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Abstract 

Cells are the smallest operational units of living systems. Through synthesis of various 

biomolecules and exchange of signals with the environment, cells tightly regulate their 
composition to realize a specific functional state. The transformation of a cell by internal and 

external stimuli that alter its biomolecular composition is conceptualized as a cell state 
transition and plays a critical role in dynamic biological processes, including differentiation, 

development, and proliferation. Recent advances in technologies that can scrutinize cell states 
at a single-cell resolution, particularly single-cell RNA sequencing (scRNA-seq), offer the 

opportunity to assess how underlying molecular properties influence the conversion between 
states. However, the design of suitable computational methods to aid with interpretation of 

these data is an active and incomplete area of research. Here, I decode the intricate properties 

of cell state transitions through quantitative analyses and modeling, tackling three distinct 
research questions that explore the path, pace, and rules of temporal dynamics in single cells. 

First, I examine cell state transitions at the population level, asking which transitions 
occur in a differentiation protocol where a homogeneous pool of progenitor cells is directed 

towards a mature cell type. I explore this question in the practical setting of an embryonic stem 
cell differentiation protocol to generate retinal pigmented epithelium (RPE) for treating age-

related macular degeneration. Using scRNA-seq, I conclude that our protocol, rather than 
progressing along a linear route from stem cells to RPE, can be better explained by a 

divergence-convergence model of differentiation that largely recapitulates development. 
Second, I investigate the pace at which cell state transitions occur, asking how the rate 

of the cell cycle varies across different tissues and environmental contexts and whether it can 

be inferred by the gene expression of an ensemble of cells. To this end, I reformulate the RNA 
velocity algorithm, which extrapolates future cell states from scRNA-seq data, into a unified 

framework with gene manifold estimation, implementing a Bayesian model for velocity 
inference of periodic processes. I observe variations in cell cycle speed among diverse 

samples and in response to chemical or genetic perturbations. I also propose an inferential 
framework for statistical significance testing and discover that cell cycle velocities can be 

approximated in real time and validated experimentally.  
Third, I consider the maintenance of a steady-state biological system, asking whether 

the rules that govern transition probabilities among cell states can be defined using non-
transcriptional modalities. To explore this, I formulate a Markov model and infer a cell transition 

matrix using maximum likelihood estimation from reconstructed cell lineage information in a 

setting where endpoint states are known but past cell states are latent. I apply the method to 
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characterize lipid-state switches in dermal human fibroblasts, finding a remarkable stability of 

states, termed lipotypes, across cell generations. 
In summary, this work advances our understanding of cell state transitions for retinal 

progenitor differentiation, cell cycle modulations, and fibroblast plasticity, introducing new 
modeling strategies to tackle these dynamics with modern single-cell omics techniques. 

 
Keywords: Cell state transitions, single-cell transcriptomics, human embryonic stem cells, 

retina development, age-related macular degeneration, RNA velocity, cell cycle, manifold, 
variational inference, Markov model 
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Résumé 

Les cellules sont les plus petites unités opérationnelles des systèmes vivants. Grâce 

à la synthèse de diverses biomolécules et à l'échange de signaux avec l'environnement, les 
cellules régulent étroitement leur composition pour réaliser un état fonctionnel spécifique. La 

transformation d'une cellule par des stimuli internes et externes qui modifient sa composition 
biomoléculaire est conceptualisée comme une transition d'état cellulaire et joue un rôle 

essentiel dans les processus biologiques dynamiques, notamment la différenciation, le 
développement et la prolifération. Les progrès récents dans les technologies capables 

d’examiner les états cellulaires à une résolution unicellulaire, en particulier le séquençage de 
l’ARN de cellule unique (scRNA-seq), offrent la possibilité d’évaluer comment les propriétés 

moléculaires influencent la conversion entre les états. Cependant, la conception de méthodes 

bio-informatiques appropriées pour faciliter l’interprétation de ces données constitue un 
domaine de recherche actif et incomplet. Ici, je décode les propriétés complexes des 

transitions d’état cellulaire grâce à des analyses quantitatives et à la modélisation, en 
abordant trois questions de recherche distinctes qui explorent le chemin, la vitesse et les 

règles de la dynamique temporelle dans les cellules individuelles. 
Tout d’abord, j’examine les transitions d’état cellulaire au niveau de la population, en 

demandant quelles transitions se produisent dans un protocole de différenciation où un pool 
homogène de cellules progénitrices est dirigé vers un type de cellule mature. J'explore cette 

question dans le cadre pratique d'un protocole de différenciation de cellules souches 
embryonnaires pour générer de l'épithélium pigmenté rétinien (EPR) pour traiter la 

dégénérescence maculaire liée à l'âge. En utilisant scRNA-seq, je conclus que notre 

protocole, plutôt que de progresser le long d’une voie linéaire, peut être mieux expliqué par 
un modèle de différenciation divergence-convergence qui récapitule en grande partie le 

développement. 
Deuxièmement, j’étudie la vitesse à laquelle les transitions d’état cellulaire se 

produisent, en demandant comment la vitesse du cycle cellulaire varie selon les différents 
tissus et contextes environnementaux et si elle peut être déduite de l’expression génique d’un 

ensemble de cellules. À cette fin, je reformule l'algorithme de RNA velocity, qui extrapole les 
futurs états cellulaires à partir des données scRNA-seq, dans un cadre unifié avec estimation 

de la variété de gènes, mettant en œuvre un modèle Bayésien pour l'inférence de vitesse des 
processus périodiques. J'observe des variations de la vitesse du cycle cellulaire parmi divers 

échantillons et en réponse à des perturbations chimiques ou génétiques. Je propose 

également un cadre d'inférence pour les tests de signification statistique et découvre que les 
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vitesses du cycle cellulaire peuvent être approchées en temps réel et validées 

expérimentalement. 
Troisièmement, je considère le maintien d'un système biologique à l'état d'équilibre, et 

investigue si les règles qui déterminent les probabilités de transition entre les états cellulaires 
peuvent être définies à l'aide de modalités non transcriptionnelles. Pour explorer cela, je 

formule un modèle de Markov et déduis une matrice de transition cellulaire en utilisant 
l'estimation du Maximum Likelihood à partir des informations de lignée cellulaire reconstruites 

dans un contexte où les états terminaux sont connus mais les états cellulaires passés sont 
latents. J'applique la méthode pour caractériser les changements d'état lipidique dans les 

fibroblastes dermiques humains, découvrant une stabilité remarquable des états, appelés 
lipotypes, à travers les générations de cellules. 

En résumé, ce travail fait progresser notre compréhension des transitions d’état 

cellulaire pour la différenciation des progéniteurs rétiniens, les modulations du cycle cellulaire 
et la plasticité des fibroblastes, en introduisant de nouvelles stratégies de modélisation pour 

aborder ces dynamiques avec des techniques modernes d’omique des cellules uniques.  
 

Mots clés: Transitions d'état cellulaire, transcriptomique unicellulaire, cellules souches 
embryonnaires humaines, développement de la rétine, dégénérescence maculaire liée à 

l'âge, RNA velocity, cycle cellulaire, collecteur, inférence variationnelle, modèle de Markov 
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Introduction 
1.1. Cell states and cell state transitions 
1.1.1. Reductionism in biology and the Zellenstaat concept 

The tendency to seek out analogies that can distill profound observations into 

approachable terms has long been a core practice of scientific inquiry. A classic analogy is 
the comparison of a cell to a factory: the organelles in a cell are similar to the operating units 

in a factory, such as the nucleus (control center), ribosomes (production machinery), and 
mitochondria (power plants). This reductionist view aims to break down systems into their 

underlying pieces in order to better describe how they work.  
A reductionist’s mindset has dominated biological research for decades (Van 

Regenmortel, 2004). In the twentieth century, this point was conveyed by Francis Crick, 

recipient of the Nobel Prize for his breakthrough work on the structure of DNA, when he 
claimed in his lecture “Of molecules and men” that “the ultimate aim of the modern movement 

in biology is to explain all biology in terms of physics and chemistry” (Crick, 1966). At the 
beginning of the twenty-first century, shortly after the first drafts of the sequenced human 

genome were completed, researchers again argued that in order to understand biology, one 
needed to “learn how to speak the language of the genome fluently” (Hub Zwart, 2007). This 

analogy suggests that knowing the meaning of the words and sentences (or genes and 
functional regions) of the genome is essential to describing intricate biological phenomena. 

One strategy to interrogate the role of an individual gene is the “loss of function” or 
“knockout” approach, in which a gene is silenced or deleted, and the effects on the molecular 

or physical composition of cells are studied. Gene knockdowns have been systematically 

applied to characterize gene lethality (Giaever & Nislow, 2014; Ross-Macdonald et al., 1999) 
as well as the role of genes in patterning the developing embryo (Mocellin & Provenzano, 

2004; Nasevicius & Ekker, 2000; Nüsslein-Volhard & Wieschaus, 1980; Zimmer et al., 2019). 
Novel methodological techniques, particularly the CRISPR/Cas9 system (Bock et al., 2022; 

Jinek et al., 2012), have accelerated perturbation screening efforts by making it easier to target 
a particular gene or functional region for removal. The impact of a gene knockdown is usually 

evaluated by measuring changes to the molecular status of a cell and the concentrations of 
specific biomolecules. 

Another way to elucidate the links between genes (genotype) and cellular features 

(phenotype) is to monitor gene activity over time and evaluate how the status of a cell changes 
in relation to temporal differences in its molecular contents. This can help to group similar cells 

by their shared characteristics, and to figure out which groups of cells are collectively needed 

1. 
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to carry out all functional requirements of an organism. Modern biological research involves 

describing the mechanisms that define how cells operate, and mapping cells to the larger 
system in which they belong. 

German physician Rudolf Virchow considered yet another analogy, this time between 
cells and human beings, when he coined the concept of a cell state, or “Zellenstaat.” As the 

father of modern pathology and cell theory, Virchow compared cells of a body to citizens of a 
society, with each entity playing an important role to support the “economy of the organism” 

(Maehle, 2011; Mulas et al., 2021). In his published Cellularpathologie theory from the 1850s, 
Virchow wrote: 

 
“The character and the unity of life cannot be found in one particular single point of higher 

organization, such as the human brain, but only in particular, constantly recurring 

arrangements, which every single element owns. From this follows that the composition of a 
larger body, the so-called individual, always results in a kind of social arrangement, [and] 

represents an organism of a social kind, where a mass of single existences is dependent on 
each other, but in such a manner that each element […] has a particular activity for itself, and 

that each, although it may receive the stimulus for its activity from other parts, still is itself the 
origin of its actual work…”  (Virchow, 1858). 

 
At the time, little was understood about the composition of a cell, so Virchow could not 

have known the full aptness of his analogy. In the following years, discoveries found even 
smaller components (i.e., organelles) and molecules inside cells that carry out “a particular 

activity” to coordinate essential biological processes (Burbridge & Adrain, 2022). This again 

transformed the concept of a “Zellenstaat” to refer to a cell’s detailed molecular configuration 
(Ferry, 2019).  

Before knowing that nucleic acids were the chemical language of genes, scientists 
used non-specific stainings of nuclear material or other histological methodologies to 

discriminate between dissimilar cell states (Morris, 2019). Later, with a clearer understanding 
of the genetic code and the flow of genetic information during transcription and translation, the 

concept of a cell state evolved to be defined by the abundance or concentration of specific 
molecular units: DNA, RNA, and proteins. Experimental measurement of these quantities was 

first made possible by classical molecular biology techniques such as Western and Northern 

blotting, and later with next-generation sequencing technologies. Research using these 
methods helped to annotate cell states using a vast number of molecular parameters, 

including gene expression, chromatin accessibility, histone modifications, and protein levels. 
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With a better grasp of the role of individual genes and the entities that regulate them, more 

complex molecular features are now applied to describe cell types that would appear 
indistinguishable from other states based on physical or morphological attributes alone 

(Reynolds, 2007). 
 

1.1.2. Cell state transitions and the progenitor cell state 
Crucially, an underlying motif throughout advancements in the interpretation of cell 

state has been the recognition that cells change over time. Given that complex organisms 

arise from a single cell, yet contain many distinct cell states with varying molecular 
phenotypes, it is irrefutable that cells need to transform and transition between states. Cells 

change to accomplish temporal processes such as differentiation, activation, and proliferation, 

and these conversions are triggered in response to internal (i.e., genetic modifications, gene 
regulation) and external (i.e., environmental stress, cell-to-cell communication, signaling cues) 

factors. The impact of transitions on a cell’s molecular configuration highlights the dynamic 
nature of living systems. 

Initial studies of cell state transitions led to speculation of a precursor or progenitor 
cell capable of transforming into multiple specialized cell types. Sketches from physician Artur 

Pappenheim illustrated the concept of cell state transitions during blood hematopoiesis (Fig. 
1.1), in which a “Mutterzelle,” or mother cell, differentiates into diverse cell types of the blood 

(Maehle, 2011). This progenitor would eventually become known as the pluripotent stem cell. 
Similar discoveries were made in developmental biology: the embryologist Caspar Friedrich 

Wolff observed that the early embryo comprised of three germ layers and argued, contrary to 

the consensus at the time, that an embryo of differentiated cells arose from undifferentiated 
cells (Kiecker et al., 2016). This later inspired scientists such as Hans Spemann to manipulate 

the germ layers by physically moving cells to different regions of the embryo; he found that 
transplanted cells induced other non-transplanted cells to change their state, but only at 

specific developmental stages (Spemann & Mangold, 1923). Walter Vogt sought to continue 
Spemann’s “conquest of an uncharted territory of knowledge” by tracing cell lineages with 

dyes during their differentiation (Gilbert, 2007; Hsu, 2015).  
The accumulation of a body of research showing that stem cells are capable and 

responsible for generating all of the complex cell types of a mature organism fueled many 
important considerations about cell state transitions, some which continue to be debated 

(Mulas et al., 2021). For example, the question of the permeance and reversibility of a cell 

state remains unanswered. Some research posits that during a linear process such as 
differentiation, cells transit through various commitment points, or intermediate states, at 
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which cells become irreversibly committed to a particular fate. However, specific chemical 

factors and external cues can induce the reversion of fully differentiated cells back to an earlier 
progenitor state (Shi et al., 2017; Takahashi & Yamanaka, 2006). Naturally, this spurs another 

question of whether the route taken by cells to transition between two cell states even matters, 
or if different paths can be followed to reach the same end point (Brackston et al., 2018). The 

timing and rate of cell state transitions is also key to inducing the correct cell fate, as shown 
by Spemann and many others (De Robertis, 2006; Garcia-Ojalvo & Bulut-Karslioglu, 2023; 

Grove & Monuki, 2020; Pera & Rossant, 2021). 

 

 
Figure 1.1.  Pappenheim’s early drawing of stem cell differentiation. He proposed a “Mutterzelle” 
(black circle; center) as the source of four different branches of mature cell types, which are produced 
only after transiting through numerous intermediate cell states. This image was taken from: Maehle: 
“Ambiguous Cells: The Emergence of the Stem Cell Concept in the Nineteenth and Twentieth 
Centuries.” Notes Rec R Soc Lond (2011). The original sketch by Pappenheim was published as: 
Pappenheim: “Atlas der menschlichen Blutzellen.” Gustav Fischer in Jena (1905). 
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Furthermore, there is recognition that cell states fall along a continuous spectrum 

defined by multiple axes of variation. For example, many functionally distinct cell types 
undergo phases of rapid proliferation, which requires fine tuning of expression for a specific 

ensemble of genes that is shared across all proliferative cell types, no matter how different in 
spatial location or functional context. Thus, cell states can be multifaceted and are often 

defined by co-occurring but independently operating genetic programs (Miroshnikova et al., 
2023). 

 

1.2. Modeling cell state transitions at the level of biological systems 
1.2.1. Waddington’s phase space and epigenetic landscape 

One of the challenges when studying transitions taken by cells based on changes to 
their molecular composition is representing the effects of those numerous components with a 

straightforward and interpretable model. C.H. Waddington contemplated this problem on the 
scale of embryos in development and proposed a conceptual model that recognized popular 

physics methods introduced by his contemporaries. In this analogy, the complex dynamics of 
embryonic development are simplified to a trajectory within a high-dimensional “phase space,” 

with axes corresponding to the relevant features (Fig. 1.2). Waddington proposed those 
features could be the genes or their “chemical tendencies” (Waddington, 1957). However, the 

full extent to which genes directly encode proteins was, at that time, not quite understood. 
Contrary to those in the field of physics, Waddington does not consider the rate of change as 

axes of his phase space; furthermore, the realization that the concentrations of gene 

products control the progression of an embryo through the feature space is missing from his 
original analogy. 

On this phase space, molecular changes occur within specific components of the 
embryo according to certain rates, which define those component’s trajectory in time. 

Waddington describes his phase space as follows: 
 

“In the study of development, we are interested not only in the final state to which the system 
arrives, but also in the course by which it gets there…we must fall back on a mode of 

expression which may be called geometrical rather than algebraic. A system containing many 
components can be represented by a point in multidimensional space, the co-ordinates of the 

point in each dimension representing the measure of a particular component. A space of this 

kind is known as a phase space. As the composition of the system changes the point will move 
along a certain trajectory” (Waddington, 1957). 



 6 

 
Figure 1.2. Waddington’s phase-space diagram of development. With this sketch, Waddington 
proposed that changes to the individual components (i.e., C1, C2) of the early embryo (or egg) occur 
during development in a high-dimensional space (PQRS). Each coordinate of that space maps to a 
particular component of the embryo, and those components change their coordinates along a certain 
trajectory in response to gene expression changes until reaching an adult. The end points of each 
component (i.e., C’1, C’2) will differ in the final high-dimensional space (P’Q’R’S’). In recent years, 
scientists have repurposed this model to consider cells as the individual components and states as their 
positions in high-dimensional space. This diagram is taken from “The strategy of genes” by C.H. 
Waddington (1957). 
 
 

 

 
Figure 1.3. Waddington’s epigenetic landscape. Left: Waddington’s sketch entitled “Part of an 
Epigenetic Landscape” in which an embryo, or ball, rolls down the developmental landscape defined 
by hills and valleys. Right: Waddington’s sketch entitled “The complex system of interactions underlying 
the epigenetic landscape” in which genes, or strings, exert pull on the landscape, changing its 
topography and influencing the path taken by the ball towards the bottom. This figure was taken from 
“The strategy of genes” by C.H. Waddington (1957). 
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Scientists further extended this analogy by considering cells as the components of the 

embryo, states as the positions in phase space, and cell state transitions as the trajectories in 
phase space over time. Waddington himself sought to simplify his proposal of a high-

dimensional phase space by suggesting a low-dimensional representation called an 
“epigenetic landscape”. In this metaphor, a developing embryo is likened to a ball rolling along 

a path in a landscape defined by numerous hills and valleys. Under the influence of genes, 
the embryo is guided through various intermediates until reaching a particular destination, or 

developed individual (Fig. 1.3). Genes and their expressed corresponding molecules (not fully 
understood by Waddington) pull on the landscape from underneath the surface, affecting the 

path taken by the embryo from a unicellular to multicellular state. 
In recent years, this metaphor has been reworked to liken the ball to a stem cell, rather 

than an entire embryo. In this case, the contour of the hills separates different possible cell 

state transitions and guides a progenitor cell towards a terminal cell type (Fig. 1.4, top).  
Although Waddington imagined embryos traversing this landscape in a one-directional 

manner, as in development, one can think of a wider set of valid, yet less canonical, cell state 
transitions in various biological contexts (Fig 1.4, bottom). This includes cell reprogramming 

(Chapter 2) or the interconversion between semi-stable states (Chapter 4). Likewise, the 
forces affecting the path taken through the landscape do not necessarily need to be dictated 

by genes alone (as in an autonomous system), but can also be viewed as changes in response 
to environmental stimuli or external signaling. This means that biological systems, which are 

heavily influenced by factors outside their internal environment, are often non-autonomous 
systems. 
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Figure 1.4. A modern interpretation of Waddington’s epigenetic landscape. Top: adjusted 
schematic of Waddington’s landscape in which an undifferentiated stem cell (orange) traverses through 
intermediate cell states (blue) before reaching a mature, differentiated cell state (green, pink, or purple). 
Bottom: Waddington’s landscape was conceptualized as one-directional, as in development, but can 
also be extended to account for pluripotent stem cell reprogramming as well as the interconversion 
among differentiated, semi-stable cell states. This figure was adapted from “Cell fate commitment and 
the Waddington landscape model” by Proteintech, available at the following link as of 24.01.2024: 
https://www.ptglab.com/news/blog/cell-fate-commitment-and-the-waddington-landscape-model/. 
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1.2.2. Formulating cell state transitions with ordinary differentiation equations 
To mathematically formulate changes in the concentration of “important materials” that 

define an embryo’s transition along a developmental trajectory in phase space, Waddington 
proposed the use of an autonomous set of ordinary differential equations (ODEs). ODEs 

describe the rate of change for a variable, such as the expression of a particular gene, and 
how that rate is linked to the variable itself, as well as others within the system. In the 

autonomous system case, the potential effect on the key variables by an external perturbation 
or control is assumed to be negligible. An early application of ODEs to study gene regulation 

was for the inducible lac-operon system discovered by François Jacob and Jacques Monod 
in E. coli, for which they received the Nobel Prize in 1965 (Jacob & Monod, 1961). 

In the lac-operon system, a cell changes between two enzyme-catalyzing states 

depending on the nutrients present. When glucose, the preferred energy source, is present in 
the environment, the operon is repressed. However, when only lactose is available and not 

glucose, the operon is induced and an adjacent set of three structural genes is expressed to 
make three enzymes: beta-galactosidase, beta-galactoside permease, and beta-galactoside 

transacetylase. Beta-galactosidase hydrolyzes lactose to galactose and glucose, thereby 
providing energy to the bacteria even in a glucose-deficient environment (Jacob & Monod, 

1961; Lewis, 2011). 
Following the identification of this gene regulatory module, Monod sought to model the 

enzyme synthesis rate of beta-galactosidase using differential equations (Jacob & Monod, 
1961; Monod et al., 1952). In this situation, the enzyme synthesis rate was controlled by an 

external inducer molecule, lactose. These efforts inspired scientists to model numerous other 

types of inducible and repressible systems in bacteria (Santillán & Mackey, 2008). For 
example, J.S. Griffith proposed that two cell states could exist stably, as attractors, under 

certain circumstances based on a gene regulated by a positive feedback loop (Griffith, 1968). 
Extrapolating these ideas to model complex systems involving many genes, one could 

describe the progression of a cell through numerous cell states over time as an autonomous 
dynamical system, expressed as a system of ODEs describing the rate of change of one gene 

in relation to the other genes. The relationships (transitions) between a cell’s potential attractor 
states are represented by the joint behavior of these equations. However, most cell states are 

not described by a fully autonomous systems because they are influenced by fluxes in the 
environment and changes in nearby cells (Ferrell, 2012; Jaeger & Monk, 2014; Rand et al., 

2021). Despite this stochasticity, dynamical systems models using ODEs can be tweaked and 

applied to infer how a cell’s state evolves over time in response to both changes in gene 
expression and other external stimuli. With the right data, these classes of models can provide 
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valuable insights into the paths of differentiation and conditions under which cells transition 

between states (Sáez et al., 2022). 

 
1.3. Harnessing single-cell transcriptomics to profile cell states 

Shifting away from models like Waddington’s, which were mostly conceptual, towards 

models like Monod’s, which were viewed as a means for interpreting data, requires methods  
that can measure molecular composition and abundances in cells. In recent years, next-

generation sequencing technologies, which enabled the high-throughput collection of 
molecular measurements in cells, provided a breakthrough in the complexity and ambition of 

modeling efforts in biology. 

 
1.3.1. Single-cell RNA-sequencing and omics atlases 

High-throughput sequencing technologies have revolutionized how biologists study 
cell state transitions, particularly in dynamic settings such as stem cell differentiation, 

embryonic development, and disease (Metzker, 2010). The earliest approaches to profile gene 
expression at the whole-transcriptome level, such as microarrays (Niemitz, 2007; Schena et 

al., 1995) and RNA-sequencing (Lister et al., 2008; Mortazavi et al., 2008; Nagalakshmi et al., 
2008), enabled global phenotyping of bulk cell populations for the first time. With these 

technological advancements came the rise of modern systems biology, with increased 
computational modeling and analysis of gene expression patterns, transcriptional circuits, and 

regulatory networks in the context of cell state transitions (Alon et al., 1999; Bergmann et al., 
2003; Blanpain & Simons, 2013; Eisen et al., 1998; Klein & Simons, 2011; Shen-Orr et al., 

2002). One example is the Zeisel equations, which, inspired by Monod’s rate equations for 

enzymatic activity, model RNA expression dynamics in response to an acute stimulation, or in 
temporally recurrent situations such as during circadian cycles (Zeisel et al., 2011). 

Unfortunately, microarrays and RNA sequencing obtain average gene expression 
measurements over millions of cells; unless there is a cell sorting step, these bulk techniques 

mask an underlying heterogeneity of the sample (Kulkarni et al., 2019). Therefore, the 
invention of single-cell RNA-sequencing (scRNA-seq) about 15 years ago (F. Tang et al., 

2009) has facilitated a transformative leap in cell state characterization by enabling the study 
of gene expression in individual cells, exposing an intricate heterogeneity within tissues 

(Hashimshony et al., 2012; Islam et al., 2011; Klein et al., 2015; Macosko et al., 2015). 
Commercialized protocols involve isolating and suspending cells in separate microfluidic 

droplets, each containing a unique cellular barcode. The cell’s mRNA is then reverse-

transcribed into cDNA, and a unique molecular identifier (UMI) is incorporated to measure 
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expression in absolute terms. Transcripts are then amplified in a pooled setting, which 

generates a library for sequencing. Finally, computational preprocessing of the sequenced 
reads maps them to individual cells and genes, allowing a detailed evaluation of cell-to-cell 

variation (Haque et al., 2017; Jovic et al., 2022). 
Rapid technological advancements in scRNA-seq have greatly increased the number 

of cells that can be profiled at a time (Fig. 1.5). It is now common to measure the transcriptome 
of hundreds of thousands of cells in just one study (Svensson et al., 2020). Recent 

experimental techniques can simultaneously recover information about other cell attributes at 
single-cell resolution, including chromatin accessibility (Buenrostro et al., 2015; Cao et al., 

2018; Song Chen et al., 2019; S. Ma et al., 2020; Zhu et al., 2019), DNA methylation (Ahn et 
al., 2021; Karemaker & Vermeulen, 2018), histone modifications (Bartosovic et al., 2021; 

Kaya-Okur et al., 2019), and surface protein levels (Labib & Kelley, 2020; Petrosius & Schoof, 

2023; Stoeckius et al., 2017). 
 

 
Figure 1.5. Scatter plot of the number of single-cell transcriptomes obtained by research studies 
over the past 20 years. With improvements in experimental and computational methodologies, the 
number of single cells or nuclei that can be profiled using scRNA-seq has grown at an exponential rate. 
Each dot (n=1,927) represents one study that generated new single-cell transcriptomic data. The y-axis 
uses a logarithmic scale. This figure is adapted from the “Single Cell Studies Database” as of January 
2024 and was originally published in the following article: Svensson, da Veiga Beltrame, Pachter. “A 
curated database reveals trends in single-cell transcriptomics”. Database (2020). 
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Many research efforts have sought to comprehensively define and annotate all of the 

cell types in various tissues and species at single-cell resolution. The large datasets generated 
by these projects are referred to as “single-cell atlases” and are critical resources for the 

scientific community (Lindeboom et al., 2021; Stephen R. Quake, 2022; Rood et al., 2022). 
Considering the analogy that compares cells in a tissue to humans in a society, from which 

Virchow’s “Zellenstaat” originates, these atlases are the equivalent of a census for a particular 
biological system, thoroughly recording the properties of unique entities making up a larger 

organ or organism. 
Single-cell atlases have aided scientists with testing hypotheses about changes in cell 

states during cancer (Siyuan Chen et al., 2023), neurodegenerative disease (Piwecka et al., 
2023; Pozojevic & Spielmann, 2023), and immune system disorders (Ginhoux et al., 2022). 

Here, diseased or aberrant tissue can be surveyed by scRNA-seq and its cell states compared 

to those of a healthy reference. Single-cell transcriptomics is also regularly applied to identify 
intermediate cell states that occur at specific time points in embryonic development and drive 

the tissue diversification (Haniffa et al., 2021; Vinsland & Linnarsson, 2022). Examining these 
transient cell states can foster key insights into the trajectories along which progenitor cells 

progress into mature cell types (Chapter 1.4). Taken together, single-cell omics technologies 
provide an exceptional opportunity to discern cell types across both mature adult tissues and 

in dynamic biological systems. Nonetheless, some technical and computational complexities 
continue to challenge data analysis, particularly in settings with transitioning cells; this is an 

active area of method development by the single-cell genomics community (Lähnemann et 
al., 2020). 

 

1.3.2. Addressing data sparsity at single-cell resolution 
A first obstacle when using scRNA-seq data to monitor cell state transitions is the 

abundance of observed zeros. This inherent sparsity means that for many genes in each cell, 

no UMIs are captured. In part, these zeros in the data are caused by technical noise that is 
acquired during molecule barcoding, library preparation, and sequencing. To address this, 

one can improve the sample quality, change the single-cell platform, or increase the 
sequencing depth. However, the absence of expression for a gene may allude to certain 

biological significance that cannot be overlooked: in the case of evolving cell states, the 
absence of expression could be due to the gradual downregulation of that particular gene.  

Some methods try to take advantage of the binary attributes of scRNA-seq (and other 

omics) data to identify highly variable features, cluster cell types, and perform differential 
expression analysis (Bouland et al., 2021; P. Qiu, 2020). Nonetheless, most standard 
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approaches instead seek to transform count data in a way that reduces its sparsity, such as 

with k-nearest neighbor (KNN) smoothing to average UMIs among nearby cells in Euclidean 
space (Luecken & Theis, 2019). For populations of steady state cell types, KNN imputation 

can be highly effective at reducing noise; in a sample containing closely-related intermediate 
cell states, the procedure can risk blending together information and obscuring meaningful 

expression differences. In fact, a recent study that systematically compared data imputation 
methods found that these approaches did little to improve performance during downstream 

analyses, compared to no imputation at all (Hou et al., 2020). 
 

1.3.3. Dimensionality reduction and gene expression manifolds 
A second obstacle with scRNA-seq data is its multi-dimensionality. The feature space 

of a single-cell dataset is tens of thousands of genes, and there has been a recent exponential 
increase in the observation space size (Fig. 1.5). Importantly, while single-cell experiments 

measure a high-dimensional space, most biological activity unfolds within a significantly 
smaller subspace (Linderman, 2021). One reason for this is evolution, which has altered 

genes so that they operate together as part of coordinated expression and regulatory 
programs (Pope & Medzhitov, 2018). Thus, the number of independent axes representing the 

majority of the variance in single-cell data is much lower than even the subspace.  
Dimensionality reduction techniques capture the most significant components of this 

subspace and describe dynamic biological processes in a low-dimensional space. The most 
popular strategy to achieve this is principal component analysis (Wold et al., 1987). A few 

dozen components are often enough to capture all relevant space on which biology unfolds; 

this means that most phenomena are restricted to a more compact space within the entire 
high-dimensional gene expression space. The concept of such a manifold, which describes a 

space that is locally flat, yet globally can fold and curve in a complex manner, is highly relevant 
to characterization of cellular trajectories, such as differentiation, that are embedded within 

high-dimensional scRNA-seq data (Gunawan et al., 2023; Moon et al., 2018). 
Furthermore, cell transitions occur along a path constrained to the real gene 

expression space (Sáez et al., 2022). This enables certain properties of transitions to be 
modeled, including the rate of change in gene expression. Over time, this rate should describe 

a cell’s progression on a trajectory that is tangent to the gene expression manifold, ensuring 
that all transited cell states lie within the feasible biological space. However, the way to 

formulate a model to describe such velocities as consistent to a low-dimensional subspace is 

non-trivial. Ultimately, considering the true feature space of single-cell data offers a geometric 
perspective to the study of the coordination of cell states. 
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Dimensionality reduction techniques can be best harnessed to model smooth and 

continuous cell state transition processes, but there are some situations in biology with clear 
attractor (stable) cell states. In these scenarios, one might more pragmatically model the 

manifold using discrete models. For example, Markov models describe transitions between 
states as occurring according to defined probabilities that are memoryless, or independent of 

previous transitions. To learn the properties of cell state transitions in high-dimensional single-
cell data of systems at homeostasis, one could design Markov models in which the edges 

between states are latent variables (Chu et al., 2017; P. B. Gupta et al., 2011). 
 

1.3.4. Studying cell state transitions with static snapshots 
A third obstacle to more dynamic modeling of single cell data is that these technologies 

provide only a snapshot of gene expression at the time of sampling. In other words, the same 
cell cannot be easily measured more than once. As a consequence of this limitation, the first 

wave of studies to use single-cell genomics data focused on the identification and 
classification of complex cell types in heterogeneous tissues across species. These early 

single-cell studies lack a deep temporal characterization of the obtained data and focus on 
characterizing discrete cell types, with limited analyses centered on mapping relationships 

between cell types and other more transient states.  
Recent technological developments such as Live-seq (W. Chen et al., 2022) show it is 

possible to sample the transcriptome of the same individual cell at multiple time points, but 
these approaches are difficult to implement, low-throughput, and restricted to in vitro settings. 

Hence, experimental or computational techniques designed to extract information on collective 

cellular dynamics from snapshots provide a more promising avenue for inferring temporal 
dynamics (Ding et al., 2022). Efforts to infer the continuous dynamics of gene expression, 

rather than merely provide descriptive insights, characterize an emerging second phase in the 
single-cell transcriptomics field. 

 

1.4. Emergence of single-cell temporal-omics approaches 
In this section, I introduce the rise of single-cell computational methods that enable 

examination of gene expression dynamics along cell state transitions. Some of the text here 
is adapted from a review article I previously wrote on this topic (Lederer & La Manno, 2020). I 

highlight tools that allow for estimation of the future state of a cell, particularly pseudotime 

trajectory inference and RNA velocity. These methods establish an important framework with 
which to perform the genome-wide study of change in individual cells and have greatly 

influenced the research landscape of single-cell transcriptomics in recent years (Lähnemann 
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et al., 2020; Morris, 2019; Yu & Scolnick, 2022). Taken together, the dynamic modeling of 

single-cell data has given rise to a second wave of studies incorporating temporal-omics 
approaches, focused on inferring changes to biological systems with respect to time (Fig. 1.6). 

 

 
Figure 1.6. Schematic representation of single-cell temporal-omics approaches. Given the 
snapshot obtained from single-cell RNA sequencing, data analyses enable characterization and 
classification of the gene expression landscape in a heterogeneous population of cells. Recent methods 
allow for the extrapolation of future gene expression states (right) or reconstruction of past cellular 
events (left). Together, these approaches permit greater inference of the temporal changes within a 
single cell while relying on measurement at a single time point. In this thesis, I will focus on the 
application of future state extrapolation methods, particularly RNA velocity, to the study of cell state 
transitions. This figure and caption are adapted from the following article: Lederer & La Manno. “The 
emergence and promise of single-cell temporal-omics approaches”. Current Opinion in Biotechnology 
(2020). 
 

1.4.1. Pseudotime trajectory inference 
Sampling a tissue with scRNA-seq generates a snapshot of cells in gene expression 

space along a biological process, revealing regions occupied by nascent, intermediate, and 
mature cell types. The first computational methods to represent cells as spanning expression 
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space and harness this information to infer dynamic cell state transitions were Monocle 

(Trapnell et al., 2014) and Wanderlust (Bendall et al., 2014). These tools assume that each 
cell is at a slightly different moment of the biological process of interest; unlike live cell 

approaches, they require variation among cell types within the measured population and do 
not infer cellular trajectories using change in a single cell. By exploiting the asynchronicity of 

cells within tissue samples from a single time point, cells can be ordered according to an 
internal time that summarizes how the expression profile of the average cell changes. If the 

major component of variability is affiliated with progression of development or disease, these 
algorithms effectively summarize that axis of variation and cluster temporally related cells into 

a single-cell state. This is essentially the concept of pseudotime, a variable estimated from the 
distribution of gene expression data and used as a proxy for cellular progression through a 

biological phenomenon (Deconinck et al., 2021). Since these pioneering early methods, a 

large number of trajectory inference algorithms were subsequently developed (Saelens et al., 
2019) using mathematical concepts such as principal graphs (Albergante et al., 2018; Wolf et 

al., 2019), minimum spanning trees (Trapnell et al., 2014), nearest neighborhood graphs 
(Baran et al., 2019; Grün, 2020), or diffusion maps (Haghverdi et al., 2016) to summarize 

variation and aggregate temporally-related cells. 
Pseudotime trajectory inference methods have grown in sophistication and accuracy, 

but there are three common limitations. First, these tools assume that the major component 
of variability between expression profiles is time, yet variation in gene expression can be 

caused by multiple factors, including spatial patterning, histological organization and 
morphogenetic gradients (Cheng et al., 2019; Joost et al., 2016). In scenarios where these 

other mechanisms mix with temporal changes, some traditional trajectory approaches may 

overfit. Moreover, technical artifacts due to noise between technologies and batches can also 
create components of variability that are wholly non-biological in nature (Luecken et al., 2022; 

Ranek et al., 2022; Tran et al., 2020).  
Second, for trajectory inference methods to work well, experiments should obtain a 

balanced sample from the distribution of cell states traversed over time. However, a bias 
towards more stable or slowly-changing states may cause transient states to be distorted or 

missed (Tritschler et al., 2019). This limitation can be counteracted with improved 
experimental designs, but this is challenging when studying a poorly defined or highly complex 

process such as the pathology of disease or embryonic development. It is also non-trivial to 

determine how often to sample a developmental process, particularly if tissue is difficult to 
acquire. How balanced a dataset is may also partially depend on the speed of the process 

being modeled.  
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Third, while in scenarios where the fitted pseudotime does not depart from the latent 

time of the process, its relation with gene expression can offer valuable biological insight, 
these models can only be interpreted as describing statistical expectation rather than the real 

path taken by cells. Individual cells may have moved back and forth, around the mean, in gene 
expression space, and pseudotime analysis would not be able to reveal it (Huang, 2012; 

Weinreb et al., 2018). Trajectory inference is therefore limited because the time component of 
longer-range trajectories is only inferred from population averages. More recent methods such 

as RNA velocity, metabolic labeling, and molecular recording begin to address these 
limitations by estimating dynamics from information obtained from the single-cell 

measurement (Battich et al., 2020; Erhard et al., 2019; Gorin et al., 2023; La Manno et al., 
2018; Lear & Shipman, 2023). 

 

1.4.2. RNA velocity in single cells 
Modeling the rate of a biological process using the causal relationship between two 

cellular entities was first proposed in 1952 by biochemist Jacques Monod in the context of 
enzyme-catalyzing reactions (Chapter 1.2). These models were revisited in the microarray 

era with the Zeisel equations for the purpose of studying RNA expression dynamics in 
response to an acute stimulation, or in temporally recurrent situations such as during circadian 

cycles (Zeisel et al., 2011). Since the amount of cellular unspliced mRNA determines the future 
quantity of spliced mRNA, these equations can describe the rate of change in mRNA 

accumulation. 
This concept was applied to scRNA-seq data with RNA velocity, which distinguishes 

between immature (unspliced) and mature (spliced) molecules using intronic reads that are 

removed prior to translation (La Manno et al., 2018). RNA velocity is formulated from a first-
order system of differential equations describing gene-specific splicing and degradation rates 

and is represented as a vector field in low dimensional space. The original velocity approach, 
implemented in velocyto, assumes that after transcriptional upregulation, gene expression 

reaches a steady-state level prior to downregulation. RNA velocities are calculated by finding 
a linear fit for the steady-state spliced-unspliced ratio and measuring the residuals between 

that obtained fit and measured expression levels. Steady-state RNA velocity assumes a 
shared splicing rate across all genes and requires that a steady-state cell population is 

sampled in the experiment (Fig. 1.7). 

Unfortunately, these assumptions can be violated: there might not be a steady-state 
mature cell population present in a dataset, and the splicing rate can vary widely between 

different genes. To address these limitations, an improved scvelo framework (Bergen et al., 
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2020) reformulates RNA velocity using a likelihood-based dynamical model, allowing 

generalization of RNA velocity to biological systems that do not contain cells at steady state. 
The dynamical model estimates the velocity parameters (transcription, splicing, and 

degradation rates) and a cellular latent time iteratively using expectation-maximization. 
 

 
Figure 1.7. Overview of the steady-state model of RNA velocity estimation. (A) The metabolic life 
cycle of an RNA molecule can be described in three stages: (1) the transcription of an unspliced pre-
mRNA molecule from DNA, (2) the removal of introns from unspliced RNA to generate a mature spliced 
RNA molecule, and (3) the eventual degradation of the spliced molecule. This process can be modeled 
using a set of differentiation equations and gene-specific kinetic variables for transcription (α), splicing 
(β), and degradation (γ). (B) The observed temporal delay between unspliced and spliced expression 
can be visualized on a gene-wise phase portrait. In the steady-state model, it is assumed that the 
unspliced-spliced ratio is roughly equal to the gene-wise degradation rate. RNA velocity is computed 
by calculating a linear fit of the steady-state ratio and measuring the residuals between the fit and a 
particular cell. Importantly, this step assumes a steady-state population is detected in the sample, which 
is not always the case. (C) In a last step, RNA velocity is projected onto a lower dimensional embedding 
as a vector field, allowing extrapolation of the progression towards future cell states along a biological 
path. This figure is taken from the following article: Bergen, Soldatov, Kharchenko, and Theis. “RNA 
velocity – current challenges and future perspectives”. Molecular Systems Biology (2021). 
 

Ongoing efforts have sought to extend or repurpose the RNA velocity equations to 

incorporate multiple omics modalities, including chromatin accessibility (Burdziak et al., 2023; 
C. Li et al., 2022; S. Ma et al., 2020; Tedesco et al., 2022), protein levels (Gorin et al., 2020), 

histone modifications (Bartosovic & Castelo-Branco, 2023), metabolically-labeled nascent 
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RNA (Erhard et al., 2019; Hendriks et al., 2019), and transcription factor regulation (J. Li et 

al., 2023). Other methods incorporate RNA velocity vectors into pseudotime inference (Lange 
et al., 2022) or infer velocities with a unified latent time (M. Gao et al., 2022), neural networks 

(Z. Chen et al., 2022; Cui et al., 2024; S. Li et al., 2023), differential geometry (X. Qiu et al., 
2022), or representation learning (Qiao & Huang, 2021). Most recently, several works have 

proposed models for RNA velocity that are implemented using variational inference or a 
Bayesian framework (Aivazidis et al., 2023; Gayoso et al., 2023; Gu et al., 2022; Maizels et 

al., 2023; Qin et al., 2022). The large quantity of RNA velocity methods proposed by the single-
cell community in recent years emphasizes the demand for tools to temporally evaluate single-

cell data. Moreover, it has established RNA velocity as a crucial component of the scRNA-seq 
analysis toolkit, alongside pseudotime trajectory inference. 

 

1.4.3. Recording clonal information and past transcriptional states 
Lineage tracing describes the relatedness of individual cells formed in a tissue 

according to deterministic representations of cell type lineages (Kester & van Oudenaarden, 

2018). Single-cell methods reconstruct the mitotic kinship of cells using inducible recording 
systems in which barcodes are incorporated into the genome and read out during sampling 

by sequencing or imaging-based approaches (Kebschull & Zador, 2018). Cells with similar 
barcodes are considered to have clonal ancestry. Recent technologies incorporate both the 

labeling of cells and scRNA-seq as encoded in mRNA expression profiles (Chan et al., 2019; 
Guo et al., 2019; McKenna et al., 2016; Raj et al., 2018; Spanjaard et al., 2018). 

