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“What a useful thing a pocket-map is!” I remarked.

“That’s another thing we’ve learned from your Nation,” said Mein Herr, “map-making. But
we’ve carried it much further than you. What do you consider the largest map that would be
really useful?”

“About six inches to the mile.”

“Only six inches!” exclaimed Mein Herr. “We very soon got to six yards to the mile. Then we
tried a hundred yards to the mile. And then came the grandest idea of all! We actually made a
map of the country, on the scale of a mile to the mile!”

“Have you used it much?” I enquired.

“It has never been spread out, yet,” said Mein Herr: “the farmers objected: they said it would
cover the whole country, and shut out the sunlight! So we now use the country itself, as its own
map, and I assure you it does nearly as well.”

from Lewis Carroll, Sylvie and Bruno Concluded, Chapter XI, London, 1895
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Abstract

In this PhD manuscript, we explore optimisation phenomena which occur in complex neural
networks through the lens of 2-layer diagonal linear networks. This rudimentary architecture,
which consists of a two layer feedforward linear network with a diagonal inner weight matrix,
has the advantage of revealing interesting training characteristics while keeping the theoretical
analysis clean and insightful.

The manuscript is composed of four parts. The first serves as a general introduction to
the depicted architecture, it provides results on the optimisation trajectory of gradient flow,
upon which the rest of the manuscript is built. The second part focuses on saddle-to-saddle
dynamics. Taking the initialisation scale of the gradient flow to zero, we prove and describe
the existence of an asymptotic learning trajectory where coordinates are learnt incrementally.
In the third part we focus on the effect of various hyperparameters (namely the batch-size, the
stepsize and the momentum parameter) on the solution which is recovered by the corresponding
gradient method. The fourth and last part takes a slightly different point of view. An underlying
mirror-descent structure emerges when analysing gradient descent on diagonal linear networks
and slightly more complex architectures. This consequently encourages a deeper understanding
of mirror-descent trajectories. In this context, we prove the convergence of the mirror flow in
the linear classification setting towards a maximum margin separating hyperplane.

Keywords: theory of deep learning, diagonal linear networks, implicit regularisation, non-
convex optimisation, mirror descent

Résumé

Dans ce manuscrit de thèse, nous explorons des phénomènes d’optimisation qui se produisent
dans des réseaux de neurones complexes à travers le prisme des réseaux linéaires diagonaux à
deux couches. Cette architecture rudimentaire, qui consiste en un réseau linéaire à deux couches
avec une matrice de poids interne diagonale, présente l’avantage de révéler des caractéristiques
d’entrâınement intéressantes tout en conservant une analyse théorique claire et instructive.

Le manuscrit est composé de quatre parties. La première sert d’introduction générale à
l’architecture présentée, fournissant des résultats sur la trajectoire d’optimisation du flot de
gradient, sur laquelle repose le reste du manuscrit. La deuxième partie se concentre sur les
dynamiques selle à selle. En prenant l’échelle d’initialisation du flot de gradient à zéro, nous
prouvons et décrivons l’existence d’une trajectoire d’apprentissage asymptotique où les coor-
données sont apprises de manière incrémentale. Dans la troisième partie, nous nous concentrons
sur l’effet de différents hyper-paramètres (notamment le ‘batch-size’, le pas de gradient et le
paramètre de momentum) sur la solution retrouvée par la méthode de gradient correspondante.
La quatrième et dernière partie adopte un point de vue légèrement différent. Une structure
sous-jacente de descente de miroir émerge lors de l’analyse de la descente de gradient sur les
réseaux linéaires diagonaux ainsi que sur des architectures légèrement plus complexes. Cela
encourage par conséquent une compréhension plus approfondie des trajectoires de descente de
miroir. Dans ce contexte, nous prouvons la convergence du flot de miroir vers un hyperplan
séparateur de marge maximale dans le cadre de la classification linéaire.

Mots-clés : théorie de l’apprentissage profond, réseaux linéaires diagonaux, régularisation im-
plicite, optimisation non convexe, descente de miroir
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Chapter 1

Introduction

1.1 The deep-learning success story

The breakthroughs in deep learning have begun to reshape various aspects of our societies. In
healthcare, these advancements involve training models to enhance clinical diagnostics, aid in
drug discovery, as well as provide personalised treatment plans [Esteva et al., 2019, Jumper et al.,
2021]. In the transportation sector, deep learning has facilitated the development of autonomous
vehicles, improved traffic management systems, and popularised ride-sharing services. In the
sector of content creation, generative models now produce texts, music, images, and videos which
are sufficiently realistic to pose challenges to traditional industries [Brown et al., 2020, Ramesh
et al., 2021, OpenAI, 2024]. These powerful models are not only employed daily by businesses
and governments but have also become accessible to everyone through web interfaces, such as
conversational agents like ChatGPT, as well as image and video creation platforms like DALL·E
and Sora.

The performance of these models challenges our human-centered understanding of truth, in-
telligence, reasoning, and creativity. In text and image creation, these models blur the distinction
between human and machine-generated content, making it increasingly difficult to differentiate
between reality and the realm of virtuality [Hsu, 2024]. The computer program AlphaGo, devel-
oped to play the game of Go, was described as ‘creative’ by experts after defeating professional
player Lee Sedol [Metz, 2016] and language models can now tackle complex reasoning spanning
mathematics, puzzle-solving, vision, and psychology [Bubeck et al., 2023].

These achievements can largely be attributed to three main factors. Firstly, the availability
of tremendous amounts of data. To provide a sense of scale, current language models are trained
using all publicly available text on the Internet, equating to roughly a trillion ‘words’, equivalent
to a million copies of War and Peace by Leo Tolstoy. Secondly, there has been a significant
increase in computational power, thanks to the continuous miniaturisation of transistors and
the development of powerful and energy-efficient processors, along with the emergence of GPUs
and TPUs ideal for training deep neural networks. These advancements have allowed for the
training of increasingly larger models. Lastly, the development of novel architectures, alongside
the accumulation of intricate expertise in the training of these models, has significantly enhanced
their performance and accessibility. The spread of open-source culture and the establishment of
competitive benchmarks like ImageNet [Deng et al., 2009] have also played an important role.
Also note that the complexity of the engineering processes involved in model training, such
as data preprocessing, parallel computing, infrastrucutre mangagement, hyperparameter tuning
and model monitoring, underscores the requirement of specialised skills to train large models.
This fact is reflected in the generous salaries associated with such skills [Eckert, 2023].

1



CHAPTER 1. INTRODUCTION

1.2 A brief history of deep learning

Understanding the role of theory in this success story is a natural question. Interestingly, it
appears as a somewhat controversial topic as pioneers in deep learning, like Yann LeCun, have
critiqued what they call a ‘mathematical hypnosis’ [Lecun, 2019] and LeCun writes that ‘blind
trust in theoretical results that turned out to be irrelevant is a major reason why neural nets were
dismissed between 1995 and 2010’ [Lecun, 2023].

In the 1990s, convolutional neural networks were successfully trained with the recent use
of backpropagation along with stochastic gradient descent, outperforming other techniques in
tasks such as handwritten character recognition [LeCun et al., 1998]. These promising em-
pirical results, however, lacked solid theoretical foundations and interpretability. Worse, they
seemed to contradict prevailing mathematical beliefs: classical generalisation bounds predicted
catastrophic overfitting, and deep networks were seen as excessively complex, given the proven
approximation universality of single hidden layer networks [Hornik et al., 1989]. Additionally,
their training relied on many heuristics, and in Vapnik’s own words: ‘the designers of neural
networks compensate the mathematical shortcomings with the high art of engineering’ [Vapnik,
1999, p.171].

This perspective led Vladimir Vapnik, a pioneer in statistical learning theory, to take the
following bet in 1995: ‘by 2005, no one in his right mind will use neural nets that are essen-
tially like those used in 1995’ [Lecun, 2019]. In contrast to the advancement of neural networks,
Vapnik and colleagues pursued a ‘bottom-up approach’,1constructing the Support Vector Ma-
chines (SVM), which are designed to provide guaranteed generalisation performances [Boser
et al., 1992, Cortes and Vapnik, 1995]. While theoretically appealing, SVMs struggled to scale
efficiently with the increasing volume of available data.

The ‘SVM vs Deep Neural Networks’ debate was (at least temporaly) settled in 2012 with
the appartition of the AlexNet architecture [Krizhevsky et al., 2012], which made a significant
breakthrough by largely outperforming other models in the ImageNet Large Scale Visual Recog-
nition Challenge. Nevertheless, the outstanding results achieved by deep neural networks still
largely remain mysterious and Vapnik’s original theoretical skepticism remains pertinent.

1.3 The necessity of a (‘good’) theory.

Given the achievements of deep learning, largely independent of theoretical foundations, one
may rightfully question the necessity or desirability of a ‘theory of deep learning’. However,
considering the title of this PhD, it seems imperative to advocate for the importance of such a
theory. To begin, we must try to establish what constitutes a ‘good’ theory.

‘Nothing is more practical than a good theory.’ 2

Adopting this saying, a good theory must therefore be practical (similar to a pocket-map!)
and provide a framework and tools which facilitates the understanding and conceptualisation
of existing empirical observations. Why is this essential in the context of deep learning? We
propose three main reasons:

1following Vapnik’s philosophy, he chose the second part of Hegel’s formula ‘Whatever is real is rational, and
whatever is rational is real.’ (see Chapter 9.6 in Vapnik [1999] for his enlightening discussion on the two different
point of views a theoretician can adopt when facing a natural science phenomenon)

2commonly attributed to the social psychologist Kurt Lewin. Note that this saying is at the heart of Vapnik’s
book on statistical learning theory [Vapnik, 1999].
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• Sustainability: A better understanding of models should lead to an optimisation of their
structure, of their training and of the use of data. Consequently and hopefully leading
to:3 (i) reduce model sizes, (ii) minimise training data and storage requirements, (iii)
decrease the number of required training iterations. These benefits, in turn, translate into
lower energy consumption for training, data storage, and hardware manufacturing as well
as reduced material extraction including rare metals, used in hardware production.

• Interpretability: Understanding the criteria behind a model’s predictions and ensuring
robustness guarantees is crucial for ethical, fairness, and security considerations. This is
particularly critical in domains like healthcare, finance, education, and robotics, where
trust and accountability are required.

• A better understanding of intelligence: Language and image generation models chal-
lenge our conceptions of intelligence. Machines now navigate territories once reserved to
conscious beings. A better understanding of these seemingly intelligent machines will
undoubtedly shed light on various aspects of our own.

1.4 What are the deep learning mysteries?

To understand why the success of deep learning is so intriguing, we must first introduce its
fundamental principles. Deep learning, in essence, follows a straightforward approach.

Deep learning approach:

Input

(Big) training set (x1, y1), . . . , (xn, yn)

(Large and deep) architecture, initialised at fw0 : Rd → Y

Training procedure

Minimise the empirical loss
∑

i ℓ(yi, fw(xi)) using a gradient method and heuristics

Output

Trained weights w⋆ and prediction function x 7→ fw⋆(x)

We expand on various aspects of the approach.

A diversity of architectures. There are various types of architectures, each corresponding to
different parameterisations fw. Examples include multilayer perceptrons (MLP), convolutional
neural networks (CNN), and residual neural networks (ResNets). Despite their differences, they
all involve stacking multiple layers, hence the term ‘deep’. The final transformation involves
a series of matrix operations and nonlinear transformations. For instance, the AlexNet archi-
tecture [Krizhevsky et al., 2012] is composed of a total of 8 trainable layers: 5 convolutional
layers and 3 fully connected layers, with a total of 60 million parameters. The latest major
architectural development is the Transformer architecture [Vaswani et al., 2017] which has had
a profound impact on various learning tasks since 2017.

3this comment is only applicable if there is no rebound effect and these benefits are not immediately exploited
to develop more powerful models.
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Training procedure. Successfully training the model is crucial. At its core, this involves using
a gradient method to minimise the training loss, on top of which a wide range of techniques
has been developed through trial and error, forming a toolbox of common practices which
have significantly enhanced the test performances. These include batch normalisation, dropout,
adaptive learning rates, the use of momentum, data cleaning, data augmentation, weight decay,
early stopping etc. Years of trial and error have resulted in an accumulation of these engineering
tricks which have led to the current state-of-the-art results.

Deep learning philosophy. There is a notable inclination towards the development of in-
creasingly larger models, coupled with the use of much bigger datasets and the allocation of
substantial computational resources for model training. This inclination results from the obser-
vation that over the years, this philosophy has been consistently demonstrated to yield significant
advancements in performance. For instance, contemporary models like GPT have approximately
1011 trainable parameters, whereas comparatively ‘older’ models like ResNet18 have around 106

parameters.

1.4.1 What could possibly go wrong?

In short, many things! In fact, we’ve become accustomed with their success to the point that it
is tempting to forget all the things which a priori could have gone wrong. As written in Vapnik
[1999] (Chapter 5.11): ‘From the formal point of view one cannot guarantee that neural networks
generalize well, since according to theory, in order to control generalisation ability one should
control two factors: the value of the empirical risk and the value of the confidence interval.
Neural networks, however, cannot control either two.’ We expand on the two main concerns
highlighted by Vapnik, which still largely hold today:

• Optimisation: The objective function which is minimised is non-convex and (potentially)
has many local minima which have high training loss values in which the gradient method
could get trapped. Furthermore, the training procedure could (potentially) exhibit signif-
icant instabilities such as exploding or vanishing gradients which would make the search
for appropriate hyperparameters prohibitively complicated.

• Generalisation: Even if the training process does converge to a global minimum4, there
is no inherent assurance that the resulting solution will generalise well due to the absence
of theoretical results ensuring this. The traditional learning theory framework, originally
designed to offer such guarantees, fails to furnish meaningful bounds in the context of deep
neural networks.

These two concerns are fully justified. And yet, deep learning works! To understand why, we
must go beyond classical non-convex and generalisation results:

• Loss landscape analysis: Relying solely on general (and hence worst-case) results con-
cerning non-convex functions cannot be sufficient. Instead, we must take a deeper look
at the specific loss landscape: are there many local minima, and if so, why doesn’t the
gradient method converge to them? How does this depend on the hyperparameters?

• Implicit regularisation: Regarding the generalisation concern, the concept of algorith-
mic implicit regularisation has emerged: if overfitting is benign, it must be because the

4note that some of the comments may not apply in the context of Large Language Models (LLM). The training
sets have become so large that overfitting them is impossible. In this thesis, we focus on the ’pre’-LLM paradigm,
where overfitting is common.
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optimisation process is implicitly biased towards solutions which have good generalisation
properties for the considered real-world prediction tasks.

We expand the discussion by examining several influential empirical studies which demon-
strate the necessity of rethinking traditional approaches.

1.4.2 Theoretical insights from empirical observations

Several empirical studies, which conduct controlled experiments, offer precious insights into the
types of theoretical guarantees we can or cannot expect. Such works have significantly influenced
recent theoretical research.

Neural networks can memorise random pixels. In their seminal work, Zhang et al. [2017]
show that a convolutional neural network trained on images consisting entirely of random pixels
can perfectly fit the data with zero training error. The same phenomenon occurs with real world
images which have random labels. This indicates that the structure of the inputs and outputs
is not the key factor explaining successful optimisation. Furthermore, this implies that ‘easy
optimisation’ and ‘good generalisation’ are two separate phenomena.

Larger models lead to better test performance. In another seminal work, Neyshabur
et al. [2014] observe that for a simple single hidden layer network, increasing the size of the
hidden layer consistently reduces the test loss, even after reaching the width at which training
interpolation begins. However, traditional measures of model complexity, such as the VC-
dimension or the Rademacher complexity, increase with the width. This suggests that these
complexity measures are not adequate for explaining generalisation performance.

Data dependent generalisation bounds. Zhang et al. [2017] observe that a convolutional
neural network can overfit an image dataset where the labels are fully random, resulting in a
training loss of 0 and poor test accuracy (by construction due to the random labeling). This
indicates that any uniform bound explaining good generalisation properties cannot hold in the
case of random labels. Such bounds must therefore take into account the specific characteristics
of the dataset.

The training algorithm must be taken into account. Liu et al. [2020a] show that there
exist bad global minima of the training loss, i.e. there exists neural networks that perfectly fit the
training set but exhibit poor generalisation performance. Therefore, when good generalisation
occurs, it must be because the standard training algorithm has led us towards a solution that
enjoys favorable generalisation properties for the task at hand.

Training hyperparameters influence test performance. While it’s commonly expected
that training hyperparameters affect the convergence speed of the training loss, recent observa-
tions suggest they also impact the generalisation performance of the trained model. Notably, the
initialisation scale of the weights plays an important role in generalisation [Woodworth et al.,
2020b], with large initialisations leading to what is known as a ‘lazy regime’, characterised by
decreased test performance [Chizat et al., 2019, Fort et al., 2020]. Empirical findings by Masters
and Luschi [2018] reveal that increasing the step size improves test performance for mini-batch
stochastic gradient descent (SGD), while the opposite trend occurs for large-batch SGD. More-
over, Geiping et al. [2022] note a performance gap between GD and SGD in favor of SGD, and
similar trends are corroborated in the study by Keskar et al. [2017]. Additionally, the use of
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momentum in deep learning training is a common practice known to enhance generalisation
performance [Sutskever et al., 2013, Leclerc and Madry, 2020].

Explicit regularisation alone does not fully account for generalisation performance.
While ℓ2-regularisation, often referred to as weight decay, is a common technique used to enhance
network training and testing performance, it does not appear as fundamental as non-regularised
networks still perform very well as observed in Zhang et al. [2017].

We can now finally discuss the approach we employ to try and clarify some of these aspects.

1.5 Goal, outline and contibutions of the thesis

The objective of this thesis is to try to elucidate some of the empirical findings mentioned
above: particularly regarding the global convergence of gradient methods and their implicit
regularisation.

To do so, we will extensively utilise the simplest neural network model available: the 2-layer
diagonal linear network (DLN). Despite its simplicity, this model surprisingly exhibits train-
ing characteristics mentioned previously, including global convergence and non-trivial implicit
regularisation dependent on factors such as initialisation, step size, batch size, and the pres-
ence of momentum. Consequently, this model serves as an ideal proxy for gaining a deeper
understanding of complex phenomenons.

The thesis is outlined as follows.

Part I: In Chapter 2, we give a gentle introduction to the concept of implicit regularisation by
illustrating its manifestation even for linear parametrisations. Following this, in Chapter 3, we
introduce the 2-layer diagonal linear network architecture and present key results upon which
the rest of the thesis is built. Lastly, in Chapter 4, we present general convergence results on
mirror flows, which are extensively leveraged when dealing with diagonal linear networks. It’s
important to note that the results presented in these chapters are primarily synthesised from
existing works and not novel contributions: we acknowledge the works which establish these
results in Chapter 5.

Part II: The aim of this section is to extend beyond the asymptotic characterisation of the
solution recovered by gradient flow (GF) over the 2-layer diagonal linear network in the regression
setting. We provide a full description of the trajectory in the limit of vanishing initialisation.
We show that the limiting flow successively jumps from a saddle of the training loss to another
until reaching the minimum ℓ1-norm solution. Starting from the zero vector, coordinates are
successively activated until the minimum ℓ1-norm solution is recovered, revealing an incremental
learning.

Part III: The objective of this section is to explore the influence of hyperparameters on the
solution recovered by gradient methods over the 2-layer diagonal linear network. Chapter 7
investigates the impact of stochastic noise using a continuous-time model of stochastic gradient
descent (SGD). We demonstrate that this model allows us to show the beneficial effects of
stochastic sampling noise for sparse recovery. Chapter 8 extends this investigation by directly
analysing the discrete recursion, without resorting to a continuous-time model. We prove that
while large step sizes enhance sparse recovery for SGD, employing large step sizes in the gradient
descent recursion is detrimental. Finally, Chapter 9, we leverage a continuous-time approach to
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analyse momentum gradient descent. This approach identifies an intrinsic quantity λ = γ
(1−β)2

that uniquely defines the optimisation path and offers a simple acceleration rule applicable
beyond the diagonal network architecture. We then explain that mild values of λ facilitate the
recovery of sparse solutions when training diagonal linear networks in the regression setting.

Part IV: Finally in the last part, we examine the continuous-time counterpart of mirror de-
scent, namely mirror flow, on classification problems which are linearly separable. Such problems
are minimised ‘at infinity’ and have many possible solutions; we study which solution is preferred
by the algorithm depending on the mirror potential. For exponential tailed losses and under
mild assumptions on the potential, we show that the iterates converge in direction towards a
ϕ∞-maximum margin classifier. The function ϕ∞ is the horizon function of the mirror potential
and characterises its shape ‘at infinity’. When the potential is separable, a simple formula al-
lows to compute this function. We analyse several examples of potentials and provide numerical
experiments highlighting our results.

Contributions beyond this thesis. The chapters in this thesis are a selection of works which
are related to diagonal linear networks or to implicit regularisation. The author also contributed
to two other projects on other topics.

In Pesme and Flammarion [2020], we consider a regression setting with gaussian inputs and
where the outputs have potentially been corrupted by an oblivious adversary. In this setting, we
show that performing SGD on the ℓ1 loss converges to the true parameter at a fast and adaptive
rate.

In Pesme et al. [2020], we consider the underparametrised least-squares setting and explore
two convergence-diagnostic methods to automatically decrease the stepsize when saturation of
the loss is reached. We show that relying on the inner product between consecutive stochastic
gradients cannot lead to an adequate convergence diagnostic. We then propose another simple
strategy which is based on the distance travelled by the iterates.

7
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Chapter 2

Warm-up with linear parametrisations

In order to set the stage and illustrate how algorithmic implicit regularisation can be exhibited,
we begin by focusins on the simplest parametrisation: considering a weight vector w ∈ Rd, we
define the function fw(x) = ⟨w, x⟩. To maintain consistency in notation throughout subsequent
sections, we use the symbol ‘β’ instead of ‘w’ to parametrise this class of functions. Our ‘neural
network’ architecture is thus:

{fβ : x 7→ ⟨β, x⟩, β ∈ Rd}.
Clearly this class of function is limited in its ability to learn or extract complex features from
the data, as it can only perform linear combination of the input coordinates. However, it serves
as a useful framework for exploring questions related to implicit regularisation.

In the following, we differentiate between the regression and classification settings, as these
settings are relatively different.

2.1 Linear regression

We set ourselves in the overparametrised setting in which the number of trainable parameters
(here equal to the dimension d) is larger than the number of samples. This setting is also
sometimes referred to as the under-determined setting. In this case, there are multiple ways of
interpolating our data as yi = ⟨β⋆, xi⟩. In order to rigourously ensure that this is indeed the
case, we put the following non-restrictive assumption on the inputs.

Assumption 1 (Overparametrised setting). d is larger than n and the features x1, . . . , xn ∈ Rd
are linearly independent.

Provided that d ≥ n, this assumption holds almost surely if the samples are drawn from
a distribution which is absolutely continuous, i.e. which doesn’t assign any probability to sets
that have no size according to the Lebesgue measure. Importantly, Assumption 1 ensures that
the span of the columns of the feature matrix1 X ∈ Rn×d is equal to Rn. Consequently, letting
S denote the set of interpolators which perfectly fit the training data:

S := {β⋆ ∈ Rd, ⟨β⋆, xi⟩ = yi ∀i ∈ [n]},

we are guaranteed that S is not empty. In fact, S is an affine space of dimension (d−n) equal to
β⋆+span(x1, . . . , xn)⊥, where β⋆ is any arbitrary element of S. We will also use the terminology
of interpolator to denote an element of S, we also say of such a vector that it fits the dataset.

Consequences for learning. In this setting, it does not make sense to speak of the empirical
risk minimiser since any element of S minimises it. One might then wonder if it makes sense to
find a generalisation bound which holds for any interpolator in S. We argue that it does not.

1the feature matrix X ∈ Rn×d denotes the matrix whose ith row is input xi.
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In fact, we expect ‘most’2 elements of S to perform extremely bad! Indeed, intuitively consider
the set {β⋆ ∈ S, ∥β⋆∥2 ≥ ‘large constant’}: we expect the infinitely many elements of this set to
generalise catastrophically. This is formalised in the following proposition.

Proposition 1 (No free lunch). Assume that the samples (xi, yi)1≤i≤n are sampled from an
underlying ‘true’ distribution which is such that the true expectations E[∥x∥22] and E[y∥x∥2] are
finite and that E[xx⊤] is positive definite. Then, if n < d it holds that:

sup
β⋆∈S

E[(y − ⟨β⋆, x⟩)2] = +∞.

Proof. The proof follows from the fact that the (well-defined) true risk E[(y−⟨β, x⟩)2] is coercive
and that S is unbounded.

Remark. If the data samples almost surely lie in a low dimensional subspace of dimension deff ,
then the previous proposition still holds but under the condition n < deff .

In words, it is hopeless to expect all elements of S to generalise well. However, we can still
hope that some of them will! In fact, the solutions recovered by the common training procedures
usually perform pretty well. We thus seek to understand what solutions are recovered by specific
training algorithms.

Taking the training algorithm into account. The method at the core of deep learning
training is the gradient descent (GD) algorithm and all other training methods can be seen
as more sophisticated variations of this method: stochastic gradient descent (SGD), the use
of momentum, adaptive stepsizes etc. In the linear regression setting with a square residual
penalty3, the empirical train loss which we seek to minimise is the well-known quadratic loss:

L(β) =
1

2n

n∑

i=1

(yi − ⟨β, xi⟩)2. (Quadratic loss)

Importantly, notice that L(β⋆) = 0 if and only if yi = ⟨β⋆, xi⟩ for all i ∈ [n]. Since our discussion
readily holds for mini-batch SGD with any batch-size (thus interpolating between SGD and
GD). We directly state the mini-batch SGD recursion (which we abreviate as (S)GD):

βk+1 = βk − γk∇LBk
(βk) where LBk

(β) :=
1

2b

∑

i∈Bk

(yi − ⟨β, xi⟩)2, ((S)GD)

where γk corresponds to the stepsize at iteration k, Bk ⊂ [n] the mini-batch of b ∈ [n] distinct
samples sampled uniformly and independently at each iteration. Classical SGD and full-batch
GD are special cases with b = 1 and b = n, respectively. At first sight, we could expect the
iterates βk to explore the whole Rd space.4 However, notice that for any sampled batch Bk ⊂ [n],
we have that ∇LBk

(β) ∈ span(x1, . . . , xn). Summing the (S)GD we then immediately get the
following key observation:

eeeeeeeeeβk ∈ β0 + span(x1, . . . , xn). (Key observation)

This observation is crucial and it means that the iterates βk remain in the n-dimensional affine
space β0 + span(x1, . . . , xn) which is considerably smaller than Rd when d ≫ n. This simple
observation naturally leads to the implicit regularisation problem associated to (S)GD.

2the definition of ‘most’ is ill-defined as S is infinite.
3note that the implicit regularisation results still hold for a very large variety of other penalty losses ℓ(y, ŷ)
4this would be the case if we added random isotropic noise at each iteration
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Proposition 2 (Implicit reguralisation of (S)GD in the regression setting). For any initialisation
β0 ∈ Rd and batch size b ∈ [n] and for any stepsize sequence (γk)k.

- if the loss converges towards 0, then the iterates converge towards the following interpolator:

β(S)GD = arg min
β⋆∈S

∥β⋆ − β0∥22.

- if a strictly positive and constant γk = γ ≤ supB⊂[n]
1
b

∑
i∈B xix

⊤
i is used, then L(βk)

a.s.→ 0.

Proof. Assume that the loss converges towards 0, then the convergence of the iterates follows
from the fact that the restriction of L to β0 + span(x1, . . . , xn) is strongly convex. Let β(S)GD

denote this interpolator, and notice that it must also belong to β0 + span(x1, . . . , xn). For any
other interpolator β⋆ ∈ S, the Pythagorean theorem concludes the proof:

∥β⋆ − β0∥2 = ∥β⋆ − β(S)GD∥22 + ∥β(S)GD − β0∥22
> ∥β(S)GD − β0∥22.

The proof of the almost sure convergence of the loss towards 0 under the stepize constraint can
be found in Even [2024] (Proposition 1.1.4).

In words, the recovered solution corresponds to the ℓ2-projection of the initialisation on
the set of interpolators. If the initialisation is chosen such that β0 = 0, then the recovered
solution corresponds to the minimum ℓ2-norm interpolator, which is known to have favorable
generalisation properties in various settings [Bartlett et al., 2020].

Remark. Importantly, note that the recovered solution does not depends on the stepsize, nor on
the batch size. GD and SGD, when they converge, always converge towards the same solution! It
can easily be shown that this is also the case for momentum (stochastic) gradient descent when
initialised such that β1 = β0.

Remark. Note that the hessian of the training loss at any interpolator β⋆ is the same. Hoping
for generalisation bounds involving any type of flatness definition is therefore hopeless here.

2.2 Linear classification

We now switch our focus towards linear classification. In this setting the picture is surprisingly
quite different, and many of the methods which we used in the previous section cannot easily be
transferred. Similarly to the regression setting, we are interested in the case where there exists
different ways of classifying our dataset, we therefore put the following assumption our dataset.

Assumption 2 (Separable data). The dataset is linearly separable: there exists β⋆ ∈ Rd such
that yi⟨β⋆, xi⟩ > 0 for all i ∈ [n].

Similar to Assumption 1, the previous assumption holds a.s. as soon as d > n if the samples
are sampled from a continuous probability distribution. However note that Assumption 2 can
hold even when d ≫ n. Contrary to the regression setting, our prediction function is not
x 7→ ⟨β, x⟩ which takes its values in R, but x 7→ sgn(⟨β, x⟩) which takes its values in {−1, 1}.
Since this function is invariant up to positive rescalings of β. It is natural to consider the set
following set of ‘separating directions’:

S = {β̄⋆ ∈ Rd, ∥β̄⋆∥ = 1 and yi⟨β̄⋆, xi⟩ > 0,∀i ∈ [n]}.
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The norm which appears in the definition of S is arbitrary and this set is non-empty due to
Assumption 2, in fact it has infinitely many elements since β̄ 7→ mini yi⟨β̄, xi⟩ is continuous on
the ∥ · ∥ unit sphere. As in the regression setting, we cannot expect all of them to generalise
well. Instead, we focus on the solutions recovered by gradient methods to investigate whether
they enjoy a particular structure.

Taking the training algorithm into account. As in the regression setting, we consider
mini-batch stochastic gradient descent Equation ((S)GD) but with a logistic loss5 which is well
suited to classification tasks:

L(β) =

n∑

i=1

ln
(
1 + exp(−yi⟨β, xi⟩)

)
. (Logistic loss)

Observe that due to Assumption 2, arg min L is an empty set even though minL = 0. This
is due to the fact that L is minised ‘at infinity’. We therefore expect de (S)GD iterates βk to
diverge to infinity, we can nonetheless consider the normalised iterates β̄k := βk

∥βk∥ , where the
norm is arbitrary, as done in the following proposition.

Proposition 3 (Implicit regularisation of (S)GD in the linear classification setting). For any
initialisation β0 and batch size b ∈ [b] and sufficiently small constant step-size γ. The normalised
iterates β̄k := βk

∥βk∥ converge towards a vector proportional to the ℓ2-max margin solution:

β̄(S)GD ∝ arg min
mini yi⟨β̄,xi⟩≥1

∥β̄∥2,

where ∝ denotes positive proportionality.

The proof of the previous proposition is not as intuitive as in the regression setting, but still
heavily relies on the fact that the updates remain in the span of the data. We refer to Soudry
et al. [2018], Nacson et al. [2019a] for the proofs for GD ans SGD respectively and to Part IV
for a more compact proof in the case of gradient flow.

While we can already illustrate the concept of implicit regularisation through the linear
parametrisation by showing that standard gradient descent methods converge towards minimal
ℓ2-norm solutions, it’s important to note that the hyperparameters do not impact the recovered
solution, unlike what is observed in more complex architectures. To theoretically explore this
phenomenon further, we move on to a slightly more complex architecture.

5note that the results do not change for a large variety of other penalty losses which have exponential tails.
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Chapter 3

Diagonal linear networks
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x 2 Rd
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x 7! hu� v, xi
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V = diag(v) 2 Rd⇥d
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u 2 Rd

Armed with our insights from the linear parametrisation and in an effort to understand
the training dynamics of neural networks, we consider a 2-layer diagonal linear network (DLN)
which corresponds to reparametrising the vector β as:

βw = u⊙ v where w = (u, v) ∈ R2d . (DLN)

This parametrisation can be interpreted as a simple neural network x 7→ ⟨u, σ(diag(v)x)⟩ where
u are the output weights, the diagonal matrix diag(v) represents the inner weights, and the
activation σ is the identity function.1. We refer to w = (u, v) ∈ R2d as the weights and to
β := u⊙ v ∈ Rd as the prediction parameter.

This parametrisation may initially appear disappointing since the prediction function re-
mains linear in the input x. However this simple multiplicative parametrisation leads to training
behaviours which closely resemble those observe in more complex networks.

With the parametrisation (DLN), the loss function F over the weights w = (u, v) ∈ R2d is
defined as

F (w) := L(u⊙ v), (3.1)

where L can either correspond to a regression or classification loss. In this chapter, we focus on
the continuous-time model of gradient descent, namely gradient flow (GF):

dwt = −∇F (wt)dt. (GF)

Remark. Continuous-time models enable to use calculus tools like differentiation and integra-
tion, making the computations much simpler. However, due to the (worst-case) catastrophic
discretisation bounds, continuous time results cannot a priori be directly transferred to their dis-
crete time counter-parts. However: (i) they turn out to be surprisingly good models in the sense
that the countinuous and discrete trajectories often stay close, even for non-convex losses, and
(ii) the developed mathematical tools and insights can often be adapted and transferred to the
discrete world.

1note that this parametrisation is strictly equivalent to another which also appears in the literature and which
writes β as (w2

+ − w2
−)/2. This is because (w+, w−) can be seen as a 45◦ rotation of (u, v) (see Proposition 33)
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CHAPTER 3. DIAGONAL LINEAR NETWORKS

3.1 Regression setting

In this section, we consider the regression setting where the data satisfies Assumption 1. Con-
sidering the sum of squared residuals, the training loss writes:

F (w) :=
1

2n

n∑

i=1

(⟨u⊙ v, xi⟩ − yi)2. (3.2)

Loss landscape. F is a non-convex function and this can be problematic from an optimisation
perspective as we could end stuck at a local-minima which has a high training loss. However
the following proposition shows the non-convexity of F is rather benign.

Proposition 4 (Benign non-convexity). The loss function F defined in eq. (3.2) is such that:

• It does not have any local maxima and its local minima must be global.

• If w℧ = (u℧, v℧) is a saddle point of F , then β℧ := u℧ ⊙ v℧ satisfies:

β℧ = arg min
βi=0 for i/∈supp(β℧)

L(β),

where supp(β℧) = {i ∈ [d], β℧[i] ̸= 0} corresponds to the support of β℧.

• Conversely, for a subset I℧ ⊂ [d], let β℧ ∈ arg min
βi=0 for i ̸∈I℧

L(β). Then provided that β℧ ̸∈ S

and for λ ∈ Rd̸=0, the following vector is a saddle point of F :

w℧ := (sgn(β℧)
√
|β℧|/λ,⊙

√
|β℧| ⊙ λ).

• The global solutions of F corresponds to the set:

{(
sign(β⋆)

√
|β⋆| ⊙ λ,

√
|β⋆|/λ

)
for β⋆ ∈ S and λ ∈ Rd̸=0

}
.

Proof. First point. Notice that the image of the mapping (u, v) 7→ u⊙ v of any neighbourhood
of a point (u0, v0) ∈ R2d is a neighbourhood of u0 ⊙ v0 in Rd. Consequently, if (u℧, v℧) were a
local extrema of F , then u℧⊙ v℧ would be a local extrema of the convex loss L, which is absurd.
The proof of the last point is straightforward. We refer to Appendix A.2 for the proof of points
2 and 3.

It is very unlikely for any gradient method to get exactly stuck at a saddle point, however
they can significantly slow down the optimisation due to the vanishing gradient.2 Also note the
very particular structure of the ‘saddle’ predictors β℧: they correspond to sparse vectors that
minimise the (convex) loss L over its non-zero coordinates. Also not that due to Assumption 1,
for all subset I ⊂ [d] of size larger or equal than n, there must exist a vector β⋆ ∈ S such that
supp(β⋆) ⊂ I. Consequently, the saddle points w℧ of F map to at most

∑n−1
k=0

(
d
k

)
different

vectors β℧.

2this also holds for the stochastic gradients because ∇Fi(β℧)|supp(β℧)
∁ = 0 for any partial loss Fi, i ∈ [n].
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CHAPTER 3. DIAGONAL LINEAR NETWORKS

Gradient flow dynamics. We now turn to the gradient flow dynamics and seek to: (i)
prove that the iterates indeed converge towards an interpolator, (ii) characterise the recovered
solution. The chain rule applied to the training loss immediately gives that the gradient flow
writes:

u̇t = −∇L(βt)⊙ vt and v̇t = −∇L(βt)⊙ ut.

Since our prediction function x 7→ ⟨ut ⊙ vt, x⟩ at time t only depends on βt := ut ⊙ vt, we
are interested in characterising towards which vector do the predictors βt converge to. An
intermediate natural question to is then:

What type of flow do the predictors (βt)t≥0 follow?

An underlying mirror flow. Taking the derivative of βt we immediately get that:

dβt = −(u2t + v2t )⊙∇L(βt)dt. (3.3)

It may seem that we are stuck as it is impossible to write u2 + v2 as only depending on u⊙ v.
However, the invariances of the mapping (u, v) 7→ u⊙v provides us a quantity which is conserved
along the flow [Marcotte et al., 2024], namely the (absolute) balancedness ∆t := 1

2 |u2t − v2t |.
Indeed simply notice that ∆̇t = 0 and therefore ∆t is conserved and equal to ∆ := |u20 − v20|/2
which we assume to have non-zero coordinates.3 Equation 3.3 then rewrites:

dβt = −2
√
β2t + ∆2 ⊙∇L(βt)dt. (3.4)

A sharp eye then recognises a mirror flow. Indeed, let ϕ∆ : Rd → R denote the following
∆-hypentropy function:

ϕ∆(β) =
1

2

d∑

i=1

(
βiarcsinh

(
βi
∆i

)
−
√
β2i + ∆2

i + ∆i

)
. (∆-Hypentropy)

This strictly convex function is such that ∇2ϕ∆(β) is a diagonal matrix which has the vector
1

2
√
β2+∆2

as its diagonal and equation 3.4 then naturally rewrites:

d∇ϕ∆(βt) = −∇L(βt)dt. (MF)

This corresponds to the continuous version of mirror descent, namely mirror flow, and where
the potential is the function ϕ∆.

What have we gained? It might seem that we have complicated the situation due to the
appearance of the potential. Que nenni : we have moved from a non-convex gradient flow to
a convex mirror flow and we can now leverage classical convex optimisation tools from the
literature to prove the convergence of the iterates. Moreover, we now identify the new key
observation which highlights which quantity remains in the span of the data. Indeed, integrating
Equation (MF) we get:

eeeeeeeee∇ϕ∆(βt) ∈ ∇ϕ∆(β0) + span(x1, . . . , xn). (Key observation)

This geometrical observation leads to the following implicit regularisation problem.

3If initially ui,0 = ±vi,0 for some coordinate i ∈ [d], then ui,t = ±vi,t, ∀t ≥ 0. Hence, imposing u2
0 − v20 ̸= 0

corresponds to working with 2d distinct weights.
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CHAPTER 3. DIAGONAL LINEAR NETWORKS

Proposition 5 (Implicit regularisation of GF over DLNs, regression setting)). The iterates βt
converge towards an interpolator βGF ∈ S and:

βGF = arg min
β⋆∈S

Dϕ∆(β⋆, β0),

where Dϕ∆ denotes the Bregman divergence.

Proof. The convergence of the iterates towards an interpolator βGF can readily be adapted from
Bauschke et al. [2017] and we refer to Chapter 4. For the implicit regularisation, we use the
key observation along with the fact that for any different interpolator β⋆ ∈ S, we have that
β⋆ ∈ βGF + span(x1, . . . , xn)⊥. The (Bregman) Pythagorean theorem concludes the proof:

Dϕ∆(β⋆, β0) = Dϕ∆(β⋆, βGF) +Dϕ∆(βGF, β0) + ⟨∇ϕ∆(βGF)−∇ϕ∆(β0), β
⋆ − βGF⟩

= Dϕ∆(β⋆, βGF) +Dϕ∆(βGF, β0)

> Dϕ∆(βGF, β0),

where the strict inequality is due to the strict convexity of the potential.

Note the resemblance with Proposition 2: the recovered solution is the Bregman projection
of the initialisation β0 onto the set of interpolators. However, note that the projection depends
on the potential ϕ∆ which itself depends on the initial balancedness ∆!

Role of the initialisation. Note that βGF depends on the weight initialisation (u0, v0) through
the initial predictor β0 = u0 ⊙ v0 and initial balancedness ∆ = |u20 − v20|/2. There are therefore
R2d distinct parameters which impact the recovered solution. In order to simplify the discussion
and highlight the key aspects, we reduce the dependency of βGF to a single parameter α > 0 by
considering the following initialisation scheme:

eeeeeeeeeeeeeeeu0 =
√

2α1 and v0 = 0. (Simplified initialisation)

In which case β0 = 0, ∆ = α21 and Proposition 5 simply becomes:

βGF
α = arg min

β⋆∈S
ϕα(β⋆),

where we overload the notation ϕα := ϕα21 from the definition of the ∆-Hypentropy and index
the recovered solution βGF

α with α to highlight the dependency. A simple asymptotic expansion
of ϕα(β) shows that for fixed β:

ϕα(β) ∼
α→0

ln(1/α) · ∥β∥1 and ϕα(β) ∼
α→∞

1

4α2
∥β∥22. (3.5)

In words, the level lines of ϕα resemble to those of the ℓ1-norm for small initialisatons and to
those of the ℓ2-norm for large initialisations (see Figure 3.1). This observation can be made
rigourous and leads to the following proposition.

Proposition 6. The recovered solutions (βGF
α )α>0 are bounded and:

βGF
α −→

α→∞
arg min
β⋆∈S

∥β⋆∥2 and βGF
α −→

α→0
arg min
β⋆∈S

∥β⋆∥1.
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“Big” initialisation   α1

⟨β⋆, x1⟩ = y1

β0

βGF
α1

β0

⟨β⋆, x1⟩ = y1

β0

βGF
α2

“Intermediate” initialisation   α2 “Small” initialisation    α3

⟨β⋆, x1⟩ = y1

β0

βGF
α3

Figure 3.1: Simple illustration of Proposition 6 in 2d with a single sample x1.

Note that the previous proposition is slightly sloppy on the notations and we clarify them:
from the strict convexity of the ℓ2 unit ball, arg min β⋆∈S ∥β⋆∥2 is only composed of a single ele-
ment and the first limit is well defined. However arg min β⋆∈S ∥β⋆∥1 may not be a set composed
of a unique element: in this case the limit in Proposition 6 must be understood in the sense
that all limit points of (βGF

α )α for α → 0 belong to the set. Also note that there there exists
non-restrictive assumptions on the samples which guarantee the uniqueness of the arg min . For
instance, the general position assumption [Dossal, 2012] holds a.s. for data sampled from a abso-
lutely continuous distribution and ensures the uniqueness of the minimum ℓ1-norm interpolator.

Proof of Proposition 6. Boundedness. Let β⋆1 ∈ S be an interpolator. We will show that
Sα≤ := {β⋆ ∈ S, ϕα(β⋆) ≤ ϕα(β⋆1)} is bounded independently of α > 0. The proof is then done

since βα∞ = arg min β⋆∈Sα
≤
ϕα(β⋆). For z ∈ R, let φα(z) := 1

2(zarcsinh
(
z
α

)
−
√
z2 + α2 + α) be

the real function such that ϕα(β) =
∑

i φα(βi). Let β⋆ ∈ Sα≤ and observe that

φα(∥β⋆∥∞) = max
i
φα(β⋆i ) ≤ ϕα(β⋆) ≤ ϕα(β⋆1).

The first equality is because φα is an even and positive function. Now noticing that φα is a
bijection over R≥0, we denote by φ−1

α : R≥0 → R≥0 its inverse over R≥0, such that ∥β⋆∥∞ ≤
φ−1
α (ϕα(β⋆1)). It remains to show that φ−1

α (ϕα(β⋆1)) is bounded independently of α. To show
this, consider hα := φ−1

α ◦ ϕα and notice that

∇hα(β) =
( φ′

α(βi)

φ′
α(φ−1

α (ϕα(β))

)
1≤i≤d

∈ [0, 1]d

Therefore hα is Lipschitz with a Lipschitz constant independent of α. Consequently one can
bound hα(β⋆1) independently of α, which concludes the proof.

Asymptotic convergence: α → ∞. For a fixed β we have that ϕα(β) ∼
α→∞

1
4α4 ∥β∥22 and

a simple function analysis shows that 4α2ϕα uniformly converges towards ∥ · ∥22 on all compact
subsets of Rd. Since (βGF

α )α>0 is bounded, we can extract a converging subsequence: βGF
αk
→ βGF

∞
as αk →∞. Now let β⋆ ∈ S, we have that:

(
4α2

kϕαk
(βGF
αk

)− ∥βGF
αk
∥22
)

+ ∥βGF
αk
∥22 = 4α2

kϕαk
(βGF
αk

) ≤ 4α2
kϕαk

(β⋆)

The difference on the left hand side goes to zero by uniform convergence and we get that
∥βGF

∞ ∥2 ≤ ∥β⋆∥2. Therefore βGF
∞ = arg min β⋆∈S ∥β⋆∥2, since this holds for any extraction, we can

conclude the proof. The case α→ 0 follows the exact same reasoning.
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CHAPTER 3. DIAGONAL LINEAR NETWORKS

3.2 Classification setting

We switch again to the classification setting and keep the discussion succinct as many of results
and proof techniques resemble those of the regression setting. We consider a linearly separa-
ble dataset (Assumption 2) and we let F correspond to the 2-layer diagonal linear network
classification training loss:

F (w) = L(u⊙ v) =

n∑

i=1

ln
(
1 + exp(−yi⟨u⊙ v, xi⟩)

)
, (3.6)

where L here corresponds to the Logistic loss.
The following proposition is the equivalent of Proposition 7 and its proof follows the exact

same lines as in the regression setting.

Proposition 7 (Benign non-convexity). The loss function F defined in eq. (3.6) is such that:

• It does not have any local maxima nor minima.

• If w℧ = (u℧, v℧) is a saddle point of F , then β℧ := u℧ ⊙ v℧ satisfies:

β℧ ∈ arg min
βi=0 for i/∈supp(β℧)

L(β),

where supp(β℧) = {i ∈ [d], β℧[i] ̸= 0} corresponds to the support of β℧.

• Conversely, for a subset I℧ ⊂ [d], let β℧ be an element of arg min
βi=0 for i ̸∈I℧

L(β) provided this set

is non-empty. Then for λ ∈ Rd̸=0 the following vector is a saddle point of F :

w℧ := (sgn(β℧)
√
|β℧| ⊙ λ,⊙

√
|β℧|/λ).

In words, due to the non-existence of local minima, we expect gradient methods to exhibit global
convergence.

Gradient flow dynamics. From an initialisation (u0, v0), we consider the gradient flow over
the loss F from eq. (3.6):

u̇t = −∇L(βt)⊙ vt and v̇t = −∇L(βt)⊙ ut.

Notice that from here, the computations are exactly the same as in the regression setting as they
do not depend L. We therefore get that the iterates βt follow a mirror flow on the ∆-Hypentropy
potential ϕ∆:

d∇ϕ∆(βt) = −∇L(βt)dt.

However, since L is minised ‘at infinity’, we expect the mirror flow to diverge to infinity and we
consider the normalised iterates β̄t := βt

∥βt∥ .

Proposition 8 (Implicit Regularisation of GF over DLNs (Classification Setting)). For any
initialisation (u0, v0), the loss converges towards 0, the iterates βt diverge to infinity and the
normalised iterates β̄t := βt

∥βt∥ converge towards a vector proportional to the ℓ1-max margin:

β̄GF ∝ arg min
mini yi⟨β̄,xi⟩≥1

∥β̄∥1,

provided that the minimisation problem has a unique minimiser and where ∝ denotes positive
proportionality.
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The convergence of the loss towards 0 is a consequence of classical mirror descent techniques
and we refer to Chapter 4. The implicit regularisation can be seen as a consequence of Theorem
4.4 from Lyu and Li [2020]. However their result covers a much more general framework and
has nothing to do with mirror flows. The object of Part IV is precisely to leverage the mirror
flow structure to prove this result. Similar to the regression setting, arg min

mini yi⟨β̄,xi⟩≥1

∥β̄∥1 is not

necessarily be unique, however there exists non-restrictive assumptions on the dataset which
ensure its uniqueness.

Remark. Notice that contrary to the regression setting, the implicit regularisation in the clas-
sification setting does not depend on the initialisation of the weights. This is due to the fact
that the iterates diverge and that the initialisation is asymptotically ‘forgotten’. We refer to the
work of Moroshko et al. [2020] for insights into the impact of the initialisation in finite-time
considerations.
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Chapter 4

Standalone mirror flow results

The aim of this chapter is to collect and adapt results related to mirror-descent and apply them
to gradient flow, with the intention of offering a straightforward picture of the existing ‘mirror
flow toolbox’.

Starting from β0 ∈ Rd, we consider the following differential equation:

d∇ϕ(βt) = −∇L(βt)dt (MF)

Note that the existence of a global solution of (MF) over R≥0 is a priori not obvious. To
ensure this, we must put several assumptions over the loss L as well as the potential ϕ.

Assumption 3. The loss L is twice continuously differentiable, convex and bounded below.

We additionally require the following assumptions on the potential.

Assumption 4. The potential ϕ : Rd → R satisfies:

1. ϕ is twice continuously differentiable, strictly convex and coercive.

2. ∇ϕ is coercive: lim∥β∥→∞ ∥∇ϕ(β)∥ = +∞.

3. ∇2ϕ(β) is positive-definite for all β ∈ Rd.

4. for every c ∈ R≥0 and β2 ∈ Rd, the sub-level set {β1 ∈ Rd, Dϕ(β2, β1) ≤ c} is bounded.

These assumptions are common when considering mirror descent [Bauschke et al., 2017],
except for the third point which is only required in the continuous time framework. Crucially,
these assumptions ensure the existence and uniqueness of a solution to (MF).

Lemma 1. Under Assumption 3 and 4, for any initialisation β0 ∈ Rd, there exists a unique
global solution over R≥0 to (MF) such that βt=0 = β0.

Proof. From Assumption 4, we have that ϕ is differentiable, strictly convex and its gradient is
coercive. Consequently, ∇ϕ is bijective over Rd (see Rockafellar [1970], Theorem 26.6). Further-
more, the Fenchel conjugate ϕ∗ is differentiable over Rd and (∇ϕ)−1 = ∇ϕ∗.

To prove the existence and uniqueness of a global solution of (MF), we first consider the
following differential equation:

dut = −∇L(∇ϕ∗(ut))dt, (4.1)

with initial condition ut=0 = ∇ϕ∗(β0).
Since L is C2, ∇L is Lipschitz on all compact sets. Furthermore, since ϕ is C2 and ∇2ϕ

is positive definite, ∇ϕ∗ = (∇ϕ)−1 is C1 and therefore Lipschitz on all compact sets. Hence
∇L ◦ ∇ϕ∗ is Lipschitz on all compact sets and from the Picard-Lindelöf theorem, there exists
a unique maximal (i.e. which cannot be extended) solution (ut) satisfying eq. (E.1) and such
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that ut=0 = ∇ϕ∗(β0). We denote [0, Tmax) the intersection of this maximal interval of definition
(which must be open) and R≥0. Our goal is now to prove that Tmax = +∞. To do so, we assume
that Tmax is finite and we will show that this leads to a contradiction due to the fact that the
iterates βt cannot diverge in finite time. Let βt := ∇ϕ∗(ut) and notice that βt is therefore the
unique solution satisfying (MF) over [0, Tmax) with βt=0 = β0.

Bounding the trajectory of βt over [0, Tmax). Pick any β ∈ Rd and notice that by convexity
of L:

d

dt
Dϕ(β, βt) = −⟨∇L(βt), βt − β⟩ ≤ −(L(βt)− L(β)) ≤ L(β)− Lmin.

Where Lmin is a lower bound on the loss. Integrating from 0 to t < Tmax we get:

Dϕ(β, βt) ≤ t · (L(β)− Lmin) +Dϕ(β, β0)

≤ Tmax · (L(β)− Lmin) +Dϕ(β, β0)

Therefore, due to Assumption 4, the iterates βt are bounded over [0, Tmax). The proof from
here is standard (see e.g. Attouch et al. [2000], Theorem 3.1): from eq. (E.1) we get that u̇t is
bounded over [0, Tmax) and supt∈[0,Tmax) ∥u̇t∥ =: C < +∞ which means that ∥ut−ut′∥ ≤ C|t−t′|.
Hence limt→Tmax ut =: u∞ must exist. Applying the Picard-Lindelöf again at time Tmax with
initial condition u∞ violates the initial maximal interval assumption. Therefore Tmax = +∞
which concludes the proof.

Now that we have ensured the existence and uniqueness of a solution, we can prove the con-
vergence / divergence of the iterates and of the loss. To do so, we require additional assumptions
on the potential ϕ, as in Bauschke et al. [2017]:1

Assumption 5. The function ϕ : Rd → R satisfies the following assumptions:

(i) if (βt)t≥0 converges to some β∞, then Dϕ(β∞, βt)→ 0.

(ii) Reciprocally, if β∞ ∈ Rd and if (βt)t≥0 is such that Dϕ(β∞, βt)→ 0, then βt → β∞.

We now state convergence results.

Proposition 9. The losses converges to zero:

L(βt)→ min
β∈Rd

L(β).

Concerning the behaviour of the iterates, we distinguish two scenarios:

• Losses with an attained minimum. If arg min β∈Rd L(β) is not empty, then the iterates
βt must converge towards an element of this set.

• Losses with a minimum attained at infinity. However if arg min β∈Rd L(β) is empty,
them the iterates βt must diverge: ∥βt∥ → ∞ as t→∞.

Proof. For the proof, we assume without loss over generality that minβ L = 0.

1these additional assumptions are only required for losses which have an attained minimum
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The loss decreases. Note that:

d

dt
L(βt) = −⟨∇L(βt), β̇t⟩

= −⟨[∇2ϕ(βt)]
−1∇L(βt),∇L(βt)⟩

≤ −λmax(∇2ϕ(βs))
−1∥∇L(βt)∥22

≤ 0,

where the inequality is by convexity of the potential ϕ. From here we distinguish the two
scenarios.

1. Case where arg min L is non-empty. Consider the Bregman divergence between an
arbitrary minimiser β⋆ ∈ arg min L and βt and notice that it is decreasing:

d

dt
Dϕ(β⋆, βt) = ⟨ d

dt
∇ϕ(βt), βt − β⋆⟩

= −⟨∇L(βt), βt − β⋆⟩
≤ −L(βt) (4.2)

≤ 0

where the first inequality is by the convexity of the loss. Therefore, integrating inequality 4.2
and using that the loss is decreasing:

L(βt) ≤
1

t

∫ t

0
L(βs) ds ≤ Dϕ(β⋆, β0)−Dϕ(β⋆, βt)

t
≤ Dϕ(β⋆, β0)

t
−→
t→+∞

0. (4.3)

The iterates converge towards an interpolator β∞. Let β⋆ ∈ arg min L. Since
d
dtDϕ(β⋆, βt) ≤ 0, we have that Dϕ(β⋆, βt) is decreasing and upper-bounded by Dϕ(β⋆, β0).
Since it is a positive quantity, it must converge. Moreover, from Assumption 4, we have
that β 7→ Dϕ(β⋆, β) has bounded sub-levels sets. Therefore, the iterates are bounded and
we can extract a convergent subsequence: let β∞ be such that βtk−→β∞ as k →∞. Since
L(βt)→ 0 as t→∞, L(βtk) also converges to 0 as k →∞. By continuity of L, L(β⋆) = 0 and
β∞ ∈ arg min L. This means that (a) Dϕ(β∞, βt) converges and (b) it converges towards the
same limit as Dϕ(β∞, βtk) which is 0 by Assumption 5. Finally, again from Assumption 5, βt
converges towards the solution β∞ which concludes the proof.

2. Case where arg min L is empty. Consider the Bregman divergence between an arbitrary
point β and βt and notice that

d

dt
Dϕ(β, βt) = ⟨ d

dt
∇ϕ(βt), βt − β⟩

= −⟨∇L(βt), βt − β⟩
≤ −(L(βt)− L(β)) (4.4)

where the inequality is by convexity of the loss. Integrating and due to the decrease of the loss,
we get that:

L(βt) ≤
1

t

∫ t

0
L(βs) ds ≤ L(β) +

Dϕ(β, β0)−Dϕ(β, βt)

t
≤ L(β) +

Dϕ(β, β0)

t
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Since this is true for all point β, we get that

L(βt) ≤ inf
β∈Rd

L(β) +
Dϕ(β, β0)

t
. (4.5)

It remains to show that the right hand term goes to 0 as t goes to infinity. To show this, for
a sequence 0 < εk → 0, consider a sequence β(k) such that L(β(k)) ≤ εk (it must exist since
minL = 0) and let tk := max(Dϕ(β(k), β0)/εk, k). Notice that tk →∞ and plugging β(k) in the
r.h.s of eq. (4.5) we get that and L(βtk) ≤ 2εk → 0 as k → ∞. Since the loss is decreasing we
get that L(βt)→ 0 as t→∞.

It remains to show that the iterates must diverge. Assume they did not: ∥βt∥ ̸→ ∞, then we
could extract a convergent subsequence: βtk → β∞ as tk → ∞. This then leads to L(β∞) = 0,
which is absurd since arg min L is empty.

To conclude the chapter, we provide several convergence rates of the loss. Their proofs are
transparent from the proof of Proposition 9.

Proposition 10.

• Case where arg min L is non-empty. It holds that

L(βt)− L(β⋆) ≤ Dϕ(β⋆, β0)

t
,

where β⋆ any is element of arg min L. Furthermore, if the loss L satisfies a µ-PL inequal-
ity: 1

2∥∇L(β)∥22 ≥ µ(L(β)− L(β⋆)). Then we get the following expontential convergence:

L(βt)− L(β⋆) ≤ L(β0) · exp
(
− 2µ

∫ t

0
λmax(∇2ϕ(βs))

−1ds
)

≤ L(β0) · exp
(
− 2µ

λ
t
)
,

where λ := sup
β∈B

λmax(∇2ϕ(β)) with B := {β ∈ Rd, Dϕ(β⋆, β) ≤ Dϕ(β⋆, β0)}.

• Case where arg min L is empty. In this case, it holds that:

L(βt) ≤ inf
β∈Rd

L(β) +
Dϕ(β, β0)

t
.

Remark. In the case where arg min L is empty, the quantity infβ∈Rd L(β) +
Dϕ(β,β0)

t can be
optimised for a given couple (L, ϕ). The obtained rate depends on how fast L decreases and phi
grows in the directions of minimisation.
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Chapter 5

Related works

We conclude the introduction by giving an overview of the numerous related works that prove,
underpin or are associated with the results presented in Part I.

Implicit regularisation. When the set of solutions is an affine space and the loss is convex,
results describing the recovered solution can already be found in Lemaire [1996] (Corollary 2.2)
for gradient flow and in Alvarez [2000] (Proposition 2.5) for the (continuous-time) heavy-ball
method on quadratics. In the context of deep learning, the necessity of understanding algo-
rithmic implicit regularisation was already put forward in Neyshabur et al. [2014]. Neyshabur
et al. [2015] recalls that the (stochastic) gradient descent is inherently linked to the ℓ2 geom-
etry. In the case of matrix sensing with the UU⊤ multiplicative parametrisation, Gunasekar
et al. [2017] proves that gradient flow with a vanishing initialisation recovers the minimum trace
norm solution when the input matrices commute (which is equivalent to looking at the β = u2

parametrisation in a regression setting). In the linear classification setting, the seminal paper
Soudry et al. [2018] shows that gradient descent selects the ℓ2-max-margin classifier amongst
all classifiers. Gunasekar et al. [2018a] provides the implicit regularisation of mirror descent in
the overparametrised linear regression setting. We refer to Vardi [2023] for a comprehensive
overview of implicit regularisation results in deep learning.

Diagonal Linear Networks. (Sparse recovery litterature) Hoff [2017] is one of the first works
which explicitly considers the Hadamard product parametrisation β = u⊙v in order to promote
sparsity. Results concerning the non-existence of local extrema can already be found there.
Still in the context of promoting sparsity, Zhao et al. [2019] considers the same Hadamard
parametrisation and shows that SGD converges towards the minimum ℓ1-norm solution for
vanishing initialisation and sufficiently small stepsizes. Results concerning the saddle points
of the loss are also given in this same paper. Similar results were concurrently obtained by
Vaskevicius et al. [2019]. In the same spirit of achieving top performance sparse recovery, Poon
and Peyré [2021] leverages the same parametrisation for a wide range of sparse recovery tasks.
(Machine learning literature) In parallel, the machine learning community started to leverage the
same parametrisation as a toy model to gain insight into neural network optimisation. Gunasekar
et al. [2017] considers the β = u2 parametrisation as a simple case of matrix multiplication when
the input matrices are co-diagonalisable. Woodworth et al. [2020b] coins the term of diagonal
linear network for the parametrisation w2

+−w2
− which is equivalent to the u⊙v parametrisation,

and shows how the initialisation scale is the key parameter impacting the recovered solution for
gradient flow. However, the underlying mirror flow structure is not explicitly exhibited. Slightly
after, Gunasekar et al. [2021] makes this explicit link between gradient flow on diagonal linear
networks and mirror flow with the hypentropy potential over the quadratic loss. In parallel,
Amid and Warmuth [2020b] shows the equivalence of gradient flow over the u2 parametrisation
and mirror flow with the entropy potential. Still in parallel, Vaskevicius et al. [2020b] observed
that gradient descent over the u ⊙ v parametrisation closely resembles to the EG± algorithm
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(with no normalisation) [Kivinen and Warmuth, 1997], which was known to match mirror descent
with the hypentropy potential since Ghai et al. [2020].

Mirror Descent. Mirror descent, also known as Bregman gradient descent or Bregman itera-
tion was originally proposed by Nemirovski [1979], Nemirovski and Yudin [1983] for minimising
convex functions. This method recently regained in popularity when the ‘relative smoothness’
framework was brought to light: the idea is to choose a potential which is adapted to the cur-
vature of the loss in order to get improved convergence rates [Bauschke et al., 2017]. All the
convergence results on mirror flow we provide Chapter 4 are adapted from this last paper. We
refer to Dragomir [2021] (Chapter 1.5) for a nice history of Bregman methods.
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Part II

Full trajectory characterisation
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Chapter 6

Saddle-to-saddle dynamics

6.1 Preface

This chapter follows Pesme and Flammarion [2023].

Summary We fully describe the trajectory of gradient flow over 2-layer diagonal linear net-
works for the regression setting in the limit of vanishing initialisation. We show that the limiting
flow successively jumps from a saddle of the training loss to another until reaching the mini-
mum ℓ1-norm solution. We explicitly characterise the visited saddles as well as the jump times
through a recursive algorithm reminiscent of the LARS algorithm used for computing the Lasso
path. Starting from the zero vector, coordinates are successively activated until the minimum
ℓ1-norm solution is recovered, revealing an incremental learning. Our proof leverages a conve-
nient arc-length time-reparametrisation which enables to keep track of the transitions between
the jumps. Our analysis requires negligible assumptions on the data, applies to both under
and overparametrised settings and covers complex cases where there is no monotonicity of the
number of active coordinates. We provide numerical experiments to support our findings.

Co-author Nicolas Flammarion.

6.2 Introduction

Strikingly simple algorithms such as gradient descent are driving forces for deep learning and
have led to remarkable empirical results. Nonetheless, understanding the performances of such
methods remains a challenging and exciting mystery: (i) their global convergence on highly
non-convex losses is far from being trivial and (ii) the fact that they lead to solutions which
generalise well [Zhang et al., 2017] is still not fully understood.

To explain this second point, a major line of work has focused on the concept of implicit
regularisation: amongst the infinite space of zero-loss solutions, the optimisation process must be
implicitly biased towards solutions which have good generalisation properties for the considered
real-world prediction tasks. Many papers have therefore shown that gradient methods have the
fortunate property of asymptotically leading to solutions which have a well-behaving structure
[Neyshabur, 2017, Gunasekar et al., 2017, Chizat and Bach, 2020].

Aside from these results which mostly focus on characterising the asymptotic solution, a
slightly different point of view has been to try to describe the full trajectory. Indeed it has been
experimentally observed that gradient methods with small initialisations have the property of
learning models of increasing complexity across the training of neural networks [Kalimeris et al.,
2019]. This behaviour is usually referred to as incremental learning or as a saddle-to-saddle
process and describes learning curves which are piecewise constant: the training process makes
very little progress for some time, followed by a sharp transition where a new “feature” is
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Figure 6.1: Gradient flow (βαt )t with small initialisation scale α over a 2-layer diagonal linear
network (for the precise experimental setting, see Appendix A.1). Left: Training loss across
time, the learning is piecewise constant. Middle: The magnitudes of the coordinates are plotted
across time: the process is piecewise constant. Right: In the R3 space in which the iterates
evolve (the remaining coordinates stay at 0), the iterates jump from a saddle of the training loss
to another. The jumping times ti as well as the visited saddles βi are entirely predicted by our
theory.

suddenly learned. In terms of optimisation trajectory, this corresponds to the iterates ”jumping”
from a saddle of the training loss to another.

Several settings exhibiting such dynamics for small initialisation have been considered: ma-
trix and tensor factorisation [Razin et al., 2021, Jiang et al., 2022], simplified versions of diagonal
linear networks [Gissin et al., 2020, Berthier, 2022], linear networks [Gidel et al., 2019, Saxe et al.,
2019, Jacot et al., 2021], 2-layer neural networks with orthogonal inputs [Boursier et al., 2022],
learning leap functions with 2-layer neural networks [Abbe et al., 2023] and matrix sensing
[Arora et al., 2019, Li et al., 2021, Jin et al., 2023]. However, all these results require restrictive
assumptions on the data or only characterise the first jump. Obtaining a complete picture of the
saddle-to-saddle process by describing all the visited saddles and jump times is mathematically
challenging and still missing. We intend to fill this gap by considering diagonal linear networks
which are simplified neural networks that have received significant attention lately [Woodworth
et al., 2020b, Vaskevicius et al., 2019, HaoChen et al., 2021, Pesme et al., 2021, Even et al., 2023]
as they are ideal proxy models for gaining a deeper understanding of complex phenomenons such
as saddle-to-saddle dynamics.

6.2.1 Informal statement of the main result

In this chapter, we provide a full description of the trajectory of gradient flow over 2-layer
diagonal linear networks in the limit of vanishing initialisation. The main result is informally
presented here.

Theorem 1 (Main result, informal). In the regression setting and in the limit of vanishing
initialisation, the trajectory of gradient flow over a 2-layer diagonal linear network converges
towards a limiting process which is piecewise constant: the iterates successively jump from a
saddle of the training loss to another, each visited saddle and jump time can recursively be
computed through an algorithm (Algorithm 1) reminiscent of the LARS algorithm for the Lasso.

The incremental learning stems from the particular structure of the saddles as they corre-
spond to minimisers of the training loss with a constraint on the set of non-zero coordinates.
The saddles therefore correspond to sparse vectors which partially fit the dataset. For sim-
ple datasets, a consequence of our main result is that the limiting trajectory successively
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starts from the zero vector and successively learns the support of the sparse ground
truth vector until reaching it. However, we make minimal assumptions on the data
and our analysis also holds for complex datasets. In that case, the successive active sets
are not necessarily increasing in size and coordinates can deactivate as well as activate until
reaching the minimum ℓ1-norm solution (see Figure 6.1 (middle) for an example of a deactivat-
ing coordinate). The regression setting and the diagonal network architecture are introduced
in Section 8.3. Section 6.4 provides an intuitive construction of the limiting saddle-to-saddle
dynamics and presents the algorithm that characterises it. Our main result regarding the con-
vergence of the iterates towards this process is presented in Section 6.5 and further discussion
is provided in Section 6.6.

6.3 Problem setup and leveraging the mirror structure

6.3.1 Setup

Linear regression. We study a linear regression problem with inputs (x1, . . . , xn) ∈ (Rd)n and
outputs (y1, . . . , yn) ∈ Rn. We consider the typical quadratic loss:

L(β) =
1

2n

n∑

i=1

(⟨β, xi⟩ − yi)2 . (6.1)

We make no assumption on the number of samples n nor the dimension d. The only assumption
we make on the data throughout the chapter is that the inputs (x1, . . . , xn) are in general
position. In order to state this assumption, let X ∈ Rn×d be the feature matrix whose ith row
is xi and let x̃j ∈ Rn be its jth column for j ∈ [d].

Assumption 6 (General position). For any k ≤ min(n, d) and arbitrary signs σ1, . . . , σk ∈
{−1, 1}, the affine span of any k points σ1x̃j1 , . . . , σkx̃jk does not contain any element of the set
{±x̃j , j ̸= j1, . . . , jk}.

This assumption is slightly technical but is standard in the Lasso literature [Tibshirani, 2013].
Note that it is not restrictive as it is almost surely satisfied when the data is drawn from a con-
tinuous probability distribution [Tibshirani, 2013, Lemma 4]. Letting S = arg min β L(β) denote
the affine space of solutions, Assumption 6 ensures that the minimisation problem minβ⋆∈S ∥β⋆∥1
has a unique minimiser which we denote β⋆ℓ1 and which corresponds to the minimum ℓ1-norm
solution.

2-layer diagonal linear network. In an effort to understand the training dynamics of neu-
ral networks, we consider a 2-layer diagonal linear network which corresponds to writing the
regression vector β as

βw = u⊙ v where w = (u, v) ∈ R2d . (6.2)

This parametrisation can be interpreted as a simple neural network x 7→ ⟨u, σ(diag(v)x)⟩ where
u are the output weights, the diagonal matrix diag(v) represents the inner weights, and the
activation σ is the identity function. We refer to w = (u, v) ∈ R2d as the weights and to
β := u⊙ v ∈ Rd as the prediction parameter. With the parametrisation (8.1), the loss function
F over the parameters w = (u, v) ∈ R2d is defined as:

F (w) := L(u⊙ v) =
1

2n

n∑

i=1

(⟨u⊙ v, xi⟩ − yi)2 . (6.3)
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Though this reparametrisation is simple, the associated optimisation problem is non-convex and
highly non-trivial training dynamics already occur. The critical points of the function F exhibit
a very particular structure, as highlighted in the following proposition proven in Appendix A.2.

Proposition 11. All the critical points wc of F which are not global minima, i.e., ∇F (wc) = 0
and F (wc) > minw F (w), are necessarily saddle points ( i.e., not local extrema). They map to
parameters βc = uc ⊙ vc which satisfy |βc| ⊙ ∇L(βc) = 0 and:

βc ∈ arg min
β[i]=0 for i/∈supp(βc)

L(β) (6.4)

where supp(βc) = {i ∈ [d], βc[i] ̸= 0} corresponds to the support of βc.

The optimisation problem in eq. (6.4) states that the saddle points of the train loss F
correspond to sparse vectors that minimise the loss function L over its non-zero coor-
dinates. This property already shows that the saddle points possess interesting properties from
a learning perspective. In the following we loosely use the term of ‘saddle’ to refer to points
βc ∈ Rd solution of eq. (6.4) that are not saddles of the convex loss function L. We
adopt this terminology because they correspond to points wc ∈ R2d that are indeed saddles of
the non-convex loss F .

Gradient Flow and necessity of “accelerating” time. We minimise the loss F using
gradient flow:

dwt = −∇F (wt)dt , (6.5)

initialised at u0 =
√

2α1 ∈ Rd>0 with α > 0, and v0 = 0 ∈ Rd. This initialisation results in
β0 = 0 ∈ Rd independently of the chosen weight initialisation scale α. We denote βαt := uαt ⊙ vαt
the prediction iterates generated from the gradient flow to highlight its dependency on the
initialisation scale α1. The origin 0 ∈ R2d is a critical point of the function F and taking the
initialisation α→ 0 therefore arbitrarily slows down the dynamics. In fact, it can be easily shown
for any fixed time t, that (uαt , v

α
t ) → 0 as α → 0, indicating that the iterates are stuck at the

origin. Therefore if we restrict ourselves to a finite time analysis, there is no hope of exhibiting
the observed saddle-to-saddle behaviour. To do so, we must find an appropriate bijection t̃α in
R≥0 which “accelerates” time (i.e. t̃α(t) −→

α→0
+∞ for all t) and consider the accelerated iterates

βα
t̃α(t)

which can escape the saddles. Finding this bijection becomes very natural once the mirror

structure is unveiled.

6.3.2 Leveraging the mirror flow structure

While the iterates (wαt )t follow a gradient flow on the non-convex loss F , it is shown in Azulay
et al. [2021] that the iterates βαt follow a mirror flow on the convex loss L with potential ϕα and
initialisation βαt=0 = 0:

d∇ϕα(βαt ) = −∇L(βαt )dt, (6.6)

where ϕα is the hyperbolic entropy function [Ghai et al., 2020] defined as:

ϕα(β) =
1

2

d∑

i=1

(
βiarcsinh(

βi
α2

)−
√
β2i + α4 + α2

)
. (6.7)

1We point out that the trajectory of βα
t exactly matches that of another common parametrisation βw :=

1
2
(w2

+ − w2
−), with initialisation w+,0 = w−,0 = α1.
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Unveiling the mirror flow structure enables to leverage convex optimisation tools to prove con-
vergence of the iterates to a global minimiser β⋆α as well as a simple proof of the implicit reg-
ularisation problem it solves. As shown by Woodworth et al. [2020b], in the overparametrised
setting where d > n and where there exists an infinite number of global minima, the limit β⋆α is
the solution of the problem:

β⋆α = arg min
yi=⟨xi,β⟩,∀i

ϕα(β). (6.8)

Furthermore, a simple function analysis shows that ϕα behaves as a rescaled ℓ1-norm as α
goes to 0, meaning that the recovered solution β⋆α converges to the minimum ℓ1-norm solution
β⋆ℓ1 = arg min yi=⟨xi,β⟩ ∥β∥1 as α goes to 0 (see Wind et al. [2023] for a precise rate). To bring
to light the saddle-to-saddle dynamics which occurs as we take the initialisation to 0, we make
substantial use of the nice mirror structure from eq. (6.6).

Appropriate time rescaling. To understand the limiting dynamics of βαt , it is natural to
consider the limit α→ 0 in eq. (6.6). However, the potential ϕα is such that ϕα(β) ∼ ln(1/α)∥β∥1
for small α and therefore degenerates as α→ 0. Similarly, for β ̸= 0, ∥∇ϕα(β)∥ → ∞ as α→ 0.
The formulation from eq. (6.6) is thus not appropriate to take the limit α → 0. We can
nonetheless obtain a meaningful limit by considering the opportune time acceleration t̃α(t) =
ln(1/α) · t and looking at the accelerated iterates

β̃αt := βα
t̃α(t)

= βαln(1/α)t. (6.9)

Indeed, a simple chain rule leads to the “accelerated mirror flow”: d∇ϕα(β̃αt ) = − ln
(
1
α

)
∇L(β̃αt )dt.

