment: regression

We start with a toy regression problem which illustrates the experimental protocol of
few-task few-shot learning and the basic principles of MALTML.

Each task distribution (family) consists of sinusoid regression tasks with a specific phase.
Thus, p(j) is continuous, where the phase j varies uniformly within [0, π]. Each task
involves regressing from the input to the output of a sine wave, where the amplitude
is varied between tasks. Thus, pjd

(T ) is continuous, where the amplitude varies within
[0.1, 5.0] and the input and output both have a dimensionality of 1. During training and
testing, datapoints x are sampled uniformily from [−5, 5]. The loss is the mean squared
error between the prediction f(x) and the true value. The model is a neural network
with 2 hidden layers of size 40 with ReLU nonlinearities. When training with MALTML,
we use single gradient updates with fixed step sizes of α = 0.001, β = 0.01, γ = 0.001,
and use Adam (Kingma and J. Ba, 2015) with an initial learning rate of η = 0.001. The
baselines are also trained with Adam, and an inner learning rate of α = 0.001 for MAML.
For the 5-task 5-shot regression experiment, we train for 70,000 outer steps with a family
batch size of 10, Q = 5, and 2 validation tasks per family.
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Figure 6.2: Qualitative and quantitative effects of the meta-update and task fine-tuning.
For (c), the meta-update improvement is indicated by the arrows at 0 steps.

For this preliminary experiment we only contrast with a MAML baseline, which disregards
the family structure, and an oracle receiving the true amplitude and phase of the goal
task as additional input. In general, we intend to compare to the other oracles described
before and another baseline: pretraining on all tasks, which in this case involves training
a model to regress random sinusoid functions.

The toy results in Figures 6.2a and 6.2c show that the learned MALTML model is able to
quickly change its adaptability to the new family’s phase on 5 related 5-shot tasks. Due
to this, it reaches a better fit than MAML, which benefits less from the meta-adaptation
of its initialization (Figures 6.2b and 6.2c).

6.5.2 Specifics of main experiments

Besides the toy experiment in section 6.5.1, we propose to test the effectiveness of
MALTML for:

Classification. We propose to apply our method to modified versions of the Omniglot
(B. M. Lake et al., 2015) and ImageNet (Russakovsky et al., 2015b) datasets. For
ImageNet, we will propose a few-task few-shot dataset, making use of its hierarchical
structure to generate a sufficient amount of training families. Given the finite number of
alphabets in Omniglot, which will serve as families, we will use data augmentations similar
to the ones used in Khodadadeh et al. (2019) to generate a large number of training
families. To arrive at a realistic setting where the (imposed) hierarchical structure
from the supervised case is lacking, we will use a hierarchically augmented version of
unsupervised meta-learning (Khodadadeh et al., 2019). Specifically, a subset of data
augmentation parameters will be sampled per family, before applying them randomly
(with the remaining subset) on samples to generate tasks from each family. Note that in
this case, on a (family) meta-level the method needs to be sensitive to augmentations,
whereas on a task-level it should aim to be invariant to them.
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2D Navigation. We propose to evaluate MALTML on a set of families of RL tasks
where a point agent must move to different goal positions in 2D, while being given related
tasks from the same family. Every family constitutes of a random crop of the unit square,
and every task is randomly chosen from within that rectangle. The crops are bounded
by 25% to 75% of the original unit length.

Continual Regression We propose to evaluate a continual learning extension of
MALTML on incremental sine wave learning as described in Javed and White (2019).
Different families of continual learning prediction problems will correspond to different
frequencies of the sine waves. The inner meta-learning objective for this setting will be
replaced by the Online-aware Meta-Learning objective from Javed and White (2019).

Continual Reinforcement Learning Besides the sine waves continual regression
problem, we will aim to evaluate a more challenging and real-world setting of continuous
control inspired by Kaplanis et al. (2020).

6.6 Future Work

Based on the results of our main experiments, future work could involve a multi-task
setting corresponding to meta-learning on different categories of tasks such as classification,
segmentation, and depth estimation on a single dataset or a set of related datasets.
This could also involve augmenting our objective for enforcing cross-task (distribution)
consistency (Zamir et al., 2020).

6.7 Results

6.7.1 Experimental Setup and Hyperparameters

For the tasks included in Finn et al. (2017), i.e., Omniglot classification, 2D Navigation
and Half-Cheetah goal velocity tasks, we use the same topmost optimizer and learning
rate, fine-tuning step size, number of gradient steps, and number of tasks for the meta-step
for the MAML baselines and the inner task specific updates for MATML. For the other
baselines and tasks, we borrow the architectures and hyperparameters from works that
compare with MAML’s original setup, i.e., Raghu et al. (2020) for ANIL and Oh et al.
(2021) for BOIL and tiered-ImageNet. The used architectures and hyperparameters are
further described in Appendix D.1 and D.2. For the inner meta-step size, we performed
a grid search over the set of values β ∈ {2, 1, 0.5, 0.1, 0.05, 0.01, 0.001, 0.0001}. Due to
computational constraints on our Tesla V100-SXM2 32GB GPU, for tiered-ImageNet
and continual regression, we sample only one family per outer update. Other details
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specific to the tasks are discussed in the corresponding sections and the Appendix.

6.7.2 Classification

Omniglot

Although the original Omniglot dataset (B. M. Lake et al., 2015) provided in characters
from separated alphabets for training and testing, it did not provide in a pre-defined
validation set as is common in few-shot learning (Vinyals et al., 2016). In Vinyals
et al. (2016) different sets of characters for training, validation and testing are sampled,
disregarding the alphabet structure. Needing to separate alphabets across these sets
for learning to meta-learn, we created new sets. The details of the adapted dataset are
described in Appendix D.1. Since we use a different dataset organization than most other
literature, we reproduce results for the baselines as well. Specifically, we reproduce results
for MAML (Finn et al., 2017), ANIL (Raghu et al., 2020) and BOIL (Oh et al., 2021)
for an honest comparison of rapid learning and feature reuse. Our equivalent learning to
meta-learn methods are MALTML, MALTML-ANIL, and MALTML-BOIL, respectively.
Appendix Table D.1 lists the hyperparameters used for Omniglot. Table 6.1 shows the
results on Omniglot.

Table 6.1: Accuracies of 5-way (5-task) Few-shot learning on 16 held-out Omniglot
alphabets, before and after adaptation to the test families. Includes 95% confidence
intervals across 600 test tasks from the 16 test alphabets.

Model 1-shot 5-task 1-shot 5-shot 5-task 5-shot

MAML (Finn et al., 2017) 97.86 ± 0.29% 98.04 ± 0.30% 99.32 ± 0.17% 99.26 ± 0.19%
ANIL (Raghu et al., 2020) 96.50 ± 0.41% 96.86 ± 0.38% 98.62 ± 0.27% 98.60 ± 0.26%
BOIL (Oh et al., 2021) 97.39 ± 0.35% 97.57 ± 0.32% 99.10 ± 0.22% 99.19 ± 0.18%
MALTML (ours) 95.82 ± 0.41% 96.49 ± 0.35% 98.65 ± 0.21% 98.77 ± 0.19%
MALTML-ANIL (full, ours) 91.30 ± 0.69% 92.73 ± 0.65% 94.92 ± 0.56% 95.12 ± 0.58%
MALTML-BOIL (full, ours) 97.04 ± 0.35% 97.28 ± 0.32% 98.85 ± 0.23% 99.20 ± 0.17%

Tiered-ImageNet

In a more challenging setting, we evaluate MATLML and the baselines on the Tiered-
Imagenet dataset with the families corresponding to different categories of classes, as
defined in Ren et al. (2018). Following Ren et al. (2018), the 34 categories are divided
into 20 training, 6 validation, and 8 test categories. We visualize a selection of categories
(families) and their tasks in Appendix D.2. Table 6.2 shows the results on tiered-ImageNet.
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Table 6.2: 5-way Few-shot and 5-way Few-task Few-shot classification on held-out
tiered-ImageNet families, before and after adaptation to the test families. The ±
shows 95% confidence intervals over families. Here MALTML-Reptile refers to the
model utilizing the first-order approximation for the inner meta-steps. MALTML-ANIL
(partial) and MALTML-ANIL (full) refer to the models updating only the head in task
specific adaptation and task as well as family specific adaptation, respectively. Similarly,
MALTML-BOIL (partial) and MALTML-BOIL (full) refer to updating only the body in
the corresponding settings. The size of the confidence intervals is relatively large due to
the limited number of 8 test families.

