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Résumé 

Traditionnellement, les études en recherche sur la schizophrénie s'appuient sur un seul 

paradigme expérimental. Les résultats montrent généralement une différence significative 

entre les patients et les groupes de contrôle. Les études ultérieures visent à décrire le 

mécanisme anormal sous-jacent aux niveaux génétique et neurobiologique. Bien que cette 

approche ait permis d'énormes avancées dans le domaine, les recherches des vingt dernières 

années suggèrent qu'elle ne capture peut-être pas entièrement la complexité de la 

schizophrénie. De nouvelles méthodologies de recherche sont nécessaires pour examiner 

systématiquement la nature complexe du trouble. Ici, j'ai utilisé l'électroencéphalogramme 

(EEG) en état de repos et des paradigmes visuels pour explorer la complexité de la 

neurophysiologie et du traitement visuel contextuel dans la schizophrénie. 

Initialement, je démontre que diverses caractéristiques extraites de l'EEG en état de repos, 

telles que la puissance de la bande bêta ou les mesures de connectivité, présentent de faibles 

corrélations entre elles, malgré des différences significatives de groupe entre patients et 

contrôles. Je montre que certaines de ces caractéristiques restent remarquablement stables 

sur plusieurs années, ce qui indique que l'erreur de mesure ne peut pas expliquer entièrement 

ces faibles corrélations et que la variabilité pourrait refléter des différences réelles chez les 

patients. Ces résultats soulèvent des questions cruciales sur la nature et l'interprétation des 

résultats significatifs en recherche sur la schizophrénie et plaident en faveur de méthodologies 

de recherche qui examinent systématiquement un large éventail de caractéristiques. De plus, 

je présente des résultats d'EEG et de comportement suggérant que ce problème s'étend à des 

domaines au-delà de la recherche sur la schizophrénie. Je propose différents scénarios pour 

expliquer ces résultats déroutants et suggère des stratégies pour faire face à cette grande 

variabilité. 

De plus, je présente des résultats comportementaux utilisant des expériences de visual 

(un)crowding [(dé)encombrement] pour sonder la vision contextuelle dans la schizophrénie. 

Dans ces expériences, le traitement d'une cible visuelle est influencé par la présence d'autres 

objets autour. Je démontre que, dans différentes variantes de ce paradigme, les mêmes 

patients ont montré à la fois un traitement contextuel intact et déficient par rapport aux 
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contrôles, soulevant ainsi des questions sur la généralisabilité des résultats obtenus en utilisant 

un seul paradigme expérimental pour étudier les mécanismes généraux. En outre, je fournis 

des preuves neurophysiologiques d'altérations dans les processus de codage prédictif dans la 

schizophrénie, suggérant ainsi une contribution potentielle à des altérations de la vision 

contextuelle et d'autres aspects complexes de la perception et de la psychopathologie chez les 

patients. 

Mots-clés  

Schizophrénie, EEG, état de repos, complexité, vision, traitement contextuel, stabilité, codage 

prédictif, variabilité 
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Abstract  

Traditionally, studies in schizophrenia research employ a single experimental paradigm. The 

results typically demonstrate a significant difference between patients and controls. 

Subsequent studies aim to describe the underlying abnormal mechanism at the genetic and 

neurobiological levels. While this approach has driven tremendous advancements in the field, 

research over the past twenty years suggests that it may not entirely capture the complexity 

of schizophrenia. New research methodologies are needed to systematically investigate the 

intricate nature of the disorder. Here, I utilized resting-state electroencephalogram (EEG) and 

visual paradigms to delve into the complexity of neurophysiology and contextual visual 

processing in schizophrenia. 

Initially, I demonstrate that various features extracted from resting-state EEG, such as beta 

band power or connectivity measures, exhibit weak correlations with each other, despite 

significant group differences between patients and controls. I show that some of these features 

remain remarkably stable over several years, indicating that measurement error cannot 

entirely account for these low correlations and that variability might reflect genuine individual 

differences. These findings raise critical questions about the nature and interpretation of 

significant results in schizophrenia research and advocate for research methodologies that 

systematically examine a large range of features. Furthermore, I present EEG and behavioral 

results suggesting that this issue extends to fields beyond schizophrenia research. I propose 

different scenarios to explain these puzzling results and suggest strategies to cope with this 

vast variability.   

Additionally, I present behavioral results using visual (un)crowding experiments to probe 

contextual vision in schizophrenia. In (un)crowding, the processing of a visual target is 

influenced by flankers. I demonstrate that in variations of this paradigm, the same patients 

exhibited intact and deficient contextual processing compared to controls, raising questions 

about the generalizability of results obtained using a single experimental paradigm to 

investigate general abnormal mechanisms. Moreover, I provide neurophysiological evidence 

for alterations in predictive coding processes in schizophrenia, potentially contributing to 
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alterations in contextual vision and other complex aspects of perception and psychopathology 

in patients.  

Keywords 

Schizophrenia, EEG, resting-state, complexity, vision, contextual processing, stability, 

predictive coding, variability 
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Chapter 1. Introduction 

1.1. The complexity of schizophrenia 

The past two decades have seen remarkable progress in understanding the biology of 

schizophrenia, led by technological advancements and large-scale collaborative efforts. For 

example, breakthroughs in genetics have allowed scientists to analyze the genomes of 

thousands of patients, offering insights into candidate biological pathways for the illness (Ripke 

et al., 2014; Singh et al., 2022; Trubetskoy et al., 2022). Similarly, the aggregation and meta-

analysis of neuroimaging data from numerous patient cohorts have facilitated the study of 

brain alterations with high statistical power (Kelly et al., 2018; Van Erp et al., 2016, 2018). 

Moreover, the availability of computational tools has led to the development of machine 

learning and biophysical models, allowing the classification and modeling of neural circuits 

potentially involved in schizophrenia (Cortes-Briones et al., 2022; Fogelson et al., 2014; Huys 

et al., 2016; Stephan & Mathys, 2014). These examples represent only a fraction of the strides 

made in the field.  

While these advancements have significantly enhanced our understanding of schizophrenia, 

they also highlight its complexity. Genetic studies have shown that schizophrenia is a highly 

polygenic disorder, lacking clear-cut genetic signatures, despite a heritability of close to 80% 

(Burmeister et al., 2008; Sullivan et al., 2003). Neuroimaging meta-analyses have shown that 

brain abnormalities in schizophrenia are highly heterogeneous, affecting a broad range of brain 

structures, and present to a different extent in different patients (Van Erp et al., 2018). For 

instance, the effect size for cortical thickness differences between patients and controls was 

d=0.53, corresponding to a discriminability of approximately 60% between groups only. 

Additionally, patients with schizophrenia exhibit a large spectrum of deficits besides brain and 

behavioral ones, including those in the immunological (Cullen et al., 2019; Horváth & Mirnics, 

2014) or cardiometabolic (So et al., 2019; Strawbridge et al., 2021) systems, among others. 

These findings raise questions on how the understanding of a particular deficit can shed light 

on other deficits. Furthermore, given the substantial variability of deficits among patients, it 

becomes crucial to effectively address this heterogeneity to identify the main aspects of 

schizophrenia.  



Variability is the rule: Neurophysiology and contextual visual processing in schizophrenia. Chapter 1. 
Introduction 

 

12 
 

1.2. From deep to shallow rooting in schizophrenia research 

Traditionally, studies in schizophrenia research employ a single experimental paradigm. The 

results often show a clear-cut difference in patients compared to healthy controls. Subsequent 

studies then delve into the underlying cognitive, neural, and genetic abnormal mechanisms. I 

refer to this approach as the deep rooting approach.  

Importantly, examining single deficits can offer insights into abnormal mechanisms, and this 

may have potential implications for treatment and prevention. For instance, cognitive deficits 

have a profound impact on the quality of life and social outcomes in patients (Eack & Newhill, 

2007; Green et al., 2015). Therefore, as treatments often do not effectively improve such 

deficits (Howes et al., 2024; Nielsen et al., 2015), a thorough investigation of the underlying 

mechanisms becomes crucial. Furthermore, analyzing single deficits may aid in identifying 

endophenotypes, i.e., paradigms targeting genetic risk factors, which can summarize the 

complex genetic architecture of the disorder through simple tests (Braff et al., 2006; 

Gottesman & Gould, 2003). There are several examples of those excellent tests (Allen et al., 

2009; Chkonia, Roinishvili, Makhatadze, et al., 2010; da Cruz et al., 2020). Hence, the deep 

rooting approach has led to tremendous advancements in the field and holds the potential to 

offer new insights, but there are limitations. This approach implicitly assumes that the deficit 

being studied represents a crucial aspect of schizophrenia. However, this assumption may not 

always hold.  

The limitations of the classic approach are highlighted by studies that have examined multiple 

paradigms in patients. For example, Price and colleagues (2006) analyzed four EEG paradigms 

in patients with schizophrenia and healthy controls. Although there were significant group 

differences between patients and controls, correlations between the paradigms were weak. 

Moreover, combining these paradigms improved the classification accuracy between patients 

and controls, suggesting that each paradigm captures different aspects of schizophrenia. 

Similarly, Seidman and colleagues (2015) correlated a battery of 15 paradigms targeting 

neurophysiological and cognitive functioning in patients. Cognitive paradigms showed high 

correlations, but neurophysiological measures were largely uncorrelated in patients. This 

suggests that there might be several underlying factors related to deficits in schizophrenia. 

Hence, focusing on single deficits may have its limitations. Additionally, Braff and colleagues 
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(2007) reported weak correlations between two EEG paradigms in patients, despite significant 

group differences between patients and controls. These findings highlight that results obtained 

through a single paradigm might be less broadly explanatory than assumed. 

To effectively address this heterogeneity, a shallow rooting approach might become necessary. 

In this approach, outputs from a variety of paradigms can be systematically compared and also 

potentially combined. The aforementioned studies are in line with this approach. This may 

facilitate the identification and examination of general abnormal mechanisms targeted by 

different paradigms. Moreover, this approach can aid in the development of multivariate 

models to enhance classification or prediction, for example, of clinical outcomes. This approach 

is more in line with the widely acknowledged heterogeneous nature of schizophrenia, which is 

characterized by a collection of symptoms and impairments. Therefore, describing 

schizophrenia through a collection of paradigms and test outcomes might provide a more 

representative view of the illness. 

1.3. Schizophrenia and contextual processing 

Patients with schizophrenia exhibit a variety of psychotic symptoms as well as cognitive and 

perceptual deficits (Barch & Ceaser, 2012; Tandon et al., 2009). This diverse psychopathology 

relies on alterations in a broad range of brain structures and functions, which is in line with 

genetic and neuroimaging studies (Kelly et al., 2018; Trubetskoy et al., 2022; Van Erp et al., 

2018). Being schizophrenia a plausibly “whole-brain” illness, assessments of the visual system 

are of prime interest in schizophrenia research because approximately one-third of the cortex 

is dedicated to visual processing, and vision entails a wide range of feedback and feedforward 

computations (Rolls et al., 2023; Van Essen, 2003). Therefore, signatures of schizophrenia will 

likely be identified through the employment of visual paradigms (Diamond et al., 2022). 

Visual impairments are central to cognitive and social functioning deficits in schizophrenia, 

(Javitt, 2009; Silverstein & Keane, 2011b). For instance, it has been proposed that patients 

abnormally integrate basic visual features into complex structures, resulting in aberrant visual 

perception that may in turn contribute to psychopathology (Silverstein & Keane, 2011a). 

Context plays a crucial role in this integration of visual information.  
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Numerous studies suggest that patients with schizophrenia process contextual visual 

information differently from controls (Seymour et al., 2013; Silverstein & Keane, 2011a; Tibber 

et al., 2013). For example, patients have been shown to be less susceptible to some visual 

illusions (Keane et al., 2013; Sanders et al., 2013; Uhlhaas et al., 2006), indicating reduced 

reliance on contextual information. However, other studies reported higher susceptibility to 

visual illusions in patients (Chen et al., 2008; Kantrowitz et al., 2009) or even no differences, 

compared to controls (Grzeczkowski et al., 2018; Kaliuzhna et al., 2019). Hence, results are 

mixed.  

Contextual processing is also investigated through visual (un)crowding experiments (Herzog et 

al., 2015) wherein target perception is modulated by different flanker configurations (Herzog 

et al., 2016; Pelli & Tillman, 2008). Results again are mixed, with some studies showing that 

target processing in patients was less affected by flankers (Robol et al., 2013), whereas other 

studies showed that patients were more affected or even not affected, compared to controls 

(Roinishvili et al., 2015). Thus, understanding which factors contribute to these mixed results 

is crucial for elucidating the mechanisms of contextual vision. 

To explain this range of contextual effects in schizophrenia, predictive coding (PC) has been 

proposed as a candidate framework. PC proposes that the brain generates predictions about 

sensory information and adjusts these predictions according to the differences between the 

expected and incoming sensory inputs (Colombo & Seriès, 2012; Huang & Rao, 2011; Vilares & 

Kording, 2011). It has been proposed that patients with schizophrenia dysfunctionally adjust 

those predictions (Friston, 2005; Sterzer et al., 2018). For instance, resistance to visual illusions 

and also vivid sensory hallucinations have often been explained as a failure to attenuate signals 

from sensory cortices in patients (Weilnhammer et al., 2020). However, it has also been 

proposed that patients generate stronger predictions which exert greater influence on 

perception than sensory information, contributing to aberrancies in perception and positive 

symptoms (Corlett et al., 2009, 2019; Friston, 2005; Sterzer et al., 2018). These contrasting 

views demonstrate that PC processes might be more intricate than initially thought.  

Indeed, it has been proposed that there might be several levels of predictive processing, and 

alterations at those different levels might contribute to different phenomena in schizophrenia 

(Corlett et al., 2019; Sterzer et al., 2018). Hence, PC might be a rather hierarchical process. For 

instance, abnormalities in lower levels of PC might contribute to basic sensory processing 



Variability is the rule: Neurophysiology and contextual visual processing in schizophrenia. Chapter 1. 
Introduction 

 

15 
 

impairments, while alterations at higher levels might be involved in more complex phenomena 

such as sensory hallucinations or delusions. Hence, experimentally investigating these 

hypothetical levels of predictive processing in patients with schizophrenia will provide further 

insights into the underlying mechanisms and how they contribute to clinical symptoms and 

perceptual alterations in patients. 

1.4. Variability and measurement error 

In the complex sciences, each branch relies on tests designed to target the crucial aspects of 

the field. Traditionally, these tests yield significant differences between intervention and 

control conditions or significantly predict other relevant variables. Numerous studies are then 

conducted with the test because it is assumed that those significant results come with 

substantial explanatory power for the phenomena under study. However, recent studies have 

shown that tests thought to target similar underlying mechanisms often exhibit weak 

correlations with each other, i.e., construct validity is limited. Schizophrenia research is just 

one example of this issue, which extends to fields including aging research (Garobbio et al., 

2022), vision science (Cappe et al., 2014; Cretenoud et al., 2019; Goodbourn et al., 2012), and 

psychology (Eisenberg et al., 2019). For instance, in vision science, different tests assessing 

basic visual functions have shown weak correlations, despite significant test-retest reliability 

(Bosten et al., 2017; Cappe et al., 2014; Cretenoud et al., 2019). Notably, some of these tests 

demonstrate often remarkable stability even over several years (Garobbio et al., 2024), 

suggesting that measurement error alone cannot fully account for the observed low 

correlations.  

These results might seem unexpected, but they align well with basic statistical principles. 

Cohen proposed cutoff values of 0.1, 0.3, and 0.5 to categorize weak, medium, and strong 

correlations (Cohen, 1988), a criterion widely accepted in psychology and other fields. Gignac 

and Szodorai (2016) suggested revising these cutoffs due to the limited number of studies 

meeting the criteria for a high correlation, proposing new cutoff values of 0.1, 0.2, and 0.3. 

However, even a strong correlation of r = 0.5 leaves 75% of the variance unexplained. Similarly, 

for case-control studies, a large Cohen’s d of 0.8 corresponds to a discriminability of 65% only, 

i.e., 35% of cases are left unexplained. Achieving 80% of explained variance requires a Cohen’s 
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d of 1.68, which is extremely rare. Thus, even with large effect sizes (let alone statistically 

significant results), substantial explanatory power is not guaranteed. Lowering cutoff values 

could even potentially make the situation worse in some cases. Therefore, when each study 

explains a small part of the variance, it is not surprising that results from different studies do 

not correlate strongly.  

Another explanation is that research methodologies in fields such as biology and human 

neuroscience have often overlooked complexity. For example, the variability observed in the 

data might reflect genuine variability among individuals, making it challenging to reduce 

findings to general mechanisms since uncorrelated tests may point to different ones. Shallow 

rooting approaches can be advantageous in such cases, as they delineate research scenarios 

across a broad spectrum of paradigms and measurements. Within this space composed of 

many test outcomes, latent factors may potentially explain more variability in the data 

compared to single variables. Overall, systematically analyzing these scenarios is crucial for 

advancing scientific progress. In this thesis, I have taken a step forward in this direction.  

1.5. Outline of the thesis 

This thesis comprises five studies to which I contributed during my PhD. Chapters 2 and 3 detail 

two studies where I examined the complexity of neurophysiology in schizophrenia. In Chapters 

4 and 5, studies of contextual visual processing and predictive coding in schizophrenia are 

presented. Chapter 6 presents an extensive analysis of a public database, highlighting the 

variability of results obtained through different analysis methods. In Chapter 7, I will discuss 

these studies and propose potential future research directions. Chapters 2, 4, 5, and 6 contain 

the manuscripts themselves, while Chapter 3 presents preliminary results and methods. Below, 

I summarize each chapter. The references for Chapters 1 and 7 are presented at the end of the 

document. Chapters 2 to 6 each contain its reference list.  

Summary of Chapter 2: The EEG multiverse of schizophrenia 

There is a variety of methods to analyze resting-state EEG data, including EEG microstates and 

connectivity techniques, which quantify certain properties of brain functioning. Some of these 

methods have been employed in schizophrenia research, often revealing significant group 
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differences between patients and controls. This suggests that the method being employed 

targets a key function related to schizophrenia. Subsequent studies aim to understand the 

neural and genetic mechanisms underlying these group differences and their relation to 

psychopathology. Importantly, most of these studies typically utilize one method. 

In Chapter 2, I present a study wherein the resting-state EEG of 121 patients with schizophrenia 

and 75 healthy controls were analyzed using multiple analysis methods, through which we 

extracted 194 EEG features (e.g., detrended fluctuation exponents in alpha band, beta-band 

power) from the very same EEG data. Group comparisons were conducted for each EEG 

feature to identify those potentially targeting aspects related to schizophrenia. Next, we 

correlated the features showing a significant group difference to understand to what extent 

they tap into a common underlying mechanism of schizophrenia. 

We identified 69 features showing significant group differences between patients and controls. 

Effect sizes ranged from medium to large, suggesting that potentially important aspects of the 

disorder were targeted by the features. Notably, many of these 69 features had been reported 

as abnormal in patients with schizophrenia in previous studies, including detrended fluctuation 

exponents in the alpha and beta bands, and EEG microstates temporal parameters, suggesting 

that these previously reported findings are robust and reproducible. Surprisingly, our 

correlation analysis revealed generally weak correlations among the 69 EEG features (Figure 

1). These findings were further corroborated through multivariate and disattenuated 

correlations.  
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Figure 1. Pairwise correlations between the 69 EEG features demonstrating significant group differences between 
patients with schizophrenia (upper triangle) and healthy controls (lower triangle). As a representative variable for 
each feature for this correlation analysis, we selected the electrode, brain region (for features obtained in the 
source space), or microstate parameter/transition showing the largest effect size in the group comparison, i.e., 
the variable with better discriminability between groups. Strong blue or red colors represent strong correlations, 
while yellow colors indicate correlation values close to zero.  

 

Our findings raise critical considerations regarding the nature and interpretation of significant 

results in schizophrenia research. The low correlations suggest that even if a significant group 

difference is found, this might not necessarily indicate that the EEG feature has significant 

explanatory power for the illness, as deficits in one feature do not predict deficits in another 

feature. While high measurement error might be one explanation for these results, we found 
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that similar features, such as those in the same frequency bands or obtained through similar 

algorithms, correlated more strongly, suggesting that test retests might be adequate. Another 

explanation may be that the features are sensitive to comorbidities or idiosyncrasies, 

contributing to the variance, and provoking the low correlations. Finally, schizophrenia may be 

a highly heterogeneous disorder at the neurophysiological level, with each feature pointing to 

a different aspect. Investigating these scenarios would lead to key insights into the complexity 

of neurophysiology in schizophrenia. 

Summary of Chapter 3: Stability assessment of resting-state EEG in schizophrenia  

In Chapter 3, I present preliminary findings from a stability evaluation of resting-state EEG. 

These findings are based on data collected from a cohort of 40 patients with schizophrenia and 

27 healthy controls. These participants underwent EEG recordings approximately four years 

after their initial involvement in the study described in Chapter 2. 

The main goal was to assess the stability of EEG features showing group differences between 

patients with schizophrenia and controls. This evaluation aimed to determine whether the low 

correlations observed in Chapter 2, could be attributed to measurement error or poor 

properties of the EEG features. If EEG features demonstrate high reliability even after several 

years, it would suggest their robustness and potential relevance in targeting abnormal 

mechanisms of the illness. Moreover, this may also help identify stable features for further 

correlation analyses. Importantly, we capitalized on recent analytical advancements to 

enhance the signal-to-noise ratio of the EEG features. For example, instead of using canonical 

frequency bands, such as the 8 to 12 Hz range for the alpha band, we determined individual-

specific frequency bands based on spectral peak information for each subject, among other 

improvements in analysis techniques detailed in Chapter 3.  
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Figure 2. Intraclass correlation coefficients (ICC) of 40 out of 82 EEG features demonstrating a significant group 
difference between patients with schizophrenia and controls. Group difference analyses were conducted using a 
sample comprising 135 patients with schizophrenia and 92 healthy controls. Stability was assessed separately for 
each group. Below the names of the EEG features, we display the highest effect size, e.g., across electrodes, 
observed in the group comparisons using each EEG feature. Confidence intervals represent the 25th and 75th 
percentiles of ICC values across electrodes, brain regions, or microstate parameters/transitions. 

 

Our preliminary findings reveal many features exhibiting adequate stability both in patients 

and controls (Figure 2, 3). This suggests that these highly stable features may, to a large extent, 

mirror underlying mechanisms for the illness rather than idiosyncratic aspects. Further work is 

needed to fully understand the nature of these findings and their implications for 

neurophysiological studies in schizophrenia research.   
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Figure 3. Intraclass correlation coefficients (ICC) of 42 (not presented in Figure 2) out of 82 EEG features 
demonstrating a significant group difference between patients with schizophrenia and controls. Below the names 
of the EEG features, we display the highest effect size, e.g., across electrodes, observed in the group comparisons 
using each EEG feature. Confidence intervals represent the 25th and 75th percentiles of ICC values across 
electrodes or brain regions. 

 

Summary of Chapter 4: Intact and deficient contextual processing in schizophrenia:   

Contextual vision studies in patients with schizophrenia have yielded mixed results. Various 

factors such as attentional or motivational effects in patients, false positives, and differences 

in the paradigms and underlying mechanisms may contribute to these conflicting results.  

In Chapter 4, I present a study where we utilized visual (un)crowding as a method to delve into 

contextual visual processing in schizophrenia. In (un)crowding, the processing of a target is 
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modulated by flankers. This paradigm allowed us to systematically investigate both facilitating 

and deteriorating contextual effects across flanker configurations. There are advantages to this 

specific paradigm. For example, by examining both deteriorating and facilitating effects, we 

can mitigate the influence of reduced attention in patients. Additionally, as the same group of 

patients performed all conditions, we can assess whether changes in the spatial arrangement 

of the stimuli yield consistent results. Furthermore, contextual effects are examined relative 

to a target-only condition which is generally missing in other paradigms such as visual illusions. 

We conducted two experiments.  

In Experiment 1, participants had to discriminate a target presented among six different flanker 

configurations. We found intact contextual processing in patients (Figure 4). 

 

Figure 4. Experiment 1 detailed in Chapter 4. Mean threshold elevations, i.e., threshold relative to the target-only 
condition, for six configurations of flankers. Error bars represent the standard error of the mean. Larger threshold 
elevation values represent reduced performance (more contextual effects), while lower values represent better 
performance (less contextual effects). Patients with schizophrenia and healthy controls show similar contextual 
effects across flanker configurations.  

 

In Experiment 2, we examined two flanker configurations - one leading to crowding and the 

other to uncrowding. Stimuli were presented for six different durations. We expected that 



Variability is the rule: Neurophysiology and contextual visual processing in schizophrenia. Chapter 1. 
Introduction 

 

23 
 

performance would increase with stimulus duration, particularly for the uncrowding condition, 

as recurrent processing, may come into play. This improvement was indeed observed in both 

groups, yet to a much lesser extent in patients (Figure 5) indicating that patients had impaired 

contextual processing.  

 

 

Figure 5. Experiment 2 detailed in Chapter 4. The leftmost and middle panels show mean threshold elevations, 
i.e., thresholds relative to the target-only condition. Error bars represent the standard error of the mean. In the 
rightmost panel, beta coefficients for linear regression are presented for each participant. Coefficients close to 
zero indicate that performance did not change across stimulus durations. 

  

We propose that mixed results in contextual vision studies might be partly due to differences 

in stimuli and specific aspects of the paradigm since we found that the very same patients 

exhibited intact and deficient contextual processing in variations of the same (un)crowding 

paradigm. These results also might question the presence of general contextual processing 

deficits in patients, since such deficits should not depend so strongly on the paradigms. 

Therefore, we propose that to substantiate claims about abnormal mechanisms, it is essential 

to verify them using more than one paradigm.  
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Summary of Chapter 5: Oscillatory traveling waves reveal predictive coding abnormalities in 

schizophrenia:  

Predictive coding (PC) proposes that sensory inputs are compared with prior expectations, with 

subsequent adjustments made based on the disparities in this comparison. Patients with 

schizophrenia have been proposed to dysfunctionally adjust prior expectations, leading to 

aberrancies in perception and potentially also clinical symptoms. Most evidence for alterations 

in PC processes comes from behavioral paradigms. In Chapter 5, I present neurophysiological 

evidence for PC alterations in schizophrenia.  

We analyzed EEG data from both resting state and a visual backward masking (VBM) paradigm 

using the method of oscillatory traveling waves. To quantify oscillatory traveling waves, neural 

activity along the central midline of electrodes is analyzed to probe how oscillations travel from 

occipital to frontal areas, i.e., forward traveling waves (FW), and vice versa, i.e., top-down, 

backward traveling waves (BW). Waves in the alpha band have been proposed to reflect 

different components of predictive processing, including prior precision for BW, and prediction 

errors for FW (Figure 6).  

 

 

Figure 6. Predictive coding and traveling waves. A) Predictive coding (PC) processes are often formulated in 
Bayesian terms, wherein prior distributions generate predictions that are in turn compared with sensory inputs 
(i.e., the likelihood). The priors are adjusted based on the prediction errors. B) Considering traveling waves as 
probes for PC processes (Alamia & VanRullen, 2019), forward (FW) and backward waves (BW) would represent 
predictions and prediction errors. More precise priors would generate stronger predictions resulting in increased 
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BW, whereas less precise priors would generate inaccurate predictions resulting in higher prediction errors and 
therefore stronger FW.  

 

We observed that for the resting-state data, patients with schizophrenia demonstrated higher 

BW and lower FW in the alpha band compared to controls, suggesting that there might be 

more precision in higher-order priors in patients (Figure 7B). During VBM, however, FW in the 

alpha band were enhanced in the patients, suggesting that sensory information was more 

strongly weighted, indicating alterations in lower-level priors (Figure 7C, D).  

 

Figure 7. Traveling waves during resting-state and a visual backward masking task. A) Power for each frequency 
band (each indicated by a different color) and electrode for patients with schizophrenia and controls in the 
resting-state dataset. B) Spectra for forward and backward waves in the resting-state database, along with the 
mean of each frequency band (rightmost panel). C) Spectrogram of baseline-corrected forward and backward 
waves for the visual backward masking (VBM) dataset. D) Mean values of baseline-corrected forward and 
backward waves for each frequency band. The x-axis represents time in milliseconds. All error bars represent the 
standard error of the mean.  

 

Our findings support hierarchical-specific accounts for PC, suggesting that there might 

plausibly be multiple levels of predictive processing, relying on priors located across these 

different levels. This is suggested by the distinct patterns of traveling waves observed at 

resting-state and during visual stimulation. Importantly, it is proposed that different levels of 
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predictive processing may give rise to different phenomena, ranging from basic sensory 

alterations to more complex manifestations such as psychotic symptoms. Further studies 

investigating how dysfunctions at different levels contribute to clinical symptoms and 

perceptual alterations in schizophrenia would provide insights into candidate mechanisms 

underlying the phenomenology and psychopathology in patients.  

Summary of Chapter 6: Do we really measure what we think we are measuring?  

In resting-state EEG research, various EEG features have been proposed to reflect brain 

mechanisms involved in cognitive functioning. These links are often established through 

correlations, demonstrating that variability in EEG features relates to variability in cognitive 

paradigms. Additionally, researchers frequently investigate the neural correlates of age-

related decline in brain functioning by comparing EEG features between older and younger 

adults.  

In Chapter 6, I present an extensive analysis of a database containing resting-state EEG and 

behavioral performance in a battery of six tasks from 138 younger and 63 older adults. From 

the resting-state EEG data, we extracted 175 EEG features using a range of analysis methods, 

while 12 behavioral variables were extracted from the battery of cognitive tests. Our primary 

objectives were twofold: first, to identify EEG features correlating with cognitive variables, and 

second, to investigate age-related aspects of neurophysiology by identifying EEG features that 

were able to classify older from younger adults.  

First, to identify associations between EEG and cognitive variables we correlated each EEG 

feature with each behavioral variable. Second, group comparisons between older and younger 

adults were conducted for each EEG feature to identify features sensitive to age-related 

aspects of neurophysiology. Following these analyses, pairwise correlations were conducted 

with the features showing either significant correlations with a behavioral variable or 

significant group differences, aiming to understand whether all these significant results align 

with a common mechanism.  
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Figure 8. Results for the correlation analyses between each EEG feature and behavioral variable for younger 
adults. A) Number of EEG features that correlated significantly to each cognitive variable. The range (min-max) of 
significant Spearman and distance correlations are indicated on the right side of the panel B) We pairwise 
correlated the EEG features showing significant correlations with each behavioral variable and indicate here the 
median Spearman and distance correlation (CI indicates the 25th and 75th percentiles). Higher values would 
indicate that EEG features target similar aspects of the behavioral variable. Multivariate distance correlations 
(ranging from 0 to 1) were also calculated between EEG features showing a significant correlation with each 
behavioral variable. Multivariate correlations allow us to consider all electrodes, brain regions, and microstate 
parameters of each EEG feature. We reported the 25th, 50th, and 75th percentiles of these multivariate correlations 
on the right side of the panel.  