The accelerated iterates (β̃αt )t follow a mirror descent with a rescaled potential:

d∇ϕ̃α(β̃αt ) = −∇L(β̃αt )dt, where ϕ̃α :=
1

ln(1/α)
· ϕα, (6.10)

with β̃t=0 = 0 and where ϕα is defined eq. (6.7). Our choice of time acceleration ensures that
the rescaled potential ϕ̃α is non-degenerate as the initialisation goes to 0 since ϕ̃α(β) ∼

α→0
∥β∥1.

6.4 Intuitive construction of the limiting flow and saddle-to-saddle
algorithm

In this section, we aim to give a comprehensible construction of the limiting flow. We therefore
choose to provide intuition over pure rigor, and defer the full and rigorous proof to the Ap-
pendix A.5. The technical crux of our analysis is to demonstrate the existence of a piecewise
constant limiting process towards which the iterates β̃α converge to. The convergence result is
deferred to the following Section 6.5. In this section we assume this convergence and
refer to this piecewise constant limiting process as (β̃◦t )t. Our goal is then to determine
the jump times (t1, . . . , tp) as well as the saddles (β0, . . . , βp) which fully define this process.

To do so, it is natural to examine the limiting equation obtained when taking the limit α→ 0
in eq. (6.10). We first turn to its integral form which writes:

−
∫ t

0
∇L(β̃αs )ds = ∇ϕ̃α(β̃αt ). (6.11)

Provided the convergence of the flow β̃α towards β̃◦, the left hand side of the previous

equation converges to −
∫ t
0 ∇L(β̃◦s )ds. For the right hand side, recall that ϕ̃α(β)

α→0∼ ∥β∥1, it is
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therefore natural to expect the right hand side of eq. (6.11) to converge towards an element of
∂∥β̃◦t ∥1, where we recall the definition of the subderivative of the ℓ1-norm as:

∂∥β̃∥1 = {1} if β̃ > 0, {−1} if β̃ < 0, [−1, 1] if β̃ = 0.

The arising key equation which must satisfy the limiting process β̃◦ is then, for all t ≥ 0:

−
∫ t

0
∇L(β̃◦s )ds ∈ ∂∥β̃◦t ∥1. (6.12)

We show that this equation uniquely determines the piecewise constant process β̃◦ by
imposing the number of jumps p, the jump times as well as the saddles which are visited between
the jumps. Indeed the relation described in eq. (6.12) provides 4 restrictive properties that enable
to construct β̃◦. To state them, let st = −

∫ t
0 ∇L(β̃◦s )ds and notice that it is continuous and

piecewise linear since β̃◦ is piecewise constant. For each coordinate i ∈ [d], it holds that:

(K1) st[i] ∈ [−1, 1] (K2) st[i] = 1⇒ β̃◦t [i] ≥ 0 and st[i] = −1⇒ β̃◦t [i] ≤ 0
(K3) st[i] ∈ (−1, 1)⇒ β̃◦t [i] = 0 (K4) β̃◦t [i] > 0⇒ st[i] = 1 and β̃◦t [i] < 0⇒ st[i] = −1

To understand how these conditions lead to the algorithm which determines the jump times
and the visited saddles, we present a 2-dimensional example for which we can walk through each
step. The general case then naturally follows from this simple example.

6.4.1 Construction of the saddle-to-saddle algorithm with an illustrative 2d
example.

Let us consider n = d = 2 and data matrix X ∈ R2×2 such that X⊤X = ((1, 0.2), (0.2,−0.2)).
We consider β⋆ = (−0.2, 2) ∈ R2 and outputs y = Xβ⋆. This setting is such that the loss L has
β⋆ as its unique minimum and L(β∗) = 0. Furthermore the non-convex loss F has 3 saddles
which map to: βc,0 := (0, 0) = arg min βi=0,∀i L(β), βc,1 := (0.2, 0) = arg min β[2]=0 L(β) and
βc,2 := (0, 1.6) = arg min β[1]=0 L(β). The loss function L is sketched in Figure 6.2 (Left). Notice
that by the definition of βc,1 and βc,2, the gradients of the loss at these points are orthogonal to
the axis they belong to. When running gradient flow with a small initialisation over our diagonal
linear network, we obtain the plots illustrated Figure 6.2 (Middle and Right). We observe three
jumps: the iterates jump from the saddle at the origin to βc,1 at time t1, then to βc,2 at time t2
and finally to the global minimum β⋆at time t3.

Let us show how eq. (6.12) enables us to theoretically recover this trajectory. A simple
observation which we will use several times below is that for any t′ > t such that β̃◦ is constant
equal to β over the time interval (t, t′), the definition of s enables to write that st′ = st − (t′ −
t) · ∇L(β).

Zeroth saddle: The iterates are at the saddle at the origin: β̃◦t = β0 := βc,0 and therefore
st = −t · ∇L(β0). Our key equation eq. (6.12) is verified since st = −t · ∇L(β0) ∈ ∂∥β0∥1 =
[−1, 1]d. However the iterates cannot stay at the origin after time t1 := 1/∥∇L(β0)∥∞ which
corresponds to the time at which the first coordinate of st hits +1: st1 [1] = 1. If the iterates
stayed at the origin after t1, (K1) for i = 1 would be violated. The iterates must hence jump.

First saddle: The iterates can only jump to a point different from the origin which maintains
eq. (6.12) valid. We denote this point as β1. Notice that:

• st1 [2] = −t1 · ∇L(β0)[2] ∈ (−1, 1) and since st is continuous, we must have β1[2] = 0 (K3).
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<latexit sha1_base64="ThoCwBItxuduh63OIAvVp7KQIXM=">AAAB+3icbVDLSsNAFJ3UV62vWpduBovgqiQq6rLoxmWFvqAJZTK9aYfOJGFmIpaQX3HjQhG3/og7/8ZJm4W2Hhg4nHMv98zxY86Utu1vq7S2vrG5Vd6u7Ozu7R9UD2tdFSWSQodGPJJ9nyjgLISOZppDP5ZAhM+h50/vcr/3CFKxKGzrWQyeIOOQBYwSbaRhteYKoidSpG0mIMMuxnpYrdsNew68SpyC1FGB1rD65Y4imggINeVEqYFjx9pLidSMcsgqbqIgJnRKxjAwNCQClJfOs2f41CgjHETSvFDjufp7IyVCqZnwzWSeVC17ufifN0h0cOOlLIwTDSFdHAoSjnWE8yLwiEmgms8MIVQykxXTCZGEalNXxZTgLH95lXTPG85V4+Lhst68Leooo2N0gs6Qg65RE92jFuogip7QM3pFb1ZmvVjv1sditGQVO0foD6zPH2F4lAM=</latexit>

Time t

<latexit sha1_base64="ThoCwBItxuduh63OIAvVp7KQIXM=">AAAB+3icbVDLSsNAFJ3UV62vWpduBovgqiQq6rLoxmWFvqAJZTK9aYfOJGFmIpaQX3HjQhG3/og7/8ZJm4W2Hhg4nHMv98zxY86Utu1vq7S2vrG5Vd6u7Ozu7R9UD2tdFSWSQodGPJJ9nyjgLISOZppDP5ZAhM+h50/vcr/3CFKxKGzrWQyeIOOQBYwSbaRhteYKoidSpG0mIMMuxnpYrdsNew68SpyC1FGB1rD65Y4imggINeVEqYFjx9pLidSMcsgqbqIgJnRKxjAwNCQClJfOs2f41CgjHETSvFDjufp7IyVCqZnwzWSeVC17ufifN0h0cOOlLIwTDSFdHAoSjnWE8yLwiEmgms8MIVQykxXTCZGEalNXxZTgLH95lXTPG85V4+Lhst68Leooo2N0gs6Qg65RE92jFuogip7QM3pFb1ZmvVjv1sditGQVO0foD6zPH2F4lAM=</latexit>

Time t

<latexit sha1_base64="oxH6+8BlUl+W/EC+LkJvWbDYHys=">AAACIHicbZDJSgNBEIZ74hbjFvXopTEInsKMinp0uXiMYKKQiaGnpqJNeha6a4Qw5FG8+CpePCiiN30aO5Mc3H5o+Piriur6g1RJQ6774ZSmpmdm58rzlYXFpeWV6upayySZBmxCohJ9FQiDSsbYJEkKr1KNIgoUXgb901H98g61kUl8QYMUO5G4iWVPgiBrdasHfiToVkf5MQAq1IIw5D6XVKAZWvZJqhBzP0ASw2sfpIYudas1t+4W4n/Bm0CNTdToVt/9MIEswphACWPanptSJxeaJCgcVvzMYCqgL26wbTEWEZpOXhw45FvWCXkv0fbFxAv3+0QuImMGUWA7R+eY37WR+V+tnVHvsJPLOM0IYxgv6mWKU8JHafFQagRSAwsCtLR/5XArtACbj6nYELzfJ/+F1k7d26/vnu/Vjk4mcZTZBttk28xjB+yInbEGazJg9+yRPbMX58F5cl6dt3FryZnMrLMfcj6/AA36pCg=</latexit>
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<latexit sha1_base64="6HWXXak2BsRlNiHkE4ePvnd/VRU="></latexit>
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Z t

0
rL(�̃�

s )ds

<latexit sha1_base64="UgLHzPwgdhFI3nHU6cfflvIRt9A=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSA/a8XrniVt0ZyDLxclKBHPVe+avbj1kacYVMUmM6npugn1GNgkk+KXVTwxPKRnTAO5YqGnHjZ7NTJ+TEKn0SxtqWQjJTf09kNDJmHAW2M6I4NIveVPzP66QYXvuZUEmKXLH5ojCVBGMy/Zv0heYM5dgSyrSwtxI2pJoytOmUbAje4svLpHlW9S6r5/cXldpNHkcRjuAYTsGDK6jBHdShAQwG8Ayv8OZI58V5dz7mrQUnnzmEP3A+fwAINI2k</latexit>

t1
<latexit sha1_base64="j9ebr9sZ/dcxq6WnsP4YZFzrOvY=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Vj04rGi/YA2lM120y7dbMLuRCihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpAXvVXqnsVtwZyDLxclKGHPVe6avbj1kacYVMUmM6npugn1GNgkk+KXZTwxPKRnTAO5YqGnHjZ7NTJ+TUKn0SxtqWQjJTf09kNDJmHAW2M6I4NIveVPzP66QYXvuZUEmKXLH5ojCVBGMy/Zv0heYM5dgSyrSwtxI2pJoytOkUbQje4svLpFmteJeV8/uLcu0mj6MAx3ACZ+DBFdTgDurQAAYDeIZXeHOk8+K8Ox/z1hUnnzmCP3A+fwAJuI2l</latexit>

t2
<latexit sha1_base64="LA2Nw+dC4y2KGZmjBVIEzV21eNE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSA/bOe+WKW3VnIMvEy0kFctR75a9uP2ZpxBUySY3peG6CfkY1Cib5pNRNDU8oG9EB71iqaMSNn81OnZATq/RJGGtbCslM/T2R0ciYcRTYzoji0Cx6U/E/r5NieO1nQiUpcsXmi8JUEozJ9G/SF5ozlGNLKNPC3krYkGrK0KZTsiF4iy8vk+ZZ1busnt9fVGo3eRxFOIJjOAUPrqAGd1CHBjAYwDO8wpsjnRfn3fmYtxacfOYQ/sD5/AELPI2m</latexit>

t3

<latexit sha1_base64="UgLHzPwgdhFI3nHU6cfflvIRt9A=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSA/a8XrniVt0ZyDLxclKBHPVe+avbj1kacYVMUmM6npugn1GNgkk+KXVTwxPKRnTAO5YqGnHjZ7NTJ+TEKn0SxtqWQjJTf09kNDJmHAW2M6I4NIveVPzP66QYXvuZUEmKXLH5ojCVBGMy/Zv0heYM5dgSyrSwtxI2pJoytOmUbAje4svLpHlW9S6r5/cXldpNHkcRjuAYTsGDK6jBHdShAQwG8Ayv8OZI58V5dz7mrQUnnzmEP3A+fwAINI2k</latexit>

t1
<latexit sha1_base64="j9ebr9sZ/dcxq6WnsP4YZFzrOvY=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Vj04rGi/YA2lM120y7dbMLuRCihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpAXvVXqnsVtwZyDLxclKGHPVe6avbj1kacYVMUmM6npugn1GNgkk+KXZTwxPKRnTAO5YqGnHjZ7NTJ+TUKn0SxtqWQjJTf09kNDJmHAW2M6I4NIveVPzP66QYXvuZUEmKXLH5ojCVBGMy/Zv0heYM5dgSyrSwtxI2pJoytOkUbQje4svLpFmteJeV8/uLcu0mj6MAx3ACZ+DBFdTgDurQAAYDeIZXeHOk8+K8Ox/z1hUnnzmCP3A+fwAJuI2l</latexit>

t2
<latexit sha1_base64="LA2Nw+dC4y2KGZmjBVIEzV21eNE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSA/bOe+WKW3VnIMvEy0kFctR75a9uP2ZpxBUySY3peG6CfkY1Cib5pNRNDU8oG9EB71iqaMSNn81OnZATq/RJGGtbCslM/T2R0ciYcRTYzoji0Cx6U/E/r5NieO1nQiUpcsXmi8JUEozJ9G/SF5ozlGNLKNPC3krYkGrK0KZTsiF4iy8vk+ZZ1busnt9fVGo3eRxFOIJjOAUPrqAGd1CHBjAYwDO8wpsjnRfn3fmYtxacfOYQ/sD5/AELPI2m</latexit>

t3

<latexit sha1_base64="yucwyn51vm2LCe8bRTetmGKboDI=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSIIQklU1GPRi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSATXxnW/naXlldW19cJGcXNre2e3tLff0HGqGNZZLGLVCqhGwSXWDTcCW4lCGgUCm8HwduI3n1BpHstHM0rQj2hf8pAzaqz0cOp1S2W34k5BFomXkzLkqHVLX51ezNIIpWGCat323MT4GVWGM4HjYifVmFA2pH1sWypphNrPppeOybFVeiSMlS1pyFT9PZHRSOtRFNjOiJqBnvcm4n9eOzXhtZ9xmaQGJZstClNBTEwmb5MeV8iMGFlCmeL2VsIGVFFmbDhFG4I3//IiaZxVvMvK+f1FuXqTx1GAQziCE/DgCqpwBzWoA4MQnuEV3pyh8+K8Ox+z1iUnnzmAP3A+fwDjdIzy</latexit>

+1

<latexit sha1_base64="k4pRQpe3usGJ4ql/zXemjo24WSs=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4sSQq6rHoxWMV+wFtKJvtpF262YTdjVBC/4EXD4p49R9589+4bXPQ1gcDj/dmmJkXJIJr47rfztLyyuraemGjuLm1vbNb2ttv6DhVDOssFrFqBVSj4BLrhhuBrUQhjQKBzWB4O/GbT6g0j+WjGSXoR7QvecgZNVZ6OPW6pbJbcacgi8TLSRly1Lqlr04vZmmE0jBBtW57bmL8jCrDmcBxsZNqTCgb0j62LZU0Qu1n00vH5NgqPRLGypY0ZKr+nshopPUoCmxnRM1Az3sT8T+vnZrw2s+4TFKDks0WhakgJiaTt0mPK2RGjCyhTHF7K2EDqigzNpyiDcGbf3mRNM4q3mXl/P6iXL3J4yjAIRzBCXhwBVW4gxrUgUEIz/AKb87QeXHenY9Z65KTzxzAHzifP+Z+jPQ=</latexit>�1

<latexit sha1_base64="/9NNTG5FyIPCSs+e2RnmEtTDLfc=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6rHoxWMFawttKJvtpF262YTdiVBKf4QXD4p49fd489+4bXPQ1gcDj/dmmJkXplIY8rxvp7Cyura+UdwsbW3v7O6V9w8eTZJpjg2eyES3QmZQCoUNEiSxlWpkcSixGQ5vp37zCbURiXqgUYpBzPpKRIIzslKzEyKxrtctV7yqN4O7TPycVCBHvVv+6vQSnsWoiEtmTNv3UgrGTJPgEielTmYwZXzI+ti2VLEYTTCenTtxT6zSc6NE21LkztTfE2MWGzOKQ9sZMxqYRW8q/ue1M4qug7FQaUao+HxRlEmXEnf6u9sTGjnJkSWMa2FvdfmAacbJJlSyIfiLLy+Tx7Oqf1k9v7+o1G7yOIpwBMdwCj5cQQ3uoA4N4DCEZ3iFNyd1Xpx352PeWnDymUP4A+fzB+1mj08=</latexit>

�0

<latexit sha1_base64="I7AX91RYl7Q8sm3VIaVsU/iAASg=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6rHoxWMFawttKJvtpF262YTdiVBKf4QXD4p49fd489+4bXPQ1gcDj/dmmJkXplIY8rxvp7Cyura+UdwsbW3v7O6V9w8eTZJpjg2eyES3QmZQCoUNEiSxlWpkcSixGQ5vp37zCbURiXqgUYpBzPpKRIIzslKzEyKxrt8tV7yqN4O7TPycVCBHvVv+6vQSnsWoiEtmTNv3UgrGTJPgEielTmYwZXzI+ti2VLEYTTCenTtxT6zSc6NE21LkztTfE2MWGzOKQ9sZMxqYRW8q/ue1M4qug7FQaUao+HxRlEmXEnf6u9sTGjnJkSWMa2FvdfmAacbJJlSyIfiLLy+Tx7Oqf1k9v7+o1G7yOIpwBMdwCj5cQQ3uoA4N4DCEZ3iFNyd1Xpx352PeWnDymUP4A+fzB+7qj1A=</latexit>

�1

<latexit sha1_base64="85HXllw/RfPqM3BxeWnvfyDmtek=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Vj04rGC/YA2lM120i7dbOLuRiilf8KLB0W8+ne8+W/ctDlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6zfzWEyrNY/lgxgn6ER1IHnJGjZXa3QAN7VWLvVLZrbgzkGXi5aQMOeq90le3H7M0QmmYoFp3PDcx/oQqw5nAabGbakwoG9EBdiyVNELtT2b3TsmpVfokjJUtachM/T0xoZHW4yiwnRE1Q73oZeJ/Xic14bU/4TJJDUo2XxSmgpiYZM+TPlfIjBhbQpni9lbChlRRZmxEWQje4svLpFmteJeV8/uLcu0mj6MAx3ACZ+DBFdTgDurQAAYCnuEV3pxH58V5dz7mrStOPnMEf+B8/gAnHo9l</latexit>

�2

<latexit sha1_base64="EoXNzXnvSm2Mf4PB2nvIGhrkgSs=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lU1GPRi8cK9gOSWDbbTbt0sxt2J0IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZelApuwHW/ndLK6tr6RnmzsrW9s7tX3T9oG5VpylpUCaW7ETFMcMlawEGwbqoZSSLBOtHodup3npg2XMkHGKcsTMhA8phTAlbyg4gBeQwMEN2r1ty6OwNeJl5BaqhAs1f9CvqKZgmTQAUxxvfcFMKcaOBUsEklyAxLCR2RAfMtlSRhJsxnJ0/wiVX6OFbalgQ8U39P5CQxZpxEtjMhMDSL3lT8z/MziK/DnMs0AybpfFGcCQwKT//Hfa4ZBTG2hFDN7a2YDokmFGxKFRuCt/jyMmmf1b3L+vn9Ra1xU8RRRkfoGJ0iD12hBrpDTdRCFCn0jF7RmwPOi/PufMxbS04xc4j+wPn8AW3rkVw=</latexit>
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<latexit sha1_base64="NBUTkHzzihlFzYU+EOGX4ZaAkKU=">AAAB9HicbVDLSgNBEJyNrxhfUY9eBoPgQcKuinoMevEYwTwgWcLspDcZMvtwpjcQlnyHFw+KePVjvPk3ziZ70MSChqKqm+4uL5ZCo21/W4WV1bX1jeJmaWt7Z3evvH/Q1FGiODR4JCPV9pgGKUJooEAJ7VgBCzwJLW90l/mtMSgtovARJzG4ARuEwhecoZHcrgfIeik/o/a01CtX7Ko9A10mTk4qJEe9V/7q9iOeBBAil0zrjmPH6KZMoeASpqVuoiFmfMQG0DE0ZAFoN50dPaUnRulTP1KmQqQz9fdEygKtJ4FnOgOGQ73oZeJ/XidB/8ZNRRgnCCGfL/ITSTGiWQK0LxRwlBNDGFfC3Er5kCnG0eSUheAsvrxMmudV56p68XBZqd3mcRTJETkmp8Qh16RG7kmdNAgnT+SZvJI3a2y9WO/Wx7y1YOUzh+QPrM8fcGyRPA==</latexit>

�c,0
<latexit sha1_base64="ES2ARGVLKK32BdmZLcTj6Nou32w=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoPgQcKuinoMevEYwTwgWcLspDcZMvtwZjYQlnyHFw+KePVjvPk3ziZ70MSChqKqm+4uLxZcadv+tgorq2vrG8XN0tb2zu5eef+gqaJEMmywSESy7VGFgofY0FwLbMcSaeAJbHmju8xvjVEqHoWPehKjG9BByH3OqDaS2/VQ017KzogzLfXKFbtqz0CWiZOTCuSo98pf3X7EkgBDzQRVquPYsXZTKjVnAqelbqIwpmxEB9gxNKQBKjedHT0lJ0bpEz+SpkJNZurviZQGSk0Cz3QGVA/VopeJ/3mdRPs3bsrDONEYsvkiPxFERyRLgPS5RKbFxBDKJDe3EjakkjJtcspCcBZfXibN86pzVb14uKzUbvM4inAEx3AKDlxDDe6hDg1g8ATP8Apv1th6sd6tj3lrwcpnDuEPrM8fcfKRPQ==</latexit>

�c,1

<latexit sha1_base64="XEl3jwTY0Hsw6AALH0EQtx7Kar4=">AAAB9HicbVBNS8NAEN34WetX1aOXxSJ4kJJUUY9FLx4r2A9oQ9lsJ+3SzSbuTgol9Hd48aCIV3+MN/+NSZuDtj4YeLw3w8w8L5LCoG1/Wyura+sbm4Wt4vbO7t5+6eCwacJYc2jwUIa67TEDUihooEAJ7UgDCzwJLW90l/mtMWgjQvWIkwjcgA2U8AVnmEpu1wNkvYSf0+q02CuV7Yo9A10mTk7KJEe9V/rq9kMeB6CQS2ZMx7EjdBOmUXAJ02I3NhAxPmID6KRUsQCMm8yOntLTVOlTP9RpKaQz9fdEwgJjJoGXdgYMh2bRy8T/vE6M/o2bCBXFCIrPF/mxpBjSLAHaFxo4yklKGNcivZXyIdOMY5pTFoKz+PIyaVYrzlXl4uGyXLvN4yiQY3JCzohDrkmN3JM6aRBOnsgzeSVv1th6sd6tj3nripXPHJE/sD5/AHN4kT4=</latexit>

�c,2
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Figure 6.2: Left : Sketch of the 2d loss. Middle and right : Outputs of gradient flow with small
initialisation scale: the iterates are piecewise constant and st is piecewise linear across time. We
refer to the main text for further details.

• st1 [1] = 1 and hence for t ≥ t1, st[1] = 1− (t− t1)∇L(β1)[1]. We cannot have ∇L(β1)[1] <
0 (K1), and neither ∇L(β1)[1] > 0 since otherwise st[1] ∈ (−1, 1) and β1 = 0 (K3).

The two conditions β1[2] = 0 and ∇L(β1)[1] = 0 uniquely defines β1 as equal to βc,1. We
now want to know if and when the iterates jump again. We saw that st[1] remains at the value
+1. However since β1 is not a global minimum, ∇L(β1)[2] ̸= 0 and st[2] hits +1 at time t2
defined such that −(t1∇L(β0)+(t2− t1)∇L(β1))[2] = 1. The iterates must jump otherwise (K1)
would break.

The iterates cannot jump to β⋆ yet! As the second coordinate of the iterates can activate,
one could expect the iterates to be able to jump to the global minimum. However note that st
is a continuous function and that st2 is equal to the vector (1, 1). If the iterates jumped to the
global minimum, then the first coordinate of the iterates would change sign from +0.2 to −0.2.
Due to (K4) this would lead st jumping from +1 to −1, violating its continuity.

Second saddle: We denote as β2 the point to which the iterates jump. st2 is now equal to the
vector (1, 1) and therefore (i) β2 ≥ 0 (coordinate-wise) from (K2 and K3) and the continuity
of s. Since st = st2 − (t − t2)∇L(β2), we must also have: (ii) ∇L(β2) ≥ 0 from (K1) (iii) for
i ∈ {1, 2}, if β2[i] ̸= 0 then ∇L(β2)[i] = 0 from (K4). The three conditions (i), (ii) and (iii)
precisely correspond to the optimality conditions of the following problem:

arg min
β[1]≥0,β[2]≥0

L(β).

The unique minimiser of this problem is βc,2, hence β2 = βc,2, which means that the first
coordinate deactivates. Similar to before, (K1) is valid until the time t3 at which the first
coordinate of st = st2 − (t− t2)∇L(β2) reaches −1 due to the fact that ∇L(β2)[1] > 0.

Global minimum: We follow the exact same reasoning as for the second saddle. We now have
st3 equal to the vector (−1, 1) and the iterates must jump to a point β3 such that (i) β3[1] ≤ 0,
β3[2] ≥ 0 (K2 and K3), (ii) ∇L(β3)[1] ≤ 0, ∇L(β3)[2] ≥ 0 (K1), (iii) for i ∈ {1, 2}, if β3[i] ̸= 0
then ∇L(β3)[i] = 0 (K4). Again, these are the optimality conditions of the following problem:

arg min
β[1]≤0,β[2]≥0

L(β).

β⋆ is the unique minimiser of this problem and β3 = β⋆. For t ≥ t3 we have st = st3 and
eq. (6.12) is satisfied for all following times: the iterates do not have to move anymore.
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6.4.2 Presentation of the full saddle-to-saddle algorithm

We can now provide the full algorithm (Algorithm 1) which computes the jump times (t1, . . . , tp)
and saddles (β0 = 0, β1, . . . , βp) as the values and vectors such that the associated piecewise
constant process satisfies eq. (6.12) for all t. This algorithm therefore defines our limiting
process β̃◦.

Algorithm 1: Successive saddles and jump times of limα→0 β̃
α

Initialise: (t, β, s)← (0,0,0);
while ∇L(β) ̸= 0 do

A ← {j ∈ [d],∇L(β)(j) ̸= 0}
∆← inf

{
δ > 0 s.t. ∃i ∈ A, s(i)− δ∇L(β)(i) = ±1

}

(t, s)← (t+ ∆, s−∆ · ∇L(β))

β ← arg min L(β) where β ∈
{
β ∈ Rd s.t.

βi≥0 if s(i)=+1
βi≤0 if s(i)=−1
βi=0 if s(i)∈(−1,1)

}

Output: Successive values of β and t

Algorithm 1 in words. The algorithm is a concise representation of the steps we followed in
the previous section to construct β̃◦. We explain each step in words below. Starting from k = 0,
assume we enter the loop number k at the saddle βk computed in the previous loop:

• The set Ak contains the set of coordinates ”which are unstable”: by having a non-zero
derivative, the loss could be decreased by moving along each one of these coordinates and
one of these coordinates will have to activate.

• The time gap ∆k corresponds to the time spent at the saddle βk. It is computed as being
the elapsed time just before (K1) breaks if the coordinates do not jump.

• We update tk+1 = tk + ∆k and sk+1 = sk −∆k∇L(βk): tk+1 corresponds to the time at
which the iterates leave the saddle βk and sk+1 constrains the signs of the next saddle
βk+1

• The solution βk+1 of the constrained minimisation problem is the saddle to which the flow
jumps to at time tk+1. The optimality conditions of this problem are such that eq. (6.12)
is maintained for t ≥ tk+1.

Various comments on Algorithm 1. First we point out that any solution βc of the con-
strained minimisation problem which appears in Algorithm 1 also satisfies

βc = arg min
β[i]=0 for i/∈supp(βc)

L(β),

as in eq. (6.4): the algorithm hence indeed outputs saddles as expected. Up until now we have
never checked whether the algorithm’s constrained minimisation problem has a unique minimum.
This is crucial otherwise the assignment step would be ill-defined. Showing the uniqueness is
non-trivial and is guaranteed thanks to the general position Assumption 6 on the data (see
Proposition 26 in Appendix A.4.1). In this same proposition, we also show that the algorithm
terminates in at most min

(
2d,
∑n

k=0

(
d
k

))
steps, that the loss strictly decreases at each step and

that the final output βp is the minimum ℓ1-norm solution. These last two properties are expected
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given the fact that the algorithm arises as being the limit process of β̃α which follows the mirror
flow eq. (6.10).

Links with the LARS algorithm for the Lasso. Recall that the Lasso problem [Tibshirani,
1996, Chen et al., 2001] is formulated as:

β⋆λ = arg min
β∈Rd

L(β) + λ∥β∥1. (6.13)

The optimality condition of eq. (6.13) writes −∇L(β⋆λ) ∈ λ∂∥β⋆λ∥1. Now notice the similarity
with eq. (6.12): the two would be equivalent with λ = 1/t if the integration on the left hand
side of eq. (6.12) did not average over the whole trajectory but only on the final iterate, in
which case −

∫ t
0 ∇L(β̃◦t )ds = −t ·∇L(β̃◦t ). Though the difference is small, the trajectories of our

limiting trajectory β̃◦ and the lasso path (β⋆λ)λ are quite different: one has jumps, whereas the
other is continuous. Nonetheless, the construction of Algorithm 1 shares many similarities with
that of the Least Angle Regression (LARS) algorithm [Efron et al., 2004] (originally named the
Homotopy algorithm [Osborne et al., 2000]) which is used to compute the Lasso path. A notable
difference however is the fact that each step of our algorithm depends on the whole trajectory
through the vector s, whereas the LARS algorithm can be started from any point on the path.

6.4.3 Outputs of the algorithm under a RIP and gap assumption on the data.

Unlike previous results on incremental learning, complex behaviours can occur when the feature
matrix is ill designed: several coordinates can activate and deactivate at the same time (see Ap-
pendix A.1 for various cases). However, if the feature matrix satisfies the 2r-restricted isometry
property (RIP) [Candès et al., 2006] and there exists an r-sparse solution β⋆, the visited saddles
can be easily approximated using Algorithm 1. We provide the precise characterisation below.

Sparse regression with RIP and gap assumption. (RIP) Assume that there exists an
r-sparse vector β⋆ such that yi = ⟨xi, β⋆⟩. Furthermore we assume that the feature matrix
X ∈ Rn,d satisfies the 2r-restricted isometry property with constant ε̃ <

√
2 − 1 < 1/2: i.e.

for all submatrix Xs where we extract any s ≤ 2r columns of X, the matrix X⊤
s Xs/n of size

s× s has all its eigenvalues in the interval [1 − ε̃, 1 + ε̃]. (Gap assumption) Furthermore we
assume that the r-sparse vector β⋆ has coordinates which have a “sufficient gap’. W.l.o.g we write
β⋆ = (β⋆1 , . . . , β

⋆
r , 0, . . . , 0) with |β⋆1 | ≥ · · · ≥ |β⋆r | > 0 and we define λ := mini∈[r](|β⋆i |−|β⋆i+1|) ≥ 0

which corresponds to the smallest gap between the entries of |β⋆|. We assume that 5ε̃∥β⋆∥2 < λ/2
and we let ε := 5ε̃.

A classic result from compressed sensing (see Candes [2008, Theorem 1.2]) is that the 2r-
restricted isometry property with constant

√
2 − 1 ensures that the minimum ℓ0-minimisation

problem has a unique r-sparse solution which is β⋆. This means that Algorithm 1 will have β⋆

as final output and the following proposition shows that we can precisely characterise each of
its outputs when the data satisfies the previous assumptions.

Proposition 12. Under the restricted isometry property and the gap assumption stated right
above, Algorithm 1 terminates in r-loops and outputs:

β1 = (β1[1], 0, . . . , 0) with β1[1] ∈
[
β⋆1 − ε∥β⋆∥, β⋆2 + ε∥β⋆∥

]

β2 = (β2[1], β2[2], 0, . . . , 0) with

{
β2[1] ∈

[
β⋆1 − ε∥β⋆∥, β⋆1 + ε∥β⋆∥

]

β2[2] ∈ [β⋆2 − ε∥β⋆∥, β⋆2 + ε∥β⋆∥]
...

βr−1 = (βr−1[1], . . . , βr−1[r − 1], 0, . . . , 0) with βr−1[i] ∈
[
β⋆i − ε∥β⋆∥, β⋆i + ε∥β⋆∥

]

βr = β⋆ = (β⋆1 , . . . , β
⋆
r , 0, . . . , 0),
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at times t1, . . . , tr such that ti ∈
[

1
|β⋆

i |+ε∥β⋆∥ ,
1

|β⋆
i |−ε∥β⋆∥

]
and where ∥ · ∥ denotes the ℓ2 norm.

Informally, this means that the algorithm terminates in exactly r loops and outputs jump
times and saddles roughly equal to ti = 1/|β⋆i | and βi = (β⋆1 , · · · , β⋆i , 0, . . . , 0). Therefore, in
simple settings, the support of the sparse vector is learnt a coordinate at a time, without any
deactivations. We refer to Appendix A.4.2 for the proof.

6.5 Convergence of the iterates towards the process defined by
Algorithm 1

We are now fully equipped to state our main result which formalises the convergence of the
accelerated iterates towards the limiting process β̃◦ which we built in the previous section.

Theorem 2. Let the saddles (β0 = 0, β1, . . . , βp−1, βp = β⋆ℓ1) and jump times (t0 = 0, t1, . . . , tp)

be the outputs of Algorithm 1 and let (β̃◦t )t be the piecewise constant process defined as follows:

(Saddles) β̃◦t = βk for t ∈ (tk, tk+1) and 0 ≤ k ≤ p, tp+1 = +∞.

The accelerated flow (β̃αt )t defined in eq. (6.9) uniformly converges towards the limiting process
(β̃◦t )t on any compact subset of R≥0\{t1, . . . , tp}.

Convergence result. We recall that from a technical point of view, showing the existence of a
limiting process limα→0 β̃

α is the toughest part. Theorem 1 provides this existence as well as the
uniform convergence of the accelerated iterates towards β̃◦ over all closed intervals of R which do
not contain the jump times. We highlight that this is the strongest type of convergence we could
expect and a uniform convergence over all intervals of the form [0, T ] is impossible given that
the limiting process β̃◦ is discontinuous. In Proposition 13, we give an even stronger result by
showing a graph convergence of the iterates which takes into account the path followed between
the jumps. We also point out that we can easily show the same type of convergence for the
accelerated weights w̃αt := wα

t̃α(t)
. Indeed, using the bijective mapping which links the weights

wt and the predictors βt (see Lemma 6 in Appendix A.3), we immediately get that the accelerated

weights (ũα, ṽα) uniformly converge towards the limiting process (
√
|β̃◦|, sign(β̃◦)

√
|β̃◦|) on any

compact subset of R≥0\{t1, . . . , tp}.

Estimates for the non-accelerated iterates βαt . We point out that our result provides no
speed of convergence of β̃α towards β̃◦. We believe that a non-asymptotic result is challenging
and leave it as future work. Note that we experimentally notice that the convergence rate quickly
degrades after each saddle. Nonetheless, we can still write for the non-accelerated iterates that
βαt = β̃αt/ ln(1/α) ∼ β̃◦t/ ln(1/α) as α→ 0. Hence, for α small enough the iterates βαt are roughly equal

to 0 until time t1 · ln(1/α) and the minimum ℓ1-norm interpolator is reached at time tp · ln(1/α).
Such a precise estimate of the global convergence time is rather remarkable and goes
beyond classical Lyapunov analysises which only leads to L(βαt ) ≲ ln(1/α)/t (see Proposition 23
in Appendix A.3).

Natural extensions of our setting. More general initialisations can easily be dealt with.
For instance, initialisations of the form ut=0 = αu0 ∈ Rd lead to the exact same result as it is
shown in Woodworth et al. [2020b] (Discussion after Theorem 1) that the associated mirror still
converges to the ℓ1-norm. Initialisations of the form [ut=0]i = αki , where ki > 0, lead to the
associated potential converging towards a weighted ℓ1-norm and one should modify Algorithm 1
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by accordingly weighting ∇L(β) in the algorithm. Also, deeper linear architectures of the form
βw = wD+ −wD− as in Woodworth et al. [2020b] do not change our result as the associated mirror
still converges towards the ℓ1-norm. Though we only consider the square loss in the chapter, we
believe that all our results should hold for any loss of the type L(β) =

∑n
i=1 ℓ(yi, ⟨xi, β⟩) where

for all y ∈ R, ℓ(y, ·) is strictly convex with a unique minimiser at y. In fact, the only property
which cannot directly be adapted from our results is showing the uniform boundedness of the
iterates (see discussion before Proposition 24 in Appendix A.3).

6.5.1 High level sketch of proof of β̃α → β̃◦ which leverages an arc-length
parametrisation

In this section, we give the high level ideas concerning the proof of the convergence β̃α → β̃◦

given in Theorem 1. A full and detailed proof can be found in Appendix A.5. The main difficulty
stems from the non-continuity of the limit process β̃◦. To circumvent this difficulty, a clever
trick which we borrow to Efendiev and Mielke [2006], Mielke et al. [2009] is to “slow-down”
time when the jumps occur by considering an arc-length parametrisation of the path. We
consider the R≥0 arclength bijection τα and leverage it to define the ‘appropriately slowed down’
iterates β̂ατ as:

β̂ατ = β̃α
t̂α(τ)

where t̂ατ = (τα)−1(τ) and τα(t) = t+

∫ t

0
∥ ˙̃
βαs ∥ds.

This time reparametrisation has the fortunate but crucial property of leading to ˙̂tα(τ)+∥ ˙̂
βατ ∥ = 1

by a simple chain rule, which means that the speed of (β̂ατ )τ is uniformly upperbounded by
1 independently of α. This behaviour is in stark contrast with the process (β̃αt )t which has
a speed which explodes at the jumps. This change of time now allows us to use Arzelà-Ascoli’s
theorem to extract a subsequence which uniformly converges to a limiting process which we
denote β̂. Importantly, β̂ enables to keep track of the path followed between the jumps as we
show that its trajectory has two regimes:

Saddles: β̂τ = βk Connections:
˙̂
βτ = − |β̂τ | ⊙ ∇L(β̂τ )

∥|β̂τ | ⊙ ∇L(β̂τ )∥
.

The process β̂ is illustrated on the right: the red curves correspond to
the paths which the iterates follow during the jumps. These paths are
called heteroclinic orbits in the dynamical systems literature [Krupa,
1997, Ashwin and Field, 1999]. To prove Theorem 1, we can map
back the convergence of β̂α to show that of β̃α . Moreover from the
convergence β̂α → β̂ we get a more complete picture of the limiting
dynamics of β̃α as it naturally implies the convergence of the graph
of the iterates (β̃αt )t converges towards that of (β̂τ )τ . The graph
convergence result is formalised in this last proposition.
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Proposition 13. For all T > tp, the graph of the iterates (β̃αt )t≤T converges to that of (β̂τ )τ :

dist({β̃αt }t≤T , {β̂τ}τ≥0) −→
α→0

0 (Hausdorff distance)
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6.6 Further discussion and conclusion

Link between incremental learning and saddle-to-saddle dynamics. The incremental
learning phenomenon and the saddle-to-saddle process are often complementary facets of the
same idea and refer to the same phenomenon. Indeed for gradient flows dwt = −∇F (wt)dt,
fixed points of the dynamics correspond to critical points of the loss. Stages with little progress
in learning and minimal movement of the iterates necessarily correspond to the iterates being
in the vicinity of a critical point of the loss. It turns out that in many settings (linear net-
works [Kawaguchi, 2016], matrix sensing [Bhojanapalli et al., 2016, Park et al., 2017]), critical
points are necessarily saddle points of the loss (if not global minima) and that they have a very
particular structure (high sparsity, low rank, etc.). We finally note that an alternative approach
to realising saddle-to-saddle dynamics is through the perturbation of the gradient flow by a
vanishing noise as studied in [Bakhtin, 2011].

Characterisation of the visited saddles. A common belief is that the saddle-to-saddle
trajectory can be found by successively computing the direction of most negative curvature of
the loss (i.e. the eigenvector corresponding to the most negative eigenvalue) and following this
direction until reaching the next saddle [Jacot et al., 2021]. However this statement cannot
be accurate as it is inconsistent with our algorithm in our setting. In fact, it can be shown
that this algorithm would match the orthogonal matching pursuit (OMP) algorithm [Pati et al.,
1993, Davis et al., 1997] which does not necessarily lead to the minimum ℓ1-norm interpolator.
In [Berthier, 2022], which is the closest to our work and the first to prove convergence of the iter-
ates towards a piece-wise constant process, the successive saddles are entirely characterised and
connected to the Lasso regularisation path in the underparameterised setting. Recently, Boix-
Adsera et al. [2023] extended the diagonal linear network setting to diagonal parametrisations
of the form fu⊙v, but at the cost of stronger assumptions on the trajectory.

Adaptive Inverse Scale Space Method. Following the submission of the paper this chapter
is based on, we were informed that Algorithm 1 had already been proposed and analysed in the
compressed sensing literature. Indeed it exactly corresponds to the Adaptive Inverse Scale Space
Method (aISS) proposed in Burger et al. [2013]. The motivations behind its study are extremely
different from ours and originate from the study of Bregman iteration [Cai et al., 2010, Osher
et al., 2005, Yin et al., 2008] which is an efficient method for solving ℓ1 related minimisation
problems. The so-called inverse scale space flow which corresponds to eq. (6.12) in our chapter
can be seen as the continuous version of Bregman iteration. As in our chapter, Burger et al.
[2013] show that this equation can be solved through an iterative algorithm. We refer to Yang
et al. [2013, Section 2] for further details. However we did not find any results in this literature
concerning the uniqueness of the constrained minimisation problem due to Assumption 6, nor
on the maximum number of iterations, the behaviour under RIP assumptions and the maximum
number of active coordinates.

Subdifferential equations and rate-independent systems. As in eq. (6.12), subdifferen-
tial inclusions of the form ∇L(βt) ∈ d

dt∂h(βt) for non-differential functions h have been studied
by Attouch et al. [2004] but for strongly convex functions h. In this case, the solutions are
continuous and do not exhibit jumps. On another hand, Efendiev and Mielke [2006], Mielke
et al. [2009, 2012] consider so-called rate-independent systems of the form ∂qE(t, qt) ∈ ∂h(q̇t) for
1-homogeneous dissipation potentials h. Examples of such systems are ubiquitous in mechanics
and appear in problems related to friction, crack propagation, elastoplasticity and ferromag-
netism to name a few [Mielke, 2005, Ch. 6 for a survey]. As in our case, the main difficulty with
such processes is the possible appearance of jumps when the energy E is non-convex.
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6.7 Conclusion.

Our study examines the behaviour of gradient flow with vanishing initialisation over diagonal
linear networks. We prove that it leads to the flow jumping from a saddle point of the loss
to another. Our analysis characterises each visited saddle point as well as the jumping times
through an algorithm which is reminiscent of the LARS method used in the Lasso framework.
There are several avenues for further exploration. The most compelling one is the extension of
these techniques to broader contexts for which the implicit bias of gradient flow has not yet fully
been understood.
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Chapter 7

Effect of noise

7.1 Preface

This chapter follows Pesme et al. [2021].

Summary We study the dynamics of stochastic gradient descent over diagonal linear networks
through its continuous time version, namely stochastic gradient flow. We explicitly characterise
the solution chosen by the stochastic flow and prove that it always enjoys better generalisation
properties than that of gradient flow. Quite surprisingly, we show that the convergence speed
of the training loss controls the magnitude of the biasing effect: the slower the convergence,
the better the bias. To fully complete our analysis, we provide convergence guarantees for the
dynamics. We also give experimental results which support our theoretical claims. Our findings
highlight the fact that structured noise can induce better generalisation and they help explain the
greater performances of stochastic gradient descent over gradient descent observed in practice.

Co-authors Loucas Pillaud-Vivien and Nicolas Flammarion.

Contributions Scott and Loucas worked together on the project.

7.2 Introduction

Understanding the performance of neural networks is certainly one of the most thrilling chal-
lenges for the current machine learning community. From the theoretical point of view, progress
has been made in several directions: we have a better functional analysis description of neural
networks [Bach, 2017] and we steadily understand the convergence of training algorithms [Mei
et al., 2018, Chizat and Bach, 2018] as well as the role of initialisation [Jacot et al., 2018, Chizat
et al., 2019]. Yet there remain many unanswered questions. One of which is why do the currently
used training algorithms converge to solutions which generalise well, and this with very little
use of explicit regularisation [Zhang et al., 2017].

To understand this phenomenon, the concept of implicit bias has emerged: if over-fitting
is benign, it must be because the optimisation procedure converges towards some particular
global minimum which enjoys good generalisation properties. Though no explicit regularisation
is added, the algorithm is implicitly selecting a particular solution: this is referred to as the
implicit bias of the training procedure. The implicit regularisation of several algorithms has
been studied, the simplest and most emblematic being that of gradient descent and stochastic
gradient descent in the least-squares framework: they both converge towards the global solution
which has the lowest squared distance from the initialisation. For logistic regression on separable
data, Soudry et al. show in the seminal paper [Soudry et al., 2018] that gradient descent selects
the max-margin classifier. This type of result has then been extended to neural networks and
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to other frameworks. Overall, characterising the implicit bias of gradient methods has almost
always come down to unveiling mirror-descent like structures which underlie the algorithms.

While mostly all of the results focus on gradient descent, it must be pointed out that this
full batch algorithm is not used in practice for neural networks since it does not lead to solutions
which generalise well [Keskar et al., 2017]. Instead, results on stochastic gradient descent, which
is widely used and shows impressive results, are still missing or unsatisfactory. This has certainly
to do with the fact that grasping the nature of the noise induced by the stochasticity of the
algorithm is particularly hard: it mixes properties from the model’s architecture, the data’s
distribution and the loss. In our work, by focusing on simplified neural networks, we answer to
the following fundamental questions: do SGD’s and GD’s implicit bias differ? What is the role
of SGD’s noise over the algorithm’s implicit bias?

The simplified neural networks which we consider are diagonal linear neural networks; despite
their simplicity they have become popular since they already enable to grasp the complexity of
more general networks. Indeed, they highlight important aspects of the theoretical concerns of
modern machine learning: the neural tangent kernel regime, the roles of over-parametrisation, of
the initialisation and of the step size. For a regression problem where we assume the existence of
an interpolating solution, we study stochastic gradient descent through its continuous version,
namely stochastic gradient flow (SGF). Though the continuous modelling of SGD has not yet
led to many fruitful results compared to the well studied gradient flow, we believe it is because
capturing the essence of the stochastic noise is particularly difficult. It has generally been done
in a non realistic and over simplified manner, such as considering constant and isotropic noise.
In our work, we attach peculiar attention to the adequate modelling of the noise. Tools from Itô
calculus are then leveraged in order to derive exact formulas, quantitative bounds and interesting
interpretations for our problem.

7.2.1 Main contributions and chapter organisation.

In Section 8.3, we start by introducing the setup of our problem as well as the continuous
modelisation of stochastic gradient descent. Then, in Section 7.4, we state our main result on
the implicit bias of the stochastic gradient flow. We informally formulate it here and illustrate
it in Figure 7.1:

Theorem 3 (Informal). Stochastic gradient flow over diagonal linear networks converges with
high probability to a zero-loss solution which enjoys better generalisation properties than the one
obtained by gradient flow. Furthermore, the speed of convergence of the training loss controls
the magnitude of the biasing effect: the slower the convergence, the better the bias.

Unlike previous works [Gunasekar et al., 2018a, Woodworth et al., 2020b], in addition to
characterising the implicit bias effect of SGF, we also prove the convergence of the iterates
towards a zero-loss solution with high-probability. To accomplish this, we leverage in Section 7.5
the fact that the iterates follow a stochastic continuous mirror descent with a time-varying
potential. We support our results experimentally and validate our model in Section 7.6.

7.2.2 Related work

As recalled, implicit bias has a recent history that has been initiated by the seminal work Soudry
et al. [2018] on max-margin classification with log-loss for a linear setup and separable data. This
work has been extended to other architectures, e.g. multiplicative parametrisations [Gunasekar
et al., 2018a], linear networks [Ji and Telgarsky, 2019] and more general homogeneous neural
networks [Lyu and Li, 2020, Chizat and Bach, 2020]. In Woodworth et al. [2020b] the authors
show that the scale of the initialisation leads to an interpolation between the neural tangent
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Figure 7.1: Sparse regression with n = 40, d = 100, ∥β⋆ℓ0∥0 = 5, xi ∼ N (0, I) yi = x⊤i β
⋆
ℓ0

. Left :
for initialisation scale α = 0.05, SGD converges towards a solution which generalises better than
GD. Right : for different values of the initialisation scale α, the solution recovered by SGD has
better validation loss than that of GD. The sparsifying effect due to their implicit biases differ
by more than an order of magnitude. See Section 7.6.1 for the precise experimental setup.

kernel regime [Jacot et al., 2018, Chizat et al., 2019] (which is a linear regression on fixed
features) leading to ℓ2 minimum norm solutions and the rich regimes leading to ℓ1 minimum
norm solutions. Note that these works focus on full batch gradient descent (or flow) and are
deeply linked to mirror descent.

While the links between SGD’s stochasticity and generalisation have been looked into in
numerous works [Mandt et al., 2016, Jastrzebski et al., 2018, He et al., 2019, Hoffer et al., 2017,
Kleinberg et al., 2018], no such explicit characterisation of implicit regularisation have ever been
given. It has been empirically observed that SGD often outputs models which generalise better
than GD [Keskar et al., 2017, Jastrzebski et al., 2018, He et al., 2019]. One suggested explanation
is that SGD is prone to pick flatter solutions than GD and that bad generalisation solutions are
correlated with sharp minima, i.e., with strong curvature, while good generalisation solutions are
correlated with flat minima, i.e., with low curvature [Hochreiter and Schmidhuber, 1997, Keskar
et al., 2017]. This idea has been further investigated by adopting a random walk on random
landscape modelling [Hoffer et al., 2017], by suggesting that SGD’s noise is smoothing the loss
landscape, thus eliminating the sharp minima [Kleinberg et al., 2018], by considering a dynamical
stability perspective [Wu et al., 2018] or by interpreting SGD as a diffusion process [He et al.,
2019, Jastrzebski et al., 2018, Chaudhari and Soatto, 2018]. Recently, label-noise has been shown
to influence the implicit bias of SGD, by biasing the solution towards the origin for quadratically-
parameterized models [HaoChen et al., 2021] or by implicitly regularising the expected squared
norm of the gradient of the model with respect to the weights [Blanc et al., 2020]. Thus, if
the notion of implicit bias of GD is fairly well understood both in the cases of regression and
classification, it remains unclear for SGD, and its explicit characterisation is missing.

The linear diagonal neural networks we consider have been studied in the case of gradient
descent [Vaskevicius et al., 2019] and stochastic gradient descent with label noise [HaoChen
et al., 2021]. In both cases the authors show that this model has the ability to implicitly bias
the training procedure to help retrieve a sparse predictor. The link between gradient descent and
mirror descent for this model has been initiated by Ghai et al. [2020] and further exploited by
the same author in Wu and Rebeschini [2020], Vaskevicius et al. [2020a] for its sparse inducing
property.

Contrary to the deterministic case, the modelling of stochastic gradient descent as a stochas-
tic differential equation is quite recent, see Mandt et al. [2016], Jastrzebski et al. [2018]. However,
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as highlighted by Ali et al. [2020], early attempts often suffer from the drawback that they model
the noise using a constant covariance matrix. On the contrary, state dependant noise has now
become the legitimate manner for modelling SGD as a stochastic gradient flow and it is shown in
Li et al. [2019a] that it can be done consistently. Yet, noise modelling still remains the principal
issue [Wojtowytsch, 2021] as it influences largely the behaviour of the dynamics Chaudhari and
Soatto [2018], Cheng et al. [2020].

7.2.3 Notations

For input data (x1, . . . , xn) ∈ (Rd)n and output (y1, . . . , yn) ∈ Rn, we denote respectively X ∈
Rn×d the design matrix whose i-th row is feature xi ∈ Rd and y ∈ Rn the vector of outputs.
R∗
+ denotes the set of strictly positive real numbers. For p = 1, 2, the ℓp-norm of x ∈ Rd

is ∥x∥pp =
∑d

i |xi|p. The operations ⊙ will stand for coordinate-wise product between vector:
[u ⊙ v]i = uivi and u2 = u ⊙ u. For p ∈ N∗, we also define up := u ⊙ . . . ⊙ u, the p times
product of u with itself. All inequalities between vectors should be understood value by value.
For f, g ∈ R, the existence of C > 0 such that f ≤ Cg and Cg ≤ f will be denoted f ≤ O(g)
and Ω(g) ≤ f respectively. We shall use the symbole Õ when this is true up to log factors. For a
vector u ∈ Rd, diag(u) denotes the d×d diagonal matrix which has its diagonal equal to u. For a
matrix M ∈ Rd×d, diag(M) denotes the vector (M11, . . . ,Mdd) ∈ Rd. The indexed vector β⋆ will
stand for any β interpolating the data, i.e. any vector in the affine space {β ∈ Rd s.t, Xβ = Y }
of dimension at least d− n. Out of all these, let β∗ℓ1 = arg min

β∈Rd s.t. Xβ=y

∥β∥1. For z any vector, z∞

or z∞ will always designate of lim
t→∞

zt.

7.3 Setup and preliminaries

7.3.1 Architecture and algorithm.

Overparametrised noiseless regression. We consider a linear regression problem with out-
puts (y1, . . . , yn) ∈ Rn and inputs (x1, . . . , xn) ∈ (Rd)n. We study an overparametrised setting
(n < d) and assume that there exists at least one interpolating parameter β⋆ ∈ Rd which per-
fectly fits the training set, i.e. yi = ⟨β⋆, xi⟩ for all 1 ≤ i ≤ n. We parametrise the regression
vector β as βw with w ∈ Rp. We will see that though in the end our final models x 7→ ⟨βw, x⟩ are
classical linear models whatever the parametrisation w 7→ βw, the choice of this parametrisation
has crucial consequences on the solution recovered by the learning algorithms. We study the
quadratic loss and the overall loss is written as:

L(w) = L(βw) :=
1

4n

n∑

i=1

(⟨βw, xi⟩ − yi)2 =
1

4n

n∑

i=1

⟨βw − β⋆, xi⟩2,

where by abuse of notation we use L(w) = L(βw).

2-layer diagonal linear network. The simplest parametrisation of βw is to consider βw = w
which corresponds to the classical least-squares framework. It is well known that in this case,
many first order methods (GD, SGD, with and without momentum) will converge towards the
same solution: we say that they have the same implicit bias. This is experimentally not the case
for neural networks where SGD has been shown to lead to solutions which have better generalisa-
tion properties compared to GD [Keskar et al., 2017]. To theoretically confirm this observation,
we study a simple non-linear parametrisation: βw = w2

+ − w2
− with w = [w+, w−]⊤ ∈ R2d. We

point out that it is 2-positive homogeneous and that it is equivalent to the parametrisation
βu,v = u ⊙ v with u, v ∈ Rd. It should be thought of a simplified linear network of depth 2
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(see [Woodworth et al., 2020b, Section 4] for more details). We consider two weight vectors
w+ and w− (and not only βw = w2) in order to ensure that our final linear predictor parameter
βw can take negative values. Also note that additionally to being a toy neural model, it has
received recent attention for its practical ability to induce sparsity [Vaskevicius et al., 2019,
2020a, HaoChen et al., 2021] or to solve phase retrieval problems [Wu and Rebeschini, 2020].

Stochastic Gradient Descent. With this quadratic parametrisation, the loss now rewrites
as: L(w) = 1

4n

∑n
i=1⟨w2

+−w2
−− β⋆, xi⟩2. Note that despite its simplicity, this loss is non convex

and its minimisation is non trivial. The algorithm we shall consider is the well known SGD
algorithm, where for a step size γ > 0:

wt+1,+ = wt,+ − γ⟨βw − β⋆, xit⟩ xit ⊙ wt,+
wt+1,− = wt,− + γ⟨βw − β⋆, xit⟩ xit ⊙ wt,−

where it ∼ Unif(1, n). (7.1)

It is convenient to rewrite this recursion as

wt+1,± = wt,± − γ∇w±L(wt)± γ diag(wt,±)X⊤ξit(βt), (7.2)

where ξit(β) = −
(
⟨β − β⋆, xit⟩eit − Eit

[
⟨β − β⋆, xit⟩eit

])
∈ Rn is a zero-mean multiplicative

noise which vanishes at any global optimum (ei denotes the ith element of the canonical basis).
We point out that all the results we shall give hold for any initialisation such that wt=0,+ =
wt=0,− ∈ Rd, under which we have that βwt=0 = 0. To understand under what conditions the
SGD procedure converges and towards which point it does, we shall consider its continuous
counterpart which has the advantage of leading to clean and intuitive calculations. We highlight
the fact that we consider a bath-size equal to 1 for clarity, however all our analysis holds for
mini-batch SGD (with and without replacement) simply by considering an effective step-size γeff
instead of γ, this is clearly explained in Appendix B.1.

7.3.2 Stochastic gradient flow

Continuous time modelling of sequential processes offer a large set of tools, such as derivation,
which come in helpful to understand the dynamics of the processes. This has led to a large
part of the recent literature to consider continuous gradient flow in order and understand the
behaviour of gradient descent on complicated architectures such as neural nets. However, the
continuous time modelling of stochastic gradient descent is more challenging: it requires to add
on top of the gradient flow a diffusion term whose covariance matches the one of SGD. Hence,
it is fundamental to understand its structure and scale.

Understanding the noise’s structure. As seen in equation (7.2), evaluated at w±, the
stochastic noise γ diag(w±)X⊤ξit(w) has two main characteristics which we want to preserve:

• It belongs to span(w± ⊙ x1, . . . , w± ⊙ xn)

• It has covariance ΣSGD(w±) := γ2 diag(w±)X⊤Covit(ξit(β))X diag(w±) ∈ Rd×d

It remains to understand the structure of the covariance of ξit which has the following closed
form: Covit(ξit(β)) = 1

n diag(⟨β−β⋆, xi⟩2)1≤i≤n− 1
n2

(
⟨β−β⋆, xi⟩⟨β−β⋆, xj⟩

)
1≤i,j≤n. We identify

the two key facts: (i) it is diagonal at the leading n−1 order and (ii) its trace is linked to the
loss as Varit(∥ξit(β)∥2) = 4

nL(β) +O( 1
n2 ). This leads us in modelling ξit(β)’s covariance matrix

as 4
nL(β)In as it preserves these two characteristics 1. Finally this brings us to consider the

following modelling of the overall noise’s structure: ΣSGD(w±) ∼= 4
nγ

2L(w)[diag(w±)X⊤]⊗2.

1the general case is discussed in Appendix B.4.1
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Stochastic differentiable equation modelling. Guided by the previous considerations, we
study the following stochastic gradient flow:

dwt,+ = −∇w+L(wt) dt+ 2
√
γn−1L(wt) wt,+ ⊙ [X⊤dBt]

dwt,− = −∇w−L(wt) dt− 2
√
γn−1L(wt) wt,− ⊙ [X⊤dBt],

(7.3)

where dBt is a standard Rn Brownian motion. The SDE is a perturbed gradient flow with a
diffusion term that is defined such that its Euler discretisation with step size γ leads to a Markov
Chain whose covariance exactly matches SGD’s noise covariance ΣSGD(w±). We refer to Li et al.
[2019a] or Kloeden and Platen [1992] for the technical details regarding consistency of such a
procedure in the limit of small step sizes. This stochastic differential equation is the starting
point of the analysis.

7.4 The implicit bias of the stochastic gradient flow

Implicit bias and hyperbolic entropy. To understand the relevance of the main result
and how stochasticity induces a preferable bias, we start by recalling some known results for
gradient flow. In Woodworth et al. [2020b] it is shown, assuming global convergence, that the
solution selected by the gradient flow initialised at α ∈ Rd and denoted βα∞ solves a constrained
optimisation problem involving the hyperbolic entropy introduced by Ghai et al. [2020]:

βα∞ = arg min
β∈Rd s.t. Xβ=y

ϕα(β) :=
1

4

[ d∑

i=1

βiarcsinh(
βi

2α2
i

)−
√
β2i + 4α4

i

]
, (7.4)

Though the hyperbolic entropy function has a non-trivial expression, its principal characteristic
is that it interpolates between the ℓ1 and the ℓ2 norms according to the scale of α. More precisely
for α ∈ R 2: ϕα(β) ∼

α→0

1
2 ln

(
1
α

)
∥β∥1 and ϕα(β) =

α→+∞
2α2 + 1

4α2 ∥β∥22 + o(α−2). We refer to

[Woodworth et al., 2020b, Theorem 2] for more details on the asymptotic analysis. The implicit
optimisation problem (7.4) therefore highlights the fact that the initialisation scale of the weights
controls the shape of the recovered solution. Small initialisations lead to low ℓ1-norm solutions
which are known to induce good generalisation properties: this is what is often referred to as the
rich regime. Large initialisations lead to low ℓ2-norm solutions: this is referred to as the kernel
regime or lazy regime in which the weights move only very slightly. The dynamics of the gradient
flow are then very similar to the one of kernel linear regression with the kernel depending on the
initialisation [Jacot et al., 2018, Chizat et al., 2019]. Overall, to retrieve a sparse solution, one
should initialise with the smallest α possible. However, as is clearly explained in Woodworth
et al. [2020b], it is important to stress out that there is a generalisation / optimisation tradeoff:
the point w = 0 happens to be a saddle point for the loss and a smaller α will lead to a longer
training time.

Main result. In the main theorem we show that, for an initialisation scale α, the stochasticity
of SGF biases the flow towards solutions which still minimise the hyperbolic entropy. However,
what is remarkable is that it does so with an effective parameter α∞ which is strictly smaller
than α. The recovered solution therefore minimises an optimisation problem which has better
sparsity inducing properties than that of gradient flow.

2If α ∈ R we consider the abuse of notation ϕα := ϕα1.
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Theorem 1. For p ≤ 1
2 and w0,± = α ∈ (R∗

+)d, let (wt)t≥0 follow the stochastic gradient

flow (7.3) with step size γ ≤ O
([

ln(4p)λmax max{∥β⋆ℓ1∥1 ln
( ∥β⋆

ℓ1
∥1

mini α2
i

)
, ∥α∥22}

]−1)
where β⋆ℓ1 =

arg min
β∈Rd s.t.Xβ=y

∥β∥1 and λmax is the largest eigenvalue of X⊤X/n. Then, with probability at least 1−
p:

• (βt)t≥0 converges towards a zero-training error solution βα∞

• the solution βα∞ satisfies

βα∞ = arg min
β∈Rd s.t. Xβ=y

ϕα∞(β) where α∞ = α⊙ exp

(
−2γ diag

(
X⊤X
n

)∫ +∞

0
L(βs) ds

)
. (7.5)

The theorem is three-fold: with high probability and for an explicit choice of constant step
size γ, (i) the flow (βt)t≥0 converges, (ii) its limit βα∞ is an interpolating solution, i.e. Xβα∞ = y
, (iii) this solution minimises the hyperbolic entropy problem with a parameter that depends
on the dynamics. We illustrate these results in Figure 8.1. Now let us comment further the
theorem.

Figure 7.2: Sparse regression (see Section 7.6.1 for the detailed experimental setting). Both
SGD and GD are initialised at α = 0.1. 2 different runs of SGD over the training set are
performed, they differ due to the inner stochasticity of the algorithm. Left : GD and SGD both
converge towards a global minimum. Middle and right : for two different trajectories of SGD,
the higher the value of the loss integral at convergence, the better the validation loss. In both
cases SGD converges towards a solution which generalises better than GD. This figure illustrates
Theorem 1.

Beneficial implicit bias through effective initialisation. The most remarkable aspect of
the result is that the recovered solution βα∞ minimises the same potential as for gradient flow but
with an effective parameter α∞ which is strictly smaller than α. Hence, the hyperbolic entropy
is closer to the ℓ1 norm compared to the deterministic case, proving a systematic benefit of
stochasticity. Note that this effective parameter is random and controlled by the loss integral∫ +∞
0 L(βs) ds: the higher the integral, the smaller the effective initialisation scale. In other words

and quite surprisingly, the slower the loss converges to 0, the “richer” the implicit bias. However,
it must be kept in mind that, as explained in Woodworth et al. [2020b], there is a tension between
generalisation and optimisation: a longer training time might improve generalisation but comes
at the cost of... a longer training time. Yet it is clear experimentally that SGD systematically
largely wins the trade-off over GD (see Figure 8.1). Interestingly, Problem (7.5) tells us that the
implicit bias of SGD initialised at α acts as if we run GD initialised at α∞ (see Section 7.6.3).
Note that the minimisation problem (7.5) only makes sense a posteriori since the quantity α∞
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depends on the whole stochastic trajectory. Finally, an interesting question is whether one can
quantify the scale of this beneficial phenomenon, i.e. how small α∞ is compared to α. To answer
this, we quantify the scale of the loss integral w.r.t. γ and α (see Proposition 16) and show under
slightly stronger conditions that the relative scale α∞/α decays as power of α (See Eq. (7.8) of
the main text and Proposition 30 of the appendix for a proof).

Kernel regime. Though it is less our focus, our result still holds as α → +∞ which corre-
sponds to the kernel regime. In this regime, we believe that

∫ +∞
0 L(βs) ds →

α→∞
0 (not shown in

the chapter but experimentally observed) and hence SGF and GF converge towards the same
solution. This is expected since in the NTK regime, the iterates follow a kernel linear regression
for which the bias of SGF and GF are the same.

Step size. Note that the convergence of the iterates holds for a constant step size. This is not
illogical since in the overparametrised setting, the noise vanishes at the optimum (see Varre et al.
[2021] for a convergence result in the overparametrised least-squares setup). The explicit formula

for the γ upper bound is γ ≤
(

400 ln
(
4
p

)
λmax(X

⊤X
n ) max

{
∥β⋆ℓ1∥1 ln

(√
2

∥β⋆
ℓ1
∥1

mini α2
i

)
, ∥α∥22

})−1
. It

has a classical dependence on λmax(X⊤X/n) which can be computed, but also on the unknown
value of ∥β⋆ℓ1∥1. However in practice we choose the highest value of γ for which the iterates
converge. Note that in practice the weights are often initialised such that ∥α∥22 is roughly
equal to 1 and hence it is sensible to consider ∥α∥22 < ∥β∗ℓ1∥1. In the explicit bound, there is

a ln
(
∥β∗ℓ1∥1/mini α

2
i

)−1
factor, we believe that it is an artefact of our analysis and could be

removed. It is hence best to think of the upperbound on γ to simply be γ ≤ O( 1
λmax∥β∗

ℓ1
∥1 ).

Convergence and proof sketch. Let us put emphasis on the fact that since we deal with
a non-convex problem, neither convergence nor convergence towards a global minimum are
obvious. In most of similar works, convergence of the iterates is assumed [Woodworth et al.,
2020b, Gunasekar et al., 2018a]. In fact, the hardest and most technical part of our result
is to show the convergence of the flow with high probability: once the convergence is shown,
describing the minimisation problem βα∞ verifies is straightforward. In the following section we
give several properties which constitute the major keys of the theorem’s proof.

7.5 Links with mirror descent

The aim of this section is to show that the sequence (βt)t≥0 follows a stochastic version of
continuous mirror descent with a time dependent mirror. From this crucial property, we show
how the convergence and implicit bias characterisation follow. Finally, as it is one of the central
objects of our main theorem, we give an estimation of

∫∞
0 L(βs) ds.

7.5.1 Stochastic continuous mirror descent with time-varying potential

We start by recalling known results on the link between implicit bias and mirror descent. We
recall also convergence guarantees for mirror descent dynamics.

Mirror descent: convergence and implicit bias. For any β0 ∈ Rd and convex potential
function Ψ, consider the mirror descent flow (βt)t which corresponds to d∇Ψ(βt) = −∇L(βt)dt.
Though the convergence of the loss to 0 is straightforward, showing the convergence of the iter-
ates requires more work and is shown in [Bauschke et al., 2017, Theorem 2]. Yet, once the con-
vergence of the iterates is shown, deriving the implicit minimisation problem is straightforward.
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We recall the reasoning here (see Section 3 of Azulay et al. [2021] for more details): integrating
the flow yields ∇Ψ(β∞) − ∇Ψ(β0) = −

∫∞
0 ∇L(βs) ds = −4X⊤ ∫∞

0 X(βs − β∞) ds ∈ span(X).
This condition, along with the fact that Xβ∞ = y exactly corresponds to the KKT conditions
of the problem:

β∞ = arg min
β∈Rd s.t. Xβ=y

DΨ(β, β0), (7.6)

where DΨ(β, β0) = Ψ(β)−Ψ(β0)− ⟨∇Ψ(β0), β − β0⟩ is the Bregman divergence w.r.t. Ψ.

Link with our model. It turns out that these general observations on mirror descent apply
to our framework when (wt)t follows the gradient flow dwt,± = −∇w±L(wt) dt. Indeed it has
been shown in Woodworth et al. [2020b] that the corresponding iterates βt = w2

t,+−w2
t,− follow

a mirror descent with potential ϕα defined in Eq.(7.4). Therefore we can apply the previous
remarks to obtain the convergence towards an interpolator, as well as the associated implicit
minimisation problem which in our case can be rewritten as βα∞ = arg min

β∈Rd s.t. Xβ=y

ϕα(β) since

∇ϕα(β0 = 0) = 0.

Stochastic Mirror descent with a time varying potential. To address the problem
where (wt)t follows a stochastic gradient flow instead of a gradient flow, it is natural, as in the
deterministic framework, to see what type of flow (βt)t follows. Because of the noise, we cannot
hope to simply recover a classical mirror descent. However interestingly the next property shows
that it follows a stochastic mirror-like descent with a geometry that depends on time.

Proposition 14. Consider the iterates (wt)t≥0 issued from the stochastic gradient flow in Eq.(7.3)
with initialisation w0,± = α ∈ (R∗

+)d. Then the corresponding flow (βt)t≥0 follows a “stochastic
continuous mirror descent with time varying potential” defined by:

d∇ϕαt(βt) = −∇L(βt) dt+
√
γn−1L(βt)X

⊤dBt, (7.7)

where αt = α ⊙ exp
(
−2γ diag

(
X⊤X
n

) ∫ t
0 L(βs) ds

)
and ϕα is the hyperbolic entropy defined

in (7.4).

Under this form we clearly see that the iterates (βt)t follow a flow which closely resembles
that of mirror descent but with two major differences: (i) the potential ϕαt changes over time
according to the random quantity

∫ t
0 L(βs) ds, (ii) the flow is perturbed by noise. We highlight

the fact that viewing the dynamics this way has the major advantage of giving a clear roadmap
for the proof of Theorem 1: (i) we can adapt classical mirror-descent results to our framework
and construct appropriate Lyapunov functions to prove the convergence of the flow with high
probability to some interpolator βα∞, (ii) we immediately recover the corresponding minimisation
problem as in the deterministic case. Indeed, integrating Eq.(7.7) still yields ∇ϕα∞(βα∞) ∈
span(X) which, along with Xβα∞ = y, are the KKT conditions of the implicit minimisation
problem (7.5). We emphasise the fact that the structure of the noise, belonging to span(X),
is crucial in order to obtain this minimisation problem. This would for instance clearly not be
true if we considered isotropic noise in the SDE modelling. This highlights the fact that not
every form of noise improves the implicit bias: the shape of the intrinsic SGD noise is of primal
importance [HaoChen et al., 2021].
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7.5.2 Convergence and control of
∫∞
0
L(βs) ds

Though it seems easy to derive the implicit minimisation problem (7.5) from the mirror-like
structure of Eq.(7.7), it is necessary to ensure that the iterates converge towards an interpolator
β∞. This is the purpose of the following proposition.

Proposition 15 (Convergence of the iterates). Consider the iterates (wt)t≥0 issued from the
stochastic gradient flow (7.3), initialised at w0,± = α ∈ (R∗

+)d. For p ≤ 1
2 and γ such as in

Theorem 1, then with probability at least 1 − p, the flow (βt)t converges to an interpolating
solution βα∞.

The convergence of the iterates is technical and requires several intermediate results. We start
by considering an appropriate Bregman-type stochastic function with a time-varying potential
and show that it converges with high probability. Leveraging the fact that we are able to bound
the iterates βt, we are able to show that the limit of the function is in fact 0. Owing to the fact
that the function we consider also controls the distance of βt to a particular β⋆ we finally get
that the iterates converge.

However for the objects (such as α∞) and functions we introduce to be well defined, we need
to guarantee the convergence of

∫∞
0 L(βs)ds. Besides, it is crucial to grasp the scale of this

quantity since it gives the overall scale of α∞. This is done in the following proposition where
we lower and upper bound its value.

Proposition 16. Under the same setting as in Proposition 15 with initialisation w0,± = α1,
we have with probability at least 1− p:

Ω
(
∥β∗ℓ1∥1 ln

(∥β∗ℓ1∥1
α2

))
⩽
α→0

∫ +∞

0
L(βs) ds ⩽ O

(
max

{
∥β∗ℓ1∥1 ln

(∥β∗ℓ1∥1
α2

)
, α2d

})
.

We point out that the lower bound is given for small α’s for simplicity but we provide in
Lemma 16 (Appendix B.2.5) a lower bound which holds for all α’s. Note that when γ = 0,
which corresponds to deterministic gradient flow, we can give the exact value for the integral:∫ +∞
0 L(βs) ds = 1

2Dϕα(βα∞, β0). This matches the scale of the bounds given in Proposition 16,
hence showing the tightness of the result. We focus now on how this translates to the scale of
the effective initialisation w.r.t. α when this latter is small enough. In fact, this lower bound
on the integral of the loss along with a stronger assumption on the boundedness of the iterates
lead to

α∞
α

⩽
α→0

(
α2

∥β⋆ℓ1∥1

)ζ
, (7.8)

for some ζ > 0. Hence the smaller the initialisation scale α and the greater the benefit of SGD
over GD in terms of implicit bias (see Appendix B.2.6 for more details).

Again, the proof of this proposition is technical and relies on considering appropriate Lya-
punov functions which highly resemble to Bregman divergences, but which take into account the
fact that the geometry changes over time. These overall decreasing Lyapunov’s enable to bound
the iterates as well as lower and upper bound the integral of the loss. The stochastic integrals
which naturally appear are controlled with high probability using time-uniform concentration
of martingales [Howard et al., 2020].
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7.6 Experiments

7.6.1 Experimental setup for sparse regression

We consider the following sparse regression setup for our experiments. We choose n = 40,
d = 100 and randomly generate a sparse model β⋆ℓ0 such that ∥β⋆ℓ0∥0 = 5. We generate the

features as xi ∼ N (0, I) and the labels as yi = x⊤i β
⋆
ℓ0

. SGD, GD and the SGF are always
initialised using the same scale α > 0 and it is specified each time. We use the same step size for
GD and SGD and choose it to be the biggest as possible why still ensuring convergence. Note
that since the true population covariance E[xx⊤] is equal to identity, the quantity ∥βt − β⋆ℓ0∥22
corresponds to the validation loss.