Model 1-shot 4-task 1-shot 5-shot 2-task 5-shot

MAML (Finn et al., 2017) 46.3± 2.4% 46.5± 2.8% 62.1± 2.6% 62.6± 3.2%
ANIL (Raghu et al., 2020) 47.2 ± 1.3% 46.4 ± 1.9% 62.8 ± 2.2% 63.1 ± 2.4%
BOIL (Oh et al., 2021) 48.4 ± 1.2% 48.9 ± 2.4% 65.7 ± 2.4% 66.4 ± 3.1%
MALTML (ours) 45.4± 1.6% 47.2± 3.2% 60.8± 3.4% 63.9± 4.1%
MALTML-Reptile (ours) 32.9± 2.4% 33.6± 2.9% 48.3± 3.2% 49.1± 3.5%
MALTML-ANIL (partial, ours) 34.4± 1.4% 38.3± 2.4% 51.5± 1.7% 54.7± 2.2%
MALTML-ANIL (full, ours) 34.1± 1.9% 39.5± 2.6% 52.3± 2.0% 52.8± 2.9%
MALTML-BOIL (partial, ours) 37.6± 1.8% 39.2± 2.5% 55.4± 2.3% 57.3± 3.7%
MALTML-BOIL (full, ours) 37.3± 2.0% 38.8± 3.1% 56.1± 2.4% 58.8± 3.8%

6.7.3 2D Navigation

Inspired by the 2D navigation problem in Finn et al. (2017), we evaluate an equivalent
family-tuning before task-tuning setting. Specifically, before goal task fine-tuning, we
give the agent few related tasks to meta-tune on. All tasks are sampled from a box
region of x ∈ (−.5, .5) and y ∈ (−.5, .5). A family with lower bound a and upper bound
b constitutes of tasks with goals within the area x ∈ (a, b) and y ∈ (a, b). a and b are
randomly sampled from [−0.5, 0.5]. We use the same hyperparameters as in Finn et al.
(2017), a meta-learning rate of 0.01, an outer training batch size of 1, and 20 support
tasks and 20 validation tasks. To allow large changes in the policy due to meta updates,
we use policy gradient for both inner task specfic updates and inner meta-steps, while
the topmost updates are obtained using TRPO (Schulman et al., 2015). Appendix D.3
provides illustrations. Table 6.3 shows the results on the 2D navigation problem.

Table 6.3: Average return for (meta-)adapting the 2D Navigation RL policy. Higher
return is better, with 0 being the maximal reward.

Model init(ialization) 1 task update 1 meta-update init 1 task update

MAML (Finn et al., 2017) -12.6 -11.7 -13.6 -11.3
MALTML (ours) -38.4 -27.7 -13.3 -10.2
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Figure 6.3: Mean squared error for OMALTML and OML averaged over 50 sinusoid
families (frequencies) with 95% confidence interval drawn by 1,000 bootstraps. The x-axis
denotes the number of functions in a given trajectory having being utilized to provide
task(trajectory) specific updates to the model.

6.7.4 Continual Regression

Following Javed and White (2019), we extend the few-shot regression task to continual
learning over trajectories of tasks consisting of sequences of sinusoid functions of randomly
sampled frequencies, amplitudes, and phases. The families (task distributions) are
constructed by using the same randomly sampled frequency for each task (trajectory)
within a family. Further details about the architecture, hyperparameters, and the
sampling procedure are provided in Appendix D.4. We refer to the online extensions of
MALTML and MAML as OMALTML and OML, respectively. To ensure fair comparison,
we utilize the same architecture and inner loop updates as Javed and White (2019), who
split the training network into representation learning and prediction learning modules,
with only the prediction learning modules being updated in the inner loop. Figures 6.3,
6.4a, and 6.4b demonstrate the effectiveness of OMALTML in adapting to unseen families
of trajectories to improve the subsequent task specific adaptation on the given family.

6.7.5 Continual Reinforcement Learning

We evaluate MALTML’s adaptation capabilities on continual Reinforcement Learning
through the half-cheetah locomotion task with oscillating gravity recently introduced
by Kaplanis et al. (2020). Each family is constructing by adding an oscillating function
to a baseline gravity value of −12. The oscillating function corresponds to a sinusoid
function with a phase, frequency and amplitude sampled uniformly from the ranges
[0, 2.0], [0.1, 5.0], [0, π] which describes the evolution of the environment’s gravity with
time. While obtaining the gravity’s value, the timesteps are divided by the horizon (set to
200), to scale the input range to [0, 1]. Within each family, different tasks correspond to
different goal velocities. Following Kaplanis et al. (2020), the gravity’s value is appended
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(a)

(b)

Figure 6.4: Few-Task Few-shot adaptation in a continual regression task for a randomly
sampled trajectory before and after adaptation to another trajectory from the same
family: (a) MAML (b) MALTML. Note that MALTML’s ability to adapt to the trajectory
signficantly improves due to the meta-step while MAML’s output function demonstrates
negligible change.
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to the input state at each timestep. Table 6.4 shows the continual RL results.

Table 6.4: Continual Reinforcement Learning: average return for Half-Cheetah with
Oscillating Gravity RL policy. Higher return is better.

Model init(ialization) 1 task update 1 meta-update init 1 task update

MAML (Finn et al., 2017) -145.5 -74.8 -113.1 -70.0
MALTML (ours) -156.9 -87.8 -113.9 -62.8

6.8 Findings

6.8.1 Rapid Meta-Learning

MALTML

As demonstrated through the results in Figure 6.3, and Tables 6.3,6.4, MALTML
successfully learns to adapt to new task distributions using a meta step on a few
tasks for continual regression. However, the improvements due to test time adaptation
to new families is significantly limited for classification tasks (Tables 6.1, 6.2). We
hypothesize that this is primarily due to the limited number of training families in
realistic image classification datasets unlike the continuous distribution over families
available for continual regression. Moreover, we found that the magnitude of improvement
due to the meta-step is quite sensitive to hyperparameters such as the step size used for
the meta-step during training.

MAML

Through the results in Tables 6.1,6.2,6.3,6.4, and Figure 6.3, we observe that unlike
MALTML, MAML is unable to leverage the meta-steps on unseen tasks to improve
adaptability on test task distributions. Thus training MALTML to quickly adapt through
meta-steps is beneficial for adaptation to unseen task distributions.

6.8.2 Rapid (Meta-)Learning is More Important than Feature Reuse

The Omniglot results in Table 6.1 and the tiered-ImageNet results in Table 6.2 show that
rapid learning is a dominant factor in achieving good classification accuracy. Specifically,
for learning to meta-learn on Omniglot, there is a clear gap in performance of 2% to
3% between the setting where only the features are trained to rapidly meta-learn and
learn (MALTML-BOIL) and the setting where only the classifier is trained to rapidly
meta-learn and learn (MALTML-ANIL). Note however, that although rapid meta-learning
(using few related tasks) does seem to bring an overall performance improvement, it is not
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significant on Omniglot. For meta-learning, the performance improvement of BOIL over
ANIL is not significant, but still consistently present, in agreement with the experiments
in Oh et al. (2021).

6.8.3 Overfitting

Through the tiered-ImageNet results in Table 6.2, we observe that even though MALTML
achieves significant improvement through the meta-step, the mean accuracy on test
families can still be significantly lower than training task distribution top accuracies. We
hypothesize that this occurs due to the model overfitting on the small number of training
families (20 for tiered-ImageNet). For a continuous distribution over families, such as
in continual regression, MALTML obtains significant improvement over the baselines in
adapting to unseen families.

6.8.4 Reptile

As shown in Table 6.2, using the first order Reptile (Nichol et al., 2018) approximation
for the inner meta-steps leads to a significant drop in the performance. This suggests a
need to design more effective first order approaches for the few-task few-shot learning
task.

