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Abstract

Electron cloud continues to be one of the main limiting factors of the Large Hadron Collider

(LHC), the biggest accelerator at CERN. These clouds form in the beam chamber when posi-

tively charged particles are passing through and cause unwanted effects in both hardware and

the beam dynamics. This thesis focuses on the modeling of the beam dynamics of transverse

instabilities driven by electron clouds.

Conventional simulation methods are too computationally heavy to be able to simulate slow

instabilities. Therefore the Vlasov approach was explored, which through an analytical model

reduced the simulations to an eigenvalue problem and thus reduced the computational power

needed to model these instabilities. This employs a model of electron cloud forces where

the dipolar kicks and the detuning along the bunch coming from the electron cloud are

included. This formalism is used to express the electron cloud forces arising in both LHC

dipole and quadrupole magnets. To benchmark the Vlasov approach, this was compared with

macroparticle simulations using the same linear description of electron cloud forces. The

results showed good agreement between the Vlasov approach and macroparticle simulations

for strong electron clouds, with both approaches showing a stabilizing effect from positive

chromaticity. For weaker electron clouds and in the presence of chromaticity, a discrepancy in

instability growth rate is observed between the Vlasov approach and marcoparticle simula-

tions, which was thoroughly investigated. It was found that the discrepancy is only present

when detuning with longitudinal amplitude from electron cloud is present. If this term is

removed, the two simulation approaches agree very well. Similar results were obtained when

considering dipolar and quadrupolar forces from impedances.

Dedicated measurements at the LHC in conditions with high electron cloud were carried

out to study electron cloud driven instabilities. Bunch trains were injected for several values

of chromaticity and characteristic electron cloud driven instabilities were observed. The

instability growth rate had a strong dependence on chromaticity. Marcoparticle simulations

using the Vlasov formalism of forces could replicate the order or magnitude of the growth

rate and its strong dependence on the chromaticity. Additionally, the amount of amplitude

detuning provided by the octupole magnets required for stabilizing the beam was measured

for several bunch intensities and chromaticities. The results show that beams with higher

intensity need less stabilizing from octupoles. Electron cloud build-up simulations show a

lower electron cloud density in the center of the beam pipe of both dipoles and quadrupoles

for higher bunch intensities.
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Zusammenfassung

Die Elektronenwolke bleibt weiterhin einer der Hauptfaktoren, die den Large Hadron Collider

(LHC), den größten Teilchenbeschleuniger am CERN, einschränken. Diese Wolken entstehen

in der Strahlkammer, wenn positiv geladene Teilchen hindurchtreten, und verursachen uner-

wünschte Effekte sowohl in der Hardware als auch in der Strahldynamik. Diese Dissertation

konzentriert sich auf die Modellierung der Strahldynamik von transversalen Instabilitäten, die

durch die Elektronenwolke verursacht werden.

Konventionelle Simulationsmethoden sind zu rechenintensiv, um langsame Instabilitäten si-

mulieren zu können. Daher wurde der Vlasov-Ansatz erkundet, der mithilfe eines analytischen

Modells die Simulationen auf ein Eigenwertproblem reduzierte und somit den benötigten Re-

chenaufwand zur Modellierung dieser Instabilitäten verringerte. Dieser Ansatz verwendet ein

Modell der Elektronenwolkenkräfte, bei dem die dipolaren Stöße und die Abstimmung entlang

des Bündels, die von der Elektronenwolke stammen, berücksichtigt werden. Die Kräfte, die

von der Elektronenwolke in LHC-Quadrupolen und LHC-Dipolen erzeugt werden, wurden in

diesem Kraftformalismus ausgedrückt. Um den Vlasov-Ansatz zu überprüfen, wurde dieser mit

Makropartikel-Simulationen unter Verwendung der gleichen linearen Beschreibung der Elek-

tronenwolkenkräfte verglichen. Die Ergebnisse zeigten eine gute Übereinstimmung zwischen

dem Vlasov-Ansatz und den Makropartikel-Simulationen für starke Elektronenwolken, wobei

beide Ansätze einen stabilisierenden Effekt durch positive Chromatizität zeigten. Für schwä-

chere Elektronenwolken und in Anwesenheit von Chromatizität wurde eine Diskrepanz in der

Wachstumsrate der Instabilität zwischen dem Vlasov-Ansatz und Makropartikel-Simulationen

festgestellt, die gründlich untersucht wurde. Es wurde festgestellt, dass die Diskrepanz nur

vorhanden ist, wenn die Abstimmung mit der longitudinalen Amplitude der e-Cloud vorhan-

den ist. Wenn dieser Term entfernt wird, stimmen die beiden Simulationsansätze sehr gut

überein. Ähnliche Ergebnisse wurden bei Betrachtung dipolarer und quadrupolarer Kräfte aus

Impedanzen erzielt.

Dedizierte Messungen am Large Hadron Collider unter Bedingungen mit hoher Elektronenwol-

ke wurden durchgeführt, um e-cloud-getriebene Instabilitäten zu untersuchen. Bündelzüge

wurden für mehrere Werte der Chromatizität eingebracht, und charakteristische e-cloud-

getriebene Instabilitäten wurden beobachtet. Die Wachstumsrate der Instabilität zeigte eine

starke Abhängigkeit von der Chromatizität. Makropartikel-Simulationen unter Verwendung

des Vlasov-Formalismus für Kräfte konnten die Größenordnung der Wachstumsrate und

ihre starke Abhängigkeit von der Chromatizität replizieren. Zusätzlich wurde die Stabilitäts-

schwelle, die durch die Amplitudenabstimmung der Oktupolmagneten im LHC bestimmt
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Zusammenfassung

wurde, für mehrere Bündelintensitäten und Chromatizitäten gemessen. Die Ergebnisse zei-

gen, dass Strahlen mit höherer Intensität weniger Stabilisierung durch Oktupole benötigen.

Simulationen zum Aufbau der Elektronenwolke zeigen eine geringere Elektronendichte in der

Mitte des Strahlrohrs von sowohl Dipolen als auch Quadrupolen, was von der beobachteten

Intensitätsabhängigkeit herrührt.
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Résumé

Le nuage d’électrons reste l’un des principaux facteurs limitants du Grand collisionneur de

hadrons, le plus grand accélérateur du CERN. Ces nuages se forment dans la chambre à vide

du faisceau lorsque des particules chargées positivement la traversent et provoquent des

effets indésirables à la fois sur les équipements et sur la dynamique du faisceau. Cette thèse

se concentre sur la modélisation des instabilités transversales provoquées par les nuages

d’électrons.

Les méthodes de simulation conventionnelles demandent trop de puissance de calcul pour

pouvoir simuler des instabilités lentes. C’est pourquoi une approche utilisant l’équation

de Vlasov a été explorée, qui, par le biais d’un modèle analytique, réduit les simulations à

une équation aux valeurs propres, diminuant ainsi la puissance de calcul nécessaire pour

modéliser ces instabilités. Cette approche utilise un modèle de forces du nuage d’électrons

incluant les effets des déflections dipolaires et du désaccord en nombre d’onde le long du

paquet causés par le nuage d’électrons. Ce formalisme est utilisé pour exprimer les forces

du nuage d’électrons qui apparaissent dans les aimants dipolaires et quadripolaires du LHC.

L’approche de Vlasov a été comparée à des simulations macroparticules utilisant la même

description linéaire des forces du nuage d’électrons. Les résultats ont montré un bon accord

entre l’approche Vlasov et les simulations macroparticules pour les nuages d’électrons très

dense, les deux méthodes soulignant l’effet stabilisateur d’une chromaticité positive. Pour

les nuages d’électrons moins denses, et en présence de chromaticité, une divergence dans le

taux de croissance de l’instabilité est observée entre l’approche de Vlasov et les simulations

macroparticules, ce qui a fait l’objet d’un examen approfondi. Il a été constaté que l’écart

n’est présent qu’en cas de présence d’un désaccord du nombre d’onde selon l’amplitude

longitudinale des particules causé par le nuage d’électrons. Si ce terme est supprimé, les deux

approches sont en très bon accord. Des résultats similaires ont été obtenus en considérant les

forces dipolaires et quadrupolaires crées par des impédances de couplage du faisceau.

Des mesures spécifiques sur le Grand collisionneur de hadrons (LHC), dans des conditions

où le nuage d’électrons était dense, ont été effectuées pour étudier les instabilités induites

par le nuage d’électrons. Des trains de paquets ont été injectés pour plusieurs valeurs de

chromaticité et des instabilités caractéristiques induites par le nuage d’électrons ont été

observées. Le taux de croissance de l’instabilité dépendait fortement de la chromaticité. Des

simulations macroparticules utilisant le formalisme des forces de Vlasov ont pu reproduire

l’ordre de grandeur du taux de croissance et sa forte dépendance à la chromaticité. En outre,

le degré de désaccord en nombre d’onde généré par les aimants octupolaires et nécessaire
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Résumé

pour stabiliser le faisceau a été mesuré pour plusieurs intensités de paquet et plusieurs

chromaticités. Les résultats montrent que les faisceaux d’intensité plus élevée necessitent

moins d’octupoles pour être stabilisés. Les simulations de nuages d’électrons montrent que

pour des intensités du faisceau plus grandes, la densité de nuage d’électrons est plus faible au

centre de la chambre à vide des dipôles et des quadripôles.
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Introduction

CERN is the largest particle physics laboratory globally, housing several large particle accelera-

tors. The centerpiece of these accelerators is the Large Hadron Collider (LHC), a 27-kilometer

synchrotron capable of accelerating two counter-rotating beams of protons up to 6.8 TeV each.

The LHC, among the most complex machines ever built, demands a strong effort to achieve

the precise beam parameters essential for fundamental particle physics research.

Groups of protons, known as bunches, are accelerated to 450 GeV before they reach the LHC

by going through several smaller accelerators known as the injector complex. In the LHC itself,

the bunches are accelerated to the final energy. A typical bunch has about 1011 protons.

One of the main limiting factors of the LHC performance is the electron cloud, also known

as e-cloud. When protons are accelerated in the LHC electrons are emitted from the walls

of the beam chamber due to radiation from the bending of the proton beam or beam losses

These electrons are referred to as seed electrons or primary electrons. Secondary electrons are

emitted when the primary electrons hit the beam chamber walls with energies of a few 100

eV. The secondary electrons are then accelerated by the beam to reach high enough energies

to cause additional secondary emission. This leads to a build-up of electrons in the beam

chamber. The build-up process depends on the beam parameters, the geometry, and the

surface properties of the beam chamber as well as the magnetic field present. In particular,

the e-cloud arranges itself differently in a quadrupole magnet compared to a dipole magnet.

The detrimental effects of e-cloud manifest in various ways, including increased heat load

on the beam chambers, vacuum degradation, and beam quality deterioration. The latter

includes transverse beam instabilities which are exponentially growing oscillations that occur

perpendicular to the beam’s direction. Two key characteristics of these instabilities are the

change in transverse oscillation frequency, known as tune shift, and the rate at which the

transverse amplitude grows, referred to as the growth rate.

Efforts have been made to mitigate the impact of the e-cloud, primarily through surface

treatments and electron irradiation of the beam chamber walls. Nevertheless, these strategies

have their limitations, and the complete suppression of e-cloud formation is not possible.

Altering beam parameters, particularly by reducing the number of bunches in the machine,

offers a means to reduce e-cloud, yet such actions come at the cost of decreased luminosity
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Introduction

production. Therefore, it is imperative to gain a comprehensive understanding of how e-cloud

affects both the accelerator and beam dynamics in order to maximize the performance of the

collider.

Modeling instabilities driven by e-cloud presents a substantial computational challenge when

utilizing conventional methods. These simulations rely on Particle-in-Cell (PIC) algorithms,

which are computationally very demanding, especially when dealing with slow instabilities

characterized by low growth rates. These slow instabilities necessitate tracking a significant

number of machine turns to accurately capture their dynamics. Since the computation time

is directly proportional to the number of turns in the machine, the computational burden

quickly becomes prohibitively heavy.

The interaction between a particle beam and the surrounding accelerator structures, referred

to as beam-induced impedance, has been successfully modeled using the Vlasov approach.

This approach employs the Vlasov equation to describe the collective motion of a particle

distribution in a system governed by a Hamiltonian. In this approach the instability growth

rate and tune shift can be calculated from the eigenvalues of the Vlasov equation, meaning the

computation time is independent of the instability growth rate, which makes it very attractive

to model slow instabilities.

Attempts have previously been made to model also e-cloud driven instabilities in this formal-

ism. The e-cloud forces are introduced into the Vlasov equation as perturbations and the

Vlasov equation is linearized and truncated to first order. The e-cloud forces are introduced as

dipolar kicks, equivalent to generalized impedance, and as a detuning along the bunch, also

known as quadrupolar forces. The resulting bunch distortion resulting from interaction with

e-cloud is the unknown in the equation. Following a well-constructed ansatz of this distortion,

the linearized Vlasov equation becomes an eigenvalue problem, where again the instability

growth rate and tune shift can be calculated from the eigenvalues.

In the pursuit of comprehensive understanding, our research includes benchmarking the

Vlasov approach against macroparticle simulations that employ the same force formalism.

These simulations utilize PyHEADTAIL as a tracker and monitor the trajectory of approxi-

mately 105 macroparticles turn by turn in the LHC. The force formalism used in the Vlasov

simulations is simplified compared to the nonlinear model in conventional PIC simulations.

This simplification enables a direct benchmark of the Vlasov approach, as both simulation

methods share the same force formalism.

One of the main mitigation strategies for e-cloud driven instabilities, apart from reducing

e-cloud in the machine, is positive chromaticity, which is the tune-shift dependence on the

momentum of each particle. For this reason, particular attention in our simulation study work

was given to the modeling of chromaticity and its impact on the beam stability.

The Vlasov approach emerges as a promising avenue to study these phenomena. Not only

does it offer a potential solution to simulate slow instabilities effectively, but it also provides
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an opportunity to gain a deeper insight into the fundamental mechanisms underlying these

instabilities, potentially enabling more effective mitigation strategies and further optimizing

accelerator design.

Complementary to these analytical and simulation work, experimental studies dedicated

to exploring and characterizing e-cloud-driven instabilities were conducted at the LHC as

part of this research. Measurements were conducted under conditions of high e-cloud to

elucidate the characteristics of e-cloud-driven instabilities in the LHC. This investigation

involved meticulous observation of the position turn-by-turn for each bunch, allowing for a

comprehensive analysis of bunch-by-bunch behavior, instability growth rates, and the tunes

of every individual bunch in each measurement.

Furthermore, a second set of measurements was conducted in conditions with nominal

e-cloud to study the effects of amplitude detuning stemming from octupoles, which are

commonly employed to mitigate instabilities. This analysis involved measuring the onset of

instability as the octupole strength was systematically reduced. The identified instabilities

were categorized based on the measurement of the transverse position and emittances of each

bunch, providing valuable insights into the LHC’s operational e-cloud conditions.

This thesis is organized into three distinct sections. The first section introduces the physics

of e-cloud driven instabilities and the analytical Vlasov method, providing a comprehensive

overview of its underlying principles and describing how e-cloud forces can be modeled within

a Vlasov formalism. The second section examines the validity of the Vlasov model for realistic

LHC scenarios, providing a thorough analysis of the effects of the detuning forces from the

e-cloud in combination with chromaticity. This critical assessment refines our theoretical

framework and sheds light on the practical limitations and scope of the Vlasov method. In

the third and final section, we present experimental studies focused on e-cloud phenomena

observed at the LHC.

3





1 Electron cloud instabilities in Large
Hadron Collider

1.1 The CERN accelerator complex

CERN, which stands for European Laboratory for Particle Physics, is a laboratory located on

the border between France and Switzerland that was founded in 1954. Today, CERN is the

largest laboratory for particle physics research seeking to answer the fundamental questions

about our universe [1]. CERN has 23 member states, Sweden and Switzerland included, but

has users from 12 000 institutions from 83 different countries as of 2022 [2]. The most notable

recent scientific achievement of CERN is the discovery of the Higgs Boson, the last particle in

the standard model, however many questions are still unanswered [3]. For example, what is

dark matter?

The discoveries of CERN were made possible by the accelerator complex depicted in Fig. 1.1.

The flagship accelerator is the LHC which is a 27-km long synchrotron that can accelerate two

counter-rotating proton beams from 450 GeV to 6.8 TeV, which yields a collision energy of 13.6

TeV. The protons have a long journey before reaching the LHC at 450 GeV. The protons are

initially obtained from a hydrogen source and are then accelerated as negative hydrogen ions

to 160 MeV in the linear accelerator called LINAC 4. Then the ions are stripped to protons and

injected into the Proton Synchrotron Booster (PSB), Proton Synchrotron (PS), and finally the

Super Proton Synchrotron (SPS) where they reach an energy of 450 GeV. During this journey,

the protons are grouped into bunches containing ∼ 1011 protons each with a length of a few

centimeters and a transverse cross-section of a few (µm)2. A schematic figure of the bunch

can be seen in Fig. 1.2. The bunch slots are separated by 25 ns. [5]

The proton bunches are then finally injected into the LHC which can store about 3000 bunches

in each of the counter-rotating beams. The protons collide at interaction points within the

LHC, and data from these collisions are recorded by large detectors for analysis. This process

allows for the study of fundamental particles and forces in the universe. [6]

The LHC has four interaction points at which the two counter-rotating beams collide and

each of them houses an experiment, ATLAS, CMS, LHCb, and ALICE. ATLAS (A Toroidal LHC

5



Chapter 1. Electron cloud instabilities in Large Hadron Collider

Figure 1.1: The Cern accelerator complex as of 2022, the image is taken from [4]

Figure 1.2: A schematic image of a particle bunch in the LHC. The longitudinal lengths are a
few centimeters and the transverse lengths are a few µm.

6



1.2 Introduction to e-cloud

apparatus) is the biggest of the four detectors and was built to detect the Higgs boson and

search for new particles. CMS (Compact Muon Solenoid), studies the same phenomena as

ATLAS but uses different types of detectors. LHCb, where ”b” stands for the beauty quark,

was built to investigate nature’s preference for matter over antimatter. The last experiment is

ALICE (A Large Ion Collider Experiment) is used when ions are accelerated in the LHC instead

of protons and studies the strong interaction of particles. [7]

The first run of the LHC was between 2008 and 2013 and operated with a top energy of 4 TeV

per beam. After this run, the first long shutdown took place where upgrades were made to

reach beam energies of 6.5 TeV during the second run, Run 2, starting in 2015 [8]. Additionally,

the bunch spacing was decreased from 50 ns to 25 ns which as anticipated caused e-cloud

to be a main limiting factor of the machine [9, 10]. The machine was shut down again in

2018 for two years for further upgrades mainly on the injector chain to reach higher beam

intensity and brightness. Notably, the linear accelerator at the beginning of the injector chain

was replaced [11]. The LHC was successfully restarted again in 2022 for Run 3 and is expected

to run until 2025. Research activities are planned in the LHC until the 2040s [12], including

a major upgrade, High-Lumi LHC (HL-LHC), that will allow increasing by a large factor the

produced collision rate [13].

This thesis will focus on the beam dynamics of the LHC. Beam dynamics in accelerator physics

refers to the study and control of the movement, focusing, and manipulation of charged

particle beams as they travel through complex accelerator systems, aiming to optimize their

stability and interactions.

In the context of beam dynamics, transverse instabilities refer to undesirable motion or

oscillations of charged particle beams in the transverse directions, perpendicular to the beam’s

forward motion. They can lead to a degradation of beam quality and beam losses. In high-

intensity particle accelerators, particles exhibit collective effects due to their interactions

with each other and their surroundings. Examples of these effects include the space charge

effect, which results from the mutual repulsion between charged particles in a beam, and

wakefields.Wakefields are electromagnetic fields generated as charged particle beams or

bunches pass through a medium, typically within the beam pipe. E-cloud effects are another

class of collective effects and will be further discussed in the next section. [14]

1.2 Introduction to e-cloud

E-cloud and its effect on beam dynamics have been observed in particle accelerators operating

with positively charged particles since the 1970s [15]. At CERN, e-cloud effects can be seen

in the PS, the SPS, and the LHC and are considered a main limitation [16] to the mahine

performance. The unwanted effects from e-cloud are vacuum degradation, beam energy loss,

heat load on the beam screens, affects the beam diagnostics as well as an impact on the beam

dynamics [17].

7



Chapter 1. Electron cloud instabilities in Large Hadron Collider

Figure 1.3: The SEY for an LHC beam screen as a function of the incident electron energy.
Figure taken from [22].

Electrons are produced by ionization of residual gas and photo-emission due to synchrotron

radiation or beam losses. Synchrotron radiation is the radiation emitted as a result of bend-

ing/accelerating the charged particles in an accelerator [18]. These electrons are referred to

as primary electrons or seed electrons. In lepton accelerators and very high energy protons

accelerators, the primary electron production is dominated by synchrony radiation, whereas

gas ionization and beam losses produce the most primary electrons in low and intermediate

energy proton machines [19].

Often, the production of primary electrons alone is insufficient to lead to a significant e-cloud

build-up. However, electrons impact the wall of the beam chamber with energies of a few 100

eV after being accelerated by the interaction with the beam, and when electrons hit the wall at

these energies secondary emission of electrons occurs. Surfaces bombarded with electrons

emit secondary electrons with a yield depending on the incident electrons energy, this curve

is known as the Secondary Electron Yield or SEY for short [20]. To simplify discussions, it is

common to refer to the highest point on this curve as the ’SEY value’ or simply SEY. If the

SEY is bigger than 1 we can have exponential multipacting of electrons in the beam chamber.

A typical SEY curve of an LHC beam screen can be seen in Fig. 1.3. A schematic figure of

the e-cloud build-up process can be seen in Fig. 1.4. The emission of primary electrons is

proportional to the beam intensity whereas the secondary electron production depends non-

linearly on the beam intensity. The secondary electron production mostly depends on the

SEY. The net electron motion in the longitudinal direction is not large meaning the essential

dynamics of the e-cloud are in the transverse plane. [21]

The SEY curve for LHC beam pipes has been measured and has a peak with a height in the

range from 1.0 to 2.0 for incident electrons of 332 eV [23]. A way of reducing the SEY of the

LHC is to coat the beam chamber with a thin film of amorphous carbon [24]. These coatings

need to be very thin to not impact the impedance of the accelerator and the development of

coatings thin enough is ongoing [25].

The SEY of the beam screens an accelerator can be reduced by electron irradiation [27]. The

commissioning of the LHC therefore includes a scrubbing run, which aims at conditioning

8



1.2 Introduction to e-cloud

Figure 1.4: The figure is a schematic of how primary electrons are accelerated by the particle
beam causing secondary emission of electrons which can drive an avalanche multipacting of
electrons in the beam chamber of an accelerator. Figure taken from [26].

the beam screen using the e-cloud generated by the beam itself. The scrubbing run in 2015,

beginning of run 2, reduced the SEY from approximately 2.3 to 1.4 [10]. However, due to air

exposure of the LHC beam chambers during LS2, the SEY of the beam screens increased again

to pre-conditioning values [10].

E-cloud builds up along the train with increasing e-cloud density for bunches towards the tail

of trains. The electron population does not increase forever but saturates at a certain value

due to the self-repellent field of the e-cloud. [28].

Different filling schemes, i.e. the pattern with which the bunches are arranged in the accelera-

tor, affect the process of secondary emission of electrons and therefore the e-cloud build-up

[29]. The more bunches placed consecutively after one another results in a higher average

density of e-cloud in the beam chamber. For example in the LHC, the decrease from a bunch

spacing of 50 ns and 25 ns leads to the heat loads on the beam screens being dominated by

e-cloud effects instead of impedance and synchrotron radiation [30]. The induced heat load

of the e-cloud prevents the operation of bunches closer than 25 ns [31]. The main e-cloud

mitigation strategy of Run 3 is to use an alternative filling scheme where four bunch slots were

left empty every eight bunches in the first bunch train [32].

The electrons arrange themselves in the beam chamber following the magnetic field lines

that are present [26], see Fig 1.5. In a dipole magnet, the electrons arrange themselves in two

vertical stripes, and in quadrupoles, they arrange themselves in a cross-like pattern.

E-cloud can trigger transverse beam instabilities of two types, coupled bunch instabilities,

and single-bunch-instabilities [33]. The single bunch instabilities cannot be mitigated by

transverse feedback systems due to the strong intra-bunch motion [34]. Intra-bunch feedback

systems have also been investigated to mitigate fast intra-bunch motion in circular acceler-

ators, although at the moment they are not foreseen to be deployed as part of the HL-LHC

9



Chapter 1. Electron cloud instabilities in Large Hadron Collider

Figure 1.5: The figure shows the e-cloud distribution in a field-free region, dipole, quadrupole
sextupole, and an octupole simulated with the coed PyECLOUD. Figure taken from [26].

project [35].

The e-cloud in the quadrupole magnets is the main source of the e-cloud driven instabilities

in the LHC at injection energy[36]. Chromaticity has a stabilizing effect in the single bunch

instability driven by e-cloud [37].

1.3 Vlasov method applied to e-cloud instabilities

In this section e-cloud instabilities will be discussed in the using the Vlasov formalism. First,

the Hamiltonian that describes the particles’ motion in the accelerator will be expressed. Then

the Vlasov equation will be derived from Hamiltonian mechanics. Perturbation theory will

be used to introduce collective effects into the Vlasov equation. Lastly, the linearized Vlasov

equation truncated to first order with forces from e-cloud will be derived.

1.3.1 Transverse Equations of Motion

The transverse equations of motion in an accelerator with a periodic lattice, such as a circular

machine, can be described using the Hill’s equation:

u′′(s)+K (s)u(s) = 0, (1.1)

where u(s) is the transverse position along the path of the accelerator s. A general solution to

the Hill’s equation is given by:

10



1.3 Vlasov method applied to e-cloud instabilities

u(s) =
√

2J
√
β(s)cos(φ(s)ψ0) , (1.2)

where β(s) is an amplitude modulation along the accelerator path known as the betatron

function and ψ0 is an integration constant. J is the action and is also an integration constant.

With the ansatz in Eq. 1.2 the Hills equation (Eq. 1.1) gives two constraints for the betatron

function β(s) and the phase function ψ(s):

1

2
(ββ′′− 1

2
β′2)−β2ψ′+β2K (s) = 0 (1.3)

and

β′ψ′+βψ′′ = (βψ′)′ = 0 ⇒ βψ′ = const. . (1.4)

Choosing a normalization of βψ′ = 1 results in the following expression of the phase function:

ψ(s) =
∫ s

s0

d s̄

β(s̄)
+ψ0 . (1.5)

Using the betatron function β(s) to express ψ(s) in Eq. 1.3 results in

1

2
β′β′′− 1

4
β′2 +β2K (s) = 0. (1.6)

The average value of the betatron function along the ring,
〈
β(s)

〉
can be used to approximate

the transverse motion and is known as the smooth approximation. The relation between

the average of the betatron function,
〈
β(s)

〉
, and the total number of oscillations along the

machine (the tune), Q, is:

2πQ =
∮

d s̄〈
β(s)

〉 = 2πR〈
β(s)

〉 ⇒ 〈
β(s)

〉= R

Q
, (1.7)

where R is the total radius of the machine. The smooth approximation of the function K (s) in

Hill’s equation is calculated by putting Eq. 1.7 into Eq. 1.6:

〈
β
〉2 K (s) = 0 ⇒ K (s) = 1〈

β
〉2 =

(
Q

R

)2

, (1.8)

which results in the smooth approximation of the Hill’s equation:

u′′(s)+
(

Q

R

)2

u = 0, (1.9)

where R is the total radius of the machine and Q is the transverse tune. [38]
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Chapter 1. Electron cloud instabilities in Large Hadron Collider

1.3.2 Longitudinal Equations of motion

The equations of motion in the longitudinal plane will be derived in the coordinates z, which

corresponds to distance along the beamline in relation to the position of the synchronous

particle, and δ= ∆p
p , the momentum deviation from the synchronous particle. The following

derivation of the equations of motion in the longitudinal plane is from reference [39].