7.6.2 Validation of the SDE model

In this section, we present an experimental validation of the stochastic gradient flow model. In
Figure 7.3, for the same step size, we run: (i) the trajectory of gradient descent, (ii) 5 trajectories
of stochastic gradient descent that correspond to different realisations of the uniform sampling
over the data, (iii) 5 trajectories of the stochastic gradient flow (its Euler discretisation with
dt = γ/10)) corresponding to different realisations of the Brownian. We clearly see (left) that
the loss behaves similarly for SGD and SGF across time. We also see that the validation losses
(right) of the iterates of SGD and SGF have very similar behaviours. This tends to validate our
continuous modelling from Section 7.3.2.
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GD

SGDs

SDEs

101 103 105

Iteration t

10−3

10−2
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100

Test losses ||βt − β∗`0 ||22
GD

SGDs

SDEs

Figure 7.3: Sparse regression (see Section 7.6.1 for the detailed experimental setup). Left and
right : the training and the validation losses behave very similarly, corroborating the continuous
modelling.

7.6.3 GD and SGD have the same implicit bias, but from different initiali-
sations

In order to confirm and illustrate the main Theorem 1, we provide the following experiment
which is illustrated Figure 7.4. We first run GD and SGD with the same step-size and initialise
them both at α1 with α = 0.01. As expected, the solution recovered by SGD generalises
better. Then, using the iterates βSGD

t from the first SGD run, we compute the value α∞ =
α exp(−2γ diag(X⊤X/n)

∫∞
0 L(βSGD

s )ds) ∈ Rd (the integral is approximated by its discrete time
approximation with dt = γ). We then run gradient descent but this time initialised at w0,± =
α∞. According to our main result from Theorem 1, it should approximately (it would be exact
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if we ran SGF and GF) converge to the same solution as SGD initialised at α1. This is clearly
observed Figure 7.4 (right). Also note that SGD and GD (initialised at α∞) seem to have overall
very similar dynamics, this is not shown by our results and we leave this as future work. However
keep in mind that though the validation losses converge at the same iteration rate, in terms of
computation time, SGD is n times faster.
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Figure 7.4: Sparse regression (see Section 7.6.1 for the detailed experimental setup). Left and
right : SGD initialised at α1 converges towards the same point as GD initialised at α∞ =
α exp(−2γ diag(X⊤X/n)

∫∞
0 L(βSGD

s )ds) .

7.6.4 Doping the implicit bias with label noise

As largely discussed throughout the chapter, the effect of the implicit bias is controlled by the
convergence speed of the loss: the slower it converges, the sparser the selected solution will
be. Hence the following question: can we leverage this knowledge to dope the implicit bias?
We argue in this Section that the answer to this question is affirmative. Indeed, consider a
sequence (δt)t∈N ∈ RN

+ and assume that we artificially inject some label noise ∆t at time t, say
for example ∆t ∼ Unif{2δt,−2δt} (independently from it). This injected label noise perturbs
the SGD recursion as follows:

wt+1,± = wt,± ∓ γ (⟨βw − β⋆, xit⟩+ ∆t) xit ⊙ wt,+ , where it ∼ Unif(1, n). (7.9)

As in Section 7.3.2, we can derive its related stochastic gradient flow (see Appendix B.3.1 for
more details):

dwt,± = −∇w±L(wt)dt± 2
√
γn−1(L(wt) + δ2t ) wt,+ ⊙ [X⊤dBt]. (7.10)

Assuming that (δt)t≥0 ∈ (R+)R and γ are such that the iterates converge, the corresponding im-
plicit regularisation minimisation problem is preserved but with a ”slowed down” loss: L̃(βt) :=

L(βt)+δ2t and the effective initialisation writes: α̃∞ = α⊙ exp
(
−2γ diag(X

⊤X
n )

∫ +∞
0 L̃(βs) ds

)
.

The label noise therefore helps recovering a solution which has better sparsity properties. How-
ever, it must be kept in mind that adding too much label noise can significantly slow down the
convergence of the validation loss or even prevent the iterates from converging. Yet, experimental
results showing the impressive effect of label noise are provided Figure B.1 in Appendix B.3.1.
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7.7 Conclusion

In this chapter, we have shown the benefit of using stochastic gradient descent over gradient
descent for diagonal linear networks in terms of their implicit bias. Indeed, we prove that
stochastic gradient flow acts as gradient flow but initialised at a smaller scale: this induces a
sparser finale iterate. This effect is controlled by the speed of convergence of the loss. Moreover,
we prove the convergence of the flow and exhibit an interesting link with mirror descent. Fully
understanding this novel type of dynamics could help to grasp the implicit biasing properties of
stochastic gradient descent in other frameworks. It is also natural to ask whether the integral
of the loss also controls the difference of implicit regularisation for more general architectures.
It would also be interesting to analyse how this property adapts to log losses known to lead to
max-margin solutions in classification.
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Chapter 8

Effect of the step size

8.1 Preface

This chapter follows Even et al. [2023].

Summary We investigate the impact of stochasticity and large stepsizes on the implicit regu-
larisation of gradient descent (GD) and stochastic gradient descent (SGD) over 2-layer diagonal
linear networks. We prove the convergence of GD and SGD with macroscopic stepsizes in an
overparametrised regression setting and provide a characterisation of their solution through an
implicit regularisation problem. Our characterisation provides insights on how the choice of
minibatch sizes and stepsizes lead to qualitatively distinct behaviors in the solutions. Specif-
ically, we show that for sparse regression learned with 2-layer diagonal linear networks, large
stepsizes consistently benefit SGD, whereas they can hinder the recovery of sparse solutions
for GD. These effects are amplified for stepsizes in a tight window just below the divergence
threshold, known as the ”edge of stability” regime.

Co-authors Mathieu Even, Suriya Gunasekar and Nicolas Flammarion.

Contributions Mathieu and Scott worked together on the project.

8.2 Introduction

The stochastic gradient descent algorithm (SGD) [Robbins and Monro, 1951] is the foundational
algorithm for almost all neural network training. Though a remarkably simple algorithm, it has
led to many impressive empirical results and is a key driver of deep learning. However the
performances of SGD are quite puzzling from a theoretical point of view as (1) its convergence
is highly non-trivial and (2) there exist many global minimums for the training objective which
generalise very poorly [Zhang et al., 2017].

To explain this second point, the concept of implicit regularisation has emerged: if overfitting
is harmless in many real-world prediction tasks, it must be because the optimisation process is
implicitly favoring solutions that have good generalisation properties for the task. The canonical
example is overparametrised linear regression with more trainable parameters than number of
samples: although there are infinitely many solutions that fit the samples, GD and SGD explore
only a small subspace of all the possible parameters. As a result, it can be shown that they
implicitly converge to the closest solution in terms of the ℓ2 distance, and this without explicit
regularisation [Lemaire, 1996, Gunasekar et al., 2018a].

Currently, most theoretical works on implicit regularisation have primarily focused on con-
tinuous time approximations of (S)GD where the impact of crucial hyperparameters such as
the stepsize and the minibatch size are ignored. One such common simplification is to analyse
gradient flow, which is a continuous time limit of GD and minibatch SGD with an infinitesimal
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Figure 8.1: Noiseless sparse regression with a diagonal
linear network using SGD and GD, with parameters ini-
tialized at the scale of α = 0.1 (Section 8.3). The test
losses at convergence for various stepsizes are plotted
for GD and SGD. Small stepsizes correspond to gradi-
ent flow (GF) performance. We see that increasing the
stepsize improves the generalisation properties of SGD,
but deteriorates that of GD. The dashed vertical lines
at stepsizes γ̃SGD

max and γ̃GD
max denote the largest stepsizes

for which SGD and GD, respectively, converge. See Sec-
tion 8.3 for the precise experimental setting.
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stepsize. By definition, this analysis does not capture the effect of stepsize or stochasticity. An-
other approach is to approximate SGD by a stochastic gradient flow [Wojtowytsch, 2021, Pesme
et al., 2021], which tries to capture the noise and the stepsize using an appropriate stochastic
differential equation. However, there are no theoretical guarantees that these results can be
transferred to minibatch SGD as used in practice. This is a limitation in our understanding
since the performances of most deep learning models are often sensitive to the choice of stepsize
and minibatch size. The importance of stepsize and SGD minibatch size is common knowledge
in practice and has also been systematically established in controlled experiments [Keskar et al.,
2017, Masters and Luschi, 2018, Geiping et al., 2022].

In this work, we aim to expand our understanding of the impact of stochasticity and stepsizes
by analysing the (S)GD trajectory in 2-layer diagonal networks (DLNs). In Figure 8.1, we show
that even in our simple network, there are significant differences between the nature of the
solutions recovered by SGD and GD at macroscopic stepsizes. We discuss this behavior further
in the later sections.

The 2-layer diagonal linear network which we consider is a simplified neural network that has
received significant attention lately [Woodworth et al., 2020a, Vaskevicius et al., 2019, HaoChen
et al., 2021, Pillaud-Vivien et al., 2022]. Despite its simplicity, it surprisingly reveals training
characteristics which are observed in much more complex architectures, such as the role of the
initialisation [Woodworth et al., 2020a], the role of noise [Pesme et al., 2021, Pillaud-Vivien et al.,
2022], or the emergence of saddle-to-saddle dynamics [Berthier, 2022, Pesme and Flammarion,
2023]. It therefore serves as an ideal proxy model for gaining a deeper understanding of complex
phenomenons such as the roles of stepsizes and of stochasticity as highlighted in this chapter.
We also point out that implicit bias and convergence for more complex architectures such as
2-layer ReLU networks, matrix multiplication are not yet fully understood, even for the simple
gradient flow. Therefore studying the subtler effects of large stepsizes and stochasticity in these
settings is currently out of reach.

8.2.1 Main results and chapter organisation

The overparametrised regression setting and diagonal linear networks are introduced in Sec-
tion 8.3. We formulate our theoretical results (Theorems 1 and 2) in Section 8.4: we prove
that for macroscopic stepsizes, gradient descent and stochastic gradient descent over 2-layer
diagonal linear networks converge to a zero-training loss solution β⋆∞. We further provide a
refined characterization of β⋆∞ through a trajectory-dependent implicit regularisation problem,
that captures the effects of hyperparameters of the algorithm, such as stepsizes and batchsizes,
in useful and analysable ways. In Section 8.5 we then leverage this crisp characterisation to
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explain the influence of crucial parameters such as the stepsize and batch-size on the recovered
solution. Importantly our analysis shows a stark difference between the generalisation
performances of GD and SGD for large stepsizes, hence explaining the numerical results
seen in Figure 8.1 for the sparse regression setting. Finally, in Section 8.6, we use our results to
shed new light on the Edge of Stability (EoS ) phenomenon [Cohen et al., 2021].

8.2.2 Related works

Implicit bias. The concept of implicit bias from optimization algorithm in neural networks
has been studied extensively in the past few years, starting with early works of [Telgarsky, 2013,
Neyshabur et al., 2014, Keskar et al., 2017, Soudry et al., 2018]. The theoretical results on
implicit regularisation have been extended to multiplicative parametrisations [Gunasekar et al.,
2017, 2018b], linear networks [Ji and Telgarsky, 2019], and homogeneous networks [Lyu and Li,
2020, Ji and Telgarsky, 2020, Chizat et al., 2019]. For regression loss on diagonal linear networks
studied in this work, Woodworth et al. [2020a] demonstrate that the scale of the initialisation
determines the type of solution obtained, with large initialisations yielding minimum ℓ2 norm
solutions—the neural tangent kernel regime [Jacot et al., 2018] and small initialisation resulting
in minimum ℓ1 norm solutions—the rich regime [Chizat et al., 2019]. The analysis relies on the
link between gradient descent and mirror descent established by Ghai et al. [2020] and further
explored by Vaskevicius et al. [2020a], Wu and Rebeschini [2020]. These works focus on full
batch gradient, and often in the inifitesimal stepsize limit (gradient flow), leading to general
insights and results that do not take into account the effects of stochasticity and large stepsizes.

The effect of stochasticity in SGD on generalisation. The relationship between stochas-
ticity in SGD and generalisation has been studied in various works [Mandt et al., 2016, Hoffer
et al., 2017, Chaudhari and Soatto, 2018, Kleinberg et al., 2018, Wu et al., 2018]. Empirically,
models generated by SGD exhibit better generalisation performance than those generated by
GD [Keskar et al., 2017, Jastrzebski et al., 2019, He et al., 2019]. Explanations related to
the flatness of the minima picked by SGD have been proposed [Hochreiter and Schmidhuber,
1997]. Label noise has been shown to influence the implicit bias of SGD [HaoChen et al., 2021,
Blanc et al., 2020, Damian et al., 2021, Pillaud-Vivien et al., 2022] by implicitly regularising
the sharp minimisers. Recently, studying a stochastic gradient flow that models the noise of
SGD in continuous time with Brownian diffusion, Pesme et al. [2021] characterised for diagonal
linear networks the limit of their stochastic process as the solution of an implicit regularisation
problem. However similar explicit characterisation of the implicit bias remains unclear for SGD
with large stepsizes.

The effect of stepsizes in GD and SGD. Recent efforts to understand how the choice of
stepsizes affects the learning process and the properties of the recovered solution suggest that
larger stepsizes lead to the minimisation of some notion of flatness of the loss function [Smith
and Le, 2018, Keskar et al., 2017, Nacson et al., 2022, Jastrzkebski et al., 2018, Wu et al., 2018,
Mulayoff et al., 2021], backed by empirical evidences or stability analyses. Larger stepsizes have
also been proven to be beneficial for specific architectures or problems: two-layer network [Li
et al., 2019b], regression [Wu et al., 2021], kernel regression [Beugnot et al., 2022] or matrix
factorisation [Wang et al., 2022b]. For large stepsizes, it has been observed that GD enters an
Edge of Stability (EoS) regime [Jastrzebski et al., 2019, Cohen et al., 2021], in which the iterates
and the train loss oscillate before converging to a zero-training error solution; this phenomenon
has then been studied on simple toy models [Ahn et al., 2022, Zhu et al., 2023, Chen and Bruna,
2022, Damian et al., 2023] for GD. Recently, Andriushchenko et al. [2022] presented empirical
evidence that large stepsizes can lead to loss stabilisation and towards simpler predictors.

56



CHAPTER 8. EFFECT OF THE STEP SIZE

8.3 Setup and preliminaries

Overparametrised linear regression. We consider a linear regression over inputs X =
(x1, . . . , xn) ∈ (Rd)n and outputs y = (y1, . . . , yn) ∈ Rn. We consider overparametrised problems
where input dimension d is (much) larger than the number of samples n. In this case, there exists
infinitely many linear predictors β⋆ ∈ Rd which perfectly fit the training set, i.e., yi = ⟨β⋆, xi⟩
for all 1 ≤ i ≤ n. We call such vectors interpolating predictors or interpolators and we denote
by S the set of all interpolators S = {β⋆ ∈ Rd s.t. ⟨β⋆, xi⟩ = yi,∀i ∈ [n]}. Note that S is an
affine space of dimension greater than d−n and equal to β⋆+ span(x1, . . . , xn)⊥ for any β⋆ ∈ S.
We consider the following quadratic loss: L(β) = 1

2n

∑n
i=1(⟨β, xi⟩ − yi)2, for β ∈ Rd.

2-layer linear diagonal network. We parametrise regression vectors β as functions βw of
trainable parameters w ∈ Rp. Although the final prediction function x 7→ ⟨βw, x⟩ is linear in
the input x, the choice of the parametrisation drastically changes the solution recovered by
the optimisation algorithm [Gunasekar et al., 2018b]. In the case of the linear parametrisation
βw = w many first-order methods (SGD, GD, with or without momentum) converge towards
the same solution and the choice of stepsize does not impact the recovered solution beyond
convergence. In an effort to better understand the effects of stochasticity and large stepsize, we
consider the next simple parametrisation, that of a 2-layer diagonal linear neural network given
by:

βw = u⊙ v where w = (u, v) ∈ R2d . (8.1)

This parametrisation can be viewed as a simple neural network x 7→ ⟨u, σ(diag(v)x)⟩ where the
output weights are represented by u, the inner weights is the diagonal matrix diag(v), and the
activation σ is the identity function. In this spirit, we refer to the entries of w = (u, v) ∈ R2d

as the weights and to β := u ⊙ v ∈ Rd as the prediction parameter. Despite the simplicity of
the parametrisation (8.1), the loss function F over parameters w = (u, v) ∈ R2d is non-convex
(and thus the corresponding optimization problem is challenging to analyse), and is given by:

F (w) := L(u⊙ v) =
1

2n

n∑

i=1

(yi − ⟨u⊙ v, xi⟩)2 . (8.2)

Mini-batch SGD. We minimise F using mini-batch SGD: let w0 = (u0, v0) and for k ≥ 0,

wk+1 = wk − γk∇FBk
(wk) , where FBk

(w) :=
1

2b

∑

i∈Bk

(yi − ⟨u⊙ v, xi⟩)2 , (8.3)

where γk are stepsizes, Bk ⊂ [n] are mini-batches of b ∈ [n] distinct samples sampled uniformly
and independently, and ∇FBk

(wk) are minibatch gradients of partial loss over Bk, FBk
(w) :=

LBk
(u ⊙ v) defined above. Classical SGD and full-batch GD are special cases with b = 1 and

b = n, respectively. For k ≥ 0, we consider the successive prediction parameters βk := uk ⊙ vk
built from the weights wk = (uk, vk). We analyse SGD initialised at u0 =

√
2α ∈ Rd>0 and

v0 = 0 ∈ Rd, resulting in β0 = 0 ∈ Rd independently of the chosen weight initialisation α1.

1In Appendix C.3, we show that the (S)GD trajectory with this initialisation exactly matches that of another
common parametrisation βw = w2

+ − w2
− with initialisation w+,0 = w−,0 = α. The second layer of our diagonal

linear network is set to 0 in order to obtain results that are easier to interpret. However, our proof techniques
can be applied directly to a general initialisation, at the cost of additional notations in our Theorems.
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Experimental details. We consider the noiseless sparse regression setting where (xi)i∈[n] ∼
N (0, Id) and yi = ⟨β⋆ℓ1 , xi⟩ for some s-sparse vector β⋆ℓ1 . We perform (S)GD over the DLN with

a uniform initialisation α = α1 ∈ Rd where α > 0. Figure 8.1 and Figure 8.2 (left) correspond
to the setup (n, d, s, α) = (20, 30, 3, 0.1), Figure 8.2 (right) to (n, d, s, α) = (50, 100, 4, 0.1) and
Figure 8.3 to (n, d, s, α) = (50, 100, 2, 0.1).

Notations. Let H := ∇2L = 1
n

∑
i xix

⊤
i denote the Hessian of L, and for a batch B ⊂ [n] let

HB := ∇2LB = 1
|B|
∑

i∈B xix
⊤
i denote the Hessian of the partial loss over the batch B. Let L

denote the “smoothness” such that ∀β, ∥HBβ∥2 ≤ L∥β∥2, ∥HBβ∥∞ ≤ L∥β∥∞ for all batches
B ⊂ [n] of size b. A real function (e.g, log, exp) applied to a vector must be understood as
element-wise application, and for vectors u, v ∈ Rd, u2 = (u2i )i∈[d], u ⊙ v = (uivi)i∈[d] and
u/v = (ui/vi)i∈[d]. We write 1, 0 for the constant vectors with coordinates 1 and 0 respectively.

The Bregman divergence [Bregman, 1967] of a differentiable convex function h : Rd → R is
defined as Dh(β1, β2) = h(β1)− (h(β2) + ⟨∇h(β2), β1 − β2⟩).

8.4 Implicit bias of SGD and GD

We start by recalling some known results on the implicit bias of gradient flow on diagonal linear
networks before presenting our main theorems on characterising the (stochastic) gradient descent
solutions (theorem 1) as well as proving the convergence of the iterates (theorem 2).

8.4.1 Warmup: gradient flow

We first review prior findings on gradient flow on diagonal linear neural networks. Woodworth
et al. [2020a] show that the limit β⋆α of the gradient flow dwt = −∇F (wt)dt initialised at
(u0, v0) = (

√
2α,0) is the solution of the minimal interpolation problem:

β⋆α = arg min
β⋆∈S

ψα(β⋆) , where ψα(β) =
1

2

d∑

i=1

(
βiarcsinh(

βi
α2
i

)−
√
β2i + α4

i + α2
i

)
. (8.4)

The convex potential ψα is the hyperbolic entropy function (or hypentropy) [Ghai et al.,
2020]. Depending on the structure of the vector α, the generalisation properties of β⋆α highly
vary. We point out the two main characteristics of α that affect the behaviour of ψα and
therefore also the solution β⋆α.

1. The Scale of α. For an initialisation vector α we call the ℓ1-norm ∥α∥1 the scale of
the initialisation. It is an important quantity affecting the properties of the recovered solution
β⋆α. To see this let us consider a uniform initialisation of the form α = α1 for a scalar value
α > 0. In this case the potential ψα has the property of resembling the ℓ1-norm as the scale
α vanishes: ψα ∼ ln(1/α)∥.∥1 as α → 0. Hence, a small initialisation results in a low ℓ1-norm
solution which is known to induce sparse recovery guarantees [Candès et al., 2006]. This setting
is often referred to as the “rich” regime [Woodworth et al., 2020a]. In contrast, using a large
initialisation scale leads to solutions with low ℓ2-norm: ψα ∼ ∥.∥22/(2α2) as α → ∞, a setting
known as the “kernel” or “lazy” regime. Overall, to retrieve the minimum ℓ1-norm solution, one
should use a uniform initialisation with small scale α, see Figure C.4 in Appendix C.4 for an
illustration and [Woodworth et al., 2020a, Theorem 2] for a precise characterisation.

2. The Shape of α. In addition to the scale of the initialisation α, a lesser studied aspect
is its “shape”, which is a term we use to refer to the relative distribution of {αi}i along the
d coordinates [Azulay et al., 2021]. It is a crucial property because having α → 0 does not

necessarily lead to the potential ψα being close to the ℓ1-norm. Indeed, we have that ψα(β)
α→0∼
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∑d
i=1 ln( 1

αi
)|βi| (see Appendix C.4), therefore if the vector ln(1/α) has entries changing at

different rates, then ψα(β) is a weighted ℓ1-norm. In words, if the entries of α do not go to zero
“uniformly”, then the resulting implicit bias minimizes a weighed ℓ1-norm. This phenomenon can
lead to solutions with vastly different sparsity structure than the minimum ℓ1-norm interpolator.
See Figure C.4 and Example 1 in Appendix C.4.

8.4.2 Implicit bias of (stochastic) gradient descent

In theorem 1, we prove that for an initialisation
√

2α ∈ Rd and for arbitrary stepsize sequences
(γk)k≥0 if the iterates converge to an interpolator, then this interpolator is the solution of
a constrained minimisation problem which involves the hyperbolic entropy ψα∞ defined in (8.4),
where α∞ ∈ Rd is an effective initialisation which depends on the trajectory and on the stepsize
sequence. Later, we prove the convergence of iterates for macroscopic step sizes in
theorem 2.

Theorem 1 (Implicit bias of (S)GD). Let (uk, vk)k≥0 follow the mini-batch SGD recursion (8.3)
initialised at (u0, v0) = (

√
2α,0) and with stepsizes (γk)k≥0. Let (βk)k≥0 = (uk ⊙ vk)k≥0 and

assume that they converge to some interpolator β⋆∞ ∈ S. Then, β⋆∞ satisfies:

β⋆∞ = arg min
β⋆∈S

Dψα∞ (β⋆, β̃0) , (8.5)

where Dψα∞ is the Bregman divergence with hyperentropy potential ψα∞ of the effective ini-

tialisation α∞, and β̃0 is a small perturbation term. The effective initialisation α∞ is
given by,

α2
∞ = α2 ⊙ exp

(
−

∞∑

k=0

q
(
γk∇LBk

(βk)
)
)
, (8.6)

where q(x) = −1
2 ln((1− x2)2) satisfies q(x) ≥ 0 for |x| ≤

√
2, with the convention q(1) = +∞.

The perturbation term β̃0 ∈ Rd is explicitly given by β̃0 = 1
2

(
α2

+ − α2
−
)
, where q±(x) =

∓2x− ln((1∓ x)2), and α2
± = α2 ⊙ exp (−∑∞

k=0 q±(γk∇LBk
(βk))).

Trajectory-dependent characterisation. The characterisation of β⋆∞ in Theorem 1 holds
for any stepsize schedule such that the iterates converge and goes beyond the continuous-time
frameworks previously studied [Woodworth et al., 2020a, Pesme et al., 2021]. The result even
holds for adaptive stepsize schedules which keep the stepsize scalar such as AdaDelta [Zeiler,
2012]. An important aspect of our result is that α∞ and β̃0 depend on the iterates’ trajectory.
Nevertheless, we argue that our formulation provides useful ingredients for understanding the
implicit regularisation effects of (S)GD for this problem compared to trivial characterisations
(such as e.g., minβ ∥β−β⋆∞∥). Importantly, the key parameters α∞, β̃0 depend on crucial
parameters such as the stepsize and noise in a useful and analysable manner: under-
standing how they affect α∞ and β̃0 coincides with understanding how they affect the recovered
solution β⋆∞ and its generalisation properties. This is precisely the object of Sections 8.5 and 8.6
where we discuss the qualitative and quantitative insights from Theorem 1 in greater detail.

The perturbation β̃0 can be ignored. We show in Proposition 43, under reasonable as-
sumptions on the stepsizes, that |β̃0| ≤ α2 and α∞ ≤ α (component-wise). The magnitude
of β̃0 is therefore negligible in front of the magnitudes of β⋆ ∈ S and one can roughly ig-
nore the term β̃0. Hence, the implicit regularisation eq. (8.5) can be thought of as β⋆∞ ≈
arg min β⋆∈S Dψα∞ (β⋆, 0) = ψα∞(β⋆), and thus the solution β⋆∞ minimises the same potential
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function that the solution of gradient flow (see Equation (8.4)), but with an effective initiali-
sation α∞. Also note that for γk ≡ γ → 0 we have α∞ → α and β̃0 → 0 (proposition 46),
recovering the previously known result for gradient flow (8.4).

Deviation from gradient flow. The difference with gradient flow is directly associated with

the quantity
∑

k q(γk∇LBk
(βk)). Also, as the (stochastic) gradients converge to 0 and q(x)

x→0∼
x2, one should think of this sum as roughly being

∑
k∇LBk

(βk)
2: the larger this sum, the more

the recovered solution differs from that of gradient flow. The full picture of how large stepsizes
and stochasticity impact the generalisation properties of β⋆∞ and the recovery of minimum ℓ1-
norm solution is nuanced as clearly seen in fig. 8.1.

8.4.3 Convergence of the iterates

Theorem 1 provides the implicit minimisation problem but says nothing about the convergence
of the iterates. Here we show under very reasonable assumptions on the stepsizes that the
iterates indeed converge towards a global optimum. Note that since the loss F is non-convex,
such a convergence result is non-trivial and requires an involved analysis.

Theorem 2 (Convergence of the iterates). Let (uk, vk)k≥0 follow the mini-batch SGD recur-
sion (8.3) initialised at u0 =

√
2α ∈ Rd>0 and v0 = 0, and let (βk)k≥0 = (uk⊙ vk)k≥0. Recall the

“smoothness” parameter L on the minibatch loss defined in the notations. There exist B > 0
verifying B = Õ(minβ⋆∈S ∥β⋆∥∞) and a numerical constant c > 0 such that for stepsizes sat-
isfying γk ≤ c

LB , the iterates (βk)k≥0 converge almost surely to the interpolator β⋆∞ solution of
Equation (8.5).

In fact, we can be more precise by showing an exponential rate of convergence of the losses
as well as characterise the rate of convergence of the iterates as follows.

Proposition 17 (Quantitative convergence rates). For a uniform initialisation α = α1 and
under the assumptions of Theorem 2, we have:

E [L(βk)] ≤
(

1− 1

2
γα2λb

)k
L(β0) and E

[
∥βk − β⋆αk

∥2
]
≤ C

(
1− 1

2
γα2λb

)k
,

where λb > 0 is the largest value such that λbH ⪯ EB[HB], C = 2B(α2λ+min)−1
(
1 + (4Bλmax)(α2λ+min)−1

)
L(β0)

and λ+min, λmax > 0 are respectively the smallest non-null and the largest eigenevalues of H, and
β⋆αk

is the interpolator that minimises the perturbed hypentropy hk of parameter αk, as defined
in Equation (8.7) in the next subsection.

The convergence of the losses is proved directly using the time-varying mirror structure that
we exhibit in the next subsection, the convergence of the iterates is proved by studying the
curvature of the mirror maps on a small neighborhood around the affine interpolation space.

8.4.4 Sketch of proof through a time varying mirror descent

As in the continuous-time framework, our results heavily rely on showing that the iterates (βk)k
follow a mirror descent recursion with time-varying potentials on the convex loss L(β). To show
this, we first define the following quantities:

α2
k := α+,k ⊙α−,k and ϕk :=

1

2
arcsinh

(
α2

+,k −α2
−,k

2α2
k

)
∈ Rd ,
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where α±,k := α exp
(
−1

2

∑k−1
i=0 q±

(
γℓ∇LBℓ

(βℓ)
))
∈ Rd. Finally for k ≥ 0, we define the poten-

tials (hk : Rd → R)k≥0 as:

hk(β) = ψαk
(β)− ⟨ϕk, β⟩. (8.7)

Where ψαk
is the hyperbolic entropy function defined Equation (8.4). Now that all the relevant

quantities are defined, we can state the following proposition which explicits the time-varying
stochastic mirror descent.

Proposition 18. The iterates (βk = uk ⊙ vk)k≥0 from Equation (8.3) satisfy the Stochastic
Mirror Descent recursion with varying potentials (hk)k:

∇hk+1(βk+1) = ∇hk(βk)− γk∇LBk
(βk) ,

where hk : Rd → R for k ≥ 0 are defined Equation (8.7). Since ∇h0(β0) = 0 we have:

∇hk(βk) ∈ span(x1, . . . , xn). (8.8)

Theorems 1 and 2 and proposition 17 follow from this key proposition: by suitably modifying
classical convex optimization techniques to account for the time-varying potentials, we can prove
the convergence of the iterates towards an interpolator β⋆∞ along with that of the relevant
quantities α±,k, αk and ϕk. The implicit regularisation problem then directly follows from: (1)
the limit condition ∇h∞(β∞) ∈ span(x1, . . . , xn) as seen from eq. (8.8) and (2) the interpolation
condition Xβ⋆∞ = y. Indeed, these two conditions exactly correspond to the KKT conditions of
the convex problem eq. (8.5).

8.5 Analysis of the impact of the stepsize and stochasticity on α∞

In this section, we analyse the effects of large stepsizes and stochasticity on the implicit bias of
(S)GD. We focus on how these factors influence the effective initialisation α∞, which plays a key
role as shown in Theorem 1. From its definition in eq. (8.6), we see that α∞ is a function of the
vector

∑
k q(γk∇LBk

(βk)). We henceforth call this quantity the gain vector. For simplicity of
the discussions, from now on, we consider constant stepsizes γk = γ for all k ≥ 0 and a uniform
initialisation of the weights α = α1 with α > 0. We can then write the gain vector as:

Gainγ := ln

(
α2

α2∞

)
=
∑

k

q(γ∇LBk
(βk)) ∈ Rd .

Following our discussion in section 8.4.1 on the scale and the shape of α∞, we recall the link
between the scale and shape of Gainγ and the recovered solution:

1. The scale of Gainγ , i.e. the magnitude of ∥Gainγ∥1 indicates how much the implicit bias
of (S)GD differs from that of gradient flow: ∥Gainγ∥1 ∼ 0 implies that α∞ ∼ α and therefore the
recovered solution is close to that of gradient flow. On the contrary, ∥Gainγ∥1 >> ln(1/α) implies
that α∞ has effective scale much smaller than α thereby changing the implicit regularisation
eq. (8.5).

2. The shape of Gainγ indicates which coordinates of β in the associated minimum weighted
ℓ1 problem are most penalised. First recall from Section 8.4.1 that a uniformly large Gainγ leads
to ψα∞ being closer to the ℓ1-norm. However, with small weight initialisation α→ 0, we have,

ψα∞(β) ∼ ln(
1

α
)∥β∥1 +

d∑

i=1

Gainγ(i)|βi| , (8.9)

In this case, having a heterogeneously large vector Gainγ leads to a weighted ℓ1 norm as the
effective implicit regularisation, where the coordinates of β corresponding to the largest entries
of Gainγ are less likely to be recovered.
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8.5.1 The scale of Gainγ is increasing with the stepsize

The following proposition highlights the dependencies of the scale of the gain ∥Gainγ∥1 in terms
of various problem constants. Let Λb, λb > 0 2 be the largest and smallest values, respectively,
such that λbH ⪯ EB

[
H2

B
]
⪯ ΛbH. For any stepsize γ > 0 satisfying γ ≤ c

BL (as in theorem 2),
initialisation α1 and batch size b ∈ [n], the magnitude of the gain satisfies:

λbγ
2
∑

k

EL(βk) ≤ E [∥Gainγ∥1] ≤ 2Λbγ
2
∑

k

EL(βk) , (8.10)

where the expectation is over a uniform and independent sampling of the batches (Bk)k≥0.

The slower the training, the larger the gain. eq. (8.10) shows that the slower the training
loss converges to 0, the larger the sum of the loss and therefore the larger the scale of Gainγ . This
means that the (S)GD trajectory deviates from that of gradient flow if the stepsize and/or noise
slows down the training. This supports observations previously made from stochastic gradient
flow [Pesme et al., 2021] analysis.

The bigger the stepsize, the larger the gain. The effect of the stepsize on the magnitude
of the gain is not directly visible in eq. (8.10) because a larger stepsize tends to speed up the
training. For stepsize 0 < γ ≤ γmax = c

BL as in Theorem 2 we have that (see Appendix C.7.1):

∑

k

γ2L(βk) = Θ

(
γ ln

(
1

α

)
∥β⋆ℓ1∥1

)
. (8.11)

eq. (8.11) clearly shows that increasing the stepsize boosts the magnitude ∥Gainγ∥1 up until
the limit of γmax. Therefore, the larger the stepsize the smaller is the effective scale of α∞. In
turn, larger gap between α∞ and α leads to a larger deviation of (S)GD from the gradient flow.

Large stepsizes and Edge of Stability. The previous paragraph holds for stepsizes smaller
than γmax for which we can theoretically prove convergence. But what if we use even bigger
stepsizes? Let (βγk )k denote the iterates generated with stepsize γ and let us define γ̃max :=

supγ≥0{γ s.t. ∀γ′ ∈ (0, γ),
∑

k L(βγ
′

k ) <∞}, which corresponds to the largest stepsize such that
the iterates still converge for a given problem (even if not provably so). From Section 8.5.1 we
have that γmax ≤ γ̃max. As we approach this upper bound on convergence γ → γ̃max, the sum∑

k L(βγk ) diverges. For such large stepsizes, the iterates of gradient descent tend to “bounce”
and this regime is commonly referred to as the Edge of Stability. In this regime, the convergence
of the loss can be made arbitrarily slow due to these bouncing effects. As a consequence, as seen
through Equation (8.10), the magnitude of Gainγ can be become arbitrarily big as observed
in fig. 8.2 (left). In this regime, the recovered solution tends to dramatically differ from the
gradient flow solution, as seen in fig. 8.1.

Impact of stochasticity and linear scaling rule. Assuming inputs xi sampled fromN (0, σ2Id)

with σ2 > 0, we obtain E [∥Gainγ∥1] = Θ
(
γ σ

2d
b ln

(
1
α

)
∥β⋆ℓ1∥1

)
, w.h.p. over the dataset (see Ap-

pendix C.7.3, proposition 44). The scale of Gainγ decreases with batch size and there exists a
factor n between that of SGD and that of GD. Additionally, the magnitude of Gainγ depends
on γ

b , resembling the linear scaling rule commonly used in deep learning [Goyal et al., 2017].
By analysing the magnitude ∥Gainγ∥1, we have explained the distinct behavior of (S)GD

with large stepsizes compared to gradient flow. However, our current analysis does not

2Λb, λb > 0 are data-dependent constants; for b = n, we have (λn,Λn) = (λ+
min(H), λmax(H)) where λ+

min(H)
is the smallest non-null eigenvalue of H; for b = 1, we have mini ∥xi∥22 ≤ λ1 ≤ Λ1 ≤ maxi ∥xi∥22.
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Figure 8.2: Left: the scale of Gainγ explodes as γ → γ̃max for both GD and SGD. Right:
β⋆sparse is fixed, we perform 100 runs of GD and SGD with different feature matrices, and we
plot the d coordinates of Gainγ (for GD and SGD) on the x-axis (which is in log scale for better
visualisation). The shape of GainSGD

γ is homogeneous whereas that of GD is heterogeneous with

much higher magnitude on the support of β⋆sparse. The shape of GainGD
γ is proportional to the

expected gradient at initialisation which is (β⋆sparse)
2.

qualitatively distinguish the behavior between SGD and GD beyond the linear stepsize scaling
rules, in contrast with fig. 8.1. A deeper understanding of the shape of Gainγ is needed to
explain this disparity.

8.5.2 The shape of Gainγ explains the differences between GD and SGD

In this section, we restrict our presentation to single batch SGD (b = 1) and full batch GD
(b = n). When visualising the typical shape of Gainγ for large stepsizes (see Figure 8.2 - right),
we note that GD and SGD behave very differently. For GD, the magnitude of Gainγ is higher
for coordinates in the support of β⋆ℓ1 and thus these coordinates are adversely weighted in the
asymptotic limit of ψα∞ (per (8.9)). This explains the distinction seed in fig. 8.1, where GD
in this regime has poor sparse recovery despite having a small scale of α∞, as opposed to SGD
that behaves well.

The shape of Gainγ is determined by the sum of the squared gradients
∑

k∇LBk
(βk)

2, and in
particular by the degree of heterogeneity among the coordinates of this sum. Precisely analysing
the sum over the whole trajectory of the iterates (βk)k is technically out of reach. However, we
empirically observe for the trajectories shown in Figure 8.2 that the shape is largely determined
within the first few iterates as formalized in the observation below.

Observation 1.
∑

k∇LBk
(βk)

2 ∝∼ E[∇LBk
(β0)

2] .

In the simple case of a Gaussian noiseless sparse recovery problem (where yi = ⟨β⋆sparse, xi⟩
for some sparse vector β⋆sparse), we can control these gradients for GD and SGD (Appendix C.7.4)
as:

∇L(β0)
2 = (β⋆sparse)

2 + ε , for some ε verifying ∥ε∥∞ << ∥β⋆sparse∥2∞ , (8.12)

Ei0 [∇Li0(β0)
2] = Θ

(
∥β⋆sparse∥221

)
. (8.13)

The gradient of GD is heterogeneous. Since β⋆sparse is sparse by definition, we deduce
from eq. (C.12) that ∇L(β0) is heterogeneous with larger values corresponding to the support
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of β⋆sparse. Along with observation 1, this means that Gainγ has much larger values on
the support of β⋆sparse. The corresponding weighted ℓ1-norm therefore penalises the coordi-
nates belonging to the support of β⋆sparse, which hinders the recovery of β⋆sparse (as explained in
Example 1, Appendix C.4).

The stochastic gradient of SGD is homogeneous. On the contrary, from eq. (C.13), we
have that the initial stochastic gradients are homogeneous, leading to a weighted ℓ1-norm where
the weights are roughly balanced. The corresponding weighted ℓ1-norm is therefore close to the
uniform ℓ1-norm and the classical ℓ1 recovery guarantees are expected.

Overall summary of the joint effects of the scale and shape. In summary we have the
following trichotomy which fully explains Figure 8.1:

1. for small stepsizes, the scale is small, and (S)GD solutions are close to that of gradient
flow;

2. for large stepsizes the scale is significant and the recovered solutions differ from GF:

• for SGD the shape of α∞ is uniform, the associated norm is closer to the ℓ1-norm
and the recovered solution is closer to the sparse solution;

• for GD, the shape is heterogeneous, the associated norm is weighted such that it
hinders the recovery of the sparse solution.

In this last section, we relate heuristically these findings to the Edge of Stability phenomenon.

8.6 Edge of stability: the neural point of view

In recent years it has been noticed that when training neural networks with ‘large’ stepsizes
at the limit of divergence, GD enters the Edge of Stability (EoS) regime. In this regime, as
seen in Figure 8.3, the iterates of GD ‘bounce’ / ’oscillate’. In this section, we come back to
the point of view of the weights wk = (uk, vk) ∈ R2d and make the connection between our
previous results and the common understanding of the EoS phenomenon. The question we seek
to answer is: in which case does GD enter the EoS regime, and if so, what are the consequences
on the trajectory? Keep in mind that this section aims to provide insights rather than formal
statements. We study the GD trajectory starting from a small initialisation α = α1 where
α << 1 such that we can consider that gradient flow converges close to the sparse interpolator

β⋆sparse = βw⋆
sparse

corresponding to the weights w⋆sparse = (
√
|β⋆sparse|, sign(β⋆sparse)

√
|β⋆sparse|) (see

Lemma 1 in Pesme and Flammarion [2023] for the mapping from the predictors to weights for
gradient flow). The trajectory of GD as seen in fig. 8.3 (left) can be decomposed into up to 3
phases.

First phase: gradient flow. The stepsize is appropriate for the local curvature (as seen in
Figure 8.3, lower right) around initialisation and the iterates of GD remain close to the trajectory
of gradient flow (in black in fig. 8.3). If the stepsize is such that γ < 2

λmax(∇2F (w⋆
sparse))

, then it

is compatible with the local curvature and the iterates can converge: in this case GF and GD
converge to the same point (as seen in fig. 8.1 for small stepsizes). For larger γ > 2

λmax(∇2F (w⋆
sparse))

(as is the case for γGD in fig. 8.3, lower right), the iterates cannot converge to β⋆sparse and we
enter the oscillating phase.

Second phase: oscillations. The iterates start oscillating. The gradient of F writes∇(u,v)F (w) ∼
(∇L(β) ⊙ v,∇L(β) ⊙ u) and for w in the vicinity of w⋆sparse we have that ui ≈ vi ≈ 0 for
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Figure 8.3: GD at the EoS. Left: For GD, the coordinates on the support of β⋆sparse oscillate
and drift towards 0. Right, top: The GD train losses saturate before eventually converging.
Bottom: GF converges towards a solution that has a high hessian maximum eigenvalue. GD
cannot converge towards this solution because of its large stepsize: it therefore drifts towards a
solution that has a curvature just below 2/γ.

.

i /∈ supp(β⋆sparse). Therefore for w ∼ w⋆sparse we have that ∇uF (w)i ≈ ∇vF (w)i ≈ 0 for
i /∈ supp(β⋆sparse) and the gradients roughly belong to span(ei, ei+d)i∈supp(β⋆

sparse)
. This means

that only the coordinates of the weights (ui, vi) for i ∈ supp(β⋆sparse) can oscillate and similarly
for (βi)i∈supp(β⋆

sparse)
(as seen Figure 8.3 left).

Last phase: convergence. Due to the oscillations, the iterates gradually drift towards a region
of lower curvature (fig. 8.3, lower right, the sharpness decreases) where they may (potentially)
converge. theorem 1 enables us to understand where they converge: the coordinates of βk that
have oscillated significantly along the trajectory belong to the support of β⋆sparse, and therefore
Gainγ(i) becomes much larger for i ∈ supp(β⋆sparse) than for the other coordinates. Thus, the
coordinates of the solution recovered in the EoS regime are heavily penalised on the support of
the sparse solution. This is observed in Figure 8.3 (left): the oscillations of (βi)i∈supp(β⋆

sparse)
lead

to a gradual shift of these coordinates towards 0, hindering an accurate recovery of the solution
β⋆sparse.

SGD in the EoS regime. In contrast to the behavior of GD where the oscillations primarily
occur on the non-sparse coordinates of ground truth sparse model, for SGD we see a different
behavior in Figure C.3 (Appendix C.1). For stepsizes in the EoS regime, just below the non-
convergence threshold: the fluctuation of the coordinates occurs evenly over all coordinates,
leading to a uniform α∞. These fluctuations are reminiscent of label-noise SGD [Andriushchenko
et al., 2022], that have been shown to recover the sparse interpolator in diagonal linear networks
[Pillaud-Vivien et al., 2022].

8.7 Conclusion

We study the effect of stochasticity along with large stepsizes when training DLNs with (S)GD.
We prove convergence of the iterates as well as explicitly characterise the recovered solution
by exhibiting an implicit regularisation problem which depends on the iterates’ trajectory. In
essence the impact of stepsize and minibatch size are captured by the effective initialisation
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parameter α∞ that depends on these choices in an informative way. We then use our character-
isation to explain key empirical differences between SGD and GD and provide further insights
on the role of stepsize and stochasticity. In particular, our characterisation explains the fun-
damentally different generalisation properties of SGD and GD solutions at large stepsizes as
seen in Figure 8.1: without stochasticity, the use of large stepsizes can prevent the recovery
of the sparse interpolator, even though the effective scale of the initialization decreases with
larger stepsize for both SGD and GD. We also provide insights on the link between the Edge of
Stability regime and our results.
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Chapter 9

Effect of momentum

9.1 Preface

This chapter follows Papazov et al. [2024].

Summary We investigate the effect of momentum on the optimisation trajectory of gradient
descent. We leverage a continuous-time approach in the analysis of momentum gradient descent
with step size γ and momentum parameter β that allows us to identify an intrinsic quantity
λ = γ

(1−β)2 which uniquely defines the optimisation path and provides a simple acceleration rule.

When training a 2-layer diagonal linear network in an overparametrised regression setting, we
characterise the recovered solution through an implicit regularisation problem. We then prove
that small values of λ help to recover sparse solutions. Finally, we give similar but weaker results
for stochastic momentum gradient descent. We provide numerical experiments which support
our claims.

Co-authors Hristo Papazov and Nicolas Flammarion.

Contributions Hristo and Scott worked together on the project.

9.2 Introduction

Momentum methods [Sutskever et al., 2013] have now become a staple of optimal neural network
training due to the provided gains in both optimisation efficiency and generalisation performance.
This pivotal role is underscored by the widespread use of momentum in the successful training of
most state-of-the-art deep networks, including CLIP [Radford et al., 2021], Chinchilla [Hoffmann
et al., 2022], GPT-3 [Brown et al., 2020], and PaLM [Chowdhery et al., 2022].

Originating in the work of Polyak [1964], momentum first featured in the heavy-ball method
devised to accelerate convergence in convex optimisation. However, when applied to neural
network training, momentum exhibits a distinct and complementary characteristic: a steering
towards models with superior generalisation performance compared to networks trained with
gradient descent. We note that while the effect of momentum on optimisation has been re-
searched extensively [Defazio, 2020, Sun et al., 2019], the generalisation aspect of momentum
has been left relatively underexplored.

The performance of gradient descent methods presents intriguing challenges from a theoret-
ical perspective. First, establishing convergence is highly non-trivial. Second, the existence of
numerous global minima for the training objective, some of which generalise poorly, adds to the
puzzle [Zhang et al., 2017]. To elucidate this second point, the notion of implicit regularisation
has come to the forefront. It posits that the optimisation process implicitly favors solutions with
strong generalisation properties, even in the absence of explicit regularisation. The canonical
example is overparametrised linear regression with more trainable parameters than the number
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of samples. While there exist infinitely many solutions that fit the data, gradient methods nav-
igate in a restricted parameter subspace and converge towards the solution closest in terms of
the ℓ2 distance [Lemaire, 1996].

In this work, we aim to expand our understanding of the implicit bias of momentum by
analysing its impact on the optimisation trajectory in 2-layer diagonal linear networks. The
2-layer diagonal linear network has garnered significant attention recently [Woodworth et al.,
2020b, Vaskevicius et al., 2019, HaoChen et al., 2021, Pesme et al., 2021, Pillaud-Vivien et al.,
2022]. Despite its apparent simplicity, this network has surprisingly shed light on training
behaviours typically associated with much more complex architectures. Some of these insights
include the influence of initialisation [Woodworth et al., 2020b], the impact of noise [Pesme et al.,
2021], and the role of the step size [Even et al., 2023]. Consequently, this architecture serves as
an excellent surrogate model for gaining a deeper understanding of intricate phenomena such as
the role of momentum in the generalisation performance.

9.2.1 Main contributions

In this chapter, we investigate the influence of momentum on the optimisation trajectory of
neural networks trained with momentum gradient descent (MGD). Leveraging the continuous-
time approximation of MGD – momentum gradient flow (MGF), we show that the optimisation
trajectory strongly depends on the key quantity λ = γ

(1−β)2 , where γ and β denote the step size

and momentum parameter of MGD, respectively. Surprisingly, this continuous-time framework
experimentally proves to be a good approximation of the discrete trajectory even for large values
of γ.

We proceed to list our main contributions.

• First, using the key quantity λ, we derive a straightforward acceleration rule that maintains
the optimisation path while accelerating the optimisation speed.

• Then, focusing on MGF on 2-layer diagonal linear networks, we precisely characterise the
recovered solution and prove that for suitably small values of λ, MGF recovers solutions
which generalise better than the ones selected by gradient flow (GF) in a sparse regression
setting.

• Finally, we provide similar but slightly weaker results for stochastic MGD.

9.2.2 Related works

Momentum and acceleration. Momentum algorithms have their roots in acceleration meth-
ods, and many studies have investigated their convergence speed when optimising both convex
and non-convex functions: [Ghadimi et al., 2015, Flammarion and Bach, 2015, Kidambi et al.,
2018, Can et al., 2019, Sebbouh et al., 2021, Mai and Johansson, 2020, Liu et al., 2020b, Cutkosky
and Mehta, 2020, Defazio, 2020, Orvieto et al., 2020, Sebbouh et al., 2021]. Moreover, apart
from accelerating training, heavy-ball methods come with the additional advantage of always
escaping saddle points [Jin et al., 2018, Sun et al., 2019].

Momentum and continuous-time models. Building upon the foundational work of Al-
varez [2000], Attouch et al. [2000], researchers have analysed accelerated gradient methods us-
ing second-order differential equations. Su et al. [2014] extended the previous ODE to encom-
pass the Nesterov accelerated method, demonstrating convergence rates similar to the discrete
case. Wibisono et al. [2016] adopted a variational perspective to scrutinise the mechanics of
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acceleration. A significant advancement emerged with the introduction of Lyapunov analysis,
undertaken by Wilson et al. [2021], Sanz Serna and Zygalakis [2021], Moucer et al. [2023]. This
analytical approach sheds light on the stability and convergence properties of these methods.
Further refinement has been achieved by Shi et al. [2021], who developed high-resolution ODEs
tailored to various momentum-based acceleration techniques and able to distinguish between
Nesterov’s Accelerated Gradient and Polyak’s Heavy Ball methods. Finally, error bounds for
the discretisation of MGF have been developed by Kovachki and Stuart [2021].

Momentum and Implicit Bias. Sutskever et al. [2013], Leclerc and Madry [2020] have em-
pirically shown significant generalisation improvements in architectures trained with momentum
on common vision tasks. Building on these empirical observations, Jelassi and Li [2022] designed
a synthetic binary classification problem where a 2-layer convolutional neural network trained
with MGD provably generalises better than gradient descent (GD). Recently, Ghosh et al. [2023]
reveal that the MGD trajectory closely resembles the gradient flow trajectory of a regularised
loss. Through the specific regularisation, the authors argue that the MGD trajectory favors
flatter minima than the GD trajectory. The study’s findings apply to any reasonable loss, but
due to the finite time horizon restriction, cannot characterise the solution to which MGD con-
verges. Additionally, Wang et al. [2023] show that in deep diagonal linear networks with identical
weights across layers, increasing the depth biases the optimisation towards sparse solutions.

9.3 From discrete to continuous

Momentum Gradient Descent. We consider minimising a differentiable function F : Rd → R
using momentum gradient descent (MGD) with step size γ > 0 and momentum parameter
β ∈ [0, 1). Initialised at two points (w0, w1) ∈ R2d, the iterates follow the discrete recursion for
k ≥ 1:

wk+1 = wk − γ∇F (wk) + β(wk − wk−1). (MGD(γ, β))

Momentum Gradient Flow. Directly analysing the discrete recursion MGD(γ, β) appears
intractable in many settings. To overcome this difficulty, we follow the classical approach of
considering a second order differential equation of the form

aẅt + bẇt +∇F (wt) = 0 (9.1)

with leading coefficient a ≥ 0 and damping coefficient b > 0. In fact, without loss of generality,
the previous differential equation can be reduced to a new one which depends on a single param-
eter λ. Indeed, assume that wt follows ODE (9.1) with initialisation (wt=0, ẇt=0) = (w0, ẇ0),
then a simple chain rule shows that w̃t = wbt follows

a

b2
¨̃wt + ˙̃wt +∇F (w̃t) = 0,

with initialisation (w̃t=0, ˙̃wt=0) = (w0, bẇ0). Hence, up to a time reparametrisation, it is sufficient
to consider the following differential equation which depends on a unique parameter λ ≥ 0:

λẅt + ẇt +∇F (wt) = 0. (MGF(λ))

We call the differential equation MGF(λ) momentum gradient flow (MGF) with parameter λ.
To show the link with the MGD(γ, β) recursion, we discretise MGF(λ) with a second-order
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central difference, first-order backward difference, and discretisation step ε > 0 as carried out
by Kovachki and Stuart [2021]:

λ
wk+1−2wk+wk−1

ε2
+

wk−wk−1

ε +∇F (wk) = 0. (9.2)

Rewriting, we obtain

wk+1 = wk −
ε2

λ
∇F (wk) + (1− ε

λ
)(wk − wk−1),

which corresponds to momentum gradient descent with parameters γ = ε2

λ and β = 1 − ε
λ .

Solving for ε and λ leads to the following proposition:

Proposition 19. For (w0, w1) ∈ R2d, consider momentum gradient flow MGF(λ) with

λ =
γ

(1− β)2

and initialisation wt=0 = w0, ẇt=0 = (w1 − w0)/
√
λγ. Then, discretising as (9.2) with discreti-

sation step ε =
√
λγ = γ/(1− β) leads to the momentum gradient descent recursion MGD(γ, β)

with step size γ, momentum parameter β, and initialisation (w0, w1).

Proposition 19 motivates studying MGF(λ) as a continuous proxy for MGD(γ, β) assuming
that the discretisation (9.2) closely approximates the continuous path.

Discretisation Error Bounds. Unfortunately, applying known discretisation error bounds to
our setting leads to very pessimistic bounds. Indeed, for step size γ and momentum parameter
β, consider the iterates wk from MGD(γ, β) initialised at (w0, w1). Now, let w(t) be the solution
of MGF(λ) with λ = γ/(1 − β)2 and the appropriate initialisation from Proposition 19. Then,
for a finite horizon K > 0, classical discretisation error bounds (see Kovachki and Stuart [2021],
Theorem 4) lead to a catastrophic

sup
k≤K
∥wk − w(kε)∥ ≤ exp(CK)ε,

where the constant C depends on λ and F . Such an exponential dependence in the time horizon
K questions the suitability of momentum gradient flow as a good proxy for momentum gradient
descent. However, empirically, the above bound appears excessively pessimistic (see Figure 9.1:
Left and Middle). The MGF and MGD trajectories behave similarly in various settings, even
with non-convex losses F and relatively large step sizes γ (see Appendix D.6 for additional
experiments).

Intertwined Roles of γ and β. When the discretisation accurately follows the continuous
path, Proposition 19 implies that the trajectory of MGD(γ, β) is solely determined by a single
parameter λ = γ/(1 − β)2, intertwining step size and momentum as observed in Figures 9.1
and 9.2. Consequently, γ and β serve interchangeable roles in influencing the trajec-
tory of MGD(γ, β). Note that this single-parameter dependence aligns with empirical results
from Leclerc and Madry [2020] where generalisation performance with large step sizes can be
replicated with momentum and smaller step sizes. Though the quantity γ/(1 − β)2 sponta-
neously appears in works studying MGD [Ghosh et al., 2023], to the best of our knowledge, its
natural presence was never clearly explained and motivated.

MGD Acceleration Rule. Though all couples (γ, β) with the same same value of λ yield the
same trajectory, the iterates do not follow this path at the same speed.
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Figure 9.1: (M)GD over a 2D quadratic. Left and Middle: The (M)GD trajectories closely follow
the continuous trajectories of (M)GF as suggested by Proposition 19. Right : MGD(4γ, β2)
follows the same trajectory as MGD(γ, β) but twice as fast as suggested by Corollary 1. In
contrast, GD(4γ) runs four times faster than GD(γ).

Corollary 1 (Acceleration rule). Let MGD(γ, β) initialised at w0 = w1 ∈ Rd correspond to the
discretisation of MGF(λ) with discretisation step ε. Now, for ρ ∈ R>0, consider the different
parameter couple

γ̂ = ρ2γ and β̂ = 1− ρ(1− β) =β→1 β
ρ +O((1− β)2).

Then, since γ̂/(1− β̂)2 = λ, MGD(γ̂, β̂) initialised at w0 = w1 becomes the discretisation of the
same MGF(λ) but with discretisation step ε̂ = ρ · ε.

Following the notations of the previous corollary for an integer ρ ≥ 2 and letting wk and
ŵk denote the iterates of MGD(γ, β) and MGD(γ̂, β̂), respectively, Corollary 1 implies that we
expect wρ·k and ŵk to be close. This is in contrast with gradient descent, where scaling the step
size by a factor ρ2 leads to a speedup of ρ2. This acceleration rule is illustrated in Figure 9.1
with ρ = 2.

Optimisation Regimes. The link between λ, γ, and β highlights several regimes:

• β large – the iterates converge arbitrarily slow. Taking β close to 1 while keeping
γ constant leads to λ ≫ 1. As explained previously, a chain rule shows that w̃t = w√

λt

follows the ODE ¨̃wt + λ−1/2 · ˙̃wt + ∇F (w̃t) = 0. Consequently, the damping parameter
λ−1/2 goes to 0, and we expect the iterates to heavily oscillate and converge arbitrarily
slowly.

• γ small – the iterates follow GF. Taking γ → 0 while keeping β fixed leads to λ≪ 1,
and MGF(λ) boils down to gradient flow. We expect the MGD(γ, β) iterates to be close
to the discretisation of GF with discretisation step ε = γ/(1 − β). That is, MGD(γ, β)
will approximate GD with step size γ/(1−β). Hence, MGD gains a speed-up of 1/(1−β)
over GD without a change of trajectory.

• The “momentum” regime. In this regime, γ and β are such that λ is non-degenerate,
and gradient flow cannot capture the trajectory of MGD(γ, β). Hence, β has an impact
on the optimisation path, and the iterates can still converge in reasonable time.
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Figure 9.2: Teacher-student framework with a fully-connected 1-hidden layer ReLU network.
The level lines of the test loss after training with MGD(γ, β) correspond to values of γ, β which
have a fixed value λ = γ/(1− β)2, as predicted by Proposition 19.

9.4 Momentum gradient flow over diagonal linear networks

Overparametrised Linear Regression. We consider a linear regression over n samples
(xi, yi)

n
i=1 with inputs xi living in Rd and scalar outputs yi ∈ R. We assume the dimension

d to be larger than the number of samples n, in which case there exists an infinite number of
vectors θ⋆ which perfectly fit the dataset with yi = ⟨θ⋆, xi⟩ for all 1 ≤ i ≤ n. We call these vectors
interpolators and we denote by S the set of such vectors: S = {θ⋆ ∈ Rd : yi = ⟨θ⋆, xi⟩, ∀i ∈ [n]}.
Note that S is an affine space of dimension at least (d− n) equal to θ⋆ + span(x1, . . . , xn)⊥ for
any interpolator θ⋆. We consider the quadratic loss:

L(θ) =
1

2n

n∑

i=1

(yi − ⟨xi, θ⟩)2. (9.3)

MGF over Least Squares. A classical result found in Lemaire [1996] and Gunasekar et al.
[2018c] shows that when initialised at θ0, gradient flow over the quadratic loss (9.3) converges to
the orthogonal projection of the initialisation on S: arg minθ⋆∈S ∥θ⋆−θ0∥2. This next proposition
from Alvarez [2000] shows that momentum does not fundamentally change the implicit bias.

Proposition 20 (Alvarez [2000]). Initialised at θ0 with initial speed θ̇0, momentum gradient
flow MGF(λ) over the least squares loss (9.3) converges towards

arg min
θ⋆∈S

∥θ⋆ − (θ0 + λθ̇0)∥2.

MGF(λ) recovers the same solution as gradient flow but with an effective initialisation θ0+λθ̇0
which takes into account the drift along span(x1, · · · , xn)⊥ due to the initial speed θ̇0. Note that
in practice, θ̇0 is chosen equal to 0, in which case the presence of momentum has no effect on
the recovered solution.

To better understand momentum’s effect on neural networks, we move beyond simple linear
parametrization.

2-Layer Diagonal Linear Network. We consider a toy neural network, which corresponds to
reparametrising the regression vector as θ = u⊙v for weights (u, v) ∈ R2d. This parametrisation
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can be viewed as a simple neural network x 7→ ⟨u, σ(diag(v)x)⟩, where the output weights are
u, the inner weights are the diagonal matrix diag(v), and where the activation function σ is the
identity. The loss function over the trainable weights w = (u, v) ∈ R2d now writes

F (w) = L(u⊙ v) =
1

2n

n∑

i=1

(yi − ⟨xi, u⊙ v⟩)2,

where ⊙ denotes the Hadamard product. Despite the simplicity of this reparametrisation, the
loss function F is non-convex and challenging to analyse.

Momentum Gradient Flow. We consider momentum gradient flow MGF(λ) with parameter
λ ≥ 0 over the diagonal-linear-network loss F :

λüt + u̇t +∇L(θt)⊙ vt = 0

λv̈t + v̇t +∇L(θt)⊙ ut = 0.
(9.4)

We initialise the flow with zero speed u̇0 = v̇0 = 0, and apart from requiring the quantity |u20−v20|
to have non-zero coordinates1, we impose no further constraints on the weight initialisations
(u0, v0). In what follows, we often rely on the reparametrisation (w+,t, w−,t) := (ut + vt, ut− vt)
which makes our formulas more succinct. We will also make use of the initialisation scale α,
which we define as α := max(∥u0∥∞, ∥v0∥∞) and consider as a small quantity.

Balancedness. In our results, the balancedness of the weights plays a key role. We recall its
definition here.

Definition (Balancedness). The balancedness2 of the weights of the diagonal linear network
corresponds to the quantity ∆t := |u2t − v2t | ∈ Rd≥0. We define ∆∞ := limt→∞ ∆t as the
asymptotic balancedness.

Notice that with the above definition we simply adapted the classical notion of balancedness
for general linear neural networks [see Du et al., 2019, Arora et al., 2019] to our toy setting. In
the case of gradient flow, a simple derivation shows that balancedness is a conserved quantity:
i.e., ∆t = ∆0 for all t ≥ 0. However, the evolution of ∆t becomes more complicated as soon as
λ > 0, and our findings emphasise that the asymptotic balancedness ∆∞ plays a crucial role in
the generalisation properties of the recovered solution.

Experimental Details. In our numerical experiments, we explore the effects of momentum
in the noiseless sparse regression setting with uncentered data as in Nacson et al. [2022].

Specifically, we choose (xi)
n
i=1

i.i.d.∼ N (µ1, σ2Id) and yi = ⟨xi, θ⋆s⟩ for i ∈ [n], where θ⋆s is s-
sparse with nonzero entries equal to 1/

√
s. The use of uncentered data is necessary in order to

experimentally observe a clear impact of momentum over the training trajectory (see Figure D.5
for experiments with centered data). We train a 2-layer diagonal linear network with (M)GD
and (M)GF with a uniform initialisation u0 = α · 1, v0 = 0, where α = 0.01. For the plots
presented in the main part of our chapter, we fixed (n, d, s) = (20, 30, 5), (µ, σ) = (1, 1). We
show results averaged over 5 replications. We refer the reader to Appendix D.6 for additional
experiments where we vary the parameters of the data distribution (e.g., centered data), change
the architecture of the trained model, and give further details on the implementation of the
(M)GF simulation.

1If initially ui,0 = ±vi,0 for some coordinate i ∈ [d], then ui,t = ±vi,t, ∀t ≥ 0. Hence, imposing |u2
0 − v20 | ̸= 0

becomes equivalent to working with 2d distinct weights. See Appendix D.3.3 for the full argument from uniqueness.
2The absolute value in the definition must be understood coordinate-wise.
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Notations. We let X = (x1, . . . , xn)⊤ ∈ Rn×d denote the feature matrix and y = (y1, . . . , yn) ∈
Rn – the output vector. For a vector z ∈ Rd and a scalar function f : R → R, the action of f
on z must be understood element-wise: f(z) ∈ Rd represents the vector (f(zk))

d
k=1. Inequalities

between vectors will also be interpreted as holding coordinate-wise. Additionally, when we
write q± for some place-holder quantity q, we mean that we refer to both q+ and q−. For
example: w±,t = (ut ± vt). Finally, for a strictly convex function Φ : Rd → R, which we
call a potential, the Bregman divergence is defined as the nonnegative quantity DΦ(θ1, θ2) =
Φ(θ1)− Φ(θ2)− ⟨∇Φ(θ2), θ1 − θ2⟩, ∀θ1, θ2 ∈ Rd.

9.4.1 Implicit bias of gradient flow

Before analysing the effect of momentum, we start by recalling the known results for gradient
flow on diagonal linear networks, which corresponds to taking λ = 0 in eq. (9.4). Woodworth
et al. [2020b] show that the predictors θt = ut⊙vt converge towards an interpolator θGF uniquely
defined by the following constrained minimisation problem:

θGF = arg min
θ⋆∈S

Dψ∆0
(θ⋆, θ0), (9.5)

where for ∆ ∈ Rd>0, ψ∆ : Rd → R denotes the hyperbolic entropy function [Ghai et al., 2020] at
scale ∆:

ψ∆(θ) =
1

4

d∑

i=1

(
2θiarcsinh

(
2θi
∆i

)
−
√

4θ2i + ∆2
i + ∆i

)
, (9.6)

and Dψ∆
is the Bregman divergence. Note that through eq. (9.5), θGF corresponds to the

Bregman-projection of the initialisation on the set of interpolators.

Effect of the Initialisation Scale. For a small initialisation scale α, θ0 = O(α2) becomes
much smaller than any interpolator θ⋆ ∈ S. Hence, Dψ∆0

(θ⋆, θ0) roughly equals Dψ∆0
(θ⋆, 0),

and eq. (9.5) should be thought of as

θGF ≈ arg min
θ⋆∈S

ψ∆0(θ⋆). (9.7)

This last equation highlights the fact that the recovered solution simply depends on the initial
balancedness ∆0, making it a key quantity. Importantly, the hyperbolic entropy is a convex
function which interpolates between the ℓ1 and ℓ2 norms as the magnitude of ∆0 goes from 0
to +∞ (see Woodworth et al. [2020b], Theorem 2). So, as ∆0 = O(α2) goes to 0, ψ∆0 becomes
asymptotically identical to the ℓ1-norm (see Appendix D.5). Hence, as seen through eq. (9.7),
a small initialisation scale α leads to the recovery of a solution with a small ℓ1-norm, which
facilitates sparse recovery and explains why this setting is referred to as the “rich” or “feature-
learning” regime. On the other hand, larger initialisation scales lead to the so-called “kernel” or
“lazy” regime, where gradient flow selects small-ℓ2-norm solutions. Overall, the smaller the
initialisation scale, the closer the retrieved solution will be to the minimum-ℓ1-norm
solution. We refer the reader to the work of Wind et al. [2023] for precise recovery bounds.
However, as noted in Even et al. [2023], the picture remains incomplete if we do not take into
account the homogeneity of ∆0. Indeed, initialisations with entries of different magnitudes can
hinder the recovery of a sparse vector. However, in our case, our experiments (for uncentered
data) verify that the overall magnitudes of ∆0 and ∆∞ are sufficient to explain the effects of
momentum. We therefore put aside potential homogeneity considerations.
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9.4.2 Implicit bias of momentum gradient flow

We now move on to describe the impact of momentum on the solution recovered by MGF(λ).
Our work proceeds under the following assumption.

Assumption 7 (Boundedness). The optimisation trajectory (ut, vt)t≥0 of MGF (9.4) is bounded.

Unfortunately, even though Assumption 7 holds true in all our experiments, the bounded-
ness of the trajectory of a second-order gradient flow has only been established under stronger
assumption on the loss function [Alvarez, 2000, Goudou and Munier, 2009, Apidopoulos et al.,
2022]. We defer further details to Appendix D.3.1. Crucially, the boundedness assumption al-
lows us to prove the convergence of the iterates, and we let (u∞, v∞) := limt→∞(ut, vt). Our goal
now becomes to characterise the recovered predictor which we denote with θMGF := u∞ ⊙ v∞.
For our proofs, we make the following additional assumption.

Assumption 8 (Balancedness). The asymptotic balancedness ∆∞ has non-zero coordinates:
∆∞,i > 0 for all i ∈ [d].

Again, Assumption 8 holds true empirically in all our experiments, and in Section 9.4.3, we
prove that small values of λ lead to nonzero asymptotic balancedness. Positing Assumption 8
allows us to prove that the recovered solution θMGF interpolates the dataset.

General Characterisation of MGF Bias

In our main result for MGF, we prove that the iterates converge towards an interpolator char-
acterised as the solution of a constrained minimisation problem which involves the hyperbolic
entropy (9.6) scaled at the asymptotic balancedness ∆∞. Moreover, we derive an insightful
description of the asymptotic balancedness in terms of the full optimisation trajectory which
allows us to compare the generalisation properties of MGF and GF for small values of λ. Before
stating our main continuous-time theorem, we define two integral quantities which appear in
our results.

Lemma 2. The following integral quantities Ω+ and Ω− are well-defined and finite:

Ω± :=

∫ ∞

0
m.p.v.

∫ t

0

( ẇ±,s
w±,s

)2
e−

t−s
λ sgn(w±,tw±,s)ds dt

where sgn(·) denotes the sign function, w±,t = ut ± vt, and m.p.v. denotes a modified Cauchy
principal value defined in Appendix D.1.

The fact that the weights w±,t can cross zero necessitates the use of the modified Cauchy
principal value since otherwise the integrals would diverge. Now, for succinctness, let us intro-
duce the integral quantities

I± := Ω± + Λ±,

where the terms Λ± vanish whenever the balancedness ∆t remains strictly positive for all
t ∈ [0,∞]. The precise form of Λ± is uninformative and can be found in Equation (D.9),
Appendix D.3.3. We now proceed to characterise the recovered solution θMGF.

Theorem 3. The solution θMGF of MGF (9.4) interpolates the dataset and satisfies the following
implicit regularisation:

θMGF = arg min
θ⋆∈S

Dψ∆∞
(θ⋆, θ̃0).
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Gradient Flow 
(λ = 0)
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Figure 9.3: Test loss (in blue) and magnitude of balancedness (in red) at convergence of MGF(λ)
over a diagonal linear network in a sparse regression setting with uncentered data. As predicted
by Theorem 3, a more balanced solution generalises better. The shaded zone corresponds to
values of λ for which the balancedness never hits zero during training and for which Corollary 2
therefore holds.

In the above expression, Dψ∆∞
denotes the Bregman divergence with potential ψ∆∞, where the

asymptotic balancedness equals

∆∞ = ∆0 ⊙ exp
(
− (I+ + I−)

)

and θ̃0 = 1
4(w2

+,0 ⊙ exp (−2I+)− w2
−,0 ⊙ exp (−2I−)) denotes a perturbed initialisation term.

The proof of Theorem 3 appears in Appendix D.3.3 as well as explicit formulas for ∆∞ and
θ̃0. We explain the significance and shed more light on the different parts of Theorem 3 below.

Perturbed Initialisation θ̃0. In all our experiments, we observe that the perturbed initial-
isation θ̃0 remains negligible in the sense that for any interpolator θ⋆ ∈ S, ∥θ̃0∥2 ≪ ∥θ⋆∥2.
Moreover, in the next section, we prove that whenever the balancedness remains nonzero during
training, θ̃0 becomes smaller than α2, where α stands for the initialisation scale. Hence, exactly
for the same reasons as for gradient flow, the implicit regularisation problem from Theorem 3
should be though of as

θMGF ≈ arg min
θ⋆∈S

ψ∆∞(θ⋆). (9.8)

Appendix D.3.3 provides more details. Thus, the asymptotic balancedness ∆∞ becomes the key
quantity governing the properties of the recovered solution.

Key Role of ∆∞. If during optimisation the weights become more balanced, i.e. ∆∞ < ∆0,
then as discussed previously, based on the properties of ψ∆∞ , the recovered solution will enjoy
better sparsity guarantees than the solution of gradient flow. Figure 9.3 illustrates this point:
the smaller the magnitude of ∆∞, the better the generalisation. Finally note that by eqs. (9.5)
and (9.8), θMGF approximately equals the solution recovered from gradient flow initialised at
u0 =

√
∆∞, v0 = 0, which we denote by θGF∆∞

. We observe ||θMGF − θGF∆∞
||2/||θGF∆∞

||2 < 0.01 in all
our experiments, which validates the approximation in eq. (9.8).

Path-Dependent Quantity. Unfortunately, the asymptotic balancedness depends on the
whole optimisation trajectory in a very intricate way, and we cannot compare ∥∆∞∥ and ∥∆0∥.
Thus, in general, we cannot meaningfully compare the recovered interpolators θMGF and θGF.
However, in the following section we prove that with the additional assumption that the bal-
ancedness remains nonzero, we have ∆∞ < ∆0.
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9.4.3 Provable benefits of momentum for small values of λ

In this subsection, we prove that for small values of the momentum flow parameter λ, the
recovered solution becomes more balanced (and therefore sparser) than the solution of gradient
flow. As a starting point for our argument, notice that if the balancedness ∆t = |u2t − v2t | =
|w+,tw−,t| remains strictly positive throughout training, then the weights w±,t never change sign.
Hence, the integral quantities Λ± become 0, and Ω± > 0. Thus, I± > 0, which combined with
Theorem 3 implies the following corollary.

Corollary 2. For λ > 0, if the balancedness ∆t remains strictly positive during training (i.e.
∆t ̸= 0 for t ∈ [0,+∞]), then the perturbed initialisation satisfies |θ̃0| < α2 and

∆∞ = ∆0 ⊙ exp
(
− λ

∫ ∞

0

( ẇ+,t

w+,t

)2
+
( ẇ−,t
w−,t

)2
dt
)
.

Importantly, ∆∞ < ∆0.

In words, the above corollary (proved in Appendix D.3.4) implies that if the balancedness
∆t does not hit zero during training, then (i) the perturbation term θ̃0 is provably negligible,
(ii) the asymptotic balancedness is coordinate-wise smaller than initial balancedness ∆0 which
translates into a solution with better sparsity properties than the gradient flow interpolator.
This regime corresponds to the gray zone in Figure 9.3. The following proposition proved in
Appendix D.5 demonstrates that for small values of λ, the balancedness remains strictly positive.

For λ ≤ n
∥y∥22
· (mini≤d ∆0,i), the balancedness ∆t never vanishes: ∆t ̸= 0, ∀t ∈ [0,+∞].

Hence, through Section 9.4.3 and Corollary 2, we show that small values of λ lead to solutions
with better sparse recovery guarantees.

