
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Robot Learning using Tensor Networks

Suhan Narayana SHETTY

Thèse n° 10 273

2024

Présentée le 14 juin 2024

Prof. A. Ijspeert, président du jury
Prof. D. Gatica-Perez, Dr S. Calinon, directeurs de thèse
Dr P.-B. Wieber, rapporteur
Prof. R. Pajarola, rapporteur
Prof. D. Kressner, rapporteur

Faculté des sciences et techniques de l’ingénieur
Laboratoire de l’IDIAP
Programme doctoral en génie électrique

To my mother and sister,
for their boundless love and the sacrifices they have made.

Abstract
In various robotics applications, the selection of function approximation methods greatly
influences the feasibility and computational efficiency of algorithms. Tensor Networks
(TNs), also referred to as tensor decomposition techniques, present a versatile approach
for approximating functions involving continuous variables, discrete variables, or combi-
nations of these variable types. Apart from their approximation capabilities, TNs offer
efficient methods for conducting algebraic operations, calculus, probability modeling,
and optimization, which are particularly essential in robotics applications. This thesis
highlights the importance of a specific TN known as Tensor Train (TT) for function ap-
proximation in robotics by addressing a diverse range of previously challenging problems.
Initially, utilizing TT, the thesis enhances the scalability and deployability of an ergodic
exploration algorithm commonly employed in robotic exploration. Subsequently, the
thesis introduces a novel numerical optimization algorithm named Tensor Train for Global
Optimization (TTGO) to determine the optima of functions represented in TT format.
Given that numerous robotics tasks are framed as numerical optimization problems,
TTGO provides efficient solutions to several optimization-based problems in robotics,
including inverse kinematics with obstacles, motion planning, and policy learning, as
demonstrated in the thesis. In summary, this thesis underscores the promising potential
of TNs as valuable tools in the field of robotics.

Keywords: Tensor Networks, Tensor Train, Matrix Product States, Tensor Decomposi-
tion, Ergodic Exploration, Global Optimization, Density Modeling, Inverse Kinematics,
Motion Planning, Optimal Control, Dynamic programming, Imitation Learning, Learning
from Demonstration, Reinforcement Learning, Peg-in-hole Insertion, Hybrid Control.

i

Résumé
Dans diverses applications robotiques, la sélection des méthodes d’approximation des
fonctions influence grandement la faisabilité et l’efficacité informatique des algorithmes.
Les Tensor Networks (TN), également appelés techniques de décomposition tensorielle,
présentent une approche polyvalente pour approximer des fonctions impliquant des va-
riables continues, des variables discrètes ou des combinaisons de ces types de variables.
Outre leurs capacités d’approximation, les TN offrent des méthodes efficaces pour effectuer
des opérations algébriques, des calculs, des modélisations probabilistes et des optimisa-
tions, particulièrement essentielles dans les applications robotiques. Cette thèse met en
évidence l’importance d’un TN spécifique connu sous le nom de Tensor Train (TT) pour
l’approximation de fonctions en robotique, en abordant un large éventail de problèmes
auparavant difficiles. Initialement, en utilisant TT, la thèse améliore l’évolutivité et la
déployabilité d’un algorithme d’exploration ergodique couramment utilisé en robotique.
Par la suite, la thèse introduit un nouvel algorithme d’optimisation numérique nommé
Tensor Train for Global Optimization (TTGO) pour déterminer les optima des fonctions
représentées dans le format TT. Étant donné que de nombreux problèmes de robotique
sont présentés comme des défis d’optimisation numérique, TTGO fournit des solutions
efficaces à plusieurs problèmes basés sur l’optimisation, notamment la cinématique inverse
avec obstacles, la planification de mouvement et l’apprentissage de politiques, comme le
démontre cette thèse. En résumé, cette thèse souligne le potentiel prometteur des TN en
tant qu’outils précieux dans le domaine de la robotique.

Mots-clés : Tensor Network, Tensor Train, Matrix Product State, Décomposition
tensorielle, Exploration ergodique, Optimisation globale, Modélisation de distributions,
Cinématique inverse, Planification de mouvement, Contrôle optimal, Programmation
dynamique, Apprentissage par imitation, Apprentissage par démonstration, Apprentissage
par renforcement, Tâches d’insertion, Contrôle hybride.

iii

Acknowledgements
The journey toward the PhD thesis has spanned a considerable portion of my life thus far,
influencing me both professionally and personally. I express gratitude to my colleagues
whose influence directly shaped this thesis. Additionally, I am thankful for the support
of friends and family, as well as the beautiful landscapes of Switzerland, which had a
role in shaping my character and thus indirectly aided me in joyfully completing this thesis.

First and foremost, I extend my gratitude to my thesis advisors, Dr Sylvain Calinon and
Prof. Daniel Gatica-Perez, for granting me the opportunity to pursue a PhD jointly with
the Idiap Research Institute and EPFL. I appreciate Sylvain’s unwavering support, the
flexibility he allowed in exploring various research directions, and his invaluable guidance.
His enthusiasm for my research served as a constant source of motivation for me to strive
for excellence in my work.

I wish to express my thanks to the jury members of my thesis: Prof. Auke Ijspeert, Prof.
Daniel Kressner, Prof. Renato Pajarola, and Dr Pierre-Brice Wieber, for dedicating their
time to review my thesis and for their constructive feedback. I am also grateful to the
Idiap secretariats and administrative staff for facilitating my stay in Switzerland and for
fostering a conducive research environment.

My gratitude also goes to Disney Research, Zurich, particularly my mentors Dr Moritz
Bächer and Dr Ruben Grandia, for giving me an internship opportunity to work on an
exciting project on legged robots.

This thesis has been shaped by numerous enjoyable discussions with my colleagues at
the RLI group held over tea, during lunch breaks, or in group meetings. I am particu-
larly grateful to Joao, Teguh, Teng, and Tobias for their invaluable contributions and
memorable collaborations, without which this thesis would not have been possible. I also
want to express my appreciation to other members of the RLI group, including Amir,
Emmanuel, Boyang, Julius, and Martin, for their presence and support. In particular, I
owe a special thank you to Martin for his friendship and support during the initial year
of my PhD journey.

v

Acknowledgements

Reflecting on my PhD journey, I am filled with a warm nostalgia for the cherished
moments shared with my friends at Idiap. Whether it was hiking adventures, board
game evenings, cooking sessions, or engaging conversations over a drink, each memory
brings a smile to my face. The presence of Sargam, Amir, Zohreh, Suraj, Rudy, Apoorv,
Anshul, Enno, Skanda, Dhananjay, Teja, Eklavya, Bogdan, Laurent, Fabio, Anshul, and
all the others, whose names I may have unintentionally omitted, filled my days at Idiap
with excitement and anticipation. Special mention goes to my dear friends Parvaneh and
Tilak, my trusted confidants. I am grateful for Parvaneh’s steadfast friendship, which
has supported me through the highs and lows of my PhD journey.

I extend my gratitude to my friends in Lausanne: Julian, Pablo, and Neha, for the
wonderful times we shared. Special thanks to Pablo and Neha for their care and the
delicious meals they prepared in our shared flat; you truly made me feel at home. I feel
lucky to have shared both the office and living space with my dear friend Pablo and see
his smile every day.

I feel incredibly fortunate to have met Daniel and Monique right at the beginning of
my PhD journey; they have since become like family to me. I am deeply grateful to my
Sahajmarg community for their Satsangh and for introducing me to such remarkable
individuals. I extend my heartfelt appreciation for the picnics, soulful hikes, and medi-
tation sessions we have experienced together. Additionally, I would like to express my
gratitude to Delara and my Ashtanga Yoga Montreux community. When I reflect on the
middle phase of my PhD journey, it is your warm faces that immediately come to mind.
Thank you for your love and support.

Just as the strength of a tree resides in its roots, my mother, Sulochana, and my sister,
Sajna, have served as the steadfast roots of my life’s journey. Their boundless love and
selfless sacrifices have enabled me to ascend the academic ladder and be more humane. I
am also indebted to my brother-in-law, Pradeep, my uncle, Karunakar Shetty, and the
rest of my family for their unwavering support. The wisdom and values they all have
instilled in me empower me to stand firm and grow through the trials of life, much like a
tree grows through the changing seasons.

Lausanne, February 23, 2024 Suhan Shetty

vi

Contents
Abstract i

Résumé iii

Acknowledgements v

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Motivation . 2
1.2 Thesis Outline . 3
1.3 Publications . 4

2 Background 5
2.1 Function Approximation using Matrix Factorization 5

2.1.1 Separation of Variables using Matrix Factorization 6
2.1.2 Matrix Cross Approximation . 7

2.2 Tensors . 9
2.3 Tensors as Discrete Analogue of a Function 10
2.4 Tensor Networks . 11
2.5 Tensor Train . 15

2.5.1 Continous Function Approximation using Tensor Train 16
2.5.2 Refining Tensor Train Model . 17

2.6 Algebraic Operations over Tensor Train 17
2.7 Compression of Tensor Train with Rounding Operation 19
2.8 Approximating Functions in Tensor Train using Cross Approximation . 20
2.9 Probability Modeling using Tensor Train 21

2.9.1 Tensor Train Distribution . 21
2.9.2 Sampling from Tensor Train distribution 21

vii

Contents

2.9.3 Conditioning Tensor Train Distribution 23
2.10 Tensor Train for Data-Driven Learning 24

3 Ergodic Exploration using Tensor Train 27
3.1 Introduction . 29
3.2 Motivation and Related Work . 32

3.2.1 Challenges in Ergodic Control . 32
3.2.2 Challenges in Peg-in-hole Insertion Task 34

3.3 Problem Definition and Background . 34
3.4 Ergodic Control using Tensor Train . 38

3.4.1 Finding the Fourier Series Coefficients 39
3.4.2 Ergodic Control on Riemannian Manifolds 40

3.5 Numerical Evaluation . 43
3.6 Sensorless Peg-in-Hole Insertion using Ergodic Exploration 45

3.6.1 Simulation experiments . 46
3.6.2 Experimental Setup for Peg-in-hole Task 50
3.6.3 Initialization and Preprocessing for Ergodic Control 51
3.6.4 Experimental Results . 54

3.7 Future Work . 56
3.8 Conclusion . 57

4 Optimization using Tensor Train 59
4.1 Introduction . 60
4.2 Related work . 62

4.2.1 Optimization in Robotics . 62
4.2.2 Predicting Good Initialization . 63
4.2.3 Multimodal Optimization . 63
4.2.4 Optimization using Tensor Train 64

4.3 Tensor Train for Global Optimization 64
4.3.1 Stochastic Approaches . 65
4.3.2 Deterministic Approaches . 67
4.3.3 Finding Optima of Arbitrary Tensor Train Model 68
4.3.4 Normalizing Tensor Train Model 68

4.4 Applications to Function Optimization in Robotics 68
4.5 Experiments . 73

4.5.1 Inverse Kinematics Problems . 75
4.5.2 Motion Planning of Manipulators 80
4.5.3 Application to Single Task Optimization 82

4.6 Discussion . 87
4.6.1 Quality of the Approximation . 87

viii

Contents

4.6.2 Comparison with Previous Work using Variational Inference . . . 88
4.6.3 Multimodality . 90
4.6.4 Computation Time . 90

4.7 Limitations . 91
4.8 Future Work . 92
4.9 Conclusion . 93

5 Learning to Control using Tensor Train 95
5.1 Introduction . 96
5.2 Background . 97

5.2.1 The Optimal Control Problem 97
5.2.2 Dynamic Programming . 98
5.2.3 Challenges in Approximate Dynamic Programming 99

5.3 Generalized Policy Iteration using Tensor Train 99
5.3.1 Description of the Algorithm . 100
5.3.2 Adaptation to Stochastic Systems 101

5.4 Experiments . 102
5.4.1 Simulation Experiments . 102
5.4.2 Additional Simulation Experiments 104
5.4.3 Real Robot Experiments . 105

5.5 Related Work . 107
5.6 Limitation and Future Work . 109

5.6.1 Neural Tensor Train for Policy Learning 109
5.7 Conclusion . 112

6 Conclusion 113

A Appendix to Chapter 3 117
A.1 Proof of Fourier Coefficients Decomposition 117

B Appendices to Chapter 4 119
B.1 Evaluations on Benchmark Functions . 119
B.2 Inverse Kinematics Formulation . 122
B.3 Motion Planning Formulation . 125
B.4 Motion Primitives . 127
B.5 Comparison of Various Function Approximation Techniques 128

Bibliography 133

Curriculum Vitae 143

ix

List of Figures
2.1 Matrix cross approximation . 10
2.2 Tensor diagram . 12
2.3 Tensor contraction . 13
2.4 Tensor networks . 14
2.5 Tensor Train Representation . 16

3.1 Ergodic exploration versus Trajectory Tracking 31
3.2 Ergodic exploration in 6D . 32
3.3 Computation time for calculating Fourier series coefficients and control

commands . 44
3.4 Ergodic exploration for insertion . 45
3.5 Various exploration startegies . 48
3.6 Cumulative average time to reach target region for various exploration

strategies . 49
3.7 Hardware setup for insertion task . 52
3.8 Grasps used for testing the insertion . 53
3.9 Ergodic control implementation block diagram 53
3.10 Human demonstration of peg-in-hole insertion task 54
3.11 The 6D pose distribution and the exploration for insertion task 55
3.12 Snapshots of an insertion using ergodic control 56

4.1 Multimodal joint trajectories for motion planning 62
4.2 Optimization of functions using tensor train 70
4.3 Solution for inverse kinematics of planar manipulator 75
4.4 Multiple solutions for inverse kinematics of planar manipulator 75
4.5 Solutions for inverse kinematics of Franka Emika manipulator 76
4.6 Solutions for IK of the UR10 robot . 80
4.7 Motion planning of planar manipulators 83
4.8 Reaching task of a manipulator . 84
4.9 Motion planning for pick-and-place task 85
4.10 Hardware experiments for reaching task 86

xi

List of Figures

4.11 Hardware experiments for Pick-and-Place task 86
4.12 Multiple solutions for motion planning with planar manipulator 87
4.13 Sampling time from tensor train distribution 87

5.1 Generalized policy iteration using tensor train 101
5.2 Benchmark problems for hybrid control 104
5.3 Simulation of the motion for non-prehensile planar pushing task from a

trained policy . 106
5.4 Real world experiments for pusher-slider system 108
5.5 Neural tensor train architecture . 110

B.1 Samples from sinusoidal function . 122
B.2 Samples from Rosenbrock function with low sample prioritization 123
B.3 Samples from Rosenbrock function with high sample prioritization . . . 123
B.4 Samples from Himmelblau function with low sample prioritization . . . 124
B.5 Samples from Himmelblau function with high sample prioritization . . . 124
B.6 Samples from GMM with sample prioritization 125
B.7 Trajectory primitive used for motion planning 128
B.8 Comparison of tensor train with GMM for function approximation . . . 131
B.9 Comparison of tensor train with neural networks for function approximation 132

xii

List of Tables
3.1 Performance of ergodic control using tensor train 43
3.2 Comparison of exploration strategies . 50
3.3 Performance of the peg-in-hole task . 55

4.1 Performance for inverse kinematics of the Franka Emika robot 79
4.2 Performance for target reaching with the Franka Emika robot 79
4.3 Performance for pick-and-place task with the Franka Emika robot . . . 79

5.1 Performance of various techniques for hybrid control 105
5.2 Performance of three real-world experiments 107

xiii

1 Introduction

1

Introduction

1.1 Motivation

Function approximation is a pivotal element in numerous robotics algorithms, playing a
crucial role in algorithms for control, exploration, motion planning, imitation learning,
and reinforcement learning. The choice of function approximation significantly influences
algorithm performance. These algorithms often involve functions with continuous vari-
ables, discrete variables, or a combination of both. When dealing with discrete variables
over a rectangular domain, the function is referred to as a tensor or multidimensional
array.

Beyond storage efficiency and expressibility, computational efficiency is an important
consideration for function approximation techniques in robotics as we often need to
perform various algebraic operations and calculus including multivariate integration,
differentiation, computing the mean, volume, etc. As robotics tasks often involve decision-
making or policy learning, they are typically formulated as optimization problems.
For example, inverse kinematics (IK) and motion planning tasks are framed as the
minimization of a cost function, and optimal control is defined as the minimization of a
cost-to-go function. Therefore, in addition to the computational efficiency, it is beneficial
if the function approximation technique facilitates optimization. i.e., we want finding
the optima would be easier with the approximated function. If we are dealing with
probability models, it would be desirable if the approximation model allows fast ways to
sample from the distribution.

Popular function approximation techniques in robotics include Gaussian Mixture Models
(GMMs) and Neural Networks (NNs). GMMs facilitate algebraic operations and opti-
mization but lack scalability. In contrast, NNs offer scalability but are less adept at
multivariate calculus operations. They excel in data-driven settings but are inefficient
in exploiting the prior knowledge of the functions being modeled and do not facilitate
optimization. For example, in solving IK problems and motion planning problems in-
volving the minimization of cost function and optimal control involving minimization of
a cost-to-go function, we know a priori the procedure that returns the values of these
functions (i.e., full knowledge of the target function).

In this thesis, we demonstrate that Tensor Networks (TNs), particularly a specific type
known as Tensor Train (TT), emerge as a promising solution, addressing these challenges
in many applications in robotics. They can handle mixtures of continuous and discrete
variables, and allow efficient algebraic operations, calculus, and optimization. If we are
dealing with density modeling, they allow efficient ways to sample from the approximate
model. If we have the full knowledge of the function being approximated, in addition
to data-driven approaches, there exist efficient approaches like cross-approximation to

2

1.2 Thesis Outline

exploit this information to model the target functions in TT format.

The research done in this thesis builds upon the extensive knowledge within the physics
community where it was originally used, particularly for solving partial differential
equations and in quantum computing [1] [2]. With a growing presence in signal processing
[3] and recent applications in machine learning [4], computer graphics [5] and control
theory [6][7], TNs showcase their adaptability and effectiveness. Our emphasis is on
demonstrating the practical relevance of tensor networks in a diverse set of applications,
spanning exploration, inverse kinematics, motion planning, and policy learning. By
showcasing their versatility in these contexts, we aim to contribute valuable insights and
methodologies, solidifying the position of TNs as powerful tools in advancing robotics.