 

We identified 109 significant relationships between EEG features and cognitive variables for 

younger adults using Spearman correlations (Figure 8A). These features were obtained using 

various analysis methods, including connectivity, spectral power, and temporal 

autocorrelations (see Figure 9 for an example). However, although there was generally more 

than one feature correlating significantly with the same cognitive variable, we observed in 

most cases either weak or medium correlations between these EEG features (Figure 8B).  
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Figure 9. Example of the relationship between a range of EEG features and a behavioral variable measuring 
working memory performance. There are several EEG features, extracted from very different methods, which 
show significant correlations with the variable, yet, correlations are not always strong between EEG features. 
Therefore, different EEG features may target a different function potentially involved in behavioral performance. 
The main diagonal contains the maximum Spearman correlation of the EEG feature with the cognitive variable 
(since EEG features are composed of several electrodes, brain regions, or microstate parameters). On the right 
side, we show the pairwise multivariate distance correlations between the EEG features (with all its variables). In 
this multivariate analysis, all variables of the EEG features are employed for the pairwise correlation analyses.  

 

Additionally, we identified 108 EEG features that exhibited significant differences between 

older and younger adults. The correlations were again not very strong between the EEG 

features. Similar features were however highly correlated, which was also supported by 

principal component analysis.  

We demonstrate that using the very same database, a large range of significant associations 

between EEG features and cognitive variables can be established. However, these results do 

not necessarily point to a common mechanism, since EEG features were not always strongly 
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correlated with each other. In a complementary analysis, we found that employing latent 

dimensions of EEG features enhanced predictive power for certain cognitive variables. This 

suggests the presence of multiple mechanisms at play, each potentially targeted by a different 

EEG feature. Therefore, our findings advocate for the use of more than one EEG feature when 

investigating the neural correlates of cognitive functions.  

Similarly, for the features demonstrating differences between groups, we found that while 

pairwise correlations were not strong, there were latent dimensions of features that explained 

a significant amount of the variance. Thus, further analyses of those latent dimensions may 

potentially reveal age-related brain mechanisms.   

Overall, our findings suggest that results from studies employing a single EEG feature may fall 

short of explaining behavioral differences. Sets of features, rather than single features, may 

provide a more accurate representation of complex mechanisms. Complementing deep with 

shallow rooting approaches may provide deeper insights into neurophysiology. 
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Abstract 

Research on schizophrenia typically focuses on one paradigm for which clear-cut differences 

between patients and controls are established. Great efforts are made to understand the 

underlying genetical, neurophysiological, and cognitive mechanisms, which eventually may 

explain the clinical outcome. One tacit assumption of these “deep rooting” approaches is that 

paradigms tap into common and representative aspects of the disorder. Here, we analyzed the 

resting-state electroencephalogram (EEG) of 121 schizophrenia patients and 75 controls. Using 

https://doi.org/10.1093/cercor/bhac309
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multiple signal processing methods, we extracted 194 EEG features. Sixty-nine out of the 194 

EEG features showed a significant difference between patients and controls, indicating that 

these features detect an important aspect of schizophrenia. Surprisingly, the correlations 

between these features were very low. We discuss several explanations to our results and 

propose that complementing “deep” with “shallow” rooting approaches might help in 

understanding the underlying mechanisms of the disorder. 

Introduction 

Schizophrenia patients show strong abnormalities in many domains, including personality, 

cognition, perception, and even immunology. In many experimental paradigms, the 

differences between patients and controls have large effect sizes, indicating that important 

aspects of the disease are detected. This provokes two questions: What do these abnormalities 

have in common, and how representative are they of the disease? For example, patients 

exhibit strong deficits in cognition, such as in working memory tasks (Meyer-Lindenberg et al. 

2001), which are attributed to the abnormalities of cortico-cerebellar-thalamic-cortical circuits 

(Andreasen et al. 1998). Patients show also diminished skin flushing with the niacin skin test 

(Rybakowski and Weterle 1991), which is attributed to dysfunctional phospholipase A2 

arachidonic acid signaling (Messamore 2012). How do the working memory deficits correspond 

to deficits in skin functioning? Very few studies have correlated deficits with each other 

(Toomey et al. 1998; Braff et al. 2006, 2007; Price et al. 2006; Dickinson et al. 2011; Seidman 

et al. 2015). The Consortium on the Genetics of Schizophrenia studied neurocognitive and 

neurophysiological abnormalities in schizophrenia patients with a battery of 15 paradigms 

(Seidman et al. 2015). They found that neurocognitive measures shared a significant amount 

of variance, while neurophysiological measures were almost entirely independent. Price et al. 

(2006) studied four candidate electrophysiological endophenotypes of schizophrenia 

(mismatch negativity, P50, P300, and antisaccades). Even though patients and their family 

members showed deficits in each of these endophenotypes, the features were largely 

uncorrelated. 

Here, we took another road. Instead of comparing different paradigms, we analyzed the very 

same data of the very same patients and controls with different electroencephalogram (EEG) 
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analysis methods, including many that have shown atypical patterns in patients (Kim et al. 

2000; Boutros et al. 2008; Uhlhaas and Singer 2010; Nikulin et al. 2012; Sun et al. 2014; 

Andreou et al. 2015; Di Lorenzo et al. 2015; da Cruz et al. 2020a). Data were recorded from a 

5-min resting-state session during which the participants did nothing else than relaxing. Many 

of the resting-state EEG features we extracted are thought to reflect brain mechanisms linked 

to important aspects of the disorder. For example, schizophrenia patients exhibit reduced long-

range temporal correlations (LRTC) in the alpha and beta frequency bands (Nikulin et al. 2012) 

suggested to reflect excessive switching of neuronal states. Patients also have shown atypical 

patterns in the dynamics of the EEG microstates classes C and D (Rieger et al. 2016; da Cruz et 

al. 2020a), which were proposed to correspond to imbalances in attentional and information 

processing. Schizophrenia patients have shown increased power in the delta, theta, and beta 

frequency bands (Venables et al. 2009). Increased beta power was suggested to reflect cortical 

hyperexcitability, and increased power in the delta and theta bands were proposed to relate 

to atypical dopaminergic function, to name a few examples. All these results, individually, 

suggest that each EEG feature captures important aspects of schizophrenia. But how 

representative are these abnormalities of the disorder? Does a patient showing abnormal 

microstate dynamics also show deficits in LRTC or in other EEG features? 

Aiming to shed light on this EEG “multiverse” of schizophrenia, we analyzed the resting-state 

EEG data of 121 schizophrenia patients and 75 healthy controls with multiple methods. We 

extracted 194 EEG features, such as time-domain features, frequency-domain, and 

connectivity features both in electrode and source space, and nonlinear dynamical features. 

Then, we correlated the features that showed significant group differences to evaluate how 

these abnormalities/deficits relate to each other. We also examined whether these EEG 

features show adequate predictive power to clinical scales measuring key symptoms of 

schizophrenia. 

Materials and methods 

Participants 

Two groups of participants joined the experiment: schizophrenia patients (n = 121) and healthy 

controls (n = 75). All participants took part in a battery of tests comprising perceptual and 
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cognitive tasks as well as EEG recordings. Data of 101 patients and 75 controls have already 

been published in different contexts (Favrod et al. 2018; da Cruz et al. 2020a, 2020b; Garobbio 

et al. 2021). Patients were recruited from the Tbilisi Mental Health Hospital or the psycho-

social rehabilitation center. Patients were invited to participate in the study when they had 

recovered sufficiently from an acute psychotic episode. Thirty-five were inpatients and 86 were 

outpatients. Patients were diagnosed using the Diagnostic and Statistical Manual of Mental 

Disorders Fourth Edition (DSM-IV) by means of an interview based on the Structured Clinical 

Interview for DSM-IV, Clinical Version, information from staff, and study of patients’ records. 

Psychopathology of patients was assessed by an experienced psychiatrist using the Scale for 

the Assessment of Negative Symptoms (SANS) and the Scale for the Assessment of Positive 

Symptoms (SAPS). Out of the 121 patients, 106 were receiving neuroleptic medication. 

Chlorpromazine (CPZ) equivalents are indicated in Table 1. Controls were recruited from the 

general population in Tbilisi, aiming to match the patients’ demographics as closely as possible. 

All controls were free from psychiatric axis I disorders and had no family history of psychosis. 

General exclusion criteria were alcohol or drug abuse, severe neurological incidents or 

diagnoses, developmental disorders (autism spectrum disorder or intellectual disability), or 

other somatic mind-altering illnesses, which were assessed through interview by certified 

psychiatrists. All participants were no older than 55 years. Group characteristics are presented 

in Table 1. All participants signed informed consent and were informed that they could quit 

the experiment at any time. All procedures complied with the Declaration of Helsinki (except 

for preregistration) and were approved by the Ethical Committee of the Institute of 

Postgraduate Medical Education and Continuous Professional Development (Georgia); 

protocol number: 09/07; title: “Genetic polymorphisms and early information processing in 

schizophrenia.” 

Table 1. Group average statistics (± standard deviation). 

 Patients Controls Statistics 

Gender (F/M) 22/99 39/36 χ2(1) = 24.702, p = 6.690e-7a 

Age (years) 35.8 ± 9.2 35.1 ± 7.7 t(194) = 0.519, p = 0.604b 

Education (years) 13.3 ± 2.6 15.1 ± 2.9 t(194) = -4.418, p = 1.657e-5b 

Handedness (L/R) 6/115 4/71 χ2(1) = 0.013, p = 0.908a 
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Illness duration (years) 10.8 ± 8.7   

SANS 10.1 ± 5.2   

SAPS 8.6 ± 3.2   

CPZ equivalentc 561.1 ± 389.4   

aPearson’s chi-squared test 

bTwo-sided independent samples t-test 

cAverage CPZ equivalents calculated over the 106 Patients receiving neuroleptic medication 

 

EEG recording and data processing 

Participants were sitting in a dim lit room. They were instructed to keep their eyes closed and 

to relax for 5 min. Resting-state EEG was recorded using a BioSemi Active Two Mk2 system 

(Biosemi B.V., The Netherlands) with 64 Ag-AgCl sintered active electrodes referenced to the 

common mode sense electrode. The recording sampling rate was 2,048 Hz. Offline data were 

downsampled to 256 Hz and were preprocessed using an automatic pipeline (da Cruz et al. 

2018). Preprocessed EEG data were analyzed using multiple signal processing methods in the 

electrode and source space. In total, 194 EEG features were extracted (see Supplementary 

Table 1). Out of the 194 EEG features, 50 were obtained in the source space and 144 in the 

electrode space. For source space analysis, we defined 80 brain regions (40 per hemisphere) 

according to the AAL atlas (see Supplementary Table 2). See Supplementary Methods for a 

detailed description of the analysis methods. 

Group comparisons 

We compared patients’ and controls’ scores for each of the 194 EEG features. For each of the 

𝐽 variables (i.e. 64 electrodes, 80 brain regions, or 12 microstate parameters, depending on the 

number of variables of each EEG feature) of a given feature, we performed a two-way ANCOVA, 

with Group (patients and controls) and Gender (male and female) as factors and with Education 

as a covariate. The P-values for the effect of Group were corrected for 𝐽 comparisons using 

false discovery rate (FDR; with an error rate of 5%). Group effects’ 𝜂2 were converted to 

Cohen’s d. 
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Pearson, partial least squares, and distance correlations 

First, for each EEG feature that contained at least one variable showing a significant difference 

between patients and controls (after correcting for multiple comparisons), we selected the 

variable (i.e. electrode, brain region, or microstate parameter) with the biggest effect size to 

be the representative variable for that feature. Then, for patients and controls separately, we 

computed pairwise Pearson correlations between the representative variables of each 

significant EEG feature. As a complementary analysis, we computed Pearson correlations 

between the first principal components of the EEG features showing significant group 

differences for patients and controls separately. Second, to quantify the overall relationship, 

i.e. the amount of shared information, between pairs of multivariate EEG features, we used 

partial least squares correlation (PLSC). PLSC generalizes correlations between two variables 

to two matrices (Tucker 1958; McIntosh et al. 1996). The shared information can be quantified 

as the inertia common to the 2 features (Krishnan et al. 2011). The statistical significance of 

the inertia was assessed using a permutation test (McIntosh et al. 2004; Abdi and Williams 

2013). The inertia values were normalized. Hence, the normalized inertias (ℑ𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 ) ranged 

from 0 (the two EEG features are completely unrelated) to 1 (the two EEG features contain the 

same information). PLSC analysis was done for patients and controls separately. Finally, for 

patients and controls separately, we quantified the relationship between pairs of multivariate 

EEG features using distance correlations (Székely and Rizzo 2013). Distance correlations are 

close to 0 if the multivariate features are unrelated and are close to 1 if features are strongly 

related. See Supplementary Methods for details. 

Regression and classification analyses 

To evaluate whether EEG features predict the psychopathology scores (SAPS and SANS) 

adequately, we used elastic net regression models (Zou and Hastie 2005). Elastic nets can 

handle regression problems where the number of predictors is relatively large compared to 

the number of samples as well as multicollinearity (i.e. the predictors are not linearly 

independent) by combining the 𝑙1 and 𝑙2 penalties to achieve regularization. For each of the 

194 EEG features (with all its variables), we built 2 regression models, one to predict SAPS 

scores and one to predict SANS scores. We performed 20 repetitions of a 3-fold nested cross-

validation procedure. First, one third of the data (1-fold) was left out for validation (test set), 
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while the remaining data (2-folds; train set) were used to find the optimal parameters, namely 

the amount of penalization and the compromise between 𝑙1 and 𝑙2 penalties, using 3-fold 

cross-validation. The model with the parameters leading to best performance in the train set 

was tested on the left-out data (test set). The entire procedure was repeated 20 times, with 

different allocations of the patients in the train and test sets. Using the same crossvalidation 

procedure, i.e. 20 repetitions of a 3-fold cross-validation, we also evaluated predictive 

performance using a nonlinear random forest regression model, setting the maximum depth 

of the tree to 10 and the number of trees to 100. Random forests are meta estimators that 

average several decision trees trained on subsets of the dataset to improve accuracy and to 

avoid overfitting. Prediction performance was calculated using the coefficient of determination 

(R2) and the root-mean-squared error (RMSE). The distribution of the prediction performance 

values was obtained from the 60 aggregated RMSE and R2 across repetitions of the procedure. 

Further, we evaluated the classification performance of the EEG features, i.e. we aimed to 

discriminate between patients and controls using penalized logistic regression. Accuracy (ACC) 

and area under the curve (AUC) were obtained using a training procedure consisting of 100 

repetitions of a 3-fold cross-validation method. First, 33% of the data were separated as the 

testing set, and the remaining 67%, i.e. training set, were used to estimate the amount of 

penalization ( 𝑙1 norm, 10 values between 𝑒−4and 𝑒4) using 3-fold cross validation. The model 

giving the best fit on the training set was tested on the left out 33% of the data and the 

classification ACC and AUC were estimated. The entire procedure was repeated for 100 times, 

allocating the participants differently at each iteration, and the values of ACC and AUC were 

aggregated. The mean ACC and AUC were obtained for each EEG feature. To identify the 

features that classified patients and controls significantly, we repeated the above-mentioned 

procedure for 1,000 times and aggregated the ACC and AUC values. We assigned different EEG 

feature values to different participants at each repetition (random label permutation). The 

mean AUCs obtained in the previous step were compared to the null distribution of 1,000 AUC 

values and a P-value was obtained. The P-value indicated the probability of a value of AUC 

obtained from random label permutation to be larger than that obtained from the original 

data. We declare that the features were significant if the value was <5%. 
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Results 

Multiple EEG features reveal significant group effects and classification performance 

For 121 patients (22 females, 35.8 ± 9.2 years old, 13.3 ± 2.6 years of education) and 75 age-

matched healthy controls (39 females, 35.1 ± 7.7 years old, 15.1 ± 2.9 years of education; Table 

1), we extracted, in total, 194 features from the resting-state EEG recordings, including time-

domain, frequency-domain, connectivity, and nonlinear dynamical features (Supplementary 

Table 1). Among the 194 EEG features, 69 (35.57%) showed significant differences between 

patients and controls with medium to large effect sizes (Cohen’s d varied from 0.463 to 1.037, 

Fig. 1). Patients showed significantly reduced values in 24 out of the 69 EEG features, revealing 

significant group differences (illustrated as negative effect size in Fig. 1). Patients exhibited 

significantly higher values than controls in 45 EEG features. 

 

Fig. 1. Effect size (Cohen’s d) of the group differences between patients and controls for each of the 194 EEG 
features. We took the values of the electrode, brain region, or microstate parameter, with the largest effect size 

according to Cohen’s d ( 𝜂2 values were converted to Cohen’s d) to be the representative variable for each feature. 
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Significant group differences, after correction for multiple comparisons (using FDR), are depicted in red, with 
dotted red horizontal lines serving as a guide to their labels. > and < were added to the feature labels to indicate 
if patients had significantly higher or lower values than controls, respectively. The non-significant effects are 
shown in blue. Error bars represent 95% confidence intervals. A list with the abbreviations and the corresponding 
name of each feature is presented in Supplementary Table 1. 

 

Using cross validated classification analysis, we found 91 EEG features with a significant AUC 

performance compared to the null models. The AUC values of the EEG features with significant 

classification performance ranged between 0.610 and 0.848 for the training sets and between 

0.523 and 0.715 for the testing sets. The classification accuracies of the significant EEG features 

ranged between 0.691 and 0.873 for the training sets and between 0.590 and 0.736 for the 

testing sets. Out of the 69 EEG features, which showed a significant effect in the group 

comparison using ANCOVA, 57 features also showed a significant classification performance 

(Supplementary Table 3). 

Correlations between EEG features 

To evaluate to what extent features that showed significant group differences are sensitive to 

the same aspects of the disorder, we computed Pearson’s correlations between pairs of 

features (Fig. 2). As the representative variable for each feature, we took the values of the 

electrode, brain region, or microstate parameter which showed the largest group difference 

according to Cohen’s d (Fig. 1). Surprisingly, we found that, in the patients group, only 36.49% 

of the pairwise correlations were significant at a level of 0.05 (without correcting for multiple 

comparisons). For the control group, only 26.73% of the correlations were significant. Since 

significance depends on the sample size, here, we focus on the magnitude of the correlation 

coefficients (𝑟-values). In general, the magnitudes of the 𝑟-values were very low in both 

patients (0.055, 0.122, and 0.251 for the 25th, 50th, and 75th percentiles, respectively) and 

controls (0.059, 0.129, and 0.242 for the 25th, 50th, and 75th percentiles, respectively; Fig. 2). 

Strong correlations were found mainly for pairs of very closely related features (Supplementary 

Tables 4 and 5), such as between waiting-time statistics of gamma bursts (“waiting time 

gamma”) and life-time statistics of gamma bursts (“life time gamma”; 𝑟 = 0.836 and 𝑟 = 0.926 

in patients and controls, respectively). Similar results were found when, instead of the variable 

showing the largest group difference, we selected the first principal component as the 

representative variable of each EEG feature showing a significant group difference between 
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patients and controls. The 𝑟-values were low in both patients (0.060, 0.152, and 0.313 for the 

25th, 50th, and 75th percentiles, respectively) and controls (0.059, 0.135, and 0.264 for the 

25th, 50th, and 75th percentiles, respectively). Similar results were found using disattenuated 

𝑟-values (see Supplementary Results). Interestingly, when we put together all variables from 

all EEG features, 13,112 variables in total, and we corrected for multiple comparisons using 

Holm method, we found 272 variables from 16 EEG features which showed significant 

differences (see Supplementary Table 6). When we correlated these 16 EEG features, selecting 

the variable showing the largest effect as the representative variable, we found that 

correlations were stronger in patients (0.163, 0.317, and 0.454 for the 25th, 50th, and 75th 

percentiles, respectively) than in controls (0.088, 0.164, and 0.302 for the 25th, 50th, and 75th 

percentiles, respectively). Potentially, these features might be interesting for future 

investigations. 

 

Fig. 2. Pairwise correlations between the 69 EEG features which showed significant group differences between 
patients and controls. Patients’ 𝑟-values are presented in the upper triangle and controls’ 𝑟-values are shown in 
the lower triangle. Strong negative and positive 𝑟-values are depicted in red and blue, respectively, and 𝑟-values 
around 0 in yellow. For each feature, we used the values of the electrode, brain region, or microstate parameter 
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which showed the largest effect size as the representative variable for the correlations. A list with the 
abbreviations and corresponding name of each feature is shown in Supplementary Table 1. 

 

To quantify the overall shared information between pairs of EEG features, which showed 

significant group differences, by taking not only variables with the largest effect size into 

account but all variables of the features, we used PLSC and distance correlations. For the 

patients, 55.92% of the pairwise inertias were significant (without correcting for multiple 

comparisons) and for controls, 40.28%. In general, relative inertias were not very high in both 

patients (0.254, 0.329, and 0.409 for the 25th, 50th, and 75th percentiles, respectively) and 

controls (0.305, 0.387, and 0.472 for the 25th, 50th, and 75th percentiles, respectively; Fig. 3). 

As in the Pearson’s correlation results, features that showed strong associations were mainly 

similar features, such as the same network statistics for different connectivity measures in the 

theta band, for example, at the electrode level: clustering coefficient connectivity estimated 

with the phase locking value (“clust coeff e-plv theta”) and with the imaginary part of 

coherence (“clust coeff e-icoh theta”; ℑ𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒= 0.804 and ℑ𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒= 0.826, in patients and 

controls, respectively). Distance correlations show similar results. The distance correlation 

values were low in both patients (0.096, 0.189, and 0.329 for the 25th, 50th, and 75th 

percentiles, respectively) and controls (0.102, 0.168, and 0.303 for the 25th, 50th, and 75th 

percentiles, respectively). For the patients, 61.59% of the pairwise distance correlations were 

significant and 47.02% of the pairwise distance correlations were significant for controls 

(without correction for multiple comparisons). Disattenuated values were stronger for relative 

inertias, whereas for distance correlations, the values were not strong (see Supplementary 

Results). 
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Fig. 3. Shared information between the 69 EEG features which showed significant group differences, as measured 
by the relative inertia (ℑ𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒) computed with PLSC. The relative inertia ranges from 0 (the two features are 
completely unrelated) to 1 (the two features’ values move together by the exact same percentage). Patients’ 
relative inertias are presented in the upper triangle, and controls’ relative inertias are shown in the lower triangle. 
A list with the abbreviations and corresponding name of each feature is shown in Supplementary Table 1. 

Prediction of psychopathology scores 

We evaluated whether EEG features were adequate predictors of psychopathology scores 

determined by the Scale for the Assessment of Positive Symptoms (SAPS) and the Scale for the 

Assessment of Negative Symptoms (SANS), which target positive (hallucinations, delusions, 

bizarre behavior, and positive formal thought disorder) and negative (affective flattening, 

alogia, apathy, anhedonia, and attention) symptoms, respectively. All 194 EEG features 

exhibited very weak out-of-sample predictive ability to both the SANS and SAPS scores. Results 

were very similar for both the linear (i.e., elastic net) and nonlinear (i.e., random forest) 

models. See Supplementary Table 7 and Supplementary Table 8 for details.    
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Discussion 

Traditionally, most studies in schizophrenia research focus on a single experimental paradigm 

and analysis method, which shows significant differences between patients and controls. 

Extensive research with the paradigm tries to derive the underlying genetic and 

neurophysiological causes of the disorder. This approach has been quite successful in the 

formulation of hypotheses, such as the dopamine hypothesis (Howes and Kapur 2009), the 

social brain hypothesis (Burns 2006), the glutamate hypothesis (Hu et al. 2015), or the 

dysconnection hypothesis (Friston et al. 2016), just to name a few. 

Here, we took a different road and examined to what extent abnormalities, quantified by 

different EEG features, correlate with each other. Many of the investigated features were 

previously linked to different abnormalities of brain processes in schizophrenia. Here, we 

reproduced many of these results, such as imbalance in microstates dynamics (Rieger et al. 

2016; da Cruz et al. 2020a), decreased LRTC in the alpha and beta bands (Nikulin et al. 2012), 

decreased life time and waiting time in the beta band (Sun et al. 2014), increased spectral 

amplitude in the theta band (Boutros et al. 2008), increased connectivity in the theta band at 

the source level (Andreou et al. 2015; Di Lorenzo et al. 2015), and decreased Lyapunov 

exponent (Kim et al. 2000), among others. With our systematic analysis, we also found 

abnormalities in EEG features, which, to the best of our knowledge, have not been reported 

yet, namely, delta-phase gamma-amplitude coupling, range EEG coefficient of variation and 

asymmetry in the theta and alpha bands, etc. In some way, deeper analysis of each feature 

may have warranted an in-depth study and a potential publication. However, we did not want 

to elaborate on these methods individually because we wanted to understand how all EEG 

features relate to each other in their entirety. 

The surprising insight from our analysis is that, even though we are probing the same signals 

from the same participants, we found only weak correlations between the 69 significant 

features. The only strong correlations we found were between features that are similar from 

the outset, thereby resembling test-retests. This suggests that, even though each EEG feature 

reveals clear-cut and reproducible differences between patients and controls, none of the 

features is truly representative for the disease. Hence, the traditional approach of focusing on 

a single experimental paradigm and analysis method has its limitations. These results remind 
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us that schizophrenia is indeed a very heterogeneous disease, a well-known fact, which is 

however not always taken seriously enough because, as mentioned above, most research tries 

to find the one or a few causes of schizophrenia within one well-described paradigm by digging 

as deep as possible into the underlying neurophysiological and genetic mechanisms. In analogy 

to botany, one may call these approaches “deep rooting” approaches. 

There can be several reasons why we did not find strong correlations between EEG features 

even though they show clear-cut group effects. First, test re-test reliability may be low. 

However, similar EEG features showed strong correlations. Second, EEG features show clear-

cut group differences, but variance in the patients and controls is low, leading to low 

correlations, the well-known reliability paradox (Hedge et al. 2018). However, variance is high, 

particularly, in the schizophrenia patients. Third, it may be that the linear and nonlinear 

methods we used are blind to more complex structures. Fourth, EEG features pick up disease-

related and, to a substantial amount, also disease-unrelated aspects. When different EEG 

features tap into different of these disease-unrelated mechanisms, correlations may be low. 

For example, one EEG feature may strongly depend on the level of fatigue and another one on 

cardiac functions, which may be both intact in the patients. In this case, variance may be high 

in both populations but correlations may be low. We cannot determine to what extent this 

scenario holds true in our study. Fifth, schizophrenia is a heterogeneous disease and different 

EEG features tap into different aspects of the disease. 

Particularly the fifth scenario suggests to complement “deep rooting” approaches with 

“shallow rooting” approaches, representing schizophrenia within a high-dimensional space, 

where many tests and analysis outcomes are used instead of one. In this respect, low 

correlations between tests are a wanted feature because different aspects of the disease are 

targeted—as long as the tests do not measure mainly disease-unrelated aspects. Tests should 

ideally have large effect sizes, low mutual correlations, and a “flat” factor structure. Whether 

this is possible is an open question and depends very much on the underlying causes of 

schizophrenia. 

Current machine learning approaches are well within this spirit (Yang et al. 2010; Mothi et al. 

2019; Phang et al. 2020; Morgan et al. 2021). For example, Clementz et al. (2016) analyzed 9 

variables, including evoked EEG variables, with k-means clustering. Three clusters were found, 

which, however, did not correspond to DSM psychosis categories. Using sparse canonical 
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correlation analysis, a bundle of neuroimaging features showed strong links to lifestyle and 

demographic variables in schizophrenia and bipolar disorder patients (Moser et al. 2018). 

Future research will tell what we gain from “shallow rooting” approaches. The gain will strongly 

depend on the complexity of the disease. 

Within a multifactorial framework, there are several possible scenarios of complexity. Our 

results show that there cannot be one cause. However, on the lowest complexity level, there 

may be a few independent causes, which were not found yet. Given the heterogeneity of the 

disease, including abnormalities in the cognitive (Andreasen et al. 1998), but also the skin 

functioning domain (Messamore 2012), the causes need to be on a rather general level, likely 

subcellular, present in all human functioning. On a medium complexity level, schizophrenia 

may be an approximatively “additive” disease, where many small abnormalities add up to 

severe symptoms. For example, the many single-nucleotide polymorphisms (SNPs) involved in 

schizophrenia may each contribute a little (Schizophrenia Working Group of the Psychiatric 

Genomics Consortium 2014). In an even more complex scenario, schizophrenia is a disease 

where many causes act in a truly combinatorial manner, i.e. focusing on a single or a few causes 

is of no avail. One needs always to take all causes into account, which may be impossible 

because such approaches require impossible sample sizes. For example, only certain 

combinations of redundant functions, each coming with at least two variants, cause the 

disease. If one function is upregulated and another one is downregulated in an individual, there 

are no abnormalities. Deficits manifest only when all or most functions are either up- or down-

regulated. In such a combinatorial scenario, it would be difficult to find the underlying causes 

since each variant itself does not lead to a deficit; only certain combinations do. 

Our study has several limitations. There are demographic differences between patients and 

controls, which might affect our group comparisons. However, we attempted to minimize 

these demographic effects by using education as a covariate and gender as factor in the 

analyses. Similarly, we cannot exclude effects of medication in our results. Nonetheless, we 

find similar patterns of correlations between EEG features, i.e. weak associations, in both 

patients and controls, suggesting that if there is an effect of medication, it is small. Further, our 

sample size is relatively small for achieving reliable estimates of predictive power (Schnack and 

Kahn 2016; Varoquaux 2018; Poldrack et al. 2020). Importantly, during resting-state EEG 

recordings, participants might be differently engaged into different aspects of cognitive 
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processing. However, the group effects revealed by the 69 EEG features indicate that there is 

abnormal processing even if the patients would engage differently into different aspects of 

cognition. Moreover, task-based EEG features also do not correlate strongly (Braff et al. 2006; 

Price et al. 2006; Seidman et al. 2015). In the healthy control group, the low correlations are 

only partly surprising since we do not know to what extent different EEG features tap into 

similar mechanisms, which is contrary to the patient group for which we know that the features 

are related to processing abnormalities. Still, it is surprising that so few features correlate in 

the control group as well and how similar the correlations look in patients and controls. 