Limitations of Our Analysis. In Appendix D.3.3, we prove that ∆t can vanish at most a
finite number of times. Experimentally, ∆t never hits 0 for much larger values of λ than n

∥y∥22
·

(mini≤d ∆0,i), making the bound from Section 9.4.3 relatively loose. In Figure 9.3, we empirically
observe an interval (0, λmax) in which MGF(λ) outperforms GF in terms of generalisation.
Moreover, there exists an optimal value λ⋆ (roughly corresponding to the smallest ∆∞) which
brings about the most improvement compared to gradient flow. Unfortunately, as observed
Figure 9.3, the balancedness vanishes for λ = λ⋆, and therefore Corollary 2 does not cover the
optimal value. Also note that (0, λmax) and λ⋆ depend on the data.

Behaviour of ∆∞ for Small Values of λ. Unfortunately, determining the precise effect of λ
on ∆∞ is challenging. Nonetheless, for small λ, we informally show in Appendix D.3.5 that

∆2
∞ ≈

λ→0
∆2

0 ⊙ exp
(
− 2λ

∫ ∞

0
∇L(θs)

2ds
)
.

This approximate equivalence for small λ echoes the implicit bias of SGD [Even et al., 2023,
Pesme et al., 2021], which involves a similar formulation for the effective initialisation where the
step size γ appears instead of λ. Note that the above approximation suggests that for small
values of λ, ∆∞ monotonically decreases with λ as experimentally confirmed by Figure 9.3.

9.4.4 Sketch of proof

Implicit bias through a second-order time-varying mirror flow. A natural way of show-
ing the implicit regularisation (9.5) of gradient flow on a 2-layer diagonal linear network goes
through proving that the predictors θGFt follow the mirror flow d∇ψ∆0(θGFt ) = −∇L(θGFt )dt. In
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our setting, we prove that the predictors θMGFt follow a second-order time-varying mirror flow.
Specifically, we define a family of potentials (Φt)t≥0 with Φt(θ) := ψ∆t(θ)−⟨ϕt, θ⟩ where ψ∆t cor-
responds to the hyperbolic entropy (9.6) depending on the balancedness ∆t and a perturbation
function ϕt. We then prove the following proposition.

Proposition 21. The predictors θMGFt follow a momentum mirror flow with time-varying poten-
tials Φt:

λ
d2∇Φt(θ

MGF
t )

dt2
+

d∇Φt(θ
MGF
t )

dt
+∇L(θMGFt ) = 0.

The implicit regularisation follows from integrating the ODE:∇Φ∞(θMGF) = −
∫∞
0 ∇L(θMGFt )dt ∈

span(x1, . . . , xn) which exactly corresponds to the KKT conditions of the constrained minimi-
sation from Theorem 3. Assuming that w±,t do not change sign, the proof of Proposition 21
comes naturally and relies on the writing w±,t = sgn(w±,0) exp(ρ±,t). When the iterates cross 0,
this reparametrisation does not hold anymore. The analysis can still be carried out by decom-
posing R≥0 into intervals on which the iterates have constant sign and appropriately sticking
the intervals using a modified Cauchy principal value.
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Figure 9.4: (Non-stochastic) MGD over a diagonal linear network in a sparse regression setting
with uncentered data. As predicted by Proposition 19, the three quantities at convergence
only depend on the single parameter λ := γ/(1 − β)2. As predicted by Theorem 4, a more
balanced solution (center plot) leads to a solution with a smaller ℓ1-norm (right plot), which in
turn translates into better generalisation (left plot). Finally, as predicted by Corollary 3, the
trajectories for which the iterates do not cross zero satisfy ∆∞ < ∆0, where ∆0 (approximately)
corresponds to the asymptotic balancedness for β = 0 and γ = 10−3.

9.5 Momentum SGD over diagonal linear networks

In this section, we move from continuous to discrete time and focus on the original MGD(γ, β)
recursion for which we can prove similar but slightly weaker results than the ones for MGF. In
fact, our results hold for stochastic momentum gradient descent (SMGD) with any batch size
B ∈ [n]. For step size γ > 0 and momentum parameter β ∈ [0, 1), the SMGD recursion writes
as follows:

uk+1 = uk − γ∇LBk
(θk)⊙ vk + β(uk − uk−1)

vk+1 = vk − γ∇LBk
(θk)⊙ uk + β(vk − vk−1),

(9.9)

where LBk
(θ) := 1

2B

∑
i∈Bk

(yi−⟨u⊙v, xi⟩)2 corresponds to the partial loss over the batch Bk ⊂ [n]
of size B. The batches could be sampled with or without replacement. As for continuous time,
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we let θk = uk ⊙ vk correspond to the regression predictor. We initialise at u1 = u0 and
v1 = v0, and we again consider the balancedness of the weights ∆k := |u2k − v2k| for k ≥ 0, the
reparametrised iterates w±,k := uk ± vk, and the initialisation scale α := max(∥u0∥∞, ∥v0∥∞).
In contrast to our continuous-time prerequisites where we only assumed boundedness of the
optimisation trajectory, here we assume that the iterates converge:

Assumption 9 (Convergence). The iterates (uk, vk) converge towards the limiting weights
(u∞, v∞). We denote by θSMGD := u∞ ⊙ v∞ the recovered predictor.

As in continuous time, we again assume that the asymptotic balancedness is nonzero.

Assumption 10 (Balancedness). The asymptotic balancedness ∆∞ := |u2∞ − v2∞| has non-zero
coordinates.

Similar to Lemma 2, we define two discrete infinite sums which depend on the entire trajec-
tory and appear in our discrete-time result.

Lemma 3. The following two sums S+ and S− converge to finite vectors:

S± =
1

1− β
∞∑

k=1

[
r
(w±,k+1

w±,k

)
+ βr

( w±,k
w±,k+1

)]
,

where r(z) = (z − 1)− ln(|z|) for z ̸= 0.

Importantly, the function r(z) from Lemma 3 is positive for z > 0. Contrary to the
continuous-time case, in discrete time, the iterates w±,k never exactly equal zero. Indeed, since
∇L is linear, we have that for all k ≥ 0, w±,k(γ, β) is a polynomial in (γ, β). Therefore, the set
of pairs (γ, β) for which there exists k ≥ 0 such that w±,k(γ, β) = 0 is a negligible set in R2.
The iterates therefore ‘jump’ over zero, making the sums from Lemma 3 well-defined.

9.5.1 General characterisation of SMGD bias

The following theorem represents the discrete counterpart of Theorem 3 and generalises [Even
et al., 2023, Theorem 1] which considers SGD without momentum.

Theorem 4. The solution θSMGD of SMGD (9.9) interpolates the dataset and satisfies the fol-
lowing implicit regularisation:

θSMGD = arg min
θ⋆∈S

Dψ∆∞
(θ⋆, θ̃0).

In the above expression, Dψ∆∞
denotes the Bregman divergence with potential ψ∆∞, where the

asymptotic balancedness equals

∆∞ = ∆0 ⊙ exp
(
− (S+ + S−)

)

and θ̃0 = 1
4(w2

+,0 ⊙ exp(−2S+))− w2
−,0 ⊙ exp(−2S−)) denotes a perturbed initialisation term.

Due to the strong similarities with Theorem 3, we proceed by making similar comments.
In our experiments, the norm of the perturbed initialisation θ̃0 remains much smaller than
that of any interpolator θ⋆. Hence, arguing as before, the implicit regularisation problem from
Theorem 4 should be though of as

θSMGD ≈ arg min
θ⋆∈S

ψ∆∞(θ⋆). (9.10)
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Again, the asymptotic balancedness ∆∞ controls the generalisation properties of the recovered
solution. Thus, if ∥∆∞(γ, β)∥2 < ∥∆∞(γ′, β′)∥2, we expect the interpolator θSMGD(γ, β) to be
sparser than θSMGD(γ′, β′). Figure 9.4 illustrates this point: the smaller the magnitude of ∆∞
(center plot), the better the sparsity of the interpolator (right plot), which translates into better
generalisation (left plot). Unfortunately, as for MGF, the asymptotic balancedness ∆∞ depends
on the whole optimisation trajectory in an intricate way, which prevents us from extracting an
insightful formula for ∆∞ in terms of γ and β. However, Figure 9.4 indicates that ∆∞ effectively
depends on the single parameter λ = γ/(1 − β)2. As in Figure 9.2, λ again clearly appears to
be the relevant quantity which governs the performance of MGD, and not γ and β considered
individually. These empirical observations support the idea that even for ‘practical’ step sizes γ
and momentum parameters β, MGD(γ, β) closely follows MGF(λ).

Figure 9.4 also clearly shows that the asymptotic balancedness decreases as the key quantity λ
increases over an interval [0, λ⋆] where λ⋆ denotes the parameter inducing the best generalisation
performances. Then, for λ above λ⋆, the magnitude of ∆∞ starts to grow and the sparsity of
the solutions deteriorates. We expect proving this phenomenon to be very challenging. Such a
proof would require a fine-grained analysis of the sums S±, which becomes already quite involved
when β = 0 as performed by Even et al. [2023].

Now, similar to the continuous-time result, the following corollary shows that if the iterates do
not change sign, then the asymptotic balancedness becomes smaller than the initial balancedness.

Corollary 3. For γ, β > 0, if the iterates w±,k = (uk ± vk) do not change sign during training,
then |θ̃0| < α2 and ∆∞ < ∆0.

The above corollary implies that the recovered solution θSMGD must perform at least as well
as the gradient flow interpolator θGF. However, in contrast to the continuous case and even
though we believe it to be true, we were unable to prove that the SMGD iterates do not change
sign for small values of λ.

9.6 Conclusion

Considering an appropriate second-order differential equation which discretises into MGD, we
highlight the existence of a single key quantity λ = γ/(1 − β)2 which fully determines the
trajectory of MGF. This continuous-time perspective also provides a simple acceleration rule
and insight into several relevant optimisation regimes. Then, focusing on 2-layer diagonal lin-
ear networks, we prove that the asymptotic balancedness ∆∞ solely governs the generalisation
performances of MGF and SMGD. We additionally prove that small values of λ aid the recov-
ery of sparse MGF solutions. Future work should consider MGF/MGD optimisation on more
complex architectures and understand precisely the non-trivial effect of λ on the asymptotic
balancedness ∆∞.
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Mirror flow over classification tasks
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Chapter 10

Implicit bias of mirror flow on separable data

10.1 Preface

This chapter follows a paper which is currently under review.

Summary We examine the continuous-time counterpart of mirror descent, namely mirror
flow, on classification problems which are linearly separable. Such problems are minimised ‘at
infinity’ and have many possible solutions; we study which solution is preferred by the algorithm
depending on the mirror potential. For exponential tailed losses and under mild assumptions on
the potential, we show that the iterates converge in direction towards a ϕ∞-maximum margin
classifier. The function ϕ∞ is the horizon function of the mirror potential and characterises
its shape ‘at infinity’. When the potential is separable, a simple formula allows to compute
this function. We analyse several examples of potentials and provide numerical experiments
highlighting our results.

Co-authors Radu-Alexandru Dragomir and Nicolas Flammarion.

Contributions Scott and Radu-Alexandru worked together on the project.

10.2 Introduction

Heavily over-parametrised yet barely regularised neural networks can easily perfectly fit a noisy
training set while still performing very well on unseen data [Zhang et al., 2017]. This statistical
phenomenon is surprising since it is known that there exists interpolating solutions which have
terrible generalisation performances [Liu et al., 2020a]. To understand this benign overfitting,
it is essential to take into account the training algorithm. If overfitting is indeed harmless,
it must be because the optimisation process has steered us towards a solution with favorable
generalisation properties.

From this simple observation, a major line of work studying the implicit regularisation of
gradient methods has emerged. These results show that the recovered solution enjoys some type
of low norm property in the infinite space of interpolating solution. Gradient descent (and its
variations) has therefore been analysed in various settings, the simplest and most emblematic
being that of gradient descent for least-squares regression: it converges towards the solution
which has the lowest ℓ2 distance from the initialisation [Lemaire, 1996]. In the classification
setting with linearly separable data, iterates of gradient methods must diverge to infinity to
minimise the loss. Therefore, the directional convergence of the iterates is considered and Soudry
et al. [2018] show in their seminal paper that gradient descent selects the ℓ2-max-margin solution
amongst all classifiers.
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Figure 10.1: Mirror descent is performed using 3 different potentials on the same toy 2d dataset.
Left: the losses converge to zero. Center: the iterates converge in direction towards 3 different
vectors, the 3 lines passing through the origin correspond to the 3 different separating hyper-
planes. Right: these directions are each proportional to arg min ϕ∞(β̄) under the constraint
mini yi⟨xi, β̄⟩ ≥ 1 for their respective ϕ∞’s, as predicted by our theory (Theorem 5). See Sec-
tion 10.6 for more details on the experimental setup.

Going beyond linear settings, it has been observed that an underlying mirror-descent
structure very recurrently emerges when analysing gradient descent in a wide range of non-
linear parametrisations [Woodworth et al., 2020b, Azulay et al., 2021]. Providing convergence
and implicit regularisation results for mirror descent has therefore gained significant importance.

In this context, for linear regression, Gunasekar et al. [2018a] show that the iterates converge
to the solution that has minimal Bregman distance to the initial point. Turning towards the
classification setting, an apparent gap emerges as there is still no clear understanding of what
happens: Can directional convergence be characterised in terms of a max-margin problem?
And if so, what is the associated norm? Quite surprisingly, this question remains unanswered.
This chapter bridges this gap by formally characterising the implicit bias of mirror descent for
separable classification problems.

10.2.1 Informal statement of the main result

For a separable dataset (xi, yi)i∈[n], we study the mirror flow d∇ϕ(βt) = −∇L(βt)dt with po-

tential ϕ : Rd → R and an exponential tailed classification loss L. We prove that βt converges
in direction towards the solution of the ϕ∞-maximum margin solution where the (asymmetric)
norm ϕ∞ captures the shape of the potential ϕ ‘at infinity’ (see Figure 10.2 for an intuitive
illustration).

Theorem 5 (Main result, Informal). There exists a horizon function ϕ∞ such for any sepa-
rable dataset, the normalised mirror flow iterates β̄t := βt/∥βt∥ converge and satisfy:

lim
t→∞

β̄t is proportional to arg max
ϕ∞(β̄)≤1

min
i∈[n]

yi⟨xi, β̄⟩.

This also means that limt→∞ β̄t is proportional to arg min
mini yi⟨xi,β̄⟩≥1

ϕ∞(β̄) because ϕ∞ is positively

1-homogeneous.

Our result holds for (nearly) all reasonable potentials ϕ and it recovers previous results which
were obtained for ϕ = ∥·∥pp [Sun et al., 2022] and for L-homogeneous potentials [Sun et al., 2023].
For general potentials, showing convergence towards a maximum margin classifier is much harder
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because, in stark contrast with homogeneous potentials, ϕ’s geometry changes as the iterates
diverge. To capture the behaviour of ϕ at infinity, we geometrically construct its horizon function
ϕ∞. By considering ϕ’s successive level sets (and re-normalising them to prevent them blowing-
up), we show that under mild assumptions, these sets asymptotically converge towards a limiting
horizon set S∞. The horizon function ϕ∞ is then simply the asymmetric norm which has S∞ as
its unit ball (see Figure 10.3 for an illustration). In addition, when the function ϕ is ‘separable’
and can be written ϕ(β) =

∑
i φ(βi) for a real valued function φ, then a very simple and practical

formula enables to calculate ϕ∞ (Theorem 7).

The chapter is organised as follows. The classification setting as well as the assumptions
on the loss and the potential are provided in Section 10.3. The proof sketch and an intuitive
construction of the horizon function are given in Section 10.4. In Section 10.5, we state the
formal definition and results. Simple examples of horizon potentials and numerical experiments
supporting our claims are finally given Section 10.6.

10.2.2 Relevance of mirror descent and related works.

We first provide motivations for why understanding the implicit regularisaton of mirror descent is
relevant to the machine learning community, as well as related works that places our contribution
in context.

Relevance of studying mirror descent in the context of machine learning. Though
mirror descent is not per se an algorithm used by machine learning practitioners, it proves to
be a very useful tool for theoreticians in the field. Indeed, when analysing gradient descent (and
its stochastic and accelerated variants) on neural-network architectures, an underlying mirror-
descent-like structure somehow very recurrently emerges. General results for mirror descent
then enable to prove convergence as well as characterise the implicit regularisation of gradient
descent for these architectures. Diagonal linear networks, which are ideal proxy models for gain-
ing insights on complex deep-learning phenomenons, is the most notable example of such an
architecture. The hyperbolic entropy potential natural appears and enables to prove countless
results: implicit bias of gradient descent in regression [Woodworth et al., 2020b, Vaskevicius
et al., 2019] and in classification [Moroshko et al., 2020], effect of stochasticity [Pesme et al.,
2021], convergence of gradient descent and effect of the step-size [Even et al., 2023], saddle-to-
saddle dynamics [Pesme and Flammarion, 2023]. Unveiling an underlying mirror-like structure
goes beyond these simple networks as they also appear in: matrix factorisation with commuting
observations [Gunasekar et al., 2017, Wu and Rebeschini, 2021], fully connected linear net-
works [Azulay et al., 2021, Varre et al., 2023] and 2-layer ReLU networks [Chizat and Bach,
2020]. Building on these examples, Li et al. [2022] further broaden the scope of mirror descent
for implicit bias by investigating the formal conditions that ensure the existence of a mirror flow
reformulation for general parameterizations, extending previous results by Amid and Warmuth
[2020a,b].

Gradient descent in classification. Numerous works have studied gradient descent in the
classification setting. For linear parametrisations, separable data and exponentially tailed losses,
Soudry et al. [2018] prove that GD converges in direction towards the ℓ2-maximum margin
classifier and provides convergence rates. A very fine description of this divergence trajectory is
conducted by Ji and Telgarsky [2018] and a different primal-dual analysis leading to tighter rates
is given by Ji and Telgarsky [2021]. Similar results are proven for stochastic gradient descent by
Nacson et al. [2019a]. In the case of general loss tails, Ji et al. [2020] prove that gradient descent
asymptotically follows the ℓ2-norm regularisation path. A whole ‘astral theory’ is developed by
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Dud́ık et al. [2022] who provide a framework which enables to handle ‘minimisation at infinity’.
Beyond the linear case, Lyu and Li [2020] proves for homogeneous neural networks that any
directional limit point of gradient descent is along a KKT point of the ℓ2-max margin problem.
A weaker version of this result was previously obtained by Nacson et al. [2019b]. Furthermore,
convergence results for linear networks are provided by Yun et al. [2021]. Finally, for 2-layer
networks in the infinite width limit, assuming directional convergence, Chizat and Bach [2020]
proves that the limit can be characterised as a max-margin classifier in a certain space of
functions.

10.2.3 Notations

We provide here a few notations which will be useful throughout the chapter. We let [n] be the
integers from 1 to n. We denote by Z ∈ Rn×d the feature matrix whose ith line corresponds
to datapoint yixi. When not specified, ∥ · ∥ corresponds to any (definable) norm on Rd. For a
convex function h, ∂h(β) denotes its subdifferential at β: ∂h(β) = {g ∈ Rd : h(β′) ≥ h(β) +
⟨g, β′ − β⟩,∀β′ ∈ Rd}. For any scalar function f : R → R and vector u ∈ Rp, the vector
f(u) ∈ Rp corresponds to the component-wise application of f over u. We denote by σ :
Rn → Rn the softmax function equal to σ(z) = exp(z)/

∑n
i=1 exp(zi) ∈ ∆n where ∆n is the

unit simplex. For a convex potential ϕ, we denote Dϕ(β, β0) the Bregman divergence equal to
ϕ(β)− (ϕ(β0) + ⟨∇ϕ(β0), β − β0⟩) ≥ 0.

10.3 Problem set-up

We consider a dataset (xi, yi)1≤i≤n with points xi ∈ Rd and binary labels yi ∈ {−1, 1}. We
choose a loss function ℓ : R→ R and seek to minimize the empirical risk

L(β) =
n∑

i=1

ℓ(yi⟨xi, β⟩).

We propose to study the dynamics of mirror flow, which is the continuous-time limit of the mirror
descent algorithm [Beck and Teboulle, 2003]. Mirror descent is a generalization of gradient
descent to non-Euclidean geometries induced by a given convex potential function ϕ : Rd → R.
The method generates a sequence (β̂k)k≥0 with β̂0 = β0 ∈ Rd and

∇ϕ(β̂k+1) = ∇ϕ(β̂k)− γ∇L(β̂k).

When the step size γ goes to 0, the mirror descent iterates approach the solution (βt)t≥0 to the
following first-order differential equation (ODE):

d∇ϕ(βt) = −∇L(βt)dt, (MF)

initialised at β0. Studying the mirror flow (MF) allows for simpler computations than its discrete
counterpart, and still allows to obtain rich insights about the algorithm’s behaviour.

We now state our standing assumptions on the loss function ℓ and potential ϕ.

Assumption 11. The loss ℓ satisfies:

1. ℓ is convex, twice continuously differentiable, decreasing and limz→+∞ ℓ(z) = 0.

2. ℓ has an exponential tail, in the sense that −ℓ′(z) ∼
z→∞

exp(−z).
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The first part of the assumptions is very general and insures that the empirical loss L can be
minimised ‘at infinity’. The exponential tail is crucial: it enables to identify a unique maximum
margin solution towards which the iterates converge in direction, independently of the considered
loss. Both the exponential ℓ(z) = exp(−z) and the logistic loss ℓ(z) = ln(1+exp(−z)) satisfy the
conditions. On the other hand, losses with polynomial tails do not satisfy the second criterion.
Similar assumptions on the tail appear when investigating the implicit bias of gradient descent
for separable data [Soudry et al., 2018, Nacson et al., 2019c, Ji et al., 2020, Ji and Telgarsky,
2021, Chizat and Bach, 2020].

Assumption 12. The potential ϕ : Rd → R satisfies:

1. ϕ is twice continuously differentiable, strictly convex and coercive.

2. ∇ϕ diverges at infinity: lim∥β∥→∞ ∥∇ϕ(β)∥ = +∞.

3. ∇2ϕ(β) is positive-definite for all β ∈ Rd.

4. for every c ∈ R≥0 and β2 ∈ Rd, the sub-level set {β1 ∈ Rd, Dϕ(β2, β1) ≤ c} is bounded.

These assumptions are common when considering mirror descent [Bauschke et al., 2017]. We
provide several examples of potentials in Section 10.6. Crucially, these assumptions ensure the
existence and uniqueness of (MF) as shown in the following lemma.

Lemma 4. For any initialisation β0 ∈ Rd, there exists a unique solution defined over R≥0 which
satisfies (MF) for all t ≥ 0 and with initial condition βt=0 = β0.

The proof is standard and relies on ensuring that the iterates do not diverge in finite time,
we defer it to Appendix E.1. Finally, we assume that infβ L(β) = 0, meaning that there exists
a hyperplane that perfectly separates the data.

Assumption 13. The dataset is linearly separable: there exists β⋆ ∈ Rd such that yi⟨β⋆, xi⟩ > 0
for every i ∈ [n].

Notice that such β⋆’s correspond to minimisation directions: L(λβ⋆)
λ→∞−→ 0. Under the three

previous assumptions, we can show that the mirror flow iterates (βt)t≥0 minimise the loss while
diverging to infinity.

Proposition 22. Considering the mirror flow (βt)t≥0, the loss converges towards 0 and the
iterates diverge: lim

t→∞
L(βt) = 0 and lim

t→∞
∥βt∥ = +∞.

The proof relies on classical techniques used to analyse gradient methods in continuous time
and we defer the proof to Appendix E.1. We now turn to the main question addressed in this
chapter:

Among all minimising directions β⋆, towards which does the mirror flow converge?

We initially offer a heuristic and intuitive answer to this question, setting the stage for the formal
construction of the implicit regularisation problem.

10.4 Intuitive construction of the implicit regularisation problem

In this section, we give an informal presentation and proof sketch of our main result. A fully
rigorous exposition is then provided in Section 10.5.
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Preliminaries. Assume here for simplicity that ℓ(z) = exp(−z). The mirror flow then writes

d

dt
∇ϕ(βt) = L(βt) · ZT q(βt),

with q(βt) = σ(−Zβt). We recall that σ is the softmax function and Z the matrix with rows
(yixi)i∈[n]. Note that q(βt) belongs to the unit simplex ∆n.

We simplify the differential equation by performing a time rescaling, which does not change
the asymptotical behaviour. As θ : t 7→

∫ t
0 L(βs)ds is a bijection in R≥0 (see Lemma 40) which

typically slowly grows as ln(t), we can speed up time and consider the accelerated iterates
β̃t = βθ−1(t)

1. By the chain rule, we have

d

dt
∇ϕ(β̃t) = Z⊤q(β̃t),

and therefore

1

t
∇ϕ(β̃t) =

1

t
∇ϕ(β0)− Z⊤

(1

t

∫ t

0
q(β̃s)ds

)
. (10.1)

From now on, we drop the tilde notation and assume that change of time scale has been done.
We want to characterize the directional limit of the diverging iterates βt. To do so, we study
their normalisation β̄t := βt

∥βt∥ . As they form a bounded sequence, and q(βt) ∈ ∆n is also

bounded, we can extract a subsequence (β̄ts , q(βts))s>0, with lims→∞ ts = ∞ converging to
some limit (β̄∞, q∞). By the Césaro average property, 1

ts

∫ ts
0 q(βs)ds also converges towards q∞.

Equation (10.1) then yields

1

ts
∇ϕ(βts) −→s→∞

Z⊤q∞ (10.2)

Observe that q(β) = σ(−Zβt) and the softmax function σ approaches the argmax operator at
infinity. Hence, as βt diverges, we expect that q(βt)k → 0 for coordinates k for which (−Zβt)k is
not maximal, i.e. (Zβt)k not minimal. This observation is made formal in the following lemma.
Its proof is straightforward and is given in Appendix E.1.

Lemma 5. Assume that (β̄ts , q(βts))
s→∞−→ (β̄∞, q∞). It holds that:

(q∞)k = 0 if yk⟨xk, β̄∞⟩ > min
1≤i≤n

yi⟨xi, β̄∞⟩.

In words, coordinates of q∞ which do not correspond to support vectors of β̄∞ must be zero.
Our goal is now to uniquely characterise β̄∞ as the solution of a maximum margin problem.

10.4.1 Warm-up: gradient flow

As a warm-up, let us consider standard gradient flow, which corresponds to mirror flow with
potential ϕ = ∥ · ∥22/2. In this case, Equation (10.2) becomes βts/ts → Z⊤q∞. Since the
normalized iterates satisfy β̄ts → β̄∞, we get

β̄∞ =
Z⊤q∞
∥Z⊤q∞∥2

.

1β̃t can also be seen as the mirror flow trajectory but on the log-sum-exp function instead of the sum-exp
function
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Figure 10.2: Left two: Sketch of the level lines of two different potentials ϕ(1), ϕ(2) : R2 →
R. Right two: Their corresponding asymptotic functions ϕ
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∞ which are positive 1-

homogeneous.

Now notice that this equation along with the slackness conditions from Lemma 5 exactly corre-
spond to the optimality conditions of the following convex minimisation problem:

max
β̄

min
i∈[n]

yi⟨xi, β̄⟩ under the constraint ∥β̄∥2 ≤ 1. (10.3)

Furthermore, the ℓ2-unit ball being strictly convex, Problem (10.3) has a unique solution to
which β̄∞ must therefore be equal. Importantly notice that Problem (10.3) uniquely defines the
limit of any extraction on the normalised iterates β̄t: the normalised iterates β̄t must therefore
converge towards the ℓ2-maximum margin and we recover the implicit regularization result from
Soudry et al. [2018]:

β̄∞ = arg max
∥β̄∥2≤1

min
i∈[n]

yi⟨xi, β̄⟩.

10.4.2 General potential: introducing the horizon function ϕ∞

We now tackle general potentials ϕ. We first need to introduce the definition of an asymmetric
norm. Simply said, an asymmetric norm has all the properties of a norm except for being
centrally symmetric.

Definition. [Asymmetric norm.] A function p : Rd → R≥0 is said to be an asymmetric norm
if we have p(β1 + β2) ≤ p(β1) + p(β2) (triangle inequality), p(β) > 0 for β ̸= 0 (positivity), and
p(rβ) = rp(β) for r ≥ 0 (positive homogeneity).

The challenge of identifying the max-margin problem, to which the iterates converge in
direction, stems from the fact that if the potential ϕ is not homogeneous2 then its geometry
changes as the iterates norm increases. More formally, its sub-level sets Sc := {β ∈ Rd, ϕ(β) ≤ c}
change of shape as c increase, as illustrated by Figure 10.2 (Left).

However, we can hope that these sets have a limiting shape at infinity, meaning that
the normalised sub-level sets S̄c := Sc/Rc where Rc := maxβ∈Sc ∥β∥ converge to some limiting
convex set S∞ as c→∞. We can then construct an asymmetric norm ϕ∞ which has S∞ as its
unit ball. In words, ϕ∞ captures the shape of ϕ at infinity. This informal construction is
made rigorous in Section 10.5.1. We state here the crucial consequence of this construction.

Corollary 4. The horizon function ϕ∞ is such such that for any sequence βt for which β̄t := βt
∥βt∥

and ∇ϕ(βt)
t both converge, then:

lim
t→∞

1

t
∇ϕ(βt) ∈ λ · ∂ϕ∞(β̄∞), where β̄∞ = lim

t→∞
β̄t,

2a function is said to be homogeneous if there exists L > 0 such that ϕ(cβ) = cLϕ(β) for all β and c > 0
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for some positive factor λ.

Using this construction, we are able to derive the optimality conditions satisfied by β̄∞.
From the convergence in Equation (10.2) and that of β̄t → β̄∞, applying Corollary 4, we get
that:

Z⊤q∞ ∈ λ · ∂ϕ∞(β̄∞).

Up to a positive multiplicative factor (which is irrelevant due to the positive homogeneity the
quantities involved), this condition along with Lemma 5 are exactly the optimality conditions
of the convex problem

max
β̄∈Rd

min
i∈[n]

yi⟨xi, β̄⟩ under the constraint ϕ∞(β̄) ≤ 1.

β̄∞ must therefore belong to the set of its solutions. Assuming that this set contains a single
element of norm 1 (we refer to the next section for comments concerning the unicity), we obtain
that the iterates β̄t must converge towards it:

lim
t→∞

βt
∥βt∥

∝ arg max
ϕ∞(β̄)≤1

min
i∈[n]

yi⟨xi, β̄⟩.

10.5 Main result: directional convergence of the iterates towards the
ϕ∞-max margin

We now state our formal results, begining with the precise construction of the horizon function
ϕ∞, and following with the theorem showing convergence of the iterates towards the ϕ∞-max
margin.

10.5.1 Construction of the horizon function ϕ∞

We first define the horizon shape of a convex potential, and provide sufficient conditions for
its existence. Then, we use this shape to construct a horizon function ϕ∞, which allows the
interpretation of the directional limits of gradients of ϕ at infinity. The proofs require technical
elements from variational analysis to ensure that the limits are well-defined; these are deferred
to the appendix.

Definition and sufficient conditions for existence. Assume without loss of generality
that ϕ(0) = 0. For c ≥ 0, consider the sublevel set

Sc(ϕ) = {β ∈ Rd : ϕ(β) ≤ c},

which is nonempty and compact by coercivity of ϕ. We can then define the normalised sublevel
set:

S̄c =
1

Rc
Sc, Rc = max{∥β∥ : β ∈ Sc}. (10.4)

By construction, the set S̄c belongs to the unit ball. We are interested in the limit of S̄c as
c→∞.

Definition. We say that ϕ admits a horizon shape if the family of normalized sublevel sets
(S̄c)c>0 defined in Equation (10.4) converges to some set S∞ as c → ∞ for the Hausdorff
distance. In addition, we say that this shape is non-degenerate if the origin belongs to the
interior of S∞.
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Figure 10.3: Illustration of the construction of the horizon shape S∞. Left: the sub-level sets
Sc change of shape and are increasing. Middle: in order to avoid the shapes blowing up, we
normalized them to keep them in the unit ball (here we chose the arbitray constraining norm to
be the ℓ1-norm). Right : the normalised sub-level sets S̄c converge to a limiting set S∞ for the
Hausdorff distance.

Hausdorff distance is a natural distance on compact sets [see Rockafellar and Wets, 1998,
Section 4.C., for a definition]. In Proposition 10.5.3, we prove the existence of the horizon shape
for a large class of functions, containing all potentials encoutered in practice.

Although the horizon shape is guaranteed to exist for most functions, we cannot a priori
prove that it is non-degenerate, as the normalized sub-levels S̄c can become ‘flat’ as c→∞3. As
this case would be much more technical and involved, we now restrict to non-degenerate horizon
shapes.

Horizon function. If h admits a non-degenerate horizon shape S∞, we define its horizon
function as the Minkowski gauge [Rockafellar and Wets, 1998, Section 11.E] of S∞:

ϕ∞(β̄) := inf {r > 0 :
β̄

r
∈ S∞}

for β̄ ∈ Rd. The horizon function ϕ∞ is an asymmetric norm as defined in Definition . Im-
portantly, it is defined such that its sub-level sets correspond to scaled versions of S∞ [see
Rockafellar and Wets, 1998, Section 11.C, for more properties]. For example, in the case of the
horizon shape S∞ illustrated in Figure 10.3, the corresponding horizon function ϕ∞ is propor-
tional to the ℓ1-norm. Although the construction of ϕ∞ presented here is rather abstract, we
show in Theorem 7 that for separable potentials, as commonly encountered in practice, it can be
computed with a simple formula. Though different, our definition of the horizon function shares
many similarities with the classical concept of horizon function from convex analysis [Rockafellar
and Wets, 1998]. We discuss the links between the two notions at the end of Section 10.5.3.

10.5.2 ϕ∞-max margin problem and main result

Now that we have properly constructed the horizon function ϕ∞, we can define its corresponding
maximum-margin problem.

Definition. The ϕ∞-max margin problem is defined as:

max
β̄∈Rd

min
i∈[n]

yi⟨xi, β̄⟩ under the constraint ϕ∞(β̄) ≤ 1.

We can now state our main result which fully characterises the directional convergence of
the mirror flow iterates.

3Consider for instance ϕ(x, y) = x2 + y4 on R2, for which the horizon shape is [−1, 1]× {0}.
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Theorem 6. Let ϕ∞ be the horizon function of ϕ. Assuming that the ϕ∞-max margin problem
has a unique solution, the mirror flow normalised iterates β̄t = βt

∥βt∥ converge towards a vector

β̄∞ and

β̄∞ ∝ arg max
ϕ∞(β̄)≤1

min
i∈[n]

yi⟨xi, β̄⟩,

where the symbol ∝ denotes positive proportionality.

Remark on the unicity of the margin problem. If the unit ball of ϕ∞ is strictly convex,
then the max-margin problem has a unique maximiser. However, in the general case, there may
exist an infinity of solutions and weak but ad hoc assumptions on the dataset are required to
guarantee uniqueness. For instance, if ϕ∞ is proportional to the ℓ1-norm, a common assumption
which ensures uniqueness is assuming that the data is in general position. It is not restrictive as
it is almost surely satisfied for data drawn from a continuous probability distribution, we refer
to Rosset et al. [2004], Appendix B, for more details.

10.5.3 Assumptions guaranteeing the existence of ϕ∞ and computable for-
mula

Our main result, presented in Theorem 6 relies on the existence of a horizon shape, S∞, as
described in Definition . From this shape, the asymmetric norm ϕ∞ is constructed.

We show here that the existence of S∞ is ensured for a large class of ‘nice’ functions, specif-
ically those definable in o-minimal structures [Dries, 1998]. For the reader unfamiliar with this
notion, this class contains all ‘reasonable’ functions used in practice, such as polynomials, loga-
rithms, exponentials, and ‘reasonable’ combinations of those. This is a typical assumption used
for instance to prove the convergence of optimisation methods through the Kurdyka– Lojasiewicz
property [Attouch et al., 2011].

If any of the three following conditions hold: (i) ϕ is a finite composition of polynomials,
exponentials and logarithms, (ii) ϕ is globally sub-analytic, (iii) ϕ is definable in a o-minimal
structure on R; then ϕ admits a horizon shape S∞. The proof is technical and we defer it to
Appendix E.2. Although the previous proposition ensures the existence ϕ∞ for a wide range of
potentials, it does not offer a direct method for computing it. In the following, we show that
for potentials that are both separable and even, a simple formula exists, allowing for the direct
calculation of ϕ∞.

Assumption 14. The potential ϕ is separable in the sense that there exists φ : R→ R≥0 such
that ϕ(β) =

∑d
i=1 φ(βi). We assume that φ satisfies Assumption 12, that it is definable in a

o-minimal structure on R and that it is an even function. W.l.o.g. we assume that φ(0) = 0.

We note that φ is bijective over R≥0 from Assumption 12, and we denote φ−1 its inverse.
We consider the function φ−1 ◦ϕ, which has the suitable properties of: (i) maintaining the same
sub-level sets as ϕ and (ii) not growing ‘too fast’, ensuring that limη→0 ηφ

−1(ϕ(β̄/η)) exists in
R>0 for all β̄. These two observations lead to the following theorem.

Theorem 7. Under Assumption 14, there exists λ > 0 such that the horizon function ϕ∞ of ϕ
as defined in the previous section satisfies:

ϕ∞(β̄) = λ lim
η→0

η · φ−1

(
ϕ

(
β̄

η

))

for every β̄ ∈ Rd.

We use this simple formula when computing ϕ∞ for various potentials in the next section.
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Remark on previous notions of horizon function. In the convex analysis literature, the
horizon function is typically defined as limη→0 ηϕ(β̄/η) [Rockafellar and Wets, 1998, Laghdir
and Volle, 1999]. A direct application of this concept in our context would yield a function
valued at +∞ everywhere except at the origin, a consequence of Assumption 12. In contrast,
our definition ensures that ϕ∞ attains finite values over at least a portion of Rd. This distinction
stems from our way of normalising the level sets by Rc in the general definition, or alternatively,
the composition by φ−1 in the separable case.

The two constructions would coincide only if ϕ was Lipschitz continuous, which is at odds
with Assumption 12. To align more closely with the standard terminology in the literature, we
could refer to our notion as the normalised horizon function.

10.6 Applications and experiments

In this section, we illustrate our main result using three different potentials. We implement
mirror descent with each one of these potentials, and present the results in Figure 10.1.

Homogeneous potentials. We first consider potentials ϕ which are L-homogeneous, i.e.,
there exists L > 0 such that for all c > 0 and β ∈ Rd, ϕ(cβ) = cLϕ(β). In this case, since S̄c is
equal for all c > 0, it follows that there exists λ such that ϕ∞ ∝ ϕ1/L. An important example is
the case of ϕ = ∥ · ∥pp where ∥ · ∥p corresponds to the ℓp-norm with p > 1, for which we get that
ϕ∞ ∝ ∥ · ∥p and we recover the result from Sun et al. [2022, 2023].

Hyperbolic entropy potential. The hyperbolic entropy potential ϕ(β) =
∑d

i=1(βiarcsinh(βi)−√
β2i + 1−1) plays a central role in works considering diagonal linear networks [Woodworth et al.,

2020b, Pesme and Flammarion, 2023]. Applying Theorem 7, we obtain that ϕ∞ ∝ ∥ · ∥1 and
we recover the result from Moroshko et al. [2020]. We note that the geometry induced by this
potential changes across different scales, interpolating between the ℓ2 and ℓ1 geometries.

Hyperbolic-cosine entropy potential. We finally consider the following potential ϕ(β) =∑d
i=1(cosh(βi)− 1). Applying Theorem 7, we get that ϕ∞ ∝ ∥ · ∥∞.

Experimental details concerning Figure 10.1. As shown in Figure 10.1 (Middle), we
generate 40 points with positive labels and 40 points with negative labels. Starting from β0 = 0,
we run mirror descent with the three following potentials:

(i) ϕGD = ∥ · ∥22, (ii) ϕMD1 = Hyperbolic entropy, (iii) ϕMD2 = cosh-entropy.

We first observe in Figure 10.1 (Left) that the training loss converges to zero, as predicted by
Proposition 22, with a linear convergence rate that varies across different potentials. Moreover,
as illustrated in Figure 10.1 (Middle and Right), the iterates converge in direction towards their
respective unique ϕ∞-max margin solutions associated with the following geometries:

(i) ϕGD
∞ ∝ ∥ · ∥2, (ii) ϕMD1∞ = ∥ · ∥1, (iii) ϕMD2∞ ∝ ∥ · ∥∞.

Therefore, by using different Therefore, by employing various potentials, we can induce different
implicit biases, leading to distinct generalization properties based on the data distribution.
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10.7 Conclusion and limitations

In this chapter, we offer a comprehensive characterisation of the implicit bias of mirror flow for
separable classification problems. This characterisation is framed in terms of the horizon function
associated with the mirror descent potential, leveraging the asymptotic geometry induced by
the potential.

Our results being purely asymptotic, characterising the rate at which the normalised iter-
ates converge towards the maximum-margin solution is an open direction for future research.
Furthermore, we note that our analysis does not cover potentials that are defined only on a
strict subset of Rd (such as the log-barrier and the negative entropy), and with possibly non-
coercive gradients. This class of potentials is of interest as it arises when investigating deep
architectures, such as diagonal linear networks of depth D > 2. In this setting, it is known that
gradient flow on the weights lead to a mirror flow on the predictors with a certain potential
ϕD [Woodworth et al., 2020b]. Interestingly, the potentials ϕD have non-coercive gradients and
their horizon functions do not depend on the depth D as they are all proportional to the ℓ1-
norm. The predictors are, however, known to converge in direction towards a KKT point of the
non-convex ℓ2/D-max-margin problem [?] which can be different from the ℓ1-max-margin prob-
lem [Moroshko et al., 2020]. This observation highlights that our coercive gradient assumption
is necessary for our result to hold. However, extending our analysis beyond this assumption is
a promising direction for understanding gradient dynamics in deep architectures.
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Conclusion and future directions

10.7.1 Conclusion

In this PhD thesis, we investigated optimisation phenomena which occur in deep learning by
focusing solely on the 2-layer diagonal linear network architecture.

In the first part, we gave an introduction to the notion of implicit regularisation alongside
an overview of the 2-layer diagonal linear network architecture and the mirror flow algorithm.
We recalled key results upon which the rest of the manuscript is built. This section lays the
groundwork for the subsequent results presented in the thesis.

In the following part, in a regression setting, we showed that we can describe the entire
gradient flow trajectory for a vanishing initialisation: the iterates jump from a saddle of the
training loss to another and coordinates are learnt one at a time, highlighting an incremental
learning.

In the third section, we examined the influence of training hyperparameters on the recovered
solution. Initially, we employed a stochastic differential equation to model the trajectory of
Stochastic Gradient Descent (SGD), demonstrating that noise aids in recovering a sparser solu-
tion compared to gradient flow. While we didn’t emphasise the role of the step-size extensively
here, in the ensuing chapter, we directly tackle the discrete SGD and GD recursions and investi-
gate the impact of the step-size. Our analysis revealed that while large step-sizes are beneficial
for sparse recovery when using SGD, they can be counterproductive for GD. In the third and last
chapter, we explored the effect of momentum, employing a continuous-time approach to model
momentum gradient descent. We identified an intrinsic quantity, λ = γ

(1−β)2 , which uniquely

characterises the optimisation path and provides a straightforward acceleration rule applicable
beyond the scope of the diagonal network architecture. Additionally, we demonstrated that
moderate values of λ help in the recovery of sparse solutions.

In the fourth and final part, we adopted a slightly different perspective, diverging from a
strict focus on diagonal linear networks. Instead we focused our attention towards understanding
mirror flow’s implicit regularisation in linear classification tasks with separable data. We proved
that the iterates converge directionally towards a ϕ∞ max margin classifier, where the function
ϕ∞ captures the shape of the potential at infinity.

10.7.2 Future directions

Beyond diagonal linear networks. While the study of diagonal linear networks is rich in
insights, it is undoubtedly a limited framework. A clear avenue for future research would involve
exploring more complex architectures that bear closer resemblance to real-world models, such as
linear networks, ReLU networks, ResNets, and Transformers. We would not be surprised if many
of the techniques and methodologies developed within the context of diagonal linear networks
can be extended and adapted to these broader frameworks. Indeed, the 2-layer diagonal network
already captures a crucial characteristic found in various architectures: weight multiplication.
Investigating the non-convexity introduced by other types of weight multiplication, such as
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matrix-matrix products, as seen in Transformers and ReLU networks, is a direction for future
research.

Exploring the ‘data | architecture | gradient method’ alignment. As emphasised in
the introduction, understanding the generalisation capabilities of deep learning models requires
considering the structure of the data: neural networks with gradient training excel in real-world
tasks because they align well with the underlying data structures. Drawing a parallel with linear
regression: there exists a class of data distributions for which the minimum ℓ2-norm interpolator
generalises well [Bartlett et al., 2020], and another class where it is the minimum ℓ1-norm
interpolator [Wang et al., 2022a]. The question is then: for which class of data-distributions do
neural networks with gradient training perform well?

Beyond the classical supervised learning setting. The success of large language models
relies on the next-token prediction task they are trained on. Though this task can be cast
as supervised learning, it is more commonly designated as ‘self-supervised’. However there
exists no appropriate statistical framework which enables to formalise and analyse these learning
problems. What space of inputs should we consider? What complexity measure can we associate
to functions acting on this space? Exploring these questions is an exciting avenue for future
research.

From continuous to discrete. The continuous-time framework constitutes a fantastic frame-
work which allows to painlessly prove convergence of the iterates, give convergence speeds as
well as expose the implicit regularisation problem. However all known discretisation bounds are
overly pessimistic and fail to account for two important observations: (i) experimental evidence
shows that the discrete algorithms tend to closely follow their continuous counterpart, (ii) once
the continuous-time proof is obtained, the proof techniques can often be adapted and transferred
to the discrete case by using the same ideas and Lyapunov functions. An interesting research av-
enue would be to understand: (i) for which class of functions do favorable discretisation bounds
hold? (ii) could we build a framework which enables to immediately transfer proofs?
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Appendix A

Appendix for Chapter 6

Organisation of the Appendix.

1. In Appendix A.1, we give the experimental setup and provide additional experiments.

2. In Appendix A.2, we prove Proposition 11 and provide additional comments concerning
the unicity of the minimisation problem which appears in the proposition.

3. In Appendix A.3, we provide some general results on the flow.

4. In Appendix A.4, we prove Proposition 12 and give standalone properties of Algorithm 1.

5. In Appendix A.5, we explain in more detail the arc-length parametrisation explained in
the main text as well as prove Theorem 1 and Proposition 13.

6. In Appendix A.6, we provide technical lemmas which are useful to prove the main results.
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A.1 Experimental setup and additional: experiments, extension, related
works.

Experimental setup and additional experiments. For each experiment we generate our
dataset as yi = ⟨xi, β⋆⟩ where xi = N (0, H) for a a diagonal covariance matrix H and β⋆ is
a vector of Rd. Gradient descent is run with a small step size and from initialisation ut=0 =√

2α1 ∈ Rd and vt=0 = 0 for some initialisation scale α > 0.

• Figure 6.1 and Figure A.2 (Left): (n, d, α) = (5, 7, 10−120), H = Id, β
⋆ = (10, 20, 0, 0, 0, 0, 0) ∈

R7.

• Figure A.2 (Right): (n, d, α) = (6, 6, 10−10), H = diag(1, 10, 10, 10, 10, 10) ∈ R6×6, β⋆ =
(1, 0, 0, 0, 0, 0, 0) ∈ R6.

• Figure A.1 (Left): (n, d, α1, α2) = (7, 2, 10−100, 10−10), H = Id, β
⋆ = (10, 20) ∈ R7.

• Figure A.1 (Right): (n, d, α) = (3, 3, 10−100) , X is the square root matrix of the matrix
((20, 6,−1.4), (6, 2,−0.4), (−1.4,−0.4, 0.12)) ∈ R3×3, β⋆ = (1, 9, 10).

0.0 0.2 0.4 0.6 0.8 1.0

Time t

0

5

10

15

20

Accelerated iterates β̃αt = βαln(1/α)t

β̃α1
t (1)

β̃α1
t (2)

β̃α2
t (1)

β̃α2
t (2)

10 2 10 1 100 101 102

Time t

0

2

4

6

8

10

Accelerated iterates t = ln(1/ )t

t (1)

t (2)

t (3)

Figure A.1: Left: Visualisation of the uniform convergence of β̃α towards β̃◦ as α → 0. α1 =
10−100 ≪ α2 = 10−10 Right: In some cases, 2 coordinates can activate at the same time. Note
that the time axis is in log-scale for better visualisation.
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Figure A.2: Complex dynamics can occur. Left and right: Coordinates are not monotonic and
the number of active coordinates neither as several coordinates can deactivate at the same time.
The piecewise constant process plotted in black is the limiting process β̃◦ predicted by our
theory.

A.2 Proof of Proposition 11

Proposition 11. All the critical points wc of F which are not global minima, i.e., ∇F (wc) = 0
and F (wc) > minw F (w), are necessarily saddle points ( i.e., not local extrema). They map to
parameters βc = uc ⊙ vc which satisfy |βc| ⊙ ∇L(βc) = 0 and:

βc ∈ arg min
β[i]=0 for i/∈supp(βc)

L(β) (6.4)

where supp(βc) = {i ∈ [d], βc[i] ̸= 0} corresponds to the support of βc.

Proof. Non-existence of maxima / non-global minima. This is a simpler version of results
which appear in Kawaguchi [2016], for the sake of completeness we provide here a simple proof
adapted to our setting. The intuition follows the fact that if there existed a local maximum
/ non-global minimum for F then this would translate to the existence of a local maximum /
non-global minimum for the convex loss L, which is absurd.

Assume that there exists a local maximum w⋆ = (u⋆, v⋆), i.e. assume that there exists ε > 0
such that for all w = (u, v) such that ∥w − w⋆∥22 ≤ ε, F (w) ≤ F (w⋆). We show that this would
imply that β⋆ = u⋆ ⊙ v⋆ is a local maximum of L, which is absurd.

The mapping g : (u, v) 7→ (u ⊙ v,
√

(u2 − v2)/2) from Rd≥0 × Rd → Rd × Rd≥0 is a bijection
with inverse

g−1 : (β, α) 7→ (

√
α2 +

√
β2 + α4, sign(β)⊙

√
−α2 +

√
β2 + α4). (A.1)

Also notice that F (g−1(β, α)) = L(β) for all β and α. Now let ε̃ > 0 and let β ∈ Rd such that
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∥β − β⋆∥22 ≤ ε̃, then for (u, v) = g−1(β, α∗) where α∗ =
√

((u⋆)2 − (v⋆)2)/2 we have that:

∥(u, v)− (u⋆, v⋆)∥22 = 2
∥∥∥
(√

α4∗ + β2 −
√
α4∗ + β⋆2

)2∥∥∥
1

≤ 2∥β2 − β⋆2∥1
= 2∥(β − β⋆)2 + 2(β − β⋆)β⋆∥1
≤ 2∥(β − β⋆)2∥1 + 2∥β⋆∥∞∥β − β⋆∥1
≤ 2(1 +

√
d∥β⋆∥∞)ε̃

≤ ε

where the last inequality is for ε̃ small enough. This means that L(β) = F (w) ≤ F (w⋆) = L(β⋆)
and β⋆ is a local maximum of L, which is absurd.

The exact same proof holds to show that there are no local minima of F which are not global
minima.

Critical points. The gradient of the loss function F writes:

∇wF (w) =

(
∇uF (w)
∇vF (w)

)
=

(
∇L(β)⊙ v
∇L(β)⊙ u

)
∈ R2d.

Therefore ∇F (wc) = 0 ∈ R2d implies that ∇L(βc)⊙ βc = 0 ∈ Rd. Now consider such a βc and
let supp(βc) = {i ∈ [d] such that βc(i) ̸= 0} denote the support of βc. Since [∇L(βc)]i = 0 for
i /∈ supp(βc), we can therefore write that

βc ∈ arg min
βi=0 for i ̸∈supp(βc)

L(β).

Furthermore we point out that since supp(βc) ⊂ [d], there are at most 2d distinct sets supp(βc),
and therefore at most 2d values F (wc) = L(βc), where wc is a critical point of F .

Additional comment concerning the uniqueness of arg min βi=0,i ̸∈supp(βc) L(β).

We point out that the constrained minimisation problem (6.4) does not necessarily have a
unique solution, even when βc is not a global solution. Though not required for any of our
results, for the sake of completeness, we show here that under an additional mild assumption on
the data, we can ensure that the minimisation problem (6.4) which appears in Proposition 11
has a unique minimum when L(βc) > 0. Under this additional assumption, there is therefore a
finite number of saddles βc. Recall that we let X ∈ Rn×d be the feature matrix and (x̃1, . . . , x̃d)
be its columns. Now assume temporarily that the following assumption holds.

Assumption 15 (Assumption used just in this short section). Any subset of (x̃1, . . . , x̃d) of size
smaller than min(n, d) is linearly independent.

One can easily check that this assumption holds with probability 1 as soon as the data is
drawn from a continuous probability distribution, similarly to Tibshirani [2013, Lemma 4]). In
the following, for a subset ξ = {i1, . . . , ik} ⊂ [d], we write Xξ = (x̃i1 , . . . , x̃ik) ∈ Rn×k (we extract
the columns from X). For a vector β ∈ Rd we write β[ξ] = (βi1 , . . . , βik) and β[ξC ] = (βi)i/∈ξ.
We distinguish two different settings:
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• Underparametrised setting (n ≥ d) : in this case, for any ξ = {i1, . . . , ik} ⊂ [d], then
β⋆ := argmin

βi=0,i ̸∈ξ
L(β) is unique. Indeed we simply set the gradient to 0 and notice that

due to Assumption 15, there exists a unique solution, indeed it is β⋆ such that β⋆[ξ] =
(X⊤

ξ Xξ)
−1X⊤

ξ y and β⋆[ξC ] = 0.

• Overparametrised setting (d > n) : Global solutions: arg min β∈Rd L(β) is an affine

space spanned by the orthogonal of (x1, . . . , xn) in Rd. Since span(x̃1, . . . , x̃d) = Rn from
Assumption 15, any β⋆ ∈ arg min β∈Rd L(β) satisfies Xβ⋆ = y and L(β⋆) = 0. ”Saddle

points”: now let βc ∈ Rd be such that we can write βc ∈ arg min βi=0,i/∈supp(βc) L(β) and
assume that L(βc) > 0 (i.e., not a global solution), then: (1) βc has at most n non-zero
entries, indeed if it were not the case, then y would necessarily belong to span(x̃i)i∈supp(βc)
due to the assumption on the data, and this would lead to L(βc) = 0, (2) therefore, similar
to the underparametrised case, arg min βi=0,i/∈supp(βc) L(β) is unique, equal to βc, and we

have that βc[ξ] = (X⊤
ξ Xξ)

−1X⊤
ξ y and βc[ξ

C ] = 0 where ξ = supp(βc).

Thus, in both the underparametrised and overparametrised settings, the minimisation prob-
lem (6.4) appearing in Proposition 11 has a unique minimum when L(βc) > 0 and Assumption 15
holds.
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A.3 General results on the iterates

In the following lemma we recall a few results concerning the gradient flow eq. (8.3):

dwt = −∇F (wt)dt , (A.2)

where F is defined in eq. (8.2) as:

F (w) := L(u⊙ v) =
1

2n

n∑

i=1

(⟨u⊙ v, xi⟩ − yi)2 .

Lemma 6. For an initialisation u0 =
√

2α, v0 = 0, the flow wαt = (uαt , v
α
t ) from eq. (A.2) is

such that the quantity (uαt )2 − (vαt )2 is constant and equal to 2α21. Furthermore uαt > |vαt | ≥ 0
and therefore from the bijection eq. (A.1) we have that:

uαt =

√
α2 +

√
(βαt )2 + α4, vαt = sign(βαt )⊙

√
−α2 +

√
(βαt )2 + α4.

Proof. From the expression of ∇F (w), notice that the derivative of (uαt )2 − (vαt )2 is equal to 0
and therefore equal to its initial value.

Since (uαt )2 − (vαt )2 = (uαt + vαt )(uαt − vαt ) > 0, by continuity we get that uαt + vαt > 0 and
uαt − vαt > 0 and therefore uαt > |vαt |.

In this section we consider the accelerated iterates eq. (6.9) which follow:

d∇ϕ̃α(β̃αt ) = −∇L(β̃αt )dt, where ϕ̃α :=
1

ln(1/α)
· ϕ̃α (A.3)

with β̃t=0 = 0 and where ϕα is defined eq. (6.7).

Proposition 23. For all α > 0 and minimum β⋆ ∈ arg min β L(β), the loss values L(β̃αt ) and

the Bregman divergence Dϕ̃α
(β⋆, β̃αt ) are decreasing. Moreover

L(β̃αt )− L(β⋆) ≤ ϕ̃α(β⋆)

2t
, (A.4)

L
(1

t

∫ t

0
β̃αs ds

)
− L(β⋆) ≤ ϕ̃α(β⋆)

2t
. (A.5)

Proof. The loss is decreasing since: d
dtL(β̃αt ) = ∇L(β̃αt )

⊤
β̇αt = − ˙̃

βα
⊤

t ∇2ϕ̃α(β̃αt )
˙̃
βαt ≤ 0.

d
dtDϕ̃α

(β⋆, β̃αt ) = −∇L(β̃αt )⊤(β̃αt − β⋆) = −2(L(β̃αt )− L(β⋆)) (since L is the quadratic loss),
therefore the Bregman distance is decreasing. We can also integrate this last equality from 0 to
t, and divide by −2t:

1

t

∫ t

0
L(β̃αs )ds− L(β⋆) =

Dϕ̃α
(β⋆, βα0 = 0)−Dϕ̃α

(β⋆, βαt )

2t

≤ ϕ̃α(β⋆)

2t
.

Since the loss is decreasing we get that L(β̃αt )−L(β⋆) ≤ ϕ̃α(β⋆)
2t and from the convexity of L we

get that L
(
1
t

∫ t
0 β̃

α
s ds

)
− L(β⋆) ≤ ϕ̃α(β⋆)

2t .
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In the following proposition, we show that for α small enough, the iterates are bounded
independently of α. Note that this result unfortunately only holds for the quadratic loss, we
expect it to hold for other convex losses of the type L(β) = 1

n

∑
i ℓ(yi, ⟨xi, β⟩) where ℓ(y, ·) is

strictly convex has a unique root at y but we don’t know how to show it. Also note that bounding
the accelerated iterates β̃α is equivalent to bounding the iterates βα since β̃αt = βαln(1/α)t.

Proposition 24. For α < α0, where α0 depends on β⋆ℓ1, the iterates β̃αt are bounded indepen-
dently of α:

∥β̃αt ∥∞ ≤ 3∥β⋆ℓ1∥1 + 1

Proof. From eq. (A.3), integrating and using that L is the quadratic loss, we get:

∇ϕ̃α(β̃αt ) =
t

n
X⊤(y −Xβ̄αt ) = − t

n
X⊤X(β̄αt − β⋆),

where we recall that X ∈ Rn×d is the input data represented as a matrix and where we denote
the averaged iterate by β̄αt = 1

t

∫ t
0 β̃

α
s ds. Thus we get

∇ϕ̃α(β̃αt )⊤(β̃αt − β⋆) = − t
n

(β̄αt − β⋆)⊤X⊤X(β̃αt − β⋆). (A.6)

By convexity of ϕ̃α we have ϕ̃α(βαt ) − ϕ̃α(β⋆) ≤ ∇ϕ̃α(βαt )⊤(βαt − β⋆). By the Cauchy-Schwarz
inequality, we also have (β̄αt − β⋆)⊤X⊤X(βαt − β⋆) ≤ ∥X(βαt − β⋆)∥∥X(β̄αt − β⋆)∥. Using
Proposition 23: ∥X(βαt − β⋆)∥2 ≤ nϕ̃α(β⋆)/t and ∥X(β̄αt − β⋆)∥2 ≤ nϕ̃α(β⋆)/t we can further
bound the right hand side of eq. (A.6) as

− t
n

(β̄αt − β⋆)⊤X⊤X(βαt − β⋆) ≤ ϕ̃α(β⋆).

Thus it yields

ϕ̃α(βαt )− ϕ̃α(β⋆) ≤ ϕ̃α(β⋆).

From Woodworth et al. [2020b] (proof of Lemma 1 in the appendix) we get that for

α < min
{

1,
√
∥β∥1, (2∥β∥1)−1

}

then:

ϕ̃α(β) ≤ 3

2
∥β∥1,

and for all α < exp(−d/2):

ϕ̃α(β) ≥ ∥β∥1 −
d

ln(1/α2)

≥ ∥β∥1 − 1,

which finally leads for

α < α0 := min
{

1,
√
∥β⋆ℓ1∥1,

(
2∥β⋆ℓ1∥1

)−1
, exp(−d/2)

}

to the result.
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The following proposition shows that we can bound the path length of the flow β̃α indepen-
dently of α. Keep in mind that the path length of β̃α is equivalent to that of βα as the first is
just an acceleration of the second: β̃αt = βαln(1/α)t.

Proposition 25. For α < α0 where α0 is the same as in Proposition 24, the path length of the
iterates (βαt )t≥0 is bounded independently of α > 0:

∫ +∞

0
∥β̇αt ∥dt < C,

where C does not depend on α. Hence the path length of the accelerated flow β̃α is also bounded
independently of α.

Proof. Having shown that the iterates βαt are bounded independently of α, it also implies that
the iterates wt = (ut, vt) are bounded following Lemma 6. Since the loss w 7→ F (w) is a
multivariate polynomial function, it is a semialgebraic function and we can consequently apply
the result of Kurdyka [1998, Theorem 2] which grants that

∫ +∞

0
∥ẇt∥dt < C,

where the constant C only depends on the loss and on the bound on the iterates. We further
use that β̇ = u̇⊙ v+u⊙ v̇ and ∥u̇⊙ v+u⊙ v̇∥ ≤ C1(∥u̇∥+ ∥v̇∥) using that u and v are bounded
and ∥u̇∥ + ∥v̇∥ ≤ C2∥ẇ∥ using the equivalence of norms. Therefore

∫ +∞
0 ∥β̇αt ∥dt < C for some

C which is independent of the initialisation scale α.
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A.4 Standalone properties of Algorithm 1

A.4.1 “Well-definedness” of Algorithm 1 and upperbound on its number of
loops

Notice that this proposition highlights the fact that Algorithm 1 is on its own an algorithm of
interest for finding the minimum ℓ1-norm solution in an overparametrised regression setting. We
point out that the provided upperbound on the number of iterations is very crude and could
certainly be improved.

Proposition 26. Algorithm 1 is well defined: at each iteration (i) the attribution of ∆ is
well defined as ∆ < +∞, (ii) the constrained minimisation problem has a unique solution and
the attribution of the value of β is therefore well-founded. Furthermore, along the loops: the
iterates β have at most n non-zero coordinates, the loss is strictly decreasing and the algorithm
terminates in at most min

(
2d,
∑n

k=0

(
d
k

))
steps by outputting the minimum ℓ1-norm solution

β⋆ℓ1 := arg min
β∈argmin L

∥β∥1.

Proof. In the following, for the matrix X and for a subset I = {i1, . . . , ik} ⊂ [d], we write
XI = (x̃i1 , . . . , x̃ik) ∈ Rn×k (we extract the columns from X). For a vector β ∈ Rd we write
βI = (βi1 , . . . , βik).

(1) The constrained minimisation problem has a unique solution: we follow the
proof of Tibshirani [2013, Lemma 2]. Following the notations in Algorithm 1, we define I =
{i ∈ [d], |si| = 1} and we point out that after k loops of the algorithm, the value of s is equal
to s = −(∆1∇L(β0) + · · ·+ ∆k∇L(βk−1)) ∈ span(x1, . . . , xn). We can therefore write s = X⊤r
for some r ∈ Rn.

Now assume that ker(XI) ̸= {0}. Then, for some i ∈ I, we have x̃i =
∑

j∈I\{i} cj x̃j where
cj ∈ R. Without loss of generality, we can assume that I \ {i} has at most n elements. Indeed,
we can otherwise always find n elements Ĩ ⊂ I \ {i} such that x̃i =

∑
j∈Ĩ cj x̃j . Rewriting the

previous equality, we get

six̃i =
∑

j∈I\{i}
(sisjcj)(sj x̃j). (A.7)

Now by definitions of the set I and of r, we have that ⟨x̃j , r⟩ = sj ∈ {+1,−1} for any j ∈ I.
Taking the inner product of eq. (A.7) with r, we obtain that 1 =

∑
j∈I\{i}(sisjcj). Consequently,

we have shown that if ker(XI) ̸= {0}, then we necessarily have for some i ∈ I,

six̃i =
∑

j∈I\{i}
aj(sj x̃j),

with
∑

j∈I\{i} aj = 1, which means that six̃i lies in the affine space generated by (sj x̃j)j∈I\{i}.
This fact is however impossible due to Assumption 6 (recall that without loss of generality we
have that I \ {i} has at most n elements, and trivially less that d elements). Therefore XI is
full rank, and Card(I) ≤ n. Now notice that the constrained minimisation problem corresponds
to arg min βi≥0,i∈I+

βi≤0,i∈I−
∥y−XIβI∥22. Since XI is full rank, this restricted loss is strictly convex and

the constrained minimisation problem has a unique minimum.
(2) ∆ < +∞: Notice that the optimality conditions of

β = arg min
βi≥0,i∈I+
βi≤0,i∈I−
βi=0,i/∈I

∥y −XIβI∥22,
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are (i) β satisfies the constraints, (ii) if i ∈ I+ (resp i ∈ I−) then [−∇L(β)]i ≤ 0 (resp
[−∇L(β)]i ≥ 0) and (iii) if βi ̸= 0 then [∇L(β)]i = 0. One can notice that condition (ii)
ensures that at each iteration, for δ ≤ ∆k, sk−1 − δ∇L(βk−1) ∈ [−1, 1] coordinate wise. Also,
if L(βk−1) ̸= 0, then a coordinate of the vector |sk−1 − δ∇L(βk−1)| must necessarily hit 1, this
value of δ corresponds to ∆k.

(3) The loss is strictly decreasing: Let Ik−1,± and Ik,± be the equicorrelation sets
defined in the algorithm at step k − 1 and k, and βk−1 and βk the solutions of the constrained
minimisation problems. Also, let ik be the newly added coordinate which breaks the constraint
at step k (which we assume to be unique for simplicity). Without loss of generality, assume that
sk(ik) = +1. Since the sets Ik−1,+\

(
Ik,+\{ik}

)
and Ik−1,−\Ik,− are (if not empty) only composed

of indexes of coordinates of βk−1 which are equal to 0, one can notice that βk−1 also satisfies the
new constraints at step k. Therefore L(βk) ≤ L(βk−1). Now since [−∇L(βk−1)]ik > 0, from the
strict convexity of the restricted loss on Ik, this means that βk(ik) > 0 (which also means that
newly activated coordinate ik must activate), and therefore βk−1 ̸= βk and L(βk) < L(βk−1).

(4) The algorithm terminates in at most min
(

2d,
∑n

k=0

(
d
k

))
steps: Recall that we

showed in part (1) of the proof that at each iteration k of the algorithm, Ik as at most min(n, d)
elements. Since supp(βk) ⊂ Ik, we have that βk has at most min(n, d) non-zero elements,
also recall that we always have βk = arg min βi=0,i/∈supp(βk) L(β) (we here have unicity of this
minimisation problem following part (1) of the proof). There are hence at most

min(n,d)∑

k=0

(
d

k

)
= min

(
2d,

n∑

k=0

(
d

k

))

such minimisation problems. The loss being strictly decreasing, the algorithm cannot out-
put the same solution β at two different loops, and the algorithm must terminate in at most

min
(

2d,
∑n

k=0

(
d
k

))
iterations by outputting a vector β⋆ such that ∇L(β⋆) = 0, i.e. β⋆ ∈

arg min L(β).
(5) The algorithm outputs the minimum ℓ1-norm solution. Let β⋆ be the output

of the algorithm after p iterations. Notice that by the definition of the successive sets Ik,± and
of the constraints on the minimisation problem, we have that at each iteration sk ∈ ∂∥βk∥1.
Therefore sp ∈ ∂∥β⋆∥1. Also, recall from part (1) of the proof that sp ∈ span(x1, . . . , xn) which
means that there exists r ∈ Rn such that sp = X⊤r. Putting the two together we get that
X⊤r ∈ ∂∥β⋆∥1, this condition along with the fact that L(β⋆) = minL(β) are exactly the KKT
conditions of arg min

β∈argmin L
∥β∥1.

To put our upperbound on the number of iterations into perspective, the worst-case number
of iterations for the LARS algorithm is (3d+1)/2 [Mairal and Yu, 2012]. Hence Algorithm 1 has
fewer iterations in the worst-case setting. Whether an exponential dependency in the dimension
is inevitable for Algorithm 1 is unknown and we leave this as future work.

However, when the number of samples is much smaller than the dimension we lose the
exponential dependency. Indeed, for ε := n/d ≤ 1/2, we have the upperbound

∑n
k=0

(
d
k

)
≤

2H(ε)d where H(ε) = −ε log2(ε) − (1 − ε) log2(1 − ε) is the binary entropy. Since for ε ≤ 1/2,
H(ε) ≤ −2ε log2(ε), we get the upperbound

∑n
k=0

(
d
k

)
≤ 2H(ε)d ≤ ( dn)2n, which is much better

than 2d.

A.4.2 Proof of Proposition 12

As mentioned several times, for general feature matrices X complex behaviours can occur with
coordinates deactivating and changing sign several times. Here we show that for simple datasets
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which have a feature matrix X that satisfy the restricted isometry property (RIP) [Candès
et al., 2006], we can simply determine the jump times and the saddles as a function of the sparse
predictor which we seek to recover.

The non-realistic but enlightening extreme case of the RIP assumption is to consider that the
feature matrix is such that X⊤X/n = Id. In this case, by letting β⋆ be the unique vector such
that y = ⟨x, β⋆⟩ and assuming that β⋆ = (β⋆1 , . . . , β

⋆
r , 0, . . . , 0) with |β⋆1 | > · · · > |β⋆r | > 0, then

the loss writes L(β) = ∥β − β⋆∥22/2 and one can easily check that Algorithm 1 would terminate
in r loops and output exactly ti = 1

|β⋆
i |

and βi = (β⋆1 , . . . , β
⋆
i , 0, . . . , 0) for i ≤ r (the case where

several coordinates of β⋆ are stricly equal can also be treated: for example if β⋆1 = β⋆2 then the
first output of the algorithm is directly β1 = (β⋆1 , β

⋆
2 , 0, . . . , 0)).

We now recall the more realistic RIP setting which is an adaptation of the previous obser-
vation.

Sparse regression with RIP and gap assumption. (RIP) Assume that there exists an
r-sparse vector β⋆ such that yi = ⟨xi, β⋆⟩. Furthermore we assume that the feature matrix
X ∈ Rn,d satisfies the 2r-restricted isometry property with constant ε̃ <

√
2 − 1 < 1/2: i.e.

for all submatrix Xs where we extract any s ≤ 2r columns of X, the matrix X⊤
s Xs/n of size

s× s has all its eigenvalues in the interval [1 − ε̃, 1 + ε̃]. (Gap assumption) Furthermore we
assume that the r-sparse vector β⋆ has coordinates which have a “sufficient gap’. W.l.o.g we write
β⋆ = (β⋆1 , . . . , β

⋆
r , 0, . . . , 0) with |β⋆1 | ≥ · · · ≥ |β⋆r | > 0 and we define λ := mini∈[r](|β⋆i |−|β⋆i+1|) ≥ 0

which corresponds to the smallest gap between the entries of |β⋆|. We assume that 5ε̃∥β⋆∥2 < λ/2
and we let ε := 5ε̃.

A classic result from compressed sensing (see Candes [2008, Theorem 1.2]) is that the 2r-
restricted isometry property with constant

√
2 − 1 ensures that the minimum ℓ0-minimisation

problem has a unique r-sparse solution which is β⋆. Furthermore it ensures that the minimum
ℓ1-norm solution is unique and is equal to β⋆. This means that Algorithm 1 will have β⋆ as a
final output.

We now recall the result which characterises the outputs of Algorithm 1 when the data
satisfies the previous assumptions.

Proposition 12. Under the restricted isometry property and the gap assumption stated right
above, Algorithm 1 terminates in r-loops and outputs:

β1 = (β1[1], 0, . . . , 0) with β1[1] ∈
[
β⋆1 − ε∥β⋆∥, β⋆2 + ε∥β⋆∥

]

β2 = (β2[1], β2[2], 0, . . . , 0) with

{
β2[1] ∈

[
β⋆1 − ε∥β⋆∥, β⋆1 + ε∥β⋆∥

]

β2[2] ∈ [β⋆2 − ε∥β⋆∥, β⋆2 + ε∥β⋆∥]
...

βr−1 = (βr−1[1], . . . , βr−1[r − 1], 0, . . . , 0) with βr−1[i] ∈
[
β⋆i − ε∥β⋆∥, β⋆i + ε∥β⋆∥

]

βr = β⋆ = (β⋆1 , . . . , β
⋆
r , 0, . . . , 0),

at times t1, . . . , tr such that ti ∈
[

1
|β⋆

i |+ε∥β⋆∥ ,
1

|β⋆
i |−ε∥β⋆∥

]
and where ∥ · ∥ denotes the ℓ2 norm.

Proof. In all the proof ∥·∥ denotes the ℓ2 norm ∥·∥2. For simplicity we assume that β⋆i > 0 for all
i ∈ [r], the proof can easily be adapted to the general case. We first define ξ := X⊤X/n−Id. By
the restricted isometry property, for any k ≤ 2r, we have that any k×k square matrix extracted
from ξ which we denote ξkk has its eigenvalues in [−ε̃, ε̃]. It also means that the eigenvalues of
(Ik + ξkk)

−1 − Ik are in [ 1
1+ε̃ − 1, 1

1−ε̃ − 1] ⊂ [−2ε̃, 2ε̃].
We now proceed by induction with the following induction hypothesis:

106



APPENDIX A. APPENDIX FOR CHAPTER 6

• βk−1 has its support on its (k − 1) first coordinates with |βk−1[i]− β⋆i | ≤ 5ε̃∥β⋆∥ for i < k

• tk ∈
[

1
β⋆
k+5ε̃∥β⋆∥ ,

1
β⋆
k−5ε̃∥β⋆∥

]
and stk [k] = 1

• stk [i] ∈ [tk(β
⋆
i − 5ε̃∥β⋆∥), tk(β⋆i + 5ε̃∥β⋆∥)] ⊂ (−1, 1) for i > k

From the recurrence hypothesis, the output of the algorithm at step k is hence βk =
arg min L(β) under the constraint β[i] ≥ 0 for i ≤ k and β[i] = 0 otherwise. We first search
for the solution of the minimisation problem without the sign constraint and still (abusively)
denote it βk: we will show that it turns out to satisfy the sign constraint and that it is therefore
indeed βk.

In the following, for a vector v, we denote by v[: k] its k first coordinates. Setting the k
first coordinates of the gradient to 0, we get that [X⊤X(βk − β⋆)][: k] = 0, which leads to
(Ik + ξkk)βk[:k] = β⋆[:k] + [ξβ⋆][:k], which gives:

βk[:k] = (Ik + ξkk)
−1(β⋆[:k] + [ξβ⋆][:k])

= β⋆[:k] + [ξβ⋆][:k] + v1

where from the bound on the eigenvalues of (Ik + ξkk)
−1 − Ik and ∥ξβ⋆∥ ≤ ε̃∥β⋆∥:

∥v1∥ ≤ 2ε̃∥β⋆[:k] + [ξβ⋆][:k])∥
≤ 2ε̃(∥β⋆∥+ ∥ξβ⋆∥)
≤ 2ε̃(∥β⋆∥+ ε̃∥β⋆∥)
≤ 4ε̃∥β⋆∥.