6.9 Documented Modifications

1. Instead of creating a custom hierarchical dataset from all the classes defined in
Imagenet, we directly utilized the hierarchy introduced in tiered-ImageNet (Ren
et al., 2018) based on 34 categories defined on 608 classes (779,165 images). This
was done to ensure computational feasibility of the experiments and the absence of
any baselines for meta-learning on the full Imagenet dataset.

2. Contrary to the originally proposed oracle baselines, we primarily used MAML as
a baseline, since we found that the number of families and the number of tasks
within each family were insufficient to obtain reliable family specific or adaptation
based oracles. Thus, following the literature, e.g., (Raghu et al., 2020; Oh et al.,
2021), we don’t include the oracles, and focus on contrasting our approach with
real-world baselines.

3. We adjusted the 2D navigation task to have families defined by a single upper and
lower bound. This eased the sampling of families and tasks.

4. Self-Supervised Learning: upon deeper investigation based on the proposal, it
has been determined that few-shot self-supervised learning using augmentations is
not much closer to a real-life setting than the fully supervised case. Namely, its
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performance is very dependent on the augmentations used. These augmentations
can only be tuned on a validation set with labels. To get to an adequate set
of augmentations, one still needs a validation set consisting of (many) labeled
validation families and tasks. This can be seen, e.g., in Khodadadeh et al. (2019),
where the augmentations are tuned on the Omniglot test set. Hence, we have not
conducted this set of experiments.
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7 Conclusion

In this thesis, we have proposed few-shot learning approaches and evaluations for machine
learning model adaptation with improved effectiveness and efficiency. Specifically, we
have presented solutions for: more effective few-shot classification with simple but
expressive inductive biases, more efficient pre-training with self-supervised learning, more
effective transfer with meta-learning in a biomedical regression setting, and more effective
adaptation to new task distributions by introducing a learning to meta-learn paradigm.
Still, the problem of increasing the effectiveness and efficiency of machine learning model
adaptation is far from being solved and will require a substantial effort in a number of
directions to make significant progress. We outline a couple of such potential research
directions below.

Direction 1: enhanced data utilization Although this work has mostly focused
on methodological improvements and applications, improving the utilization of data
could bring significant leaps in adaptation performance as well. On that front, several
approaches have shown great promise. Instead of considering the (pre)train and test data
in isolation, one can generate more few-shot data or reuse features from high-quality
training classes (Antoniou et al., 2018; S. Yang et al., 2021). Meta-data (e.g., class names),
also a key ingredient for zero-shot learning, is commonly available as well (A. Li et al.,
2019; H. Yang et al., 2022). In addition, it is also realistic to assume that there is some
unlabeled target data and distractors available (Ren et al., 2018). Beyond the available
data mentioned above, few-shot active learning and uncertainty quantification together
with informed further data collection can further boost performance. Especially since
in the few-shot setting, every (good) extra sample can benefit performance significantly.
With advances in zero-shot text-to-image generation with models such as CLIP (Radford
et al., 2021) and DALLE (Ramesh et al., 2021), sampling data directly based on semantic
(textual) information becomes possible as well. Combining all these different types of
data builds on multiple areas of machine learning but will be crucial to squeeze maximum
performance out of adapting machine learning models with small data.
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Direction 2: few-shot generalization to the tail and beyond The benchmark
datasets used in this work generally contain an equal number of samples per (new)
concept or task. In practice, imbalanced data settings, where the number of samples per
concept follows a power law distribution with abundant data at the head and few-shot
data for most of the long tail, are more realistic (Lee et al., 2020; Ochal et al., 2023).
A simple approach is to transfer learn between the head and the tail. This requires
making an arbitrary cut between head and tail data, and if the head is chosen too small,
generalization to tail data is not guaranteed. Self-supervised learning has been shown to
be more robust to dataset imbalance (H. Liu et al., 2021), and could be a key part of
developing approaches that transfer knowledge from head to tail classes more effectively.

Another more realistic dataset consideration is domain-shift, where the training data
distributions and testing data distributions are shifted. These shifts can occur naturally
because of, e.g., different sensors or environmental conditions. The related field of
domain adaptation mostly assumes access to test samples from a single test distribution
(task) at training time, which is more relaxed than the objective of few-shot learning
(Farahani et al., 2021). In Chapters 3 and 4 the domain shift robustness of our proposed
approaches has been studied. Most approaches targeting this setting explicitly either
try to learn a single model that is robust to domain shift (Arjovsky et al., 2019) or
meta-learn to adapt using unlabeled target domain samples (M. Zhang et al., 2021).
These methods are highly specialized, and not always practical due to their requirement
of seeing multiple domains during training. Alternatively, quantifying domain shift at test
time and developing recommendations or (meta-)models on how to best transfer-learn
with off-the-shelf pre-trained models with that information would be very valuable.

Direction 3: improving effective few-shot adaptation of foundation models AI
has recently been undergoing a paradigm shift with the introduction of very large models
trained across a broad range of data, which are called "foundation models" (Bommasani
et al., 2021). These models are generally trained using self-supervised learning techniques
such as the ones introduced in Chapter 4, and adapt well to downstream tasks. Examples
are the large language model GPT-3 (Brown et al., 2020) and text-to-image model
DALL-E (Ramesh et al., 2021). From this family, especially text-based large language
models allow for a broad range of applications, including creative assistants such as
ChatGPT (Ouyang et al., 2022). These models have shown emergent few-shot learning
behavior through in-context learning (Brown et al., 2020), and can have their performance
further boosted through efficient fine-tuning (Hu et al., 2022). Since in-context few-shot
learning can be seen as a result of these models doing black-box meta-learning during
learning, meta-tuning the model’s parameters across a collection of a few related tasks
(similar to MALTML of Chapter 6) aids the in-context learning few-shot performance
(Yanda Chen et al., 2022). A promising research direction is understanding in-context
learning better and how it can potentially be combined with fine-tuning, a procedure
that remains quite sensitive to hyperparameter settings.
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A.1 Algorithm

Algorithm 5 Regression Networks
Require: Training set with task batches of NT N -way K-shot episodes/tasks
{T1, . . . , TNT

}, with every Ti containing sets STi = {(xi11, yi11), . . . , (xiNK , yiNK)}
and QTi = {(xi1(K+1), yi1(K+1)), . . . , (xiN(K+Q), yiN(K+Q))}. STin and QTin denote
the class n subsets of support and query sets, respectively, of episode Ti.

Require: α, λ1, λ2: step size, conditioning and orthogonalization parameters
1: Randomly initialize ϕ
2: while not done do
3: for each batch do {Sample batch of tasks}
4: for i = 1 to NT do {Select task}
5: for n in {1, . . . , N} do {Select class}
6: Sn ← fϕ(STin) {Embed class support set subspace Sn ∈ RM×K}
7: Pn ← Sn

(
ST

n Sn + λ1I
)−1

ST
n {Compute transformation matrix}

8: end for
9: LTi ← 0 {Initialize episode loss}

10: for n in {1, . . . , N} do
11: for all (x, y = n) in QTin do
12: LTi ← LTi + 1

NQ [∥x−Pnx∥2 + log (
∑

n′ exp(−∥x−Pn′x∥2))] +

λ2
∑N

i ̸=j
∥ST

i Sj∥2
F

∥Si∥2
F ∥Sj∥2

F

13: end for
14: end for
15: ϕ← ϕ−α∇ϕ

∑
i LTi {Update embedding parameters ϕ with gradient descent}

16: end for
17: end for
18: end while
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A.2 Experimental details

A.2.1 Experimental Setup and Datasets

The mini-Imagenet dataset proposed by (Vinyals et al., 2016) contains 100 classes, with
600 84 × 84 images per class sampled from the larger ImageNet dataset (Deng et al.,
2009). Following Ravi and Larochelle (2017), 64 classes are isolated for the training
set and, from the remaining classes, the validation and test sets of 16 and 20 classes,
respectively, are constructed. We use exactly the same train/validation/test split of
classes as the one suggested by Ravi and Larochelle (2017). We implement regression
networks using the automatic-differentation framework PyTorch (Paszke et al., 2017).