The two most common experimental approaches for lineage tracing are viral barcoding 

(Kong et al., 2020; Weinreb et al., 2020) and the CRISPR/Cas9 system (Alemany et al., 2018; 
Chow et al., 2021; Z. He et al., 2022; McKenna et al., 2016; F. Schmidt et al., 2018). For 

example, MEMOIR (Frieda et al., 2017) can directly record cellular events in response to the 
activation of signaling pathways, using sequential single-molecule FISH to read out the status 

directly. Alternatively, CAMERA (W. Tang & Liu, 2018) uses CRISPR/Cas9 to record the 
duration of signaling events in mammalian cell culture systems. Yet another method is 

CellTagging (Kong et al., 2020), which uses lentiviral libraries and combinatorial cell indexing 
to label cells without any genetic manipulations, reading out barcodes as polyadenylated 

mRNA in parallel to gene expression information during scRNA-seq.  
Future improvements for lineage tracing methods include increasing barcode capture 

rates, decreasing mutation levels, and designing more comprehensive analysis tools to 

reconstruct lineages (Yao et al., 2022). One limitation to these approaches is that they only 
recover indirect knowledge of cell relationships, rather than direct lineages, which could be 
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obtained by live-cell microscopy (Z. He et al., 2022). Another drawback is that lineage tracing 

itself does not record specific information about the specific features of past cellular states 
driving cell state changes. To address this, transcriptome-memory tools that store information 

about past gene expression profiles themselves could offer more insight into past cell states 
beyond lineage information. Such a concept of molecular memory has been applied in bacteria 

with Record-seq, which captures expressed RNA sequences and converts them into DNA for 
storage (F. Schmidt et al., 2018, 2022). The development of similar tools for transcriptome-

recording in eukaryotic cells would greatly enhance the study of past cell states, but admittedly 
comes with many technical challenges (Wagner & Klein, 2020). 

 

1.5. Scope of the thesis 
In this thesis, my goal is to disentangle the fundamental temporal aspects of cell state 

transitions through quantitative analysis and models. This objective is structured around three 

central research questions, each of which examines cell state transitions through a unique 
lens. My findings are available in some public format outside of this thesis, either as part of a 

published article or a preprint, and they have been adapted here accordingly. These details 
as well as individual author contributions are indicated in the preface for each chapter. 

Collectively, these works demonstrate a notable contribution towards the phenomenological 
characterization and computational modeling of the path, pace, and rules of cell state 

transitions (Fig. 1.8). 

 
Figure 1.8. The three dimensions of cell state transitions. My thesis covers three research questions 
that each tackle a different aspect of cell state transitions. Chapter 2 (Path): how do cell transitions 
unfold during differentiation? Chapter 3 (Pace): does the rate at which cells transit through states 
change? Chapter 4 (Rules): what are the rules that govern transition probabilities? 
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1.5.1. Mapping the path taken by embryonic stem cells towards retinal tissues 

in targeted differentiation protocols 

In Chapter 2, I start by exploring cell state transitions from a global perspective, asking 

which transitions are made on the route taken by human embryonic stem cells (hESC) when 
they differentiate in culture towards a target cell type. I examine this question in differentiation 

protocols that are designed to generate cells for replacement therapy against age-related 
macular degeneration (AMD). AMD is a major cause of vision loss and affects millions of 

individuals worldwide (Gehrs et al., 2006). Specifically, the “dry form” of AMD is characterized 
by atrophy of the retinal pigmented epithelium (RPE) cell monolayer (Hadziahmetovic & 

Malek, 2021). In healthy tissue, the RPE forms a boundary between densely packed 
photoreceptors, which perform phototransduction, and the choroid, which supplies blood to 

the retina (Fig. 1.9A). RPE plays an essential role in photoreceptor renewal via phagocytosis, 

nutrient and waste transport, and protection against oxidative stress (Yang et al., 2021). With 
an increased accumulation of extracellular debris, membrane thinning, and immune activity, 

photoreceptor renewal is compromised and the RPE layer breaks down (Fig. 1.9B-C) (Wong 
et al., 2022). While vision loss is usually gradual, it can vary in speed and severity among 

individuals, and few strategies for treatment are available (Gehrs et al., 2006; Hadziahmetovic 
& Malek, 2021). 

Nonetheless, the directed differentiation of hESCs into neuroepithelial-derived cell 
types is a promising method to generate healthy tissue and arrest AMD progression 

(Choudhary et al., 2017; da Cruz et al., 2018; Hazim et al., 2017; Higuchi et al., 2017; Michelet 
et al., 2020; Alvaro Plaza Reyes et al., 2016; R. Sharma et al., 2019). Most in vitro protocols 

attempt to recapitulate the sequence of cues that trigger differentiation and bias cell fate 

towards RPE. Notable efforts have been made towards maximizing purity and compatibility of 
the produced cell pool and shortening protocol duration (A. Plaza Reyes et al., 2020). 

However, attention to integrity of the final product has overshadowed characterization of the 
intermediate stages appearing before a final mature cell state is reached. This knowledge gap 

has persisted due to the lack of a technology that can systematically distinguish mixed 
phenotypes and off-target effects from cell heterogeneity and with which to perform a 

quantitative cell-state comparison to relevant physiological references. 
Single-cell RNA sequencing (scRNA-seq) can fill that gap, enabling molecular 

phenotyping of heterogeneous cell populations across all intermediate states; recent studies 

have revealed that in vitro differentiation can either traverse alternative paths through gene 
expression space or a similar program of intermediates as in development (Kulkarni et al., 

2019; Kumar et al., 2017). Evaluation of differentiation protocols with scRNA-seq has helped 
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characterize the developmental trajectories of hESC-derived tissues (Cuomo et al., 2020; 

McCracken et al., 2020) and comprehensive cell atlases have decomposed retinal complexity 
at fetal and adult stages. However, a comparative understanding of the similarities between 

transient retinal cell states arising during development and hESC-derived intermediates is still 
needed (Collin et al., 2019; Cowan et al., 2020; Hu et al., 2019; Lukowski et al., 2019; Mao et 

al., 2019; Menon et al., 2019; Rheaume et al., 2018; Shekhar et al., 2016; Sridhar et al., 2020; 
Voigt et al., 2019). Describing the transient stages of differentiation protocols is crucial to 

understanding whether cells reach a mature cell type by mimicking the developmental 
processes that generate the same cell type diversity and whether any off-target cell lineages 

or other contaminant populations arise. Moreover, examining the plasticity of these end-state 
populations is essential to better design protocols to obtain the desired cell types, and to 

evaluate the safety and efficiency of a stem cell product for clinical use. 

Here, I apply single-cell transcriptomics to characterize the path hESC take during a 
specific 60-day RPE differentiation protocol (A. Plaza Reyes et al., 2020). To obtain a wide-

ranging assessment of cell state transitions, I analyze scRNA-seq data from six time points 
during a 2D monolayer differentiation performed in three different cell lines, as well as from 

similar time points in a 3D embryoid body protocol. Furthermore, I map the in vitro 
transcriptional states to newly acquired in vivo references of human fetal and adult retinas. I 

also probe the plasticity of a subpopulation of neuroepithelial progenitors using a neuronal 
differentiation scheme and following in vivo transplantation in the rabbit retina. With this study, 

I offer insight into the developmental trajectory and cell state phenomenology of 2D and 3D 
differentiations. I also demonstrate how modern single-cell atlases can be applied to evaluate 

critical stages of differentiation protocols with high accuracy and to interpret the complexity of 

the emerging cell states. 
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Figure 1.9. Schematic depicting the progression of age-related macular degeneration in the 
retina. (A) An overview of the anatomical structure of the healthy retina, prior to onset of AMD. Retinal 
pigmented epithelium (RPE) is indicated in brown; rod and cone photoreceptors are indicated in green 
and purple, respectively. The choroid is divided into two parts: the vascular supply, or choriocapillaris 
(CC), and Bruch’s membrane (BM). (B) The early stages of AMD are characterized by thickening of the 
BM, accumulation of extracellular waste, and activation of immune cells in the retina. (C) The late stages 
of AMD, also known as geographic atrophy, are characterized by the dramatic loss of photoreceptors 
and RPE. This figure is adapted from: Wong, Ma, Jobling, Brandli, Greferath, Fletcher, and Vessey. 
“Exploring the pathogenesis of age-related macular degeneration: A review of the interplay between 
retinal pigment epithelium dysfunction and the innate immune system”. Frontiers in Neuroscience 
(2022). 
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1.5.2. Measuring the pace at which cells transition during the cell cycle across 

tissues using probabilistic models 
 Besides the path taken by cells during differentiation, the timing itself of cell transitions 

is highly coordinated to ensure proper development (Mulas et al., 2021). Therefore, in Chapter 
3, I consider the speed at which cells move between states along their trajectories, asking 

whether this can be modeled using oscillations in unspliced and spliced gene expression. 
As previously noted, RNA velocity has emerged as a popular technique to reconstruct 

temporal information from static single-cell snapshots and estimate the rate of change in gene 
expression (Chapter 1.4). However, there are known limitations to the algorithm, including 

that it uses nearest-neighbor smoothing to approximate expectations on the counts and that 
it relies on non-linear dimensionality reduction to bring the high dimensional velocity vector 

onto a two-dimensional embedding (Bergen et al., 2021; Gorin et al., 2022). Another major 

limitation is that most RNA velocity models do not perform velocity estimation jointly on all 
genes. In other words, individual gene-wise velocities are aggregated into a global latent time, 

producing a geometrically inconsistent velocity vector, with gene-specific components on 
different timescales. Finally, it is difficult to establish a ground truth for cell transition rates 

against which to benchmark RNA velocity algorithms, prohibiting many sensitivity analyses 
that are typically applied to new computational tools. 

To address these problems, I reformulate RNA velocity and gene expression manifold 
estimation in a unified framework designed to track one-dimensional periodic manifolds. This 

facilitates model validation and application to the cell cycle. The cell cycle is the most 
prominent periodic process in biology and its pace is crucial for tissue homeostasis and 

diseases such as cancer (Matthews et al., 2022). In healthy tissue, the cell cycle occurs in 

four sequential phases (G1, S, G2, and M) and is responsible for duplication of the genetic 
material and cell division (Fig. 1.10). In scRNA-seq data obtained from embryonic samples, 

the cell cycle is usually a major axis of variation (Chervov & Zinovyev, 2022; Satija et al., 
2015). For example, radial glia cells of the brain and neuronal progenitors in the retina both 

proliferate at different speeds along temporal and spatial axes (Davis & Dyer, 2010; Ohnuma 
& Harris, 2003).  
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Figure 1.10. Schematic of the cell cycle. The cell cycle is divided into interphase, when cellular 
content is duplicated, and mitosis, when cellular content is segregated into two. Interphase can be 
further divided into S phase, when the DNA is duplicated, and two gap-phases (G1 and G2, labeled as 
decision window). The G1 gap phase prior to S phase as well as the G2 gap phase after S phase are 
crucial cell checkpoints and tightly regulated by numerous well-known genes. After cell division in 
mitosis (M), two daughter cells are generated, and it is possible for one of both of them to exit the cell 
cycle and enter a quiescent phase (G0). This figure is taken from: Matthews, Bertoli, and de Bruin. “Cell 
cycle control in cancer.” Nature Reviews Molecular Cell Biology (2022). 

 
My formulation of RNA velocity is implemented as a Bayesian framework named 

VeloCycle, which operates on raw counts and is solved using variational inference in Pyro. 
This strategy allows for sensitivity analyses and demonstrates one- and multiple-sample 

statistical testing. I benchmark RNA velocity inference on multiple in vitro and in vivo datasets 
and demonstrate its utility as a useful resource for a more reflective RNA velocity analysis. 

 
1.5.3. Monitoring the rules that govern cell lipid-state transitions in stable cell 

populations of dermal fibroblasts 
In most biological systems, both the path and pace of cell state transitions are pre-

defined. However, there are some circumstances in which transitions recur in order to maintain 
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a certain proportion of cell states; modeling these systems is difficult from static snapshot data, 

as there is no obvious “source” or “sink” cell state. Variation in these systems may be defined 
not by transcriptomic features, but rather by other omics modalities that are significantly more 

difficult to measure at a single-cell resolution. Unfortunately, existing computational methods 
are poorly suited to address these types of recurring cell dynamics, which do not occur in 

embryonic development but rather in biological systems at homeostasis. 
In Chapter 4, I consider cell state transitions necessary for maintaining a steady-state 

biological system, asking whether it is possible to determine the rules defining cell transitions 
using non-transcriptional modalities. To examine this, I consider the system of dermal human 

fibroblasts (dHF), which are known to fluctuate between a multitude of cell states to perform 
diverse cellular functions to facilitate wound healing, activate pro-inflammatory signatures, and 

proliferate (Adler et al., 2020; Driskell & Watt, 2015; Philippeos et al., 2018; Rognoni et al., 

2018). However, the rules governing this established heterogeneity of cellular states needed 
in dHFs are not fully understood. 

Lipid measurements at single-cell resolution can only be obtained by imaging, rather 
than sequencing. Consequently, I propose a new computational approach that models cell 

state transitions as memoryless Markov chains and estimates a transition probability matrix 
among lipid-defined states from coupled time-lapse microscopy and endpoint toxin-staining 

read outs. I find that dHFs cultured at steady state transit among dynamic sphingolipid 
confirmations called lipotypes that are propagated across cell generations and correspond to 

phenotypic states called lipotypes. 
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Artwork 2.1. Cell state transitions during retinal pigmented epithelium differentiation. Human 
embryonic stem cells travel through transcriptomically distinct cell states on the route towards mature 
retinal pigmented epithelium. We hope to use these cells for transplantation therapies to halt age-
related macular degeneration. This illustration was designed by Ella Maru Studio and featured as the 
cover Stem Cell Reports for the June 2022 issue.  
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2.0. Preface 
 In this chapter, I describe research carried out as a collaboration between the groups 

of Dr. Fredrik Lanner at the Karolinska Institutet and Dr. Gioele La Manno at the EPFL. The 
findings described here are mostly adapted from the postprint version of a research article 

entitled “Molecular profiling of stem cell-derived retinal pigment epithelial cell differentiation 
established for clinical translation.” This work was published in Stem Cell Reports in June 

2022. I am a co-first author of this publication along with Dr. Sandra Petrus-Reurer (a former 
member of Dr. Lanner’s group), and we collaborated closely throughout the project. Some 

additional work presented in Chapter 2.8 describes unpublished results from a follow-up study 
led by Laura Baqué Vidal (a current member of Dr. Lanner’s group). 

 This work is the product of combined scientific expertise from two labs: Dr. Lanner’s 

group has an experimental background in stem cell biology, embryology, and retinal 
development, whereas our group has a computational background in single-cell sequencing 

technologies, data analysis, and neurodevelopment. For this project, we also collaborated with 
Novo Nordisk, which is working to translate the described in vitro differentiation protocols into 

an actionable therapy to treat age-related macular degeneration. 
Here, I performed all computational analyses, interpreted the results, designed the 

figures, and wrote and revised the manuscript. The experimental work was largely performed 
at the Karolinska Institutet or Novo Nordisk, mostly by Sandra and Laura. However, I helped 

coordinate experimental work based on results of my analyses, especially during revisions for 
some histological stainings performed at EPFL. Our collaboration started in the first days of 

my PhD, in the summer of 2019, and involved hundreds of hours of (remote) coordination 

among Fredrik, Gioele, Sandra, and myself, to conceptualize the project and transform it into 
what you read here. All other author contributions are described in Chapter 2.6.2. 

 

2.1. Synopsis 
Human embryonic stem cell-derived retinal pigment epithelial cells (hESC-RPE) are a 

promising cell source to treat age-related macular degeneration (AMD). Despite several 
ongoing clinical studies, a detailed mapping of transient cellular states during in vitro 

differentiation has not been performed. Here, we conduct single-cell transcriptomic profiling of 
an hESC-RPE differentiation protocol that has been developed for clinical use. Differentiation 

progressed through a culture diversification recapitulating early embryonic development, 

whereby cells rapidly acquired a rostral embryo patterning signature before converging toward 
the RPE lineage. At intermediate steps, we identified and examined the potency of an 

NCAM1+ retinal progenitor population and showed the ability of the protocol to suppress non-
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RPE fates. We demonstrated that the method produces a pure RPE pool capable of maturing 

further after subretinal transplantation in a large-eyed animal model. Our evaluation of hESC-
RPE differentiation supports the development of safe and efficient pluripotent stem cell-based 

therapies for AMD. 

 

2.2. Introduction 
The eye, by virtue of its accessibility and relatively isolated anatomical location, has 

emerged as a promising organ for gene and cell-based therapies to treat neurodegenerative 
diseases. A pathology that is particularly promising to tackle with these approaches is age-

related macular degeneration (AMD), a major cause of severe vision loss affecting more than 

180 million people globally (Gehrs et al., 2006). The dry form of the disease, for which no 

treatment is available, affects 80-90% of advanced patients and is characterized by well-
demarcated areas of retinal pigment epithelium (RPE) loss and outer retinal degeneration 

(Ambati et al., 2003; Sunness, 1999). Human pluripotent stem cell (hPSC) derived RPE cells 
are thus of high interest for the development of cell replacement treatment options to halt 

disease progression, as currently being tested in several clinical trials (da Cruz et al., 2018; 
Kashani et al., 2018; Mandai et al., 2017; Nagiel et al., 2015; Song et al., 2015). 

Notable efforts have been made towards developing strategies to ensure high purity 
RPE products using cell surface markers (Choudhary & Whiting, 2016; A. Plaza Reyes et al., 

2020). However, the focus on final product composition has often overshadowed the 
characterization of intermediate stages appearing before a final steady state is reached. This 

gap has also been determined by the difficulty of deploying techniques that could 

systematically distinguish mixed phenotypes and off-target effects from cell heterogeneity and 
that would allow for a quantitative comparison to physiological references. With this 

perspective, the availability of single-cell RNA sequencing (scRNA-seq) represents a 
compelling opportunity. 

scRNA-seq can systematically phenotype cell populations produced by differentiation 
protocols, and its genome-wide readout is crucial to explore the unfolding of in vitro 

differentiation (Kulkarni et al., 2019; Kumar et al., 2017; Lederer & La Manno, 2020). For 
example, scRNA-seq can determine whether cells follow developmental or non-canonical 

paths to maturation (Cuomo et al., 2020; McCracken et al., 2020; Veres et al., 2019). In fact, 
performing an unbiased analysis of cell pools at intermediate stages might expose interesting 

relations between in vitro and in vivo processes and help to correctly identify potential risk 

sources for clinical translation (Begbie, 2013a; Grove & Monuki, 2020; La Manno et al., 2016). 
Comprehensive single-cell atlases of embryonic and postnatal neurodevelopment are 
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fundamental to assist in the evaluation of gene expression profiles measured in vitro (La 

Manno et al., 2021; Zeisel et al., 2018). Recent work has sought to decompose cellular 
heterogeneity of the embryonic and postnatal eye with scRNA-seq, but the similarity between 

the transient cell states arising in development and hPSC-derived intermediates on the route 
to RPE lineage has not yet been evaluated (Collin et al., 2019; Cowan et al., 2020; Hu et al., 

2019; Lidgerwood et al., 2021; Lo Giudice et al., 2019; Lukowski et al., 2019; Mao et al., 2019; 
Menon et al., 2019; Shekhar et al., 2016; Sridhar et al., 2020; Voigt et al., 2019). Importantly, 

both a reference-driven and an unbiased evaluation of the hPSC-RPE cell pool composition 
at different time points of the protocol in multiple cell lines are critical checkpoints for ensuring 

a safe and efficient RPE-based replacement therapy. 
In this study, we performed scRNA-seq analyses during human embryonic stem cell 

RPE (hESC-RPE) differentiation using a directed and defined protocol established for clinical 

translation (A. Plaza Reyes et al., 2020). We demonstrate that the derived cells follow 
embryonic retinal specification, reaching a mature, pigmented RPE phenotype and even 

undergoing further maturation towards an adult-like state upon subretinal transplantation into 
the albino rabbit eye. These findings provide valuable insight into the developmental program 

of hESC-RPE differentiation and illustrate the required high quality of the derived cells to be 
used as a future certified clinical product. 

 

2.3. Results 
2.3.1 Human embryonic stem cells traverse gene expression space and 

sequentially mature into retinal pigment epithelium 
To examine the differentiation process by which hESC-RPE is generated, we 

performed time course scRNA-seq (A. Plaza Reyes et al., 2020; Alvaro Plaza Reyes et al., 
2016). hESCs were differentiated on human recombinant laminin-521 (hrLN-521) or -511 

(iMatrix-511) using NutriStem hPSC XF medium to promote neuroepithelium induction. Activin 
A was provided on day 6 as a substitute for mesenchymal signaling to induce RPE fate (Cvekl 

& Wang, 2009; S. Fuhrmann et al., 2000; Fujimura, 2016). Cells were dissociated and replated 
on day 30 without Activin A, and maturation was completed by day 60 (Fig. 2.1A). We profiled 

differentiation of one research grade cell line (HS980) and two cell lines established for clinical 
use (KARO1 and E1C3) at six time points during the differentiation protocol (D7, D14, D30, 

D38, D45, and D60; Table 2.1). Morphological evaluation of brightfield images using 

quantitative cobblestone junction scores confirmed that changes in cell shape and size 
corresponded with the intended differentiation, as cells progressively assumed a tighter 

cobblestone monolayer of pigmented cells until D60 (Joshi et al., 2016) (Fig. 2.1B, S2.1A-B). 
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We next performed a global assessment of 26,615 single-cell transcriptomes to verify 

overall population progression throughout RPE differentiation. Visualizing how cells traversed 
a reduced gene expression space using the principal components showed that, with time, 

cells gradually progressed from the pluripotent state towards a mature RPE identity (Fig. 2.1C, 
S2.1C-D). Using 31 marker genes for pluripotent, retinal progenitor, and RPE identities, gene 

signature scores detected a loss of the pluripotency signature (23.7-fold decrease in signature 
score from hESC to D30), an increased progenitor status at intermediate days (2.7-fold 

increase from hESC to D30), and a rise of mature RPE upon protocol conclusion (1.8-fold 
increase from D38 to D60) (Fig. 2.1D-E). Temporal assessment of gene expression confirmed 

a coherent sequence of expression waves, with pluripotency genes (POU5F1, LIN28A, SOX2) 
leading and being downregulated in favor of progenitor genes (RAX, PAX6, VSX2), eventually 

trailed by early (MITF, TYRP1, PMEL, TMEFF2), intermediate (TYR, RLBP1) and late 

(RPE65, BEST1, RGR) RPE maturation genes (Brandl et al., 2014; Schmitt et al., 2009; 
Sparrow et al., 2010) (Fig. 2.1E). Cells from all three lines were uniformly distributed along 

the differentiation time course, demonstrating robustness and reproducibility of the protocol 
(Fig. 2.1F). These findings indicated that monolayer differentiation drives the cell pool towards 

RPE maturation through a path broadly consistent with the developmental process intended 
to be recapitulated in vitro. 
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Figure 2.1. Global scRNA-seq characterization of hESC-RPE differentiation trajectory. (A) 
Experimental setup where scRNA-seq was performed at the seven bolded time points in three cell lines: 
HS980, KARO1, and E1C3. (B) Brightfield images during HS980 differentiation. Scale bars: 100µm; 
inset 20µm (C) Principal component (PC) representation of 26,615 single cells across three lines using 
2,000 cv-mean enriched genes. (D) Signature scores for pluripotency, retinal progenitors and RPE cells. 
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(E) Average normalized gene expression of pluripotent, retinal progenitor, and RPE markers in scRNA-
seq data. Error bars represent standard deviation of the mean across three lines, except for the hESC 
time point. (F) PC plot colored by cell line in red. (G) Cumulative explained variance curve for each time 
point and all lines, applied to estimate how much variance accumulates over sets of correlated genes 
(biological-driven variability), as opposed to uniformly across genes (white noise). (H) Percentage of 
cells positive for retinal marker genes at each time point. (I) scRNA-seq based cell cycle phase 
assignment. Cycling: S and G2/M; Non-Cycling: G1/G0. Intervals in H and I represent the 95% 
confidence intervals. See also Figure S2.1. 
 
2.3.2. Heterogeneity analysis reveals changes in cell diversity during 

differentiation 
Interestingly, we observed deviations from a uniform progression towards RPE. Cells 

at D30 appeared more morphologically differentiated towards RPE than those at D38, likely a 

response to dissociating and replating (Fig. 2.1C, S2.1A). A subset of intermediate cells also 
did not exhibit a strong signature for any of the three identities considered (Fig. 2.1D). This 

suggested a more complex and nonlinear differentiation process than anticipated as well as 
the presence of additional cell types not captured by our global analyses. 

Intrigued, we sought to harness the full phenotyping potential of scRNA-seq and 
achieve an in-depth description of heterogeneity at all stages. We first calculated how much 

variance accumulated in correlated gene modules as opposed to uncorrelated genes and 
interpreted this quantity as a measure of biological heterogeneity (Methods 2.5; Fig. S2.1F). 

Analysis of these values computed on all studied cell lines revealed that hESCs and D60 cells 
harbored a lower heterogeneity compared to intermediate time points, particularly D7 and D14 

(Fig. 2.1G). While a large decrease in heterogeneity was detected from D14 to D30, 

suggesting an initial convergence towards RPE fate, we observed a slight increase from D30 
to D38, hinting at an effect of cell dissociation, replating, or Activin A removal on cell 

composition. Similarly, a decrease in cobblestone junction scores was observed between D30 
and D38, in the HS980 and KARO1 but not in the E1C3 lines (Fig. S2.1A). Furthermore, initial 

(hESCs) and final (D60) samples had mutually exclusive and uniform expression of 
pluripotency and RPE genes (Fig. 2.1H, S2.1G-I). This was consistent with proliferation 

trends: a decreased fraction in cycling cells from hESC to D30, followed by an increase from 
D30 to D38 and finally a reduction from D38 to D60 (Fig. 2.1I-J). 

 

2.3.3. Early differentiation recapitulates cellular diversity of the rostral neural 

tube and optic vesicle 

To determine the identity of cell populations during initial RPE induction (D7, D14, and 
D30), we obtained enriched genes by population and cross-referenced the literature to 
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annotate each cluster with a primary (group) and secondary (cluster) categories (Methods 

2.5). This process revealed a mixture of intermediate cell states resembling those described 
in the context of rostral neural tube patterning and eye development (Bosze et al., 2020; 

Sarkar et al., 2020). 
To obtain a unified clustering scheme across cell line replicates without neglecting the 

possibility of line-specific cell types, we first annotated each dataset for HS980, KARO1, and 
E1C3 samples individually. Then, we performed canonical correlation analysis (CCA) on 

samples corresponding to the same differentiation day and constructed maps of enriched 
genes for shared cell types (Methods 2.5) (Butler et al., 2018). At D7 and D14, we identified 

seven groups based on their expression profiles: Pluripotent-like (Pluri), Endodermal-like 
(Endoderm), Lateral Neural Fold-like (LatNeEp), Pre-Placodal Epithelium-like (PrePlac), 

Cranial Neural Crest-like (CrNeCr), Mesenchymal (MesCh), and Retinal Progenitor (RetProg) 

(Fig. 2.2A). Several marker genes described in the literature as corresponding to such cell 
types, including RAX, DLX5, FOXE3, FOXC1, HAND1, NANOG, and SOX17, supported the 

annotated cluster identified (Fig. 2.2B, S2.2A; Table 2.2) (Bosze et al., 2020; Firulli et al., 
2014; Kwon et al., 2010; McLarren et al., 2003; Pan & Thomson, 2007; Qu et al., 2008; Seo 

et al., 2017). This analysis highlighted distinct differences between the three lines, such as 
that KARO1 retained a pool of pluripotent-like cells in initial time points, HS980 generated 

more pre-placodal-like cells, and E1C3 initiated an endodermal-like population while also 
establishing the largest percentage of retinal progenitors (Fig. 2.2C-D). 

The surprising emergence of different cell types of the anterior ectoderm highlights the 
interrelatedness of gene expression programs for the eye field, neural crest, and other sensory 

tissues during early embryonic development. Some secondary clusters, particularly in the 

HS980 line, matched remarkably well with specific neural tube regions, expressing a 
combination of enriched markers for eye field (RAX, SIX6, LHX2), telencephalic neural fold 

(DLX5, DLX6), lens placodes (FOXE3, PAX6, ALDH1A1), cranial neural crest (FOXC2, 
VGLL2, PITX1), inner ear placodes (OTOGL, VGLL2, CYP26C1), the anterior neural ridge 

organizer (FGF8, SP8, and FOXG1), and mesenchyme (GABRP, HAND1, COL1A1) (Cajal et 
al., 2012; J. Chen et al., 2017; Cohen-Salmon et al., 1997; Crespo-Enriquez et al., 2012; Gitton 

et al., 2011; Kasberg et al., 2013; Kumamoto & Hanashima, 2017; Seo et al., 2017; Soldatov 
et al., 2019; Tahayato et al., 2003) (Fig. 2.2E; Table 2.2). 

The observation of mesenchyme in all three cell lines is interesting because periocular 

mesenchyme expresses inductive signals in vivo that promote RPE fate, which has been 
carried out by Activin A in the present protocol (Bosze et al., 2020). Eye field-like cells 

(RetProg) detected across the differentiation possessed distinct gene expression programs, 
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suggestive of varying degrees of progression towards RPE. RetProg clusters expressed a 

repertoire of known markers, including OTX2 and LHX2, which are jointly necessary for 
activation of the transcription factor MITF. At D14, these two genes were co-expressed in 

RetProg clusters alongside MITF-activated genes PMEL, SERPINF1, TYRP1 and DCT (Fig. 
S2.2B-D). Consistent with their classification as progenitors, cells displayed a stark cell 

proliferation signature (S and G2/M phases) (Fig. S2.2E). CCA of the D7 and D14 populations 
further captured a “pseudospatial” axis of variation, with cells transitioning along a mediolateral 

molecular profile (Fig. 2.2F-G).  
We next integrated D7 and D14 cells from all three lines onto a shared feature space 

to factor out time-dependent differences (Fig. S2.2F). Over time, we observed an increase in 
cells assigned as pre-placodal (PrePlac; 5.24% to 34.59% of cells) and a decrease in both 

inner ear-like cranial neural crest (CrNeCr; 30.36% to 9.30%) and lateral neuroepithelial 

(LatNeEp; 16.84% to 5.01%) cells. The fraction of retinal progenitors remained more stable 
(RetProg; 33.48% to 24.65%) (Fig. S2.2F-G). These analyses revealed that this heterogeneity 

at both stages recapitulates the molecular profile of rostral embryonic territories patterned to 
specify sensory organs, such as lens, olfactory, and otic placodes (Begbie, 2013b) (Fig. 2.2G). 

Conversely, between 79% and 96% of cells at D30, depending on the cell line, were 
categorized into retinal progenitor or RPE stages (RetProg, EMT-RPE, EarlyRPE, MidRPE, 

LateRPE). Other observed cell types included Lateral Neural Fold-like (LatNeEp; 1.1-4.0%), 
Neuronal (Neuronal; 0.2-4.2%), Mesenchyme-like cluster 1 (MesCh1; 0.4-5.6%), 

Mesenchyme-like cluster 2 (MesCh2; 0.1-3.7%), Neural Retina (NrlRet; 0.3-2.2%), and Floor 
Plate (FloorPlate; 0.5-2.4%) (Fig. 2.2H, S2.2H). A pseudotemporal trajectory of retinal 

maturation largely characterized these cells (Methods 2.5; Fig. 2.2I). Expression along this 

pseudotime confirmed a loss of progenitor status (SOX2, RAX, VSX2, LHX2), followed by an 
increase in RPE differentiation (MITF, TYRP1, PMEL) and, later, of advanced RPE maturation 

markers (TYR, RLBP1, RPE65, BEST1, RGR) (Fig. 2.2J). Transcription factor network 
analysis of D30 HS980 cells with SCENIC further confirmed the activity of regulons involving 

factors SOX2, RAX, VSX2, OTX2, and MITF with anticipated gene targets (Aibar et al., 2017) 
(Fig. S2.2I). In fact, MITF cooperates with OTX2 to transactivate RPE pigmentation genes 

and downregulate progenitor genes (Martínez-Morales et al., 2003; Yun et al., 2009).  
Our observations indicate that a sequential stepwise differentiation model is 

inadequate to explain the observed cell population dynamics; instead, the data suggests a 

“divergence-convergence” model, with an initial expansion of cellular diversity, later 
dampened to favor the promotion of the RPE differentiation program (Fig. S2.2J; Discussion 

2.4). 
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Figure 2.2. Evaluation of diverse neuroepithelial cell type derivatives in early differentiation. (A) 
UMAP at differentiation D7 and D14 in three lines. Cells were grouped into Retinal Progenitor (RetProg), 
Lateral Neural Fold-like (LatNeEp), Pre-Placodal-like (PrePlac), Cranial Neural Crest-like (CrNeCr), 
Mesenchyme (MesCh), Pluripotent (Pluri), and Endoderm-like (Endo) clusters. (B) Normalized gene 
expression of marker genes RAX (RetProg), DLX5 (LatNeEp), FOXE3 (PrePlac), FOXC1 (CrNeCr), 
HAND1 (MesCh), NANOG (Pluri), and SOX17 (Endo). (C) UMAPs in (A) colored by cell line. (D) Cell 
type composition in each line at D7 and D14. (E) Enriched gene expression heatmap for HS980 cell 
types. (F) Plots showing relative expression of neural tube patterning markers in D7 (top) and D14 
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(bottom) cells across pseudospace in HS980. (G) Schematic of the patterned anterior neural plate at 
the neurulation stage. Left: putative location of the cell types corresponding to identified clusters. Right: 
schematic of genes patterning the rostral embryo. (H) UMAP at differentiation D30 three lines. (I) 
Pseudotime trajectory of D30 RPE and RetProg cells (82.5% of total at D30). (J) Progenitor (SOX2, 
RAX, VSX2, LHX2), early (MITF, TYRP1, PMEL), mid (TYR, RLBP1) and late (RPE65, BEST1, and 
TTR) gene expression along pseudotime. See also Figure S2.2. 
 

2.3.4. 2D monolayer differentiation is faster and more directed than 3D embryoid 
body differentiation 

The molecular patterning of 2D monolayer cultures during early RPE differentiation 
hints at an intriguing self-organization process taking place despite the lack of spatially 

directed cues or a 3D structure. The spontaneous generation of alternative cell fates has been 
described in studies investigating intermediate stages of other differentiation protocols 

(Cuomo et al., 2020; La Manno et al., 2016; Lin et al., 2021). Furthermore, previous reports 

have suggested that a highly spatially organized system is not necessarily the most 
molecularly patterned (Quadrato et al., 2017; Velasco et al., 2019). To clarify how the initial 

heterogeneity detected in our monolayer differentiation relates to a 3 dimensional (3D) 
protocol that allow cells to organize spatially, we compared to an Embryoid Body (EB) 

differentiation protocol (Alvaro Plaza Reyes et al., 2016). 
We performed hESC-RPE differentiation in the EB setting for 30 days, followed by 

scRNA-seq (2,851 cells) at D7, D14, and D28. At D7, EBs displayed a mostly uniform 
patterning with early progenitor and pluripotency markers (SOX2, PAX6, SALL4, LIN28A; Fig. 

S2.3A). Conversely, D14 EBs showed the emergence of cells corresponding to the three 

primary brain vesicles: we could distinguish prosencephalon-, mesencephalon-, and 
rhombencephalon-like (Fore-, Mid-, Hindbrain) clusters (Fig. 2.3A, S2.3B). The presence of 

the observed  patterning-related heterogeneity was confirmed by a signature score analysis 
based on markers of different brain and rostro-caudal neural tube regions (Fig. 2.3B). 

Interestingly, we detected no traces of the more specific mediolateral-patterning signatures 
observed in early stages of the 2D protocol (Fig. 2.3C). Consistently, midbrain and hindbrain 

gene expression signatures were not detected in the 2D cultures, and a greater fraction of 
retinal progenitors were observed in the 2D context (24.7% 2D cells compared to 1.6% 3D 

cells at D14) (Fig. 2.3D, S2.3C). 
At D28, the 3D EB culture continued to harbor more diversity than the 2D monolayer 

(Fig. 2.3D). While 2D cultures at D30 were largely defined by various stages of RPE 

maturation, in the 3D EB culture other retinal and brain-related cell types were present, 
including populations of the neural retina (Progenitor-like, Horizontal cell-like, and Amacrine-

like) as well as caudal neuroblasts and glial populations (Roof Plate, Neuroblast 1 and 2, 



 39 

Posterior Neuronal, Choroid Plexus, Schwann Precursor Cells) (Fig. 2.3E, S2.3D) (Brodie-

Kommit et al., 2021; La Manno et al., 2021; Lu et al., 2020). This evidence, in conjunction with 
the presence of distinct TBX2+ dorsal optic cup-like and VAX2+ ventral optic cup-/stalk-like 

progenitor populations, strongly suggests that a wider set of morphogenetic events, not all 
related to RPE differentiation, are recapitulated during the EB protocol (Behesti et al., 2006; 

Bosze et al., 2020). 
Finally, the transcriptomic correspondence between cells in the 2D and 3D protocols 

was evaluated more directly by projecting 2D-cultured cells onto the EB D28 embedding. The 
large majority of 2D cells mapped to RetProg and RPE clusters rather than non-retinal cell 

types, illustrating that RPE cells comprise a much larger fraction of the monolayer cultures 
(73.4% cells) than of the EB cultures (10.2% cells) (Fig. 2.3E-F). 

In summary, the 3D EB hESC-RPE differentiation protocol produces cell identities 

corresponding to a broader neural origin and drives differentiation of multiple retinal lineages 
in parallel with RPEs. Conversely, the 2D protocol tends to specify more quickly and narrowly 

to rostral embryonic cell identities, further funneled to a RPE fate around D30, thus supporting 
a divergence-convergence model. 
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Figure 2.3. Comparative analysis of RPE induction between hESC-RPE, 3D EB differentiation, 
and embryonic eye. (A) UMAP of 3D EB cultures at D14 (HS980 line). (B-C) Signature scores for 
brain regions (B) and neural tube cell types (C) visualized on the EB D14 UMAP. (D) Bar plots 
comparing cell type compositions in 2D and 3D cultures at D14 (top) and D28/30 (bottom). (E) UMAP 
of 3D EB cultures at D28 colored by cell type. (F) Projection of 2D D30 cells from all three cell lines 
onto the UMAP from (E) using pairwise correlation distances, colored by annotated cell type (see 
Supplemental Experimental Procedures, cf. Figure 2.2H). Cells in gray are those from (E). (G) UMAP 
of human embryonic optic cup cells at Carnegie Stages 12, 13, 14, and 15 (week 5), colored by cell 
type or stage. (H) Heatmap of enriched gene expression by cell type across all samples in (G). (I) 
Signature scores of in vitro cell clusters at D7, D14, and D30 illustrating the correspondence to in vivo 
clusters from (G). Signature scores were obtained using the top 30 genes of the respective in vivo 
reference population. See also Figure S2.3. 
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2.3.5. In vitro differentiation and eye development exhibit similarities in cellular 
composition 

We reasoned next that embryonic references could validate our model and evaluate 

how faithfully in vitro phenotypes match their in vivo counterparts. Thus, we performed scRNA-
seq on four human embryonic optic vesicles from Carnegie Stages (CS) 12, 13, 14, and 15 

(approximately 30-, 32-, 33-, and 36-days post-conception; 9,409 cells) as well as two eyes at 
Carnegie Stage 20 (7.5 weeks post-conception; 2,742 cells). Early stages contained patterned 

cell types corresponding to optic vesicle and surrounding tissues, including retinal progenitors 
(RetProg), retinal pigment epithelium (RPE), neural retina (NrlRet), ocular surface ectoderm 

(OcSurEct), lens (Lens), mesenchyme (MesCh), other neural (Neural), immune (Immune), the 

anterior neural ridge (ANR), and endothelial cells (Endo); these populations were mostly well 
distributed across developmental stages (Fig. 2.3G-H). Retinal tissues were already more 

clearly differentiated into embryonic RPE (eRPE), neural retinal, and optic stalk sub-
populations by CS13 (W5) than in the RPE-focused progenitors detected in vitro (Fig. S2.3E, 

cf. Fig. 2.2E, S2.2A; Table 2.3). The CS20 (W7.5) samples captured a more diverse 
representation of cell types surrounding the eye, including proliferating progenitors, RPE, lens, 

intermediate retinal ganglion cells, and neural crest-derived mesenchyme (Fig. S2.3F-G). 
Progenitor markers highly expressed in earlier stages were more exclusive to neural (NePr) 

and lens (LensPr) progenitors by W7.5. Early differentiation genes were detected in embryonic 
RPE, and a transition towards mature RPE was apparent in the embedding despite an 

absence of mature RPE markers RPE65, BEST1, and TTR (Fig. S2.3H-I). 

To evaluate the resemblance of hESC-RPE clusters to embryonic references, enriched 
genes were extracted from in vivo cell types at all five stages and used to compute signature 

scores for in vitro cell types at D7, D14, and D30 (Fig. 2.3I). Scores for the RPE clusters in 
vitro were highest using enriched genes from the in vivo RPEs, with signatures of later RPE 

populations in vitro scoring higher against later-stage embryonic RPEs. An inverse 
correspondence was also observed between in vivo RPE signatures and scores for in vitro 

RetProg populations, relating to the gradual maturity of such populations. Furthermore, 
signatures comprised of enriched genes from the in vivo ocular surface ectoderm scored 

highest for the in vitro LatNeEp, CrNeCr, and PrePlac clusters, suggesting that these 
patterned populations are similar to the ectodermal tissue surrounding the optic cup in vivo. 

Indeed, overlapping gene expression patterns were observed, with OcSurEct expressing 

markers for in vitro tissues such as DLX5, PITX1, and ISL1 (Fig. 2.3H). Similar signature score 
analysis using clusters from a recent atlas of more than 100,000 single cells from in vivo 
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retinas and organoid cultures showed similar patterning, although there were fewer 

corresponding cell types overall due to the large number of neural retina clusters in the atlas 
(Fig. S2.3J) (Lu et al., 2020). Overall, the molecular profiles of early hESC-RPE populations 

mirrored those present during development in vivo, but with a strong bias towards RPE fate 
over other retinal cell types.  

 

2.3.6. Cell surface marker NCAM1 defines retinal progenitor cells at D30 of 

hESC-RPE differentiation 
Selective removal of progenitor populations at intermediate stages could be both a 

route to faster RPE differentiation protocols and a strategy to obtain a cellular source to derive 
other retinal lineages from. Following the observation of a retinal progenitor cell population in 

D30 hESC-RPE cultures, we reasoned that reliable retinal progenitor markers would be 

inversely correlated to genes characterizing more mature cells, such as RPE, as well as to 
progenitors for other neuroepithelium tissues. We therefore computed a Pearson’s correlation 

coefficient between highly expressed genes at D30 and RPE or neural tube markers (Fig. 
S2.4A-B). Genes with strong anticorrelation to both signatures encoded functionally diverse 

gene products, including cytoplasmic proteins, transcription factors, secreted molecules, and 
membrane proteins (Fig. 2.4A; Table 2.4). Transcription factors involved in early retina 

development (SFRP2, CRABP1, RAX, SIX6) ranked among the top genes, along with genes 
implicated in neural tube (CPAMD8, PKDCC, NR2F1) and lens development (MARCKS, 

DACH1, MAB21L1) (Imuta et al., 2009; Yamada et al., 2003; Zhou et al., 2010). 
Interestingly, cell surface markers CDH2, CPAMD8, and NCAM1 were among the 

most prominent progenitor markers at D30. We were intrigued particularly by NCAM1 (surface 

antigen CD56), which was identified previously in a screen for early RPE markers and whose 
expression was shown to be anticorrelated with pigmentation (A. Plaza Reyes et al., 2020). 