In a synchrotron, such as the LHC, the nominal particle trajectory is constant meaning the

aperture of the accelerator can be small. A change in particle energy therefore requires the

magnets and the accelerating structures, the RF cavities, to be synchronous with the revolution

frequency. The RF frequency therefore is an integer of the revolution frequency such that the

synchronous particle always arrives in the RF cavity with the same phase:

fRF = h frev . (1.10)

The integer h is called the harmonic number. [40]

The revolution time of the synchronous particle is

T0 = L0

v0
, (1.11)

where L0 = 2πR is the length of orbit of the synchronous particle and v0 its velocity. Not all

particles in a synchrotron will be synchronous particles. The revolution period of a particle

not on the synchronous path is:

T = L0 +∆L

v0 +∆v
= (L0 +∆L)

v0 −∆v

v2
0 − (∆v)2

≈ 1

v2
0

(L0v0 + v0∆L−L0∆v) (1.12)

and thus the period difference is:

∆T = T −T0 = v0∆L−L0∆v

v2
0

⇒ ∆T

T0
= ∆L

L0
− ∆v

v0
. (1.13)

This can be approximated as the time derivative of ∆T since T0, the design revolution period,

is small:

˙δT ≈ ∆T

T0
. (1.14)

The longitudinal position z is defined as the distance from the synchronous particle and is

given by

z =βc∆T , (1.15)

so in order to express z ′, the time derivative of ∆T is to be evaluated and expressed in terms of

z and δ. The relative path length difference, ∆L
L , can be expressed in ∆p

p via the momentum
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1.3 Vlasov method applied to e-cloud instabilities

compaction factor. The momentum compaction factor, αc , is a machine parameter and a

measure of the relative change in path length compared to the relative change in momentum

[41]:

αc = ∆L/L

∆p/p
. (1.16)

The relationship between the relative velocity difference, ∆v
v and the the relative momentum

difference ∆p
p can be calculated from the derivative d p

d v :

d p

d v
= d

d v
(γm0v) = m0

d

dβ

(
βc√
1−β2

)
dβ

d v
= γ3m0 ⇒ ∆p = γ3m0∆v . (1.17)

This leads to the following expression:

∆p

p
= γ2δv

v
. (1.18)

Putting Eq. 1.18 and Eq. 1.16 into Eq. 1.13 leads to

˙(∆T ) =
(
αc − 1

γ2

)
∆p

p
=−ηδ , (1.19)

where η = ( 1
γ2 −αc ) is the slippage factor. Finally, the time derivative of z can be found by

putting Eq. 1.19 into Eq. 1.15

ż =βc ˙∆T =−βcηδ . (1.20)

The derivative of z with respect to s relates to the time derivative ż via:

d z

d t
= d z

d s

d s

d t
= z ′βc , (1.21)

which leads to the first equation of motion in the longitudinal plane:

z ′ =−ηδ . (1.22)

The second equation of motion in the longitudinal plane is the derivative of δ with respect

to s. This is related to the energy change per revolution. The total energy of a particle can be

expressed from the momentum:

E = γm0c2 = γm0
βc

βc
c2 = c2 p

v
. (1.23)

Differentiating E with respect to p and using the expression Eq. 1.17 together with p = γm0v

gives:

dE

d p
= d

d p

(
c2 p

v

)
= c2

v −p d v
d p

v2 =βc ⇒ ∆E =βc∆p , (1.24)

which together with Eq. 1.23 leads to
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Chapter 1. Electron cloud instabilities in Large Hadron Collider

Figure 1.6: The RF voltage as a function of the phase. An example of a synchronous phase is
displayed as ϕs as well as the Voltage a particle of that phase would see. The figure is taken
from [42].

∆E

E
=β2∆p

p
=β2δ . (1.25)

To express the derivative of δ with respect to s, the energy difference ∆E needs to be evaluated.

The energy gain per turn for the synchronous particle is given by

E0 = eU0 sinϕ0 −W0 , (1.26)

where e is the elementary charge, U0 is the peak voltage at the beam location in the RF cavity,

φ0 is the phase at which the particle enters the cavity and W0 is how much energy the particle

loses every turn due to synchrotron radiation. In a proton synchrotron, such as the LHC, W0 is

negligible. An illustrative figure of the Voltage in the cavity as a function of the phase can be

seen in Fig. 1.6.

The difference in energy gain of a particle not on the synchronous phase compared to the

energy gain of a particle with the synchronous phase is given by:

∆E = E −E0 = eU0
(
sin(ϕ0 +∆ϕ)− sinϕ0

)≈ eU0(cosϕ0)∆ϕ , (1.27)

where ∆ϕ is the phase difference from the synchronous phase, ϕ−ϕ0, and is small meaning

sin(ϕ0 +∆ϕ)− sinϕ0 ≈∆ϕcosϕ0. The time derivative of ∆E can be approximated by dividing

with the revolution period T0:

∆̇E = eU0

T0
(cosϕ0)∆ϕ . (1.28)

The phase difference,∆ϕ, between an arbitrary particle and the synchronous particle is related

to the time difference ∆T by:

∆ϕ= 2π
∆T

TRF
=ωRF∆T = hωrev∆T , (1.29)
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1.3 Vlasov method applied to e-cloud instabilities

which in turn is related to the longitudinal position z through:

z =βc∆T =βc
∆ϕ

hωrev
, (1.30)

where h is the harmonic number and ωrev = 2π
T0

is the angular revolution frequency. Using

Eq. 1.25, Eq. 1.28 and Eq. 1.30 the time derivative of δ can be expressed as:

dδ

d t
= 1

β2E
∆̇E =βc

heU0 cosϕ0

2πEβ2R2 z = βc

η

(
Qs

R

)2

z ,Qs =
√
η

eU0h cosϕ0

2πβ2E
. (1.31)

The derivative of δ with respect to s is therefore:

δ′ = 1

η

(
Qs

R

)2

z . (1.32)

The full equations of motion in the longitudinal plane for small oscillation amplitude are given

by Eq. 1.22 and 1.32: {
z ′ = −ηδ
δ′ = 1

η

(
Qs
R

)2
z

. (1.33)

1.3.3 Hamiltonian of the accelerator

The time derivative of the coordinate vector q and the momentum vector p are given by the

functions f and g respectively:

{
q̇ = f (q,p, t )

ṗ = g (q,p, t )
. (1.34)

In a system with only conservative forces, such as EM-forces without damping or diffusion,

the energy of the system is referred to as the Hamiltonian H. The equations of motion can be

written with the Hamiltonian [43]:

{
f = ∂H

∂p

g = −∂H
∂q

⇒ ∂ f

∂q
+ ∂g

∂p
= 0. (1.35)

From Hill’s equation under the smooth approximation, Eq. 1.9, the Hamiltonian can be derived

by writing the expressions for u̇ and u̇′:

{
u̇ = du

d t = du
d s

d s
d t = u · v = ∂H

∂u′

u̇′ = u′′ · v =−v
(

Q0u
R

)2
u =−∂H

∂u

. (1.36)
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From integrating the two expressions the Hamiltonian for transverse motion is reached:

Htrans. = v

2

(
u′2 +

(
Qu0

R

)2

u2
)

, (1.37)

where u can be either x to describe horizontal motion or y to describe vertical motion. The

terms specific to each plan are u, u′, and Qu0.

Similarly, the longitudinal Hamiltonian can be put together from the longitudinal equations

of motion, Eq. 1.33:


∂H0

∂δ
= d z

d t
= v z ′ =−vηδ

∂H0

∂z
= dδ

d t
=−vδ′ =−v

η

(
Qs

R

)2

z
, (1.38)

where v = d s
d t . This leads to the longitudinal Hamiltonian:

H long =−v

2

(
1

η

(
Qs

R

)2

z2 +ηδ2
)

. (1.39)

The full Hamiltonian is the sum of the three Hamiltonian’s Hx and H y from Eq. 1.37 and Hz

from Eq. 1.38:

H0 = v

2

[(
Qx,0

R

)2

x2 +x ′2 +
(

Qy,0

R

)2

y2 + y ′2
]
− v

2

[
1

η

(
Qs

R

)2

z2 +ηδ2
]

, (1.40)

where Qx,0 is the unperturbed tune in the horizontal plane, Qy,0 is unperturbed tune in the

vertical plane, Qs is the synchrotron tune, v is the velocity of the particles, R is the total radius

of the synchrotron and η is the slippage factor.

A good choice of coordinates is the action-angle coordinates which simplifies the Hamiltonian

[44]. In the transverse plane the action-angle coordinates are (Ju ,θu) where u is either x or y

and are related to cartesian coordinates (u,u′) via:

u =
√

2Ju R
Qu0

cosθu

u′ =
√

2JuQu0
R sinθu

, (1.41)

where R is the radius of the machine and Qu0 is the betatron tune for each plane. In the

longitudinal plane the action-angle coordinates (Jz ,φ) are defined by:

z =
√

2Jz vη
ωs

cosφ

δ=
√

2Jzωs
vη sinφ

. (1.42)
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1.3 Vlasov method applied to e-cloud instabilities

The Hamiltonian can be simplified by a strategic choice of coordinates. A transform, for

example a coordinate transform, that preserved the Hamiltonian formalism is called a canoni-

cal transformation. Canonical transformations preserve the Poisson brackets which in turn

means that the Jacobian of the transformation, defined in Eq. 1.43, is symplectic. To check if

a coordinate transformation is canonical one can verify that the Jacobian of the coordinate

switch is symplectic. [45, 46]

Jx =
(
∂Jx
∂x

∂Jx
∂x ′

∂θx
∂x

∂θx
∂x ′

)
, Jy

 ∂Jy

∂y
∂Jy

∂y ′
∂θy

∂y
∂θy

∂y ′

 , Jz

(
∂Jz
∂z

∂Jz
∂δ

∂φ
∂z

∂φ
∂δ

)
. (1.43)

A 2x2 matrix, A, is symplectic if it fulfills the criteria: [47]

AT

[
0 1

−1 0

]
A =

[
0 1

−1 0

]
. (1.44)

It can be shown that the coordinate switch from (x, x ′, y, y ′, z,δ) to (Jx ,θx , Jy ,θy ,r,φ) is canoni-

cal. With this choice of coordinates, the Hamiltonian becomes:

H0 =ω0Qx,0 Jx +ω0Qy,0 Jy −ωs Jz . (1.45)

1.3.4 Unperturbed Vlasov Equation

The Hamiltonian of a dynamic system, such as an accelerator, can be used to calculate how a

state (qi , pi ) evolves in time to a new state (q f , p f ). This can also be denoted as a mapping

M : (q, p)i → (q, p) f . (1.46)

This mapping M is obtained from following the Hamiltonian trajectory specified by H and is

symplectic. Symplectic maps preserve the volume in phase space. This conservation law is

called the Liouville’s theorem. [48]

To illustrate this a random distribution was generated in phase space (q, p), and an area ABCD

was selected, see Fig. 1.7a. Some of the particles are inside the area and are colored red, and

some are outside and are colored grey. The time evolution is defined by a Hamiltonian, which

for this illustration is:

H = v

2

[(
Qy0

R

)2

q2 +p2

]
, (1.47)

which is the Hamiltonian in transverse phase space under the smooth approximation in a

synchrotron. In the demonstration, a 54 km long circular synchrotron with a tune of 30.295,

where the particles travel at the speed of light, is used. The choice of these parameters is

arbitrary and was made to produce visible deformation in the phase space.
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Chapter 1. Electron cloud instabilities in Large Hadron Collider

(a) A random distribution of par-
ticles in phase space with no
duplicates at time ti . An area
ABCD of area 2.4·10−12 m·rad is
selected and all particles inside
the area are colored red.

(b) The stepwise evolution of all
particles in the area ABCD from
time ti to time t f is plotted. The
area ABCD is transformed to area
A’B’C’D’ at time t f .

(c) The distribution in phase
space in (a) transformed from
ti to t f . The chosen red area is
again 2.4·10−12 m·rad.

Figure 1.7: A demonstration on how a distribution of particles in phase space (x, x ′) evolves in
time in a dynamic system which can be described by a Hamiltonian.

The distribution in Fig. 1.7a were then transformed from time ti to t f step-wise using the

Hamiltonian in Eq. 1.47 to formulate the time derivatives q̇ and ṗ using Eq. 1.34 and then

approximating the time evolution with:{
q(t +∆t ) = q(t )+∆t · q̇

p(t +∆t ) = p(t )+∆t · ṗ
, (1.48)

which works for small time steps ∆t . The trajectory of the particles inside the red box is

plotted in Fig. 1.7b for 4% of a revolution in the machine, meaning that the total time passed

is t f − ti = 0.04∗Trev. The trajectory of all particles follows the same flow, eliminating any

instances of crossings. In addition, the particles are all still inside the red shape, which was also

transformed to the shape A’B’C’D’ using the Hamiltonian map from ti to t f . Finally, Fig. 1.7c,

shows the total particle distribution at time t f , note that no grey particle is inside the red box.

The area of the red box is the same, just as predicted by the Liouvilles theorem.

The area preservation can be proven through the Hamiltonian equations, Eq. 1.35. The coor-

dinates of the corners (A, B, C, D) and the corners of the transformed shape (A’, B’, C’, D’) are

given by:


A = (q, p)

B = (q +∆q, p)

C = (q +∆q, p +∆p)

D = (q, p +∆p)


A′ = (q + f (q, p, t )d t , p + g (q, p, t )d t )

B ′ = (q +∆q + f (q +∆q, p, t )d t , p + g (q +∆q, p, t )d t )

C ′ = (q +∆q + f (q +∆q, p +∆p, t )d t , p +∆p + g (q +∆q, p +∆p, t )d t )

D ′ = (q + f (q, p +∆p, t )d t , p +∆p ++g (q, p +∆p, t )d t )

.

(1.49)
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1.3 Vlasov method applied to e-cloud instabilities

The area of the box (A’, B’, C’, D’) is given by:

area(A’B’C’D’) = |A⃗′B ′× ⃗A′D ′| =∆q∆p

[
1+ ∂ f

∂q
+ ∂g

∂p
d t

]
=∆q∆p = area(ABCD), (1.50)

and is equal to the area of the box (A, B, C, D). Let us consider a particle density distribution,

ψ(q, p, t ). The number of particles enclosed by the box ABCD at time t is therefore:

N =ψ(q, p, t )area(ABCD). (1.51)

As time passes from ti to t f , the square deforms to the shape A’B’C’D’ as seen in Fig. 1.7c, how-

ever, there is still the same amount of particles enclosed in the shape due to the Hamiltonian

map being symplectic:

N =ψ(q + f d t , p+g d t , t +d t )area(A’B’C’D’) =ψ(q + f d t , p+g d t , t +d t )area(ABCD) (1.52)

The particle distribution function is therefore constant in time:

ψ(q, p, t ) =ψ(q + f d t , p + g d t , t +d t ) =ψ(q, p, t )+ ∂ψ

∂t
d t + f

∂ψ

∂q
d t + g

∂ψ

∂p
d t (1.53)

⇒ ∂ψ

∂t
+ f

∂ψ

∂q
+ g

∂ψ

∂p
= 0. (1.54)

This leads to the Vlasov equation [49]:

dψ

d t
= ∂ψ

∂t
+ [ψ,H ] = 0, (1.55)

where the Poisson Bracket has been used. The Poisson bracket is defined as:

n∑
i=1

∂ψ

∂qi

∂qi

∂t
+ ∂ψ

∂pi

∂pi

∂t
=

n∑
i=1

∂ψ

∂qi

∂H

∂qi
− ∂ψ

∂pi

∂H

∂pi
= [ψ,H ] (1.56)

A fundamental property of Poisson brackets is that they are invariant under Canonical trans-

formations [45].

1.3.5 First order perturbation

A perturbation of the Hamiltonian can be introduced in the Vlasov equation, Eq. 1.55. The

total Hamiltonian is now:

H =H0 +∆H . (1.57)

In addition, a perturbation of the particle distribution function ψ can also be introduced such

that the total distribution is:

ψ=ψ0 +∆ψ . (1.58)
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Chapter 1. Electron cloud instabilities in Large Hadron Collider

Both ∆H and ∆ψ are first-order perturbations. The Vlasov equation is now:(
∂ψ0

∂t
+ [ψ0,H0]

)
+

(
∂∆ψ

∂t
+ [∆ψ,H0]+ [ψ0,∆H ]

)
+ [∆ψ,∆H ] = 0. (1.59)

The first parenthesis is equal to zero since the unperturbed distributing ψ0 and the unper-

turbed Hamiltonian H0 fulfills the Vlasov equation, Eq. 1.55. Truncating Eq. 1.59 to first order,

meaning approximating [∆ψ,∆H ] ≈ 0, leads to the linearized Vlasov equation truncated to

first order [50]:

∂∆ψ

∂t
+ [∆ψ,H0] =−[ψ0,∆H ] . (1.60)

The unperturbed Hamiltonian, H0, comes from equations of motion of the accelerator, Eq. 1.1

and Eq. 1.33 and is expressed in polar coordinates in Eq. 1.45. This describes the particle

motion on the accelerator under idealized and simplified conditions. Collective effects can be

introduced via the perturbation ∆H . From Hamiltons equations, Eq. 1.35, the derivative of

∆H can be expressed as a coherent force F coh
u (z; t ) [51]:

∂H

∂u
=−

(
du′

d t

)coh

=− 1

m0γβc

(
d pu

d t

)coh

=−F coh
u (z; t )

m0γβc
, (1.61)

where u refers to either the horizontal coordinate x or the vertical coordinate y . The force is

treated separately in x and y because the motion is uncoupled. Assuming that the force only

depends on time t and the longitudinal coordinate z results in the following expression after

integration with respect to u:

∆H =−uF coh
u (z; t )

m0γβc
, (1.62)

which in action-angle coordinates, defined in Eq. 1.41, is:

∆H =−
√

2JuR

Qu,0
cosθu

F coh
u (z; t )

m0γβc
. (1.63)

Additionally, the chromaticity can be introduced in the Hamiltonian by introducing a depen-

dence of δ in the tune [49]:

Qu =Qu,0 +Q ′
uδ , (1.64)

where Q ′
u is the linear chromaticity in either x or y plane. This is introduced after the defini-

tions of the coordinates (Ju ,θu), and therefore the expressions in Eq. 1.41 do not change. It

adds a dependence on δ in Htrans and derivative of the total Hamiltonian with respect to δ is

now
∂H0

∂δ
= ∂

∂δ
(ω0Q ′

uδJu)− ∂

∂δ
(ωs Jz ) = ∂H chroma

0

∂δ
− vηδ . (1.65)

20



1.3 Vlasov method applied to e-cloud instabilities

Table 1.1: LHC parameters needed to estimate the derivative ∂H0
∂δ .

Variable Value
Norm. Trans. Emittance ∼ 2 µ m [53]
Qu ∼ 60 (Qx = 62.27 and Qy = 60.295 ) [53, 54]
R C

2π
C 26658.883 m [5]
η ∼ 3.2e−4 [5]

δ= ∆p
p = 1

β2
∆E
E ∼ 1e−3 [5]

The contribution from Hchroma is

∂H chroma
0

∂δ
= vω0Q ′

u Ju . (1.66)

The average transverse action is equal to the transverse emittance [52]

〈Ju〉 = ϵu . (1.67)

which together with

ω0 = v

R
(1.68)

and using the normalized emittance ϵN =βγϵ ([39]), the smooth approximation (Eq. 1.7) and

the extreme case Q ′
u =Qu0 gives :

∂H chroma
0

∂δ
≈ v

Qu0ϵN

βγR
(1.69)

Let us now compare
∂H chroma

0
∂δ with −vηδ for the LHC using the parameters defined in 1.1:

∂H chroma
0

∂δ
≈ v10−10 (1.70)

∂H0,Long.

∂δ
≈ v10−7 (1.71)

⇒ ∂H chroma
0

∂δ
<< ∂H0,Long.

∂δ
(1.72)

The approximation means that the chromaticity is assumed to not affect the longitudinal

motion, ergo:

∂H chroma
0

∂δ
≈ 0. (1.73)
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Chapter 1. Electron cloud instabilities in Large Hadron Collider

Another assumption that is made to solve the Vlasov equation is that the two transverse planes

are uncoupled. This means that the Vlasov equation is solved for a 4D phase space (u,u′, z,δ)

where u is either the horizontal coordinate x or the vertical coordinate y depending on in

what plane instabilities are to be evaluated. Henceforth, u will simply refer to the transverse

coordinate.

The stationary distribution ψ0 can be approximated to be uncoupled in transverse and longi-

tudinal planes.

ψ0 = f0(Ju)g0(Jz ) , (1.74)

where the two functions are normalized with respect to the total number of particles N :

∫ ∞
0 d Ju f0(Ju) = N

2π∫ ∞
0 d Jz g0(Jz ) = 1

2π

. (1.75)

To express the Vlasov equation using the factorization ofψ0 two derivatives of the unperturbed

Hamiltonian are evaluated:

d Ju

d t
= [Ju ,H0] = ∂H0

∂θu
= 0 (1.76)

and

d Jz

d t
= [Jz ,H0] = ∂H0

∂φ
= ∂H0

∂δ

∂δ

∂φ
+ ∂H0

∂z

∂z

∂φ
≈−ωs zδ+ωs zδ= 0, (1.77)

where the approximation in Eq. 1.73 is used. With this approximation as well as the factoriza-

tion of the unperturbed distributionψ0, the Poisson brackets in the linearized Vlasov equation,

Ep. 1.60, can be expressed as:

[∆ψ,H0] ≈−∂∆ψ
∂θu

∂H ′
∂Ju

− ∂∆ψ

∂φ

∂H0

∂Jz
≈−ω0Qu

∂∆ψ

∂θu
+ωs

∂∆ψ

∂φ
. (1.78)

Similarly, the second Poisson bracket in the linearized Vlasov equation truncated to first order

is:

[ψ0,∆H ] = d f0

d Ju
g0(Jz )

∆H0

∂θu
+ f0(Ju)

d g0

d Jz

∂∆H

∂φ
=

d f0

d Ju
g0(Jz )

√
2Jy R

Qu0
sinθu

F coh
u (z; t )

m0γv
+ f0(Jy )

d g0

d Jz

∂∆H

∂z

∂z

∂φ

≈ d f0

d Ju
g0(Jz )

√
2Jy R

Qu0
sinθu

F coh
u (z; t )

m0γv
, (1.79)

where the approximation ∂∆H
∂z ≈ 0 have been made. This approximation is valid when the
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1.3 Vlasov method applied to e-cloud instabilities

transverse coherent force has little effect on the longitudinal motion [49]. The linearized

Vlasov equation truncated to first order is now:

∂∆ψ

∂t
−ω0 (Qu0 +∆Qchrom)

∂∆ψ

∂θu
+ωs

∂∆ψ

∂φ
=−d f0

d Ju
g0 (Jz )

√
2JuR

Qu0
sinθu

F coh
u (z; t )

m0γv
, (1.80)

where ∆Q =Q ′
uδ is the detuning from chromaticity.

1.3.6 Adapting the Vlasov equation to e-cloud

The Vlasov equation can describe beam coupling impedance-driven instabilities [55], and

attempts have been made to apply this approach to simulate e-cloud-driven instabilities by

representing the e-cloud forces as impedances [56]. However, both dipolar forces and the

betatron tune modulation along the longitudinal coordinate are required to describe the

e-cloud forces in the Vlasov approach [57, 58]. A Vlasov approach including these two aspects

has been introduced in [59]. The following derivation is based on the references [58, 59].