Our results and the complexity of the disease may explain a deep mystery in schizophrenia 

research. Schizophrenia has an estimated heritability of 70%–85% (Burmeister et al. 2008). For 

example, the chance to also suffer from schizophrenia for monozygotic twins is about 33% 

when the partner twin has the disease (Hilker et al. 2018). Furthermore, about 0.25%–0.75% 

people of a population suffer from schizophrenia and related psychotic disorders (Kessler et al. 

2005; Saha et al. 2005; Moreno-Küstner et al. 2018). These values are rather stable across 

cultures (Simeone et al. 2015). Given that schizophrenia patients have less offspring (Bassett 

et al. 1996; Avila et al. 2001; Keller and Miller 2006; MacCabe et al. 2009), this provokes the 

question why schizophrenia has not been extinguished during the course of evolution (Keller 

and Miller 2006; Liu et al. 2019). In the above-mentioned combinatorial scenario with many 

redundant functions, this may simply happen because evolution operates on the individual SNP 

level and not on the combinatorial one. As long as most of the population shows average 

functioning, there will be no change of the allele distributions. In the additive scenario, 

evolution may extinct harmful alleles, of which each constitutes only a little risk, very slowly 

and these may be replaced by harmful de novo mutations (Keller and Miller 2006). To what 

extent such considerations hold true will be shown by “shallow rooting” approaches using a 

plethora of paradigms and a multiverse of analysis methods. 
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This section presents preliminary results of an ongoing project examining the stability of resting-state EEG 
features in patients with schizophrenia.  

Preliminary Results 

We identified 82 out of 148 EEG features that showed a significant difference between patients 

with schizophrenia and healthy controls. This comparison was conducted using a sample of 

135 patients with schizophrenia and 92 healthy controls (see Table 1). Importantly, some of 

the EEG features included in this study were not considered in Gordillo et al. (2023). For 

example, we defined spectral and frequency features in six frequency bands instead of five. 

Detailed information regarding the EEG analyses is presented in the Methods section. 

Furthermore, due to the larger sample size in the present study, we had increased statistical 

power to detect features showing group differences. The effect sizes (Cohen's d) for the EEG 

features demonstrating significant differences between groups ranged from 0.41 to 0.96. 

Stability assessment 

The stability of EEG features was assessed using a retest sample comprising 40 patients with 

schizophrenia and 27 healthy controls. Resting-state EEG data were recorded after an average 

of 4.461 (±1.543) years for patients and 4.745 (±1.56) years for healthy controls (for details, 

see Table 2). For each variable (electrode, brain region, or microstate parameter/transition), 

we calculated the intraclass correlation coefficient (ICC) and Spearman correlation. 
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Additionally, we computed multivariate distance correlations considering the entire set of 

variables for each EEG feature. This analysis was conducted separately for each group. 

 

Figure 1. Intraclass correlation coefficients (ICC) of 40 out of 82 EEG features demonstrating a significant group 
difference between patients with schizophrenia and controls. Group difference analyses were conducted using 
the sample described in Table 1, comprising 135 patients with schizophrenia and 92 healthy controls. Stability 
was assessed separately for each group. Below the names of the EEG features, we display the maximum effect 
size observed in the group difference analysis. Confidence intervals represent the 25th and 75th percentiles of 
ICC values across electrodes, brain regions, or microstate parameters/transitions. 

 

In the patient group, out of the 82 EEG features showing differences between groups, 36 

exhibited (median) ICC values below 0.4, indicating poor reliabilities. Additionally, 36 features 

showed fair reliabilities, with ICC values ranging between 0.4 and 0.59. Nine features 

demonstrated good reliabilities, with ICC values between 0.6 and 0.75, while only one feature, 

specifically the envelope standard deviation in the alpha 12 band, exhibited excellent reliability 
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with an ICC value above 0.75. For the control group, 22 EEG features showed poor reliabilities, 

35 exhibited fair reliabilities, 16 demonstrated good reliabilities, and 9 exhibited excellent 

reliabilities, all out of the 82 EEG features showing differences between groups. 

In patients with schizophrenia, the 25th, 50th, and 75th percentiles of the (median) Spearman 

correlations across the 82 EEG features showing group differences were 0.28, 0.45, and 0.55, 

respectively. For controls, the corresponding percentile values were 0.40, 0.51, and 0.65. For 

multivariate distance correlations, which range from 0 to 1, the 25th, 50th, and 75th 

percentiles for patients were 0.64, 0.70, and 0.77, respectively. For controls, the corresponding 

percentiles were 0.72, 0.78, and 0.86. 

 

Figure 2. Intraclass correlation coefficients (ICC) of 42 (not presented in Figure 1) out of 82 EEG features 
demonstrating a significant group difference between patients with schizophrenia and controls. Group difference 
analyses were conducted using the sample described in Table 1, comprising 135 patients with schizophrenia and 
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92 healthy controls. Stability was assessed separately for each group. Below the names of the EEG features, we 
display the maximum effect size observed in the group difference analysis. Confidence intervals represent the 
25th and 75th percentiles of ICC values across electrodes, brain regions, or microstate parameters/transitions. 

 

Methods 

Participants 

Patients with schizophrenia were recruited from the Tbilisi Mental Health Hospital or the 

psycho-social rehabilitation center. They were invited to participate in the experiments after 

recovering from an acute episode. Diagnosis of schizophrenia was conducted according to the 

Diagnostic and Statistical Manual of Mental Disorders Fourth Edition (DSM-IV) criteria. This 

diagnosis was established through an interview based on the Structured Clinical Interview for 

DSM-IV, Clinical Version, along with information from staff and a review of patients’ records. 

Psychopathology in patients was assessed using the Scale for the Assessment of Negative 

Symptoms (SANS) and the Scale for the Assessment of Positive Symptoms (SAPS). 

Control participants were recruited from the general population in Tbilisi, Georgia, with the 

aim of matching patients' demographics as closely as possible. Controls were eligible to 

participate if they did not have any psychiatric axis I disorders and had no family history of 

psychosis. General exclusion criteria included alcohol or drug abuse, severe neurological 

incidents or diagnoses, developmental disorders (such as autism spectrum disorder or 

intellectual disability), or other somatic mind-altering conditions.  

All participants provided informed consent and were informed of their right to withdraw from 

the experiment at any time. The study procedures were conducted in compliance with the 

Declaration of Helsinki (except for pre-registration) and were approved by the Ethical 

Committee of the Institute of Postgraduate Medical Education and Continuous Professional 

Development in Georgia (Protocol number: 09/07; Title: “Genetic polymorphisms and early 

information processing in schizophrenia”). 

Recording time 1 

We present data from 135 patients with schizophrenia and 92 healthy controls. Previously 

published data included 121 patients with schizophrenia and 75 healthy controls (Gordillo, da 
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Cruz, Chkonia, et al., 2023). All participants underwent a battery of behavioral paradigms and 

resting-state EEG recordings. Among the 135 patients, 121 were receiving neuroleptic 

medication, with Chlorpromazine (CPZ) equivalents indicated in Table 1. There were 40 

inpatients and 95 outpatients. The maximum age for patients was up to 55 years, while for 

controls, it was up to 62 years. Detailed group characteristics are provided in Table 1. 

Recording time 2 

Resting-state EEG data were collected from 40 patients with schizophrenia and 27 healthy 

controls after an average of 4.461 years (±1.543 SD) for patients (range: 1.99 - 9.96 years) and 

4.745 years (±1.56 SD) for healthy controls (range: 2.675 - 10.563 years). Details regarding the 

sample characteristics are provided in Table 2. Psychopathology in patients was re-assessed 

using SANS and SAPS. At recording time 1, four patients were receiving neuroleptic medication 

but not at recording time 2, while three patients were not receiving medication at recording 

time 1 but were receiving medication at recording time 2. Additionally, thirty-one patients 

were receiving medication at both recording moments. 

 

Table 1. Group average statistics of all subjects recorded at time 1 

 Patients Controls Statistics 

Sex (F/M) 27/108 44/48 χ2(1) = 18.436, p = 
1.757e-5b 

Age (years) 36.2 ± 9.2 36.7 ± 9.3 t(225) = -0.359, p = 0.720c 

Education (years) 13.3 ± 2.6 15.3 ± 3.0 t(225) = -5.341, p = 
2.260e-7c 

Handedness (L/R) 6/129 5/87 χ2(1) = 0.001, p = 0.979b 

Illness duration (years) 11.3 ± 8.5   

SANS 10.4 ± 5.3   

SAPS 8.5 ± 3.2   

CPZ equivalenta 579.4 ± 395.0   

SANS - Scale for the Assessment of Negative Symptoms, SAPS - Scale for Assessment of Positive, CPZ - 
chlorpromazine 

aAverage CPZ equivalents calculated over the 121 patients receiving neuroleptic medication 
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bPearson’s chi-squared test 

cTwo-sided independent samples t-test 

 

Table 2. Group average statistics of subjects with two recordings 

 Patients 1 Patients 2 Statistics 
Patients 

Controls 1 Controls 2 Statistics 
Controls 

Sex (F/M) 5/35 5/35  7/20 7/20  

Age (years) 37.2 ± 9.6 41.4 ± 9.7 t(39) = 16.393, 
p = 4.344e-19b 

33.7 ± 7.8 38.1 ± 7.9 t(26) = 
12.952, p = 
7.585e-
13b 

Handedness (L/R) 3/37 3/37  2/25 2/25  

Illness duration 
(years) 

13.7 ± 8.9 18.2 ± 9.3 t(39) = 13.355, 
p = 3.942e-16b 

   

SANS 10.1 ± 5.1 11.1 ± 5.3 t(39) = 1.542, 
p = 0.131b; 

rho=0.713, p = 
2.403e-7c 

   

SAPS 8.2 ± 3.2 8.2 ± 2.7 t(39) = 0.085, 
p = 0.933b; 

rho=0.237, p = 
0.141c 

   

CPZ equivalenta 629.9 ± 456.7 667.2 ± 450.2 t(30) = -0.103, 
p = 0.918b; 

rho=0.399, p = 
0.028c 

   

aAverage CPZ equivalents calculated over 35 and 34 patients receiving neuroleptic medication at recording 
time 1 and 2, respectively.  

bPaired t-test 

cSpearman correlation 

EEG recording and preprocessing 

Participants were instructed to sit in a dimly lit room with their eyes closed and relax for 5 

minutes. Resting-state EEG data were recorded using a BioSemi Active Two Mk2 system 

(Biosemi B.V., The Netherlands) equipped with 64 Ag-AgCl sintered active electrodes, 

referenced to the common mode sense electrode. The recording sampling rate was set to 2048 

Hz for both recording sessions. The same recording system was utilized for both time points. 
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Subsequently, the data were downsampled to 256 Hz and processed using an automated 

pipeline (da Cruz et al., 2018). A step was included to discard time points with amplitudes 

exceeding ± 400uV, considering a window of ±200ms around these points. Preprocessing steps 

consisted of bandpass filtering in the range of 1–90 Hz, removal of powerline noise, re-

referencing to the biweight estimate of the mean across all channels, identification and 

interpolation of bad channels using 3D spline interpolation, removal of bad EEG segments, 

independent component analysis for the removal of eye movement, muscular, and other 

artifacts related to bad channels, and re-referencing to a common average reference.  

EEG analysis 

Periodic and aperiodic components of power spectra 

Using the Fitting Oscillations & One Over F (FOOOF) algorithm (Donoghue et al., 2020), we 

extracted four EEG features: the Individual Alpha Peak Frequency (IAPF), Individual Alpha Peak 

Power, the 1/f slope, and the 1/f offset of the power spectra. Initially, the continuous EEG data 

were segmented into 4-second windows with a 50% overlap, and the power spectrum was 

computed using the Fast Fourier Transform (FFT) and a Hanning window using the FieldTrip 

toolbox for MATLAB (Oostenveld et al., 2011). Subsequently, the average spectrum was 

analyzed using the FOOOF algorithm, enabling the identification of oscillatory peaks in the 

power spectra as well as non-oscillatory features. 

Importantly, we utilized the IAPF to define individualized frequency bands based on recent 

research and recommendations (Babiloni et al., 2020; Popov et al., 2023). Specifically, six 

frequency bands were determined: delta (1 – [IAPF-6 Hz]), theta ([IAPF-6 Hz] – [IAPF-4 Hz]), 

alpha1/2 ([IAPF-4 Hz] - IAPF), alpha3 (IAPF – [IAPF+2 Hz]), beta ([IAPF+2 Hz] - 30 Hz), and gamma 

(30 Hz to 40 Hz). From the oscillatory spectra, we also derived power values in the theta, 

alpha1/2, alpha3, and beta bands. 

Temporal correlations 

Temporal correlations were assessed for the delta, theta, alpha1/2, alpha3, and beta frequency 

bands, as the delta and gamma bands did not exhibit strong oscillations with the FOOOF 

analysis. We computed both long-range (> 1 second) temporal correlations (LRTC) and short-

term (~< 1 second) autocorrelations of EEG oscillations. To calculate LRTC, we employed 
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detrended fluctuation analysis (DFA), whereas short-term autocorrelations were determined 

using the life and waiting times algorithm. In both analyses, we utilized the amplitude 

envelopes of the band-pass filtered EEG signals instead of the raw time series, focusing on how 

the amplitude of the oscillations changes over time. The amplitude envelopes were derived 

using the Hilbert transform. 

DFA 

To conduct detrended fluctuation analysis (DFA), we initially defined 20 window sizes ranging 

from 1 to 25 seconds, distributed logarithmically. At each window size, we detrended the 

integrated amplitude envelope and computed the variance, known as the fluctuation function. 

We employed 50% overlapping windows to augment the number of windows and, 

consequently, the signal-to-noise ratios. Subsequently, for each window size, we calculated the 

average fluctuation function across the overlapping windows. A line was fitted to these average 

fluctuation functions in a logarithmic scale. The slope of this fitted line determined the scaling 

exponent. 

Life and waiting times 

Life and waiting times analysis quantifies characteristics of the duration of oscillation bursts. 

To determine the onset and end of oscillation bursts, we relied on a threshold derived from 

the median amplitude envelope. Subsequently, we obtained distributions for life and waiting 

times, representing the durations of bursts above or below the threshold for the entire signal 

length. We then calculated the 95th percentile of these distributions for each electrode, which 

was subsequently utilized for further analysis. 

Functional excitation inhibition ratio 

Functional excitation/inhibition ratios (fE/I) were devised as proxies for the E/I balance of brain 

networks that demonstrate critical dynamics (Bruining et al., 2020). Initially, the amplitude 

envelopes of the time series were computed using the Hilbert transform and segmented into 

80% overlapping 5-second windows. Subsequently, the amplitude envelope for each window 

was integrated and divided by the mean amplitude. The resulting amplitude-normalized data 

were detrended, and the standard deviation was computed to yield a normalized fluctuation 

function. The fE/I was calculated as one minus the Pearson correlation between the amplitude 
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and normalized fluctuation functions across all windows. Notably, only electrodes exhibiting a 

DFA exponent above 0.6 were included in the fE/I analysis. 

Source analysis 

For source analyses, including the generation of connectivity matrices as described in the 

Connectivity analysis section, we closely followed the methods outlined by Popov et al. (2023). 

Utilizing the headmodel provided in 

https://www.fieldtriptoolbox.org/tutorial/networkanalysis_eeg/, we implemented a 

parcellation scheme comprising 24 brain regions (12 per hemisphere) based on the Desikan-

Killiani atlas (Desikan et al., 2006). This identical parcellation scheme was employed in a 

previous study (Popov et al., 2023). Opting for a smaller number of parcels may potentially 

enhance signal-to-noise ratios compared to larger parcellations, given the low spatial 

resolution of EEG. The single-dipole leadfields within each brain parcel were concatenated. 

Next, we generated time-series data for each brain region through principal component 

analysis (PCA). These source time series were then subjected to spectral analysis from 1 to 40 

Hz and analyzed using the FOOOF algorithm to quantify source oscillatory power within each 

frequency band. Specifically, we obtained source spectral power in the theta, alpha1/2, alpha3, 

and beta frequency bands. 

Connectivity analysis 

EEG connectivity analyses were conducted in both electrode and source space using the 

FieldTrip toolbox. In electrode space, we employed the phase-locking value and imaginary 

coherence algorithms. Before connectivity analysis in the electrode space, scalp current 

densities were derived using the spline method. For source connectivity analysis, we utilized 

only the imaginary coherence algorithm. Source time series were estimated using the linearly 

constrained minimum variance beamforming algorithm (LCMV). 

Connectivity analyses were focused specifically at the peak of the alpha frequency, as well as 

in the beta and theta bands. The resulting functional connectivity matrices were analyzed using 

the brain connectivity toolbox (BCT). Four network measures were derived: node strength, 

clustering coefficient, local efficiency, and betweenness centrality. 

https://www.fieldtriptoolbox.org/tutorial/networkanalysis_eeg/
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Nonlinear features 

We extracted 19 full-band nonlinear and entropy features for each electrode. These features 

included sample entropy, permutation entropy, approximate entropy, Katz fractal dimension, 

Higuchi fractal dimension, Hjorth parameters (activity, mobility, and complexity), Lempel-Ziv 

complexity, correlation dimension, Lyapunov exponents, as well as recurrence quantification 

analysis features (determinism, mean diagonal length, entropy, laminarity, trapping time, 

recurrence time entropy, and maximum vertical time length). 

To calculate these features, EEG data were initially segmented into 4-second time windows. 

Each measure was then computed within each window and subsequently averaged. Detailed 

procedures for obtaining these features have been outlined in (Gordillo, da Cruz, Moreno, et 

al., 2023). 

EEG microstates 

First, the continuous EEG data underwent bandpass filtering between 2 and 20 Hz, a common 

frequency band used across studies (Tarailis et al., 2023). The initial step of the microstate 

analysis involved identifying a set of representative topographic maps for each subject. Only 

topographic maps at global field power (GFP) peaks were considered for analysis due to their 

higher signal-to-noise ratios. A modified k-means procedure was then applied to these maps, 

repeated 100 times, and the solution with the highest explained variance was retained. The 

optimal number of clusters was determined using cross-validation, with cluster centers ranging 

from 4 to 7. 

Subsequently, individual maps were concatenated and subjected to another modified k-means 

procedure, repeated 500 times, with the number of clusters again ranging from 4 to 7. The 

representative maps for the back-fitting procedures were obtained from a large sample 

comprising 135 patients and 92 controls. Notably, both patients and controls were included 

together to obtain these representative maps, aligning with recent recommendations (Murphy 

et al., 2024). 

The obtained maps were backfitted to the bandpass-filtered data, and the resulting fitted 

microstate sequence was smoothed using the 'windowed' option with default parameters in 

the microstates EEGLAB toolbox (Poulsen et al., 2018). From this analysis, we derived 
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microstate duration, time coverage, global explained variance, and occurrence as temporal 

parameters, along with pairwise transition probabilities. 

Spectral and amplitude features 

The subsequent analyses were conducted separately for each of the six individualized 

frequency bands defined previously.  

Statistics of amplitude envelopes 

The electrode time series were initially divided into 4-second segments, and each analysis was 

performed on each segment before averaging across segments. Five statistical descriptors of 

the distribution of the signal and amplitude envelopes were computed. Amplitude envelopes 

were derived using the Hilbert transform. The descriptors included the mean and standard 

deviation of the amplitude envelopes, kurtosis, skewness, and total power of the signals. 

Additionally, peak-to-peak asymmetries were calculated using the range-EEG analysis method. 

Spectral entropies and relative amplitudes 

To derive these features, the continuous EEG data were initially segmented into 4-second 

windows with a 50% overlap, and the power spectrum was computed using fast Fourier 

transform (FFT) with a Hanning window. Subsequently, the average spectrum for each 

electrode was examined. Relative amplitudes were determined by computing the ratio 

between the sum of the power spectrum values within the bounds of the frequency band of 

interest and the sum of the power spectrum values of the full-band signal. Spectral entropy 

was computed as Shannon's entropy of the ratio between the normalized power spectrum in 

the frequency band under analysis and the normalized power spectrum of the full-band signal. 

Phase-amplitude coupling 

Cross-frequency couplings were assessed using the modulation index. Initially, electrode time 

series were partitioned into non-overlapping segments lasting 4 seconds each and were then 

filtered into the theta, alpha1/2, alpha3, beta, and gamma bands, utilizing the individualized 

frequency bands determined based on the Individual Alpha Peak Frequency (IAPF) (refer to 

Periodic and aperiodic components of power spectra). Subsequently, nine cross-frequency 

interactions were defined: Theta phase with alpha1/2, alpha3, beta, and gamma amplitudes; 
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alpha1/2 phase with beta and gamma amplitudes; alpha3 phase with beta and gamma 

amplitudes; and beta phase with gamma amplitudes. To compute these interactions, the phase 

and amplitude time series were derived using the instantaneous phase and amplitudes 

obtained through the Hilbert transform. Phase values were discretized into 18 bins (ranging 

from -180 to 180 degrees), and the mean amplitude value for each bin (of the modulated 

frequency band) was computed. Kullback-Leibler (KL) divergence was then employed to 

measure the disparity between uniformly distributed amplitudes across bin phase values 

(indicating no couplings) and the actual data. The average KL divergence across the 4-second 

windows was computed and utilized for subsequent analyses.  

Statistical analysis 

Group differences 

We utilized the identical group difference analysis methodology as detailed in Gordillo et al. 

(2023). For each variable (i.e., electrodes, brain regions, or microstate parameters/transitions) 

of every EEG feature, we conducted an analysis of covariance (ANCOVA) incorporating GROUP 

and SEX as factors, with EDUCATION serving as a covariate, given that these characteristics 

displayed group differences (refer to Table 1). We corrected for multiple comparisons within 

each EEG feature. For instance, for EEG features in electrode space, we executed 64 ANCOVAs, 

and subsequently adjusted the resulting 64 P-values for the effect of GROUP using false 

discovery rates (FDR) with an error rate of 5%. The effect sizes 𝜂2 of the ANCOVAs were 

converted to Cohen’s d.  

Stability assessment 

To evaluate the stability of features, we employed intraclass correlations with model 3,1 

(ICC3,1). ICC3,1 offers the advantage of considering mean differences between repeated 

measurements. Therefore, high ICC values not only signify higher stability of the ranks but also 

indicate stability of the values themselves. We calculated ICC3,1 values for each electrode 

separately. As EEG features comprise varying numbers of electrodes, brain regions, and 

microstate temporal parameters/transitions, to summarize the reliability of each feature, we 

reported the 25th, 50th, and 75th percentiles of the ICC values. The intraclass_corr function 
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from the Pingouin package was used for ICC calculation. Following previously established 

criteria by Cicchetti (1994), reliability was categorized as poor if values were below 0.4, fair 

between 0.4 and 0.59, good between 0.6 and 0.75, and excellent if above 0.75. Additionally, 

we assessed stability using Spearman and multivariate distance correlations. The latter allowed 

us to evaluate stability by considering all variables of the EEG features. For this purpose, we 

utilized the distance_correlation function from the dcor package for Python.  
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Abstract 

Schizophrenia patients are known to have deficits in contextual vision. However, results are 

often very mixed. In some paradigms, patients do not take the context into account and, hence, 

perform more veridically than healthy controls. In other paradigms, context deteriorates 

performance much more strongly in patients compared to healthy controls. These mixed 

results may be explained by differences in the paradigms as well as by small or biased samples, 

given the large heterogeneity of patients' deficits. Here, we show that mixed results may also 

come from idiosyncrasies of the stimuli used because in variants of the same visual paradigm, 

tested with the same participants, we found intact and deficient processing. 
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1. Introduction 

Numerous studies have reported that schizophrenia patients have deficits in utilizing visual 

contextual information (Seymour et al., 2013; Tibber et al., 2013; review: Silverstein and Keane, 

2011). For example, studies have shown diminished susceptibility to illusions in patients (e.g., 

depth inversion illusion: Keane et al., 2013; apparent motion: Sanders et al., 2013; Ebbinghaus 

illusion: Uhlhaas et al., 2006). However, Grzeczkowski et al. (2018), Kaliuzhna et al. (2019), Yang 

et al. (2013), and Tibber et al. (2013) found intact illusion perception, whereas Kantrowitz et 

al. (2009), Chen et al. (2008), and Frith and Friston (2013) found increased susceptibility. 

Results are clearly mixed (review: King et al., 2017; Notredame et al., 2014). Diminished 

dependency on contextual information can make perception even more veridical in 

schizophrenia patients. Dakin and colleagues (2005) presented a medium-contrast patch 

within a high-contrast surround. Controls perceived the contrast of the patch as largely lower 

than the true contrast, whereas schizophrenia patients reported a value closer to the true 

contrast, even though contrast discrimination itself has strongly deteriorated in schizophrenia 

patients (Must et al., 2004; Slaghuis, 1998). These results are usually explained in terms of 

weaker modulation of cortical responses in the primary visual cortex (Anderson et al., 2017; 

Seymour et al., 2013) or by biased expectations (or priors) in early visual areas (Frith and 

Friston, 2013). However, results are again mixed. Kaliuzhna et al. (2019) showed that 

perceptual judgments are rather biased in accordance with natural scenes' probability 

distributions. 

Another example of visual contextual modulation is crowding. In crowding, target perception 

is largely impaired when presented together with flankers (review: Herzog et al., 2016; Levi, 

2008; Pelli and Tillman, 2008; Strasburger, 2020). Schizophrenia patients showed less crowding 

(Kraehenmann et al., 2012; Robol et al., 2013). However, we found recently that crowding was 

intact or even stronger in the patients (Roinishvili et al., 2015). Hence, results are mixed here 

too. 

In all of the above studies, context acted only uni-directionally, e.g., making perception less 

veridical. These results can be explained by many mechanisms, some of which are not 

necessarily visual, such as diminished attention to the target (e.g., Barch et al., 2012). We have 

recently used a “bidirectional” crowding paradigm where adding contextual elements first 
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deteriorated performance, but adding further elements improved performance (Chicherov 

and Herzog, 2015; Chicherov et al., 2014; Doerig et al., 2019; Herzog and Manassi, 2015; 

Herzog et al., 2015, 2016; Malania et al., 2007; Manassi et al., 2012, 2013, 2015, 2016; Saarela 

et al., 2009; Sayim et al., 2008, 2010, 2011; Choung et al., 2019, Choung et al., 2021; Doerig et 

al., 2019). With this crowding and uncrowding paradigm, patients showed almost the same 

performance as controls, except for an unspecific target processing deficit (Roinishvili et al., 

2015). In this paradigm, next to basic vision processing, grouping and Gestalt processing are 

key (Bornet et al., 2021; Choung et al., 2021, Choung et al., submitted; Doerig et al., 2019; 

Doerig et al., 2020a; Francis et al., 2017), which seem to be intact in the patients (Favrod et al., 

2022). 

Hence, it remains unclear whether or not there are general contextual deficits in schizophrenia. 

Here, we propose that there are no general impaired mechanisms but that deficits depend 

strongly on idiosyncrasies of the specific stimuli. 

2. Materials and methods 

2.1. Participants 

Seventeen schizophrenia patients and 16 age-matched unaffected participants took part in the 

two experiments. Patients were recruited from the Tbilisi Mental Health Center. Age and 

gender-matched controls were recruited from the general population in Tbilisi. Patients were 

diagnosed according to the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV/V), 

based on the Structured Clinical Interview for DSM-IV/V (Clinician Version), information from 

the staff, and the study of the records. Psychopathology of schizophrenia was assessed by an 

experienced psychiatrist (EC) by the Scales for the Assessment of Negative Symptoms and 

Scales for the Assessment of Positive Symptoms (SANS, SAPS; Andreasen, 1984, 1989). Two 

schizophrenia patients and one control participant were excluded because of poor eye fixation. 

Hence, we retained the data of 15 participants from each group. Group characteristics are 

presented in Table 1. All participants had normal or corrected to normal visual acuity in the 

Freiburg Visual Acuity Test (FrACT), as indicated by a binocular score >1.0 (Bach, 1996). 

Participants gave written consent before the experiment. All experiments were conducted 

following the Declaration of Helsinki except for the preregistration (World Medical Association, 
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2013) and were approved by the local ethics committee (Tbilisi mental Health Center, 

independent Ethics committee, Georgia). 

Table 1. Group average statistics (±SD) of patients and controls. SANS stands for Scale for the Assessment of 
Negative Symptoms. SAPS stands for Scale for the Assessment of Positive Symptoms. CPZ stands for 
chlorpromazine.  

 Age 
Gender 

(F/M) 

Education 
(years) 

Handness 
(L/R) 

Illness 
duration 
(years) 

SANS SAPS CPZ 

Patients 39.1±9.5 5/10 13.5±3.3 1/14 15.6±8.8 7.2±3.4 8.1±2.4 421.9±265.2 

Controls 38.3±8.0 5/10 14.6±2.4 0/15     

 

2.2. Apparatus 

Stimuli were displayed on an LCD screen (ASUS VG248QE, Taipei, Taiwan; screen resolution 

1920 × 1080 pixels). The room was dimly illuminated (0.5 lx). The viewing distance was 75 cm, 

and the participant's chin and forehead were positioned on a chin-rest. Responses were 

collected using hand-held push buttons. Participants' eye movements were tracked with a The 

Eye Tribe eye tracker (60 Hz sampling frequency, The Eye Tribe, Copenhagen, Denmark), and 

stimuli were displayed only when participants adequately fixated. 

2.3. Stimuli 

Stimuli were white (100 cd/m2) and presented on a black background with luminance below 

0.3 cd/m2. Participants were asked to fixate on a red fixation dot (diameter of 8 arcmin, 20 

cd/m2). Stimuli were presented for 150 ms in experiment 1 and 42 ms to 642 ms in experiment 

2. When no response was registered within 3 s, the trial was repeated randomly within the 

same block. A feedback tone was given for incorrect responses (600 Hz) and omissions (300 

Hz). Vernier stimuli were composed of two vertical bars. Each bar was 40 arcmin long, 1.8 

arcmin wide (anti-aliased), and separated by a 4 arcmin gap. Left/right offsets of vertical 

verniers were balanced within a block. Flankers were either lines, combinations of squares and 

stars, or cuboids. In experiment 1, the target Vernier was surrounded by one square in all 

conditions. Flanker configurations were composed of squares and stars. Squares were 

composed of 96 arcmin long lines, stars were composed of seven 38.4 arcmin long lines, and 
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the center-to-center distance between two flankers was 120 arcmin. In experiment 2, two 

vertical lines or two cuboids were presented to the left or the right of the Vernier target with 

a distance of 23.33 arcmin. Lines were 84 arcmin long; cuboids' width was 116.67 arcmin, 

height was 84 arcmin, and the oblique line's angle was 135° with a length of 47.14 arcmin. 