Therefore
βk[:k] = β⋆[:k] + v2

where v2 = [ξβ⋆][: k] + v1 hence ∥v2∥∞ ≤ ∥v2∥ ≤ 5ε̃∥β⋆∥. Notice that from the definition of λ
and the fact that 5ε̃∥β⋆∥ < λ/2 we have that βk[: k] ≥ 0 coordinate-wise, hence verifying the
sign constraint. Also note that ∥βk∥ ≤ ∥β⋆∥+ 5ε̃∥β⋆∥ ≤ 4∥β⋆∥.

For t ≥ tk, st = stk−(t− tk)∇L(βk), and [∇L(βk)][:k] = 0 therefore st[:k] = stk [:k]. Now for
i > k, [−∇L(βk)]i = n−1[X⊤X(β⋆ − βk)]i = β⋆i + [ξ(βk − β⋆)]i. Now since (βk − β⋆) is r-sparse
we have that:

∥ξ(βk − β⋆)∥∞ ≤ ∥ξ(βk − β⋆)∥
≤ ε̃∥βk − β⋆∥
≤ ε̃(∥βk∥+ ∥β⋆∥)
≤ 5ε̃∥β⋆∥ < λ/2, (A.8)

Now from the fact that st[i] = stk [i] + (t− tk)β⋆i + (t− tk)[ξ(βk − β⋆)]i and using the recurrence
hypothesis: stk [i] ∈ [tk(β

⋆
i − 5ε̃∥β⋆∥), tk(β⋆i + 5ε̃∥β⋆∥)], we get (using the bound eq. (A.8))

that st[i] ∈ [t(β⋆i − 5ε̃∥β⋆∥), t(β⋆i + 5ε̃∥β⋆∥)]. From the “separation assumption” we have that
5ε̃∥β⋆∥ < λ/2 and therefore the next coordinate to activate is necessarily the (k + 1)th at time
tk+1 with stk+1

[k + 1] = 1 and:

tk+1 ∈
[ 1

β⋆k+1 + 5ε̃∥β⋆∥ ,
1

β⋆k+1 − 5ε̃∥β⋆∥
]
.

This proves the recursion. The algorithm cannot stop before iteration r as β⋆ is the unique
minimiser of L that has at most r non-zero coordinates. But it stops at iteration r as β⋆ is the
unique minimiser of L(β) under the constraints βi ≥ 0 for i ≤ r and βi = 0 otherwise.
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A.5 Proof of Theorem 1 and Proposition 13 through the arc-length
parametrisation

In this section, we explain in more details the arc-length reparametrisation which circumvents
the apparition of discontinuous jumps and leads to the proof of Theorem 1. The main difficulty
to show the convergence stems from the non-continuity of the limit process β̃◦. Therefore we
cannot expect uniform convergence of β̃α towards β̃ as α→ 0. In addition, β̃◦ does not provide
any insights into the path followed between the jumps.

Arc-length parametrisation. The high-level idea is to “slow-down” time when the jumps
occur. To do so we follow the approach from Efendiev and Mielke [2006], Mielke et al. [2009]
and we consider an arc-length parametrisation of the path, i.e., we consider τα equal to:

τα(t) = t+

∫ t

0
∥ ˙̃
βαs ∥ds.

In Proposition 25, we showed that the full path length
∫ +∞
0 ∥β̇αs ∥ds is finite and bounded

independently of α. Therefore τα is a bijection in R≥0. We can then define the following
quantities:

t̂ατ = (τα)−1(τ) and β̂ατ = β̃α
t̂α(τ)

.

By construction, a simple chain rule leads to ˙̂tα(τ) + ∥ ˙̂
βατ ∥ = 1, which means that the speed

of (β̂ατ )τ is always upperbounded by 1, independently of α. This behaviour is in stark contrast
with the process (β̃αt )t which has a speed which explodes at the jumps. It presents a major
advantage as we can now use Arzelà-Ascoli’s theorem to extract a converging subsequent. A
simple change of variable shows that the new process satisfies the following equations:

−
∫ τ

0

˙̂tαs∇L(β̂αs )ds = ∇ϕ̃α(β̂ατ ) and ˙̂tατ + ∥ ˙̂
βατ ∥ = 1 (A.9)

started from β̂ατ = 0 and t̂0 = 0. The next proposition states the convergence of the rescaled
process, up to a subsequence.

Proposition 27. Let T ≥ 0. For every α > 0, let (t̂α, β̂α) be the solution of eq. (A.9). Then,
there exists a subsequence (t̂αk , β̂αk)k∈N and (t̂, β̂) such that as αk → 0 :

(t̂αk , β̂αk)→ (t̂, β̂) in (C0([0, T ],R× Rd), ∥ · ∥∞) (A.10)

( ˙̂tαk ,
˙̂
βαk) ⇀ ( ˙̂t,

˙̂
β) in L1[0, T ] (A.11)

Limiting dynamics. The limits (t̂, β̂) satisfy:

−
∫ τ

0

˙̂ts∇L(β̂s)ds ∈ ∂∥β̂τ∥1 and ˙̂tτ + ∥ ˙̂
βτ∥ ≤ 1 (A.12)

Heteroclinic orbit. In addition, when β̂τ is such that |β̂τ | ⊙ ∇L(β̂τ ) ̸= 0, we have

˙̂
βτ = − |β̂τ | ⊙ ∇L(β̂τ )

∥|β̂τ | ⊙ ∇L(β̂τ )∥
and ˙̂tτ = 0. (A.13)

Furthermore, the loss strictly decreases along the heteroclinic orbits and the path length
∫ T
0 ∥

˙̂
βτ∥dτ

is upperbounded independently of T .
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Proof. Differentiating eq. (A.9) and from the Hessian of ϕ̃α we get:

˙̂
βατ = − ˙̂tατ (∇2ϕ̃α(β̂ατ ))−1∇L(β̂ατ )

= −(1− ∥ ˙̂
βατ ∥)(∇2ϕ̃α(β̂ατ ))−1∇L(β̂ατ ).

Therefore taking the norm on the right hand side we obtain that

∥ ˙̂
βατ ∥ =

∥(∇2ϕ̃α(β̂ατ ))−1∇L(β̂ατ )∥
1 + ∥(∇2ϕ̃α(β̂ατ ))−1∇L(β̂ατ )∥

,

and therefore

˙̂
βατ = − (∇2ϕ̃α(β̂ατ ))−1∇L(β̂ατ )

1 + ∥(∇2ϕ̃α(β̂ατ ))−1∇L(β̂ατ )∥
. (A.14)

Subsequence extraction. By construction eq. (A.9) we have ˙̂tατ + ∥ ˙̂
βατ ∥ = 1 , therefore the

sequences ( ˙̂tα)α, (
˙̂
βα)α as well as (t̂α)α, (β̂α)α are uniformly bounded on [0, T ]. The Arzelà-

Ascoli theorem yields that, up to a subsequence, there exists (t̂, β̂) such that (t̂αk , β̂αk)→ (t̂, β̂)

in (C0([0, T ],R × Rd), ∥ · ∥∞). Since ∥ ˙̂
βατ ∥, ∥ ˙̂tατ ∥ ≤ 1 we have, applying the Banach–Alaoglu

theorem, that up to a new subsequence

( ˙̂tαk ,
˙̂
βαk)

∗
⇀ ( ˙̂t,

˙̂
β) in L∞(0, T ) (A.15)

and ∥ ˙̂
βτ∥ ≤ lim infαk

∥ ˙̂
βαk
τ ∥ ≤ 1 and thus ˙̂tτ + ∥ ˙̂

βτ∥ ≤ 1:

∫ T

0
∥ ˙̂
βτ∥dτ ≤

∫ T

0
lim inf

αk

∥ ˙̂
βαk
τ ∥dτ ≤

∫ +∞

0
lim inf

αk

∥ ˙̂
βαk
τ ∥dτ ≤ lim inf

αk

∫ +∞

0
∥ ˙̂
βαk
τ ∥dτ < C,

where the third inequality is by Fatou’s lemma. Note that since [0, T ] is bounded then it also
implies the weak convergence in any Lp(0, T ), 1 ≤ p < ∞. Since (β̂α) converges uniformly

on [0, T ], and ∇L is continuous, we have that ∇L(β̂α) converges uniformly to ∇L(β̂). Since
˙̂tαk ⇀ ˙̂t in L1(0, T ), passing to the limit in the equation ∇ϕ̃α(β̂ατ ) = −

∫ τ
0

˙̂tαs∇L(β̂αs )ds leads to

−
∫ τ

0

˙̂ts∇L(β̂s)ds ∈ ∂∥β̂τ∥1,

due to Lemma 7.

Recall from eq. (A.14) and the definition of ϕ̃α that:

˙̂
βατ = −

√
β̂ατ + α4 ⊙∇L(β̂ατ )

1/ ln(1/α) + ∥
√
β̂ατ + α4 ⊙∇L(β̂ατ )∥

. (A.16)

Hence assuming that β̂τ is such that ∥|β̂τ |⊙∇L(β̂τ )∥ ≠ 0, we can ensure that ∥|β̂τ ′ |⊙∇L(β̂τ ′)∥ ≠

0 for τ ′ ∈ [τ, τ + ε] and ε small enough. We have then

√
β̂α
τ ′+α

4⊙∇L(β̂α
τ ′ )

1/ ln(1/α)+∥
√
β̂α
τ ′+α

4⊙∇L(β̂α
τ ′ )∥

converges

uniformly toward − |β̂τ ′ |⊙∇L(β̂τ ′ )
∥|β̂τ ′ |⊙∇L(β̂τ ′ )∥

on [τ, τ + ε]. Using the dominated convergence theorem,
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we have
∫ τ+ε
τ

√
β̂α
τ ′+α

4⊙∇L(β̂α
τ ′ )

1/ log(1/α)+∥
√
β̂α
τ ′+α

4⊙∇L(β̂α
τ ′ )∥

dτ ′ →
∫ τ+ε
τ

|β̂τ ′ |⊙∇L(β̂τ ′ )
∥|β̂τ ′ |⊙∇L(β̂τ ′ )∥

dτ ′. We therefore obtain

˙̂
βτ = − |β̂τ |⊙∇L(β̂τ )

∥|β̂τ |⊙∇L(β̂τ )∥
in L1[0, T ]. Consequently ∥ ˙̂

βτ∥ = 1 and ˙̂tτ = 0.

Proof that the loss stricly decreases along the heteroclinic orbits.

Assume β̂τ is such that |β̂τ | ⊙ ∇L(β̂τ ) ̸= 0, then the flow follows

˙̂
βτ = − |β̂τ | ⊙ ∇L(β̂τ )

∥|β̂τ | ⊙ ∇L(β̂τ )∥

Letting γ(τ) = 1
∥|β̂τ |⊙∇L(β̂τ )∥

we get:

dL(β̂τ ) = −γ(τ)
∑

i

|β̂τ (i)| ⊙ [∇L(β̂τ )]2i dτ < 0,

because |β̂τ | ⊙ ∇L(β̂τ )2 ̸= 0.

Borrowing terminologies from Efendiev and Mielke [2006], we can distinguish two regimes:

when
˙̂
βτ = 0, the system is sticked to the saddle point. When ˙̂tτ = 0 and ∥ ˙̂

βτ∥ = 1 the
system switches to a viscous slip which follows the normalised flow eq. (A.13). We use the term
of heteroclinic orbit as in the dynamical systems literature since in the weight space (u, v) it

corresponds to a path with links two distinct critical points of the loss F . Since ˙̂tτ = 0, this
regime happens instantly for the original t time scale (i.e. a jump occurs).

From Proposition 27, following the same reasoning as in Section 6.4, we can show that the
rescaled process converges uniformly to a continuous saddle-to-saddle process where the saddles
are linked by normalized flows.

Theorem 1. Let T > 0. For all subsequences defined in Proposition 27, there exist times
0 = τ ′0 < τ1 < τ ′1 < · · · < τp < τ ′p < τp+1 = +∞ such that the the iterates (β̂αk

τ )τ converge
uniformly on [0, T ] to the following limit trajectory :

(“Saddle”) β̂τ = βk for τ ∈ [τ ′k, τk+1] where 0 ≤ k ≤ p

(Orbit)
˙̂
βτ = − |β̂τ | ⊙ ∇L(β̂τ )

∥|β̂τ | ⊙ ∇L(β̂τ )∥
for τ ∈ [τk+1, τ

′
k+1] where 0 ≤ k ≤ p− 1

where the saddles (β0 = 0, β1, . . . , βp = β⋆ℓ1) are constructed in Algorithm 1. Also, the loss

(L(β̂τ ))τ is constant on the saddles and strictly decreasing on the orbits. Finally, independently
of the chosen subsequence, for k ∈ [p] we have t̂τk = t̂τ ′k = tk where the times (tk)k∈[p] are defined
through Algorithm 1.

Proof. Some parts of the proof are slightly technical. To simplify the understanding, we make
use of auxiliary lemmas which are stated in Appendix A.6. The overall spirit follows the intuitive
ideas given in Section 6.4 and relies on showing that eq. (A.12) can only be satisfied if the iterates
visit the saddles from Algorithm 1.

We let ŝτ := −
∫ τ
0

˙̂ts∇L(β̂s)ds, which is continuous and satisfies ŝτ ∈ ∂∥β̂τ∥1 from eq. (A.12).
Let S = {β ∈ Rd, |β| ⊙ ∇L(β) = 0} denote the set of critical points and let (βk, tk, sk) be the
successive values of (β, t, s) which appear in the loops of Algorithm 1.

We do a proof by induction: we start by assuming that the iterates are stuck at the
saddle βk−1 at time τ ≥ τ ′k−1 where t̂τ ′k−1

= tk−1 and ŝτ ′k−1
= sk−1 (recurrence hypothesis), we

then show that they can only move at a time τk and follow the normalised flow eq. (A.13). We
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finally show that they must end up “stuck” at the new critical point βk, validating the recurrence
hypothesis.

Proof of the jump time τk such that t̂τk = tk : we set ourselves at time τ ≥ τ ′k−1, stuck at

the saddle βk−1. Let τk := sup{τ, t̂τ ≤ tk}, we have that τk < ∞ from Lemma 8. Note that by
continuity of t̂τ it holds that t̂τk = tk. Now notice that ŝτ = ŝτ ′k−1

− (t̂τ − t̂τ ′k−1
)∇L(βk−1) =

sk−1 − (t̂τ − tk−1)∇L(βk−1). We argue that for any ε > 0, we cannot have β̂τ = βk−1 on
(τk, τk + ε). Indeed by the definition of τk and from the algorithmic construction of time tk, it
would lead to |ŝτ (i)| > 1 for some coordinate i ∈ [d], which contradicts eq. (A.12). Therefore
the iterates must move at the time τk.

Heterocline leaving βk−1 for τ ∈ [τk, τ
′
k] : contrary to before, our time rescaling enables

to capture what happens during the “jump”. We have shown that for any ε, there exists
τε ∈ (τk, τk + ε), such that β̂τε ̸= βk−1. From Lemma 9, since the saddles are distinct along the
flow, we must have that β̂τε /∈ S for ε small enough. The iterates therefore follow a heterocline
flow leaving βk−1 with a speed of 1 given by eq. (A.13). We now define τ ′k := inf{τ > τk, ∃ε0 >
0,∀ε ∈ [0, ε0], β̂τ+ε ∈ S} which corresponds to the time at which the iterates reach a new
critical point and stay there for at least a small time ε0. We have just shown that τ ′k > τk.

Now from Proposition 27, the path length of β̂ is finite, and from Lemma 9 the flow visits a
finite number of distinct saddles at a speed of 1. These two arguments put together, we get that

τ ′k < +∞ and also β̂τ ′k+ε = β̂τ ′k , ∀ε ∈ [0, ε0]. On another note, since ˙̂tτ = 0 for τ ∈ [τk, τ
′
k] we

have t̂τ ′k = t̂τk(= tk) as well as ŝτk = ŝτ ′k(= sk).

Proof of the landing point βk : we now want to find to which saddle β̂τ ′k ∈ S the iterates have
moved to. To that end, we consider the following sets which also appear in Algorithm 1:

I±,k := {i ∈ {1, . . . , d}, s.t. ŝτ ′k(i) = ±1} and Ik = I+,k ∪ I−,k. (A.17)

The set Ik corresponds to the coordinates of β̂τ ′k which “are allowed” (but not obliged) to be

activated (i.e. non-zero). For τ ∈ [τ ′k, τ
′
k + ε0] we have that ŝτ = ŝτ ′k − (t̂τ − tk)∇L(β̂τ ′k). By

continuity of ŝ and the fact that ŝτ ∈ ∂∥β̂τ ′k∥1, the equality translates into:

• if i /∈ Ik, β̂τ ′k(i) = 0

• if i ∈ I+,k, then [∇L(β̂τ ′k)]i ≥ 0 and β̂τ ′k(i) ≥ 0

• if i ∈ I−,k, then [∇L(β̂τ ′k)]i ≤ 0 and β̂τ ′k(i) ≤ 0

• for i ∈ Ik, if β̂τ ′k(i) ̸= 0, then [∇L(β̂τ ′k)]i = 0

One can then notice that these conditions exactly correspond to the optimality conditions of
the following constrained minimisation problem:

arg min
βi≥0,i∈Ik,+
βi≤0,i∈Ik,−
βi=0,i/∈Ik

L(β). (A.18)

We showed in Proposition 26 that the solution to this problem is unique and equal to βk from
Algorithm 1. Therefore β̂τ = βk for τ ∈ [τ ′k, τ

′
k + ε0]. It finally remains to show that β̂τ = βk

while τ ≤ τk+1, where τk+1 := sup{τ, t̂τ = tk+1}. For this let τ ∈ [τ ′k, τk+1], notice that for i /∈ Ik,
we necessarily have that β̂τ (i) = βk(i) = 0, otherwise we break the continuity of ŝτ . Similarly,
for i ∈ Ik,+, we necessarily have that β̂τ (i) ≥ 0 and for i ∈ Ik,−, β̂τ (i) ≤ 0 for the same continuity

reasons. Now assume that β̂τ (Ik) ̸= βk(Ik). Then from Lemma 9 and continuity of the flow,
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∃τ ′ ∈ (τ ′k, τ) such that β̂τ ′ /∈ S and there must exist a heterocline flow eq. (A.13) starting from
βk which passes through βτ ′ . This is absurd since along this flow the loss strictly decreases,
which is in contradiction with the definition of βk which minimises the problem eq. (A.18).

A.5.1 Proof of Theorem 1

Theorem 1 enables to prove without difficulty Theorem 1 which we recall below. Indeed we can
show that any extracted limit β̂ maps back to the unique discontinuous process β̃◦.

Theorem 2. Let the saddles (β0 = 0, β1, . . . , βp−1, βp = β⋆ℓ1) and jump times (t0 = 0, t1, . . . , tp)

be the outputs of Algorithm 1 and let (β̃◦t )t be the piecewise constant process defined as follows:

(Saddles) β̃◦t = βk for t ∈ (tk, tk+1) and 0 ≤ k ≤ p, tp+1 = +∞.

The accelerated flow (β̃αt )t defined in eq. (6.9) uniformly converges towards the limiting process
(β̃◦t )t on any compact subset of R≥0\{t1, . . . , tp}.

Proof. We directly apply Theorem 1, let αk be the subsequence from the theorem. Let ε > 0, for
simplicity we prove the result on [t1 +ε, t2−ε], all the other compacts easily follow the same line
of proof. Note that since t̂αk(τ ′1)→ t1 and t̂αk(τ2)→ t2, for αk small enough t̂αk(τ ′1) ≤ t1+ε and
t̂αk(τ2) ≥ t2−ε, by the monotonicity of ταk , this means that for αk small enough, τ ′1 ≤ ταk(t1+ε)
and τ2 ≥ ταk(t2 − ε). Therefore

sup
t∈[t1+ε,t2−ε]

∥β̃αk
t − β1∥ = sup

t∈[t1+ε,t2−ε]
∥β̂αk(ταk

(t))− β1∥

= sup
τ∈[ταk (t1+ε),τ

αk (t2−ε)]
∥β̂αk(τ)− β1∥

≤ sup
τ∈[τ ′1,τ2]

∥β̂αk(τ)− β1∥,

which goes uniformly to 0 following Theorem 1. Since this result is independent of the subse-
quence αk, we get the result of Theorem 1.

A.5.2 Proof of Proposition 13

We restate and prove Proposition 13 below.

Proposition 13. For all T > tp, the graph of the iterates (β̃αt )t≤T converges to that of (β̂τ )τ :

dist({β̃αt }t≤T , {β̂τ}τ≥0) −→
α→0

0 (Hausdorff distance)

Proof. For α small enough, we have that t̂ατ ′p ≤ tp + ε ≤ T

sup
τ≥0

d(β̂τ , {β̃αt }t≤T ) = sup
τ≤τ ′p

d(β̂τ , {β̃αt }t≤T )

≤ sup
τ≤τ ′p
∥β̂τ − β̃αt̂ατ ∥

= sup
τ≤τ ′p
∥β̂τ − β̂ατ ∥ −→

α→0
0,

according to Theorem 1.
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Similarly:

sup
t≤T

d(β̃αt , {β̂τ ′}τ ′) = sup
τ≤ταT

d(β̂ατ , {β̂τ ′}τ ′)

≤ sup
τ≤ταT

∥β̂ατ − β̂τ∥ −→
α→0

0,

according to Theorem 1, which concludes the proof.
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A.6 Technical lemmas

The following lemma describes the behaviour of ∇ϕ̃α(βα) as α→ 0 in function of the subdiffer-
ential ∂∥ · ∥1.

Lemma 7. Let (βα)α>0 such that βα −→
α→0

β ∈ Rd.

• if βi > 0 then [∇ϕ̃α(βα)]i converges to 1

• if βi < 0 then [∇ϕ̃α(βα)]i converges to −1.

Moreover if we assume that ∇ϕ̃α(βα) converges to η ∈ Rd, we have that:

• ηi ∈ (−1, 1)⇒ βi = 0

• βi = 0⇒ ηi ∈ [−1, 1].

Overall, assuming that (βα,∇ϕ̃α(βα)) −→
α→0

(β, η), we can write:

η ∈ ∂∥β∥1.

Proof. We have that

[∇ϕ̃α(βα)]i =
1

2 ln(1/α)
arcsinh

(βαi
α2

)

=
1

2 ln(1/α)
ln
(βαi
α2

+

√
(βαi )2

α4
+ 1
)
.

Now assume that βαi → βi > 0, then [∇ϕ̃α(βα)]i → 1, if βi < 0 we conclude using that arcsinh
is an odd function. All the claims are simple consequences of this.

The following lemma shows that the extracted limits t̂ as defined in Proposition 27 diverge
to ∞. This divergence is crucial as it implies that the rescaled iterates (β̂τ )τ explore the whole
trajectory..

Lemma 8. For any extracted limit t̂ as defined in Proposition 27, we have that τ − C ≤ t̂τ
where C is the upperbound on the length of the curves defined in Proposition 25.

Proof. Recall that

τα(t) = t+

∫ t

0
∥ ˙̃
βαs ∥ds.

From Proposition 25, the full path length
∫ +∞
0 ∥β̇αs ∥ds is finite and bounded by some constant

C independently of α. Therefore τα is a bijection in R≥0 and we defined t̂ατ = (τα)−1(τ).
Furthermore τα(t) ≤ t+C leads to t ≤ t̂α(t+C) and therefore τ −C ≤ t̂α(τ) for all τ ≥ 0. This
inequality still holds for any converging subsequence, which proves the result.

Under a mild additional assumption on the data (see Assumption 15), we showed after the
proof of Proposition 11 in Appendix A.2 that the number of saddles of F is finite. Without this
assumption, the number of saddles is a priori not finite. However the following lemma shows
that along the flow of β̂ the number of saddles which can potentially be visited is indeed finite.

Lemma 9. The limiting flow β̂ as defined in Proposition 27 can only visit a finite number of
critical points β ∈ S := {β ∈ Rd, β ⊙∇L(β) = 0} and can visit each one of them at most once.
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Proof. Let τ ≥ 0, and assume that β̂τ ∈ S, i.e., we are at a critical point at time τ . From
Proposition 11, we have that

β̂τ ∈ arg min
βi=0 for i/∈supp(β̂τ )

L(β), (A.19)

Let us define the sets

I± := {i ∈ {1, . . . , d}, s.t. ŝτ (i) = ±1} and I = I+ ∪ I−.

The set I corresponds to the coordinate of β̂τ which “are allowed” (but not obliged) to be
non-zero since from eq. (A.12), supp(β̂τ ) ⊂ I. Now given the fact that the sub-matrix XI =
(x̃i)i∈I ∈ Rn×card(I) is full rank (see part (1) of the proof of Proposition 26 for the explanation),
the solution of the minimisation problem (A.19) is unique and equal to β[ξ] = (X⊤

ξ Xξ)
−1X⊤

ξ y

and β[ξC ] = 0 where ξ = supp(β̂τ ). There are 2d = Card(P ([d])) (where P ([d]) contains all
the subsets of [d]) number of constraints of the form {βi = 0, i /∈ A}, where A ⊂ [d], and β̂τ
is the unique solution of one of them. β̂τ can therefore take at most 2d values (very crude
upperbound). There is therefore a finite number of critical points which can be reached by the
flow β̂. Furthermore, from Proposition 27, the loss is strictly decreasing along the heteroclinic
orbits, each of these critical points can therefore be visited at most once.
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Appendix B

Appendix for Chapter 7

Organisation of the Appendix. The Appendix is structured as follows.

• In Section B.1, we give more precisions regarding the way we model stochastic gradient
descent as a stochastic gradient flow.

• Section B.2 is the core of the Appendix as it provides the proof of the theorem in a
self-contained fashion.

• In Section B.3, we provide more experiments supporting our results.

• Finally, Section B.5 provides the technical material needed for the proofs of our results.
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B.1 Details on the SDE modelling

We recall that the SGD recursion writes for t ⩾ 1 as:

wt+1,+ = wt,+ − γ⟨βw − β⋆, xit⟩ xit ⊙ wt,+
wt+1,− = wt,− + γ⟨βw − β⋆, xit⟩ xit ⊙ wt,−

where it ∼ Unif(1, n).

Since the full gradient is ∇w±L(w) = ±
[
1
n

∑n
k=1⟨βw − β⋆, xk⟩ xk

]
⊙ w± ∈ Rd. We can rewrite

the recursion as:

wt+1,± = wt,± − γ∇w±L(wt)∓ γ
[
⟨βwt − β⋆, xit⟩ xit −

1

n

n∑

k=1

⟨βwt − β⋆, xk⟩ xk
]
⊙ wt,±.

Now notice that

⟨β − β⋆, xit⟩ xit −
1

n

n∑

k=1

⟨β − β⋆, xk⟩ xk = X⊤
(
⟨β − β⋆, xit⟩eit − Eit

[
⟨β − β⋆, xit⟩eit

])
,

where ei is the ith element of the Rn-canonical basis. Let us denote by ξit(β) = −
(
⟨β −

β⋆, xit⟩eit − Eit
[
⟨β − β⋆, xit⟩eit

])
. It is a zero-mean random variable with values in Rn and it

can be seen as a multiplicative noise, i.e., proportional to β−β⋆, which vanishes at the optimum.
The SGD recursion then writes as:

wt+1,± = wt,± − γ∇w±L(wt)± γ
[
X⊤ξit(βt)

]
⊙ wt,±

= wt,± − γ∇w±L(wt)± γ diag(wt,±)X⊤ξit(βt).

As we are interested in the stochastic differential model of the SGD recursion, let us now compute
the covariance of the SGD noise. We first notice that

Covit [ξit(β)] = Eit [ξit(β)⊗2]

= Eit [(⟨β − β⋆, xit⟩eit)⊗2]− Eit [⟨β − β⋆, xit⟩eit ]⊗2

=
1

n



⟨β − β⋆, x1⟩2 0

. . . 0
0 ⟨β − β⋆, xn⟩2


− 1

n2

(
⟨β − β⋆, xi⟩⟨β − β⋆, xj⟩

)
1≤i,j≤n

=
4

n



L1(β) 0

. . . 0
0 Ln(β)


− 1

n2

(
⟨β − β⋆, xi⟩⟨β − β⋆, xj⟩

)
1≤i,j≤n

where Li(β) = 1
4⟨β − β⋆, xi⟩2 is the individual loss of the observation xi, such that L(β) =

1
n

∑n
i=1 Li(β).

Thus, the covariance satisfies the relation Covit [ξit(β)] = 4
n diag(Li(β))1≤i≤n +O( 1

n2 ). From
this expression we can obtain a good model for Covit [ξit(β)]. First, we neglect the second term
of order 1/n2. Then, we assume that all partial losses are approximately uniformly equal to
their mean: i.e. for any i, Li(β) ∼= Eit [Lit(β)] (the general case is discussed Appendix B.4.1).
Hence,

Covit [ξit(β)] ∼= 4

n
diag

( 1

n

∑

i

Li(β)
)

=
4

n
L(β)In.
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The overall SGD’s noise structure is then captured by

ΣSGD(w±) := γ2 diag(w±)X⊤Covit [ξit(β)]X diag(w±)

∼= 4

n
γ2L(β)[diag(w±)X⊤]⊗2.

This leads us in considering the following SDE:

dwt,+ = −∇w+L(wt) dt+ 2
√
γn−1L(wt) wt,+ ⊙ [X⊤dBt]

dwt,− = −∇w−L(wt) dt− 2
√
γn−1L(wt) wt,− ⊙ [X⊤dBt],

since its Euler discretisation with step size γ is :

wt+1,± = wt,± − γ∇w±L(wt)± 2
√
γn−1L(wt) wt,± ⊙ [X⊤εt],

where εt ∼ N (0,
√
γIn). This corresponds to a Markov-Chain whose noise covariance is equal

to ΣSGD .

Remark on mini-batch SGD. This analysis can easily be extended to a batch size larger
than 1. Indeed, using a mini-batch sampled with replacement of size b only changes the noise
covariance up to a multiplicative constant as: Covit [ξ

b
it

(β)] = 1
bCovit [ξ

b′=1
it

(β)]. The associated

SDE, for a step size γ, is therefore dwt,± = −∇w±L(wt) dt± 2
√
γb−1n−1L(wt) wt,± ⊙ [X⊤dBt].

Hence, it the same SDE as for a batch-size equal to 1 but with an effective step-size γeff = γ/b
(hence larger step-sizes can be used, as expected). The exact same reasoning can be done for
mini-batch without replacement and our analysis would hold this time with: γeff = γ(n−b)/((n−
1)b) . Note that all the results therefore hold for mini-batch SGD by considering the effective
step-size γeff instead of γ.
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B.2 Proofs of the main results

This section contains all the proofs of the main results. It is self contained as we recall each
time the propositions we prove. In subsection B.2.1, we derive the mirror-descent-like flow
which the iterates follow as in Proposition 14 of the main text. Then, we upper bound the loss
integral in subsection B.2.2. This leads us in proving the convergence of the iterates towards
an interpolator in subsection B.2.3. Equipped with these results we prove the main result
(Theorem 1) in subsection B.2.4. Finally, to complete the proof of Proposition 16 of the main
text we derive a lower bound of the loss in subsection B.2.5.

For the sake of easy reading, we adopt the following notations in this section: we denote by
X̄ := X/

√
n, and λmax := λmax(X̄⊤X̄).

B.2.1 Proof of Proposition 14

In order to prove Proposition 14, we introduce the following lemma:

Lemma 10. Consider the iterates (wt)t≥0 issued from the stochastic gradient flow in Eq.(7.3)
with initialisation w0,± = α ∈ (R∗

+)d. Then we have the following implicit closed form expression
for βt:

βt = 2α2
t ⊙ sinh(2X̄⊤ηt), (B.1)

where ηt = −
∫ t
0 X̄(βs−β⋆) ds+2

√
γ
∫ t
0

√
L(βs)dBs ∈ Rn and αt = α⊙exp

(
−2γ diag(X̄⊤X̄)

∫ t
0 L(βs)ds

)
.

Note that this is not an explicit closed form for βt since the right hand side depends on
(βs)0≤s≤t.

Proof. Recall that the SDE we consider writes as:

dwt,± = −∇w±L(wt) dt± 2
√
γn−1L(wt) wt,± ⊙ [X⊤dBt]

= ±
(
− [X̄⊤r(wt)]⊙ wt,± dt+ 2

√
γL(wt) wt,± ⊙ [X̄⊤dBt]

)
,

where r(w) = X̄(w2
+ − w2

− − β⋆) = X̄(βw − β⋆) ∈ Rn are the (normalised) rests.
It turns out that there is an implicit closed form solution to this SDE. Indeed deriving the

Itô formula on ln(wt,±) gives the following integral expression:

wt,± = wt=0,± ⊙ exp(±X̄⊤
[
−
∫ t

0
r(ws) ds+ 2

√
γ

∫ t

0

√
L(ws) dBs

]
)⊙ exp(−2γ diag(X̄⊤X̄)

∫ t

0
L(ws) ds)

= αt ⊙ exp(±X̄⊤ηt).

Since β = w2
+ − w2

−, we get:

βt = α2
t ⊙

(
exp(+2X̄⊤ηt)− exp(−2X̄⊤ηt)

)

= 2α2
t ⊙ sinh(+2X̄⊤ηt).

For clarity we recall the statement of Proposition 14.

Proposition 14. Consider the iterates (wt)t≥0 issued from the stochastic gradient flow in Eq.(7.3)
with initialisation w0,± = α ∈ (R∗

+)d. Then the corresponding flow (βt)t≥0 follows a “stochastic
continuous mirror descent with time varying potential” defined by:

d∇ϕαt(βt) = −∇L(βt) dt+
√
γn−1L(βt)X

⊤dBt, (7.7)

119



APPENDIX B. APPENDIX FOR CHAPTER 7

where αt = α ⊙ exp
(
−2γ diag

(
X⊤X
n

) ∫ t
0 L(βs) ds

)
and ϕα is the hyperbolic entropy defined

in (7.4).

Proof. The results immediately follows from Lemma 10. Indeed, inverting the implicit equation
on βt, Eq. (B.1), we have,

arcsinh
( βt

2α2
t

)
= 2X⊤ηt = −2X̄⊤

∫ t

0
X̄(βs − β⋆) ds+ 4

√
γX̄⊤

∫ t

0

√
L(βs)dBs.

Hence,

d arcsinh
( βt

2α2
t

)
= −2X̄⊤X̄(βs − β⋆) dt+ 4

√
γX̄⊤√L(βt)dBt

= −4∇L(βt) dt+ 4
√
γL(βt)X̄

⊤dBt.

Noticing that ∇ϕα(β) = 1
4arcsinh( β

2α2 ) concludes the proof.

B.2.2 Upperbound of the integral of the loss

This section contains several technical arguments that permit us to derive the upperbound of
the integral of the loss [Proposition 16, right side]. Let us try to highlight the key features of this
proof. First, as for classical mirror descent, we define a Lyapunov function that resembles a Breg-
man divergence plus a necessary control term [Eq. (B.2)]. Then, we fix a high-probability event
on which we have a control of the Brownian diffusion term [Eq. (B.3)]. This gives an equation
involving a weighted integral of the loss. After lower bounding this weight to access directly the
loss integral [Lemma 13], we show that the iterates themselves are in fact bounded [Lemma 12].
We finally conclude the proof in Proposition 28.

Notations and standard calculations. Let us introduce some notations that are important
throughout the proofs. We consider the hyperbolic entropy ϕα(β) as a function of two variables
(y, z) 7→ ϕ(y, z) evaluated at the point (β, α2) ∈ Rd × Rd. With a slight abuse of notation, we
denote by ∇βϕ(β, α2) ∈ Rd, the gradient with respect to the first vector evaluated in (β, α2),
and ∇zϕ(β, α2) ∈ Rd, the gradient with respect to the second variable evaluated in (β, α2). Let
us also define the process (ξt)t⩾0, as the vector ξt :=

√
β2t + 4α4

t ∈ Rd, for all t ⩾ 0. For the
sake of clarity, we recall here the expression of the hyperbolic entropy as well as its derivatives:

we have ϕ(β, α2) = 1
4

∑d
i=1 βi arcsinh( βi

2α2
i
)−

√
β2i + 4α4

i , and

∇βϕ(β, α2) =
1

4
arcsinh

(
β

2α2

)
, ∇zϕ(β, α2) = − 1

4α2

√
β2 + 4α4 ∈ Rd as well as,

∇2
β,βϕ(β, α2) =

1

4
diag


 1√

β2i + 4α2
i




i

∈ Rd×d.

A first Lyapunov function. In this subsection we shall consider the following (stochastic)
Lyapunov function:

Vt := −ϕαt(βt) + ⟨∇ϕαt(βt), βt − β∗ℓ1⟩+ γ

∫ t

0
L(βs)ds ⟨|β∗ℓ1 |,diag(X̄⊤X̄)⟩. (B.2)

This Lyapunov resembles to a Bregman divergence with respect to the hyperbolic entropy.
The added term is however required to have a proper control on its decrease. Just as in the
deterministic framework, we want to show that the Lyapunov is decreasing, i.e. it has a negative
derivative. With this aim, we compute its Îto derivative dVt in the following lemma.
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Lemma 11. For all t > 0, Vt verifies the following equation:

Vt = V0 − 2

∫ t

0
L(βs)

(
1− 1

2
γ⟨diag(X̄⊤X̄), ξs + |β∗ℓ1 |⟩

)
ds+

∫ t

0

√
γL(βs)⟨X⊤dBs, βs − β∗ℓ1⟩.

Proof. To derive the formula for the Lyapunov Vt, we compute its derivatives dVt thanks to Itô
formula and then integrate it with respect to the time. Let us stress that as Vt is a function
of βt and αt we need both their full Itô decomposition. For αt, as we know that αt = α ⊙
exp

(
− 2γ diag(X̄⊤X̄)

∫ t
0 L(ws)ds

)
, we have dαt = −2γ diag(X̄⊤X̄)L(wt)αtdt. For βt, we only

need the noise compound of the Itô decomposition. Let us denote by b(βwt) the drift in the Itô
decomposition of βt

1, we have,

dβt = dw2
t,+ − dw2

t,−

= b(βwt)dt+ 4
√
γL(βt)(wt,+ ⊙ wt,+ ⊙

[
X̄⊤dBt

]
+ wt,− ⊙ wt,− ⊙

[
X̄⊤dBt

]
)

= b(βwt)dt+ 4
√
γL(βt) ξt ⊙

[
X̄⊤dBt

]
.

From this expression, we deduce the matrix of its quadratic variations d⟨βt⟩qv =
[
d⟨βit, βjt ⟩

]
ij

=

16γL(βt)(X̄
⊤X̄)⊙ (ξtξ

⊤
t ) ∈ Rd×d.

We are now equipped to apply the Itô formula on Vt. Indeed, it is clear that ϕ is a C2

function of (β, α), hence,

dVt = −
[
⟨∇βϕ(βt, α

2
t ),dβt⟩+ ⟨∇zϕ(βt, α

2
t ), d

[
α2
t

]
⟩+

1

2
Tr
[
∇2
β,βϕ(βt, α

2
t )d⟨βt⟩

]]

+ d
[
⟨∇βϕ(βt, α

2
t ), βt − β∗ℓ1⟩

]
+ γL(βt)⟨|β∗ℓ1 |, diag(X̄⊤X̄)⟩dt.

The fifth term is explicit. Let us treat the first four terms separately:
First term. This term cancels with a compound of the fourth term.
Second term. We apply simply the chain rule for this term as αt does not have any quadratic

variation:

⟨∇zϕ(βt, α
2
t ),d

[
α2
t

]
⟩ =

〈
− ξt

4α2
t

, 2αt ⊙ dαt

〉
= γL(βt)

〈
ξt,diag(X̄⊤X̄)

〉
dt.

Third term. We directly see that

1

2
Tr
[
∇2
β,βϕ(βt, α

2
t )d⟨βt⟩

]
=

1

2
Tr

[
1

4
diag

(
1

ξt

)
· 4γL(βt)X̄

⊤X̄ ⊙ (ξtξ
⊤
t )

]
dt = 2γL(βt)⟨ξt,diag(X̄⊤X̄)⟩dt.

Fourth term. We apply Itô formula once again to get:

d
[
⟨∇βϕ(βt, α

2
t ), βt − β∗ℓ1⟩

]
= ⟨d

[
∇βϕ(βt, α

2
t )
]
, βt − β∗ℓ1⟩+ ⟨∇βϕ(βt, α

2
t ),dβt⟩+ Tr

[
d⟨∇βϕ(βt, α

2
t ), βt⟩vq

]
,

and thanks to Eq. (7.7), we have an expression for the first and last term, giving

d
[
⟨∇βϕ(βt, α

2
t ), βt − β∗ℓ1⟩

]
= −⟨∇L(βt), βt − β∗ℓ1⟩dt+ 2

√
γL(βt)⟨X̄⊤dBt, βt − β∗ℓ1⟩+ ⟨∇βϕ(βt, α

2
t ),dβt⟩

+ 4γL(βt)⟨ξt, diag(X̄⊤X̄)⟩dt.
Final expression. Let us gather the four expressions to get dVt. We remark that the terms

⟨∇βϕ(βt, α
2
t ), dβt⟩ cancels (from first and fourth terms) and since ⟨∇βL(βt), βt − β∗ℓ1⟩ = 2L(βt),

dVt = −
[
γL(βt)

〈
ξt, diag(X̄⊤X̄)

〉
dt+ 2γL(βt)⟨ξt, diag(X̄⊤X̄)⟩dt

]
− 2L(βt)

+
√
γL(βt)⟨X̄⊤dBt, βt − β∗ℓ1⟩+ 4γL(βt)⟨ξt, diag(X̄⊤X̄)⟩dt+ γL(βt)⟨|β∗ℓ1 |,diag(X̄⊤X̄)⟩dt.

1It can be computed but its precise formula is not needed.
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And finally, we have the expression:

dVt = −2L(βt) + γL(βt)
〈
ξt, diag(X̄⊤X̄)

〉
dt+ γL(βt)⟨|β∗ℓ1 |, diag(X̄⊤X̄)⟩dt

+
√
γL(βt)⟨X̄⊤dBt, βt − β∗ℓ1⟩.

Integrating this equation between 0 and t concludes the proof.

Control of the martingale term and definition of A. Lemma 11 shows that in order
to control Vt, we need to control the local martingale St =

√
γ
∫ t
0

√
L(βs)⟨X̄⊤dBs, βs − β∗ℓ1⟩.

In fact, it is expected that the deviation of St from its quadratic variation is very small: this
is a concentration property of local martingales similar to the Bernstein inequality for discrete
ones [Boucheron et al., 2013]. To do so, let us fix p < 1/2 and we define two parameters:

a := max{∥β⋆ell1∥1 ln(
√

2
∥β⋆

ℓ1
∥1

minα2
i
), ∥α∥22} and b := 1

2 ln(4/p)a−1. The reason behind the precise

value of a will appear clearly in the proof of Lemmas 12 and 13. These parameters being fixed,
we can define the event:

A = {∀t ≥ 0, |St| ≤ a+ 2bγλmax

∫ t

0
L(βs)(∥βs∥21 + ∥β⋆ℓ1∥21)ds}. (B.3)

From Lemma 18, we know that P(A) ≥ 1−2 exp(−2ab) = 1− p
2 . Note that p is a free parameter

that can be chosen as small as we want.

From now on and until the end of the Section, we place ourselves on the event A,
that is, all (in)equalities between random variables should be considered pointwise
for any ω ∈ A. To make it clear, we will recall from time to time laconically this
fact by writing, “on A”.

From Lemma 11, we deduce the following inequalities,

Vt − V0 ≤ −2

∫ t

0
L(βs)(1−

1

2
γ⟨diag(X̄⊤X̄), ξs + |β∗ℓ1 |⟩)ds+ 2bγλmax

∫ t

0
L(βs)(∥βs∥21 + ∥β∗ℓ1∥21)ds+ a

≤ −2

∫ t

0
L(βs)(1−

1

2
γ⟨diag(X̄⊤X̄), ξs + |β∗ℓ1 |⟩ − bγλmax(∥βs∥21 + ∥β∗ℓ1∥21)ds+ a.

Hence, we have the following control on Vt with respect to a weighted loss integral:

Vt − V0 ≤ −2

∫ t

0
L(βs)Usds+ a, (B.4)

where Ut := 1− γ
2

[
⟨diag(X̄⊤X̄), ξt+C|β∗ℓ1 |⟩+2bλmax(∥βt∥21+∥β∗ℓ1∥21)

]
≤ 1. The following lemma

show that as long as Ut stays positive, the iterates stay bounded.

Lemma 12. Let us place ourselves on the event A. Let τ > 0. Assume (Ut)0≤t≤τ is positive.
Then for all t ⩽ τ we have the following explicit upper bound on both ∥βt∥1 and ∥ξt∥1,

∥βt∥1 ≤ ∥ξt∥1 ≤ 18 max{∥β⋆ℓ1∥1 ln(
√

2
∥β⋆ℓ1∥1
minα2

i

), ∥α∥22}.

Proof. Let t ≤ τ . Remember that α(t) = α⊙ exp
(
− 2γ

( ∫ t
0 L(ws)ds

)
diag(X̄⊤X̄)

)
∈ Rd. Since

Vt ≤ V0−2
∫ t
0 L(βs)U(s)ds+a and since by assumption U(s) ≥ 0 for all s ≤ t, we immediately get
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that Vt ≤ V0 +a = −ϕα(0)+a = 1
2∥α∥22 +a. Notice furthermore that −ϕαt(βt)+ ⟨∇ϕαt(βt), βt−

β∗ℓ1⟩ = 1
4∥ξt∥1 − 1

4⟨arcsinh βt
2α2

t
, β∗ℓ1⟩. Hence, we have:

∥ξt∥1 = −4ϕαt(βt) + 4⟨∇ϕαt(βt), βt − β∗ℓ1⟩+ ⟨arcsinh
βt

2α2
t

, β∗ℓ1⟩

= 4Vt − 4γ

∫ t

0
L(βs)ds ⟨|β∗ℓ1 |,diag(X̄⊤X̄)⟩+ ⟨arcsinh

βt
2α2

t

, β∗ℓ1⟩

≤ 2∥α∥22 + 4a+ ⟨arcsinh
βt

2α2
t

, β∗ℓ1⟩ − 4γ

∫ t

0
L(βs)ds ⟨|β∗ℓ1 |, diag(X̄⊤X̄)⟩.

We now use the fact that arcsinh(x) ≤ ln(2(x + 1)) and that |x| + |y| ≤
√

2
√
x2 + y2 for all

x, y ≥ 0 .

∥ξt∥1 ≤ 2∥α∥22 + 4a+
∑

i

|β⋆i | ln
( |βi(t)|+ 2αi(t)

2

αi(t)2

)
− 4γ

∫ t

0
L(βs)ds ⟨|β∗ℓ1 |, diag(X̄⊤X̄)⟩

≤ 2∥α∥22 + 4a+
∑

i

|β⋆i | ln
(
√

2

√
|βi(t)|2 + 4αi(t)4

minα2
i

)
−
∑

i

|β⋆i | ln
(

exp
(
− 4γ

∫ t

0
L(βs)ds diag(X̄⊤X̄)

))

− 4γ

∫ t

0
L(βs)ds ⟨|β∗ℓ1 |,diag(X̄⊤X̄)⟩.

Since the last two terms cancel and for all i,
√
|βi(t)|2 + 4αi(t)4 ⩽ ∥ξ∥1, we have

∥ξt∥1 ≤ 2∥α∥22 + 4a+ ∥β∗ℓ1∥1 ln

(√
2
∥ξt∥1

minα2
i

)
.

To obtain the explicit upperbound we use Lemma 19 with A = 2
√
2∥α∥2

minα2
i

+ 4a
√
2

minα2
i

and B =

√
2∥β∗

ℓ1
∥1

minα2
i

since the condition on A,B are satisfied as A
B +ln(B) ≥ 2∥α∥22

∥β∗
ℓ1
∥1 +ln(

√
2
∥β∗

ℓ1
∥1

minα2
i
) ≥ 1+ln(

√
8d) ≥ 2,

as soon as d ≥ 3. Hence,

∥βt∥1 ≤ ∥ξt∥1 ≤
5

2

(
2∥α∥22 + 4a+ ∥β∗ℓ1∥1 ln

(√
2∥β∗ℓ1∥1
minα2

i

))

≤ 3∥β∗ℓ1∥1 ln

(√
2
∥β∗ℓ1∥1
minα2

i

)
+ 5∥α∥22 + 10a

≤ 18 max{∥β⋆ℓ1∥1 ln(
√

2
∥β⋆ℓ1∥1
minα2

i

), ∥α∥22},

where in the last inequality we plug in the value of a. This concludes the proof of the lemma.

Recall that we defined Ut = 1 − γ
2

[
⟨diag(X̄⊤X̄), ξt + |β∗ℓ1 |⟩ + 2bλmax(∥βt∥21 + ∥β∗ℓ1∥21)

]
. We

now show that in fact (Ut)t is always lower bounded by a strictly positive constant. Hence, the
result of Lemma 12 is valid at any time t > 0.

Lemma 13. On A, let us fix γ ≤ [400λmax ln(4p) max{∥β⋆ℓ1∥1 ln(

√
2∥β⋆

ell1
∥1

minα2
i

), ∥α∥22}]−1. Recall

that Ut = 1− γ
2

[
⟨diag(X̄⊤X̄), ξt + |β⋆ℓ1 |⟩+ 2bλmax(∥βt∥21 + ∥β⋆ℓ1∥21)

]
, then for all t ≥ 0,

Ut ≥
1

2
.

123



APPENDIX B. APPENDIX FOR CHAPTER 7

Proof. Let us define the stopping time τ = inf{t ≥ 0 such that U(t) ≤ 1
2}. Note that

U0 = 1− γ

2

[
⟨diag(X̄⊤X̄), 2α2 + |β∗ℓ1 |⟩+ 2bλmax∥β∗ℓ1∥21)

]

≥ 1− γ

2
λmax

[
2∥α∥22 + ∥β∗ℓ1∥1 + 2b∥β∗ℓ1∥21)

≥ 1− 2γλmaxa ln(
4

p
)

>
1

2
,

where the last inequality comes from the upperbound on γ. Since Ut is continuous we have that
τ > 0. Assume that τ < +∞, by definition of the stopping time, for t ≤ τ : U(t) ≥ 0 and we
can apply Lemma 12 at time τ :

∥βτ∥1 ≤ ∥ξτ∥1 ≤ 18 max{∥β∗ℓ1∥1 ln
(√

2
∥β∗ℓ1∥1
minα2

i

)
, ∥α∥22}.

Therefore:

Uτ = 1− γ

2

[
⟨diag(X̄⊤X̄), ξτ + |β∗ℓ1 |⟩+ 2bλmax(∥βτ∥21 + ∥β∗ℓ1∥21)

]

≥ 1− γ

2
λmax

[
∥ξτ∥1 + ∥β∗ℓ1∥1 + 2b(∥βτ∥21 + ∥β∗ℓ1∥21)

]

≥ 1− γ

2
λmax

[
18 max{∥β∗ℓ1∥1 ln

(√2∥β∗ℓ1∥1
minα2

i

)
, ∥α∥22}

+ 2 · 182 · bmax{∥β∗ℓ1∥21 ln2
(√2∥β∗ℓ1∥1

minα2
i

)
, ∥α∥42}

]
.

Since b = 1
2 ln(4p) max{∥β∗ℓ1∥1 ln(

√
2∥β∗

ℓ1
∥1

minα2
i

), ∥α∥22}−1 we get that:

Uτ ≥ 1− γ

2
λmax ln(

4

p
) max{∥β∗ℓ1∥1 ln

(√2∥β∗ℓ1∥1
minα2

i

)
, ∥α∥22}[18 + 182]

≥ 1− 175 ln(
4

p
)γλmax max{∥β∗ℓ1∥1 ln

(√2∥β∗ℓ1∥1
minα2

i

)
, ∥α∥22}

>
1

2
,

where the last inequality comes from the choice of γ.
This is inconsistent since Uτ = 1

2 . Hence τ = +∞ and thus Ut ≥ 1/2 for all t.

From the result of Lemma 13, with Equation (B.4), we obtain:

∫ t

0
L(βs)ds ≤ V0 − Vt + a ≤ −Vt + 2 max{∥β∗ℓ1∥1 ln

(√2∥β∗ℓ1∥1
minα2

i

)
, ∥α∥22}. (B.5)

Hence it remains to lower bound Vt in order to get the convergence of the integral of the loss.

Lemma 14. On A, let γ be set as in Lemma 12, for all t > 0, we have the following lower
bound on Vt:

Vt ≥ −
∥β⋆ℓ1∥1

4
ln
( 18
√

2

minα2
i

max

{
∥β⋆ℓ1∥1 ln

(√
2
∥β⋆ℓ1∥1
minα2

i

)
, ∥α∥22

})
.
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Proof. We follow exactly the same proof as for upperbounding the iterates.

4Vt =
∑

i

√
β2i + 4αi(t)4 − ⟨arcsinh

βt
2α2

t

, β∗ℓ1⟩+ 4γ

∫ t

0
L(βs)ds ⟨|β∗ℓ1 |, diagH⟩

≥ ∥ξt∥1 −
∑

i

|β⋆i | ln
( |βi(t)|+ 2αi(t)

2

αi(t)2

)
+ 4γ

∫ t

0
L(βs)ds ⟨|β∗ℓ1 |,diagH⟩

≥ ∥ξt∥1 − ∥β∗ℓ1∥1 ln
(√

2
∥ξt∥1

minα2
i

)

≥ −∥β∗ℓ1∥1 ln
(√

2
∥ξt∥1

minα2
i

)

≥ −∥β∗ℓ1∥1 ln
( 18
√

2

minα2
i

max

{
∥β∗ℓ1∥1 ln

(√
2
∥β∗ℓ1∥1
minα2

i

)
, ∥α∥22

})
.

Hence (Vt)t≥0 is lowerbounded and we can derive an upper bound on the loss integral to
show the right part of Proposition 16. We recall it here in the following proposition.

Proposition 28. On A, let γ be set as in Lemma 12, we have the following upper bound on the
loss integral:

∀t > 0,

∫ t

0
L(βs)ds ≤ Õ

(
max

{
∥β⋆ell1∥1 ln

(∥β⋆ell1∥1
minα2

i

)
, ∥α∥22

})
.

As a consequence, the integral
∫∞
0 L(βs)ds converges.

Proof. From Equation (B.5), we have that

∫ t

0
L(βs)ds ≤ −Vt + 2 max{∥β∗ℓ1∥1 ln

(√2∥β∗ℓ1∥1
minα2

i

)
, ∥α∥22},

and thanks to the lower bound on Vt from Lemma 14, it yields,

∫ t

0
L(βs)ds ≤

∥β∗ℓ1∥1
4

ln
( 18
√

2

minα2
i

max

{
∥β∗ℓ1∥1 ln

(√
2
∥β∗ℓ1∥1
minα2

i

)
, ∥α∥22

})
+ 2 max{∥β∗ℓ1∥1 ln

(√2∥β∗ℓ1∥1
minα2

i

)
, ∥α∥22},

hence the integral
∫∞
0 L(βs)ds converges and we have furthermore the Õ bound of the proposi-

tion.

B.2.3 Proof of the convergence of the iterates: Proposition 15

In this subsection we prove the convergence of the iterates which corresponds to Proposition 15
of the main text. For the sake of completeness, we recall this fact in the following lemma.

Lemma 15. On A, let γ ≤ [400λmax ln(4p) max{∥β⋆ell1∥1 ln(

√
2∥β⋆

ell1
∥1

minα2
i

), ∥α∥22}]−1. The iterates

(βt)t≥0 converge to an interpolator βα∞, i.e. such that L(βα∞) = 0.

Proof. Consider the following Bregman divergence style function for any interpolator β⋆ :

Wt = ϕα∞(β⋆)− ϕαt(βt) + ⟨∇ϕαt(βt), βt − β⋆⟩,
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where α∞ = α exp
(
− 2γ

( ∫∞
0 L(βs)ds

)
diag(X̄⊤X̄)

)
> 0 is well defined on A as a result of

Proposition 28. The exact same computations as in Lemma 11 lead to:

Wt = W0 − 2

∫ t

0
L(βs)ds+ ⟨diag(X̄⊤X̄), γ

∫ t

0
L(βs)ξsds⟩+

√
γ

∫ t

0

√
L(βs)⟨X⊤dBs, βs − β⋆⟩.

Note that:

•
∫ t
0 L(βs)ds converges from Proposition 28.

•
∫ t
0 ∥L(βs)ξs∥1ds ≤ maxs≥0(∥ξs∥1)

∫ t
0 L(βs)ds <∞ from Proposition 28. Hence

∫ t
0 L(βs)ξsds

is absolutely convergent, hence converges.

•
∫ t
0

√
L(βs)⟨X⊤dBs, βs−β⋆⟩ has a quadratic variation equal to 4

∫ t
0 L(βs)

2ds and 4
∫ t
0 L(βs)

2ds ≤
2λmax

∫ t
0 L(βs)(∥βs∥22 + ∥β⋆∥21)ds. This implies that the quadratic variation converges.

Hence we obtain the convergence 2 of the Brownian integral
∫ t
0

√
L(βs)⟨X⊤dBs, βs − β⋆⟩.

Overall we get thatWt converges for all choice of interpolator β⋆. Now note that since
∫∞
0 L(βs)ds <

+∞ we can extract a subsequence such that L(βϕ(t)) →
t→∞

0. Since (βt)t is bounded (Lemmas 12

and 13), so is (βϕ(t))t and we can extract a new subsequence which converges. Let βα∞ denote
the limit: βϕ2(t) −→t→∞

βα∞ where ϕ2 is the double extraction. Since L(βϕ(t)) →
t→∞

0 so does

L(βϕ2(t)) →t→∞
0. By continuity of the loss we have that βα∞ is an interpolator. Now notice that

since the Lyapunov Wt with the choice β⋆ = β∞ converges and that Wϕ2(t) →t→∞
0 we get that

Wt →
t→∞

0.

Furthermore:

Wt = ϕα∞(βα∞)− ϕαt(βt) + ⟨∇ϕαt(βt), βt − βα∞⟩
≥ ϕαt(β

α
∞)− ϕαt(βt) + ⟨∇ϕαt(βt), βt − βα∞⟩

= Dϕαt
(βα∞, βt)

≥ 0

where the first inequality is because α 7→ ϕα(β) is decreasing and αt ≥ α∞. Therefore
Dϕαt

(βα∞, βt)→ 0. Finally, since:

∇2ϕαt(βt) = diag(
1√

βi(t)2 + 4α4
t (i)

)i

≥ diag(
1√

maxs{βi(s)2}+ 4α4
)i

≥ diag(
1√

maxs{∥β(s)∥21}+ 4α4
)i

≥ µId,

for some µ since the iterates are bounded. Therefore for all t ≥ 0, ϕαt is µ-strongly convex on
some convex set in which the iterates βs stay in. Which means that: Dϕαt

(βα∞, βt) ≥ µ
2∥βt−βα∞∥22.

Hence βt → βα∞.

Lemma 15 along with the fact that the event A has probability at least 1− p
2 (see Lemma 18

and paragraph around B.3) concludes the proof of Proposition 15.

2See for example Theorem 5 of https://almostsuremath.com/2010/04/01/
continuous-local-martingales/ for a proof of this fact. For the moment we did not find a precise
reference of this standard fact in the classical Revuz and Yor [2013].
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B.2.4 Proof of Theorem 1

We are now equipped to prove the main result of the chapter. For clarity we recall the statement
of the theorem here.

Theorem 8. For p ≤ 1
2 and w0,± = α ∈ (R∗

+)d, let (wt)t≥0 follow the stochastic gradient

flow (7.3) with step size γ ≤ O
([

ln(4p)λmax max{∥β⋆ℓ1∥1 ln
( ∥β⋆

ℓ1
∥1

mini α2
i

)
, ∥α∥22}

]−1)
where β⋆ℓ1 =

arg min
β∈Rd s.t.Xβ=y

∥β∥1 and λmax is the largest eigenvalue of X⊤X/n. Then, with probability at least 1−
p:

• (βt)t≥0 converges towards a zero-training error solution βα∞

• the solution βα∞ satisfies

βα∞ = arg min
β∈Rd s.t. Xβ=y

ϕα∞(β) where α∞ = α⊙ exp

(
−2γ diag

(
X⊤X
n

)∫ +∞

0
L(βs) ds

)
. (C.11)

Proof. Recall first that on A, Lemma 15 implies that the iterates converge towards a zero-
training error we denote by βα∞. From Proposition 14 we also have that:

d∇ϕαt(βt) = −∇L(βt) dt+
√
γL(βt)X̄

⊤dBt, (B.6)

where αt = α ⊙ exp
(
−2γ diag

(
X̄⊤X̄

) ∫ t
0 L(βs) ds

)
and ϕα is the hyperbolic entropy defined

in (7.4). Since the quantity
∫∞
0 L(βs) ds is well defined on A (Proposition 28), we can integrate

(B.6) from t = 0 to t = ∞ which leads to ∇ϕα∞(βα∞) ∈ span(X). This condition, along with
the fact that Xβα∞ = y, exactly corresponds to the KKT conditions of the implicit minimisation
problem (7.5). From Lemma 18, the fact that the event A has probability at least 1−p concludes
the proof.

B.2.5 Lower bound on
∫
L(βs)ds and proof of Proposition 16

Similarly to what has been done in subsection B.2.2, in order to lower bound the loss integral,
we need a (different) control on the deviation of the local martingale St. We choose â := Wα

0 /2
and b̂ := 1

2 ln(4/p)â−1 so that once again âb̂ = 1
2 ln(4/p). We refer to Lemma 16 for the definition

of Wα
0 . Now that these parameters are fixed, consider the new event:

B = {∀t ≥ 0, |St| ≤ â+ 2b̂γλmax

∫ t

0
L(βs)(∥βs∥21 + ∥β⋆ell1∥21)ds}

In this entire subsection we shall put ourselves on the intersection A ∩ B which occurs with
probability P(A∩B) ≥ 1− (P(AC) +P(BC)) ≥ 1− p. Furthermore since the goal of this section
is to obtain an idea of the dependency on α of the integral of the loss as α goes to 0, we shall
consider the initialisations α = α1, therefore for now on α is a positive scalar. Note that with
this convention ∥α∥22 = α2d.

Notice that the quantity γ
∫ +∞
0 L(βs)ds, through α∞, controls the magnitude of the sparse-

inducing effect. In the following lemma we show that this quantity is lower bounded by a
quantity which is strictly increasing with γ. This recommends to pick the largest γ (as
long as the iterates converge). This fact is also observed in practice.
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Lemma 16. On A ∩ B, let γ ≤ [400λmax ln(4p) max{∥β⋆ell1∥1 ln(

√
2∥β⋆

ell1
∥1

α2 ), α2d}]−1,

γ

∫ +∞

0
L(βs)ds ≥

Wα
0

4

γ

1 + γ M
Wα

0

,

whereWα
0 = min

β s.t Xβ=Y
ϕα(β)−ϕα(0) andM =

[
325λmax ln(4p) max{∥β⋆ell1∥21 ln2(

√
2∥β⋆

ell1
∥1

α2 ), α4d2}].

Proof. According to Lemma 15, the flow converges to an interpolator βα∞. We consider the same
Lyapunov as before:

Wt = ϕα∞(βα∞)− ϕαt(βt) + ⟨∇ϕαt(βt), βt − βα∞⟩,

which is such that, following the same computations as in Lemma 11:

2

∫ t

0
L(βs)ds = W0 −Wt + γ⟨diag(X̄⊤X̄),

∫ t

0
L(βs)ξsds⟩+ St

≥W0 −Wt + St,

where St =
∫ t
0

√
γL(βs)⟨X⊤dBs, βs − β∗ℓ1⟩.

Now since we put ourselves on B:

2

∫ ∞

0
L(βs)ds ≥W0 − â− 2b̂γλmax

∫ +∞

0
L(βs)(∥βs∥21 + ∥β∗ℓ1∥21)ds

≥W0 − â− 2b̂γλmax(182 + 1) max
(
∥β∗ℓ1∥21 ln2

(√
2
∥β∗ℓ1∥1
α2

)
, α4d2

)∫ +∞

0
L(βs)ds

≥W0 − â− 2γb̂M ln(4/p)−1

∫ +∞

0
L(βs)ds,

where the second inequality comes from Lemma 12 (which is still valid since we are on the event

A) and M =
[
325 ln(4/p)λmax max(∥β∗ℓ1∥21 ln2(

√
2
∥β∗

ℓ1
∥1

α2 ), α4d2)
]
. Hence, we can lowerbound the

integral as

∫ +∞

0
L(βs)ds ≥

W0 − â
2 + 2γb̂M ln(4p)−1

.

Importantly W0 = ϕα∞(β∞)−ϕα(0) depends on β∞ and is therefore stochastic. However, since
for all β ∈ Rd, α 7→ ϕ(β, α2) is decreasing and α∞ ≤ α, we obtain:

W0 = ϕα∞(β∞)− ϕα(0)

≥ ϕα(β∞)− ϕα(0)

≥ ϕα(β⋆α)− ϕα(0) := Wα
0 ,

where β⋆α = argmin
β s.t Xβ=Y

ϕ(β, α2). Therefore, we control the integral of the loss as

∫ +∞

0
L(βs)ds ≥

Wα
0 − â

2 + 2γb̂M ln(4p)−1

128



APPENDIX B. APPENDIX FOR CHAPTER 7

We now plug in the values â =
Wα

0
2 and b̂ = 1

Wα
0

ln(4p):

γ

∫ +∞

0
L(βs)ds ≥

Wα
0

4

γ

1 + γ M
Wα

0

.

To complete our understanding of the dependency of the integral of the loss in terms of α
and β⋆ℓ1 we need to know the dependency of Wα

0 in α. The following lemma does so. We consider
the limit α→ 0 which corresponds to the rich regime we are interested in.

Lemma 17. On A ∩ B, let γ ≤ [400λmax ln(4p) max{∥β⋆ell1∥1 ln(

√
2∥β⋆

ell1
∥1

α2 ), α2d}]−1, then for α
small enough: ∫ +∞

0
L(βs) ds ⩾

1

8
∥β∗ℓ1∥1 ln

(∥β∗ℓ1∥1
α2

)
.

Proof. Applying Lemma 20, for all β ∈ Rd , ϕα(β)−ϕα(0) ≥ 1
4

∑
i max

{
0, |βi| ln |βi|

2α2

}
. Therefore,

Wα
0 ≥

1

4

∑

i

|β⋆α,i| ln
|β⋆α,i|
2α2

.

Note that β⋆α = argmin
β s.t Xβ=Y

ϕα(β) and β⋆ℓ1 = argmin
β s.t Xβ=Y

∥β∥1. From Theorem 2 of Woodworth

et al. [2020b]: ∥β⋆α∥1 −→
α→0
∥β⋆ℓ1∥1 which leads to:

∑

i

|β⋆α,i| ln
|β⋆α,i|
2α2

∼
α→0
∥β⋆ℓ1∥1 ln

∥β⋆ℓ1∥1
α2

.

and Wα
0 ⩾

α→0

1
4∥β∗ℓ1∥1 ln

(∥β∗
ℓ1
∥1

α2

)
. Finally, for α small enough, from the upperbound on γ, the

value of M and the lower bound on Wα
0 :

γ
M

Wα
0

≤
α→0

1,

which along with Lemma 16 concludes the proof.

Therefore through this lemma we see that by picking the biggest step-size which ensures
convergence, we have a dependency of the integral of the loss as ln 1

α .
Now we are equipped to prove Proposition 16. We recall it here to be self-contained.

Proposition 16. Under the same setting as in Proposition 15 with initialisation w0,± = α1,
we have with probability at least 1− p:

Ω
(
∥β∗ℓ1∥1 ln

(∥β∗ℓ1∥1
α2

))
⩽
α→0

∫ +∞

0
L(βs) ds ⩽ O

(
max

{
∥β∗ℓ1∥1 ln

(∥β∗ℓ1∥1
α2

)
, α2d

})
.

Proof. Let us place ourselves on the event A ∩ B. Let us recall that P(A ∩ B) ≥ 1− (P(AC) +
P(BC)) ≥ 1−p, where the last inequality results from the definitions of A and B and Lemma 18.
As this event is included in A, the right inequality of the proof corresponds exactly to the
Proposition 28 of Appendix B.2.2. The proof of left inequality of the proposition comes from
Lemma 17.
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In the final proposition of this subsection, we give the scale of α∞ we obtain thanks to our
analysis. Indeed though we know that in all case α∞ < α, we would like to quantitatively know
how much smaller the effective initialisation is in order to have an idea of the gain of SGD over
GD (in terms of implicit bias).

Proposition 29. Consider the iterates (wt)t≥0 issued from the stochastic gradient flow (7.3),
initialised at w0,± = α1 ∈ (R∗

+)d. Let p ≤ 1
2 and γ matching the upperbound in Theorem 1, i.e.

γ = [400λmax ln(4p) max{∥β⋆ell1∥1 ln(

√
2∥β⋆

ell1
∥1

α2d
), α2d}]−1, then with probability at least 1 − p and

for α small enough:

α∞
α
≤ exp

(
− 1

1600 ln(4p)

diag(X
⊤X
n )

λmax

)
.

Proof. The fact that α∞ = α exp
(
−2γ diag

(
X⊤X
n

) ∫ +∞
0 L(βs) ds

)
along with the lower bound

from Lemma 17 and the value of γ gives the result.

This result tends to show that the overall gain of SGD over GD is only by a constant factor

exp(− 1
1600 ln( 4

p
)

diag(X
⊤X
n

)

λmax
) < 1. We believe that our analysis is not tight and that the gain is in

fact more consequent, this is explained in the following subsection.

B.2.6 Scale of α∞ when assuming that the iterates are bounded indepen-
dently of α.

In this subsection we explain why we believe that our analysis lacks of tightness. In Lemma 12
there is a dependency in ln( 1

α) in the upperbound of the ℓ1 norm of the iterates. We believe
that this dependency is an artifact of our analysis and that the true bound is independent of
α, this is also what is observed in practice. This is the reason why we formulate the following
assumption:

Boundedness assumption. On A, ∥βt∥1 ≤ ∥ξt∥1 ≤ max{∥β⋆ℓ1∥1, α2d} for all t ≥ 0.

Under this assumption, we obtain convergence of the iterates towards an interpolating so-
lution under a weaker constraint on γ (bigger step-sizes can be used while still ensuring con-
vergence) as well as a much better upperbound on the scale of α∞. The aim of the following
result is to give the relevant scale of how small is α∞ w.r.t. α. Hence, for the sake of clarity,
we will assume that diag(X⊤X/n) ∼ λmax1 (which is true for sub-gaussian inputs with high
probability). We also fix p = 0.01 and drop all the numerical constants under some universal
constant ζ > 0.

Proposition 30. Consider the iterates (wt)t≥0 issued from the stochastic gradient flow (7.3),
initialised at w0,± = α1 ∈ (R∗

+)d. Assume boundedness of the iterates and γ = Θ
(

max{∥β⋆ℓ1∥1, α2d}−1
)
,

then with probability at least 0.99, the iterates (βt)t≥0 converge towards an interpolating solution
βα∞ = arg min

β∈Rd s.t. Xβ=y

ϕα∞(β). Furthermore, for α small enough, there exists ζ > 0 such that:

α∞
α
≤
(

α2

∥β⋆ℓ1∥1

)ζ
.

Proof. As said earlier, we fix p = 0.01. Then, by following the proof of Lemma 13, and using the
boundedness assumption instead of Lemma 12, one obtains that for γ ≤ O

(
max{∥β⋆ℓ1∥1, α2d}−1

)
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(as mentioned the precise numerical constants are dropped for simplicity) then Ut ≥ 1
2 for all

t ≥ 0. The results of Lemma 14, Proposition 28, Lemma 15 and therefore Theorem 1 then still
hold with probability 0.99 but with the weaker condition that γ ≤ O

(
max{∥β⋆ℓ1∥1, α2d}−1

)
.

For the upperbound on α∞, we follow the exact same steps as in Appendix B.2.5. Indeed
Lemma 16 now gives, for γ ≤ O

(
(λmax max{∥β⋆ℓ1∥1, α2d})−1

)
:

γ

∫ +∞

0
L(βs)ds ≥

Wα
0

4

γ

1 + γ M
Wα

0

,

where M = Θ
(
λmax max{∥β⋆ℓ1∥21, α4d2}

)
. Plugging in the maximum value of γ, i.e. γ =

Θ
(
(λmax max{∥β⋆ℓ1∥1, α2d})−1

)
: we have that γ M

Wα
0
−→
α→0

0 and for α small enough γWα
0 ≥

Ω

(
λ−1
max ln

(
∥β∗

ℓ1
∥1

α2

))
. Therefore for α small enough:

γ

∫ +∞

0
L(βs)ds ≥ Ω

(
λ−1
max ln

(∥β∗ℓ1∥1
α2

))

Plugging this inequality into the definition of α∞ and assuming that diag(X⊤X/n) ∼ λmax1
leads to:

α∞ = α exp

(
−2 diag

(
X⊤X
n

)
γ

∫ +∞

0
L(βs) ds

)
≤ α

(
α2

∥β⋆ℓ1∥1

)Ω
(
1
)

.

This concludes the proof of the Proposition.

This upperbound is significantly better than that of Proposition 29: the smaller the initialisa-
tion scale α and the greater the benefit of SGD over GD in terms of implicit bias. More precisely,
Proposition 30 shows that the benefit scales as a power law with respect to the initialization α.
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B.3 Experiments

In the following section we consider the same experimental setup as in Section 7.6.1, which we
recall here for clarity. We consider n = 40, d = 100 and randomly generate a sparse model β⋆ℓ0
such that ∥β⋆ℓ0∥0 = 5. We generate the features as xi ∼ N (0, I) and the labels as yi = x⊤i β

⋆
ℓ0

.
We use the same step size for GD and SGD and choose it to be the biggest as possible while
still ensuring convergence. Note that since the true population covariance E[xx⊤] is equal to
identity, the quantity ∥βt − β⋆ℓ0∥22 corresponds to the validation loss.

B.3.1 Doping the implicit bias using label noise: experiments

We consider the label noise setting discussed in Section 7.6.4: for a sequence (δt)t∈N ∈ R+, as-
sume that we artificially inject some label noise ∆t at time t, say for example ∆t ∼ unif{2δt,−2δt}
and independently from it (other type of label noise can of course be considered, but we consider
here this one for simplicity). This injected label noise perturbs the SGD recursion as follows:

wt+1,± = wt,± ∓ γ (⟨βw − β⋆, xit⟩+ ∆t) xit ⊙ wt,+ , where it ∼ unif(1, n). (B.7)

Using the same notations and following the same derivations as in Appendix B.1, we can rewrite
the recursion as:

wt+1,± = wt,± − γ∇w±L(wt)± γ diag(wt,±)X⊤[ξit(βt) + ∆teit ].

Since ∆t is zero-mean and independent of it we get:

Covit [ξit(β) + ∆teit ] = Eit [ξit(β)⊗2] + E[∆2
te

⊗2
it

]

= Eit [ξit(β)⊗2] +
4δ2t
n
In.

Now following the same reasoning as in Appendix B.1, it is natural to consider the following
SDE:

dwt,± = −∇w±L(wt)dt± 2
√
γn−1(L(wt) + δ2t ) wt,+ ⊙ [X⊤dBt].