Firstly, the Vlasov equation is modified to include a detuning term from e-cloud as well as

from chromaticity, ∆Q(r,φ) =∆QΦ(r,φ)+∆QR (r ),

∂∆ψ

∂t
−ω0

(
Qu0 +∆QΦ(r,φ)+∆QR (r )

) ∂∆ψ
∂θu

+ωs
∂∆ψ

∂φ
=

− d f0

d Ju
G0 (r )

√
2JuR

Qu0
sinθu

F coh
u (z, t )

m0γv
, (1.81)

where the longitudinal coordinates are now polar. The polar longitudinal coordinates are

defined as follows:

z = r cosφ, , (1.82)

δ= ωs

vη
r sinφ . (1.83)

It is important to note that this coordinate transformation is not canonical. However, in our

subsequent equations, we will no longer use Poisson brackets, and Hamilton’s equations will

also be excluded from any future steps. This means that this coordinate transformation is

acceptable, as discussed in [51]. In these new coordinates, the unperturbed distribution ψ0 is

ψ0(Ju ,r ) = f0(Ju)G0(r ) , (1.84)

where G0(r ) is normalized as:

∫ ∞

0
drG0(r ) = vη

ωs

1

2π
⇒

∫ ∞

0
d JzG0(Jz ) = 1

2π
. (1.85)
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An ansatz is made on the form of bunch distortion ∆ψ where all of the time dependence is

contained in a complex exponential:

∆ψ(Ju ,θu , Jz ,φ, t ) = e jΩt∆ψ(Ju ,θu , Jz ,φ) , (1.86)

where j is the imaginary unit,Ω is the complex mode frequency of the bunch distortion and t

is time. It is assumed that there is no coupling of the transverse plane and the longitudinal

plane, such that the transverse plane can be factorized from the longitudinal plane. A Fourier

expansion of the transverse angle, θu , is done on the time-independent part:

∆ψ(Ju ,θu , Jz ,φ; t ) = e jΩt
∞∑

p=∞
f p (Ju)e j pθu g p (r,φ) . (1.87)

In the longitudinal plane, the Fourier expansion of the longitudinal angle φ is done on the

function g p (r,φ)e j p∆Φ(r,φ where ∆Φ(r,φ) is an arbitrary term. This means that the term

e− j p∆Φ(r,φ) is included in the expression of the ansatz:

∆ψ(Ju ,θu , Jz ,φ, t ) = e jΩt
∞∑

p=∞
f p (Ju)e j pθu− j p∆Φ(r,φ)

∞∑
l=−∞

Rp
l (r )e− j lφ . (1.88)

The unknowns are now the functions f p (Ju) and Rp
l (r ). The derivatives of ∆ψ in Eq. 1.81 are

now given by the following three equations:

∂∆ψ

∂t
= jΩe jΩt

+∞∑
p=−∞

f p (Ju)e j pθu ·e− j p∆Φ(r,φ) ·
+∞∑

l=−∞
Rp

l (r )e− j lφ , (1.89)

ω0 (Qx0 +∆QΦ+∆QR )
∂∆ψ

∂θu
=

e jΩt
+∞∑

p=−∞

(
j pω0 (Qu0 +∆QΦ+∆QR )

)
f p (Ju)e j pθu ·e− j p∆Φ(z,δ) ·

+∞∑
l=−∞

Rp
l (r )e− j lφ , (1.90)

ωs
∂∆ψ

∂φ
= e jΩt

+∞∑
p=−∞

f p (Ju)e j pθu ·
+∞∑

l=−∞
Rp

l (r )
∂

∂φ
e− j (p∆Φ(r,φ)+lφ)

=ωse jΩt
+∞∑

p=−∞
f p (Ju)e j pθu ·

+∞∑
l=−∞

Rp
l (r )

∂

∂φ
e− j (p∆Φ(r,φ)+lφ)

= e jΩt
+∞∑

p=−∞
f p (Ju)e j pθu ·

+∞∑
l=−∞

Rp
l (r )e− j (p∆Φ(z,δ)+lφ)

(
− j pωs

∂∆Φ

∂φ
− j lωs

)
. (1.91)
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which means that the Vlasov equation can now be expressed as:

e jΩt
+∞∑

p=−∞
f p (Ju)e j pθu ·

+∞∑
l=−∞

Rp
l (r )e− j (p∆Φ(z,δ)+lφ)

×
(

jΩ− j pωs
∂∆Φ

∂φ
− j lωs − j pω0 (Qu0 +∆QΦ+∆QR )

)
=−d f0

d Ju
G0 (Jz )

√
2JuR

Qu0
sinθu

F coh
u (z, t )

m0γv
. (1.92)

The arbitrary term∆Φ can be chosen such that∆QΦ is canceled in Eq. 1.92. This choice means

that:

∂∆Φ

∂φ
=−ω0

ωs
∆QΦ(r,φ) . (1.93)

Now, the Vlasov equation can be written as:

e jΩt
+∞∑

p=−∞
f p (Ju)e j pθu e− j p∆Φ(r,φ)

+∞∑
l=−∞

Rp
l (r )e− j lφ (

jΩ− j pω0 (Qu0 +∆QR )− j lωs
)

=−d f0

d Ju
G0(r )

√
2JuR

Qu0

(
e jθu −e− jθu

2 j

)
F coh

u (z, t )

m0γv
, (1.94)

where the term sinθu has been expressed as complex exponential. Because the right-hand

side of the Vlasov equation now contains the terms e j 1θu and e j (−1)θu , the left-hand side will

not contain any other orders of the exponential of θu . To be more precise:

f p (Ju) = 0 for any p ̸= ±1. (1.95)

The left-hand side of Eq. 1.94 is therefore

e jΩt ( f 1 (Ju)e j 1θu e− j 1∆Φ(r,φ)
+∞∑

l=−∞
R1

l (r )e− j lφ (
jΩ− j 1ω0 (Qu0 +∆QR )− j lωs

)+
f −1 (Ju)e j (−1)θu e− j (−1)∆Φ(r,φ)

+∞∑
l=−∞

R−1
l (r )e− j lφ (

jΩ− j (−1)ω0 (Qu0 +∆QR )− j lωs
)
) . (1.96)

Since the complex mode frequencyΩ is assumed to be close to the unperturbed frequency

ω0Ω, the following is true:

| jΩ− jω0 (Qu0 +∆QR )− j lωs | << | jΩ+ (−1) jω0 (Qu0 +∆QR )− j lωs | . (1.97)

This implies that

f −1(Ju) << f 1(Ju) , (1.98)
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because the coefficients of e± jθu are equal in the right-hand side of Eq. 1.94, the coefficients of

e± jθu on the left-hand side must also equal. Therefore the assumption

f −1(Ju) ≈ 0 (1.99)

is valid. As only one term of f p (Ju) is non-zero, the superscript is redundant and we write

f 1(Ju) = f (Ju). Cancelling out the exponential e jθu / j , the Vlasov equation is now given by

e jΩt f (Ju)e− j∆Φ(r,φ)
+∞∑

l=−∞
Rl (r )e− j lφ (Ω−ω0 (Qu0 +∆QR )− lωs)

=−d f0

d Ju
G0(r )

√
2JuR

Qu0

F coh
u (z, t )

2m0γv
, (1.100)

which is equivalent to

+∞∑
l=−∞

Rl (r )e− j lφ f (Ju)
(

jΩ− jω0 (Qu0 +∆QR )− j lωs
)

d f0

d Ju

√
2Ju R
Qu0

= −e− jΩt e j∆Φ(r,φ)G0(r )
F coh

u (z, t )

2m0γv
.

(1.101)

Seeing that the right-hand side of Eq. 1.101 does not depend in Ju , it follows that:

f (Ju) ∝ d f0

d Ju

√
2JuR

Qu0
. (1.102)

The proportionality constant can be absorbed into Rl (r ) which means that the ansatz of the

bunch distortion can be expressed as:

∆ψ(Ju ,θu ,r,φ, t ) = e jΩt e jθu
d f0

d Ju

√
2JuR

Qu0
·e− j∆Φ(r,φ) ·

+∞∑
l=−∞

Rl (r )e− j lφ (1.103)

and the Vlasov equation can be written as:

+∞∑
l=−∞

Rl (r )e− j lφ (Ω−Qu0ω0 −ω0∆QR − lωs) = e− jΩt e j∆Φ(r,φ)G0(r )
F coh

u (z, t )

2m0γv
. (1.104)

1.3.7 Description of the Detuning Sources

The detuning, expressed in the longitudinal coordinates (z,δ), is modelled using two polyno-

mial of finite degree N :

∆Q(z,δ) =
N∑

n=0
An zn +Bnδ

n , (1.105)
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which expressed in polar coordinates is:

∆Q(r,φ) =
N∑

n=0
Anr n cosnφ+

(
ωs

vη

)n

Bnr n sinnφ . (1.106)

This expression includes chromaticity, which is the tune dependence in the momentum δ [60].

The detuning term coming from e-cloud, briefly mentioned at the beginning of the previous

section, can be decomposed into two terms:

∆Q(r,φ) =∆QR (r )+∆QΦ(r,φ) . (1.107)

In other words, the detuning term is divided into a phase shift term ∆QΦ(r,φ) and a detuning

with longitudinal amplitude ∆QR (r ). The latter is defined as:

∆QR (r ) = 1

2π

∫ 2π

0
∆Q(r,φ)dφ . (1.108)

Expanding this equation leads to:

∆QR (r ) = 1

2π

∫ 2π

0
∆Q(r,φ)dφ= 1

2π

∫ 2π

0
(∆QR (r )+∆QΦ(r,φ))

= 1

2π

∫ 2π

0
∆QR (r )+ 1

2π

∫ 2π

0
∆QΦ(r,φ) =∆QR (r )+ 1

2π

∫ 2π

0
∆QΦ(r,φ)

⇒ 1

2π

∫ 2π

0
∆QΦ(r,φ) = 0.

(1.109)

The remaining term, ∆QΦ(r,φ), therefore introduces no average detuning over a synchrotron

period
1

2π

∫ 2π

0
∆QΦ(r,φ) = 0, (1.110)

but is only responsible for a phase shift as a function of longitudinal coordinates.

Integrating the expression in Eq. 1.106 gives the following expression for the detuning with

longitudinal amplitude:

∆QR (r ) =∑
n

Anr n

(
C n

2π

)
+

(
ωs

vη

)n

Bnr n

(
Sn

2π

)
, (1.111)

where:

C n =
∫ 2π

0
cosnφdφ , (1.112)

Sn =
∫ 2π

0
sinnφdφ . . (1.113)
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The phase shift term can therefore be expressed as:

∆QΦ(r,φ) =∑
n

Anr n

(
cosnφ− C n

2π

)
+

(
ωs

vη

)n

Bnr n

(
sinnφ− Sn

2π

)
. (1.114)

Lastly, the expression for ∆Φ(r,φ), i.e. the phase shift term with the chosen constraint in

Eq. 1.93, is expressed by integrating Eq. 1.114:

∆Φ(r,φ) =−ω0

ωs

N∑
n=1

r n
[

An

(
Cn(φ)−C n

φ

2π

)
+

(
ωs

vη

)n

Bn

(
Sn(φ)−Sn

φ

2π

)]
. (1.115)

where the function Cn(φ) and Sn(φ) are defined as:

Cn(φ) =
∫

cosnφ′ dφ′ , (1.116)

Sn(φ) =
∫

sinnφ′ dφ′ . (1.117)

Using recursion, we can compute these integrals as follows:

Cn(φ) = cosn−1φsinφ

n
+ n −1

n
Cn−2(φ) ,C0(φ) =φ and C1(φ) = sinφ (1.118)

Sn(φ) =−sinn−1φcosφ

n
+ n −1

n
Sn−2(φ) ,S0(φ) =φ and S1(φ) =−cosφ . (1.119)

It is worth noting that:

C n =Cn(2π)−Cn(0) , (1.120)

Sn = Sn(2π)−Sn(0) . (1.121)

1.3.8 The Coherent Force

The coherent force, used to describe the perturbation of the Hamiltonian ∆H in Eq. 1.62, can

be expressed using a set of real functions hn(z) which satisfy the orthogonality condition:∫
hn (z)hn′ (z)d z = H 2

nδn,n′ . (1.122)

The norm of the function hn(z) is given by Hn . In this thesis, the choice of hn functions is:

hn (z) =


An cos

(
2π

n

2

z

Lbkt

)
, if n is even

An sin

(
2π

n −1

2

z

Lbkt

)
, if n is odd.

, (1.123)

where An is the amplitude of the sinusoids and can be chosen arbitrarily. Additionally, Lbkt

is the length of the RF bucket and the longest bunch length possible. This means that the
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1.3 Vlasov method applied to e-cloud instabilities

number of oscillations along the bunch is given by n
2 and n−1

2 respectively. The function kn(z)

is defined as the response, ∆u′, of each bunch distortion hn(z) passing through an e-cloud.

The transverse centroid, ū(z), is defined as the average transverse position of all particles in

a bunch as a function of the longitudinal coordinate and can be expressed as a sum of the

sinusoidal bunch distortions hn :

ū (z) =
N∑

n=0
anhn (z) . (1.124)

Note that u can be either x or y depending on whether the calculations to be done are for the

horizontal or vertical plane. The coefficients are given by

an = 1

H 2
n

∫
ū (z)hn (z)d z , (1.125)

due to the orthogonality condition in Eq. 1.122. With this expression for the coefficients an ,

the transverse centroid can be expressed as:

ū (z) =
N∑

n=0

hn (z)

H 2
n

∫
d z̃ ū (z̃)hn (z̃) . (1.126)

From simulations, it is possible to verify that there is linear behavior, such that the kick ∆u′ of

an arbitrary distribution ū(z) is given by [58]:

∆u′ (z) =
N∑

n=0
ankn (z) =

N∑
n=0

kn (z)
∫

ū (z̃)
hn (z̃)

H 2
n

d z̃ . (1.127)

Using Eq. 1.61, the coherent force F coh
u can be written as an expression of the kick ∆u′:

F coh
u = m0γβc

u′

d t
≈ m0γβc

∆u′

∆T
= m0γ(βc)2

2πR
∆u′ , (1.128)

where we have set ∆T = Trev, which was first introduced in Eq. 1.14. Putting Eq. 1.127 into

Eq. 1.128 results in:

F coh
u (z, t ) = m0γ(βc)2

2πR
∆u′ = m0γ(βc)2

2πR

N∑
n=0

kn (z)
∫

ū (z̃, t )
hn (z̃)

H 2
n

d z̃ , (1.129)

The average transverse position of all particles at each longitudinal position z can be expressed

with the bunch distortion ∆ψ:

ū (z, t ) = 1

λ0(z)

Ï
dũdũ′

∫
d δ̃ ũ∆ψ

(
ũ, ũ′z, δ̃, t

)
, (1.130)

where λ0(z) is the longitudinal bunch profile. The coherent force F coh
u can now be expressed

by putting Eq. 1.130 into 1.129:
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F coh
u (z, t ) = 1

λ0(z)

m0γ(βc)2

2πR

Ï
dũdũ′

Ï
d z̃d δ̃′ũ∆ψ

(
ũ, ũ′, z̃, δ̃, t

) N∑
n=0

kn (z)
hn (z̃)

H 2
n

. (1.131)

To put the expression of the coherent force F coh
u into the Vlasov equation, Eq. 1.104. A switch

to polar coordinates is needed. Using

Ï
dũdũ′ =

Ï
d J̃ud θ̃u , (1.132)Ï

d z̃d δ̃= ωs

vη

Ï
r̃ d r̃ dφ̃ , (1.133)

the expression of the coherent force F coh
u in Eq. 1.131 becomes:

F coh
u

(
r,φ, t

)= m0γβcωs

2πηR

Ï
d J̃ud θ̃u

Ï
r̃ d r̃ dφ̃

×
√

2 J̃uR

Qx0
cos θ̃u∆ψ

(
J̃u , θ̃u , r̃, φ̃

) N∑
n=0

kn
(
r cosφ

) hn
(
r̃ cos φ̃

)
λ0(r̃ cos φ̃)H 2

n
. (1.134)

Putting the expression for the anstanz of ∆ψ in Eq. 1.103 into Eq. 1.134 gives:

F coh
u

(
r,φ, t

)= m0γβcωs

πηRQu0
e jΩt

∫
d J̃u J̃u

d f0

d Ju

∫
d θ̃u e j θ̃u cos θ̃uÏ

r̃ d r̃ dφ̃ ·e− j∆Φ(r̃,φ̃)
+∞∑

l ′=−∞
Rl ′(r̃ )e− j l ′φ̃

N∑
n=0

kn
(
r cosφ

) hn
(
r̃ cos φ̃

)
λ0(r̃ cos φ̃)H 2

n
. (1.135)

The integral of d θ̃u can be calculated:

∫ 2π

0
d θ̃ue j θ̃u cos θ̃u =π . (1.136)

And the integral of d J̃u can be calculated using the norm of f0(u) in Eq. 1.75.

∫ +∞

0
d J̃u J̃u

d f0

d J̃u
= [

J̃u f0
(

J̃u
)]+∞

0 −
∫ +∞

0
d J̃u f0

(
J̃u

)=−Nb

2π
, (1.137)

where Nb is the number of particles in the bunch. Hence, the expression of the coherent force
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is:

F coh
u

(
r,φ, t

)=−Nbm0γβcωs

2πηQu0
e jΩt

Ï
r̃ d r̃ dφ̃e− j∆Φ(r̃,φ̃)

×
+∞∑

l ′=−∞
Rl ′(r̃ )e− j l ′φ̃

N∑
n=0

kn
(
r cosφ

) hn
(
r̃ cos φ̃

)
λ0(r̃ cos φ̃)H 2

n
. (1.138)

1.3.9 Solving the Vlasov Equation

The Vlasov equation, Eq. 1.104, with the expression of the coherent force in Eq. 1.138 becomes:

+∞∑
l=−∞

Rl (r )e− j lφ (Ω−Qu0ω0 −ω0∆QR − lωs) =− Nbωs

4πηQu0
e j∆Φ(r,φ)G0(r )

×
Ï

r̃ d r̃ dφ̃ ·e− j∆Φ(r̃,φ̃)
+∞∑

l ′=−∞
Rl ′(r̃ )e− j l ′φ̃

N∑
n=0

kn
(
r cosφ

) hn
(
r̃ cos φ̃

)
λ0(r̃ cos φ̃)H 2

n
. (1.139)

Multiplying both sides with e j lφ and integrating over φ leads to:

Rl (r ) (Ω−Qu0ω0 −ω0∆QR − lωs) =− Nbωs

8π2ηQu0
G0(r )

∫
dφe j lφe j∆Φ(r,φ)

×
Ï

r̃ d r̃ dφ̃e− j∆Φ(r̃,φ̃)
+∞∑

l ′=−∞
Rl ′(r̃ )e− j l ′φ̃

N∑
n=0

kn
(
r cosφ

) hn
(
r̃ cos φ̃

)
λ0(r̃ cos φ̃)H 2

n
. (1.140)

where we have used the fact that the integral on the right-hand side of Eq. 1.139∫ 2π

0
dφe j lφe− j l ′φ = 2πδl ,l ′ , (1.141)

is equal to 0 unless l = l ′ which is why the equation can be done for each term, Rl (r ), of the

sum on the left-hand side separately.

We introduce the function g0(r ), defined as

g0(r ) = ωs

βcη
G0(r ) . (1.142)

The normalization of g0 can be calculated from the normalization of G0(r ):∫
r dr g0(r ) = ωs

βcη

∫
r drG0(r ) = 1

2π
, (1.143)

Thus is the same normalization used in the code DELPHI [55]. The Vlasov equation can now
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be expressed as the integral equation:

Rl (r ) (Ω−Qu0ω0 −ω0∆QR − lωs) =− Nbβc

8π2Qu0
g0(r )

∫
dφe j lφe j∆Φ(r,φ)

×
Ï

r̃ d r̃ dφ̃e− j∆Φ(r̃,φ̃)
+∞∑

l ′=−∞
Rl ′(r̃ )e− j l ′φ̃

N∑
n=0

kn
(
r cosφ

) hn
(
r̃ cos φ̃

)
λ0(r̃ cos φ̃)H 2

n
. (1.144)

The radial functions are then expanded, as done in [57], using orthogonal functions

Rl (r ) =Wl (r )
+∞∑

m=0
blm flm(r ) , (1.145)

where the functions flm satisfy the orthogonality condition:∫
flm(r ) flm′(r )wl (r )dr = Flmδm,m′ (1.146)

and Wl (r ) is an arbitrary function and wl (r ) is an arbitrary weight function. The choice of

these two functions can be made to simplify the equation. With this expansion, Eq. 1.145, we

can integrate both sides of the Vlasov equation, Eq. 1.144, with

∫
dr wl (r ) flm(r )

(∗)

Wl (r )
, (1.147)

obtaining:

blm (Ω−Qu0ω0 − lωs)− ω0

Flm

+∞∑
m′=0

bl m′

∫
dr wl (r )∆QR (r ) flm(r ) fl m′(r ) =

− Nbβc

8π2Qu0Fl m

∑
l ′m′

bl ′m′
N∑

n=0

Ï
dr dφe j lφe j∆Φ(r,φ) wl (r ) flm(r )

g0(r )

Wl (r )
kn

(
r cosφ

)
×

Ï
r̃ d r̃ dφ̃e− j l ′φ̃e− j∆Φ(r̃,φ̃) fl ′m′(r̃ )

Wl ′(r̃ )hn(r̃ cos φ̃)

λ0(r̃ cos φ̃)H 2
n

. (1.148)

This equation can be rewritten as an eigenvalue problem. First, the matrices defined by the

matrix elements Mlm,l ′m′ and M̃lm,l ′m′ are defined as:

Mlm,l ′m′ =− Nbβc

8π2Qu0Fl m

N∑
n=0

Ï
dr dφe j lφe j∆Φ(r,φ) wl (r ) fl m(r )

g0(r )

Wl (r )
kn

(
r cosφ

)
×

Ï
r̃ d r̃ dφ̃e− j l ′φ̃e− j∆Φ(r̃,φ̃) fl ′m′(r̃ )

Wl ′(r̃ )hn(r̃ cos φ̃)

λ0(r̃ cos φ̃)H 2
n

(1.149)

and
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M̃lm,l ′m′ = δl ,l ′
ω0

Flm

∫
dr wl (r )∆QR (r ) flm(r ) fl m′(r ) . (1.150)

The full matrices will have the following shape:

(Nl Nm)× (Nl Nm) , (1.151)

where Nl is the number of l values used and Nm is the number of m values used. With the

new matrix expression, the Vlasov equation reduces to an eigenvalue problem:

bl m = (Ω−Qu0ω0 − lωs) = ∑
l ′m′

(Ml m,l ′m′ + M̃l m,l ′m′)bl ′m′ . (1.152)

In order to solve the eigenvalue problem, the functions flm(r ), wl (r ) and Wl (r ) need to be

chosen and g0(r ) and λ0(z) needs to be known. The latter two can be expressed as follows if a

Gaussian longitudinal bunch distribution is assumed:

λ0(z) = Np
2πσb

e
− z2

2σ2
b , (1.153)

g0 (r ) = 1

2πσ2
b

e
− r 2

2σ2
b , (1.154)

whereσb is the r.m.s bunch length. The orthogonal functions fl m(r ) are chosen to be Laguerre

Polynomials [61]:

fl m(r ) = L|l |
m(ar 2) , (1.155)

where the choice a = 0.5σ−0.5
b is made [58]. Choosing the right function:

wl (r ) = 2ar e−ar 2
(ar 2)|l | , (1.156)

results in the following norm coefficients of flm(r ):

Fl m = (|l |+m)!

m!
. (1.157)

Lastly, the shape function Wl (r ) is chosen in agreement with the DELPHI code [55]:

Wl (r ) =
(

r

rb

)|l |
e−ar 2

. (1.158)

All functions in the matrices Mlm,l ′m′ , Eq. 1.149, and M̃lm,l ′m′ , Eq. 1.150, are now known which

means that the eigenvalue problem in Eq. 1.152 can be solved with standard linear algebra

packages, e.g. python NumPy [62].
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Table 1.2: Simulation parameters for build-up simulations in LHC magnets during injection.

Parameter Value
Beam energy 450 GeV
Bunch intensity 1.2e11 protons/bunch
Bunch length 1.2 ns
Bunch spacing 25 ns
Bunches in train 300
SEY 1.4
Emax 332 eV
# macro-particles 250000
magnet LHC quadrupole

1.4 E-cloud modeling for the LHC

The e-cloud buildup in the LHC beam pipe can be modeled using the simulation code PyE-

CLOUD. PyECLOUD is a software package designed for simulating e-clouds in particle acceler-

ators [63]. The code has been benchmarked against measurements in the CERN accelerators

[64]. PyECLOUD employs a Particle-In-Cell (PIC) algorithm to simulate the forces acting on

electrons within particle beam chambers. It models the interactions of electrons with the

particle beam and among themselves, considering various conditions such as different surface

properties and the presence of magnetic fields within the beam chambers [65].

The parameters used in the build-up simulations in this thesis are listed in Tab. 1.2. The

total number of electrons in the beam chamber as a function of time for an LHC quadrupole

can be seen in Fig. 1.8. The total time plotted is 1.4e−6 s, which corresponds to the passage

of 56 bunches. The number of electrons in the beam chamber increases with each bunch

passage until saturation is reached, as discussed in Sec. 1.2. Each bunch passage is visible

in the electron population as a local maximum. The value at which the e-cloud population

saturates depends primarily on the SEY of the beam chamber [66].

The electrons do not spread evenly in the beam chamber but arrange themselves after the

magnetic field present in the beam chamber [67]. Figure 1.9 displays the number of electrons

at each horizontal position x as a function of time in an LHC dipole, Fig. 1.9a, and in an

LHC quadrupole, Fig. 1.9b, for the same beam parameters. The center of the beam pipe

corresponds to x = 0 and both simulations use an SEY of 1.4. On the left plot, the electrons

have arranged themselves away from the beam center whereas in the quadrupole, right plot,

there are many electrons present in the center of the chamber. This is due to the magnetic

trapping of electrons [68]. Because of this, the e-cloud in the LHC quadrupoles affects the

beam dynamics more than the e-cloud in the LHC dipoles when the SEY is as low as 1.4, which

is a typical value after conditioning [69].

The transverse cross-section of the e-cloud distribution after build-up saturation in an LHC

quadrupole under the conditions defined in Tab. 1.2 can be seen in Fig. 1.10.
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1.4 E-cloud modeling for the LHC

Figure 1.8: The total number of electrons in the beam chamber of an LHC quadrupole with
SEY 1.4 during the passage of bunches of 1.2e11 protons/bunch spaced by 25 ns.

The electrons building up the LHC quadrupoles will spin around the field lines. The distri-

bution of electrons in the beam chamber during a bunch passage in an LHC quadrupole can

be seen in Fig. 1.11. The leftmost picture, Fig. 1.11a, shows the distribution before the bunch

passage, Fig. 1.11b shows the distribution after a third of the bunch has passed, Fig. 1.11c after

two-thirds have passed and finally Fig. 1.11d shows the distribution of electrons just after a

bunch has passed through.

The electron density at the center of the beam chamber, at coordinates (0,0) is much higher

after a third of the bunch has passed through compared to the right before the bunch passage,

meaning this part of the bunch will experience stronger forces from the electrons compared

to the head of the bunch. The e-cloud distribution in the beam chamber continues to vary as

the bunch passes through meaning that the e-cloud forces acting on the bunch are dependent

on the longitudinal position within the bunch.

The PyHEADTAIL code is used for simulating collective beam dynamics with macro-particle

tracking [70]. The e-cloud distributions simulated with PyECLOUD can be interfaced with

PyHEADTAIL to simulate the e-cloud effects on the beam dynamics [71]. In other words, the

electrons act on the bunch as the bunch is passing through, which can also be modeled by PIC

simulations. For a given distortion impressed to the bunch hn(z) the resulting kick from the

interaction with the e-cloud, also known as a response can be simulated using PyHEADTAIL

from the e-cloud distribution calculated by PyECLOUD. Simulations parameters used for this

purpose can be seen in Tab. 1.3.

The set of responses kn(z) to sinusoid bunch distortions, hn(z), introduced in Eq. 1.123 were

simulated using the procedure described above.

Three of the bunch distortions are plotted in black in the top plots of Fig. 1.12. In the same

plots, the e-cloud density is plotted in the xz-plane. The e-cloud density at the head of the

bunch, z = 30, the electron density is lower than at the center of the bunch z = 0. As expected,
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(a) E-cloud buildup in LHC dipole for parameters
listed in Tab. 1.2.

(b) E-cloud buildup in LHC quadrupole for param-
eters listed in Tab. 1.2.

Figure 1.9: Number of electrons at each x-position as a function of time during a 300 bunch
train passage.

a modulation of e-cloud density along the bunch is seen in all three plots.

Figure 1.12a displays the sinusoid bunch distortion, h1(z), with one oscillation along the

bunch and the corresponding kick, k1(z). The kick is of a similar shape as the bunch distortion.

Similarly, a sinusoid bunch distortion of five oscillations along the bunch and its response

is plotted in Fig. 1.12b. The response has a higher number of oscillations along the bunch

compared to the response in Fig. 1.12a and a higher amplitude. Lastly, the response to a bunch

disputation with 10 oscillations along the bunch is plotted with its response in Fig. 1.12c. This

response again has a higher number of oscillations along the bunch compared to Fig. 1.12b

but the amplitude is lower than both previously plotted responses.

The responses to bunch distortions hn(z) for n = 1,2...200 were calculated and are used to

calculate the coherent force, see Eq. 1.138 where the sum is truncated to N = 200. A measure

of the amplitude of the responses, kn(z) is the integral:∫ Lbkt

0
k2

n(z)d z , (1.159)

and is plotted as a function of number of oscillations along the bunch, f z
n Lbucket in Fig. 1.13.

The amplitude of the responses to the sinusoid bunch distortions and the cosine bunch

distortions are plotted in orange and blue respectively. The response to bunch distortions

with seven oscillations along the bunch has the highest amplitude and responses to bunch
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Figure 1.10: The electron distribution in the transverse cross-section of an LHC quadrupole
right before a bunch passage but after saturation of the number of electrons in the chamber.