Each configuration was presented at the center of the screen, and the fixation dot was 

presented at an eccentricity of 6° to the left, i.e., the stimulus was presented in the periphery. 

Psychophysics Toolbox was used to present the stimuli (Brainard, 1997; Kleiner et al., 2007; 

Pelli and Vision, 1997). 

2.4. Procedures 

2.4.1. General procedure 

Two experiments were carried out on two days within a week. In both experiments, 

participants were asked to discriminate the Vernier offset direction of the lower bar compared 

to the upper bar. Different flanking configurations were tested 160 times in two sessions (80 

trials per session). To reduce target-location uncertainty, only the target was presented alone 

for 150 ms at the beginning of each block. We used the PEST stair-case procedure (Taylor and 

Creelman, 1967). In PEST, test levels are changed step-wise based on the recent response 

history. The current test level is only changed when the percentage of correct responses for 

this test level lies, with some certainty, above or below the threshold criterion of 75 %. After 

80 trials, we ended the procedure and derived the threshold from the psychometric function 

fitted to the data post-hoc (details in Data analysis). We randomized the order of experimental 

conditions across participants. 

2.4.2. Experiment 1 

7 flanker configurations were tested. The configurations were as follows: Vernier alone, 

Vernier surrounded by one square, Vernier with 7 horizontally aligned squares, Vernier with 

35 squares (5 × 7 grid), Vernier with 3 squares and 4 stars, Vernier with 9 squares and 12 stars, 

and Vernier with 11 squares and 10 stars (Fig. 1). The 7 configurations were tested in a 

blockwise manner. Therefore, two sessions of 7 blocks each were tested, and all 7 

configurations were tested in each session. The order of blocks within the session was 

randomized. 
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Fig. 1. Experiment 1. The y-axis shows mean of log-transformed threshold elevation (±SEM) relative to the 
unflanked (Vernier alone) condition (blue and red dotted lines equal to 0). Large thresholds represent poor 
performance (strong crowding), and low thresholds represent good performance (weak crowding). Patients and 
controls perform similarly. (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.) 

 

2.4.3. Experiment 2 

Two flanker configurations (Vernier with two lines and Vernier with two cuboids) with four 

different stimulus durations (42 ms, 83 ms, 158 ms, and 642 ms) were tested. Each 

configuration was tested within a session, stimulus durations were randomized within the 

session. Each configuration with each stimulus duration was tested twice (80 trials each). Thus, 

each session was composed of 4 blocks of 80 trials, and there were 4 sessions. The 

experimental order was line flankers, cuboid flankers, cuboid flankers, and line flankers session. 

2.5. Data analysis 

We fitted a cumulative Gaussian function (psychometric function) to the data (tested levels 

and hit rates) and determined the vernier offset for which 75 % correct responses were 

reached (threshold). Psignifit 2.5 toolbox (Fründ et al., 2011) was used for the fitting. High 
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thresholds indicate inferior performance, and low thresholds indicate good performance. Next, 

we divided the threshold in each condition by the threshold in the Vernier alone condition 

(threshold elevation). Data were log-transformed to bring the data closer to normality. No 

obvious violation of normality was detected by visual inspection. 

Using R (R Core Team, 2019) and lme4 package (Bates et al., 2015), we computed linear mixed-

effects models (LMM) to account for dependent variables and random variations due to 

individual differences. The fixed and random effects are specified for each experiment (see 

Results for specifications of each experiment). Significance was obtained through likelihood 

ratio tests (𝜒2) by comparing nested models. For each fitted model, using MuMIn package 

(Barton, 2020), we computed the effect size (r2), i.e., the explained variance, when including 

(conditional rc
2) and excluding (marginal rm

2) the random effects (Johnson, 2014; Nakagawa et 

al., n.d.; Nakagawa and Schielzeth, 2013). 

3. Results 

3.1. Experiment 1. Intact (Un)crowding in schizophrenia patients 

Similar to previous findings (Roinishvili et al., 2015), schizophrenia patients showed similar 

crowding behavior as controls. When the Vernier target was surrounded by a simple flanker 

(square), the target was strongly and similarly crowded in both the patient group and control 

group (Fig. 1a). Patients' and controls' performance improved by adding three squares on the 

left and right sides of the center square (7-square; Fig. 1b). By presenting the Vernier with a 

grid of squares (35 squares; Fig. 1c), performance improved almost to the level of the Vernier 

only condition (Fig. 1 dotted lines). Crowding was strong when presenting squares and stars 

alternatively (Fig. 1d, e, f). Overall, performance of patients and controls were comparable in 

all conditions. 

To analyze the relation between threshold elevation and configuration depending on the two 

groups, we computed an LMM with the 7 flanker configurations and the 2 groups (patients and 

controls) as fixed effects (Fig. 1a-f). Individual participants were considered as random 

intercepts. We found no significant interaction between the two fixed effects (likelihood ratio 

test between an additive and an interaction model: 𝜒2(5) = 2.070, p = 0.839). The 
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configurations showed clear and significant differences (configurations: 𝜒2(5) = 155.264, p < 

0.001), but there was no significant difference between the two groups (groups: 𝜒2(1) = 0.979, 

p = 0.322). Although the absence of evidence is not evidence of absence, our results suggest 

that patients perform complex crowding tasks similarly to controls. Moreover, the difference 

of explained variance by the models with and without the group as a fixed effect is only 0.8 % 

(rm
2 = 0.491, rm

2 = 0.483). The detailed estimates are reported in Supp. Table 1. 

3.2. Experiment 2. Deficient time-consuming processing in schizophrenia patients 

As reported in previous works, grouping requires recurrent processes (Doerig et al., 2020b; 

Sayim et al., 2010, Sayim et al., 2014), which may be abnormal in the patients. Hence, we tested 

two flanker configurations with four stimulus durations. Two configurations were two lines and 

two cuboids (Fig. 2 left & right). Note that both flanker configurations contained the two lines 

next to the target Vernier. In both the control group and patient group, performance did not 

improve by increasing the stimulus duration for line flankers, whereas performance improved 

significantly by increasing the stimulus duration for cuboid flankers. However, performance 

improvement for the cuboid flanker condition in the patient group required more time than in 

the control group. 

 

Fig. 2. Experiment 2. Left & middle, the y-axis shows mean of log-transformed threshold elevation (±SEM) relative 
to the unflanked (Vernier alone) condition (blue and red dotted lines equal to 0). Larger thresholds represent poor 
performance (strong crowding), and smaller thresholds represent good performance (weak crowding). Right, beta 
coefficients for linear regression of each participant. The y-axis shows the linear regression coefficient. Close-to-
zero coefficient (gray dotted line) means the performance did not change by increasing the stimulus duration. 
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(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.) 

 

To analyze the effects of stimulus duration and groups on Vernier threshold elevation for each 

condition separately, we used an LMM with stimulus duration (42, 83, 158, 642 ms) and 

population groups (controls and patients) as fixed effects. Individual participants were 

considered as random intercepts. For line the flanker condition, we found no significant 

interaction between the two fixed effects (likelihood ratio test between an additive and an 

interaction model: 𝜒2(1) = 1.553, p = 0.213). Stimulation duration showed a significant effect 

(stimulus duration: 𝜒2(1) = 43.784, p < 0.001), whereas the population group only showed 

marginal significance (groups: 𝜒2(1) = 4.479, p = 0.034). For the cuboid flanker condition, we 

found a significant interaction between the two fixed effects (likelihood ratio test between an 

additive and an interaction model: 𝜒2(1) = 8.559, p < 0.01). Therefore, the effect of stimulus 

duration should be considered per group. The detailed estimates are reported in Supp. Tables 

2 and 3. 

To closely dissect the effect of stimulus duration per participant, we fitted individual 

participants' threshold elevation levels against the stimulus duration with a regression line. 

Then, we compared the fitted slope values between the groups. For the control group in the 

line flanker condition, the fitted slope values' 25th, 50th, and 75th quantiles were −0.296, −0.201, 

and −0.165, respectively (r2=0.677 ± 0.065). For the patient group in the line flanker condition, 

the fitted slope values' 25th, 50th, and 75th quantiles were −0.344, −0.107, and 0.000, 

respectively (r2=0.790 ± 0.068). There was no significant difference between the two groups 

(t(28) = 0.848, p = 0.404, d = 0.310). With line flankers, the performance was bad in both 

groups, regardless of the stimulus presentation time. 

In the cuboid flanker condition, we found a group difference. For the control group, the fitted 

slope values' 25th, 50th, and 75th quantiles were −0.831, −0.508, and −0.311, respectively 

(r2 = 0.789 ± 0.041). For the patient group, the fitted slope values' 25th, 50th, and 75th 

quantiles were −0.501, −0.407, and −0.034, respectively (r2=0.733 ± 0.070). There was a 

significant difference between fitted slope values (t(28) = 2.077, p = 0.047, d = 0.758). The 

significant difference shows that performance improves significantly more in the control than 

patient group by increasing the stimulus time. 
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In summary, we found that, in the uncrowding condition (cuboid flanker condition), patients' 

performance improves less than that of control participants when increasing the stimulation 

duration. Thus, the data shows that patients have mainly a quantitative but not a qualitative 

deficit in processing the line flankers and a quantitative and qualitative deficit with the cuboid 

flankers. 

4. Discussion 

Contextual processing is often seriously impaired, and various mechanisms were proposed to 

explain these effects in schizophrenia; such as reduced surround suppression (Anderson et al., 

2017; Seymour et al., 2013), or abnormal expectations (or priors) (Friston, 2005; Frith and 

Friston, 2013; Sterzer et al., 2018). However, the results are mixed. Hence, it is unclear whether 

or not the proposed mechanism is, indeed, at work and whether it is impaired in schizophrenia 

patients. Mixed results may come from biased sampling, and unspecific non-visual aspects, 

among others. Alternatively, there may not be one abnormal mechanism for contextual vision 

in general. Here, we have shown evidence for this latter hypothesis. We found that the same 

patients can have intact processing in one paradigm (Exp. 1, Fig. 1) but deficient processing in 

a variant of the very same paradigm (Exp. 2, Fig. 2). This result rules out unspecific aspects, 

such as diminished attention and biased sampling since the very same observers participated 

in all the experiments. It may well be that the small changes in the spatial layout of the 

crowding stimuli lead to the involvement of different mechanisms, of which only some are 

abnormal. Hence, claims about abnormal mechanisms should be verified with more than one 

paradigm. On the other hand, our results offer the opportunity to pit intact and deficient 

processing against each other within one paradigm and, thus, unearth specific abnormal 

mechanisms. 

We like to mention that it is important to publish null results, such as the ones of intact 

processing in Fig. 1. Since patients usually perform worse than controls, a significant group 

difference always indicates a deficit, which may lead to the impression that patients are 

deficient in most paradigms. However, this is not the case. 
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Interestingly, patients show strong crowding (Fig. 1, a, d, f, and Fig. 2 left: line flanker) and 

uncrowding (Fig. 1, b, c, e, and Fig. 2 middle: cuboid flanker), similar to the control group, 

suggesting that complex grouping and Gestalt processing are intact. However, in Exp. 2, we 

found a significant difference in the time-consuming recurrent processing. Indeed, for the 

cuboid condition, where control participants have uncrowding with longer stimulus duration, 

schizophrenia patients needed longer stimulus duration to have uncrowding (cuboid condition, 

Fig. 2 middle). Importantly, uncrowding in patients was intact. However, the sample size is 

small (15 per group). Our results point to the possibility that some configurations of the stimuli 

might reveal clear-cut group effects, which might provide a ground for investigating putative 

underlying mechanisms. However, we suggest that group effects on certain configurations of 

stimuli might be driven by idiosyncratic aspects of the paradigm rather than by a common 

disease-related mechanism. We need to mention that also in Exp. 1 processing is most likely 

not feedforward and relies on grouping. 

The results of Exp. 2 are in accordance with previous results, where specific complex processing 

is intact, but there is a main deficit (Brand et al., 2005; Lauffs et al., 2016; Roinishvili et al., 

2015; Schütze et al., 2007). Importantly, this deficit cannot come from target processing per 

se because the performance in the vernier alone condition was only slightly deteriorated. What 

causes this general deficit remains an enigma. 
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Abstract 

The computational mechanisms underlying psychiatric disorders are hotly debated. One 

hypothesis, grounded in the Bayesian predictive coding framework, proposes that 

schizophrenia patients have abnormalities in encoding prior beliefs about the environment, 

resulting in abnormal sensory inference, which can explain core aspects of the 

psychopathology, such as psychotic symptoms. Here, we tested this hypothesis by identifying 

oscillatory traveling waves as neural signatures of predictive coding. By analyzing an EEG 

dataset comprising 146 patients with schizophrenia and 96 healthy controls, we found that 

patients exhibit stronger top-down alpha-band traveling waves compared to healthy controls 
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during resting state, reflecting stronger priors at higher levels of the predictive processing 

hierarchy. Conversely, we found stronger bottom-up alpha-band waves in patients during a 

visual task, reflecting an alteration of lower sensory priors. These hierarchical-specific 

abnormalities might explain a range of symptoms and perceptual impairments observed in 

patients with schizophrenia within a common computational framework.  

Significance 

We provide novel evidence favoring the Bayesian predictive coding interpretation of 

schizophrenia. Relying on computational and experimental works that characterized 

electrophysiological correlates of predictive processes, we investigate oscillatory traveling 

waves in EEG data of 146 patients with schizophrenia and 96 age-matched healthy controls. 

Our results reveal stronger top-down alpha-band traveling waves in patients, reflecting an 

increase in the precision of high-level priors. On the other hand, we observed an increase in 

bottom-up alpha-band waves during a visual task, in line with the proposed reduction in 

precision of lower-level sensory priors. Our findings suggest that traveling waves’ analysis is a 

versatile technique to probe predictive processing mechanisms in different cognitive 

processes. Impairments in this mechanism may underlie perceptual alterations as well as the 

pronounced clinical symptoms of schizophrenia. 

Introduction 

Schizophrenia is a severe mental disorder that affects about one percent of the world's 

population (McCutcheon et al., 2020). Schizophrenia is characterized by a large range of 

psychotic symptoms as well as by strong impairments in mental functioning, including 

perception, cognition, and personality.  

Numerous hypotheses and mechanisms have been proposed to explain these abnormalities. 

One hypothesis is that schizophrenia patients dysfunctionally update their cognitive world 

model, usually described within the framework of Bayesian inference and predictive coding 

(Corlett et al., 2009; Krystal et al., 2017). According to this framework, perception combines 

incoming sensory evidence with prior information, i.e., beliefs about the world (figure 1A). 
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However, experimental evidence for this framework from behavioral studies is mixed, 

including studies showing that patients rely more on prior beliefs than on sensory information 

(Cassidy et al., 2018; Powers et al., 2017), studies which found stronger reliance on sensory 

information in the patients (Stuke et al., 2019; Weilnhammer et al., 2020), and even studies 

which found intact processing (Choung et al., 2022; Kaliuzhna et al., 2019; Tibber et al., 2013). 

Basic sensory impairments and hallucinations may however rely on abnormalities at different 

levels of predictive processing. Hence, it has been proposed that schizophrenia patients weigh 

the prior information more strongly in hierarchically higher-regions, but rely more on sensory 

information in lower hierarchical regions (Corlett et al., 2019; Sterzer et al., 2018). These 

hierarchical-specific alterations in the priors would explain both impairments in basic sensory 

processing and also more complex phenomena such as hallucinations or delusions (Friston et 

al., 2016; Krystal et al., 2017), and may therefore also explain the mixed experimental results. 

Here, we tested the hypothesis that there are hierarchical-specific alterations in predictive 

processing from a neurophysiological perspective. In recent work, it was shown that oscillatory 

alpha-band (8-12Hz) traveling waves are neural signatures of predictive coding (Alamia & 

VanRullen, 2019; Arnal & Giraud, 2012; Bastos et al., 2012, 2015; Friston, 2019; Michalareas 

et al., 2016). In these studies (Alamia & VanRullen, 2019; Pang et al., 2020), neural activity was 

measured along the central midline of electrodes (Oz-Fz) to determine how oscillations 

propagate as traveling waves from occipital to frontal areas (forward waves) or in the opposite 

direction (backward waves). Based on a model, implementing predictive coding under minimal 

assumptions (Alamia & VanRullen, 2019), the authors proposed that forward traveling waves 

encode sensory information and prediction-errors (i.e., the difference between top-down 

predictions and the actual activity), while backward waves carry the prior information (Rao & 

Ballard, 1999). A pharmacological study provided additional evidence for the relationship 

between traveling waves and predictive coding using a serotonergic psychedelics drug (i.e., N, 

N-Dimethyltryptamine, DMT; Alamia et al., 2020). According to a recently proposed hypothesis 

(Carhart-Harris & Friston, 2019), psychedelics act on the high-level prior distributions in the 

brain, decreasing their precision (defined as the inverse of the variance, figure 1B). As a 

consequence, there is an increase in forward waves carrying prediction-errors (figure 1B, left 

panel). Indeed,  after the intake of DMT a decrease and an increase in the alpha-band traveling 

waves propagating top-down and bottom-up, respectively, was observed . Here, we used the 
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very same analysis to test whether patients rely more on prior beliefs than on sensory evidence 

during eyes-closed, resting-state EEG and a visual backward masking task. Following the 

Bayesian framework, we expect stronger alpha band backward waves during resting state in 

schizophrenia patients than in healthy controls, due to more precise high-order priors; on the 

other hand, we expect stronger forward alpha-band waves during a visual task, reflecting an 

increase in the weighting of the sensory information.  (figure 1B). We analyzed a large EEG 

dataset comprising 146 patients with schizophrenia and 96 age-matched healthy controls. 

 

 

Figure 1 – Predictive coding and traveling waves. A) In the Bayesian predictive coding perspective, predictions are 
generated by prior distributions in higher brain regions and prediction-errors are computed to update the prior 
based on the sensory evidence (i.e., the likelihood). Recently, it was proposed that there are hierarchical-specific 
abnormalities of the priors’ precision in schizophrenia. Specifically, patients have been suggested to have a better 
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precision in higher areas and worse precision in lower, sensory-related areas (Corlett et al., 2019). B) Considering 
backward (BW) and forward (FW) waves as proxies of predictions and prediction-errors, respectively (Alamia & 
VanRullen, 2019), one would expect different patterns of traveling waves depending on the precision of the prior: 
a more precise prior (rightmost panel) generates stronger predictions, and in turn stronger backward waves, 
whereas less precise prior information (leftmost pattern) generates inaccurate predictions, hence higher 
prediction-errors, reflected in stronger forward waves. C) In our experiment, the target consisted of a Vernier, 
i.e., two vertical lines slightly offset horizontally either to the left or right (as shown). Participants were instructed 
to indicate the offset direction. A grating mask was presented afterwards, making the discriminability of the offset 
spatially and temporally challenging. 

 

Results 

We re-analyzed EEG data from previous studies with resting state data (eyes closed; da Cruz 

et al., 2020; Gordillo et al., 2023) and a visual backward masking task (da Cruz, Shaqiri, et al., 

2020; Garobbio et al., 2021). We quantified brain oscillations along the central electrodes' mid-

line (from Oz to Fz, figure 2), as in our previous work (Alamia & VanRullen, 2019; Pang et al., 

2020). We considered sliding time windows of 1 and 0.5 seconds from two different datasets, 

one eyes-closed resting state and one visual backward masking (VBM) task (see Methods and 

figure 2). First, for all time windows, we create 2D maps by stacking the signals from the seven 

electrodes, obtaining images with time and electrodes as axes (figure 2). 
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Figure 2 – Quantifying traveling waves. From a 0.5 or 1-second time window, we extract 2D maps by combining 
seven midline electrodes. We then compute 2D-FFT to evaluate forward (FW – in blue) and backward (BW – in 
red) waves, as quantified by the maximum values in the lower- and upper-right quadrants, respectively. Lastly, 
we computed the waves amount in decibels by using the average 1D-FFT of each electrode as a baseline (see 
Methods). 

 

For each of these images, we computed 2D Fast Fourier Transform (FFT) to quantify the 

amount of traveling waves propagating from occipital to frontal areas and vice versa (i.e., 

forward or backward, respectively). To determine an appropriate baseline (see Methods), we 

averaged each midline electrode 1D-FFT to obtain a baseline accounting for fluctuations in the 

overall power unrelated to the traveling waves (i.e., without the spatial information of the 

electrodes). The waves' amount is expressed as a log-ratio in decibels [dB] (see Methods). 

Traveling waves during rest 

In both the patients (N=121) and the control group (N=75), we quantified the spectral power 

in five frequency bands (θ: 3Hz - 7Hz, α: 8Hz – 12 Hz, low β:13Hz – 22Hz, high β: 23Hz –30 Hz, 

and γ: 30Hz – 45Hz) along the midline electrodes (from Oz to Fz, see figure 2). First, we 

compared each electrode's spectral power between the two groups. For each frequency band, 

we performed Bayesian ANOVA, considering ELECTRODE and GROUP as factors (see Methods 

for details). As shown in figure 3A, we found a higher spectral power in the patients compared 

to the control group in the θ and α bands (GROUP factor BF10>>104 in both frequency bands) 

but not in the beta- and gamma-bands. For all frequency bands, the ELECTRODE factor revealed 

a strong effect (all BF10>>1066). Next, we focused on the spatial component of brain oscillations 

by investigating differences in the spectra of traveling waves propagating forward (FW) and 

backward (BW). Figure 3B shows the spectra for both groups: as in our previous work (Alamia 

et al., 2023), in the control group, we found a typical spectral pattern with high backward 

waves in the α and low β (13Hz -22Hz) bands, and a flat profile in the forward waves (i.e., no 

difference between bands). We then compared the FW and BW spectra of the control group 

with those of the patients, considering the five frequency bands (θ, α, low and high β, and γ; 

figure 3B). We performed two-factor ANCOVAs, considering GROUP and BAND as factors and 

GENDER, AGE, and EDUCATION as covariates. For both FW and BW waves, we found a similar 

pattern of results: a very strong effect for the BAND factor (BF10>>1011 for both FW and BW 

waves) but mild to no effect in the GROUP factor (BW waves, BF10=7.519; FW waves, 



Variability is the rule: Neurophysiology and contextual visual processing in schizophrenia. Chapter 5. 
Oscillatory traveling waves reveal predictive coding abnormalities in schizophrenia 

 

89 
 

BF10=0.514); however, in both directions, we found a very robust effect of the GROUP x BAND 

interaction (for both FW and BW waves BF10>>400), revealing significant differences between 

the two groups. Concerning the covariates, there are no effects of EDUCATION or GENDER (BW 

waves, BF10<0.4; FW waves, BF10<0.8), but a small effect of AGE for the FW waves (BW waves, 

BF10=1.968; FW waves, BF10=4.684). We further analyzed these results by performing Bayesian 

ANOVAs for each frequency band separately, considering as factors GROUP and DIRECTION 

(either forward or backward).  

 

 

Figure 3 – Differences in traveling waves between patients and controls during rest. A) Raw power for each 
spectral band in the midline electrodes (x-axis) for both the patients and control group. Each color represents a 
different frequency band. Error bars represent standard errors. B) The left panels illustrate the spectra for both 
forward (blue) and backward (red) waves for the two groups; the right panels show the mean for each frequency 
band. Error bars represent standard errors. 

 

Overall, the results show no difference between the groups (all frequency bands, 0.1<BF10<1), 

and a robust effect in the DIRECTION factor for θ, low β, and γ (all BF10>>107). However, there 

was a strong interaction between GROUP and DIRECTION in the α band (BF10>>500), which, in 

line with our previous analysis, reveals distinct oscillatory dynamics between the patient and 

the control group. Specifically, these results confirm the difference shown in figure 3B: the 

most substantial effect was observed in the alpha-band (as confirmed by a larger Bayes Factor), 

where schizophrenia patients revealed an increase in backward waves and a decrease in 

forward waves.  
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Traveling waves for backward masking 

Previous results showed that the traveling wave pattern changes drastically between resting 

state EEG and visual evoked activity (Pang et al., 2020). In addition, according to the proposed 

Bayesian framework, schizophrenia patients have less precise priors at hierarchically lower 

sensory areas, thus weighing more the sensory information than healthy controls (Corlett et 

al., 2019; Sterzer et al., 2018). Accordingly, we expect an increase in alpha-band forward waves 

in patients following visual stimulation, in line with the hypothesis that alpha-band forward 

waves reflect precision-weighted sensory information (Alamia et al., 2020; Friston, 2019). For 

evoked activity, we analyzed a dataset of a Visual Backward Masking (VBM) task (see Herzog 

et al., 2004). In VBM, a briefly presented target is followed by a mask (figure 1C). There were 4 

conditions: Vernier only, Long SOA, Short SOA, and Mask only conditions. In the Vernier only 

condition, there was no mask, whereas in the Long SOA, and Short SOA conditions, the target 

Vernier was followed by a mask with either an SOA of 150 or 30 ms, respectively. The Mask 

only condition provides a control condition, where no target was presented. 
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Figure 4 – Differences in traveling waves between patients and controls during visual backward masking. A) Raw 
power for each spectral band in the midline electrodes (x-axis), for both the patients and control group in VBM 
dataset. Each color represents a different frequency band. B) The left panels illustrate the spectra for both forward 
(blue) and backward (red) waves for the two groups; the right panels show the mean for each frequency band. C) 
Spectrograms representing the forward and backward waves (upper and lower panels, respectively) for the 
control (left) and patient (right) groups. Color-coded values are baseline corrected considering 200ms before 
stimulus onset (at 0ms on the x-axis). D) Mean values and standard errors for each frequency band for the patient 
and control groups (dashed and solid lines, respectively); the x-axis represents time in milliseconds, with stimulus 
onset at 0ms. Error bars represent standard errors 

 

As in the resting state analysis, we first assessed the spectral power in each electrode 

separately (figure 4A). The Bayesian ANOVA, having ELECTRODE and GROUP as factors, revealed 

an overall higher power in the patient than in the control group in all frequency bands. As in 

resting state EEG, we also found a substantial effect of the ELECTRODE factor in all bands (all 

BF10>>1048). We then investigated the FW and BW traveling waves via two-factor ANCOVAs, 

with GROUP and BAND as primary factors and GENDER, AGE, and EDUCATION as covariates (figure 

4B). We considered the waves after the onset of the visual stimulus before applying the 

baseline correction. Regarding the backward waves, we found a strong effect of BAND 

(BF10>1018), and moderate evidence for a difference between GROUP after the stimulus onset 

(BF10=8.47) but inconclusive before (BF10=0.911). We did not find evidence for an interactions 

(BF10<0.16) or the covariates (all 0.4<BF10<1.5). These results suggest that patients have a 

higher amount of backward waves irrespective of the frequency band after the onset of the 

target. Regarding the FW waves, we observed a strong effect in the BAND factor (BF10>108) as 

well as in the GROUP factor (BF10>47). We found no evidence for the interaction (BF10<0.04), 

and inconclusive evidence for the covariate variables (all BF10<1.8). Next, we analyzed the 

changes in FW and BW waves with respect to the onset of the stimulus in each frequency band 

(i.e., applying a baseline correction computed on the 200ms before stimulus onset). In order 

to perform such analysis, we computed traveling waves in a time window ranging from 250ms 

before to 250ms after stimulus onset, with a temporal resolution of 100ms. Figure 4C 

illustrates the spectrogram for both forward and backward waves in both groups, whereas 

figure 4D gathers the same results for each frequency band separately. Considering specifically 

alpha- and theta-band waves, our results reveal a difference between GROUP in the forward 

waves (𝛼, BF10=21.52; 𝜃, BF10=15.99), but with opposite effect: patients reveal an increase in 

alpha-band FW after stimulus onset, and vice versa in the theta-band. Regarding the BW 

waves, we found evidence for a difference in the theta-band (BF10>106) but not in the alpha-
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band waves (BF10=0.13). Not surprisingly, in both FW and BW waves we found an effect of the 

TIME factor (𝜃: FW, BF10=145.48, BW, BF10>1016; 𝛼: FW, BF10=8.12, BW, BF10>1014), and an 

interaction between GROUP and TIME in all conditions (BF10>5 in all conditions) except in alpha 

BW waves (BF10=0.015). Considering beta and gamma-band traveling waves, as revealed in 

figure 4D, we did not observe any effect in the GROUP factor (all BF10<0.6) and an effect on TIME 

only for the BW low beta-band waves (BF10>1016), but not otherwise (all 0.1<BF10<1.8). All in 

all, these results confirm the prediction that the patient group show higher FW waves 

specifically in the alpha-band range, in line with the hypothesis that they rely more on 

precision-weighted sensory information.  

Additionally, we investigated differences between groups in FW and BW alpha-band waves in 

each condition separately (i.e., Vernier only, Long SOA, Short SOA, and Mask only conditions, 

see above for details). As shown in supplementary figure S1, we confirm our results in all 

conditions except when only the mask was shown, corroborating the robustness of our results.  

Correlation between the resting-state and the VBM dataset 

Out of the 144 patients and 96 control participants, 119 and 75, respectively, also belonged to 

the resting-state dataset, thus allowing us to reveal whether oscillatory traveling waves during 

rest are predictive of waves occurring during backward masking, reflecting general dynamics 

underlying predictive processes, which are not specific to the different tasks and/or 

experimental design. We correlated band by band the amount of forward and backward waves 

in both groups (figure 5A), using Pearson correlations. In the visual backward masking dataset, 

we considered traveling waves before the onset of the stimulus to avoid the influence of visual 

processes (i.e., ERPs responses). As summarized in table 1, we found strong evidence for 

positive correlations between the two datasets for both forward and backward waves in all 

frequency bands and in both the control and the patient group.  

 PATIENTS CONTROL 

Pearson's r BF₁₀ Pearson's r BF₁₀ 

FO
R

W
A

R
D

 θ 0.443 33457.916 0.376 30.532 

α 0.393 1775.222 0.504 4175.345 

low β 0.510 3.781×10+6 0.544 31240.309 
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high β 0.561 3.253×10+8 0.589 456398.413 

γ 0.607 3.341×10+10 0.745 2.941×10+11 
B

A
C

K
W

A
R

D
 

θ 0.403 2997.128 0.390 47.777 

α 0.391 1605.222 0.535 19551.076 

low β 0.357 293.238 0.414 105.358 

high β 0.406 3670.341 0.551 45799.009 

γ 0.524 1.170×10+7 0.663 9.435×10+7 

Table 1 – Coefficients of correlation between resting states and backward visual masking traveling waves.  