Let L̃(βt) = L(βt) + δ2t be the ”slowed down” loss. Following the same computations as for
Lemma 10 we obtain that:

βt = 2α̃2
t ⊙ sinh(2X̄⊤η̃t),

where η̃t = −
∫ t
0 X̄(βs−β⋆) ds+2

√
γ
∫ t
0

√
L̃(βs)dBs ∈ Rn and αt = α⊙exp

(
−2γ diag(X̄⊤X̄)

∫ t
0 L̃(βs)ds

)
.

And following the proof of Proposition 14:

d∇ϕαt(βt) = −∇L(βt) dt+

√
γn−1L̃(βt)X

⊤dBt. (B.8)

Assuming that (δt)t≥0 ∈ (R+)R and γ are such that the iterates converge (here we do not show
under which conditions we have convergence and leave this as future work), the corresponding
implicit regularisation minimisation problem is preserved but with an effective initialisation:

α̃∞ = α ⊙ exp
(
−2γ diag(X

⊤X
n )

∫ +∞
0 L̃(βs) ds

)
which takes into account the slowed down loss

L̃(βt) = L(βt) + δ2t . Since it is reasonable to consider that α̃∞ < α∞, the label noise therefore
helps to recover a solution which has better sparsity properties.
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We experimentally validate the advantage of adding label noise by choosing the sequence
δt = 1 if t ≤ 103 and δt = 0 if t > 103. The results are illustrated Figure B.1. Note that the
training loss is heavily slowed down, however the recovered solution at iteration t = 106 is much
better than that of SGD, and it has not even converged yet. However, it must be kept in mind
that adding too much label noise can significantly slow down the convergence of the validation
loss or even prevent the iterates from converging.

Figure B.1: Sparse regression (see Section 7.6.1 for the detailed experimental setting), illustra-
tion of the benefits of using label noise. All experiments are initialised at α = 0.01. Left : The
use of label noise slows down the convergence of the effective training loss L̃. Middle and right :
the value of the integral of the slowed down loss L̃ is much higher for the recursion with label
noise, leading to a solution which generalises much better.
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B.4 Extensions

We introduce two extensions of our results: subsection B.4.1 extends our results for a very
general stochastic gradient flow model and subsection B.4.2 discuss them in the depth p ≥ 3
case.

B.4.1 Towards a more general SDE modelling

Recall from the SDE modelling of Appendix B.1 that Covit [ξit(β)] = 4
n diag(Li(β))1≤i≤n+O( 1

n2 ).
If we assume n large enough we can neglect the second order term of order 1/n2:

Covit [ξit(β)] ∼= 4

n
diag(Li(β))1≤i≤n.

Assume we do not consider that Li(β) ∼ L(β), then the overall SGD noise structure is captured
by

ΣSGD(w±) := γ2 diag(w±)X⊤Covit [ξit(β)]X diag(w±)

∼= 4

n
γ2[diag(w±)X⊤ diag(

√
Li(β))]⊗2.

This leads us in considering the following SDE:

dwt,+ = −∇w+L(wt) dt+ 2
√
γ wt,+ ⊙ [X̄⊤ diag(

√
Li(β))dBt]

dwt,− = −∇w−L(wt) dt− 2
√
γ wt,− ⊙ [X̄⊤ diag(

√
Li(β))dBt].

(B.9)

As previously, this SDE admits an implicit integral formulation (multiplication must be under-
stood component-wise):

wt,± = wt=0,± ⊙ exp(±X̄⊤[−
∫ t

0
r(ws) ds+ 2

√
γ

∫ t

0
diag(

√
Li(ws)) dBs

]
)

⊙ exp(−2γ diag(X̄⊤
∫ t

0
diag(Li(ws)) dsX̄))

= αt ⊙ exp(±X̄⊤ηt),

where ηt = −
∫ t
0 X̄(βs−β∗) ds+2

√
γ
∫ t
0 diag(

√
Li(ws)) dBs ∈ Rn and αt = α⊙exp(−2γ diag(X̄⊤ ∫ t

0 diag(Li(ws)) dsX̄)).
Since β = w2

+ − w2
−, we get:

βt = α2
t ⊙

(
exp(+2X̄⊤ηt)− exp(−2X̄⊤ηt)

)

= 2α2
t ⊙ sinh(+2X̄⊤ηt).

And we obtain the following mirror-type descent flow:

d∇ϕαt(βt) = −∇L(βt) dt+
√
γX̄⊤ diag(

√
Li(βt)) dBt.

Assuming convergence of the iterates and of αt (we do not show the convergence,
though we think the proof could straightforwardly be adapted following Appendix B.2 ), the
corresponding minimisation problem is:

βα∞ = arg min
β∈Rd s.t. Xβ=y

ϕα∞(β) where α∞ = α⊙ exp(−2γ diag(X̄⊤
∫ ∞

0
diag(Li(βs)) ds X̄)).

Note that the main result of the chapter is very similar, the difference relies in:

• the kth coordinate of diag(X̄⊤ diag(Li(βs)) X̄) is Eit [Lit(βs)(x
(k)
it

)2]

• the kth coordinate of L(βs) diag(X̄⊤X̄) is Eit [Lit(βs)]Eit [(x
(k)
it

)2]
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B.4.2 Higher order models: the cases of depth p > 2

Until now, we have focused on a 2-homogeneous parametrisation of the estimator. A legitimate
question is how the implicit bias changes as we go to a higher degree of homogeneity. In terms
of networks architecture, this corresponds to increasing the depth of the neural networks. Let
us fix p ⩾ 3 with the new parametrisation βw = wp+ − wp−, the loss of our new model writes:
L(w) = 1

4n

∑n
i=1⟨w

p
+−wp−−β∗, xi⟩2. As previously, we want to consider the stochastic differential

equation related to stochastic gradient descent on the above loss. With the same modelling as
in Section 7.3.2, stochastic gradient flow writes:

dwt,± = −∇w±L(wt)dt± 2
√
γn−1L(βt) diag(wp−1

t,± )X⊤dBt, (B.10)

where Bt is a standard Brownian motion in Rn. We would like to put emphasis that, unlike the
2-depth model, we do not provide a dynamical analysis enabling convergence proof and control of
interesting quantities. Here, the aim is to show how our framework naturally extends to general
depth and how the convergence speed of the loss still seems to controls the effect of the stochastic
flow biasing. Contrary to the 2-depth case, the potential cannot be defined in close form, but we
still have the following explicit expression, ϕpα,±(β) =

∑d
i=1 ψ

p
α,±(βi), where ψpα,± =

∫
[hpα,±]−1 is

a primitive of the unique inverse of hpα,±(z) := (α2−p
+ −z)

− p
p−2 −(α2−p

− +z)
− p

p−2 in (−α2−p
− , α2−p

+ ).
In the following theorem we characterize the implicit bias of the stochastic gradient flow when
applied with higher order models.

Theorem. Initialise the stochastic gradient flow with w0 = α1 ∈ R2d. If we assume that the
flow (βt)t≥0 converges almost surely towards a zero-training error solution βα,p∞ , and that the
quantities

∫∞
0 L(βs)w

p−2
s,± ds and

∫∞
0 L(βs)ds exist a.s., then the limit satisfies

β∞,p = arg min
β s.t Xβ=y

ϕpα∞,±(β),

with α∞,± = α(1 + 2γ(p− 2)(p− 1)αp−2 diag(X
⊤X
n )⊙

∫∞
0 L(βs)w

p−2
s,± ds)

− 1
p−2

.

First let us stress that without a close form expression of ϕdα and proper control of
∫∞
0 L(βs)w

p−2
s,± ds

with respect to p or α, it is difficult to conclude directly on the magnitude of the stochastic bias.
Yet, the main aspect we can comment on is that, as in the depth-2 case, α∞,± ⩽ α almost
surely3 and that the convergence speed of the loss controls the biasing effect. As in Woodworth
et al. [2020b], it can be shown empirically that ϕpα,± interpolate between the ℓ1 and the ℓ2 norm
as α± → 0 and α± → +∞ respectively and that the transition is faster than for the depth-2
case.

We directly prove this theorem here.

Proof. We apply the Itô formula on w2−p
t,+ and w2−p

t,− to get the following:

d[w2−p
t,+ ] = (2− p)w1−p

t,+ ⊙ dwt,+ + 2(2− p)(1− p)γL(βt)w
−p
t,+ ⊙ w2p−2

t,+ ⊙ diag(H)

= −p(2− p)X⊤r(βt)dt+ 2(2− p)(1− p)γL(βt)w
p−2
t,+ ⊙ diag(H)dt+ (2− p)

√
γL(βt)X

⊤dBt

= −X⊤dAt + C+
t dt,

where dAt := −p(p− 2)r(βt)dt+ 2(p− 2)
√
γL(βt)dBt and C+

t := 2(p− 2)(p− 1)γL(βt)w
p−2
t,+ ⊙

diag(H). Similarly, with explicit notations, we have that:

d[w2−p
t,− ] = X⊤dAt + C−

t dt.

3Note that, as the weights are initialized positively, they remain positive: wt,± > 0, for all t ⩾ 0.
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Hence,

wpt,+ =

[
α2−p −X⊤

∫ t

0
dAs +

∫ t

0
C+
s ds

] p
2−p

and wpt,− =

[
α2−p +X⊤

∫ t

0
dAs +

∫ t

0
C−
s ds

] p
2−p

.

And finally,

βt = wpt,+ − wpt,− =

[
α2−p +

∫ t

0
C+
s ds−X⊤

∫ t

0
dAs

] p
2−p

−
[
α2−p +

∫ t

0
C−
s ds+X⊤

∫ t

0
dAs

] p
2−p

.

Defining α2−p
eff,± = α2−p+

∫∞
0 C±

s ds and ν∞ =
∫∞
0 dAs, if all quantities have limits when t→∞ we

have that β∞ = hα,p,±(X⊤ν∞), where hα,p,±(z) = (α2−p
eff,+−z)

p
2−p −(α2−p

eff,− +z)
p

2−p . Inverting this
function and integrating gives the theorem with the standard KKT argument [see Woodworth
et al., 2020b, under Theorem 1 page 4].
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B.5 Technical lemmas

In this section, we state and prove technical lemmas which we use to prove our main results.

Lemma 18. For any interpolator β⋆, St =
∫ t
0

√
γL(βs)⟨X̄⊤dBs, βs − β⋆⟩ is a square-integrable

martingale with a.s. continuous paths. And for any a, b ≥ 0:

P (∀t ≥ 0, |St| ≤ a+ 2bγλmax

∫ t

0
L(βs)(∥βs∥21 + ∥β∗∥21)ds) ≥ 1− 2 exp(−2ab)

= 1− p,

where p = 2 exp(−2ab).

Proof. Since (St)t≥0 is a is a locally square-integrable martingale with a.s. continuous paths,
[Howard et al., 2020, Corollary 11] gives that

P (∃t ∈ (0,∞) : St ≥ a+ b⟨S⟩t) ≤ exp{−2ab}).

We now compute the quadratic variation ⟨S⟩t. Notice that ⟨X̄⊤dBt, βt−β∗⟩ =
∑n

k=1[X̄(βt−
β∗)]kdBk

t , hence the quadratic variation of St equals:

⟨S⟩t = γ

∫ t

0
L(βs)

n∑

k=1

[X̄(βt − β∗)]2kds

= γ

∫ t

0
L(βs)∥X̄(βs − β∗)∥2ds

= 4γ

∫ t

0
L(βs)

2ds.

Furthermore, since:

4

∫ t

0
L(βs)

2ds =

∫ t

0
L(βs)(βs − β∗)T X̄⊤X̄(βs − β∗)ds

≤ λmax

∫ t

0
L(βs)∥βs − β∗∥22ds

≤ 2λmax

∫ t

0
L(βs)(∥βs∥22 + ∥β∗∥22)ds

≤ 2λmax

∫ t

0
L(βs)(∥βs∥21 + ∥β∗∥21)ds,

we obtain that:

⟨S⟩t ≤ 2γλmax

∫ t

0
L(βs)(∥βs∥21 + ∥β∗∥21)ds,

and:

P (∃t ≥ 0, |St| ≥ a+ 2bγλmax

∫ t

0
L(βs)(∥βs∥22 + ∥β∗∥21)ds)

≤ P (∃t ≥ 0, |St| ≥ a+ b⟨S⟩t)
≤ 2 exp(−2ab).
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Lemma 19. Let A,B > 0 such that A
B + ln(B) ≥ 2. Assume that x ≤ A+B lnx, then

x ≤ 5

2
(A+B ln(B)).

Proof. x ≤ A+B lnx is equivalent to x ≤ exp(−A
B ) exp( xB ). Standard analysis on the Lambert

W function shows that this leads to x ≤ −B W−1(− 1
B exp(−A

B )), where W−1 is the lower branch
4. For −1

e ≤ z ≤ 0, the branch W−1 can be lower bounded as: W−1(z) ≥ −
√
−2(1 + ln(−z)) +

ln(−z) (see Theorem 1 of Chatzigeorgiou [2013]). Since ln(−z) = ln( 1
B exp(−A

B )) = −(AB +
ln(B)):

x ≤ B(

√
2(−1 +

A

B
+ ln(B)) +

A

B
+ ln(B))

≤ B(
√

2(−1 +
A

B
+ ln(B)) +

A

B
+ ln(B))

≤ (
√

2 + 1)B(
A

B
+ ln(B))

≤ 5

2
(A+B ln(B)).

This concludes the proof of the Lemma.

Lemma 20. For any α > 0 and β ∈ R, we have the following inequality:

ϕα(β)− ϕα(0) ≥ 1

4
max

{
0, |β| ln |β|

2α2

}
.

Proof. Let us fix α ∈ R. First notice that by parity in β of the functions involved, and as the
inequality holds in β = 0, we can suppose that β > 0 and define

f(β) := ϕα(β)− ϕα(0) =
1

4

[
βarcsinh

(
β

2α2

)
−
√
β2 + 4α4 + 2α2

]
.

Trivially, f ′(β) = 1
4arcsinh

(
β

2α2

)
> 0. Hence, it increases on R+ and as f(0) = 0, f is always

positive. This show the inequality for the left term of the max.
For the other term of the max, let us define g(β) := 1

4β ln β
2α2 , we have that

4[f ′(β)− g′(β)] = arcsinh

(
β

2α2

)
− ln

(
β

2α2

)
+ 1 = ln

(
1 +

√
1 +

4α4

β2

)
+ 1 > 0.

Hence, f−g increases and as f(0)−g(0) = 0, we have that f > g which concludes the proof.

4see https://en.wikipedia.org/wiki/Lambert_W_function for more details
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Appendix C

Appendix for Chapter 8

Organisation of the Appendix.

1. In Appendix C.1, we provide additional experiments for uncentered data as well as on the
behaviour of the sharpness and trace of the Hessian along the trajectory of the iterates.
We finally provide an experiment highlighting the EoS regime for SGD.

2. In Appendix C.2, we prove that (βk) follows a Mirror descent recursion with varying
potentials. We explicit these potentials and discuss some consequences.

3. In Appendix C.3 we prove that (S)GD on the 1
2(w2

+−w2
−) and u⊙v parametrisations with

suitable initialisations lead to the same sequence (βk).

4. In Appendix C.4, we show that the hypentropy ψα converges to a weighted-ℓ1-norm when
α converges to 0 non-uniformly. We then discuss the effects of this weighted ℓ1-norm for
sparse recovery.

5. In Appendix C.5, we provide our descent lemmas for mirror descent with varying potentials
and prove the boundedness of the iterates.

6. In Appendix C.6, we prove our main results: Theorem 1 and Theorem 2, as well as
quantitative convergence (Proposition 17).

7. In Appendix C.7, we prove the lemmas and propositions given in the main text.

8. In Appendix C.8, we provide technical lemmas used throughout the proof of Theorem 1
and Theorem 2.

9. In Appendix C.9, we provide concentration results for random matrices and random vec-
tors, used to estimate with high probability (w.r.t. the dataset) quantities related to the
data.
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C.1 Additional experiments and results

C.1.1 Uncentered data

When the data is uncentered, the discussion and the conclusion for GD are somewhat different.
This paragraph is motivated by the observation of Nacson et al. [2022] who notice that GD with
large stepsizes helps to recover low ℓ1 solutions for uncentered data (Figure C.1). We make the
following assumptions on the uncentered inputs.

Assumption 16. There exist µ ∈ Rd and δ, c0, c1, c2 > 0 such that for all s-sparse vectors β
verifying ⟨µ, β⟩ ≥ c0∥β∥∞∥µ∥∞, there exists ε ∈ Rd such that (X⊤X)β = ⟨β, µ⟩µ + ε where
∥ε∥2 ≤ δ∥β∥2 and c1⟨β, µ⟩2µ2 ≤ 1

n

∑
i x

2
i ⟨xi, β⟩2 ≤ c2⟨β, µ⟩2µ2.

Assumption 16 is not restrictive and holds with high probability for N (µ1, σ2Id) inputs when
µ >> σ1 (see Lemma 29 in Appendix). The following lemma characterises the initial shape of
SGD and GD gradients for uncentered data.

Proposition 31 (Shape of the (stochastic) gradient at initialisation). Under Assumption 16
and if ⟨µ, β⋆sparse⟩ ≥ c0∥β∥∞∥µ∥∞, the squared full batch gradient and the expected stochastic
gradient descent at initialisation satisfy, for some ε satisfying ∥ε∥∞ << ∥βsparse∥2:

∇L(β0) = ⟨β⋆sparse, µ⟩2µ2 + ε , (C.1)

Ei∼Unif([n])[∇Li(β0)2] = Θ
(
⟨β⋆sparse, µ⟩2µ2

)
. (C.2)

In this case the initial gradients of SGD and of GD are both homogeneous, explaining
the behaviours of gradient descent in Figure C.1 (App. C.1): large stepsizes help in the recovery
of the sparse solution in the presence of uncentered data, as opposed to centered data. Note
that for decentered data with a µ ∈ Rd orthogonal to β⋆sparse, there is no effect of decentering on
the recovered solution. If the support of µ is the same as that of β⋆sparse, the effect is detrimental
and the same discussion as in the centered data case applies.

Figure C.1: for uncentered data the solutions of GD and SGD have similar behaviours,
corroborating Proposition 31.

100 101

Stepsize γ

10−5

10−4

10−3

10−2
Test losses ||βγ∞ − β∗`1 ||22

SGD

GD

Figure C.1: Noiseless sparse regression with a 2-layer DLN with uncentered data xi ∼ N (µ1, Id)
where µ = 5. All the stepsizes lead to convergence to a global solution and the solutions of
SGD and GD have similar behaviours, corroborating Proposition 31. The setup corresponds to
(n, d, s, α) = (20, 30, 3, 0.1).

140



APPENDIX C. APPENDIX FOR CHAPTER 8

C.1.2 Behaviour of the maximal value and trace of the hessian

Here in Figure C.2, we provide some additional experiments on the behaviour of: (1) the max-
imum eigenvalue of the hessian ∇2F (wγ∞) at the convergence of the iterates of SGD and GD
(2) the trace of hessian at the convergence of the iterates. As is clearly observed, increasing the
stepsize for GD leads to a ‘flatter’ minimum in terms of the maximum eigenvalue of the hessian,
while increasing the stepsize for SGD leads to a ‘flatter’ minimum in terms of its trace. These
two solutions have very different structures. Indeed from the value of the hessian Equation (C.9)
at a global solution, and (very) roughly assuming that ‘X⊤X = Id’ and that ‘α ∼ 0’ (push-
ing the EoS phenomenon), one can see that minimising λmax(∇2F (w)) under the constraints
X(w2

+ − w2
−) = y and w+ ⊙ w− = 0 is equivalent to minimising ∥β∥∞ under the constaint

Xβ = y. On the other hand minimising the trace of the hessian is equivalent to minimising the
ℓ1-norm.

10−1 100

Stepsize γ

3.5

4.0

4.5

5.0

λmax(∇2F (wγ∞))

SGD

GD

10−1 100

Stepsize γ

10.0

12.5

15.0

17.5

20.0
Trace(∇2F(wγ

∞))

SGD

GD

Figure C.2: Noiseless sparse regression setting. Diagonal linear network. Centered data.
Behaviour of 2 different types of flatness of the recovered solution by SGD and GD depending
on the stepsize. The setup corresponds to (n, d, s, α) = (20, 30, 3, 0.1).

C.1.3 Edge of Stability for SGD
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Gradient flow

Figure C.3: SGD at the edge of stability: all coordinates fluctuate, and the sparse solution is
recovered. As opposed to GD at the EoS, since all coordinates fluctuate, the coordinates to
recover are not more penalised than the others.

C.2 Main ingredients behind the proof of Theorem 1 and Theorem 2

In this section, we show that the iterates (βk)k≥0 follow a stochastic mirror descent with varying
potentials. At the core of our analysis, this result enables us to (i) prove convergence of the
iterates to an interpolator and (ii) completely characterise the inductive bias of the algorithm
(SGD or GD). Unveiling a mirror-descent like structure to characterise the implicit bias of a
gradient method is classical. For gradient flow over diagonal linear networks [Woodworth et al.,
2020a], the iterates follow a mirror flow with respect to the hypentropy (8.4) with parameter α
the initialisation scale, while for stochastic gradient flow [Pesme et al., 2021] the mirror flow has
a continuously evolving potential.

C.2.1 Mirror descent and varying potentials

We recall that for a strictly convex reference function h : Rd → R, the (stochastic) mirror descent
iterates algorithm write as [Bauschke et al., 2017, Dragomir et al., 2021], where the minimum
is assumed to be attained over Rd and unique:

βk+1 = arg min
β∈Rd

{ηk⟨gk, β⟩+Dh(β, βk)} , (C.3)

for stochastic gradients gk, stepsize γk ≥ 0, and Dh(β, β′) = h(β) − h(β′) − ⟨∇h(β′), β − β′⟩ is
the Bregman divergence associated to h. Iteration (C.3) can also be cast as

∇h(βk+1) = ∇h(βk)− γkgk . (C.4)

Now, let (hk) be strictly convex reference functions Rd → R. Whilst in continuous time, there
is only one natural way to extend mirror flow to varying potentials, in discrete time the varying
potentials can be incorporated in eq. (C.3) (replacing h by hk and leading to ∇hk(βk+1) =
∇hk(βk)− γkgk), the mirror descent with varying potentials we study incorporates hk+1 and hk
in eq. (C.4). The iterates are thus defined as through:

βk+1 = arg min
β∈Rd

{
ηk⟨gk, β⟩+Dhk+1,hk(β, βk)

}
,
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where Dhk+1,hk(β, β′) = hk+1(β)− hk(β′)− ⟨∇hk(β′), β − β′⟩, a recursion that can also be cast
as:

∇hk+1(βk+1) = ∇hk(βk)− γkgk .

To derive convergence of the iterates, we prove analogs to classical mirror descent lemmas,
generalised to time-varying potentials.

C.2.2 The iterates (βk) follow a stochastic mirror descent with varying po-
tential recursion

In this section we show and prove that the iterates (βk)k follow a stochastic mirror descent with
varying potentials. Before stating the proposition, we recall the definition of the potentials. To
do so we introduce several quantities.

Let q, q± : R→ R ∪ {∞} be defined as:

q±(x) = ∓2x− ln
(
(1∓ x)2) ,

q(x) =
1

2
(q+(x) + q−(x)) = −1

2
ln
(
(1− x2)2

)
,

with the convention that q(1) =∞. Notice that q(x) ≥ 0 for |x| ≤
√

2 and q(x) < 0 otherwise.
For the iterates βk = uk ⊙ vk ∈ Rd, we recall the definition of the following quantities:

α±,k = α exp(−1

2

k−1∑

i=0

q±(γℓ∇LBℓ
(βℓ))) ∈ Rd>0 ,

α2
k = α+,k ⊙α−,k ,

ϕk =
1

2
arcsinh

(α2
+,k −α2

−,k
2α2

k

)
∈ Rd .

Finally for k ≥ 0, we define the potentials (hk : Rd → R)k≥0 as:

hk(β) = ψαk
(β)− ⟨ϕk, β⟩ , (C.5)

where ψαk
is the hyperbolic entropy defined in (8.4) of scale αk:

ψαk
(β) =

1

2

d∑

i=1

(
βiarcsinh(

βi
α2
k,i

)−
√
β2i + α4

k,i + α2
k,i

)

where αk,i corresponds to the ith coordinate of the vector αk.

Now that all the relevant quantities are define, we can state the following proposition which
explicits the time-varying stochastic mirror descent followed by (βk)k

Proposition 32. The iterates (βk = uk ⊙ vk)k≥0 from eq. (8.3) satisfy the Stochastic Mirror
Descent recursion with varying potentials (hk)k:

∇hk+1(βk+1) = ∇hk(βk)− γk∇LBk
(βk) , (C.6)

where hk : Rd → R for k ≥ 0 are defined Equation (C.5). Since ∇h0(β0) = 0 we have:

∇hk(βk) ∈ span(x1, . . . , xn)
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Proof. Using Proposition 33, we study the 1
2(w2

+ − w2
−) parametrisation instead of the u ⊙

v, indeed this is the natural parametrisation to consider when doing the calculations as it
“separates” the recursions on w+ and w−.

Let us focus on the recursion of w+:

w+,k+1 = (1− γk∇LBk
(βk)) · w+,k .

We have:

w2
+,k+1 = (1− γk∇LBk

(βk))
2 · w2

+,k

= exp (ln((1− γk∇LBk
(βk))

2)) · w2
+,k ,

with the convention that exp(ln(0)) = 0. This leads to:

w2
+,k+1 = exp

(
− 2γk∇LBk

(wk) + 2γk∇LBk
(βk) + ln((1− γk∇LBk

(βk))
2)
)
· w2

+,k

= exp
(
− 2γk∇LBk

(βk)− q+(γk∇LBk
(βk))

)
· w2

+,k ,

since q+(x) = −2x− ln((1− x)2). Expanding the recursion and using that w+,k=0 is initialised
at w+,k=0 = α, we thus obtain:

w2
+,k = α2 exp(−

k−1∑

ℓ=0

q+(γℓ∇LBℓ
(βℓ))) exp (−2

k−1∑

ℓ=0

γℓ∇LBℓ
(βℓ))

= α2
+,k exp (−2

k−1∑

ℓ=0

γℓ∇LBℓ
(βℓ)) ,

where we recall that α2
±,k = α2 exp(−∑k−1

ℓ=0 q±(γℓgℓ)). One can easily check that we similarly
get:

w2
−,k = α2

−,k exp (+2

k−1∑

ℓ=0

γℓ∇LBℓ
(βℓ)) ,

leading to:

βk =
1

2
(w2

+,k − w2
−,k)

=
1

2
α2

+,k exp (−2

k−1∑

ℓ=0

γℓ∇LBℓ
(βℓ))−

1

2
α2

−,k exp (+2

k−1∑

ℓ=0

γℓ∇LBℓ
(βℓ)) .

Using Lemma 24, the previous equation can be simplified into:

βk = α+,kα−,k sinh
(
− 2

k−1∑

ℓ=0

γℓ∇LBℓ
(βℓ) + arcsinh

(α2
+,k −α2

−,k
2α+,kα−,k

))
,

which writes as:

1

2
arcsinh

( βk
α2
k

)
− ϕk = −

k−1∑

ℓ=0

γℓ∇LBℓ
(βℓ) ∈ span(x1, . . . , xn) ,

144



APPENDIX C. APPENDIX FOR CHAPTER 8

where ϕk = 1
2 arcsinh

(α2
+,k−α2

−,k

2α2
k

)
, α2

k = α+,k ⊙α−,k and since the potentials hk are defined in

Equation (C.5) as hk = ψαk
− ⟨ϕk, ·⟩ with

ψα(β) =
1

2

d∑

i=1

(
βiarcsinh(

βi
α2
i

) −
√
β2i + α4

i + α2
i

)
(C.7)

specifically such that ∇hk(βk) = 1
2 arcsinh

( βk
α2

k

)
− ϕk. Hence,

∇hk(βk) =
∑

ℓ<k

γℓ∇LBℓ
(βℓ) ,

so that:

∇hk+1(βk+1) = ∇hk(βk)− γk∇LBk
(βk) ,

which corresponds to a Mirror Descent with varying potentials (hk)k.

C.3 Equivalence of the u⊙ v and 1
2(w

2
+ − w2

−) parametrisations

We here prove the equivalence between the 1
2(w2

+ − w2
−) and u ⊙ v parametrisations, that we

use throughout the proofs in the Appendix.

Proposition 33. Let (βk)k≥0 and (β′k)k≥0 be respectively generated by stochastic gradient de-
scent on the u⊙ v and 1

2(w2
+ − w2

−) parametrisations:

(uk+1, vk+1) = (uk, vk)− γk∇u,v
(
LBk

(u⊙ v)
)
(uk, vk) ,

and

w±,k+1 = w±,k − γk∇w±

(
LBk

(
1

2
(w2

+ − w2
−))
)
(w+,k, w−,k) ,

initialised as u0 =
√

2α, v0 = 0 and w+,0 = w−,0 = α. Then for all k ≥ 0, we have βk = β′k.

Proof. We have:
w±,0 = α , w±,k+1 = (1∓ γk∇LBk

(β′k))w±,k ,

and

u0 =
√

2α , v0 = 0 , uk+1 = uk − γk∇LBk
(βk)vk , vk+1 = vk − γk∇L(βk)uk .

Hence,
βk+1 = (1 + γ2k∇L(βk)

2)βk − γk(u2k + v2k)∇LBk
(βk) ,

and
β′k+1 = (1 + γ2k∇LBk

(β′k)
2)β′k − γk(w2

+,k + w2
−,k)∇LBk

(β′k) .

Then, let zk = 1
2(u2k − v2k) and z′k = w+,kw−k. We have z0 = α2, z′0 = α2 and:

zk+1 = (1− γ2k∇LBk
(βk)

2)zk , z′k+1 = (1− γ2k∇LBk
(β′k)

2)z′k .

Using a2 + b2 =
√

(2ab)2 + (a2 − b2)2 for a, b ∈ R, we finally obtain that:

u2k + v2k =
√

(2βk)2 + (2zk)2 , w2
+,k + w2

−,k =
√

(2β′k)
2 + (2z′k)

2 .

We conclude by observing that (βk, zk) and (β′k, z
′
k) follow the exact same recursions, initialised

at the same value (0,α2) .
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C.4 Convergence of ψα to a weighted ℓ1 norm and harmful behaviour

We show that when taking the scale of the initialisation to 0, one must be careful in the char-
acterisation of the limiting norm, indeed if each entry does not go to zero ”at the same speed”,
then the limit norm is a weighted ℓ1-norm rather than the classical ℓ1 norm.

Proposition 34. For α ≥ 0 and a vector h ∈ Rd, let α̃ = α exp(−h ln(1/α)) ∈ Rd. Then we
have that for all β ∈ Rd

ψα̃(β) ∼
α→0

ln(
1

α
) ·

d∑

i=1

(1 + hi)|βi|.

Proof. Recall that

ψα̃(β) =
1

2

d∑

i=1

(
βiarcsinh(

βi
α̃2
i

) −
√
β2i + α̃i

4 + α̃2
i

)

Using that arcsinh(x) ∼
|x|→∞

sgn(x) ln(|x|), and that ln( 1
α̃2
i
) = (1 + hi) ln( 1

α2 ) we obtain that

ψα̃(β) ∼
α→0

1

2

d∑

i=1

sgn(βi)βi(1 + hi) ln(
1

α2
)

=
1

2
ln(

1

α2
)

d∑

i=1

(1 + hi)|βi|.

The following Figure C.4 illustrates the effect of the non-uniform shape α on the correspond-
ing potential ψα.

More generally, for α such that αi → 0 for all i ∈ [d] at rates such that ln(1/αi) ∼
qi ln(1/maxi αi), we retrieve a weighted ℓ1 norm:

ψα(β)

ln(1/α2)
→

d∑

i=1

qi|βi| .

Hence, even for arbitrary small maxi αi, if the shape of α is ‘bad’, the interpolator βα that
minimizes ψα can be arbitrary far away from β⋆ℓ1 the interpolator of minimal ℓ1 norm.

We illustrate the importance of the previous proposition in the following example.

Example 1. We illustrate how, even for arbitrary small maxi αi, the interpolator β⋆α that min-
imizes ψα can be far from the minimum ℓ1 norm solution, due to the shape of α that is not
uniform. The message of this example is that for α → 0 non-uniformly across coordinates, if
the coordinates of α that go slowly to 0 coincide with the non-null coordinates of the sparse
interpolator we want to retrieve, then β⋆α will be far from the sparse solution.

A simple counterexample can be built: let β⋆sparse = (1, . . . , 1, 0, . . . , 0) (with only the s = o(d)
first coordinates that are non-null), and let (xi), (yi) be generated as yi = ⟨β⋆sparse, xi⟩ with
xi ∼ N (0, 1). For n large enough (n of order s ln(d) where s is the sparsity), the design matrix
X is RIP [Candès et al., 2006], so that the minimum ℓ1 norm interpolator β⋆ℓ1 is exactly equal
to β⋆sparse.

However, if α is such that maxi αi → 0 with hi >> 1 for j ≤ s and hi = 1 for i ≥ s+ 1 (hi
as in Proposition 34), β⋆α will be forced to verify β⋆α,i = 0 for i ≤ s and hence ∥β⋆α,1 − β⋆ℓ1∥1 ≥ s.

146



APPENDIX C. APPENDIX FOR CHAPTER 8

Figure C.4: Left : Uniform α = α1: a smaller scale α leads to the potential ψα being closer
to the ℓ1-norm. Right : A non uniform α can lead to the recovery of a solution which is very
far from the minimum ℓ1-norm solution. The affine line corresponds to the set of interpolators
when n = 1, d = 2 and s = 1.

C.5 Main descent lemma and boundedness of the iterates

The goal of this section is to prove the following proposition, our main descent lemma: for
well-chosen stepsizes, the Bregman divergences (Dhk(β⋆, βk))k≥0 decrease. We then use this
proposition to bound the iterates for both SGD and GD.

Proposition 35. There exist a constant c > 0 and B > 0 such that B = O(infβ⋆∈S ∥β⋆∥∞) for
GD and B = O(ln(1/α) infβ⋆∈S ∥β⋆∥∞) for SGD, such that if γk ≤ c

LB for all k, then we have,
for all k ≥ 0 and any interpolator β⋆ ∈ S:

Dhk+1
(w⋆,wk+1) ≤ Dhk(w⋆,wk)− γkLBk

(wk) .

To prove this result, we first provide a general descent lemma for time-varying mirror descent
(Proposition 36, Appendix C.5.1), before proving the proposition for fixed iteration k and bound
B > 0 on the iterates infinity norm in Appendix C.5.2 (Proposition 37). We finally use this to
prove a bound on the iterates infinity norm in Appendix C.5.3.

C.5.1 Descent lemma for (stochastic) mirror descent with varying potentials

In the following we adapt a classical mirror descent equality but for time varying potentials,
that differentiates from Orabona et al. [2015] in that it enables us to prove the decrease of the
Bregman divergences of the iterates. Moreover, as for classical MD, it is an equality.

Proposition 36. For h, g : Rd → R functions, let Dh,g(w,w
′) = h(w)−g(w′)−⟨∇g(w′),w−w′⟩1

for β, β′ ∈ Rd. Let (hk) strictly convex functions defined Rd L a convex function defined on Rd.
1for h = g, we recover the classical Bregman divergence that we denote Dh = Dh,h
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Let (wk) defined recursively through w0 ∈ Rd, and

wk+1 ∈ arg min
w∈Rd

{
γk⟨∇L(wk),w − wk⟩+Dhk+1,hk(w,wk)

}
,

where we assume that the minimum is unique and attained in Rd. Then, (wk) satisfies

∇hk+1(wk+1) = ∇hk(wk)− γk∇L(wk) ,

and for any β ∈ Rd,

Dhk+1
(w,wk+1) = Dhk(w,wk)− γk⟨∇L(βk), βk − β⟩+Dhk+1

(wk,wk+1)

−
(
hk+1 − hk

)
(wk) +

(
hk+1 − hk

)
(w) .

Proof. Let β ∈ Rd. Since we assume that the minimum through which wk+1 is computed is
attained in Rd, the gradient of the function Vk(w) = γk⟨∇L(wk),w − wk⟩ + Dhk+1,hk(w,wk)
evaluated at wk+1 is null, leading to ∇hk+1(wk+1) = ∇hk(wk)− γk∇L(wk).

Then, since ∇Vk(wk+1) = 0, we have DVk(w,wk+1) = Vk(w) − Vk(wk+1). Using ∇2Vk =
∇2hk+1, we also have DVk = Dhk+1

. Hence:

Dhk+1
(w,wk+1) = γk⟨∇L(wk),w − wk+1⟩+Dhk+1,hk(w,wk)−Dhk+1,hk(wk+1,wk) .

We write γk⟨∇L(wk),w − wk+1⟩ = γk⟨∇L(wk),w − wk⟩ + γk⟨∇L(wk),wk − wk+1⟩. We also
have γk⟨∇L(wk),wk − wk+1⟩ = ⟨∇hk(wk) − ∇hk+1(wk+1),wk − wk+1⟩ = Dhk,hk+1

(wk,wk+1) +
Dhk+1,hk(wk+1,w

k), so that γk⟨∇L(wk),wk − wk+1⟩ −Dhk+1,hk(wk+1,w
k) = Dhk,hk+1

(wk,wk+1).
Thus,

Dhk+1
(w,wk+1) = Dhk+1,hk(w,wk)− γk

(
Df (w,wk) +Df (wk,w)

)
+Dhk,hk+1

(wk,wk+1) ,

and writing Dh,g(w,w
′) = Dg(w,w

′) + h(w)− g(w) concludes the proof.

C.5.2 Proof of Proposition 37

In next proposition, we use Proposition 36 to prove our main descent lemma. To that end,
we bound the error terms that appear in Proposition 36 as functions of LBk

(βk) and norms of
βk, βk+1, so that for explicit stepsizes, the error terms can be cancelled by half of the negative
quantity −2LBk

(βk).
Additional notation: let L2, L∞ > 0 such that ∀β, ∥HBβ∥2 ≤ L∥β∥2, ∥HBβ∥∞ ≤ L∥β∥∞

for all batches B ⊂ [n] of size b.

Proposition 37. Let k ≥ 0 and B > 0. Provided that ∥βk∥∞, ∥βk+1∥∞, ∥β⋆∥∞ ≤ B and
γk ≤ c

LB where c > 0 is some numerical constant, we have:

Dhk+1
(w⋆,wk+1) ≤ Dhk(w⋆,wk)− γkLBk

(wk) . (C.8)

Proof. Let β⋆ ∈ S be any interpolator. From Proposition 36:

Dhk+1
(β⋆, βk+1) = Dhk(β⋆, βk)− 2γkLBk

(βk) +Dhk+1
(βk+1, βk)− (hk+1 − hk)(βk) + (hk+1 − hk)(β⋆).

We want to bound the last three terms of this equality. First, to bound the last two we apply
Lemma 27 assuming that ∥β⋆∥∞, ∥βk+1∥∞ ≤ B:

−(hk+1 − hk)(βk) + (hk+1 − hk)(β⋆) ≤ 24BL2γ
2
kLBk

(wk)
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We now bound Dhk+1
(wk,wk+1). Classical Bregman manipulations provide that

Dhk+1
(wk,wk+1) = Dh∗k+1

(∇hk+1(wk+1),∇hk+1(wk))

= Dh∗k+1
(∇hk(wk)− γk∇LBk

(wk),∇hk+1(wk)) .

From Lemma 26 we have that hk+1 is min(1/(4α2
k+1), 1/(4B)) strongly convex on the ℓ∞-centered

ball of radius B therefore h∗k+1 is max(4α2
k+1, 4B) = 4B (for α small enough or B big enough)

smooth on this ball, leading to:

Dhk+1
(wk,wk+1) ≤ 2B∥∇hk(wk)− γk∇LBk

(wk)−∇hk+1(wk)∥22
≤ 4B

(
∥∇hk(wk)−∇hk+1(wk)∥22 + ∥γk∇LBk

(wk)∥22
)
.

Using |∇hk(w)−∇hk+1(w)| ≤ 2δk where δk = q(γk∇LBk
(βk)), we get that:

Dhk+1
(wk,wk+1) ≤ 8B∥δk∥22 + 4BLγ2kLBk

(wk) .

Now, ∥δk∥22 ≤ ∥δk∥1∥δk∥∞ and using Lemma 25, ∥δk∥1∥δk∥∞ ≤ 4∥γk∇LBk
(wk)∥22∥γk∇LBk

(wk)∥2∞ ≤
2∥γk∇LBk

(wk)∥22 since ∥γk∇LBk
(wk)∥∞ ≤ γkL∞∥βk − β∞∥ ≤ γk × 2LB ≤ 1/2 is verified for

γk ≤ 1/(4LB). Thus,

Dhk+1
(wk,wk+1) ≤ 40BL2γ

2
kLBk

(wk) .

Hence, provided that ∥βk∥∞ ≤ B, ∥βk+1∥∞ ≤ B and γk ≤ 1/(4LB), we have:

Dhk+1
(w⋆,wk+1) ≤ Dhk(w⋆,wk)− 2γkLBk

(wk) + 64L2γ
2
kBLBk

(wk) ,

and thus

Dhk+1
(w⋆,wk+1) ≤ Dhk(w⋆,wk)− γkLBk

(wk) .

if γk ≤ c
BL , where c = 1

64 .

C.5.3 Bound on the iterates

We now bound the iterates (βk) by an explicit constant B that depends on ∥β⋆∥1 (for any fixed
β⋆ ∈ S).

The first bound we prove holds for both SGD and GD, and is of the form O(∥β⋆∥1 ln(1/α2)
while the second bound, that holds only for GD (b = n) is of order O(∥β⋆∥1) (independent of
α). While a bound independent of α is only proved for GD, we believe that such a result also
holds for SGD, and in both cases B should be thought of order O(∥β⋆∥1).

Bound that depends on α for GD and SGD

A consequence of Proposition 37 is the boundedness of the iterates, as shown in next corollary.
Hence, Proposition 37 can be applied using B a uniform bound on the iterates ℓ∞ norm.

Corollary 5. Let B = 3∥β⋆∥1 ln
(
1 + ∥β⋆∥1

α2

)
. For stepsizes γk ≤ c

BL , we have ∥βk∥∞ ≤ B for
all k ≥ 0.

Proof. We proceed by induction. Let k ≥ 0 such that ∥βk∥∞ ≤ B for some B > 0 and
Dhk(w⋆,wk) ≤ Dh0(w⋆,w0) (note that these two properties are verified for k = 0, since β0 = 0).
For γk sufficiently small (i.e., that satisfies γk ≤ c

B′L where B′ ≥ ∥βk+1∥∞, ∥βk∥∞, ∥β⋆∥∞), using
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Proposition 37, we have Dhk+1
(w⋆,wk+1) ≤ Dhk(w⋆,wk) so that Dhk+1

(w⋆,wk+1) ≤ Dh0(w⋆,w0),
which can be rewritten as:

d∑

i=1

α2
k+1,i(

√
1 + (

wk+1,i

α2
k+1,i

)2 − 1) ≤
d∑

i=1

w⋆i arcsinh(
wk+1,i

α2
) .

Hence, ∥wk+1∥1 ≤ ∥w⋆∥1 ln(1 +
∥wk+1∥1

α2 ). We then notice that for x, y > 0, x ≤ y ln(1 + x) =⇒
x ≤ 3y ln(1 + y): if x > y ln(1 + y) and x > y, we have that y ln(1 + y) < y ln(1 + x), so that
1 + y < 1 + x, which contradicts our assumption. Hence, x ≤ max(y, y ln(1 + y)). In our case,
x = ∥βk+1∥1/α2, y = ∥β⋆∥1/α2 so that for small alpha, ln(1 + y) ≥ 1.

Hence, we deduce that ∥wk+1∥1 ≤ B, where B = ∥w⋆∥1 ln(1 + ∥w⋆∥1
α2 ).

This is true as long as γk is tuned using B′ a bound on max(∥βk∥∞, ∥βk+1∥∞). Using
the continuity of βk+1 as a function of γk (βk being fixed), we show that γk ≤ 1

2 × c
BL can

be used using this B. Indeed, let ϕ : R+ → Rd be the function that takes as entry γk ≥ 0
and outputs the corresponding ∥βk+1∥∞: ϕ is continuous. Let γr = 1

2 × c
rL for r > 0 and

r̄ = sup {r ≥ 0 : B < ϕ(γr)} (the set is upper-bounded; if is is empty, we do not need what
follows since it means that any stepsize leads to ∥βk+1∥∞ ≤ B). By continuity of ϕ, ϕ(γr̄) = B.
Furthermore, for all r that satisfies r ≥ max(ϕ(γr), B) ≥ max(ϕ(γr), ∥βk∥∞, ∥β⋆∥∞), we have,
using what is proved just above, that ∥βk+1∥∞ ≤ B and thus ϕ(γr) ≤ B for such a r:

Lemma 21. For r > 0 such that r ≥ max(ϕ(γr), B), we have ϕ(γr) ≤ B.

Now, if r̄ > B, by definition of r̄ and by continuity of ϕ, since ϕ(r̄) = B, there exists some
B < r < r̄ such that ϕ(γr) > B (definition of the supremum) and ϕ(γr) ≤ 2B (continuity of ϕ).
This particular choice of r thus satisfies r > B and and ϕ(γr) ≤ 2B ≤ 2r, leading to ϕ(γr) ≤ B,
using Lemma 21, hence a contradiction: we thus have r̄ ≤ B.

This concludes the induction: for all r ≥ B, we have r ≥ r̄ so that ϕ(γr) ≤ B and thus for
all stepsizes γ ≤ c

2LB , we have ∥βk+1∥∞ ≤ B.

Bound independent of α

We here assume in this subsection that b = n. We prove that for gradient descent, the iterates
are bounded by a constant that does not depend on α.

Proposition 38. Assume that b = n (full batch setting). There exists some B = O(∥β⋆∥1) such
that for stepsizes γk ≤ c

BL , we have ∥βk∥∞ ≤ B for all k ≥ 0.

Proof. We first begin by proving the following proposition: for sufficiently small stepsizes, the
loss values decrease. In the following lemma we provide a bound on the gradient descent iterates
(w+,k, w−,k) which will be useful to show that the loss is decreasing.

Proposition 39. For γk ≤ c
LB where B ≥ max(∥βk∥∞, ∥βk+1∥∞), we have L(βk+1) ≤ L(βk)

Proof. Oddly, using the time-varying mirror descent recursion is not the easiest way to show the
decrease of the loss, due to the error terms which come up. Therefore to show that the loss is
decreasing we use the gradient descent recursion. Recall that the iterates wk = (w+,k, w−,k) ∈
R2d follow a gradient descent on the non convex loss F (w) = 1

2∥y − 1
2X(w2

+ − w2
−)∥2.

For k ≥ 0, using the Taylor formula we have that F (wk+1) ≤ F (wk)−γk(1− γkLk
2 )∥∇F (wk)∥2

with the local smoothness Lk = supw∈[wk,wk+1]
λmax(∇2F (w)). Hence if γk ≤ 1/Lk for all k we
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get that the loss is non-increasing. We now bound Lk. Computing the hessian ot F , we obtain
that:

∇2F (wk) =

(
diag(∇L(βk)) 0

0 −diag(∇L(βk))

)

+

(
diag(w+,k)H diag(w+,k) −diag(w−,k)H diag(w+,k)
−diag(w+,k)H diag(w−,k) diag(w−,k)H diag(w−,k)

)
.

(C.9)

Let us denote by M =

(
M+ M+,−
M+,− M−

)
∈ R2d×2d the second matrix in the previous equality.

With this notation ∥∇2F (wk)∥ ≤ ∥∇L(βk)∥∞ + 2∥M∥ (where the norm corresponds to the
Schatten 2-norm which is the largest eigenvalue for symmetric matrices). Now, notice that:

∥M∥2 = sup
u∈R2d,∥u∥=1

∥Mu∥2

= sup
u+∈Rd,∥u+∥=1

u−∈Rd,∥u−∥=1
(a,b)∈R2,a2+b2=1

∥∥∥M
(
a · u+
b · u−

)∥∥∥
2
.

We have:

∥∥∥M
(
a · u+
b · u−

)∥∥∥
2

=
∥∥∥
(
aM+u+ + bM+−u−
aM+−u+ + bM−u−

)∥∥∥
2

= ∥aM+u+ + bM+−u−∥2 + ∥aM+−u+ + bM−u−∥2

≤ 2
(
a2∥M+u+∥2 + b2∥M+−u−∥2 + a2∥M+−u+∥2 + b2∥M−u−∥2

)

≤ 2
(
∥M+∥2 + ∥M+−∥2 + ∥M−∥2

)
.

Since ∥M±∥ ≤ λmax · ∥w±∥2∞ and ∥M+−∥ ≤ λmax∥w+∥∞∥w−∥∞ we finally get that

∥M∥2 ≤ 6λ2max ·max(∥w+∥2∞, ∥w−∥2∞)2

≤ 6λ2max(∥w2
+∥∞ + ∥w2

−∥∞)2

≤ 12λ2max∥w2
+ + w2

−∥2∞ .

We now upper bound this quantity in the following lemma.

Lemma 22. For all k ≥ 0, the following inequality holds component-wise:

w2
+,k + w2

−,k =
√

4α4
k + β2k .

Proof. Notice from the definition of w+,k and w−,k given in the proof of Proposition 32 that:

|w+,k||w−,k| = α−,kα+,k = α2
k. (C.10)

And α0 = α2. Now since αk is decreasing coordinate-wise (under our assumptions on the
stepsizes, γ2k∇L(βk)

2 ≤ (1/2)2 < 1), we get that.:

w2
+,k + w2

−,k = 2
√
α4
k + β2k ≤ 2

√
α4 + β2k

leading to w2
+,k + w2

−,k ≤
√

4α4 +B2.
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From Lemma 22, w2
+,k +w2

−,k is bounded by 2
√
α4 +B2. Putting things together we finally

get that ∥∇2F (w)∥ ≤ ∥∇L(β)∥∞ + 8λmax
√

4∥α∥4∞ +B2. Hence,

Lk ≤ sup
∥β∥∞≤B

∥∇L(β)∥∞ + 8λmax

√
∥α∥4∞ +B2 ≤ LB + 8λmax

√
∥α∥4∞ +B2 ≤ 10LB ,

for B ≥ ∥α∥2∞.

We finally prove the bound on ∥βk∥∞ independent of α for a uniform initialisation α = α1,
using the monotonic property of L.

Proposition 40. Assume that b = n (full batch setting). There exists some B = O(∥β⋆∥1) such
that for stepsizes γk ≤ c

BL , we have ∥βk∥∞ ≤ B for all k ≥ 0.

Proof. In this proof, we first let B be a bound on the iterates. Tuning stepsizes using this bound,
we prove that the iterates are bounded by a some B′ = O(∥β⋆∥1). Finally, we conclude by using
the continuity of the iterates (at a finite horizon) that this explicit bound can be used to tune
the stepsizes.

Writing the mirror descent with varying potentials, we have, since ∇h0(β0) = 0,

∇hk(βk) = −
∑

ℓ<k

γℓ∇L(βℓ) ,

leading to, by convexity of hk:

hk(βk)− hk(β⋆) ≤ ⟨∇hk(βk), βk − β⋆⟩ = −
∑

ℓ<k

⟨γℓ∇L(βℓ), βk − β⋆⟩ .

We then write, using ∇L(β) = H(β − β⋆) for H = XX⊤, that −∑ℓ<k⟨γℓ∇L(βℓ), βk − β⋆⟩ =

−∑ℓ<k γℓ⟨X⊤(β̄k − β⋆), X⊤(βk − β⋆)⟩ ≤
∑

ℓ<k γℓ
√
L(β̄k)L(βk), leading to:

hk(βk)− hk(β⋆) ≤ 2

√∑

ℓ<k

γℓL(β̄k)
∑

ℓ<k

γℓL(βk) ≤ 2
∑

ℓ<k

γℓL(β̄k) ≤ 2Dh0(w⋆,w0) ,

where the last inequality holds provided that γk ≤ 1
CLB . Thus,

ψαk
(βk) ≤ ψαk

(β⋆) + 2ψα0(β⋆) + ⟨ϕk, βk − β⋆⟩ .

Then, ⟨ϕk, βk−β⋆⟩ ≤ ∥ϕk∥1∥βk−β⋆∥∞ and ∥ϕk∥1 ≤ Cλmax
∑

k<K γ
2
kL(βk) ≤ Cλmaxγmaxh0(β

⋆).
Then, using

∥β∥∞ −
1

ln(1/α2)
≤ ψα(β)

ln(1/α2)
≤ ∥β∥1

(
1 +

ln(∥β∥1 + α2)

ln(1/α2)

)
,

we have:

∥βk∥∞ ≤
1

ln(1/α2)
+ ∥β⋆∥1

(
1 +

ln(∥β⋆∥1 + α2)

ln(1/α2)

)
+ ∥β⋆∥1

(
1 +

ln(∥β⋆∥1 + α2)

ln(1/α2)

)

+B0Cλmaxγmaxh0(β
⋆)/ ln(1/α2)

≤ R+B0Cλmaxγmaxh0(β
⋆)/ ln(1/α2) ,

where R = O(∥β⋆∥1) is independent of α. Hence, since B0 = supk<∞ ∥βk∥∞ <∞, we have:

B0(1− Cλmaxγmaxh0(β
⋆)/ ln(1/α2)) ≤ R =⇒ B0 ≤ 2R ,
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provided that γmax ≤ 1/(2Cλmaxh0(β
⋆)/ ln(1/α2)) (note that h0(β

⋆)/ ln(1/α2) is independent
of α2).

Hence, if for all k we have γk ≤ 1
C′LB where B bounds all ∥βk∥∞, we have ∥βk∥∞ ≤ 2R for

all k, where R = O(∥β⋆∥1) is independent of α and stepsizes γk.
Let K > 0 be fixed, and

γ̄ = inf

{
γ > 0 s.t. sup

k≤K
∥βk∥∞ > 2R

}
.

For γ ≥ 0 a constant stepsize, let
φ(γ) = sup

k≤K
∥βk∥∞ ,

which is a continuous function of γ. For r > 0, let γr = 1
C′Lr .

An important feature to notice is that if γ < γr and r bounds all ∥βk∥∞, k ≤ K, then
φ(γ) ≤ R, as shown above. We will show that we have γ̄ ≥ γ2R. Reasoning by contradiction, if
γ̄ < γ2R: by continuity of φ, we have φ(γ̄) ≤ R and thus, there exists some small 0 < ε < γ2R− γ̄
such that for all γ ∈ [γ̄, γ̄ + ε], we have φ(γ̄) ≤ 2R.

However, such γ’s verify both φ(γ) ≤ 2R (since γ ∈ [γ̄, γ̄ + ε] and by definition of ε) and
γ ≤ γ2R (by definition of ε), and hence φ(γ) ≤ R. This contradicts the infimum of γ̄, and hence
γ̄ ≥ γ2R. Thus, for γ ≤ γ2R = 1

2C′LR , we have ∥βk∥∞ ≤ R.

C.6 Proof of Theorems 1 and 2, and of Proposition 17

C.6.1 Proof of Theorems 1 and 2

We are now equipped to prove Theorem 1 and Theorem 2, condensed in the following Theorem.

Theorem 8. Let (uk, vk)k≥0 follow the mini-batch SGD recursion (8.3) initialised at u0 =√
2α ∈ Rd>0 and v0 = 0, and let (βk)k≥0 = (uk ⊙ vk)k≥0. There exists and explicit B > 0 and a

numerical constant c > 0 such that:

1. For stepsizes satisfying γk ≤ c
LB , the iterates satisfy ∥γk∇LBk

(βk)∥∞ ≤ 1 and ∥βk∥∞ ≤ B
for all k;

2. For stepsizes satisfying γk ≤ c
LB , (βk)k≥0 converges almost surely to some β⋆∞ ∈ S,

3. If (βk)k and the neurons (uk, vk)k respectively converge to a model β⋆∞ and neurons (u∞, v∞)
satisfying β⋆∞ ∈ S (and β⋆∞ = u∞ ⊙ v∞), then for almost all stepsizes (with respect to the
Lebesgue measure), the limit β⋆∞ satisfies:

β⋆∞ = arg min
β⋆∈S

Dψα∞ (β⋆, β̃0) ,

for α∞ ∈ Rd>0 and β̃0 ∈ Rd satisfying

α2
∞ = α2 ⊙ exp

(
−

∞∑

k=0

q
(
γk∇LBk

(βk)
)
)
,

where q(x) = −1
2 ln((1− x2)2) ≥ 0 for |x| ≤

√
2, and β̃0 is a perturbation term equal to:

β̃0 =
1

2

(
α2

+ −α2
−
)
,

where, q±(x) = ∓2x− ln((1∓ x)2), and α2
± = α2 ⊙ exp (−∑∞

k=0 q±(γk∇LBk
(βk))).
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Proof. Point 1. The first point of the Theorem is a direct consequence of Corollary 5 and the
bounds proved in Appendix C.5.3.

Point 2. Then, for stepsizes γk ≤ c
LB , using Proposition 35 for any interpolator β⋆ ∈ S:

Dhk+1
(w⋆,wk+1) ≤ Dhk(w⋆,wk)− γkLBk

(wk) . (C.11)

Hence, summing: ∑

k

γkLBk
(βk) ≤ Dh0(β⋆, β0) ,

so that the series converges.

Under our stepsize rule, ∥γk∇LBk
(βk)∥∞ ≤ 1

2 , leading to ∥q(γk∇LBk
(βk)∥∞ ≤ 3∥γk∇LBk

(βk)∥2∞
by Lemma 25. Using ∥∇LBk

(βk)∥2 ≤ 2L2LBk
(βk), we have that ln(α±,k), ln(αk) all converge.

We now show that
∑

k γkL(βk) <∞. We have:

∑

ℓ<k

L(βk) =
∑

ℓ<k

γkLBk
(βk) +Mk ,

where Mk =
∑

ℓ<k γk(L(βk)−LBk
(βk)). We have that (Mk) is a martingale with respect to the

filtration (Fk) defined as Fk = σ(βℓ, ℓ ≤ k). Using our upper-bound on
∑

ℓ<k γkLBk
(βk), we

have:

Mk ≥
∑

ℓ<k

γkL(βk)−
∑

ℓ<k

γkLBk
(βk) ≥ −Dh0(β⋆, β0) ,

and hence (Mk) is a lower bounded martingale. Using Doob’s first martingale convergence
theorem (a lower bounded super-martingale converges almost surely [Doob, 1990]), (Mk) con-
verges almost surely. Consequently, since

∑
ℓ<k γkL(βk) =

∑
ℓ<k γkLBk

(βk) +Mk, we have that∑
ℓ<k γkL(βk) converges almost surely (the first term is upper bounded, the second converges

almost surely).

We now prove the convergence of (wk). Since it is a bounded sequence, let wσ(k) be a
convergent sub-sequence and let w⋆∞ denote its limit: wσ(k) → β⋆∞.

Almost surely,
∑

k γkL(βk) < ∞ and so γkL(βk) → 0, leading to L(βk) → 0 since the
stepsizes are lower bounded, so that L(βσ(k)) → 0, and hence L(β⋆∞) = 0: this means that β⋆∞
is an interpolator.

Since the quantities (αk)k, (α±,k)k and (ϕk)k converge almost surely to α∞, α± and ϕ∞,
we get that the potentials hk uniformly converge to h∞ = ψα∞ − ⟨ϕ∞, ·⟩ on all compact sets.
Now notice that we can decompose ∇h∞(β⋆∞) as:

∇h∞(β⋆∞) =
(
∇h∞(β⋆∞)−∇h∞(wσ(k))

)
+
(
∇h∞(wσ(k))−∇hσ(k)(wσ(k))

)
+∇hσ(k)(wσ(k)).

The first two terms converge to 0: the first is a direct consequence of the convergence of
the extracted subsequence, the second is a consequence of the uniform convergence of hσ(k) to
h∞ on compact sets. Finally the last term is always in span(x1, . . . , xn) due to Proposition 32,
leading to ∇h∞(β⋆∞) ∈ span(x1, . . . , xn). Consequently, ∇h∞(β⋆∞) ∈ span(x1, . . . , xn). No-
tice that from the definition of h∞, we have that ∇h∞(β⋆∞) = ∇ψα∞(β⋆∞) − ϕ∞. Now since

ϕ∞ = 1
2 arcsinh(

α2
+−α2

−
2α2

∞
), one can notice that β̃0 is precisely defined such that ∇ψα∞(β̃0) = ϕ∞.

Therefore ∇ψα∞(β⋆∞)−∇ψα∞(β̃0) ∈ span(x1, . . . , xn). This condition along with the fact that
w⋆∞ is an interpolator are exactly the optimality conditions of the convex minimisation problem:

min
β⋆∈S

Dψα∞ (β⋆, β̃0)
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Therefore β⋆∞ must be equal to the unique minimiser of this problem. Since this is true for any
sub-sequence we get that wk converges almost surely to:

β⋆∞ = arg min
β∈S

Dψα∞ (β⋆, β̃0).

Point 3. From what we just proved, note that it is sufficient to prove that αk,α±,k, ϕk converge
to limits α∞,α±,∞, ϕ∞ satisfying α∞,α±,∞ ∈ Rd>0 (with positive and non-null coordinates)
and ϕ∞ ∈ Rd. Indeed, if this holds and since we assume that the iterates converge to some
interpolator, we proved just above that this interpolator is uniquely defined through the desired
implicit regularization problem. We thus prove the convergence of αk,α±,k, ϕk.

Note that the convergence of uk, vk is equivalent to the convergence of w±,k in the w2
+ −w2

−
parameterisation used in our proofs, that we use there too. We have:

w±,k+1 = (1∓ γk∇LBk
(βk))⊙ w±,k ,

so that
ln(w2

±,k) =
∑

ℓ<k

ln((1∓ γℓ∇LBℓ
(βℓ))

2) .

We now assume that stepsizes are such that for all ℓ ≥ 0 and i ∈ [d], stepsizes are such that
we have |γℓ∇iLBℓ

(βℓ)| ≠ 1: this is true for all stepsizes except a countable number of stepsizes,
and so this is true for almost all stepsizes. Since we assume that the iterates βk converge to
some interpolator, this leads to γℓ∇LBℓ

(βℓ)→ 0 if we assume that stepsizes do not diverge.
Taking the limit, we have

ln(w2
±,∞) =

∑

ℓ<∞
ln((1∓ γℓ∇LBℓ

(βℓ))
2) .

This limit is in ({−∞} ∪ R)d (since w±,∞ ∈ Rd), and a coordinate of the limit is equal to −∞
if and only if the sum on the RHS diverges to −∞ (note that from our assumption just above,
no term of the sum can be equal to −∞).

We have ln((1∓γℓ∇LBℓ
(βℓ))

2) ∼ ∓2γℓ∇LBℓ
(βℓ) as ℓ→∞, so that if for some coordinate i we

have
∑

ℓ γℓ∇iLBℓ
(βℓ) = ∓∞, then the coordinate i of the limit satisfies ln(w2

i,±,∞) = +∞, which

is impossible. Hence, the sum
∑

ℓ γℓ∇LBℓ
(βℓ) is in Rd (and is thus converging); consequently,∑

ℓ γ
2
ℓ∇LBℓ

(βℓ)
2 converges and thus

∑
ℓ q(γℓ∇LBℓ

(βℓ)) and
∑

ℓ q±(γℓ∇LBℓ
(βℓ)) all converge: the

sequences αk,α±,k thus converge to limits in Rd>0, and ϕk converges, concluding our proof.

C.6.2 Proof of Proposition 17

We begin with the following Lemma, that explicits the curvature of Dh around the set of
interpolators.

Lemma 23. For all k ≥ 0, if L(βk) ≤ 1
2λmax

(α2λ+min)2, we have ∥βk−β⋆αk
∥2 ≤ 2B(α2λ+min)−1L(βk).

Proof. Recall that the sequence zk = ∇hk(wk) satisfies z0 = 0 and zk+1 = zk−γkL(wk), so that
we have that zk ∈ V = Im(XX⊤) for all k ≥ 0. Then, let wαk be the unique minimizer of hk
over S the space of interpolators: wαk is exactly characterized by X⊤wαk = Y and ∇hk(wαk ) ∈ V .
We define zαk ∈ V as zαk = ∇hk(wαk ).

Now, fix zα = zαk and h = hk, and let us define ψ : z ∈ V → Dh∗(z, zα) and ϕ : z ∈ V →
L(∇h∗(z)). We next show that for all z ∈ V , there exists µz such that ∇2ϕ(z) ≥ µz∇2ψ(z),
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and that µz ≥ µ for z in an open convex set of V around zα, for some µ > 0. For A ∈ Rd×d an
operator/matrix on Rd, let us denote AV its restriction/co-restriction to V .

First, for z ∈ V , we have ∇2ψ(z) = ∇2(h∗(z) − h∗(z) − ⟨∇h∗(zα), z − zα⟩)(z) = ∇2h∗(z)V .
Then, ∇ϕ(z) = ∇2h∗(z)∇L(∇h∗(z)), so that ∇2ϕ(z) =

(
∇2h∗(z)∇2L(∇h∗(z))∇2h∗(z)

)
V

+
∇3h∗(z)(∇L(∇h∗(z)), ·, ·)V .

Since h is 1/(2α2) smooth (on Rd and thus on V ), h∗ is 2α2 strongly convex (on V and
on Rd). Using V = Im(XX⊤) and ∇2L ≡ XX⊤, we have

(
∇2h∗(z)∇2L(∇h∗(z))∇2h∗(z)

)
V

=

∇2h∗(z)V∇2L(∇h∗(z))V∇2h∗(z)V , and thus
(
∇2h∗(z)∇2L(∇h∗(z))∇2h∗(z)

)
V
⪰ 2α2λ+min∇2h∗(z)V .

For the other term of ∇2ϕ, namely ∇3h∗(z)(∇L(∇h∗(z)), ·, ·)V , we compute ∇3
ijkh

∗(z) =

1i=j=k2α
2
i,k sinh(zi), leading to: ∇3h∗(z)(∇L(∇h∗(z)), ·, ·)V = diag(2α2 sinh(z)⊙(XX⊤(2α2 sinh(z)−

wα)))V . Thus, writing wz = 2α2
i,k sinh(z) = ∇h∗(z) the primal surrogate of z, we have:

∇3h∗(z)(∇L(∇h∗(z)), ·, ·)V = diag(2α2
i,k sinh(z)⊙ (XX⊤(wz − wαk )))V

⪰ −∥XX⊤(wz − wαk )∥∞ diag(2α2
k ⊙ | sinh(z)|)V

⪰ −∥XX⊤(wz − wαk )∥∞ diag(2α2
k ⊙ cosh(z))V

= −∥XX⊤(wz − wαk )∥∞∇2ψ(z) .

Wrapping things together,

∇2ϕ(z) ⪰
(
2α2λ+min − ∥XX⊤(wz − wα)∥∞)∇2ψ(z) .

Let Z =
{
z ∈ V : ∥XX⊤(wz − wαk )∥∞ < α2λ+min

}
that satisfies

{
w ∈ V : L(wz) < 1

2λmax
(α2λ+min)2

}
⊂

Z. Z is an open convex set of V containing zα. On Z, ∇2ϕ ⪰ α2λ+min∇2ψ, and ψ(zα) =
ϕ(zα) = 0, so that for all z ∈ Z, we have ϕ(z) ≥ α2λ+minψ(z). Hence, for all z ∈ Z,
we have Dhk(βαk , βz) ≤ Dh⋆(z, zα) ≤ (α2λ+min)−1L(βz), and using the fact that Dhk is 1

4B
strongly convex, we obtain, for βz = βk (since zk ∈ V ): if L(βk) ≤ 1

2λmax
(α2λ+min)2, we have

∥βαk − βk∥22 ≤ (α2λ+min)−1L(βk).

Proposition 41. As assume L is Lr-relatively smooth with respect to all the hk’s. Then for all
β we have the following inequality.

γk(L(βk+1)− L(β)) ≤ Dhk(β, βk)−Dhk+1
(β, βk+1)− (1− γkLr)Dhk(βk+1, βk)

+ (hk+1 − hk)(β)− (hk+1 − hk)(βk+1) .

Proof. For any β, βk, βk+1, the following holds (three points identity for time varying potentials,
Proposition 36):

Dhk(β, βk)−Dhk+1
(β, βk+1) =

[
hk(β)− (hk(βk) + ⟨∇hk(βk), β − βk⟩)

]

−
[
hk+1(β)− (hk+1(βk+1) + ⟨∇hk+1(βk+1), β − βk+1⟩)

]

= hk(β)− hk+1(β) + ⟨∇hk+1(βk+1)−∇hk(βk), β − βk+1⟩
+ hk+1(βk+1)−

[
hk(βk) + ⟨∇hk(βk), βk+1 − βk⟩

]

= hk(β)− hk+1(β) + ⟨∇hk+1(βk+1)−∇hk(βk), β − βk+1⟩
+ hk+1(βk+1)− hk(βk+1) +Dhk(βk+1, βk).

Rearranging and plugging in our mirror update we obtain that for all β:

γk⟨∇L(βk), βk+1 − β⟩ = Dhk(β, βk)−Dhk+1
(β, βk+1)

−Dhk(βk+1, βk)− (hk+1 − hk)(βk+1) + (hk+1 − hk)(β).

156



APPENDIX C. APPENDIX FOR CHAPTER 8

From the convexity of L and its Lr-relative smoothness we also have that:

L(βk+1) ≤ L(β) + ⟨∇L(βk), βk+1 − β⟩+ LrDhk(βk+1, βk),

Finally:

γk(L(βk+1)− L(β)) ≤ Dhk(β, βk)−Dhk+1
(β, βk+1)− (1− γkLr)Dhk(βk+1, βk)

+ (hk+1 − hk)(β)− (hk+1 − hk)(βk+1).

Note that in our setting, for any β, k 7→ hk(β) is increasing. We can therefore write that:

γk(L(βk+1)− L(β)) ≤ Dhk(β, βk)−Dhk+1
(β, βk+1)− (1− γkLr)Dhk(βk+1, βk) + (hk+1 − hk)(β).

In particular, for β = β∗:

γkL(βk+1) ≤ Dhk(β∗, βk)−Dhk+1
(β∗, βk+1)− (1− γkL)Dhk(βk+1, βk) + (hk+1 − hk)(β∗)

− (hk+1 − hk)(βk+1)

≤ Dhk(β∗, βk)−Dhk+1
(β∗, βk+1)− (1− γkLr)Dhk(βk+1, βk) + (hk+1 − hk)(β∗)

and in β = βk:

γkL(βk+1) ≤ γkL(βk)−Dhk+1
(βk, βk+1)− (1− γkLr)Dhk(βk+1, βk) + (hk+1 − hk)(βk)

− (hk+1 − hk)(βk+1)

≤ γkL(βk)−Dhk+1
(βk, βk+1)− (1− γkLr)Dhk(βk+1, βk) + (hk+1 − hk)(βk)

Proof of Proposition 17. We apply Proposition 41 for β = βk, with Lr = 4BL (using Lemma 26)
and replacing L by LBk

, to obtain:

γk(LBk
(βk+1)− LBk

(βk)) ≤ −Dhk+1
(βk, βk+1)− (1− γkLr)Dhk(βk+1, βk)

+ (hk+1 − hk)(βk)− (hk+1 − hk)(βk+1) ,

and thus, taking the mean wrt Bk,

γk(EBk
L(βk+1)− L(βk)) ≤ −EBk

Dhk+1
(βk, βk+1)− (1− γkLr)EBk

Dhk(βk+1, βk)

+ EBk
(hk+1 − hk)(βk)− EBk

(hk+1 − hk)(βk+1)

≤ −(1− γkLr)EBk
Dhk(βk+1, βk)

+ EBk
(hk+1 − hk)(βk)− EBk

(hk+1 − hk)(βk+1) .

First, as in the proof of Proposition 37, using the fact that hk is ln(1/αk) smooth,

Dhk(wk+1, βk) ≥
1

2 ln(1/αk)
∥∇hk(wk)− γk∇LBk

(wk)−∇hk(wk) +∇hk+1(wk+1)−∇hk(wk+1)∥22

≥ − 1

2 ln(1/αk)
∥∇hk(wk)−∇hk+1(wk)∥22 +

1

4 ln(1/αk)
∥γk∇LBk

(wk)∥22 ,

and thus

EDhk(wk+1, βk) ≥ E
[
− 1

2 ln(1/αk)
∥∇hk(wk)−∇hk+1(wk)∥22 +

λb
2 ln(1/αk)

γ2kLB(wk)

]
.
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Now, we apply Lemma 27 assuming that ∥β⋆∥∞, ∥βk+1∥∞ ≤ B (which is satisfied since we are
under the assumption of Theorem 2):

(hk+1 − hk)(βk)− (hk+1 − hk)(β⋆) ≤ 24BLγ2kLBk
(βk) .

Using |∇hk(w)−∇hk+1(w)| ≤ 2δk where δk = q(γk∇LBk
(βk)) as in Proposition 37, we have:

E∥∇hk(wk)−∇hk+1(wk)∥22 ≤ 16Bγ2kE∥∇LBk
(βk)∥2 ≤ 32BLγ2kEL(βk) .

Wrapping everything together,

E [L(βk+1)− L(βk)] ≤ −(1− γk4BL)
λb

2 ln(1/αk)
γkEL(βk)

+
(
γ2k(1− 4γkBL)24BL+

32BL

ln(1/αk)

)
γ2kEL(βk) .

Thus, for γk ≤ c′

LB ln(1/(mini αk,i))
, we have the first part of Proposition 17.

Using Lemma 23, we then have:

E
[
∥βk − β⋆αk

∥2
]

= E
[
1{L(βk)≤ 1

2λmax
(α2λ+min)

2
}∥βk − β⋆αk

∥2
]

+ E
[
1{L(βk)> 1

2λmax
(α2λ+min)

2
}∥βk − β⋆αk

∥2
]

≤ E
[
1{L(βk)≤ 1

2λmax
(α2λ+min)

2
}2B(α2λ+min)−1L(βk)

]

+ P
(
L(βk) >

1

2λmax
(α2λ+min)2

)
× 4B2

≤ 2B(α2λ+min)−1E [L(βk)]

+
E [L(βk)]
1

2λmax
(α2λ+min)2

× 4B2

= 2B(α2λ+min)−1
(

1 +
4Bλmax

α2λ+min

)
E [L(βk)] .
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C.7 Proof of miscellaneous results mentioned in the main text

In this section, we provide proofs for results mentioned in the main text and that are not directly
directed to the proof of Theorem 8.

C.7.1 Proof of Proposition 8.5.1 and the sum of the losses

We start by proving the following proposition. We then continue with upper and lower bounds
(of similar magnitude) on the sum of the losses.

Let Λb, λb > 0 2 be the largest and smallest values, respectively, such that λbH ⪯ EB
[
H2

B
]
⪯

ΛbH. For any stepsize γ > 0 satisfying γ ≤ c
BL (as in theorem 2), initialisation α1 and batch

size b ∈ [n], the magnitude of the gain satisfies:

λbγ
2
∑

k

EL(βk) ≤ E [∥Gainγ∥1] ≤ 2Λbγ
2
∑

k

EL(βk) , (8.10)

where the expectation is over a uniform and independent sampling of the batches (Bk)k≥0.