1.2 Thesis Outline

In Chapter 2, we furnish the essential groundwork on TNs, with a specific focus on the
TT. We illustrate the applicability of TT in modeling functions and delve into the details
of how it enables efficient algebraic and calculus operations.

In Chapter 3, we introduce the ergodic exploration algorithm, addressing the historical
challenge of the curse of dimensionality in high-dimensional exploration tasks. Our
contribution lies in demonstrating the effectiveness of our solution, enabling the ergodic
exploration algorithm to operate in a closed-loop manner. This paves the way for practical
applications, exemplified by the successful application of the algorithm to a complex
task—specifically, the 6D exploration required for peg-in-hole insertion.

In Chapter 4, we introduce Tensor Train for Global Optimization (TTGO), a novel
technique enabling the identification of optima of functions in TT format. This sig-
nificantly enhances the relevance of TT in robotics, particularly in optimization-based
problems such as inverse kinematics and motion planning. Our approach demonstrates
the capability to obtain both global and multiple optima.

Chapter 5 leverages the TTGO framework to propose an efficient Approximate Dynamic
Programming (ADP) algorithm for optimal control synthesis in nonlinear control systems.
The policy learning framework accommodates hybrid state and action spaces without
specific assumptions on the dynamic model, distinguishing it from existing ADP algo-
rithms. We also showcase its significance for policy learning paradigms like imitation
learning and Reinforcement Learning (RL).

The thesis concludes in Chapter 6 where we summarize our findings. The possible
extensions provided in each of the chapters in this thesis in addition to the future

3

Introduction

directions outlined in Chapter 6, offer a comprehensive perspective on the significance of
tensor networks in robotics.

1.3 Publications

List of publications by the author during the doctorate study:

• S. Shetty, J. Silvério, and S. Calinon, “Ergodic exploration using tensor train:
Applications in insertion tasks,” IEEE Trans. on Robotics, vol. 38, no. 2, pp.
906–921, 2022

• S. Shetty, T. Lembono, T. Löw, and S. Calinon, “Tensor trains for global opti-
mization problems in robotics,” International Journal of Robotics Research (IJRR),
2023

• S. Shetty, T. Xue, and S. Calinon, “Generalized policy iteration using tensor approxi-
mation for hybrid control,” in International Conference on Learning Representations
(ICLR), 2024, (spotlight paper, 5% acceptance rate)

• L. Brudermüller, T. Lembono, S. Shetty, and S. Calinon, “Trajectory prediction
with compressed 3d environment representation using tensor train decomposition,”
in Proc. IEEE Intl Conf. on Advanced Robotics (ICAR), 2021, pp. 633–639

• B. Nemec, M. M. Hrovat, M. Simonič, S. Shetty, S. Calinon, and A. Ude, “Robust
execution of assembly policies using a pose invariant task representation,” in 2023
20th International Conference on Ubiquitous Robots (UR), 2023, pp. 779–786

4

2 Background

In this chapter, we begin by offering intuitive insights into function approximation using
the Tensor Networks (TNs). We draw parallels with the familiar concept of 2D function
approximation through matrix factorization, as elucidated in Section 2.1.1 and 2.1.2. To
lay the groundwork, we elucidate the concept of tensors in Section 2.2 and delve into the
application of tensors as a discrete analogue for approximating multivariate functions in
Section 2.3.

Moving forward, in Section 2.4 we briefly introduce TNs and describe how it effectively
addresses the curse of dimensionality associated with tensors. In Section 2.5, we describe
a particular TN called Tensor Train (TT) in more detail as it is the TN considered in
this thesis. Section 2.6 outlines various algebraic operations applicable to TT models,
commonly employed in practical applications. We explore the TT cross approximation in
Section 2.8, a pivotal algorithm employed extensively in this thesis to represent a given
function in TT format.

In Section 2.9.1, we extend our discussion to conceptualize any TT model as a probability
distribution. Finally, in Section 2.10, we elaborate on the application of TT models in
data-driven supervised and unsupervised learning, including density estimation.

2.1 Function Approximation using Matrix Factorization

We begin by introducing the familiar concept of matrix factorization, demonstrating its
application in representing 2D functions in a separable manner, i.e., as a sum-of-product
of univariate functions. This understanding will serve as a precursor to the subsequent
generalization of such principles for high-dimensional functions using the TNs.

5

Chapter 2. Background

2.1.1 Separation of Variables using Matrix Factorization

Consider a continuous 2D function:

P (x1, x2) : Ωx ⊂ R2 → R. (2.1)

Let Ωx = Ωx1 × Ωx2 be the rectangular domain formed by the Cartesian product of
intervals, such that x1 ∈ Ωx1 and x2 ∈ Ωx2 , and x = (x1, x2). We derive a discrete
analogue P of this function, representing it as a matrix in the 2D case, by evaluating the
function on a grid-like discretization of the domain Ωx. Discretizing the intervals Ωx1 and
Ωx2 with n1 and n2 points, respectively, and denoting the corresponding discretization
points as (x1

1, . . . , xn1
1) and (x1

2, . . . , xn2
2), we define the discretization set X containing

{(xi1
1 , xi2

2) : ik ∈ {1, . . . , nk}, k ∈ {1, 2}} and the corresponding index set IX containing
{(i1, i2) : ik ∈ {1, . . . , nk}, k ∈ {1, 2}}. The discrete analogue of the function is then
given by the matrix:

Pi1, i2 = P (xi1
1 , xi2

2), ∀(i1, i2) ∈ IX . (2.2)

We proceed to find a factorization of the matrix P into two factors (P 1, P 2), with
P 1 ∈ Rn1×r and P 2 ∈ Rr×n2 , such that the elements of P can be approximated as:

Pi1, i2 ≈ P 1
i1, : P 2

:, i2 . (2.3)

This matrix factorization, achievable through techniques like QR, SVD, or LU decom-
positions, offers compact representation advantages, especially when the rank r is low.
Furthermore, it allows us to represent the function P in a separable form. While (2.3) is
limited to evaluating the function P at discretized points in X , we extend its application
to general points (x1, x2) ∈ Ωx using linear interpolation between the rows (or columns),
defining vector-valued functions p1(x1) and p2(x2) as outlined in (2.4) below:

p1(x1) = x1 − xi1
1

xi1+1
1 − xi1

1
P 1

i1+1, : + xi1+1
1 − x1

xi1+1
1 − xi1

1
P 1

i1, :,

p2(x2) = x2 − xi2
2

xi2+1
2 − xi2

2
P 2

:, i2+1 + xi2+1
2 − x2

xi2+1
2 − xi2

2
P 2

:, i2 ,

(2.4)

6

2.1 Function Approximation using Matrix Factorization

where xik
k ≤ xk ≤ xik+1

k , p1(x1) : Ωx1 ⊂ R→ R1×r and p2(x2) : Ωx2 ⊂ R→ Rr×1. Note
that we could also use a spline-based interpolation here.

The approximation for the function P in a separable form is then given by:

P (x1, x2) ≈ p1(x1) p2(x2)

=
r∑

j=1
p1

j (x1) p2
j (x2), ∀(x1, x2) ∈ Ωx.

(2.5)

This factorization of multivariate functions as a sum of products of univariate functions
proves to be a powerful representation. For instance, integrating the multivariate function
becomes computationally efficient through integration of the univariate functions (factors).
Moreover, when dealing with probability density functions, such separable representations
facilitate efficient sampling procedures, including conditional distribution sampling, as
discussed in Section 2.9.2.

In numerous engineering applications, functions often exhibit such separable forms. More-
over, we often have functions characterized by some smoothness improving separability
[13]. The degree of separability in the function P correlates with a low-rank structure
in the discrete analogue P (indicated by the number of sums in the sum-of-products-of-
univariate-functions representation). This suggests a low rank r for the factors, resulting
in a reduced number of parameters for representation.

The accuracy of the approximation in (2.5) depends on the number of discretization
points and the decomposition technique used to find the factors. For 2D functions,
common approaches involve matrix decomposition techniques such as SVD, QR or LU
decomposition. However, a standard implementation of these algorithms necessitates
computing and storing the entire matrix P in memory, incurring a computational cost of
O(n1n2). If the discretization is fine (i.e., large n1 and n2), this can become inefficient. A
technique called cross approximation (or skeleton decomposition) [14] mitigates this issue,
directly finding separable factors without the need to compute and store the entire tensor
in memory. In the next section, we briefly delve into the matrix cross approximation
technique and its relevant features utilized in this thesis.

2.1.2 Matrix Cross Approximation

Suppose we have a rank-r matrix P ∈ Rn1×n2 . Using cross-approximation (a.k.a. CUR
decomposition or skeleton decomposition), this matrix can be exactly recovered using r

7

Chapter 2. Background

independent rows (given by the index vector i1 ⊂ {1, . . . , n1}) and r independent columns
(given by the index vector i2 ⊂ {1, . . . , n2}) of the matrix P as

P̂ = P:, i2 P −1
i1, i2

Pi1, :,

provided the intersection matrix Pi1, i2 (called submatrix) is non-singular. Thus, the
matrix P , which has n1n2 elements, can be reconstructed using only (n1 + n2 − r)r of
its elements (see Figure 2.1).

Now suppose we have a noisy version of the matrix P = P̃ + E with ∥E∥ < ϵ and P̃

is of low rank. For a sufficiently small ϵ, rank(P̃) = r so that the matrix P can be
approximated with a lower rank r (i.e., rank(P) ≈ r). Then, the choice of the submatrix
Pi1, i2 (or index vectors i1, i2) for the cross approximation requires several considerations.
The maximum volume principle can be used in choosing the submatrix which states that
the submatrix with maximum absolute value of the determinant is the optimal choice. If
Pi∗

1, i∗
2

is chosen to have the maximum volume, then by skeleton decomposition we have
an approximation of the matrix P given by P̂ = P:, i∗

2
P −1

i∗
1, i∗

2
Pi∗

1, :. This results in a
quasi-optimal approximation:

∥P − P̂ ∥2 < (r + 1)2 σr+1(P),

where σr+1(P) is the (r + 1)-th singular value of P (i.e., the approximation error in the
best rank r approximation in the spectral norm) [14]. Thus, we have an upper bound
on the error incurred in the approximation which is slightly higher than the best rank r

approximation (Eckart–Young–Mirsky theorem).

Finding the maximum volume submatrix is, however, an NP-hard problem. However,
many heuristic algorithms that work well exist in practice by using a submatrix with a
sufficiently large volume, trading off the approximation accuracy for the computation
speed. One of the widely used methods is the maxvol algorithm [15] which can provide,
given a tall matrix P ∈ Rr×n2 (or Rn1×r), the maximum volume submatrix Pi∗

1, i∗
2
∈ Rr×r.

The cross approximation algorithm uses the maxvol algorithm in an iterative fashion to
find the skeleton decomposition. We describe it below for intuition and refer to [14] for
more details:

• Input: P ∈ Rn1×n2 , the approximation rank r for the skeleton decomposition.

• Find the columns index set i∗
2 and the row index set i∗

1 corresponding to the
maximum volume submatrix:

– Randomly choose r columns i2 of the matrix P and repeat the following until
convergence:

8

2.2 Tensors

1. Use maxvol to find r row indices i1 so that Pi1, i2 is the submatrix with
maximum volume in P:, i2 .

2. Use maxvol to find r column indices i2 so that Pi1, i2 is the submatrix
with maximum volume in Pi1, :.

• Output: Using the column index set i∗
2 and the row-index set i∗

1 corresponding
to the maximum volume submatrix, we have the skeleton decomposition P̂ ≈
P:, i∗

2
P −1

i∗
1, i∗

2
Pi∗

1, :.

In the above algorithm, during the iterations the matrices P:, i2 (or Pi1, :) might be
singular. Thus, a more practical implementation uses the pseudo-inverses [14].

Note that, in the above algorithm, the input is only a function to evaluate the elements
of the matrix P (i.e., we do not need the whole matrix P in computer memory). Some
features of cross approximation algorithms are highlighted below:

• The factors in a cross approximation method consist of elements of the actual data
(rows and columns) of the original matrix and hence it improves interpretability.
For example, SVD does projection onto the eigenvectors which could be abstract,
whereas cross approximation does projection onto the vectors formed by rows and
columns of the actual data of the matrix which are more meaningful.

• Cross approximation algorithms directly find the factors without computing and
storing the whole matrix.

2.2 Tensors

A tensor is a multidimensional array and as such, it is a higher-dimensional generalization
of vectors and matrices. It can be treated as a function of discrete variables. In this
context, a vector can be viewed as a first-order tensor, and a matrix as a second-order
tensor, with the order of a tensor denoting the number of dimensions (or modes) in the
multidimensional array.

The shape of a d-th order tensor P ∈ Rn1×···×nd is defined by a tuple of integers
n = (n1, . . . , nd). We designate n as max(n1, . . . , nd) and introduce the index set I for
the tensor P as I = {i = (i1, . . . , id), ik ∈ {1, . . . , nk}, k ∈ {1, . . . , d}}, which uniquely
identifies its elements. The i-th element of the tensor P is denoted as Pi.

In tensor terminology, a fiber represents the higher-order equivalent of a matrix row or

9

Chapter 2. Background

Figure 2.1: For a given matrix P (top-left), suppose we know r independent columns
indexed by i2 = (i1

2, . . . , ir
2), i.e., P:, i2 ∈ Rn1×r and r independent rows indexed by i1 =

(i1
1, . . . , ir

1), i.e., Pi1, : ∈ Rr×n2 , with their intersection Pi1, i2 ∈ Rr×r being nonsingular.
Then, by skeleton decomposition we have P̂ = P:, i2 P −1

i1, i2
Pi1, :. If rank(P) = r, then

P̂ = P (bottom row). For r < rank(P) we obtain a quasi-optimal approximation, P̂ ≈ P
(middle row). The right figures show the rows and columns selected from the original
matrix by the cross approximation algorithm to find the skeleton decomposition.

column; it is a vector obtained by fixing every index but one. Likewise, a slice of a tensor
is a matrix acquired by fixing every index but two.

2.3 Tensors as Discrete Analogue of a Function

In numerous applications, tensors naturally emerge from discretizing multivariate func-
tions defined on a rectangular domain. Let P : Ωx ⊂ Rd → R be a function with a
rectangular domain Ωx = ×d

k=1Ωxk
, a Cartesian product of intervals for each dimen-

sion. Various discretization approaches for specifying these intervals can be considered,
with a default assumption of uniform discretization unless otherwise stated. Bounded
intervals Ωxk

⊂ R are discretized into nk elements. The discretization set is denoted

10

2.4 Tensor Networks

as X = {x = (xi1
1 , . . . , xid

d) : xik
k ∈ Ωxk

, ik ∈ {1, . . . , nk}}, and the corresponding index
set is defined as IX = {i = (i1, . . . , id) : ik ∈ {1, . . . , nk}, k ∈ {1, . . . , d}}. A canon-
ical bijective discretization map X : IX → X defined as X(i) = (xi1

1 , . . . , xid
d),∀i =

(i1, . . . , id) ∈ IX . With this discretization, a tensor P , a discrete analogue of the function
P , is obtained by evaluating the function at the discretization points given by X , i.e.,
Pi = P (X(i)), i ∈ IX . To simplify notation, we overload the terminology and define
Px = PX−1(x), ∀x ∈ X . Notably, given a discrete analogue P of a function P , we can
approximate the value P (x) for any x ∈ Ωx by interpolating between specific nodes of
the tensor P .

However, naively approximating a high-dimensional function using a tensor becomes
intractable due to the computational and storage complexities of the tensor (O(nd)).
TNs address the storage issue by representing a tensor with factors that have a smaller
number of elements by exploiting the separability (or low-rank structure).

2.4 Tensor Networks

Similar to matrix factorization described in Section 2.1.1 Tensor Networks (TNs) represent
a high-dimensional tensor or multidimensional array (a function of only discrete variables)
using several low-order tensors. They allow powerful interpolation schemes for handling
continuous variables. Alternatively, it can be viewed as a function approximation tool that
uses the sum-of-product of univariate functions (separable form) to represent functions.
This feature allows us to perform various algebraic operations and calculus efficiently.

There are various types of TNs such as Tucker TNs, Tensor Train (TT) TNs, Tree TNs,
MERA, PEPS. Each of them is parameterized to represent functions in separable form.
However, they differ in their parameter efficiency, scalability, and expressivity. Given
the data of the target function (i.e., data for supervised or unsupervised learning) or
the target function itself (i.e., a procedure to evaluate its elements), there exist various
techniques to represent the target function in these formats.

Tensor diagrams provide a elegant tool to describe tensors and TNs pictorially. We
describe the tensors, tensor contraction operations, and TNs in Figure 2.2, 2.3 and 2.4.
For more details, we refer the readers to [16] and [1].

Tensor Train provides a very good balance in terms of expressivity, scalability, and
parameter efficiency among these TNs. Thus, in the remainder of this thesis, we will use
TT for all the applications considered, and it is described in more detail in the subsequent
sections.

11

Chapter 2. Background

(a) (b)

(c) (d)

(a) (b)

(c) (d)

Figure 2.2: Tensor Diagram: In the diagrammatic notation for tensors, each tensor (a
multidimensional array) is represented as a solid shape. The number of lines branching
out of the solid shape corresponds to its order. In the figure, (a), (b), (c), and (d)
represent a first-order tensor (a vector), a second-order tensor (a matrix), a third and a
fourth-order tensor respectively.

12

2.4 Tensor Networks

(a)

(b)

(c)

Figure 2.3: Tensor contraction: We can use tensor contraction (networking) to form a
new tensor using multiple tensors. The shared line (closed line) between two tensors
represents summation over that index. In the figure, (a) represents a matrix-vector
product that results in another vector (first-order tensor), (b) represents the familiar
matrix factorization which is a matrix-matrix product resulting in a new matrix (second-
order tensor), (c) represents a fourth-order tensor formed by a contraction over two third
order tensors. Note that the number of open-ended lines in the diagram corresponds to
the order of the resultant tensor after tensor contractions.