We found that NCAM1 staining areas coincided with rosette structures lacking pigmentation, 
and both scRNA-seq and protein staining revealed that NCAM1 was co-expressed with 

progenitor (VSX2 and RAX) and proliferative (Ki67) genes at D30 (Fig. 2.4B, S2.4C-E). 
To functionally examine the nature of NCAM1-positive progenitors and whether they 

hold potential to generate RPE cells, we devised a sorting strategy to isolate this population 
using NCAM1 and CD140b (PDGFRB), an RPE cell marker (A. Plaza Reyes et al., 2020). By 

combining the two markers, we separated cells into either a putative retinal progenitor stage 

(24% cells, CD140blowNCAM1high, henceforth NCAM1-High) or a more mature RPE stage 
(56% cells, CD140bhighNCAM1low, henceforth CD140b-High) (Fig. 2.4C). Consistently, 

pigmentation was evident in the CD140b-High population cell pellets, whereas the NCAM1-
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High population lacked pigmentation, suggesting different intrinsic potentials and maturation 

statuses (Fig. 2.4D).  
To first characterize the sorted NCAM1-High and CD140b-High populations, we 

performed scRNA-seq analysis directly after sorting (NCAM1-High: 734 cells; CD140b-High: 
1,486 cells). Following integration with unsorted D30 cells (1,852 HS980 cells; see Fig. 2.2H), 

NCAM1-High cells predominantly corresponded to RetProg (64.7%) and EarlyRPE (20.6%), 
whereas CD140b-High cells were mostly of EarlyRPE (28.0%), MidRPE (42.9%) and LateRPE 

(17.6%) profiles; unsorted D30 cells were more evenly distributed among cell type states (Fig. 
2.4E-F, S2.4F-G). Consequently, NCAM1-High cells were enriched for the expression of 

progenitor markers (FEZF2, CRB1, SOX2, FGF9, VSX2) whereas CD140b-High cells were 
enriched for mature RPE markers (SFRP5, TTR, SLC35D3, TYR, RLBP1) (Fig. 2.4G). 

We then continued RPE differentiation with sorted D30 NCAM1-High and CD140b-

High cells for 30 days. Morphological evaluation showed that CD140b-High cells generated a 
homogeneous hESC-RPE monolayer already at D45, while NCAM1-High cells only yielded a 

defined RPE morphology at D60 (with cobblestone scores of 6.77E-3 per µm² for the CD140b-
High population and 5.29E-3 per µm² for the NCAM1-High population at D60, correlating with 

unsorted D30 and D60 hESC-RPE) (Fig. S2.4H, S2.1A). The percentage of cells positive for 
the cell cycle marker Ki67 was higher in the NCAM1-High population, indicative of a 

proliferative state, and eventually declined upon reaching a RPE phenotype (Fig. S2.4I). In 
fact, VSX2 protein was more abundant in NCAM1-High cells that also co-expressed Ki67 for 

a longer time under RPE culturing conditions than in CD140b-High cells (Fig. S2.4J).  
We assessed retinal progenitor (SIX6, VSX2, RAX, PAX6) and RPE (MITF, BEST1, 

RPE65, TYR) markers by RT-qPCR to understand the expression dynamics, confirming that 

NCAM1-High cells expressed higher levels of progenitor genes than CD140b-High cells at the 
time of sorting. The progenitor genes continued to be expressed after sorting in NCAM-High 

cultures (declining over time under RPE differentiation conditions), whereas in CD140b-High 
cultures they were close to absent throughout the protocol. Conversely, CD140b-High cells 

upregulated mature RPE markers earlier and more rapidly than NCAM1-High cells (Fig. 2.4H, 
S2.4K).  

Establishment of an RPE phenotype at D60 by both NCAM1-High and CD140b-High 
populations was confirmed by scRNA-seq of sorted and unsorted populations (NCAM1-High: 

1,106 cells; CD140b-High: 987 cells; unsorted: 975 cells from an additional replicate). Both 

contained large proportions of MidRPE and LateRPE (65.0% in NCAM1-High, 97.1% in 
CD140b-High, and 88.4% in unsorted D60) and similar expression levels of early and mature 

RPE markers (Fig. 2.4I-K, S2.4L-M). The appearance of a cobblestone morphology and 
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pigmented cultures in addition to co-expression of CD140b and BEST1 proteins was also 

confirmed in both sorted populations (Fig. 2.4L). 
To evaluate the functional relevance of those changes and compare the degree of 

differentiation between the two sorted populations, we assessed pigment epithelium-derived 
factor (PEDF) secretion and transepithelial resistance (TEER) upon protocol completion 

(D60), finding that CD140b-High-derived cells secreted significantly higher apical levels of 
PEDF than the unsorted and NCAM1-High-derived cells, both at similar standard levels (1000-

2000 ng/mL) (Fig. 2.4M). TEER levels displayed by CD140b-High-derived cells were higher 
compared to unsorted and NCAM1-High populations, whose levels were comparable to D60 

hESC-RPE cells (400-800 Ω*cm2) (A. Plaza Reyes et al., 2020; Alvaro Plaza Reyes et al., 
2016) (Fig. 2.4N). These results show that CD140b selects for more mature pigmented RPE 

cells at D30, whereas NCAM1 denotes an immature progenitor population with potential to 

mature into functional RPE cells.  
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Figure 2.4. Characterization of the NCAM1-High-sorted D30 population. (A) Bar graph of top genes 
from anticorrelation analysis at HS980 D30. Genes with a mean normalized expression <0.5 were 
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excluded. (B) Brightfield and immunofluorescence stainings of D30 cells showing co-expression of 
VSX2, NCAM1, and Ki67 markers. Scale bars: 200µm. (C) Representative FACS plot of NCAM1-
CD140b sorting to distinguish distinct populations at D30. (D) Post-sort pellets of CD140b-High and 
NCAM1-High cells. (E) UMAP of NCAM1-High (pink), CD140b-High (blue), and unsorted (gray) D30 
cells after CCA integration. (F) Dot plot illustrating the proportion of cells corresponding to each 
identified cell type in scRNA-seq samples from (E). (G) Dot plot of selected progenitor (FEZF2, CRB1, 
SOX2, FGF9, VSX2) and RPE (SFRP5, TTR, SLC35D3, TYR, RLBP1) genes enriched in the sorted 
samples. (H) RT-qPCR of retinal progenitor (SIX6, VSX2) and RPE (BEST1, RPE65) marker genes in 
populations from (E) at the moment of sort and at post-sort D30, D35, D40, D45, and D60. (I) UMAP of 
NCAM1-High (pink), CD140b-High (blue), and unsorted (gray) D60 cells. (J) Dot plot illustrating the 
proportion of cells corresponding to each identified cell type in scRNA-seq samples from (I). (K) Dot 
plots of early (MITF, TYRP1, PMEL, SERPINF1, DCT, ELN) and late (RLBP1, BEST1, RPE65, RGR, 
TTR, SFRP5) RPE genes in the LateRPE cell clusters from each sorted sample. (L) Brightfield and 
immunofluorescence stainings of unsorted, CD140b-High and NCAM1-High populations 30 days after 
sorting (D60) showing co-expression of CD140b, BEST1 and ZO-1 markers. Scale bars: 100µm. (M-N) 
PEDF secretion (M) and TEER measurements (N) of the unsorted, CD140b-High and NCAM1-High 
populations at D60. (H, M-N). Bars represent mean +/-SEM from three independent experiments. See 
also Figure S2.3. 
 

2.3.7. NCAM1-High cells can differentiate into alternative retinal cell types 
To evaluate the full differentiation potential of NCAM1-High progenitors, the population 

was sorted at D30 and plated in neuroretinal progenitor-promoting conditions for 40 additional 
days (Shao et al., 2017) (Fig. 2.5A). Interestingly, NCAM1-High cells gave rise to a 

heterogeneous culture, with a significant portion of cells displaying a distinct non-RPE cell 
body morphology; this was in contrast to CD140b-High cells, which showed the typical RPE 

cobblestone profile under the same conditions (Fig. 2.5B). Gene enrichment analysis of 980 
single cells yielded a variety of molecularly-distinct populations, of which only 12% were RPE, 

suggesting NCAM1-High cells at D30 represent an uncommitted progenitor with potential 

beyond RPE whereas CD140b-High captures lineage-committed RPE cells (Fig. 2.5C). 
We then performed CCA integration with the CS20 (W7.5) embryonic eyes to 

systematically compare NCAM1-High-derived cells to a developmental reference. The shared 
low dimensional space emphasized similarities between corresponding clusters, including 

RPE, progenitor, mesenchymal, lens, surface epithelial and neuronal populations (Fig. 2.5D-
F). Non-RPE retinal cell types detected included a small lens population co-expressing LIM2, 

CRYAB, PITX3, and PROX1. Genes exclusive to W7.5 embryonic lens (FOXE3 and SOX1) 
are specific to promoting early lens development, suggesting that NCAM1-High-derived lens 

cells are in a more mature state (Blixt et al., 2000; Nishiguchi et al., 1998) (Fig. 2.5G). A 
shared epithelial population was also observed, co-expressing markers characteristic of 

surface epithelium and keratinocytes, which can be found in the cornea (Fig. 2.5H). 
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Moreover, there was an overlap between W7.5 retinal ganglion neurons and the 

NCAM1-High-derived neurons (Fig. 2.5D-E, cf. Fig. S2.3). To compare gene expression 
dynamics of these cells, RNA velocity was computed on each neuronal population using 

velocyto, revealing progression towards a more mature state (La Manno et al., 2018) 
(Methods 2.5; Fig. 2.5I). Pseudotemporal gene expression confirmed a common profile of 

expression waves, with gradual downregulation of proliferation markers (TOP2A, MKI67) 
followed by upregulation of a neuronal differentiation program (TAGLN3, STMN2, TUBB2A, 

DCX, NRXN1) (Fig. 2.5J). However, markers of retinal ganglion development, such as 
transcription factor ATOH7 and its downstream targets POU4F2 and ISL1, were only 

expressed in the embryonic cells (P. Gao et al., 2014) (Fig. 2.5K). Other neuronal markers 
(EOMES, NEUROD2, NEUROD6, SLA) were unique to NCAM1-High-derived neurons, 

implying that NCAM1-High-derived cells are another type of telencephalic neuron (Fig. 2.5L). 

NCAM1-High cells are thus either a mixed pool of retinal and neuroepithelial progenitors 
capable of forming both cell types and other related retinal lineages, or cells with the capacity 

to establish all these lineages. 
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Figure 2.5. Neuroretinal progenitor differentiation of NCAM1-High-sorted cells. (A) Schematic of 
the neuroretinal progenitor (altered) differentiation protocol. D30 NCAM1-High-sorted cells were sorted 
and replated on matrigel containing DMEM/F12, hDKK1, Noggin, hIGF-1, and bFGF until scRNA-seq 
at D70. (B) Brightfield images and cobblestone junction scores of sorted and unsorted populations at 
D70. Scale bars: 100μm. (C) UMAP of NCAM1-High sorted cells at D70. (D-E) CCA integration of 
scRNA-seq data from embryonic W7.5 eye (D) and NCAM1-High-sorted cells subjected to the altered 
protocol (E). (F) Enriched gene expression for cell types in (C). (G-H) Gene expression heatmaps of 
lens (G) and epithelial (H) cells identified in the reference and in vitro. Shared and differentially 
expressed genes are shown on the left and right plots, respectively. (I) RNA velocity of embryonic retinal 
ganglion cells (left) and hESC-derived neurons (right). (J-L) Gene expression analysis of embryonic 
and hESC-derived neurons along their respective pseudotimes. RGC (Retinal Ganglion Cell), PC 
(Photoreceptor Cell), HC (Horizontal Cell). 
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2.3.8. Late differentiation is characterized by the selection and maturation of 

RPE populations 
We next analyzed scRNA-seq at three subsequent time points after D30 replating 

(D38, D45, and D60) across our three cell lines. Unlike the initial stages, most of the annotated 
clusters consisted of RPE states. Indeed, the proportion of Late RPE cells was 17.1% ± 14.1 

at D38 (5,305 cells), 55.7% ± 13.1 at D45 (5,138 cells), and 77.7% ± 0.6 at D60 (5,777 cells). 
At the end point of the protocol (D60), approximately 98.2% of cells were at some state of 

RPE identity, with the remaining fraction consisting of retinal progenitors. Early RPE was 
characterized by expression of MITF, TYRP1, PMEL, DCT while the Late RPE also expressed 

pigmentation and visual cycle genes TYR, RLBP1, BEST1, RPE65, SFRP5, RGR, TTR, and 
RDH5. At the intermediate time points (D38 and D45), small fractions of non-retinal types, 

including mesenchyme (VTCN1, GABRP, HAND1, GATA3) and smooth muscle contaminants 

(MYOG, MYOD1, MYL1, CDH15) were detected. However, the populations were no longer 
present in culture at D60 (Fig. 2.6A-C; Table 2.5).  

Additionally, we also detected a distinct cluster of lingering pluripotent cells in the 
HS980 D38 sample (Plurip., 0.9% ± 1.1 cells) expressing pluripotency markers (SOX2, 

LIN28A, SALL4, GPC3) (Fig. 2.6A). This was concerning as lingering pluripotent stem cells 
must be eliminated from the final cell product. We therefore extended our analysis including 

eight independent D60 samples containing 63,370 cells across all three cell lines. 
Encouragingly, no cells with a pluripotent signature were detected in any of the final D60 

samples (Fig. S2.5A-B, S2.1H-I).  
Interestingly, the D38 time point after replating displayed an increased heterogeneity 

and on average showed a remarkably less distinct RPE cobblestone morphology than D30 

(Fig. 2.1C, S2.1A). Furthermore, from D30 onwards a population of RPE cells co-expressed 
MITF and markers associated with the epithelial-to-mesenchymal (EMT) transition process, 

particularly ACTA2. Recent studies have suggested that TGFβ signaling used in RPE 
differentiation can induce EMT (Boles et al., 2020; Jung et al., 2020; Salero et al., 2012). 

Despite the absence of Activin A (a TGFβ-superfamily ligand) in culture from D30 and 
onwards, the dissociation of RPE cells at D30 induced a mesenchymal-like morphology of the 

RPE cells (Fig. 2.1B). This observation led to characterization of two early RPE clusters at 
most time points from D30 onwards, one MITF+ACTA2- (EarlyRPE) and one MITF+ACTA2+ 

(EMT-RPE). The proportion of EMT-RPE increased during replating from D30 to D38, followed 

by a steady decrease to low levels (0.8% cells) on D60 (HS980). These cells displayed a 
signature of some, but not all, RPE markers co-expressed with EMT markers. Moreover, the 
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representation of RPE from later time points along a phenotype variation axis confirmed the 

presence of some shared EMT and RPE differentiation properties (Fig. S2.5C-F).  
Nonetheless, from D30 to D60, we observed the persistence of RPE and loss of other 

cell types; there was also some maturation variability among the RPE clusters on D60. In fact, 
pseudotime trajectory inference and RNA velocity analysis of HS980 cells showed a 

(unidirectional) trajectory of less mature populations in gene expression space towards the 
most mature RPE (Fig. 2.6D). Phase portrait analysis comparing the steady state 

expectations for spliced and unspliced RNA levels confirmed the upregulation of RPE65 and 
BEST1 as well as the downregulation of progenitor marker PAX6 (see Methods; Fig. 2.6E). 
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Figure 2.6. Profiling late hESC-RPE differentiation. (A-C) UMAP and enriched gene expression 
heatmap of hESC-RPE scRNA-seq data at D38 (A), D45 (B), and D60 (C) in all three lines. (D) RNA 
velocity and pseudotime analysis of HS980 RPE at D60. (E) Phase portraits of upregulated RPE marker 
genes RPE65 and BEST1 as well as a downregulated progenitor marker PAX6. The diagonal line 
represents the estimated steady state of gene expression, with cells above the steady state 
experiencing gene upregulation and those below gene downregulation. (F) Ordinal classification of 
20,682 single hESC-derived retinal progenitor and RPE cells at six differentiation time points along 
embryonic stages. (G) Classification distribution for seven hESC-RPE differentiation D60 biological 
replicates (HS980: 3,655 cells; E1C3: 61,479 cells; KARO1: 1,236 cells). See also Figure S2.6. 
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2.3.9. Replating affects cell population distribution and promotes a purer and 

more mature cell product  
We have previously shown that replating D30 monolayer cultures greatly facilitates the 

expansion of final cell numbers (A. Plaza Reyes et al., 2020), but we had not explored how 
replating affects maturation and purity of the final cell product at D60. We therefore repeated 

our hESC-RPE differentiation protocol without the replating step and performed scRNA-seq 
on D38 (1,423 cells) and D60 (793 cells). These data of D38 and D60 non-replated cultures 

revealed extensive contamination with alternative lineages containing cell types resembling 
neural retina, neuronal, lens, mesenchyme, neural crest and mesoendodermal cells (Fig. 

S2.5G-H). The presence of contaminant types was confirmed by flow cytometry for lack of the 
RPE marker CD140b (Fig. S2.5I). Interestingly, the absence of replating at D60 also 

maintained a larger proportion of RetProg (7.2% versus 1.9% in the replated), and there was 

a lower fraction of LateRPE (33.4% versus 77.7% in the replated) (Fig. S2.5H, 2.6C). We 
determined that replating selects against retinal progenitors and arrests the expansion of 

alternative lineages. We reasoned that the dissociation and its selection effect might contribute 
to the formation of a better organized cell monolayer at D60 which, in turn, could promote the 

acquisition of a more mature RPE expression pattern. This was confirmed by RPE 
cobblestone morphology quantifications showing higher cobblestone junction scores at D60 

replated cultures compared to the non-replated counterparts (Fig. S2.5J). Moreover, to 
assess overall progression of hESC-RPE and assign cells to developmental stages, we 

constructed an ordinal classifier using single-cell human transcriptomes of 783 embryonic eye 
cells at W5 to W24 and 127 adult RPE cells (Hu et al., 2019; Voigt et al., 2019) (Fig. S2.6A-

B). Our classifier operates with an underlying knowledge of the sequential relationship among 

the training data and was applied to place hESC-RPE cells on the temporal spectrum of RPE 
development. As proof of principle, we applied our classifier to the human embryonic 

references at W5 (CS13) and W7.5 (CS20) as well as to an independent set of 49 adult RPEs 
not used to generate the classifier, thus confirming an appropriate assignment (S. R. Quake 

& Sapiens Consortium, 2021) (Fig. S2.6A-C). Evaluation of the maturity level using such 
classifier confirmed that replating leads to a more mature output (Fig. S2.5K) (Hu et al., 2019). 

Ultimately, this evidence suggests that replating drives the convergence to a RPE monolayer.  
We then decided to analyze the maturation status of all in vitro retinal progenitor and 

RPE cells with our built classifier, and we observed a gradual progression of maturity during 

differentiation corresponding to embryonic RPE development, which was consistent in all 
three studied cell lines (Fig. 2.6F, S2.6D). Furthermore, the overall classified maturity of D60 

cells was similar among the three lines (Fig. 2.6G). 
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  Lastly, we sought to compare the classification of RPE cells from our 2D monolayer 

protocol to (1) D60 RPE cells generated through 3D EB differentiation, and (2) cells from other 
protocols with longer differentiation. D60 RPE cells in either 3D or 2D differentiation showed 

similar maturation statuses (Fig. S2.6H). In addition, we re-analyzed scRNA-seq datasets in 
which differentiation was performed for 95 days (9,456 cells) and extended up to 432 days 

(3,216 cells) using another 2D monolayer protocol originating in the H9 cell line (Lidgerwood 
et al., 2021) (Fig. S2.6E-G). This analysis showed that our D60 cells are similar in maturation 

status to the D95 cells, but that further maturation can be achieved through extensive in vitro 
culturing to D432 (Fig. S2.6H). Interestingly, although both 95- and 432-day time points 

contain highly mature RPE, these samples also include fractions of retinal progenitors 
(expressing CRABP1, SFRP2, PAX6) and EMT-RPE (expressing ACTA2, TAGLN), which are 

similar to the progenitors detected in our protocol (Fig. S2.6G-H).  

 

2.3.10. Subretinal transplantation of hESC-RPE facilitates a more advanced RPE 
state 

Robust hESC-RPE differentiation is a required first step towards cellular therapies for 

AMD. However, derived RPE cells must integrate with neighboring tissues upon injection, 
retain or develop mature attributes, and avoid the resurgence of pluripotent properties to 

become an effective treatment modality. To evaluate these aspects, D60 hESC-RPE cells 
were transplanted into the subretinal space of two albino rabbits, a preclinical large-eyed 

animal model (Bartuma et al., 2015; Petrus-Reurer et al., 2017). Transcriptional analysis of 
adult rabbit (1,965 cells) and adult human retina (5,538 cells) showed a high degree of 

similarity (Fig. S2.7; Table 2.6). Four weeks following transplantation of hESC-RPE, infrared 

and SD-OCT imaging showed a pigmented patch of human cells and a hyper-reflective RPE 
layer among the albino rabbit retinal layers (Fig. 2.7A). Histology and immunofluorescence 

staining further demonstrated that out of all NuMA positive cells (n=227), 99.56% were either 
pigmented or expressed the RPE marker BEST1, corroborating the successful integration of 

injected hESC-RPE cells in a polarized and matured RPE monolayer (Fig. 2.7B, S2.6I-J). The 
contiguous injected retina of two rabbits was then processed for scRNA-seq. This yielded 65 

human hESC-derived cell profiles, all of which exhibited high expression of mature RPE 
markers. Crucially, markers of retinal progenitors, photoreceptors, pluripotent hESCs, and 

EMT-RPE were benchmarked against our references and found to be undetected following 

transplantation (Fig. 2.7C). These findings attest that integrated hESC-RPEs possess the 
transcriptional signature of mature RPE without signs of retinal progenitor or pluripotent 

properties. 
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Figure 2.7. Phenotyping of transplanted hESC-RPE. (A) Infrared and SD-OCT images of injected 
hESC-RPE cells in the subretinal space of albino rabbits. Green lines indicate the SD-OCT scan plane. 
White arrows indicate the hyper-reflective RPE layer. Scale bars: 1mm. (B) Brightfield and 
immunofluorescent staining for human marker NuMA and BEST1 30 days after injection. Scale bars: 
50μm. (C) Gene expression heatmap comparing 65 single hESC-RPE cells 30 days after 
transplantation to embryonic W7.5 retinal progenitors, adult photoreceptors, undifferentiated hESCs, 
and D60 EMT-RPE. (D) Pearson's correlation matrix between gene expression profiles of HS980 hESC-
RPEs at D30 and D60, post-transplantation (in vivo) RPE, adult RPE and melanocytes, and embryonic 
RPE. (E) Dot plot showing log2 fold change of RPE markers between HS980 hESC-RPE D60 cells, in 
vivo RPE, and adult RPE. Bars represent mean +/-SEM from all cells at each time point. (F) Ordinal 
classification summary matrix showing the percentage of HS980 retinal cells from in vitro and in vivo 
time points predicted to correspond to each RPE developmental time point (embryonic weeks 5-24, 
adult). (G) Classification distribution for hESC-derived progenitor and RPE cells in vitro and in vivo. See 
also Figure S2.7. 
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We further compared in vivo and in vitro expression patterns by performing gene 

expression correlation analysis using both RPE and RetProg clusters from D30 and D60 as 
well as embryonic reference tissues (cf. Fig. 2.3, S2.3, S2.6). Most RPE clusters were well 

correlated, yet only the most mature in vitro cluster (D60:LateRPE) and the in vivo transplanted 
RPE were highly similar to the adult RPE reference. Melanocytes, a distinct neural-crest 

derived cell type with some overlapping gene expression to RPEs, were not as correlated with 
hESC-RPE. Interestingly, while D60:LateRPE retained similarities with other in vitro clusters, 

the transplanted RPE did not (Fig. 2.7D). Differential expression analysis confirmed an 
expression pattern closer to adult RPE cells after in vivo implantation, particularly for visual 

cycle components such as TTR, RDH10, RLBP1, RPE65, BEST1, and RGR (Fig. 2.7E). 
Lastly, to assess overall progression of hESC-RPE and assign cells to developmental 

stages, we applied our ordinal classifier to our in vitro cells and 65 post-transplantation cells. 

This showed a gradual progression of maturity during the differentiation time course 
corresponding to embryonic development that continued in vivo. Transplanted hESC-RPE 

were assigned to late embryonic week 17-24 (26%) and adult RPE classes (25%) more than 
any in vitro time point. Grafted cells were evaluated as more mature than all three HS980 D60 

biological replicates, which were predominantly assigned to the week 9-13 stage (93%) (Fig. 
2.7F-G). Overall, despite the pluripotent state of the cell source and the initial diversity 

expansion observed, the hESC-RPE differentiation protocol ultimately yielded homogenous 
and mature RPE cells in a sequence similar to that of embryonic RPE development, and 

subretinal transplantation of D60 RPE cells assisted with further progression towards a more 
mature RPE state. 

 

2.4. Discussion 
In the present study, by molecularly profiling a directed and defined hESC-RPE 

differentiation protocol established for clinical translation (A. Plaza Reyes et al., 2020), we 

demonstrated that the described culture conditions successfully induced RPE lineage 
specification, selection and maturation over 60 days. Overall, we observe a sequence of gene 

expression waves consistent with embryological studies (Sabine Fuhrmann et al., 2014; Hu 
et al., 2019). However, at early stages we found a cell pool heterogeneity that was 

incompatible with the induction of a single lineage and instead exhibited an initial expansion 
of cellular diversity (Fig. 2.1, 2.2). Similar cell type heterogeneity expansion was previously 

observed in studies of endoderm and endothelial tissue derivation, but meta-analyses of 

several differentiation protocols is needed to understand if the observed event is a widespread 
phenomenon (Cuomo et al., 2020; MacLean et al., 2018; McCracken et al., 2020). Taken 
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together, characterization of our in vitro hESC-RPE differentiation suggests a divergence-

convergence model: a diversity expansion at early time points, biased by cell line intrinsic 
tendency, followed by selection of RPE lineage, driven by replating at D30, and convergence 

onto a homogeneous and highly pure cellular product.  
In the analyzed differentiation protocol, each line manifested different biases to this 

initial diversification: the E1C3 cells developed endoderm-like cells, HS980 cells produced 
populations reminiscent of different rostral neural tissues, and a fraction of KARO1 cells 

displayed signatures of lingering pluripotent cells at the earliest time points (Fig. 2.2D). 
Particularly interesting is the finding of expression profiles resembling patterned regions 

surrounding the optic field: the pre-placodal epithelium, neural fold, and neural crest (Fig. 
2.2E, 2.2G, S2.2A). This axis of patterning is induced in the embryo by the organizer cells of 

the floor plate and anterior neural ridge, which promote specification of different territories of 

the anterior neural plate, including the optic vesicle (Begbie, 2013a; Eagleson et al., 1995; 
Sabine Fuhrmann, 2010; Streit, 2007).  

These findings hint at an intriguing self-organization process occurring in our 2D 
culture, despite the lack of spatially directed cues or 3D structure. The investigation of the 

nature and source of the cues contributing to differentiation phenomenology is a compelling 
future research direction. For example, it might be interesting to evaluate the potential 

involvement of neural crest-like and mesenchymal cells appearing during the protocol in the 
differentiation process, given their known endogenous roles in vivo (S. Fuhrmann et al., 2000; 

Kagiyama et al., 2005). 
The heterogeneity at intermediate steps highlights the importance of having robust 

analysis methods to ensure the final cell product does not contain unwanted cells, such as 

lingering pluripotent cells that could lead to tumor formation. In this respect, the consistent 
output obtained across different cell lines and the achievement of a mature endpoint, even 

when rebooting the protocol at D30 from NCAM1-High sorted populations, constitute an 
important proof that the present differentiation method efficiently eliminates such impurities. 

The comparison of our protocol to EB 3D differentiation further contextualizes the extent of 
convergence induction in a broader setting. While the 3D setting promotes a wider patterning 

and the simultaneous development of different neural and retinal lineages, where RPE cells 
are only one of the outputs, our 2D culture conditions successfully facilitate a complete 

convergence on mature RPE by D60. Furthermore, the disappearance in later time points of 

the small smooth muscle and myogenic cell populations temporarily emerging at D38 hints at 
how the combination of a selective pressure component, such as the replating step, could 

contribute to this convergence (Fig. 2.6, S2.5). 
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In this work, we used human embryonic and adult references to evaluate the 

composition and level of maturity of the cells we generate, and to objectively compare our 
results to the output of other published protocols. The results highlight that an adult RPE 

pattern of expression is not yet reached in cells at D60, and a more mature pattern can be 
achieved at the cost of one year of further culturing (Lidgerwood et al., 2021). Intriguingly, 

even these long-term matured RPE cultures revealed, at reanalysis, a comparable fraction of 
retinal progenitors and an EMT-RPE persisting in culture. Further studies are warranted to 

elucidate the function of these populations to understand if they may represent a normal part 
of RPE physiology and how they may impact cell therapy products.  

Nonetheless, efficient sorting procedures for cell population purification at intermediate 
time points could lead to the design of differentiation protocols reaching full maturity faster. In 

this respect, we showed that removing the NCAM1-High progenitor pool at D30 yields a more 

mature RPE population in a shorter period of time (Fig. 2.4, S2.4). At the same time, our data 
also show that the replating itself reduces the fraction of retinal progenitors in the final product 

as well as other contaminating cell types, reaching a purity of 98% at D60, where the remaining 
non-RPE is a 2% retinal progenitor fraction. Such purity is well in line with or greater than other 

hESC-based cellular therapies (Piao et al., 2021). Furthermore, considering the added 
manufacturing challenges with an antibody-based sorting, such enrichment would not be cost-

effective in this setting. In the present work, we also demonstrated that NCAM1-High cells are 
not RPE-fate restricted and, upon altered culture conditions, can give rise to different cell 

types, including anterior neurons, mesenchyme, and lens epithelium (Fig. 2.5). This potency 
is particularly relevant, as the identification and isolation of less mature progenitors with an 

increased plasticity is of importance to efforts aimed at replacement of other retinal cell types 

affected by advanced AMD (Bhatia et al., 2010; Marquardt et al., 2001). Thus, further 
evaluation of the NCAM1-High potency as a response to different and more specific culture 

conditions, and in other in vivo models lacking certain retinal cell types constitute promising 
avenues for future investigation.  

Considering that the final cell product may contain 2% of such retinal progenitors, it 
should be averted in the future despite being unlikely to pose a safety risk. However, we did 

not detect any non-RPE cell types from our histological or transcriptional analysis following 
cell transplantation (Fig. 2.7, S2.6I-J). Although the number of cells analyzed (227 by tissue 

immunofluorescence and 65 transcriptionally) is admittedly not very large, these findings 

suggest that the progenitor pool has not expanded extensively or generated alternative 
lineages. Additionally, our in-depth analysis highlights the importance of ensuring that the final 

cell product does not contain lingering pluripotent stem cells at a single-cell level. We clearly 
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saw initial numbers of remaining pluripotent-like cells in D7 and D14 cultures, but these were 

largely lost at D30. With this basis, it was surprising to detect a distinct population re-emerging 
at D38. Importantly, our focused analysis showed that at D60, none of the eight samples from 

the three cell lines (63,370 cells) contained cells with a transcriptional profile corresponding to 
pluripotency (Fig. 2.6, S2.6).  

 The behavior of grafted cells in vivo is a topic discussed extensively by the community, 
with maintenance of the proliferative potential and de-differentiation generally considered the 

two processes of major concern (Wang et al., 2020; Zarbin et al., 2019). Our analysis identified 
neither specific signs of de-differentiation nor the presence of a non-RPE molecular profile. 

Indeed, we detected a distinct shift in the RPE maturation towards a more adult and functional 
phenotype (Fig. 2.7). The induction mechanism of the observed in vivo maturation remains 

unclear; albeit, the increased expression of visual cycle genes suggests that donor cells 

support neighboring photoreceptors functionally.  
Overall, our findings provide a high-resolution perspective on human pluripotent stem 

cell differentiation and a comprehensive and necessary detailed analysis of a stem cell-based 
product intended for successful and safe human therapeutic strategies. Ultimately, this study 

will guide future efforts focused on the differentiation of retinal cells, a deeper understanding 
of mechanisms of retinal disease, and applications in regenerative medicine. 

 

2.5. Methods 
For the complete extended methods to the findings presented in this chapter, please 

refer to the original publication (Petrus Reurer, Lederer, et al., 2022) in Stem Cell Reports at: 

https://doi.org/10.1016/j.stemcr.2022.05.005.  
 
2.5.1. hESC Cell Culture and hESC-RPE Differentiation 

hESC lines HS980, KARO1 were established and cultured in 5% CO2/5% O2 on rhLN-
521 (10μg/mL), and passaged as described previously (Rodin et al., 2014). E1C3 (NN 

GMP0050E1C3) cultured on iMatrix-511 (0.25 μg/cm2, Nippi, T303) was provided as a 
research cell bank of the clinical GMP cell line by NovoNordisk (UCSF IRB: 1518222, for RPE 

differentiation Projekt-ID: H-18016740, Anmeldelsesnr.: 73105). 
For differentiation (Plaza Reyes et al. 2020a and 2020b), cells were plated at a density 

of 2.4x104 cells/cm2 on 20μg/mL hrLN-521 or iMatrix-coated dishes using NutriStem hPSC XF 

medium and Rho-kinase inhibitor (10uM) during the first 24h. Medium was then replaced with 
NutriStem hPSC XF without bFGF and TGFβ (differentiation medium) in 5% CO2/21% O2, and 

from day 6 after plating, 100 ng/mL of Activin A was added to the medium for a total of 30 

https://doi.org/10.1016/j.stemcr.2022.05.005
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days. D30 monolayers were replated using TrypLE Select (10 min, 37°C) and passed through 

a 40um strainer. Cells were seeded on hrLN-521 coated dishes (20μg/mL) at 6.8x104 
cells/cm2, and fed three times a week for subsequent 30 days with differentiation medium 

without Activin A. 
 

2.5.2. Sample Processing for Single-Cell RNA Sequencing 
Cells: Specific stage hESC-RPE cells were trypsinized with TrypLE (10 min, 37°C, 5% 

CO2) and resuspended to 1000 cells/μL in 0.04% BSA in PBS prior to scRNA-seq.  Tissues: 

Two human 32h post-mortem eyes from the same donor were collected, retinas were 
dissected out and cut into several small pieces mixed together in 500 μL of digestion buffer 

(see Supplemental Experimental Procedures). Two pooled embryonic eyes at Carnegie 

Stages 12, 13, 14, 15 (5 post-conception week), and two embryonic eyes from the same donor 
(7.5 post-conception week) were collected. Optic cups were dissected out and chopped in 

several small pieces to facilitate dissociation in 500 μL of digestion buffer. Two rabbit eyes 
(from different animals) with 30-day integrated hESC-RPE were enucleated and neuroretina, 

choroid and RPE layer, were dissected out and mixed together in 500 μL of digestion buffer. 
After digestion (37°C, 25 min on a 300g rotator, resuspended every 5 min), samples were 

filtered using a 30μm strainer followed by Dead Cell Removal kit. At this stage, one of the 
rabbit eye cell samples was stained with mouse anti-human HLA-ABC-FITC; HLA-ABC-

positive cells were FACS-sorted, collected and resuspended to 1000 cells/μL in 1% BSA in 
PBS. The rest of the samples were also resuspended to 1000 cells/μL in 1% BSA in PBS prior 

to scRNA-seq. 

 

2.5.3. Single-Cell RNA Sequencing Analysis 
Cells were either transported at 4°C to the Eukaryotic Single Cell Genomics Facility 

(ESCG, SciLifeLab, Stockholm, Sweden) or used in-house to prepare cDNA libraries for 
scRNA-seq. The 10X Genomics Single Cell 3’ Reagent Dual Index Kit v2 and v3.1 (10x 

Genomics, CG000315) was used, sometimes with an additional Cell Multiplexing Oligo 
Labeling step (10x Genomics, CG000391), followed by protocol CB000388 and sequencing 

on a NovaSeq 6000 (ESCG) or Illumina Nextseq 2000 (in-house). Cell Ranger 3.1.0 was used 
to convert base call files to FASTQ format, map sequencing reads to the human GRCh38 

reference transcriptome, and generate feature-barcode matrices. For the E1C3 cell line 

sequenced at NovoNorDisk, CellRanger 3.0.2 was used. Quality control, normalization, 
dimensionality reduction, and visualization were performed using the scanpy and velocyto 

modules (La Manno et al., 2018; Wolf et al., 2018). For samples on which RNA velocity was 
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performed, the velocyto run10x command was used on CellRanger sorted BAM files to 

produce loom files containing spliced and unspliced counts. Cell filtering, dimensionality 
reduction and visualization criteria are provided for each individual sample in the 

Supplemental Experimental Procedures and Table 2.1. 
 

2.5.4. Subretinal Transplantation and In Vivo Imaging 
Dissociated hESC-RPEs were injected (50 μL; 50,000 cells) subretinally using a 

transvitreal pars plana technique in New Zealand white albino rabbits (Bartuma et al., 2015; 

Petrus-Reurer et al., 2017, 2018). SD-OCT and confocal scanning laser ophthalmoscopy was 
performed to obtain horizontal cross-sectional B-scans and en face fundus in vivo images, 

respectively. 

 

2.5.5. Data and Code Availability 
FASTQ files, processed feature-barcode count matrices, annotated h5ad/loom files, 

and other metadata are available on GEO (GSE164092). Jupyter notebooks for the single-cell 
analyses are shared at https://github.com/lamanno-epfl/rpe_differentiation_profiling_code. 

Datasets are available for interactive visualization and analysis at https://asap.epfl.ch/ under 
public keys ASAP 75-90 (David et al., 2020). 
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2.6. Supplementary Materials 
2.6.1. Supplementary Figures 

 
Figure S2.1. Cellular heterogeneity analysis of hESC-RPE differentiation. Related to Figure 2.1. 
(A) Graphs showing quantification of cobblestone morphology throughout differentiation in the HS980, 
KARO1, and E1C3 cell lines using the junction score methodology and software developed by Joshi et 
al., 2016. (B) Brightfield image of undifferentiated hESCs in the HS980 line. Scale bars: 100µm; inset 
20µm. (C) Principal component (PC) representation of hESCs in the HS980 line. (D) PC representation 
of in vitro hESC-RPE time points across three lines, colored by day. (E) Bar graph of average 
pluripotency, retinal progenitor and RPE signature scores by differentiation day. Error bars represent 
standard deviation of the mean over three cell line replicates. (F) Schematic of AUC variance evaluation 
metric. (G) Graph showing the percentage of cells positive (>0.5 normalized UMI counts) for 
pluripotency marker genes at each time point. (H, I) UMAPs showing normalized gene expression of 
pluripotent stem cells markers (H) and RPE markers (I) in undifferentiated hESCs and at D60. (J) 
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Principal component representation of hESC-RPE differentiation across all lines colored by assigned 
cell cycle phase. 
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Figure S2.2. Gene expression characterization and canonical correlation analysis of early 
differentiation. Related to Figure 2.2. (A) Heatmap of enriched genes by primary clusters, grouped 
by cell line, at D7 and D14 of hESC-RPE differentiation. (B) UMAP representation of HS980 
differentiation at D7, D14, and D30, colored by cell type. (C) Heatmap of top enriched genes of each 
cell type cluster at D7. (D) Heatmap of top enriched genes of each cell type cluster at D14. (E) D7 and 
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D14 cell HS980 populations projected on a shared low dimensional subspace using canonical 
correlation analysis (CCA; see Experimental Procedures), colored by cell type, differentiation day, and 
cell cycle phase. (F) UMAP representation of D7 and D14 cells, across all three lines, integrated with 
CCA. (G) UMAPs showing gene expression in all three lines of fundamental cell type markers for Inner 
Ear (InnEar), Lateral Fold (LatFold), Lens Placode (LensPlac), Mesenchyme (MesCh), and Retinal 
Progenitor (RetProg) from D7 to D14. Expression of neural crest inner ear (FOXC1, OTOGL) and lateral 
fold (DLX5, DLX6) markers decreases from D7 to D14. (H) Heatmap of enriched genes by cell type at 
D30 across all three lines. (I) Top: Transcription factor (TF) activity scores for SOX2, RAX, VSX2, OTX2, 
and MITF obtained by SCENIC analysis. Bottom: UMAPs showing gene expression of the top four 
inferred target genes of each TF at D30 of differentiation in HS980. (J) Schematic of the proposed 
relationship among the various secondary clusters during pigmentation induction. Edges indicate 
putative relationships between cell types identified at different time points.  
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Figure S2.3. Characterization of RPE differentiation in 3D embryoid bodies and compared to 
embryonic references. Related to Figure 2.3. (A) UMAP representation of EB differentiation a D7 
(181 cells), colored by normalized UMI count of progenitor (SOX2, PAX6), pluripotency (SALL4, 
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LIN28A) and regional (EMX2, POU5F1) marker genes. (B) Heatmap of enriched genes by cell type at 
EB at D14. (C) Signature scores for forebrain, midbrain and hindbrain visualized on D7 and D14 
monolayer cells. Scores were computed as those in Figure 2.3B. (D) Heatmap of enriched genes by 
cell type at EB at D28, with percent composition of total EB population. (E) UMAP representation of a 
human embryonic optic vesicle (2,637 cells) dissected at 5 weeks (Carnegie Stage 13). Cluster 
identities include: optic cell types derived from retinal progenitors (RetProg), such as retinal pigment 
epithelium (RPE), neural retina (NR), and optic stalk (OS), in addition to periocular mesenchyme 
(MesCh), cranial neural crest (CrNeCr), immune, and smooth muscle. (F) Top: UMAP representation 
of scRNA-seq data from two human fetal eyes at week 7.5, colored by cell type. Bottom: UMAP of each 
individual fetal eye separately. (G) Violin plots of enriched genes in the identified W7.5 clusters. (H) 
Heatmap of normalized enriched gene expression. Genes were selected using an enrichment score by 
cell type in (F). (I) Retinal progenitor and RPE log2 normalized gene expression of cycling, Early and 
Mid RPE markers in the RPE cell cluster from (F). 
 