Proof. From Lemma 25, for all −1/2 ≤ x ≤ 1/2, it holds that x2 ≤ q(x) ≤ 2x2. We have, using
∥γk∇LBk

(βk)∥∞ ≤ 1/2 (which holds under the stepsize assumption):

E∥Gainγ∥1 = −E
∑

i

ln
(α∞,i

α

)

=
∑

ℓ<∞

∑

i

Eq
(
γℓ∇iLBℓ

(βℓ)
)

≤ 2
∑

ℓ<∞

∑

i

E
(
γℓ∇iLBℓ

(βℓ)
)2

=
∑

ℓ<∞
γ2ℓE∥∇LBℓ

(βℓ)∥22

≤ 4Λb
∑

ℓ<∞
γ2ℓELBℓ

(βℓ) ,

since E∥∇LBℓ
(βℓ)∥22 ≤ 2ΛbLBℓ

(βℓ). For the left handside we use q(x) ≥ x2 for |x| ≤ 1/2 and
E∥∇LBk

(βℓ)∥22 ≥ 2λbLBk
(βℓ). Finally, since Bℓ independent freom βℓ, we have ELBℓ

(βℓ) =
EL(βℓ).

Proposition 42. For stepsizes γk ≡ γ ≤ c
LB (as in Theorem 2), we have:

∑

k≥0

γ2EL(βk) = Θ (γ∥β⋆∥1 ln(1/α)) .

Proof. We first lower bound
∑

k<∞ γ2kLBk
(βk). We have the following equality, that holds for

any k:

Dhk+1
(β⋆, βk+1) = Dhk(β⋆, βk)− 2γLBk

(βk) +Dhk+1
(βk, βk+1)

+
(
hk − hk+1

)
(βk)−

(
hk − hk+1

)
(β⋆) ,

leading to, by summing for k ∈ N:
∑

k<∞
2γLBk

(βk) = Dh0(β⋆, β0)− lim
k→∞

Dhk(β⋆, βk)+
∑

k<∞
Dhk+1

(βk, βk+1)+
∑

k<∞

(
hk−hk+1

)
(βk)−

(
hk−hk+1

)
(β⋆) .

2Λb, λb > 0 are data-dependent constants; for b = n, we have (λn,Λn) = (λ+
min(H), λmax(H)) where λ+

min(H)
is the smallest non-null eigenvalue of H; for b = 1, we have mini ∥xi∥22 ≤ λ1 ≤ Λ1 ≤ maxi ∥xi∥22.
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First, since hk → h∞, βk → β∞, we have limk→∞Dhk(β⋆, βk) = 0. Then, Dhk+1
(βk, βk+1) ≥ 0.

Finally, |
(
hk − hk+1

)
(βk)−

(
hk − hk+1

)
(β⋆)| ≤ 16BL2γ

2LBk
(βk). Hence :

∑

k<∞
2γ(1 + 16γBL2)LBk

(βk) ≥ Dh0(β⋆, β0) ,

and thus
∑

k<∞ γLBk
(βk) ≥ Dh0(β⋆, β0)/4 for γ ≤ c/(BL) (with c ≥ 16). This gives the RHS

inequality. The LHS is a direct consequence of bounds proved in previous subsections.

Hence, we have that

γ2
∑

k

L(βk) = Θ (γDh0(β⋆, β0)) .

Noting that Dh0(β⋆, β0) = h0(β
⋆) = Θ

(
ln(1/α)∥β⋆∥1

)
concludes the proof.

C.7.2 β̃0 is negligible

In the following proposition we show that β̃0 is close to 0 and therefore one should think of the
implicit regularization problem as β⋆∞ = arg min β⋆∈S ψα∞(β⋆)

Proposition 43. Under the assumptions of Theorem 2,

|β̃0| ≤ α2,

where the inequality must be understood coordinate-wise.

Proof.

|β̃0| =
1

2
|α2

+ − α2
−|

=
1

2
α2
∣∣ exp(−

∑

k

q+(γk∇L(βk))− exp(−
∑

k

q−(γk∇L(βk))
∣∣

≤ α2,

where the inequality is because q+(γk∇L(βk)) ≥ 0, q−(γk∇L(βk)) ≥ 0 for all k.

C.7.3 Impact of stochasticity and linear scaling rule

Proposition 44. With probability 1 − 2ne−d/16 − 3/n2 over the xi ∼iid N (0, σ2Id), c1
dσ2

b (1 +

o(1)) ≤ λb ≤ Λb ≤ c2 dσ
2

b (1 + o(1)) ,

so that under these assumptions,

∑

k

γkEL(βk) = Θ
(γ
b
σ2∥β⋆∥1 ln(1/α)

)
.

Proof. The bound on λb,Λb is a direct consequence of the concentration bound provided in
Lemma 33.
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C.7.4 (Stochastic) gradients at the initialisation

To understand the behaviour and the effects of the stochasticity and the stepsize on the shape
of Gainγ , we analyse a noiseless sparse recovery problem under the following standard Assump-
tion 17 (see Candès et al. [2006]). As as common in the sparse recovery literature, we also make
the following Assumption 18 on the inputs.

Assumption 17. There exists an s-sparse ground truth vector β⋆sparse where s verifies n =
Ω(s ln(d)), such that yi = ⟨β⋆sparse, xi⟩ for all i ∈ [n].

Assumption 18. There exists δ, c1, c2 > 0 such that for all s-sparse vectors β, there exists ε ∈
Rd such that (X⊤X)β = β + ε where ∥ε∥∞ ≤ δ∥β∥2 and c1∥β∥221 ≤ 1

n

∑
i x

2
i ⟨xi, β⟩2 ≤ c2∥β∥221.

The first part of Assumption 18 closely resembles the classical restricted isometry property
(RIP) and is relevant for GD while the second part is relevant for SGD. Such an assumption is
not restrictive and holds with high probability for Gaussian inputs N (0, σ2Id) (see Lemma 30
in Appendix).

Based on the claim above, we analyse the shape of the (stochastic) gradient at initialisation.
For GD and SGD, it respectly writes, where g0 = ∇Li0(β0)

2, i0 ∼ Unif([n]):

∇L(β0)
2 = [X⊤Xβ⋆]2 , Ei0 [g0] =

1

n

∑

i

x2i ⟨xi, β⋆⟩2.

The following lemma then shows that while the initial stochastic gradients of SGD are homoge-
neous, it is not the case for that of GD.

Proposition 45. Under Assumption 18, the squared full batch gradient and the expected stochas-
tic gradient at initialisation satisfy, for some ε verifying ∥ε∥∞ << ∥β⋆sparse∥2∞:

∇L(β0)
2 = (β⋆sparse)

2 + ε , (C.12)

Ei0 [∇Li0(β0)
2] = Θ

(
∥β⋆∥221

)
. (C.13)

Proof of Proposition 45. Under Assumption 18, we have using:

∇L(β0)
2 = (X⊤Xβ⋆sparse)

= (β⋆sparse + ε)2

= β⋆sparse
2 + ε2 + 2εβ⋆sparse .

We have ∥ε2 + 2εβ⋆sparse∥∞ ≤ ∥ε∥2∞ + 2∥ε∥∞∥β⋆sparse∥∞, and we conclude by using ∥ε∥∞ ≤
δ∥β⋆sparse∥2.

Then,

Ei∼Unif([n])[∇Li(β0)2] =
1

n
x2i ⟨xi, β⋆sparse⟩ ,

and we conclude using Assumption 18.

Proof of Proposition 31. The proof proceeds as that of Proposition 45.
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C.7.5 Convergence of α∞ and β̃0 for γ → 0

Proposition 46. Let β̃0(γ), α∞(γ) be as defined in Theorem 1, for constant stepsizes γk ≡ γ.
We have:

β̃0(γ)→ 0 , α∞ → α1 ,

when γ → 0.

Proof. We have, as proved previoulsy, that

∥
∑

k

γ2∇LBk
(βk)

2∥1 ≤
∑

k

γ2∥∇LBk
(βk)

2∥1

=
∑

k

γ2∥∇LBk
(βk)∥22

≤ 2Lγ2
∑

k

LBk
(βk)

≤ 2LγDh0(β⋆, β0) ,

for γ ≤ c
BL . Thus,

∑
k γ

2∇LBk
(βk)

2 → 0 as γ → 0 (note that βk implicitly depends on γ, so
that this result is not immediate).

Then, for γ ≤ c
LB ,

∥ ln(α2
∞/α

2)∥1 ≤
∑

k

∥q(γL(βk)∥1 ≤ 2
∑

k

γ2∥∇LBk
(βk)

2∥1 ,

which tends to 0 as γ → 0. Similarly, ∥ ln(α2
+,∞/α

2)∥1 → 0 and ∥ ln(α2
−,∞/α

2)∥1 → 0 as γ → 0,

leading to β̃0(γ)→ 0 as γ → 0.

C.8 Technical lemmas

In this section we present a few technical lemmas, used and referred to throughout the previous
proofs.

Lemma 24. Let α+, α− > 0 and x ∈ R, and β = α2
+e

x − α2
−e

−x. We have:

arcsinh
( β

2α+α−

)
= x+ ln

(α+

α−

)
= x+ arcsinh

(α2
+ − α2

−
2α+α−

)
.

Proof. First,

β

2α+α−
=

1

2

(α+

α− e
x −

(α+

α−
)−1

e−x
)

=
ex+ln(α+/α−) − e−x−ln(α+/α−)

2
= sinh(x+ ln(α+/α−)) ,

hence the result by taking the arcsinh of both sides. Note also that we have ln(α+/α−) =

arcsinh(
α2
+−α2

−
2α+α−

).

Lemma 25. If |x| ≤ 1/2 then x2 ≤ q(x) ≤ 2x2

162



APPENDIX C. APPENDIX FOR CHAPTER 8

Lemma 26. On the ℓ∞ ball of radius B, the quadratic loss function β 7→ L(β) is 4λmax max(B,α2)-
relatively smooth w.r.t all the hk’s.

Proof. We have:

∇2hk(β) = diag
( 1

2
√
α4
k + β2

)
⪰ diag

( 1

2
√
α4 + β2

)
,

since αk ≤ α component-wise. Thus,∇2hk(β) ⪰ 1
2 min

(
min1≤i≤d 1

2|βi| ,
1

2α2

)
Id = 1

max(4∥β∥∞,4α2)
Id,

and hk is 1
max(4B,4α2)

-strongly convex on the ℓ∞ norm of radius B. Since L is λmax-smooth over

Rd, we have our result.

Lemma 27. For k ≥ 0 and for all β ∈ Rd:

|hk+1(w)− hk(w)| ≤ 8L2γ
2
kLBk

(βk)∥w∥∞.

Proof. We have α2
+,k+1 = α2

+,ke
−δ+,k and α2

−,k+1 = α2
−,ke

−δ−,k , for δ+,k = q̃(γk∇LBk
(wk)) and

δ−,k = q̃(−γk∇LBk
(wk)). And αk+1 = αk exp(−δk) where δk := δ+,k + δ−,k = q(γk∇LBk

(βk)).

To prove the result we will use that for w ∈ Rd, we have |(hk+1−hk)(w)| ≤∑d
i=1

∫ |wi|
0 |∇ihk+1(x)−

∇ihk(x)|dx.

First, using that| arcsinh(a)− arcsinh(b)| ≤ | ln(a/b)| for ab > 0. We have that

∣∣∣ arcsinh
( x

α2
k+1

)
− arcsinh

( x
α2
k

)∣∣∣ ≤ ln

(
α2
k

α2
k+1

)

= δk ,

since δk ≥ 0 due to our stepsize condition.

We now prove that |ϕk+1 − ϕk| ≤ |δ+,k−δ−,k|
2 . We have ϕk = arcsinh

(α2
+,k−α2

−,k

2α+,kα−,k

)
and hence,

|ϕk+1 − ϕk| =
∣∣∣∣∣arcsinh

(α2
+,k − α2

−,k
2α+,kα−,k

)
− arcsinh

(α2
+,k+1 − α2

−,k+1

2α+,k+1α−,k+1

)∣∣∣∣∣ .

Then, assuming that α+,k,i ≥ α−,k,i, we have:

α2
+,k+1,i − α2

−,k+1,i

2α+,k+1,iα−,k+1,i
= eδk,i/2

α2
+,k,ie

−δ+,k,i − α2
−,k,ie

−δ−,k,i

2α+,k,iα−,k,i



≤





e
δ+,k,i−δ−,k,i

2

α2
+,k,i − α2

−,k,i
2α+,k,iα−,k,i

if δ+,k,i ≥ δ−,k,i

e
δ−,k,i−δ+,k,i

2

α2
+,k,i − α2

−,k,i
2α+,k,iα−,k,i

if δ−,k,i ≥ δ+,k,i

≥





e−
δ+,k,i−δ−,k,i

2

α2
+,k,i − α2

−,k,i
2α+,k,iα−,k,i

if δ+,k,i ≥ δ−,k,i

e−
δ−,k,i−δ+,k,i

2

α2
+,k,i − α2

−,k,i
2α+,k,iα−,k,i

if δ−,k,i ≥ δ+,k,i

.
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We thus have
α2
+,k+1,i−α2

−,k+1,i

2α+,k+1,iα−,k+1,i
∈
[
e−
|δ+,k,i−δ−,k,i|

2 , e
|δ+,k,i−δ−,k,i|

2

]
× α2

+,k,i−α2
−,k,i

2α+,k,iα−,k,i
, and this holds

similarly if α+,k,i ≤ α−,k,i. Then, using | arcsinh(a)− arcsinh(b)| ≤ | ln(a/b)| we obtain that:

|ϕk+1 − ϕk| =
∣∣∣∣∣arcsinh

(α2
+,k − α2

−,k
2α+,kα−,k

)
− arcsinh

(α2
+,k+1 − α2

−,k+1

2α+,k+1α−,k+1

)∣∣∣∣∣

≤ |δ+,k − δ−,k|
2

.

Wrapping things up, we have:

|∇hk(w)−∇hk+1(w)| ≤ δk +
|δ+,k − δ−,k|

2
≤ 2δk ,

This leads to the following bound:

|hk+1(w)− hk(w)| ≤ ⟨|2δk|, |w|⟩
≤ 2∥δk∥1∥w∥∞.

Recall that δk = q(γk∇LBk
(βk), hence from Lemma 25 if γk∥∇LBk

(βk)∥∞ ≤ 1/2, we get
that

∥δk∥1 ≤ 2γ2k∥∇LBk
(βk)∥22 ≤ 4L2γ

2
kLBk

(βk).

Putting things together we obtain that

|hk+1(w)− hk(w)| ≤ ⟨|2δk|, |w|⟩
≤ 8L2γ

2
kLBk

(βk)∥w∥∞.
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C.9 Concentration inequalities for matrices

In this last section of the appendix, we provide and prove several concentration bounds for ran-
dom vectors and matrices, with (possibly uncentered) isotropic gaussian inputs. These inequal-
ities can easily be generalized to subgaussian random variables via more refined concentration
bounds, and to non-isotropic subgaussian random variables [Even and Massoulie, 2021], leading
to a dependence on an effective dimension and on the subgaussian matrix Σ. We present these
lemmas before proving them in a row.

The next two lemmas closely ressemble the RIP assumption, for centered and then for
uncentered gaussians.

Lemma 28. Let x1, . . . , xn ∈ Rd be i.i.d. random variables of law N (0, Id) and H = 1
n

∑n
i=1 xix

⊤
i .

Then, denoting by C the set of all s-sparse vector β ∈ Rd satisfying ∥β∥2 ≤ 1, there exist
C4, C5 > 0 such that for any ε > 0, if n ≥ C4s ln(d)ε−2,

P

(
sup
β∈S
∥Hβ − β∥∞ ≥ ε

)
≤ e−C5n .

Lemma 29. Let x1, . . . , xn ∈ Rd be i.i.d. random variables of law N (µ, σ2Id) and H = 1
n

∑n
i=1 xix

⊤
i .

Then, denoting by C the set of all s-sparse vector β ∈ Rd satisfying ∥β∥2 ≤ 1, there exist
C4, C5 > 0 such that for any ε > 0, if n ≥ C4s ln(d)ε−2,

P

(
sup
β∈S
∥Hβ − µ⟨µ, β⟩ − σ2β∥∞ ≥ ε

)
≤ e−C5n .

We then provide two lemmas that estimate the mean Hessian of SGD.

Lemma 30. Let x1, . . . , xn be i.i.d. random variables of law N (0, Id). Then, there exist c1, c2 >
0 such that with probability 1− 1

d2
and if n = Ω(s5/4 ln(d)), we have for all s-sparse vectors β:

c1∥β∥221 ≤
1

n

n∑

i=1

x2i ⟨xi, β⟩2 ≤ c2∥β∥221 ,

where the inequality is meant component-wise.

Lemma 31. Let x1, . . . , xn be i.i.d. random variables of law N (µ, σ2Id). Then, there exist
c0, c1, c2 > 0 such that with probability 1− c0

d2
− 1

nd and if n = Ω(s5/4 ln(d)) and µ ≥ 4σ
√

ln(d)1,
we have for all s-sparse vectors β:

µ2

2

(
⟨µ, β⟩2 +

1

2
σ2∥β∥22

)
≤ 1

n

∑

i

x2i ⟨xi, β⟩2 ≤ 4µ2
(
⟨µ, β⟩2 + 2σ2∥β∥22

)
.

where the inequality is meant component-wise.

Finally, next two lemmas are used to estimate λb,Λb.

Lemma 32. Let x1, . . . , xn ∈ Rd be i.i.d. random variables of law N (µ1, σ2Id). Let H =
1
n

∑n
i=1 xix

⊤
i and H̃ = 1

n

∑n
i=1 ∥xi∥2xix⊤i . There exist numerical constants C2, C3 > 0 such that

P
(
C2

(
µ2 + σ2)dH ⪯ H̃ ⪯ C3

(
µ2 + σ2)dH

)
≥ 1− 2ne−d/16 .
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Lemma 33. Let x1, . . . , xn ∈ Rd be i.i.d. random variables of law N (µ1, σ2Id) for some µ ∈ R.
Let H = 1

n

∑n
i=1 xix

⊤
i and for 1 ≤ b ≤ n let H̃b = EB

[(
1
b

∑
i∈B xix

⊤
i

)2]
where B ⊂ [n] is sampled

uniformly at random in {B ⊂ [n] s.t. |B| = b}. With probability 1 − 2ne−d/16 − 3/n2, we have,
for some numerical constants c1, c2, c3, C > 0:

(
c1
d(µ2 + σ2)

b
− c2

(σ2 + µ2) ln(n)√
d

− c3
µ2d

n

)
H ⪯ H̃b ⪯ C

(
d(µ2 + σ2)

b
+

(σ2 + µ2) ln(n)√
d

+ µ2d

)

Proof of Lemma 28. For j ∈ [d], we have:

(Hβ)j =
1

n

n∑

i=1

xij⟨xi, β⟩

=
1

n

n∑

i=1

d∑

j′=1

xijxij′βj′

=
1

n

n∑

i=1

x2ijβj +
1

n

n∑

i=1

∑

j′ ̸=j
xijxij′βj′

=
βj
n

n∑

i=1

x2ij +
1

n

n∑

i=1

xij
∑

j′ ̸=j
xij′βj′ .

We thus notice that E [Hβ] = β, and

(Hβ)j = βj +
βj
n

n∑

i=1

(x2ij − 1) +
1

n

n∑

i=1

zi ,

where zi = xij
∑

j′ ̸=j xij′βj′ , and
∑

j′ ̸=j xij′βj′ ∼ N (0, ∥β∥2 − β2j ) and ∥β∥2 − β2j ≤ 1. Hence,

zj + x2ij − 1 is a centered subexponential random variables (with a subexponential parameter of
order 1). Thus, for t ≤ 1:

P

(∣∣∣∣∣
βj
n

n∑

i=1

(x2ij − 1) +
1

n

n∑

i=1

zi

∣∣∣∣∣ ≥ t
)
≤ 2e−cnt

2
.

Hence, using an ε-net of C =
{
β ∈ Rd : ∥β∥2 ≤ 1 , ∥β∥0

}
(of cardinality less than ds × (C/ε)s,

and for ε of order 1), we have, using the classical ε-net trick explained in [Chapt. 9, Vershynin
[2018] or [App. C, Even and Massoulie [2021]]:

P

(
sup

β∈C, j∈[d]
|(Hβ)j − βj | ≥ t

)
≤ d×ds(C/ε)s×2e−cnt

2
= exp

(
−c ln(2)nt2 + (s+ 1) ln(d) + s ln(C/ε)

)
.

Consequently, for t = ε and if n ≥ C4s ln(d)/ε2, we have:

P

(
sup

β∈C, j∈[d]
|(Hβ)j − βj | ≥ t

)
≤ exp

(
−C5nt

2
)
.
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Proof of Lemma 29. We write xi = σzi + µ where zi ∼ N (0, Id). We have:

X⊤Xβ =
1

n

n∑

i=1

(µ+ σzi)⟨µ+ σzi, β⟩

= µ⟨µ, β⟩+
σ2

n

n∑

i=1

zi⟨zi, β⟩+
σ

n

n∑

i=1

µ⟨zi, β⟩+
σ

n

n∑

i=1

zi⟨µ, β⟩

= µ⟨µ, β⟩+
σ2

n

n∑

i=1

zi⟨zi, β⟩+ σµ⟨ 1
n

n∑

i=1

zi, β⟩+
σ⟨µ, β⟩
n

n∑

i=1

zi .

The first term is deterministic and is to be kept. The second one is of order σ2β whp using
Lemma 28. Then, 1

n

∑n
i=1 zi ∼ N (0, Id/n), so that

P

(∣∣∣∣∣⟨
1

n

n∑

i=1

zi, β⟩
∣∣∣∣∣ ≥ t

)
≤ 2e−nt

2/(2∥β∥22) ,

and

P

(∣∣∣∣∣
1

n

n∑

i=1

zij

∣∣∣∣∣ ≥ t
)
≤ 2e−nt

2/2 .

Hence,

P

(
sup
β∈C

∥∥∥∥∥
1

n

n∑

i=1

zij

∥∥∥∥∥
∞
≥ t , sup

β∈C

∣∣∣∣∣⟨
1

n

n∑

i=1

zi, β⟩
∣∣∣∣∣ ≥ t

)
≤ 4ecs ln(d)e−nt

2/2 .

Thus, with probability 1−Ce−nε2 and under the assumptions of Lemma 28, we have ∥X⊤Xβ−
µ⟨µ, β⟩ − σ2β∥∞ ≤ ε

Proof of Lemma 30. To ease notations, we assume that σ = 1. We remind (O’Donnell [2021],
Chapter 9 and Tao [2010]) that for i.i.d. real random variables a1, . . . , an that satisfy a tail
inequality of the form

P
(
|a1 − Ea1| ≥ t

)
≤ Ce−ctp , (C.14)

for p < 1, then for all ε > 0 there exists C ′, c′ such that for all t,

P
(
| 1
n

n∑

i=1

ai − Ea1| ≥ t
)
≤ C ′e−c

′ntp−ε
.

We now expand 1
n

∑n
i=1 x

2
i ⟨xi, β⟩2:

1

n

n∑

i=1

x2i ⟨xi, β⟩2 =
1

n

∑

i∈[n],k,ℓ∈[d]
x2ixikxiℓβkβℓ

=
1

n

∑

i∈[n],k∈[d]
x2ix

2
ikβ

2
k +

1

n

∑

i∈[n],k ̸=ℓ∈[d]
x2ixikxiℓβkβℓ .

Thus, for j ∈ [d],

(
1

n

n∑

i=1

x2i ⟨xi, β⟩2
)

j

=
∑

k∈[d]

β2k
n

∑

i∈[n]
x2ijx

2
ik +

∑

k ̸=ℓ∈[d]

βkβℓ
n

∑

i∈[n]
x2ijxikxiℓ .
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We notice that for all indices, all x2ijxikxiℓ and x2ijx
2
ik satisfy the tail inequality Equation (C.14)

for C = 8, c = 1/2 and p = 1/2, so that for ε = 1/4:

P
(
| 1
n

n∑

i=1

x2ijxikxiℓ| ≥ t
)
≤ C ′e−c

′nt1/4 , P
(
| 1
n

n∑

i=1

x2ijx
2
ik − E

[
x2ijx

2
ik

]
| ≥ t

)
≤ C ′e−c

′nt1/4 .

For j ̸= k, we have E
[
x2ijx

2
ik

]
= 1 while for j = k, we have E

[
x2ijx

2
ik

]
= E

[
x4ij

]
= 3. Hence,

P

(
∃j, k ̸= ℓ , | 1

n

n∑

i=1

x2ijxikxiℓ| ≥ t , |
1

n

n∑

i=1

x2ijx
2
ik − E

[
x2ijx

2
ik

]
| ≥ t

)
≤ C ′d2e−c

′nt1/4 .

Thus, with probability 1− C ′d2e−c
′nt1/4 , for all j ∈ [d],

∣∣∣∣∣∣

(
1

n

n∑

i=1

x2i ⟨xi, β⟩2
)

j

− 2β2j − ∥β∥22

∣∣∣∣∣∣
≤ t

∑

k,ℓ

|βk||βℓ| = t∥β∥21 .

Using the classical technique of Baraniuk et al. [2008], to make a union bound on all s-sparse
vectors, we consider an ε-net of the set of s-sparse vectors of ℓ2-norm smaller than 1. This ε-net
is of cardinality less than (C0/ε)

sds, and we only need to take ε of order 1 to obtain the result
for all s-sparse vectors. This leads to:

P


∃β ∈ Rd s-sparse and ∥β∥2 ≤ 1 , ∃j ∈ Rd ,

∣∣∣∣∣∣

(
1

n

n∑

i=1

x2i ⟨xi, β⟩2
)

j

− 2β2j − ∥β∥22

∣∣∣∣∣∣
≥ t∥β∥21




≤ C ′d2ec1s+s ln(d)e−c
′nt1/4 .

This probability is equal to C ′/d2 for t =
(
(s+4) ln(d)+c1s

c′n

)4
. We conclude that with probability

1− C ′/d2, all s-sparse vectors β satisfy:
∣∣∣∣∣∣

(
1

n

n∑

i=1

x2i ⟨xi, β⟩2
)

j

− 2β2j − ∥β∥22

∣∣∣∣∣∣
≤
(

(s+ 4) ln(d) + c1s

c′n

)4

∥β∥21 ≤
(

(s+ 4) ln(d) + c1s

c′n

)4

s∥β∥22 ,

and the RHS is smaller than ∥β∥22/2 for n ≥ Ω(s5/4 ln(d)).

Proof of Lemma 31. We write xi = µ+ σzi where xi ∼ N (0, 1). We have:

P
(
∀i ∈ [n],∀j ∈ [d], |zij | ≥ t

)
≤ eln(nd)−t2/2 =

1

nd
,

for t = 2
√

ln(nd). Thus, if µ ≥ 4σ
√

ln(nd) we have µ
2 ≤ xi ≤ 2µ, so that

µ2

2n

∑

i

⟨xi, β⟩2 ≤
1

n

∑

i

x2i ⟨xi, β⟩2 ≤
4µ2

n

∑

i

⟨xi, β⟩2 .

Then, ⟨xi, β⟩ ∼ N (⟨µ, β⟩, σ2∥β∥22). For now, we assume that ∥β∥2 = 1. We have P(|⟨xi, β⟩2 −
⟨µ, β⟩2 − σ2∥β∥22| ≥ t) ≤ Ce−ct/σ

2
, and for t ≤ 1, using concentration of subexponential random

variables [Vershynin, 2018]:

P

(∣∣∣∣∣
1

n

∑

i

⟨xi, β⟩2 − ⟨µ, β⟩2 − σ2∥β∥22

∣∣∣∣∣ ≥ t
)
≤ C ′e−nc

′t2/σ4
,
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and using the ε-net trick of Baraniuk et al. [2008],

P

(
sup
β∈C

∣∣∣∣∣
1

n

∑

i

⟨xi, β⟩2 − ⟨µ, β⟩2 − σ2∥β∥22

∣∣∣∣∣ ≥ t
)
≤ C ′es ln(d)−nc

′t2/σ4
=
C ′

d2
,

for t = σ2∥β∥22
√

2(cs+2) ln(d)
n . Consequently, we have, with probability 1− C′

d2
− 1

nd :

µ2

2

(
⟨µ, β⟩2 +

1

2
σ2∥β∥22

)
≤ 1

n

∑

i

x2i ⟨xi, β⟩2 ≤ 4µ2
(
⟨µ, β⟩2 + 2σ2∥β∥22

)
.

Proof of Lemma 32. First, we write xi = µ1 + σzi, where zi ∼ N (0, I), leading to:

1

n

∑

i∈[n]
∥xi∥22xix⊤i =

1

n

∑

i∈[n]

(
σ2∥zi∥22 + dµ2 + 2σµ⟨1, zi⟩

)
xix

⊤
i

We use concentration of χ2
d random variables around d:

P(χ2
d > d+ 2t+ 2

√
dt) ≥ t) ≤ e−t and P(χ2

d > d− 2
√
dt) ≤ t) ≤ e−t ,

so that for all i ∈ [n],

P(∥zi∥22 /∈ [d− 2
√
dt, d+ 2t+ 2

√
dt]) ≤ 2e−t .

Thus,
P(∀i ∈ [n], ∥zi∥22 ∈ [d− 2

√
dt, d+ 2t+ 2

√
dt]) ≥ 1− 2ne−t .

Taking t = d/16,

P(∀i ∈ [n], ∥zi∥22 ∈ [
d

2
, 13d/8]) ≥ 1− 2ne−d/16 .

Then, for all i, ⟨1, zi⟩ is of law N (0, d), so that P(|⟨1, zi⟩| ≥ t) ≤ 2e−t
2/(2d) and

P
(
∀i ∈ [n], |⟨1, zi⟩| ≥ t

)
≤ 2ne−

t2

2d .

Taking t =
√

2d3/4,

P
(
∀i ∈ [n], |⟨1, zi⟩| ≥ d3/4

)
≤ 2ne−d

1/2
.

Thus, with probability 1 − 2n(e−d/16 + e−
√
d, we have ∀i ∈ [n], |⟨1, zi⟩| ≥ d3/4 and ∥zi∥22 ∈

[d2 , 13d/8], so that

(d
2
σ2 + dµ2 − 2µσd3/4

)
H ⪯ H̃ ⪯

(13d

8
σ2 + dµ2 + 2µσd3/4

)
H ,

leading to the desired result.

Proof of Lemma 33. We have:

H̃b = E


 1

b2

∑

i,j∈B
⟨xi, xj⟩xix⊤j




= E


 1

b2

∑

i∈B
∥xi∥22xix⊤i +

1

b2

∑

i,j∈B, i ̸=j
⟨xi, xj⟩xix⊤j




=
1

b2

∑

i∈[n]
P(i ∈ B)∥xi∥22xix⊤i +

1

b2

∑

i ̸=j
P(i, j ∈ B)⟨xi, xj⟩xix⊤j .
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Then, since P(i ∈ B) = b
n and P(i, j ∈ B) = b(b−1)

n(n−1) for i ̸= j, we get that:

H̃b =
1

bn

∑

i∈[n]
∥xi∥22xix⊤i +

(b− 1)

bn(n− 1)

∑

i ̸=j
⟨xi, xj⟩xix⊤j .

Using Lemma 32, the first term satisfies:

P
(d(µ2 + σ2)

b
C2H ⪯

1

bn

∑

i∈[n]
∥xi∥22xix⊤i ⪯

d(µ2 + σ2)

b
C3H

)
≥ 1− 2ne−d/16 .

We now show that the second term is of smaller order. Writing xi = µ1+σzi where zi ∼ N (0, Id),
we have:

(b− 1)

bn(n− 1)

∑

i ̸=j
⟨xi, xj⟩xix⊤j =

(b− 1)

bn(n− 1)

∑

i ̸=j
⟨xi, xj⟩xix⊤j

For i ̸= j, ⟨xi, xj⟩ =
∑d

k=1 xikxjk =
∑d

k=1 ak where ak = xikxjk satisfies Eak = 0, Ea2k = 1
and P(ak ≥ t) ≤ 2P(|xik| ≥

√
t) ≤ 4e−t/2. Hence, ak is a centered subexponential random

variables. Using concentration of subexponential random variables Vershynin [2018], for t ≤ 1,

P
(

1

d
|⟨xi, xj⟩| ≥ t

)
≤ 2e−cdt

2
.

Thus,

P
(
∀i ̸= j,

1

d
|⟨xi, xj⟩| ≤ t

)
≥ 1− n(n− 1)e−cdt

2
.

Then, taking t = d−1/24 ln(n)/c, we have:

P
(
∀i ̸= j,

1

d
|⟨xi, xj⟩| ≤

4 ln(n)

c
√
d

)
≥ 1− 1

n2
.

Going back to our second term,

(b− 1)

bn(n− 1)

∑

i ̸=j
⟨xi, xj⟩xix⊤j =

(b− 1)

bn(n− 1)

∑

i<j

⟨xi, xj⟩
(
xix

⊤
j + xjx

⊤
i

)

⪯ (b− 1)

bn(n− 1)

∑

i<j

∣∣⟨xi, xj⟩
∣∣(xix⊤i + xjx

⊤
j

)
,

where we used xix
⊤
j + xjx

⊤
i ⪯ xix⊤i + xjx

⊤
j . Thus,

(b− 1)

bn(n− 1)

∑

i ̸=j
⟨xi, xj⟩xix⊤j ⪯ sup

i ̸=j
|⟨xi, xj⟩| ×

(b− 1)

bn(n− 1)

∑

i<j

(
xix

⊤
i + xjx

⊤
j

)

= sup
i ̸=j
|⟨xi, xj⟩| ×

b− 1

b

1

n− 1

n∑

i=1

xix
⊤
i

= sup
i ̸=j
|⟨xi, xj⟩| ×

b− 1

b

n

n− 1
H .

Similarly, we have

(b− 1)

bn(n− 1)

∑

i ̸=j
⟨xi, xj⟩xix⊤j ⪰ − sup

i ̸=j
|⟨xi, xj⟩| ×

b− 1

b

n

n− 1
H .
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Hence, with probability 1− 1/n2,

−4 ln(n)

c
√
d
× b− 1

b

n

n− 1
H ⪯ (b− 1)

bn(n− 1)

∑

i ̸=j
⟨xi, xj⟩xix⊤j ⪯

4 ln(n)

c
√
d
× b− 1

b

n

n− 1
H .

Wrapping things up, with probability 1− 1/n2 − 2ne−d/16,
(
−4 ln(n)

c
√
d

b− 1

b

n

n− 1
+ C2

d

b

)
×H ⪯ H̃b ⪯

(
4 ln(n)

c
√
d

b− 1

b

n

n− 1
+ C3

d

b

)
×H .

Thus, provided that 4 ln(n)

c
√
d
≤ C2d

2b and d ≥ 48 ln(n), we have with probability 1− 3/n2:

C ′
2

d

b
×H ⪯ H̃b ⪯ C ′

3

d

b
×H .

Proof of Lemma 33. We have:

H̃b = E


 1

b2

∑

i,j∈B
⟨xi, xj⟩xix⊤j




= E


 1

b2

∑

i∈B
∥xi∥22xix⊤i +

1

b2

∑

i,j∈B, i ̸=j
⟨xi, xj⟩xix⊤j




=
1

b2

∑

i∈[n]
P(i ∈ B)∥xi∥22xix⊤i +

1

b2

∑

i ̸=j
P(i, j ∈ B)⟨xi, xj⟩xix⊤j .

Then, since P(i ∈ B) = b
n and P(i, j ∈ B) = b(b−1)

n(n−1) for i ̸= j, we get that:

H̃b =
1

bn

∑

i∈[n]
∥xi∥22xix⊤i +

(b− 1)

bn(n− 1)

∑

i ̸=j
⟨xi, xj⟩xix⊤j .

Using Lemma 32, the first term satisfies:

P
(d(µ2 + σ2)

b
C2H ⪯

1

bn

∑

i∈[n]
∥xi∥22xix⊤i ⪯

d(µ2 + σ2)

b
C3H

)
≥ 1− 2ne−d/16 .

We now show that the second term is of smaller order. Writing xi = µ1+σzi where zi ∼ N (0, Id),
we have:

(b− 1)

bn(n− 1)

∑

i ̸=j
⟨xi, xj⟩xix⊤j =

(b− 1)

bn(n− 1)

∑

i ̸=j

(
σ2⟨zi, zj⟩+ σµ⟨1, zi + zj⟩+ µ2d

)
xix

⊤
j

=
(b− 1)

bn(n− 1)

∑

i ̸=j

(
σ2⟨zi, zj⟩+ σµ⟨1, zi + zj⟩

)
xix

⊤
j +

(b− 1)

bn(n− 1)
µ2d

∑

i ̸=j
xix

⊤
j

For i ̸= j, ⟨zi, zj⟩ =
∑d

k=1 zikzjk =
∑d

k=1 ak where ak = zikzjk satisfies Eak = 0, Ea2k = 1 and
P(ak ≥ t) ≤ 2P(|zik| ≥

√
t) ≤ 4e−t/2. Hence, ak is a centered subexponential random variables.

Using concentration of subexponential random variables [Vershynin, 2018], for t ≤ 1,

P
(

1

d
|⟨xi, xj⟩| ≥ t

)
≤ 2e−cdt

2
.
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Thus,

P
(
∀i ̸= j,

1

d
|⟨xi, xj⟩| ≤ t

)
≥ 1− n(n− 1)e−cdt

2
.

Then, taking t = d−1/24 ln(n)/c, we have:

P
(
∀i ̸= j,

1

d
|⟨xi, xj⟩| ≤

4 ln(n)

c
√
d

)
≥ 1− 1

n2
.

For i ∈ [n], ⟨1, zi⟩ ∼ N (0, d) so that P(|⟨1, zi⟩| ≥ t) ≤ 2e−t
2/(2d), and

P(∀i ∈ [n], |⟨1, zi⟩| ≤ t) ≥ 1− 2ne−t
2/(2d) = 1− 2

n2
,

for t = 3
√
d ln(n). Hence, with probability 1− 3/n2, for all i ̸= j we have |σ2⟨zi, zj⟩+σµ⟨1, zi +

zj⟩| ≤ (σ2 + σµ)C ln(n)/
√
d.

Now,

(b− 1)

bn(n− 1)

∑

i ̸=j

(
σ2⟨zi, zj⟩+ σµ⟨1, zi + zj⟩

)
xix

⊤
j =

(b− 1)

bn(n− 1)

∑

i<j

(
σ2⟨zi, zj⟩+ σµ⟨1, zi + zj⟩

)
(xix

⊤
j + xjx

⊤
i )

⪯ (b− 1)

bn(n− 1)

∑

i<j

∣∣σ2⟨zi, zj⟩+ σµ⟨1, zi + zj⟩
)
|
(
xix

⊤
i + xjx

⊤
j

)
,

where we used xix
⊤
j + xjx

⊤
i ⪯ xix⊤i + xjx

⊤
j . Thus,

(b− 1)

bn(n− 1)

∑

i ̸=j

(
σ2⟨zi, zj⟩+ σµ⟨1, zi + zj⟩

)
xix

⊤
j ⪯ sup

i ̸=j

∣∣σ2⟨zi, zj⟩+ σµ⟨1, zi + zj⟩
)
| × (b− 1)

bn(n− 1)

∑

i<j

(
xix

⊤
i + xjx

⊤
j

)

= sup
i ̸=j

∣∣σ2⟨zi, zj⟩+ σµ⟨1, zi + zj⟩
∣∣× b− 1

b

1

n− 1

n∑

i=1

xix
⊤
i

= sup
i ̸=j

∣∣σ2⟨zi, zj⟩+ σµ⟨1, zi + zj⟩
∣∣× b− 1

b

n

n− 1
H .

Similarly, we have

(b− 1)

bn(n− 1)

∑

i ̸=j

(
σ2⟨zi, zj⟩+σµ⟨1, zi+zj⟩

)
xix

⊤
j ⪰ − sup

i ̸=j

∣∣σ2⟨zi, zj⟩+σµ⟨1, zi+zj⟩
)
|×b− 1

b

n

n− 1
H .

Hence, with probability 1− 3/n2,

−(σ2 + σµ)C ln(n)√
d

× b− 1

b

n

n− 1
H ⪯ (b− 1)

bn(n− 1)

∑

i ̸=j

(
σ2⟨zi, zj⟩+ σµ⟨1, zi + zj⟩

)
xix

⊤
j

⪯ (σ2 + σµ)C ln(n)√
d

× b− 1

b

n

n− 1
H .

We thus have shown that this term (the one in the middle of the above inequality) is of smaller
order.

We are hence left with (b−1)
bn(n−1)µ

2d
∑

i ̸=j xix
⊤
j . Denoting x̄ = 1

n

∑
i xi, we have 1

n2

∑
i ̸=j xix

⊤
j =

1
n2

∑
i,j xix

⊤
j − 1

n2

∑
i xix

⊤
i , so that:

(b− 1)

bn(n− 1)
µ2d

∑

i ̸=j
xix

⊤
j =

(b− 1)n

b(n− 1)
µ2d

(
x̄x̄⊤ − 1

n
H

)
.
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We note that we have H = 1
n

∑
i xix

⊤
i = 1

n2

∑
i<j xix

⊤
i + xjx

⊤
j ⪰ 1

n2

∑
i<j xix

⊤
j + xjx

⊤
i = x̄x̄⊤

using xix
⊤
i + xjx

⊤
j ⪰ xix⊤j + xjx

⊤
i . Thus, H ⪰ x̄x̄⊤ ⪰ 0, and:

−(b− 1)n

b(n− 1)
µ2d

1

n
H ⪯ (b− 1)

bn(n− 1)
µ2d

∑

i ̸=j
xix

⊤
j ⪯

(b− 1)n

b(n− 1)
µ2d(1− 1/n)H .

We are now able to wrap everything together. With probability 1 − 2ne−d/16 − 3/n2, we
have, for some numerical constants c1, c2, c3, C > 0:

(
c1
d(µ2 + σ2)

b
− c2

(σ2 + µ2) ln(n)√
d

− c3
µ2d

n

)
H ⪯ H̃b ⪯ C

(
d(µ2 + σ2)

b
+

(σ2 + µ2) ln(n)√
d

+ µ2d

)
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Appendix for Chapter 9

D.1 Additional notations and comments on discretisation methods

Vector Operations. Moving forward, all arithmetic operations and real-valued functions will
be considered as being applied coordinate-wise. In other words, if a and b are vectors in Rd and
p, q ∈ Q, then apbq ∈ Rd will be used as a shorthand for the vector with entries {api b

q
i }di=1. And

for any f : R → R, f(a) will represent the vector with entries {f(ai)}di=1. Inequalities between
vectors will also be interpreted as holding coordinate-wise.

Mirror Maps. Various definitions of a mirror map Φ : Rd → (−∞,+∞] exist in the opti-
mization literature [see Nemirovski, 1979], and a common one coincides with the concept of a
Legendre function [see Bauschke et al., 2017, Bauschke and Borwein, 1997]. In our proofs, we do
not deal with extended real-valued functions, and the term mirror map is applied to C∞-smooth
strictly convex functions with coercive gradients. In particular, our mirror maps are of Legendre
type.

For such a mirror map Φ : Rd → R, we define the Bregman divergence DΦ(θ1, θ2) for
θ1, θ2 ∈ Rd as

DΦ(θ1, θ2) = Φ(θ1)− Φ(θ2)− ⟨∇Φ(θ2), θ1 − θ2⟩.
Notice that due to the strict convexity of Φ, DΦ(θ1, θ2) > 0 whenever θ1 ̸= θ2.

Modified Cauchy Principal Value. Let f : R≥0 → [−∞,+∞] be an extended real-valued
function with a finite set of poles T = {T1, T2, . . . , TN} (i.e. points t ∈ R≥0 at which f(t) = ±∞)
such that f is continuous on R≥0 \ T . Let 0 < T1 < · · · < TN . Let T ∈ T and let ε > 0 be small
enough such that (T − ε, T + ε) ∩ T = {T}. Recall that, provided the limit below exists, the

Cauchy principal value p.v.
∫ T+ε
T−ε f(t)dt is defined as

p.v.

∫ T+ε

T−ε
f(t)dt := lim

δ→0

[∫ T−δ

T−ε
f(t)dt+

∫ T+ε

T+δ
f(t)dt

]
.

Now, let εm > 0 be such that (Tm − εm, Tm + εm) ∩ T = {Tm} for m ∈ [N ]. Moreover, let
T0 = ε0 = 0 and TN+1 = +∞. Suppose f has finite Cauchy principal values at all poles. Then,
for any τ ≥ 0 such that τ /∈ T , we could define p.v.

∫ τ
0 f(t)dt as

p.v.

∫ τ

0
f(t)dt :=

∑

m:Tm+1<τ

[
p.v.

∫ Tm+εm

Tm−εm
f(t)dt+

∫ Tm+1−εm+1

Tm+εm

f(t)dt

]
+p.v.

∫ Tk+εk

Tk−εk
f(t)dt+

∫ τ

Tk+εk

f(t)dt,

where Tk < τ < Tk+1.

For our proofs of Lemma 2 and Theorem 3, we require a modification to the Cauchy principal
value. For the aforementioned function f with the described properties and for T ∈ T , ε > 0
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such that (T − ε, T + ε)∩T = {T}, we define the modified principal value m.p.v.
∫ T+ε
T−ε f(t)dt as

m.p.v.

∫ T+ε

T−ε
f(t)dt := lim

δ→0

[∫ T−δ

T−ε
f(t)dt · e δ

λ +

∫ T+ε

T+δ
f(t)dt · e− δ

λ

]
, (D.1)

where λ denotes our familiar MGF parameter. We also extend the m.p.v. definition to integrals∫ τ
0 f(t)dt for arbitrary τ ≥ 0 by mimicking the Cauchy-principal-value construction:

m.p.v.

∫ τ

0
f(t)dt :=

∑

m:Tm+1<τ

[
m.p.v.

∫ Tm+εm

Tm−εm
f(t)dt+

∫ Tm+1−εm+1

Tm+εm

f(t)dt

]

+ m.p.v.

∫ Tk+εk

Tk−εk
f(t)dt+

∫ τ

Tk+εk

f(t)dt,

where Tk < τ < Tk+1. Note that the above definition implies that whenever f has no poles on
an interval (a, b) ⊂ R≥0, then

m.p.v.

∫ b

a
f(t)dt =

∫ b

a
f(t)dt.

Additional Comments on the Discretisation of MGF(λ). Following our discussion from
Section 9.3, we want to point out that that there are other ways of discretising

λẅt + ẇt +∇F (wt) = 0.

Indeed, instead of discretising as (9.2) in the chapter:

λ
wk+1 − 2wk + wk−1

ε2
+
wk − wk−1

ε
+∇F (wk) = 0,

one could also consider a central first-order difference:

λ
wk+1 − 2wk + wk−1

ε2
+
wk+1 − wk−1

2ε
+∇F (wk) = 0.

Rearranging, this leads to

wk+1 = wk −
ε2

λ(1 + ε
2λ)
∇F (wk) +

1− ε
2λ

1 + ε
2λ

(wk − wk−1),

which corresponds to momentum with γ = ε2

λ(1+ ε
2λ

) and β =
1− ε

2λ
1+ ε

2λ
. Solving for ε and λ, we get

λ =
(1 + β)γ

2(1− β)2
and ε =

γ

1− β .

Hence, we obtain the same discretisation step ε as in Proposition 19 and a slightly different
expression for λ. However, note that the two versions of λ become indistinguishable for large
values of β since 1+β

2 →β→1 1. Experimentally, running MGF(λ) with the two different values
for λ leads to similar results. Thus, the discretisation scheme was chosen due to the more concise
definition of λ in this case.
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D.2 (w+, w−)-reparametrisation

MGF Reparametrisation. We recall that we consider momentum gradient flow MGF(λ) with
parameter λ > 0 over the diagonal-linear-network loss F ((u, v))) = L(u⊙ v):

λüt + u̇t +∇L(θt)⊙ vt = 0;

λv̈t + v̇t +∇L(θt)⊙ ut = 0.

For proof-writing convenience, we consider the simple reparametrisation outlined below.

In order to eliminate the cross-dependencies in (u, v) in the above equations, it is natural to
consider the quantities (w+,t, w−,t) where w±,t = ut ± vt for t ≥ 0. Hence, we get the following
reparametrised ODE: {

λẅ±,t + ẇ±,t ±∇L(θt)⊙ w±,t = 0;

w±,0 = u0 ± v0, ẇ±,0 = 0.
(D.2)

Notice that with these new quantities, we have

θt =
w2
+,t − w2

−,t
4

and ∆t = |w+,tw−,t|.

MGD Reparametrisation. For the discrete-time setting, we follow the same reparametrisa-
tion from the MGD recursion:

uk+1 = uk − γ∇L(θk)⊙ vk + β(uk − uk−1);

vk+1 = vk − γ∇L(θk)⊙ uk + β(vk − vk−1).

We let w±,k = uk ± vk for k ≥ 0. Then, for k ≥ 1, the equations above transform into

{
w±,k+1 = w±,k ∓ γ∇L(θk)⊙ w±,k + β(w±,k − w±,k−1);

w±,1 = w±,0 = u0 ± v0.
(D.3)

Again, with the newly defined quantities, we have

θk =
w2
+,k − w2

−,k
4

and ∆k = |w+,kw−,k|.

D.3 Continuous-time theorems

D.3.1 Convergence of momentum gradient flow

Momentum gradient flow (with λ > 0),

λẅt + ẇt +∇F (wt) = 0,

also known in the optimisation literature as the heavy-ball with friction ODE or the heavy-ball
dynamical system with constant damping coefficient, has been the object of extensive mathemat-
ical study over the years [Haraux and Jendoubi, 1998, Attouch et al., 2000, Alvarez, 2000, Goudou
and Munier, 2009, Polyak and Shcherbakov, 2017, Apidopoulos et al., 2022]. If we abstract away
from the diagonal linear network setting and consider an unspecified loss F ∈ C1(RD,R≥0) with
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locally Lipschitz gradient, we can still identify a useful Lyapunov function, which perhaps mo-
tivated the study of the ODE in the first place. The function in question happens to be the
energy of the system

Et = F (wt) +
λ

2
∥ẇt∥22, (D.4)

whose nonpositive time-derivative Ėt = −∥ẇt∥22 allows us to prove the global existence and
uniqueness of a solution to MGF [Attouch et al. [2000], Theorem 3.1] in this more general
setting. We note that by an easy inductive argument, when the function F is Ck-smooth, the
MGF solution wt is Ck+1-smooth. Hence, in our setting where the diagonal-neural-network loss
F is C∞-smooth, the learning trajectory wt is also C∞-smooth.

Convergence under Assumption 7.
Under the assumption of a bounded trajectory – wt ∈ L∞(0,∞), one can prove the following

convergences [Attouch et al., 2000]:

lim
t→∞

ẇt = lim
t→∞
∇F (wt) = 0.

However, even when bounded, the iterates wt need not converge as demonstrated by the coercive
function from Section 4.3 in [Attouch et al., 2000]. Nevertheless, when the loss F is also analytic,
as in the case of diagonal linear networks, assuming boundedness, one can further prove iterate
convergence limt→∞wt = w∞ [Haraux and Jendoubi [1998]].

Unfortunately, without assuming boundedness, iterate convergence has been established only
in the cases of convex loss [Alvarez [2000]], quasiconvex loss [Goudou and Munier [2009]], and
loss satisfying the Polyak-Lojasiewicz inequality [Apidopoulos et al. [2022]]. Thus, the square
loss for a diagonal linear network (and neural networks in general) falls out of the scope of these
few favorable cases due to non-convexity and an abundance of local and global minima. For that
reason, we posit Assumption 7, which holds true empirically in all our experiments on diagonal
linear networks.

Convergence to 0 Loss under Assumption 8.
Let us now go back to the specific case of diagonal linear networks where the loss is given by

F (w) = L(u⊙v) for w = (u, v). Notice that from the discussion above, if we assume boundedness
of the trajectory, we have

lim
t→∞
∇F (wt) = (∇L(θ∞)⊙ v∞,∇L(θ∞)⊙ u∞) = 0.

Therefore, since ∇L(θ∞)⊙∆∞ = 0, if the balancedness at infinity ∆∞ has nonzero coordinates,
we can conclude that ∇L(θ∞) = 0. Recalling that L is convex, we get that L(θ∞) = 0. Hence,
θ∞ interpolates the dataset.

D.3.2 Proof of time-varying momentum mirror flow

In our discussion in Appendix D.3.1, we saw that assuming

1) iterate boundedness: ut, vt ∈ L∞(0,∞), and

2) nonzero balancedness at infinity: ∆∞,i ̸= 0, ∀i ∈ [d],

we can prove that MGF over a diagonal linear network (9.4) converges to an interpolator θ∞.1

Before we jump into the proof of Proposition 21, we need to establish the following lemma.

1Note that we also refer to θ∞ as θMGF.

177



APPENDIX D. APPENDIX FOR CHAPTER 9

Lemma 34. Assuming that ut, vt ∈ L∞(0,∞) and ∆∞,i ̸= 0, ∀i ∈ [d], the following integral
limit exists:

lim
t→∞

∫ t

0
∇L(θs)ds =

∫ ∞

0
∇L(θt)dt.

Consequently,

lim
t→∞

∫ t

0
∇L(θs)e

− t−s
λ ds = 0.

Proof. Let us consider the (w+, w−)-reparametrisation of MGF (9.4) given by Equation (D.2):

λẅ±,t + ẇ±,t ±∇L(θt)⊙ w±,t = 0.

Since we assumed that ∆∞ has nonzero coordinates, there exists T ≥ 0 such that for all t ≥ T ,
w±,t have nonzero coordinates. Hence, for t ≥ T , we can safely divide by w±,t to obtain

λ
d2 ln |w±,t|

dt2
+

d ln |w±,t|
dt

±∇L(θt) + λ

(
ẇ±,t
w±,t

)2

= 0.

Let us notice a couple of things. First, as we discussed in Appendix D.3.1, the boundedness
of the iterates forces w±,t to converge to some vectors w±,∞ with nonzero coordinates since we
assumed the coordinates of ∆∞ = w+,∞w−,∞ are nonzero. Hence,

∥
ẇ2
±,t

w2
±,t
∥∞ ≤ const · (∥u̇2t ∥∞ + ∥v̇2t ∥∞),

where the RHS is integrable as we saw in the proof of Section 9.4.3. Second, from the discussion

in Appendix D.3.1, we know that limt→∞ ẇ±,t = 0, so limt→∞
d ln |w±,t|

dt = 0.
Now, for t ≥ T ,

∫ t

T
∇L(θs)ds = ∓

(
λ

∫ t

T

d2 ln |w±,s|
dt2

ds+

∫ t

T

d ln |w±,s|
dt

ds+

∫ t

T

(
ẇ±,t
w±,t

)2

ds

)

= ∓
(
λ

d ln |w±,s|
dt

∣∣∣
t

T
+ ln |w±,s|

∣∣∣
t

T
+

∫ t

T

(
ẇ±,t
w±,t

)2

ds

)
.

So, using the above observations and letting t→∞ yields

lim
t→∞

∫ t

T
∇L(θs)ds = ∓

(
−λd ln |w±,T |

dt
− ln |w±,T |+ ln |w±,∞| −

∫ ∞

T

(
ẇ±,t
w±,t

)2

dt

)
.

Thus, we conclude that limt→∞
∫ t
0 ∇L(θs)ds exists, and therefore, limt→∞

∫ t
0 ∇L(θs)e

− t−s
λ ds =

0.

We are now well-equipped to prove Proposition 21. We note that we phrased Proposition 21
rather succinctly in the chapter due to space considerations. In what follows, we restate Propo-
sition 21 by precisely specifying the underlying assumptions.

Proposition. Assume the solution (ut, vt) of MGF (9.4) is bounded. If we also assume that
the balancedness at infinity ∆∞ has nonzero coordinates, then there exists a time T ≥ 0, after
which the predictors θt = ut ⊙ vt follow a momentum mirror flow with time-varying potentials
Φt:

λ
d2∇Φt(θt)

dt2
+

d∇Φt(θt)

dt
+∇L(θt) = 0.

Furthermore, if we assume that the balancedness ∆t remains nonzero for t ∈ [0,+∞], then the
momentum mirror flow holds for every t ≥ 0.
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Proof. We will consider the (w+, w−)-reparametrisation of momentum gradient flow (9.4) intro-
duced in Appendix D.2. For convenience of the reader, we recall this reparametrisation here:

λẅ±,t + ẇ±,t ±∇L(θt)⊙ w±,t = 0.

Now, let ξ : R≥0 → Rd be the C∞(0,∞) solution of the following ODE:

λξ̈t + ξ̇t +∇L(θt) = 0,

with the constraint ξ0 = ξ̇0 = 0. Hence, by Lemma 36,

ξt = −
∫ t

0
∇L(θs)(1− e−

t−s
λ )ds,

and by Lemma 34,

ξ∞ = −
∫ ∞

0
∇L(θt)dt.

Thus, ξt ∈ span(x1, . . . , xn), ∀t ∈ [0,+∞].
Having fixed ξt, we define the quantities α±,t for every t ∈ [0,+∞] through the following

relation:
α±,t = w±,t exp(∓ξt).

So, ∆t = |w+,tw−,t| = |α+,tα−,t|. Furthermore,

θt =
1

4
(w2

+,t − w2
−,t)

=
1

4
(α2

+,t exp(2ξt)− α2
−,t exp(−2ξt))

=
1

2
∆t sinh

(
2ξt + ln

|α+,t|
|α−,t|

)

Since we assumed that ∆∞ has nonzero coordinates, there exists T ≥ 0 such that for all

t ≥ T , w±,t have nonzero coordinates. Hence, for t ≥ T , the logarithm ln
|α+,t|
|α−,t| is well-defined. If

we assume positive balancedness for t ∈ [0,+∞], then we can choose T = 0. From now until the
end of the proof, whenever a time-dependent quantity features division by ∆t, we will tacitly
assume that t ≥ T .

Let us now introduce the helper quantity ϕt through the following identity:

ϕt =
1

2
ln
|α+,t|
|α−,t|

=
1

2
arcsinh

(
α2
+,t − α2

−,t
2∆t

)
.

Then,
1

2
arcsinh

(
2θt
∆t

)
− ϕt = ξt ∈ span(x1, . . . , xn).

So, if we consider the time-varying potential

Φt(θ) =
1

4

d∑

i=1

(
2θiarcsinh

(
2θi
∆t,i

)
−
√

4θ2i + ∆2
t,i + ∆t,i

)
− ⟨ϕt, θ⟩

= ψ∆t(θ)− ⟨ϕt, θ⟩,
(D.5)

where ψ∆t is the hyperbolic entropy defined in Equation (9.6), then

∇Φt(θ) =
1

2
arcsinh

(
2θ

∆t

)
− ϕt.
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Notice that ∇2Φt = diag
(

1/
√

4θ2 + ∆2
t

)
≻ 0. Hence, Φt is a mirror map. Furthermore,

∇Φt(θt) = ξt for t ≥ T , so

λ
d2∇Φt(θt)

dt2
+

d∇Φt(θt)

dt
+∇L(θt) = 0.

D.3.3 Proof of Theorem 3

We are now ready to prove our main result for the implicit bias of momentum gradient flow on
diagonal linear networks.

Theorem 3. The solution θMGF of MGF (9.4) interpolates the dataset and satisfies the following
implicit regularisation:

θMGF = arg min
θ⋆∈S

Dψ∆∞
(θ⋆, θ̃0).

In the above expression, Dψ∆∞
denotes the Bregman divergence with potential ψ∆∞, where the

asymptotic balancedness equals

∆∞ = ∆0 ⊙ exp
(
− (I+ + I−)

)

and θ̃0 = 1
4(w2

+,0 ⊙ exp (−2I+)− w2
−,0 ⊙ exp (−2I−)) denotes a perturbed initialisation term.

We split the proof into two parts for conceptual clarity. In the first part, we utilise the time-
varying mirror flow from Proposition 21 to derive the implicit regularisation θMGF = arg min θ⋆∈S Dψ∆∞

(θ⋆, θ̃0).
Then, in the second part, we prove that the integral quantities I± from Lemma 2 are well-defined,
and we give the trajectory-dependent characterisations of the asymptotic balancedness ∆∞ and
the perturbed initialisation θ̃0.

Proof of Implicit Regularisation.

In Proposition 21, we proved that whenever the MGF trajectory is bounded and the coordinates
of ∆∞ are nonzero, there exists a time T ≥ 0, after which the predictors θt follow a momentum
mirror flow with potentials given by Equation (D.5). Recall that for t ≥ T ,

∇Φt(θt) =
1

2
arcsinh

(
2θ

∆t

)
− ϕt = −ξt ∈ span(x1, . . . , xn).

where ξt = −
∫ t
0 ∇L(θs)(1− e−

t−s
λ )ds, α±,t = w±,t exp(∓ξt), and ϕt = 1

2arcsinh

(
α2
+,t−α2

−,t

2∆t

)
.

Now, as t→∞, ξt and the MGF iterates converge, so we know that∇Φ∞(θ∞) ∈ span(x1, . . . , xn),
where Φ∞(θ) = ψ∆∞(θ)−⟨ϕ∞, θ⟩. Thus, we can use the familiar Bregman-Cosine-Theorem trick
to characterise the interpolator θ∞. We proceed with this characterisation.

Let θ̃0 be a perturbation term such that ∇Φ∞(θ̃0) = 0. Equivalently,

1

2
arcsinh

(
2θ̃0
∆2∞

)
− ϕ∞ = 0 ⇐⇒

arcsinh

(
2θ̃0
∆2∞

)
− arcsinh

(
α2
+,∞ − α2

−,∞
2∆2∞

)
= 0 ⇐⇒

θ̃0 =
α2
+,∞ − α2

−,∞
4

.
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Note that α±,∞ = w±,∞ exp(±
∫∞
0 ∇L(θt)dt) by Lemma 34 and ∆∞ = |α+,∞α−,∞|.

Now, let θ⋆ ∈ S be an arbitrary interpolator of the dataset. Then, θ⋆ − θ∞ ∈ ker(X) =
span(x1, . . . , xn)⊥. Hence, the Bregman Cosine Theorem yields

DΦ∞(θ⋆, θ̃0) = DΦ∞(θ⋆, θ∞) +DΦ∞(θ∞, θ̃0) + ⟨θ⋆ − θ∞,∇Φ(θ∞)−∇Φ(θ̃0)⟩
= DΦ∞(θ⋆, θ∞) +DΦ∞(θ∞, θ̃0),

where we used that ∇Φ(θ∞)−∇Φ(θ̃0) ∈ span(x1, . . . , xn). Thus,

θ∞ = arg min
θ⋆∈S

DΦ∞(θ⋆, θ̃0)

= arg min
θ⋆∈S

Φ∞(θ⋆).

Finally, notice that ∇ψ∆∞(θ̃0) = 1
2arcsinh

(
2θ̃0
∆∞

)
= ϕ∞ as we showed above. Hence,

Dψ∆∞
(θ, θ̃0) = Φ∞(θ)− ψ∆∞(θ̃0) + ⟨∇ψ∆∞(θ̃0), θ̃0⟩.

Thus, we conclude that

θ∞ = arg min
θ⋆∈S

Φ∞(θ⋆) = arg min
θ⋆∈S

Dψ∆∞
(θ⋆, θ̃0).

Proof of Trajectory-Dependent Characterisation.

We just showed that the recovered interpolator by MGF solves the constrained minimisation
problem θ∞ = arg min θ⋆∈S Dψ∆∞

(θ⋆, θ̃0), where ∆∞ = |α+,∞α−,∞|, θ̃0 = (α2
+,∞ − α2

−,∞)/4,

and α±,∞ = w±,∞ exp(±
∫∞
0 ∇L(θt)dt). Clearly, these opaque characterisations of ∆∞ and θ̃0

prevent us from describing how the magnitude of these quantities compares to the magnitude
of the initial balancedness ∆0 and the initialisation scale α = max(|u0|, |v0|). Ideally, we would
like to find formulas for ∆∞ and θ̃0 which show that θ̃0 ≪ θ⋆, ∀θ⋆ ∈ S and ∆∞ < ∆0 so
that we can conclude that θMGF ≈ arg min θ⋆∈S ψ∆∞(θ⋆) enjoys better sparsity guarantees than
θGF ≈ arg min θ⋆∈S ψ∆0(θ⋆). In what follows, we derive such formulas.

In our subsequent arguments, for a vector z ∈ Rd and a coordinate i ∈ [d], we will denote
with z(i) the ith coordinate of z in order to reduce the index bloat. Let us consider again the
(w+, w−)-reparametrisation of MGF discussed in Appendix D.2:

λẅ±,t + ẇ±,t ±∇L(θt)⊙ w±,t = 0. (D.6)

Notice that if for some T > 0 and i ∈ [d], w+,T (i) = 0, then ẇ+,T (i) must be nonzero. Indeed,
as we argued in Appendix D.3.1, MGF (9.4) admits a unique global solution. And if w+,T (i) =
ẇ+,T (i) = 0, then we could construct another solution (w′

+,t, w
′
−,t) of MGF such that w′

+,t(i) =
ẇ′
+,t(i) = 0, ∀t ≥ 0, and w±,T = w′

±,T . By uniqueness, we get that w±,t = w′
±,t, ∀t ≥ 0

However, the newly constructed solution will not be consistent with the imposed initialisation
∆0 ̸= 0,. Hence, ∆0 ̸= 0 prevents w+,t(i) and ẇ+(i) from hitting 0 simultaneously. Similarly,
this situation cannot occur for w−,t.

Until further notice, we fix a coordinate i ∈ [d] and consider eq. (D.6) only in the ith

coordinate without explicit mention. If w±,T = 0 for some T > 0, then ẇ±,T ̸= 0. Hence, for
some small ¿.0, ẇ±,t does not change sign on [T − ,.T + ]., so w±,t either strictly increases or
decreases on [T − ,.T + ].. Therefore, w±,t ̸= 0 on [T − ,.T + ]. \ {T} implying that w±,t equals 0 at
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most a countable number of times. Recall that by Assumption 8, there exists a time T∞ after
which w± does not change sign. Therefore, if we assume that w± vanishes on infinitely many
points T1 < T2 < · · · < T∞, then by compactness, the limit τ = limm→∞ Tm exists. Since w± is
continuous, we infer that w±,τ = 0. Moreover, by the Mean Value Theorem, for every m ≥ 1,
there exists T ′

m ∈ (Tm, Tm+1) such that ẇT ′
m

= 0. Notice that limm→∞ T ′
m = τ as well. Hence,

by continuity, w±,τ = ẇ±,τ = 0 – a contradiction.

Hence, w± vanishes on a finite set of points. Let us order these vanishing times as 0 < T1 <
· · · < TN and let T0 = 0 and TN+1 = +∞. Observe that for t /∈ T = {Ti : i ∈ [N ]}, we can
safely divide both sides of eq. (D.6) by w±,t to obtain

λ
ẅ±,t
w±,t

+
ẇ±,t
w±,t

±∇L(θt) = 0.

The last expression is equivalent to

λ

(
ẅ±,t
w±,t

−
(
ẇ±,t
w±,t

)2
)

+
ẇ±,t
w±,t

±∇L(θt) + λ

(
ẇ±,t
w±,t

)2

= 0,

which can be rewritten as

λ
d2 ln(sgn(w±,t)w±,t)

dt2
+

d ln(sgn(w±,t)w±,t)
dt

±∇L(θt) + λ

(
ẇ±,t
w±,t

)2

= 0.

Let us define a new function g± : R≥0\T → Rd through the relation g±,t = ln(sgn(w±,t)w±,t).
Then, g± is C∞-smooth on R≥0 \ T and satisfies the following ODE:

λg̈±,t + ġ±,t ±∇L(θt) + λ

(
ẇ±,t
w±,t

)2

= 0. (D.7)

Induction on Vanishing Times. Now, we proceed to prove by induction on N − 1 ≥ m ≥ 0
that for τ ∈ (Tm, Tm+1) the following 3 things hold:

• The following integral quantities2 exist and are finite:

m.p.v.

∫ τ

0

( ẇ±,t
w±,t

)2
e−

τ−s
λ sgn(w±,τw±,t)dt and

∫ τ

0
m.p.v.

∫ t

0

( ẇ±,s
w±,s

)2
e−

t−s
λ sgn(w±,tw±,s)ds dt.

• The following identity holds:

ġ±,τ = −m.p.v.

∫ τ

0

[( ẇ±,t
w±,t

)2
± 1

λ
∇L(θt)

]
e−

τ−t
λ sgn(w±,τw±,t)dt−

1

λ

m∑

k=1

(−1)m−ke−
τ−Tk

λ .

• The following identity holds:

g±,τ = g±,0 −
∫ τ

0
m.p.v.

∫ t

0

[( ẇ±,s
w±,s

)2
± 1

λ
∇L(θs)

]
e−

t−s
λ sgn(w±,tw±,s)ds dt

−
m∑

k=1

(−1)m−k
(

1− e−
τ−Tk

λ

)
+ 2

∑

1≤i<j≤m
(−1)j−i

(
1− e−

Tj−Ti
λ

)
.

2See Equation (D.1) for the definition of m.p.v.
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Recall that ∇L(θt) is a bounded function, so if the modified principal value from the first
bullet point exists, then the modified principal values in the above identities are also well-defined.

Base case: m = 0. Recall from the proof of Proposition 21 in Appendix D.3.2 that
ẇ± ∈ L2(0,∞). Now, since w±,t does not change signs on the interval (T0, τ), we know that
1/w±,t = Ω(1). Hence, ( ẇ±,s

w±,s

)2
e−

t−s
λ ∈ L1(0,∞).

Similarly,
(
ẇ±,s

w±,s

)2
is integrable on all intervals [Ti+ε, Ti+1−ε] for any small ε > 0. Consequently,

the integral quantities

m.p.v.

∫ τ

0

( ẇ±,t
w±,t

)2
e−

t−s
λ sgn(w±,τw±,t)dt =

∫ τ

0

( ẇ±,t
w±,t

)2
e−

t−s
λ dt

and
∫ τ

0
m.p.v.

∫ t

0

( ẇ±,s
w±,s

)2
e−

t−s
λ sgn(w±,tw±,s)ds dt =

∫ τ

0

∫ t

0

( ẇ±,s
w±,s

)2
e−

t−s
λ ds dt

=

∫ τ

0

( ẇ±,s
w±,s

)2
(1− e− τ−t

λ )dt

are well-defined. Moreover, after applying Lemma 36 to eq. (D.7), we get

ġ±,τ = −
∫ τ

0

( ẇ±,t
w±,t

)2
e−

τ−t
λ dt ∓ 1

λ

∫ τ

0
∇L(θt)e

− τ−t
λ dt

g±,τ = g±,0 − λ
∫ τ

0

( ẇ±,s
w±,s

)2
(1− e− τ−t

λ )dt ∓
∫ τ

0
∇L(θt)(1− e−

τ−t
λ )dt,

which concludes the proof of the base case.
Induction step: m → m + 1. For m ≥ 0, assume that for every τ ∈ [0, Tm+1) \ T the

expressions

ġ±,τ = −m.p.v.

∫ τ

0

[( ẇ±,t
w±,t

)2
± 1

λ
∇L(θt)

]
e−

τ−t
λ sgn(w±,τw±,t)dt−

1

λ

m∑

k=1

(−1)m−ke−
τ−Tk

λ

and

g±,τ = g±,0 −
∫ τ

0
m.p.v.

∫ t

0

[( ẇ±,s
w±,s

)2
± 1

λ
∇L(θs)

]
e−

t−s
λ sgn(w±,tw±,s)ds dt

−
m∑

k=1

(−1)m−k
(

1− e−
τ−Tk

λ

)
+ 2

∑

1≤i<j≤m
(−1)j−i

(
1− e−

Tj−Ti
λ

)
.

are true and well-defined. We now want to extend the validity of these identities to τ ∈
(Tm+1, Tm+2). For ease of notation during the induction step, let Tm+1 = T , w± = w, and
g± = g. Let ε > 0 and let T± = T ± ε.

Now, applying Lemma 36 to eq. (D.7) yields

ġτ = ġT+e
− τ−T+

λ −
∫ τ

T+

[( ẇt
wt

)2
± 1

λ
∇L(θt)

]
e−

τ−t
λ dt

gτ = gT+ + ġT+

∫ τ

T+

e−
t−T+

λ dt−
∫ τ

T+

∫ t

T+

[( ẇs
ws

)2
± 1

λ
∇L(θs)

]
e−

t−s
λ ds dt.
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For further ease of notation and with some abuse of notation, let ft =
(
ẇt
wt

)2
± 1

λ∇L(θt) on

R≥0 \ T . We will shortly prove that gT+ − gT− = O(ε) and ġT+ + ġT− + 1
λ = O(ε).3 Hence, the

following limits will hold:

ġτ = lim
ε→0

[
− 1

λ
e−

τ−T+
λ − ġT−e−

τ−T+
λ −

∫ τ

T+

fte
− τ−t

λ dt

]

gτ = lim
ε→0

[
gT− −

1

λ

∫ τ

T+

e−
t−T+

λ dt− ġT−
∫ τ

T+

e−
t−T+

λ dt−
∫ τ

T+

∫ t

T+

fse
− t−s

λ ds dt

]
.

Induction step for ġτ . Let us begin to untangle the first limit by substituting ġT− with its
integral formula given by the induction hypothesis. Notice that

ġT−e
− τ−T+

λ = −m.p.v.

∫ T−

0
fte

−T−−t

λ sgn(wT−wt)dt · e−
τ−T+

λ − e−
τ−T+

λ

λ

m∑

k=1

(−1)m−ke−
T−−Tk

λ

= m.p.v.

∫ T−

0
fte

− τ−t
λ sgn(wτwt)dt · e

2ε
λ +

e
2ε
λ

λ

m∑

k=1

(−1)(m+1)−ke−
τ−Tk

λ ,

where we used that sgn(τ) = −sgn(T−) since w changes signs at T . Hence, we have that

ġτ = − lim
ε→0

[ 1

λ
e−

τ−T+
λ +

e
2ε
λ

λ

m∑

k=1

(−1)(m+1)−ke−
τ−Tk

λ

+ m.p.v.

∫ T−

0
fte

− τ−t
λ sgn(wτwt)dt · e

2ε
λ +

∫ τ

T+

fte
− τ−t

λ sgn(wτwt)dt
]

= ∓
∫ τ

0

1

λ
∇L(θt)sgn(wτwt)−

1

λ

m+1∑

k=1

(−1)(m+1)−ke−
τ−Tk

λ

− lim
ε→0

[
m.p.v.

∫ T−

0

( ẇt
wt

)2
e−

τ−t
λ sgn(wτwt)dt · e

2ε
λ +

∫ τ

T+

( ẇt
wt

)2
e−

τ−t
λ sgn(wτwt)dt

]
,

where the limit on the last line formally equals the modified principal value m.p.v.
∫ τ
0

(
ẇt
wt

)2
e−

τ−s
λ sgn(wτwt)dt

whose existence we want to prove as part of the induction step. In fact, notice that we just proved

the existence of m.p.v.
∫ τ
0

(
ẇt
wt

)2
e−

τ−s
λ sgn(wτwt)dt since both ġτ and∓

∫ τ
0

1
λ∇L(θt)sgn(wτwt) are

finite quantities. Hence, for τ ∈ (Tm+1, Tm+2),

ġτ = −m.p.v.

∫ τ

0

[( ẇt
wt

)2
± 1

λ
∇L(θt)

]
e−

τ−t
λ sgn(wτwt)dt−

1

λ

m+1∑

k=1

(−1)(m+1)−ke−
τ−Tk

λ .