Table 1.3: Simulations parameters for generating responses from e-cloud build-up in LHC
quadrupoles with a SEY of 1.4.

magnet with e-cloud LHC Quadrupole
interaction points around the ring 8
octupole current 0 A
chromaticity 0
VRF 6e6 V
Transverse Damper off
# slices in along the bunch 200
Macro-particles per slice 2500
Fraction of device with magnets 7%
Magnetic field 12.1 T/m
cos and sin amplitude 1e−4
# oscillations along the bunch 0-100
Detuning fit order 10
SEY 1.4
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(a) Cross section before
bunch passage.

(b) Cross section after
a third of a bunch has
passed through.

(c) Cross section after
two-thirds of a bunch
has passed through.

(d) Cross section after
bunch passage.

Figure 1.11: The e-cloud distribution in a transverse cross-section of an LHC quadrupole
during a bunch passage.

(a) The response to a sinusoid
with one oscillation along the
bunch.

(b) The response to a sinusoid
with 5 oscillations along the
bunch.

(c) The response to a sinusoid
with 10 oscillations along the
bunch.

Figure 1.12: Calculated responses to bunch distortions hn(z).

distortions with more than 40 oscillations along the bunch have negligible amplitudes.

The found responses, kn(z), model the dipolar forces from the e-cloud as they cause the beam

to be kicked. Focusing forces from the e-cloud, also known as quadrupolar forces, also act

on the beam. The detuning along the bunch from the e-cloud quadrupolar forces can be

simulated by displacing all particles along the bunch equally and simulating one turn using the

PyHEADTAIL-PyECLOUD code. The resulting tune deviation, or detuning, along the bunch is

plotted in Fig. 1.14 in blue. A polynomial of degree 10 is then fitted to the simulated ∆Q and is

plotted in orange. The coefficients of this polynomial fit correspond to the coefficients An in

1.105.

1.4.1 E-cloud strength

The responses, kn , and the detuning coefficients An are calculated for one configuration of

machine and beam parameters. A quick way to vary the amount of e-cloud present in the

chamber is to multiply the responses and the detuning with a factor, known as the “e-cloud

strength“. An e-cloud strength of 1 corresponds to the e-cloud density calculated by the

build-up simulations for the parameters specified.
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1.4 E-cloud modeling for the LHC

Figure 1.13: The squared amplitude of the responses, kn(z), as a function of the number of
oscillations along the bunch of the corresponding bunch distortion hn(z).

Figure 1.14: The simulated detuning along the bunch as a result of the e-cloud in LHC
quadrupoles at injection.
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Figure 1.15: The amplitude for the response kn as a function of electron density for three
different bunch distortions.

To demonstrate what the e-cloud strength corresponds to, the amplitude of the response from

a displaced bunch, a bunch with a sinusoid bunch distortion, and a bunch with cosine bunch

distortion is plotted as a function of electron density in Fig. 1.15. All three curves appear to

have a linear dependence on the e-cloud density. Hence, the e-cloud forces are with good

approximation proportional to the e-cloud density present in the machine. This means that,

to model a change in the e-cloud density, we can simply scale the response functions (and the

detuning forces) with a factor that in the following we will call “e-cloud strength”.

1.5 Applying the introduced force modeling in macro-particle simu-

lations

The force model of the e-cloud used in the Vlasov simulations can also be put into PyHEAD-

TAIL. The dipolar forces from the e-cloud are introduced as a response matrix installed at

the defined number of interaction points along the ring. The response matrix can be calcu-

lated from the responses kn(r ) defined below Eq. 1.123 and plotted in Fig. 1.12 for the e-cloud

formed in an LHC quadrupole of SEY 1.4 at injection.

A discretization of hn(z), defined in Eq. 1.123, along a finite amount of longitudinal slices of

z defines the vectors hn . The number of slices is chosen to be the same as the number of

functions hn(z) used, N . These vectors define basis functions, not necessarily orthogonal, that

can be used to describe a discretized beam distribution x(z). The vector
¯
X = [x1, x2, · · · , xN ]T

is a discretization of x(z) for N points along the z-axis. The matrix
¯̄
F contains all the basis

functions as column vectors and the vector
¯
A = [a1, a2, · · ·aN ]T contains all coefficients for

describing
¯
X in the basis hn . Each element in the

¯
X vector can be calculated using the sum:

xn =
N∑
k

ak hkn , (1.160)
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which means that the vector
¯
X can be calculated through the matrix computation:

¯
X =

¯̄
F

¯
A . (1.161)

The matrix
¯̄
F is given by:

¯̄
F =


h11 h21 · · · hN 1

...
...

. . .
...

h1N h2N · · · hN N

 . (1.162)

The coefficient an can therefore be calculated through the matrix computation:

¯
A =

¯̄
F−1

¯
X . (1.163)

As discussed before, a linear dependence is assumed meaning that the response of a dis-

tribution x can be described as the linear combination of kn using the same coefficients

an :

x ′
n =∑

k
ak kkn . (1.164)

The responses kn can be arranged in a matrix
¯̄
M :

¯
X ′ =

¯̄
M

¯
A ;

¯̄
M =


k11 k21 · · · kN 1

...
...

. . .
...

k1N k2N · · · kN N

 (1.165)

from which:

⇒
¯

X ′ =
¯̄
M

¯̄
F−1

¯
X (1.166)

To suppress numerical noise from underpopulated slices, the head and tail of
¯
X are cut off

using a matrix
¯̄
Ct ai l . For example, when the two first and the two last elements are cut get:

¯̄
Ct ai l =



0

0

1

1
. . .

1

0

0


, (1.167)

¯
X is now cleaned up to

¯
Xclean . This data set,

¯
Xclean , is now used to calculate the coefficients

¯
A:

¯
Xclean =

¯̄
Ct ai l

¯
X =

¯̄
F

¯
A ⇒

¯
A =

¯̄
F−1

¯̄
Ct ai l

¯
X . (1.168)
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The response can be limited to k0 terms by using the matrix
¯̄
C :

¯̄
C =



1

1
. . .

1

0

0

0


. (1.169)

Where the k0’s row is the last row with a non-zero element, obtaining:

¯
X ′ =

¯̄
M

¯̄
C

¯
A . (1.170)

Replacing
¯
A using Eq. 1.168 gives:

¯
X ′ =

¯̄
M

¯̄
C

¯̄
F−1

¯̄
Ct ai l

¯
X =

¯̄
W

¯
X (1.171)

The inversion of
¯̄
F can be made easier using the following manipulation:

¯
Xcond =

¯̄
Ct ai l s

¯
X (a)

¯
Xcond =

¯̄
F

¯
A (b)

¯̄
Ct ai l s

¯
X =

¯̄
F

¯
A (c)

. (1.172)

Multiply both sides of (c) with
¯̄
F T :

¯̄
F T

¯̄
Ct ai l s

¯
X =

¯̄
F T

¯̄
F

¯̄
A , (1.173)

where we write
¯̄
R =

¯̄
F T

¯̄
F . Note that if hn are orthogonal then the matrix

¯̄
R is a diagonal matrix.

Solving for
¯
A in Eq. 1.173 gives:

¯
A =

¯̄
R−1

¯̄
F T

¯̄
Ct ai l

¯
X . (1.174)

Using the cut version or
¯
X ′:

¯
X ′ =

¯̄
M

¯̄
C

¯
A , (1.175)

gives the final relation between
¯
X ′ and

¯
X : 5

¯
X ′ =

¯̄
M

¯̄
C

¯̄
R−1

¯̄
F T

¯̄
Ct ai l

¯
X . (1.176)

The quadrupolar forces from the e-cloud are implemented using modulated quadrupoles at

each interaction point along the ring. The collective strength of each of these quadrupoles has

a quadrupole strength of ∆k. The change in tune from a change in quadrupole strength ∆k is

[60]:

∆Q = 1

4π

∮
∆kβ(s)d s , (1.177)
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where ∆k is the strength of the modulated quadrupoles and β is the transverse beta function

along the ring. Using the smooth approximation, introduced in Sec. 1.3.1, the quadrupolar

strength needed to simulate a tune shift of ∆Q is

∆k = (
4π

βu
∆Q)/nseg ment s , (1.178)

where nseg ment s is the number of interaction points along the ring. The expression for ∆Q

from e-cloud is

∆Q =
Np∑

n=1
An zn , (1.179)

were the coefficients An depend on the e-cloud distribution in the chamber, as discussed in

Sec. 1.4.
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2 Vlasov approach for modeling e-cloud
instabilities

2.1 Beam stability in the absence of chromaticity

In this section, we first study the simplest case with only dipolar forces from e-cloud, and then

we include detuning forces from the e-cloud.

The solution to the linearized Vlasov equation reduced to an eigenvalue problem is a set of

Vlasov modes, each with a complex frequencyΩ. The parameters used in these simulations

can be seen in Tab. 2.1. An example of a solution set for the Vlasov equation for one e-cloud

strength is plotted as a vertical line in Fig. 2.1a. E-cloud strength is defined in Sec. 1.4.1. In

this example, only dipolar forces from e-cloud are included, meaning ∆Q(z,δ) = 0 in Eq. 1.105,

and no chromaticity is included. The tune shift of the mode can be calculated from the real

part of the complex frequencyΩ:

Tune Shift = (Q −Q0)/Qs =
(
Re(Ω)

ω0
−Q0

)
/Qs (2.1)

where Q0 is the nominal tune without e-cloud, Qs is the synchrotron tune andω0 is the angular

revolution frequency. In Fig. 2.1a, the tune shift is plotted on the y-axis. The other defining

characteristic of an instability is the instability growth rate, which is a measure of how fast the

amplitude of the centroid motion grows with time. The instability growth rate can be obtained

Table 2.1: Simulation parameters of Vlasov simulations

Parameter Value Description
lmin −7 Minimum radial mode number
lmax 7 Maximum radial mode number
mmax 39 Number of azimuthal modes
nφ 3·360 the number of discretized terms in calculating the integral

∫
dφ.

nr 3·200 the number of discretized terms in calculating the integral
∫

dr .
Nmax 49 the number of terms used to describe the coherent force
σb 0.097057 r.m.s. bunch length
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Chapter 2. Vlasov approach for modeling e-cloud instabilities

Table 2.2: Simulation parameters of macroparticle simulations

Parameter Value
number of interaction points along the ring 8〈
βx

〉
92.7〈

βy
〉

93.2
Qx 62.77
Qy 60.295
VRF 6e6 V
Transverse Damper off
Octupole Current 0 A
Bunch Intensity 1.2e11 protons/bunch
ϵx ,ϵy 2.5e−6 m rad
σz 0.097
# slices along the bunch 200
macroparticles per slice 2500
# turns 8000
Stop condition losses 0.9
Stop condition emittance growth 0.5

as minus the imaginary part of Ω, The more negative ImΩ, the more unstable the mode is.

The color of the dots plotted in Fig. 2.1a corresponds to the instability growth rate of the Vlasov

mode it represents. Looking at the vertical line at e-cloud strength = 1.0, most dots are dark

blue, meaning they have zero or very low instability growth rate. They are grouped around the

integer lines (Q −Q0)/Qs = n,n ∈Z, with some modes slightly shifted down from the integer

lines. A strongly unstable mode is visible for e-cloud strength = 1 at (Q −Q0)/Qs =−3. This

Vlasov mode is plotted in green, indicating an instability growth rate of about 40 s−1.

For weak e-cloud strengths in Fig. 2.1a, e-cloud strength < 0.9 all plotted Vlasov modes are

deep blue representing weak instabilities with growth rates less than 1 s−1. The Vlasov mode

starts on the integer lines at e-cloud strength = 0, and then some of the modes start to shift

down as the e-cloud strength increases. In contrast, for e-cloud strength > 1.0, many Vlasov

modes have instability growth rates > 30 s−1 with the most unstable one being plotted in dark

red and has a tune shift starting at a bit about −4 at e-cloud strength 1.25 to a tune shift of −4.5

at e-cloud strength 2.0. All unstable modes appear to happen when two azimuthal modes

meet.

The tune shift can also be obtained from macroparticle tracking simulations. The parameters

of these simulations can be seen in Tab. 2.2 The spectral information from the transverse

motion of the centroid bunch position is evaluated using the SUSSIX algorithm [72]. The

SUSSIX spectrum of one simulation, at a fixed e-cloud strength, is plotted as a vertical line in

Fig. 2.1b for the case with no detuning from e-cloud and no chromaticity. The size of the dot

corresponds to the amplitude at that frequency, and the frequency is in this case measured

in units of normalized tune shift (Q −Q0)/Qs . Macroparticle simulations are run for a set of
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2.1 Beam stability in the absence of chromaticity

e-cloud strengths from 0 to 2 and for each strength a spectral analysis is conducted and the

result is plotted as a vertical set of dots in Fig. 2.1b. The growth rate of each frequency cannot

be easily calculated from the spectral data which is why no information about the instability

growth rate is visible in Fig. 2.1b.

At low e-cloud strengths, i.e. e-cloud strength < 0.75, the spectral lines are grouped around

the integer lines (Q −Q0)/Qs = n,n ∈Z, and similarly to the modes visible in 2.1a, the visible

spectral peaks shift down as the e-cloud strength is increased. At e-cloud strength 1, as

predicted by the Vlasov method, a stronger mode becomes visible. Increasing e-cloud strength,

one first observes a strong mode around (Q −Q0)/Qs = −2, then at (Q −Q0)/Qs = −3, then

back to −2, then finally around −3 at e-cloud strength 1.25. For higher e-cloud strengths, the

instability becomes very violent, particles are lost after a small number of turns and it becomes

impossible to perform an accurate spectral analysis on the tracking data.

(a) The tune-shift of all Vlasov modes at each e-
cloud strength are plotted as dots. The color of the
dot corresponds to the instability growth rate of
that mode.

(b) The tune-shift calculated from macroparticle
tracking simulations. Each dot corresponds to a
frequency peak found using the SUSSIX algorithm
and the size of the dot corresponds to the ampli-
tude of that peak.

Figure 2.1: The resulting spectrograms from Vlasov simulations and macroparticle simulatons
where no detuning from e-cloud is included, ∆Q(z,δ) = 0

The Vlasov modes obtained from simulations including the detuning from e-cloud can be

seen in Fig. 2.2. There are “fans of modes“ originating from the integer lines of (Q −Q0)/Qs ,

with slopes greater or equal to zero, meaning that a positive tune shift is introduced as the

e-cloud strength increases. The color of each mode corresponds to the instability growth

rate and the first unstable mode can be seen around e-cloud strength 0.6 for frequencies in

the order of (Q −Q0)/Qs = −0.5. As the e-cloud strength increases, several unstable Vlasov

modes are visible, all parallel to the top line of each mode-fan up to e-cloud strength 1.5. At

this strength, two Vlasov modes with high growth rates (higher than 100 s−1) can be seen at

(Q −Q0)/Qs = −1 and 0. The tune shifts of these modes increase at a lower rate with e-cloud

strength compared to the weaker unstable modes, which still follow the parallel lines.

In order to compare the tune shifts predicted by the Vlasov modes with the spectrum calculated
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Chapter 2. Vlasov approach for modeling e-cloud instabilities

Figure 2.2: The tune-shift of all Vlasov modes at each e-cloud strength are plotted as dots for
simulations with detuning from e-cloud, ∆Q(z,δ) ̸= 0. The color of the dot corresponds to the
instability growth rate of that mode.

from the macroparticle tracking simulations, the Vlasov modes can be plotted in the same

plot as the SUSSIX spectra of the macroparticle simulations. In Fig. 2.3a, we present the same

Vlasov modes as depicted in Fig. 2.1a, shown as yellow-orange dots. The color intensity of each

dot corresponds to the instability growth rate, with darker shades indicating higher growth

rates for the respective Vlasov mode. The same spectral information plotted in Fig. 2.1b is

plotted on top of the Vlasov modes in Fig. 2.3a where the frequency with the highest amplitude

is marked with a big dot for each e-cloud strength. In the region with e-cloud strengths <

1.0. the spectral peaks from the macroparticle simulations are on top of the predicted Vlasov

modes, the same grouping around (Q −Q0)/Qs = n,n ∈Z is visible as well as the shift down of

some modes as the e-cloud strength increases. For strong e-cloud, the only visible peak in the

macroparticle spectrum follows the behavior of the strongest Vlasov mode. This is expected

and it means that the Vlasov modes accurately predict the frequency of the strongest unstable

mode, which dominates the bunch motion in the tracking simulation.

Figure 2.3b shows the result of simulations for e-cloud strengths in the range 0-2 with detuning

forces from e-cloud, ∆Q(z,δ) ̸= 0, in the absence of chromaticity. The resulting Vlasov modes

are plotted in yellow-orange, where the strong modes are plotted in orange and the weak

modes are plotted in yellow. These are the same modes plotted in Fig. 2.2. The spectral

analysis of the macroparticle tracking simulations is again overlaid as black dots where each

dot is a frequency peak calculated using the SUSSIX algorithm and the size of the plotted

dot corresponds to the amplitude of that spectral component. For e-cloud strength < 0.5,

there are groups visible around the integer lines. In addition, fans of modes with positive

slopes are visible in the Vlasov spectra as well as in the macroparticle spectra. In the region

between e-cloud strength 0.5 and 1.5, several orange lines are visible in the Vlasov spectrum

which represent several unstable modes. The spectral components visible in the macroparticle

simulations follow these orange lines well. For e-cloud strengths above 1.5, several strong

modes, orange dots, are visible in the Vlasov spectrum. In the spectra from the macroparticle

simulations in the region of strong e-cloud only one peak is visible, marked by the black dot.
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2.1 Beam stability in the absence of chromaticity

(a) No detuning from e-cloud is included
∆Q(z,δ) = 0 (b) Detuning from e-cloud is included ∆Q(z,δ) ̸= 0

Figure 2.3: The tune shift calculated from the Vlasov approach, the dots in a yellow-orange
color-map, and the spectral analysis of the macroparticle tracking simulations, black dots. The
highest peak of the macroparticle spectra is marked with a big dot at each e-cloud strength.

Also in this case, for higher e-cloud strengths, the instability becomes very violent, in the

tracking particles are lost after a small number of turns and it becomes impossible to perform

an accurate spectral analysis on the tracking data.

The instability growth rate for each Vlasov mode is minus the imaginary part of the complex

frequencyΩ. The growth rates, −Im(Ω), of each Vlasov mode for the case of only dipolar forces

from e-cloud and no chromaticity are plotted in Fig. 2.4a. The Vlasov modes are symmetric

around −Im(Ω) = 0, meaning for every unstable Vlasov mode with a growth rate of a, where a

is a positive number, there exists a Vlasov mode with a growth rate of −a, which is naturally

damped. For low e-cloud strengths (< 1) there are no unstable Vlasov modes visible. For higher

e-cloud strength (>1) several Vlasov modes with non-zero growth rates are visible. The growth

rate of the most unstable Vlasov mode, the mode with the highest growth rate at each e-cloud

strength, increases with increased e-cloud strength.

The instability growth rate of the macroparticle simulations can be calculated by fitting an

exponential to the tracking data of the centroid bunch position. The resulting exponent

corresponds to the instability growth rate. The obtained growth rates for the simulations at

each e-cloud strength are plotted as black crosses on top of the Vlasov modes. The black

crosses follow the growth rate of the worst Vlasov mode for all considered e-cloud strengths.

When detuning from e-cloud is included in the model, the Vlasov modes plotted in Fig. 2.4b

are obtained. Again, the Vlasov modes are symmetric around −Im(Ω) = 0, and modes with

a low growth rate are visible from e-cloud strength 0.5. The growth rate of the worst Vlasov

mode increases with e-cloud strengths. Compared to Fig. 2.4a, weaker modes are visible for

e-cloud strengths > 1. The instability growth rate obtained from doing an exponential fit on

the centroid bunch from the macroparticle tracking simulations is plotted as black crosses

and is found to follow the growth rate of the worst Vlasov mode.
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Chapter 2. Vlasov approach for modeling e-cloud instabilities

(a) No detuning from e-cloud is included
∆Q(z,δ) = 0.

(b) With detuning from e-cloud is included
∆Q(z,δ) ̸= 0.

Figure 2.4: The negative imaginary part of the complex mode frequency of the Vlasov modes at
each e-cloud strength are plotted as blue dots. The instability growth rate from macroparticle
tracking simulations is plotted as a black cross at each e-cloud strength.

The worst Vlasov mode in Fig. 2.4a has a higher growth rate compared to the worst Vlasov

modes in Fig. 2.4b. For e-cloud strength 2.0, the growth rate of the worst Vlasov mode is 500 s−1

in the left plot and 400 in the right plot of 2.4. This indicates that the detuning forces from

e-cloud have a slightly stabilizing effect on the worst Vlasov mode. However, as previously

mentioned, weaker modes appear in the presence of detuning from e-cloud, which are not

present when only dipolar forces are included in the model.

To illustrate the accuracy of the performed fit, Fig.2.5 shows the bunch centroid motion for

different macroparticle simulations, the corresponding rise time fit and the growth rate for the

strongest mode as obtained from the Vlasov method.
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2.2 Effect of chromaticity

Figure 2.5: The turn-by-turn transverse position from the macroparticle tracking simulations
is plotted in blue. The exponential fit of the tracking data is plotted in red and the predicted
growth exponential from the Vlasov approach is plotted in green.

2.2 Effect of chromaticity

In this section, the complexity of the simulations is increased by adding the effect of chro-

maticity from the lattice. Simulation results with and without detuning from e-cloud will be

discussed.

The growth rates from Vlasov simulations, plotted in blue, and the instability growth rate

obtained from macroparticle simulations, black crosses, can be seen in Fig. 2.6a for the case

with no detuning forces from e-cloud, ∆Q(r,δ) = 0, and for chromaticity −10. In this case,

the Vlasov modes are not symmetric around −Im(Ω) = 0. In addition, a larger number of

weakly unstable modes are visible compared to the case with zero chromaticity in Fig. 2.4a. An

asymmetry of the instability growth rates around zero is also visible in the case with detuning

from e-cloud plotted in Fig. 2.6b. The worst Vlasov mode has a higher growth rate when

∆Q(r,δ) = 0. In both cases, ∆Q(r,δ) = 0 and ∆Q(r,δ) ̸= 0, the instability growth rate of the

corresponding macroparticle tracking simulations, plotted as black crosses in Fig. 2.6a and

Fig. 2.6b, are consistent with the growth rate of the worst Vlasov mode.

The results of simulations with chromaticity = 10 can be seen in Fig. 2.6c for no detuning from

e-cloud and in Fig. 2.6d with detuning from e-cloud. The Vlasov modes in both figures are

asymmetric around the x-axis, with a tendency for negative growth rates. This is the opposite

of the asymmetry in growth rates visible in Fig. 2.6a and Fig. 2.6a indicating that negative

chromaticity has a destabilizing effect on the Vlasov modes and that positive chromaticity

has a stabilizing effect. In addition, the worst Vlasov mode has a higher growth rate when
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Chapter 2. Vlasov approach for modeling e-cloud instabilities

∆Q(r,δ) = 0 compared to when ∆Q(r,δ) ̸= 0.

The instability growth rates from the macroparticle tracking simulations, black crosses, follow

the worst Vlasov mode in Fig. 2.6c but not in 2.6d. In the latter, several Vlasov modes have a

higher growth rate than observed in the macroparticle simulations for e-cloud strengths in

the interval 0.75 to 1.5. Similarly, for stronger chromaticity, see the results from chromaticity

15 in Fig. 2.6e and Fig. 2.6f, the instability growth rate of the macroparticle simulations follows

the growth rate of the worst Vlasov mode when no detuning from e-cloud is included but does

not follow the worst Vlasov mode when the detuning term is included. In this case, Fig. 2.6f,

no strong instabilities are visible in the macroparticle simulations until e-cloud strength 1.75,

whereas weak Vlasov modes of increasing growth rates are visible for e-cloud strength > 0.5.

This indicates that the Vlasov modes overestimate the growth rate of the instabilities present

in the macroparticle simulations for positive chromaticity when the detuning term, ∆Q(r,δ),

from the e-cloud is included in the simulations.

In order to investigate the discrepancy between the calculated instability growth rate from

the macroparticle tracking data and the instability growth rate predicted by the worst Vlasov

mode, a few individual simulations are plotted in Fig. 2.7 all with chromaticity = 15. Figure 2.7a

displays the tracking data, blue, from the macroparticle simulations for three simulations

where the e-cloud strength is set to 0.76, 1.20, 1.94 respectively, in the absence of detuning

from e-cloud (meaning ∆Q(r,δ) = 0). For all three e-cloud strength values, the tracking data

displays exponential growth behavior. The fit of the tracking data is plotted in red and an

exponential with the growth rate predicted by the Vlasov simulations is plotted in green. Both

the red and the green curves follow the behavior of tracking data for all three e-cloud strengths.

Similarly, the tracking data of the same three e-cloud strengths, 0.76, 1.20 and 1.94, are plotted

in Fig. 2.7b for the cases with chromaticity = 15 and the detuning from e-cloud, ∆Q(r,δ) ̸= 0.

The fit for the tracking data is again plotted in red and the predicted instability from the Vlasov

approach is plotted in green. Evidently, the growth rate obtained with the Vlasov method is

higher than the growth rate from the macroparticle tracking data. The difference is larger for

lower e-cloud strengths. It is evident that the discrepancy between the instability growth rate

calculated from the macroparticle simulations and the instability growth rate predicted by the

Vlasov approach cannot be explained by an error in the fit of the tracking data.

The resulting tune shift calculated using the Vlasov approach for e-cloud strengths 0 to 2

can be seen in Fig. 2.8. The results obtained for a negative chromaticity of −10 can be seen

in Fig. 2.8a, where no detuning from e-cloud present, and in Fig. 2.8b, where detuning from

e-cloud is included. In both of these plots, there are Vlasov modes at e-cloud strength 0.2

visible as turquoise dots, which indicates that these modes are unstable with an instability

growth rate of about 20 s−1. For this e-cloud strength, several unstable modes can be seen in

Fig. 2.8a and no one mode is dominating until e-cloud strength 0.75, where a Vlasov mode at

(Q −Q0)/Qs =−2.5 becomes dominant with a growth rate close to 100 s−1. Similarly, unstable

modes can be seen at e-cloud strength 0.2 in Fig. 2.8b, where ∆Q(r,δ) ̸= 0. For this case, one
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2.2 Effect of chromaticity

(a) Chromaticity = −10, ∆Q(z,δ) = 0 (b) Chromaticity = −10, ∆Q(z,δ) ̸= 0

(c) Chromaticity = 10, ∆Q(z,δ) = 0 (d) Chromaticity = 10, ∆Q(z,δ) ̸= 0

(e) Chromaticity = 15, ∆Q(z,δ) = 0 (f) chromaticity = 15, ∆Q(z,δ) ̸= 0

Figure 2.6: The resulting growth rates from Vlasov simulations, blue dots, and the instability
growth rate obtained from macroparticle simulations, black crosses, for chromaticity −10, 10,
and 15. The left plots display the results of using only dipolar forces from e-cloud and the right
plots display the results of including detuning from e-cloud, ∆Q(r,δ).
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(a) ∆Q(z,δ) = 0 (b) ∆Q(z,δ) ̸= 0

Figure 2.7: The tracking data from macroparticle simulations is plotted in blue, the fit of the
tracking data is plotted in red and and exponential with the growth rate of the worst Vlasov
mode is plotted as green. Chromaticity is set to 15 in all simulations.