 69 

 
Figure S2.4. Characterization of CD140b-High and NCAM1-High sorted populations exposed to 
RPE differentiation conditions. Related to Figure 2.4. (A-B). Pearson’s correlation coefficients were 
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computed between 5,412 and an RPE signature (A) or 4,664 genes and a neural signature (B) using 
normalized counts and cells belonging to the D30 retinal progenitor and RPE clusters or retinal 
progenitor and neural clusters, respectively. (C) UMAPs showing gene expression of progenitor 
markers in scRNA-seq hESC-RPE at D30 in the HS980 cell line. (D) Camera pictures of hESC-RPE 
D30 cultures. (E) Brightfield and immunofluorescence stainings of hESC-RPE D30 cells showing co-
expression of RAX, NCAM1 and Ki67 markers. Scale bars: top 1mm; bottom 100µm. (F) scRNA-seq of 
4,072 single cells from NCAM1-High sorted, CD140b-High sorted, and unsorted D30 cells, colored by 
cell type. See Figure 4E for composition by sample identifier. (G) Heatmap of enriched marker genes 
in cell types of sorted populations at D30, with cell type composition percentages for both sorted 
populations. (H) Brightfield images of unsorted, CD140b-High and NCAM1-High populations at D33, 
D40, D45, and D60. FACS sorting of the two populations was performed at D30. Scale bars: 100µm; 
inset 20µm. (I) Graph showing the percentage of positive cells expressing the Ki67 proliferation marker 
in hESC, unsorted, CD140b-High and NCAM1-High populations at the moment of FACS sorting (D30) 
and D35, D40, D45, and D60. Bars represent mean +/-SEM from three independent experiments. (J) 
Brightfield and immunofluorescence images showing expression of VSX2 and NCAM1 in unsorted, 
CD140b-High and NCAM1-High populations after FACS sorting at differentiation D35, D40, D45, and 
D60. Scale bars: 200µm. (K) Graphs representing RT-qPCR of retinal progenitor (RAX, PAX6) and 
RPE (MITF, TYR) marker genes in unsorted, CD140b-High and NCAM1-High populations at the 
moment of sort and at post-sort D30, 35, 40, 45, and 60. (L) scRNA-seq of 3,068 single cells from 
NCAM1-High sorted, CD140b-High sorted, and unsorted D60 cells, colored by cell type. See Figure 4K 
for composition by sample identifier. (M) Heatmap of enriched marker genes in cell types of sorted 
populations at D60, with cell type composition percentages for both sorted populations. 
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Figure S2.5. Characterization of late differentiation and overall gene expression correlation. 
Related to Figure 2.6. (A) Plot displaying the probability outputted by a pluripotency classifier when 
inputted data from in vitro cells at all time points. A random forest classifier was trained on a mixture of 
hESCs from this and another study (Cuomo et al 2020; see Experimental Procedures) (B) Scatter plot 
of the two first principal components of all D60 and hESC in vitro cells. (C) UMAP overlayed with MITF 
and ACTA2 gene 11 expression at D30, D38, D45, and D60. Cells are labeled as MITF+ (maturing 
RPE), MITF+ACTA2+ (EMT-RPE), or other (non-RPE cell types). (D) Bar graphs showing the gene 
expression differences between EMT-RPE and maturing RPE. EMT-RPE expresses EMT markers 
ACTA2, TAGLN, and MYL9 more highly, whereas RPE markers MITF, OTX2, and SFRP5 are more 
highly expressed in non-transitioning RPE. (E-F) Line plots showing average expression of RPE-EMT 
(E) and mature RPE (F) along a mesenchymal-epithelial axis of variation determined by fitting a 
principal curve (see Experimental Procedures). Colored bars on the x-axis indicate time point and RPE 
status of cells along the axis. (G) Left: UMAP representation of 1,423 single cells at hESC-RPE D38 
without replating at D30. Right: heatmap of enriched genes by cell type. (H) Left: UMAP representation 
of 772 single cells at hESC-RPE D60 without replating at D30. Right: heatmap of enriched genes by 
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cell type. (I) Top: representative flow cytometry plots for HS980 cell line showing CD140b cell surface 
marker expression at D38 and D60 for replated and non-replated conditions. Dotted lines represent 
hESC (negative control). Bottom: bar graphs show the average of CD140b marker expression in the 
stated conditions and time points for both HS980 and KARO1 cell lines. (J) Violin plot displaying the 
quantification of cobblestone morphology at D38 and D60 with and without replating in the HS980 cell 
lines using the junction score methodology and software developed by Joshi et al, J Ocul Pharmacol 
Ther. 2016. (K) Graph showing distribution of classifications of D38 and D60 RPE cultures, with and 
without replating (see also Figures 2.6 and S2.6). Bars represent mean +/-SEM from three independent 
experiments. 
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Figure S2.6. Ordinal classification of in vitro hESC-RPE. Related to Figure 2.6. (A) UMAP 
representation of Hu et al dataset of 783 human fetal cells from various time points in development, as 
used in the ordinal classifier (see Figure 2.7). Cells were colored into five categories for classification. 
(B) Heatmap showing an overview of uniquely enriched retinal progenitor and RPE marker genes in 
the data in (D). (C) Plot showing ordinal classification of reference embryonic RPEs at weeks 5 and 7.5 
(see Figures 2.3 and S2.3). (D) Plots showing ordinal classification for hESC-RPE differentiation data 
in the HS980, KARO1, and E1C3 cell lines individually. (E) UMAP representation of RPE differentiation 
13 day 90 in H9 cell line (9,456 single cells) re-analyzed from Lidgerwood et al, Genomics Proteomics 
Bioinformatics 2020. Cells colored and labeled by newly-annotated cell types. (F) UMAP representation 
of RPE differentiation day 432 (1 Year) in H9 cell line (3,216 single cells) re-analyzed from Lidgerwood 
et al, Genomics Proteomics Bioinformatics 2020. Cells colored and labeled by newly-annotated cell 
types. (G) Dot plot of marker gene expression for RetProg, CyclingRPE, EMT-RPE, EarlyRPE, MidRPE, 
and LateRPE in (A-B). (H) Graph showing distribution of ordinal classifications of various differentiated 
RPE culture protocols, including the 2D monolayer protocol from this study (20,682 cells), 3D EBs at 
D60 (Petrus-Reurer et al, 2020; 294 cells), 2D D95 H9 (Lidgerwood et al., 2021; 9,456 cells) and 2D 
D432 H9 (Lidgerwood et al., 2021; 3,216 cells). (I) Bar graph of 227 hESC-RPE grafted cell BEST1 and 
pigmentation statuses after 30 days into the albino rabbit subretinal space. NuMA+ human cells from 
ten sections and three rabbits were manually segmented and assessed by immunofluorescence 
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(BEST1 expression) and brightfield (Pigmentation). (J) Scatter plot of the BEST1 normalized intensity 
and the pigmentation normalized intensity for 227 grafted NuMA+ cells and 227 NuMA- control cells. 
Cells are colored by histological status (Control, BEST1+, PIGM+, BEST1 & PIGM+, and BEST1- & 
PIGM-). Red dotted lines indicate the 97.5th percentile threshold of the signal observed in the negative 
control cells. 
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Figure S2.7. Transcriptional analysis of albino rabbit and human retinas. Related to Figure 2.7. 
(A) Annotated UMAP representation of 5,538 human cells from two human 15 eyes (1,564 cells and 
3,706 cells), categorized into 13 different cell types. Additional RPEs and melanocytes (264 cells) were 
re-analyzed and incorporated from Voigt et al, 2019. (B) Annotated UMAP representation of 1,965 
rabbit cells categorized into 13 different retina cell types. (C) Heatmap of enriched marker genes for 
adult eye cell types. (D) Heatmap of enriched marker genes for rabbit eye cell types. Genes were 
selected from among the top 20 enriched genes per cluster for (C) and (D). (E) CCA integration of 
human and rabbit eyes. Integration was performed using Seurat on 2,000 enriched genes from a total 
of 9,889 genes with shared annotations between the two species (see Methods 2.5). 
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2.6.2. Supplementary Tables 

Please refer to the published article for the relevant supplemental tables:  

https://doi.org/10.1016/j.stemcr.2022.05.005  
 

2.7. Appendix 
This section briefly presents some ongoing follow-up work in collaboration with the 

Lanner Lab, led by Laura Baqué Vidal, to transcriptomically compare hESC-derived RPE cells 
after cryopreservation. Here, we performed scRNA-seq of RPE that were differentiated for 60 

days and re-plated for three days before cryopreservation; this second replated step was 
found to be necessary for cell viability with cryopreservation. To understand this finding, we 

compared these D60+3 (D63) cells to D60 cells from the original study to investigate whether 
the RPE cells are of equal maturity and whether there are any other sub-populations that 

emerge. From my analyses, it seems that D60+3 (D63) cells tend to de-differentiate slightly, 
with a larger fractions of EMT-RPE and increased cell cycle signatures (Fig. A2.1). No other 

off-target populations arise. These findings suggest that hESC-derived RPE retain enough 

plasticity when replated to be suitably cryopreserved. Furthermore, replating may specifically 
allow for this by facilitating an increase in expression of EMT-related marker genes typical of 

an earlier RPE state (Fig. S2.5). A similar phenomenon was observed in the original study 
after D30 replating (Fig. 2.6, S2.6). For more considerations, please see Chapter 5. 

 

https://doi.org/10.1016/j.stemcr.2022.05.005
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Figure A2.1. Single-cell transcriptomes of hESC-RPE after cryopreservation show a global de-
differentiation and increased proliferative capacity. (A) Principal component (PC) representation of 
D60 (1,236 cells) and D63 (3,417 cells; D60+3 additional days after a second replating step) populations 
colored by time point (left) or cell type class (right). (B) Scatter plots of log2 normalized expression for 
neuroepithelial progenitor (NCAM1), EMT-RPE (ACTA2), and RPE (MITF) marker genes. (C) PC plots 
showing EMT status of D60 (top) and D63 (bottom) cells, according to the metrics previously defined in 
Fig. S2.5.  (D) Dot plot showing ordinal classification of single hESC-derived KARO1 cells at D60 (1,236 
cells) and D63 (3,417 cells) of differentiation at six different time points along embryonic stages (c.f. 
Fig. 2.6F). (E) Gaussian kernel density graph showing classification distribution for cells in (D) (c.f. Fig. 
2.6G). Ordinal classification was performed as previously described in Petrus-Reurer, Lederer, et al 
(2022). (F) Bar plot showing the percentage of total cells at D60 and D63 in the proliferative (S, G2/M) 
and non-proliferative (G1) cell cycle phases. A larger fraction of cells are cycling at D63 than D60. (G) 
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Bar plot showing the percentage of D60 and D63 cells positively expressing marker genes of early RPE 
(MITF, TYRP1, RLBP1), late RPE (RPE65, BEST1, TTR), EMT-RPE (ACTA2, TAGLN, FN1), retinal 
progenitor (NCAM1, RAX, PAX6), proliferative (MKI67, MCM6), and pluripotency (POU5F1, NANOG) 
cell types. A cell was defined as having positive expression if the normalized log2 gene expression was 
greater than 1. A larger fraction of D60 cells express late RPE markers, whereas more D63 cells 
express EMT-RPE and proliferative genes. There are no expressed pluripotency markers at both time 
points. 
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3.0. Preface 
 In this chapter, I describe research carried out as a collaboration between the groups 
of Dr. Felix Naef and Dr. Gioele La Manno at the EPFL. The findings described here are 

adapted from the preprint version of a research article entitled “Statistical inference with a 

manifold-constrained RNA velocity model uncovers cell cycle speed modulations.” I am the 
first author of this publication. I developed the VeloCycle model, performed all computational 

analyses, designed the figures, and wrote the manuscript. Experimental data collection and 

3. 
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model conceptualization was performed in part with the help of other author contributions, as 

indicated in Chapter 3.6.4. 
 

3.1. Synopsis 
Across a range of biological processes, cells undergo coordinated changes in gene 

expression, resulting in transcriptome dynamics that unfold within a low-dimensional manifold. 

Single-cell RNA-sequencing (scRNA-seq) only measures temporal snapshots of gene 
expression. However, information on the underlying low-dimensional dynamics can be 

extracted using RNA velocity, which models unspliced and spliced RNA abundances to 
estimate the rate of change of gene expression. Available RNA velocity algorithms can be 

fragile and rely on heuristics that lack statistical control. Moreover, the estimated vector field 

is not dynamically consistent with the traversed gene expression manifold. Here, we develop 
a generative model of RNA velocity and a Bayesian inference approach that solves these 

problems. Our model couples velocity field and manifold estimation in a reformulated, unified 
framework, so as to coherently identify the parameters of an autonomous dynamical system. 

Focusing on the cell cycle, we implemented VeloCycle to study gene regulation dynamics on 
one-dimensional periodic manifolds and validated using live-imaging its ability to infer actual 

cell cycle periods. We benchmarked RNA velocity inference with sensitivity analyses and 
demonstrated one- and multiple-sample testing. We also conducted Markov chain Monte 

Carlo inference on the model, uncovering key relationships between gene-specific kinetics 
and our gene-independent velocity estimate. Finally, we applied VeloCycle to in vivo samples 

and in vitro genome-wide Perturb-seq, revealing regionally-defined proliferation modes in 

neural progenitors and the effect of gene knockdowns on cell cycle speed. Ultimately, 
VeloCycle expands the scRNA-seq analysis toolkit with a modular and statistically rigorous 

RNA velocity inference framework. 

 

3.2. Introduction 
Single-cell RNA-sequencing (scRNA-seq) captures a static snapshot of gene 

expression in a destructive manner, making it difficult to interpret dynamical aspects of 

biological processes. To address this issue, computational approaches have emerged that 
reconstruct temporal information among cellular states from scRNA-seq data (Lederer & La 

Manno, 2020). For example, RNA velocity exploits the ratio between unspliced and spliced 

transcripts to estimate a vector that describes the rate of change of gene expression (La 
Manno et al., 2018). The model considers a system of first-order ordinary differential equations 

describing the mRNA life cycle and whose key parameters are splicing and degradation rates. 
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Under simplified assumptions, it is possible to estimate these parameters from data (Svensson 

& Pachter, 2018). 
The original RNA velocity framework, implemented in velocyto, fixes a common 

splicing rate across genes to infer a relative gene-dependent degradation rate from spliced-
unspliced phase portraits (La Manno et al., 2018). This parameter is then plugged into the 

differential equations to obtain a gene-specific velocity. An extended model for the estimation 
of RNA velocity is the “dynamical model,” implemented for the first time in the tool scvelo, 

which introduced for each gene a cell-wise latent time to support the estimation of kinetic 
parameters varying across a pseudotemporal axis, making them directly identifiable (Bergen 

et al., 2020). By exploiting expectation-maximization, scvelo estimates latent time and kinetic 
parameters. Other methods have harnessed these modeling ideas or worked towards 

extending them (Burdziak et al., 2023; Z. Chen et al., 2022; M. Gao et al., 2022; Gorin et al., 

2020; Lange et al., 2022; C. Li et al., 2022; Qiao & Huang, 2021; X. Qiu et al., 2022; Tedesco 
et al., 2022; Weng et al., 2021). However, RNA velocity analysis remains highly sensitive to 

pre-processing choices and requires various heuristics to obtain the final estimates. 
A pervasive yet potentially dangerous heuristic is the nearest-neighbor smoothing 

used to approximate expectations on the RNA counts; this procedure can let information bleed 
from some genes to others and cause distortions (Bergen et al., 2021). Additionally, the use 

of general non-linear dimensionality reduction techniques to bring the high dimensional 
velocity vector onto a two-dimensional embedding (e.g., UMAP, tSNE) risks introducing 

artifacts (Chari & Pachter, 2023). For instance, velocities associated with orthogonal 
processes, such as proliferation and differentiation, may be blended together, and adjacent 

yet unrelated cell populations might affect the resulting vector. Other algorithmic steps and 

corner cases that typically require attention have already been noted (Gorin et al., 2022; La 
Manno et al., 2018). However, a seldom discussed, yet central, limitation of most RNA velocity 

models is that velocity estimation is not performed jointly on all genes. This strategy is 
problematic, even when some form of global reconciliation is sought; for example, when 

aggregating individual latent times into a global one, the obtained kinetic parameter estimates 
remain independent. This leads to a physically and geometrically inconsistent velocity vector, 

whose gene-specific components are on different timescales and whose resulting direction is 
not necessarily tangent to the low dimensional manifold cells traverse. This is inappropriate 

for unbiased forecasting, as future states predicted by integration are bound to rapidly escape 

the gene manifold and inhabit unlikely regions of the expression space. 
Finally, the lack of established ground truths for RNA velocity limits the rigorousness 

of sensitivity analyses that can be performed on newly developed methods, creating a 
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challenging environment to benchmark advanced extensions (Aivazidis et al., 2023; Gayoso 

et al., 2023; Gu et al., 2022; Qin et al., 2022). In particular, overparameterization becomes a 
concern, especially for models with less stringent assumptions, several non-linearities, or 

many degrees of freedom. Furthermore, proposed Bayesian formulations of the “dynamical 
model” return a high-dimensional mean-field posterior, which is not consistent with the 

assumption of low rank dynamics and is poorly suited to inference on the velocity and 
statistical comparisons of cell population dynamics. 

We addressed these challenges by reformulating RNA velocity analysis as an 
inferential framework rooted in a manifold-constrained probabilistic model. Adopting this 

approach, we propose an explicit parametrization of RNA velocity as a field defined on the 
manifold coordinates. We focus on one-dimensional periodic manifolds in a framework called 

VeloCycle, enabling model validation and application to cell cycle dynamics. The cell cycle is 

the most ubiquitous periodic process in biology and plays a fundamental role in embryonic 
development, tissue regeneration, and disease (Tyson & Novák, 2022; Wiman & Zhivotovsky, 

2017). Despite being pervasive in scRNA-seq datasets, default cell cycle analysis pipelines 
(Satija et al., 2015; Wolf et al., 2018) are still restricted to categorical phase assignment based 

on a small selection of marker genes (Eastman & Guo, 2020; Schwabe et al., 2020; Tirosh et 
al., 2016). In this work, we not only tackle the broader issue of maintaining geometrical 

constraints during velocity estimation, but also make strides in improving cell cycle analysis in 
scRNA-seq data, highlighting its continuous nature and providing control over the actual 

biological time scales. We apply VeloCycle across different biological contexts, experimentally 
benchmark against time-lapse microscopy measurements, and illustrate the ability to perform 

statistical tests. 

 

3.3. Results 
3.3.1. Manifold-constrained RNA velocity addresses shortcomings of other 

approaches 
We first sought to redesign RNA velocity estimation by unifying manifold and velocity 

inference into a single probabilistic framework (Fig. 3.1A, left). This framework is articulated 
around a generative model with explicit low-dimensional dynamics at its core. In our model, 

cells move in time as points on a low-dimensional manifold x embedded within the space of 
all measured genes. Spliced and unspliced molecules are formulated as a function of x only 

(i.e., s(x), u(x)). Then, by parameterizing velocity as a function of the manifold coordinates 

V(x), we constrain RNA velocity vectors to lie tangent to the manifold (Fig. 3.5.1A, right). This 
is contrary to previous approaches where velocity direction is unconstrained, as it is the result 
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of gene-wise estimates (Bergen et al., 2021; Gorin et al., 2022) (Fig. 3.1B). We take the 

derivative of the expected spliced counts, apply the chain rule, and plug in the kinetic 
equations to obtain a velocity vector field interlocking the kinetic parameters of all genes and 

the dynamics of the latent coordinates (Methods 3.5.1-3.5.3). Noise in the measured raw read 
counts is modeled as a negative binomial, also as a function of the manifold x, and 

biochemically informed priors are chosen for all other parameters, including splicing (β) and 
degradation (γ) rates for each gene (Fig. 3.1C; Methods 3.5.4). 

This formulation constitutes a latent variable framework for estimation of the gene 
expression manifold and RNA velocity. The choice of a specific dimensionality, topology, and 

associated functional parametrization constraining its geometry can be tailored in an 
application-specific manner (Fig. 3.1D). We propose inference in two statistical learning 

procedures: (1) manifold-learning to jointly learn the parameters defining the geometry of the 

gene expression space and assign each cell a manifold (latent) coordinate, and (2) velocity-
learning to find a velocity field and kinetic parameters, conditioned on the manifold geometry 

and cell coordinates (Fig. 1D-E). 
We implemented this scheme considering a scenario where the prior information on 

manifold topology is strong: the cell cycle, a one-dimensional periodic space on which gene 
expression varies smoothly and can be parametrized using a Fourier series. Our framework, 

VeloCycle, constitutes a generative probabilistic model with two groups of latent variables and 
is solved in Pyro (Bingham et al., 2018.) (Methods 3.5.4, Table 3.1). The first group relates 

to manifold-learning and defines the low-dimensional manifold x parameterized as cell cycle 
phase (φ) and gene-specific Fourier coefficients (ν0, ν1sin, ν1cos) using the expected spliced 

counts as a function of the phase (Fig. 3.1E, S3.1A-B). The second group relates to velocity-

learning from the expected unspliced counts and includes the gene-specific degradation rates 
(γg), effective splicing rates (βg)  and velocity harmonic coefficients (νω), which parameterize 

an angular speed function (ω(φ)) describing how cell cycle velocity changes along the 
manifold (φ) (Fig. 1E, S1C-D; Methods 3.5.4). Using stochastic variational inference (SVI), 

VeloCycle returns the joint posterior probability of the latent variables, which can be used to 
(i) perform statistical velocity significance testing, (ii) characterize underlying correlations 

between the uncertainty of latent variables, (iii) estimate cell cycle velocities on a biologically-
relevant time scale, and (iv) facilitate the application of velocity to small datasets by transfer 

learning (Fig. 3.1F).  
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Figure 3.1. Statistical inference of RNA velocity with a manifold-constrained framework for the 
cell cycle. (A) Schematic of a joint framework for parameterization of the gene expression manifold 
and RNA velocity field. By defining velocity as a function of the manifold coordinates, the velocity vector 
field is constrained to be tangent to the manifold. This is achieved by interlocking the kinetic parameters 
of all genes with latent coordinate dynamics. (B) Schematic of unconstrained velocity estimation 
described by standard velocity approaches. By estimating the vector field as a combination of 
incorrectly-scaled, gene-dependent components, velocity is no longer tangent to the manifold. (C) Plate 
diagram of the probabilistic relationship among latent variables and observable data (S, U), modeled 
using a negative binomial distribution. S is sampled from the expectation, manifold coordinates, and 
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manifold geometry. U is sampled from the manifold information, kinetic parameters, and velocity 
function. (D) Top: manifold formulation is defined for the spliced counts (s) using the cell-specific 
manifold coordinates (x) and a gene-specific geometric family (f), with which observed data can be 
directly mapped to the high-dimensional manifold space. Bottom: velocity formulation is defined for 
unspliced counts (u) as a velocity field function (V) and interlocked kinetic parameters (β, γ). We can 
obtain a velocity estimate by taking the chain rule over these entities. (E) Schematic of the two 
procedure steps used by VeloCycle to solve manifold-constrained velocity estimation for periodic 
processes such as the cell cycle. First, manifold-learning estimates the manifold coordinates and 
geometry; second, velocity-learning estimates the kinetic parameters and manifold-dependent velocity 
function. (F) Schematic of some types of velocity analyses that are possible for the first time with 
VeloCycle, including: (i) statistical credibility testing between multiple samples and against a zero-
velocity null hypothesis; (ii) posterior marginal distribution analysis of velocity and kinetic parameters 
by Monte-Carlo Markov Chain (MCMC) sampling; (iii) extrapolation of velocity to real biological time of 
cell cycle speed with live microscopy; and (iv) transfer learning of gene manifold from high-content, 
quality references to low-content, noisy target datasets. 
 

3.3.2. Sensitivity analysis on simulated data validates VeloCycle 
After designing our model, we sought to evaluate its performance on simulated data, 

as no real dataset is endowed with ground truth information for phases, speed, and RNA 
kinetic parameters. We employed a simulation intended to preserve important relations 

expected in real data (La Manno et al., 2018) and avoid biologically improbable scenarios 
(Methods 3.5.5; S3.2A-C). Specifically, we incorporated positive correlations among the 

splicing and degradation rates (r=0.30) and baseline expression levels (r=0.30) (Fig. S3.2A). 
This structure naturally imposed a positive correlation between the splicing rate and total 

spliced counts as well as a negative correlation between the splicing rate and total unspliced 
counts (Fig. S3.2B-C). 

First, we evaluated manifold-learning across 20 individually simulated datasets each 

containing 3,000 cells and 300 genes and found VeloCycle inferred phases that closely 
matched the ground truth, with a circular correlation of rφ = 0.95 (Fig. 3.2A-B). The estimation 

error was consistently smaller than the uncertainty defined by the posterior, with true values 
falling within the 90% credible interval for 99.2% of cells (Fig. S3.2D). We also verified that 

the gene-specific Fourier series coefficients closely tracked the original ground truths (rν0 = 
0.95, rν1sin = 0.98, and rν1cos = 0.98) (Fig. 3.2C, S3.2E). For these parameters, wider credible 

intervals corresponded to more noisy genes with a larger coefficient of variation (Fig. S3.2F). 
Overall, these results confirmed that VeloCycle correctly identified the manifold geometry and 

cell coordinates. To assess robustness of the model on different dataset sizes, we performed 
sensitivity analysis, varying the number of cells and genes (see Methods 3.5.5). We found 

that estimates were broadly accurate, with a circular correlation coefficient greater than 0.70 

obtained using as few as 100 cells or 100 genes (Fig. 3.2D). We further benchmarked our 
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inference against DeepCycle, a recent autoencoder-based method (Riba et al., 2022). This 

comparison showed that VeloCycle was typically more accurate (60% lower MSE on average, 
rφ = 0.95) than DeepCycle (rφ = 0.73), despite the latter using velocity moments to achieve its 

estimations (Fig. 3.2E-H). 
Next, we conditioned VeloCycle on the simulated phase and gene harmonics to assess 

velocity-learning. We observed accurate estimation of gene-wise kinetic parameters across 
20 individually simulated datasets, with a particularly close match of degradation-splicing rate 

ratios to the ground truth (rγ/β = 0.997, rβ = 0.918, rγ = 0.617; Fig. 3.2I, S3.2G-H). Importantly, 
VeloCycle was capable of returning an accurate estimate of the mean angular velocity 

(percent error running 5.4-22.6%; Fig. 3.2J). VeloCycle recovered the biological correlation 
structure among estimated kinetic parameters and total counts, without imposing them in the 

model formulation (Fig. 3.2K, cf. Fig. S3.2A-B). 

We performed sensitivity analysis to understand how the estimations behaved at 
different ground truth velocities. We considered a large span of cell cycle velocities fully 

encompassing the range of biologically plausible ones (16 values from 0 to 1.5 radians per 
mean half-life, or rpmh, four simulations each). The results highlighted a stable performance 

of the method, with estimates 0.2-35.8% away from the ground truth (Fig. 3.2L-M). Error 
increased at slower velocities, with a lower Pearson’s correlation between kinetic parameters 

and ground truths (Fig. S3.2I, left). Indeed, slower velocities corresponded to shorter delays 
between unspliced and spliced RNAs (Fig. 3.2N; Methods 3.5.4.5), which are more difficult 

to characterize accurately. In all simulations, the degradation-splicing rate ratios almost 
perfectly matched the ground truth (mean rγ/β=0.99) (Fig. S3.2I, right). Finally, we investigated 

whether velocity-learning performance was affected by dataset size. We detected a 

dependence on the number of cells and genes, with the highest accuracy and tightest posterior 
ranges obtained on larger datasets; however, using more cells could compensate for fewer 

genes, and vice versa (Fig. 3.2O and S3.2J). We established 500 cells (and a minimum of 50 
genes) or 350 genes (and a minimum of 50 cells) as the lower limits at which accurate velocity 

estimation can be performed. 
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Figure 3.2. Sensitivity analysis of VeloCycle on simulated data. (a) Scatter plot of cell cycle phase 
assignment (VeloCycle Estimated) compared to the simulated ground truth (GT). (b) Box plot of circular 
correlation coefficients between estimated and GT phases across 20 independently simulated datasets, 
each containing 3,000 cells and 300 genes. (c) Scatter plots of estimated and GT values for the gene 
harmonic coefficients (v0, v1sin, v1cos) using the dataset in (a). (d) Heatmap of the mean circular 
correlation coefficient between estimated and GT phases computed with varying numbers of cells and 
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genes. Each value is the average of three independent simulations. (e) Scatter plot of cell cycle phase 
estimation obtained by DeepCycle (Riba et al., 2022) compared to simulated ground truth. The same 
dataset shown in (a) was used. (f) Box plot of circular correlation coefficients between DeepCycle-
estimated and GT phases across the datasets shown in (b). (g) Box plots of per-cell mean squared 
error (MSE) for phase estimation with VeloCycle and DeepCycle. (h) Polar plots representing the phase 
difference between estimated and simulated GT for 30 randomly chosen cells from a single simulated 
dataset using VeloCycle (left) and DeepCycle (right). Each dot represents a cell, and lines connect the 
estimated phase assignment (Est; light gray) to simulated ground truth (GT; dark gray). (i) Scatter plot 
of estimated ratio between γg and βg compared to simulated GT for 300 genes. (j) Box plot of percent 
error between estimated and GT velocity (ω) across 20 simulated datasets with a GT of 0.4. (k) Scatter 
plots illustrating the recovered relationships among splicing rate (logβg), degradation rate (logγg), 
spliced counts, and unspliced counts for 300 simulated genes. (l) Top: scatter plot of estimated and GT 
estimates for 16 different simulated velocities between 0.0 to 1.5 radians per mean half-life (rpmh) for 
4 independently-simulated datasets. Bottom: box plots of posterior uncertainty intervals corresponding 
to the above simulations. (m) Scatter plot of percent error between estimated and GT velocity across 
conditions in (l). (n) Scatter plot of mean unspliced-spliced expression delay across conditions in (l). (o) 
Sensitivity analysis heatmap of the range among velocity estimates for 3 independently-simulated 
datasets, using varying numbers of cells and genes. The text value in each box represents the mean 
velocity over the 3 datasets, and intensity of the heatmap represents absolute range. The Pearson’s 
correlation coefficient (r) over 20 individual simulated datasets is indicated in red in (a), (c), (e), (i), and 
(k). Each green dot represents a single gene in (a) and (e). Each purple dot represents a single gene 
in (c), (i), and (k). 
 
3.3.3. VeloCycle manifold-learning estimates accurate and robust phases 

After validating on simulated data, we deployed VeloCycle on real datasets produced 
with different scRNA-seq chemistries. We reasoned that access to a cell cycle phase ground 

truth, even if categorical (e.g., G1, S, G2/M), would facilitate the evaluation of our phase 
assignments. Thus, we performed manifold-learning on a Smart-seq2 dataset of fluorescence 

ubiquitination-based cell-cycle indication (FUCCI) system-transduced mouse embryonic stem 

cells (mESC) that were index-sorted using fluorescence-activated cell sorting (FACS) 
(Buettner et al., 2015). We fit the cell cycle phase on spliced counts using a gene set 

representing a broad gene ontology (GO) query (Ontology Consortium et al., 2023) (Methods 
3.5.4.3, 3.5.1) and evaluated the results against FUCCI-FACS categories. Cells belonging to 

the same category were assigned to similar phases (Fig. 3.3A-B); a classifier based on two 
thresholds and trained on VeloCycle phases achieved 82.7% accuracy in predicting the 

annotations, almost matching the 87.8% accuracy obtained when training a logistic classifier 
on all genes (Fig. 3.3C). Furthermore, gene fits underlying manifold-learning closely replicated 

the expected sequential patterns of cell cycle genes. Among fits of high confidence were early-
peaking histone acetylase Hat1, followed by transcription factor Trp53, and the later 

anaphase-promoting complex member Ube2c (Fig. 3.3D). The gene succession and 

oscillation amplitude were recapitulated when performing manifold-learning on a smaller set 
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of 209 genes, anticipating that the method is effective on chemistries with lower sensitivity 

(Fig. 3.3E-F).  
Given our Fourier parametrization, we could classify genes by the phase of peak 

expression, oscillation amplitude, and estimation uncertainty (Table 3.2). Inspection of phase-
amplitude relations revealed that marker genes typically used for scoring in packages such as 

Seurat and scanpy (Satija et al., 2015; Wolf et al., 2018) (henceforth “standard markers”) 
clustered by phase, consistent with the FACS-based ground truth (Fig. 3.3G-H). Compared 

to non-markers, standard markers on average had a higher amplitude (mean 0.14 versus -
0.15) and lower posterior uncertainty (standard deviation 0.26 versus 0.43) (Fig. 3.3G). 

However, of the top 200 periodic genes based on amplitude, the vast majority (74.5%) were 
not standard markers (Fig. 3.3H), and many (n=78) could be equally or more confidently 

trusted (i.e., tighter posterior probability) as cell phase predictors (Fig. 3.3I). Among those 

were calcium-binding protein Calm2, splicing co-factor Son, and cyclin Ccnb1, which all play 
roles in cell proliferation (Berchtold & Villalobo, 2014; Gruber et al., 2019; Jeon, 2013; A. 

Sharma et al., 2010). 
We continued our scrutiny of manifold-learning using 10X Chromium data of human 

fibroblasts (Fig. 3.3J-K; Table 3.3). To put VeloCycle in relation to other approaches, we 
compared its estimated phases to those obtained by DeepCycle (Riba et al., 2022), finding a 

strong correspondence (human fibroblasts: r=0.882; Fig. 3.3L). Therefore, VeloCycle 
accomplishes similar phase estimation to DeepCycle but without using velocity and in tandem 

with fitting individual gene harmonics. As further validation that the correct cell cycle dynamics 
were captured, we observed a gradual increase in total UMIs along the phase, followed by a 

sharp drop corresponding to cytoplasm partitioning during cytokinesis (Fig. 3.3M). These 

results highlight that manifold-learning estimates a biologically-meaningful one-dimensional 
geometric space that tracks with the cell cycle across scRNA-seq chemistries. 

 



 90 

 
Figure 3.3. Manifold-learning and gene periodicity on different datasets and technologies.  (a) 
Scatter plot representing the phase assignment of 279 mouse embryonic stem cells, colored by their 
FACS-sorted categorical phase (G1, S, G2/M) (Buettner et al., 2015). (b) Density plot for FACS-sorted 
labels (G2, S, G2M) across the phase assigned by VeloCycle. (c) Bar plot reporting categorical phase 
predictor obtained using a two-thresholds decision tree trained on the VeloCycle phase estimates only 
versus a logistic regression classifier trained on the entire gene expression matrix. (d) Representative 
scatter plots of genes fits. Curved black lines indicate a gene-specific Fourier series obtained with 
manifold-learning. The “peak” indicates the position of maximum expression along the cell cycle 
manifold (VeloCycle φ). (e) Scatter plot of gene-wise peak position of maximum expression using a 
small (x-axis) or large (y-axis) gene set during manifold-learning for FACS-sorted mESC data. (f) 
Scatter plot of gene-wise peak position of gene-wise amplitude using a small or large gene set. (g) Box 
plots of gene-wise amplitude and harmonic coefficient uncertainties for marker and non-marker genes 
for FACS-sorted mESC.  (h) Pie chart of categorical composition for the top 200 periodic genes, as 
determined by amplitude. (i) Scatter plot of gene-wise total harmonic coefficient (ν) uncertainty and 
amplitude. Gene dots are colored as standard “markers” or “non-markers”. Red dashed lines represent 
the mean values for “markers.” (j) Polar plot of estimated gene harmonics for human fibroblasts data 
(Riba et al., 2022). Each dot represents a gene (n=160). The position along the circle represents the 
phase of maximum expression, and the distance from the center represents total amplitude. Colored 
genes (orange/green) are those used to compute a standard cell cycle score with scanpy or Seurat. (k) 
Selected scatter plots of genes fits for markers of early (CDKN3, CCND1), mid (CDC6, HELLS), and 
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late (CDK1, TOP2A) cell cycle progression obtained for the human fibroblasts data. (l) Scatter plot of 
phases estimated with VeloCycle compared to DeepCycle for 2,557 human fibroblasts. The circular 
correlation is indicated in red. (m) Scatter plot of total raw spliced UMI counts by VeloCycle phase. 
Black lines indicate the binned mean UMI level.  
 

3.3.4. Unspliced-spliced delays along VeloCycle phase identify realistic cell 

cycle velocities  
We next investigated whether the unspliced molecule counts together with the 

VeloCycle phase are sufficiently informative to estimate cell-cycle velocity. To explore this 

intuitively before performing the full inference, one can extract phases and gene harmonics 
with manifold-learning for unspliced and spliced UMIs independently and use an approximate 

formula for the velocity that we derived (Methods 3.5.4.2, 3.5.7). We applied this approach 

on two cultures of human RPE1 cells that were grown in parallel and under identical conditions 
so that we could also assess robustness by replicate comparison. First, we extracted the 

phases on each of the datasets by manifold-learning, then we measured the delays (i.e., the 
phase difference) between peak unspliced and spliced expression for each gene (Fig. 3.4A). 

We observed consistent and positive delays for the genes (Fig. 3.4B) that correlated well 
between replicates (r=0.90; Fig. 3.4C). We interpreted this correlation as the first evidence 

that the data contains velocity information on the cell cycle, so we proceeded to estimate a 
cell cycle period with the aforementioned approximate formula. The calculation returned a 

period 18.5 times the average half-life, which corresponds to 18.5h assuming a realistic 
average half-life of 1h (Fig. 3.4D). In addition to being an approximation, another limitation of 

the point estimate is that it is not based on a proper noise model and is not associated with an 

uncertainty measure. To obtain a more accurate estimate and statistical measures of 
confidence, we learned the complete Bayesian model (velocity-learning) on both RPE1 

replicates, conditioning on the random variables inferred by manifold-learning. Scaling the 
obtained velocity by the fitted average half-lives yielded average cell cycle periods of 20.1h ± 

0.2h and 20.0h ± 0.2h (mean ± 95% credible intervals) for the two replicates (Fig. 3.4E). The 
posterior distributions broadly overlapped (71.2% overlap), indicating no credible velocity 

difference between the two replicates. To confirm on real data that VeloCycle can estimate 
cell cycle speed along a dynamic range relevant biologically, we performed velocity-learning 

on mESC, a rapidly-cycling cell type (Bertels et al., 2021; Eastman et al., 2020). For this 
dataset, VeloCycle returned an estimation of 10.5 ± 0.3 average half-life (Fig. S3.3A). As with 

RPE1 cells, the model recovered kinetic parameters with expected relationships among total 

UMI counts and gene-specific splicing and degradation rates, as previously observed in 
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simulated data (Fig. S3.3B-E, cf. Fig. 3.2I). Taken together, these findings confirm VeloCycle 

can estimate a cell cycle velocity and sample informative posterior distributions.  
 

 
Figure 3.4. Analysis of delays and velocity scale in RPE1 cells. (a) Polar plot of the peak unspliced 
and spliced expression for 106 marker genes across two scRNA-seq replicates of RPE1 cells (4,265 
and 9,994 cells) analyzed with manifold-learning. Genes are colored by their categorical annotation in 
Cyclebase 3.0 (Santos et al., 2015). Unspliced gene fits were inferred separately, conditioned on cell 
phases obtained when running manifold-learning on the spliced UMIs. (b) Histogram of unspliced-
spliced delays (in radians) for 106 genes. Pearson's correlation is indicated in red. (c) Scatter plot of 
unspliced-spliced delays between two RPE1 cell line replicates. (d) Bar plot of the cell cycle periods 
obtained with a first-order-approximate point estimate (see Methods). (e) Posterior estimate plot of 
constant, scaled cell cycle speed (radians per mean half-life, rpmh) in two RPE1 cell line replicates. 
The black dashed lines indicate a mean of 500 posterior predictions, and the colored bar indicates the 
credibility interval (5th-95th percentile).  
 
3.3.5. A structured variational distribution preserves uncertainty correlations 
and leads to better uncertainty estimates  

Although we showed our variational formulation recovers accurate estimates of cell 

cycle phase and velocity in simulated and real data using stochastic variational inference 
(SVI), it is reasonable to question the limits of a simplified mean-field variational family in 

representing the structure of joint uncertainty among latent variables. We hypothesized that 

such a parametrization choice may lead to an overconfidence in the estimated velocity 
posterior because uncertainties on these latent variables may be inherently correlated (Fig. 

3.5A). A piece of evidence in this direction was the observation that estimates on random 
gene subsets fell outside the posterior credible interval of the fit on all genes (Fig. 3.5B). To 
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eliminate this bias towards the underestimation of velocity uncertainty, we decided to 

characterize the model joint posterior by sampling it with Markov Chain Monte Carlo (MCMC; 
Methods 3.5.4). Using a No U-Turn Sampler, we studied the posterior for human fibroblasts 

(Riba et al., 2022), with MCMC revealing a five-times wider uncertainty compared to mean-
field SVI (0.10 rpmh vs 0.02 rpmh; Fig. 3.5C). 

Consistent with our hypothesis, this wider credible interval manifested along with a 
correlated joint posterior, capturing dependencies among the uncertainty of different latent 

variables. Specifically, examining the posterior, we found samples of the angular speed (νω) 
and degradation rate (logγg) for certain genes that exposed a correlation structure (mean r = 

0.26; Fig. 3.5D). Moreover, for each gene we noticed a strong correlation (mean r = 0.96) 
between posterior samples of splicing (logβg) and degradation (logγg) rates (Fig. 3.5E). Both 

features cannot be captured by a mean-field variational distribution. 

These findings advocated for a recrafting of our variational distribution to 
accommodate typical features of the posterior inferred by MCMC, in order to maintain 

inferential accuracy but avoid significantly time-consuming sampling procedures. We 
reformulated our variational distribution with logγg and νω modeled as a low rank multivariate 

normal (LRMN) and with the logβ for each gene modeled as a normal conditional on the 
corresponding logγ (Methods 3.5.3.2). Upon retraining this new SVI+LRMN model, we 

obtained a velocity estimate with a larger uncertainty range (0.08 rpmh) than with mean-field 
SVI (Fig. 3.5C-E). Additionally, we detected a correlation among the SVI+LRMN posterior 

samples between logγg and νω for a subset of genes that overlapped with the results of 
MCMC; this resulted in a decreased Kullback-Leibler (KL) divergence between the SVI+LRMN 

and MCMC posteriors than between the SVI and MCMC posteriors (Fig. 3.5F, S3.4A).  

Importantly, there was a correspondence between the specific genes with high logγg 
and νω uncertainty correlation in both SVI+LRMN and MCMC (Fig. S3.4B). Genes with a 

greater correlation between logγg and νω tended to be those with larger unspliced-spliced 
delay (Fig. S3.4C). We speculated the degree of dependence between a gene’s logγg and νω 

is related to the extent it contributes to the velocity estimate. This was supported by a leave-
one-out experiment, where individual genes with smaller degradation rates were those most 

strongly affecting velocity estimates (Fig. S3.4C-D). The correlation between logγg and νω 
posterior uncertainty was also reproducible when SVI+LRMN was applied to mouse ESCs 

(Fig. S3.4E-F). Overall, these implementation changes led to generation of a more robust 

model that can be confidently used for inference, while preserving the underlying correlation 
structure of the true posterior. 
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Figure 3.5. Relationships between parameter uncertainties and choice of the variational 
distribution. (a) Schematic of the hypothetical scenarios where a gene has uncorrelated (left) and 
correlated (right) posterior uncertainty between logγg and νω. Blue circles represent the Gaussian 
kernel density of the distribution, and red lines represent an uncertainty interval between two arbitrary 
fixed points. (b) Left: posterior estimated velocity plot inferred for 2,557 cultured human fibroblasts (Riba 
et al., 2022) using the original stochastic variational inference (SVI) mode of VeloCycle. Right: posterior 
estimated velocity plot on human fibroblasts, estimated with VeloCycle for ten random subsamples of 
the data, each using only 50% of the genes. (c) Violin plots of scaled velocity (in rpmh) for human 
fibroblasts after estimation using the stochastic variational inference (SVI), Monte Carlo Markov Chain 
(MCMC), and low rank multivariate normal (SVI+LRMN) velocity-learning modes. (d) Violin plots of 
Pearson’s correlations between the degradation rate (logγg) and angular speed (νω) posterior 
uncertainties across 160 genes using different VeloCycle modes. (e) Violin plots of Pearson’s 
correlations between the degradation (logγg) and splicing (logβg) posterior uncertainties across 160 
genes using different VeloCycle models. (f) Density representation of overlapping logγg-νω posterior 
distributions between MCMC and either SVI (top) or SVI+LRMN (bottom) for TOP2A and RRM2 (black: 
MCMC; blue: SVI; red: SVI+LRMN). Kullback-Leibler divergence scores are shown in red. All posterior 
means were taken over 500 predictive samples. 
 