Induction step for gτ . We move on to untangle the limit which equals gτ . By the induction

3Whenever we write an equation of the form A = B +O(εr) for some r > 0, we mean that A = B +C, where
|C| = O(εr).
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hypothesis,

ġT− = −m.p.v.

∫ T−

0
fte

−T−−t

λ sgn(wT−wt)dt−
1

λ

m∑

k=1

(−1)m−ke−
T−−Tk

λ

gT− = g0 −
∫ T−

0
m.p.v.

∫ t

0
fse

− t−s
λ sgn(wtws)ds dt

−
m∑

k=1

(−1)m−k
(

1− e−
T−−Tk

λ

)
+ 2

∑

1≤i<j≤m
(−1)j−i

(
1− e−

Tj−Ti
λ

)
.

Again, we can substitute sgn(wT−) with −sgn(wτ ), and after performing the familiar integral
and limit manipulations, we obtain

gτ = g0 ∓
∫ τ

0

∫ t

0

1

λ
∇L(θs)e

− t−s
λ sgn(wtws)ds dt− lim

ε→0
[Aε +Bε + Cε]

−
m+1∑

k=1

(−1)(m+1)−k
(

1− e−
τ−Tk

λ

)
+ 2

∑

1≤i<j≤m+1

(−1)j−i
(

1− e−
Tj−Ti

λ

)
,

where

Aε =

∫ T−

0
m.p.v.

∫ t

0

( ẇs
ws

)2
e−

t−s
λ sgn(wtws)ds dt

Bε =

∫ τ

T+

m.p.v.

∫ T−

0

( ẇs
ws

)2
e−

t−s
λ sgn(wtws)ds dt · e 2ε

λ

Cε =

∫ τ

T+

∫ t

T+

( ẇs
ws

)2
e−

t−s
λ sgn(wtws)ds dt.

Figure D.1: A visualisation of the areas over which we integrate
(
ẇs
ws

)2
e−

t−s
λ sgn(wtws) in the

above limit.

Notice that formally the limit limε→0[Aε +Bε + Cε] equals the integral quantity

∫ τ

0
m.p.v.

∫ t

0

( ẇs
ws

)2
e−

t−s
λ sgn(wtws)ds dt,
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whose existence we just proved as a consequence of the fact that

g0 ∓
∫ τ

0

∫ t

0

1

λ
∇L(θs)e

− t−s
λ sgn(wtws)ds dt−

m+1∑

k=1

(−1)(m+1)−k
(

1− e−
τ−Tk

λ

)

+ 2
∑

1≤i<j≤m+1

(−1)j−i
(

1− e−
Tj−Ti

λ

)
− gτ

is well-defined and finite. Thus, for τ ∈ (Tm+1, Tm+2),

gτ = g0 −
∫ τ

0
m.p.v.

∫ t

0

[( ẇs
ws

)2
± 1

λ
∇L(θs)

]
e−

t−s
λ sgn(wtws)ds dt

−
m+1∑

k=1

(−1)(m+1)−k
(

1− e−
τ−Tk

λ

)
+ 2

∑

1≤i<j≤m+1

(−1)j−i
(

1− e−
Tj−Ti

λ

)
.

Proof of bounds. In order to conclude the induction step, we still have to prove the following
bounds:

gT+ − gT− = O(ε) and ġT+ + ġT− +
1

λ
= O(ε).

Recall that gT±ε = log |wT±ε| and that wT = 0, ẇT ̸= 0. From the Taylor expansion of wt, we
know that

wT±ε = ±εẇT +O(ε2).

Hence, |wT+ε/wT−ε| = 1 +O(ε). Therefore, using the Taylor expansion of the logarithm around
1, we get that

|gT+ − gT− | = | log(1 +O(ε))| = O(ε).

Now, recall that ġT±ε = ẇT±ε/wT±ε and observe that

wT±ε = ±εẇT +
1

2
ε2ẅT +O(ε3)

ẇT±ε = ẇT ± εẅT +O(ε2).

Hence,
wT+εẇT−ε + wT−εẇT+ε

wT+εwT−ε
=
−ε2ẇT ẅT +O(ε3)

−ε2ẇ2
T +O(ε3)

=
ẅT
ẇT

+O(ε).

Since, λẅT + ẇT ±∇L(θT ) ⊙ wT = 0 and wT = 0, we get that ẅT
ẇT

= − 1
λ , which concludes the

induction step.

Proof of Lemma 2. Thus, we proved that for τ ∈ (Tm, Tm+1), m ∈ {0, 1, . . . , N},

ln |wτ | = ln |w0| −
∫ τ

0
m.p.v.

∫ t

0

[( ẇs
ws

)2
± 1

λ
∇L(θs)

]
e−

t−s
λ sgn(wtws)ds dt

−
m∑

k=1

(−1)m−k
(

1− e−
τ−Tk

λ

)
+ 2

∑

1≤i<j≤m
(−1)j−i

(
1− e−

Tj−Ti
λ

)
.

Recall that throughout our inductive proof we worked with a fixed coordinate i ∈ [d] of w±.
Different coordinates of w± vanish at different points in time, so writing the sum the last line
in a coordinate-agnostic way becomes impossible. Thus, deriving a simple expression for the
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full d-dimensional vector w±,τ for any τ ∈ R≥0 also becomes impossible. However, remember-
ing that the finite nonzero limits limτ→∞ |w±,τ | = |w±,∞| exist and letting τ → ∞ yields an
interesting result for the weights at infinity. Indeed, notice that for every vanishing time T ,

limτ→∞
(

1− e−
τ−Tk

λ

)
= 1. Hence,

1

λ

N∑

k=1

(−1)N−k
(

1− e−
τ−Tk

λ

)
= 1{N− odd}.

For every i ∈ [d], let N±(i) denote the number of vanishing points for the coordinate w±(i). Let
us define the d-dimensional parity vectors P± ∈ {0, 1}d such that P±(i) ≡ N±(i) mod 2. Let
us also define the d-dimensional vectors Q± ∈ Rd such that for each coordinate k ∈ [d],

Q±(k) := −2
∑

1≤i<j≤N±(k)

(−1)j−i
(

1− e−
T±,k(j)−T±,k(i)

λ

)
,

where 0 < T±,k(1) < · · · < T±,k(N±(k)) denote the vanishing times of the weight w±(k). Hence,
we obtain the formula

|w±,∞| = |w±,0|e−(P±+Q±) exp

(
−
∫ ∞

0
m.p.v.

∫ t

0

[( ẇ±,s
w±,s

)2
± 1

λ
∇L(θs)

]
e−

t−s
λ sgn(w±,tw±,s)ds dt

)
.

(D.8)
Recall that in Lemma 34, we proved that the limit

lim
t→∞

∫ t

0
∇L(θs)ds =

∫ ∞

0
∇L(θt)dt =

1

λ

∫ ∞

0

∫ t

0
∇L(θs)e

− t−s
λ ds dt

exists and is finite. Therefore, we can decouple
(
ẇ±,s

w±,s

)2
and ∇L(θs) from the above integral

and show that the following integral limits exist and are finite:

∫ ∞

0
m.p.v.

∫ t

0

( ẇ±,s
w±,s

)2
e−

t−s
λ sgn(w±,tw±,s)ds dt and

∫ ∞

0

∫ t

0
∇L(θs)e

− t−s
λ sgn(w±,tw±,s)ds dt.

Hence, the integral quantities Ø± from Lemma 2 are well-defined and finite. Thus, we finally
proved Lemma 2.

Trajectory-Dependent Characterisation. We started this section with a promise for more
insightful representations of ∆∞ = |α+,∞α−,∞| and θ̃0 = (α2

+,∞ − α2
−,∞)/4. We now deliver on

that promise.

Recall that α±,∞ = w±,∞ exp
(
±
∫∞
0 ∇L(θt)dt

)
and notice that

∫ ∞

0

∫ t

0
∇L(θs)e

− t−s
λ ds dt−

∫ ∞

0

∫ t

0
∇L(θs)e

− t−s
λ sgn(w±,tw±,s)ds dt = 2

∫ ∞

0

∫ t

0
∇L(θs)e

− t−s
λ 1{w±,tw±,s<0}ds dt.

Hence, using the formula for w± from Equation (D.8), we derive the following:

|α±,∞| = |w±,0|e−(P±+Q±) ⊙ exp

(
−
∫ ∞

0
m.p.v.

∫ t

0

( ẇ±,s
w±,s

)2
e−

t−s
λ sgn(w±,tw±,s)ds dt

)

⊙ exp

(
± 2

λ

∫ ∞

0

∫ t

0
∇L(θs)e

− t−s
λ 1{w±,tw±,s<0}ds dt

)
.
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Now, let

Λ± := ∓ 2

λ

∫ ∞

0

∫ t

0
∇L(θs)e

− t−s
λ 1{w±,tw±,s<0}ds dt+ P± +Q±, (D.9)

where the quantities P± and Q± were defined in the previous paragraph. Notice that as we
promised underneath Lemma 2, Λ± vanish whenever the balancedness ∆t remains strictly pos-
itive. Using the abbreviation I± = Ø± + Λ±, we get that

|α±,∞| = |w±,0| ⊙ exp (−I±) .

Multiplying |α+,∞| by |α−,∞|, we derive a formula for the asymptotic balancedness:

∆∞ = ∆0e
−(P++P−+Q++Q−) ⊙ exp

(
−
∫ ∞

0
m.p.v.

∫ t

0

[( ẇ+,s

w+,s

)2
+

1

λ
∇L(θs)

]
e−

t−s
λ sgn(w+,tw+,s)ds dt

)

⊙ exp

(
−
∫ τ

0
m.p.v.

∫ t

0

[( ẇ−,s
w−,s

)2
− 1

λ
∇L(θs)

]
e−

t−s
λ sgn(w−,tw−,s)ds dt

)

⊙ exp

(
2

λ

∫ ∞

0

∫ t

0
∇L(θs)e

− t−s
λ
[
1{w+,tw+,s<0} − 1{w−,tw−,s<0}

]
ds dt

)
.

(D.10)

Now, we can write ∆∞ and θ̃0 more succinctly as

∆∞ = ∆0 ⊙ exp
(
− (I+ + I−)

)

and

θ̃0 =
1

4

(
w2
+,0 ⊙ exp (−2I+)− w2

−,0 ⊙ exp (−2I−)
)
,

which concludes the proof of Theorem 3.

Consequences for Generalisation.

We just proved that whenever MGF on a diagonal linear network converges and the balanced-
ness at infinity is nonzero, we can characterize the recovered interpolator through the implicit
regularization problem

θMGF = arg min
θ⋆∈S

Dψ∆∞
(θ⋆, θ̃0)

= arg min
θ⋆∈S

[
ψ∆∞(θ⋆)− ⟨∇ψ∆∞(θ̃0), θ

⋆⟩
]
.

Since

ψ∆∞(θ) =
1

4

d∑

i=1

(
2θiarcsinh

(
2θi

∆∞,i

)
−
√

4θ2i + ∆2
∞,i + ∆∞,i

)

and

∇ψ∆∞(θ) =
1

2
arcsinh

(
2θ

∆∞

)
,

for a small asymptotic balancedness ∆∞ = O(∆0) = O(α2) and small perturbed initialisation
|θ̃0| = O(α2)≪ |θ⋆|, we would expect ψ∆∞(θ⋆) to dominate ⟨∇ψ∆∞(θ̃0), θ

⋆⟩. More formally, for
a fixed θ⋆ ∈ S and small ∆∞ and θ̃0, we have the following asymptotic equivalence:

ψ∆∞(θ⋆) ∼
α→0

Dψ∆∞
(θ⋆, θ̃0).
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Hence, θMGF ≈ arg min θ⋆∈S ψ∆∞(θ⋆) = θGF∆∞
as we discussed in Section 9.4.1. So, if ∆∞ < ∆0,

Lemma 35 implies that the MGF predictor will benefit from better sparsity guarantees than the
GF solution.

Therefore, to recap, for a small initialisation scale α and provided that the bounds ∆∞ =
O(α2) and θ̃0 = O(α2) hold, we conclude that the asymptotic balancedness at infinity ∆∞
roughly controls the sparsity of the recovered interpolator. And when ∆∞ < ∆0, θ

MGF will be
sparser than θGFα . Unfortunately, without the assumption that the balancedness ∆t remains
strictly positive for all t ∈ [0,+∞], we cannot formally compare ∆∞ and θ̃0 with α.

Note that even without the bounds ∆∞ = O(α2) and θ̃0 = O(α2), if |θ̃0| ≪ |θ⋆|, then ψ∆∞(θ⋆)
still dominates ⟨∇ψ∆∞(θ̃0), θ

⋆⟩. Indeed, our experiments clearly show that the perturbation
term θ̃0 can safely be ignored since θMGF ≈ arg min θ⋆∈S ψ∆∞(θ⋆) (see the discussion around
Figure D.4.)

D.3.4 Non-vanishing balancedness

If we work under the assumption that the balancedness ∆t = |w+,tw−,t| never vanishes, then
much of the analysis from Appendix D.3.3 greatly simplifies. First, the integral quantities P±
and Q± from the previous subsection become 0. Second, the multipliers sgn(w±,tw±,s) become
equal to 1 for all t, s ∈ R≥0. Hence, using Fubini’s Theorem as in the proof of Lemma 36, we
get that
∫ τ

0
m.p.v.

∫ t

0

[( ẇs
ws

)2
± 1

λ
∇L(θs)

]
e−

t−s
λ sgn(wtws)ds dt

=

∫ τ

0

∫ t

0

[( ẇs
ws

)2
± 1

λ
∇L(θs)

]
e−

t−s
λ ds dt

= λ

∫ τ

0

( ẇt
wt

)2 (
1− e− τ−t

λ

)
dt±

∫ τ

0
∇L(θt)

(
1− e− τ−t

λ

)
dt.

Therefore, referencing eq. (D.8), we can express the evolution of the iterates as follows:

w±,τ = w±,0 exp

(
−λ
∫ τ

0

( ẇ±,t
w±,t

)2 (
1− e− τ−t

λ

)
dt

)
exp

(
∓
∫ τ

0
∇L(θs)

(
1− e− τ−t

λ

)
dt

)
.

(D.11)
Thus, the balancedness evolves as

∆t = ∆0 exp

(
−λ
∫ τ

0

[( ẇ+,t

w+,t

)2
+
( ẇ−,t
w−,t

)2](
1− e− τ−t

λ

)
dt

)
. (D.12)

Now, from Lemma 34, we know that
(
ẇ±,t

w±,t

)2
is integrable and that

lim
τ→∞

∫ τ

0
∇L(θs)

(
1− e− τ−t

λ

)
dt =

∫ ∞

0
∇L(θs)dt

exists. Furthermore, from Lemma 37, we know that that

lim
τ→∞

∫ τ

0

( ẇ±,t
w±,t

)2 (
1− e− τ−t

λ

)
dt =

∫ ∞

0

( ẇ±,t
w±,t

)2
)dt.

Therefore, letting τ →∞, we obtain the formulas

w±,τ = w±,0 exp

(
−λ
∫ ∞

0

( ẇ±,t
w±,t

)2
dt

)
exp

(
∓
∫ ∞

0
∇L(θs)dt

)
(D.13)

∆∞ = ∆0 exp

(
−λ
∫ ∞

0

[( ẇ+,t

w+,t

)2
+
( ẇ−,t
w−,t

)2]
dt

)
. (D.14)
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Hence, clearly, ∆∞ < ∆0.

Finally, let us consider how the perturbed initialisation θ̃0 looks like when ∆t remains
nonzero. Recall that θ̃0 = (α2

+ − α2
−)/4, where α±,∞ = w±,∞ exp

(
±
∫∞
0 ∇L(θt)dt

)
. Thus,

α±,∞ = w±,0 exp

(
−λ
∫ ∞

0

( ẇ±,t
w±,t

)2
dt

)

and

θ̃0 =
1

4

[
w2
+,0 exp

(
−2λ

∫ ∞

0

( ẇ+,t

w+,t

)2
dt

)
− w2

,0 exp

(
−2λ

∫ ∞

0

( ẇ−,t
w−,t

)2
dt

)]
. (D.15)

Now, α±,∞ < w±,0 ≤ 2α, where α = max(∥u0∥∞, ∥v0∥∞) stood for the initialisation scale.
Hence, |θ̃0| < α2.

Therefore, we just proved

Corollary 2. For λ > 0, if the balancedness ∆t remains strictly positive during training (i.e.
∆t ̸= 0 for t ∈ [0,+∞]), then the perturbed initialisation satisfies |θ̃0| < α2 and

∆∞ = ∆0 ⊙ exp
(
− λ

∫ ∞

0

( ẇ+,t

w+,t

)2
+
( ẇ−,t
w−,t

)2
dt
)
.

Importantly, ∆∞ < ∆0.

D.3.5 Behaviour of ∆∞ for small values of λ

Since a precise asymptotic result for small λ is technically difficult, in this section we focus on
giving some qualitative results. For λ > 0, recall that our iterates follow

λẅ
(λ)
±,t + ẇ

(λ)
±,t ±∇L(θ

(λ)
t )⊙ w(λ)

±,t = 0,

where we explicitly highlight the dependency on λ. Therefore, we have

ẇ
(λ)
±,t

w
(λ)
±,t

= ∓∇L(θ
(λ)
t )− λ

ẅ
(λ)
±,t

w±,t

and
( ẇ(λ)

±,t

w
(λ)
±,t

)2
= ∇L(θ

(λ)
t )2 + λ2

( ẅ(λ)
±,t

w±,t

)2
± 2λL(θ

(λ)
t )
( ẅ(λ)

±,t
w±,t

)
.

Informally, we expect (t 7→ ∇L(θ
(λ)
t ))0<λ≤1 ∈ L2(0,+∞) and (t 7→ λ

ẅ
(λ)
±,t

w±,t
)λ −→

λ→0
0 in L2-norm

(see Theorem 5.1 in Attouch et al. [2000]). Hence, we get

∫ ∞

0

( ẇ(λ)
±,t

w
(λ)
±,t

)2
∼
λ→0

∫ ∞

0
∇L(θ

(λ)
t )2dt

and

∆∞ ≈
λ→0

∆0 exp
(
− 2λ

∫ ∞

0
∇L(θ(λ)s )2ds

)
.
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D.4 Discrete time results

In this section, we cover the proofs of our discrete-time results from Section 9.5. We first recall
the SMGD recursion (D.3) with the w±-parametrisation from Appendix D.2. Initialised at
w±,0 = w±,1 ∈ Rd, for k ≥ 1, the iterates follow

w±,k+1 = w±,k ∓ γ∇LBk
(θk)⊙ w±,k + β(w±,k − w±,k−1). (D.16)

In what follows, we will adapt our continuous-time proof technique to the discrete case and
identify a quantity which follows a momentum mirror descent with time-varying potentials. Our
proofs closely follow the proof techniques from Even et al. [2023] which considers SGD without
momentum.

D.4.1 Proof of Lemma 3, Theorem 4 and Corollary 3

We start by recalling the chapter’s results. The first lemma introduces two convergent series
which will appear in our main result.

Lemma 3. The following two sums S+ and S− converge to finite vectors:

S± =
1

1− β
∞∑

k=1

[
r
(w±,k+1

w±,k

)
+ βr

( w±,k
w±,k+1

)]
,

where r(z) = (z − 1)− ln(|z|) for z ̸= 0.

The proof of the lemma can be found in the proof of the following main theorem.

Theorem 4. The solution θSMGD of SMGD (9.9) interpolates the dataset and satisfies the fol-
lowing implicit regularisation:

θSMGD = arg min
θ⋆∈S

Dψ∆∞
(θ⋆, θ̃0).

In the above expression, Dψ∆∞
denotes the Bregman divergence with potential ψ∆∞, where the

asymptotic balancedness equals

∆∞ = ∆0 ⊙ exp
(
− (S+ + S−)

)

and θ̃0 = 1
4(w2

+,0 ⊙ exp(−2S+))− w2
−,0 ⊙ exp(−2S−)) denotes a perturbed initialisation term.

Proving Convergence towards an Interpolator. By Assumption 9, we have that the
iterates w±,k converge towards limiting weights w±,∞ and that the predictors converge towards
a vector θMGF. Taking the limit in Equation (D.16), we get that limk→∞∇LBk

(θk) ⊙ w±,k =
0. By Assumption 10, w±,∞ have non-zero coordinates. Therefore, limk→∞∇LBk

(θk) = 0.
For any fixed batch B ⊂ {1, · · · , n}, the sampling with or without replacement is such that
(almost surely) the set Mk := {k ≥ 0,Bk = B} is infinite. Hence, by continuity of ∇LB,
limk→∞,k∈Mk

∇LB(θk) = ∇LB(θSMGD). Therefore, for all fixed batches B, ∇LB(θSMGD) = 0 and
hence θSMGD interpolates the dataset.

From here on now, for ease of notation, we do the proof for deterministic MGD. The proof
for stochastic MGD is exactly the same after replacing ∇L(θk) with ∇LBk

(θk).
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Deriving the Momentum Mirror Descent. Recall that the set of pairs (γ, β) such that
there exists k where w±,k = 0 is negligible in R2. We can hence assume that the iterates are
never exactly zero, and we consider the logarithmic reparametrisation of the iterates w±,k as

g±,k =

{
ln(w±,k), if w±,k > 0,

ln(|w±,k|) + iπ, if w±,k < 0.

This way we have that that w±,k = exp(g±,k) for all k. Equation (D.16) then becomes

exp(g±,k+1) = exp(g±,k)∓ γ∇L(θk)⊙ exp(g±,k) + β(exp(g±,k)− exp(g±,k−1)).

Dividing by exp(g±,k) yields

exp(g±,k+1 − g±,k) = 1∓ γ∇L(θk) + β(1− exp(−(g±,k − g±,k−1)).

Now, for k ≥ 1, let δ±,k = g±,k − g±,k−1 so that we can more compactly write the above
recurrence as

exp(δ±,k+1) = 1∓ γ∇L(θk) + β(1− exp(−δ±,k)).

The trick, inspired by Even et al. [2023], is to consider the function q(z) = exp(z)− (1 + z) for
z ∈ C. Importantly, note that q(z) ≥ 0 for z ∈ R. Using this function, we can now rewrite the
recurrence as

δ±,k+1 + q(δ±,k+1) = ∓γ∇L(θk) + β(δ±,k − q(−δ±,k)).

Setting the residues Q±,k := q(δ±,k+1) + βq(−δ±,k) leads to

δ±,k+1 = βδ±,k ∓ γ∇L(θk)−Q±,k.

This can be seen as a first-order recurrence relation with variable coefficients. For β = 0 we
exactly recover the analysis from Even et al. [2023]. For β > 0, since δ±,1 = 0, for m ≥ 1, we
can expand the relation as

δ±,m+1 = −
m∑

k=1

βm−k [±γ∇L(θk) +Q±,k] .

Summing over m, we now get for N ≥ 1 the following expression:

g±,N+1 − g±,1 =

N∑

m=1

δ±,m+1

= −
N∑

m=1

m∑

k=1

βm−k [±γ∇L(θk) +Q±,k]

Finally, taking the exponential for N ≥ 1, we obtain

w±,N+1 = w±,0 exp

(
−

N∑

m=1

m∑

k=1

βm−k [±γ∇L(θk) +Q±,k]

)

= w±,0 exp

(
±

N∑

m=1

m∑

k=1

βm−kQ±,k

)
exp

(
∓γ

N∑

m=1

m∑

k=1

βm−k∇L(θk)

)

= w±,0 exp

(
− 1

1− β
N∑

m=1

(1− βN+1−m)Q±,m

)
exp

(
∓ γ

1− β
N∑

m=1

(1− βN+1−m)∇L(θm)

)
,
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where the last equality is obtained by changing the order of summation. Following our continuous-
time approach, for N ≥ 2, we define α±,N+1 as

α±,N+1 := w±,0 exp

(
±

N∑

m=1

m∑

k=1

βm−kQ±,k

)

= w±,0 exp

(
− 1

1− β
N∑

m=1

(1− βN+1−m)Q±,m

)
.

(D.17)

We can now write the iterates w±,k as

w±,N+1 = α±,N+1 exp
(
∓ γ

N∑

m=1

m∑

k=1

βm−k∇L(θk)
)
.

Thus, the regression parameter θN becomes

θN+1 =
1

4
(w2

+,N+1 − w2
−,N+1)

=
1

4
α2
+,N+1 exp

(
− 2γ

N∑

m=1

m∑

k=1

βm−k∇L(θk)
)
− 1

4
α2
−,N+1 exp

(
2γ

N∑

m=1

m∑

k=1

βm−k∇L(θk)
)

=
1

2
∆N+1 sinh

(
−2γ

N∑

m=1

m∑

k=1

βm−k∇L(θk) + arcsinh

(
α2
+,N+1 − α2

−,N+1

2∆N+1

))
,

where we recall that ∆N = |w+,Nw−,N | = |α+,Nα−,N |. Hence, similar to the continuous case,

1

2
arcsinh

(
2θN+1

∆N+1

)
− 1

2
arcsinh

(
α2
+,N+1 − α2

−,N+1

2∆N+1

)
= −γ

N∑

m=1

m∑

k=1

βm−k∇L(θk).

For N ≥ 1, the above identity becomes exactly

∇ΦN+1(θN+1) = −γ
N∑

m=1

m∑

k=1

βm−k∇L(θk), (D.18)

where the time-varying potential ΦN : Rd → R is defined as

ΦN (θ) =
1

4

d∑

i=1

(
2θiarcsinh

(
2θi

∆N,i

)
−
√

4θ2i + ∆2
N,i + ∆N,i

)
+ ⟨ϕN , θ⟩

= ψ∆N
(θ) + ⟨ϕN , θ⟩,

where ϕN = 1
2arcsinh

(
α2
+,N−α2

−,N

2∆N

)
and ψ∆N

is the hyperbolic entropy defined in Equation (9.6).

Notice that with this definition we arrive at the following time-varying momentum mirror descent
for N ≥ 1:

∇ΦN+1(θN+1) = ∇ΦN (θN )− γ∇L(θN ) + (
¯
∇ΦN (θN )−∇ΦN−1(θN−1)). (D.19)

Convergent Quantities. From Lemma 38, we have that α±,N must converge and that the
limiting vectors α±,∞ have non-zero coordinates. Therefore, the series

∑∞
m=1

∑m
k=1 β

m−kQ±,k
are convergent and their terms must hence converge to zero:

∑m
k=1 β

m−kQ±,k −→
m→∞

0. Therefore,

α±,N → α±,∞ = w±,0 exp

(
− 1

1− β
∞∑

m=1

Q±,m

)
.
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We now develop the formulas for Q±,m in order to arrive at the sums S± from Lemma 3.
Recall that for m ≥ 1, Q±,m = q(δ±,m+1) + βq(−δ±,m) and δ±,1 = q(δ±,1) = 0. Therefore,

∞∑

m=1

Q±,m =
∞∑

m=1

q(δ±,m+1) + βq(−δ±,m)

=
∞∑

m=1

q(δ±,m+1) + βq(−δ±,m+1).

Since δ±,m+1 = g±,m+1 − g±,m, we have

δ±,m+1 =





ln
(
w±,m+1

w±,m

)
if w±,m+1 and w±,m have the same sign,

ln
(∣∣∣w±,m+1

w±,m

∣∣∣
)

+ sgn(w±,m)iπ if they have different signs.

It remains to notice that since q(z) = exp(z)− (1 + z), we get that

q(ln(z)) = (z − 1)− ln(z) for z ∈ R>0,

q(ln(|z|)± iπ) = (z − 1)− (ln(|z|)± iπ) for z ∈ R<0.

Therefore letting r(z) = (z − 1)− ln(|z|) as in Lemma 3, we get

q(δ±,m+1) = r
(w±,m+1

w±,m

)
− ξ±,msgn(w±,m)iπ

q(−δ±,m+1) = r
( w±,m
w±,m+1

)
+ ξ±,msgn(w±,m)iπ,

where ξ±,m = 0 if sgn(w±,m+1) = sgn(w±,m) and 1 otherwise. This leads to

1

1− β
∞∑

m=1

Q±,m =
1

1− β
∞∑

m=1

[
r
(w±,m+1

w±,m

)
+ βr

( w±,m
w±,m+1

)]
−

∞∑

m=1

ξ±,msgn(w±,m)iπ

= S± −
∞∑

m=1

ξ±,msgn(w±,m)iπ <∞.

The last equality is due to the definition of S± from Lemma 3, and the last inequality is due to
the summability of (Q±,m)m. This therefore proves lemma Lemma 3. Now notice that

α2
±,∞ = w2

±,0 exp (−2S±) .

Since ∆∞ = |α+,∞α−,∞|, we finally get that

∆∞ = ∆0 ⊙ exp
(
− (S+ + S−)

)
.

Implicit Regularisation Problem. Notice that

∇ΦN+1(θN+1) = −γ
N∑

m=1

m∑

k=1

βm−k∇L(θk) ∈ span(x1, · · · , xn).

Let Φ∞(θ) := ψ∆∞(θ) + ⟨ϕ∞, θ⟩ and consider

∇Φ∞(θMGD) = (∇Φ∞(θMGD)−∇Φ∞(θN )) + (∇Φ∞(θN )−∇ΦN (θN )) +∇ΦN (θN ).
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The first two terms converge to 0: the first due to the convergence θN → θMGD and the sec-
ond due to the uniform convergence of ∇ΦN to ∇Φ∞ on compact sets. The last term is in
span(x1, · · · , xn) for all N . Therefore, we get that ∇Φ∞(θ∞) ∈ span(x1, · · · , xn), and follow-
ing the exact same proof as in the continuous-time framework, we finally get that

θMGD = arg min
θ⋆∈S

Dψ∆∞
(θ⋆, θ̃0)

where

θ̃0 =
α2
+,∞ − α2

−,∞
4

=
1

4

(
w2
+,0 ⊙ exp (−2S+)− w2

−,0 ⊙ exp (−2S−)
)
.

We recall and prove the following corollary.

Corollary 3. For γ, β > 0, if the iterates w±,k = (uk ± vk) do not change sign during training,
then |θ̃0| < α2 and ∆∞ < ∆0.

Proof. The corollary follows from the fact that if the iterates w±,k do not change sign, then since
r(z) ≥ 0 for z > 0, we get that S± > 0 and ∆∞ < ∆0. Furthermore, |θ̃0| < max(w2

+,0, w
2
−,0)/4 ≤

α2

D.4.2 Link to the continuous-time result.

In this subsection we link our continuous results with the discrete when the iterates do not cross
zero. Indeed, at first sight, the discrete-time expression for ∆∞ might seem quite different from
its continuous-time counterpart:

∆MGD
∞ = ∆0 exp

(
− 1

1− β
∞∑

k=1

[
r

(
w+,k+1

w+,k

)
+ r

(
w−,k+1

w−,k

)]
+ β

[
r

(
w+,k

w+,k+1

)
+ r

(
w−,k

w−,k+1

)])

∆MGF
∞ = ∆0 exp

(
−λ
∫ ∞

0

(
ẇ+,t

w+,t

)2

+

(
ẇ−,t

w−,t

)2

dt

)
.

However, upon closer inspection, by letting the discretisation step ε =
√
lγ = γ

(1−β) from Propo-
sition 19 go to 0, we can recover the continuous-time result. Indeed, as ε → 0, we expect suc-
cessive iterates w±,k to be close and hence w±,k+1/w±,k ≈ 1. Now, since r(z) ∼z→1 (z − 1)2/2,
we roughly have

r
(w±,k+1

w±,k

)
≈ 1

2

(w±,k+1 − w±,k
w±,k

)2

and

r
( w±,k
w±,k+1

)
≈ 1

2

(w±,k+1 − w±,k
w±,k+1

)2 ≈ 1

2

(w±,k+1 − w±,k
w±,k

)2

Putting the approximations together:

1

1− β
∑

k

[
r
(w±,k+1

w±,k

)
+ βr

( w±,k
w±,k+1

)]
≈ 1

2

ε(1 + β)

1− β
∑

k

(
w±,k+1 − w±,k

ε

)2 1

(w±,k)2
· ε

≈ 1 + β

2

γ

(1− β)2

∫ ∞

0

(
ẇ±,t
w±,t

)2

dt

=
1 + β

2
λ

∫ ∞

0

(
ẇ±,t
w±,t

)2

dt.
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Notice that in order for λ to remain constant and ε to go to 0, we must both have γ → 0
and β → 1. Hence, (1 + β)/2 → 1, and we recover the continuous-time expression for the
balancedness.

However, note that when the iterates cross zero it is unclear to the authors how the continuous
formula and its discrete counterpart compare.

Another Safe-Check Computation. Recall that MGD with stepsize γ and momentum
parameter β corresponds to the discretisation of MGF with λ = γ/(1 − β)2 and discretisation
step ε =

√
λγ. To check the consistency between the discrete time equations and continuous

time equations, we look at the value of exp(− t−s
λ ) and times ’t = mε’ and ’s = kε’:

exp(− t− s
λ

) = exp(−(m− k)ε

λ
)

= exp(−(m− k)(1− β))

= [exp(β − 1)]m−k

∼β→1 β
m−k.

This small computation serves as a safe-check, affirming the correspondence between the continuous-
time analysis expression exp(− t−s

λ ) and its discrete-time counterpart βm−k.

D.5 Technical lemmas

In this section we present various technical lemmas which allow us to prove our main results.
For ∆ ∈ Rd>0, we recall the definition of the hyperbolic entropy function ψ∆ : Rd → R at scale
∆:

ψ∆(θ) =
1

4

d∑

i=1

(
2θiarcsinh

(
2θi
∆i

)
−
√

4θ2i + ∆2
i + ∆i

)
.

The following lemma shows that the potential behaves as the ℓ1-norm as ∆ approaches 0.

Lemma 35. For θ ∈ Rd the following asymptotic equivalence holds:

ψ∆(θ) ∼
∆→0

1

4

d∑

i=1

ln

(
1

∆i

)
|θi|.

Proof. The lemma easily follows from the asymptotic convergence

arcsinh(x) ∼
|x|→∞

sgn(x) ln |x|.

The following lemma is a classical result which gives a closed-form expression to the solution
of a first order ODE.

Lemma 36. Let f : R≥0 → Rd be a differentiable function and let g : R≥0 → Rd be a continuous
function such that for some λ ̸= 0,

λḟ + f + g = 0, ∀t ∈ R≥0.

Then,

f(t) = f(0)e−
t
λ − 1

λ

∫ t

0
g(s)e−

(t−s)
λ ds.
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Moreover, we have the following formula for the integral of f(t):

∫ T

0
f(t)dt = λf(0)(1− e−T

λ )−
∫ T

0
g(t)(1− e−

(T−t)
λ )dt.

Proof. If we integrate the identity d
dt

[
f(t)et/λ

]
= − 1

λg(t)et/λ, we get that

f(t) = f(0)e−
t
λ − 1

λ

∫ t

0
g(s)e−

(t−s)
λ ds.

As for the second part of the lemma, notice that

∫ T

0
f(t)dt =

∫ T

0

[
f(0)e−

t
λ − 1

λ

∫ t

0
g(s)e−

(t−s)
λ ds

]
dt.

Hence, using Fubini, we get

∫ T

0

∫ t

0
g(s)e−

(t−s)
λ dsdt =

∫ T

0

∫ T

0
g(s)1s≤t(s, t)e−

(t−s)
λ dsdt

=

∫ T

0
g(s)

∫ T

0
1s≤t(s, t)e−

(t−s)
λ dtds

=

∫ T

0
g(s)

∫ T

s
e−

(t−s)
λ dtds

=

∫ T

0
g(s)l(1− e−

(T−s)
λ )ds,

which concludes the proof of the lemma.

The following lemma gives various properties on integrability and convergence of the solution
f of the aforementioned ODE.

Lemma 37. Let f : R≥0 → Rd be a differentiable function such that f(0) = 0 and let g : R≥0 →
Rd be a continuous function such that for some λ ̸= 0,

λḟ + f + g = 0, ∀t ∈ R≥0.

If g ∈ L∞(0,+∞), then f ∈ L∞(0,+∞) and ∥f∥∞ ≤ ∥g∥∞. Moreover, if g ∈ L1(0,+∞), then
the following hold:

• f ∈ L1(0,+∞) and
∫ t
0 |f(s)|ds ≤

∫ t
0 |g(s)|ds, ∀t ∈ [0,+∞];

• lim
t→∞

f(t) = 0;

•
∫ ∞

0
f = −

∫ ∞

0
g.

Proof. First, assume g ∈ L∞(0,∞). From Lemma 36, we have that f(t) = − 1
λ

∫ t
0 g(s)e−

(t−s)
λ ds.

Hence,

|f(t)| ≤ ∥g∥∞
λ

∫ t

0
e−

(t−s)
λ ds

= ∥g∥∞(1− e−t/λ) ≤ ∥g∥∞,
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which proves the first assertion.

Second, assume g ∈ L1(0,∞). Then, |f(t)| ≤ 1
λ

∫ t
0 |g(s)|e− (t−s)

λ ds. Therefore,

∫ t

0
|f(s)|ds ≤

∫ t

0
|g(s)|(1− e−

(t−s)
λ )ds

≤
∫ t

0
|g(s)|ds ≤ ∥g∥L1 .

Moving on, we will show that limt→∞ f(t) = 0. Recall that f(t) = − 1
λ

∫ t
0 g(s)e−

(t−s)
λ ds.

Then,

∣∣∣∣
∫ t

0
g(s)e−

(t−s)
λ ds

∣∣∣∣ =

∣∣∣∣∣

∫ t/2

0
g(s)e−

(t−s)
λ ds+

∫ t

t/2
g(s)e−

(t−s)
λ ds

∣∣∣∣∣

≤ e− t
2λ

∫ t/2

0
|g(s)|ds+

∫ ∞

t/2
|g(s)|ds

t→∞−−−→ 0.

Finally, notice that

lim
t→∞

[
λ

∫ t

0
ḟ +

∫ t

0
(f + g)

]
= 0 ⇐⇒

λ lim
t→∞

f(t) +

∫ ∞

0
(f + g) = 0 ⇐⇒

∫ ∞

0
f +

∫ ∞

0
g = 0,

where we used that limt→∞ f(t) = 0 and the linearity of the Lebesgue integral.

With the help of Lemma 36 and Lemma 37, we can finally prove Section 9.4.3, which considers
ODE (9.4) and establishes the positivity of the balancedness for small λ.

For λ ≤ n
∥y∥22
· (mini≤d ∆0,i), the balancedness ∆t never vanishes: ∆t ̸= 0, ∀t ∈ [0,+∞].

Proof. We consider MGF(λ) with the diagonal-linear-network loss F (w) = L(u ⊙ v), where
w = (u, v). From the energy of the system, defined in Equation (D.4) as Et = F (wt) + λ

2∥ẇt∥22
with derivative Ėt = −∥ẇt∥22, we get that

L(θt) =
∥y∥22
2n
− λ

2
∥ẇt∥22 −

∫ t

0
∥ẇs∥22ds.

Hence, since the LHS of the above equation is nonnegative, we get
∫ ∞

0
∥ẇt∥2dt ≤

∥y∥2
2n

.

Therefore, ∫ ∞

0
|u̇2t − v̇2t |dt <

∥y∥2
2n

1.

Consequently, u̇2t − v̇2t ∈ L1(0,∞). Now, notice that from ODE (9.4), we obtain

l(ütut − v̈tvt) + (u̇tut − v̇tvt) = 0 ⇐⇒

λ
d

dt
(u̇tut − v̇tvt) + (u̇tut − v̇tvt)− l(u̇2t − v̇2t ) = 0.
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Applying Lemma 36 yields

u̇tut − v̇tvt =

∫ t

0
(u̇2s − v̇2s)e−

(t−s)
λ ds

and

u2t − v2t = ∆0 + 2λ

∫ t

0
(u̇2s − v̇2s)(1− e−

(t−s)
λ )ds. (D.20)

Applying Lemma 37 allows us to conclude that for every t ∈ [0,+∞],

∆t ≥ ∆0 − 2λ

∫ t

0
|u̇2s − v̇2s |ds

> ∆0 −
λ∥y∥22
n

1 ≥ 0,

where the last inequality is due to the inequality assumption over λ.

Our final technical lemma helps with the proof of Theorem 4. The definition of the quantities
Q±,m can be found in the proof of this theorem.

Lemma 38. The quantities α±,N defined in eq. (D.17):

α±,N+1 = α exp

(
− 1

1− β
N∑

m=1

(1− βN+1−m)Q±,m

)
,

converge as N →∞ to vectors α±,∞ with non-zero coordinates.

Proof. From Assumption 9 and Assumption 10, we have that the iterates w±,N converge towards
vectors w±,∞ such that ∆∞ = |w+,∞ ⊙ w−,∞| has non-zero coordinates. This means that there
exists N0 > 0 such that w±,N do not change sign for N ≥ N0. Consequently, the imaginary
parts of g±,N are constant (equal to 0 or π depending on the sign of w±,∞) for N ≥ N0, and
δ±,N ∈ R for N ≥ N0. This finally means that Q±,N ≥ 0 for N ≥ N0 and

N∑

m=1

(1− βN+1−m)Q±,m =

N0∑

m=1

(1− βN+1−m)Q±,m +

N∑

m=N0+1

(1− βN+1−m)Q±,m

The first term converges to
∑N0

m=1Q±,m as N → ∞. The second term is increasing because
Q±,N are positive for N ≥ N0 and (1− βN+1−m) is increasing. Therefore, the second term also
converges to a finite value since otherwise α±,∞ = 0, which contradicts ∆∞ = |α+,∞α−,∞| ≠
0.

D.6 Additional experiments

In this section of the appendix, we clarify experimental details and discuss additional experi-
ments.

D.6.1 MGF: a good continuous surrogate

Most of our experiments deal with 2-layer diagonal networks, but before we constrain ourselves
to that tractable setting, we present a couple of experiments on more general architectures.
These experiments highlight our observation from Section 9.3 that MGF(λ) serves as a good
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continuous proxy for MGD(γ, β) even for complicated non-convex losses F and large step sizes
γ. We provide evidence for that conclusion by showing that the single parameter λ = γ/(1−β)2

controls the generalisation performance of models trained with MGD(γ, β).

Teacher-Student Fully Connected Network. We detail the experimental setting which
leads to Figure 9.2. We consider a teacher-student setup where the teacher is a one-hidden-layer
fully-connected ReLU network with 5 hidden neurons and the student is a one-hidden-layer fully-
connected ReLU network with 20 hidden neurons. We randomly generate 15 inputs xi ∈ R2

according to a standard multivariate normal distribution. Each yi corresponds to the output by
the teacher network on input xi. The student is trained using momentum gradient descent with a
square loss. Figure 9.2 corresponds to the test loss after the student reaches 10−5 training error.
Each grid point corresponds to the same data set and initialisation of the student network. We
observe that the quantity λ = γ

(1−β)2 aligns well with the level lines of the test loss as expected

from Proposition 19.

Deep Linear Network. The network used for Figure D.2 contains 5 layers with widths (30, 60,
120, 60, 1) and was trained for 1000 epochs for each pair of momentum parameter β and step size
γ. Each network weight was randomly initialised according to N (0, 0.12) with fixed randomness

for each (γ, β)-trial. The training data was chosen as follows: (xi)
n
i=1

i.i.d.∼ N (µ1, σ2Id) and
yi = ⟨xi, θ⋆s⟩ for i ∈ [n] where θ⋆s is s-sparse with nonzero entries equal to 1/

√
s, where (n, d, s) =

(20, 30, 5) and (µ, σ) = (1, 1). We show results averaged over 5 replications.

Figure D.2: Test and train loss of a fully connected deep linear network trained with MGD(γ, β)
in a noiseless sparse overparametrised regression setting. The test loss appears considerably
correlated with the intrinsic parameter λ = γ/(1 − β)2, evincing that MGF(λ) approximates
MGD(γ, β) sufficiently well even on complex architectures.

2-Layer Diagonal Linear Network. The plots from Figure D.3 were obtained for a 2-
layer diagonal linear network trained in the noiseless sparse overparametrised regression setting
described above. The first network layer was initialised with the uniform initialisation α1,
where α = 0.01, and the weights of the second layer were set to 0. The momentum gradi-
ent flow evolution of the weights was simulated with the default version of the ODE solver
scipy.integrate.odeint.
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Figure D.3: Left : Decimal logarithm of the test loss of a 2-layer diagonal linear network
trained with MGD(γ, β) for 1 million epochs. Right : Decimal logarithm of the test loss of a
2-layer diagonal linear whose weights evolved according to MGF(λ) – where λ = γ/(1 − β)2

– and converged to an interpolator of the training dataset. We observe an almost one-to-one
correspondence in terms of generalisation capacity, which demonstrates that MGF(λ) serves as
a suitable continuous surrogate for MGD(γ, β) in the diagonal linear setting.

D.6.2 Experiments with diagonal linear networks

Having seen empirical proof that MGF(λ) approximates well the optimisation trajectory of
MGD(γ, β) on complicated models, we proceed with experiments that illustrate the conclusions
of our results for 2-layer diagonal linear networks. In particular, we provide experimental evi-
dence that both in the continuous and discrete-time cases, the recovered interpolators by MGD
and MGF satisfy

θMGF/MGD = arg min
θ⋆∈S

Dψ∆∞
(θ⋆, θ̃0) ≈ arg min

θ⋆∈S
ψ∆∞(θ⋆),

as we explain underneath Theorem 3, Theorem 4, and in Appendix D.3.3. Indeed, we observe
that the perturbation term θ̃0 can be safely ignored even without the assumption of strictly
positive balancedness. The asymptotic balancedness ∆∞ then uniquely controls the properties
of the recovered solution. We now specify our experimental setting.

Experimental Details. We work in the noiseless sparse overparametrised regression setting
with uncentered data. More precisely, we let (xi)

n
i=1

i.i.d.∼ N (µ1, σ2Id) and yi = ⟨xi, θ⋆s⟩ for i ∈ [n]
where θ⋆s is s-sparse with nonzero entries equal to 1/

√
s. We train a 2-layer diagonal linear

network with (M)GD and (M)GF with the uniform initialisation u0 = α1, where α = 0.01 and
v0 = 0. In order to simulate gradient flow or momentum gradient flow on the network weights,
we use the vanilla version of the ODE solver scipy.integrate.odeint. For most of the
incoming plots, we have fixed (n, d, s, σ) = (20, 30, 5, 1) and we let µ ∈ {0, 0.5, 1, 1.5}. In what
follows, all plots show results averaged over 5 replications.

Continuous-Time Plots

We first present a set of 3 continuous-time plots (Figure D.4) for the setting where the input
data follows a Gaussian distribution N (µ1, Id) with µ = 1.
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Experimental Setup. For a sampled dataset (X, y), we train our diagonal network with
MGF(λ), λ ∈ [0, 1], and initialisation (u0, v0) = (α · 1, 0) until convergence to an interpolator 4

θMGF. During the training of MGF(λ), we also take note of whether the balancedness ∆t remains
strictly positive at all times, thereby checking the explanatory range of Section 9.4.3. Having
completed the MGF training, we plot the Test Loss of θMGF, the ℓ2-Norm of ∆∞, and the
ℓ1-Norm of θMGF in order to visualise the gain in generalisation performance.

Insignificance of θ̃0. Now, recall from Theorem 3 that θMGF = arg min θ⋆∈S Dψ∆∞
(θ⋆, θ̃0)

and that for ∥θ̃0∥∞ ≪ ∥θMGF∥∞, Dψ∆∞
(θ⋆, θ̃0) ≈ ψ∆∞(θ⋆). We proved that for small values

of λ, the balancedness remains strictly positive at all times, which allowed us to show that
∥θ̃0∥∞ < α2. We conjecture that θMGF ≈ arg min θ⋆∈S ψ∆∞(θ⋆) continues to hold for larger
values of λ. We experimentally test this claim by measuring the precise distance between θMGF

and θGF∆∞
= arg min θ⋆∈S ψ∆∞(θ⋆). Indeed, we initialise a gradient flow with initial balancedness

equal to ∆∞ and such that θ0 = 0, which converges to the predictor θGF∆∞
as discussed in

Section 9.4.1. Hence, we can calculate the Normalised Distance between θMGF and θGF∆∞
equal to ∥θMGF−θGF∆∞

∥2/∥θGF∆∞
∥2, and we obtain that ∥θMGF−θGF∆∞

∥2/∥θGF∆∞
∥2 < 0.01 for λ ∈ (0, 1).

Figure D.4: Continuous-time experiments on uncentered data with mean µ = 1. Here, θMGF

denotes the interpolator recovered by MGF(λ) and ∆∞ stands for the balancedness at infinity
for MGF(λ). We observe that the test loss and sparsity of θMGF correlate with the magnitude of
∆∞ as predicted by Theorem 3.

Insights from Continuous-Time Experiments. First, we observe that no matter the mean
of the data distribution5 or the size of λ ∈ (0, 1), the normalised distance between θMGF and
θGF∆∞

is always upper-bounded by 0.01. Hence, we can empirically confirm our conjecture from
Theorem 3 that θMGF ≈ θGF∆∞

for larger λ when the balancedness changes sign. Second, we see that
regardless of the mean of the dataset, the balancedness at infinity (i.e., the effective initialisation
∆∞) controls the generalisation behavior of the recovered interpolator. We can explain this
observation again through the approximate equivalence θMGF ≈ arg min θ⋆∈S ψ∆∞(θ⋆).

The Effect of the Data Mean. In Figure D.5, we summarise our empirical results for data
with various means. Notice that there exists a difference between the generalisation behavior
for centered and uncentered data. Indeed, for centered data (top left), the key quantity λ has
little impact on the sparsity of the recovered solution. This circumstance is reminiscent of the
observations from Nacson et al. [2022] and Even et al. [2023]. However, for uncentered data, we

4We know that θMGF interpolates the dataset (X, y) because we also record the Train Loss (θMGF), which falls
under 10−20.

5We performed the continuous-time experiments depicted in Figure D.5 for data with mean µ = 0, 0.5, 1, 1.5.
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Figure D.5: We observe that for uncentered data the magnitude of the balancedness at infinity
∆∞ correlates with the test loss of the interpolator selected by MGF(λ). However, this rela-
tionship breaks for centered data.

observe an interval IDx = (0, λmax) (which depends on the data distribution Dx) for which MGF
with λ ∈ IDx outperforms GF in terms of generalisation. Furthermore, there appears to exist
a constant λ⋆Dx

∈ IDx (roughly corresponding to the minimum magnitude of ∆∞) which brings
about the most improvement compared to gradient flow. We note that the following tendency
seems to hold empirically:

lim
|µ|→+∞

λ⋆Dx
= 0.

Discrete-Time Plots

For the sake of brevity6, we only present a single set of plots for the discrete-time noiseless
sparse recovery given in Figure 9.4. Our input data follows a unit-mean Gaussian distribution
N (1, Id).

Experimental Setup. For a sampled dataset (X, y) and hyperparameter pair (,
¯
γ), we train

our 2-layer diagonal linear network with MGD(γ, β) initialised at (u0, v0) = (α1, 0) for 1 million
epochs (which suffices for convergence7). During the MGD(γ, β) training, we also take note
of whether the iterates w±,k change sign or not thereby checking the explanatory range of
Corollary 3. Having completed the MGD training, we plot the Test Loss of θMGD, the ℓ2-Norm
of ∆∞, and the ℓ1-Norm of θMGD in order to visualise the gain in generalisation performance.

Insignificance of θ̃0. Recall from Theorem 4 that θMGD = arg min θ⋆∈S Dψ∆∞
(θ⋆, θ̃0). Again, we

6We performed discrete-time experiments for data with means µ = 0, 0.5, 1, 1.5.
7Again, we record the Train Loss (θMGDγ,βα), which falls under 10−8.
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want to characterise the recovered interpolator as θMGD ≈ arg min θ⋆∈S ψ∆∞(θ⋆). In order to verify
empirically that the effect of the perturbation term is negligible, we follow the same strategy as
in the continuous-time case. We initialise a gradient flow with initial balancedness equal to ∆∞
and θ0 = 0, which converges to the predictor θGF∆∞

as discussed in Section 9.4.1. Hence, we can
calculate the Normalised Distance between θMGD and θGF∆∞

equal to ∥θMGDγ,,
¯
α−θGF∆∞

∥2/∥θGF∆∞
∥2,

and we find that ∥θMGDγ,,
¯
α − θGF∆∞

∥2/∥θGF∆∞
∥2 < 0.01 for all pairs (γ, β) in Figure 9.4. This exper-

imentally shows that θMGD ≈ arg min θ⋆∈S ψ∆∞(θ⋆) and that the asymptotic balancedess is the
key quantity which predicts the recovered solution.

Insights from Discrete-Time Experiments. As predicted by Theorem 4, a more balanced
solution (center plot) leads to a solution with a lower ℓ1-norm (right plot), which in turn trans-
lates to better generalisation (left plot). Finally, as proven in Corollary 3, the trajectories for
which the iterates do not cross zero satisfy ∆∞ < ∆0, where ∆0 (approximately) corresponds to
the asymptotic balancedness for the pair (,

¯
γ) = (0, 10−3) in the bottom left corner of the center

plot. Clearly, the pairs (,
¯
γ) for which w±,k do not change sign lead to better generalisation than

the pair (0, 10−3). Again, we note that for centered data the story changes, and we lose the
clear correspondence between small ∥∆∞∥2 and small ∥θMGD∥1.
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Appendix for Chapter 10

Organisation of the Appendix.

1. In Appendix E.1, we provide the proofs of the existence and uniqueness of (MF), of the
convergence of the loss, the divergence of the iterates and the proof of Lemma 5.

2. In Appendix E.2, we provide all the proofs concerning the construction of the horizon
shape and that of our main Theorems 6 and 7.
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E.1 Proofs of properties of the mirror flow in the classification setting

We start by proving Lemma 4 which ensures the existence and unicity of (MF).

Lemma 4. For any initialisation β0 ∈ Rd, there exists a unique solution defined over R≥0 which
satisfies (MF) for all t ≥ 0 and with initial condition βt=0 = β0.

Proof. First note that the two first points of Assumption 12 correspond to the definition of a
Legendre function (see Rockafellar [1970], Chapter 26). It follows that the Fenchel conjugate ϕ∗

is also a Legendre function and that the gradient ∇ϕ is a bijection over Rd with (∇ϕ)−1 = ∇ϕ∗.
Note that the existence of a global solution of (MF) is a priori not obvious. To prove it, we

first consider the following differential equation:

dut = −∇L(∇ϕ∗(ut))dt, (E.1)

with initial condition ut=0 = ∇ϕ∗(β0).
Since L is C2, ∇L is Lipschitz on all compact sets. Furthermore, since ∇2ϕ is p.s.d., ∇ϕ∗ =

(∇ϕ)−1 is C1 and therefore Lipschitz on all compact sets. Hence ∇L ◦ ∇ϕ∗ is Lipschitz on all
compact sets and from the Picard-Lindelöf theorem, there exists a unique maximal (i.e. which
cannot be extended) solution (ut) satisfying eq. (E.1) such that ut=0 = ∇ϕ∗(β0). We denote
[0, Tmax) the intersection of this maximal interval of definition (which must be open) and R≥0.
Our goal is now to prove that Tmax = +∞. To do so, we assume that Tmax is finite and we
will show that this leads to a contradiction due to the fact that the iterates βt cannot diverge
in finite time. Let βt := ∇ϕ∗(ut) and notice that βt is therefore the unique solution satisfying
(MF) over [0, Tmax) with βt=0 = β0.

Bounding the trajectory of βt over [0, Tmax). Pick any β ∈ Rd and notice that by convexity
of L:

d

dt
Dϕ(β, βt) = −⟨∇L(βt), βt − β⟩ ≤ −(L(βt)− L(β)) ≤ L(β)− Lmin.

Where Lmin is a lower bound on the loss. Integrating from 0 to t < Tmax we get:

Dϕ(β, βt) ≤ t · (L(β)− Lmin) +Dϕ(β, β0)

≤ Tmax · (L(β)− Lmin) +Dϕ(β, β0)

Therefore, due to Assumption 12, the iterates βt are bounded over [0, Tmax). The proof from
here is standard (see e.g. Attouch et al. [2000], Theorem 3.1): from eq. (E.1) we get that u̇t is
bounded over [0, Tmax) and supt∈[0,Tmax) ∥u̇t∥ =: C < +∞ which means that ∥ut−ut′∥ ≤ C|t−t′|.
Hence limt→Tmax ut =: u∞ must exist. Applying the Picard-Lindelöf again at time Tmax with
initial condition u∞ violates the initial maximal interval assumption. Therefore Tmax = +∞
which concludes the proof.

We now recall and prove classical results on the mirror flow in the classification setting.

Proposition 22. Considering the mirror flow (βt)t≥0, the loss converges towards 0 and the
iterates diverge: lim

t→∞
L(βt) = 0 and lim

t→∞
∥βt∥ = +∞.

Proof. The loss is decreasing. d
dtL(βt) = −⟨∇L(βt), β̇t⟩ = −⟨∇2ϕ(βt)

−1∇L(βt),∇L(βt)⟩ ≤ 0,
where the inequality is due to the convexity of the potential ϕ.
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Convergence of the loss towards 0. Now consider the Bregman divergence between an
arbitrary point β and βt:

Dϕ(β, βt) = ϕ(β)− ϕ(βt)− ⟨∇ϕ(βt), β − βt⟩ ≥ 0.

which is such that:

d

dt
Dϕ(β, βt) = ⟨ d

dt
∇ϕ(βt), βt − β⟩

= −⟨∇L(βt), βt − β⟩
≤ −(L(βt)− L(β)) (E.2)

where the inequality is by convexity of the loss. Integrating and due to the decrease of the loss,
we get that:

L(βt) ≤
1

t

∫ t

0
L(βs) ds

≤ L(β) +
Dϕ(β, β0)−Dϕ(β, βt)

t

≤ L(β) +
Dϕ(β, β0)

t

Since this is true for all point β, we get that L(βt) ≤ infβ∈Rd L(β) +
Dϕ(β,β0)

t . It remains to
show that the right hand term goes to 0 as t goes to infinity. To show this, let ε > 0, by
the separability assumption we get that there exists β⋆ such that min yi⟨xi, β⋆⟩ > 0. Since
L(λβ⋆) −→

λ→∞
0, we can choose λ big enough such that L(λβ⋆) < ε and then tλ large enough such

that 1
tλ
Dϕ(λβ⋆, β0) < ε. The loss therefore converges to 0.

Divergence of the iterates. For all i ∈ [n], ℓ(yi⟨xi, βt⟩) ≤ L(βt) −→
t→∞

0. Due to the assump-

tions on the loss, this translates into yi⟨xi, βt⟩ −→
t→∞

∞, hence ∥βt∥ −→
t→∞

+∞.

In the following lemma we recall and prove that a coordinate q∞[k] must be equal to 0 if
datapoint xk is not a support vector of β̄∞.

Lemma 39. For some function Ct →∞, if the iterates β̄t = βt
Ct

converge towards a vector which

we denote β̄∞ and qt converges towards a vector q∞ ∈ [0, 1]n. Then it holds that:

q∞[k] = 0 if yk⟨xk, β̄∞⟩ > min
1≤i≤n

yi⟨xi, β̄∞⟩.

In words, q∞[k] = 0 if xk is not a support vector.

Proof. Recall that

q(βt) =
ℓ′(Zβt)

ℓ′(ℓ−1(
∑

i ℓ(yi⟨xi, βt⟩)))
. (E.3)

From Proposition 22, we have that mini∈[n] yi⟨xi, β̄∞⟩ > 0 and we denote this margin as γ.
Now consider k ∈ [n] which is not a support vector, i.e, yk⟨xk, β̄∞⟩ > mini∈[n] yi⟨xi, β̄∞⟩ and
without loss of generality assume that y1⟨x1, β̄∞⟩ = min1≤i≤n yi⟨xi, β̄∞⟩. We denote by δ =
⟨ykxk − y1x1, β̄∞⟩ > 0 the gap. Then

q(βt)k =
ℓ′(Ct⟨xk, β̄t⟩)

ℓ′(ℓ−1(
∑

i ℓ(Ctyi⟨xi, β̄t⟩)))

≤ ℓ′(Ctyk⟨xk, β̄t⟩)
ℓ′(Cty1⟨x1, β̄t⟩)

207



APPENDIX E. APPENDIX FOR CHAPTER 10

We write β̄t = β̄∞ + rt where (rt)t≥0 ∈ Rd converges to 0. For t big enough, we have that
yk⟨xk, β̄t⟩ ≥ yk⟨xk, β̄∞⟩ − δ

4 and y1⟨x1, β̄t⟩ ≤ y1⟨x1, β̄∞⟩+ δ
4 . Therefore for t large enough, since

ℓ′ is negative and increasing:

q(βt)[k] ≤ ℓ′(Ct(yk⟨xk, β̄∞⟩ − δ/4))

ℓ′(Ct(y1⟨x1, β̄∞⟩+ δ/4))

≤ ℓ′(Ct(γ + δ/2 + δ/4))

ℓ′(Ct(γ + δ/2))
−→
t→∞

0,

where the last term converge to 0 due to the exponential tail of −ℓ′ and that Ct →∞.

We here reformulate and prove Lemma 5.

Lemma 40 (Reformulation of Lemma 5). Denoting a(βt) := −ℓ′(ℓ−1(
∑

i ℓ(yi⟨xi, βt⟩))) > 0, we

have that
∫ t
0 a(βs)ds −→

t→∞
+∞. For ℓ(z) = exp(−z), this translates to

∫ t
0 L(βs)ds→∞.

Proof. Recall that ∇ϕ(βt) = ∇ϕ(β0) + Z⊤ ∫ t
0 a(βs)q(βs)ds, therefore

∥∇ϕ(βt)∥ ≤ ∥∇ϕ(β0)∥+

n∑

i=1

∥xi∥
∫ t

0
a(βs)q(βs)[i]ds

≤
( n∑

i=1

∥xi∥
) ∫ t

0
a(βs)ds.

Where the first inequality is due to the triangle inequality and the second to the fact q(β) ∈
(0, 1]n. Since the iterates diverge, we have from assumption 12 that ∥∇ϕ(βt)∥ −→

t→∞
∞ and

therefore that
∫ t
0 a(βs)ds −→

t→∞
+∞.
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E.2 Differed proofs on the construction of ϕ∞

As mentioned in the main text, the following property highlights the fact that all ‘reasonable’
potentials have a horizon shape.

If any of the three following conditions hold: (i) ϕ is a finite composition of polynomials,
exponentials and logarithms, (ii) ϕ is globally sub-analytic, (iii) ϕ is definable in a o-minimal
structure on R; then ϕ admits a horizon shape S∞.

Proof. Note that points (i) and (ii) are particular cases of (iii) [Dries, 1998, Bolte et al., 2007].
If h is definable in a o-minimal structure, then so is the sublevel set Sc for c > 0, and so is the
normalization factor Rc since it can be defined in first-order logic as

Rc = {r ∈ R : ∃β∗ ∈ Sc, ∥β∗∥ = r and ∀β ∈ Sc, ∥β∥ ≤ r}.

Therefore, (S̄c)c>0 if a definable family of definable and compact sets. Then so is the family
(S̄t−1)t∈(0,1]. Since all the sets belong to the unit ball of Rd, they lie in the sets of compact
subsets of B(0, 1). This set is compact for the Hausdorff metric [Aliprantis and Border, 2006,
Thm 3.85]; therefore, there exists a sequence (tk)k∈N such that tk → 0 and (S̄t−1

k
)k∈N converges

to some set S̄.
We can then apply Corollary 2 of Kocel-Cynk et al. [2014], which states that there exists a

definable arc γ : (0, 1]→ (0, 1] such that limτ→0 γ(τ) = 0 and S̄ = limτ→0 S̄γ(τ)−1 . This implies
that the limit S̄ is uniquely defined and therefore that limt→0 S̄t−1 = S̄.

The next corollary is a more general restatement of Corollary 4. It shows that the construc-
tion of ϕ∞ enables to take the limit limt

∇ϕ(βt)
t ∝ ∂ϕ∞(β̄∞).

Corollary 6. Assume that ϕ admits a non-degenerate horizon shape S∞. Then its horizon
function ϕ∞ satisfies the following properties.

1. ϕ∞ is convex and finite-valued on Rd,

2. Let (βs)s>0 be a continous sequence such that when s→∞:

(a) ∥βs∥ → ∞, (b)
βs
∥βs∥

→ β̄ for some β̄ ∈ Rd, (c)
∇ϕ(βs)

∥∇ϕ(βs)∥
→ ḡ for some ḡ ∈ Rd.

Then ḡ is proportional to a subgradient of ϕ∞ at β̄:

ḡ ∈ λ∂ϕ∞(β̄) for some λ > 0.

Proof. The sequence of sets (S̄c) is contained in the compact ball B(0, 1); therefore, Hausdorff
convergence is equivalent to Painlevé-Kuratowski convergence [Rockafellar and Wets, 1998, Sec-
tion 4.C]. Hence, as (S̄c) are convex, so is their limit S∞ [Rockafellar and Wets, 1998, Prop 4.15].
It follows that h∞ is convex [Rockafellar and Wets, 1998, Ex 3.50].

Since S∞ is non-degenerate, there exists a radius r0 such that B(0, r0) ⊂ S∞, which implies
that h∞(β) is finite-valued for every β.

To prove point (ii), consider the sequence of functions (ηc)c>0 formed by the indicators of
convex sets S̄c:

ηc(β) = IS̄c
(β) =

{
0 if β ∈ S̄c,
+∞ otherwise.

Note that the epigraph of ηc is S̄c × R+; these sets also converge to S∞ × R+ [Rockafellar and
Wets, 1998, Ex 4.29], from which we conclude that function ηc converge epigraphically to the
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indicator function η∞ of S∞ (η∞ = IS∞). We can then apply Attouch’s theorem [Attouch and
Beer, 1993, Combari and Thibault, 1998] ensuring that the graph of the subdifferentials of ηc

G(∂ηc) = {(β, g) : g ∈ ∂ηc(β)}

converge in Painlevé-Kuratowski sense to the graph G(∂η∞) of subdifferential of η∞. This means
that if a sequence (βc, gc)c>0 such that (βc, βc) ∈ G(∂ηc) for every c > 0 converges, then its limit
belongs to G(∂η∞).

Consider now a sequence (βs)s>0 satisfying the conditions described in (ii). Since it diverges
to infinity and h is coercive, we have h(βs)→∞, and we may assume w.l.o.g that h(βs) > 0 for
all s. We have by definition of sublevel sets βs ∈ Sh(βs), and therefore

∇h(βs) ∈ ∂ISh(βs)
(βs), (E.4)

which can be derived easily from convexity of h (geometrically, this means that the gradients of
h are normal to the sublevel sets). Consider now the normalized levels sets as defined in (10.4).
Denoting

β̄s =
βs

Rh(βs)
,

we have β̄s ∈ S̄h(βs) and thus by simple rescaling (E.4) becomes

∇h(βs) ∈ ∂IS̄h(βs)

(
β̄s
)
.

Since ∂IS̄c
is a cone (the normal cone to S̄c), this also holds for any positive multiple of ∇h(βs).

We deduce that for every s > 0

(
β̄s,

∇h(βs)

∥∇h(βs)∥

)
∈ G(∂ηh(βs)).

Note that since β̄s belongs to the normalized level sets, this sequence is bounded. We can extract

a subsequence (β̄sk ,
∇h(βsk )

∥∇h(βsk )∥
)k≥0 which converges to a limit point (β̂, ĝ). By the previous remark

on graphical convergence of subdifferentials, we have (β̂, ĝ) ∈ G(∂IS∞), i.e.,

ĝ ∈ ∂IS∞(β̂). (E.5)

We need to prove that β̂ is not 0. Since h is strictly convex, the level set {ϕ(β) = c} is exactly
the boundary of the sublevel set {ϕ(β) ≤ c}. Therefore, βs lies on the boundary of Sh(βs),
and hence so does β̄s lie on the boundary of S̄h(βs). Since 0 is in the interior of S∞, it also
belongs to the interior of S̄ϕ(βs) for s larger than some s0. Then, there exists r0 > 0 such that
B(0, r0) ⊂ S̄ϕ(βs) for s ≥ s0. By definition of boundary, we then have for s ≥ s0 ∥β̄s∥ > r0,

which leads to ∥β̂∥ > 0.
To achieve the desired result; we need to relate (β̂, ĝ) to (β̄, ḡ). First, notice that by con-

struction we have necessarily ĝ = ḡ = lims→∞∇h(βs)/∥h(βs)∥. Then, note that

β̄ = lim
k→∞

βsk
∥βsk∥

, β̂ = lim
k→∞

βsk
Rh(βsk )

.

Taking the norm of the second limit, we have ∥β̂∥ = limk→∞
∥βsk∥
Rh(βsk

) . Injecting back in the first

limit yields

β̄ = lim
k→∞

βsk
Rh(βsk )

Rh(βsk )

∥βsk∥
=

β̂

∥β̂∥
.
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Therefore, (E.5) becomes
ḡ ∈ ∂IS∞(∥β̂∥β̄).

This means that ḡ belongs to the normal cone of S∞ at ∥β̂∥β̄ [Rockafellar, 1970, Sec. 23]. We

note the level set {β : ϕ∞(β) ≤ ϕ∞
(
∥β̂∥β̄

)
} is exactly τS∞ for some τ > 0. We use Corollary

23.7.1 from Rockafellar [1970] which states that if a vector is in the normal cone of the level set
of ϕ∞, then it must be a positive multiple of a subgradient. This implies that that there exists
λ ≥ 0 such that

ḡ ∈ λ∂h∞(∥β̂∥β̄).

Finally, λ > 0 since ∥ḡ∥ = 1, and ∂h∞(∥β̂∥β̄) = ∂h∞(β̄) by positive homogenity of h∞.

We can now prove our main result, which we restate here.

Theorem 6. Let ϕ∞ be the horizon function of ϕ. Assuming that the ϕ∞-max margin problem
has a unique solution, the mirror flow normalised iterates β̄t = βt

∥βt∥ converge towards a vector

β̄∞ and

β̄∞ ∝ arg max
ϕ∞(β̄)≤1

min
i∈[n]

yi⟨xi, β̄⟩,

where the symbol ∝ denotes positive proportionality.

The proof essentially follows exactly the same lines as in Section 10.4 but taking into account
the fact that the loss is not exactly the exponential one.

Proof. Recall that Z is the data matrix of size n × d whose ith row is yixi, we then have that
∇L(β) = Z⊤ℓ′(Zβ), where ℓ′ is applied component wise. We now denote by q(β) the vector in
Rn equal to:

q(β) =
ℓ′(Zβ)

ℓ′(ℓ−1(
∑

i ℓ(yi⟨xi, β⟩)))
(E.6)

Notice that the facts that ℓ > 0, ℓ′ < 0, ℓ−1 is increasing and ℓ′ is decreasing, we have that
q(β) > 0 and that for all i0 ∈ [n],

q(β)i0 =
ℓ′(yi0⟨xi0 , β⟩)

ℓ′(ℓ−1(
∑

i ℓ(yi⟨xi, β⟩)))
≤ ℓ′(yi0⟨xi0 , β⟩)
ℓ′(ℓ−1(ℓ(yi0⟨xi0 , β⟩)))

≤ 1.

Therefore q(β) ∈ (0, 1]n.
We further denote at := −ℓ′(ℓ−1(

∑
i ℓ(yi⟨xi, βt⟩))) > 0. This way we can write ∇L(βt) =

−atZ⊤qt with qt := q(βt)
Integrating the flow we have that

∇ϕ(βt) = ∇ϕ(β0)−
∫ t

0
∇L(βs)ds

= ∇ϕ(β0) + Z⊤
∫ t

0
asqsds.

Similar to the time change we performed in Section 10.4, we consider θ(t) =
∫ t
0 asds. From

Lemma 40, θ is a bijection over R≥0 and perform the time change β̃t = βθ−1(t). Due to the chain
rule, after the time change and dropping the tilde notation we obtain:

∇ϕ(βt) = ∇ϕ(β0) + Z⊤
∫ t

0
qsds.
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Dividing by t we get:

1

t
∇ϕ(βt) =

1

t
∇ϕ(β0) + Z⊤q̄t, (E.7)

where q̄t := 1
t

∫ t
0 qsds corresponds to the average of (qs)s≤t.

Extracting a convergent subsequence: We now consider the normalised iterates β̄t = βt
∥βt∥

and up to an extraction we get that β̄t → β̄∞. Since qt is a bounded function, up to a second
extraction, we have that qt → q∞, and the same holds for its average: q̄t → q∞. Taking the
limit in Equation (E.8) we immediately obtain that:

lim
t

1

t
∇ϕ(βt) = Z⊤q∞, (E.8)

which also means that

∇ϕ(βt)

∥∇ϕ(βt)∥
−→
t→∞

Z⊤q∞
∥Z⊤q̄∞∥

We can now directly apply Corollary 6 and there exists λ > 0 such that:

Z⊤q∞ ∈ λ∂ϕ∞(β̄∞)

The end of the proof is then as explained in Section 10.4.

Finally we recall and prove Theorem 7 which provides a simple formula for the horizon
function in the case of separable potentials.

Theorem 7. Under Assumption 14, there exists λ > 0 such that the horizon function ϕ∞ of ϕ
as defined in the previous section satisfies:

ϕ∞(β̄) = λ lim
η→0

η · φ−1

(
ϕ

(
β̄

η

))

for every β̄ ∈ Rd.

Proof. Lipschitzness, upper and lower boundedness. For η > 0, let us denote by hη :

β 7→ η · φ−1(ϕ(β/η)) and notice that ∇hη(β) = ( φ′(βk/η)
φ′(φ−1(

∑
i φ(βi/η)))

)k∈[d] ≥ 0 Since φ ≥ 0

and that φ−1 and φ′ are increasing we get that that ∇hη(β) ∈ [0, 1]d. Therefore (hη)η>0 are
uniformly Lipschitz-continuous. Consequently, for all β, hη(β) is upper-bounded independently
of η. Lastly, since φ ≥ 0, notice that hη(β) ≥ mini |βi| > 0 for all β ̸= 0.

Point-wise and epi-convergence of hη. For all β̄, by composition, η 7→ η · φ−1(ϕ(β̄/η)) is
a definable function, the monotonicity Lemma [Van den Dries and Miller, 1996] (Theorem 4.1)
ensures that it has a unique limit in R which we denote h0(β). From the uniform Lipschitzness
of hη, we get that (η, β) ∈ R≥0 × Rd 7→ hη(β) is continuous. Hence for all sequence ηk → 0,
we get that hηk epi-converges to h0. Therefore (epi hηk)k converges in the Painlevé–Kuratowski
sense towards epi hη0 .

Link between the level sets of hη and those of ϕ. To conclude the proof it remains to
notice that for all c ≥ 0:

{β ∈ Rd, ϕ(β) ≤ c} =
1

η
{β̄ ∈ Rd, hη(β̄) ≤ ηφ−1(c)}.
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Therefore letting ηc = 1/φ−1(c) we get that

ηc · Sc = {β̄ ∈ Rd, hηc(β̄) ≤ 1}.

This simply means that ηc is an appropriate normalising quantity, it replaces the normalisation
by the radius of Sc. Since {β̄ ∈ Rd, hηc(β̄) ≤ 1} converges in the Painlevé–Kuratowski sense
towards {β̄ ∈ Rd, h0(β̄) ≤ 1}, we get that Rcηc · S̄c converges towards the same set. However,
with our previous construction, we also have that S̄c converges towards S̄∞. The sets S̄∞ and
{β̄ ∈ Rd, h0(β̄) ≤ 1} are therefore proportional and h0 ∝ ϕ∞ which concludes the proof.
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