13

Chapter 2. Background

(a) A 6-th order tensor

(b) Tensor Train Tensor Network

(c) Tucker Tensor Network

(d) Tree Tensor Network

Figure 2.4: Tensor Networks: We can use the tensor diagram (Fig.2.2) and tensor
contraction (Fig. 2.3) to pictorially describe various tensor networks (TNs). The figure
describes how a sixth-order tensor in (a) can be represented using Tensor Train TN in
(b), Tucker TN in (c), and Tree TN in (d).

14

2.5 Tensor Train

2.5 Tensor Train

Among the popular tensor networks, we concentrate in this work on the Tensor Train (TT).
They are a special type of Tree Tensor Networks and also called by Matrix Product States
(MPS) in the physics community [16]. TT decomposition encodes a given tensor compactly
using a set of third-order tensors called cores. A d-th order tensor P ∈ Rn1×···×nd in TT
format is represented using a tuple of d third-order tensors (P1, . . . , Pd). The dimension
of the cores are given as P1 ∈ R1×n1×r1 , Pk ∈ Rrk−1×nk×rk , k ∈ {2, . . . , d−1}, and
Pd ∈ Rrd−1×nd×1 with r0 = rd = 1. As shown in Figure 2.5, the i-th element of the
tensor in this format, with i ∈ I = {(i1, . . . , id) : ik ∈ {1, . . . , nk}, k ∈ {1, . . . , d}}, is
simply given by multiplying matrix slices from the cores:

Pi = P1
:, i1, : P2

:, i2, : · · ·Pd
:, id, :, (2.6)

where Pk
:, ik, : ∈ Rrk−1×rk represents the ik-th frontal slice (a matrix) of the third-order

tensor Pk. The dimensions of the cores are such that the above matrix multiplication
yields a scalar. Note that, for d = 2, it reduces into the familar matrix factorization
as described in Section 2.1.1. The TT-rank of the tensor in TT representation is then
defined as the tuple r = (r1, r2, . . . , rd−1). We call r = max (r1, . . . , rd−1) as the maximal
rank. For any given tensor, there always exists a TT representation (2.6) [17].

Due to its structure, the TT representation offers several advantages for storage and
computation. Let n = max(n1, . . . , nd). Then, the number of elements in the TT
representation is O(ndr2) as compared to O(nd) elements in the original tensor. For
a small r and a large d, the representation is thus very efficient. As explained in
Section 2.1.1, the existence of a low-rank structure (i.e., a small r) of a given tensor
is closely related to the separability of the underlying multivariate function. Although
separability of functions is not a very well understood concept, it is known that smoothness
and symmetry of functions often induces better separability of the functions [13]. By
better, we mean fewer low-dimensional functions in the sum of products representation.
The degree of smoothness can be formally defined using the properties of higher-order
derivatives, however, roughly speaking, it implies the degree of variation of the function
across its domain. For example, a probability density function in the form of a Gaussian
Mixture Model (GMM) is considered to become less smooth as the number of mixture
components (i.e., multi-modality) increases or the variance of the component Gaussians
decreases (i.e., sharper peaks).

15

Chapter 2. Background

Figure 2.5: TT is an extension of matrix decomposition techniques to higher dimensional
arrays. With a matrix decomposition, we can access an element of the original matrix by
multiplying appropriate rows or columns of the factors. Similarly, an element of a tensor
in TT format can be accessed by multiplying the selected slices (matrices represented in
red color) of the core tensors (factors). The figure depicts examples for a 2nd order, 3rd
order, and a 4th order tensor.

2.5.1 Continous Function Approximation using Tensor Train

Given the discrete analogue tensor P of a function P in TT format, we can obtain the
continuous approximation by interpolating the TT cores, in a similar way as in the matrix
case in Section 2.1.1. For example, we can use a linear interpolation for each core (i.e.,
between the matrix slices of the core) and define a matrix-valued function corresponding
to each core k ∈ {1, . . . , d},

P k(xk) = xk − xik
k

xik+1
k − xik

k

Pk
:, ik+1, : + xik+1

k − xk

xik+1
k − xik

k

Pk
:, ik, :, (2.7)

where xik
k ≤ xk ≤ xik+1

k and P k : Ωxk
⊂ R→ Rrk−1×rk with r0 = rd = 1. This induces a

continuous approximation of P given by

P (x1, . . . , xd) ≈ P 1(x1) · · ·P d(xd). (2.8)

16

2.6 Algebraic Operations over Tensor Train

Note that a higher-order spline-based interpolation can also be used if needed. In this
thesis, we used Catmull-Rom splines for the interpolation.

We overload the terminology again to define the continuous TT representation as:

Pk
:, xk, : = P k(xk),

Px = P (x1, . . . , xd),
= P1

:, x1, : · · ·Pd
:, xd, :, ∀xk ∈ Ωxk

, ∀k ∈ {1, . . . , d}, .

(2.9)

2.5.2 Refining Tensor Train Model

Suppose we have a TT model P defined on a domain Ωx = Ωx1 × · · · × Ωxd
with

discretization set X = {x = (xi1
1 , . . . , xid

d) : xik
k ∈ Ωxk

, ik ∈ {1, . . . , nk}}. We can obtain
a refined TT model P̂ defined on a finer discretization X̂ = {x = (xi1

1 , . . . , xid
d) : xik

k ∈
Ωxk

, ik ∈ {1, . . . , n̂k}} of the domain with n̂k > nk using interpolation of the TT cores.
The cores of the corresponding TT model P̂ defined over the refined discretization
can be determined using P̂k

:, xk, : = P k(xk), ∀k ∈ {1, . . . , d}, (x1, . . . , xd) ∈ X̂ using
interpolation scheme as described in Section 2.5.1.

This proves beneficial in specific applications where a coarse discretization is employed
during the learning phase to acquire the TT representation of a target function, which can
be computationally intensive. During the inference phase, however, in some applications,
the TT model might be required to be defined over a finer discretization for more accurate
results. For instance, in Chapter 4, we introduce a method for determining optima of
a tensor in TT format, with these optima representing an element of the underlying
discretization set. To apply this technique to find optima of an arbitrary function over
continuous variables, we initially use a coarse discretization of the domain during the
learning phase to find a TT representation over this discretization set (i.e., modeling the
function in TT format). Subsequently, before employing the optimization technique, we
refine the TT model over a finer discretization set, ensuring the attainment of a more
accurate optimum.

2.6 Algebraic Operations over Tensor Train

Working with TT models offers an advantage as it enables the efficient execution of
various commonly used algebraic operations directly in the TT format. In this thesis,
we briefly describe the operations employed, and for a more in-depth understanding, we
refer readers to [18].

17

Chapter 2. Background

Suppose we have two TT models P with TT cores (P1, . . . , Pd) and Q with cores
(Q1, . . . , Qd) defined over the same discretization set X = {x = (xi1

1 , . . . , xid
d) : xik

k ∈
Ωxk

, ik ∈ {1, . . . , nk}}.

Let the dimension of the cores of P be given as Pk ∈ RrP
k−1×nk×rP

k for k ∈ {1, . . . , d},
with rP

0 = rP
d = 1. Similarly, Qk ∈ RrQ

k−1×nk×rQ
k for k ∈ {1, . . . , d}, with rQ

0 = rQ
d = 1.

Scalar Multiplication

Mulitplying a TT P with a scalar c ∈ R results in a new TT model S = cP whose cores
are given by S1 = cP1 and Sk = Pk, k ∈ {2, . . . , d}. The rank of S is same as that of
P .

Addition

Adding two TT models P and Q results in another TT model S defined as S = P + Q
whose cores are determined as follows:

S1
:, i1, : = [P1

:, i1, : Q1
:, i1, :],

Sd
:, id, : = [Pd

:, id, : Qd
:, id, :]⊤,

Sk
:, ik, : =

 Pk
:, ik, : 0

rP
k−1×rQ

k

0
rQ

k−1×rP
k

Qk
:, ik, :

 , k ∈ {2, . . . , d−1}, ik ∈ {1, . . . , nk}.
(2.10)

The rank of the TT model S is given by (rS
1 , . . . , rS

d−1) where rS
k = rP

k + rQ
k , k ∈

{1, . . . , d−1}.

Hadamard Product

Hadamard product (elementwise multiplication) of two TT models P and Q results in
another TT model S defined as S = P ∗Q whose cores are determined as follows using
Kronecker product: Sk

:, ik, : = Pk
:, ik, : ⊗Qk

:, ik, :, k ∈ {1, . . . , d}. The rank of the TT
model S is given by (rS

1 , . . . , rS
d−1) where rS

k = rP
k rQ

k , k ∈ {1, . . . , d−1}.

18

2.7 Compression of Tensor Train with Rounding Operation

Computing the Mean

The mean of a TT model P can be obtained as:

µ = 1∏d
i=1 ni

(∑
i1

P1
:, i1, :

)
× · · · ×

(∑
id

Pd
:, id, :

)
(2.11)

Computing the Frobenius Norm

The Frobenius norm of a TT model P is defined as:

∥P∥ =
(∑

i1

· · ·
∑
id

P(i1, . . . , id)2
) 1

2
,

=
(∑

i1

· · ·
∑
id

(
Pk

:, i1, : · · ·Pd
:, id, :

)(
P1

:, i1, : · · ·Pd
:, id, :

)⊤) 1
2
.

(2.12)

This can be computed efficiently in a recursive manner:

Ak =
∑
ik

Pk
:, ik, : Ak+1 (Pk

:, ik, :)⊤, k ∈ {d, . . . , 2, 1}, (2.13)

where Ad+1 = 1. Then ∥P∥ =
√

A1.

2.7 Compression of Tensor Train with Rounding Operation

TT-rounding [17] is an important operation on a tensor in TT format. Most binary
operations on tensors in TT format, although efficient, increase the rank of the resultant
tensor in TT format, where the resultant tensor is often not in its optimal TT repre-
sentation in terms of the number of parameters involved. A repeated application of
binary operations to a given tensor may result in an explosion of its TT-rank, which
would affect the efficiency of subsequent operations on the tensor. For example, the
addition of two tensors, both with TT-rank r = (r1, . . . , rd), results in a tensor in TT
format with rank r = (2r1, . . . , 2rd). TT-rounding is an operation applied to tensors
already in TT format to compress it to optimal TT representation and hence reduce its
TT-rank. For a d-th order tensor P in TT-format with maximal TT-rank r, TT-rounding
has computational complexity O(ndr3). The TT-rounding procedure returns a tensor
P̂ = TT-round(P , r̂), for a given r̂ < r, such that its maximal TT-rank is less than r̂ and

19

Chapter 2. Background

the Frobenius norm of the residual ∥P̂ −P∥ is as small as possible. Alternatively, we can
specify an approximation accuracy ϵ to a tensor P in TT format and the TT-rounding
returns a tensor P̂ = TT-round(P , ϵ) with optimal TT-rank and ∥P̂ −P∥ ≤ ϵ.

2.8 Approximating Functions in Tensor Train using Cross
Approximation

When the function to be approximated is known (i.e., there exists a procedure that can
return the values of the function given input from its domain), the popular methods
to find the TT representation are TT-SVD [17], TT-DMRG [19], and TT-cross [20].
TT-SVD and TT-DMRG, like matrix SVD, require the full tensor (discrete analog of
the function) in memory to find the decomposition, and hence they are infeasible for
higher-order tensors. TT Cross approximation (TT-cross) overcomes this issue by using
cross-approximation techniques to find the decomposition.

TT-cross approximation (TT-cross) is an extension of the cross approximation technique
for matrix decomposition explained in Section 2.1.2 for obtaining the TT representation
of a tensor. It is appealing for many practical problems as it approximates the given
tensor (e.g., the discrete analogue of a function) with a controlled accuracy, by evaluating
only a small number of its elements and without having to compute and store the entire
tensor in the memory. The method needs to compute only certain fibers of the original
tensor at a time and hence works in a black-box fashion. We refer the readers to [21, 20]
for more details.

Suppose we have a function P and its discrete analogue P (a tensor). Given the desired
accuracy for the approximation ϵ, TT-cross returns an approximate tensor in TT format
P̂ = TT-cross(P, ϵ) to the tensor P by querying only a portion of its elements (O(ndr2)
evaluations instead of O(nd)). The maximal TT-rank r is determined by the algorithm
depending on the ϵ specified. The model is very efficient if the rank r of the tensor is low,
which is typically the case in many engineering applications, including robotics. Thus,
TT-cross avoids the need to compute and store explicitly the original tensor, which may
not be possible for higher-order tensors. It only requires computing the function P that
can return the elements of the tensor P at various query points, i.e., the fibers of the
tensor P .

In practical applications, it operates in an unsupervised manner, requiring only the target
function (a procedure that provides the function values at specified query points) to be
approximated in TT format. Additionally, the desired accuracy for representation and
the maximum allowed rank of the TT representation are input parameters. The TT-cross

20

2.9 Probability Modeling using Tensor Train

algorithm then determines the final rank of the resulting TT representation.

2.9 Probability Modeling using Tensor Train

In this section, we describe how TT representation can be leveraged to model probability
functions. In Chapter 4, this interpretation serves as a foundational concept for developing
an algorithm crucial to the core content of this thesis: the global optimization of functions.
The underlying approach involves representing the objective functions for optimization
in TT format and interpreting it as a distribution in TT format as described below. The
probabilistic interpretation is harnessed to derive an algorithm for locating the maxima
of the distribution, effectively identifying the optima of the objective function.

2.9.1 Tensor Train Distribution

Suppose we have a tensor P in TT format corresponding to a function P within the
discretization set X of the domain Ωx. We can then construct the corresponding
probability distribution that we call TT distribution,

Pr(x) = P2
x

Z
, x ∈ X , (2.14)

where Z is the corresponding normalization constant.

Due to the separable structure of the TT model, as described in Section 2.9.2, we can
get the exact samples from the TT distribution in an efficient manner without requiring
to compute the normalization factor Z as described in the next section. However,if
needed, the normalization constant Z for (2.14) can be computed efficiently as described
in (2.12).

2.9.2 Sampling from Tensor Train distribution

Consider the discrete probability distribution given by (2.14). For the simplicity of the
presentation, we assume Z = 1 as we will not require the normalization constant to be
known for sampling from the above distribution. Any probability distribution can be
expressed as a product of conditional distributions

Pr(x1, . . . , xd) = Pr1(x1) Pr2(x2|x1) · · ·Prd(xd|x1, . . . , xd−1),

21

Chapter 2. Background

where
Prk(xk|x1, . . . , xk−1) = σk(x1, . . . , xk)

σk−1(x1, . . . , xk−1) ,

is the conditional distribution defined using the marginals

σk(x1, . . . , xk) =
∑
xk+1

· · ·
∑
xd

Pr(x1, . . . , xd).

Let σ0 = 1. Now, using the above definitions, we can generate samples x ∼ Pr by
sampling from each of the conditional distributions in turn. Each conditional distribution
is a function of only one variable, and in the discrete case it is a multinomial distribution,
with

xk ∼ Prk(xk|x1, . . . , xk−1), ∀k ∈ {1, . . . , d}.

However, this process becomes computationally intensive during sampling xk, as it
necessitates the conditional distribution Prk, which, in turn, requires the evaluation of
the summation over several variables to find the marginal σk. Consequently, this approach
incurs a computational cost that grows exponentially with the number of dimensions.
Here, the TT format offers an elegant solution by capitalizing on the separability of the
function.

If Pr is a TT distribution (see (2.14)) corresponding to a TT model P with the discretiza-
tion set X and the cores (P1, . . . , Pd), we have:

σk(x1, . . . , xk) =
∑
xk+1

· · ·
∑
xd

P2
x, k ∈ {1, . . . , d}

=
(

P1
:, x1, : · · ·Pk

:, xk, :

)
βk+1

(
P1

:, x1, : · · ·Pk
:, xk, :

)⊤
,

(2.15)

where we can compute βk efficiently in a recursive manner as follows:

βk =
∑
xk

· · ·
∑
xd

(
Pk

:, xk, : · · ·Pd
:, xd, :

)(
Pk

:, xk, : · · ·Pd
:, xd, :

)⊤
,

=
∑
xk

Pk
:, xk, : βk+1 (Pk

:, xk, :)⊤, k ∈ {d, . . . , 2, 1},
(2.16)

where βd+1 = 1. Alternatively, there exists a procedure called Tensor Train orthogonal-
ization [18] which re-parameterizes the core tensors of P in TT format so that βk is an
identity matrix. This will eliminate the need for the computational of (2.15). Thus, the

22

2.9 Probability Modeling using Tensor Train

Algorithm 1 TT-CD: Sampling from TT distribution given by (2.14).

1: Input: TT Blocks P = (P1, . . . , Pd) corresponding to the distribution Pr, sample
priority α ∈ (0, 1)

2: Output: N samples {(xl
1, . . . , xl

d)}Nl=1 from the distribution Pr (see (2.14))
3: βd+1 ← 1
4: for k ← d to 2 do
5: βk =

∑
xk

Pk
:, xk, : βk+1 (Pk

:, xk, :)
⊤

6: end for
7: Φ1 ← 1 ∈ RN×1

8: for k ← 1 to d do
9: πk(xk) = Pk

:, xk, : βk+1 (Pk
:, xk, :)

⊤
, ∀xk

10: for l = 1, . . . , N do
11: pk(xk) = |Φk(l, :) πk(xk) Φk(l, :)⊤|, ∀xk

12: Sample xl
k from the multinomial distribution pk

13: Φk+1(l, :) = Φk(l, :) Pk
:, xl

k
, :

14: end for
15: end for

TT format reduces the complicated multidimensional summation to evaluate σk into
several one-dimensional summations. As the same summation terms appear over several
conditionals Prk, we can use an algorithm called Tensor Train Conditional Distribution
(TT-CD) sampling [22], to efficiently get the samples from Pr. This is described in
Algorithm 1.