3.3.6. Cell tracking and labeling experiments validate computationally inferred 

velocities 
Estimates of a manifold-constrained cell cycle speed with VeloCycle are most 

conveniently expressed in units of mean half-lives (i.e., gene degradation rates, see Methods 
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3.5.4.1, 3.5.4.6). Since the average values of half-lives are typically known in many cell types, 

real time estimates of RNA velocity can be obtained and validated along the cycle. In this 
respect, we reasoned that time-lapse microscopy offers a compelling means for comparing 

VeloCycle estimates to a ground truth. 
To benchmark our velocity estimation framework against an experimentally-

determined cell cycle period, we examined a dataset of dermal human fibroblasts (dHFs) 
monitored by time-lapse microscopy and for which scRNA-seq data was collected (Capolupo, 

Khven, et al., 2022) (Methods 3.5.6.3). Our SVI+LRMN model inferred a constant cell cycle 
period of 15.3 ± 1.2h, assuming an average half-life of the modeled transcripts of 1h (Fig. 

3.6A, S3.5A-D). Next, we used VeloCycle to infer a non-constant (periodic) cell cycle velocity, 
and we obtained a similar estimated duration of 16.5 ± 2.1h, with maximal velocity near mitosis 

(approximately 3π/2 < φ < 2π) (Fig. 3.6B). We then reconstructed the cell cycle period using 

cellpose (Stringer et al., 2021) and TrackMate (Ershov et al., 2022) for 268 individual cells 
followed by time-lapse imaging (Fig. 3.6C). From these data, we recovered a median cell 

cycle of 15.8h (s.d. 3.1h), which overlapped with the posterior credibility interval of the 
VeloCycle estimate (Fig. 3.6D, c.f. Fig. 3.6A-B). Comparable results were obtained when 

using the smaller set of cycling genes (Riba et al., 2022) (Fig. S3.5E). Taken together, these 
results indicate an ability to obtain comparable cell cycle speed estimates from live-

microscopy and VeloCycle.  
We next stratified velocity by an independent categorical cell cycle phase to gain 

further granularity on these evaluations and model behavior. We observed a faster 
progression through the cell cycle during G2/M phase (mean scaled velocity of 0.47 rpmh) 

compared to a slower progression during G1 (0.37 rpmh) and S (0.36 rpmh) phases (Fig. 

3.6E). Kinetic parameters and their posterior uncertainties were strongly correlated between 
the constant and periodic velocity models (Fig. S3.5F-G). Interestingly, when estimating the 

average unspliced-spliced delay for genes peaking at different cell cycle phases, we found 
that cell cycle phases with larger average delays corresponded to regions with faster velocity 

(Fig. 3.6F). Genes with larger delays were also those with smaller splicing and degradation 
rates, which is expected from the approximate model (Fig. S3.5H; Methods 3.5.4.2). After 

examining the unspliced-spliced delay and the low-rank gene-wise posterior correlation 
between the angular speed and degradation rate, we could identify specific genes that most 

strongly contributed to the underlying velocity estimates (Fig. 3.6G).  

To further scrutinize the degree to which cell cycle durations inferred by VeloCycle 
match those obtained experimentally, we performed time-lapse microscopy and scRNA-seq 

on the same cultured RPE1 cells. The speed obtained with VeloCycle was approximately 17.7 
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± 2.1h (Fig. 3.6H, Methods 3.5.7.3); as in dHFs, this computational estimate overlapped with 

the mean cell cycle duration of 17.7h (standard deviation of 3.4h) obtained from tracking 
dividing cells by time-lapse imaging (338 cells) (Fig. 3.6I-J). We next sought to compare our 

cell cycle duration measurements from time-lapse microscopy and VeloCycle to those 
obtained using an orthogonal experimental technique. Therefore, we performed continuous 

EdU labeling to independently estimate cell cycle length (Fig. 3.6K-L). After monitoring EdU 
levels at 13 time points over 72 hours (Fig. 3.6M), we used p21 (CDKN1A) staining to account 

for cells in G0 and determined a mean cell cycle length of 16.8h (Fig 3.6N-O; Methods 
3.5.7.4). Taken together, these findings validated the computational RNA velocity estimates 

in the context of the cell cycle. To our knowledge, this is the first example of a direct validation 
of RNA velocity estimation with experimental methodologies and justifies the use of VeloCycle 

output in units of real (i.e., no pseudo-) time. 
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Figure 3.6. Validation of computationally inferred velocities by cell tracking and labeling 
experiments. (a) Posterior estimate plot of constant cell cycle speed in 1,222 dermal human fibroblasts 
(dHFs) (Capolupo, Khven, et al., 2022). (b) Posterior estimate plot of periodic (non-constant) cell cycle 
speed in cells from (a). (c) Top: schematic of time-lapse microscopy with live-imaging to track 
consecutive cell divisions. Bottom: example microscopy images at multiple time points to illustrate 
tracking a single segmented dHF cell (pink) through two divisions. Following division of the mother cell 
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(16:40h), one daughter cell is tracked for 15 hours until dividing itself (31:40h). (d) Histogram of cell 
cycle period for 268 dHFs tracked by live-microscopy. (e) Violin plot of cell cycle speed for dHFs, 
stratified by categorical phase assignment. (f) Dual-axis plot of the correspondence between the 
unspliced-spliced expression delay (left) and cell cycle velocity estimate (right). Left: genes were 
grouped in 20 equal bins by phase and the unspliced-spliced delay was calculated. Right: the scaled 
velocity estimate from (c). Bottom: cell cycle categorical (G1, S, G2/M) phase assignment probability. 
(g) Gene expression scatter plots for genes peaking in S (top) and M (bottom) phases. Vertical lines 
correspond to the peak phase of spliced (blue) and unspliced (red) counts, used to compute an 
unspliced-spliced delay in (f). (h) Posterior estimate plot of periodic (non-constant) cell cycle speed in 
3,354 retinal pigmented epithelial cells (RPE1). (i) Representative microscopy images tracking a single 
RPE1 cell from birth (3:20h) to subsequent division (20:00h). (j) Histogram of cell cycle period for 337 
RPE1 cells tracked by live-microscopy. (k) Diagram of the cumulative EdU/p21 experiment. Cells were 
continuously exposed to EdU, fixed at different timepoints, and subjected to EdU detection and p21 
immunostaining. (l) Left: representative images of p21 (green), DAPI (cyan), and EdU (magenta) 
staining after cumulative EdU labeling for 2h, 8h, and 36h. Scale bar is 100um. Right: representative 
images of individual cells with different staining combinations. Scale bar is 10um. (m) Schematic of 
cumulative EdU labeling during cell cycle progression. Cycling cells incorporate EdU (magenta) when 
they undergo DNA replication (S phase). Thus, the duration of the EdU pulse is directly proportional to 
the fraction of EdU-positive cells. G0/quiescent cells are represented in green. The total number of cells 
consists of the number of cells in all cell cycle phases and G0, so the total duration of the cell cycle 
must be accounted for while excluding quiescent cells. (n) Dot plot representing the average percentage 
of p21+ cells along the different time points. Error bar indicates the standard deviation (SD), and each 
dot represents the percentage of p21+ cells for a single replicate (n=29). (o) Top: line plot of the fraction 
of EdU+ cells after at 13 time points (from 30 min to 73h). Data show the mean of three replicates 
(except for 2h, which is from two), and error bars indicate the SD. Accumulation of EdU can be divided 
into a linear growth phase and a plateau phase. Using quantities derived from a linear fit of the growth 
phase, we can derive a formula for calculating the time for total EdU (tEdU) labeling. Bottom: line plot 
of fraction of EdU-positive cells among quiescent cells (p21+) plotted as a function of time. The time 
when the fraction of EdU-positive cells among the quiescent population stops growing significantly is 
taken as an estimation of the tG0. The red dashed line indicates the median in (d) and (j). The white 
dashed line indicates the mean of 500 posterior predictions and the black bar indicates the credibility 
interval (5th-95th percentile) in (a), (b), and (h). 
 
3.3.7. VeloCycle enables direct statistical velocity comparisons in response to 
drug treatment 

Existing frameworks for RNA velocity do not propose an approach to test the statistical 

significance of obtained estimates, likely because it is challenging given a gene-wise velocity 
parametrization. For example, it is currently not possible to determine whether RNA velocity 

estimates close to zero should just be interpreted as noise. Furthermore, direct comparisons 
between velocity estimates of two samples cannot be supported by a measure of confidence. 

With VeloCycle, statistical inference testing on velocity is possible for the first time, both 
against a specific null-hypothesis and for differential velocity significance between cell 

populations. 

To illustrate how our model can be used for statistical velocity tests in practice, we 
conducted RNA velocity analysis on a PC9 adenocarcinoma cancer cell line before (D0) and 
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after (D3) treatment with the drug erlotinib (Aissa et al., 2021) (Fig. S3.6A-E). Statistical testing 

in a Bayesian setting can be achieved by calculating credible intervals from the posterior. First, 
we considered the velocity posterior of the untreated (D0) cells to ask whether there is 

statistical support for a non-zero velocity. Given no overlap between the credible interval and 
zero, we could conclude the data contains statistically significant evidence for progression 

through the cell cycle (Fig. 3.7A, left). We then compared the treated sample (D3), with the 
control (D0). We found significant velocity differences between the D0 and D3 time points, 

where a slower mitotic cell cycle speed was detected at D3 (Fig. 3.7B). Such testing can be 
done globally and also locally. For example, we stratified by phase intervals and inspected the 

posterior samples, confirming a decreased speed during G2/M phase at D3 compared to D0, 
but not during G1 and S (Fig. 3.7B, Fig. S3.6F). The reduced presence of cells in M phase 

after erlotinib treatment was further suggested by the low density of D3 cells with assigned the 

phase coordinate (Fig. S3.6A, bottom). 
Since the unspliced-spliced delay is linked with cell cycle velocity, we hypothesized 

there would be differential delays between the D0 and D3 time points, particularly for genes 
peaking during M phase. After calculating the gene-wise unspliced-spliced delay before and 

after erlotinib treatment, we indeed noticed a subset of genes with peak expression during M 
phase and larger phase delays in D0 than D3 (Fig. 3.7C); this included anaphase-promoting 

complex member CDC27 (differential delay, dd=0.11 radians), cyclin-dependent kinase 
inhibitor CDKN3 (dd=0.10), and centrosome scaffolding factor ODF2 (dd=0.09) (Fig. S3.6G). 

A decreased cell cycle speed specifically during M phase is consistent with the expected effect 
of erlotinib, an EGF-blocker inhibiting progression to G1 (Thomas et al., 2007). The result also 

aligns with evidence that a complete arrest should not be observed for the PC9 cell line, which 

has been reported to have some resistance to a complete blockade (Lee et al., 2021; Sutter 
et al., 2006; Ullrich et al., 2008). 
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Figure 3.7. VeloCycle statistical inference on lung adenocarcinoma and neural progenitors. (a) 
Posterior estimate plot of scaled velocity in the PC9 lung adenocarcinoma cell line (D0: 9,927 cells) 
compared to a zero-velocity control (in red) (Aissa et al., 2021). (b) Posterior estimate plot of scaled 
velocity before (D0) and after (D3: 3,943 cells) PC9 treatment with erlotinib. Dashed lines indicate the 
mean of 500 posterior predictions; green (D0) and purple (D3) bars represent credibility intervals (5th-
95th percentile). Areas in which the intervals do not overlap indicate statistically significant velocity 
differences. Bottom: cell cycle categorical (G1, S, G2/M) phase assignment probabilities. (c) Scatter 
plot of the mean unspliced-spliced expression delay for 273 genes between D0 and D3 samples. Gene 
dots are colored by peak expression phase. (d) Violin plots of scaled velocity estimates obtained for 
mouse forebrain (FB: 3,293 cells), midbrain (MB: 2,388 cells), and hindbrain (HB: 2,012 cells) radial 
glial (RG) progenitors at developmental stage E10 (La Manno et al., 2021). Black dashed lines indicate 
the mean of 500 posterior predictions. (e) Spatial projection of single-cell clusters onto four sections of 
a reference E11 mouse embryo profiled with spatial transcriptomics (hybridization-based in situ 
sequencing; HybISS), colored by scaled velocity estimates obtained with VeloCycle. Regional domains 
(FB, MB, HB) and the ventricular zone (VZ) are labeled accordingly. Mapping of single cells to spatial 
data was achieved using the BoneFight algorithm (La Manno et al., 2021). (f) Violin plots of scaled 
velocity estimates for similar populations as on left (FB: 2,460 cells; MB: 307 cells; HB: 176 cells) at 
developmental stages E14/E15. (g) Bar plot of regional proportions of radial glia progenitor cells 
analyzed at early (E10) and late (E14/E15) time points. (h) Kernel density estimation plots of cell 
distributions along the cell cycle manifold at E10, colored by regional identity. (i) Kernel density 
estimation plots of cell distributions along the cell cycle manifold at E14/E15. 
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3.3.8. Cell cycle speed in radial glial progenitors varies along a spatio-temporal 

axis in mouse development 
Regulation of proliferation rate as well as of symmetric and asymmetric divisions of 

radial glia cells (RG) in the ventricular-zone plays a critical role in controlled developmental 
timing along an anterior-posterior axis of the brain (Beattie & Hippenmeyer, 2017). To 

elucidate whether there are differences in cell cycle speed among progenitors populating 
different spatial regions during mouse neurodevelopment, we performed VeloCycle estimation 

on forebrain (FB), midbrain (MB), and hindbrain (HB) RG at the embryonic day 10 (E10) stage 
(La Manno et al., 2021). Cell cycle speed varied along the forebrain-midbrain-hindbrain axis, 

with progenitors dividing more quickly posteriorly (HB) than anteriorly (FB) (Fig. 3.7D). A finer 
visualization of this gradient was allowed by computationally mapping the cell cycle speed 

inferred in these cells to the corresponding locations using in situ hybridization spatial 

transcriptomics (HybISS) data and the BoneFight algorithm (La Manno et al., 2021) (Methods 
3.5.6.5). We observed rapidly dividing RG localized close to the ventricular zones, highlighting 

that cell proliferation takes place along the ventricular zone and suggesting that different 
segments of the zone proliferate at different rates (Fig. 3.7E) (Alieh et al., 2023). Conversely, 

at E14 and E15 time points, RG from all three brain regions stabilized at a similar proliferation 
speed, with no credible velocity difference (Fig. 3.7F). At these later time points, the majority 

of RG in the midbrain and hindbrain regions had accumulated in a non-proliferative state; the 
majority of RG cells present were from the forebrain, which more slowly developed at E10 

(Fig. 3.7G-I). These results align with recent studies showing that hindbrain specifies into non-
proliferating, differentiated cell types more quickly; an increased proliferative capacity is thus 

likely required in the earlier stages of development (Braun et al., 2023; Di Bella et al., 2021; 

Ohnuma & Harris, 2003). Furthermore, the later slowdown is expected and in line with what 
has been reported in EdU tracking studies (Arai et al., 2011; Harris et al., 2018). 

 

3.3.9. Transfer learning of manifold parameters enables discovery of velocity 

alterations in genome-wide perturbation screens 
Previous frameworks for RNA velocity have offered restricted applicability to samples 

containing few cells. With recent single-cell technologies designed to screen the effects of 
hundreds of small genetic, environmental, or drug perturbations, there is a growing need to 

assess changes in cell dynamics under circumstances with limited data (Brunello, 2022; Dixit 

et al., 2016; Peidli et al., 2023). 
VeloCycle, with its manifold-constrained velocity estimates, can explore RNA velocity 

in such contexts: by transferring manifold-learning from a large dataset onto smaller datasets, 
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one can perform velocity inference using limited cells or using cells representing only a portion 

of the phase space (Methods 3.5.6.6). To demonstrate this, we studied a large-scale, 
genome-wide Perturb-seq dataset where hundreds of individual gene knockouts were 

introduced into the RPE1 cell line via a targeted, pooled CRISPR library, followed by scRNA-
seq after seven days in culture (Replogle et al., 2022). First, we ran VeloCycle on non-targeted 

control cells (NT) and a pooled group of gene knockout conditions corresponding to well-
characterized marker genes for the cell cycle (CC-KO). The cell cycle period was 25.6 ± 1.3 

hours for NT and 30.9 ± 1.3 hours for CC-KO (Fig. 3.8A). Similar results were obtained when 
using a large set of cell cycle genes (n=426) compared to a smaller gene set (n=120) (Fig. 

S3.7A-E). When CC-KO conditions were stratified by genes typically considered S and G2/M 
markers, we observed an accumulation of cells in the G1 phase space compared to NT cells 

(Fig. 3.8B, S3.7F). This suggests the loss of function for some individual cell cycle related 

genes disrupts cell cycle progression, either by slowing down the proliferation rate in certain 
phases, or by halting progression altogether ahead of specific entry checkpoints. 

To scrutinize the effect of individual gene knockout conditions on cell cycle speed, we 
employed a transfer learning approach in which we conditioned our manifold-learning on gene 

harmonics previously inferred from the NT and CC-KO data subsets, assigning phases to a 
significantly larger population of 167,119 cells and 986 individual knockout conditions, some 

with as few as 75 cells (Fig. 3.8C). Consistent with coarser stratifications of the data, we 
observed a significant decrease in cell cycle speed in individual cell cycle related-gene 

knockout conditions compared to both non-targeting control cells and cells with gene 
knockdown unaffiliated with the cell cycle (Fig. 3.8D). Several of the most impaired cell cycle 

speeds were found in knockouts of highly characterized genes involved in DNA replication 

(MCM3Δ and MCM6Δ) and translation initiation (E1F3BΔ, EIF2B3Δ, EIF3CLΔ) (Fig. 3.8D-E). 
Curiously, knockout conditions for several splicing and mRNA processing genes either 

significantly decreased or increased the estimated cell cycle speed, including DBR1Δ, an 
intron-lariat splicing factor (11.7-fold decrease compared to NT condition), PRPF3Δ (1.2-fold 

increase), and PRPF31Δ (1.3-fold increase) (Fig. 3.8D-E). Given the dependence of RNA 
velocity estimation on the governing differential equations of the RNA metabolic life cycle, this 

result indicated that biological disruptions affiliated to RNA metabolism undermine the 
biophysical parameterization of the velocity framework. Moreover, the number of cells present 

in the dataset per condition had a direct influence on the velocity estimate posterior 

uncertainty, suggesting that more cells, and thereby less aggregated sparsity for a condition, 
increased the confidence of the VeloCycle model in the obtained velocity estimate (Fig. 3.8F-

G). Ultimately, these analyses demonstrate that velocity can be applied, with transfer learning 
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approaches, in large-scale perturbation contexts as a metric to assess the impact of gene 

knockouts on the dynamics of a biological process. 

 

 
Figure 3.8. Transfer learning of manifold parameters to study effects of genome-wide knockouts 
on cell cycle velocity. (a) Posterior estimate plot of cell cycle speed for RPE1 cells 7 days after 
CRISPR-induced single-gene knockdowns with Perturb-seq, stratified by non-targeting controls (green; 
11,485 cells) and cell cycle knockout (beige; 6,275 cells) conditions (Replogle et al., 2022). Manifold-
learning was performed using either a large (top; n=426) or small (bottom; n=120) gene set. Black 
dashed lines represent the mean estimate of 500 posterior predictions. (b) Kernel density plot of 
continuous cell cycle phase distributions for non-targeting (NT) and cell cycle knockout (CC-KO) 
samples from (a). Heatmap bar plot (bottom) is of cell density by categorical phase assignment. (c) 
Schematic of the employed transfer learning approach. Gene harmonic coefficients are obtained on NT 
controls (with many cells) using the manifold-learning model, and are then applied to assign phases to 
cells with one of hundreds of gene knockout conditions (each with a few cells) potentially distributed 
unequally on the manifold. (d) Scatter plot of cell cycle velocity-learning estimates and posterior 
standard divisions for 986 individual cell cycle knockout (Δ) conditions in 167,119 RPE1 cells. Vertical 
lines correspond to the mean velocity estimates for non-targeting (green), cell cycle marker gene 
knockouts (tan) and other gene knockouts (blue). (e) Top: kernel density estimate (KDE) plots of cell 
distribution for the non-targeting, MCM6Δ, and DBR1Δ conditions. Bottom: binned unspliced-spliced 
expression delay (Delay) for the same conditions. Genes were binned by position of peak expression 
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into 10 groups along the cell cycle to obtain an average delay. The dark green line represents the mean 
delay; the light green line represents the standard deviation. (f) Scatter plot of scaled cell cycle velocity 
estimates obtained for 986 conditions in (d) using small and large gene sets. (g) Scatter plot of total 
number of cells per condition and posterior velocity standard deviation for 986 conditions in (d). 
Pearson’s correlation coefficient is indicated in red in (f) and (g). 
 
3.4. Discussion 

In this work, we address several limitations of current RNA velocity methods by 

designing a framework that unifies manifold and velocity inference into a single probabilistic 
generative model. We propose an explicit parametrization of RNA velocity as a vector field 

defined on the manifold coordinates, implemented and thoroughly tested for one dimensional 
periodic manifolds and the cell cycle (Methods 3.5.1-3.5.4). RNA velocity has been previously 

applied to illustrate cell cycle progression, yet in ways that required several heuristics and with 

exclusive exploratory value, as no conclusion could be made from the inferential procedures 
(Bastidas-Ponce et al., 2019; Gorin et al., 2022; Lo Giudice et al., 2019; Schwabe et al., 2020).   

VeloCycle uses variational inference to learn a Bayesian model that operates on raw 
data with appropriate noise models, instead of heuristic nearest-neighbor smoothing (Fig. 3.1, 

Methods 3.5.4). VeloCycle returns uncertainty estimates, enabling direct evaluation of the 
confidence about the estimation results and cell cycle speed comparisons between samples. 

These capabilities are relevant in different biological settings, such as in cancer biology, where 
alterations to the cell cycle progression need to be scrutinized using snapshot single-cell data 

(Fig. 3.7). Therefore, VeloCycle could yield new biological insight into disease progression, 
for example by characterizing differences in proliferation rates between tumors across 

microenvironments or patients.  

Uncertainty measurements are central to statistical evaluation of RNA velocity. The 
first methods to introduce Bayesian variational inference for RNA velocity modeling, VeloVAE 

(Gu et al., 2022), VeloVI (Gayoso et al., 2023), and Pyro-Velocity (Qin et al., 2022), simplify 
the variational distribution in ways that limit usefulness of the estimated joint posterior, 

particularly given an unscaled gene-wise velocity parametrization. More generally, models 
with a high number of degrees of freedom and the assumption of independence risk overfitting 

noise and overestimating confidence in the velocity (Aivazidis et al., 2023; Gorin et al., 2022). 
In this study, we control for this risk by constraining all spliced-unspliced fits under a single 

velocity function, and we structure our model to scrutinize dependencies between the cell 
cycle velocity and kinetic parameters from the full posterior distribution (by MCMC and a 

LRMN variational distribution) (Fig. 3.5; Methods 3.5.3.2). Moreover, we exploit the fact that 

this parameterization is explicit in the velocity to perform direct inference on a single latent 
variable. 
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While our model for RNA velocity estimation offers clear benefits, there remain open 

avenues for further development. First, while our mathematical framework is amenable to 
multidimensional formulations and various topologies, the current work focuses on the case 

of one-dimensional periodic manifolds. Thus, extensions of VeloCycle into higher-dimensional 
latent spaces can be naturally pursued, although significant efforts will be required to find 

appropriate parametrization of more complex manifolds. Second, the issue of defining 
dimensionality intersects with that of gene selection; different subspaces defined by unique 

genes expose distinct manifolds traversed by varying fractions of cells (Gorin et al., 2022). 
Methods developed with this problem in mind have been recently proposed (Sheng et al., 

2023), and with appropriate modifications, these could be integrated into RNA velocity 
estimation methods to automate topology and gene set selection. In this direction, frameworks 

that consider multiple manifolds with varying topologies, spanned by cells in different 

subspaces, while also assigning specific cells and genes to these features, will notably 
enhance the general applicability and utility of manifold-consistent RNA velocity estimation. 

Third, our model assumes a constant gene-specific splicing and degradation rate; in fact, for 
some genes, such rates likely change in different phases of the cell cycle (Battich et al., 2020; 

Schwabe et al., 2020). A future extension to VeloCycle for which the kinetic parameters are 
defined by a parameterizable function, could address this limitation. Yet, maintaining the 

model well-conditioned in these settings might be non-trivial. 
Widely used standard analysis pipelines use a small group of marker genes to attribute 

a categorical phase assignment to single cells, even though cell cycle progression is a 
continuous process (Satija et al., 2015; Wolf et al., 2018). Recent methods to infer continuous 

phase assignment represent a significant improvement over scoring-based approaches 

(Auerbach et al., 2022; Liu et al., 2022; Ranek et al., 2022; Zheng et al., 2022). The manifold-
learning of VeloCycle makes progress along this direction, also inferring individual gene 

periodicity patterns, providing posterior uncertainty and obtaining results that compare 
favorably with other methods (Riba et al., 2022) (Fig. 3.3). Importantly, the manifold-learning 

step is flexible and facilitates transfer learning: the geometry of the manifold can be estimated 
on a larger or higher quality dataset and serve as a prior for a smaller dataset. This enhances 

the robustness and applicability of velocity-learning across diverse experimental conditions. 
We employ these transfer learning capabilities on a Perturb-seq dataset,  demonstrating that 

RNA velocity can be used as a readout of the context of a high-content screen (Fig. 3.8). This 

is particularly relevant given the increased use of barcoding strategies  for  single-cell level 
screening. We expect future applications of such models in the context of drug screening and 

evaluation of genetic changes on heterogeneous pools of cells. 
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A way to validate the overall consistency of a RNA velocity vector field has been to 

correlate an heuristically estimated transition probability between populations with prior 
knowledge on their lineage relationships; however, this is correlative and indirect (Lange et 

al., 2022). Here, we instead compare directly estimates with the real velocity of the process. 
By specifically biologically-reasoned priors, velocities obtained with VeloCycle can be directly 

interpreted as the proliferation speed, which can vary in different tissue locations, at different 
moments of development, or as a result of perturbations to the core gene regulatory network 

(La Manno et al., 2021; Replogle et al., 2022). This study empirically validated obtained RNA 
velocities, juxtaposing VeloCycle speed estimates with proliferation times obtained by live-cell 

microscopy imaging and cumulative EdU labeling (Fig. 3.6).  
Ultimately, our framework represents an advancement in the rigor of dynamical 

estimations from single-cell data. The promising outcomes of tailoring RNA velocity to single 

processes advocates for the development of new models that dissect the high-dimensionality 
of single-cell data into individual biological axes with corresponding and interpretable RNA 

velocity fields. 

 

3.5. Methods 
3.5.1. Model specifications for manifold-constrained RNA velocity 

Gene expression measurements as obtained by scRNA-seq provide a high 

dimensional snapshot of a cell's state, with typically 𝑛 ≃ 10! genes being expressed in a cell, 
of which several thousands are experimentally detected per cell by a nonzero read count. 

Here, we use the notation 𝑌" = (𝑈" , 𝑆") for the measurements, with 𝑈" for the unspliced and 

𝑆" for the spliced RNA levels (counts), with 𝑆" , 𝑈" ∈ ℕ#. 
 

3.5.1.1. The manifold 
Many biological processes of interest, such as the cell cycle or a differentiation event, 

unfold on low-dimensional manifolds ℳ. Here, we will consider a parametric representation 
for ℳ:𝑥 ↦ 𝑠(𝑥) ∈ ℳ where 𝑥 is latent coordinate for each cell 𝑐. Moreover, we will choose 

the manifold topology based on the biological structure of the problem. For example, given a 
periodic process such as the cell cycle, we will take 𝑥 ∈ 𝑆$, where 𝑆$ represents the unit circle. 

Typically, the manifold dimension 𝑚 ≪ 𝑛 will be small, and in the case of the cell cycle 𝑚 = 1. 
As we discuss later, we will learn the function 𝑠(𝑥) from the data (which we will refer to as the 

manifold-learning procedure). 
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3.5.1.2. Measurements and noise model 

Measurements for each cell 𝑐 will be linked to the corresponding locations on ℳ via 
realistic noise models. In the case of scRNA-seq, relevant noise models consist of negative 

binomial (NB) distributions, so that 𝑌%" ∼ NB9y&(x'), 𝛼&=, with 𝑦%(𝑥") = 𝐸@𝑌%"A =

B𝑠%(𝑥"), 𝑢%(𝑥")D and 𝛼% = 9𝛼%( , 𝛼%)=. Note that we are assuming for simplicity that 𝛼% is 

independent of 𝑥 (but this can be relaxed at the expense of an increased number of 

parameters). This allows us to formulate a likelihood model for the data and approach 
inference using Bayesian or variational inference. 

 
3.5.1.3. RNA velocity and chemical kinetics 

In the high-dimensional gene expression space, we expect a rate equation describing 

the RNA velocity *(̃
*,

 depending both the expectation of spliced and unspliced RNA counts: 

𝑑�̃�%
𝑑𝑡

= 𝐹9�̃�%, �̃�%= = 𝛽%�̃�% − 𝛾%�̃�%							(𝟏) 

with time-dependent locations �̃�%(𝑡) and �̃�%(𝑡) and gene-dependent RNA splicing and 

degradation rates 𝛽% and 𝛾%. Note that here we do not include a corresponding equation for 
*)̃
*,

 as it will not be needed for the application to the cell cycle. Also, 𝐹 is not explicitly time-

dependent and the rates are taken as constants (which could however be relaxed, see below). 
 

3.5.1.4. Latent-space dynamics 

The key assumption in our approach is that there exists an autonomous (and here 
deterministic) equation for the dynamics of 𝑥(𝑡) : 

𝑑𝑥
𝑑𝑡

= 𝑉(𝑥)						(𝟐) 

which provides a low-dimensional approximation of the full dynamics (Eq. 1), and that 
�̃�(𝑡), �̃�(𝑡) are time-dependent through 𝑥(𝑡) : 

�̃�(𝑡) = 𝑠(𝑥(𝑡))
�̃�(𝑡) = 𝑢(𝑥(𝑡))							(𝟑) 

𝑉(𝑥) is the vector field describing the dynamics in the low dimensional latent space. 
 

3.5.1.5. Manifold-constrained RNA velocity 
We can now link Eqs. (1), (2) and (3) to obtain 
𝑑𝑠%(𝑥(𝑡))

𝑑𝑡
= 9∇-𝑠%= ⋅ 𝑉9𝑥(𝑡)= = 𝛽%𝑢%9𝑥(𝑡)= − 𝛾%𝑠%9𝑥(𝑡)=	∀𝑔							(𝟒) 
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where we have introduced the gene index 𝑔 for clarity and applied the chain rule. 𝛽% and 𝛾% 

are the gene-specific splicing and degradation rates. 
Eq. (4) provides the basis of our approach as it connects the topology of the low 

dimensional manifold on the left-hand side with the biology on the right-hand side. Of note, 

the parameters governing gene dynamics (𝛽, 𝛾) could in principle depend on 𝑥 as well. 
 

3.5.1.6. Geometric interpretation  

By construction, we see that the RNA velocity vector *((-(,))
*,

 lies in the tangent space 

of ℳ at every point of a trajectory 𝑠%(𝑥(𝑡)). Indeed ∇-𝑠 forms an 𝑚-dimensional basis of the 

tangent space at each point and 𝑉(𝑥(𝑡)) forms the components of the velocity vector in that 

basis. 
 

3.5.1.7. 𝒖(𝒙) and inference 
Eq. (4) can also be viewed as specifying 𝑢(𝑥) given 𝑠(𝑥), 𝑉(𝑥), and the parameters 𝛽 

and 𝛾. This will become central in the implementation. In essence, the optimization algorithm 
to identify 𝑉(𝑥) and 𝛾 and 𝛽 coefficients (or functions if we would allow 𝛾 = 𝛾(𝑥), etc) such 

that the predicted RNA velocity *((-(,))
*,

 (which lies in tangent space over the entire manifold 

ℳ ) is closest to that implied by chemical kinetics and the data 𝑌" = (𝑈" , 𝑆"). 
 

3.5.1.8. Duration of biological processes 
A benefit of this formulation is that it becomes accessible to estimate the actual 

duration of biological processes from the trajectories and 𝑉(𝑥) : 

Δ𝑡(!,(" = Y  
1#!
#"

1
�̇�
𝑑𝑠 = Y  

1$!
$"

1
𝑣(𝑥)

𝑑𝑥 = Δ𝑡-!,-" 							(𝟓) 

where Γ-!
-" is the trajectory 𝑥(𝑡) that connects the two points 𝑥2 and 𝑥$, and where we have 

used the change of trajectory variable 𝑠(𝑥). For example, we will be able to estimate cell cycle 
periods. Moreover, this estimate is by construction independent of the parametrization of the 

low dimensional manifold. 

 
3.5.2. Manifolds with S1 topology: the cell cycle 

Here, we assume that ℳ is topologically a circle and therefore we write the coordinate 
𝑥 as 𝜑 ∈ 𝑆$. The equation of the dynamics (Eq. 4) becomes 

�̇�% = ∂3𝑠%(𝜑)𝜔(𝜑) = 𝛽%𝑢% − 𝛾%𝑠%							(𝟔) 
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𝐸@𝑆%"A = 	𝑠%(𝜑") = expef  
4

𝜈%4𝜁4(𝜑")	i							(𝟕) 

where we assume that 𝛽% and the 𝛾% are constant along the cell cycle. Of note is that the 

values of those parameters are constrained by the biology (see section 4 below), which we 
will enforce through appropriate priors. 

𝑆$ is convenient since it allows use of Fourier series to parameterize the various 
functions: 𝑠(𝜑), 𝑢(𝜑), 𝜔(𝜑). Typical cell cycle genes exhibit profiles that can be described by 

only few harmonics; thus, we will consider up to 𝑘 Fourier components in our expansion (in 

practice we will by default use one harmonic). Moreover, since 𝑠(𝜑) is positive, we will use 
the notation 

log B𝑠%(𝜑")D =f  
4

𝜈%4𝜁4(𝜑")						(𝟖) 

with 

𝜈% =

⎝

⎜
⎜
⎜
⎛

𝑎%2

𝑎%$

𝑏%$
⋮
𝑎%5

𝑏%5⎠

⎟
⎟
⎟
⎞

	𝜁(𝜑) =

⎝

⎜
⎜
⎛

1
cos(𝜑)
sin(𝜑)
⋮

cos(𝑘𝜑)
sin(𝑘𝜑)⎠

⎟
⎟
⎞
							(𝟗) 

Here 𝜈% is the vector of gene Fourier parameters written with real numbers.  

Using the chain rule, we obtain 𝑢(𝜑): 

∂,𝑠%(𝜑) = 𝜔(𝜑)𝑠%(𝜑)f  
4

𝜈%4 ∂3𝜁4(𝜑)							(𝟏𝟎) 

which leads to 

log B𝑢%(𝜑)D = − log9𝛽%= + loge𝜔(𝜑)f  
4

 𝜈%4 ∂3𝜁4(𝜑) + 𝛾%i + log B𝑠%(𝜑)D 	 ∀𝑔							(𝟏𝟏) 

𝐸@𝑈%"A = 	𝑢%(𝜑) =
𝑠%(𝜑)
𝛽%

e𝜔(𝜑)f  
4

 𝜈%4 ∂3𝜁4(𝜑) + 𝛾%i (𝟏𝟐) 

For 𝜔(𝜑) we will also be using a Fourier series, limiting ourselves to either constant 𝜔 or 𝜔(𝜑) 
functions with one harmonic. 

 
3.5.2.1. Likelihoods 

As explained above with the expressions for 𝑢(𝜑) and 𝑠(𝜑), we can calculate a 

likelihood for the count data over all cells {𝑌"} = {(𝑈" , 𝑆")}. To simplify the implementation, we 
approximate the full joint likelihood for {(𝑈" , 𝑆")} as a product of two factors: 
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𝑃({(𝑆" , 𝑈")} ∣ 𝜃) =� 
"%

 𝑃9𝑆"%, 𝑈"% ∣ 𝜔(𝜑), 𝜑" , 𝜈%, 𝛽%, 𝛾%, 𝛼%=	 with  

𝑃9𝑆"%, 𝑈"% ∣ 𝜃= = 𝑃(9𝑆"% ∣ 𝜈%, 𝛼%( , 𝜑"= × 𝑃)9𝑈"% ∣ 𝜔(𝜑), 𝛽%, 𝛾%, 𝜈%, 𝜑" , 𝛼%)=(𝟏𝟑) 

𝑃(9𝑆"% ∣ ⋯ = = NB9𝑠%(𝜑") = 𝐹@𝜈%, 𝜑"A, 𝛼%(=,							(𝟏𝟒) 

𝑃)9𝑈"% ∣ ⋯ = = NB9𝑢%(𝜑") = 𝐺@𝜔(𝜑"), 𝛽%, 𝛾%, 𝜈%, 𝜑"A, 𝛼%)=			(𝟏𝟓) 

where 𝜃 is a generic notation for parameters, and 𝐹[… ], 𝐺[… ] show the dependencies of 𝑠%, 𝑢% 

on the other quantities. 

We combine these likelihoods with a set of priors into a full Bayesian model (see below) 
to estimate the joint posterior of 𝜃. As indicated above, in our current implementation we 

simplify the problem by taking two steps: first, we optimize 𝑃( to estimate the cell phases {𝜑"} 

and Fourier coefficients �𝜈%�. We call this step the manifold-learning procedure. The second 

step optimizes 𝑃) and is called velocity-learning, using the posterior expectations for 

9{𝜑"}, �𝜈%�, �𝛼%(=� obtained during manifold-learning to estimate the remaining quantities 

9𝜔(𝜑), 𝛽%, 𝛾%, 𝛼%)=. 

 

3.5.3. Bayesian model formulation for VeloCycle 
Our model includes a mix of biologically defined priors with Empirical Bayes-style 

priors determined from the data. Our goal will be to estimate an approximation of the joint 

posterior probability distribution, based on the above expression of the likelihoods: 

𝑃(𝜃 ∣ {𝑆" , 𝑈"}) =
𝑃({𝑆" , 𝑈"} ∣ 𝜃)𝑃(𝜃)

𝑃({𝑆" , 𝑈"})
=

∏  "%  𝑃9𝑆"% ∣ 𝜃=𝑃9𝑈"% ∣ 𝜃=𝑃(𝜃)
∫ 	∏  "%  𝑃9𝑆"% ∣ 𝜃=𝑃9𝑈"% ∣ 𝜃=𝑃(𝜃)𝑑𝜃

 

We specify the following priors 𝑃(𝜃). 

𝜈𝜔, ∼ 𝒩([0,0,0], [36, 0.056, 0.056])							
log9𝛾%= ∼ 𝒩(0, 0.56)							
log9𝛽%= ∼ 𝒩(2, 36)							
𝛼% ∼ Gamma(1.0,2.0)						
𝜈%, ∼ 𝒩9𝜇%,7 , 𝜎%,7 	6=							

𝜑𝑥𝑦" ∼ ProjNormal(𝜑𝑥" , 𝜑𝑦")							

 

Setting by empirical Bayes the following parameters: 

𝜇%,7 = �log	 Bmean" 	9𝑆"%=D , 𝟎, 𝟎�						

𝜎%,7 =

⎣
⎢
⎢
⎢
⎢
⎡
1
2
std"9𝑆"% + 1= ,

1
4 std"9𝑆"% + 1= ,
1
4 std" 	9𝑆"% + 1=⎦

⎥
⎥
⎥
⎥
⎤

							

𝜑𝑥" = 𝜀 cos(𝛷")							
𝜑𝑦" = 𝜀 sin(𝛷")							
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where Φ" is obtained from the two first principal components (𝑤$" , 𝑤6") renormalized between 

[−0.5, 0.5] and computing Φ" = tan8$	(𝑤6" , 𝑤$"). Rotational invariance (e.g., arbitrariness of 
the first cell 𝑐0 so that Φ"2 = 0) is obtained by finding the global phase shift maximizing 

corr	9Φ" , ∑%  𝑆"%=. The concentration parameter of the projected normal 𝜀 is set to 5 by default, 

but can be adjusted depending on the overall confidence in the data quality. 
 

3.5.3.1. Variational Distribution - SVI 
The variational distribution we use in the base model is mean-field, with marginals of 

either Normal or Dirac Delta distributed. Specifically 

𝑃9{𝜈𝜔,}, {𝜑"}, �𝜈%,�, �𝛽%�, �𝛾%�, �𝛼%�= =�  
"

� 
%

� 
,

𝑃(𝜈𝜔,)𝑃(𝜑")𝑃9𝜈%,=𝑃9𝛽%=𝑃9𝛾%=𝑃9𝛼%= 

The variational distribution is parametrized as follows (	∧ indicates the parameters): 

𝑃(𝜈𝜔,) = 𝒩(𝜇𝜈𝜔 , , 𝜎𝜈𝜔®,
6)							

𝑃9𝜈%,= = 𝒩 B𝜇%,7̄ , 𝜎%,7̄
6
D							

𝑃9𝛼%= = Delta9𝛼%=							

𝑃 Blog	9𝛾%=D = 𝒩 B𝜇log	 𝛾%± ,𝜎log	 𝛾%± 6D							

𝑃 Blog	9𝛽%=D = 𝒩 B𝜇log	 𝛽%± ,𝜎log	 𝛽%± 6
D							

𝑃(𝜑𝑥𝑦") = 𝒩([𝜑𝑥" ,𝜑𝑦" ], [1,1])							

 

 
3.5.3.2. Variational Distribution - LRMN 

The Low Rank Multivariate Normal (LRMN) model considers a variational distribution 
parametrized to mimic the correlative structure observed between the joint posteriors sampled 

by Markov Chain Monte Carlo (MCMC) estimation. Specifically, we allow for a covariance and 
establish specific conditional relationships between the velocity, or angular speed 𝜈𝜔,, and 

the kinetic parameters 𝛽% and 𝛾%. The two main features are: (a) the joint posterior between 

𝛾% and 𝜈𝜔, is parametrized as a low-rank Multivariate Normal, and (b) the marginal posterior 

of 𝛽% is expressed as conditioned on 𝛾%; namely for each gene 𝑔, the marginal posterior of 𝛽% 

, through an explicit parameter 𝜌% , is allowed to correlate with the correspondent 𝛾%.The 

posterior factorizes as follows: 

𝑃9{𝜈𝜔,}, {𝜑"}, �𝜈%,�, �𝛽%�, �𝛾%�, �𝛼%�= = 

= 𝑃9�𝛾%�, {𝜈𝜔,}=�  
%

𝑃9𝛽% ∣ 𝛾%=𝑃9𝛼%=�  
,

𝑃(𝜈𝜔,)𝑃9𝜈%,=�  
"

𝑃(𝜑") 

 
The specific formulation we used is: 

𝐱 ≡ �log(𝛾$) , log(𝛾6) , … . , log B𝛾#%D , 𝜈𝜔2, 𝜈𝜔$, … , 𝜈𝜔#&'"� 



 112 

𝚺 = 𝐅·𝐅·: + diag9𝐝¹= 	 where 𝐅· ∈ ℝ;#%<#&=×5 , 	 with 	𝑘 = 5	  

𝑃9�log	9𝛾%=�, {𝜈𝜔,}= = 𝑃(𝐱) = MultivariateNormal(𝒎¿ , 𝜮) 

𝜇 log 𝛽% ∣ 𝛾 = 𝜇 log 𝛽%± +𝜌% ⋅ 𝜇 log 𝛽%± ⋅
9log9𝛾%= − 𝜇 log 𝛾%± =

𝜎 log 𝛾%±  with 𝜌% ∈ [0,1] 

𝜎 log 𝛽% ∣ 𝛾 = 𝜇 log 𝛽%± Á1− 𝜌%
6 

𝑃 Blog	9𝛽%= ∣ log	9𝛾%=D = 𝒩9𝜇log	 𝛽%Â𝛾, 𝜎log	 𝛽%Â𝛾6=		 

𝑃(𝜑𝑥𝑦") = 𝒩([𝜑𝑥" ,𝜑𝑦" ], [1,1]) 

𝑃9𝜈%,= = 𝒩 B𝜇%,7̄ , 𝜎%,7̄
6
D 

𝑃9𝛼%= = Delta9𝛼%= 

 
3.5.4. Model implementation 

To estimate an approximation of the joint posterior probability distribution for the 

angular cell cycle speed (𝜈𝜔,) and the parameters of the 𝑆$ manifold upon which 𝜈𝜔, unwinds, 
we formulate a likelihood model for the data that we then solve using variational inference in 

Pyro (Bingham et al., 2018.). This implementation performs estimation of the model latent 
variables in two steps: manifold-learning and velocity-learning (Table 3.1).  