Vlasov mode, the mode close to (Q −Q0)/Qs = −1, is stronger than the other modes. It is

important to note that modes become unstable for lower e-cloud strengths than for the cases

with zero chromaticity seen in Fig. 2.1a and in Fig. 2.2, and that no evident mode coupling is

observed.

Vlasov simulations with chromaticity 10 results in the modes displayed in Fig. 2.8d for∆Q(r,δ) =
0 and Fig. 2.8d for ∆Qr,δ ̸= 0. Unstable modes of similar strengths can be seen, in Fig. 2.8c,

on the integer lines −5 to 2 of (Q −Q0)/Qs from e-cloud strength 0.5 to 1.0. A strong unstable

mode, with a growth rate of 200 s−1, can be seen on the integer line (Q−Q0)/Qs =−5 at e-cloud

strength 1.75. Similarly, several unstable modes can be seen in Fig. 2.8d for e-cloud strengths

higher than 0.5, the modes are approximately parallel to each other but do not stay on the

integer lines.

Benchmarks of the Vlasov modes tune shift compared to the spectral analysis of the macropar-

ticle tracking simulations can be seen in Fig. 2.9 for the same three values of chromaticity

plotted in 2.6, where a discrepancy between the to models was identified for positive chro-

maticity and ∆Q(r,δ) ̸= 0. The plots on the left in Fig. 2.6 contain results from simulations with

∆Q(r,δ) = 0 while the plots on the right contain results from simulations with∆Q(r,δ) ̸= 0. The

spectral lines from the macroparticle simulations are plotted as black dots where the size of the

dot corresponds to the amplitude of the corresponding frequency component and the highest

line for each e-cloud strength is marked with a big dot. The tune shift of the Vlasov modes is
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(a) ∆Q(z,δ) = 0, chromaticity = −10 (b) ∆Q(z,δ) ̸= 0, chromaticity = −10

(c) ∆Q(z,δ) = 0, chromaticity = 10 (d) ∆Q(z,δ) ̸= 0, chromaticity = 10

Figure 2.8: The tune shift of the calculated Vlasov modes in units of the synchrotron tune Qs

for chromaticity −10 and chromaticity 10 for simulations including or excluding the detuning
term from e-cloud, ∆Q(r,δ).
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plotted in yellow-orange with the color corresponding to the growth rate of each mode. In

Fig. 2.9a, several peaks are visible from the macroparticle spectrum for e-cloud strengths 0 to

0.5, and all of these peaks follow an expected Vlasov mode. At e-cloud strengths greater than

0.5, only one clear peak is visible in the macroparticle spectra and it follows the tune shift of

the strongest Vlasov mode starting at (Q −Q0)/Qs =−2 and shifting down to (Q −Q0)/Qs =−4

at e-cloud strength 2. At high e-cloud strength, the macroparticle simulations contain too few

turns to do an accurate spectral analysis.

In Fig. 2.9c and Fig. 2.9e the strongest spectral lines from the macroparticle simulations mostly

follow the integer lines of (Q −Q0)/Qs , just as the strong Vlasov modes. Similarly, in Fig. 2.9d

and Fig. 2.9f, the spectral lines plotted in black follow the same slope as the Vlasov modes. The

frequency peaks from the macroparticle simulations follow the tune shift of the Vlasov modes

in all six figures meaning the two simulation modes are in agreement about the expected spec-

tral componente of the bunch motion, even for positive chromaticity and with the detuning

term from e-cloud, where a discrepancy on the rise time had been observed.

In summary, the Vlasov approach accurately predicts the behavior of the e-cloud driven

instabilities in the macroparticle tracking simulations for chromaticity in the range −10 to 25

when only dipolar forces are included. There is also agreement between the two simulation

methods for negative or zero chromaticity when the detuning term from e-cloud, ∆Q(r,δ), is

included. The agreement is in both tune shift and growth rate.

In order to further analyse the behavior depending on the chromaticity, the growth rate of

both simulation approaches is plotted as a function of chromaticity for three e-cloud strengths

in Fig. 2.10 in the presence of detuning forces from the e-cloud.

For all cases the agreement between the two methods is very good up to a certain value up to

a the value of chromaticity marked by the vertical line. Above such value no dominant mode

is identified by the Vlasov and in the macroparticle simulations the beams tends to be more

stable than indicated by the Vlasov.
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(a) ∆Q(r,δ) = 0, Chromaticity = −10 (b) ∆Q(r,δ) ̸= 0, Chromaticity = −10

(c) ∆Q(r,δ) = 0, Chromaticity = 10 (d) ∆Q(r,δ) ̸= 0, Chromaticity = 10

(e) ∆Q(r,δ) = 0, chromaticity = 15 (f) ∆Q(r,δ) ̸= 0, Chromaticity = 15

Figure 2.9: The tune shift calculated from the Vlasov approach, is plotted as yellow-orange
dots, and the spectral analysis of the macroparticle tracking simulations, black dots. The
highest peak of the macroparticle spectra is marked with a big dot at each e-cloud strength.
The plots on the left hand side contains the results from simulations without detuning from
e-cloud for chromaticity −10, 10 and 15. The plots on the right hand side contains the result
from simulations including detuning from e-cloud, for the same three values of chromaticity.
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(a) e-cloud strength = 0.6 (b) e-cloud strength = 1.2 (c) e-cloud strength = 1.8

Figure 2.10: The instability growth rates of all Vlasov modes, plotted in blue, and the instability
growth rates of macroparticle simulations, plotted in black, as a function of chromaticity for
three different e-cloud strengths. The simulations agree for chromaticities to the left of the
vertical red line.

2.3 Study the detuning term

2.3.1 Splitting the detuning function in two

The discrepancy between the macroparticle simulations and the Vlasov simulations only

occurs when the detuning from e-cloud, as well as positive chromaticity, are included in the

simulations. For this reason, the effects of the detuning term from e-cloud, ∆Q(r,δ), will be

more closely examined in the next section.

From Sec. 1.3.7 we know that the detuning from external forces can be expressed as a polyno-

mial that depends on the longitudinal coordinates z and δ. The terms coming from the e-cloud

forces are contained in the polynomial of z. Chromaticity also contributes to a detuning along

the bunch and its contribution is contained in the term Q ′δ where Q ′ is the chromaticity.

∆Q(z,δ) =Q ′δ+
Np∑

n=0
An zn (2.2)

The full detuning, containing contributions from both chromaticity and e-cloud forces, is then

decomposed in two different terms after switching to polar coordinates in the longitudinal

plane (r,φ):

∆Q(r,φ) =∆QR (r )+∆QΦ(r,φ) . (2.3)

The term ∆QR (r ) is the detuning with longitudinal amplitude and is defined as the average

of the full ∆Q(r,φ) over all angles φ. This term has no contribution from linear chromaticity:

∆QR (r ) = 1

2π

∫ 2π

0
∆Q(r,φ)dφ . (2.4)

The remaining term, ∆QΦ(r,φ), introduces no average detuning over a synchrotron period,

as seen in Eq. 2.5, but is only responsible for a phase shift as a function of longitudinal

coordinates.
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1

2π

∫ 2π

0
∆QΦ(r,φ) = 0. (2.5)

Figure 2.11a shows an example of the detuning with longitudinal amplitude, ∆QR (r ), from

e-cloud forces in plotted in polar coordinates (r,δ). The plot is cylindrically symmetric with

a peak in the middle of ∆Q =1.2e−2 and the edges have values close to 0.4e−2. As expected,

there is no dependence on the angle φ and no discontinuities.

An example of the head-tail phase shift, ∆QΦ(r,φ), from e-cloud can be seen in Fig. 2.11b.

This plot is not cylindrically symmetric but instead has two peaks and two valleys. One peak

follows the φ = 90◦ line and the other peak follows the φ = 270◦ line, moreover, the peak

becomes stronger with increasing radius r . The two valleys are of different depths, the more

shallow one following the φ= 180◦ line and the more deep valley following the φ= 0◦ line. No

discontinuities are visible.

(a) An example of∆QR (r ) from the e-cloud in LHC
quadrupoles plotted in longitudinal polar coordi-
nates (r,δ). This term has no contribution from
linear chromaticity.

(b) An example of ∆QΦ(r,φ) from the e-cloud in
LHC quadruples plotted in longitudinal polar co-
ordinates (r,δ). No chromaticity is included.

Figure 2.11: The figure displays the detuning along the bunch, ∆Q(r,φ), caused by the e-cloud
in an LHC quadrupole divided into a detuning with longitudinal amplitude and a phase shift
plotted using longitudinal polar coordinates (r,φ).

Including a chromaticity of Q ′ = 10 does not change the detuning with longitudinal amplitude,

∆QR (r ). Chromaticity does however introduce a second phase shift term, ∆QΦ,Q ′(r,φ) and

this term for chromaticity 10 is plotted in Fig. 2.12. The tune shift is positive in the interval

0◦ <φ< 180◦ with a maximum at φ= 90◦ at high radius, whereas the tune shift is negative for

180◦ < φ< 360◦ with a minimum at high r for φ= 270◦. It differs from the phase shift from

e-cloud forces since only one peak and one valley is present compared to the double amount

of peaks and valleys present in the detuning term from e-cloud. The amplitude of the peak in

the phase shift from chromaticity is about twice as high as the peaks in the phase shift term

from e-cloud.
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Figure 2.12: The phase shift term,∆QΦ,Q ′(r,φ),
from first order chromaticity, Q ′ = 10, plotted
in longitudinal polar coordinates (r,φ).

Figure 2.13: The sum of the phase shift term
from chromaticity 10, ∆QΦ,Q ′(r,φ), and the
phase shift term from e-cloud in an LHC
quadrupole, ∆QΦ(r,φ) , plotted in longitudi-
nal polar coordinates (r,φ).

The resulting phase shift term from e-cloud plus a linear chromaticity of 10 is plotted in

Fig. 2.13. There is a peak at high radius r for φ= 90◦ of 2e−2, which is close to twice as high

as the peak at the same degree in Fig. 2.12. The tune shift is positive for 40◦ <φ< 140◦, and

negative for 140◦ <φ< 270◦ and 270◦ <φ< 40◦ and at φ= 270◦ there is a region with a tune

deviation of ∆Q =0.

The phase shift term from negative chromaticity can be seen in Fig. 2.14. This plot is the

equivalent of multiplying the tune shift in Fig. 2.12 with −1. The sum of the phase shift from

−10 chromaticity and the phase shift from e-cloud plotted in Fig. 2.11b, is plotted in Fig. 2.15.

The tune shift is positive for angles 190◦ < φ < 320◦ with a peak following the φ = 270 line,

with the highest point reaching a tune deviation of ∆Q =2e−2 located at the maximum radius.

The rest of the circle has a negative tune shift apart from a peak following the φ= 90 line at

amplitude 0. In summary, this tune shift plot in the longitudinal phase space appears to be

the tune shift plot in Fig. 2.13 mirrored in the φ= 180, or 0 line.
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Figure 2.14: The phase shift term,∆QΦ,Q ′(r,φ),
from first order chromaticity, Q ′ = −10, plot-
ted in longitudinal polar coordinates (r,φ).

Figure 2.15: The sum of the phase shift term
from chromaticity −10, ∆QΦ,Q ′(r,φ), and the
phase shift term from e-cloud in an LHC
quadrupole, ∆QΦ(r,φ) , plotted in longitudi-
nal polar coordinates (r,φ).

2.3.2 Simulations with individual detuning terms

Four categories of simulations were run to investigate the impact of each term of the detuning

along the bunch from e-cloud: simulations with no detuning, ∆QR (r ) = 0 & ∆QΦ(r,φ) = 0,

simulations with only the phase shift term ∆QΦ(r,φ) ̸= 0 & ∆QR (r ) = 0, simulations with only

the detuning with longitudinal amplitude, ∆QΦ(r,φ) = 0 & ∆QR (r ) ̸= 0 and simulation with

full detuning from e-cloud, ∆QR (r ) ̸= 0 & ∆QΦ(r,φ) ̸= 0. Note that a detuning in the form of a

phase shift term from chromaticity, ∆QΦ,Q ′(r,φ), is included in all simulations.

The resulting tune shifts as a function of chromaticity from the Vlasov approach and the

macroparticle simulations are plotted for all four categories for e-cloud strength 1.0 and 1.8

in Fig. 2.16. The tune shift of the Vlasov modes is plotted in yellow-orange, with the color

corresponding to the instability growth rate of that mode. The spectrum of the macroparticle

simulations at each chromaticity is calculated using the SUSSIX algorithm and is plotted as

black dots. The size of the dot corresponds to the amplitude of the frequency peak and the

highest peak is marked by a big dot at each chromaticity.

The tune shift, (Q −Q0)/Qs , for simulations with only dipolar forces, meaning ∆QR (r ) = 0

& ∆QΦ(r,φ) = 0, is plotted as function of chromaticity in Fig. 2.16a for e-cloud strength 1.0

and in Fig. 2.16b for e-cloud strength 1.8. The Vlasov modes are grouped on the integer lines

of (Q −Q0)/Qs for positive chromaticity. The modes in the interval −3 < (Q −Q0)/Qs < 0 are

slightly stronger compared to the modes outside of that interval. The Vlasov modes on these

lines are weakly unstable. For negative chromaticity, unstable Vlasov modes can be seen

at (Q −Q0)/Qs = 0.5, 0, −0.5, −1.5, −2, −2.75 and 3.1. No clear tune shift dependence on

chromaticity is seen. The spectra from the macroparticle simulations agree with the tune shift

of the Vlasov modes.
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The resulting spectrogram of simulations with higher e-cloud strength, 1.8, can be seen in

Fig. 2.16b. At high chromaticity, Q’ > 10, both the Vlasov modes, orange, and the frequency

peaks from the macroparticle simulations, black, follow the integer lines of (Q −Q0)/Qs . At

lower chromaticity, several strong modes are visible in the Vlasov spectrum, the strongest

three have a tune shift of (Q−Q0)/Qs = 0, −2.2 and −3.8 at chromaticity −10 and all shift down

at the same rate until they reach the integer lines (Q −Q0)/Qs = −1, −3 and −5 respectively

at chromaticity = 10. The spectral analysis of the macroparticle simulations does not display

multiple modes, however, the highest peak follows one of the strong Vlasov modes for all

chromaticities.

The spectrograms as a result of simulations including the phase shift term from e-cloud,

∆QΦ(r,φ) ̸= 0 & ∆QR (r ) = 0, can be seen in Fig. 2.16c and Fig. 2.16d for e-cloud strength 1.0

and 1.8 respectively. These spectrograms are similar to the spectrograms when no detuning

from e-cloud is included, Fig. 2.16a and Fig. 2.16b. In Fig. 2.16c, both the Vlasov modes and

the frequency peaks in the macroparticle spectra follow the integer lines of (Q −Q0)/Qs for

positive chromaticity. For negative chromaticity in the same figure and for all chromaticities in

Fig. 2.16d, the highest peak in the macroparticle spectrum follows the strongest Vlasov mode.

In Fig. 2.16e, displaying results from simulations with detuning with longitudinal amplitude

from e-cloud, the Vlasov modes are parallel to the integer lines of (Q −Q0)/Qs for positive

chromaticity. The strongest modes are separated by Qs and weak Vlasov modes are visible in

between. For negative chromaticity, the Vlasov modes have a slight negative slope. A similar

picture is painted by the macroparticle spectrum, however, the weak Vlasov modes are not

visible. The strongest modes are in the interval −1 < (Q −Q0)/Qs < 3, which is higher than

the interval of the strong modes in Fig. 2.16a. The spectrogram from simulations with higher

e-cloud strength, Fig. 2.16f, is similar; the Vlasov modes have a slight slope down for negative

chromaticity and are parallel to the Qs lines for positive chromaticity. The difference, com-

pared to the spectrogram at lower e-cloud strength, is that the Vlasov modes are stronger, and

no grouping around lines separated by Qs is visible. The macroparticle frequency peaks follow

the strongest modes for negative chromaticity and for positive chromaticity, the frequency

peaks are concentrated in the region −2 < (Q −Q0)/Qs < 4, although no clear structure is

visible. This could be the result of several modes of similar frequency and growth rate being

present, as indicated by the Vlasov simulations.

Finally, Fig. 2.16g and Fig. 2.16h, are the resulting spectrogams of simulations with full detuning

from e-cloud. Figure 2.16g is very similar, but not identical, to the spectrogram as a result of

simulations with only detuning with longitudinal amplitude from e-cloud at e-cloud strength

1.0, Fig. 2.16e. The Vlasov modes and the frequency peaks between the strongest modes

separated by Qs are slightly weaker. In Fig. 2.16h, two very strong Vlasov modes are visible for

negative chromaticity starting at (Q −Q0)/Qs = 1 and (Q −Q0)/Qs = 0, both with a negative

slope. The maximum frequency peak of the macroparticle simulations follows the tune shift

of the worst Vlasov mode. In the interval between 0 and 15 chromaticity, the lower of the two

strongest Vlasov modes becomes more unstable compared to the top one and continues its
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negative tune shift. The maximum peak in the macroparticle spectrum follows this mode. For

chromaticities greater than 15, several unstable Vlasov modes of equal growth rates are visible,

with the strongest modes being in the interval −2 < (Q −Q0)/Qs < 2 and are all parallel to the

Qs lines. Similarly, the macroparticle spectrum has several peaks in the same interval but no

clear mode structure.

The different categories of simulations, with the four combinations of ∆QR (r ) and ∆QΦ(r,φ)

produce spectrograms different to each other. This indicated that the contribution from

each detuning term is significant. When detuning with longitudinal amplitude, ∆QR (r ), from

e-cloud is included, weak Vlasov modes between the Qs lines are present. The spectral analysis

of the macroparticle simulations reveals the same tune shifts as predicted by the unstable

Vlasov modes for all simulations at e-cloud strength 1.0. At e-cloud strength 1.8, only the peak

frequency can be deduced from the macroparticle simulations due to the strong instability

and this peak follows the tune shift of the worst Vlasov mode for all categories of simulations.

The predicted tune shift from the Vlasov approach agrees with macroparticle simulations.

The resulting growth rates for the four categories of simulations are plotted in Fig. 2.17, for

e-cloud strength 1.0 corresponding to the plots on the left-hand side, and for e-cloud strength

1.8 corresponding to the plots on the right-hand side.

The results of simulations with only dipolar forces from e-cloud, ∆QR (r ) = 0 & ∆QΦ(r,φ) = 0,

for e-cloud strength 1 can be seen in Fig. 2.17a. In the region between chromaticity −10 and 0,

several Vlasov modes with positive growth rates are visible and one is visibly the strongest. This

mode starts at a growth rate of 140 s−1 at chromaticity −10 and then decreases to a growth rate

of 30 s−1 at chromaticity 0. Most of the Vlasov modes visible in this region start at a high growth

rate and decrease towards zero as the chromaticity increases. For positive chromaticities,

many unstable Vlasov modes are visible and all have increasing growth rates in the interval for

low chromaticities and then decreasing growth rates for higher chromaticities. The peak in

growth rate is at different chromaticities for all modes but most peaks are grouped around

a peak at chromaticity 10 or a peak at chromaticity 20. For positive chromaticity, there is no

Vlasov mode much stronger than the others. The growth rate achieved by doing an exponential

fit in the macroparticle tracking data follows reasonably well the strongest Vlasov mode for

all chromaticities. For high e-cloud strengths, Fig. 2.17b, a very strong Vlasov mode, which is

clearly the strongest mode, is visible for all chromaticities. It starts at a growth rate 600 s−1 at

chromaticity −10 and then has a decreasing growth rate with increasing chromaticity, ending

at a growth rate 100 s−1 for chromaticity 25 where it meets other Vlasov modes. Weaker Vlasov

modes are also present, five of which have a positive growth rate at chromaticity 0. The other

unstable modes appear to have low positive growth rates for negative chromaticities, zero

growth rates at chromaticity 0, and then again low positive growth rates at positive chromaticity.

Also at this e-cloud strength does the growth rate of the macroparticle simulations follow the

worst growth rate of the worst Vlasov mode.

Figure 2.17c and Fig. 2.17d shows the resulting growth rates of simulations including the phase
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shift term from e-cloud, ∆QΦ(r,φ), for e-cloud strengths 1 and 1.8 respectively. These two

plots are similar to the cases with only dipolar forces. For e-cloud strength 1, the difference is

the most unstable Vlasov mode for negative chromaticity has a higher growth rate compared

to Fig. 2.17a, and therefore decreases faster as the chromaticity approach 0 where the growth

rate of this mode is again 30 s−1. Similarly, the worst Vlasov mode in Fig. 2.17d has a higher

growth rate for all chromaticities than the worst Vlasov mode in Fig. 2.17b. The growth rate

of the macroparticle simulations agrees well with the worst Vlasov mode for both e-cloud

strength 1 and e-cloud strength 1.8.

In the simulations with only the detuning with longitudinal amplitude from e-cloud, ∆QR (r ),

many Vlasov modes with growth rates seemingly independent of chromaticity are visible for

both e-cloud strength 1, Fig. 2.17e, and e-cloud strength 1.8, Fig. 2.17f. The growth rates of the

flat modes are below 40 s−1 for e-cloud strength 1 and below 100 for s−1 for e-cloud strength 1.8.

There are four Vlasov modes with growth rates higher than 40 s−1 for negative chromaticities

in Fig. 2.17e, which all have a decreasing growth rate with increasing chromaticity. The growth

rate of the macroparticle simulations follows the behavior of the worst Vlasov mode until

the growth rate of this mode reaches 30 s−1, where the growth rate of the macroparticle

simulations continues to decrease with increasing chromaticity, although at a slower rate

for positive chromaticity. Similarly for e-cloud strength 1.8, Fig 2.17f, the growth rate of the

macroparticle simulations follows the worst Vlasov mode until the flat Vlasov modes are

reached, which in this plot is at chromaticity 4, and continues to decrease with the same rate

until the growth rate is close to zero.

When the both detuning terms from e-cloud are included, ∆QR (r ) ̸= 0 & ∆QΦ(r,φ) ̸= 0, the

plots are similar to when only detuning with longitudinal amplitude, ∆QR (r ), is included.

The difference is that the phase shift term appears to have a destabilizing effect because the

growth rates of all Vlasov modes are higher. The growth rate at chromaticity −10 for e-cloud

strength 1 is about 80 s−1 in Fig. 2.17e compared to 120 s−1 in Fig. 2.17g. The growth rates of

the macroparticle simulations agree with the worst Vlasov modes until the flat Vlasov modes

are reached, at which point the growth rate of the macroparticle simulations continues to

decrease until zero is reached at chromaticity 20. The discrepancy starts around chromaticity

0 for e-cloud strength 1 and at chromaticity 10 for e-cloud strength 1.8.

In summary, the phase shift term appears to have a destabilizing effect on the simulations

whereas the detuning with longitudinal amplitude has a stabilizing effect on the simulations.

Flat Vlasov modes are visible for positive chromaticity for all four categories of simulations.

The flat Vlasov modes have growth rates of maximum 40 s−1 for all simulations with e-cloud

strength s−1 and growth rate of maximum 100 s−1 in simulations with e-cloud strength 1.8. The

growth rate of the macroparticle simulations follows the growth rate of the worst Vlasov mode,

even if the mode is a flat mode when no detuning with longitudinal amplitude is present in the

simulations. When this term is included, the macroparticle simulations agree with the worst

Vlasov modes for negative chromaticity and for positive chromaticity until the worst Vlasov

mode is one of the flat modes. For higher chromaticities, there is a stabilizing effect caused by
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the detuning with longitudinal amplitude, which is not captured by the Vlasov approach.

65



Chapter 2. Vlasov approach for modeling e-cloud instabilities

(a) ∆QR (r ) = 0 & ∆QΦ(r,φ) = 0, e-cl. strength = 1.0 (b) ∆QR (r ) = 0 & ∆QΦ(r,φ) = 0, e-cl. strength = 1.8

(c) ∆QR (r ) = 0 & ∆QΦ(r,φ) ̸= 0,e e-cl. strength =
1.0 (d) ∆QR (r ) = 0 & ∆QΦ(r,φ) ̸= 0, e-cl. strength = 1.8

(e) ∆QR (r ) ̸= 0 & ∆QΦ(r,φ) = 0, e-cl. strength = 1.0 (f) ∆QR (r ) ̸= 0 & ∆QΦ(r,φ) = 0, e-cl. strength = 1.8

(g) ∆QR (r ) ̸= 0 & ∆QΦ(r,φ) ̸= 0, e-cl. strength = 1.0 (h) ∆QR (r ) ̸= 0 & ∆QΦ(r,φ) ̸= 0, e-cl. strength = 1.8

Figure 2.16: Tune shift as a function of chromaticity of the Vlasov modes, yellow-orange, and
the spectral analysis of the macroparticle simulations, black. The peak frequency from the
macroparticles is marked with a big dot at each chromaticity.
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(a) ∆QR (r ) = 0 & ∆QΦ(r,φ) = 0, e-cl. strength = 1.0 (b) ∆QR (r ) = 0 & ∆QΦ(r,φ) = 0, e-cl. strength = 1.8

(c) ∆QR (r ) = 0 & ∆QΦ(r,φ) ̸= 0, e-cl. strength = 1.0 (d) ∆QR (r ) = 0 & ∆QΦ(r,φ) ̸= 0, e-cl. strength = 1.8

(e) ∆QR (r ) ̸= 0 & ∆QΦ(r,φ) = 0, e-cl. strength = 1.0 (f) ∆QR (r ) ̸= 0 & ∆QΦ(r,φ) = 0, e-cl. strength = 1.8

(g) ∆QR (r ) ̸= 0 & ∆QΦ(r,φ) ̸= 0, e-cl. strength = 1.0 (h) ∆QR (r ) ̸= 0 & ∆QΦ(r,φ) ̸= 0, e-cl. strength = 1.8

Figure 2.17: Instability growth rate as a function of chromaticity for Vlasov modes, blue, and
the calculated growth rate from the macroparticle simulations, black.
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2.4 Checks with impedance in the e-cloud Vlasov formalism

2.4.1 Impedance in the e-cloud formalism

When an electric charge passes through a metallic structure, such as a beam pipe or a magnet,

an electromagnetic field is induced. This can be described using the concept of wake-fields.

Consider two particles traversing through an accelerator element, for example, a cavity. The

fields generated by the leading particle, the source particle, act on the trailing particle, the

witness particle. These fields are called the wakefield. The Fourier transform of the generated

wake fields is called the impedance. Just as the e-cloud, impedance is a collective effect that

can drive instabilities in particle accelerators [73].

Impedance-driven instabilities have been studied more than e-cloud driven instabilities and

more conventional simulation models exist that are still less computationally heavy than full

PIC simulations. Impedance forces can also be expressed using the same formalism for the

e-cloud forces introduced in the introduction, as will be done in this section in order to provide

additional validation of the developed method. Simulations using this new force formalism

can be compared to simulations using a conventional description of impedance forces, which

will be done in the next section.

Impedance can be described using the same formalism used to describe the e-cloud forces

by generating a set of responses and simulating the detuning along the bunch caused by

quadrupolar impedance. This force model can then be put into both a macroparticle tracker

and into a Vlasov solver. The impedance used for this example is a broad-band resonator with

the parameters listed in Tab. 2.3.