2.9.3 Conditioning Tensor Train Distribution

Suppose we want to fix a subset of variables in x and find the corresponding conditional
distribution of the remaining variables. Without loss of generality, let x be segmented
as x = (x1, x2) ∈ Ωx = Ωx1 × Ωx2 with x1 ∈ Ωx1 ⊂ Rd1 , x2 ∈ Ωx2 ⊂ Rd2 . i.e., x1
corresponds to the first d1 variables in x. We are interested in finding the conditional
distribution Pr(x2|x1) of the TT distribution given in (2.14).

Suppose x1 takes a particular value xt = (x1, . . . , xd1). We can obtain Pr(x2|x1 = xt)
by defining a conditional TT model Px1=xt using TT model P as

Pxt
x2 = P(xt, x2), ∀x2 ∈ Ωx2 .

In other words, the TT cores of Px1=xt are then given by

23

Chapter 2. Background

(Pxt)1
:, x, : =

(d1∏
i=1

P i
:, xi, :

)
Pd1+1

:, x, : , ∀x ∈ Ωxd+1

(Pxt)k = Pk+d1 , k ∈ {2, . . . , d2},
(2.17)

Given the above-defined conditional TT model, we can obtain the conditional distribution
as

Pr(x2|x1 = xt) =
(Pxt

x2)2

Z2
, ∀x2 ∈ Ωx2 . (2.18)

Given x1 = xt, we can sample x2 from this distribution using Algorithm 1 with the
conditional TT model Px1=xt .

2.10 Tensor Train for Data-Driven Learning

In this section, we describe a popular way the TT model is employed for data-driven
function approximation. It is used to represent the weights for the basis function
representation (linear combination of basis functions) of a high-dimensional function to
overcome the curse of dimensionality. It can be used for regression problems or density
modeling as explained below.

Suppose we are interested in a parameterized function approximation over a domain
Ωx = Ωx1 × · · · × Ωxd

⊂ Rd in the form of linear combinations of pre-defined basis
functions. Consider a collection of basis functions ϕi(xi) = (ϕi

1(xi), . . . , ϕi
n(xi)) ∈ Rni ,

for each dimension i ∈ {1, . . . , d}. Then, denoting x = (x1, . . . , xd), the basis functions
for the domain can be obtained by the elements of the d-th order tensor formed by the
outer product of these vectors: Φ(x) = ϕ1(x1) ◦ · · · ◦ ϕd(xd) ∈ Rn1×···×nd . So elements
of Φ(x) forms a basis function for R.

Let W ∈ Rn1×···×nd , a d-th order tensor, represent the coefficients for this basis. i.e., for
a given index i = (i1, . . . , id), ik ∈ {1, . . . , nk}, we have Φi(x) = ϕ1

i1(x1)× · · · × ϕd
id

(xd),
and Wi represents the coefficient corresponding to the basis Φi. A typical choice for
ϕi

j(xi) ∈ R includes radial basis functions, splines, and Fourier basis if xi is a continuous
variable. Alternatively, it could be a delta function if the variable is discrete.

24

2.10 Tensor Train for Data-Driven Learning

The parametric function approximation model can then be defined as:

F (x; W) =
〈

W , Φ(x)
〉

,

=
∑
i∈I

Wi Φi(x).
(2.19)

However, (2.19) suffers from the curse of dimensionality as the number of parameters in W
scales exponentially with the number of dimensions d (O(nd) with n = max(n1, . . . , nd)).
We can overcome this by assuming TT representation for W with TT cores (W1, . . . , Wd).
Thus, the number of parameters will be O(ndr2) in TT format where r is the maximal
rank.

Thus, if W is in TT format, then the above equation (2.19) can be written as:

F (x; W) =
〈

W , Φ(x)
〉

,

=
∑
i∈I

Wi Φi(x),

=
∑
i1

· · ·
∑
id

W1
:, i1, : · · ·Wd

:, id, : ϕ1
i1(x1) · · ·ϕd

id
(xd),

=
(∑

i1

W1
:, i1, : ϕ1

i1(x1)
)
· · ·

(∑
id

Wd
:, id, : ϕd

id
(xd)

)
,

(2.20)

which is computationally efficient.

This parametric model given in (2.20) has been used for supervised learning for regression
and classification tasks in [23, 24]. Such representation can approximate arbitrary
functions and the weight parameters (the TT model) can be found using gradient descent
procedures given a dataset of input-output pairs. The properties of the TT model also
allow more advanced methodologies (e.g., Riemannian optimization, DMRG scheme) for
parameter training as described in [23, 24] with mean squared error as the loss function.

The parametric model given in (2.20) can be adapted for density estimation with a minor
modification:

P (x; W) = ⟨W , Φ(x)⟩2

Z
, (2.21)

25

Chapter 2. Background

where Z is the normalization constant. Unlike many other function approximation
techniques such as Neural Networks, if W is in TT format, the normalization constant
can be computed efficiently. This has been used in [25, 26, 27] for density estimation
with negative likelihood (or negative log-likelihood) as the loss function. The main
advantage is that the above TT-based density model allows exact sampling in a fast
manner as described in Section 2.9.2. Moreover, it would also allow finding optima
of the distribution through techniques introduced in this thesis in Chapter 4. This
allows interesting frameworks for imitation learning and offline reinforcement learning as
described in Section 5.6.1.

26

27

Chapter 3. Ergodic Exploration using Tensor Train

3 Ergodic Exploration using Tensor
Train

In robotics, ergodic control extends the tracking principle by specifying
a probability distribution over an area to cover instead of a trajectory
to track. This provides a systematic approach for designing control
policies for exploration tasks with robotic systems across applications
like manipulation, surveillance, and human-robot collaboration. The
original problem, formulated as a spectral multiscale coverage problem,
typically requires the spatial distribution to be decomposed as a Fourier
series. This approach does not scale well to control problems requiring
exploration in search space of more than 2 dimensions. In this chapter,
we show how we can tackle the scalability challenge by using the tensor
train (TT) representation. By mitigating the curse of dimensionality, TT
facilitates real-time implementation and enables ergodic control applicable
to complex robotic systems operating in high-dimensional state spaces.
The approach is applied to a peg-in-hole insertion task requiring full 6D
end-effector poses, implemented with a 7-axis Franka Emika Panda robot
without the use of force/torque sensors.

Publication Note

The material presented in this chapter is adapted from the following publication.
• S. Shetty, J. Silvério, and S. Calinon, “Ergodic exploration using tensor

train: Applications in insertion tasks,” IEEE Trans. on Robotics, vol. 38,
no. 2, pp. 906–921, 2022. The work was also invited to present at IROS
2022.

Supplementary materials including videos and source codes related to this
chapter are available at: https://sites.google.com/view/ergodic-exploration/

28

https://sites.google.com/view/ergodic-exploration/

3.1 Introduction

3.1 Introduction

Autonomous systems are often encountered with coverage tasks in applications such as
localization, tracking, and active learning. In such tasks, the agent might be required
to explore a region of its state space, either due to the nature of the task at hand (e.g.
surveillance) or due to uncertainties induced by sensory inaccuracies (e.g. peg-in-hole
insertion). In such problems, the coverage task can be specified by a reference probability
density function, which encodes the importance of exploration at any point of the state
space. For such problems, a pattern-based coverage approach (e.g., a “lawnmower-type”
strategy), as commonly used in low-dimensional state space, is not scalable, and hence
not applicable to most of the applications encountered in practice [28]. Maximizing
information gain, another popular approach to circumvent uncertainty, is not suitable for
exploration since the coverage is likely to be concentrated in regions around information
maxima disproportionately over the period of exploration [29].

Ergodic control provides an elegant solution to design control policies for such autonomous
systems, in order to equip them with natural search behaviors (see Fig. 3.1). For a given
reference probability density function over a domain of interest in the state space of the
robot, a dynamical system is said to be ergodic if the fraction of time spent in a given
region is proportional to the probability mass of that region [30]. This is formalized in
ergodic theory, where the goal is to characterize how ergodic a given dynamical system is.
Ergodic control, on the other hand, aims to design a control policy for a given autonomous
system so that the trajectory evolution of the resulting dynamical system is ergodic for
the reference probability distribution. Systems engineered in such a way have already
found applications in robotics [29, 31].

A popular approach to ergodic control is called Spectral Multiscale Coverage (SMC) and
involves spectral analysis of the dynamical system evolution [30]. This elegant method
was proposed for point-mass systems having receding horizon control with infinitesimal
control horizon. This original work paved the way for various extensions, with other
types of dynamical systems and finite-horizon controllers [31, 29, 32]. The idea behind
SMC [30] is to minimize a metric, called the ergodic metric, that quantifies the match
between the Fourier coefficients of a reference distribution and those of the time-averaged
statistics of the system trajectory. As we will see in Section 3.3, this method suffers from
the curse of dimensionality, prohibiting its applications to search spaces with more than
2 or 3 dimensions, which are often encountered in robot manipulation problems (e.g.
exploration in the task space of an end-effector is often a 6D problem).

We propose a solution to overcome the challenges in SMC by using tensor train (TT)
representation and hence expanding the domain of ergodic control to robot manipulation.

29

Chapter 3. Ergodic Exploration using Tensor Train

Figure 3.2 shows an ergodic exploration behavior generated by the proposed method for
the peg-in-hole task considered in this chapter.

We showcase our approach in a 6D peg-in-hole insertion task using a robot manipulator,
by considering the position and orientation of the end-effector. In peg-in-hole scenarios,
perception and modeling inaccuracies often compromise success, requiring the robot to
leverage smart control strategies. Here, we propose to apply ergodic control to facilitate
the insertion by letting the robot explore around the hole location in the 6D state space
of the end-effector. In this application, we rely on human demonstrations to specify the
distribution that the robot should use for an ergodic exploration.

The main contribution of this work is an algorithm for SMC to generate ergodic exploration
in multidimensional spaces, which was previously considered to be an intractable problem.
In particular, we improve the state-of-the-art by proposing:

• Fast ways to compute the Fourier coefficients of multivariate functions, a well-known
bottleneck in the ergodic control literature;

• The use of tensor train to exploit the inherent low-rank structure in the problem,
which is used to overcome the curse of dimensionality in both real-time computation
and storage requirements and facilitate implementation of ergodic control online
on robotic systems.

The proposed ergodic control algorithm paves the way for two additional contributions
in robotics. Particularly, we:

• Extend ergodic control to peg-in-hole tasks solved with an online policy, with a
novel, principled and theoretically-grounded exploratory strategy for insertion tasks
that does not rely on specialized sensors but only on human demonstrations;

• Provide a formal way to perform ergodic exploration in orientation by relying on
the S3 Riemannian manifold.

To the best of our knowledge, this is the first time ergodic control is implemented online
on a physical robot for exploration in dimension greater than 2. Note that the strategies
to mitigate the curse of dimensionality introduced in this chapter have the potential to
be applied to many other applications in robotics to address real-time computation and
limited storage requirements. Similarly, the proposed control strategy is not limited to
manipulation applications, and can be extended to other robotics scenarios requiring high-
dimensional coverage (e.g. 3D-object modeling, 6D surveillance).1 Finally, even though

1The proposed algorithm has been numerically evaluated for state space of up to 15 dimensions.

30

3.1 Introduction

Figure 3.1: In contrast to feedback trajectory control the goal of the ergodic control is to
cover a reference distribution.

we rely on human demonstrations to obtain the reference distribution, this reference can
in practice be specified/learned in different ways (e.g. from sensor uncertainty models).

The chapter is organized as follows: Section 3.2 gives a literature survey on ergodic control
and control strategies for insertion tasks. In Section 3.3, the mathematical formulation
of ergodic control is described, where the underlying challenges of the algorithm are
outlined. In Section 3.4, we propose low-rank approximation using the tensor train as
a solution for multidimensional ergodic exploration. In Section 3.5, we evaluate the
proposed algorithm in simulation. Lastly, in Section 3.6 we showcase the results of our
approach in a peg-in-hole insertion task using a torque-controlled 7-axis Franka Emika
robot.

31

Chapter 3. Ergodic Exploration using Tensor Train

Figure 3.2: The 6D robot trajectory generated by ergodic controller offline for the
insertion task.

3.2 Motivation and Related Work

3.2.1 Challenges in Ergodic Control

A solution to ergodic control was originally proposed by [30] using Spectral Multiscale
Coverage (SMC) in the form of a feedback control law designed for multi-agent systems,
with an objective defined so that the agents trajectories cover a reference probability
distribution. Here, the system considered is a point-mass system. The control policy is
obtained by solving an optimization problem with an ergodic metric as the cost function
(see Section 3.3). The ergodic metric compares the Fourier series coefficients associated
to the spatial reference distribution and the trajectory evolution of the system.

32

3.2 Motivation and Related Work

Although other possible choices of basis functions would be interesting to investigate
(e.g. wavelets), the Fourier transform holds essential properties that are relevant to the
considered problem. The use of Fourier series within ergodic control, including their links
to cosine basis functions, and their properties for reference distributions in the form of
mixtures of Gaussians is discussed in [33].

The ergodic metric can be used as a starting point to design other forms of controllers.
For example, ergodic controllers have been proposed using nonlinear dynamical systems
and finite control horizons [29], using projection-based trajectory optimization [34], or
using hybrid systems theory [32]. An overview of these methods with finite control
horizon can be found in [35].

The main drawback of these methods is that they suffer from the curse of dimensionality
(see Section 3.3) when the dimension of the state space for ergodic exploration increases.
This is due to the computational complexity and storage demanded in working with the
ergodic metric and the control policy derived from it. For low dimensional exploration
tasks (2D), Dressel and Kochenderfer used supervised learning to reduce the computational
burden [36]. However, it does not scale to higher dimensional problems. Several authors
deviated from the approach used in SMC to tackle this limitation. In [37] and [38], the
authors relied on a different ergodic metric based on a Kullback-Leibler (KL) divergence
measure for finite sensor footprint, where the control policy is obtained using sampling-
based techniques. Here, the ergodic metric (KL-divergence) is approximated using the
samples from the reference distribution. Sampling-based methods avoid the curse of
dimensionality but they can still be computationally expensive to address the real-time
computational requirements of robotics systems. Moreover, the performance of the
method is heavily dependent on the quality of the samples obtained, which is hard to
assess. While most sampling-based methods generate the ergodic trajectory offline, its
online implementation on real robots, which is the focus of the current chapter, is still a
challenging problem. Based on [37], Abraham et al. provide an online version of ergodic
control with KL-divergence as ergodic metric [38], at the expense of potentially losing
ergodicity in the exploration (e.g., by limiting the search to high density regions).

This chapter keeps the original methodology (SMC) proposed by [30], which is the
foundation of most literature on ergodic control, and which has the advantage of providing
closed form solutions for many of the commonly used models of dynamical systems
(kinematics-based) [31], while providing multi-scale coverage behaviour. To do so, we
propose a solution based on tensor train (TT) representation to overcome the curse
of dimensionality. The proposed algorithm has intuitive hyperparameters that can be
adjusted to address the storage and computational constraints of the application.

33

Chapter 3. Ergodic Exploration using Tensor Train

3.2.2 Challenges in Peg-in-hole Insertion Task

Peg-in-hole insertion is a typical and important problem in robotics. Many strategies
to solve this problem depend on expensive force and torque sensors [39, 40]. Sensorless
strategies [41, 42, 43], on the other hand, rely only on the state of the end-effector and
provide a low cost solution. However, most of the sensorless strategies depend either
on a predetermined trajectory that the robot end-effector needs to follow [43], or a full
modeling of the insertion behavior [41, 42]. In [43], insertion is treated as a 3D trajectory
tracking problem (2D position and 1D orientation of the end-effector), where the reference
trajectory for the robot end-effector is generated offline by using a coverage strategy
inspired by ergodic control. As we will show, this strategy fails for the peg-in-hole
insertion task considered in this chapter, as a trajectory generated offline is often not
possible to track due to obstructions from the surface of the hole and the peg. To address
this challenge, our approach instead formulates the coverage problem in an online manner,
with exploration in the full 6D state space of the robot end-effector (3D position and 3D
orientation).

In order to handle the exploration in orientation jointly with the position, we extend
the control strategy to Riemannian manifolds by modeling the probability distribution
of orientations, see [44, 45] for details. Subsequently, we use an online implementation
of ergodic control as the solution for coverage. The algorithm proposed in this chapter
allows us to run the ergodic controller online on the robot for 6D insertion tasks.

3.3 Problem Definition and Background

In this section we lay out the mathematical background of our contribution.

Ergodic control considers a point-mass dynamical system whose trajectory evolves such
that its time-averaged statistics matches a desired reference probability distribution. In
the method proposed originally in [30], the problem reduces to minimizing a cost function
called ergodic metric, evaluating the distance between the Fourier coefficients of the
reference distribution and that of the time-averaged statistics of the trajectory evolution
of the dynamical system.

We assume a bounded d-dimensional rectangular domain: Ωx = [0, L1]×· · ·× [0, Ld] with
Li > 0, ∀i ∈ {1, . . . , d}. Without loss of generality, we will consider Li = L,∀i ∈ {1, ..., d}.
x(t) ∈ Rd represents the trajectory of the dynamical system in the domain. The spatial
statistics of the trajectory x(t) is defined as the fraction of time spent by the dynamical

34

3.3 Problem Definition and Background

system at each point of the domain:

Ct(x) = 1
t

∫ t

τ=0
δ
(
x(τ)− x

)
dτ,

where δ is the Dirac delta function, and x = (x1, . . . , xd) ∈ Ωx is a point in the domain.