 

 

Figure 5 – Correlations between datasets. A) Each subplot shows the correlation between traveling waves in the 
two datasets (resting state vs. VBM task). Columns represent different frequency bands, red and blue plots 
indicate backward and forward waves, respectively. The fitted line indicates significant (Pearson) correlations (see 
results for details).  

 

Testing the effects of medication and symptoms profile on traveling waves 

To exclude potential confounds due to medication intake and to investigate whether traveling 

waves are associated to psychopathology in the schizophrenia patients, we correlated the 

amount of forward and backward waves in each frequency band with the Chlorpromazine 

(CPZ) equivalent dose that each patient received during the time of the recordings and with 
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the scores in the negative and positive symptoms assessment (SANS and SAPS, respectively). 

All Pearson correlations in both datasets and for all frequency bands provided evidence in favor 

of the null hypothesis, that is, a lack of correlation between the amount of waves and CPZ-

equivalents (resting state dataset: for both FW and BW waves in all frequency band -0.1<r<0.1, 

BF10<0.19 ; VBM dataset: for both FW and BW waves in all frequency band -0.14<r<0.1, 

BF10<0.22). Second, we performed a correlation between FW and BW waves and the SANS and 

SAPS scores (see Methods). We did not find evidence for correlations between traveling waves 

and SANS or SAPS scores (for both FW and BW waves in all frequency bands, -0.13<r<0.13, 

BF10<0.23). We obtained similar results in the VBM dataset, in which we did not find any 

correlation in most frequency bands (-0.15<r<0.15, BF10<0.3), except for a small correlation 

between SAPS and BW waves in the low β (r=0.24, BF10=3.1), high β bands (r=0.26, BF10=5.16), 

and in the γ band (r=0.26, BF10=4.58); and between SAPS and FW waves in the γ band (r=0.27, 

BF10=7.404).  

Discussion 

Analyzing EEG recordings in patients with schizophrenia and healthy controls (da Cruz, Favrod, 

et al., 2020; da Cruz, Shaqiri, et al., 2020; Garobbio et al., 2021; Gordillo et al., 2023), we found 

direct evidence for a dysfunctional updating of beliefs about the world in schizophrenia 

(Fletcher & Frith, 2009). Previous studies have shown indirect evidence in favor of this 

interpretation (Corlett et al., 2009; Krystal et al., 2017; Ellson, 1941; Kafadar et al., 2022; Kot & 

Serper, 2002). In our study, we targeted abnormalities in oscillatory traveling waves, proposed 

to reflect the flow of information in predictive processes (Alamia et al., 2020; Alamia & 

VanRullen, 2019). Unlike previous work, our analysis allowed us to visualize and disentangle 

the different actors involved in the predictive coding process, flowing from higher to lower 

cortical areas, and prediction-errors, propagating in the opposite, bottom-up, direction in 

patients with schizophrenia and healthy controls. Our results reveal a substantial increase in 

top-down and a decrease in bottom-up alpha-band traveling waves in patients compared to 

healthy controls in the resting state dataset, and the opposite pattern of results in the visual 

backward masking paradigm, demonstrating that patients with schizophrenia have more 

precise priors (i.e., smaller variability) than healthy participants at hierarchically higher prior 

but less precise priors in lower sensory areas (Corlett et al., 2019; Friston, 2005; Powers et al., 
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2017). Importantly, these findings describe not only the temporal but also the spatial 

component of brain rhythms, supporting the key idea that oscillatory dynamics are best 

understood when interpreted as traveling waves propagating across cortical regions, 

coordinating and synchronizing different brain regions  (Alexander et al., 2009; Muller et al., 

2018). 

Our results may reconcile previously contradictory findings. Some authors proposed that 

positive symptoms in schizophrenia relate to abnormalities in prior expectations (Wacongne, 

2016; Weilnhammer et al., 2020); on the other hand, other authors argued against this 

interpretation, based on indirect experimental findings, such as intact illusion perception and 

intact contextual processing (Choung et al., 2022; Grzeczkowski et al., 2018; Lhotka et al., 

2023).  To reconcile these contradicting findings,  a more nuanced framework was proposed, 

separating priors in the lower areas from those in higher ones  (Corlett et al., 2019; Sterzer et 

al., 2018). For example, visual illusions may rely on relatively lower-level priors, which affect 

visual perception specifically, whereas schizophrenia patients may have impairments in higher-

level priors, involved in higher-order functions. Accordingly, schizophrenia patients proved to 

be more sensitive than controls to illusions involving higher-order processing, such as temporal 

expectations in the triple flash illusion (Norton et al., 2008), than simpler visual illusions. Our 

results are in line with this hypothesis. In particular, we measured traveling waves during rest 

and during a visual backward masking task, in which neither predictions nor sensory 

expectations play any substantial role (especially in resting state), suggesting that alpha-band 

traveling waves do not reflect specific perceptual features of the task, but rather broader brain 

states. This conclusion is further corroborated by the lack of difference between distinct 

conditions in the visual backward masking task (fig. S1).  

Neural oscillations have long been studied in schizophrenia research and have been proposed 

to play a crucial role in coordinating neural activity, and aberrancies in their strength and 

synchronization may be a core pathophysiological mechanism of schizophrenia (Uhlhaas & 

Singer, 2006, 2010). Our findings are consistent with previous studies, in which differences 

between patients with schizophrenia and healthy controls have been observed in several 

frequency bands during resting-state (Gordillo et al., 2023; Newson & Thiagarajan, 2019) and 

different tasks or experimental conditions (Hirano & Uhlhaas, 2021; Javitt et al., 2018; Roach 

& Mathalon, 2008). For example, during resting-state, schizophrenia patients show increased 
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activity in the delta, theta and beta bands (Venables et al., 2009), whereas activity in the alpha 

and gamma bands is strongly decreased, compared to healthy controls (Knyazeva et al., 2008; 

Uhlhaas & Singer, 2013). Similarly, during visual processing, activity in the delta, theta and 

gamma bands has been shown to be reduced in schizophrenia patients (Martínez et al., 2018; 

Uhlhaas et al., 2006). Accordingly, our results reveal consistent differences between 

schizophrenia patients and healthy participants in a broad-band fashion but with a more 

substantial effect in the alpha-band, consistent with our hypothesis. As in our work, previous 

studies also related brain oscillations to predictive coding, associating prediction and 

prediction-error to different frequency bands (Bastos et al., 2012, 2015; Michalareas et al., 

2016; Vezoli et al., 2021). Specifically, gamma oscillations (>30Hz) have been proposed to 

reflect local cortical processes, and besides characterizing a wide range of cognitive functions 

(Lundqvist et al., 2016; Zhang et al., 2012), they proved to match reliably sensory expectations 

and prediction errors, corroborated by the fact that the regular repetition and the unexpected 

omission of a stimulus respectively decrease and increase gamma oscillations' activity (Fujioka 

et al., 2009; Iversen et al., 2009). In agreement with our interpretation, alpha and beta band 

oscillations (~8-30Hz) have been related to top-down activity, carrying predictions from higher 

to lower brain regions (Haegens et al., 2011; Samaha et al., 2015; van Pelt et al., 2016). In our 

results, the relationship between top-down traveling waves and prior belief is further 

corroborated by a positive correlation between backward waves in the beta and gamma bands, 

and positive symptoms assessment (SAPS), which quantifies the symptoms related to 

hallucinations, delusions, and aberrancies in perception. Importantly, our study is the first one 

to consider oscillations as traveling waves propagating through the cortex in a forward and 

backward manner, thus, taking into account not only the temporal but also the spatial 

dimension of oscillations. It is this aspect that allowed us to reconcile the mixed findings about 

Bayesian predictions in schizophrenia. 

All in all, our findings demonstrate that schizophrenia patients have stronger high-level priors, 

which elicit stronger alpha-band oscillations, and weaker low-level priors, leading to an overall 

dysfunctional updating of their cognitive and sensory world model. Our results provide direct 

evidence in favor of hierarchical-specific abnormalities in the prior of schizophrenia patients. 
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Methods 

Participants 

We present resting-state and evoked EEG data collected from two groups of participants: 

schizophrenia patients (N=146) and healthy controls (N=96). Resting-state EEG data were 

recorded for 121 schizophrenia patients and 75 healthy controls. Visual backward masking 

(VBM) EEG data were recorded from 144 schizophrenia patients and 96 healthy controls, with 

119 schizophrenia patients and 75 healthy controls also having resting-state recordings. 

Previous studies have already utilized the resting-state data for 121 schizophrenia patients and 

75 healthy controls (Gordillo et al., 2023), as well as the VBM EEG data for 121 schizophrenia 

patients and 94 healthy controls (Garobbio et al., 2021). 

Schizophrenia patients were recruited from the Tbilisi Mental Health Hospital or the psycho-

social rehabilitation center. Among the patients, 49 were inpatients, while 97 were 

outpatients. Diagnostic assessment for patients was determined using the Diagnostic and 

Statistical Manual of Mental Disorders Fourth Edition (DSM-IV) through interviews, 

information from staff, and examination of patients' records. The severity of the patient's 

symptoms was assessed by an experienced psychiatrist using the Scale for the Assessment of 

Negative Symptoms (SANS) and the Scale for the Assessment of Positive Symptoms (SAPS). Out 

of the 144 patients, 131 were receiving neuroleptic medication. The equivalent doses of 

Chlorpromazine (CPZ) are provided in Table 1.  

Controls were selected from the general population in Tbilisi, aiming to closely match the 

demographics of the patient group. All control participants had no psychiatric axis I disorders 

and no family history of psychosis. Exclusion criteria included alcohol or drug abuse, severe 

neurological incidents or diagnoses, developmental disorders such as autism spectrum 

disorder or intellectual disability, or other significant somatic illnesses affecting mental 

functioning. These criteria were assessed through interviews conducted by certified 

psychiatrists. Detailed characteristics of the groups are presented in Table 1.  

Before participating in the study, all individuals provided informed consent and were informed 

of their right to withdraw from the study at any time. The study procedures were conducted 

in accordance with the Declaration of Helsinki (except for preregistration) and were approved 
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by the Ethical Committee of the Institute of Postgraduate Medical Education and Continuous 

Professional Development in Georgia (protocol number: 09/07; title: "Genetic polymorphisms 

and early information processing in schizophrenia"). 

Table 1. Group statistics 

 VBM patients VBM 
controls 

Statistics RS patients RS controls Statistics 

Gender (M/F) 115/29 49/47 Χ
2(1)=22.108, 
P<0.001a 

22/99 39/36 Χ
2(1)=24.702, 
P<0.001a 

Age (years) 35.5±9.1 35.0±8.3 t(238)=-
0.393, 
P=0.695b 

35.8±9.2 35.1±7.7 t(194)=-
0.519, 
P=0.604b 

Education 
(years) 

13.2±2.6 15.2±2.9 t(238)=-
5.432, 
P<0.001b 

13.3±2.6 15.1±2.9 t(194)=4.418, 
P<0.001b 

Handedness 
(L/R) 

7/137 6/90 Χ
2(1)=0.217, 
P=0.641a 

6/115 4/71 Χ2(1)=0.013, 

P=0.908a 

Illness 
duration 
(years) 

10.7±8.5   10.8±8.7   

SANS 10.1±5.2   10.1±5.2   

SAPS 8.7±3.2   8.6±3.2   

CPZ 
equivalent 

578.3±391.6   561.1±389.4   

Visual acuity 1.4±0.4 1.6±0.4 t(238)=-
3.388, 
P<0.001b 

1.4±0.4 1.6±0.4 t(194)=2.969, 
P=0.003b 

Vernier 
duration* 

20 [20, 50] 20[20, 20]  Χ
2(1)=37.949, 
P<0.001c 

20 [20, 52.5] 20[20, 20] Χ2(1)=28.25, 

P<0.001c 

Note: SANS, Scale for the Assessment of Negative Symptoms; SAPS, Scale for the Assessment of Positive 
Symptoms; CPZ, Chlorpromazine equivalents 

a Pearson's chi-squared test 

b Two-sided independent samples t-test 

c Mood's median test 

*Median [25th percentile, 75th percentile]; Vernier duration value is missing for one patient in both datasets 
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Experimental procedure 

Visual backward masking 

Stimuli 

The stimuli consisted of two vertical line segments of 10' (arc-minutes) length with a gap of 1'. 

The lower bar was slightly offset either to the left or right compared to the upper bar. The 

offset was fixed at about 1.2'. The mask was composed of 25 verniers without offset separated 

by 3.33'.   

Apparatus 

The stimuli were displayed on a cathode ray tube screen (Siemens Fujitsu P796-1) with a 

refresh rate of 100 Hz. The screen resolution was 1024 x 768 pixels. Participants were seated 

at 3.5m from the monitor in a dimly lit room. A pixel comprised about 18'' (arc-seconds). Stimuli 

were white. The luminance was 100 cd/m2 (measured with a Gretag Macbeth Eye-One Display 

2 colorimeter) on a black background of < 1 cd/m2. 

Adaptive procedure 

Further details of the paradigm can be found in a previous study (Herzog et al., 2004). We 

determined the Vernier Discrimination Threshold (VD) required for participants to achieve 75% 

of correct responses in identifying a vernier offset of 0.6'. Participants were required to achieve 

a VD shorter than 100 milliseconds. The vernier stimulus, with the individualized VD for each 

participant and an offset of 1.2', was presented, followed by an interstimulus interval and a 

mask lasting 300 milliseconds. Using a staircase procedure, we adaptively determined the 

target-mask stimulus onset asynchrony (SOA), calculated as the sum of VD and interstimulus 

interval (ISI), to achieve a performance level of 75% correct responses. This was done using 

Parametric Estimation by Sequential Testing (PEST). Each participant completed the test twice, 

and the results of the first and second tests were averaged and are presented in Table 1. 

EEG experiment 

ERP latencies and amplitudes vary with VD. Hence, for the EEG experiment, we maintained VDs 

and SOAs constant thereby using the same stimuli for all observers. We set the VD to 30 

milliseconds, which corresponds to the average VD observed in previous studies involving 

patients (Chkonia et al., 2010; Herzog et al., 2004). Our experiment encompassed four distinct 
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stimulus conditions (Favrod et al., 2017, 2019; Plomp et al., 2013). In the Vernier Only 

condition, only the target vernier stimulus was presented. The Long SOA condition involved 

the presentation of the mask following the target vernier, with an SOA of 150 milliseconds. In 

contrast, the Short SOA condition featured the immediate presentation of the mask after the 

target vernier, resulting in an SOA of 30 milliseconds. The selection of SOAs for the Long SOA 

and Short SOA conditions was based on the mean SOAs observed in previous studies involving 

both schizophrenia patients and controls (Chkonia et al., 2010; Favrod et al., 2018; Herzog et 

al., 2004; Plomp et al., 2013). To provide a control condition, we included the Mask Only 

condition, wherein only the mask stimulus was presented. In this particular case, accuracy was 

determined by comparing the left/right offset response to a randomly chosen hypothetical 

offset. 

Resting-state 

Resting-state EEG data were recorded for 5min. Participants were seated in a dimly lit room 

and were instructed to close their eyes and relax during the recording.   

EEG recording and preprocessing 

EEG was recorded using a BioSemi Active 2 system with 64 Ag-AgCl sintered active electrodes, 

referenced to the common mode sense electrode. The sampling rate was 2048 Hz. Offline data 

were downsampled to 512 Hz and preprocessed using an automatic preprocessing pipeline (da 

Cruz et al., 2018). For resting-state EEG data, the preprocessing included the following steps: 

high-pass filtering at 1 Hz; power line noise removal (using CleanLine; 

www.nitrc.org/projects/cleanline); re-referencing to the bi-weight estimate of the average of 

all electrodes; removal and 3D spline interpolation of bad electrodes; removal of bad epochs; 

independent component analysis (ICA) to remove artifacts related to eye-movements, muscle 

activity, and bad electrodes, and removal of epochs with artifacts (1s epochs). For VBM EEG 

data, the preprocessing was similar to the resting-state data with the difference that a band-

pass filtering between 1 and 40 Hz was performed instead of high-pass filtering at 1 Hz. VBM 

EEG data from 2 patients (both present in the resting-state dataset) and 2 healthy controls (1 

present in the resting-state dataset) were discarded due to excessive EEG artifacts. 
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Traveling wave analysis 

As in our previous studies (Alamia et al., 2020; Pang  et al., 2020) we quantified traveling waves' 

propagation along seven midline electrodes, running from occipital to frontal regions (Oz, POz, 

Pz, CPz, Cz, FCz, Fz, as shown in figure 1). After segmenting the signal in a 1-second time 

window (and 500ms for the VBM dataset), we stacked the signals from the seven electrodes 

to create 2D maps, with time and electrodes as axes. From each map, we compute 2D-FFT 

transformation: importantly, the power in the lower and upper quadrants quantifies the 

amount of forward (FW - from occipital to frontal electrodes) and backward (BW - from frontal 

to occipital) waves, respectively (see figure 1). For each frequency in the 2-45Hz range, we 

considered the maximum values in both the upper and lower quadrant, obtaining a spectrum 

for both BW and FW waves, respectively. We then needed to determine a baseline to account 

for fluctuations in the overall power unrelated to the traveling waves. For this reason, we 

computed the average 1D-FFT of each midline electrode, which provides a baseline accounting 

for the spectral power unrelated to the traveling waves (i.e., without the spatial information 

obtained by combining the electrodes). We finally obtained the waves' amount in decibels [dB] 

as:  

𝐹𝑊 [𝑑𝐵] = 10 ∗ 𝑙𝑜𝑔10  (
𝐹𝑊

𝑎𝑣𝑒𝑟𝑎𝑔𝑒
) ;     𝐵𝑊 [𝑑𝐵] = 10 ∗ 𝑙𝑜𝑔10  (

𝐵𝑊

𝑎𝑣𝑒𝑟𝑎𝑔𝑒
). 

This value quantifies the total waves compared to the null distribution, thus being informative 

when contrasted against zero. It is important, however, to notice that this is a surface-level 

analysis, and it is not informative about the underlying sources. When interpreting these 

traveling waves results, it is also important to consider issues related to long-range connections 

and distortions due to scalp interference (Alexander et al., 2019; Nunez, 1974). In particular, 

when considering traveling waves analysis with non-invasive surface recordings (such as EEG), 

it is crucial to consider distortions and interference between coincident waves and limitations 

due to the electrode configurations (Alexander et al., 2019; Nunez, 1974, 2000). Specifically, 

it's possible to detect only waves shorter than the spatial length of the sensor array and waves 

longer than twice the distance between electrodes (due to the Nyquist criterion in space). In 

addition, different cortical processes may generate a similar pattern of traveling waves visible 

via surface recordings (Alamia & VanRullen, 2023), thus limiting the interpretation of possible 

underlying sources. 
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Statistical analyses 

We analyzed frequency-band averaged traveling waves by means of Bayesian ANOVAs. In all 

analyses, we computed Bayes Factors (BF) as the ratio between the models testing the 

alternative against the null hypothesis. All BFs are denoted as BF10 throughout the paper. In 

practice, BFs provide substantial (BF>~5) or strong (BF>~10) evidence in favor of the alternative 

hypothesis, and low BF (BF<~0.5) suggests a lack of effect (Masson, 2011). In each dataset, we 

performed a Bayesian ANOVA on each electrode spectral power considering ELECTRODE (from 

Oz to Fz along the midline) and GROUP (patients and control) as fixed factors and SUBJECT as 

the random term. We also performed an ANCOVA considering GENDER, AGE, and EDUCATION 

as covariates, GROUP and BAND as fixed terms, and SUBJECT as random terms. Lastly, all 

Bayesian correlations were computed considering both Pearson and Kendall, but we reported 

for simplicity only Bayes Factor for the Pearson r (similar results were obtained considering 

Kendall correlations). We performed all analyses in JASP (Love et al., 2019), considering default 

uniform prior distributions. 
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Highlights 

• Many tests in science are assumed to measure the same phenomena 

• EEG features showing significant effects do not strongly correlate with each other 

• Cognitive tasks are only poorly predicted by EEG features 

• A significant result may tell less of a research question than believed 

Summary 

Tests used in the empirical sciences are often (implicitly) assumed to be representative of a 

given research question in the sense that similar tests should lead to similar results. Here, we 
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show that this assumption is not always valid. We illustrate our argument with the example of 

resting-state electroencephalogram (EEG). We used multiple analysis methods, contrary to 

typical EEG studies where one analysis method is used. We found, first, that many EEG features 

correlated significantly with cognitive tasks. However, these EEG features correlated weakly 

with each other. Similarly, in a second analysis, we found that many EEG features were 

significantly different in older compared to younger participants. When we compared these 

EEG features pairwise, we did not find strong correlations. In addition, EEG features predicted 

cognitive tasks poorly as shown by cross-validated regression analysis. We discuss several 

explanations of these results. 

Introduction 

Representative paradigms with elaborated tests are crucial in all empirical sciences. In the 

brain sciences, neuroimaging methods are used to investigate mechanisms underlying 

cognition and perception. Typically, a link between a neuroimaging feature (e.g., brain volume, 

connectivity) and a cognitive function of interest is declared if the chosen test delivers a 

significant result (after accounting for confounding variables). There is often the implicit 

assumption that the significant neuroimaging feature is representative of the neural 

mechanism under investigation. Here, we explicitly tested this assumption with the example 

of resting-state electroencephalogram (EEG). 

In resting-state studies, EEG is recorded for around 5 min during which participants do nothing 

else than rest quietly. Signal processing methods are applied to quantify spatial and/or 

temporal characteristics of spontaneous brain activity. The outcomes of the analysis methods, 

i.e., EEG features, are interpreted to reflect brain processes linked to certain aspects of 

perception and cognition. For example, activity in the alpha and theta bands has been linked 

to memory and executive functions,1,2,3 alpha-band activity to visual perception,4,5 temporal 

autocorrelations of alpha-band oscillations and EEG microstates dynamics to reaction times,6,7 

connectivity features and alpha activity to intellectual abilities,8,9,10 just to give a few examples. 

Similarly, EEG features reveal abnormalities in patients with schizophrenia,11,12,13,14,15 

depression,16,17,18,19 and healthy older adults,20,21,22,23 among others. 
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Each of these findings indicates a significant link between a given EEG feature and an aspect of 

cognition or a disease. In this respect, this approach has been very successful. Yet, these results 

provoke the questions of how the different EEG features relate to each other and how 

representative they are of the underlying mechanisms. For example, one might expect 

different EEG features, recorded from the same patients, to correlate with each other if they 

are supposed to point to the same aspect of the disease. 

Here, we analyzed data from resting-state EEG recordings and a battery of cognitive tests. To 

obtain a comprehensive set of neurophysiological features, we applied widely used analysis 

methods to the same EEG data, including time-domain, frequency-domain, connectivity, and 

nonlinear dynamical analysis methods both in the electrode and source spaces. We extracted 

175 EEG features. From the battery of cognitive tests, we obtained 12 cognitive variables 

describing several cognitive aspects. We correlated each EEG feature with each cognitive 

variable using methods that permitted us to examine linear and nonlinear relationships. Next, 

we correlated the features revealing significant correlations with the same cognitive variable 

using univariate and multivariate correlation methods. This comparison allowed us to 

investigate whether the features, showing a significant correlation with one of the cognitive 

variables, point to a common mechanism. In a second project, we conducted group 

comparisons between younger and older adults using each EEG feature. A significant group 

difference would indicate that the EEG features tap into important age-related changes in brain 

processing. To test whether the features showing group differences target common age-

related aspects, we correlated the EEG features revealing significant group differences. 

Furthermore, we used principal component analysis to assess the latent dimensions of multiple 

EEG features showing significant correlations to a cognitive variable and significant group 

differences between younger and older adults. As a complementary analysis, we evaluated 

cross-validated regression models using each EEG feature to predict the cognitive variables. 

Importantly, we did not want to elaborate on any particular relationship between an EEG 

feature and cognitive ability or an EEG feature and aging. We were interested in how significant 

results from single analyses relate to each other. 
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Results 

We analyzed data from the publicly available LEMON database.24 This database includes 

resting-state EEG recordings and a battery of cognitive tasks. The sample used for the present 

study consisted of 201 participants, 138 younger adults (mean age = 25.43, SD = 3.39, 42 

females) and 63 older adults (mean age = 67.66, SD = 4.79, 31 females). Using multiple analysis 

methods, we obtained 175 EEG features from the resting-state EEG recordings. The EEG 

features can be composed either of 61, 80, or 4 variables, corresponding to the number of 

electrodes, brain regions, or microstate parameters, respectively. From the battery of 6 

cognitive tests, we obtained 12 cognitive variables. Details are shown in experimental model 

and subject details. 

Correlations between EEG features and cognitive variables 

We computed Spearman and distance correlations between each EEG feature and cognitive 

variable. Thus, for each age group and correlation type, we performed 2100 (175∗12) analyses. 

With this evaluation, we sought to identify the EEG features reflective of a neural process 

linked to each cognitive ability. Next, the EEG features showing a significant correlation to a 

cognitive variable were pairwise correlated either using Spearman or distance correlations and 

multivariate distance correlations. Strong correlations between EEG features would suggest 

that the features point to the same mechanism representative of the cognitive aspect under 

study. In younger adults, 109 analyses were significant using Spearman correlations and 121 

using distance correlations (after correction for multiple comparisons for each pair of EEG 

feature and cognitive variable). For most cognitive variables, we found more than one EEG 

feature showing a significant correlation (Figure 1A). The correlations between these EEG 

features were weak in most of the cases. Similar results were found using multivariate distance 

correlations (√|ℛ𝓃
∗ |), which permitted us to correlate EEG features considering all the 

variables, i.e., electrodes, brain regions, or microstate parameters (Figure 1B). Results for older 

adults were similar and are presented in Figure S1. 
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Figure 1. Result of the correlation analysis in younger adults. (A) EEG features with significant correlations to 
cognitive variables. On the right side of the panel, we indicate the range (min-max) of the magnitudes of the 
significant correlations (see correlations between EEG features and cognitive variables in quantification and 
statistical analysis). (B) Median (confidence interval: 25th and 75th percentiles) Spearman and distance 
correlations between the EEG features showing a significant correlation with the same cognitive variable. On the 
right side of the panel, we indicate the 25th, 50th, and 75th percentiles of the multivariate distance correlations 

(√|ℛ𝓃
∗ |; ranging from 0 to 1) between the EEG features (with all its variables) showing a significant correlation 

with the same cognitive variables. 

 

For instance, for younger adults, both the life time statistics of the amplitude envelopes in the 

theta band (life time theta) and the node strength of delta connectivity measured in the 

electrode space using phase locking value (node str e-plv delta) correlated significantly with 

the working memory variable obtained from the test of attentional performance (Tap working 

memory; ρmax = -0.28 and ρmax = 0.29, respectively). However, life time theta and node str e-

plv delta did not correlate strongly with each other (ρ = -0.11; √|ℛ𝓃
∗ |  = 0.07; Figure 2). 

Similarly, using distance correlations, both the occurrence of microstate class C (microstate C) 

and the betweenness centrality of gamma connectivity measured in the electrode space using 

weighted phase lag index (betw cen e-wpli gamma) showed significant correlations with the 

module A variable of the trail making test (Tmt-A; ℛ𝓃max = 0.25 and ℛ𝓃max = 0.36, respectively). 

However, the two EEG features only weakly correlate with each other (ℛ𝓃 = 0.15; √|ℛ𝓃
∗ |  =

 0.01; Figure 3). ρmax and ℛ𝓃max denote the maximum significant Spearman or distance 

correlation (among all the electrodes, brain regions, or microstate parameters) of the EEG 

feature with the cognitive variable. 
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Figure 2. Spearman correlations between the EEG features that correlated significantly with the Tap working 
memory variable in younger adults. The main diagonal has the ρmax (maximum Spearman rho) of the electrode 
or brain region showing the largest significant correlation to the cognitive variable. On the right side, we show the 
pairwise multivariate distance correlations between the EEG features (with all its variables). 
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Figure 3. Distance correlations between the EEG features that correlated significantly with the Tmt-A variable in 
younger adults. The main diagonal contains the ℛ𝓃max (maximum distance correlation) of the electrode, brain 
region, or microstate parameter showing the largest significant correlation to the cognitive variable. On the right 
side, we show the pairwise multivariate distance correlations between the EEG features. 

 

While the correlations between EEG features were generally low (Figure 1B), some EEG 

features obtained from different analysis methods were highly correlated with each other. For 

example, in younger adults, both the Hjorth activity parameter  (hjorth activity) and the 

standard deviation of the amplitude envelopes in the beta band (std ampl beta) showed 

significant correlations with the attention span module of the Cvlt (Cvlt attention span; ρmax = 

0.28 and ρmax = 0.30, respectively). The two EEG features correlated strongly with each other 

(ρ = 0.84; √|ℛ𝓃
∗ |  = 0.77). Similarly, using distance correlations, the animal categories variable 

of the Rwt test (Rwt animal categories) correlated significantly with the occurrence of 

microstate class B (microstate B; ℛ𝓃max = 0.27) and with the clustering coefficient of alpha 

connectivity measured in the electrode space using weighted phase lag index (clust coef e-wpli 

alpha; ℛ𝓃max = 0.28). The EEG features microstate B and clust coef e-wpli alpha exhibit a 



Variability is the rule: Neurophysiology and contextual visual processing in schizophrenia. Chapter 6. Do 
we really measure what we think we are measuring? 

 

115 
 

moderate correlation with each other (ℛ𝓃 = 0.41; √|ℛ𝓃
∗ |  = 0.35). All pairs of EEG feature and 

cognitive variable that showed significant results are presented in Figure 4.  

Next, we used a principal component analysis (PCA) to examine whether EEG features, showing 

a significant correlation with a cognitive variable, can be grouped into a set of latent variables. 

Then, we used the EEG latent variables in a multiple regression model to predict the cognitive 

scores (see dimensionality reduction and multiple regression in quantification and statistical 

analysis). We found that a small number of EEG latent variables tended to explain a 

considerable amount of the variance of the EEG features that had a significant correlation 

(Spearman or distance correlation) with a cognitive variable (see Figures S5–S10). For instance, 

in younger adults, we applied PCA on the 18 EEG features that showed a significant Spearman 

correlation to the Tap working memory scores in younger adults (Figure 2). The first principal 

component explained 31.99% of the variance of the 18 EEG features. The first three principal 

components explained 57.61% of the variance of the 18 EEG features (Figure S6). Results are 

similar across cognitive variables. The proportion of variance explained by the first principal 

components of the EEG features showing a Spearman correlation to a cognitive variable ranged 

from 29.32% (Rwt animal categories; 7 EEG features) to 62.83% (Rwt s words; 8 EEG features; 

median across cognitive variables: 44.15%). For EEG features showing a significant distance 

correlation to a cognitive variable, the variance explained by the first principal components 

ranged from 27.81% (Rwt animal categories; 11 EEG features) to 58.64% (Rwt s words; 9 EEG 

features; median across cognitive variables: 33.90%).  