For manifold-learning, we estimate the position of each cell along the circular cell cycle 

manifold (𝜑) as well as the Fourier series coefficients for each gene (𝜈) describing their 
periodicity. These variables are then used to model the expectation of log spliced counts 

(ElogS), which are themselves modeled from the real data and a Negative Binomial. We 
initialize all variables to the mean of the prior, which is determined using either the first two 

principal components (𝜑) or the per-gene mean and standard deviations of spliced expression 
(𝜈). To allow for differences in average expression levels between different datasets or 

batches, we also define an offset term (Δ𝜈) for the first gene harmonic coefficient. 
For velocity-learning, we infer the Fourier coefficients of the angular speed (𝜈𝜔) as well 

as velocity kinetic parameters (𝛾 and 𝛽), conditioned on the mean of the posterior estimates 
for parameters obtained during manifold-learning. These variables are used to model the 

expectation of log unspliced counts (ElogU), which are themselves modeled from the real data 

and a Negative Binomial. We initialize all variables to the mean of the prior, which is zero for 
the angular speed (an assumption of zero cell cycle velocity). In order to enforce positive 

9𝜔(𝜑)∑4  𝜈%4 ∂3𝜁4(𝜑) + 𝛾%= in Eq. (10) during learning, we use a relu function. 

Given data, we solve the VeloCycle model using stochastic variational inference (SVI) 

and apply a ClippedAdam optimizer and ELBO loss function, with an evolving learning rate 
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decaying from 0.03 to 0.005 from the first to last training iteration. Typically, we perform 5,000 

training iterations for manifold-learning and 10,000 training iterations for velocity-learning. 
However, an option to terminating training early is made available, such that no further 

iterations are executed if the mean loss during the previous 100 iterations is less than 5 units 
different from the mean loss during the previous 10 iterations. 

When performing Monte Carlo Markov Chain (MCMC), we use a No-U-Turn (NUTS) 
kernel beginning the mean posterior estimates obtained first with SVI. We typically use one 

chain, 2,000 warm-up sampling steps, and 500 real sampling steps. 
VeloCycle can be run using either a local CPU or GPU in a few minutes, with 

significantly improved runtime speeds on GPU, particularly when using a large number of cells 
(>30,000 cells) or genes (>300 genes). Since there are many more parameters along the gene 

dimension, scaling up the number of genes reduces runtime more quickly than scaling up the 

number of cells. 
 

3.5.4.1. Biological constraints on parameters 
Velocity kinetic parameters 𝛽 and 𝛾 are constrained by the biology. In particular, 

𝛾%8$ ∈ [0.5,1.5] hours 
𝑇 = 2𝜋/𝜔? ∈ [6,50] hours 

 

Moreover, the priors for the gene harmonic coefficients are determined for each gene based 

on the mean level of expression and the variance across all the cells in the data. For the 

velocity harmonic coefficients, we assume as a prior mean no velocity (i.e., 0) with a wide 
standard deviation (3.0). 

All priors can be easily modified using the velocycle.preprocessing suite of functions and 
provided to a Pyro model object using the metaparameters (mp) term. 

 
3.5.4.2. Approximate point estimate for constant cell cycle velocity 

To gain an initial insight into the relationship between cell cycle velocity and the 
expression profiles of the unspliced (𝑢)/spliced	(𝑠) read counts, we used a simplified 

calculation based on solving the first order differential equation *
*,
𝑠%(𝑡) = 𝛽%𝑢% − 𝛾%𝑠%, where 

the degradation rate 𝛾% is a gene-dependent constant. If we assume that 𝑢%(𝑡) follows a 

periodic function with a single harmonic, i.e. 𝑢%(𝑡) = 𝑢2% B1 + 𝜀cos	9𝜔𝑡 − 𝜑2%=D, then 𝑠%(𝑡) has 

the same functional form but with a scaled amplitude and shifted phase, depending on the 

half-life: 𝑠%(𝑡) = 𝑠2% B1 + 𝜀@cos	9𝜔𝑡 − 𝜑$%=D, with 𝜀@ = 𝜀cos	9Δ𝜑%=, Δ𝜑% = 9𝜑$% − 𝜑2%= and 

tan	9Δ𝜑%= = 𝜔𝛾%8$. Here, 𝜔 represents the cell cycle velocity. 
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Assuming now that we have multiple conditions (or replicates) 𝑐 and that the half lives 

𝜏% = 𝛾%8$ are condition-independent, we observe that the relation 

𝛿"% = tan9Δ𝜑"%= = 𝜔"𝜏%				 

is a rank-1 decomposition of the matrix 𝛿"%, which can be computed using the singular value 

decomposition (SVD), i.e., 𝛿"% = 𝑢"𝑑𝑣% + higher rank terms, using standard notation. This 

allow us to express the condition-specific cell-cycle velocity 𝜔" in units of inverse mean half 
lives (noted 𝜔"⋆ ) as 

𝜔"⋆ = 𝑢"𝑑𝑣%ÉÉÉ					 

where 𝑣%ÉÉÉ stands for the mean over genes. The cycle-cycle period in units of mean half lives is 

then 𝑇"⋆ =
6B
C(⋆

. 

 

3.5.4.3. Gene sets and quality control filtering 
To select genes for velocity analysis that are expected to behave periodically with the 

cell cycle, we applied one of three differently-sized, literature-based cycling gene sets: “small” 
containing 97 genes (Satija et al., 2015), “medium” containing 218 genes (Riba et al., 2022), 

and “large” containing 1,918 genes (Ontology Consortium et al., 2023). VeloCycle uses the 
“medium” gene set as a default, in order to minimize the influence of noisy or lowly-expressed 

genes on manifold and velocity estimation; however, we also employed the “large” gene set 
in contexts where the sequencing depth and dataset quality are particularly high. The 

command velocycle.utils.get_cycling_gene_set() can be used to access these human and 

mouse gene sets. Additional gene filtering based on mean detection of spliced and unspliced 
counts was also performed as described in the sections below. 

 
3.5.4.4. Categorical and continuous cell cycle phase assignment 

Categorical cell cycle phase assignment (G1, S, G2/M) was performed using the 
scanpy function sc.tl.score_genes_cell_cycle(), as previously described (Satija et al., 2015). 

Continuous cell cycle phase assignment using DeepCycle on both simulated and real datasets 
was achieved using the velocity information obtained from scvelo.pp.moments (Bergen et al., 

2020) and standard parameters described in the original publication (Riba et al., 2022). 

 
3.5.4.5. Inference of the unspliced-spliced delay 

To compute the unspliced-spliced delay from the results of VeloCycle, we calculated 
the difference between phases of peak expression of unspliced and spliced UMIs on a per 



 115 

gene basis (in radians) using the estimated expectations of unspliced (ElogU) and spliced 

(ElogS) counts. 
 

3.5.4.6. Posterior probability sampling 
Unless otherwise stated, the latent variables and associated estimate uncertainties 

were collected from 500 posterior samples after model training using pyro.infer.predictive, and 
credibility intervals were measured between the 5th and 95th percentiles. 

Estimates for the cell cycle velocity obtained from the velocity function ω(φ) were 
scaled by the mean degradation half-life, i.e., mean(γg). To infer the cell cycle period over the 

entire cell cycle, we sampled from the velocity function on a grid of 20 phases (from 0 to 2π) 
and took the area under the curve using scipy.integrate.trapz. The posterior mean, 5th 

percentile, and 95th percentile were then computed using numpy.mean and numpy.percentile. 

The full uncertainty range of the posterior estimate was computed by taking the difference 
between the 95th and 5th percentile estimates. 

 

3.5.5. Structured data simulations and sensitivity analyses of VeloCycle 
To properly validate the performance of VeloCycle on datasets with a ground truth for 

all latent variables of the manifold-learning and velocity-learning procedures, we employed a 
new structured simulation approach to preserve relationships among velocity kinetic 

parameters (splicing rate β, degradation rate γ) and gene harmonics (ν0, ν1sin, ν1cos). These 
relationships are expected in real data (La Manno et al., 2018) and are necessary in 

simulations to avoid improbable scenarios where the ratio of unspliced to spliced counts is 

unrealistically high or low. We expect that genes containing more velocity information should 
be those with a larger unspliced-spliced delay and slower splicing and degradation rates; 

genes with too fast kinetics will provide limited signal in scRNA-seq data. Thus, we formulated 
a generative VeloCycle model that imposes a correlation structure among the gene harmonic 

and velocity kinetic rate parameters for the sole purpose of sampling simulated data (and not 
for use during inference itself). We defined correlations as follows: a weak positive correlation 

among the gene harmonic coefficients (r=0.05; assuming only one sine and cosine term per 
gene), a moderate positive correlation between the splicing rate and zeroth gene harmonic 

coefficient ν0 (r=0.30), and a moderate positive correlation between splicing and degradation 
rates (r=0.30). 

Using this correlation matrix, simulated datasets were generated by randomly 

sampling for a user-defined number of genes and cells, from a pyro.dist.MultivariateNormal. 
These variables, along with a user-defined ground-truth cell cycle speed (νω) and a cell-
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specific phase (φ) sampled from a random uniform distribution between 0 and 2π, were 

plugged into the velocity equations to compute an expectation for unspliced (ElogU) and 
spliced (ElogS). Finally, raw data (S and U) was sampled from a pyro.dist.GammaPoisson 

using the expectations and a noise parameter (shape_inv) sampled from pyro.dist.Gamma. 
All simulated data generated for this study are available on Zenodo (see Data Availability 

3.6.1). Additional datasets can be simulated using the velocycle.utils.simulate_data function. 
Evaluation of the manifold-learning step was performed using 20 datasets, each containing 

3,000 cells and 300 genes, independently simulated with a ground truth velocity of 0.4. The 
same datasets were also used for validation of the velocity-learning step. To perform 

sensitivity analysis on the number of cells and genes, four independently simulated datasets 
containing 10,000 cells and 1,000 genes were generated; data subsets were used to test the 

model’s performance on varying numbers of cells (from 100 to 5,000 for manifold-learning and 

from 50 to 10,000 for velocity-learning) and genes (from 100 to 1,000 for manifold-learning 
and from 50 to 1,000 for velocity-learning). To assess velocity-learning performance on 

datasets with different ground truth velocities, we simulated four datasets with shared kinetics 
and gene harmonic parameters, but one of 16 different ground truth velocities from 0.0 to 1.5. 

Circular correlations between estimated and simulated ground truth variables were 
computed using velocycle.utils.circular_corrcoef, which converts the input data into unit circle 

coordinates and computes a correlation by finding the mean of the product of estimated values 
and the complex conjugate of the ground truth values. To compare phases obtained with 

VeloCycle to those from DeepCycle, the same simulated datasets were used to compute 
velocity moments with sc.pp.moments followed by running DeepCycle with default parameters 

described in the original publication (Riba et al., 2022).  

 

3.5.6. VeloCycle estimation across multiple standard scRNA-seq datasets 
In this work, we performed manifold geometry and cell cycle velocity estimation with 

VeloCycle on a number of published datasets from different technologies, species, and 

sampling contexts. For all datasets, the original raw data were re-processed using velocycle 
(La Manno et al., 2018) to obtain spliced and unspliced count matrices. A general procedure 

for running VeloCycle on these types of scRNA-seq data has been described above and is 
supported by tutorials on the corresponding GitHub page for these works. Here, we provide a 

summary of any specific filtering criteria and parameters used on a dataset-dependent basis. 

 
3.5.6.1. FACS-sorted mouse embryonic stem cells (Buettner et al., 2015) 
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VeloCycle estimation of cell cycle phases and gene harmonics was performed on 279 

single cells from a culture of Smart-seq2 mouse embryonic stem cells (mESC) using the 
standard parameters. Genes used in manifold-learning were those from the “large” gene set 

(Gene Ontology; 1,918 genes) available in velocycle.utils, after filtering out genes with <=0.5 
mean unspliced counts per cell or with <=2 mean spliced counts per cell (1,358 genes 

remaining). Manifold-learning was performed using 3,000 training steps. 
To evaluate the predictive capacity of categorical cell cycle phase (G1, S, or G2/M) 

using the VeloCycle phases, a DecisionTreeClassifier from sklearn.tree was trained with 65% 
of cells, reserving 35% of cells as a test set and for calculation of a confusion matrix. To 

compare with a model using the total gene expression matrix to predict categorical cell cycle 
phases, the linear LogisticRegressionCV model from sklearn.linear_model was trained (cv=5) 

using the same train-test cell split as with the decision tree. 

 
3.5.6.2. Mouse embryonic stem cells and human fibroblasts (Riba et al., 2022) 

VeloCycle was run separately on 5,191 single cells from a culture of mouse embryonic 
stem cells (mESC) and on 2,557 single cells from a culture of human fibroblasts using the 

standard parameters. Non-cycling cells were filtered out prior to analysis according to the 
author’s annotations. Genes used in manifold-learning were those from the “medium” gene 

set (DeepCycle; 218 genes) available in velocycle.utils, after filtering out genes with <=0.1 
mean unspliced UMIs per cell or with <=0.3 mean spliced UMIs per cell (189 genes and 160 

genes remaining for mESC and fibroblasts, respectively). Manifold-learning was performed 
using 5,000 training steps, and velocity-learning was performed using the “normal” guide and 

the constant-velocity model for 10,000 training steps. Comparisons to DeepCycle phases 

were made using the published estimates described for these exact datasets in the original 
study.  

 
3.5.6.3. Human dermal fibroblasts (Capolupo, Khven, et al., 2022) 

VeloCycle was run on 1,222 single cells from a culture of untreated dermal human 
fibroblasts (dHFs) using the standard parameters; non-cycling cells were excluded using the 

author’s annotations. Genes used in manifold-learning were those from the “large” gene set 
(Gene Ontology; 1,918 genes) available in velocycle.utils, after filtering out genes with <=0.1 

mean unspliced UMIs per cell or with <=0.3 mean spliced UMIs per cell (876 genes remaining). 

Manifold-learning was performed using 5,000 training steps, and velocity-learning was 
performed with both the constant-velocity and periodic-velocity models for 10,000 training 

steps using the low-rank multivariate normal (“lrmn”) guide. 
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Time-lapse microscopy data, including cell segmentation and tracking, for dHFs was 

obtained from the originally-published study and is available on the corresponding Zenodo 
page: 10.5281/zenodo.6245943. A cell was determined to be poorly-tracked and excluded 

from analysis if it had a measured cell cycle length less than 8 hours or greater than 32 hours. 
 

3.5.6.4. PC9 lung adenocarcinoma cell line (Aissa et al., 2021) 
VeloCycle was run jointly on data from PC9 lung adenocarcinoma cell line prior to (D0: 

7,927 cells) and after (D3: 3,743 cells) treatment with erlotinib using the standard parameters. 
Genes used in manifold-learning were those from the “large” gene set (Gene Ontology; 1,918 

genes) available in velocycle.utils, after filtering out genes with <=0.1 mean unspliced UMIs 
per cell or with <=0.1 mean spliced UMIs per cell. After an initial manifold-learning step, only 

genes with a Pearson’s correlation between the unspliced and spliced counts >=0.8 and a 

predicted unspliced-spliced delay greater than >=-0.25 were retained. Manifold-learning was 
performed using 5,000 training steps, and velocity-learning was performed using the “lrmn” 

guide and both the constant-velocity and periodic-velocity models for 10,000 training steps. 
 

3.5.6.5. Radial glial progenitors from the developing mouse brain (La Manno et al., 2021) 
VeloCycle was run jointly on all radial glia progenitor cells from the E10 time point, 

stratified by regional identity (forebrain: 3,293 cells; midbrain: 2,388 cells; hindbrain: 2,012 
cells) using the standard parameters. Genes used in manifold-learning were those from the 

“large” gene set (Gene Ontology; 1,918 genes) available in velocycle.utils, after filtering out 
genes with <=0.05 mean unspliced UMIs per cell or with <=0.1 mean spliced UMIs per cell. 

After an initial manifold-learning step, only genes with a Pearson’s correlation between the 

unspliced and spliced counts >=0.8 and a predicted unspliced-spliced delay greater than >=-
0.10 were retained. Manifold-learning was performed using 5,000 training steps, and velocity-

learning was performed using the “lrmn” guide and the constant-velocity model for 10,000 
training steps. 

Similarly, VeloCycle was run jointly on all radial glia progenitor cells from the E14 and 
E15 time points, stratified by regional identity (forebrain: 2,460 cells; midbrain: 307 cells; 

hindbrain: 176 cells) using the standard parameters. With the same gene filtering steps as with 
the E10 analysis above, 239 genes were used. Manifold-learning was performed using 5,000 

training steps, and velocity-learning was performed using the “lrmn” guide and the constant-

velocity mode for 10,000 training steps. 
To spatially visualize VeloCycle speed estimates at the E10 time point, we ran the 

BoneFight algorithm to map scRNA-seq clusters to a corresponding spatial transcriptomics 
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dataset of hybridization-based in situ sequencing (HybISS) from the same study, then colored 

the corresponding clusters by their velocity estimate. 
 

3.5.6.6. Genome-wide Perturb-seq RPE1 cells data (Replogle et al., 2022) 
To ensure analysis was performed only on RPE1 cells with a complete knockdown of 

the individual gene target, we filtered out cells containing non-zero unspliced or spliced UMI 
reads for the targeted gene. VeloCycle was run initially on a subset of data in two conditions: 

(1) the set of control, non-targeting cells (NT: 11,485 cells) and a grouped set of cells where 
a gene from the “small” cell cycle marker list were targeted for knockdown (CC-KO: 6,275 

cells). Genes used in manifold-learning were those from the “medium” gene set (DeepCycle; 
218 genes) available in velocycle.utils, after filtering out genes with <=0.1 mean unspliced 

UMIs per cell or with <=0.2 mean spliced UMIs per cell. After an initial manifold-learning step, 

only genes with a Pearson’s correlation between the unspliced and spliced counts >=0.7 and 
a predicted unspliced-spliced delay greater than >=-0.5 were retained (120 genes remaining). 

Manifold-learning was performed using 5,000 training steps, and velocity-learning was 
performed using the “lrmn” guide and the constant-velocity mode for 10,000 training steps. 

To perform stratified analysis on a larger batch of gene knockout conditions, we 
selected all cells from any conditions represented by more than 75 cells, leaving a total of 

167,119 cells and 986 conditions. We then conditioned on the gene harmonic coefficients 
obtained with the coarser analysis using NT and CC-KO cells, and performed manifold-

learning for 5,000 training steps to estimate cell cycle phases for all cells and conditions. We 
then performed velocity-learning for 10,000 training steps on the entire dataset, estimating an 

individual constant velocity for each gene knockout condition. 

 
3.5.6.7. RPE1 cells (newly-generated for this study) 

To estimate the unspliced-spliced delay and cell cycle velocity between two identical 
replicates of FUCCI-RPE1 cells (replicate 1: 4,265 cells; replicate 2: 9,994 cells), manifold-

learning was run on the “medium” gene set available in velocycle.utils, after filtering out genes 
with <=0.1 mean unspliced UMIs per cell or with <=0.3 mean spliced UMIs per cell (136 genes 

remaining). Manifold-learning was performed using 3,000 training steps, and velocity-learning 
was performed with both the constant-velocity and periodic-velocity modes for 10,000 training 

steps using the low-rank multivariate normal (“lrmn”) guide. 

Likewise, for the third sample of wild-type RPE1 cells (3,354 cells), manifold-learning 
was run on the “medium” gene set available in velocycle.utils, after filtering out genes with 

<=0.1 mean unspliced UMIs per cell or with <=0.3 mean spliced UMIs per cell (128 genes 
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remaining). Manifold-learning was performed using 3,000 training steps, and velocity-learning 

was performed with both the constant-velocity and periodic-velocity modes for 10,000 training 
steps using the low-rank multivariate normal (“lrmn”) guide. 

 

3.5.7. Experimental procedures 
3.5.7.1. Cell culture 

FUCCI-RPE-1 cells (see Fig. 4), a gift from Battich et al [62] were cultured at 37°C and 
5% CO2 in DMEM/F12 medium (Gibco 11320033) supplemented with 1% NEAA (Gibco 

11140-035), 1% Penicillin/Streptomycin (Sigma Aldrich G6784) and 10% FBS (Gibco 10437-
028). 

Additional RPE-1 cells (see Fig. 5) were obtained from ATCC and cultured at 37°C, 

20% O2, and 5% CO2 in DMEM/F12 medium (Gibco 21331-020) supplemented with 1% MEM 
NEAA (Sartorius 01-340-1B), 0.5% sodium pyruvate 1% penicillin/streptomycin/glutamine, 

and 10% FBS. Media was replaced daily and cells were passaged twice a week. RPE-1 cells 
were maintained in culture for at least two passages and confirmed to be free of mycoplasma. 

 
3.5.7.2. scRNA-seq library preparations 

For the preparation of scRNA-seq libraries, an experimental setup was designed to 
mimic the conditions used for live-cell imaging. FUCCI-RPE-1 cells (see Fig. 3.4) were seeded 

(7000 cells/cm²) in duplicate 2 days before collection.  On collection day, cells were detached 
with trypsin, washed with PBS, counted and diluted to a cell concentration of 1000 cells/uL. 

Barcoded cDNA libraries were generated from single-cell suspensions using the 10x 

Genomics Chromium v3.1 dual-index system. The procedure was done in accordance with 
the manufacturer's instructions, with a goal of 4,000 cells per library. Samples were individually 

indexed and evenly pooled together. After quality control, libraries were sequenced on an 
Illumina HiSeq4000 platform, with a depth of approximately 300 million reads per sample, by 

the EPFL Gene Expression Core Facility (GECF). 
Similarly, RPE-1 cells (see Fig. 3.5) were detached using Trypsin–EDTA solution A 

0.25% (Biological Industries; 030501B) for 5 min at 37°C. Trypsin was neutralized with 
medium including 10% FBS and cells were centrifuged at 250 rcf for 5 min, followed by 

washing and resuspension in PBS with 0.04% BSA. The cell suspension was filtered with a 
40-μm cell strainer to remove cell clumps. A cell viability percentage higher than 90% was 

determined by trypan blue staining. Cells were diluted to a final concentration of 700 cells per 

μl. scRNA-seq libraries were generated using the 10x Genomics Chromium v3.1 dual-index 
system. The procedure was done in accordance with the manufacturer's instructions, with a 
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goal of 3,000 cells per library. Samples were then indexed and sequenced on an Illumina 

NovaSeq 6000 platform by the EPFL Gene Expression Core Facility (GECF). 
As with all publicly available datasets, raw fastq files were processed with CellRanger 

using the default human reference transcriptome to obtain count matrices. To obtain unspliced 
and spliced count matrices, we used velocyto version 0.17.17. 

 
3.5.7.3. Live-image microscopy and cell tracking experiments with RPE1 cells 

RPE-1 cells were seeded on glass bottom 6 well chamber slides (IBIDI) to reach 30% 
confluence after one day. Cells were then imaged on a PerkinElmer Operetta microscope 

under controlled temperature and CO2 every 10.25 minutes using brightfield and digital phase 
contrast (DPC) with a 10x (0.35 NA) air objective, binning of 2 and the speckle scale set to 0 

under non-saturated conditions. Cell division tracking was achieved by stacking time-course 

images and manually tracing cell movement and division with napari (Sofroniew et al., 2021). 
Between 20-25 RPE1 cells were tracked from 15 different fields of view by three different 

individuals (A.R.L., A.H., A.V.) for a total of 337 cells used to estimate a ground truth. 
 

3.5.7.4. Cumulative EdU and p21 staining experiments 
Cells were seeded on poly-L-lys-coated 24 well plates to reach 30% confluence after 

one day. After a day, 10 μM EdU (Invitrogen - #A10044) was added to the media, and cells 
were fixed at different time points after EdU addition: 30 min, 1h, 2h, 3h, 5h, 8h, 12h, 24h, 

32h, 36h, 49h, 56h, 72h. For each time point, cells were fixed in 4% PFA for 10 minutes, 
washed twice with PBS, and processed for EdU (5-ethynyl-2’-deoxyuridine) detection 

according to the manufacturer’s instructions (Click-iT EdU Alexa Fluor 647 Imaging kit from 

Invitrogen #C10340). Additionally, cells were permeabilized with 0.2% triton and stained 
overnight at 4°C with p21 Waf1/Cip1 (12D1) Rabbit mAb (Cell Signaling Technology #2947) 

and revealed with a secondary antibody conjugated to Alexa Fluor-488. After staining, cells 
were imaged on a Leica DMi8 (20x NA 0.8).  

To quantify the signal intensities of p21 and EdU, we segmented nuclei in the DAPI 
channel using stardist (U. Schmidt et al., 2018). We obtained the average intensity for both 

signals per nucleus by sub-setting the corresponding channel using segmentation masks. The 
intensity of p21 was normalized per image (percentile-based, p_min=1, p_max=99.8), as its 

intensity profile was expected to be approximately constant in time; conversely, the intensity 

of EdU was not normalized as it was expected to increase with time. Thresholds were selected 
observing the (bimodal) signal distribution across nuclei in all timepoints.  
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First, to compute the time it takes, on average, for a cell to traverse through two 

consecutive S phases (tEdU), we applied the Nowakowski method (Di Bella et al., 2021; 
Nowakowski et al., 1989) on data collected at multiple time points for a total number of 678,204 

cells. The Nowakowski method assumes a linear growth of EdU+ cells, until reaching a plateau 
where all cycling cells are positive for EdU. We obtained a linear fit of the growth and 

determined the x-value at the intersection between growth and plateau (A), the y-intercept of 
the linear fit (B), and the y-value of the plateau (GF). With these, we could compute tEdU as 

follows: tEdU = (B*A)/(GF-B) + A. 
However, cells may on occasion exit the cycle to a G0 phase, and then re-enter at a 

later time (Krenning et al., 2022). To correct for this, we plotted the fraction of EdU+/p21+ cells 
among the p21+ population to estimate the G0 duration (tG0). We determined the tG0 to be 

equal to the time point at which fraction of EdU+/p21+ cells plateaued, after which no 

statistically significant changes were detected (Tukey’s multiple comparison test). The 
corrected estimate for the cell cycle duration was finally calculated as: tc = tEdU - (%p21 * 

tG0), where %p21 corresponded to the mean fraction of p21+ cells. 
 

3.5.8. Data Availability 
The raw and processed scRNA-seq data in the RPE1 cell line that was newly 

generated for this study are available at GEO accession number GSE250148. All other 

scRNA-seq data used in this study were collected from previously published works (Aissa et 
al., 2021; Buettner et al., 2015; Capolupo, Khven, et al., 2022; La Manno et al., 2021; Replogle 

et al., 2022; Riba et al., 2022) and relied on the cell type annotations made by the original 

authors. Jupyter notebooks and other affiliated files to reproduce the results shown in this 
study are provided via a link available on our GitHub page: https://github.com/lamanno-

epfl/velocycle/. Processed versions of all published data (including spliced-unspliced counts 
matrices) are also available at the above link. The simulated scRNA-seq datasets, processed 

scRNA-seq metadata for the new RPE1 samples, cell tracking data from live-image 
microscopy and cumulative EdU staining experiments are also available at the above link. 

 

3.5.9. Code Availability 
VeloCycle is implemented in Python and available as an open-source package on 

GitHub at https://github.com/lamanno-epfl/velocycle. VeloCycle can be installed from PyPi 

using the command pip install velocycle or via direct installation from the GitHub page using 
the command pip install git+https://github.com/lamanno-epfl/velocycle.git@main. Python 

version 3.8 or newer is required. Source code, installation instructions, tutorials, and  a file 
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containing all required package dependencies are also available on GitHub. Additional code 

and notebooks to reproduce the results of this study are available via the link provided on the 
GitHub page. 
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3.6. Supplementary Materials 
3.6.1. Supplementary Figures 

 
Figure S3.1. Plate diagram and mathematical formulation of VeloCycle framework for manifold-
learning and velocity-learning.  (a) Plate notation diagram of the manifold-learning procedure used 
to infer manifold coordinates (φ) and geometry (ν) given raw spliced count data. No k-nearest neighbor 
smoothing is performed. The model assigns each cell to a phase along the cell cycle (φ) and fits a set 
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of harmonics (ν) for each individual gene using a Fourier series. (b) Formulaic representation of the 
manifold-learning procedure shown in (a). Spliced counts (S) are defined as the expectation (ElogS) 
plus noise, modeled after a negative binomial distribution. (c) Plate notation diagram of the complete 
velocity-learning procedure. Nodes indicate a model variable (white: random variable; gray: observed 
data; brown: conditioned variable from manifold-learning) and arrows indicate dependency. Each plate 
(genes, cells, conditions, and batches) signal independence and contain variables that are of the same 
dimensions. (d) Mathematical representation of the velocity-learning procedure shown in (c). Blue-
boxed variables are deterministic and computed from latent variables; yellow-boxed variables are 
conditioned on observed data. 
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Figure S3.2. Data generated with structured simulations assists in validation of VeloCycle. (a) 
Scatter plot grid of the structured correlation between gene harmonics coefficients (ν0, ν1sin, ν1cos) and 
kinetic parameters (logβg, logγg) in simulated ground truth (GT) data. Histograms (on diagonal) of the 
frequency distribution for each simulated latent variable. (b) Scatter plots of the simulated data 
correlation structure between splicing rate (logβg), total spliced (logS), and unspliced (logU) UMI counts. 
(c) Scatter plots of example simulated gene fits for spliced (top; blue) and unspliced (bottom; red) UMIs. 
Solid curved lines represent gene fits, and vertical lines indicate the phase of peak expression for each 
gene. (d) Box plot of the percent of GT phases within the posterior uncertainty interval estimated, across 
20 independently-simulated datasets each containing 3,000 cells and 300 genes. (e) Box plots of the 
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mean circular correlation coefficient, across 300 genes, for estimated gene harmonic coefficients 
obtained compared to the GT. (f) Scatter plot of the gene-wise coefficient of variation (a measure of 
noise) and the credible interval obtained for the gene harmonic coefficient ν0. (g) Box plots of the mean 
Pearson's correlation coefficient for all genes, across 20 independently-simulated datasets, between 
the estimated and simulated GT for the degradation rate (logγg), splicing rate (logβg), and velocity kinetic 
ratio (logγg-logβg). (h) Box plots of the mean squared error (MSE) for logγg and logβg against the 
simulated GT for 20 datasets in (g). (i) Box plots of the mean Pearson’s correlation coefficient between 
estimated and GT values for logβg, logγg, and velocity kinetic ratio, for all genes across four 
independently-simulated datasets with 16 different velocity GT between 0.0 and 1.5. (j) Heatmaps 
showing the correlation between estimated and GT values for logβg, logγg, and velocity kinetic ratio 
using varying numbers of cells and genes. Pearson’s correlation coefficients (red) are indicated in each 
scatter plot of (a), (b), and (f). Each purple dot represents a single gene in (a), (b), and (f). 
 
  



 129 

 
Figure S3.3. VeloCycle accurately measures phase and speed of the cell cycle across species. 
(a) Posterior estimate plot of cell cycle velocity inferred with velocity-learning on mouse ESCs (Riba et 
al., 2022). White dashed lines represent the mean of 500 posterior samples; black bars indicate the full 
posterior interval. (b) Scatter plot of the relationship between degradation rate (logγg) and the average 
unspliced-spliced delay in human fibroblasts. (c) Scatter plot of the relationship between degradation 
rate (logγg) and the average unspliced-spliced delay in mouse ESCs. (d) Scatter plots of the 
relationships among splicing rate (logβg), degradation rate (logγg), and total UMI counts (spliced and 
unspliced) in human fibroblasts. (e) Scatter plots of velocity kinetic parameter relationships for mouse 
ESCs, as in (d). Pearson’s correlation coefficients (red) are indicated in the top right of plots in (b-e). 
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Figure S3.4. A structured variational distribution yields better velocity uncertainty estimates and 
reveals relationships among gene kinetic parameters. (a) Scatter plot of gene-wise Kullback–
Leibler (KL) divergence comparing uncertainty distributions between SVI and MCMC (x-axis) and 
SVI+LRMN and MCMC (y-axis). A lower KL divergence indicates a greater overlap between the two 
distributions. (b) Scatter plot between the gene-wise logγg-νω uncertainties computed from the 
posterior of MCMC or SVI+LRMN. (c) Scatter plot between unspliced-spliced peak expression delay 
(radians) and the logγg-νω uncertainty correlation, both obtained using the SVI+LRMN velocity model. 
(d) Scatter plot between the scaled velocity and the unspliced-spliced delay for a leave-one-out 
estimation approach with VeloCycle. Each dot is positioned on the x-axis at the velocity estimate 
obtained when removing a particular gene (n=160) from the gene set. Each dot is positioned on the y-
axis at the position of the unspliced-spiced delay (in radians) for that removed gene. (e) Violin plots of 
the scaled velocity for mouse embryonic stem cells (mESCs), comparable to Fig. 3.5c. (f) Violin plots 
of the Pearson’s correlations between the degradation rate (logγg) and angular speed (νω) posteriors 
across all 189 genes for mESCs, comparable to Fig. 5d. Pearson’s correlation coefficients are indicated 
in red in (b), (c), (d). 
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Figure S3.5. VeloCycle coupled with live-cell imaging enables experimental validation of cell 
cycle speed. (a) Scatter plot of total raw spliced UMI counts by continuous cell cycle phase estimated 
with VeloCycle for 1,222 dermal human fibroblasts (dHFs). Black line indicates the binned mean. (b) 
Probability density plot along the VeloCycle phase estimation for cells in (a) stratified by categorical 
phase assignment (G1, S, and G2M) obtained with scanpy. (c) Phase space polar plot indicating the 
phase of peak expression and amplitude for 876 cycling genes used to learn the manifold for dHFs in 
(a). Each dot represents a gene; genes colored orange (S) or green (G2M) represent marker genes 
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used in traditional categorical cell cycle phase assignment. (d) Scatter plots of the relationship between 
splicing rate and total spliced counts (top) and splicing rate and total unspliced counts (bottom) on a 
gene-wise basis. (e) Posterior estimate plot of constant (left) and periodic (right) velocity estimates 
obtained for data in (a) using a medium-sized gene set (Riba et al., 2022). (f) Scatter plots of 
degradation rates (left) and splicing rates (right) obtained using either the constant (x-axis) or periodic 
(y-axis) models of velocity estimation. (g) Scatter plots of degradation rate (left) and splicing rate (right) 
posterior uncertainty obtained from 500 posterior samples using either the constant (x-axis) or periodic 
(y-axis) models. (h) Scatter plot of the degradation and splicing rates obtained with the SVI+LRMN 
model on data in (a-f). Gene-wise dots are colored by the unspliced-spliced phase delay. (i) Binned plot 
of the Pearson’s correlation coefficients between gene-wise degradation rate and velocity posterior 
uncertainties on dHFs using the SVI+LRMN model of VeloCycle. Pearson’s correlations coefficients 
are indicated in red text in (d-g). 
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Figure S3.6. Statistical credibility testing of RNA velocity estimates enables characterization of 
the effect of erlotinib treatment on lung adenocarcinoma cell line treatment. (a) Scatter plot of 
total raw spliced UMI counts by continuous cell cycle phase estimated with VeloCycle for PC9 lung 
adenocarcinoma cell line populations before (top; D0; 9,927 cells) and after (bottom; D3; 3,943 cells). 
Black line indicates the binned mean. (b) Phase space polar plot indicating the phase of peak 
expression and amplitude for cycling genes used to learn the manifold for cells in (a). Each dot 
represents a gene; genes colored orange (S) or green (G2M) represent marker genes used in traditional 
categorical cell cycle phase assignment. (c) Scatter plots of the relationship between splicing rate and 
total spliced counts (top) and splicing rate and total unspliced counts (bottom) on a gene-wise basis. 
(d) Scatter plot of the degradation and splicing rates obtained with the SVI+LRMN model. Gene-wise 
dots are colored by the unspliced-spliced phase delay. (e) Gene-binned delay between maximum 
unspliced-spliced expression (in radians) for D0 and D3 samples. (f) Violin plots of scaled velocity 
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estimates for D0 and D3, stratified by categorical cell cycle phase. Black horizontal lines indicate the 
mean. (g) Left: scatter plot of peak gene amplitude and residual unspliced-spliced delay (D3-D0) for 
273 genes. Right: top 10 differentially delayed genes in D0 versus D3. 
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Figure S3.7. Cell cycle velocity estimation on non-targeting and grouped cell cycle knockout 
stratifications of RPE1 cells following genome-wide Perturb-seq. (a) Scatter plots of total UMIs 
along the manifold-learning cell cycle phase for non-targeting (NT; top) and cell cycle knockout (CC) 
strata of genome-wide Perturb-seq data from Fig. 8. (b) Phase space polar plot indicating the phase of 
peak expression and amplitude for 426 cycling genes used to learn the manifold for cells in (a). (c) 
Scatter plots of the relationship between splicing rate and total spliced counts (top) and splicing rate 
and total unspliced counts (bottom) on a gene-wise basis. (d) Scatter plot of the degradation and 
splicing rates; gene-wise dots are colored by the mean unspliced-spliced phase delay. (e) Gene-binned 
delay between maximum unspliced-spliced expression (in radians) for NT and CC samples. (f) Bar plots 
of categorical cell cycle phase proportions as a percentage of total number of cells, stratified by Perturb-
seq non-targeting, S phase marker gene, and G2M marker gene conditions. 
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3.6.2. Supplementary Tables 

Variable Description General Name Training Step Dimensions 

𝜑-D cell cycle phase Manifold 
coordinates 

manifold-
learning 

(cell) 

𝜈 Fourier coefficients 
for the genes 

Manifold 
geometry 

manifold-
learning 

(gene, 
harmonics) 

Δ𝜈 batch-specific 
expression offset 

Data-specific 
noise in manifold 

geometry 
manifold-
learning 

(batch, gene) 

𝑠ℎ𝑎𝑝𝑒_𝑖𝑛𝑣 spliced negative 
binomial noise 

Measurement 
noise 

manifold-
learning 

(gene) 

log	 𝛽% log splicing rate Velocity kinetics velocity-
learning 

(gene) 

log	 𝛾% log degradation rate Velocity kinetics velocity-
learning 

(gene) 

𝜈𝜔 Fourier coefficients 
for the angular speed Velocity function velocity-

learning 

(condition, 
harmonics) 

Table 3.1. Overview of VeloCycle latent variables. 

 
Please refer to the preprint for supplemental tables Table 3.2 and Table 3.3:  

https://doi.org/10.1101/2024.01.18.576093  

 
  

https://doi.org/10.1101/2024.01.18.576093
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4.1. Synopsis 
Charting the differentiation trajectories of progenitor cells into mature lineages is of 

major interest to the systems biology community. Consequently, most models of single cell 
state transition, despite being ergodic in principle, imply or expect a directionality in which 

each state is visited at most once. These methods are not applicable to studying recurrent 
dynamics, where a cell visits a state multiple times and in an acyclical manner. These 

situations require time resolved information, yet most of the field has focused on gene 
expression snapshot data. Here, we propose a new computational approach to tackle these 

limitations by coupling live imaging and omics recordings. Using time-lapse microscopy, toxin 
stainings, and endpoint matrix-assisted laser desorption/ionization mass spectrometry 

imaging (MALDI-MSI), we measure lipid content at a single-cell spatial resolution and model 

confirmation switches with cell-state transition estimation by lineage leaf-state Markov 
analysis (CELLMA). We apply CELLMA to dermal human fibroblasts, which transit among 

various sphingolipid configurations to play diverse roles in wound healing and proliferation. 
We observe that dominant, stable lipid-states are propagated across cell generations and 

correspond to phenotypic states called lipotypes. CELLMA holds future potential to estimate 
single-cell state transition probabilities for hundreds of lipids measured with MALDI-MSI. 

 

4.2. Introduction 
 Computational methods that capture the progression of cells along a one-directional 

trajectory with single-cell transcriptomic measurements are regularly applied to study 

differentiation and embryonic development. Furthermore, models have been devised to 
describe scenarios in which cells revisit past states, even multiple times, in a circular manner 

(Chervov & Zinovyev, 2022). Two well-known periodic biological phenomena are the cell cycle 
and circadian rhythms. The cell cycle regulates the replication of genetic material and cell 

division (Matson & Cook, 2017), whereas the 24-hour circadian clock is responsible for 
modulating numerous physiological changes in the mammalian body (Talamanca & Naef, 

2020). Recent work has sought to estimate cell state transitions in these periodic processes 
and characterize their behaviors (Chapter 3) (Talamanca et al., 2023). 

However, there is yet another class of cell transitions that feature recurring state 
dynamics, but in a non-cyclical manner. In these systems, cells may transition among multiple 

cell states, each of which is responsible for performing a specific functional role in tissue. 

These different states possess varying degrees of stability and, as a result, a cell may not 
always pass through all possible states. Thus, the observed cell state transitions may repeat, 

but not always in the same order. Unfortunately, existing computational methods are poorly 
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suited to address these types of recurring cell dynamics, which do not occur in embryonic 

development but rather in biological systems at homeostasis. 
One example of such a transition process is the maturation of blood cells in the bone 

marrow. There, hematopoietic stem cells respond to both internal and external cues, 
oscillating among states of self-renewal, differentiation, and maturation in a highly coordinated 

manner (Liggett & Sankaran, 2020; Ye et al., 2017). This approach ensures both production 
of mature blood cell types, the rate of which may change depending on the immune state of 

the individual, as well as maintenance of a source progenitor pool (Haghverdi & Ludwig, 2023) 
Another example is dermal human fibroblasts (dHF), which fluctuate among fibrogenic, 

fibrolytic, and immune states to facilitate wound healing, remodel the extracellular matrix, and 
promote tissue proliferation. Changes in the proportion of dHF subpopulations are thought to 

be the combined result of cell-autonomous factors, external signals, and cell lineage (Adler et 

al., 2020; Driskell & Watt, 2015; Philippeos et al., 2018; Rognoni et al., 2018). However, the 
rules governing this established heterogeneity are not fully understood. 