Many training optimizations exist, including using more classes in the training episodes
than in the testing episodes (Snell et al., 2017) or pre-training the feature extractor with
all training classes and a linear output layer (Qiao et al., 2018). However, we train all
methods from scratch and construct our training and testing episodes to have the same
number of classes N and shots K because we are interested in the relative performance
of the methods. For RegressionNet, the conditioning parameter used to ensure a fully
invertible matrix in Equation (3.5) is set to λ1 = 10−3. For 1-shot and 5-shot learning,
λ2 = 10−3 and λ2 = 10−2 are used, respectively.

A.2.2 Architectures and training

Despite the modification of some implementation details of the methods with respect
to the original papers, these settings ensure a fair comparison and W.-Y. Chen et al.
(2019) report a maximal drop in classification performance of 2% with respect to the
original reported performance of each method. For MAML, we reuse the results from
W.-Y. Chen et al. (2019).

The Conv-4 backbone is composed of four convolutional blocks with an input size of
84×84 as in Snell et al. (2017). Each block comprises a 64-filter 3×3 convolution with a
padding of 1 and a stride of 1, a batch normalization layer, a ReLU nonlinearity and a
2×2 max-pooling layer.

The ResNet-10 backbone has an input size of 224×224 and is a simplified version of
ResNet-18 in He et al. (2016), by using only one residual building block in each layer.

All methods are trained with a random parameter initialization and use the Adam
optimizer (Kingma and J. L. Ba, 2015) with an initial learning rate of 10−3. During
the training stage, data augmentation is done in the form of: random crop, color jitter,
and left-right flip. For MatchingNet, a rather sophisticated long-short term memory
(LSTM)-based full context embedding (FCE) classification layer without fine-tuning is
used over the support set, and the cosine similarity metric is multiplied by a constant
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factor of 100. In RelationNet, the L2 norm is replaced with a softmax layer to help the
training procedure (W.-Y. Chen et al., 2019). The relation module is composed of 2
convolutional blocks (same as in Conv-4), followed by two fully connected layers of size 8
and 1.

In all settings, we train for 60,000 episodes and use the held-out validation set to select
the best model during training. To construct an N -way episode, we sample N = 5 classes
from the training set of classes. From each sampled class, we sample K examples to
construct the support set of an episode and Q = 16 examples for the query set. During
testing, we average the results over 600 episodes of exactly the same form, but this time
they are sampled from the test set classes.

A.3 Extra experiments: mini-ImageNet and CUB

We provide additional results for some considered methods on the effect of increasing
the feature embedding backbone depth even further and increasing the number of shots
to 10. Also, next to the already considered mini-ImageNet few-shot dataset, we also
evaluate performance on CUB. Note that for RegressionNet we do not use the subspace
orthogonalization regularizer from Section 3.3.3. Tables A.1 to A.6 show the results on
this.

As expected, performance of the few-shot classification methods generally improves when
a deeper backbone is used. As can be seen, the relative rank in terms of classification
accuracy of the distance-metric based methods shifts significantly when going from
the Conv-4 embedding architecture to a deeper ResNet-10 or ResNet-34. For example
in Table A.2, RelationNet performs best in the Conv-4 setting, but worst when using
ResNet-34 and RegressionNet takes first place. Generally, across datasets and number of
shots, regression networks outperform the other considered methods when the backbone
is relatively deep (ResNet-10 and deeper).

Since regression networks are expected to build better subspace representations when
more support examples are available per class, we investigate the effect of the number of
shots. As expected, when increasing the number of shots K per class, the classification
accuracies increase for almost all methods. Even for the smaller Conv-4 backbone,
regression networks outperform all other methods on both datasets when 10 shots are
used.

Comparing the classification results on the CUB and mini-ImageNet datasets, the
accuracies are consistently higher for CUB under the same setting (backbone, shots,
method). This can be explained by the difference in divergence of classes; this difference is
higher in mini-ImageNet than in CUB (W.-Y. Chen et al., 2019). Appendix A.4 discusses
extra experiments on the transferrability of different methods under domain-shift and

81



Chapter A Appendix for chapter 3

Conv-4 ResNet-10 ResNet-34

MatchingNet 61.16 ± 0.89 71.29 ± 0.90 71.44 ± 0.96
ProtoNet 51.31 ± 0.91 70.13 ± 0.94 72.03 ± 0.91
RelationNet 62.45 ± 0.98 68.65 ± 0.91 66.20 ± 0.99
RegressionNet (ours) 59.05 ± 0.90 72.92 ± 0.90 73.74± 0.88

Table A.1: CUB 5-way 1-shot classification accuracies with 95% confidence intervals for
different methods and backbones. For each backbone, the best method is highlighted.

Conv-4 ResNet-10 ResNet-34

MatchingNet 76.74 ± 0.67 83.75 ± 0.60 85.96 ± 0.52
ProtoNet 76.14 ± 0.68 85.70 ± 0.52 88.49 ± 0.46
RelationNet 78.98 ± 0.63 82.67 ± 0.61 84.13 ± 0.57
RegressionNet (ours) 78.48 ± 0.65 87.45 ± 0.48 89.30 ± 0.45

Table A.2: CUB 5-way 5-shot classification accuracies with 95% confidence intervals for
different methods and backbones. For each backbone, the best method is highlighted.

further reports on the difference in divergence between classes in CUB and mini-ImageNet.

A.4 Domain Shift: mini-ImageNet to CUB and CUB to
mini-ImageNet

We provide additional results on how some of the considered few-shot classification
methods perform when the test set is increasingly different from the train set. Note that
for RegressionNet we do not use the subspace orthogonalization regularizer from Section
3.3.3. In this section we perform experiments by permuting the training and testing
domain from one dataset to another (denoted as train → test). The mini-ImageNet
→ CUB setting, introduced by W.-Y. Chen et al. (2019), represents a coarse-grained

Conv-4 ResNet-10 ResNet-34

MatchingNet 79.27 ± 0.61 85.38 ± 0.54 89.03 ± 0.46
ProtoNet 81.77 ± 0.57 87.61 ± 0.44 90.35 ± 0.40
RelationNet 82.66 ± 0.56 84.96 ± 0.53 87.29 ± 0.46
RegressionNet (ours) 83.02 ± 0.53 89.28 ± 0.41 91.46 ± 0.36

Table A.3: CUB 5-way 10-shot classification accuracies with 95% confidence intervals for
different methods and backbones. For each backbone, the best method is highlighted.
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Conv-4 ResNet-10 ResNet-34

MatchingNet 48.14 ± 0.78 54.49 ± 0.81 53.20 ± 0.78
ProtoNet 44.42 ± 0.84 51.98 ± 0.84 53.90 ± 0.83
RelationNet 49.31 ± 0.85 52.19 ± 0.83 52.74 ± 0.83
RegressionNet (ours) 47.99 ± 0.80 54.83 ± 0.83 53.93 ± 0.81

Table A.4: miniImageNet 5-way 1-shot classification accuracies with 95% confidence
intervals for different methods and backbones. For each backbone, the best method is
highlighted.

Conv-4 ResNet-10 ResNet-34

MatchingNet 63.28 ± 0.68 69.14 ± 0.69 70.36 ± 0.70
ProtoNet 65.15 ± 0.67 73.77 ± 0.64 75.14 ± 0.65
RelationNet 65.33 ± 0.70 69.97 ± 0.68 71.38 ± 0.68
RegressionNet (ours) 66.41 ± 0.66 74.03 ± 0.68 75.62 ± 0.61

Table A.5: miniImageNet 5-way 5-shot classification accuracies with 95% confidence
intervals for different methods and backbones. For each backbone, the best method is
highlighted.