Finally, we investigated whether a combination of EEG latent variables explains the cognitive 

variables better than a single latent variable. Thus, we asked whether various uncorrelated EEG 

features carry complementary information of the cognitive variables. To this end, we 

computed a multiple regression model. First, we used only the first PC as the predictor variable 

and then added, one by one, more PCs to the model (up to the third PC, i.e., three predictors). 

To compare models with different numbers of predictor variables, we used adjusted-𝑅2 to 

measure the goodness of fit. The analysis was performed for younger and older adults 

separately. For the EEG features showing a significant Spearman correlation with a cognitive 

variable in younger adults, the adjusted-𝑅2 values ranged from 0.00 (Pts 2 subtest 3) to 0.22 

(Tmt-B) using only the first principal component in the regression model (median adjusted-

𝑅2 across cognitive variables: 0.15), and from 0.11 (Cvlt attention span) to 0.32 (Cvlt delayed 
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memory) using the first three principal components (median adjusted-𝑅2 across cognitive 

variables: 0.21; Table S2). For EEG features showing a significant distance correlation, in 

younger adults, the adjusted-𝑅2 values ranged from 0.07 (Tap alertness) to 0.20 (Tmt-B) using 

only the first principal component in the regression model (median adjusted-𝑅2 across 

cognitive variables: 0.12), and from 0.09 (Tap alertness) to 0.22 (Rwt animal categories) using 

the first three principal components (median adjusted-𝑅2 across cognitive variables: 0.14; 

Table S4). Results for older adults are presented in Table S3 and Table S5. Importantly, the 

estimates of predictive performance were not obtained using cross-validation. As such, results 

should be taken with caution. 

Interim conclusions: There are significant correlations between cognitive variables and EEG 

features obtained with different analysis methods, including connectivity, spectral power, and 

microstate methods. Classically, studies in the field investigate the relationship between one 

EEG feature and one cognitive variable in great detail with the tacit assumption that the EEG 

feature is representative of a proposed brain mechanism. However, we found that even though 

various EEG features show a significant correlation with a cognitive variable, these EEG 

features usually do not strongly correlate with each other. We found that a set of latent 

dimensions composed of multiple EEG features may explain some cognitive variables better 

than a single latent dimension. Yet, this was not the case for most cognitive variables. Hence, 

one cannot take it for granted that an EEG feature is representative of the research question 

at hand just because there is a significant correlation between the feature and a cognitive or 

another variable. We are not claiming that studies based on single correlations cannot provide 

meaningful information about brain mechanisms. We are just pointing out that a significant 

result does not guarantee it. We examine this notion further in the general discussion. 

Prediction of cognitive variables using EEG features 

The features studied in EEG research are hypothesized to reflect neurophysiological processes 

involved in cognitive function. Therefore, we would expect that EEG features predict cognitive 

scores adequately. In this section, to test for predictive ability, we go beyond correlations and 

used cross-validated machine learning (ML) models. Thus, we tested the ability of single EEG 

features to predict each cognitive variable in an out-of-sample manner. This approach has 

several advantages. First, ML models handle multivariate predictors very well. Neuroimaging 
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data are often composed of information from several brain regions or electrodes, and thus, 

multivariate methods provide a compact way to use all the information. Second, models can 

be evaluated using cross-validation, where different parts of the data are used to train and test 

the models, providing a rigorous test for the generalizability of results. We tested two models, 

namely ridge models, which are sensitive to linear relationships between predictors and 

predicted variables, and random forest models, which detect nonlinear relationships. 
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Figure 4. Prediction of cognitive variables using EEG features. Cross-validated 𝑅2 is shown (median 𝑅2 across 50 
iterations). A ridge regression model was built for each pair of EEG feature and cognitive variable. Abbreviations: 
A = Cvlt attention span, B = Cvlt delayed memory, C = Pts-2 subtest 3, D = Rwt animal categories, E = Rwt s words, 
F = Tap alertness, G = Tap simon congruent, H = Tap simon incongruent, I = Tap working memory, J = Tmt-A, K = 
Tmt-B, L = Vocabulary test. Green and orange squares indicate that Spearman and distance correlation analyses 
were significant, respectively. Purple squares indicate that both Spearman and distance correlations were 
significant for the same EEG and cognitive variable pair. Colormap limits are set between 0 and 0.2. Negative 𝑅2 
values are shown as zero. 

 

In total, 2100 (175∗12) models were built using one EEG feature and one cognitive variable for 

each ML model (ridge or random forest) and age group (younger and older). Predictive 

performance was estimated using the coefficient of determination (R2). Models were trained 

using cross-validation on 67% of the data and tested on the left-out 33%. We repeated the 

entire procedure 50 times, with different allocations of participants in the train and test sets, 

and obtained the median predictive performance (see cross-validated prediction of cognitive 

variables using EEG features in quantification and statistical analysis). Note that R2 calculations 

(using the sums of squares formula and not the squared correlation) can result in negative 

values when the model prediction on data not used in model training is less accurate than it 

would be by just predicting the mean value of the data.25,26 For younger adults, the 25th, 50th, 

and 75th percentiles of the 2100 (175∗12) R2 values obtained using ridge regression were 0.00, 

0.00, and 0.03 for the training data and −0.04, −0.03, and −0.02 for the testing data (Figure 4). 

For the random forest regression models, the 25th, 50th, and 75th percentiles of the R2 values 

were 0.65, 0.74, and 0.78 for the training data, and −0.14, −0.10, and −0.06 for the testing data. 

For older adults, the 25th, 50th, and 75th percentiles of the R2 values obtained using ridge 

regression were 0.00, 0.00, and 0.06 for the training data and −0.09, −0.06, and −0.04 for the 

testing data. For random forest regression models, the 25th, 50th, and 75th percentiles of the R2 

values were 0.80, 0.82, and 0.83 for the training data, and −0.24, −0.16, and −0.10 for the 

testing data. See Data S2 to S5 for detailed results. 

Interim conclusions: Predictions play a crucial role in science. With this analysis, we set out to 

assess the ability of EEG features to predict cognitive variables. We used cross-validated 

prediction models. There is a hypothesized relationship between neurophysiological features 

at rest and cognitive performance. Thus, if EEG features truly reflect core aspects of cognitive 

functioning, one might expect EEG to predict cognitive performance well. Surprisingly, we 

found generally weak predictive performance using two different regression models. Hence, 
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there is the possibility that we might need to rethink to what extent neurophysiological 

features obtained from resting-state recordings truly have a clear-cut link to behavioral 

measures. Another option is that the relationships might be less strong than often implicitly 

thought. We like to stress that our results provide only a general overview of brain-behavior 

predictive success and are only related to resting-state EEG features. 

Group comparisons of the EEG features between younger and older adults 

Classically, case-control studies using EEG are set out to identify neurophysiological processes 

differing in two groups (e.g., patients and controls, younger and older adults). The tacit 

assumption is that a significant result shows that an EEG feature under study points, for 

example, to a cause of a disease. In this analysis, we examined differences between older and 

younger adults. Each of the 175 EEG features was subjected to group comparisons between 

older and younger adults. 108 out of the 175 EEG features (61.71%) contained at least one 

variable showing significant group differences between older and younger adults, indicating 

that important age-related effects are detected. The absolute effect sizes (r; ranging from 0 to 

1) of the representative variables ranged between 0.18 (microstate E) and 0.58 (spectral 

entropy beta), corresponding to small to large effect sizes.27 The 25th, 50th, and 75th percentiles 

of the absolute significant effect sizes (one value per significant EEG feature) were 0.26, 0.31, 

and 0.42, respectively. For 56 out of the 108 EEG features showing significant group 

differences, the effects were positive, namely, older adults showed higher values than younger 

adults and the opposite was the case for the remaining 52 EEG features (Figure 5). 

Older adults showed significantly decreased node strength in theta connectivity measured in 

the source space using lagged phase synchronization (node str s-lps theta; r = -0.31), increased 

long-range temporal correlations in the delta band (dfa exponent delta; r = 0.29), as well as 

longer mean duration of the microstate class A (microstate A; r = 0.50), to name a few. Group 

differences were also observed in EEG features in the different frequency bands, for instance, 

older adults showed reduced spectral entropy in the delta band (spectral entropy delta; r = -

0.41), reduced spectral amplitudes in the theta band in the source space (source ampl theta; r 

= -0.40), reduced node strength in alpha connectivity measured in the source space using 

lagged phase synchronization (node str s-lps alpha; r = -0.25), increased waiting time statistics 

of the amplitude envelopes in the beta band (waiting time beta; r = 0.33), and increased node 
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strength in gamma connectivity measured in the electrode space using phase locking value 

(node str e-plv gamma; r = 0.26). 

Interim conclusions: We identified various EEG features that showed group differences in older 

compared to younger participants. The effect sizes of the group differences ranged from small 

to large, with a median significant effect size of r = 0.31. Hence, these features point to age-

related changes in brain processing. There is the question of whether the EEG features, 

showing clear-cut group differences, point to the same neurophysiological mechanism 

differing in older participants. 
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Figure 5. Effect size and confidence intervals of the group differences between younger and older adults for each 
of the 175 EEG features. Negative effect sizes indicate that older adults had significantly reduced values compared 
to younger adults. Black dotted horizontal lines serve as a guide to the labels of the EEG features showing 
significant group differences. 

Correlations between EEG features showing age-related differences 

In the previous analysis, we found 108 EEG features showing differences in older compared to 

younger participants. In this section, by pairwise correlating these EEG features, we ask 

whether the targeted brain processes point to a common mechanism underlying age-related 

differences. We calculated Spearman correlations between the representative variables (i.e., 

showing the largest group effect) of the 108 EEG features showing group differences (Figure 

6). We found that 41.74% of the correlation values were significant for younger adults and 

33.77% for older adults (without correction for multiple comparisons). Since significance 

depends on the sample size, we focus on the magnitudes of the pairwise correlations. The 25th, 

50th, and 75th percentiles of the magnitudes of the 5778 (108∗107/2) correlation values were 

0.06, 0.13, and 0.29, for younger adults and 0.08, 0.17, and 0.31, for older adults. 



Variability is the rule: Neurophysiology and contextual visual processing in schizophrenia. Chapter 6. Do 
we really measure what we think we are measuring? 

 

123 
 

 

Figure 6. Spearman correlations between the 108 EEG features that showed a significant group difference 
between younger and older adults. The ρ correlations belonging to younger and older adults are presented in the 
upper and lower triangular parts of the matrix, respectively. To calculate the correlations, from each EEG feature, 
we selected the electrode, brain region, or microstate parameter showing the biggest effect size in the group 
comparisons between older and younger adults. See Figure S2 for the results using multivariate distance 
correlations. 

 

Importantly, since the choice of EEG reference may influence the results,28 we obtained zero-

referenced EEG features and compared them to those with average reference and current 

source density (CSD; for connectivity features in the electrode space), which were the ones 

used in the previous analyses. We found a very good agreement between average/CSD and 

zero-referenced EEG features, as quantified by intraclass correlations (ICC) and distance 
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correlations (see comparison between EEG reference choices in quantification and statistical 

analysis). For younger adults, the 25th, 50th, and 75th percentiles of the ICC values between 

average/CSD and zero-referenced EEG features were 0.57, 0.92, and 0.97 (ICC ranges from 0 

to 1), while for older adults, the percentile values were 0.65, 0.93, and 0.97, suggesting that 

the choice of reference does not affect the results. For younger adults, the 140 distance 

correlation values between average/CSD and zero-referenced EEG features were 0.79, 0.98, 

and 0.99, while for older adults, the distance correlations were 0.81, 0.99, and 1, for the 25th, 

50th, and 75th percentiles. While for most EEG features the ICC and distance correlation values 

were high, network EEG features, in particular, betweenness centrality features showed rather 

low ICCs (see Data S6). However, this did not change the relationship between EEG features 

(see: Figures S3 and S4). For zero-referenced EEG features, the pairwise correlations between 

the 140 EEG features (see Data S6) in younger adults were 0.09, 0.19, and 0.36, whereas in 

older adults the pairwise correlations were 0.11, 0.17, and 0.33, for the 25th, 50th, and 75th 

percentiles. For average/CSD EEG features, the correlations were 0.10, 0.20, and 0.38 for 

younger adults, and 0.12, 0.20, and 0.35 for older adults (25th, 50th, and 75th percentiles of the 

multivariate distance correlation). 

EEG features may be more adequately summarized considering the whole set of electrodes, 

brain regions, or microstate parameters. Hence, in addition to the previous univariate 

correlation assessment, we calculated multivariate distance correlations, which allowed us to 

compare EEG features using all their variables (Figure S2). The results are similar. For younger 

adults, the magnitudes of the multivariate distance correlations (√|ℛ𝓃
∗ |) were 0.12, 0.23, and 

0.41, whereas for older adults the magnitudes were 0.12, 0.21, and 0.38, for the 25th, 50th, and 

75th percentiles. In younger adults, 58.54% of the multivariate distance correlations were 

significant, whereas 53.01% were significant for older adults (without correction for multiple 

comparisons). 

Furthermore, to investigate whether the EEG features showing a group difference between 

older and younger participants can be grouped into a set of latent variables, we used PCA on 

the representative variables (i.e., the variables showing the largest group difference between 

older and younger participants) of the 108 EEG features. For older adults, the first PC explained 

24.01% of the variance of the EEG features. The second and third PCs explained 13.47% and 

7.54%, respectively (Figure S11). The first PC consists essentially of EEG features obtained from 
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nonlinear dynamical and entropy analysis methods (e.g., rqa trapping time, lzc primitive, and 

permutation entropy). The second PC is mainly composed of beta and delta band features (e.g., 

mean ampl beta, node str e-plv delta, and relative ampl delta) and also nonlinear dynamical 

features (e.g., katz fractal dim and lyapunov exponent). The third PC contains mainly temporal 

and connectivity EEG features (e.g., microstate D, node str e-plv alpha, and life time delta). 

These latent dimensions could be interesting for future investigations of age-related 

differences in neurophysiology. 

Most of the strong correlations were found between EEG features obtained from very similar 

methods. For example, the node strength and the clustering coefficient of delta connectivity 

estimated in the electrode space using the imaginary part of coherence (node str e-icoh delta 

and clust coef e-icoh delta, respectively) showed strong correlations with each other (ρ = 0.97, 

√|ℛ𝓃
∗ |= 0.99 and ρ = 0.97, √|ℛ𝓃

∗ | = 1 in younger and older adults, respectively). Similarly, EEG 

features obtained using recurrence quantification analysis, including determinism (rqa 

determinism) and laminarity (rqa laminarity), were strongly correlated (ρ = 0.99, √|ℛ𝓃
∗ | = 0.98 

and ρ = 0.99, √|ℛ𝓃
∗ | = 1 in younger and older adults, respectively). The life-time and waiting-

time statistics of the amplitude envelopes in the gamma band (life time gamma and waiting 

time gamma) showed also strong positive correlations (ρ = 0.91, √|ℛ𝓃
∗ | = 0.97 and ρ = 0.83, 

√|ℛ𝓃
∗ | = 0.98 in younger and older adults, respectively), to name a few examples.  

Interim conclusions: Identifying brain mechanisms underlying cognition or perception is crucial 

in the brain sciences. Our analysis showed that various EEG features, all showing group 

differences in older compared to younger adults, mainly correlate weakly with each other. 

While there are strong correlations between similar methods, for example, between entropy 

and nonlinear measures, these features did not correlate, for instance, with EEG microstates, 

connectivity, or autocorrelation features. Hence, while the EEG features point to meaningful 

brain processes showing clear-cut group differences, they do not point to a general 

neurophysiological deficit in older compared to younger adults. The main conclusion from this 

analysis, as well as the previous ones, is that statistically significant effects might explain much 

less of the research question than it is often implicitly assumed. 
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Discussion 

Science relies on tests targeting the crucial aspects of a research field. Classically, these tests 

show a significant group difference between an intervention and a control condition, between 

a case and a control group, or strong correlations to real-world or experimental outcomes. 

Then, in-depth studies are carried out to describe the test in great detail in order to understand 

the causes of the observed effects. It usually is assumed that these tests are representative of 

the interrogated mechanisms in the sense that other tests supposed to target the same 

mechanism should strongly correlate with each other. Here, we have shown that this rationale 

might not always hold. To exemplify our argument, we analyzed a publicly available database 

containing resting-state EEG recordings and performance scores from a battery of cognitive 

tests of older and younger adults.24 

We extracted 175 EEG features from the EEG recordings and 12 cognitive variables from the 

battery of cognitive tests. To identify the associations between EEG features and cognitive 

variables, we correlated each EEG feature with each cognitive variable using Spearman and 

distance correlations. For younger adults, Spearman correlations were significant for 109 

analyses, while 121 analyses were significant using distance correlations. For older adults, 

Spearman correlations were significant for 57 analyses and distance correlations for 60 (Figure 

S1). Then, we correlated the EEG features that showed a significant correlation with a cognitive 

variable (Figure 1). Surprisingly, the correlations were weak in most cases, suggesting that not 

all the EEG features are representative of the investigated cognitive variable. Using PCA, we 

found that a set of latent dimensions composed of multiple EEG features may explain some 

cognitive variables better than a single latent dimension. Next, we found 108 EEG features 

revealing a significant group difference between older and younger participants. These 

features also did not show strong correlations, even though they showed clear-cut group 

effects. Using cross-validated regression analysis, we found very weak evidence that EEG 

features are adequate predictors of the cognitive variables suggesting that it may be possible 

that the link between a cognitive aspect and an EEG feature is less informative than believed. 

How can these results be explained? There are at least five possibilities. First, EEG features 

might have low test-retest reliability. Even though there are significant correlations with the 

cognitive tasks, the low test-retest reliability may have led to weak correlations between EEG 
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features (cf.29). While here we do not have a measure of test-retest, certain EEG features have 

shown adequate reliabilities in previous studies.30,31,32,33,34,35 Second, there might be clear-cut 

group differences but the variance in the groups is low. In this case, one would not expect high 

correlations, the so-called reliability paradox.36 However, variance, for example, was rather 

high in the older participants in our study. Third, the EEG features do not reflect the intended 

brain aspects well. For instance, the EEG features may point to nonlinear brain mechanisms. 

Yet, some of the EEG analysis methods are linear and as such, they might miss nonlinear 

patterns. Hence, the correlations between EEG features might be misled by the linear 

methods. Fourth, the EEG features target a common mechanism and, to a substantial amount, 

also target-unspecific, i.e., idiosyncratic, aspects, which have little to do with the targeted 

mechanism but contribute to the large inter-individual variability. For example, some EEG 

features might be sensitive to fatigue,37 whereas others are not. Hence, if substantial parts of 

the variance correspond to such target-unspecific aspects and different EEG features tap into 

different target-unspecific aspects, the correlations may be low. Fifth, each EEG feature targets 

a different aspect of a highly heterogeneous, multifactorial mechanism. Previous research 

indicates that this scenario might be true in certain instances. For example, by combining 

different resting-state or evoked EEG features, previous studies have improved classification 

between groups or experimental conditions.38,39,40,41,42,43 Similarly, previous studies have 

reported that a combination of EEG features allowed a better characterization of certain brain 

processes.44,45,46 Our results using PCA also show evidence that, for some cognitive variables, 

latent dimensions of EEG features might be more informative than single features. All these 

studies suggest that combining measures and features from the same paradigms might offer 

new insights into complex processes. 

In our analysis, significant results came with small to medium effect sizes in the range from 

0.20 to 0.37 (|ρ|) in the correlation analysis, and with small to large effect sizes in the range 

of 0.18 to 0.58 (|r|) in the case-control analyses according to Cohen27 and from typical (0.2 - 

0.3) to relatively large (> 0.3) according to Gignac and Szodorai.47 However, even for “large” 

effect sizes, there is a large proportion of unexplained variance. For example, for an of r = 0.5, 

the unexplained variance is 75%, and a Cohen’s d of 0.8 corresponds to a discriminability of 

65% only (for the optimal decision criterion, i.e., hits = correct rejections). A good 

discriminability of 90% corresponds to a d = 2.5. Hence, the question is where does all the 
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dominant noise come from? In an optimistic scenario, it comes from measurement noise. For 

example, EEG is a relatively noisy technique (e.g., electrode misplacement, volume 

conduction). Thus, the true effects might be larger. The pessimistic scenario is that noise is low 

and inter-individual variability is high, i.e., there are multiple factors and each paradigm taps 

into one, or a nonlinear combination of all of them plus a large amount of target-unspecific 

variance. This large amount of unexplained variance could account for why one may obtain 

both significant group differences and low correlations. Hence, even if clear-cut effects are 

found, this does not guarantee that a paradigm represents the intended aspects well. 

Therefore when a test leads to a significant result, one needs to ask how representative the 

test is for the research question at hand. Particularly in complex systems where everything is 

correlated with everything to some degree, there can be many tests, which show significant 

but negligible effects.  

Our impression is that the above considerations have been overlooked and hold true in many 

other research areas. As an example, in schizophrenia research, several studies have found 

atypical patterns in several resting-state EEG features, which are thereon studied in detail and 

linked to the crucial aspects of the disease. Here, again, the tacit assumption is that the EEG 

feature under study taps into the common and representative aspects of the disease, and for 

that reason, they should correlate with similar features. However, we have shown that this is 

not always the case. In a previous EEG study, we extracted 194 EEG features from the resting-

state recordings of 121 patients with schizophrenia and 75 healthy controls. We found that 69 

out of the 194 EEG features showed a significant group difference between patients with 

schizophrenia and healthy controls. However, the features showed mainly weak correlations 

with each other, questioning to what extent a single EEG feature is representative of the 

disease.48 In another example, in vision research, weak correlations have been found between 

performances in various visual tasks in older and younger adults.49,50,51,52 Visual illusions also 

correlate weakly,53,54 suggesting that the underlying visual functions cannot be explained using 

only one visual paradigm. Similarly, four visual tasks assumed to capture visual magnocellular 

stream function showed weak relationships with each other.55 The authors concluded that 

none of these tasks is a general measure of magnocellular function, as was assumed. Eisenberg 

et al.56 showed that several questionnaires and cognitive tasks thought to point to the same 
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psychological construct correlate weakly with each other and predict real-world outcomes 

poorly. The authors concluded that the construct lacks coherence. 

Most natural sciences face severe crises. The brain sciences are among the fields hard-hit. First, 

many studies are underpowered and/or subject to questionable research practices. False 

positives are the consequence.57,58,59 Second, even if the very same data are used, different 

analysis tools can lead to different results. This problem becomes more severe with complex 

analysis pipelines and more degrees of freedom.60,61,62 Third, the uncontrolled use of open data 

for hypothesis testing can increase false positives.63,64,65 Fourth, here, we have shown that 

there is one additional problem. Studies may have been conducted perfectly with clear-cut, 

significant results. Still, the studies may not target the mechanism assumed or they are less 

representative of the research question than believed. Overall, our results show that single 

measurements, even with “large” effect sizes, may be less meaningful than thought. To what 

extent the above-mentioned scenarios hold must be shown for each study individually. 

Limitations of the study 

One of the main limitations of our study is that resting-state EEG and behavior were not 

measured simultaneously. Hence, whether there are causal links between EEG features and 

cognitive variables is not clear-cut. The evoked EEG features show a more direct link to the 

temporal aspects of cognitive processing, and thus stronger brain-behavior relationships might 

be expected. As such, our results and interpretations of the weak correlations between EEG 

and cognition do not concern evoked EEG paradigms. Furthermore, there are at least two 

limitations that should be considered when interpreting the results from our prediction 

analysis. First, our sample size is small for a reliable assessment of predictive ability.66 Second, 

we do not have an independent dataset to test our predictive models. We tried to account for 

these limitations using a repeated train-test split procedure, which produces unbiased 

estimates of predictive ability for small sample sizes. Nonetheless, larger sample sizes and 

independent datasets are needed. Finally, we do not have a measure of the test-retest 

reliability of the EEG features. Hence, EEG features with poor reliabilities may mislead the 

correlations. While our results show that similar EEG features correlate strongly with each 

other (resembling test-retest), measuring and accounting for reliability, e.g., using 

disattenuated correlations, will tell about the “true” correlations between EEG features. 
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Star methods 

Key resources table 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Biological samples   

EEG and cognitive data Leipzig Study for Mind-
Body-Emotion 
Interactions 

https://doi.org/10.103
8/sdata.2018.308 

Software and algorithms 

MATLAB https://matlab.mathwor
ks.com/  

Version R2020b 

Python  https://www.python.org
/  

Version 3.6 

R Studio https://www.r-
project.org/  

Version 4.0.1 

Cartool https://sites.google.com
/site/cartoolcommunity  

Version 3.8 

LORETA https://www.uzh.ch/keyi
nst/loreta   

Version v20200414 

Other 

Scripts for data processing Github repository https://github.com/dgl
59311/stats_eegfeatur
es 

 

Resource availability 

Lead contact 

Further information and requests for resources should be directed to and will be fulfilled by 

the lead contact: Dario Gordillo 

Materials availability 

The study did not generate new materials 

Data and code availability 

- This paper analyzes existing, publicly available data. These accession numbers for the 
datasets are listed in the key resources table. 

- All original code has been deposited at Github and is publicly available as of the date 
of publication. DOIs are listed in the key resources table. 

- Any additional information required to reanalyze the data reported in this paper is 
available from the lead contact upon request. 

https://doi.org/10.1038/sdata.2018.308
https://doi.org/10.1038/sdata.2018.308
https://matlab.mathworks.com/
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https://github.com/dgl59311/stats_eegfeatures
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https://github.com/dgl59311/stats_eegfeatures
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Experimental model and subject details 

Data from 227 participants were collected in Leipzig, Germany, as part of the Leipzig Study for 

Mind-Brain-Body Interactions (LEMON24). The sample comprises data from two age groups, 

153 younger adults (between 20 and 35 years old) and 74 older adults (between 59 and 77 

years old). Participants underwent a physiological and psychological screening at the Day Clinic 

for Cognitive Neurology of the University Clinic Leipzig and the Max Planck Institute for Human 

Cognitive and Brain Sciences. Written informed consent was provided by all the participants 

before data collection. Study protocols were in accordance with the Declaration of Helsinki and 

were approved by the ethics committee of the University of Leipzig (reference number 154/13-

ff). 

The data were made publicly available. In the present study, only data from participants that 

had resting-state EEG recordings were analyzed. Preprocessed resting-state EEG recordings 

were available for 203 participants (https://ftp.gwdg.de/pub/misc/MPI-Leipzig_Mind-Brain-

Body-LEMON/EEG_MPILMBB_LEMON/). We excluded two participants (sub-010276, and sub-

010277) due to differences in the sampling rate. The final sample used for the present study 

consisted of 201 participants, 138 younger adults (mean age = 25.43, SD = 3.39, 42 females), 

and 63 older adults (mean age = 67.66, SD = 4.79, 31 females). 

Method details 

EEG collection and preprocessing 

EEG was recorded using a 62-channel active electrode ActiCAP system (Brain Products GmbH, 

Germany) placed according to a 10-10 system arrangement with the FCz electrode as the 

reference. The ground was placed on the sternum. Impedances of the electrodes were kept 

below 5 kΩ. EEG signals were band-pass filtered online between 0.015 Hz and 1 kHz. Data were 

digitized with a sampling rate of 2500 Hz. During recording, participants alternated between 

eyes-closed and eyes-open conditions, after 1 min. A 16-min recording was obtained for each 

participant. Following data acquisition, signals were band-pass filtered between 1 and 45 Hz 

(eighth order, Butterworth filter). Data were downsampled to 250 Hz. 

Further offline preprocessing consisted of the rejection of artifactual channels and segments 

following a visual inspection. The dimensionality of the data was reduced using principal 
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component analysis (PCA). The PCs (N ≥ 30) allowing to explain 95% of the total variance were 

retained. Other physiological artifacts, such as eye movements, blinks, or heartbeats, were 

identified using independent component analysis and removed. Finally, the retained 

components were back-projected to the electrode space. Further details on data acquisition 

and preprocessing are available in.24 

In the present study, we used 8-min blocks corresponding to the eyes-closed condition 

segments. Missing electrodes were interpolated using spherical spline interpolation in 

EEGLAB67 to fit the same 61-channel montage for all participants. Then, the recordings were 

re-referenced to the average and down-sampled to 125 Hz. 

Cognitive assessment 

In total, participants performed six cognitive tests. The data were made publicly available by 

the LEMON study (https://ftp.gwdg.de/pub/misc/MPI-Leipzig_Mind-Brain-Body-

LEMON/Behavioural_Data_MPILMBB_LEMON/Cognitive_Test_Battery_LEMON/). From the 

six cognitive tests, we extracted 12 variables. The tests and the extracted variables are 

described below. More details can be found in the documentation of the database. 

California verbal learning task 

The California Verbal Learning Task (CVLT) measures memory processes and verbal learning 

capacity.68 Participants listened to a 16-word list (list A) over five trials. The words belonged to 

four different semantic categories. After each trial, participants were asked to recall as many 

words from list A as they could. Then, another 16-word list (list B) was presented as an 

interference list, which had to be recalled right after its presentation, and had to be followed 

by a recall of list A. After a delay of 20 min, participants were asked to recall the words from 

list A, with or without semantic category cues. Based on Donders,69 and Mahjoory and 

colleagues,70 we extracted two scores: attention and delayed-memory scores. The attention 

score was calculated by adding up the number of words that were correctly recalled after 

hearing list A for the first time and the number of correctly recalled words from list B. The 

delayed memory score was calculated by adding the number of correctly recalled words from 

list A after listening to list B, and the number of correctly recalled words from list A after the 

20-min delay, with and without cues. 
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Test of attentional performance 

The Test of Attentional Performance (TAP) consists of three modules that assess different 

aspects of attention.71 In the first module, participants had to press a button as soon as a cross 

appeared on the screen. Two conditions were tested: with and without a pre-stimulus audio 

signal. The alertness score was estimated from this module as the reaction time averaged 

across the two conditions. The second module corresponded to the Simon task. In the Simon 

task, participants had to press a left or right button to indicate the direction of an arrow 

appearing on the left or the right side of the screen. Congruent (i.e., the direction of the arrow 

matched its location) and incongruent (e.g., left-pointing arrow on the right side of the screen) 

trials were presented. The average reaction times (RT) and the percentage correct (PC) were 

recorded and combined into a rate correct score (i.e., RT/PC.72 We extracted two scores from 

this module, given by the rate correct score for the congruent and incongruent trials of the 

Simon task. In the third module, participants were presented (serially) with numbers from 1 to 

9, and they had to press a button whenever the current number was the same as the second 

to last number (2-back task). We extracted a working memory score from this module, given 

by the percentage of correct matches. 