Interestingly, lipids have been demonstrated to modulate the differentiation of stem 
cells in the skin (Cliff & Dalton, 2017; D. Russo, Capolupo, et al., 2018). Whether metabolic 

switches involving lipids can define cell state transitions and facilitate fibroblast plasticity has 
not been well-studied. This is in part due to technical limitations of evaluating lipid composition 

at a single-cell resolution, which has only been pursued by a few studies (Denz et al., 2017; 
Frechin et al., 2015; D. Russo, Della Ragione, et al., 2018; Snijder et al., 2009). 

Fortunately, mass spectrometry (MS) techniques now have enough sensitivity to 
enable single-cell lipidomics (Rappez et al., 2021; Thiele et al., 2019; Zenobi, 2013). In 

particular, matrix-assisted laser desorption/ionization mass spectrometry imaging MALDI-MSI 

provides coverage of the lipid mass-to-charge range, causes minimal fragmentation, and has 
reached a spatial resolution compatible with single-cell analysis while maintaining mass 

resolution and accuracy (Bhandari et al., 2020; Dueñas et al., 2017; Kompauer et al., 2017; 
Niehaus et al., 2019; Norris & Caprioli, 2013; Schober et al., 2012; Sugiyama et al., 2018; 

Zavalin et al., 2012). Therefore, these approaches can be applied to characterize lipid 
transitions and, ultimately, to develop a framework for inferring transition probabilities.  

Here, we assess whether recurring dHF cell states can be described using lipids and 
then estimate cell transition probabilities among those lipid-defined states. To accomplish this, 

we propose the use of time-lapse microscopy and endpoint lipid-state assignment to represent 

cell transitions by lineage leaf-based Markov analysis. We apply our model to dHFs and 
identify the stability of various sphingolipid configurations, showing that lipid-states are 

propagated across cell generations. 
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4.3. Results 
4.3.1. Toxin stainings describe lipid configurations in dermal human fibroblasts 

In order to design a computational model to infer cell state transition probabilities, we 

first sought a reliable means to discriminate between lipid configurations. We previously 
evaluated the single cell lipidomes of 257 dHFs measured by MALDI-MSI, showing that lipid 

distributions varied among cells in culture (Capolupo, Khven, et al., 2022). However, we 
sought to further validate this finding using an orthogonal method that we could then apply to 

unambiguously categorize cells into lipid state classes. 
Therefore, we employed fluorescently labeled bacterial toxins to stain cells according 

to different sphingolipid head groups: Shiga toxin 1a (ShTxB1a) binds to trihexosylceramides 
(Gb3) (Jacewicz et al., 1986), Shiga toxin 2e (ShTxB2e) binds to Gb3 and globosides (Gb4) 

(Müthing et al., 2009), and Cholera toxin B (ChTxB) binds the ganglioside GM1 (Heyningen S 
Van, 1974). The staining patterns of these toxins (Fig. 4.1A) reflected the variability observed 

by MALDI-MSI (Fig. 4.1B). ShTxB1a staining correlated best with Gb3 levels, and ShTxB2e 

staining correlated well with Gb3 and Gb4 levels, whereas neither correlated with 
sphingomyelin (SM) levels. ChTxB staining is a proxy for the levels of GM1 (Heyningen S Van, 

1974), a sphingolipid not detected by MALDI-MSI, and did not correlate with any of the 
sphingolipids detected by mass imaging (Fig. 4.1C-D). These findings highlight the capacity 

of bacterial toxins to capture sphingolipid heterogeneity in dHFs. 
We next classified dHFs based on their toxin stainings into ChTxB+, ShTxB1a+, 

ShTxB2e+, ShTxB1a+/2e+, triple+, and “other” (i.e., all other configurations) (Fig. 4.1E). When 
examining features associated with these categories, we observed that ShTxB1a+/2e+ and 

triple+ cells were larger than ChTxB+ and ShTxB2e+ cells and that ShTxB1a+/2e+ had a more 
complex shape than ChTxB+ cells (Fig. 4.1F). We also considered the cell-to-cell variability 

associated with exo/endocytic organelles (Liberali et al., 2014), where sphingolipid production 

and turnover take place (Hannun & Obeid, 2018). We determined that ShTxB1a+/2e+ dHFs 
have an expanded early endosomal compartment compared to other configurations, with 

ChTxB+ dHFs showing an opposite phenotype. Similar, although less striking, changes were 
observed when looking at coat protein complex I (COPI) vesicles and at the Golgi complex 

(Fig. 4.1F-G). These findings led us to conclude that distinct lipid metabolic configurations, 
which we term “lipotypes”, exist in dHFs. These lipotypes can be identified using ChTxB, 

ShTxB1a, and ShTxB2e toxin stainings, correspond to specific phenotypes of cell shape and 
size, and possess unique endocytic and secretory statuses. 
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Figure 4.1. Identification of dHF lipotypes by MALDI-MSI and toxin staining. Adapted from Fig. 
S2, S3, and 3 of Capolupo et al 2022. (A) Confocal micrographs showing cells stained with bacterial 
toxins ShTxB1a (green), ShTxB2e (red), ChTxB (blue), and Hoechst (gray) for nuclei. Scale bar, 50μm. 
(B) Side-by-side comparison of toxin staining and MALDI-MSI acquisition on the same cells. First, cells 
were stained with bacterial toxins as in (A), and images were acquired by confocal microscopy (left 
panel). Then, MALDI-MSI (2m μm2 / pixel) was performed in the same cells (center panel). Mass images 
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(320 x 320 pixels of complex sphingolipids [SM (42:1), Gb3 (42:1), and Gb4 (42:1)] are shown. Scale 
bar, 200 μm. (C) Scatter plots comparing toxin staining intensity and lipid abundance as determined by 
MALDI-MSI. Data were log2 transformed and centered. (D) Bar plot summarizing the Pearson’s 
coefficient (R) for each toxin-lipid couple shown in (C); n=88. (E) Scatter plots of normalized 
fluorescence intensity for each toxin. Cells were stained using bacterial toxins as in (A) and categorized 
according to their lipid composition. Populations are colored as shown in the legend. (F) Cells were 
stained with bacterial toxins as in (A) and with antibodies against Beta-COP (COPI vesicles) or EEA1 
[early endosomes (EEs)], and images were acquired by confocal microscopy. Normalized fluorescence 
intensities of toxin and organelle marker stainings of single cells were used to analyze the correlation 
between lipotypes and cell area and with exo/endocytic organelles. Data are shown as violin plots. *P 
< 0.05, **P < 0.01, ***P < 0.001, ordinary one-way ANOVA. (G) Representative cells stained for EEA1 
or Beta-COP and classified according to their lipotypes. 
 
4.3.2. Paired cell lineage reconstruction and endpoint toxin staining enable 

modeling of lipotype transitions 
Recognizing the existence of lipotypes in dHFs under steady state conditions, we 

considered the relationships between those states. Given the technical limitations of single-

cell omics approaches to temporally resolve lipid-defined state transitions, we established an 
experimental technique of time-lapse microscopy, which tracks cell movement and divisions, 

combined with endpoint toxin stainings (Fig. 4.2A). We hypothesized that by reconstructing 
the lineage relationships between cells, we could deduce whether particular lipotypes were 

transmitted across generations.  
We monitored dHFs by time-lapse microscopy for 42 hours, with an image acquired 

every 20 minutes, followed by toxin staining after fixation (Fig. 4.2A; Methods 4.5.7-4.5.8). 
After cell segmentation and lineage reconstruction using Cellpose and TrackMate (Methods 

4.5.9), we obtained a total 1,516 leaf cells with lipotype assignment grouped into 591 clades 

(Fig. 4.2B-C, S4.1A-C). To model the relationships between cells, we assumed that daughter 
cells inherit the same lipotype state from their mother at the moment of division and that cells 

with no apparent familial connection (i.e., from different clades) are independent (Methods 
4.5.3). 

Analysis of individual toxin levels indicated a strong correlation between pairs of sister 
cells (Fig. 4.2D). Moreover, lineage-related cells had a higher probability of sharing the same 

lipotype than expected by chance (Fig 4.2E and S4.1D), suggesting that lipid configurations 
can be propagated across cell generations and that lipotypes are long-term memory states. 
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Figure 4.2. Lipotype transition estimations by lineage leaf-state Markov analysis. Adapted from 
Fig. 3 of Capolupo et al 2022. (A) Schematic representation of dHF cell lineage tracking. (B) 
Representative confocal micrograph of toxin-stained dHFs before (left) and after (right) segmentation 
with Cellpose. Segmented cell colors correspond to the different lipotypes. (C) Lineage reconstruction 
for the cells illustrated in (B) as inferred using TrackMate (Methods 4.3.9). (D) Correlation plots of 
normalized ChTxB, ShTxB1a, and ShTxB2e intensities between daughter cells at the time course end 
point. Dots are colored by the number of hours after mother cell division. (E) Heatmap of frequencies 
for two lipotypes occurring in two sister cells colored by z-score. Positive deviation from zero indicates 
an increased observed frequency of the sister-lipotype combination compared with random chance, 
and negative deviation from zero indicates a decreased observed frequency of the sister-lipotype 
combination compared with random chance. P values were calculated using the bootstrap 
pairwise t test (Methods 4.3.9) (F) Probability of a lipotype state transition occurring in a cell over a 21-
hour time period as estimated using CELLMA (Methods 4.3.1-4.4.6). Probabilities are located at the 
corresponding arrow tails. (G) Markov model–simulated evolution of a pure ChTxB+ (left) or pure 
ShTxB1a+/2e+ (right) cell population over 7 days. (H) Line plots displaying the evolution of the state 
predictability of a cell (or its progeny) after a certain time from an original state measurement. Differently 
colored tracks correspond to a different original lipotype measurement (t = 0). Kullback-Leibler 
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divergence is evaluated between the probability distribution vector obtained using the Markov transition 
matrix and the steady-state probability distribution (i.e., the best uninformed guess). 
 
4.3.3. CELLMA infers transition probabilities and lipotype stabilities 
 Considering the toxin-staining patterns of lineage-related cells, we modeled the 

dynamics of lipotype state transitions with a cell-state transition estimation by lineage leaf-
state Markov analysis (CELLMA) (Methods 4.5.1-4.5.6). CELLMA calculates a Markov 

transition probability matrix among all combinations of lipotypes. This transition matrix offers 
insight into the interconversion fluxes and stability of the different pre-defined lipid states.  

We applied CELLMA to our data and found that ShTxB1a+/2e+, ChTxB+, and triple+ are 
the most stable states, with a 37%, 51%, and 68% probability of converting into a different 

lipotype during a single cell replication cycle (21 hours), respectively. On the other hand, 

ShTxB1a+ and ShTxB2e+ states showed a greater likelihood (95 and 80% during a single 
replication cycle, respectively) of converting into the ShTxB1a+/2e+ or into “other” lipid 

configurations (Fig. 4.2F and 4.1SE-F). This suggests the ShTxB1a/2e+, ChTxB+, and Triple+ 
states act as major attractor states that can slowly interconvert and propagate across cell 

generations, whereas the ShTxB1a+ and ShTxB2e+ states are more transient. 
Furthermore, our model predicted that lipotype homogeneous populations, composed 

of cells all belonging to the same lipid category, would revert slowly (i.e., up to 7 days for the 
slowest case of ChTxB+) to a lipotype heterogeneous steady state (Fig. 4.2G-H and S4.1G). 

In agreement with this hypothesis, when we selected ShTxB1a+ or ChTxB+ cells by 
fluorescence-activated cell sorting (FACS) and kept them in culture for 10 days, the cultures 

reverted to heterogeneous cell populations with lipid-state compositions similar to the cultures 

from which they were originally selected (Fig. S4.1H). This aligns with our conclusion that 
dHFs exist in metastable sphingolipid configurations at homeostasis. 

 
4.4. Discussion 

In this work, we introduce the concept of lipotypes to describe recurring metabolic 
states in dHFs. We propose a computational approach called CELLMA to infer the probability 

matrix representing lipid-state transitions. CELLMA harnesses time-lapse microscopy to 
reconstruct cell lineages and endpoint measurements of lipid state through the proxy of toxin 

stainings at a single-cell spatial resolution (Fig. 4.2A). Our model offers a unique tool to study 
recurring, acyclical cell state transitions in biological systems. 

Interestingly, we discovered that lipotypes tend to have varying degrees of stability 

(Fig. 4.2F). This highlights an intriguing aspect of cellular identity, which is that even in steady 
state biological settings, not all cell states are equal in duration. It is still unclear what signals 
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are necessary to drive cell state transitions in dHF cultures and whether disruptions to those 

signals are commonplace. In the future, CELLMA could be extended to model lipotypes 
determined by a combination of individual lipid measurements, rather than from toxin stainings 

directly (Fig. A4.1). This would offer insight into the potential metabolic mechanisms driving 
lipotype transitions. Furthermore, this would offer a greater diversity of features with which to 

define lipotype states, since some lipid classes (i.e., HexCer) cannot be isolated by toxin 
staining

Although it has been suggested before that lipids contribute to the definition of cell 
state (Frechin et al., 2015; Kramer et al., 2022), the findings presented here and in the 

complete published study (Capolupo, Khven, et al., 2022) further confirm that lipid-defined 
states align well with phenotypic states defined by other cellular features. dHFs appear to 

maintain enough plasticity to reach all possible lipotypes, or at least those represented by 

toxin stainings. These conclusions support the hypothesis that lipid remodeling can have long-
term effects on cellular identity. Lipids could define more complex cell states and drive cell 

state transitions in other biological settings too, particularly during differentiation and 
embryonic development (Bhaduri et al., 2021; D’Angelo & La Manno, 2023; Levental & Lyman, 

2023; D. Russo, Della Ragione, et al., 2018; Yoon et al., 2022). In these settings, the 
assumption made by CELLMA that all lipotypes are present in constant proportions may no 

longer hold,  and changes to the model’s formulation to allow for multiple transition matrices 
would be necessary. Ultimately, the ability to measure lipid abundance at a single-cell 

resolution opens new opportunities for computational models to infer cell state transitions as 
defined by cellular metabolic activity. 

 

4.5. Methods 
4.5.1. Introduction of the model and data 

Here, we formulate a model that describes the behavior of a pool of cells that can 
transition between discrete, mutually exclusive “states” and divide, generating two daughter 

cells. Specifically, we consider the scenario where the relative abundances of cells in different 
states do not vary significantly over time, while cells continuously undergo transitions (i.e., the 

cell pool is at steady-state). 
The model we present is designed in such a way to allow the estimation of the rates 

of cell state transitions from incomplete recordings. In particular, we are interested in the 

situation where one can measure the time-resolved division history of hundreds of cells in a 
pool, but not their evolving state. If the time-resolved information on the cell state were 

available, the estimation of the cell-state transition rates would be direct and rather trivial. 
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Instead, the limitation that requires computationally maneuvering is that cell state cannot be 

probed for its state “live” and can only be recorded at an endpoint after measuring the division 
history. 

Pragmatically, measurements of this sort could be the result of slightly different 
experimental set-ups. We consider a case where live imaging microscopy has been used to 

record the division history and lipid anti-toxin stainings to assess the endpoint state of the 
cells. Live imaging recordings, appropriately processed by cell segmentation and tracking, 

provide both kinship relationships between cells and the time of division events, a variable 
important for the modeling framework presented here. The information of cell staining can be 

summarized in a modest number of discretized cell states, among which we want to estimate 
the rate of transition. Here we assume five unique lipid configurations, as determined by anti-

toxin staining at the time lapse end point: ChTxB+, ShTxB1+, ShTxB2+, ShTxB1+ShTxB2+ 

(double), ShTxB1+ShTxB2+ChTxB+ (triple). We finally consider an additional sixth lipid 
configuration (Other), which corresponds to states that cannot be uniquely resolved by toxin 

stainings alone. 
Furthermore, in the biological context considered in the present study, we have no 

ways of measuring “live” casual factors or covariates correlating with the transition choice of 
an individual cell. Thus, for the purpose of our model, the state transition occurring in a 

particular cell can be modeled as a stochastic process, yet with fixed rates. We also note that 
there is no biological reason to assume that the past state of a cell should affect the likelihood 

of the cell to transition from its current to a new, future state. Also, we have no biological 
evidence suggesting the system might not be ergodic. 

These considerations naturally lead to the choice of a Markov chain to model the 

transition process. Finally, we assume that cell division itself does not induce an immediate 
state transition. In biological terms, this assumption means that we do not allow for asymmetric 

segregation of the lipids during cell division. However, we note that if this were not true, our fit 
should accommodate that occurrence by skewing the transition rates to recapitulate a similar 

behavior. 
In summary, the model we propose considers a discrete-time Markov chain evolution 

of the cell state in each cell of the pool. Transitions are not affected by cell divisions. The 
model postulates that two daughter cells will inherit the same cell state from their mother at 

the moment of division. Only then will their states start drifting apart, as they will be more likely 

to transition to other states according to the same transition probability. 
We mathematically formulate our model as a maximum likelihood estimation of the 

transition matrix between cell states, and we anticipate that it will formally show that one can 
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use the knowledge of the time at which sister-cell drift started together with the recording of 

the cell's final state to estimate the transition matrix of the Markov chain. 

 
4.5.2. CELLMA model formulation 

Let us indicate with 𝐜E ∈ [0,1]#: 𝐜EF ⋅ 𝟙 = 1 the vector containing the probabilities that cell 

𝑖 is in each of 𝑛 possible states. Upon experimental measurement, we become certain that a 
cell is in state 𝑠 and therefore 𝐜E = 𝐞(, where the notation 𝐞( indicates a unit vector with its 𝑠-

th element equal to one and the other entries equal zero. We also define, for convenience, 
𝒮 = {𝐞(∀𝑠 ∈ ℕ: 1 ≤ 𝑠 ≤ 𝑛}. 

We consider a discrete-time setting and postulate that for a single time step, the state 
of a cell changes following a memoryless Markov process, defined by the transition matrix 𝚯 ∈

[0,1]#×#, where each entry ΘEG is the transition probability from state 𝑗 to state 𝑖. Thus, the 

updated probability vector after a series of 𝑘 time steps can be easily obtained by left-
multiplying the vector with the matrix. For example, the updated probability vector of a cell 𝑖 

after 𝑘 ∈ ℕ time steps can be written as: 
 

𝐜E∣,<5 = 𝚯5 ⋅ 𝐜E∣,							(𝟏) 

 

Where 𝚯5 indicates the matrix power and the notation 	∣, is used to specify that the state that 

a particular variable is considered at a particular time point 𝑡. We note that 𝚯 is a stochastic 

matrix, that is 𝚯F ⋅ 𝟙 = 𝟙. 
From the above, it follows that the probability of a cell to be in state 𝑠 starting from a 

state probability vector 𝐜E can be written as: 

 

𝑃(𝐜E∣,<5 = 𝐞( ∣ 𝐜E∣, , 𝚯) = 𝐞(F ⋅ 𝚯5 ⋅ 𝐜E∣,							(𝟐) 

 

Let us now consider the notation for data. For each cell at the end of our division 

tracking experiment, we readout a cell state. Consistently with the formulation defined above, 
we represent this state using a unit vector. The cell state measured for cell 𝑖 will be, thus, 

indicated as 𝐦E ∈ 𝒮. Conversely, the state of each parent cell, which we cannot measure, has 
to be considered as a latent variable. For an easier discrimination between measurable and 

latent cell states, we indicate those two sets of variables with 𝐜 and 𝛾 respectively. 
Furthermore, we indicate the sister relationship between two cells 𝑖 and 𝑗 writing 𝑗 = 𝛼(𝑖) and 

the mother-daughter relation between cell 𝑘 and 𝑖 writing 𝑘 = 𝜇(𝑖) and conversely 𝑖 =
𝜇8$(𝑘) = ℏ(𝑘). Finally, we indicate a set of relatives as a “clade” and distinguish the set of 
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measured states in the 𝑟 th clade with 𝒦I and the set of latent (e.g., parent) states in that 

clade with 𝒬I. Considering a cell 𝑖 we then have 𝒦I = 𝜅(𝑖) and 𝒬I = 𝜌(𝑖), so that we can write 
expressions such as 𝛼(𝜇(𝑖)) ∈ 𝒬I. 

From now on we will omit the notation 	∣, and, instead, indicate with 𝐜E the state of the 

𝑖-th cell at the time of the final measurement and with 𝛾G the state of the 𝑗-th latent cell at the 

time when it divides generating the two daughter cells. We note that all the equations below 

can be written as a function of those variables only and of the number of time-separating pairs 
of related cells 𝑖 and 𝑗 that we indicate with 𝜒GE ∈ ℕ. 

 

4.5.3. Three assumptions of cell lipid configuration heritability 
The aim of CELLMA is to produce a Maximum Likelihood estimate �̂� of the Markov 

transition matrix of the state transition process from the set of data ℳ = {𝐦E}. In order to 
achieve this, we need to consider the following three facts and assumptions. Firstly, sister cell 

states are not independent because at time of their generation have inherited the same cell 
type from their mother cell. 

 

𝑃𝚯9𝐜E = 𝐞K, 𝐜G = 𝐞L= ≠ 𝑃𝚯(𝐜E = 𝐞K) ⋅ 𝑃𝚯9𝐜G = 𝐞L=	∀(𝑖, 𝑗): 𝑗 = 𝛼(𝑖)							(𝟑) 

 
Instead, sister cells are conditionally independent given the mother cell state at the 

time of division and the Markov transition matrix, as the two cells in an identical state after 
division transition to new state independently following a Markov process. 

 

𝑃𝚯9𝐜E = 𝐞K, 𝐜G = 𝐞L ∣ 𝜸M= = 𝑃𝚯(𝐜E = 𝐞K ∣ 𝜸M) ⋅ 𝑃𝚯9𝐜G = 𝐞L ∣ 𝜸M=∀(𝑖, 𝑗, 𝑏): 𝑗 = 𝛼(𝑖)&𝑏 = 𝜇(𝑖)					(𝟒) 

 
The state of cells for which we do not observe any evidence of kinship during the time-

lapse imaging and are, thus, from different “clades” are considered independent beside having 
to obey the same probabilistic process determined by the Markov matrix. 

 

𝑃𝚯9𝐜E = 𝐞K, 𝐜G = 𝐞L= = 𝑃𝚯(𝐜E = 𝐞K) ⋅ 𝑃𝚯9𝐜G = 𝐞L=	∀(𝑖, 𝑗): 𝑗 ∉ 𝜅(𝑖)								(𝟓) 

 

4.5.4. Model simplification with maximum likelihood estimation 
We have now all the ingredients to simplify the expression of the Maximum likelihood 

problem to estimate 𝚯. 
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maximize
𝚯

ℒ(𝚯 ∣ {𝐦E})

 s.t. 𝚯F ⋅ 𝟙 = 𝟙
𝚯 ≽ 0

							(𝟔) 

With ℒ(𝚯 ∣ {𝐦E}) = 𝑃𝚯({𝐜E = 𝐦E}). First, we consider the assumption expressed equation (5) 

to factor the likelihood function by clades as follows: 

𝑃𝚯({𝐜E = 𝐦E}) =� 
N*

IO$

𝑃𝚯({𝐜E = 𝐦E∀𝑖 ∈ 𝒦I})							(𝟕) 

where 𝑁P is the number of clades. 

Now we note that we can compute the likelihood for a clade considering the joint 
probability of the data and the latent variables of a clade, and by marginalizing over all the 

possible combination of states. More specifically we have: 

� 
N*

IO$

𝑃𝚯({𝐜E = 𝐦E∀𝑖 ∈ 𝒦I})

=� 
N*

IO$

f 
#

QO$

f  
#

5O$

…f  
#

LO$

𝑃𝚯9{𝐜E = 𝐦E∀𝑖 ∈ 𝒦I}, 𝛾R = 𝐞Q , 𝛾M = 𝐞5 , … 𝛾L = 𝐞L=							(𝟖) 

Where only the latent variables in that clade are considered (e.g., {𝑎, 𝑏, … , 𝑧} = 𝒬I). We can 

write the equation (8) more compactly considering two compounded variables, one indicating 

the possible combination of latent states 𝐄 = 9𝐞Q , 𝐞5 , … , 𝐞L= ∈ 𝒮|𝒬+| that will be indexed for 

convenience as follows 𝐄 = (𝜀R , 𝜀M , … 𝜀K): {𝑎, 𝑏, … , 𝑧} = 𝒬I and the other corresponding to all 

stacked latent variables of a clade 𝚪I = (𝛾R , 𝛾M , … 𝛾K): {𝑎, 𝑏, … , 𝑧} = 𝒬I. Note that 𝒮|𝒬+| indicates 

a Cartesian power and | ⋅ | indicates the carnality of a set. 
 

𝑃𝚯({𝐜E = 𝐦E∀𝑖: 𝑖 ∈ 𝒦I}) = f  
𝐄∈𝒮|𝒬+|

𝑃𝚯({𝐜E = 𝐦E∀𝑖: 𝑖 ∈ 𝒦I}, 𝚪I = 𝐄)							(𝟗) 

 

We note that  by relying on the conditional independence of daughter cell state given 
the mother (e.g., equation (4)), we can factorize the term inside the sum as the product of 

probabilities for each cell, summed over all possible states 𝒮 for the parent cells, which are 
latent variables. 

 

𝑃𝚯({𝐜E = 𝐦E𝑖 ∈ 𝒦I}) = f  
𝐄∈𝒮|𝒬+|

�  
∀E∈𝒦+

𝑃𝚯(𝐜E = 𝐦E , 𝚪I = 𝐄)							(𝟏𝟎) 

 

Despite the appearance, the computation of equation (10) is less daunting than it may 
seem at first sight as the expression also factorizes in the "mother-daughter" terms shown 
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below (either latent-measured or latent-latent). Those terms have an analogous form of the 

expression in equation (2) and allow us to explicit the function of the only unknown quantity 
𝚯, resulting in a functional form that is the product of different terms with: 

 

	 f  
𝐄∈𝒮 |𝒬+|

 �  
E∈𝒦+

 𝑃𝚯(𝐜E = 𝐦E , 𝚪I = 𝐄) =

=	 f  
𝐄∈𝒮 |𝒬+|

 �  
E∈𝒦+

 𝑃𝚯9𝐜E = 𝐦E , 𝛾Z(E) = 𝜀Z(E)= �  
)∈𝒬+

 𝑃𝚯9𝛾) = 𝜀), 𝛾Z()) = 𝜀Z())= =

=	 f  
𝐄∈𝒮 |𝒬+|

 �  
E∈𝒦+

 𝐦E
F ⋅ 𝚯[.,0(.) ⋅ 𝜀Z(E) �  

)∈𝒬+

  𝜀)F ⋅ 𝚯[3,0(3) ⋅ 𝜀Z())

							(𝟏𝟏) 

Where we have indicated with 𝐄Z(E) the unitary vector 𝐞( extracted at the 𝜇(𝑖)-th row of 𝐸. 

We can finally combine everything we have learned in a single expression of the 
likelihood function: 

ℒ(𝚯 ∣ {𝐦E}) =� 
N*

IO$

f  
𝐄∈𝒮 |𝒬+|

�  
E∈𝒦+

𝑃𝚯(𝐜E = 𝐦E , 𝚪I = 𝐄)							(𝟏𝟐) 

Explicating all the terms as a function of 𝚯 and the data, and listing all the constraints, we 
arrive to the final form of the CELLMA optimization problem: 

maximize
𝚯

	�  
N*

IO$

  f  
𝐄∈𝒮|𝒬+|

  �  
∀E:E∈𝒦+

 𝐦E
F ⋅ 𝚯[.,0(.) ⋅ 𝜺Z(E) �  

∀):)∈𝒬+

 𝜺)F ⋅ 𝚯[3,0(3) ⋅ 𝜺Z())						(𝟏𝟑)

 s.t. 𝚯F ⋅ 𝟙 = 𝟙
𝚯 ≽ 0

 

 

4.5.5. Implementation practicalities 
In practice, at the implementation level we actually minimize the following negative log-
likelihood function: 

minimize
𝚯

	−log	 ℒ(𝚯 ∣ {𝐦E})

minimize
𝚯

	−f  
N*

IO$

 log	 f  
𝐄∈𝒮|𝒬+|

 �  
E∈𝒦+

 𝑃𝚯(𝐜E = 𝐦E , 𝚪I = 𝐄)
 

For numerical stability we use log-probabilities whenever possible to avoid numerical 

cancellation problems. In particular we solve the problem in this form: 
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minimize
𝚯

−f  
N*

IO$

 log	 f  
𝐄∈𝒮|𝒬+|

 exp	 ef  
E∈𝒦+

 log	9𝐦E
F ⋅ 𝚯[.,0(.) ⋅ 𝜺Z(E)= +

f  
)∈𝒬+

 log	9𝜀)F ⋅ 𝚯[3,0(3) ⋅ 𝜺Z())=ì

 s.t. 	𝚯F ⋅ 𝟙 = 𝟙
𝚯 ≽ 0

 

We solve the above problem using a standard interior point solver. We note that the 
gradient of the function above is not tractable analytically, nonetheless we can compute it 

empirically at each iteration of the solver. Clearly, this adds to the computational cost 

quadratically with respect to the number of states. More influential on time complexity is, 
however, is the Cartesian product that brings in a factorial contribution. However, we notice 

that more distant ancestors are progressively less crucial to the estimation, and therefore we 
can partition big clades by dropping all lineage relation deeper than three layers without losing 

much information. Overall, for several hundreds of cells and a small number of states (e.g., 
≤ 10 ) the method converges in just few minutes. 

 

4.5.6. Exploiting the hierarchical structure to economize the computation 

We note that when we made a step from (8) to (9) we ignored the structure of the tree 

seeking only a general formulation. However, by doing so, at the level of implementation we 

end up repeating computations where the structure of the tree might allow a much more 
compact computation. We will show here that, with a bit of bookkeeping, it is possible to reduce 

significantly the complexity of the likelihood function evaluation. 
Let's consider the subclade defined taking an arbitrary internal node 𝛾E (let's call it the 

subcalde root) and its progeny. More formally 𝒲E = {∀𝑗: ∃𝑛𝜇#(𝑗) = 𝑖}. We can define a 

conditional likelihood of such a subclade, indicated with ℒ]
E∣L, as the probability of the data 

observed downstream of the subclade root 𝛾E, conditional on it having state 𝑞. In other words: 

 

ℒ𝚯
E∣L = 𝑃𝚯9�𝐜G = 𝐦G∀𝑗 ∈ 𝒲E ∩𝒦I� ∣ 𝛾E = 𝐞L= 

 

that can be written explicitly as a marginalization of the following joint probability distribution: 

ℒ]
E∣L =f 

#

QO$

 f  
#

5O$

 …f  
#

KO$

 𝑃𝚯9�𝐜G = 𝐦G∀𝑗 ∈ 𝒲E ∩𝒦I�, 𝛾^ = 𝐞Q , 𝛾? = 𝐞5 , … , 𝛾C = 𝐞K ∣ 𝛾E = 𝐞L=

 with {𝛿, 𝑜, … , 𝜔} ≐ 𝒲E ∩ 𝒬I
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Let's now consider a bisection of the set {𝛿, 𝑜, … , 𝜔} in two sets of nodes (and 

corresponding latent variables) each corresponding of the nodes downstream one of the two 
children of the node 𝑖 (note, the corresponding latent variables are 𝛾ℏ(E)" and 𝛾ℏ(E)4 ). We can 

write these sets compactly as {ℏ(𝑖)$, 𝛿$, … , 𝜔$} ≐ 𝒲ℏ(E)" ∩ 𝒬I and {ℏ(𝑖)6, 𝛿6, … , 𝜔6} ≐ 𝒲ℏ(E)4 ∩

𝒬I. Noticing then that the latent variables from one of these sets are independent to the one 
of the other conditional on 𝛾E we can factorize the above: 

 

ℒ𝚯
E∣L =ef  

#

QO$

 f  
#

5O$

 …f  
#

KO$

 𝑃𝚯9�𝐜G = 𝐦G∀𝑗 ∈ 𝒲E ∩𝒦I�, 𝜸ℏ(E)" = 𝐞Q , 𝜸^" = 𝐞5 , … , 𝜸C" = 𝐞K ∣ 𝛾E = 𝐞L=i .

óf  
#

`O$

 f  
#

,O$

 …f  
#

IO$

 𝑃𝚯9�𝐜G = 𝐦G∀𝑗 ∈ 𝒲E ∩𝒦I�, 𝛾ℏ(E)4 = 𝐞`, 𝛾^4 = 𝐞, , … , 𝛾C4 = 𝐞I ∣ 𝜸E = 𝐞L=ì

 

 

And now, using the definition of conditional probability and exploiting the fact that the 

cell state of a cell is independent from the state of the grandmother (or more remote 
progenitors) conditional on the state mother we can write: 

 

ℒ𝚯
E∣L = ôf 

#

QO$

 f  
#

5O$

 …f  
#

KO$

 𝑃𝚯(𝛾ℏ(E)" = 𝐞Q|𝛾E = 𝐞L) ⋅ 𝑃𝚯9�𝐜G = 𝐦G∀𝑗 ∈ 𝒲ℏ(E)" ∩𝒦I�,

𝛾^" = 𝐞5 , … , 𝜸C" = 𝐞K ∣ 𝛾ℏ(E)" = 𝐞Q=D ⋅ ef  
#

`O$

 f  
#

,O$

 …f  
#

IO$

 𝑃𝚯9𝛾ℏ(E)4 = 𝐞` ∣ 𝜸E = 𝐞L=.

𝑃𝚯9�𝐜G = 𝐦G∀𝑗 ∈ 𝒲ℏ(E)4 ∩𝒦I�, 𝛾^4 = 𝐞, , … , 𝛾C4 = 𝐞I ∣ 𝛾ℏ(E)4 = 𝐞`=D =

ôf  
#

QO$

 𝑃𝚯(𝛾ℏ(E)" = 𝐞Q|𝜸E = 𝐞L) ⋅ f  
#

5O$

 …f  
#

KO$

 𝑃𝚯9�𝐜G = 𝐦G∀𝑗 ∈ 𝒲ℏ(E)" ∩𝒦I�,

𝛾^" = 𝐞5 , … , 𝜸C" = 𝐞K ∣ 𝛾ℏ(E)" = 𝐞Q=D ⋅ ef  
#

`O$

 𝑃𝚯9𝛾ℏ(E)4 = 𝐞` ∣ 𝜸E = 𝐞L=.

f  
#

,O$

 …f  
#

IO$

 𝑃𝚯9�𝐜G = 𝐦G∀𝑗 ∈ 𝒲ℏ(E)4 ∩𝒦I�, 𝜸^4 = 𝐞, , … , 𝜸C4 = 𝐞I ∣ 𝜸ℏ(E)4 = 𝐞`=i

 

 
That can be compactly written in a recursive relation, noticing that the second term in each 

factor has the form of: 
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ℒ𝚯
E∣L =ôf 

#

QO$

 𝑃𝚯9𝛾ℏ(E)" = 𝐞Q ∣ 𝛾E = 𝐞L= ⋅ ℒ𝚯
ℏ(E)"∣Qõ ⋅ ef  

#

`O$

 𝑃𝚯9𝛾ℏ(E)4 = 𝐞` ∣ 𝛾E = 𝐞L= ⋅ ℒ𝚯
ℏ(E)4∣`i =

ôf 
#

QO$

 𝐞QF𝚯[ℏ(.)",.𝐞L ⋅ ℒ𝚯
ℏ(E)"∣Qõ ⋅ ef  

#

`O$

 𝐞`F𝚯[ℏ(.)4,.𝐞L ⋅ ℒ𝚯
ℏ(E)4∣`i

 

 

We can write it in a more compact form introducing the vector ℓ]E = @ℒ]
E∣$, ℒ]

E∣6, … , ℒ]
E∣#A. 

 

ℒ]
E∣L = Bℓ]

ℏ(E)"6 ⋅ 𝚯[ℏ(.)",. ⋅ 𝐞LD Bℓ]
ℏ(E)46 ⋅ 𝚯[ℏ(.)4,. ⋅ 𝐞LD 

 
And even more compactly: 

 

𝓵𝚯E 	F = 𝓵𝚯
ℏ(E)"F ⋅ 𝚯[ℏ(.)",. ⊙𝓵𝚯

ℏ(E)4F ⋅ 𝚯[ℏ(.)4,E 

 
To express eq. (7) in terms of this recursion we need to specify how to deal with root node of 

clade 𝑟 that we indicate 𝜋(𝑟). Similarly of what is done in the naive computation of the 

likelihood, we consider a prior 𝜓 that we typically will set to the sample distribution of states. 
Note that this corresponds to a steady state assumption. However, a more informative prior 

(e.g., only one "stem cell" population being present at the origin) can be used as well. So, we 
can write the final likelihood ℒ(𝚯 ∣ {𝐦E}) as 

𝑃𝚯({𝐜E = 𝐦E}) =�  
N*

IO$

ℓ𝚯
B(I)6𝚯[,B(I)𝝍 

or, depending on what the prior is intended to represent just 

𝑃𝚯({𝐜E = 𝐦E}) =� 
N*

IO$

ℓ𝚯
B(I)6𝝍 

 

4.5.7. Lipid determination from toxin stainings  
After segmenting each cell, we determined its lipotype class by considering a 

binarization to each toxin signal i.e., designating each cell as either “positive” or “negative”. 

To achieve this, we first normalized the signal intensity to control for cell size and adjust the 
log-response of the fluorescent intensity signal. Specifically, we used the normalized values 

𝑍𝑖𝑐 = 𝑙𝑜𝑔(5 𝑅𝑖𝑐 / 𝑚𝑎𝑥𝑐(𝑅𝑖𝑐)), where 𝑅𝑖𝑐 = 𝐼𝑖𝑐/𝛴𝑧𝐼𝑧𝑐 and 𝐼𝑖𝑐 indicates the signal of the toxin i in cell 

c. We then thresholded 𝑍𝑖𝑐 to obtain the binarization. To accommodate for the potential 
experimental fluctuation of the total maximum intensity of signal, we used sample-relative 
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thresholds determined identically for each of the wild type unperturbed dHF stainings. A cell 

was considered ChTxB+ if the level of ChTx was higher than the 35th percentile, ShTxB1a+ 
if its ShTxB1a signal exceeded the 40th percentile, ShTxB2e+ if its ShTxB2e signal was higher 

than the 25th percentile. 
 

4.5.8. Time-lapse imaging coupled with endpoint staining  
dHFs were seed the day before on glass bottom 3 well chamber slides (IBIDI) in 

complete media to reach the roughly 30% confluence at the start of the time-lapse. Cells were 

analyzed on a PerkinElmer Operetta microscope under controlled temperature and CO2 and 
followed for 42 hours. An image was acquired every 20 minutes in brightfield and digital phase 

contrast (DPC) with a 10x (0.35 NA) air objective, binning of 2 and the speckle scale set to 0 

under non-saturated conditions. After 42h, cells were fixed with 4% PFA and processed for 
toxin staining. The same areas acquired by brightfield and DPC microscopy were analyzed 

with Leica SP8 with 20x air objective (0.8 NA) as described above. 
 

4.5.9. Cell state transition estimation from time-resolved lineages  
The lineage information extracted from the time-lapse imaging and the cell state from 

the endpoint staining were used to perform a sister state frequency analysis and to fit 

CELLMA. First, we segmented the time-lapse images using a custom Cellpose model trained 
using manually annotated dHFs DPC micrographs (Capolupo, 2022; Capolupo, Burri, et al., 

2022). All the segmentation hypotheses were, then, combined to allow for cell tracking. Cell 
tracking was performed with TrackMate v7.2 using the “LAP tracker” algorithm and allowing 

track segment splitting and gap closing. The following parameters were used: frame-to-frame 

linking max distance: 22 μm, track segment gap closing max distance: 20 μm and max frame 
gap: 6 frames, track segment splitting max distance 25 μm. Tracking information was exported 

from TrackMate and analyzed using a custom Python script. The final lineage tree analyzed 
was obtained by pruning the raw tracks in the following way: we considered only the tracks 

that reached the last frame, where at least one splitting event was recorded and that had a 
cumulative length of at least 180 μm. Cumulatively, we analyzed a total of 1,516 leaf cells 

grouped into 591 clades (e.g., cells deriving from an initial mother cell). No manual curation of 
the tracks was performed. The last frame of the time-lapse was manually registered to the 

toxin staining image and the segmentation of the last frame was used to quantify the toxin 

levels of each cell. Toxin signal quantifications were normalized and cell state determined as 
described in section 4.3.6. 
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Sister state pair frequency was measured by simply counting the occurrences of all 

the possible pairs of sister cell states. A one-sided Monte Carlo test was performed for each 
possible state pair in the attempt to reject the null hypothesis that the occurrence of that state 

pair in sister cells is compatible with a random state assignment. More precisely, we generated 
100,000 realizations of the null model by permuting the cell labels while leaving the lineage 

tree unaltered. To estimate the tendency of each lipotype to transition into another, provided 
only the toxin-stained endpoint readout and the time-resolved lineage traces, we then applied 

CELLMA as formulated in sections 4.3.1-4.3.4. 
CELLMA minimizes the negative log-likelihood defined with respect to the Markov 

matrix 𝜽, subjected to both linear inequality (i.e., non-negativity) and equality (i.e., to ensure 
that 𝜃 is a stochastic matrix) constraints. We used an interior point routine developed for large 

scale programs (scipy v1.71 implementation function “minimize(‘trust-const’)”). The time step 

for the transition encoded by 𝜃 was selected to be 100 min. Transition matrices corresponding 
to shorter steps were obtained by evaluating the matrix power. Since this optimization problem 

is not convex, we run the optimization 12 times starting with random guesses for 50 iterations, 
the solution candidate that minimizes the negative log-likelihood is then further refined for 500 

iterations or if convergence is reached. The random starting guesses are generated 
renormalizing 𝑀𝑖𝑗∼ 𝛿𝑖𝑗 + 15 𝐵𝑒𝑡𝑎(0.3, 0.5) (where 𝛿𝑖𝑗 is the Kroneker delta) to a stochastic 

matrix. To allow efficient CELLMA model fitting, only latent variables two generations above 
the leaf cells were considered deeper clades were split. Time-resolved simulations of cell state 

evolution were performed by repeatedly left-multiplying an initial probability distribution vector 
by 𝜃. As a proxy for the future state predictability of a lipotype after a time 𝛥𝑡 passed since its 

state 𝑝0 was measured, we use the Kullback-Leibler (KL) divergence between the expected 

probability distribution 𝜃𝛥𝑡𝑝0 and the steady state probability distribution (i.e., the lipotype 
frequency). 