Let P (x) be the reference probability distribution for the exploration defined on Ωx.
The goal of ergodic control is to match the time-averaged spatial statistic Ct(x) with
the spatial distribution P (x). The idea is to choose K ∈ Z+ orthonormal Fourier basis
functions2 satisfying the Neumann boundary conditions on the boundary of Ωx: ϕk, ∀k ∈
{1, . . . , K}, for each variable x, which is then organized as ϕ(x) = (ϕ1(x), . . . , ϕK(x)) ∈
RK . Although the results that follow apply to any such choice of basis function, we will use
ϕk(x) = cos

(
2π(k−1)x

L

)
for numerical evaluation, see [33] for details. Then, orthonormal

Fourier basis functions for Ωx can be obtained by the elements of the d-th order tensor
formed by the outer product of these vectors: Φ(x) = ϕ(x1) ◦ · · · ◦ ϕ(xd) ∈ RK×···×K .
With respect to this basis, the Fourier coefficients (cosine transforms) of P (x) can be
represented by a d-th order tensor Ŵ . For a given index k = (k1, . . . , kd) ∈ K, we have
Φk(x) = ϕk1(x1) × · · · × ϕkd

(xd), and Ŵk represents the Fourier coefficient w.r.t. the
basis Φk, namely

Ŵk =
∫ L

x1=0
· · ·

∫ L

xd=0
P (x) Φk(x) dx1 . . . dxd. (3.1)

The ergodic metric is then defined as

ξ(t) =
∑
k∈K

Λk

(
Wk(t)− Ŵk

)2
, (3.2)

where Λk = (1 + ∥k∥2)− d+1
2 are the weights for different frequencies, K = {k =

(k1, . . . , kd) : ki ∈ {1, . . . , K}} and K is a sufficiently large positive integer. This
way, higher priority is given to lower frequency contents of the reference distribution (i.e.,
exploration of large scale features), hence resulting in a multi-scale exploration behavior.
W(t) is the Fourier coefficients for the spatial statistics of the trajectory evolution x(t)
at time t (i.e., of Ct(x)), which is given by

W(t) = 1
t

∫ t

τ=0
Φ(x(τ))dτ. (3.3)

2In general, we can choose a different number of basis functions Ki for each dimension i ∈ {1, . . . , d}.
Without loss of generality, we will assume Ki = K, ∀i.

35

Chapter 3. Ergodic Exploration using Tensor Train

The ergodic control objective is lim
t→∞

ξ(t) = 0. For a dynamical system ẋ = f(x, u) where
x ∈ Rd, we want the ergodic dynamics w.r.t. the evolution of the states x(t) ∈ Ωx ⊂ Rd.
For infinitesimal control horizon, the solution for first-order systems is given as (see
[30, 33] for details)

ẋi(t) = α
bi(t)
∥b(t)∥ , i ∈ {1, . . . , d},

with bi(t) =
∑
k∈K

Λk

(
Wk(t)− Ŵk

)
∇iΦk

(
x(t)

)
,

b = (b1, . . . , bd), (3.4)

∇iΦ
(
x(t)

)
= ϕ(x1) ◦ · · · ◦ ∂ϕ(xi)

∂x
◦ · · · ◦ ϕ(xd), (3.5)

where α > 0 is a small real number.

For a fully actuated system with point-mass dynamics ẋ = u, with u = (u1, . . . , ud)
and maximum velocity umax, the control commands ui, i ∈ {1, . . . , d} that minimize the
ergodic metric are given by

ui(t) = umax
bi(t)
∥b(t)∥ .

Similar expressions for control policies are available for other types of dynamical systems,
such as second-order point-mass systems (acceleration command), or first order and
second order Dubin’s car models, see e.g. [30, 31]. The controller can also be extended
to other nonlinear dynamic systems, see e.g. [35, 34, 32]. We demonstrate our approach
using the simple point-mass system, as it captures the key challenges in scaling the
ergodic control algorithm to higher-dimensional exploration, and because it remains a
classical choice for ergodic exploration [31, 46].

The ergodic control algorithm (see Algorithm 1) is simple but it suffers from the curse
of dimensionality when the dimension d of the exploration domain Ωx increases, which
typically limits the use of the algorithm to problems of 2 or 3 dimensions. This is a
drawback since many applications, in practice, are of dimensions d > 3. For example,
the end-effector of a robot manipulator has 6 DOF (position and orientation). A
naive implementation of the above algorithm for an exploration in the task space of a
manipulator is then not feasible in practice.

36

3.3 Problem Definition and Background

Algorithm 2 Ergodic control algorithm
Input: d, L, K, umax, T , and P (x)
Preprocessing:
Compute Ŵ (evaluate Kd multivariate integrals with (3.1))
Compute Λ (Kd function evaluations)
Initialise: t = 0, dt (time step), x(0), W(0), u(0)
Control Loop
while t < T do

t← t + dt
Update x(t)
Update W(t) (use numerical integration)
Compute ∇iΦ

(
x(t)

)
, ∀i ∈ {1, . . . , d}

for i=1,. . . ,d do
bi(t) =

∑
k∈K

Λk

(
Wk(t)− Ŵk

)
∇iΦk

(
x(t)

)
end for
Update u(t) = umax

b(t)
∥b(t)∥

end while
Note: In the control loop, each of the variables Ŵ , W(t), Λ,∇iΦ

(
x(t)

)
need O(Kd)

floating-point elements and each binary operation involving them has computational
complexity O(Kd).

The main challenges in the algorithm are:

1. Computation and storage of the Fourier series coefficients of the reference distribu-
tion Ŵ:
This requires evaluation of the multidimensional integral in (3.1) Kd times to
completely determine Ŵ . Although this is a preprocessing step, the computational
complexity involved and the storage requirement make it infeasible for engineering
applications.

2. Computation and storage of Λ:
This is a preprocessing step. The computation of each element Λk is straightforward,
but the number of function evaluations to find the complete tensor Λ and the
required storage grow exponentially (i.e., Kd).

3. Real-time implementation of the control loop:
The control loop will be very slow as the algebraic operations (such as addition,
element-wise product, summation, Frobenius norm of tensors) are more time-
consuming as the order of the tensors involved in computing the control policy
increases. So, an online implementation of the control loop may not be possible.

37

Chapter 3. Ergodic Exploration using Tensor Train

To give an example of the computation time involved in ergodic control, we used the
Python software implementation of ergodic control described in [30]3. By using K = 10
for the Fourier series coefficients and a spherical Gaussian of variance 0.01 at the center
of Ωx with L = 1 as the reference probability distribution, the preprocessing time
to compute the coefficients. Here, each coefficient is computed independently. Ŵ is
approximately 16s in 2D, 5400s in 3D, and 2300000s in 4D (d = 4) with the multivariate
integration (3.1) evaluated using the Python package scipy.integrate.nquad.4 Note that
the number of elements to be stored in these cases is 10d, and for larger d (such as d > 6)
it is highly likely that memory/storage requirement for each of the multidimensional
arrays involved exceeds the limit. Moreover, the average time taken per control loop
in the above setting for d = 3, 4, 5, 6, 7 are 7 × 10−4s, 1 × 10−3s, 4 × 10−3s, 6 × 10−2s,
and 8× 10−1s correspondingly. For d = 2, in [36], Dressel et al use a supervised learning
approach based on convolutional neural networks for the fast computation of the Fourier
coefficients. For higher dimensional problems, as we will see next, the above-mentioned
challenges can be solved using TT. Using the proposed solution, for the above reference
distribution with d = 7, Ŵ can be represented using approximately Kd parameters and
it can be computed in less than 2× 10−3s and the average control loop takes less than
1× 10−3s. Also, for other reference distributions and larger d, the pre-processing step
and the control loop can be processed very fast.

3.4 Ergodic Control using Tensor Train

In this section, we give details of the solution proposed in this chapter to overcome the
challenges mentioned in Section 3.3. Additionally, as part of our proposed strategy for
6D exploration in manipulation tasks, we propose a Riemannian manifold extension to
allow ergodic exploration for orientation data represented as unit quaternions.

We use the TT representation for the variables involved in the algorithm, namely
Ŵ , W(t), Λ,∇iΦ

(
x(t)

)
. By its definition in (3.5), ∇iΦ

(
x(t)

)
, ∀i ∈ {1, . . . , d} can be rep-

resented as a rank-1 TT. Its TT cores are
(
ϕ(x1), . . . , ϕ(xi−1), ∂ϕ(xi)

∂x , ϕ(xi+1), . . . , ϕ(xd)
)
.

Similarly, Φ(x) by its definition can be represented as a rank-1 TT, with TT cores(
ϕ(x1), . . . , ϕ(xd)

)
. These variables, as described below, can be compactly represented in

TT format, within a desired accuracy. Since all the operations to find the control policy,
at each step of the control loop, are done on variables in TT format, the computational
complexity is significantly reduced.

Λ can be found using the TT-cross approximation (see Section 2.8). Because of the

3The specifications of the used computing system are given in Section 3.5.
4https://docs.scipy.org/doc/scipy/reference/tutorial/integrate.html

38

https://docs.scipy.org/doc/scipy/reference/tutorial/integrate.html

3.4 Ergodic Control using Tensor Train

involved symmetry (see the definition of Λ), the resultant tensor in TT format is of very
low rank. Maximal TT rank of 2 accurately captures the tensor with error less than
10−2 in Frobenius norm and it can be computed in a fraction of a second (for d<15).
We also represent W(t) in TT format and use time integration in TT format [47] to
compute it efficiently at each iteration of the control loop. Due to integration, as the
TT-rank of this tensor may increase in an unbounded manner over time, we specify an
upper bound (a hyperparameter) on its TT-rank. If other integration schemes are used,
one can periodically use TT-rounding to cut off the TT-rank.

Finding Ŵ is a preprocessing step for the algorithm, and it is the most challenging part
as it requires to evaluate Kd times a d-dimensional integral given by (3.1), if implemented
naively. By using the properties of the TT format, the Fourier coefficients can be
computed without having to perform any multidimensional integration directly. By
exploiting the properties of Gaussian quadrature rule for the integration of multivariate
functions, we derive an analytical expression for the Fourier coefficients Ŵ in the TT
representation for arbitrary functions. In this method, we exploit the smoothness of the
reference probability distribution P (x) to find Ŵ indirectly by evaluating P (x) at a few
points in its domain.

3.4.1 Finding the Fourier Series Coefficients

In this section, we provide an analytical expression for the Fourier coefficients of a smooth
but arbitrary distribution. The proof is inspired by [48] where they have used separability
structure in TT representation to find polynomial approximations of multivariate functions.
A similar strategy has been used in [19] to evaluate high-dimensional integration of smooth
functions. We use this strategy to find an analytical expression for the Fourier coefficients
of functions directly in TT representation. The proof relies on quadrature rules (see
Appendix A.1 for the details) for numerical integration of multivariate functions. There
are many possible options to choose the quadrature rule depending on the type of function
P (x) to be integrated. The following result applies to any choice of quadrature rule,
however, for simplicity, we use Gaussian quadrature rule (G-Q) in this chapter.

The idea is to find the TT representation P of the multivariate function P (x) evaluated
at the discretization induced from the quadrature rule. Then, as we will see below, the
TT representation of Ŵ can be obtained directly using P .

Let xj ∈ R be the discretization points of the interval [0, L] and αj be the weights
obtained from the quadrature rule, where j ∈ {1, . . . , N}, with N representing the
specified degree of approximation of the function. Then, we can discretize the domain
Ωx at xj = (xj1 , . . . , xjd

), with j ∈ J , where J = {j = (j1, . . . , jd) : ji ∈ {1, . . . , N}} is

39

Chapter 3. Ergodic Exploration using Tensor Train

the index set. Let P be the tensor formed by evaluating the reference distribution P (x)
at the discretization points, so that Pj = P (xj),∀j ∈ J .

Let (P1, P2, . . . , Pd) be the TT cores of P in its TT representation5, so that for
j = (j1, . . . , jd) ∈ J we have,

Pj = P1
:, j1, : P2

:, j2, : · · ·Pd
:, jd, :,

then the TT cores of Ŵ are (see Appendix A.1 for the proof)

Ŵ i
:, k, : =

N∑
j=1

αj P i
:, j, : ϕk(xj), ∀k ∈ {1, . . . , K},

∀i ∈ {1, . . . , d},
(3.6)

so that
Ŵk = Ŵ1

:, k1, : · · ·Ŵ
d
:, kd, :, ∀k ∈ K.

Thus, we can compute the Fourier coefficients Ŵ by only investing in computing the TT
decomposition P of the discretized reference distribution. This can be done in O(Ndr2)
function evaluations of P (x) using the TT-cross algorithm (see Section 2.8). The TT-rank
of the tensor Ŵ will be same as that of the TT-rank of P. For a smooth reference
distribution, P will have low TT-rank. This is a tremendous saving in computing the
Fourier coefficients Ŵ , and thus it overcomes the curse of dimensionality. The TT based
algorithm for ergodic control is outlined in Algorithm 2.

3.4.2 Ergodic Control on Riemannian Manifolds

Most manipulation tasks concern the full robot end-effector pose, which includes both its
position and orientation. Hence, when designing exploration strategies for manipulation
it is desirable to consider both. In the case of position, the ergodic control formulation
in Section 3.4.1 can be directly applied. However, since orientation data do not lie on a
Euclidean space, exploration in orientation requires a special mathematical treatment. In
this section, we extend ergodic control to handle data on a Riemannian manifold [44, 45],
particularly the orientation manifold S3.

The orientation of the robot end-effector can be represented by a unit quaternion q ∈ S3,
comprised of a scalar part qs ∈ R and a vector part qv ∈ R3 such that q = [qs q⊤

v]⊤. For
any point on the manifold g ∈ S3 there exists a tangent space TgS3 in which standard
Euclidean methods can be applied to orientation. The function that maps a quaternion

5This can be obtained using TT-cross: P = TT-Cross(P (x), ϵ).

40

3.4 Ergodic Control using Tensor Train

Algorithm 3 Ergodic Control using TT
Input: d, L, K, umax, T , and P (x)
Pre-Processing:
Compute P using TT-cross
Find Ŵ using (3.6)
Compute Λ using TT-cross
TT-rounding of Ŵ (remove low-energy contents)
Initialise: dt (time step), x(0), W(0) in TT format, u(0), and t = 0
Control Loop
while t < T do

t← t + dt
Update x(t) (time integration)
Update W(t) (Use TT time integration [47] with a fixed maximal TT-rank. Alter-

natively, use numerical integration such as Euler integration followed by TT-rounding)
Compute ∇iΦ

(
x(t)

)
, i ∈ {1, . . . , d} (rank-1 TT)

Using algebraic operations in TT
for i=1,. . . ,d do

bi(t) =
∑

k∈K
Λk

(
Wk(t)− Ŵk

)
∇iΦk

(
x(t)

)
end for
Update u(t) = umax

b(t)
∥b(t)∥

end while
Note: In the control loop, the memory of each variable and the computational complex-
ity of each algebraic operation has complexity grow linearly with d. Thus it avoids the
curse of dimensionality. In particular, the computation of bi(t) requires a subtraction,
a Hadamard product and an inner product involving tensors in TT format, hence it
can be computed efficiently.

41

Chapter 3. Ergodic Exploration using Tensor Train

q from the manifold to a tangent space is called the logarithmic map and is given by

Log(q) =

acos∗(qs) qv

∥qv∥ , qs ̸= 1
[0, 0, 0]⊤ , qs = 1

, (3.7)

where acos∗(·) is a modified arc-cosine function [44]. Equation (3.7) maps q to the tangent
space of the manifold origin. The mapping of q to the tangent space of an arbitrary
point g is given by [44]

Logg(q) = Log(ḡ ∗ q), (3.8)

where (̄·) and ∗ denote the quaternion conjugate and product, respectively. The loga-
rithmic map represents a unit quaternion q as a 3-dimensional Euclidean vector v ∈ R3.
Quaternions can be retrieved from the tangent space through the exponential map

Exp(v) =

[
cos(∥v∥), sin(∥v∥) v⊤

∥v∥

]⊤
, ∥v∥ ≠ 0

[1, 0, 0, 0]⊤ , ∥v∥ = 0
, (3.9)

which, analogously to (3.8), maps from an arbitrary tangent space TgS3 back to the
manifold through

Expg(v) = g ∗ Exp(v). (3.10)

Given a set of unit quaternions (e.g. obtained from demonstrations), we formulate
orientation-ergodic control by modeling their distribution in the tangent space of their
mean. For M end-effector orientations {qi}Mi=1, the mean on the manifold µ ∈ S3 is
computed iteratively with (see [44, 45] for details)

v = 1
M

M∑
i=1

Logµ(qi), µ← Expµ(v). (3.11)

All quaternions in the dataset can thus be mapped to the tangent space of the mean
through {vi}Mi=1 = {Logµ(qi)}Mi=1, allowing the proposed ergodic exploration (Algorithm
2) to be performed in R3, even for orientation. As desired orientations are computed,
in the tangent space, at each time step by v̂(t) = v(t) + u(t)dt, the exponential map
generates a desired unit quaternion for the robot to track, using

q̂(t) = Expµ(v̂(t)). (3.12)

In this way, ergodic control for end-effector poses is formulated as a 6D problem, where
the first 3 dimensions correspond to position and the last 3 to orientation.

42

3.5 Numerical Evaluation

Gaussian mixture model
Uniform distribution

2 components 4 components 6 components
With TT Without TT With TT Without TT With TT Without TT With TT Without TT

5D
parameters

∇iΦ 50 105 50 105 50 105 50 105

Λ 160 105 160 105 160 105 160 105

Ŵ 160 105 548 105 1032 105 50 105

Average time per loop 2×10−3 4×10−3 3×10−3 4×10−3 3.6×10−3 4×10−3 2×10−3 4×10−3

Pre-processing time 0.2 − 0.87 − 2.4 − 33×10−3 −

6D
parameters

∇iΦ 60 106 60 106 60 106 60 106

Λ 200 106 200 106 200 106 200 106

Ŵ 200 106 695 106 1431 106 60 106

Average time per loop 3.2×10−3 63×10−3 4.6×10−3 63×10−3 5.4×10−3 63×10−3 3×10−3 63×10−3

Pre-processing time 30×10−3 − 1.26 − 3.6 − 40×10−3 −

7D
parameters

∇iΦ 70 107 70 107 70 107 70 107

Λ 240 107 240 107 240 107 240 107

Ŵ 233 107 860 107 1801 107 70 107

Average time per loop 4.8×10−3 0.8 6.8×10−3 0.8 7.5×10−3 0.8 3.6×10−3 0.8
Pre-processing time 35×10−3 − 1.53 − 4.9 − 43×10−3 −

Table 3.1: Computational speed and storage requirements in ergodic control for different
reference probability distributions with K = 10 and L = 1m. The components of
GMM are spherical Gaussians with 0.005 variance. All the tensors in TT format are
approximated with an accuracy of 10−2 in the Frobenius norm. The preprocessing time
for the naive approach (without using TT) is not given in the table as it is computationally
infeasible in the computing device used for the experiment.