First, a set of response functions kn(z) are calculated by letting a bunch with bunch distortion

hn(z) and a bunch intensity of 1.2e11 protons per bunch pass through a broadband resonator

and calculating the resulting response kn(z). Three examples of the test function hn(z), with

one, five, and 20 oscillations along the bunch respectively, and the corresponding response

functions kn(z) are plotted in Fig. 2.18.

The maximum amplitude of each response function, kn(z), as a function of a number of

oscillations along the bunch, can be seen in Fig. 2.19. The amplitude of the responses to

cosine bunch distortions, blue, decreases with an increasing number of oscillations whereas

the amplitude of the responses to sinusoid bunch distortions, orange, first increases with

Table 2.3: The parameters used in the simulations with impedance-driven instabilities.

Variable Value
bunch intensity 1.2e11 ppb
Shunt impedance 75e6
Resonator freq. 2e9 Hz
Resonator Q 1
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(a) The response to a sinusoid
with one oscillation along the
bunch.

(b) The response to a sinusoid
with 5 oscillations along the
bunch.

(c) The response to a sinusoid
with 10 oscillations along the
bunch.

Figure 2.18: Calculated responses kn(z), blue, from to bunch distortions hn(z), black, from
passage through a broad band resonator.

Figure 2.19: The amplitude of the responses for each number of oscillations along the bunch
from impedance and e-cloud.

the number of oscillations along the bunch until it reaches the blue curve after which it also

decreases with the number of oscillations along the bunch. The amplitude of the responses

from the e-cloud is also plotted in the same figure, in green and red, and is lower than the

amplitude of the impedance responses for the chosen impedance and e-cloud parameters.

The simulations are therefore done for low impedance strengths to have similar amplitude of

responses. The amplitude of e-cloud responses first increases with the number of oscillations

along the bunch, until the number of oscillations along the bunch is 4, and then decreases as

the number of oscillations along the bunch increases. Just like the amplitude of the responses

from impedance, the cosine terms have a higher amplitude than the sine terms for the first

two points plotted, but then the difference is smaller between the amplitude of the cosine

terms and sine terms from the impedance.

The detuning along the bunch caused by the broad-band resonator, described by Tab. 2.3, is

plotted in Fig. 2.20 in blue. The tune deviation is largest at the center of the bunch with an

amplitude of ∆Q = 4e −3 and goes towards zero for both the head and the tail of the bunch.

This detuning is again modeled by fitting a polynomial of degree 10 to the curve, plotted in
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Figure 2.20: The detuning along the bunch is caused by a broadband impedance with a
polynomial fit of degree 10.

orange in Fig. 2.20.

The impedance of a broadband resonator is now described with the same formalism used for

the e-cloud.

2.4.2 Comparison with conventional impedance modeling

macroparticle simulations with impedance forces described by the e-cloud formalism are

benchmarked against conventional macroparticle simulations performed with the PyHEAD-

TAIL code.[74].

The impedance strength was varied by multiplying dipolar and quadrupolar forces with a

factor. The resulting instability growth rates from PyHEADTAIL simulations, as a function

of impedance strengths, are plotted in Fig. 2.21 as whole lines where the color of the line

corresponds to the chromaticity used in the simulations. The growth rates of simulations with

chromaticity −10, plotted in dark blue, are higher than the growth rates of simulations with

higher values of chromaticity for all impedance strengths. For impedance strengths < 0.2, the

growth rate increases from 0 to 50 s−1 and then stays at this value for impedance strengths

0.2-0.3. At impedance strength 0.3, the instability growth rate grows rapidly with increasing

impedance strength, from 50 s−1 to 400 s−1 at impedance strength 0.6. The behavior is similar

for simulations with chromaticity −5, plotted as light blue, with growth rates slightly lower

for all impedance strengths. In the curves for chromaticity 0, 5, 10, and 15 the growth rate is

close to zero until impedance strength 0.3, 0.46, 0.52, and 0.58 respectively. At this threshold

impedance strength, the growth rates increase with chromaticity at the same rate as the growth

rate for chromaticity −10 in the same region. The instability growth rate for simulations with

chromaticity 20, slowly increases but stays below 20 s−1 for all impedance strengths.

In the same figure, the instability growth rates from macroparticle simulations using the e-

cloud formalism for the impedance forces are plotted as crosses. The color again corresponds
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Figure 2.21: The instability growth rate calculated from macroparticle simulations using the
e-cloud formalism to express impedance, plotted as crosses, and conventional macroparticle
simulations using PyHEADTAIL, plotted as whole lines. The growth rate is plotted as a function
of impedance strength for seven different values of chromaticity.

to the chromaticity. It is evident that the growth rates from these simulations match the growth

rates obtained from PyHEADTAIL simulations.

The resulting spectra from macroparticle simulations using the e-cloud formalism of impedance

forces for zero chromaticity can be seen in Fig. 2.22a. For impedance strengths 0-0.3, several

frequency peaks are visible and are grouped on the Qs lines. As the impedance strength

increases the peaks spread down from each integer line in a fanlike pattern. For impedance

strengths higher than 0.3, one major frequency peak is visible which shifts down in tune

as the impedance strength increases. The resulting spectrogram for simulations using the

conventional simulations see Fig. 2.22b, are very similar. In conclusion, both force modes of

impedance produce the same spectrograms for zero chromaticity.

When chromaticity is set to 20, the simulations using the e-cloud formalism of forces produce

the spectrogram displayed in Fig. 2.22c. In the region with impedance strengths < 0.2, the

frequency peaks are grouped in fans originating from the integer lines at impedance strength

0. At higher impedance strengths the frequency peaks following the lower line of the fans

moving to more negative (Q −Qs)/Q0 values are visible. As the impedance strength increases

more, fewer and fewer peaks are visible. The lines visible at impedance strengths > 0.5 are

the lines originating from (Q −Qs)/Q0 = 1, −1, −2, and −3, with the two center lines being

slightly more pronounced. The spectrogram from conventional PyHEADTAIL simulations,

Fig. 2.22d, is again very similar to the spectrogram from simulations with impedance in the
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e-cloud formalism.

(a) The frequency spectra of macroparticles simu-
lations using the e-cloud formalism of impedance
for chromaticity 0.

(b) The frequency spectra of macroparticles simu-
lations using PyHEADTAIL for chromaticity 0.

(c) The frequency spectra of macroparticles simu-
lations using the e-cloud formalism of impedance
for chromaticity 20.

(d) The frequency spectra of macroparticles simu-
lations using PyHEADTAIL for chromaticity 20.

Figure 2.22: The frequency spectra at each impedance strength evaluated using the SUSSIX
algorithm for macroparticle simulations using the e-cloud formalism of forces, left, and
conventional PyHEADTAIL simulations, right. The size of the dot corresponds to the amplitude
of that frequency peak.

2.4.3 Results with impedance forces in the e-cloud Vlasov formalism

The impedance forces in the e-cloud formalism are then put into the Vlasov approach and the

results are compared to the tune shift from macroparticles using the same force formalism.

The resulting tune shifts of the Vlasov modes as well as from the macroparticle simulations are

plotted in Fig. 2.23a for chromaticity 10 with no detuning from impedance. The color of the

Vlasov modes corresponds to the instability growth rate of each mode, with the most unstable

modes being plotted in orange. There are Vlasov modes with tune shifts following the integer

lines of (Q −Qs)/Q0 for all e-cloud strength and for impedance strengths > 0.4, there is also a

strong Vlasov mode going from (Q −Qs)/Q0 =−3 to (Q −Qs)/Q0 =−4 at impedance strength
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0.6. The frequency peaks of the macroparticle simulations follow the Vlasov modes very well.

For impedance strength > 0.4, only the strong Vlasov mode can be seen in the macroparticle

spectra.

In Fig. 2.23c, the detuning from impedance is included in both simulation approaches. The

Vlasov modes are fanned down from the integer lines of (Q −Qs)/Q0 and a strong mode is

visible going from (Q −Qs)/Q0 =−6 to −7 for impedance strengths > 0.5. The frequency peaks

of the macroparticle simulations follow the Vlasov modes very well aslo in this case.

The instability growth rate of the Vlasov modes for simulations with chromaticity 10 without

detuning from impedance can be seen in Fig. 2.23b. The instability growth rates of the corre-

sponding macroparticle simulations are also plotted in this figure. Several unstable Vlasov

modes are visible with growth rates below 40 s−1. Two Vlasov modes have higher growth rates,

and the growth rate of the macroparticle simulations follows the worst Vlasov modes for all

impedance strengths.

The instability growth rates resulting from simulations with detuning from impedance as well

as a chromaticity of 10 can be seen in Fig. 2.23d. Several unstable Vlasov modes with growth

rates increasing with impedance strength can be seen in this plot. The growth rate of the worst

Vlasov mode is 125 s−1 at impedance strength 0.6. The macroparticle simulations have no

instabilities until impedance strength 0.5, after which the instability growth rate grows rapidly

until the instability rate of the worst Vlasov mode is reached at impedance strength 0.6.

Interestingly, as in the case of the e-cloud, in the presence of quadrupolar forces and chro-

maticity, we find unstable Vlasov modes that are not visible in the macroparticle simulation

modes.

Also in this case, we can decompose the detuning term i decomposed into a phase shift

∆QΦ(r,φ) and a detuning with longitudinal amplitude, ∆QR (r ), to introduce into the simula-

tions separately.

The resulting growth rates from simulations with impedance strength 0.5, plotted as a function

of chromaticity, can be seen in Fig. 2.24a. Here no detuning from impedance is included in the

simulations. The growth rates of the Vlasov modes are plotted in blue and the growth rates of

the macroparticle simulations are plotted as black crosses. Weak Vlasov modes of growth rates

below 50 s−1 are visible for all chromaticities. A strong Vlasov mode of growth rate 320 s−1 at

chromaticity −10 decreasing to a growth rate of 50 s−1 at chromaticity 12 is seen. The growth

rate of the macroparticle simulations follows the worst Vlasov mode for all chromaticities.

When a phase shift term from impedance is introduced, ∆QR (r ) = 0 & ∆QΦ(r,φ) ̸= 0, the

growth rates in Fig. 2.24b are obtained. Unstable Vlasov modes with growth rates fanning out

from both sides of chromaticity 0 can be seen in this plot. The growth rates are higher for

negative chromaticity. The macroparticle simulations again follow the growth rate of the most

unstable Vlasov mode.
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(a) ∆Qimped.(r,φ) = 0, chromaticity 10 (b) ∆Qimped.(r,φ) = 0, chromaticity 10

(c) ∆Qimped.(r,φ) ̸= 0, chromaticity 10 (d) ∆Qimped.(r,φ) ̸= 0, chromaticity 10

Figure 2.23: The simulation results with and without detuning from impedance for chromatic-
ity 10.
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In Fig. 2.24c, the growth rates from simulations including only the detuning with longitu-

dinal amplitude,∆QR (r ) = 0 & ∆QΦ(r,φ) ̸= 0, are plotted. The growth rates of the Vlasov

modes are similar to the growth rate of the Vlasov modes in Fig. 2.24a. The growth rate of the

macroparticle simulation follows the worst Vlasov mode until the weaker Vlasov modes are

reached around chromaticity 15, after which the growth rate of the macroparticle simulations

continues to decrease with chromaticity until a growth rate of 0 is reached at chromaticity 20.

A similar image is obtained from simulations that incorporate both phase shifts and longitu-

dinal amplitude detuning, as illustrated in Fig. 2.24d. The growth rate of the macroparticle

simulations follow the worst Vlasov mode until chromaticity 5. Here weak Vlasov modes with

growth rates independent of chromaticity are present. The growth rate of the macroparticle

simulations reaches zero at chromaticity 10 and stays at zero for higher chromaticities, while

in this region weak Vlasov modes are still visible.

In summary simulations performed with impedance forces in the presence of detuning forces

and chromaticity, show strong similarities to the results found with the e-cloud.
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Chapter 2. Vlasov approach for modeling e-cloud instabilities

(a) ∆QR (r ) = 0 & ∆QΦ(r,φ) = 0,
impedance strength = 0.5

(b) ∆QR (r ) = 0 & ∆QΦ(r,φ) ̸= 0,
impedance strength = 0.5

(c) ∆QR (r ) ̸= 0 & ∆QΦ(r,φ) = 0,
impedance strength = 0.5

(d) ∆QR (r ) ̸= 0 & ∆QΦ(r,φ) ̸= 0,
impedance strength = 0.5

Figure 2.24: The resulting growth rates from the Vlasov approach, blue, and the instability
growth rates from corresponding macroparticle simulations, black.
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To further demonstrate this discrepancy, growth rates from simulations including the full

detuning from impedance are plotted as a function of impedance strength in Fig. 2.25 for six

different values of chromaticity. The scale of the y-axis is the same of all six figures plotting

growth rates −10 to 250 s−1.

In Fig. 2.25a, no unstable Vlasov modes and no instabilities are visible in the macroparticle

simulations until impedance strength 0.3, which will now be referred to as the stable region.

For impedance strengths 0.3 to 0.4, the mid-region, an unstable Vlasov mode is visible and

the growth rates of the macroparticles follow this mode perfectly. At impedance strength 0.45,

the growth rate of the worst Vlasov mode increases faster with impedance strength compared

to the behavior at lower impedance strengths, and the growth rates of the macroparticle

simulations follow. This is a strong region.

As the chromaticity increases the growth rates at all impedance strengths decrease. The growth

rate of the macroparticle simulations follow the worst Vlasov mode in the stable region and

in the strong region for all values of chromaticity plotted. However, this is not the case in the

mid-region.

When chromaticity is 1, see Fig. 2.25b, the growth rate of the worst Vlasov mode is slightly

higher than the growth rate of the macroparticle simulations in the mid-region. The difference

is bigger for chromaticity 2, see Fig. 2.25c.

For chromaticity 3 (Fig. 2.25d), the growth rates in the mid-region of the macroparticle simu-

lations resemble the curve of the worst Vlasov mode but with lower values. At higher chro-

maticity, Fig. 2.25e and Fig. 2.25f, no curve is visible in the macroparticle simulations for in the

mid-region whereas a Vlasov mode is still visible.

As chromaticity is increased gradually from 0 to 5, the instability growth rates of the Vlasov

modes as well as the macroparticle simulations decrease. For impedance strengths 0.3-0.45,

the growth rates of the macroparticle simulations decrease faster with chromaticity than the

Vlasov modes suggesting the presence of a damping mechanism not captured by the Vlasov

formalism.
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Chapter 2. Vlasov approach for modeling e-cloud instabilities

(a) chromaticity = 0 (b) chromaticity = 1

(c) chromaticity = 2 (d) chromaticity = 3

(e) chromaticity = 4 (f) chromaticity = 5

Figure 2.25: The growth rates obtained through the Vlasov approach, blue, and the growth
rates from corresponding macroparticle simulations, black, plotted as a function of impedance
strength for six different values of chromaticity.

78



3 Experimental characterization of e-
cloud driven instabilities in the LHC

This chapter discusses several measurements were carried out to categorize the e-cloud driven

instabilities in the LHC.

3.1 Measurements at high e-cloud conditions

As discussed in Sec. 1.2, the initial SEY estimates for each sector of the LHC in the beginning

of run 3 were found to be high as a result of the air exposure of a large fraction of the beam

elements in the long shutdown that preceded the run. The SEY values varied across machine

sectors, but the estimated range for all sectors was between 1.8 and 2.2[75]

Measurements to characterize beam instabilities were carried out before the scrubbing run at

the beginning of run 3, which meant that strong e-clouds were expected. Taking measurements

at this stage offers a unique opportunity to study the characteristic of strong e-cloud driven

instabilities.

3.1.1 Methodology

The conducted measurements focused on single-bunch instabilities in the vertical plane.

Especially the dependence on linear chromaticity was investigated. Therefore a scan in

vertical chromaticity was preformed while the horizontal chromaticity was held constant. An

overview of the machine parameters for the measurements can be seen in Tab. 3.1. Due to

strong e-cloud using bunch trains longer than 24 bunches was not possible.

We constructed the filling schemes specifically for these measurements, which were tailored

to avoid cross talk between the two beams due to beam-beam effects.

The measurement procedure was as follows:

1. The chromaticity and tune were measured and adjusted on the pilot bunches;
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Table 3.1: Machine parameters during measurements.

Bunch Intensity 1.2e11 ppb
Beam energy 450 GeV (injection energy)
Horizontal Tune 62.27
Vertical Tune 60.29
Octupole current 0 A
Horizontal Chromaticity Q ′

H 20
Bunch train in each beam 12b + 24 b
Bunch spacing 25 ns
Bunch length 1.15 ns
Transverse damper on

Vertical chromaticity Q ′
V [5.0, 7.5., 10.0, 12.5, 15.0, 20.0., 25.0]

2. Next, a train of 24 bunches was injected and the transverse oscillations were measured

turn by turn and bunch by bunch using the ADTObsbox [76, 77];

3. The head-tail monitors were used to measure the intra-bunch motion with an injection

trigger, which captured the first 3000 turns of all 24 bunches;

4. The train was kept in the machine as long as possible, at injection energy, which for low

chromaticity meant a few hundred turns, whereas for high chromaticity the beam could

be kept for tens of thousands of turns;

This procedure was carried out for all points in chromaticity for both beam 1 and beam 2. To

assess reproducibility, some measurements were repeated multiple times.

3.1.2 Overview of measured instabilities

The bunch-by-bunch and turn-by-turn data for beam 1 for the case where Q ′
V =Q ′

H = 20 is

displayed in Fig. 3.1. The vertical position is plotted in the top plot and the horizontal position

of the same bunches is plotted in the bottom plot. As expected, the vertical motion is much

stronger than the horizontal motion, which suggests the presence of vertical instabilities.

This is also observed in Beam 2 for the same chromaticity, as shown in Fig. 3.2. Horizontal

instabilities are also observed in both beams but much later than the vertical instabilities,

usually when the beam has already degraded.

The bunch by bunch behavior for a measurement in beam 1 with chromaticity 5 can be seen

in Fig. 3.3a and for measurements with chromaticity 15 in Fig. 3.3b, where the vertical motion

of each bunch is plotted. The vertical position of bunch 1 is plotted on the top plots and the

bunch position of each consecutive bunch is plotted in order in the plots below. Figure 3.3a

shows that vertical motion of the later bunches has a higher amplitude compared to the

vertical motion of the earlier bunches. In other words, the observed instability is stronger

towards the end of the train. In Fig. 3.3b, a similar trend is observed with the amplitudes of the
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3.1 Measurements at high e-cloud conditions

Figure 3.1: The plot shows the turn-by-turn data for all 24 bunches in beam 1 in both vertical
(top) and horizontal (bottom) plane for the case Q ′

V =Q ′H = 20. The position of each bunch is
plotted as a different color.

Figure 3.2: The plot shows the turn-by-turn data for all 24 bunches in beam 2 in both vertical
(top) and horizontal (bottom) plane for the case Q ′

V =Q ′H = 20. The position of each bunch is
plotted as a different color.

81



Chapter 3. Experimental characterization of e-cloud driven instabilities in the LHC

vertical motion is higher for the later bunches in the train compared to the earlier bunches.

Notably, for high chromaticity, the middle bunches, bunch 10-13, appear to be more unstable

than the following bunches. Nevertheless, the overarching trend remains that the observed

instability is more pronounced among the last bunches in the train.

(a) Beam 1, chromaticity = 5 (b) Beam 1, chromaticity = 15

Figure 3.3: Vertical position measurements turn-by-turn for each bunch in the trains right
after injection into the LHC. Transverse instabilities can be observed at the tail of each bunch
train.
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3.1 Measurements at high e-cloud conditions

3.1.3 Instability Growth Rate

Growth Rate Calculation

Figure 3.4: An example of the measured vertical
position turn-by-turn for one bunch.

The instability growth rate quantifies how

fast an instability grows over time. As dis-

cussed in Sec. 2.1, it can be associated to

the imaginary part of the eigenfrequency as-

sociated with the instability, also known as

the complex mode frequency. The instability

growth rate is the exponential rate at which

the amplitude of the centroid motion grows.

Figure 3.4 shows the centroid vertical posi-

tion turn-by-turn for the first 1200 turns of

one bunch. The signal oscillates at a fre-

quency of 60.292 oscillations per turn and

the oscillation amplitude grows until turn

1000, after which the oscillation amplitude

decreases.

The procedure to calculate the instability

growth rate from the measured data starts with choosing the first interval at which the cen-

troid appears to have exponential growth. This is done to exclude injection oscillations and to

exclude the effect of amplitude decrease due to losses or saturation of measuring equipment.

The interval chosen for the data presented in Fig. 3.4 was turn 150-1000 and is plotted in

orange in Fig. 3.5.

Figure 3.5: Example of windowing with no
overlap using windows of width 100.

Figure 3.6: The tracked oscillation amplitudes
from doing a rolling window FFT on the data
in Fig. 3.4 using windows of width 100 or 120,
and using 0% or 75% overlap. The results from
using the windowing in 3.5 is plotted as pink.
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The oscillations amplitude of measured data is then extracted by doing a sliding window FFT

and plotting the maximum amplitude of the FFT for each window. An example of windowing

using a window of 100 turns and no overlap can be seen in Fig. 3.5 and the corresponding

amplitude of the FFT of each window is plotted as a pink line in Fig. 3.6.

If the window width is varied the resulting amplitude plot also varies slightly. The amplitudes

obtained using a window width of 100 and 120 are represented by the pink and green colors,

respectively, in Fig. 3.6. In addition, the overlap of consecutive windows was also varied and

the resulting amplitudes are also plotted in Fig. 3.6. All plotted lines increase with the turn

number, however, the rate of increase is not exactly the same. As a consequence, the estimated

growth rate will depend to some extent on the parameters of the rolling window FFT.

(a) Calculations on a data set of length 850
turns with and average growth rate of 1/370
turns−1.

(b) Calculations on a data set of length 25 000
turns and an average growth rate of 1/10000
turns −1.

Figure 3.7: Variation of the calculated growth rate using the rolling window FFT technique for
different window sizes and window overlap.

Figure 3.7a and 3.7b illustrate the extent to which the growth rate varies, expressed in per-

centage terms, for two different data sets of length 850 turns and 25000 turns respectively. A

structure of vertical lines is visible in both plots, meaning the calculated growth rate does not

vary much with respect to window overlap. There is an oscillating behavior with respect to

window size, meaning the calculated growth rate displays an oscillating behavior with respect

to window size that increases in amplitude as the window size increases. In addition, when the

window size becomes comparable with the length of the data set and little overlap is used, no

fit is possible. These cases are colored black in Fig. 3.7a. This situation is never reached in the

data set of length 25 000, since the window size was limited to 2000. However, the calculated

growth rate varies more for a longer window size.

In order to counteract the oscillatory behavior of the growth rate calculation with respect to

window size. A range of window-sizes of 80-120 was used, together with a 95% overlap, to

calculate a set of growth rates for each bunch. An example of calculated growth rates as a

function of windows size is plotted in blue in Fig. 3.8a, the corresponding measured data is

plotted in log scale in Fig. 3.8b. The minimum, average and maximum growth rate is indicated
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as dashed lines and the corresponding fits are plotted in the same colors in the left graph. All

three fits appear to agree quite well with the growth rate of the data and the average growth

rate was then selected to be as best indicator. This technique, based on the averaged rolling

window FFT fitting, is used to calculate the instability growth rate of the data collected during

all measurements.

(a) The calculated growth rate using the rolling
window FFT technique with an overlap of 95%
as a function of window size is plotted as a blue
curve. The minimum, average and maximum
growth rate is marked with dashed lines of col-
ors green, grey and red.

(b) The measured data of the vertical centroid
position is plotted in log scale. Three expo-
nentials with growth rates corresponding to
the minimum, average and maximum growth
rate calculated using the rolling window FFT
technique for a range of window sizes 80-120
is plotted as green, black and red lines.

Figure 3.8: An example of the developed averaged rolling window FFT technique for finding
the instability growth rate of turn-by-turn measured data for one unstable bunch.

Growth Rates of Measured Bunches

The growth rate calculated using the averaged rolling window FFT technique, described in the

previous section, can be seen for all bunches in Fig. 3.9. The growth rate is plotted as a function

of the bunch position for each injected bunch in the 24-bunch trains and the results from

measurements in beam 1 are plotted in blue and measurements of of beam 2 are plotted in red.

In Fig. 3.9a, Fig. 3.9b, Fig. 3.9c, and Fig. 3.9d, corresponding to growth rate from measurements

with chromaticity 5, 7.5, 10 and 12.5 respectively, the bunches 10-24 have a non-zero growth

rate indicating that these bunches are unstable. Earlier bunches are found to be stable. The

instability was mainly seen in the later bunches of the train, which is typical for e-cloud-driven

instabilities.

In measurements with chromaticity 15 and 20, see Fig. 3.9e and Fig. 3.9f, a trend of increasing

growth rate with bunch position is observed. At these chromaticities, the growth rates are of

the order of magnitude of 1 s−1 and the difference in growth rate between bunches is small.

Lastly, in measurements with high chromaticity, chromaticity 25, several bunches in the center

of the train are unstable as well as the last 6 bunches of the trains. The growth rates of the

center bunches are higher than the bunches at the end of the train, however the order it
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magnitude if all growth rates are 1 s−1 for all bunches.

(a) Chromaticity 5 (b) Chromaticity 7.5

(c) Chromaticity 10.0 (d) Chromaticity 12.5

(e) Chromaticity 15 (f) Chromaticity 20

(g) Chromaticity 25

Figure 3.9: The calculated instability growth rate in the vertical plane for all injected trains.
The results from beam 1 are plotted in blue and the results from beam 2 are plotted in red.

The calculated instability growth rates for all measurements and all bunches are plotted in

Fig. 3.10. The points plotted are color-coded with respect to the bunch position, which means

that all data points at one chromaticity for on specific bunch position have the same color.

In order to have a better overview of the growth rate dependence as a function of chromaticity,

the average growth rate of the last 10 bunches is calculated and plotted in Fig. 3.11 with error

bars representing one standard deviation. The growth rate of beam 1 starts at 35 s−1 and
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3.1 Measurements at high e-cloud conditions

Figure 3.10: The growth rates for all bunches for all measurements. The points plotted are
color-coded with respect to the bunch position, which means that all datapoints at one
chromaticity for on specific bunch position have the same color.

the growth rate of beam 2 starts at 52 s−1 at chromaticity 5. The growth rate of both beams

decreases with increasing chromaticity until chromaticity 15 at which the growth rates are less

than 5 s−1. For higher chromaticities, the calculated growth rates continue to decrease with

increasing chromaticity but at a slower rate. The growth rates in beam 2 are slightly higher

than the growth rates of beam 1 for chromaticities 5-15.
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Figure 3.11: The average growth rate of the last 10 bunches as a function of chromaticity for
beam 1 (blue) and beam 2 (red) with errorbars of one standard deviation.
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3.1 Measurements at high e-cloud conditions

Figure 3.12: The fractional tune of the last 10 bunches in beam 1 is plotted as blue dots in
the top plot and the factional tune of the last 10 bunches in beam 2 is plotted as red in the
bottom plot. The average factional tune at each chromaticity in beam 1 and beam 2 is plotted
in yellow with error bars of one standard deviation.