Trail making test 

The Trail Making Test (TMT) measures cognitive flexibility.73 In module A, participants had to 

connect digits from 1 to 25 in ascending order. In module B, 13 numbers and 12 letters had to 

be alternately connected in their numerical and alphabetical order (e.g., 1-A-2-B-3-C- …). We 

extracted two scores from the TMT given by the inverse efficiency score (i.e., Task completion 

time/PC) for modules A and B. 

Vocabulary test 

The Vocabulary Test (VT) measures verbal intelligence and language comprehension.74 

Participants had to identify a target word among five distracting words. There were 42 trials. 

We extracted one score from the VT, given by the number of correctly identified target words 

over all the trials (VT-score). 

Performance testing system-2 Subtest 3 

The Subtest 3 of the Performance Testing System-2 (Pts-2) assesses logical deductive 

thinking.75 For 3 min, 40 rows of eight symbols were presented to the participants. For each 
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row, participants had to identify the symbol that did not follow the logical rule. We extracted 

one score from the Pts-2, given by the total number of correctly identified symbols. 

Regensburger word fluency test 

The Regensburger Word Fluency Test (Rwt) measures verbal fluency.76 The Rwt test consisted 

of two modules. In the first module, for 2 min, participants had to list as many words starting 

with the letter “S” as they could. In the second module, participants had to list words 

representing animals, for 2 min. We extracted two scores from the Rwt, given the total number 

of correct words in each module. 

EEG features extraction 

Using time-domain, frequency-domain, nonlinear, and connectivity analysis methods, we 

extracted 175 features from the resting-state EEG signals. For some analysis methods, we 

filtered the EEG signals into five frequency bands: delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 

Hz), beta (13–30 Hz), and gamma (30–45 Hz). The dimensionality of the analysis outcomes (i.e., 

EEG features) depended on the analysis method. For instance, for each participant, we 

obtained either 61 or 80 variables if the analyses were conducted in the electrode or source 

space, respectively, or 4 variables for EEG features extracted using microstates analysis. Hence, 

each EEG feature is always composed of more than one variable. We described the analysis 

methods below. The list of all the EEG features extracted is available in Data S1. 

Statistics of amplitude envelopes 

For each frequency band, we calculated five statistical descriptors of the distribution of the 

signal. Amplitude envelopes were extracted using Hilbert transform. The descriptors were: 

mean and standard deviation of the amplitude envelopes, kurtosis, skewness, and total power 

of the signals. First, EEG signals were divided into non-overlapping 4-s segments and filtered 

into five frequency bands. Then, the statistical descriptors were calculated for the amplitude 

envelope values of each electrode, at each time segment. The average across time segments 

was used for further analyses. The analyses were conducted in the electrode space. We 

obtained 25 EEG features from these analyses (Features: 1–5, 68–72, 81–85, 151–155, 166–

170; in Data S1). 
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Spectral amplitudes 

To estimate spectral amplitudes, first, EEG signals were divided into non-overlapping 4-s 

segments. For each electrode time series, at each time segment, we used Fourier analysis to 

obtain the frequency amplitudes. Relative spectral amplitudes were defined for each 

frequency band, as the ratio between the sum of the squared Fourier coefficients within the 

bounds of the frequency band of interest (e.g., within 1–4 Hz, for the delta band), and the 

squared Fourier coefficients of the full-band signal. The average across time segments was 

used for further analyses. This analysis was conducted in the electrode space. We obtained five 

EEG features from this analysis (Features: 137–141; in Data S1). 

In addition, we estimated the current source amplitudes for each frequency band using the 

software LORETA.77 We defined 80 brain regions of interest (80; 40 per hemisphere) according 

to the AAL atlas (see Table S1). ROIs included gray matter voxels within a 10-mm radius of the 

seed. This analysis was conducted in the source space. We obtained five features from this 

analysis (Features: 156–160; in Data S1). 

Temporal correlations 

For each frequency band we calculated long-range and short-range temporal correlations of 

EEG oscillations. Long-range (>1 s) temporal correlations (LRTC) were calculated using 

detrended fluctuation analysis (DFA78). Short (∼< 1 s) temporal correlations were calculated 

using life – and waiting-time statistics.79 For DFA, first, we extracted the amplitude envelopes 

from the EEG time series using Hilbert transform. The amplitude envelopes were integrated. 

Then, we defined 30 window sizes, varying from 3 to 50 s, distributed evenly on a logarithmic 

scale. The integrated signal was divided into 50% overlapping segments for each previously 

defined window-size. At each of these segments, the integrated signal was detrended, and the 

fluctuation function (i.e., variance) was obtained. The average fluctuation function across 

segments of each window size was calculated. The average fluctuation functions were plotted 

in logarithmic axes, and a line was fit. The slope of the line indicated the scaling exponent and 

this value was used for further analyses. To estimate short-range temporal correlations, we 

extracted the amplitude envelopes of the EEG time series using Hilbert transform. The median 

amplitude envelope was used as a threshold, which defined the onset and end of the oscillation 

bursts. The distributions for life and waiting times were built using the durations of all the burst 



Variability is the rule: Neurophysiology and contextual visual processing in schizophrenia. Chapter 6. Do 
we really measure what we think we are measuring? 

 

136 
 

events that occurred above or below the threshold, respectively. The 95th percentile of the 

distributions of life and waiting times were used for further analyses. The analyses were 

performed in the electrode space. We obtained 15 EEG features from these analyses (Features: 

58–62, 73–77, 171–175; in Data S1). 

Network and connectivity measures 

First, EEG functional connectivity was calculated using five connectivity algorithms. Three of 

these algorithms (i.e., phase locking value, imaginary part of coherence, and weighted phase 

lag index) were defined in the electrode space, and two (i.e., lagged coherence and lagged 

phase synchronization) in the source space. EEG Functional connectivity was calculated at each 

of the five frequency bands. Electrode connectivity analyses were performed using FieldTrip.80 

Before estimating electrode connectivity, scalp current densities were obtained from the EEG 

time series using the FieldTrip function ft_scalpcurrentdensity with the spline method. For 

source connectivity analyses, first, cortical activity was estimated with the exact low-resolution 

electromagnetic tomography (eLORETA) algorithm using the software LORETA. We defined 80 

brain regions (40 per hemisphere) according to the AAL atlas (see Table S1). ROIs included gray 

matter voxels within a 10-mm radius of the seed. Then, using the Brain Connectivity Toolbox 

(BCT 81), three network statistics (i.e., betweenness centrality, clustering coefficient, and node 

strength) were calculated from each of the connectivity matrices. The BCT functions employed 

were betweenness_wei, clustering_coef_wu, and strength_und. The extracted EEG features 

consisted of the network analysis outcomes. We obtained 45 features in the electrode space 

(Features: 7–21, 32–46, 101–115, in Data S1) and 30 features in the source space (Features: 

22–31, 47–56, 116–125, in Data S1). 

Microstates 

First, for a given participant, the voltage maps at the peaks of the global field power (GFP) 

signal were extracted. Maps at GFP peaks have been indicated to have a higher signal-to-noise 

ratio, providing a more stable representation of the EEG topographies.82 Then, a k-means 

clustering procedure was performed on these maps with k (i.e., the number of cluster 

centroids) equal to 5. GFP peak maps were then assigned to the cluster centroid to which they 

showed the highest spatial correlation, as long as the correlation value was above 0.5, 

otherwise, maps were left unassigned. 
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Second, a k-means clustering procedure was performed on the concatenated cluster centroids 

from all the participants, obtained in the previous step. The algorithm was initialized 200 times 

for each value of k, with k varying from 1 to 15. The optimal number of subject-level cluster 

centroids was selected according to a metacriterion based on seven independent indicators 

for optimal cluster solution.83 Out of the 200 initializations, the cluster solution showing the 

highest fraction of explained variance was the one retained. The polarity of the voltage maps 

was always ignored. Maps were only assigned to a given microstate class if they showed a 

spatial correlation larger than 0.5. Finally, the cluster centroids obtained from the subject-level 

analysis were assigned to the EEG data of each participant, this time, not only considering the 

GFP peaks but all the data. Voltage maps showing a correlation below 0.5 to any of the cluster 

centroids were left unassigned. Temporal smoothing (Besag factor = 10 and window half size 

= 2) was applied to avoid the interruption of quasi-stable segments.84 Segments equal to or 

smaller than three samples were rejected. For each microstate class, we extracted four 

temporal statistics namely the global explained variance, mean duration, time coverage, and 

frequency of occurrence. Microstates analysis was performed using the software Cartool 

version 3.8.85 We obtained five EEG features from this analysis (Features: 86–90, in Data S1). 

Entropy and complexity measures 

We quantified the complexity of EEG signals using five different methods: approximate 

entropy, sample entropy, spectral entropy, permutation entropy, and Lempel-Ziv complexity. 

First, we divided the EEG signals into non-overlapping 4-s segments. Approximate,86 

permutation,87 and sample88 entropies were calculated for the full-band EEG signals, using an 

embedding dimension value of three. Approximate entropy was computed using the function 

approximateEntropy from the Predictive Maintenance Toolbox for MATLAB. Permutation 

entropy was calculated based on Unakafova.89 Sample entropy was computed using the code 

provided by Martínez-Cagigal.90 The time delay to estimate approximate and permutation 

entropies was set to one. Lempel-Ziv complexity was calculated from the full-band EEG time 

series,91 using the code provided by Thai.92 Spectral entropy was calculated for each frequency 

band, and it was defined as the Shannon’s entropy of the ratio between the normalized power 

spectral density (PSD) within the frequency band bounds (e.g., within 1–4 Hz, for the delta 

band), and the full-band EEG signal. All calculations were performed at each time segment, and 

the average across segments was used for further analyses. The analyses were conducted in 
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the electrode space. We obtained 10 EEG features from these analyses (Features: 6, 79, 80, 

126, 150, 161–165, in Data S1). 

Nonlinear dynamical measures 

Before obtaining nonlinear dynamical features, the EEG signals were divided into non-

overlapping 4-s segments. To obtain recurrence quantification analysis (RQA) features, first, 

for each electrode time series at each segment, we built recurrence plots and extracted eight 

RQA features using the CRP toolbox for MATLAB.93 The RQA features were: determinism, 

entropy, laminarity, maximal diagonal line length, maximal vertical line length, mean diagonal 

line length, recurrence times entropy, and trapping time. Recurrence plots were constructed 

using a fixed radius allowing a 10% recurrence rate. The Lyapunov exponent94 and correlation 

dimension95 were obtained using the functions lyapunovExponent, and correlationDimension, 

available in the Predictive Maintenance Toolbox for MATLAB. We also calculated the 

Higuchi’s,96 and Katz’s97 fractal dimensions using the code provided by Monge-Álvarez.98 The 

kmax parameter in Higuchi’s fractal dimension calculation was set to 25. All nonlinear 

dynamical features were obtained from the full-band EEG signals. For RQA measures, 

correlation dimension, and Lyapunov exponent, the embedding parameters (time delay and 

embedding dimension) were calculated using the function phaseSpaceReconstruction from 

the Predictive Maintenance Toolbox in MATLAB. The analyses were conducted in the electrode 

space. We obtained 12 EEG features from these analyses (Features: 57, 63, 67, 78, 142–149, 

in Data S1) 

Phase-amplitude coupling 

EEG features describing cross-frequency (CF) interactions via phase-amplitude coupling were 

obtained using the modulation index.99 First, EEG time series were divided into non-

overlapping 4-s segments and were filtered into the five frequency bands. For each band-pass 

filtered electrode time series, at each segment, the amplitude envelope and the instantaneous 

phase were extracted using the Hilbert transform. Then, we defined ten different CF 

interactions, these were between delta phase-theta amplitude, delta phase-alpha amplitude, 

delta phase-beta amplitude, delta phase-gamma amplitude, theta phase-alpha amplitude, 

theta phase-beta amplitude, theta phase-gamma amplitude, alpha phase-beta amplitude, 

alpha phase-gamma amplitude, and beta phase-gamma amplitude. For each CF interaction, we 
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obtained the corresponding phase and amplitude time series (e.g., phase time series in the 

theta band and amplitude time series in the gamma band for theta phase-gamma amplitude). 

Then, the phase values were binned into 18 values (from −180 to 180°) and the mean 

amplitude value (of the modulated frequency) over each bin was calculated. Hence, we 

obtained the mean amplitude value of the modulated frequency, for each phase value of the 

phase-modulating frequency. The Kullback-Leibler (KL) divergence indicated whether the 

amplitude values are uniformly distributed according to the phase values (i.e., no phase-

amplitude coupling). The KL divergence was calculated for each of the ten cross-frequency 

interactions, and the average value across time segments was used for further analyses. The 

analysis was conducted in the electrode space. We obtained ten EEG features from this analysis 

(Features: 91–100, in Data S1). 

Time-domain amplitude features 

Peak-to-peak amplitude asymmetry and coefficient of variation were calculated for each 

frequency band using range-EEG analysis.100 Range features were obtained using the code 

provided by Toole and Boylan.101 We also obtained the Hjorth parameters activity, mobility, 

and complexity from the full band EEG time series.102 First, we divided the EEG time series into 

non-overlapping 4-s segments. Then, we calculated the time-domain amplitude features for 

each time segment and electrode signal. The average across segments was used for further 

analyses. The analyses were conducted in the electrode space. We obtained 13 EEG features 

from these analyses (Features: 64–66, 127–136, in Data S1). 

Quantification and statistical analysis 

Correlations between EEG features and cognitive variables 

This section describes the analysis behind the results presented in the correlations between 

EEG features and cognitive variables subsection in results. To investigate the associations 

between the 175 EEG features and the 12 cognitive variables, we calculated Spearman 

correlations and distance correlations. Hence, we conducted 2100 correlation analyses 

(175∗12; for each correlation metric) for older and younger adults separately, because of the 

large age differences between the samples (see experimental model and subject details). Four 

older adults had missing values in some cognitive variables (sub-010044 in Tap alertness, sub-

010047 in Tmt-A, sub-010050 in Tap working memory and Tap simon incongruent, and sub-
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010099 in Rwt s words and Rwt animal categories). These participants were only excluded in 

the analyses where the EEG features were correlated with the variables in which they had 

missing values. These participants were included for the rest of the correlation analyses. 

For each pair of EEG feature (with all its electrodes, brain regions, or microstate parameters) 

and cognitive variable (e.g., approximate entropy and Tmt-A), we calculated Spearman 

correlation coefficients and distance correlations. EEG features can have a different number of 

variables, depending on whether the analysis method was conducted in the electrode space, 

source space, or using microstates analysis (see method details). Thus, for EEG features 

obtained in the electrode space (e.g., approximate entropy) we obtained 61 correlations to 

one cognitive variable (each electrode was correlated with the cognitive variable). For EEG 

features in the source space (e.g., source spectral amplitude in the alpha band, source ampl 

alpha) we obtained 80 correlations and 4 correlations for each microstate class. The p values 

of the correlations were corrected using False Discovery Rate (FDR103) with an error rate of 5%. 

The p values of the distance correlations were obtained using 1000 repetitions of a 

bootstrapping procedure and corrected with FDR. We used the distance_corr function 

implemented in the pingouin 0.5.1 package for Python.104 

Next, to evaluate whether EEG features showing significant correlations with the same 

cognitive variable relate to each other, we calculated Spearman or distance correlations 

between these EEG features, depending on the method used in the previous step (i.e., either 

Spearman or distance correlation). From each EEG feature showing a significant correlation to 

a cognitive variable, we took the electrode, brain region, or microstate parameter showing the 

highest correlation to be the representative variable for that EEG feature in the analysis. The 

EEG features revealing a significant correlation to the cognitive variables were also compared 

using multivariate distance correlations,105 which considered all the variables of the EEG 

features (see correlations between EEG features showing age-related differences section 

below). 

Dimensionality reduction and multiple regression 

This section describes the analysis behind the results presented in the correlations between 

EEG features and cognitive variables subsection in results. We analyzed the EEG features that 

showed a significant correlation to a cognitive variable using principal component analysis 
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(PCA). Importantly, EEG and cognitive variables were log-transformed to improve normality 

using the function PowerTransformer from scikit-learn. For example, for the Tap working 

memory variable, we found 18 EEG features showing a significant correlation. We took one 

variable from each of these 18 EEG features (the one showing the largest correlation to the 

Tap working memory variable) and used a PCA. We calculated the proportion of explained 

variance. This analysis was performed for each cognitive variable and age group separately. 

Then, to understand whether the set of latent variables obtained using PCA can explain the 

cognitive variables, we used multiple regression. We used the function OLS from the 

statsmodels 0.13.2 package for Python.106 We obtained the latent variables from the EEG 

features that showed a significant correlation to a cognitive variable. Each EEG feature 

contributed with one variable (i.e., electrode, brain region, or microstate parameter), which 

was the one showing the highest correlation to the corresponding cognitive variable. We 

generated a regression model, first, using the first PC of the EEG data, and then, we added PCs 

one by one, up to the third PC (i.e., model 1: PC1, model 2: PC1 and PC2, model 3: PC1, PC2, 

and PC3). To quantify predictive performance, we used adjusted- R2. In this analysis, we did 

not use cross-validation to calculate adjusted-R2 values. 

Cross-validated prediction of cognitive variables using EEG features 

This section describes the analysis behind the results presented in the prediction of cognitive 

variables using EEG features subsection in results. We investigated how well the EEG features 

predicted the cognitive variables using ridge regression and nonlinear random forest 

regression. We used the Scikit-learn 1.0.2 package for Python.26 For each pair of EEG feature 

(with all its electrodes, brain regions, or microstate parameters) and cognitive variable, 

prediction performance was calculated using 50 repetitions of a train-test split procedure. The 

predictive performance was calculated using the coefficient of determination R2. First, 33% of 

the data were left out for validation (testing set) and the remaining 67% of the data (training 

set) were used for model optimization. For linear ridge models, before training the model we 

applied a power transform to the data to improve normality using the PowerTransformer 

function. The amount of penalization λ (100 values from 10−3 to 105 on an evenly spaced 

logarithmic scale) was selected using cross-validation with the efficient leave-one-out method 

implemented in the function RidgeCV. For random forest models, we used the function 
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RandomForestRegressor. The parameters of the random forest models were selected using a 

grid search procedure with 3-fold cross-validation as implemented in the GridSearchCV 

function. We used 100 estimators and adjusted the tree-depth considering the values 4, 6, 8, 

or no constraint, and also adjusted the maximum number of features using log2, sqrt, or auto 

as options. The model with the parameters giving the best performance in the training set was 

applied to the testing set. The prediction performance R2 was calculated using the function 

r2_score. The R2 values were aggregated for each of the 50 repetitions of the procedure and 

the median predictive performance was reported. The analysis was conducted for the sample 

of older and younger adults separately. 

Group comparisons of EEG features between older and younger adults 

This section describes the analysis behind the results presented in the Group comparisons of 

the EEG features between younger and older adults subsection in results. We conducted group 

comparisons between older and younger adults using each of the 175 EEG features. For each 

variable (61 electrodes, 80 brain regions, or 4 microstate parameters) of a given EEG feature, 

we conducted a Mann-Whitney test using the function wilcox_test from R Studio version 4.0.1 

107 and the package coin 1.4_2.108 The p values and effect size r-values (with bootstrap 

confidence intervals) were obtained using the R Studio package rstatix 0.7.0.109 The p values 

were corrected for multiple comparisons using FDR with an error rate of 5%, within each EEG 

feature. 

Correlations between EEG features showing age-related differences 

This section describes the analysis behind the results presented in the correlations between 

EEG features showing age-related differences subsection in results. First, for each EEG feature 

that contained at least one variable showing a significant difference between younger and 

older adults (after correcting for multiple comparisons), we selected the variable (i.e., the 

electrode, brain region, or microstate parameter) with the largest effect size to be the 

representative variable for that feature for the correlation analysis. For each age group 

separately, we computed pairwise Spearman correlations between these variables. 

Second, to consider not only one but all variables of the EEG features revealing significant 

group differences, we used an unbiased multivariate distance correlation test for 

independence in high dimensions.105 In high dimensions, the original distance correlation 
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statistic (used in the correlation between EEG features and cognitive variables section) 

increases even under independence. The absolute unbiased estimate accounts for the bias in 

high dimensions and thus can provide an effect size of the relationship between two EEG 

features with all its variables (electrodes, brain regions, or microstate parameters) ranging 

from 0 to 1. We reported the square root of the absolute unbiased distance correlation 

(√|ℛ𝓃
∗ |) because the unbiased distance correlation approximates the population squared 

distance correlation. The effect sizes and p values were obtained using the function dcorT.test 

from the R Studio package energy 1.7_10.110 

Comparison between EEG reference choices 

To investigate the effect of the EEG reference choice on our results, we re-analyzed the EEG 

data using zero-reference as implemented in the REST toolbox.111 We obtained 140 EEG 

features (not considering source space EEG features) with this reference choice. These zero-

referenced EEG features were compared to average or current source density CSD (for 

electrode connectivity features) referenced EEG features, which were the ones used in the 

main analyses, using intraclass correlations and distance correlations. For the comparison, we 

used the intraclass correlation with an absolute agreement (ICC2; to account for mean 

differences across references) as implemented in the function intraclass_corr from the 

pingouin 0.5.1 package for Python. Since EEG features have different numbers of variables (i.e., 

electrodes or microstate parameters), we calculated the ICC2 values for each variable of each 

EEG feature. For example, for the EEG feature microstate A, we obtained 4 ICC2 values (for 

global explained variance, mean duration, time coverage, and frequency of occurrence). 

Furthermore, to examine whether the choice of reference affects the correlations between 

EEG features, we pairwise correlated the 140 EEG features obtained with zero reference using 

multivariate distance correlations, for younger and older adults separately. 
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Chapter 7. General Discussion  

7.1. Contextual effects and predictive coding  

Contextual vision studies in schizophrenia have yielded contradicting findings (King et al., 2017; 

Notredame et al., 2014; Silverstein & Keane, 2011b), which might be due to the heterogeneity 

of schizophrenia, but also to the idiosyncrasy of the paradigms. For example, some paradigms 

might require stronger attention than others. Since patients with schizophrenia often suffer 

from impairments in attentional processes (Chkonia, Roinishvili, Herzog, et al., 2010), there 

might be differences between controls and patients in some paradigms due to attentional 

rather than contextual processing deficits. Furthermore, schizophrenia might affect different 

patients differently. Therefore, comparing results from different patient samples is not as 

accurate as comparing the same patient sample using different experimental methods. In 

Chapter 4, we tested the very same patients and controls using two variants of an (un)crowding 

paradigm. Importantly, (un)crowding allows to investigate both faciliating and deteriorating 

contextual effects which may serve as an assessment of lower attention (e.g., if only 

deteriorating effects are found).  

We found that the same patients showed intact processing in one of the variants of the 

paradigm (Experiment 1), whereas clear-cut contextual vision impairments were found in the 

other variant (Experiment 2). These results suggest that mixed results might also be provoked 

by differences in the spatial arrangements of the stimuli and experimental design. Notably, our 

results also question whether there is a general abnormal mechanism for contextual vision in 

schizophrenia, since if there is a general deficit this should be evident across paradigms. Our 

results cannot be explained by deficits in attention (Braff, 1993; Chkonia, Roinishvili, Herzog, 

et al., 2010) or target enhancement (Herzog et al., 2013), since patients did not exhibit lower 

performance in all the conditions. Further research is needed to investigate which other factors 

might be involved in the paradigms and how much they contribute to contextual visual 

processing.  

Importantly, our results are consistent with previous findings indicating that patients may 

successfully perform complex visual tasks in a qualitatively intact manner, while still 
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demonstrating a main deficit, manifested as lower overall performance (Brand et al., 2005; 

Roinishvili et al., 2015; Schütze et al., 2007). This was observed particularly for the crowding 

conditions. However, in the uncrowding conditions, we found that patients had both 

qualitative and quantitative deficits in Experiment 2, yet uncrowding was intact in Experiment 

1. What provokes these discrepancies will need to be clarified in future studies. Evaluating 

individual differences might be important in future studies to determine to what extent better 

performance in the target-only condition results in better performance for (un)crowding 

conditions, or whether visual acuity contributes to our results. Previous studies have shown 

that differences in visual acuity might strongly bias results in patients with schizophrenia for 

contrast paradigms (Bi et al., 2023). Controlling for these variables might however require 

larger samples, which is another limitation of our study. Altogether, we suggest that claims 

about abnormal mechanisms in schizophrenia should be supported by multiple paradigms.  

Importantly, mixed results are expected in the absence of publication bias, i.e., the tendency 

to publish only positive results. Whether mixed results exist to the extent given the power of 

the individual studies (i.e., whether results are more mixed than expected) needs to be 

addressed through systematic meta-analyses. Our results suggest that such analyses might 

benefit from including studies matched by experimental design, and even stimuli properties 

and setups to the extent that is possible since these factors might influence the results. 

Furthermore, since some of the contextual effects might be more (or less) pronounced 

depending on whether patients are stable or in acute states (Keane et al., 2013; Silverstein et 

al., 2013), matching studies by the state of the patients will lead to more robust results. 

Moreover, chronicity might also need to be considered as a confounding factor. For example, 

brain structural abnormalities are less pronounced in first-episode psychosis patients 

compared to patients with a longer illness duration (Zhao et al., 2022).   

Differences in visual processing paradigms in schizophrenia have been conceptualized within 

the framework of predictive coding (PC). Specifically, it has been proposed that sensory inputs 

and prior information are abnormally combined in patients, leading to aberrant perception 

(Adams et al., 2013; Sterzer et al., 2018). In Chapter 5, I presented a neurophysiological study 

of PC in schizophrenia using the method of oscillatory traveling waves. A notable advantage of 

this neurophysiological approach is its systematic evaluation of the different components 

involved in PC, such as prediction errors and prior precisions (Alamia & VanRullen, 2019; Arnal 
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& Giraud, 2012; Friston, 2019). This approach contrasts with behavioral paradigms where 

generally the outcome of the entire PC process is measured.  

PC processes have been proposed to occur at multiple levels in a hierarchy composed of 

several priors (Corlett et al., 2019; Sterzer et al., 2018). Alterations at different levels in this 

hierarchy may give rise to different phenomena, ranging from basic sensory impairments (for 

alterations at lower levels) to more complex symptoms (for alterations at higher levels) in 

schizophrenia. The results presented in Chapter 5 are well in line with this view, as we found 

evidence suggesting alterations at plausibly different prior levels in schizophrenia. Patients 

with schizophrenia exhibited higher alpha-band backward traveling waves (TW) during resting-

state, suggesting higher precision in priors located at hierarchically-higher levels of PC 

processes. Conversely, results using visual backward masking data showed higher forward 

(bottom-up, mirroring prediction errors) TW, suggesting that priors located at lower levels of 

PC processes exhibit less precision in patients compared to controls. This latter effect only 

arose when there were visual stimuli, indicating that this specific alteration might become 

evident when sensory information needs to be processed.    

Importantly, while TW is a versatile tool that allows to investigate distinct components of PC 

processes, the link to priors is still premature. While there is computational evidence that TW 

might be a plausible mechanism for PC processing (Alamia & VanRullen, 2019), whether this is 

implemented in the brain in a way that is measurable through EEG has received to now only 

experimental support, e.g., through pharmacological intervention studies (Alamia et al., 2020). 

Further studies involving intra-cranial recordings, or neuroimaging methods exceeding the 

resolution of EEG, combined with rigorous biophysical modeling might help establish a more 

direct link between TW and priors in schizophrenia. Furthermore, alpha-band modulations 

have been shown to reflect attentional effects (Compton et al., 2019), and therefore decreased 

attention in the patients might be a plausible explanation for the differences observed in visual 

backward masking. However, we did not find differences for one of the control conditions in 

the task where there was no visual processing involved (Supplementary Information Chapter 

5). Therefore, attentional effects might not strongly impact our resutls.   

There is the question of to what extent these different levels of predictive processing are 

related. Recent experimental evidence in healthy subjects has revealed weak correlations 

between bistable visual illusions, pareidolias, and self-reports of hallucinations, which may to 
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some extent tap into different PC levels, suggesting that alterations at different stages of PC 

might be independent (Lhotka et al., 2023). However, in our TW analysis, we found evidence 

for a correlation between alterations at lower and higher level priors. Thus, further research 

employing several paradigms targeting explicitly those different levels of predictive processing 

is necessary to assess the relation among these levels and, most importantly, how they 

contribute to the pathophysiology of schizophrenia.   

Schizophrenia, however, is much more than visual dysfunctions and psychotic symptoms. 

Patients often suffer from impairments in working memory (Meyer-Lindenberg et al., 2001) 

and attention (Chkonia, Roinishvili, Herzog, et al., 2010), which significantly affect their quality 

of life (Eack & Newhill, 2007; Green et al., 2015).  These deficits might potentially not be 

explained by predictive processing mechanisms. Moreover, hallucinations and perceptual 

alterations are common in other disorders, such as Alzheimer's disease (El Haj et al., 2017), or 

bipolar disorder (Baethge et al., 2005), questioning the specificity of predictive processing 

abnormalities for schizophrenia. While predictive coding provides an appealing model for 

interpreting experimental findings, its ability to account for the heterogeneity of schizophrenia 

is severely limited.  

7.2. On the complexity of schizophrenia 

Schizophrenia has been studied for more than a century, yet its underlying causes remain an 

enigma. One reason could be that the complexity of the disorder has strongly been 

underestimated. Traditionally, schizophrenia research has focused on single deficits. However, 

experimental work has uncovered a wide array of deficits associated with schizophrenia, 

suggesting that there might be several impaired mechanisms. Hence, the classic approach in 

schizophrenia research might need to be accompanied by new approaches aiming to address 

this heterogeneity. Analyzing the relationship between multiple paradigms might offer a 

comprehensive understanding of the complexity of the illness. In Chapter 2, we took a step 

forward in this direction by employing a multiverse approach, analyzing a broad spectrum of 

neurophysiological features in patients with schizophrenia. 