3.5 Numerical Evaluation

In this section, we demonstrate the computational efficiency of the TT-based algorithm
for ergodic control through simulations. We use Method 2 described in Section 3.4 to
compute the Fourier series coefficients. The simulations are performed on a Lenovo
Thinkpad personal computer with Intel(R) Core(TM) i7-8565U CPU at 1.80GHz with
24GB RAM. We use ttpy, a Python-based toolbox for working with TT.6

A naive implementation without using tensor decomposition techniques would require
Kd elements to store each of the tensors: Ŵ , Λ, and ∇iΦ

(
x

)
(i ∈ {1, . . . , d}). However,

a TT representation requires less than 4Kd elements for Λ (with approximation error
10−2 in the Frobenius norm) and only Kd elements to exactly represent ∇iΦ

(
x

)
. As

∇iΦ
(
x

)
is a rank-1 tensor with explicit analytical expressions for its TT cores, it can be

computed very fast. Computing the weights Λ can be done in a fraction of a second for
d ≤ 15.

The computation and storage of Ŵ depends on the smoothness of the reference probability
distribution. For the evaluation, we define our reference distribution as an isotropic
Gaussian distribution at the centre of the domain with variance 0.015, where we used

6https://github.com/oseledets/ttpy

43

https://github.com/oseledets/ttpy

Chapter 3. Ergodic Exploration using Tensor Train

Figure 3.3: Time taken (linear scale) to compute the Fourier coefficients Ŵ (left) and
the average time taken (in log-10 scale) per control loop (right) of the ergodic control
algorithm using the proposed technique for K = 5, l = 1, and a reference distribution
in the form of an isotropic Gaussian with variance 0.015. In the right figure, the
exponential growth in the computational complexity in the control loop can be observed
for the standard approach (without using tensor decomposition), whereas the proposed
approach avoids the curse of dimensionality. In the left figure, it can be observed that the
computational complexity in computing the Fourier series coefficients using the proposed
approach tends to grow linearly with d.

L = 1, K = 5, N = 10 and an approximation accuracy of 10−2 in the TT representation of
Ŵ and Λ. As can be seen in Fig. 3.3, the time taken to compute Ŵ grows approximately
linearly with d, and it is less than a second for the chosen reference distribution with
d ≤ 10 and the average time taken per control loop increases almost linearly with the
number of dimensions d, whereas with a naive implementation (without using TT) the
time taken in the control loop grows exponentially with d. The trend remains the same
for other reference distributions, see Table 3.1.

The computation of W(t) in the control loop requires some attention. At each iteration of
the control loop, the rank of the tensor W(t) may keep increasing due to the integration,
see (3.3). This could be a problem if the time period of ergodic exploration is very high.
So, it is necessary to upper bound the TT-rank of this tensor using TT-rounding with a
specified maximal TT-rank. Setting an excessively low value for the maximal rank may
lead to convergence issues and specifying a large value for maximal rank slows down the
speed of computation of each control loop. Thus, this hyperparameter must be chosen
carefully. In the numerical evaluation, our experiments revealed that a maximal rank of
d · r for W(t), where r is maximal TT-rank of Ŵ , worked well for d < 15.

The TT representation allows compact representation of the tensors involved and the
storage complexity also grows linearly with d. These properties allow our algorithm to

44

3.6 Sensorless Peg-in-Hole Insertion using Ergodic Exploration

Figure 3.4: We propose Peg-in-hole insertion as an ergodic exploration problem. The
reference distribution for the exploration is given by human demonstrations of successful
insertions.

be implemented for real-time applications on devices with small memory and limited
computational power, which are often the case in robotic systems. Another important
property of our algorithm is that the approximation of the tensors involved such as Ŵ ,
W(t) and Λ can be controlled precisely using TT-rounding (see Section 2.7). In practice,
TT-rounding with accuracy 10−2 is observed to be sufficient for all practical purposes
considered here. Furthermore, doing these approximations in the spectral domain results
in negligible impact on the time domain behaviour of the system, thanks to Parseval’s
theorem as the approximation can be considered as a noise filter in the ergodic motion.
This also provides a convenient trade-off between accuracy of approximation in ergodic
exploration and the speed of computation in the control loop.

3.6 Sensorless Peg-in-Hole Insertion using Ergodic Explo-
ration

We evaluate the proposed approach in an insertion task (see Fig. 3.4). We formulate
the insertion task as a 6D exploration problem where we simultaneously address the
uncertainty about the insertion pose in position (3D) and orientation (3D) in the robot task
space. Our method is well suited for peg-in-hole insertion tasks where uncertainties may

45

Chapter 3. Ergodic Exploration using Tensor Train

arise from several sources, including variable grasps of the peg, unprecise locations of the
hole, and unmodeled manufacturing defects of the involved components (gripper fingers,
pegs and holes). In the considered experiment, the reference probability distribution
for exploration is found using information from human demonstrations. The human
demonstrates the key regions for exploration in the state space of the end-effector and
we use a Gaussian mixture model (GMM) to model the reference probability distribution
based on the datapoints collected during the demonstrations. As a means to intuitively
show the effectiveness of our approach, we begin by comparing it to three baselines of
exploratory behaviors commonly used in insertion tasks. For this we use a toy example
in 2D and 3D.

3.6.1 Simulation experiments

In this section we provide the motivation for using ergodic control for exploration, and its
significance for insertion tasks, using simulation of exploration behavior in 2D and 3D.

We use a GMM as the reference distribution in the space Ωx with L = 1m. The GMM is
chosen such that it has 6 equally weighted mixture components with its centers placed
randomly in the exploration space Ωx and each component is a spherical Gaussian with
variance 0.01. As a first metric, we compute the average time taken to reach a spherical
region with volume 0.5% of the volume of Ωx. The spherical region is representative of
the target detection region during exploration. For the insertion task, this corresponds
to the set of end-effector states at which the peg is inside the hole. For all the trials, we
fix a maximum duration of 1000s for detection (i.e., reaching the target region) and the
magnitude of the point-mass-system velocity is constant and fixed to umax = 0.1 m/s.
For the analysis we choose 10 different GMMs as described above and for each choice
of GMM, we conduct 10 trials. For each trial, the center of the target region is chosen
by sampling in Ωx from the reference GMM and the point-mass system starts with the
same initial state: (0.5, 0.5) for 2D and (0.5, 0.5, 0) for 3D.

We compare four different exploration strategies:

1. Strategy 1: Ergodic exploration (proposed approach),

2. Strategy 2: Sampling-based exploration

3. Strategy 3: Cylindrical spiral, as a representative of sweeping patterns,

4. Strategy 4: Mixture of ellipsoidal spirals, as a sweeping pattern customized for
GMM.

46

3.6 Sensorless Peg-in-Hole Insertion using Ergodic Exploration

Fig. 3.5 shows an example of exploration behaviors for these different strategies.

In strategy 2, we explore by tracking samples from the GMM sequentially. In this
approach, the simulated system tracks GMM samples using a constant speed, with a
new sample being computed every time the previous one is reached. Unlike ergodic
exploration, such approaches based on sampling from the reference distribution are
typically inefficient at handling distributed information [29].

In strategy 3, we use an Archimedean spiral for 2D and its cylindrical extension for 3D
(see Fig. 3.5). These are conventionally used in robotics as heuristic search strategies
for uniform coverage in 2D and 3D search spaces (i.e. for uniform reference probability
distributions) [49] [50]. Strategy 4 is similar to strategy 3 but uses spherical/ellipsoidal
spiral trajectories that are customized to sweep the GMM search space. In this approach,
the Gaussians are swept in sequence with spherical/ellipsoidal spiral paths starting from
the centers of the Gaussian and sweeping the area up to a given number of standard
deviations before moving to the next component. These approaches suffer from the curse
of dimensionality and perform poorly for d > 3. Moreover, they require careful tuning of
hyperparameters to generate efficient spiral paths. Furthermore, the resulting trajectories
are deterministic and do not consider the stochasticity of target detection. Namely, the
trajectory generated by such sweeping pattern passes through a given point in the search
space only once. If the measurement system fails to detect the target during its first pass,
the strategy has no future possibilities for detection.

The first metric we use for comparison is the average time taken to reach the target
region for the first time. Table 3.2 shows the obtained results for 2D and 3D. We see
that, on average, ergodic exploration reaches the target region faster due to its multiscale
search behavior. Additionally, ergodic control has a 100% success rate. Despite being
slower, spiral search is equally successful, but this success comes at the cost of optimally
choosing the spiral parameters. This is often cumbersome in practice, especially in higher
dimensions and considering that the tolerance of the detection region is often not known
with high certainty.

A desirable property for exploration strategies is that the system takes into account the
already visited regions to cover the unvisited regions more often. In order to evaluate
this property, we consider a second metric: the cumulative average time to reach the
target region over several successful attempts. We define this as Tc

c , where c is the
number of successful attempts and Tc is the cumulative time until successful attempt
c. In this evaluation, as soon as the system reaches the boundary of the target region,
we re-initialize it to the initial state and repeat this process for a fixed number of times.
The results in Fig. 3.6 show that, for ergodic control, the cumulative average decreases

47

Chapter 3. Ergodic Exploration using Tensor Train

(a)

(b)

Figure 3.5: Example trajectories (red) of the four different exploration strategies to reach
an target region (blue sphere) within a reference probability distribution (in this case
a GMM) for d = 2 (top) and d = 3 (bottom). The green point indicates the initial
state of the point-mass system. The goal is to reach this target region the information
about which is known to the search strategies only through the reference probability
distribution.

48

3.6 Sensorless Peg-in-Hole Insertion using Ergodic Exploration

Figure 3.6: Cumulative average time to reach a specified target region (spherical region
with 1% of the volume of Ωx with d = 3) with ergodic exploration (left), sampling-based
strategy (center) and spiral movement (right). The x-axis represents the number of
attempts to reach the target (reset count) and the y-axis represents the cumulative
average of the time taken to reach the target at each number of attempts. Every time
the target is reached, the system is re-initialized to the same initial state (starting a new
attempt). The ergodic controller is aware of the lack of exploration inside the target
region and tries to visit it more frequently. The cumulative average therefore converges to
the time it takes to go from the initial state directly to the target at every re-initialization.

with the number of successful attempts and converges to a fixed value. This suggests
that the ergodic exploration tries to visit the unexplored regions more frequently as
the number of attempts increases. In this case, the value that the cumulative average
converges to is the time it takes to go from the initial state directly to the target at
every re-initialization. This is an essential feature for insertion tasks as the exploration
inside the hole (representing successful insertion of the peg) is not easy due to obstacles
(e.g., uncertainties and collision of the surface of the hole against the peg) and we need
the exploration strategy to drive exploration towards the unexplored region as the time
evolves. This is an inherent property of ergodic exploration that the other approaches
lack. This property plays a crucial role to cope with the stochasticity involved either in
the measurement systems for detection, or the dynamics of the process (e.g., insertion
task). To exploit this feature in real robot experiments, it is necessary that the ergodic
controller is implemented online on the robot manipulator, i.e., that the controller knows
the actual observed end-effector states. Our proposed algorithm for ergodic controller
allows this online implementation on robot manipulators for d = 6, which is demonstrated
in the next section.

In the insertion task, the target region for detection corresponds to a set of states of
the peg that are necessary to be passed through for a successful insertion of the peg.
This information is obtained from the reference probability distribution for exploration

49

Chapter 3. Ergodic Exploration using Tensor Train

Table 3.2: Average time taken to reach a target region for different exploration strategies.

Strategy
Success rate

Time taken
Trials # Success (seconds)

2D
Strategy 1 100 100 66.9
Strategy 2 100 96 106.8
Strategy 3 100 100 122.9
Strategy 4 100 98 155.4

3D
Strategy 1 100 100 84.7
Strategy 2 100 92 141.4
Strategy 3 100 98 292.3
Strategy 4 100 95 247.5

in the search space. Considering stochasticity is important for a search strategy to
be useful in practice. In general, stochasticity may arise either from the measurement
system (e.g., uncertainties in the location of the hole, grasp of the peg or manufacturing
defects) and/or the dynamics of the system (e.g., stochasticity in the contact dynamics
involved in the insertion). For example, during the insertion, the peg might be at the
correct relative location to the hole according to the sensor system, but the insertion
may still not be successful every time in that configuration due to the stochasticity of
the process. We need the search strategy to explore more often in these target regions
(correct configurations for insertion) to increase the likelihood of insertion. Ergodic
control considers this stochasticity by driving the system to regions in the state space
such that the amount of time it spends there is in proportion to the probability mass of
that region. For more details on search strategies and their desired characteristics, see
the seminal work of Koopman on the theory of search [51, 52, 53]. Ergodic exploration
satisfies the standards for optimal search behavior set by Koopman. Although strategies 3
and 4 do not satisfy these properties, we included them in our evaluation for completeness.

3.6.2 Experimental Setup for Peg-in-hole Task

We use a torque-controlled 7-axis Franka Emika robot, with an insertion task based on
the Siemens gear set benchmark (see Fig. 3.7)7, by using the 25.4mm-diameter peg and
the 26.29mm-diameter receptacle, with the length of insertion of 47mm. We employed a
Cartesian impedance controller to control the robot end-effector by computing a desired

7https://new.siemens.com/us/en/company/fairs-events/robot-learning.html

50

https://new.siemens.com/us/en/company/fairs-events/robot-learning.html

3.6 Sensorless Peg-in-Hole Insertion using Ergodic Exploration

Cartesian wrench according to

f̂ = Kp

[
p̂− p

Log (q̂ ∗ q̄)

]
−Kd

[
ṗ

Ωx

]
,

where p̂ ∈ R3, q̂ ∈ S3 are, respectively, the desired position and orientation of
the end-effector (with q̂ obtained from (3.12)), p, q, ṗ, w are the end-effector posi-
tion, orientation, linear and angular velocity and Kp, Kd are 6×6 diagonal stiffness
and damping gains, experimentally set to Kp = diag (500, 500, 500, 160, 160, 160) and
Kv = diag (40, 40, 40, 10, 10, 10). The symbol ∗ denotes the unit quaternion product and
q̄ the conjugate of quaternion q. Log(·) is the logarithmic map defined in (3.7).

We obtain the desired robot joint torques with τ̂ = J(θ)⊤f̂ + g (θ) + h(θ, θ̇), where
θ, θ̇ ∈ R7 are the robot joint positions and velocities and J ∈ R6×7, g ∈ R7, h ∈ R7

are the Jacobian matrix of the end-effector, gravity and Coriolis terms. Note that the
impedance gains were selected such that the robot remained compliant enough to safely
interact with the environment during exploration, while still being able to track the
ergodic trajectory.

We compare three different implementations of our approach. First, a closed loop version
where the ergodic controller runs in real-time on the robot as an online coverage problem
(Fig. 3.9). In that case, at every time step, we read the end-effector pose and feed
it back to the ergodic controller, which computes the next pose to track based on the
current state. Second, an open loop version where the controller tracks a reference ergodic
trajectory computed offline (as used in [43] for a lower dimensional state space). Lastly,
GMM-sampling-based exploration as presented in Section 3.6.1.

3.6.3 Initialization and Preprocessing for Ergodic Control

In our setup, the location of the hole is fixed (but unknown to the robot) and the main
source of uncertainty comes from the different possible grasps of the peg by the end-
effector, see Fig. 3.8. We model these uncertainties using a probability density function
that indicates the importance of spending time in each region of the state space of the
robot end-effector. We use ergodic control to insert the peg under such uncertainties.

To model the reference probability distribution for ergodic exploration of insertion, we
collected M = 204 data points using kinesthetic teaching, which corresponds to less than
2 minutes of recording, see Fig. 3.10. Each datapoint corresponds to the position and
orientation of the end-effector holding the peg. The datapoints in the vicinity of the
location of the hole were recorded for successful insertions with different orientation and

51

Chapter 3. Ergodic Exploration using Tensor Train

Figure 3.7: The Siemens gear benchmark used for evaluation of the peg-in-hole insertion
task using ergodic control.

position offsets inherent to the grasps of the peg. To give higher importance to insertion,
almost half the data points were taken from the states corresponding to the peg within
the hole. A variation of about 15mm in position of the grasp for each axis and about
∼ 10◦ variation in the orientation of the grasp were demonstrated (see accompanying
video of the experiment).

Once data are collected, we preprocess the end-effector orientations as described in
Section 3.4.2. Subsequently, we concatenate the position data with the obtained 3D
orientation representation into a 6D vector. We then transform the data into the domain
of ergodic control Ωx with L = 1 (ergodic space) using a bijective linear transformation.
We model the data points in this transformed space using a Gaussian mixture model
(GMM) with full covariances. We empirically selected 8 mixture components with a
minimal isotropic covariance prior of 5× 10−3. Figure 3.11 shows the obtained GMM
for position and orientation (marginal distributions). The GMM is used as reference
probability distribution P (x) for ergodic control in Ωx. With K = 10 and N = 10, the
computation of Fourier coefficients Ŵ for the reference probability distribution took less
than 2 minutes. The closed-loop ergodic controller could be run at 100Hz (dt = 0.01 in
Algorithm 3) on the robot. The same settings are applied to the open-loop version of the
insertion task. In this case, the trajectory is generated offline using ergodic control. It is
then tracked using the above-mentioned settings of the impedance control. Figure 3.11
shows examples of generated ergodic trajectories. We allow a maximum of 40 seconds
for insertion. Figure 3.2 shows a trajectory generated from ergodic control in one of the

52

3.6 Sensorless Peg-in-Hole Insertion using Ergodic Exploration

(a) A grasp with an offset in position (b) A grasp with an offset in orientation

Figure 3.8: Two instances of grasps typically appearing when testing the ergodic control
for insertion. The demonstrations included different types of grasps to let the robot cope
with this uncertainty during ergodic exploration.