Conv-4 ResNet-10 ResNet-34

MatchingNet 67.47 ± 0.64 74.63 ± 0.62 73.88 ± 0.65
ProtoNet 72.01 ± 0.67 78.92 ± 0.54 79.62 ± 0.55
RelationNet 70.27 ± 0.63 75.69 ± 0.61 75.40 ± 0.62
RegressionNet (ours) 72.69 ± 0.61 80.08 ± 0.57 80.42 ± 0.53

Table A.6: miniImageNet 5-way 10-shot classification accuracies with 95% confidence
intervals for different methods and backbones. For each backbone, the best method is
highlighted.
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training set CUB mini-ImageNet mini-ImageNet CUB
test set CUB mini-ImageNet CUB mini-ImageNet

MatchingNet 83.75 ± 0.60 69.14 ± 0.69 52.59 ± 0.71 48.95 ± 0.67
ProtoNet 85.70 ± 0.52 73.77 ± 0.64 59.22 ± 0.74 53.58 ± 0.73
RelationNet 82.67 ± 0.61 69.97 ± 0.68 54.36 ± 0.71 45.27 ± 0.66
RegressionNet (ours) 87.45 ± 0.48 74.03 ± 0.68 62.71 ± 0.71 56.66 ± 0.68

Table A.7: Identical domain and domain shift accuracies for 5-way 5-shot classification
using a ResNet-10 backbone and mini-ImageNet and CUB datasets. The best-performing
method is highlighted.

train set to fine-grained test set domain-shift. Conversely, we propose to use the inverse
scenario CUB → mini-ImageNet as well.

In mini-ImageNet → CUB, all 100 classes from mini-ImageNet make up the training set
and the same 50 validation and 50 test classes from CUB are used. Conversely, in CUB
→ mini-ImageNet, all 200 classes from CUB make up the training set and the same 16
validation and 20 test classes from mini-ImageNet are used. To illustrate the domain
shift, we can look at the mini-ImageNet → CUB setting: the 200 classes of CUB are all
types of birds, whereas the 64 classes in the training set of mini-ImageNet only contain 3
types of birds, which are not to be found in CUB. Evaluating the domain-shift scenario
enables us to understand better which method is more general.

Table A.7 presents our results in the context of existing state-of-the-art distance-metric
learning based methods. All experiments in this setting are conducted with a ResNet-10
backbone on a 5-way 5-shot problem. The intra-domain difference between classes is
higher in mini-ImageNet than in CUB (W.-Y. Chen et al., 2019), which is reflected by a
drop of the test accuracies of all methods. It can also be seen that when the domain
difference between the training and test stage classes increases (left to right in Table A.7)
the performance of all few-shot algorithms lowers.

As expected, the classification accuracy lowers when going from the mini-ImageNet →
CUB to the CUB → mini-ImageNet setting. Interestingly though, it does not decrease
substantially. This shows that the different feature embeddings generalize well, at
least across these two different datasets. Compared to other distance-metric learning
based methods, regression networks show significantly better performance in both the
mini-ImageNet → CUB setting and CUB → mini-ImageNet setting.
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B.1 Experimental Details

B.1.1 Datasets

In-domain datasets

For our in-domain experiments we used the popular few-shot datasets Omniglot (B. Lake
et al., 2011) and mini-ImageNet (Vinyals et al., 2016).

Omniglot consists of 1623 handwritten characters from 50 alphabets and 20 examples per
character. Identical to Vinyals et al. (2016), the grayscale images are resized to 28x28.
Following Santoro et al. (2016), we use 1200 characters for training and 423 for testing.

Mini-ImageNet is a subset of the ILSVRC-12 dataset (Russakovsky et al., 2015a), which
contains 60,000 color images that we resized to 84x84. For comparability, we use the
splits introduced by Ravi and Larochelle (2017) over 100 classes with 600 images each.
64 classes are used for pre-training and 20 for testing. We only use the 16 validation set
classes for limited hyperparameter tuning of batch size N , number of queries Q and the
augmentation strengths.

Cross-domain datasets

We evaluate all cross-domain experiments the CDFSL-benchmark (Guo et al., 2019). It
comprises four datasets with decreasing similarity to mini-ImageNet. In order of similarity,
they are plant disease images from CropDiseases (Mohanty et al., 2016), satellite images
from EuroSAT (Helber et al., 2019), dermatological images from ISIC2018 (Tschandl
et al., 2018; Codella et al., 2019) and grayscale chest x-ray images from ChestX (Wang
et al., 2017).
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Table B.1: ProtoTransfer hyperparameter summary.

in-domain cross-domain
Hyperparameter Omniglot mini-ImageNet mini-ImageNet CUB

Model architecture Conv-4 Conv-4 ResNet-10 Conv-4
Image input size 28× 28 84× 84 224× 224 84× 84
Optimizer Adam Adam Adam Adam
Learning rate 0.001 0.001 0.001 0.001
Learning rate decay factor 0.5 0.5 / 0.5
Learning rate decay period 25,000 25,000 / 25,000
Support examples 1 1 1 1
Augmented queries (Q) 3 3 3 3
Training batch size (N) 50 50 50 50
Augmentation appendix B.1.3 B.1.3 B.1.3 B.1.3

Fine-tuning optimizer Adam Adam Adam Adam
Fine-tuning learning rate 0.001 0.001 0.001 0.001
Fine-tuning batch size 5 5 5 5
Fine-tuning epochs 15 15 15 15
Fine-tune last layer ✓ ✓ ✓ ✓
Fine-tune backbone ✓

Caltech-UCSD Birds-200-2011 (CUB) dataset

We use the Caltech-UCSD Birds-200-2011 (CUB) dataset (Welinder et al., 2010; Wah
et al., 2011) in our ablation studies. It is composed of 11,788 images from 200 different
bird species. We follow the splits proposed by Hilliard et al. (2018) with 100 training, 50
validation and 50 test classes. We do not use the validation set classes.

B.1.2 Architecture and Optimization Parameters

In the following, we describe the experimental details for the individual experiments.
We deliberately stay close to the parameters reported in prior work and do not perform
an extensive hyperparameter search for our specific setup, as this can easily lead to
performance overestimation compared to simpler approaches (Oliver et al., 2018)). Table
B.1 summarizes the hyperparameters we used for ProtoTransfer.

In-Domain Experiments

Our mini-ImageNet and Omniglot experiments use the Conv-4 architecture proposed in
Vinyals et al. (2016) for comparability. Its four convolutional blocks each apply a 64-filters
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3x3 convolution, batch normalization, a ReLU nonlinearity and 2x2 max-pooling. The
pre-training mostly mirrors Snell et al. (2017) and uses Adam (Kingma and J. L. Ba,
2015) with an initial learning rate of 0.001, which is multiplied by a factor of 0.5 every
25000 iterations. We use a batch size of 50. We do not use the validation set to select the
best training epoch. Instead training stops after 20.000 iterations without improvement
in training accuracy.

Cross-Domain Experiments

Our experiments on the CDFSL-Challenge are based on the code provided by Guo et al.
(2019). Following Guo et al. (2019), we use a ResNet10 architecture that is pre-trained
on mini-Imagenet images of size 224x224 for 400 epochs with Adam (Kingma and J. L.
Ba, 2015) and the default learning rate of 0.001 for best comparability with the results
reported in Guo et al. (2019). The batch size for self-supervised pre-training is 50. We
do not use a validation set.

Caltech-UCSD Birds-200-2011 (CUB) Experiments

The CUB training is identical in terms of architecture (Conv-4) and optimization to the
setup for our in-domain experiments.

Prototypical Fine-Tuning

During the fine-tuning stage we add a fully connected classification layer after the
embedding function and initialize as described in Section 4.3.3. We split the support
examples into batches of 5 images each and perform 15 fine-tuning epochs with Adam
(Kingma and J. L. Ba, 2015) and an initial learning rate of 0.001. For target datasets
mini-ImageNet and Omniglot only the last fully connected layer is optimized, while for
the CDFSL benchmark experiments the embedding network is adapted as well.