3.1.4 Spectral analysis of measured data

Bunch-by-Bunch Spectral analysis

Spectral analysis of the turn-by-turn and bunch-by-bunch measured data was done. The same

turn intervals used for the growth rate instability fit were also used for the spectral analysis,

meaning the turn interval that showed the first indication of exponential vertical amplitude

growth. For stable bunches, the whole measured data set was used apart from the first 150

turns to avoid including the injection oscillations. The SUSSIX algorithm is used to analyze

the spectral content of the instabilities and the NAFF algorithm, (described in [78]), is used to

find the tune from the injection oscillations.

To visualize the general trend of the fractional tune of the unstable bunches, the tune of just

the last 10 bunches is plotted in Fig. 3.12 for each chromaticity. The fractional tune from beam

1 is plotted in the top plot in blue and the average fractional tune at each chromaticity is

plotted in yellow with error bars of one standard deviation. Similarly, the factional tune of the

last 10 bunches of beam 2 is plotted in red in the bottom plot of Fig. 3.12. The average is again

plotted in yellow with error bars of one standard deviation. In addition, the synchrotron tune

is marked as a scale bar on the right-hand side for reference. There is no strong dependence

on chromaticity visible.

The spectral content of each bunch in the train of a measurement with chromaticity 5 of beam
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1 can be seen in Fig. 3.13a. All frequencies found by the SUSSIX algorithm are plotted in a

vertical line and the size of each dot is proportional to the amplitude of that frequency. Each

vertical line corresponds to the spectral content from the measured data of one bunch. The

tune found by the NAFF algorithm on the injection oscillation is plotted as a red dot for each

bunch. The size of the synchrotron tune, Qs , is plotted as a scale bar in the upper right corner.

The tune is 0.292 for bunches 1-11. For bunches 12-19, the tune gradually increases from 0.292

to 0.295, and bunches 20-24 all have the tune 0.295. For these bunches (bunch 12-24) a strong

peak is visible in the SUSSIX spectrum. No sidebands at a distance Qs from the main mode

are visible for any bunch.

Figure 3.13b displays the results of the spectral analysis of measurement in beam 2 for chro-

maticity 10. The tune of bunch 1-5 increases gradually from 0.291 to 0.2915. The tune changes

from 0.2915 to 0.92 from bunch 5 to bunch 7 and then increases gradually to 0.2951 at bunch

20. The tune of the last 5 bunches is the same. A strong peak is visible in the SUSSIX spectrum

for bunches 11-24. No obvious side bands are visible.

Similarly, the results from the spectral analysis of measurement of beam 2 at chromaticity 15

are displayed in Fig. 3.13c. The tune of the first 3 bunches is 0.291. The tune shifts up until it

reaches 0.292 for bunch 5, and then shifts down to 0.289 for bunch 7 and up again to 0.291 at

bunch 10. The tune calculated from the injection oscillation, red dots, stay between 0.29 and

0.291 for bunch 10-24. There is a peak visible in the SUSSIX spectrum, calculated from the

turns where instability is visible, for bunches 12-14. This peak gradually increased from 0.291

to 0.292. This means that there is a difference between the tune measured at injection and the

tune measured when instability is visible later in the fill. Side-bands of width Qs are visible in

the SUSSIX spectrum of bunch 11.

Finally, the spectral analysis of a measurement of beam 1 with chromaticity 20 can be seen in

Fig. 3.13d. The tune of the first 5 bunches is approximately 0.292, then there is a jump to tune

0.291 for bunch 6-9, and another jump to tune 0.29 for bunch 10. The tune of bunches 10-24

increases gradually from 0.29 to 0.91. A peak is visible in the SUSSIX spectrum for bunches

14-24 and the position of the beam increases gradually from 0.29 to 0.292 at bunch 18 and

stays at 0.292 for bunch 18-24. Side bands are visible for bunch 7,8,11 and 18.

The tune, calculated using the SUSSIX algorithm on the turn interval of the onset of the

observed instabilities, for all measured bunch trains, can be seen in Fig. 3.14. If no instability

was visible the tune was calculated on the full measured data. The resulting tunes with

chromaticity 5 can be seen in Fig. 3.14a where the result from beam 1 is plotted in blue and the

result from beam 2 is plotted in red. The fractional tunes of bunches 1-10 are all close to the

nominal tune of 0.292. The fractional tune of subsequent bunches increases with increasing

bunch number until bunch 18 where the following bunches all have fractional tunes close

to 0.295. Similar behavior is seen in Fig. 3.14b, Fig. 3.14c, and Fig. 3.14d which displays the

fractional tune of measurements with chromaticity 7.5, 10 and 12.5 respectively.

For high chromaticity, the spectral analysis showed signs of non-linear modulation, see
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(a) Chromaticity 5 (b) Chromaticity 10 (c) Chromaticity 15 (d) chromaticity 20

Figure 3.13: The spectral content of 4 different measurements calculated using the SUSSIX
algorithm on the measured data of the turns and instability is visible, blue, compared to the
tune of the injection oscillations calculated using the NAFF algorithm, red.

Fig. 3.14e, Fig. 3.14f and Fig. 3.14g displaying the fractional tune of measurements with chro-

maticity 15, 20 and, 25 respectively. Some of the bunches in the first half of the train have a

fractional tune close to 0.27 which is the horizontal tune indicating a coupling between the

two transverse planes.
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(a) Chromaticity 5 (b) Chromaticity 7.5

(c) Chromaticity 10.0 (d) Chromaticity 12.5

(e) Chromaticity 15 (f) Chromaticity 20

(g) Chromaticity 25

Figure 3.14: The calculated factional tune in the vertical plane for all bunches in the injected
trains. Measurements of beam 1 are plotted in blue and measurements of beam 2 are plotted
in red. The synchrotron tune, Qs is plotted for scale on the right side of each plot.
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Turn-by-Turn spectral analysis

By conducting a rolling window FFT one can extract the spectral content of the beam as a

function of time. The resulting spectra as a function of turns using a FFT window of 2000

turns can be seen in Fig. 3.15a for a measurement on bunch 24 in beam 1 with chromaticity 15.

The turn-by-turn vertical position is plotted in the bottom plot for the same time scale as the

spectra. An instability is seen in the measured data for turns 0-10000 turns and a strong peak

as 0.295 can be seen in the spectral plot for the same turns. After about 10000 turns the beam

quality has been degraded but the sideband separated by the synchrotron tune Qs can be seen

in the spectral plot. After 30000 turns, a peak at the horizontal tune 0.27 with sidebands can

be seen in the spectral plot indicating a coupling to the horizontal plane at this time.

Similarly, the spectral data of the vertical data of a measurement of bunch 24 in beam 1 at

chromaticity 20 can be seen in Fig. 3.15b. The data is plotted in the bottom plot for the same

bunch and turns. Here the FFT window was 5000 which means that the spectral plot has a

higher resolution of the vertical axis. There is a peak at 0.295 in the spectral data at turns

0-20000 and a growth can be seen in the measured data at the same time. Then the vertical

amplitude increases and a strong peak is visible in the spectral data going from 0.291 to 0.295

for turns 20000-50000. In the spectral data for turn 50000-150000 the highest peak varies

between 0.291 and 0.295 which is about one Qs wide. Additionally, sidebands with a distance

of Qs are visible in this region. At a high turn number, when the beam has already been

degraded, there is coupling to the horizontal tune.

Lastly, the same analysis was conducted on the last bunch of a measurement with chromaticity

25, again using an FFT window of 5000 turns, and the results can be seen in Fig. 3.15c. The

spectral plot has similar features compared to the plot in Fig. 3.15c however, the band between

0.291 and 0.295 is not visible until turn 100000, which is about 50000 turns later.

(a) chromaticity = 15 (b) chromaticity = 20 (c) chromaticity = 25

Figure 3.15: A rolling window FFT, top, over a set of measured data, bottom, for three different
chromaticity settings.
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Table 3.2: A summary of the simulation parameters used in the build-up simulations

LHC Dipole LHC quadrupole
Beam energy 450 GeV
Bunch Intensity 1.2e11
Bunch length 1.15 ns
SEY 2.0
EMAX 332 eV
Angular distribution cosine_3D
# macro-particles 2e6 5e5

3.1.5 Comparison with Simulations

Simulations were conducted to compare the model with the measured data. In these simu-

lations, only single-bunch instabilities were considered, and no coupled bunch motion was

taken into account. The simulations utilized the Vlasov model, as well as macro-particle

simulations using the forces derived from the Vlasov model, as described in Sec. 1.4.

Build-up Studies

In order to build an accurate model of the e-cloud forces, the amount of e-cloud is estimated

using build-up simulations performed with PyECLOUD, as described in Sec. 1.4. In these mea-

surements, to account for the beam screen state before conditioning, the SEY is estimated to

be 2.0. Build-up studies were conducted in both dipoles and quadrupoles using the simulation

parameters listed in Tab. 3.2.

The electron density in the center of the beam pipe in a dipole with SEY = 2 during the passage

of a 24-bunch train of intensity 1.2e11 ppb can be seen in Fig. 3.16a as a blue curve. When

a bunch passes through the e-cloud the electrons are drawn towards the center of the pipe,

causing a peak in central density. The density used to simulate responses is the density of the

e-cloud right before a bunch passage, as the electron dynamics during the bunch passage

need to be re-simulated for the distorted bunch. In Fig. 3.16a the density 2σz before each

bunch passage is marked with a red cross. The density used to calculate the e-cloud forces

is therefore 1e12 e/m2. The cross section of the e-cloud distribution in a dipole can be seen

in Fig. 3.16b. The majority of the electrons are arranged in two vertical stripes away from

the chamber center, however, there is a non-negligible amount of electrons between the two

stripes. This is where the interaction with the beam occurs.

Similarly, the central density in a quadrupole magnet during the passage of the same 24

bunches used in the dipole simulations can be seen in Fig. 3.16c. The electron density 2σz

before each bunch passage is again marked with red crosses. When a bunch passes through the

e-cloud in a quadrupole, the central density is increased, which can be seen as the peaks in the

blue curve. The peaks, reaching about 7e13 electrons/m2, are higher than the corresponding
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peaks in the dipole magnets.

The cross section of the electron density in an LHC quadrupole after saturation of e-cloud

density can be seen in Fig. 3.16d. The distribution is an average of the distribution right before

the passage of bunches 16-24. The electrons have as expected arrange themselves in a cross

determined by the quadrupolar field.

(a) The central electron density in a LHC dipole during a pas-
sage of 24 bunches 25 ns apart with a bunch intensity of
1.2e11 protons/bunch.

(b) The cross section of electron dis-
tribution in an LHC dipole at injec-
tion. The cross section is an aver-
age of the distributions right before
bunch passages 15-23, which is after
the central density has saturated.

(c) The central electron density in a LHC quadrupole during a
passage of 24 bunches 25 ns apart with a bunch intensity of
1.2e11 protons/bunch.

(d) The cross section of electron dis-
tribution in an LHC quadrupole at
injection. The cross section is an
average of the distributions right be-
fore bunch passages 15-23, which
is after the central density has satu-
rated.

Figure 3.16: The electron density in the center of the beam pipe with SEY = 2, as a 24 bunch
train of intensity 1.2e11 ppb and energy 450 GeV passes through. The e-cloud density just
before each bunch passage, 2 σz , is marked by a red cross in the two left plots. The two right
plots display the electron distribution in a dipole and a quadrupole magnet.
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Table 3.3: Simulations parameters for generating responses from e-cloud build-up in LHC
dipoles and LHC quadrupoles with a SEY of 2.

LHC Dipole LHC Quadrupole
interaction points around the ring 8
octupole current 0 A
VRF 6e6 V
Transverse Damper off
# slices in along the bunch 200
Macro-particles per slice 2500
Fraction of device with magnets 60 % 7%
Magnetic field 0.54 T 12.1 T/m
cos and sin amplitude 1e−4
# oscillations along the bunch 0-100
Detuning fit order 20 10
SEY 2

Modeling of the e-cloud forces

A set of responses was calculated using the same procedure described in Sec. 1.4 using the

simulation parameters in Tab. 3.3. A bunch with a sinusoid bunch distortion was passed

through the e-cloud distributions calculated in the previous section using single-pass PIC

simulations. The resulting kick on the bunch as a function of the longitudinal coordinate z

was calculated. The top plots in Fig. 3.17 display three different vertical bunch distortions

with 1, 5, and 20 oscillations along the bunch respectively. The resulting vertical kick along

the bunch, ∆py (z), is plotted in blue for the e-cloud distribution in the LHC dipoles, and in

orange from the e-cloud distribution in the LHC quadrupoles.

The sum of the two responses is plotted in black in the bottom plots of Fig. 3.17 and is the kick

a bunch going through both the e-cloud in LHC dipoles and LHC quadrupoles is assumed to

experience.

The amplitude of the kicks from sine and cosine bunch distortions as a function of the number

of oscillations along the bunch is plotted in Fig. 3.18a for the horizontal plane and in Fig. 3.18b

in the vertical plane. The amplitudes from responses from the e-cloud in a dipole are plotted

in red and the amplitudes resulting from the e-cloud distribution in quadrupoles are plotted

in purple. In the horizontal plane, the amplitude of the responses from the e-cloud in dipoles

is very small compared to the amplitude of the responses from the e-cloud in quadrupoles.

The two purple curves, corresponding to the responses from cosine and sine horizontal bunch

distortions both have a peak at 7 oscillations per bunch and then decrease until the amplitude

is close to zero at 30 oscillations along the bunch. The amplitude of responses from distortions

of a higher number of oscillations along the bunch is close to zero.

In the vertical plane, see Fig. 3.18b, the amplitude of the responses resulting from the e-cloud
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(a) one oscillation along the
bunch

(b) Five oscillations along the
bunch

(c) Twenty oscillations along the
bunch

Figure 3.17: Sinusoid bunch distortions with three different numbers of oscillations along the
bunch are plotted in black in the top plots. The responses to each distortion after one turn in
the LHC are plotted in the bottom plots. The responses from e-cloud in dipoles are plotted in
blue and the responses from e-cloud in quadrupoles are plotted in orange. The sums of the
two responses are plotted in black.

distribution in the LHC quadrupoles is identical to the amplitude plot in the horizontal plane,

as expected from the symmetry of the configuration. This is not the case for the red curves,

which represent the amplitude of the responses from e-cloud in dipoles. For the dipoles,

the amplitude of the responses resulting from cosine bunch distortions has an amplitude

close to 1.5e−12 for 1-6 oscillations along the bunch and then decreases with the number of

oscillations until zero is reached as 40 oscillations along the bunch. In contrast, the amplitudes

of the responses from sinusoid bunch distortions passing through the e-cloud build-up in the

LHC dipoles have a peak of 3.3e−12 at 7 oscillations along the bunch and then decrease until

zero is reached at around 30 oscillations per bunch. The shape of this curve is similar to the

amplitude of the responses from quadrupoles.

The detuning along the bunch, meaning the change in tune ∆Q as a function of the longitudi-

nal coordinate, caused by the e-cloud in LHC dipoles (red) and LHC quadrupoles (purple) is

plotted in Fig. 3.19 for the horizontal plane (left) and the vertical plane (right). The detuning

obtained from PIC simulations is plotted in a lighter color and the polynomial fit used to

model the detuning is plotted in a darker shade. The purple lines are seemingly identical

in the horizontal and vertical plane with a peak of ∆Q = 1.5e−2 at the center of the bunch.

Again, this is to be expected as the e-cloud distribution is symmetric in the horizontal and

vertical plane in an LHC quadrupole, see Fig. 3.16d. The red curve on the left, corresponding

to the detuning along the bunch from the e-cloud in LHC dipoles in the horizontal plane, has

a wide peak of ∆Q = 0.25e−2 at the center of the bunch. This peak is about 15% of the height

observed peak from quadrupoles. In the vertical plane, the red curve has one major wide peak

at the center of the bunch of ∆Q = 1.25e−2 and a local maximum towards the tail of the bunch

at z =−0.3 of ∆Q = 1.0e−12.

In summary, in the horizontal plane the forces acting on the bunch come mostly from the

e-cloud in the quadrupoles whereas in the vertical plane, the contribution from the e-cloud in

dipoles is comparable with the contribution from quadruples. In the machine, the bunches
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(a) Horizontal plane (x). (b) Vertical plane (y).

Figure 3.18: The amplitude of the responses (resulting kick) from sinusoids (transparent lines)
and cosine (opaque lines) transverse bunch distortions passing through the e-cloud in LHC
quadrupoles (purple) and LHC dipoles (red) as a function of number of oscillations along the
bunch.

Figure 3.19: The detuning along the bunch from quadrupoles (purple) and dipoles (red) in
the horizontal plane (left) and the vertical plane (right). The simulated detuning is plotted as
transparent lines, and the polynomial fit used in the force model is plotted as solid lines.
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would be affected by both the e-cloud in quadrupoles and the e-cloud in dipoles, therefore

the sum of the force contribution from both is used in the following simulations.
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Instability simulations with strong e-cloud

Simulations of the beam dynamics in the vertical plane were conducted using the force model

presented in the previous section. The other simulation parameters were the same as in

Chapter 2, see Tab. 2.1 and Tab. 2.2. In building the force model, the assumption that the

SEY was the same in all magnets along the ring was made. In reality, this assumption does

not hold true, as the SEY varies between different magnets within the machine, as noted in a

previous study [79]. The assumption of a uniform SEY may be overly simplistic. Consequently,

we explore different e-cloud strengths to find the best match for the observed instabilities.

This exploration is based on the assumption that an uneven distribution of e-cloud within

the machine can be effectively described by a smooth e-cloud model with a specific e-cloud

strength. As a reminder, e-cloud strength 1 corresponds to the e-cloud built up in the LHC

magnets where all magnets have an SEY of 2.

Firstly, the comparison of measured growth rates and the simulated growth rates from macro-

particle simulations of various e-cloud strengths as a function of chromaticity can be seen in

Fig. 3.20. The measured growth rates from beam 1 and beam 2, also plotted in Fig. 3.11, are

plotted as blue and red dots with error bars. The growth rates from simulations with e-cloud

only in dipoles are plotted as a dotted line. The simulations with comparable growth rates are

the simulations with an e-cloud strength of 0.75, however, the simulated growth rate does not

follow the behavior of the measured data well.

The growth rates from simulations with e-cloud only in quadrupoles with an e-cloud strength

of 0.75 are plotted as a dashed black line. This line follows the measured growth rates well.

However, in the machine, it is expected to have contributions from e-cloud in both dipoles

and quadrupoles.

The blue and green curves correspond to the simulation with even e-cloud in both quadrupoles

and dipoles for strength 0.4, and 0.5 respectively. These lines have similar behaviors to the

measured data, however, the simulated growth rates are about 50% higher and flatten out at

chromaticity 20 instead of 15 where the measured growth rates flatten out. Lastly, the growth

rate from macro-particle simulations with an e-cloud strength of 0.2 from dipoles and an

e-cloud strength of 0.5 from quadrupoles is plotted in red. This line starts at a growth rate of

60 s−1 at chromaticity 5 which is within the errorbar of the measured growth rate of beam 2.

Then the red curve decreases with chromaticity but slower than the measurements until it

flattens at chromaticity 20.

The best agreement with simulations is achieved with simulation including only e-cloud in

quadrupoles for e-cloud strength 0.75. The estimated e-cloud from build-up simulations was

expected to be high since it assumed a SEY of 2 for all magnets, meaning an e-cloud at 75% of

that could be reasonable. However, since the instabilities were very clear in the vertical plane,

we know that there is a contribution from e-cloud in dipoles because it affects the vertical and

the horizontal plane differently, whereas e-cloud in quadrupoles affects the two transverse

planes the same.
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Figure 3.20: The growth rate from measurements of beam 1 (blue dots) and beam 2 (red
dots) together with the growth rates from various simulations. Simulations only including
e-cloud in LHC quadrupoles at e-cloud strength 0.75 are plotted as a dashed black line and
simulations only including e-cloud in LHC dipoles also at e-cloud strength 0.75, are plotted as
a dotted black line. Simulations with e-cloud strengths 0.4 and 0.5 with even e-cloud from
both LHC dipoles and LHC quadrupoles are plotted in green and blue. Finally, the growth
rates of simulations including e-cloud from dipoles at e-cloud strength 0.2 and e-cloud from
quadrupoles at e-cloud strength 0.5 are plotted in red.

From simulations with e-cloud in both dipoles and quadrupoles, a comparable but not exact

growth rate could be achieved with an e-cloud strength of 0.4. The estimate of an even SEY

might be too simple to accurately predict the effect of the real e-cloud in the LHC on the beam

dynamics. However, a stabilizing effect of a similar slope can be seen in both measurements

and macro-particle simulations. Note that the force model used is the simplified formalism

developed for the Vlasov approach and not a full PIC simulation.

The growth rates obtained from the entire set of simulations that were conducted are reported

in Fig. 3.21. The decreasing trend with chromaticity is observed in most of the cases.

In Fig. 3.22 we compare for the same case plotted in Fig. 3.20 the results of macroparticle

simulations and Vlasov calculations. The same behavior discussed in Sec. 2.2 is observed, with

good agreement between the two methods when one dominant mode is present and additional

damping visible in the macroparticle simulations when the Vlasov approach predicts a large

number of weakly unstable modes.

Figure 3.23 shows the corresponding spectral content. As observed in the measurements, see

Fig. 3.12, the dependence of more frequencies on chromaticity is rather weak.
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(a) Only e-cloud in LHC dipoles. (b) Only e-cloud in LHC quadrupoles.

(c) e-cloud in both LHC dipoles and LHC
quadrupoles

(d) A fixed e-cloud strength in LHC quadrupoles of
0.5 and varying e-cloud strength in LHC dipoles.

Figure 3.21: The instability growth rate in the vertical plane was calculated from macro-particle
simulations using the Vlasov formalism of e-cloud forces for several configurations of e-cloud
in the LHC. An e-cloud strength 1 corresponds to an SEY of 2 in all magnets.
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(a) E-cloud strength 0.75, only e-cloud in LHC
dipoles

(b) E-cloud strength 0.75, only e-cloud in LHC
quadrupoles

(c) e-cloud strength 0.4, even contribution from
LHC quadrupoles and LHC dipoles.

(d) e-cloud strength 0.5, even contribution from
LHC quadrupoles and LHC dipoles.

(e) e-cloud strength 0.2 from LHC dipoles and 0.5
from LHC quadrupoles.

Figure 3.22: The negative imaginary part of the complex mode frequency of the Vlasov modes
at each chromaticity is plotted as blue dots. The instability growth rate from macro-particle
tracking simulations is plotted as a black cross at each chromaticity.
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(a) E-cloud strength 0.75, only e-cloud in LHC
dipoles.

(b) E-cloud strength 0.75, only e-cloud in LHC
quadrupoles.

(c) e-cloud strength 0.4, even contribution from
LHC quadrupoles and LHC dipoles.

(d) e-cloud strength 0.5, even contribution from
LHC quadrupoles and LHC dipoles.

(e) e-cloud strength 0.2 from LHC dipoles and 0.5
from LHC quadrupoles.

Figure 3.23: The tune shift calculated from the Vlasov approach, plotted as dots in a yellow-
orange color map, and the spectral analysis of the macro-particle tracking simulations, black
dots. The highest peak of the macro-particle spectra is marked with a big dot at each chro-
maticity.
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3.2 Measurements of octupole thresholds after conditioning

In the LHC, e-cloud driven instabilities are mitigated by chromaticity, momentum-dependent

detuning, and octupole magnets by inducing amplitude detuning [80]. Octupole magnets

introduce non-linear effects in the machine and it is therefore of interest to operate with as

low octupole fields as possible [81]. In the following section the sign of the octupole is defined

such that a positive current corresponds to a positive amplitude detuning in the horizontal

plane [82]. Measurements were conducted at the LHC to determine at what octupole current

e-cloud driven instabilities were no longer stabilized by the octupole magnets. Simulations

predict weaker instabilities at higher bunch intensities [83]. To confirm this prediction the

octupole threshold was measured for three different bunch intensities.

3.2.1 Methodology

Beams with the filling scheme of 12 bunches + four trains of 72 bunches were injected into

the LHC, meaning a total of 300 bunches were injected in each beam. Bunch intensities of

1.8e11 1.4e11 and 1.1e11 protons/bunch were tested. Each injection followed the following

procedure:

1. Inject at high chromaticity and high octupoles

2. Lower chromaticity to a specific value. Chromaticities 5, 25, 20 and 25 where used.

3. Slowly lower the octupole strengths until an instability is observed

→ this octupole current is the octupole threshold for that bunch intensity and chro-

maticity.

The total intensity, in blue for beam 1 and red for beam 2, as a function of time can be seen

in Fig. 3.24. The octupole current is plotted in grey, with the scale on the right axis. The

first four fills had a bunch intensity of 1.8e11 protons/bunch with chromaticity 25, 20, 15,

and 5 respectively. The following three fills had a bunch intensity of 1.4e11 protons/bunch

with chromaticities 25,15 and 5 respectively. Lastly, the three last fills had a bunch intensity

of 1.1e11 protons/bunch also with the chromaticities 15, 15, and 5 respectively. When the

octupole current is lowered past its threshold, transverse instabilities occur, causing the beam

to dump.

3.2.2 Measured Thresholds

If the beam is unstable in the transverse plane the amplitude of the transverse position starts

to grow and/or the transverse emittance increases.

The transverse position was monitored turn by turn and bunch by bunch. The maximum

absolute transverse bunch position of the four 72-bunch trains in beam 1 is plotted as a

105



Chapter 3. Experimental characterization of e-cloud driven instabilities in the LHC

Figure 3.24: The figure shows the ten fills that were done during these measurements. The
four fills of the first row had a bunch intensity of 1.8e11 protons/bunch, the three new fills
had a bunch intensity of 1.4e11 protons/bunch and the three fills on the last row had a bunch
intensity of 1.1e11 protons/bunch. The chromaticity of each fill is marked with a colored
area, where red corresponds to a chromaticity of 15, yellow to a chromaticity of 20, green to a
chromaticity of 15, and blue to a chromaticity of 5.
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function of time in Fig. 3.25 as blue crosses every 5 s. Similarly, the emittance was monitored

but was recorded less frequently, about every 25 s, and is plotted as light blue dots. The scale

on the y-axis is arbitrary and normalized with the maximum recorded emittance and the

maximum recorded transverse position respectively. The data from the horizontal plane is

plotted as the top plots whereas the data from the vertical plane is plotted in the bottom plots.

The octupole current is plotted in the same time interval.

In the fill with bunch intensity 1.1e11 protons/bunch and chromaticity 5, Fig. 3.25a, both

the vertical emittance and the vertical position start to grow when the octupole current was

changed to 38 A. The horizontal position and emittance also start to grow after the vertical

plane becomes unstable.

A fill with the same intensity but with chromaticity 25 was also performed and the resulting

maximum emittance and transverse position as a function of time can be seen in Fig. 3.25b.

There is a hint of emittance growth when the octupole current is lowered to 13 A in the vertical

plane and a hint of vertical amplitude growth when the octupole current is 20 A. Then, both

plane becomes strongly unstable when the octupole current is lowered to 10 A.