 

4.5.10. Data and Code Availability 

 All data are available in the main text and supplementary materials of this chapter, as 

well as those from the original, complete publication, are available online. Pipelines for cell 
segmentation with Cellpose are available at: https://doi.org/10.21228/M8698W and 

https://doi.org/10.5281/zenodo.6023316. Additional materials for digital phase contrast on 
primary dHFs can be found at: https://doi.org/10.5281/zenodo.5996882. Data, code, and 

Jupyter notebooks containing the implementation of CELLMA and to reproduce the results 

presented in this chapter are available at: https://doi.org/10.5281/zenodo.6245943. Further 

https://doi.org/10.21228/M8698W
https://doi.org/10.5281/zenodo.6023316
https://doi.org/10.5281/zenodo.5996882
https://doi.org/10.5281/zenodo.6245943
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information and requests for resources and reagents can be directed to the corresponding 

authors of Capolupo et al 2022. 
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4.6. Supplementary Materials 
4.6.1. Supplementary Figures 

 
Figure S4.1. Cell tracking and lineage reconstruction from time-lapse recordings of dHFs. 
Adapted from Fig. S4 of Capolupo et al 2022. (A) Closeup of the time-lapse images illustrating an 
example of annotated tracking for a single dHF and its daughter cells over approximately 42 hours. Red 
circles indicate segmented cells and tailing lines indicate the tracked movement of cells. Time is 



 158 

indicated in format HH:MM. (B) Images showing annotated lipotype call masks (upper panel) obtained 
by binarizing the information derived from the toxin staining (lower panel) at the endpoint of the movie. 
Lipotype masks are obtained by segmenting the last frame of the time-lapse experiment (also see Movie 
S1 from Capolupo et al 2022). Scale bar is 500 μm. (C) Reconstructed lineage hierarchy map of dHFs 
over 42 hours. Branches indicate intermediate cells (for which the state is latent) and circles indicate 
leave cells, colored by the observed lipotype class (green: ShTxB1a+, red: ShTxB2e+, yellow: 
ShTxB1a+/2e+, blue: ChTxB+, light grey: Triple+, dark grey: Other). (D) Frequency matrix of observed 
(left) and expected (right) sister cells lipotypes. Observed frequencies were obtained from C, expected 
frequency by randomizing the labels (see Methods 4.3.9). (E) CELLMA Markov transition matrix 
corresponding to a 100 min transition. (F) Graph of lipotype transition flow over 12 hours of the system 
at steady state. The number of cells transitioning between or within lipotypes is out of a total of 2,500 
cells; edges corresponding to flows of less than 4 cells were pruned to simplify the interpretation. Cell 
numbers are located close to the corresponding arrow tail. (G) Simulated evolution of lipotype 
composition of pure ShTxB1a+, ShTxB2e+, Triple+, and Other populations over 7 days. An extension 
of Fig. 4.2G. (H) ChTxB+ and ShTxB1a+ cells were FACS-sorted and kept in culture for 10 days. Cells 
were stained with bacterial toxins and analyzed by cytofluorometry. Scatter plots of fluorescence 
intensity values are shown for each toxin. Populations are colored as in (A). Unstained cells were used 
as negative control to determine the gates. Blue and green boxes in CTRL cells indicate the FACS-
sorted populations. 
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4.7. Appendix

 
Figure A4.1. Mapping single-cell lipidomes of lineage reconstructed dHFs. (A) Linear discriminant 
analysis (LDA) of 2,441 single-cell dHF lipidomes obtained over four time-lapse movies and ten 
acquisitions with MALDI-MSI. Cells are colored by their lipotype determined using a feature space of 
183 lipid molecules. (B) LDA plots showing the normalized intensities of nine variable lipids belonging 
various lipid classes (Gb3: trihexosylceramides, Gb4: globosides, HexCer: hexosylceramides, GL: 
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glycerolipids, EL: ether lipids). (C-D) LDA plot from (A) with cells colored by the time-lapse movie (C) 
or MALDI-MSI acquisition (D) from which they were acquired. (E-F) Kernel density plot of the Euclidean 
distance between a cell and its sister cell in PCA (E) or LDA (F) space compared to their distance with 
non-sister, random cells. (G) LDA visualization of single-cell lipidomes including links between related 
sister cells. Links between sister cells belonging to the same lipotype are colored according to that 
lipotype (see A for legend). Sister cells that do not belong to the same lipotype are instead linked with 
a black line. 
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Perspectives 
In this thesis, I describe multifaceted efforts to decode the underlying properties of cell 

state transitions using quantitative analyses and modeling. My goal was to better understand 
how cells transition across cell states. I tackled this overarching idea with three specific 

biological research questions, each of which relates to the main dimensions of cell state 
transitions: their path, pace, and rules. In each chapter, I advance our scientific understanding 

of how cells transition across states and propose improved computational solutions to model 
those dynamics in a particular biological system. 

In the first part, I tackle cell state transitions from a population perspective, asking 
which transitions unfold in a differentiation protocol where a homogeneous pool of progenitors 

is directed towards a particular cell fate. Specifically, I address this problem in a pragmatic 

setting: the characterization of dynamics during hESC-RPE differentiation for treatment of 
AMD (Chapter 2). I conclude that cells during the Reyes-Reurer protocol, rather than 

progressing along a direct linear path from stem cells to RPE, undergo a more complex 
dynamic that can be modeled as a divergence-convergence process, closely mirroring 

development. Motivated by this discovery, I further probe the plasticity of intermediate cell 
states by inducing alternate differentiation routes and, finally, confirm the identity of the final 

state reached by a detailed comparison with in vivo reference atlases and other published 
protocols. 

In the second part, I consider the pace at which cell state transitions occur, asking how 
the rate of the cell cycle across different tissues and environmental contexts varies and 

whether it can be inferred with gene expression measurements from an ensemble of cells. To 

this end, I reformulate RNA velocity and gene manifold estimation into a unified framework, 
implementing a probabilistic model for velocity inference of periodic processes (Chapter 3). I 

describe changes in cell cycle speed in different in vitro and in vivo samples and propose a 
statistical tool for evaluating velocity significance. I also discover that cell cycle velocities can 

be approximated in real time and validated experimentally.  
In the third part, I examine the role of cell state transitions to preserve a dynamic 

equilibrium of cell states in a biological system at homeostasis, asking whether the rules that 
govern transition probabilities among states can be defined using the partial information 

extracted from imaging-based lineage tracing. To explore this, I represent cell state transitions 
as Markov chains and create a model to estimate a transition probability matrix from 

reconstructed cell lineage information and endpoint lipid-state measurements (Chapter 4). I 

apply my method to investigate the fact that dHFs exist in different lipid compositional states. 

5. 
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My method uncovers the transition properties within this system at equilibrium, and I provide 

important evidence behind the concept of a lipotype: a cell state characterized and maintained 
because of its lipid composition. 

These three chapters advance our collective understanding of stem cell therapies for 
retinal disease, cell cycle modulations, and lipid states in dermal fibroblasts. Naturally, there 

remain many open-ended questions that provide opportunities for further exploration. Here, I 
summarize the major findings of this thesis, dive into potential shortcomings, and contemplate 

avenues for future research. I also consider the interrelatedness of these works and describe 
how our understanding of cell state transitions continues to evolve. 

 
5.1. Path: Molecular profiling of stem cell-derived retinal pigment 

epithelial cell differentiation established for clinical translation 
 
5.1.1. Open questions regarding in vitro hESC-RPE differentiation 

AMD is a major cause of vision loss and has significant promise to benefit from hESC-

derived cell-replacement therapies. Among the different possible therapeutic approaches, one 
of the most feasible options involves the generation and transplantation of healthy RPE cells. 

In Chapter 2 of this thesis, we describe a 2D monolayer hESC-RPE differentiation protocol, 
leveraging scRNA-seq to assess intermediate cell states and provide a high-resolution 

perspective on a stem cell-based product intended for clinical trials. We transcriptomically 
characterize hESC-RPE differentiation at six time points and in three cell lines, demonstrating 

successful RPE lineage induction, selection, and maturation over 60 days. Initially, however, 

we observe a significant heterogeneity in the cell pool, with spatially patterned cell types 
resembling various sensory tissues adjacent to early optic tissues in vivo (Fig 2.2). 

Whether the generation of these intermediate populations is necessary to obtain the 
final outcome of a pure RPE population is still unknown. While non-trivial experimentally, 

attempting to decouple the differentiation of these diverging populations would be an 
interesting research direction and help to understand the key factors fueling the process. For 

instance, the existence of these cells might support a diverse signaling environment, akin to 
the one present during embryonic development. Conversely, off-target populations may 

increase the time required to reach a mature RPE status. A diverse range of cell types also 
emerge in 3D embryoid body protocols and organoid systems, so the phenomenon is not 

restricted to more straightforward 2D differentiations (Azar et al., 2021). Nonetheless, this 

early-stage diversity, followed by a collapse onto a homogenous RPE cell population, supports 
a divergence-convergence model of in vitro differentiation (Fig. 2.2 and 2.6). It remains to be 
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seen whether such dynamics generalize to other protocols, as the tendency to profile time 

points besides those at the start and end is only recently becoming a more common practice. 
Furthermore, our work highlights the role of intermediate cell stages in differentiation. 

We find that removing a specific progenitor cell population (NCAM1-High) at the protocol 
midpoint (D30) leads to a more rapid attainment of mature RPE (Fig. 2.4). Further efforts to 

characterize the population of cells that is low in levels of NCAM1 (i.e., CD140b-High cells; 
Fig. S2.4) may offer insights into the differentiation path that could assist with designing a 

shorter protocol, without compromising the quality or maturity of the final RPE product.  
We also demonstrate that NCAM1-High populations can be re-directed at 30 days 

using another differentiation protocol to generate neuroepithelial cell types, including neuronal 
precursors (Fig 2.5). This finding could be promising because the second major cell type 

impacted by AMD are photoreceptor neurons. If it were possible to generate both RPE and 

photoreceptors from a single hESC precursor, or even better, to derive a functionally 
interacting co-culture of both cell types, it would be an enormous advancement towards 

actionable therapies for AMD. While most existing retinal differentiations produce only RPE or 
photoreceptors (Fortress et al., 2023; Rubner et al., 2022), the plasticity of intermediate cell 

states in our hESC-RPE protocol offers a chance to study the cues triggering commitment 
towards particular cell fates. 

Despite reaching a high RPE purity after 60 days, a small portion of the final cell 
product still consists of retinal progenitor cells (Fig 2.6). Curiously, the same progenitor 

populations were detected in significantly longer protocols up to one year long (Fig. S2.6F) 
(Lidgerwood et al., 2021). This suggests a relationship between lingering progenitors and 

mature RPE cells. While it is typically assumed that RPE do not reverse their degree of 

differentiation, we cannot fully exclude that backwards transitions exist at low rates. These 
retinal progenitors do not seem to pose a safety risk, and they could benefit the mature RPE 

population by ensuring a renewed proliferative capacity in the event of environmental 
stressors or cell death. Perhaps the presence of a resident pool of progenitors is required to 

maintain a healthy culture in the first place. The study of these populations will likely yield 
valuable insights into the plasticity of final cultures. 

 

5.1.2. Future challenges when preparing hESC-RPE for cell therapies 
A critical aspect for the success of cell-based treatment therapies is transplantation 

into patients (Rizzolo et al., 2022). The three major concerns at this stage include the risk of 

de-differentiation into more pluripotent or unstable cell states, the ability of transplanted cells 
to functionally integrate with other host cell types, and the possibility of tissue rejection by the 
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host (S. Gupta et al., 2023). In the protocol we study, we do not observe any signs of de-

differentiation or the presence of non-RPE cells among the endpoint cells grafted into the 
rabbit retina profiled by scRNA-seq and histological stainings (Fig. 2.7). Interestingly, the 

transplanted cells not only retained their RPE characteristics, but may have also further 
matured towards a more functional state, as indicated by the expression of visual cycle genes 

uniquely following transplantation. This suggests the cell state of transplanted RPE cells more 
closely matches that of resident normal cells in the adult.  

The discovery that differentiation proceeds further after grafting opens the possibility 
that shorter differentiation protocols might be equally successful. While this next research 

direction is promising, in order to confidently determine whether RPE transplantations 
functionally support the host photoreceptor cells, transplantation experiments of RPE cell 

pools at different stages of differentiation need to be performed and assessed by scRNA-seq. 

This would ideally be accomplished in a rabbit model for retinal neurodegenerative disease. 
Finally, tissue rejection remains possible during therapy, but could be minimized by use of 

replacement tissues from patient-derived stem cells (Dehghan et al., 2022). 
The viability of RPE after cryopreservation is important for clinical application of stem 

cell therapies. To evaluate whether long-term cryopreservation of these cells is possible, we 
are contributing to a follow up study in which we perform scRNA-seq on D60 cells that have 

replated for an additional three days, to enable viable cryopreservation for up to one year of 
storage. By comparing the transcriptome of cells at the protocol endpoint (not viable for 

cryopreservation, D60) to those thawed and re-cultured for three days (viable for 
cryopreservation, D60+3), we observed that preservable cells resembled more immature RPE 

(Chapter 2.8, Fig. A2.1). This was further confirmed by applying our ordinal classification 

scheme to newly collected data (Fig. A2.1D, Fig. 2.7). More experiments will need to be 
carried out to better understand the mechanism behind this de-differentiation of cell state and 

to evaluate overall cell viability. However, one hypothesis is that the small pool of retinal 
progenitors at D60 may promote RPE renewal after cryopreservation. The presence of 

increased EMT and proliferation signatures (Fig. A2.1F-G) supports this idea, since we also 
see these signatures after replating at D30 of the standard protocol, where NCAM1-High 

progenitor cells are present (Fig. S2.5). 
Adapting stem cell therapies to the clinic will also pose other challenges. Generating 

large quantities of tissue to treat the large number of affected patients will require automation 

of differentiation protocols in clinical cell lines (i.e., KARO1 and E1C3). Moreover, other retinal 
diseases, such as those with a strong genetic basis, are not as advanced towards treatment 

with stem-cell based therapies; research using patient-derived tissue or organoid cultures is 
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a potential opening to address this (Liang et al., 2023). Nonetheless, significant efforts are 

ongoing to improve treatments for AMD and the first clinical trials have started (X. Chen et al., 
2023). The efforts described here support a more nuanced characterization of cell state 

transitions during differentiation protocols with a strong practical intent to act as therapies. 
 
5.2. Pace: Statistical inference with a manifold-constrained RNA 

velocity model uncovers cell cycle speed modulations 
 
5.2.1. Improvements and limitations of existing RNA velocity methods 

During the past five years, RNA velocity (La Manno et al., 2018) has emerged as an 

important technique in single-cell genomics for analyzing the rate of change during cell state 

transitions. As with the previous rise of pseudotime trajectory inference (Bendall et al., 2014; 
Trapnell et al., 2014), RNA velocity has inspired numerous computational biologists to develop 

extensions upon the original approach. Typically, these follow-up efforts focus on: (1) revising 
the differential kinetic equations to incorporate multiple omics modalities (Burdziak et al., 2023; 

Gorin et al., 2020; C. Li et al., 2022; S. Ma et al., 2020; Tedesco et al., 2022), (2) applying 
machine learning methods to obtain estimates that are better aligned with the biology (Bergen 

et al., 2020; Z. Chen et al., 2022; Cui et al., 2024; X. Qiu et al., 2022), or (3) adjusting the 
representation of latent time to address complex branching trajectories (M. Gao et al., 2022; 

Qiao & Huang, 2021). 
These adjustments to RNA velocity estimation have been achieved due to progress in 

two related research domains. First, experimental techniques have been developed to jointly 

profile, in the same single cell, two or more omics modalities (i.e., transcriptome, chromatin 
accessibility, histone modifications, surface proteins). The joint detection of these modalities 

was in its early stages when the initial RNA velocity paper, with its implementation velocyto, 
was released. Second, advanced machine learning frameworks based on neural networks 

and generative modeling have been increasingly applied to estimate the kinetic parameters of 
the velocity equations and overcome the steady-state assumptions. Together, these general 

advancements have sought to improve interpretability and utility of the RNA velocity algorithm.  
At the same time, there has been a broader recognition of the limits to existing velocity 

approaches and other caveats for analyzing single-cell data (Bergen et al., 2021; Gorin et al., 
2022; Zheng et al., 2023). Bergen et al focuses on the problem of using the velocity rate 

equations to accurately model biological systems with more complex transcriptional dynamics, 

such as transcriptional boosting during erythroid maturation. In contrast, Zheng et al discusses 
the dependence of the RNA velocity workflow on k-nearest neighbors smoothing in order to 
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reduce noise. Finally, Gorin et al provides a comprehensive overview of the entire RNA 

velocity workflow, including preprocessing, model estimation, and embedding; they conclude 
that the route to improving future velocity methods is design more tractable inference 

procedures, such as with Bayesian inference, rather than extend the capabilities of existing 
models with additional heuristics. 

 

5.2.2. Intronic transcript detection levels with short-read sequencing 
Due to low molecule detection levels, gene expression count data is highly sparse, and 

poor detection of intronic reads makes velocity estimation challenging. Certain biases in 
intronic read detection are also present when using short-read Chromium 10X sequencing, 

and these may affect velocity estimation. Additionally, a large amount of internal priming in 

repetitive A-rich nucleotide regions occurs, and this has been demonstrated to amplify intronic 
reads in a highly biased manner (10XGenomics, 2020).  

Recent gene expression quantification algorithms have been developed to improve 
memory-efficiency, reduce false-positive molecule detection, and account for reads spanning 

multiple genes (D. He et al., 2022; Kaminow et al., 2021; Melsted et al., 2021). However, these 
computational methods are limited because most scRNA-seq data is generated without 

sequencing the entire transcript body, preventing reliable detection of intronic regions and 
isoforms. These approaches also do not address the technical biases of 10X protocols 

Improved quantitative UMI technologies with full-length transcript sequencing, such as 
Smart-seq3xpress and FLASH-seq, better discriminate among alternatively-spliced variants 

of a gene, but these technologies are low-throughput and expensive (Hagemann-Jensen et 

al., 2022; Hahaut et al., 2022). Long read sequencing technologies, once adapted for single 
cells and perhaps paired with a modified Chromium 10X protocol, could yield improvements 

to unspliced and spliced RNA molecule detection (Marx, 2023; Tian et al., 2021). 
 

5.2.3. Data preprocessing and RNA velocity benchmarking metrics 
Aspects of data preprocessing offer computational challenges that ought to be more 

widely considered when creating new velocity tools. For example, the use of nearest-

neighborhood imputation and other data smoothing techniques to overcome sparsity may 
unintentionally cause signal to bleed from some genes to others, distorting the low dimension 

embedding upon which RNA velocity vector fields are projected (Gorin et al., 2022). Likewise, 

somewhat arbitrary decisions about dimensionality reduction parameters and non-geometric 
embedding strategies (i.e., tSNE, UMAP) risk distorting the widely used two-dimensional 

vector field representation format for velocity (Chari & Pachter, 2023).  
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Furthermore, there are few standardized metrics to evaluate if a velocity is trustworthy. 

Some initial benchmarking scores for velocity have been formulated, including the consistency 
score, cross-boundary direction correctness, in-cluster coherence, and velocity coherence 

(Bergen et al., 2020; M. Gao et al., 2022; Gayoso et al., 2023; Qiao & Huang, 2021). However, 
these metrics have limitations that reduce the scenarios in which they can be applied to data.  

Velocity consistency and cross-boundary direction correctness evaluate how likely a 
particular cell, given its velocity, is to reach the target cell type (Bergen et al., 2020; Qiao & 

Huang, 2021). This is achieved by comparing the vector field of the cell to its nearest-
neighbors (velocity consistency) or to nearby cells in the low-dimensional embedding space 

(cross-boundary direction correctness). While these two approaches will indicate whether a 
velocity vector aligns to a specific differentiation trajectory, they require a ground truth 

direction. Therefore, neither metric can be applied to samples with an unknown biology, 

including when comparing a diseased or perturbed system to a control. In these 
circumstances, one would be unable to conclude whether a low metric score is due to a 

biological change in trajectory or just poor-quality data. 
In-cluster coherence (Qiao & Huang, 2021) does not require a ground truth direction 

and is computed as a cosine similarity between cell velocities in the same cluster; a higher 
similarity indicates a less noisy velocity. However, this metric assumes appropriate cell 

clustering and scrutinizes the low-dimensional velocity projection, not the high-dimensional 
space in which velocity itself is estimated. 

Finally, velocity coherence (Gayoso et al., 2023) is a gene-wise score that examines 
how well a gene’s velocity agrees with that of the cell-wise estimate, which contains 

information across all genes as well as from similar cells used for nearest-neighbor smoothing. 

This metric will indicate if a particular gene’s velocity does not align with that of the average 
across all genes; however, this is not necessarily due to poor velocity estimation and could be 

biologically meaningful. By extrapolating a velocity estimate across all genes, the obtained 
vector field represents a multitude of biological signatures (i.e., cell cycle, differentiation, 

development, stress response), each defined by a unique set of genes. For example, in a 
population of differentiating stem cells undergoing a transformation towards a mature cell type 

(Chapter 2), one might expect both cell cycle and differentiation programs to co-occur. A 
velocity across all genes effectively combines these two signatures into a single vector field, 

even though estimates obtained solely with cell cycle or differentiation genes would yield 

different vector directionality. Thus, when applying the velocity coherence metric, the particular 
gene being evaluated could indicate a low coherence simply because it is affiliated to a minor 

(i.e., cell cycle) rather than major (i.e., development) axis of variation. 
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In terms of rigorous statistical testing, VeloCycle is the first method that allows direct 

statistical comparison and evaluation of velocity differences between samples, using the 
uncertainty measurement obtained from Bayesian inference procedures (Fig. 3.6). Other 

exciting probabilistic velocity methods have been recently proposed (Aivazidis et al., 2023; 
Gayoso et al., 2023; Gu et al., 2022; Qin et al., 2022), but these approaches mainly apply 

uncertainty quantification to assess the trustworthiness of a velocity estimate rather than to 
directly compare samples or conditions. Evaluating differential velocity among biological 

samples is possible in VeloCycle due to joint estimation of the manifold and velocity. 
 

5.2.4. Applicability of RNA velocity to single-nuclei data 
Single-nucleus RNA sequencing data (snRNA-seq) is obtained by isolating the RNA 

content present within a cell’s nucleus; this procedure discards any RNA molecules in the 
cytoplasm. Libraries for snRNA-seq are easier to obtain than for scRNA-seq when working 

with freshly frozen tissues and using protocols that jointly profile two omics modalities, such 
as 10X Multiome. The construction of transcriptomic atlases using human tissues from adult 

donors or embryos, for which the time between sample collection and preparation varies, 
single-nuclei protocols are often the only available option (Kim et al., 2023).  

RNA velocity has been successfully applied to snRNA-seq datasets (Kang et al., 2023; 
Marsh & Blelloch, 2020; Wolfien et al., 2020); however, since a significantly larger fraction of 

detected UMIs correspond to unspliced rather than spliced RNA (50-70% unspliced reads in 
single nuclei compared to about 30% unspliced reads in single cells), it is unclear whether the 

assumptions about the velocity kinetic parameters hold (10XGenomics, 2020; Alvarez et al., 

2020). Specifically, it is the much faster nuclear export rate, rather than the degradation rate, 
that is likely modeled during velocity estimation on single nuclei. In the future, a systematic 

comparison of single-cell and single-nucleus RNA velocities obtained on the same cell 
population would help elucidate any differences in performance. With VeloCycle, one could 

estimate the cell cycle speed on single-nucleus and single-cell data from the same cell culture, 
and evaluating whether different estimates of the velocity function and kinetic parameters are 

obtained. With appropriate scaling of the priors, one could perhaps adjust the “degradation 
rate” to be on a scale of the faster “nuclear export rate” detected in single-nuclei data. 

 

5.2.5. Improvements of a manifold-consistent RNA velocity 
While it may not be possible to resolve all of the challenges with RNA velocity 

estimation in a single framework, remaining cognizant of the current limitations of velocity 

approaches is important for guiding the future direction of method development, and it will help 
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the community to best identify scenarios in which velocity can nonetheless be informative for 

biological discovery. 
VeloCycle reformulates RNA velocity such that the vector field is explicitly defined on 

the coordinates of the gene expression manifold. The major benefit of this approach is that it 
ensures geometric consistency; the velocity always points in a direction that, when followed, 

leads to a tangent space that is spanned by the data. In other words, there is no risk of velocity 
projecting a cell’s future state to a position completely outside the gene expression manifold. 

The velocity function in VeloCycle is also a cell- and gene- independent entity, addressing the 
problem of gene-wise level velocities, which measure the rate of change at different time 

scales (Fig. 3.1). We implement this reformulation as a probabilistic framework intended for 
the one-dimensional cell cycle manifold, which enables statistical testing of RNA velocity 

estimates by examining the overlap between credibility intervals (Fig. 3.7). For the first time, 

it is also possible to compare computationally inferred velocity estimates to those measured 
by experimental techniques, such as time-lapse microscopy (Fig. 3.6). VeloCycle is a modular 

tool, operates on raw counts, and does not involve projection of a vector field onto non-
geometric embeddings. These distinct features will hopefully motivate future velocity model 

development towards more biophysically tractable frameworks. 
 

5.2.6. Automation of gene selection procedures with VeloCycle 
Despite the achievements of VeloCycle, there are possible improvements that could 

enhance model performance and interpretability (Chapter 3.4). VeloCycle does not conduct 

unbiased gene selection beyond initial quality control and uses well-characterized marker 

genes from literature sources (Ontology Consortium et al., 2023; Riba et al., 2022; Satija et 
al., 2015). Since only a subset of all genes are actually expressed in a periodic manner along 

the cell cycle manifold, the lack of an automated gene selection framework requires a choice 
between two options. In the first, a large and noisy set of genes is used in training, but the 

model may fail to converge. In the second, a small but literature-based set of genes is used in 
training, which might fit a more accurate velocity; however, the model may overfit and could 

be sensitive to variation between biologically similar datasets with different amounts of noise. 
Initial efforts in VeloCycle to optimize gene selection and remove noisy genes in an unbiased 

manner includes removing genes with a low cross-correlation or a negative phase delay 
between peak unspliced-spliced levels (Chapter 3.5). 

In the future, one approach to improve gene choice would be to incorporate feature 

selection itself into the manifold-learning or velocity-learning procedures. As a part of manifold-
learning, one could define a Bernoulli random variable that indicates, for each gene, a certain 
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probability that it is expressed periodically along the cell cycle. A gene would be considered 

non-periodic if the loss obtained with a constant-value function to fit spliced expression is lower 
than the loss with a function defined by multiple harmonics. Models formulated in this way, 

sometimes referred to as Latent Bernoulli Allocation, would facilitate an independent 
identification of genes fluctuating along the periodic process. One downside to this approach 

is that selecting strong priors for the Bernoulli random variable biases the model towards a 
particular proportion of all genes being periodic. On the contrary, if the prior is too weak, even 

noise might be biased to be selected, distilling the feature selection problem to the tuning of 
metaparameters that are difficult to set in a balanced fashion. Alternatively, gene selection 

could be performed in velocity-learning. One could, for example, consider a null velocity model 
in which the gene-wise fit for unspliced expression is computed using a constant of zero 

velocity. For genes where the unspliced estimate using the null model yields a lower error 

between the expected and observed fits, there is limited velocity information present and the 
gene should be excluded from angular speed inference. Another strategy would be to select 

genes based on the uncertainty correlation between the degradation rate and angular speed. 
As observed by MCMC and the SVI+LRMN reformulation (Fig. 3.5), there is an underlying 

correlation structure between the velocity and the kinetic parameters for some, but not all, 
genes. This alludes to a technique for discriminating between “velocity-informative” (correlated 

uncertainty) and “velocity-uninformative” (uncorrelated uncertainty) genes. 
 

5.2.7. Continuous formulation of the kinetic parameters with VeloCycle 
Another enhancement to VeloCycle would be to reformulate the kinetic parameters 

(splicing rate and degradation rate) such that they are non-constant functions evolving along 
the cell cycle manifold. This representation would more closely reflect the underlying biology, 

in which splicing and degradation rates are expected to vary at each phase of cell division 
(Battich et al., 2020; Mizukoshi et al., 2023). One could speculate that splicing and degradation 

rates should be parameterized similarly to spliced gene expression using a truncated Fourier 
series with one or more harmonics. However, it is unclear whether a periodic representation 

would be sufficient to model multiple fluctuations in kinetic rates during a single cell cycle. 
Maintaining a well-conditioned model while achieving non-constant representations of the 

kinetic parameters is also non-trivial because adding two additional gene-specific sets of 
Fourier series components would increase model complexity. Without proper priors, perhaps 

obtained biologically, the model could fail to converge on a reasonable estimate. To achieve 

this in VeloCycle, a careful study of the priors for splicing and degradation rates across cell 
types and conditions should be performed first. 
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5.2.8. Evaluating changes to chromatin accessibility and velocity with VeloCycle 
The incorporation of multiple modalities into RNA velocity models using extensions of 

the original system of ordinary differential equations could enable the inference of the 

“acceleration” of a cell’s velocity along a particular trajectory (Lederer & La Manno, 2020). 
Such concepts have been previously implemented using joint profiling of RNA and cell surface 

proteins (Gorin et al., 2020) as well as of RNA and chromatin accessibility (C. Li et al., 2022; 
S. Ma et al., 2020; Tedesco et al., 2022). These approaches suffer the same limitations as 

other velocity models, including the use of gene-wise velocity estimates and no requirement 
that velocity remains tangent to the manifold.  

Therefore, it would be interesting to extend VeloCycle to incorporate the use of multi-

omics data. The cell cycle is regulated by transcription factors and other changes to chromatin 
structure, particularly in S phase during DNA replication (Y. Ma et al., 2015). The manifold-

learning procedure alone could be insightful to identify changes to chromatin accessibility that 
unfold during the cell cycle progression in varying cellular contexts. Moreover, since multi-

omic data jointly measuring gene expression and chromatin accessibility is always achieved 
at the single-nuclei level, this could be an interesting setting to assess the performance of 

single-nuclei in velocity estimation. 
Changes in chromatin accessibility have also been shown as important in the decision-

making process for cell cycle exit (Y. Ma et al., 2019). Another future avenue of work would 
be to develop an approach that could better discern between G1 and non-proliferative G0 

stages, which is challenging using transcriptomic level measurements alone (Oki et al., 2014; 

Theilgaard-Mönch et al., 2022). 
 

5.2.9. Manifold-constrained velocity for non-periodic biological systems 
VeloCycle is a specially tailored implementation of manifold-constrained velocity 

estimation for systems with periodic gene expression manifolds. However, the proposed 

mathematical framework is not restricted to the cell cycle or one-dimensional manifolds, and 
it could be applied to estimate velocity along linear or branching trajectories. Although closely 

intertwined with certain neurodevelopment programs, including for radial glial progenitors 
(Alieh et al., 2023), the cell cycle is admittedly not usually the primary axis of variation when 

characterizing a tissue or cell population with single cell transcriptomics. Hence, it would be 

valuable to extend or rework the model from VeloCycle to be applicable to temporal 
progression in gene expression space that corresponds to either cell differentiation or 

development. 
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Significant efforts will be needed to appropriately parametrize higher dimensional 

manifolds: unlike one-dimensional periodic manifolds, which can be conveniently modeled 
using a truncated set of Fourier series components, the parameterization choice for more 

complex manifolds is non-trivial. For example, parameterizing a trajectory branching point 
might require incorporating a mixture of two one-dimensional manifolds. To overcome this, 

more intricate combinations of gene expression trajectories could be broken down into 
individual, but one-dimensional, trajectories. One of these trajectories would represent a single 

axis of variation in the data, such as progression from progenitor X to mature cell type Y, along 
which gene expression could be modeled using an exponential function or linear spline. 

However, this implies modeling both genes and cells as disjoint sets, forcing the challenging 
identification of which genes vary along a particular manifold. Thus, comparisons of the same 

axis of variation across multiple conditions would be limited without some sort of common 

trajectory definition. In the long term, RNA velocity frameworks that consider multiple 
manifolds with varying topologies, traversed by cells in different gene subspaces and giving 

rise to multiple velocities (i.e., cell cycle velocity, cell differentiation velocity), would offer a 
broader utility for manifold-constrained, gene-independent RNA velocity estimation. 
 

5.3. Rules: Charting recurring cell lipid-state transitions with lineage 

leaf-state Markov analysis 
 
5.3.1. Challenges with the Markov formulation of CELLMA 

Compared to linear processes in biology, recurring cell state dynamics are less 

frequently studied with single-cell technologies. One reason is that modeling these systems, 
in which a cell may visit a particular state multiple times and in an unordered manner, difficult 

with static snapshots and only possible with samples at a steady-state. Methods to extrapolate 
future cell states, such as RNA velocity, only indicate the rate at which cells are changing and 

do not offer insight into the underlying rules that control those transitions. 
RNA velocity extracts information from RNA metabolism, which occurs on a time scale 

similar to that of cell state transitions. Similarly, CELLMA uses cell proliferation, which also 
happens on a time scale similar to that of cell state conversions, to understand the rules of 

state transitions modeled as discrete entities. CELLMA elucidates the relationships among 
cell states by estimating a transition matrix containing the probability that one state will 

transition into another during a particular time frame. These states are defined by synthesized 

lipids, rather than the transcriptome, and transitions are inferred from time-lapse microscopy 
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imaging and end-state toxin stainings. We demonstrate that the transitions between lipid-

states, which we refer to as lipotypes, can be modeled in dHFs (Chapter 4). 
We chose to represent dHF cell state transitions as a memoryless Markov model 

because the biological system is at steady-state. In other words, there is a fixed proportion of 
cells with each of the different lipotypes; transitions do occur, but always in a way that 

maintains the overall proportions in the cell culture. One challenge with this implementation is 
that there are covariances between entries of the transition matrix. The is related to the 

constraint that for the matrix to be valid Markov matrix, the sum of each rows must equal 1, 
with all entries between 0 and 1. Likewise, conditioned on a given steady state, a change the 

probabilities in one row will impact the probability values in other rows. Consequently, it is 
possible for probabilities to be distributed differently in the matrix without impacting the global 

lipotype proportions. For example, in a three-state system, the outflow of cells from “state 1” 

could be 2% at a given time step, but the distribution of that outflow to “state 2” and “state 3” 
can be achieved using different splits (i.e., 1%/1%, 0.5%/1.5%, or 0.1%/1.9%). Further efforts 

are needed to assess CELLMA performance on simulated data with a ground truth transition 
matrix. 

 

5.3.2. Reconstructing cell lineages with time-lapse microscopy 
Lineage tracing in single cells is an active area of research (C. Chen et al., 2022; 

Wagner & Klein, 2020). As previously discussed (Chapter 1), several experimental techniques 
have been created to molecularly record cell lineages and clonal history using diverse 

approaches, including viral barcoding (Kong et al., 2020; Weinreb et al., 2020) and the 

CRISPR/Cas9 system (Alemany et al., 2018; Chow et al., 2021; McKenna et al., 2016; F. 
Schmidt et al., 2018). While promising, these tools are challenging to adopt and not 

necessarily suitable to the biological system being studied. Tracking lineages by time-lapse 
microscopy remains amenable to many cell types, and it allows direct reconstruction of 

lineages as opposed to an indirect inference. CELLMA demonstrates that cleverly designed 
models can use time-lapse images to uncover novel insights with fewer technical obstacles. 

Two challenges when working with time-lapse imaging data are cell segmentation and 
tracking. Cell segmentation was a notoriously difficult problem in biological image processing; 

however, the recent deep learning methods such as Cellpose and stardist perform well and 
have significantly improved segmentation quality, particularly in crowded cell culture settings 

(Pachitariu & Stringer, 2022; Weigert et al., 2020).  

On the contrary, tracking cells in a time-lapse movie and linking them to their division 
events remains a difficult and unsolved problem. Tools such as TrackMate and ultrack have 
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features to account for cell splitting (Bragantini et al., 2023; Ershov et al., 2022), but crowded 

culture conditions and segmentation gaps can still accumulate and impact tracking. Cell 
markers, including DAPI nuclei staining and FUCCI signals that mark phases of the cell cycle, 

are not visible for a short period of time when a cell is dividing, which may contribute to gaps 
in cell lineages when applying the methods above. Ultimately, advances in the domains of 

image segmentation and tracking are especially crucial for single-cell lipidomics methods, 
which are image-based and, unlike transcriptomics, have no sequencing-based alternative. 

 
5.3.3. Incorporation of lipotypes defined by MALDI-MSI into CELLMA  

CELLMA models lipotype transitions defined by toxin stainings (ShTxB1a, ShTxB2e, 
and ChTxB), which effectively discriminate some lipid classes from each other (Gb3, Gb4, and 

GM1). However, there are other families of lipids, including hexosylceramides (Hex-Cers) that 

these toxin stainings cannot distinguish. Instead, applying CELLMA to model lipotypes defined 
by a combination of individual lipid measurements obtained using MALDI-MSI, rather than 

from toxin stainings directly, would offer greater resolution of full lipid heterogeneity in dHFs. 
We have already collected thousands of single-cell lipidomes from multiple time-lapse 

movies using MALDI-MSI at the end-state readout. Preliminary analyses confirm that some of 
the lipotypes detected correspond directly with toxin-stained Gb3 and Gb4 classes (Fig. 

A4.1A-D). We also observe that sister cells tend to be more similar to each other in their lipid 
compositions and are spatially in closer proximity in PCA space compared to unrelated cells 

(Fig. A4.1E-G). Furthermore, we detect the presence of a Hex-Cers lipotype that was not 
observable with toxin staining (Fig. A4.1A). A next step would be to assess the performance 

of the original CELLMA model using these newly-defined lipotype classes. 

Although MALDI-MSI method is promising for the study of lipid heterogeneity in single 
cells, there remain numerous technical challenges. Peak detection in the pixels of MALDI 

images can be disturbed by noise, and two lipids located in a similar m/z range may have 
overlapping detection windows. Moreover, measurements are highly sparse, sometimes even 

more than transcriptomics data. MALDI-MSI also measures molecule intensity, rather than a 
direct quantitative count of molecules. Therefore, assumptions made for scRNA-seq data 

during normalization and feature selection may not hold for these data and should be carefully 
re-evaluated. Likewise, batch effect correction between different regions of an image or across 

multiple acquired images poses an unsolved challenge. Currently applied methods have been 
repurposed from other research domains, such as Combat correction for microarrays (Balluff 

et al., 2021; Johnson et al., 2007), and were not designed with the specific data format in 

mind. 
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5.3.4. Modeling lipotype transitions in a co-culture setting 
In the human body, dermal fibroblasts can exist in either a papillary or reticular state 

depending on their proximity to keratinocyte cells of the epidermis. Both states are 

characterized by distinct morphological features and gene expression patterns, but knowledge 
of the role lipids play in defining these states remains limited (B. Russo et al., 2020; Werner 

et al., 2007). Therefore, it would be interesting to track fibroblasts over time in a co-cultured 
setting with keratinocytes and model lipotype changes with MALDI-MSI. However, application 

of CELLMA to this co-cultured system would be challenging because the steady-state 
assumption of lipotype transition probabilities is likely violated. To overcome this, one could 

extend CELLMA to infer two transition steady-state matrices: one that defines the behavior for 

fibroblasts located in close (papillary steady-state) or far (reticular steady-state) proximity to 
keratinocytes. A new variable that incorporates cell distances and density would also be 

needed to determine when to switch between transition matrices during estimation. However, 
this requires either (1) an arbitrary choice of the relevant switching point between transition 

matrices (perhaps based on a cell distance threshold), or (2) the introduction of this parameter 
as a latent variable, which might significantly complicate inference. 

 

5.3.5. The heritability of lipotype state transitions 
Our work also reveals that stable lipotype states are conserved through cell divisions. 

Sister cells and even cousin cells were found to be more likely to have a more similar lipotype 
compared to cells from another clade, alluding to a heritability of lipid configurations (Fig. 4.2). 

This warrants future studies on the heritability of lipotypes across generations, as well as 

whether they are more stable states compared to those that are transcriptomically-defined. To 
this end, CELLMA could be used to model cell state transitions defined by another endpoint 

readout, such as single-cell spatial transcriptomics (Vandereyken et al., 2023). 
 

5.4. Concluding remarks 
The three works presented here harness technologies with single-cell resolution to 

investigate and model cell state transitions in unique research domains. Despite the different 

applications of these tools in each chapter, there are some valuable shared themes. One 
major unifying theme across these works is their novel application of single-cell methods to 

decode how cells change over time in response to intrinsic and extrinsic factors. Single-cell 

technologies are a resourceful means for researchers to explore dynamic systems (Chapter 
1.4), and they will continue to be at the forefront of biological discovery for some time.  
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5.4.1. Recurring cell states in non-linear biological processes 
Interestingly, another shared theme is the prominence of recurring cell states. 

Typically, most research on cell states is focused on one-way axes of biological change, with 

a clear beginning (progenitor) and end (mature) state. In these systems, cells are assumed 
not to transit though a particular cell state more than once: after a progenitor cell reaches a 

specific intermediate state, it is not expected to go backwards. The research discussed here, 
however, illustrates an unrealized prominence of non-canonical cell state transition routes in 

the single-cell genomics field. 
For instance, stem cell differentiation protocols are designed with the clear intention to 

induce a specific cell fate. Thus, it is expected that hESCs evolve through intermediate states 

that steadily alter the transcriptomic profile of the cells closer towards that of the target cell 
type. Surprisingly, we observe that hESCs follow a non-linear trajectory, oscillating between 

various cell states and even undergoing de-differentiation in response to experimental steps 
such as replating. 

Conversely, the cell cycle is quite obviously recurring. However, in single-cell datasets, 
it is often overlooked and even dismissed as a nuisance, interfering with a more insightful 

biological signature. We highlight that variations in cell cycle speed between samples with 
different environmental or genetic contexts can actually offer meaningful biological rationale 

that may complement time-series analysis of a primary linear trajectory such as differentiation. 
VeloCycle should remind the community that it is valuable to extract all axes of variation 

present in single-cell datasets, rather than regressing out a secondary process that is 

assumed to behave uniformly and uninformatively.  
Finally, we demonstrate that recurring cell states are not always transcriptomically 

defined and can even occur in mature cell types such as dHFs. These steady-state lipotypes 
can be described using Markov models, which may seem counterintuitive to the standard view 

of cell state transitions that assumes a cell must remember the state it came from in order to 
advance to a future state. Here, we show that cell transitions can indeed be modeled without 

direct knowledge of previous states when those transitions are equally likely at any given time. 
 

5.4.2. Modeling in single cell biology 
Another shared theme is the importance of computational models in single-cell 

genomics. Single-cell data is high-dimensional and it can be difficult to extract biological 
meaning; thus, models are needed that effectively constrain the data to a well-posed structure, 

but without overparameterization. Well-reasoned assumptions can yield models with sufficient 
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inductive bias that offer new insights into familiar problems. For example, we develop an 

ordinal classifier to map hESC-RPE cells to a developmental maturity status. The machine 
learning field offers many types of categorical classification schemes, many of which could be 

performing well at this task. However, by incorporating the knowledge that differentiating cell 
classes are chronological, we propose an elegant and novel solution with good performance. 

This is also true by repurposing Markov chains, rarely used to model single-cell data, for 
defining lipotype transition matrices. Finally, with our reformulated framework for cell cycle 

velocity, we illustrate the importance of coupling biophysically reasoned models and 
uncertainty estimation to advance an RNA velocity field that has grown accustomed to relying 

on the original, but flawed, formulation. 
 

5.4.3. Versatility and lasting potential of single-cell omics approaches 
Taken together, this thesis demonstrates the immense versatility of single-cell omics 

data to facilitate diverse scientific accomplishments. The single-cell community often 
discusses the challenges of working with single-cell data, and the trend of atlasing is often 

attacked being shallow; however, it is worth reflecting on the possibility-opening value of these 
techniques, which enable us to ask scientific questions otherwise out of reach. Single-cell data 

is highly adaptable and, unlike many other types of collected biological data, can be 
repurposed time and time again to drive new discoveries. This flexibility of single-cell data to 

answer many biological questions is likely because it is, for now, the best measurements we 
have to access the dynamics of cell states. For this same reason, single-cell technologies will 

continue to be an essential method in the study of biological systems for many years to come. 
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Honors and Awards 
Poster Prize, Basel Computational Biology Conference 09/2023 
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communication. 
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