Figure 3.9: Control diagram of open and closed loop implementations. In the latter, the
ergodic controller takes the robot state (end-effector pose) into account while computing
the desired pose. In this way, the history of observed states is kept and new desired poses
are computed accordingly.

53

Chapter 3. Ergodic Exploration using Tensor Train

Figure 3.10: Human demonstration of peg-in-hole insertion task. Datapoints are collected
for different grasps of the peg through kinesthetic teaching to show the regions in the
vicinity of the receptacle to be used by the ergodic controller.

trials of the experiment.

3.6.4 Experimental Results

The obtained results, summarized in Table 3.3, show that the closed loop approach
clearly outperforms the other approaches that do not consider the history of observed
states during the exploration. Indeed, while using the former, the robot was able to
successfully insert the peg in the hole in 20 out of the 20 trials performed using the grasps
in Fig. 3.8. On average, the insertion using the closed loop approach succeeded in 9.9s
with a standard deviation of 8.5s. Figure 3.12 shows snapshots of the insertion using
ergodic exploration in the closed loop setting. Note that the only required input was a
set of demonstrations to show the robot the regions it should explore. This has proven
important to deal with the uncertainty in the peg grasping pose. Note that interaction
forces during exploration can also cause the grasp pose to change due to the limited
gripping force of the robot (either from hardware and software limitations, or set on
purpose to handle fragile objects). Our experimental results show that the closed loop
ergodic strategy is also robust in these situations.

The open loop version succeeded in only 2 out of 10 trials and the naive approach of
GMM-sampling-based exploration succeeded in none of the 5 trials. This shows the
importance of exploiting the history of the real observed end-effector poses to compute

54

3.6 Sensorless Peg-in-Hole Insertion using Ergodic Exploration

(a) Position distribution (b) Orientation distribution

Figure 3.11: Position and orientation marginals from the distribution used for full pose
exploration (the figure does not show correlations between position and orientation). The
6D pose distribution is encoded as a GMM with 8 components (red ellipsoids) and full
covariances, trained on a dataset of M = 204 datapoints (blue points). The trajectory
for the exploration (orange lines) is generated by ergodic control for the insertion task.

Table 3.3: Performance of the peg-in-hole task for different variations of the grasps.

Strategy
Success rate

Time taken
Trials Successful Trials (seconds)

Closed loop 20 20 9.9± 8.5
Open loop 10 2 -

GMM-sampling 5 0 -

control commands. This is particularly important for tasks requiring contacts with the
environment, where the commands need to be re-evaluated according to the history of
poses retrieved by the impedance controller. Notably, this allows the use of low gains to
remain compliant and enable safe contacts. In the closed loop approach, the algorithm is
aware of the locations that were previously effectively visited, which is exploited to fulfill
the insertion task in an online and robust fashion.

55

Chapter 3. Ergodic Exploration using Tensor Train

Figure 3.12: Snapshots of an insertion using ergodic control in closed loop.

3.7 Future Work

There is still room for improvement in the proposed approach. First, designing demonstra-
tions for insertion tasks can be further optimized. Furthermore, alternative demonstration
strategies (including different distributions), could speed up the insertion time using
ergodic control. We will also apply the insertion tasks to different physical setups by using
different sensory modalities [12]. The approach could be applied to other applications
in robotics requiring exploration and active sensing. We demonstrated how TT can
overcome the scalability issues in a particular ergodic exploration algorithm, namely
SMC. Another popular ergodic exploration algorithm called HEDAC [54] also suffers
from similar scalability issues due to convolution operations involved in computing the
control commands. We could potentially use the fast ways to perform convolution in TT

56

3.8 Conclusion

format as proposed in [55] to overcome this issue in HEDAC.

3.8 Conclusion

We proposed a solution to the multidimensional ergodic exploration problem with d > 3,
which was previously considered to be intractable for applications in robotic manipulation.
The proposed approach relies on tensor train decompositions and is evaluated in simulated
examples of target detection and a real robot experiment using a peg-in-hole insertion
task. The obtained results show that ergodic control has a 100% success rate in all
tasks, succeeding faster than the competing approaches. In addition to the novelty of
exploiting ergodic control in an online fashion for insertion tasks, the computational
techniques we used demonstrate how algorithms in robotics, in general, can benefit
from tensor decomposition techniques (tensor networks) to overcome the limitations in
computational speed and storage requirements. To achieve this, tensor networks exploit
the smoothness and symmetry of the functions underlying the problem. If the underlying
problem does not have low rank structure, there may not be significant saving in the
storage and computational cost using tensor methods. However, ergodic control problem
as formulated in SMC has such low rank structure by design.

The main challenges of extending ergodic control to state space of more than 3 dimensions
concern the computation of Fourier coefficients (preprocessing step) and the speed of the
control loop (for online implementation). This chapter addressed both of these challenges
using the properties of tensor train decomposition. We leveraged this improved ergodic
control formulation to propose a sensorless strategy for peg-in-hole insertion tasks. We
validated our approach with a compliant robot manipulator, where the 6D regions to
explore are obtained from kinesthetic human demonstrations. Our experimental results
show that by using our approach, the robot is capable of achieving challenging insertion
tasks without force/torque sensors.

By using the reproducible Siemens gears benchmark, insertion tasks with unknown
gripping variations could be achieved in less than 10 seconds on average. This is, in part,
due to the multi-scale exploration behavior that is inherent to the ergodic metric we
employed. With such metric, the resulting controller first crudely explores the region of
interest, and then progressively refines the search until insertion, efficiently exploiting
information about the already covered regions. This is also due to the fast processing
that we propose (through TT), which allows ergodic control to be run in an online
manner. Indeed, re-estimating the control commands on-the-fly allows the proposed
ergodic control strategy to be used together with an impedance controller with low gains,
which is important for tasks requiring contacts with the environment.

57

4 Optimization using Tensor Train

In this chapter, we present a new approach for optimizing functions in Ten-
sor Train (TT) format called Tensor Train for Global Optimization (TTGO).
We show that TTGO often yields globally optimal solutions and can provide
multiple solutions. In particular, it can handle the challenging task of numer-
ical optimization involving both continuous and discrete variables—an issue
existing solvers struggle with. The integration of powerful techniques, like
cross-approximation, enables the representation of complex robotics objective
functions in the TT format, facilitating TTGO’s application to solve challenging
optimization problems. Tests on benchmark functions for numerical optimiza-
tion demonstrate the effectiveness of our method in generating solutions close
to global optima and capturing multiple solutions. We further showcase the
versatility of our framework in robotics by applying it to inverse kinematics
with obstacles and motion planning for a 7-DoF manipulator. In a subsequent
chapter, this will be extended to control synthesis using dynamic programming
for hybrid control tasks.

Publication Note

The material presented in this chapter is adapted from the following publication.
• S. Shetty, T. Lembono, T. Löw, and S. Calinon, “Tensor trains for global

optimization problems in robotics,” International Journal of Robotics Research
(IJRR), 2023

Supplementary material including videos and source codes related to this chapter are
available at: https://sites.google.com/view/ttgo/home

59

https://sites.google.com/view/ttgo/home

Chapter 4. Optimization using Tensor Train

4.1 Introduction

Numerical optimization has been one of the major tools for solving a variety of robotics
problems including inverse kinematics, motion planning, state estimation, and control. In
this framework, the robotics task to be accomplished is formulated as the minimization
of a cost function. Although we ideally seek a solution that incurs the least cost (i.e.,
global optima), any solution that has a cost comparable to the global optima is usually
sufficient. It is essential in robotics applications that a feasible solution is found fast. In
practice, the optimization problems in robotics involve non-convex cost functions and
the existing optimization techniques often can not quickly find a feasible solution.

On the one hand, there are stochastic procedures, often called evolutionary strategies
(e.g., CMA-ES [56], Genetic Algorithm [57], Simulated Annealing [58]), that can find
the global optima of non-convex functions. However, such techniques are too slow for
most robotics applications. On the other hand, Newton-type optimization techniques
are fast in general—a desirable feature for robotics applications. Hence, most of the
existing numerical optimization techniques used in robotics are variants of Newton-type
optimization techniques. However, such techniques are iterative and require a good initial
guess that determines the solution quality and the time required to find a solution.

In this chapter, we show that we can find globally optimal solutions when the objective
function is in TT format. We propose a novel approach that we call Tensor Train for
Global Optimization (TTGO) to produce optima of a function represented in TT format.
We leverage TTGO along with the cross approximation (see Section 2.8) technique [59]
for applications in robotics including inverse kinematics and motion planning. For such
problems in robotics, we propose to approximate the objective function in TT format
using cross approximation and then use TTGO to obtain a solution close to the optima.
This solution is further refined using a local solver (e.g., Newton-type optimization)
to compensate for modelling error. This approach allows us to obtain a richer set of
solutions, especially for multimodal problems (namely, problems with multiple solutions).
As TTGO does not use any gradient information, it is also less susceptible to getting
stuck at local optima.

For applications considered in this chapter, the objective is to minimize a cost function.
We view the cost function as a function of both the task parameters (e.g., desired
end-effector pose to reach an object) and the optimization variables (e.g., valid robot
configurations for inverse kinematics or joint angle trajectories for motion planning).
Minimizing the cost function can be reformulated as maximizing a probability density
function. Existing methods, such as [60, 61, 62], use Variational Inference to approximate
the probability density function by treating the task parameters as constant, making the

60

4.1 Introduction

cost function a function of only the optimization variables. In contrast, we can handle
diverse task parameters by approximating the joint probability distribution of both the
task parameters and optimization variables. By exploiting the structure between the two,
which often exhibit a low-rank structure, the TT model can compactly approximate the
density function. After training the model, during the online execution, we can condition
the TT Model on specific task parameters, obtain a new TT model corresponding to the
given task, and use TTGO to obtain an approximate solution in a fast manner.

From the viewpoint of warm-starting optimization solvers, our approach builds an implicit
database in Tensor Train (TT) format for diverse tasks by only using the definition of the
cost function in an unsupervised manner, i.e., without requiring any gradient information
or another solver.

In summary, our contributions are as follows:

• We introduce a principled approach called TTGO (Tensor Train for Global Opti-
mization) to obtain optima of functions in TT format

• When the underlying function is multimodal, our approach can find multiple
solutions that correspond to a given task.

• The approach is first demonstrated on some benchmark optimization functions to
show that it can find global optima and multiple solutions robustly. We show the
relevance of the approach to robotics problems by applying it to inverse kinematics
with obstacles and motion planning problems with a 7-DoF manipulator where the
solution was obtained in a few milliseconds.

Additionally, even though we have outlined the procedure for functions of continuous
variables in this chapter, TTGO is capable of managing both continuous and discrete
variables effortlessly. As a result, it can be utilized as a supplement or substitute for
mixed integer programming. This feature is exploited in the subsequent chapter for
control synthesis for robotic systems involving hybrid state and action space.

The chapter is organized as follows. In Section 4.2, we provide a literature survey on
initializing numerical optimization solvers and multimodal optimization. We refer to
Section 2 for the necessary background on Tensor Train modeling that is used in this
chapter. Then, in Section 4.3, we describe the proposed TTGO algorithm and Section 4.4
describes how it is adapted to problems in robotics. Section 4.5 presents the evaluation
of our algorithm. We first test it on benchmark functions for numerical optimization and
then apply it to inverse kinematics with obstacles and motion planning problems with

61

Chapter 4. Optimization using Tensor Train

(a)

Figure 4.1: Solutions from TTGO for motion planning of a manipulator from a given
initial configuration (white) to a final configuration (dark). The obtained joint angle
trajectories result in different paths for the end effector which are highlighted by dotted
curves in different colors. The multimodality is clearly visible from these solutions.

manipulators. In Sections 4.6 and 4.9, we conclude the chapter by discussing how our
approach could lead to new ways of solving a variety of problems in robotics.

4.2 Related work

This work intersects with several research directions. Firstly, we target robotics appli-
cations that are formulated as optimization problems. Our framework provides a way
to predict a good initialization for the optimization solver. At the same time, it also
provides a principled way to obtain multiple solutions of a given optimization problem.
Finally, the proposed framework relies on tensor train decomposition (see Chapter 2).
We discuss each topic briefly in this section.

4.2.1 Optimization in Robotics

Many problems in robotics are formulated as optimization problems. For example, recent
work in motion planning relies on trajectory optimization to plan the robot motion (e.g.,
CHOMP [63], STOMP [64], TrajOpt [65], GPMP [66]). Inverse kinematics for high
dimensional robots is usually formulated as nonlinear least squares optimization [67] or
Quadratic Programming (QP) [68]. The optimization framework offers a convenient way
to transfer the high-level requirement (e.g., energy efficiency, maintaining orientation) to
cost functions or constraints. Furthermore, the availability of off-the-shelf optimization
solvers and tools for automatic gradient computations allow researchers to focus more on

62

4.2 Related work

the problem formulation.

However, most of the solvers used in robotics are local optimizers whose performance
depend highly on the initialization, especially since most robotics problems are highly
non-convex. Even state-of-the-art solvers such as TrajOpt can fail on a simple problem
with poor initialization [69]. The initialization determines both the convergence speed,
the solution quality, and the success rate of the solver. This motivates further research
on how to predict good initialization for a given optimization problem.

4.2.2 Predicting Good Initialization

A majority of works that attempt to predict good initialization rely on a database approach,
often called trajectory library [70] [71] or memory of motion [72] for motion planning. In
[73], they provided a data driven framework for solving globally optimal collision-free
inverse kinematics (IK) problems. The idea is to first build a database of precomputed
solutions offline. This database can be constructed from expert demonstrations [74],
using the optimization solver itself [75], or using the combination of a global planner and
the optimization solver [76]. Once the database is constructed, we can predict a good
initial guess (i.e., a warm start) for a given task by formulating it as a regression problem
that maps the task to the initial guess. While the formulation is easy to implement,
especially since there are many function approximators easily available, the database
approach suffers from two main issues: non-convexity and multimodality.

Firstly, the database approach requires computing good solutions to be stored in the
database. With the complexity of general robotics problems, computing the solutions
is often not trivial. Assuming we have access to a suitable database and are prepared
to train function approximators, we must take into account the fact that many robotics
problems have multiple solutions, making it challenging for most function approximators
to accurately approximate this one-to-many mapping. Often, such approximators tend
to average the different solutions, resulting in poor predictions.

4.2.3 Multimodal Optimization

In problems requiring multiple solutions, common heuristics involve initializing from a
uniform distribution. SMTO [60] was developed for multimodal trajectory optimization,
transforming the task of minimizing a cost function into identifying the modes of a
corresponding probability density function (PDF). It approximates the PDF using a
Gaussian mixture model (GMM) through Variational Inference. However, SMTO faces
practical challenges as it relies heavily on GMM for function approximation.

63

Chapter 4. Optimization using Tensor Train

To address some of the limitations in approximating a PDF with GMM including
scalability and the need for samples from the PDF, SMTO employs variational inference
and importance sampling from a proposal distribution. The approach is primarily
suitable for trajectory optimization problems with finite homotopic solutions. In contrast,
LSMO [61] explores infinite homotopic solutions for trajectory optimization using a neural
network, albeit with high computational demands for online operations. Our method
offers a more versatile solution by distributing computation offline and online, efficiently
handling both finite and uncountably many solutions. We have described the challenges
in approximating a given PDF using GMM and the advantages of TT in more detail in
Appendix B.5.

4.2.4 Optimization using Tensor Train

The studies conducted in [77, 59] have shown that the TT decomposition can serve as an
effective means for gradient-free optimization and can compete with top-performing global
optimization algorithms, such as CMA-ES and GA. However, the use of TT decomposition
for global optimization in these approaches resembles evolutionary strategies in that they
tackle one optimization problem at a time and can only yield one solution, which is too
slow for robotics applications.

In contrast, our work takes a distinct approach by first approximating the objective
function using the TT format and then performing the optimization over the TT repre-
sentation. The computationally intensive component is distributed to an offline phase for
modeling the objective function over the task parameters and decision varibles, allowing
us to quickly address numerous optimization problems in an online phase using TTGO.

4.3 Tensor Train for Global Optimization

In this section, we propose efficient methodologies to find the optima of a function
represented in TT format. We first consider the function to be a TT-distribution given
by (2.14) and aim to find the maxima. In the subsequent sections, we show how this can
be easily extended to find the optima of an arbitrary function represented in TT format.
In Section 4.4, we demonstrate how TTGO can be used to tackle optimization problems
in robotics.

The methodology was proposed originally in our work [9] as a stochastic procedure. It was
originally introduced to obtain multiple solutions and global optimality as described in
Section 4.3.1. Following this work, a deterministic version of this approach was proposed
in [78]. We further improved this deterministic version for applicability in robotics in our

64

4.3 Tensor Train for Global Optimization

Algorithm 4 Stochastic TTGO.
This algorithm has a parallel implementation so that the K samples can be obtained in
parallel

1: Input: TT Blocks P = (P1, . . . , Pd) corresponding to the distribution Pr (see
(2.14)), sample priority α ∈ (0, 1)

2: Output: N α−prioritized samples {(xl
1, . . . , xl

d)}Nl=1 from the distribution Pr in
(2.14)

3: βd+1 ← 1
4: for k ← d to 2 do
5: βk =

∑
xk

Pk
:, xk, : βk+1 (Pk

:, xk, :)
⊤

6: end for
7: Φ1 ← 1 ∈ RN×1

8: for k ← 1 to d do
9: πk(xk) = Pk

:, xk, : βk+1 (Pk
:, xk, :)

⊤
, ∀xk

10: for l = 1, . . . , N do
11: pk(xk) = |Φk(l, :) πk(xk) Φk(l, :)⊤|, ∀xk

12: pk ← pk
max(pk)

13: pk ← p
1

1−α+ϵ

k , where ϵ is positive and ϵ ≈ 0
14: pk(xk)← pk(xk)∑

xk

pk(xk) , ∀xk

15: Sample xl
k from the multinomial distribution pk

16: Φk+1(l, :) = Φk(l, :) Pk
:,xl

k
,:

17: end for
18: end for
19: Maxima: x∗ = arg max

(xl
1,...,xl

d
)
|P(xl

1, . . . , xl
d)|, ∀l ∈ {1, . . . , N}

subsequent work [10] and it is described in this chapter in Section 4.3.2.