Our study revealed that despite significant group differences between patients and controls, 

with effect sizes ranging from medium to large, 69 EEG features were not highly correlated 
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with each other in patients. These results suggest that even if a significant result is found, this 

might not necessarily indicate that this result points to a general abnormal mechanism in 

schizophrenia. However, our study has limitations. For instance, while in our group comparison 

analysis we used ANCOVAs to control for demographical differences, since groups were not 

initially matched by Gender or education, the influence of these variables might still be 

underestimated (Miller & Chapman, 2001). Therefore, our results might still be influenced by 

demographical and also other variables related for instance nicotine consumption, among 

many others. However, notably correlations between patients and controls were largely similar 

(Figure 1), suggesting that if there are influences of confounding factors, this might not have 

strong effects on the correlations between EEG features.  

However, there might be other plausible explanations for the low correlations between EEG 

features. For instance, the EEG features might have low test-retest reliabilities, which reduces 

the true pairwise correlations. Test retests are crucial for correlation analyses, and not having 

a measure of reliability is a severe limitation of our study. However, some of the features that 

we employed have shown adequate reliabilities in previous studies (Gudmundsson et al., 2007; 

Haartsen et al., 2020; Khanna et al., 2014; Kondacs & Szabó, 1999; Nikulin & Brismar, 2004). 

Furthermore, we found that some features obtained from similar methods are highly 

correlated, resembling to some extent test-retests. However, a rigorous test-retest 

assessment, with two recording sessions, is crucial for interpretability.  

Another possible explanation for the low correlations is that while the features might be 

targeting the same general aspects of schizophrenia they are also sensitive to other target-

unspecific aspects, such as comorbidities, among many others. Therefore, if target-unspecific 

aspects significantly contribute to the variance, and EEG features are sensitive to different 

aspects, correlations will be low. In a more complex scenario, schizophrenia may be a highly 

heterogeneous disorder at the neurophysiological level, with each feature pointing to roughly 

independent factors.  

In Chapter 3, we aimed to investigate some of the aforementioned scenarios through a 

longitudinal assessment of EEG features. Our preliminary findings indicate that several EEG 

features exhibit remarkable long-term stability. This is particularly noteworthy considering that 

the measurements were spaced, on average, 4 years apart. Therefore, the influence of 

measurement error and target-unspecific variance might be smaller in these stable features. 



Variability is the rule: Neurophysiology and contextual visual processing in schizophrenia. Chapter 7. 
General Discussion 

 

157 
 

Importantly, the benchmarks that we used for poor, and excellent reliability provided by  

Cicchetti (1994) are rather optimistic, e.g., compared to Koo & Li. (2016) where excellent 

reliabilities are considered those > 0.9 instead of > 0.75. However, our study goes beyond 

testing reliability only due to measurement error but rather probes long-term fluctuations, 

since the time differences between recordings were much larger than in classic test-retest 

studies. Importantly, longitudinal assessments might require different analyses than reliability 

assessments, which are often performed after a few days, or even hours. For example, the 

choice of the ICC function, and also to what extent stability is not influenced by signal 

preprocessing or illness chronicity will need to be rigorously accounted for to establish stability 

of EEG features more robustly. Furthermore, we made different analytical decisions in Chapter 

2, compared to Chapter 1, to increase signal-to-noise ratios. However, a direct comparison 

between the two studies will be important to see the extent to which these decisions improved 

the correlations. While this comparison cannot be done directly, since the bounds and number 

of frequency bands are different in the two studies, there might be other means to compare 

SNR in the two studies. For instance, frequency bands at the re-test might be defined for all 

the samples based on the mean alpha peak frequency (instead of defining the frequency bands 

for each subject based on their peak), which will allow us to compare the features using 

reliability or correlation analyses.  

If these stable EEG features, indeed, reflect distinct factors, this could provide valuable insights 

into the complexity of schizophrenia and might open new avenues for inquiry. There might be 

several explanations for schizophrenia in this multifactorial scenario. For instance, 

schizophrenia may be an additive disorder, where having more deficits leads to more severe 

symptoms or genetic risk. Polygenic risk scores (PRS) could be an example since a summary of 

several variants was shown to explain more variance than single variants (Ripke et al., 2014). 

Alternatively, it is possible that having one or a few pronounced deficits leads to more severe 

symptoms or heightened risk for schizophrenia. This scenario is supported by recent findings 

indicating that a few rare variants confer a much higher risk than common variants (Singh et 

al., 2022). Hence, a small number of features might have a high explanatory power. In a more 

complex scenario, only certain combinations of deficits provoke schizophrenia. This latter 

scenario would pose significant challenges in discovering the key mechanisms of schizophrenia 

since all potential contributing factors would need to be considered. Notably, these scenarios 
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may need to be addressed through a shallow rooting approach, as several deficits might need 

to be examined. 

Importantly, in our correlation analyses, we included EEG features showing significant group 

differences between patients and controls, which however were not always associated with 

large effect sizes. Studies in other domains such as cognition have yielded both higher effect 

sizes and also higher correlations in patients (Dickinson et al., 2011), suggesting that cognitive 

paradigms might overcome the explanatory power of neurophysiological features (Kahn & 

Keefe, 2013; Mesholam-Gately et al., 2009). Other studies involving reading abilities (Revheim 

et al., 2014) and eye movements (Benson et al., 2012; St Clair et al., 2022) also have been 

associated with effect sizes larger than in many neurophysiological studies. Therefore, it is 

plausible that some domains might be more promising to elucidate the underlying mechanisms 

of schizophrenia. Notably, these results might be promising in the sense that potentially 

combining such paradigms associated with larger effect sizes, might even lead to larger group 

differences between groups.  

7.3. Variability is the rule  

In the complex sciences, every branch relies on tests assumed to target the key aspects of the 

field. Typically, these tests reveal a significant group difference between an intervention and a 

control condition or effectively predict other variables under study. Then, numerous 

subsequent studies are conducted with these tests to uncover underlying mechanisms. There 

is an unstated assumption that the test being employed represents a key aspect of the research 

field. However, recent experimental work, as well as results presented in this thesis, indicate 

that this assumption may not necessarily hold, as a wide array of measures aimed to target 

similar mechanisms do not strongly correlate with each other (i.e., construct validity is poor). 

Where does the variance of these measures come from? Measurement error is a potential 

candidate. However, as mentioned earlier, behavioral paradigms and EEG measurements often 

had adequate reliabilities. This, however, does not necessarily mean that signal-to-noise ratios 

are adequate for the research questions and extensive efforts are being made on this front 

with an emphasis on developing new technologies and also more adequate methods in human 

neuroscience (Nebe et al., 2023).  
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On a more speculative note, there are at least three explanations for high stabilities and low 

correlations. The first explanation is that the underlying mechanisms being targeted are highly 

complex, involving several factors. If this scenario holds, shallow rooting approaches combining 

different test outcomes may aid in enhancing explanatory power. We found evidence 

supporting this scenario in Chapter 6, where latent dimensions exhibited higher explanatory 

power compared to single features in some cases. Other studies support this scenario too (Abel 

et al., 2021; Al Zoubi et al., 2018; Giuliani et al., 2023; Imperatori et al., 2021; Price et al., 2006; 

Sitt et al., 2014; Wolff et al., 2019). Notably, within this complex scenario, there are several 

nuances depending on the target mechanism and research question (as illustrated in the last 

paragraph of the previous section). Thus, tailored methodologies are necessary.  

A second explanation could be that the paradigms or brain measurements might be less 

specific than assumed, meaning that while the intended mechanisms might indeed be 

targeted, many other factors might be targeted too. Hence, tests might be less explanatory of 

the target mechanism than assumed. The results presented in Chapter 4 point to some extent 

in this direction showing that even with paradigms targeting ostensibly the same target 

function, results might be conflicting. Besides other mechanisms, recent work suggests that 

paradigms and brain measurements may capture highly specific traits of participants of aspects 

related to data recordings (Greene et al., 2022). Deep rooting approaches might be necessary 

to thoroughly investigate the factors contributing to the variance of a specific measurement, 

while shallow rooting ones may help reveal how much variance of the mechanism is shared 

across different measurements. 

Third, variability may stem from genuine differences between individuals, namely roughly each 

individual might exhibit distinct traits for brain processing. Here, a more individualized 

approach will be necessary, systematically examining and identifying which specific traits 

represent better each individual. In the best-case scenario, a small number of clusters may 

emerge, composed of subjects exhibiting similar processing patterns. Tailored methodologies 

will be required to investigate mechanisms within these hypothetical clusters. There are 

examples that this scenario might hold in some cases. For instance, clustering analysis in 

patients with psychotic symptoms has provided evidence for three clusters of psychosis 

patients showing distinct brain profiles (Clementz et al., 2016). In a more complex scenario, 

there are no clusters and every individual demonstrates highly specific traits. Relying on 
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average statistics will be insufficient if this scenario holds and new approaches that prioritize 

the analysis of individual data over average responses will become crucial. Determining the 

extent to which the scenarios described above hold will necessitate a combination of deep and 

shallow rooting approaches.  

7.4. Future work 

One of the advantages of the traveling wave analysis presented in Chapter 5, was its ability to 

assess different components of predictive processing, which is generally challenging with only 

behavioral paradigms. To gain further insights into different levels of predictive processing, 

employing batteries of visual paradigms combined with EEG in patients with schizophrenia and 

healthy controls may be helpful. The paradigms may encompass a range of tasks from basic 

visual illusions and visual crowding to motion and scene perception. Recent work in this 

direction has successfully probed PC processes through relatively simple EEG paradigms (Chen 

et al., 2023). Traveling waves can be one of the analyses, yet not the only one. Directed 

connectivities, e.g., based on Granger causality, could also potentially be employed to identify 

signatures of predictive processing. Notably, the analyses will need to systematically examine 

different frequency bands, as there is evidence that feedback and feedforward brain 

processing may occur through distinct frequency channels (Bastos et al., 2015). Using 

magnetoencephalography, for example, may provide more detailed information both about 

oscillations (e.g., in the gamma-band range), and the responsible brain areas, compared to 

EEG.  

To gain further insights into the complexity of neurophysiology in schizophrenia, it will be 

critical to investigate the mechanisms targeted by the features showing adequate stabilities. 

For instance, some of the features might reflect aspects related to information processing, 

whereas others might tap into genetic risks. Hence, analyzing to what extent the features 

predict cognitive performance in a range of sensory and cognitive tasks, or whether they 

correlate with genetic risk, e.g., measured with polygenic risk scores, will provide further 

insights. Further individual differences assessments using these stable features, for example, 

through fingerprinting analyses, can provide insights into the extent to which these features 

can distinguish individuals in a population, and whether they reflect specific traits of their 
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cognitive or perceptual functioning (Van De Ville et al., 2021). All these assessments go hand 

in hand with the development and utilization of multivariate methods, such as partial least 

squares or canonical correlation analysis, which may help identify relationships between sets 

of brain features and sets of behavior variables, instead of univariate correlations.  

Analyzing EEG features in different populations can also yield novel insights. For instance, 

investigating whether the EEG features are also different in unaffected siblings of patients with 

schizophrenia compared to controls will inform about genetic underpinnings. Importantly, this 

research has the potential to shed light on which features could be incorporated into batteries 

designed to detect individuals at risk for developing psychosis. Significant efforts are dedicated 

to changing the paradigm in psychiatry research towards a more preventive approach (Salazar 

De Pablo et al., 2021; Uhlhaas et al., 2023). Relatedly, a notable advantage is that resting-state 

EEG can be collected rapidly, enhancing its potential for applications in clinical settings. Hence, 

advancements might have critical implications for schizophrenia research. 

We speculated on possible scenarios of complexity in schizophrenia (e.g., in Section 7.2). Many 

of these speculations are empirical, and as such there are ways to address them. One possible 

analysis would involve correlating symptom scores with a summary measure of the EEG 

features in patients. Furthermore, polygenic risk scores could be correlated with this summary 

measure to determine whether deficits in more features predict a higher risk for schizophrenia. 

Furthermore, nonlinear methods for dimensionality reduction could be employed on the 

stable EEG features, to determine clusters of features that may not be effectively revealed by 

classic linear methods such as PCA. It will be important to employ only the EEG features 

showing high reliabilities, and it is more certain that they might be less influenced by 

idiosyncratic aspects and measurement error. The overarching goal of these studies would be 

to systematically assess different potential scenarios of complexity in schizophrenia. 

Finally, simulation studies could offer valuable insights into the central problems discussed in 

this thesis. This meta-scientific approach might provide insights into the causes of the low 

correlations. There are several examples of how this approach can help comprehend very 

general aspects of science (Thompson et al., 2020; Ulrich & Miller, 2020; Wang & De Boeck, 

2022). By employing simple linear models that incorporate factors such as a target, 

measurement error, and bias we could run systematic simulations to better understand the 

impact of these factors on correlations. Moreover, proposing underlying data models, some of 
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which may involve nonlinearities or interactions, might allow us to identify which model best 

aligns with real-world observations. Exploring synthetic models in this manner offers flexibility 

and expands the scope for inquiry. 
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Supplementary Information Chapter 2 

A supplementary information file containing 13 Supplementary Tables, Supplementary 

Methods, and Supplementary results is available at the publisher’s website: 

https://academic.oup.com/cercor/article/33/7/3816/6677568 

 

  

https://academic.oup.com/cercor/article/33/7/3816/6677568
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Supplementary Information Chapter 4 

Supplemental Tables Parameter estimates  

Table 1. Estimates from the linear mixed-effects model of Exp1. with each configuration and group as predictors 

(no interaction between the two predictors) and individual observers as random intercepts. 

Fixed Effects β estimate β standard error t-value 

(Intercept) 1.832 0.2222 8.274 

1 sq – 7 sq -1.062 0.204 -5.217 

1 sq – 35 sq -1.942 0.204 -9.544 

1 sq – square(sq)&star(st) 0.825 0.204 4.054 

1 sq – sq&st repeated -0.318 0.204 -1.565 

1 sq – sq&st random 0.703 0.204 3.453 

Groups 0.216 0.252 0.998 

 

Table 2. Estimates from the linear mixed-effects model in Line condition of Exp2. with the stimulus duration and 

groups as predictors (no interaction between the two predictors) and individual observers as random intercepts. 

Fixed Effects β estimate β standard error t-value 

(Intercept) 3.557 0.294 12.109 

Stimulus duration -0.221 0.029 -7.510 

Groups 0.795 0.362 2.198 

 

Table 3. Estimates from the linear mixed-effects model in Cuboid condition of Exp2. with the stimulus duration, 

groups, and interaction as predictors and individual observers as random intercepts. 

Fixed Effects β estimate β standard error t-value 

(Intercept) 5.183 0.375 13.814 

Stimulus duration -0.558 0.061 -9.140 

Groups -0.558 0.532 -1.052 

Interaction 0.259 0.086 2.997 

  



Variability is the rule: Neurophysiology and contextual visual processing in schizophrenia. 
Supplementary Information Chapter 5 

 

165 
 

Supplementary Information Chapter 5 

Supplementary figure 1 

  

 

Figure S1 – Differences in alpha-band traveling waves between patients and control in the visual dataset task. 
Each row represents a different condition. As in the main figures, each subplot shows the mean values and 
standard errors for the patient (dashed lines) and the control groups (solid lines) before and after the onset of 
the stimulus at 0ms.  
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Supplementary Information Chapter 6 

Further information is available at the publisher’s website: 

https://www.sciencedirect.com/science/article/pii/S2589004223000949 

Supplementary Tables 

Table S1. Brain regions and coordinates for source space analysis. Related to STAR methods  

x y z Left hemisphere x y z Right hemisphere 

-5 55 -5 LMedialOrbitofrontalCortex 5 50 -5 RMedialOrbitofrontalCortex 

-30 50 -10 LMiddleOrbitofrontalCortex 30 55 -10 RMiddleOrbitofrontalCortex 

-5 50 30 LSuperiorFrontalGyrusMedialPart 10 50 30 RSuperiorFrontalGyrusMedialPart 

-20 50 -15 LSuperiorFrontalGyrusOrbitalPart 15 50 -15 RSuperiorFrontalGyrusOrbitalPart 

-5 35 15 LAnteriorCingulateCortex 5 35 15 RAnteriorCingulateCortex 

-35 35 35 LMiddleFrontalGyrus 35 35 35 RMiddleFrontalGyrus 

-20 35 40 LSuperiorFrontalGyrus 20 30 45 RSuperiorFrontalGyrus 

-5 35 -20 LGyrusRectus 5 35 -20 RGyrusRectus 

-35 30 -10 LInferiorFrontalGyrusOrbitalPart 40 30 -10 RInferiorFrontalGyrusOrbitalPart 

-45 30 15 LInferiorFrontalGyrusParsTriangularis 45 30 15 RInferiorFrontalGyrusParsTriangularis 

-50 15 20 LInferiorFrontalOperculum 50 15 20 RInferiorFrontalOperculum 

-5 15 -10 LOlfactoryGyrus 5 15 -10 ROlfactoryGyrus 

-35 15 -35 LTemporalPoleMiddleTemporalGyrus 45 15 -30 RTemporalPoleMiddleTemporalGyrus 

-40 15 -20 LTemporalPoleSuperiorTemporalGyrus 45 15 -15 RTemporalPoleSuperiorTemporalGyrus 

-40 10 0 LInsula 40 10 0 RInsula 

-5 5 60 LSupplementaryMotorArea 10 0 60 RSupplementaryMotorArea 

-40 -5 50 LPrecentralGyrus 40 -10 50 RPrecentralGyrus 

-50 -10 15 LRolandicOperculum 50 -5 15 RRolandicOperculum 

-5 -15 40 LMiddleCingulateCortex 5 -10 40 RMiddleCingulateCortex 

-20 -15 -20 LParahippocampalGyrus 20 -15 -20 RParahippocampalGyrus 

-45 -20 10 LHeschlGyrus 45 -15 10 RHeschlGyrus 

-25 -20 -10 LHippocampus 25 -20 -10 RHippocampus 

-55 -20 5 LSuperiorTemporalGyrus 55 -20 5 RSuperiorTemporalGyrus 

-5 -25 70 LParacentralLobule 5 -30 70 RParacentralLobule 

-45 -25 50 LPostcentralGyrus 40 -25 55 RPostcentralGyrus 

-50 -30 -25 LInferiorTemporalGyrus 55 -30 -20 RInferiorTemporalGyrus 

-55 -35 30 LSupramarginalGyrus 55 -30 35 RSupramarginalGyrus 

-55 -35 0 LMiddleTemporalGyrus 55 -35 0 RMiddleTemporalGyrus 

-30 -40 -20 LFusiformGyrus 35 -40 -20 RFusiformGyrus 

-5 -45 25 LPosteriorCingulateCortex 5 -45 20 RPosteriorCingulateCortex 

-45 -45 45 LInferiorParietalLobule 45 -45 50 RInferiorParietalLobule 

-10 -55 50 LPrecuneus 10 -55 45 RPrecuneus 

-25 -60 60 LSuperiorParietalLobule 25 -60 60 RSuperiorParietalLobule 

-45 -65 40 LAngularGyrus 40 -60 40 RAngularGyrus 

-15 -70 -5 LLingualGyrus 15 -65 -5 RLingualGyrus 

-10 -80 10 LCalcarineSulcus 15 -75 10 RCalcarineSulcus 

-5 -80 25 LCuneus 15 -80 30 RCuneus 

-35 -80 -10 LInferiorOccipitalGyrus 35 -80 -10 RInferiorOccipitalGyrus 

-30 -80 15 LMiddleOccipitalGyrus 35 -85 20 RMiddleOccipitalGyrus 

-20 -85 30 LSuperiorOccipitalGyrus 20 -80 30 RSuperiorOccipitalGyrus 

https://www.sciencedirect.com/science/article/pii/S2589004223000949
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Table S2. Adjusted 𝑹𝟐 of in-sample principal component regression for younger adults using 

the EEG features showing a significant Spearman correlation to the cognitive variables. Related 

to STAR methods 

Abbreviations: A = Cvlt attention span, B = Cvlt delayed memory, C = Pts-2 subtest 3, D = Rwt animal categories, 
E = Rwt s words, F = Tap alertness, G = Tap simon congruent, H = Tap simon incongruent, I = Tap working memory, 
J = Tmt-A, K = Tmt-B, L = Vocabulary test 

 
A B C D E G H I J K L median 

PC 1 0.09 0.05 -0.01 0.15 0.1 0.11 0.15 0.17 0.21 0.22 0.18 0.15 

PC 1-2 0.09 0.11 0.17 0.26 0.1 0.11 0.14 0.18 0.2 0.23 0.19 0.17 

PC 1-3 0.11 0.32 
 

0.26 0.22 0.13 0.14 0.21 0.27 0.22 0.18 0.21 

PC 1-4 0.14 0.32 
 

0.25 0.24 0.12 0.14 0.21 0.35 0.25 0.18 0.22 

PC 1-5 0.14 0.32 
 

0.25 0.24 0.12 0.14 0.23 0.34 0.25 0.18 0.23 

PC 1-6 0.13 0.32 
 

0.25 0.24 0.13 0.14 0.23 0.36 0.25 
 

0.24 

PC 1-7 0.16 0.33 
 

0.24 0.28 0.12 
 

0.22 0.35 0.24 
 

0.24 

PC 1-8 0.15 
   

0.28 
  

0.22 0.35 0.24 
 

0.24 

PC 1-9 0.16 
      

0.23 0.35 0.24 
 

0.23 

PC 1-10 0.17 
      

0.25 0.36 0.23 
 

0.24 

PC 1-11 0.16 
      

0.25 0.36 0.23 
 

0.24 

PC 1-12 0.15 
      

0.24 0.35 
  

0.24 

PC 1-13 0.16 
      

0.24 0.35 
  

0.24 

PC 1-14 0.16 
      

0.23 0.35 
  

0.23 

PC 1-15 0.16 
      

0.27 0.37 
  

0.27 

PC 1-16 0.15 
      

0.29 0.36 
  

0.29 

PC 1-17 0.16 
      

0.29 0.36 
  

0.29 

PC 1-18 0.16 
      

0.29 0.36 
  

0.29 

PC 1-19 0.16 
       

0.36 
  

0.26 

 

Table S3. Adjusted 𝑹𝟐 of in-sample principal component regression for older adults using the 

EEG features showing a significant Spearman correlation to the cognitive variables. Related to 

STAR methods 

Abbreviations: A = Cvlt attention span, B = Cvlt delayed memory, C = Pts-2 subtest 3, D = Rwt animal categories, 
E = Rwt s words, F = Tap alertness, G = Tap simon congruent, H = Tap simon incongruent, I = Tap working memory, 
J = Tmt-A, K = Tmt-B, L = Vocabulary test 

 
A B C D E F H I L median 

PC 1 0.15 0.21 0.24 0.37 0.23 0.26 0.41 0.47 0.41 0.26 

PC 1-2 0.14 0.22 0.33 0.36 0.22 0.25 0.45 0.46 0.46 0.33 

PC 1-3 0.13 0.2 0.33 0.38 0.23 
 

0.47 0.45 0.46 0.35 

PC 1-4 
  

0.32 0.37 0.22 
 

0.46 0.44 0.45 0.41 

PC 1-5 
  

0.33 0.39 0.22 
 

0.46 0.43 
 

0.39 

PC 1-6 
  

0.35 
    

0.42 
 

0.39 

PC 1-7 
  

0.35 
    

0.44 
 

0.39 

PC 1-8 
  

0.35 
      

0.35 

PC 1-9 
  

0.35 
      

0.35 

PC 1-10 
  

0.34 
      

0.34 

PC 1-11 
  

0.33 
      

0.33 

PC 1-12 
  

0.33 
      

0.33 

PC 1-13 
  

0.32 
      

0.32 

PC 1-14 
  

0.31 
      

0.31 

PC 1-15 
  

0.35 
      

0.35 

PC 1-16 
  

0.34 
      

0.34 

PC 1-17 
  

0.33 
      

0.33 

PC 1-18 
  

0.31 
      

0.31 
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PC 1-19 
  

0.34 
      

0.34 

PC 1-20 
  

0.33 
      

0.33 

 

Table S4. Adjusted 𝑹𝟐of in-sample principal component regression for younger adults using 

the EEG features showing a significant distance correlation to the cognitive variables. Related 

to STAR methods 

Abbreviations: A = Cvlt attention span, B = Cvlt delayed memory, C = Pts-2 subtest 3, D = Rwt animal categories, 
E = Rwt s words, F = Tap alertness, G = Tap simon congruent, H = Tap simon incongruent, I = Tap working memory, 
J = Tmt-A, K = Tmt-B, L = Vocabulary test 

 
A B C D E F G H I J K L median 

PC 1 0.11 0.17 0.11 0.11 0.11 0.07 0.12 0.09 0.14 0.18 0.2 0.14 0.12 

PC 1-2 0.13 0.17 0.11 0.22 0.11 0.09 0.11 0.14 0.14 0.17 0.21 0.14 0.14 

PC 1-3 0.15 0.18 0.11 0.22 0.13 0.09 0.11 0.14 0.15 0.17 0.21 0.13 0.14 

PC 1-4 0.15 0.2 
 

0.22 0.14 
 

0.13 0.14 0.18 0.18 0.26 0.13 0.16 

PC 1-5 0.15 
  

0.21 0.14 
 

0.14 0.13 0.18 0.22 0.25 0.14 0.15 

PC 1-6 0.14 
  

0.21 0.13 
 

0.13 0.2 0.2 0.23 0.25 
 

0.2 

PC 1-7 0.14 
  

0.22 0.12 
 

0.17 0.19 0.19 0.26 0.25 
 

0.19 

PC 1-8 0.13 
  

0.21 0.16 
 

0.17 0.19 0.19 0.25 0.25 
 

0.19 

PC 1-9 0.13 
  

0.21 0.16 
 

0.21 0.18 0.19 0.25 0.26 
 

0.2 

PC 1-10 0.12 
  

0.2 
  

0.21 0.18 
 

0.26 0.25 
 

0.2 

PC 1-11 0.13 
  

0.2 
  

0.27 0.17 
 

0.26 0.25 
 

0.22 

PC 1-12 0.14 
     

0.26 0.17 
 

0.26 0.25 
 

0.25 

PC 1-13 
      

0.29 0.16 
 

0.26 0.25 
 

0.25 

PC 1-14 
      

0.29 0.16 
 

0.25 0.26 
 

0.26 

PC 1-15 
      

0.28 0.16 
 

0.24 
  

0.24 

PC 1-16 
      

0.28 
  

0.24 
  

0.26 

PC 1-17 
      

0.29 
  

0.24 
  

0.27 

PC 1-18 
      

0.3 
  

0.24 
  

0.27 

 

Table S5. Adjusted 𝑹𝟐of in-sample principal component regression for older adults using the 

EEG features showing a significant distance correlation to the cognitive variables. Related to 

STAR methods 

Abbreviations: A = Cvlt attention span, B = Cvlt delayed memory, C = Pts-2 subtest 3, D = Rwt animal categories, 
E = Rwt s words, F = Tap alertness, G = Tap simon congruent, H = Tap simon incongruent, I = Tap working memory, 
J = Tmt-A, K = Tmt-B, L = Vocabulary test 

 
A B C D E F G H I K L median 

PC 1 0.18 0.14 0.24 0.31 0.24 0.2 0.08 0.13 0.13 0.22 0.13 0.18 

PC 1-2 0.27 0.23 0.34 0.4 0.26 0.2 0.07 0.15 0.15 0.21 0.29 0.23 

PC 1-3 0.26 0.28 0.37 0.44 0.25 0.19 
  

0.22 
 

0.34 0.27 

PC 1-4 0.25 0.27 0.36 0.43 0.23 
   

0.34 
 

0.42 0.34 

PC 1-5 
 

0.29 0.38 0.47 0.23 
   

0.32 
 

0.44 0.35 

PC 1-6 
  

0.37 
 

0.23 
     

0.43 0.37 

PC 1-7 
  

0.36 
       

0.46 0.41 

PC 1-8 
  

0.35 
       

0.45 0.4 

PC 1-9 
  

0.34 
       

0.45 0.39 

PC 1-10 
  

0.33 
       

0.44 0.38 

PC 1-11 
  

0.34 
       

0.43 0.39 

PC 1-12 
  

0.34 
       

0.42 0.38 

PC 1-13 
  

0.33 
        

0.33 
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Supplementary Figures 

Figure S1. Result of the correlation analysis in older adults. Related to Figure 1.   

 

A) EEG features with significant correlations to cognitive variables. On the right side of the panel, we indicate the 
range (min-max) of the magnitudes of the significant correlations of the EEG features with cognitive variables (see 
Quantification and statistical analysis). B) Median (confidence interval: 25th and 75th percentiles) Spearman and 
distance correlations between the EEG features showing a significant correlation with the same cognitive variable. 
On the right side of the panel, we indicate the 25th, 50th, and 75th percentiles of the multivariate distance 

correlations (|√ℛ𝓃
∗ |; ranging from 0 to 1) between the EEG features showing a significant correlation with the 

same cognitive variables (see Method details).   
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Figure S2. Multivariate distance correlations between the 108 EEG features showing significant 

group differences between older and younger adults. Related to Figure 6. 
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Figure S3. Multivariate distance correlations between EEG features obtained using 

average/CSD reference and zero reference for younger adults. Related to Figure 6.  
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Figure S4. Multivariate distance correlations between EEG features obtained using 

average/CSD reference and zero reference for older adults. Related to Figure 6. 

 



Variability is the rule: Neurophysiology and contextual visual processing in schizophrenia. 
Supplementary Information Chapter 6 

 

173 
 

Figure S5. Principal components obtained from the EEG features showing a significant 

Spearman correlation to Cvlt attention span, Cvlt delayed memory, Rwt animal categories, and 

Rwt s words for younger adults. Related to STAR methods.   
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Figure S6. Principal components obtained from the EEG features showing a significant 

Spearman correlation to Tap simon congruent, Tap simon incongruent, Tap working memory, 

and Tmt-A, for younger adults. Related to STAR methods.   
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Figure S7. Principal components obtained from the EEG features showing a significant 

Spearman correlation to Tmt-B, and Vocabulary test for younger adults. Related to STAR 

methods.   
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Figure S8. Principal components obtained from the EEG features showing a significant distance 

correlation to Cvlt attention span, Cvlt delayed memory, Pts-2 subtest 3, and Rwt animal 

categories, for younger adults. Related to STAR methods.   
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Figure S9. Principal components obtained from the EEG features showing a significant distance 

correlation to Rwt s words, Tap alertness, Tap simon congruent, and Tap simon incongruent for 

younger adults. Related to STAR methods.   
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Figure S10. Principal components obtained from the EEG features showing a significant 

distance correlation to Tap working memory, Tmt-A, Tmt-B, and Vocabulary test, for younger 

adults. Related to STAR methods.   
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Figure S11. Principal components obtained from the EEG features showing a significant 

difference between younger and older adults (using the variables from older participants). 

Related to Figure 6.  
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