B.1.3 Augmentations

CDFSL transforms

For the CDFSL-benchmark (Guo et al., 2019) experiments we employ the same aug-
mentations as T. Chen et al. (2020), as these have proven to work well for ImageNet
(Russakovsky et al., 2015a) images of size 224x224. They are as follows:

1. Random crop and resize: scale ∈ [0.08, 1.0] , aspect ratio ∈ [3/4, 4/3], Bilinear
filter with interpolation = 2
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2. Random horizontal flip

3. Random (p = 0.8) color jitter: brightness = contrast = saturation = 0.8,
hue=0.2

4. Random (p = 0.2) grayscale

5. Gaussian blur, random radius σ ∈ [0.1, 0.2]

mini-ImageNet & CUB transforms

For the mini-Imagenet and CUB experiments we used lighter versions of the T. Chen
et al. (2020) augmentations, namely no Gaussian blur, lower color jitter strengths and
smaller rescaling and cropping ranges. They are as follows:

1. * Random crop and resize: scale ∈ [0.5, 1.0] , aspect ratio ∈ [3/4, 4/3], Bilinear
filter with interpolation = 2

2. Random horizontal flip

3. * Random vertical flip

4. * Random (p = 0.8) color jitter:
brightness = contrast = saturation = 0.4, hue=0.2

5. Random (p = 0.2) grayscale

Omniglot transforms

For Omniglot we use a set of custom augmentations, namely random resizing and
cropping, horizontal and vertical flipping, Image-Pixel Dropout (Krizhevsky et al., 2012)
and Cutout (DeVries and Taylor, 2017). They are as follows:

1. Resize to a size of 28x28 pixels

2. Random and resize: scale ∈ [0.6, 1.0] , aspect ratio ∈ [3/4, 4/3], Bilinear filter
with interpolation = 2

3. Random horizontal flip

4. Random vertical flip

5. Random (p = 0.3) dropout

6. Random erasing of a rectangular region in an image (Zhong et al., 2020), setting
pixel values to 0: scale ∈ [0.02, 0.33], aspect ratio ∈ [0.3, 3.3]
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B.1.4 Classes for t-SNE Plots

The classes in the t-SNE plots are a random subset of classes from the mini-ImageNet
base classes (classes 1-5) and the mini-ImageNet novel classes (classes 6-10). Their
corresponding labels are the following:

1. n02687172 aircraft carrier

2. n04251144 snorkel

3. n02823428 beer bottle

4. n03676483 lipstick

5. n03400231 frying pan

6. n03272010 electric guitar

7. n07613480 trifle

8. n03775546 mixing bowl

9. n03127925 crate

10. n04146614 school bus

Each of the t-SNE plots in Figure 4.3 shows 500 randomly selected embedded images
from within those classes.

B.1.5 Results With Full Confidence Intervals & References
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Table B.2: Accuracy (%) of methods on N -way K-shot classification tasks on Omniglot
and a Conv-4 architecture. All results are reported with 95% confidence intervals over
600 randomly generated test episodes. Results style: best and second best.

Method (N,K) (5,1) (5,5) (20,1) (20,5)

Omniglot

Training (scratch) 52.50 ± 0.84 74.78 ± 0.69 24.91 ± 0.33 47.62 ± 0.44

CACTUs-MAML
I

68.84 ± 0.80 87.78 ± 0.50 48.09 ± 0.41 73.36 ± 0.34
CACTUs-ProtoNetI 68.12 ± 0.84 83.58 ± 0.61 47.75 ± 0.43 66.27 ± 0.37
UMTRAII 83.80 ± - 95.43 ± - 74.25 ± - 92.12 ± -
AAL-ProtoNetIII 84.66 ± 0.70 89.14 ± 0.27 68.79 ± 1.03 74.28 ± 0.46
AAL-MAML++III 88.40 ± 0.75 97.96 ± 0.32 70.21 ± 0.86 88.32 ± 1.22
UFLSTIV 97.03 ± - 99.19 ± - 91.28 ± - 97.37 ± -
ProtoTransfer (ours) 88.00 ± 0.64 96.48 ± 0.26 72.27 ± 0.47 89.08 ± 0.23

Supervised training

MAML
I

94.46 ± 0.35 98.83 ± 0.12 84.60 ± 0.32 96.29 ± 0.13
ProtoNet 97.70 ± 0.29 99.28 ± 0.10 94.40 ± 0.23 98.39 ± 0.08
Pre+Linear 94.30 ± 0.43 99.08 ± 0.10 86.05 ± 0.34 97.11 ± 0.11
I

Hsu et al. (2019)
II

Khodadadeh et al. (2019)
III

Antoniou and Storkey (2019)
IV

Ji et al. (2019)
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Table B.3: Accuracy (%) of methods on N -way K-shot classification tasks mini-Imagenet
and a Conv-4 architecture. All results are reported with 95% confidence intervals over
600 randomly generated test episodes. Results style: best and second best.

Method (N,K) (5,1) (5,5) (5,20) (5,50)

Mini-ImageNet

Training (scratch) 27.59 ± 0.59 38.48 ± 0.66 51.53 ± 0.72 59.63 ± 0.74

CACTUs-MAML
I

39.90 ± 0.74 53.97 ± 0.70 63.84 ± 0.70 69.64 ± 0.63
CACTUs-ProtoNetI 39.18 ± 0.71 53.36 ± 0.70 61.54 ± 0.68 63.55 ± 0.64
UMTRAII 39.93 ± - 50.73 ± - 61.11 ± - 67.15 ± -
AAL-ProtoNetIII 37.67 ± 0.39 40.29 ± 0.68 - -
AAL-MAML++III 34.57 ± 0.74 49.18 ± 0.47 - -
UFLSTIV 33.77 ± 0.70 45.03 ± 0.73 53.35 ± 0.59 56.72 ± 0.67
ULDA-ProtoNetV 40.63 ± 0.61 55.41 ± 0.57 63.16 ± 0.51 65.20 ± 0.50
ULDA-MetaOptNetV 40.71 ± 0.62 54.49 ± 0.58 63.58 ± 0.51 67.65 ± 0.48
ProtoTransfer (ours) 45.67 ± 0.79 62.99 ± 0.75 72.34 ± 0.58 77.22 ± 0.52

Supervised training

MAML
I

46.81 ± 0.77 62.13 ± 0.72 71.03 ± 0.69 75.54 ± 0.62
ProtoNet 46.44 ± 0.78 66.33 ± 0.68 76.73 ± 0.54 78.91 ± 0.57
Pre+Linear 43.87 ± 0.69 63.01 ± 0.71 75.46 ± 0.58 80.17 ± 0.51
I

Hsu et al. (2019)
II

Khodadadeh et al. (2019)
III

Antoniou and Storkey (2019)
IV

Ji et al. (2019)
V

Qin et al. (2020)
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Table B.4: Accuracy (%) of methods on N -way K-shot classification tasks of the CDFSL
benchmark (Guo et al., 2019). All models are trained on mini-ImageNet with ResNet-10.
All results are reported with 95% confidence intervals over 600 randomly generated test
episodes. Results style: best and second best.

Method UnSup (5,5) (5,20) (5,50) (5,5) (5,20) (5,50)

ChestX ISIC

ProtoNet* 24.05 ± 1.01 28.21 ± 1.15 29.32 ± 1.12 39.57 ± 0.57 49.50 ± 0.55 51.99 ± 0.52
Pre+Mean-Centroid* 26.31 ± 0.42 30.41 ± 0.46 34.68 ± 0.46 47.16 ± 0.54 56.40 ± 0.53 61.57 ± 0.66
Pre+Linear* 25.97 ± 0.41 31.32 ± 0.45 35.49 ± 0.45 48.11 ± 0.64 59.31 ± 0.48 66.48 ± 0.56
UMTRA-ProtoNet ✓ 24.94 ± 0.43 28.04 ± 0.44 29.88 ± 0.43 39.21 ± 0.53 44.62 ± 0.49 46.48 ± 0.47
UMTRA-ProtoTune ✓ 25.00 ± 0.43 30.41 ± 0.44 35.63 ± 0.48 38.47 ± 0.55 51.60 ± 0.54 60.12 ± 0.50
ProtoTransfer (ours) ✓ 26.71 ± 0.46 33.82 ± 0.48 39.35 ± 0.50 45.19 ± 0.56 59.07 ± 0.55 66.15 ± 0.57