The maximum emittance and transverse position for fills with bunch intensity 1.4e11 protons/bunch

and chromaticity 5 can be seen in Fig. 3.25c and for chromaticity 25 in Fig. 3.25d. At octupole

current 20 A in Fig. 3.25c, there is an emittance growth in the vertical plane. This is before

anything is seen in the transverse position in either plane. Both the horizontal emittance and

the vertical emittances start to grow at the same time in Fig. 3.25d, at octupole current 6 A. The

transverse position in both planes also starts to grow at the same time.

Finally, the fills with bunch intensity 1.8e11 protons/bunch resulted in the maximum emit-

tances and transverse positions seen in Fig. 3.25e for chromaticity 5 and Fig. 3.25f for chro-

maticity 25. For chromaticity 5 the horizontal emittance and position start to grow at octupole

current 10 A, whereas the vertical counterparts start to grow about a minute later when the

octupole current is lowered to 6 A. In Fig. 3.25f, the horizontal emittance grows a few percent

when the octupole current is lowered to 13 A, a growth that is not visible in the vertical plane.

However, both planes see an emittance growth that stabilizes at a higher value at octupole

current 6 A. At this time, a peak in the vertical transverse position can be seen, which is later

suppressed to nominal values.

In summary, the vertical plane becomes unstable before the horizontal plane for low intensity

and low chromaticity. For high chromaticity and/or high bunch intensity, there is not a clear

dominant plane, as instabilities are seen in the two planes roughly at the same time.

To get an overview of the dependence on the octupole current the maximum transverse

position and the maximum emittance for the four 72-bunch trains at each time is plotted as a

function of the octupole current. During some of the fills, the octupole current was increased

when the first sign of instability was detected, which might give misleading results if the

emittance is directly mapped onto the octupole current at each time. To remove this effect,
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(a) Bunch intensity 1.1e11 protons per bunch,
chromaticity 5

(b) Bunch intensity 1.1e11 protons per bunch,
chromaticity 25

(c) Bunch intensity 1.4e11 protons per bunch,
chromaticity 5

(d) Bunch intensity 1.4e11 protons per bunch,
chromaticity 25

(e) Bunch intensity 1.8e11 protons per bunch,
chromaticity 5

(f) Bunch intensity 1.8e11 protons per bunch, chro-
maticity 25

Figure 3.25: The maximum emittance, light blue dots, and the maximum transverse position,
blue crosses, of the four 72-bunch trains as a function of time. The horizontal data (top plots)
and the vertical data (bottom plots) are plotted for six different fills of beam 1. The octupole
current, grey, is plotted as a function of time with the scale plotted on the right-hand side.
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Figure 3.26: The octupole current during the measurements is plotted in blue, and the equiva-
lent octupole current used to map emittance and transverse position to octupole current is
plotted in orange.

the emittance is mapped onto the equivalent octupole current, plotted in orange in Fig. 3.26.

The maximum emittance among the four trains of 72 bunches as a function of octupole

current is plotted for beam 1 Fig. 3.27. The horizontal emittance is plotted as whole lines and

the vertical emittance is plotted as dotted lines on a logarithmic scale. The color of the line

corresponds to the bunch intensity of the fill. The emittance for all the fills with chromaticity

5 is plotted in the top graph, the fills with chromaticity 15 are reported in the middle plot,

and the fills with chromaticity 25 are reported in the bottom plot. As the octupole current

approaches zero, all plotted emittances exhibit fast growth. The highest octupole current

at which there is a first hint of emittance growth is considered to be the octupole current

threshold. The corresponding emittances for beam 2 can be seen in Fig. 3.29.

Similarly, the maximum transverse position of the bunches in the four 72-bunch trains is

plotted as a function of octupole current in Fig. 3.28 for beam 1 and in Fig. 3.30 for beam 2.

The maximum transverse position shows a similar behavior to the maximum emittance with

respect to octupole current.

To get the octupole threshold, the emittance data was studied carefully, and the highest

octupole current at which the first sign of instability was identified. The resulting thresh-

olds for beam 1 (top) and beam 2 (bottom) in horizontal (left) and vertical (right) can be

seen in Fig. 3.31. The octupole thresholds for bunch intensity 1.8e11 protons/bunch are

plotted in red, for bunch intensity 1.4e11 protons/bunch in green, and for bunch intensity

1.1e11 protons/bunch in blue. The instability threshold is higher in the vertical plane for

bunch intensity 1.1e11 and 1.4e11 protons/bunch, whereas the thresholds are equivalent in

horizontal and vertical for bunch intensity 1.8e11 protons/bunch.

The highest threshold for each plane and beam at each value of chromaticity is plotted in

Fig. 3.32 for all three bunch intensities. Beams with higher bunch intensity consistently show

lower octupole thresholds.
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Figure 3.27: The figure contains the maximum bunch emittance of the four 72-bunch trains
emitted into beam 1 of the LHC. Results from fills with chromaticity 5 are plotted in the top
plot, from chromaticity 15 in the middle plot, and from chromaticity 25 in the bottom plot. The
color of each line corresponds to the bunch intensity where red, green, and blue correspond
to 1.8e11, 1.4e11, and 1.1e11 protons/bunch respectively. The horizontal emittance is plotted
as dotted lines and the vertical emittance as whole lines.
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Figure 3.28: The figure contains the maximum transverse position of the four 72-bunch trains
emitted into beam 1 of the LHC. Results from fills with chromaticity 5 are plotted in the top
plot, from chromaticity 15 in the middle plot, and from chromaticity 25 in the bottom plot. The
color of each line corresponds to the bunch intensity where red, green, and blue correspond
to 1.8e11, 1.4e11, and 1.1e11 protons/bunch respectively. The horizontal emittance is plotted
as dotted lines and the vertical emittance as whole lines.
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Figure 3.29: The figure contains the maximum bunch emittance of the four 72-bunch trains
emitted into beam 2 of the LHC. Results from fills with chromaticity 5 are plotted in the top
plot, from chromaticity 15 in the middle plot, and from chromaticity 25 in the bottom plot. The
color of each line corresponds to the bunch intensity where red, green, and blue correspond
to 1.8e11, 1.4e11, and 1.1e11 protons/bunch respectively. The horizontal emittance is plotted
as dotted lines and the vertical emittance as whole lines.
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Figure 3.30: The figure contains the maximum transverse position of the four 72-bunch trains
emitted into beam 2 of the LHC. Results from fills with chromaticity 5 are plotted in the top
plot, from chromaticity 15 in the middle plot, and from chromaticity 25 in the bottom plot. The
color of each line corresponds to the bunch intensity where red, green, and blue correspond
to 1.8e11, 1.4e11, and 1.1e11 protons/bunch respectively. The horizontal emittance is plotted
as dotted lines and the vertical emittance as whole lines.
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Figure 3.31: The octupole current thresholds for bunch intensity 1.8e11 protons/bunch (red),
1.4e11 protons/bunch (green), and 1.1e11 protons/bunch (blue) as a function of chromaticity
for beam 1 (top) and beam 2 (bottom) in horizontal (left) and vertical (right) planes.

Figure 3.32: The highest octupole current thresholds of the two planes and the two beams
for bunch intensity are 1.8e11 protons/bunch (red), 1.4e11 protons/bunch (green), and
1.1e11 protons/bunch (blue) as a function of chromaticity.
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3.2 Measurements of octupole thresholds after conditioning

(a) First Instability, 175 s are plotted. (b) Second instability, 300 s are plotted.

Figure 3.33: The emittance of each bunch along the four bunch trains of 72-bunches for beam
1 during a fill with 1.1e11 protons/bunch and chromaticity 5. The color of the dot corresponds
to time chronologically from blue to red.

3.2.3 Observed instabilities

Low bunch intensity

The emittance along the train at the onset of an instability recorded for the fill in beam 1 with

bunch intensity 1.1e11 protons/bunch and chromaticity 5 can be seen in Fig. 3.33a for both

the horizontal (top) and vertical (bottom) planes. The color of the dot corresponds to the time

passed, with blue corresponding to the selected reference (t = 0) and red to 175 s after the

reference time. No change in emittance is observed at this time in the horizontal plane and all

emittances are stable at around 2 µm. In the vertical plane, some bunches towards the end

of the last train are already blown up from injection. The later bunches in train 1 and train 3

have their emittances blown up during the 175 s plotted in the figure. The emittances in both

planes for the next 300 s are plotted in Fig. 3.33b, meaning the reference time, plotted in deep

blue, corresponds to the last time plotted in Fig. 3.33a. All of the trains are now unstable, both

the later bunches and a few bunches earlier in the train. Also, a small emittance increase can

be seen in the horizontal plane.

The turn-by-turn vertical position for bunch 60-72 in train 1 can be seen in Fig. 3.34 for the

first onset of instability while the second observed instability, one and a half a minute later is

shown in Fig. 3.34b. The bunches become unstable at different times from one another, with

growing vertical amplitude but are then stabilized without causing a beam dump.

The growth rates were estimated by using a rolling window FFT fit described in Sec. 3.1.3.

The vertical data of bunch 64 of train 1 at the onset of the first instability is plotted in blue in

Fig. 3.34a and at the onset of the second instability in Fig. 3.34b. The data that is used in the

fit is the data between the two grey, dashed, and vertical lines. Varying the window size and

overlap of the rolling FFT window results in growth rates between the green and red lines with

the average growth rate being plotted in black. The estimated growth rate of the first instability

is 0.56 s−1 and 0.35 s−1 for the second instability which corresponds to rise times of τ∼ 20000

turns and τ∼ 32000 turns.
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(a) First instability. (b) Second instability

Figure 3.34: The vertical position turn-by-turn of bunch 60-72 in bunch train 1 for beam 1
during a fill with 1.1e11 protons/bunch and chromaticity 5. The unit on the y-axis is arbitrary.

(a) First Instability, rise time τ≈ 20000 turns. (b) Second instability, rise time τ≈ 32000 turns.

Figure 3.35: The vertical position of bunch 64 in bunch train 1 in beam 1 during a fill with
bunch intensity 1.1e11 protons/bunch and chromaticity 5 is plotted in blue. The green, black,
and red curves correspond to the low, average, and high estimates of the growth rate using the
rolling window FFT fitting method described in Sec. 3.1.3
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3.2 Measurements of octupole thresholds after conditioning

Figure 3.36: The emittances during 250 s at the onset of instabilities during a fill of beam 1
with bunch intensity 1.1e11 protons/bunch and chromaticity 25.

The bunch-by-bunch emittances in both planes obtained during a fill of beam 1 with bunch

intensity 1.1e11 protons/bunch and chromaticity 25 can be seen in Fig. 3.36. The color of each

dot indicates the time. In the horizontal plane, the later bunches in each train experience

emittance growth, with the emittance growth seemingly proportional to the bunch position

for the first 150 s plotted. After 150 s, a fast blowup occurs for bunches in the middle of trains

two, three, and four. In the vertical plane, bunches early in the train experience the most

emittance growth.

To get an overview of the transverse motion during this instability, the amplitude of the

horizontal motion of train 2 is plotted in Fig. 3.37a and the amplitude of the vertical motion of

the same train at the same time in Fig. 3.37b. Turn-by-turn data of 105 turns are plotted for

the 72 bunches in the train. The x-axis corresponds to the turn number and the y-axis to the

bunch number. The scale of the amplitude is given by the colorbar on the right side of each

plot.In the horizontal plane, several of the bunches in the range 20-50 are unstable whereas

bunches in the range 7-20 are unstable in the vertical plane. The instabilities in the horizontal

plane start around turn 50 000 whereas the instabilities in the vertical plane start at turn 30

000, meaning the instabilities start in the vertical plane.

The rise times of the single bunch instabilities observed in the vertical plane during this fill

was about 8000 turns.

3.2.4 High bunch intensity

The transverse emittances recorded during 250 s at the onset of instability for the fills with

bunch intensity 1.8e11 protons/bunch can be seen in Fig. 3.38. The left plot, Fig. 3.38a, con-

tains results for chromaticity 5 and the later two-thirds of the trains show emittance growth

in both planes during the full 250 s. The horizontal plane is slightly worse than the vertical

plane. In the right plot, Fig. 3.38b, the chromaticity is instead 25. Here, the latter two-thirds of

the train also shows emittance growth in both planes with the horizontal plane being slightly

worse. However, the emittance grows only during the first 100 s. This is because the octupole

current was increased when the first instability was seen, see the grey line in Fig. 3.25f. The rise
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(a) Horizontal plane. (b) Vertical plane.

Figure 3.37: The amplitude of the transverse motion of the 72 bunches in train 2 in beam 1
plotted turn-by-turn for 50 000 turns. The bunch intensity is 1.1e11 protons/bunch and the
chromaticity is 25.

(a) Chromaticity = 5 (b) Chromaticity = 25

Figure 3.38: The emittances during 250 s at the onset of instabilities during a fill of beam 1
with bunch intensity 1.8e11 protons/bunch.

times were estimated to τ∼ 14000 turns at chromaticity 5 and τ∼ 5000 turns at chromaticity

25.0.

The corresponding bunch-by-bunch transverse amplitudes for train 2 are plotted in Fig. 3.39

for the fills in beam 1 with bunch intensity 1.8e11 protons/bunch. In all four plots, the y-axis

represents the bunch position and the x-axis corresponds to time measured in turns. The

horizontal amplitude of the fill with chromaticity 5 is plotted in Fig. 3.39a and the vertical

amplitude of the same beam is plotted in Fig. 3.39c. Bunches 50-70 have a high amplitude

in the horizontal plane, indicating instabilities. The same bunches have a slightly higher

amplitude compared to the earlier bunches in the vertical plane, but the amplitude is not as

high as in the horizontal plane.

When chromaticity is set to 25, the horizontal amplitude of bunch 20-40 is slightly larger

compared to the rest of the bunches, see Fig. 3.39b. No visible bunch-by-bunch pattern is

visible in the vertical plane.
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3.2 Measurements of octupole thresholds after conditioning

(a) Horizontal plane, chromaticity 5 (b) Horizontal plane, chromaticity 25

(c) Vertical plane, chromaticity 5 (d) Vertical plane, chromaticity 25

Figure 3.39: The amplitude of the transverse motion of the 72 bunches in train 2 in beam 1
plotted turn-by-turn. The bunch intensity is 1.8e11 protons/bunch.

These plotted fills with bunch intensity 1.8e11 protons/bunch shows that the horizontal plane

becomes unstable before the vertical plane for both high and low chromaticity.

In summary, the observations were dominated by vertical instabilities for low intensity and

low chromaticity, however, both planes become unstable at the same time for high intensity

and or high chromaticity.
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(a) Bunch intensity
1.1e11 protons/bunch

(b) Bunch Intensity
1.4e11 protons/bunch

(c) Bunch Intensity
1.8e11 protons/bunch

Figure 3.40: The three figures show the transverse cross-section of the electron distribution in
the beam chamber of a LHC quadrupole after build-up saturation for three difference bunch
intensities. The distribution shown is right before a bunch passage.

3.2.5 Simulations

Build-up simulations were preformed using parameters consistent with the conditions in

the LHC at injection for the three bunch intensities used during the measurements. The SEY

varies along the LHC but all sectors are estimated to have an SEY between 1.35 and 1.45 [79].

In these simulations, the accelerator is approximated to have an even SEY along the whole

machine of 1.45, which is a high estimate. The electrons arrange themselves differently in

the beam chamber depending on the magnetic fields present as well as the bunch intensity.

The resulting cross sections of electrons in LHC quadrupoles after the electron density has

saturated can be seen in Fig. 3.40. The electrons are arranged as a cross following the field

lines of the quadrupole magnet for all three bunch intensities. The electron density is higher

the lower the bunch intensity, but the difference is subtle.

Similarly, the cross section of the electron distribution in LHC dipoles for the same simula-

tion parameters can be seen in Fig. 3.41 for the three bunch intensities 1.1e11, 1.4e11, and

1.8e11 protons/bunch. The majority of the electron arrange themselves in two vertical stripes

and the distance between the stripes increases with increased bunch intensity. A result of this

is that the central density of electrons decreases with increased bunch intensity. In Fig. 3.41a

there are some electrons visible in the center of the beam pipe, something that is not visible

for the two higher intensities, see Fig. 3.41b and Fig. 3.41c.

The central density of electrons building up in LHC dipoles and quadrupoles for the three

bunch intensities 1.1e11 (purple), 1.4e11 (green), and 1.8e11 (red) protons per bunch as a

function of bunch passages is plotted as dashed lines in Fig. 3.42. The central density in dipoles

is very low for bunch intensity 1.4e11 and 1.8e11 protons/bunch. In the same graph, the central

electron density as a result of bunch passages with a bunch intensity 1.1e11 protons/bunch

grows to about 2e11 e−1/m2. This decrease in central density in dipoles with increased bunch

intensity is consistent with expectation [84].

In quadrupoles, see whole lines in Fig. 3.42, the shape of the central density as a function of
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3.2 Measurements of octupole thresholds after conditioning

(a) Bunch Intensity
1.1e11 protons/bunch

(b) Bunch Intensity
1.4e11 protons/bunch

(c) Bunch Intensity
1.8e11 protons/bunch

Figure 3.41: The three figures show the transverse cross section of the electron distribution
in the beam chamber of a LHC dipole after build-up saturation for three difference bunch
intensities. The distribution shown is right before a bunch passage.

bunch passages is similar for all three intensities. What differs the three bunch intensities is

the saturated value of electron density in the center of the beam pipe which decreases with

increased bunch intensity.

The e-cloud formed in quadrupoles drive both horizontal and vertical instabilities whereas

the e-cloud in dipoles drives vertical instabilities [69]. The observation of dominant vertical

instabilities as bunch intensity 1.1e11 protons/bunch is therefore consistent with the predicted

higher e-cloud in dipoles only at this intensity. For the other two intensities, the e-cloud in

the quadrupole is the most dominant which could explain why similar instabilities can be

observed in the two transverse planes.

The observation of instabilities becoming less pronounced for increased bunch intensity is

consistent with the decreased electron density in dipoles and quadrupoles, which is observed

in the simulations.
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Figure 3.42: The electron density at the center of the beam pipe in LHC quadrupoles (whole
lines) and LHC dipoles (dashed lines) as a result of e-cloud buildup in dipole and quadrupole
magnets bunch intensity 1.1e11 protons/bunch (purple), 1.4e11 protons/bunch (green) and
1.8e11 protons/bunch (red) as a function of time measured in bunch passages.
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4 Conclusions

E-cloud resulting in both dipolar forces and a detuning along the bunch have been expressed

in a dedicated Vlasov formalism for e-cloud forming in dipole as well as quadrupole magnets.

This formalism also includes chromaticity. The adjustment of chromaticity to acceptable

positive values is one of the mitigation strategies used against e-cloud driven instabilities

in the LHC. As expected, the Vlasov formalism predicts a stabilizing effect with increasing

chromaticity. Additionally, when chromaticity is included the growth rate of the strongest

mode decreases whereas the growth rates of the weaker modes increase, which is consistent

with theory.

The Vlasov simulations were benchmarked against macroparticle simulations using the Py-

HEADTAIL as a particle tracker but using the same description for the e-cloud forces developed

for the Vlasov approach. The tune shift of the Vlasov modes agrees well with the tune shift

calculated from the spectral analysis of the macroparticle simulations. Also on the growth rate

there is good agreement as long as there is only one dominant unstable mode. However, at

high chromaticity, where multiple weakly unstable modes are expected by the Vlasov method,

there is a stabilizing mechanism in the macroparticle simulations that is not captured in the

linearized Vlasov approach.

This discrepancy is not observed when no detuning along the bunch from the e-cloud is

included in either simulation, meaning the case when only the dipolar forces from the e-cloud

were taken into account. For this case, the Vlasov modes accurately predict the behavior of the

macroparticle tracking simulations for all ranges of chromaticity. To understand the stabilizing

mechanism, the quadrupolar force from the e-cloud was further investigated. It was found

that Vlasov modes agree with the macro-particle simulations also when no detuning with

longitudinal amplitude, ∆QR , was included in either simulation and only the head-tail phase

shift from e-cloud is included.

To further test the Vlasov model, impedance forces were implemented in the same force

formalism as e-cloud with the forces being divided into dipolar forces and a detuning along

the bunch. The macroparticle simulations using this force formalism agree with conventional
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PyHEADTAIL impedance simulations for the full range of chromaticity. This suggests that

the force formalism used in the e-cloud Vlasov approach is not the source of the discrepancy.

Consistently with the observations made with the e-cloud, Vlasov calculations agree with the

macroparticle simulations for all cases except for the case with both positive chromaticity and

a detuning with longitudinal amplitude from the impedance present. This means the same

stabilizing mechanism not captured by the Vlasov simulations is present in the impedance

simulations as well. Further work could study this phenomenon with the stability diagram

method to investigate how Landau damping comes into play in the macroparticle simulations.

This exploration aims to enhance our understanding of how modes with different frequen-

cies are stabilized differently. Additionally, it may offer insights into the observation that,

when many weak Vlasov modes are present, they are not always visible in the macroparticle

simulations.

This theoretical and simulation work was complemented by experimental studies at the LHC.

Transverse instabilities driven by e-cloud with high e-cloud densities present. Trains of 24

bunches were injected at several values of positive chromaticities. All injections showed

signs of instabilities which was consistent with the expectation of high e-cloud present in the

machine. The later bunches in the trains were more unstable compared to the earlier bunches

in the train and the observed instabilities were in the vertical plane. The instability growth

rates, calculated with an averaged rolling window FFT algorithm, showed a clear decrease

with increasing chromaticity in both beam 1 and beam 2. E-cloud in quadrupoles drive

instabilities in both vertical and horizontal planes whereas e-cloud formed in dipoles drive

instabilities mainly in the vertical plane. This suggests that e-cloud in dipoles significantly

contributes to the measured instabilities in these conditions. The measured stabilizing effect

from chromaticity could be replicated by macroparticle simulations.

Apart from using a positive chromaticity, octupoles are used to mitigate e-cloud driven insta-

bilities. Understanding stability at 450 GeV is critical for the HL-LHC, as stronger chromaticity

and octupole settings can lead to a degraded beam lifetime. The octupole current thresholds,

i.e. the lowest current at which the beam is stable, were measured after scrubbing, for bunch

intensity 1.1e11, 1.4e11, and 1.8e11 protons/bunch. The resulting thresholds depended as

expected on the bunch intensity, showing a lower threshold for higher bunch intensity. The

instabilities developed at low bunch intensity were in the vertical plane whereas transverse

instabilities developed simultaneously in both the horizontal and vertical planes at high bunch

intensity.

Build-up simulations in conditions with a SEY of 1.4, which is the estimated SEY at the

nominal operation of the LHC, predict that the central density of the e-cloud formed in dipoles

is significant only for lower bunch intensity. This is consistent with the vertical transverse

instabilities being observed only at the lowest bunch intensity for which measurements were

conducted. The central electron density in LHC quadrupoles also depends on intensity. In

particular, the density at the beam location decreases with increasing bunch intensity, which

is consistent with the observed behavior of the instability threshold.
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A Numerical Checks

A.1 Number of longitudinal slices

The number of points used within a bunch to model the responses was varied to check

convergence and other resulting responses are plotted in Fig. A.1.

Figure A.1: The response to a sinusoid bunch distortion using 200, 500, and 1000 slices along
the bunch.

The same check was done in the detuning along the bunch and the result can be seen in

Fig. A.2. The three curves are again on top of each other, and 200 slices are considered to be

enough.

The instability growth rates from Vlasov simulations, Fig. A.3a, and macroparticle simulations,

Fig. A.3b, for simulations using 200, 500, and 1000 slices along the bunch are plotted in blue

for simulations with chromaticity 0 and orange for simulations using chromaticity 15. The

growth rates vary little with the number of slices.
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Appendix A. Numerical Checks

Figure A.2: The detuning along the bunch from the e-cloud in an LHC quadrupole using 200,
500, and 1000 slices along the bunch.

(a) Growth rate from Vlasov simulations. (b) Growth rate from macroparticle simulations.

Figure A.3: The growth rates from simulations as a function of the number of longitudinal slices
used. Results from simulations using chromaticity 0 are plotted in blue and from simulations
with chromaticity 15 are plotted in orange.
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A.2 Detuning from e-cloud in dipoles

A.2 Detuning from e-cloud in dipoles

The calculating detuning from the e-cloud in an LHC dipole is sensitive to the number of

macroparticles used to simulate the interaction of the beam and e-cloud using the PIC al-

gorithm. Either simulations with 100 times as many macroparticles are to be used, plotted

as dashed red lines in Fig. A.4. The same result can be achieved by averaging 50 detuning

calculated with simulation using the nominal simulations setting, see Tab. 3.3.

(a) x-plane (b) y-plane

Figure A.4: The detuning along the bunch from averaging several simulations, the color of
the plot corresponds to the number of simulations used in the average. The integral of the
detuning as a function of the number of terms used for the average is plotted in the bottom
plots. The simulations were done with thee-cloud in LHC dipoles at injection.

A similar study was conducted for the detuning from the e-cloud in quadrupole, however, the

detuning was not as sensitive, as less variation with the number of terms used in the average

can be seen in Fig. A.4
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Figure A.5: The detuning along the bunch from averaging several simulations, the color of
the plot corresponds to the number of simulations used in the average. The integral of the
detuning as a function of the number of terms used for the average is plotted in the bottom
plots. The simulations were done with thee-cloud in LHC quadrupoles at injection.
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A.3 Number of macroparticles in instability simulations

A.3 Number of macroparticles in instability simulations

The number of macroparticles was varied in the impedance simulations defined in section

2.4.1, and the resulting growth rates can be seen in Fig. A.6 for simulations with chromaticity

0, 3, and 5. The instability growth rates of the corresponding Vlasov modes are plotted in the

same plotted in grey. The growth rates from simulations using 105, 106, and 107 marcoparticles

all give the same instability growth rates.

(a) chromaticity = 0 (b) chromaticity = 3 (c) chromaticity = 5

Figure A.6: The instability growth rate of macroparticle simulations using 105, 106 and 107

macroparticles are plotted in orange, blue, and green respectively. The corresponding growth
rates from Valsov simulations are plotted in grey.
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A.4 Number of terms Vlasov sum

There are three sums in the Vlasov equation, the m, l and p sum in:

blm (Ω−Qu0ω0 − lωs)− ω0

Flm

+∞∑
m′=0

bl m′

∫
dr wl (r )∆QR (r ) flm(r ) fl m′(r ) =

− Nbβc

8π2Qu0Fl m

∑
l ′m′

bl ′m′
N∑

n=0

Ï
dr dφe j lφe j∆Φ(r,φ) wl (r ) flm(r )

g0(r )

Wl (r )
kn

(
r cosφ

)
×

Ï
r̃ d r̃ dφ̃e− j l ′φ̃e− j∆Φ(r̃,φ̃) fl ′m′(r̃ )

Wl ′(r̃ )hn(r̃ cos φ̃)

λ0(r̃ cos φ̃)H 2
n

. (A.1)

The p sum is the sum over all dipolar responses. The numbers l and m correspond to the radial

and azumithal mode numbers. The number of terms used in these calculations can be varied

and the resulting growth rates for the worst Vlasov mode of simulations using chromaticity 15

and the parameters defined in Tab. 2.1, can be seen for three different numbers of azimuthal

modes, Nm as a function of the maximum radial mode lmax used.

Figure A.7: The instability growth rate of Vlasv simulations using a different number of azimutal
modes, Nm and radial modes lmax
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