EuroSat CropDiseases

ProtoNet* 73.29 ± 0.71 82.27 ± 0.57 80.48 ± 0.57 79.72 ± 0.67 88.15 ± 0.51 90.81 ± 0.43
Pre+Mean-Centroid* 82.21 ± 0.49 87.62 ± 0.34 88.24 ± 0.29 87.61 ± 0.47 93.87 ± 0.68 94.77 ± 0.34
Pre+Linear* 79.08 ± 0.61 87.64 ± 0.47 91.34 ± 0.37 89.25 ± 0.51 95.51 ± 0.31 97.68 ± 0.21
UMTRA-ProtoNet ✓ 74.91 ± 0.72 80.42 ± 0.66 82.24 ± 0.61 79.81 ± 0.65 86.84 ± 0.50 88.44 ± 0.46
UMTRA-ProtoTune ✓ 68.11 ± 0.70 81.56 ± 0.54 85.05 ± 0.50 82.67 ± 0.60 92.04 ± 0.43 95.46 ± 0.31
ProtoTransfer (ours) ✓ 75.62 ± 0.67 86.80 ± 0.42 90.46 ± 0.37 86.53 ± 0.56 95.06 ± 0.32 97.01 ± 0.26
* Results from Guo et al. (2019)

Table B.5: Accuracy (%) of methods on N -way K-shot (N, K) classification tasks on
mini-ImageNet with a Conv-4 architecture for different training image batch sizes, number
of training queries (Q) and optional finetuning on target tasks (FT). UMTRA-MAML
results are taken from Khodadadeh et al. (2019), where UMTRA uses AutoAugment
(Cubuk et al., 2019) augmentations. All results are reported with 95% confidence intervals
over 600 randomly generated test episodes. Results style: best and second best.

Training Testing batch size Q FT (5,1) (5,5) (5,20) (5,50)

n.a. ProtoNet n.a. n.a. no 27.05 ± 0.56 34.12 ± 0.59 39.68 ± 0.59 41.40 ± 0.59
UMTRA* MAML 5 1 yes 39.93 ± - 50.73 ± - 61.11 ± - 67.15 ± -
UMTRA ProtoNet 5 1 no 39.17 ± 0.53 53.78 ± 0.53 62.41 ± 0.49 64.40 ± 0.46
ProtoCLR ProtoNet 50 1 no 44.53 ± 0.60 62.88 ± 0.54 70.86 ± 0.48 73.93 ± 0.44
ProtoCLR ProtoNet 50 3 no 44.89 ± 0.58 63.35 ± 0.54 72.27 ± 0.45 74.31 ± 0.45
ProtoCLR ProtoNet 50 5 no 45.00 ± 0.57 63.17 ± 0.55 71.70 ± 0.48 73.98 ± 0.44
ProtoCLR ProtoNet 50 10 no 44.98 ± 0.58 62.56 ± 0.53 70.78 ± 0.48 73.69 ± 0.44
ProtoCLR ProtoTune 50 3 yes 45.67 ± 0.76 62.99 ± 0.75 72.34 ± 0.58 77.22 ± 0.52
* Khodadadeh et al. (2019)
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Table B.6: Accuracy (%) of methods on N -way K-shot classification tasks on Mini-
ImageNet with a Conv-4 architecture when reducing the number of pre-training classes
or images. All results are reported with 95% confidence intervals over 600 randomly
generated test episodes. Results style: best and second best.

Method # images # classes (5,1) (5,5) (5,20) (5,50)

Random+ProtoTune* 0 0 28.16 ± 0.56 35.32 ± 0.60 42.72 ± 0.63 47.05 ± 0.61
Random+Linear 0 0 26.77 ± 0.52 34.68 ± 0.58 44.62 ± 0.61 51.79 ± 0.61
ProtoTransfer 600 1 32.20 ± 0.57 48.89 ± 0.64 60.80 ± 0.62 66.91 ± 0.56
ProtoTransfer 600 ≤ 64 37.02 ± 0.65 52.84 ± 0.72 64.76 ± 0.63 69.54 ± 0.58
Pre+Linear 600 ≤ 64 36.58 ± 0.69 52.03 ± 0.72 63.04 ± 0.68 68.34 ± 0.64
ProtoTransfer 1200 2 34.15 ± 0.61 53.59 ± 0.68 64.59 ± 0.63 70.24 ± 0.54
ProtoTransfer 1200 ≤ 64 38.88 ± 0.70 55.53 ± 0.69 66.91 ± 0.57 71.16 ± 0.56
Pre+Linear 1200 2 27.05 ± 0.46 37.06 ± 0.57 47.68 ± 0.62 54.37 ± 0.59
Pre+Linear 1200 ≤ 64 37.81 ± 0.70 53.96 ± 0.69 65.43 ± 0.68 70.02 ± 0.59
ProtoTransfer 2400 4 37.96 ± 0.64 55.27 ± 0.69 66.61 ± 0.60 70.92 ± 0.55
ProtoTransfer 2400 ≤ 64 40.90 ± 0.71 59.12 ± 0.71 69.34 ± 0.60 73.32 ± 0.55
Pre+Linear 2400 4 31.26 ± 0.57 45.41 ± 0.65 58.48 ± 0.65 63.63 ± 0.61
Pre+Linear 2400 ≤ 64 38.82 ± 0.69 55.26 ± 0.70 67.96 ± 0.64 73.29 ± 0.58
ProtoTransfer 4800 8 40.74 ± 0.73 59.00 ± 0.71 69.45 ± 0.61 74.08 ± 0.53
ProtoTransfer 4800 ≤ 64 41.97 ± 0.74 59.09 ± 0.71 69.40 ± 0.61 73.60 ± 0.56
Pre+Linear 4800 8 34.54 ± 0.60 52.04 ± 0.69 65.71 ± 0.59 70.44 ± 0.53
Pre+Linear 4800 ≤ 64 41.38 ± 0.70 58.15 ± 0.73 70.51 ± 0.63 75.05 ± 0.56
ProtoTransfer 9600 16 42.04 ± 0.76 60.35 ± 0.72 70.70 ± 0.58 75.16 ± 0.57
ProtoTransfer 9600 ≤ 64 42.94 ± 0.78 60.36 ± 0.72 70.66 ± 0.59 74.67 ± 0.55
Pre+Linear 9600 16 38.39 ± 0.65 54.78 ± 0.67 67.75 ± 0.60 73.42 ± 0.52
Pre+Linear 9600 ≤ 64 41.74 ± 0.73 60.24 ± 0.68 73.03 ± 0.61 77.90 ± 0.53
ProtoTransfer 19200 32 43.88 ± 0.76 61.22 ± 0.69 71.26 ± 0.59 75.62 ± 0.52
ProtoTransfer 19200 ≤ 64 44.02 ± 0.74 60.78 ± 0.72 71.58 ± 0.56 75.77 ± 0.52
Pre+Linear 19200 32 40.10 ± 0.63 59.58 ± 0.65 72.45 ± 0.56 76.53 ± 0.52
Pre+Linear 19200 ≤ 64 41.58 ± 0.71 61.20 ± 0.66 73.57 ± 0.56 79.01 ± 0.51
ProtoTransfer 38400 64 45.67 ± 0.76 62.99 ± 0.75 72.34 ± 0.58 77.22 ± 0.52
Pre+Linear 38400 64 43.87 ± 0.69 63.01 ± 0.71 75.46 ± 0.58 80.17 ± 0.51
* Trained for 100 epochs instead of the default 15 epochs for ProtoTune, since training a classifier on top of a fixed randomly

initialized network is expected to require more fine-tuning than starting from a pre-trained network.

Table B.7: Accuracy (%) on N -way K-shot classification tasks on Mini-ImageNet for
methods trained on the CUB training set (5885 images) with a Conv-4 architecture. All
results are reported with 95% confidence intervals over 600 randomly generated test
episodes. Results style: best and second best.

Training Testing (5,1) (5,5) (5,20) (5,50)

ProtoCLR ProtoNet 34.56 ± 0.61 52.76 ± 0.63 62.76 ± 0.59 66.01 ± 0.55
ProtoCLR ProtoTransfer 35.37 ± 0.63 52.38 ± 0.66 63.82 ± 0.59 68.95 ± 0.57
Pre(training) Linear 33.10 ± 0.60 47.01 ± 0.65 59.94 ± 0.62 65.75 ± 0.63
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We compute the gradient of the meta-learning loss function. Suppose that, for each
task Tτ , the inner-learner takes 2 steps of stochastic gradient descent and updates
the parameters to θ2

τ . From Equation (5.3), we can write the gradient using a Taylor
expansion:

g = θ0
τ − θ2

τ

α
= L′

τ,0

(
θ0

τ

)
+ L′

τ,1

(
θ0

τ

)
− αL′′

τ,1

(
θ0

τ

)
L′

τ,0

(
θ0

τ

)
+ O

(
α2

)
(C.1)

Lτ,0 is the loss computed on the first minibatch sampled from task τ , and Lτ,1 is the
loss computed on the second minibatch sampled from task τ . The expectation of the
first two terms in Equation (C.1) corresponds to the gradient of expected loss, and the
expectation of the third term can be written as:

Eτ,0,1
[
L′′

1(θ)L′
0(θ)

]
= 1

2Eτ,0,1

[
∂

∂θ

(
L′

1(θ) · L′
0(θ)

)]
. (C.2)

This term increases the inner product of the gradient of the first minibatch and the
gradient of the second minibatch, which means it encourages the gradients from different
minibatches for a given task to align in the same direction.

95





D Appendix for chapter 6

D.1 Omniglot

Omniglot consists of 1623 handwritten characters from 50 alphabets and 20 examples
per character. Identical to Vinyals et al. (2016), the grayscale images are resized to
28x28. However, to not have overlapping alphabets between training and testing sets, we
resample the characters and alphabets according to Section D.1.2.

D.1.1 Hyperparameters

Table D.1 provides the hyperparamters used for Omniglot training and testing.

D.1.2 training (30), validation (4), test (16) alphabets

training Anglo-Saxon_Futhorc, Armenian, Atlantean, Aurek-Besh, Balinese, Bengali,
Braille, Burmese_(Myanmar), Cyrillic, Early_Aramaic, Ge_ez, Grantha, Gujarati,
Inuktitut_(Canadian_Aboriginal_Syllabics), Japanese_(hiragana), Japanese_(katakana),
Kannada, Keble, Korean, Latin, Malay_(Jawi_-_Arabic), Malayalam, Manipuri, Mkhe-
druli_(Georgian), Ojibwe_(Canadian_Aboriginal_Syllabics), Sanskrit, Sylheti, Syr-
iac_(Estrangelo), Tagalog, Tifinagh

validation Asomtavruli_(Georgian), Futurama, Oriya, ULOG

testing Alphabet_of_the_Magi, Angelic, Arcadian, Atemayar_Qelisayer, Avesta,
Blackfoot_(Canadian_Aboriginal_Syllabics), Glagolitic, Greek, Gurmukhi, Hebrew, Mon-
golian, N_Ko, Old_Church_Slavonic_(Cyrillic), Syriac_(Serto), Tengwar, Tibetan
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Table D.1: Omniglot hyperparameter summary.

Few-shot Few-task Few-shot
Hyperparameter MAML ANIL BOIL MALTML MALTML-ANIL MALTML-BOIL

Model architecture Conv-4 Conv-4 Conv-4 Conv-4 Conv-4 Conv-4
Image input size 28× 28 28× 28 28× 28 28× 28 28× 28 28× 28
Outer optimizer Adam Adam Adam Adam Adam Adam
Outer step size 0.001 0.001 0.001 0.001 0.001 0.001
Query examples/task 15 15 15 15 15 15
Support Tasks/family n.a. n.a. n.a. 5 5 5
Query Tasks/family n.a. n.a. n.a. 15 15 15
Training batch size 16 tasks 16 tasks 16 tasks 4 families 4 families 4 families

Meta-tuning optimizer n.a. n.a. n.a. SGD SGD SGD
Meta-tuning step size n.a. n.a. n.a. 0.4 0.1 0.4
Meta-tuning steps n.a. n.a. n.a. 1 1 1
Meta-tune last layer n.a. n.a. n.a. ✓ ✓
Meta-tune backbone n.a. n.a. n.a. ✓ ✓

Fine-tuning optimizer SGD SGD SGD SGD SGD SGD
Fine-tuning step size 0.1 0.1 0.1 0.4 0.1 0.4
Fine-tuning steps 1 5 1 1 5 1
Fine-tune last layer ✓ ✓ ✓ ✓
Fine-tune backbone ✓ ✓ ✓ ✓
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Table D.2: Tiered-ImageNet hyperparameter summary.

Few-shot Few-task Few-shot

Hyperparameter MAML MALTML MALTML-
Reptile

MALTML MALTML-
ANIL (partial)

MALTML-
ANIL (full)

Model architecture Conv-4 Conv-4 Conv-4 Conv-4 Conv-4 Conv-4
Image input size 84× 84 84× 84 84× 84 84× 84 84× 84 84× 84
Outer optimizer Adam Adam Adam Adam Adam Adam
Outer step size 0.001 0.001 0.001 0.001 0.001 0.001
Query examples/task 15 15 15 15 15 15
Support Tasks/family (shots) n.a. 4(1), 2(5) 4(1), 2(5) 4(1), 2(5) 4(1), 2(5) 4(1), 2(5)
Query Tasks/family num(shot) n.a. 8(1), 4(5) 8(1), 4(5) 8(1), 4(5) 8(1), 4(5) 8(1), 4(5)
Training batch size num(shot) 8(1), 4(5) 1 family 1 family 1 family 1 family 1 family

Meta-tuning optimizer n.a. SGD SGD SGD SGD SGD
Meta-tuning step size n.a. 0.05 0.05 0.05 0.05 0.05
Meta-tuning steps n.a. 1 1 1 1 1
Meta-tune entire network ✓ ✓ ✓ ✓ × ✓

Fine-tuning optimizer SGD SGD SGD SGD SGD SGD
Fine-tuning step size 0.5 0.5 0.5 0.5 0.5 0.5
Fine-tuning steps 1 1 1 1 1 1
Fine-tune entire network ✓ ✓ ✓ ✓ × ×

D.2 Tiered-ImageNet

D.2.1 Hyperparameters

Table D.2 provides the hyperparameters used for tiered-ImageNet training and testing.

D.2.2 training (20), validation (6), test (8) categories

training ’game equipment’, ’electronic equipment’, ’snake, serpent, ophidian’, ’tool’,
’establishment’, ’passerine, passeriform bird’, ’aquatic bird’, ’primate’, ’garment’, ’terrier’,
’saurian’, ’ungulate, hoofed mammal’, ’feline, felid’, ’restraint, constraint’, ’building,
edifice’, ’musical instrument, instrument’, ’instrument’, ’protective covering, protective
cover, protect’, ’hound, hound dog’, ’craft’

validation ’motor vehicle, automotive vehicle’, ’furnishing’, ’machine’, ’durables,
durable goods, consumer durables’, ’mechanism’, ’sporting dog, gun dog’
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testing ’working dog’, ’aquatic vertebrate’, ’vessel’, ’geological formation, formation’,
’obstruction, obstructor, obstructer, impedimen’, ’solid’, ’substance’, ’insect’

D.2.3 Family and task visualization

Figure D.1: Visualization of the tiered-ImageNet family distribution

D.3 2D navigation

Figure D.2 shows the results for 2D navigation.

D.4 Continual Regression

D.4.1 Hyperparameters

We borrow the architecture and inner loop hyperparameters from Javed and White (2019).
For the inner meta-steps, we use a step size of 0.2. Due to computational constraints, we
use only one trajectory each as query and support task and sample one family for each
outer update. For each trajectory, we use the same number of tasks (10) and minibatches
(40) per task as Javed and White (2019). The frequencies, amplitudes, and phases are
sampled uniformly from the ranges [1.0, 3.0],[0.1, 5.0], [0.0, π], respectively.
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(a) (b)

(c)

Figure D.2: Effect on MAML init of (a) task-finetuning (b) meta-update (TRPO) +
task-finetuning (c) meta-update (grad) + task-finetuning.

(a) (b)

Figure D.3: Effect on MAML init of (a) 1 gradient meta-tuning step (b) additionally a
goal task fine-tuning step.
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