4.3.1 Stochastic Approaches

In Section 2.9.2, we described an efficient way to sample from a TT distribution. Note
that the samples from the high-density region provide an approximation to the maxima.
So, we do not necessarily want to sample from the whole distribution, but instead focus
on obtaining samples from the high-density regions (e.g., when we only want to find the
modes of the distribution). We achieve this using prioritized sampling by modifying the
Algorithm 1 and it is described in the Algorithm 4.

65

Chapter 4. Optimization using Tensor Train

Algorithm 5 Deterministic TTGO
1: Input: TT Cores P = (P1, . . . , Pd), Domain Ωx = {(xi1

1 , . . . , xid

d) : ik ∈ {1, . . . , nk}}
2: Hyperparameters: N , nsweeps ∈ {1, . . . , d}, ϵ # default: K = n1, nsweeps = 1, ϵ = 0.001
3: Output: Maxima x∗ = (x∗

1, . . . , x∗
d) of the TT distribution given by P (see (2.14))

4: βd+1 ← 1
5: for k ← d to 2 do
6: βk =

∑
xk

Pk
:, xk, : βk+1 Pk

:, xk, :
⊤

7: end for
8: Definition:

πm(xi1
1 , . . . , xim

m) = (P1
:, x

i1
1 , : · · ·P

m
:, xim

m , :)β
m+1(P1

:, x
i1
1 , : · · ·P

m
:, xim

m , :)
⊤

qm(xi1
1 , . . . , xim

m) =

1 if (πm(xi1
1 , . . . , x

im−1
m−1 , xim

m) > πm(xi1
1 , . . . , x

im−1
m−1 , xim+a

m),
∀a ∈ {1,−1}) OR (xm is discrete)

ϵ else # i.e., lower weight if πm is not a concave peak w.r.t. xim
m

π̂m(xi1
1 , . . . , xim

m) = qm(xi1
1 , . . . , xim

m) πm(xi1
1 , . . . , xim

m)

9: Initialize: D1
1 = {(xjk

1
1) : k ∈ {1, . . . , min(N, n1)}, jk

i ∈ {1, . . . , n1}, π1(xjk
1

1) ≥ π1(xjk−1
1

1)}
10: Set pmax = 0
11: for s← 1 to nsweeps do
12: for m← max(2, s) to d do
13: Ds

m = {(xjk
1

1 , . . . , x
jk

m
m) :

k ∈ {1, . . . , min(N, size(Ds
m−1) nm)},

jk
i ∈ {1, . . . , n1},

π̂m(xjk
1

1 , . . . , x
jk

m
m) ≥ π̂m(xjk−1

1
1 , . . . , x

jk−1
m

m),

(xjk
1

1 , . . . , x
jk

m−1
m−1) ∈ Ds

m−1)}

14: end for
15: x = (x1, . . . , xd)← (xj1

1
1 , . . . , x

j1
d

d) ∈ Ds
d

16: p = |πd(x)|
17: if p ≥ pmax then
18: pmax ← p
19: x∗ ← x
20: end if
21: Ds

s = {(x∗
1, . . . , x∗

s)}
22: end for
23: Note: The associated software provides a highly parallel implementation of the above algorithm

in PyTorch where D are tensors. If we are interested in multiple solutions (say K < N), the
sweeping iteration over s needs to be done separately for the top K candidate solution in D1

d

obtained after the first inner for loop over m.

66

4.3 Tensor Train for Global Optimization

Recall that the sampling procedure in Algorithm 1 consists of repeated sampling of each
dimension separately from a multinomial distribution. We modify this by providing a
sampling parameter α ∈ (0, 1) that can be chosen to adjust the sampling priority. When
α = 0, the samples will be generated from the whole distribution (i.e., exact sampling),
including from the low-density region (albeit with a lower probability). Higher α will focus
the sampling around the area with higher density. This is ideal for robotics applications,
as some applications require a very good initial solution for fast optimization (in that
case, α is set near to one to obtain the best possible solution) while some others prefer
the diversity of the solutions (by setting a small α). As the sampling procedures can be
done in parallel, we can generate a large number of samples quickly and select the best
few samples according to their cost function values as the solution candidates.

4.3.2 Deterministic Approaches

Alternatively, instead of using prioritized samples with a specified α value, we can
choose to use a deterministic version of the algorithm. This involves selecting the top
K elements from the multinomial distribution pk at iteration k instead of sampling N

elements independently and we keep track of the history of the selected indices from the
previous modes (k − 1). This deterministic version of TTGO was proposed in [78]. In
[10], we further improve this methodology to include smarter choices for top-N which
improves the quality and diversity of the solution obtained. The idea is to give higher
priority to the local maxima (peaks) of the multinomials involved in each iteration (i.e.,
Prk(xk|x1, . . . , xk−1),∀k ∈ {1, . . . , d} as described in Section 2.9.2). In addition, we
introduce an iterative procedure to improve the solution and scalability of the approach.
This is sketched in Algorithm 5.

In practice, the stochastic version is more suitable when the approximation error in
TT modeling is large and the application needs diversity in the solutions. However,
we observed that the deterministic version provides better-quality solutions. Both
algorithms are available in the software accompanying the articles [9, 10] with fully
parallel implementation.

In the remainder of this chapter, the results are demonstrated using the stochastic version
as we are interested in multiple solutions for a given optimization problem and as we
expect large approximation error in TT modeling of the objective functions involved. In
the next chapter, we will use the deterministic version of TTGO for control synthesis
using dynamic programming.

67

Chapter 4. Optimization using Tensor Train

4.3.3 Finding Optima of Arbitrary Tensor Train Model

Given a TT model P , Algorithms 4 and 5 provide maxima arg max
x

|P(x)| (i.e. maximum
of the corresponding TT distribution given by (2.14)). To find the arg max

x
P(x) using

TTGO, we first need to pre-process the TT model. We first find the maxima w.r.t the
absolute value xa = arg max

x
|P(x)| which can be done using TTGO with P . Next, we

find a shifted TT model P̂ = P − P(xa) (using algebraic operations over TT model,
see Section 2.6). Now we again use TTGO to find xb = arg max

x
|P̂(x)|. So xa and xb

are the two extrema (a maxima and a minima) of P. So, xmin = arg min
x∈{xa, xb}

P(x) and

xmax = arg max
x∈{xa, xb}

P(x).

4.3.4 Normalizing Tensor Train Model

Let xmin and xmax are the minima and maxima of an arbitrary TT model P found
using the methodology described in Section 4.3.3. Let pmin = P(xmin) and pmax =
P(xmax). Then, we can shift and scale the TT model P to obtain a new TT model:
P̂ = p̂min + (P − pmin)

(
p̂max−p̂min
pmax−pmin

)
. Then, P̂(x) ∈ (p̂min, p̂max), ∀x ∈ Ωx. Note that

xmin and xmax are also the extrema of P̂ . By specifying p̂min > 0 and p̂max > p̂min, we
can ensure that P̂ is non-negative.

This is a useful pre-processing step in practice to apply TTGO. To find the maxima of
an arbitrary tensor P we can work with the corresponding non-negative TT model P̂.
For instance, as we describe later in this chapter, a typical use case of TTGO in robotics
is to find x∗

d = arg max
xd

P(xt, xd) where P(xt, xd) could be negative. So in all our

applications, we first find the normalized TT model P̂ and then x∗
d = arg max

xd

P̂(xt, xd)

can be found using TTGO for various xt on the conditioned TT model P̂xt

xd
(as defined

in Section 2.9.3). So, unless otherwise specified in this chapter, we assume the TT model
P is normalized to be non-negative while using TTGO.

4.4 Applications to Function Optimization in Robotics

In this section, we outline how we can leverage TTGO to solve some challenging tasks in
robotics formulated as optimization problems.

Cost functions in robotics applications typically rely on two types of variables: task

68

4.4 Applications to Function Optimization in Robotics

parameters and decision variables. Task parameters are constant for a given optimization
problem and describe the range of tasks that may arise in a particular robotic application.
For example, in an inverse kinematics (IK) problem with obstacles, the task parameters
could be the desired end-effector pose to reach an object, while the decision variables are
the variables being optimized (e.g., the robot configuration or joint angles). In most cases,
we can anticipate the possible range of task parameters, such as the robot workspace for
IK. Ideally, we can solve the optimization problem offline numerous times for the complete
range of task parameters and leverage this knowledge to expedite online optimization for
new tasks.

It is important to note that in robotics, the cost function is frequently a piecewise
smooth function that incorporates a specific structure (i.e., low-rank structure explained
in Chapter 2) among the cost function variables. For instance, similarities among task
parameters correspond to similarities among solutions to the optimization problem. By
capturing this structure, we can compactly model the relationships among variables
rather than relying on database approaches that store each data point. Although such a
structure is prevalent in many robotics applications, it has not been extensively utilized.

We regard the cost function as a function of both the optimization variables and the
task parameters that define the optimization problem. Our approach involves first
transforming the cost function into an unnormalized Probability Density Function (PDF)
and then approximating it with TT representation using TT-cross (Section 2.8). So the
surrogate probability model is a TT distribution (see Section 2.9). The TT model defining
the TT distribution corresponds to the discrete analogue of the given unnormalized PDF.
During online execution, when a task parameter is specified, we condition the TT
distribution on the corresponding parameter to obtain another TT model corresponding
to the conditional distribution (see Section 2.9.3). Subsequently, we use TTGO to find
several candidates for the maxima of the conditional TT model corresponding to the
specified task parameters which correspond to the minima of the cost function. In cases
where the underlying PDF is multimodal, the candidate solutions will be derived from
multiple modes as TTGO can provide a diverse set of solutions. By evaluating the
corresponding cost functions at the candidate solutions, we can then choose the best
sample(s) and select the sample(s) with the lowest cost if multiple solutions are needed.
In the second stage, we refine these proposed optima using an appropriate optimization
technique, such as Newton-type solvers if the objective function is differentiable.

Next we provide the mathematical formulation of the approach described in Figure 4.2.

69

Chapter 4. Optimization using Tensor Train

Specify task

TTGO

Obtain TT model

Cost function

Refine Solution

Figure 4.2: This figure shows how TTGO can be used for function optimization purposes
in robotics applications. The cost function C, a function of task variable x1 and decision
variable x2, is first transformed into an unnormalized probability function P . The
probability function is modeled in TT format using TT-cross in the offline phase. In the
online phase, given a task variable xt, we use TTGO on the conditioned TT model to
obtain an approximate solution x̂∗

2 to the decision variable. To compensate for modeling
error, this solution can be further fine-tuned using a local search method such as Newton-
type optimization to obtain the optimal solution x∗

2.

Methodology

Let x1 ∈ Ωx1 be the task parameter, x2 ∈ Ωx2 be the decision variables and x = (x1, x2).
Let C(x1, x2) be a nonegative cost function. Given the task parameter x1 = xt, we
consider the continuous optimization problem in which we want to minimize C(xt, x2)
w.r.t x2:

x∗
2 = arg min

x2
C(x1, x2)

s.t. x1 = xt,

x2 ∈ Ωx2 .

(4.1)

We assume that Ωx1 ∈ Rd1 , Ωx2 ∈ Rd2 are both rectangular domain and let Ωx =
Ωx1 × Ωx2 ⊂ Rd with d = d1 + d2. We decompose the procedure to solve such an

70

4.4 Applications to Function Optimization in Robotics

optimization problem into two steps:

1. Predict an approximate solution x̂∗
2 that corresponds to the given x1 = xt using

TTGO, then

2. Improve the solution x̂∗
2 using a local search (e.g., Newton type optimization) to

obtain the optimal solution x∗
2.

To find the approximate solution(s) x̂∗
2, we first convert the above optimization problem of

minimizing a cost function into maximizing an unnormalized probability density function
P (x1, x2) using a monotonically non-increasing transformation,

x∗
2 = arg max

x2
P (x1, x2)

s.t. x1 = xt,

x2 ∈ Ωx2 .

(4.2)

For example, we can define P (x) = e−βC(x)2 with β > 0. Without loss of generality, in
the remainder of the chapter we consider optimization problems to be of type (4.2) with
the objective function being the density function.

In this probabilistic view, the solution x∗
2 corresponds to the mode, i.e., the point with the

highest density, of the conditional distribution P (x2|x1 = xt). In general, however, we do
not have an analytical formula of P (x2|x1 = xt), and finding the model is as difficult as
solving the optimization problem in (4.1). We overcome this issue by first approximating
the unnormalized PDF P (x1, x2) using a TT model as the surrogate model to obtain the
joint distribution Pr(x1, x2) (see (2.14)). Given the task x1 = xt, we condition the TT
model to obtain the conditional distribution Pr(x2|x1 = xt), i.e., the TT distribution
corresponding to the conditional TT model Pxt (see Section 2.9.3). Finally, the TTGO
allows us to produce the approximate solution(s) x̂∗

2 from the conditional TT model.

Approximating the PDF using TT model:

Given the unnormalized PDF P (x1, x2), we use the TT-Cross algorithm (see Section
2.8) to compute its discrete analogue approximation, i.e., P, in the TT format. The
construction of P only requires the computation of P (x1, x2) at selected points (x1, x2)
in the rectangular domain. Instead of computing every single possible value of P in the
discretized domain (O(nd)), the TT-Cross algorithm only requires O(ndr2) cost function
evaluations, where n is the maximum number of discretization and r is the maximum rank

71

Chapter 4. Optimization using Tensor Train

of the approximate tensor. The tensor model P is an approximation of the unnormalized
PDF corresponding TT distribution Pr(x) defined by (2.14).

Refinement of TT Model

Note that the optima found by TTGO belongs to the discretization set X of the domain
Ωx used for TT modeling of the PDF P . For a better approximation of the solution from
TTGO, we require the discretization set X of the domain Ωx to be very fine. In contrast,
it is more efficient in practice to have coarser discretization to find the TT model of the
density function P (x) using TT-cross. We overcome this issue by using the refinement
technique described in Section 2.5.2. We first use a coarse discretization X of the domain
Ωx and find the TT model P of the PDF P using TT-cross. Then, we consider a finer
discretization X̂ of the domain Ωx. The corresponding TT model P̂ can be obtained by
interpolation of the cores of P . Finally, we use X̂ and P̂ for TTGO.

Re-Normalizing the TT Model

Due to some approximation error in modeling, the TT model P could be negative. We
pre-process it to be nonnegative by using the procedure described in Section 4.3.4 before
using TTGO.

Conditioning TT Model:

After approximating the joint distribution, we can condition it on the given task. Given
the task parameter x1 = xt ∈ Ωx1 , we first condition the TT model P to obtain Pxt .
We then use it to construct the conditional TT distribution Pr(x2|x1 = xt) as described
in Section 2.9.3. This is the desired surrogate probability model for P (x2|x1 = xt).

Fine-tuning the solution:

The solution candidates x̂∗
2 obtained from the TTGO (i.e., maxima of Pr(x2|x1 = xt))

can be further refined using local search methods to obtain the optimal solution x∗
2. If all

the decision variables are continuous and the cost function is differentiable, we can use
x̂∗

2 as a warm-start for gradient-based optimization techniques to find the nearest local
optima. If some of the decision variables are discrete, we can fix the discrete variables and
only optimize the continuous ones. In this chapter, we used SLSQP for the refinement
and we only deal with continuous variables.

72

4.5 Experiments

Hierarchically Finding the TT Model

When the objective function includes multiple objectives, we can approximate the
corresponding PDF in the TT model using TT-cross in an efficient manner by exploiting
the algebra associated with the TT. Suppose the cost function to be minimized is
C(x) = Ca(xa) + Cb(xb), (or C(x) = Ca(xa) Cb(xb)) where x = xa ∪ xb. For example,
Ca could be the cost for obstacle avoidance which is only a function of joint angles
and Cb could be the cost for target reaching which is a function of joint angles and
position of the target. Minimizing this cost function corresponds to maximizing the
PDF P (x) = Pa(xa) + Pb(xb). We can find the TT model P corresponding to P using
Pa and Pb which are TT models corresponding to Pa and Pb respectively and they
are often more smoother and easier to model using TT-cross. Then, we can quickly
compute P = Pa + Pb as an addition operation over tensor in TT format (see Section
2.6). This offers an efficient way to model a target PDF in TT format by separately
modeling multiple individual components which are often favorable to compute in terms
of dimensionality and smoothness.

4.5 Experiments

In this section, we evaluate the performance of the proposed algorithm with several
applications. A PyTorch-based implementation of the algorithms and the accompanying
videos are available at https://sites.google.com/view/ttgo/home. Our software is based
on the library [79] for tensor networks. For all the applications considered in this chapter,
the results are provided with Algorithm 4.

We evaluated it on challenging benchmark functions such as the Rosenbrock function,
Himmelblau function, and Gaussian Mixture Models, which are difficult for gradient-
based optimization techniques. The experimental analysis provided in Appendix B.1
demonstrates the proposed method can consistently find global optima, and multiple
solutions when they exist, and it can adapt to task parameters that influence the locations
of global optima. Additionally, the prioritized sampling approach used in Algorithm 4 is
evaluated, with small α values generating samples that cover a wide region around many
local optima and α values close to one producing samples close to global optima.

We then apply it to inverse kinematics with obstacles and motion planning problems.
Besides qualitatively observing the solutions, we also perform quantitative analyses to
evaluate the quality of the approximate solutions produced by our approach. We consider
three different metrics:

73

https://sites.google.com/view/ttgo/home

Chapter 4. Optimization using Tensor Train

TTGO for Numerical Optimization in Robotics

1. Training Phase (Offline):

(a) Given:
• Cost function C(x1, x2),
• Rectangular domain Ωx = Ωx1 × Ωx2

(b) Transform the cost function into an unnormalized PDF P (x1, x2).
(c) Discretize the domain Ωx into X = X1 ×X2.
(d) Using TT-Cross, construct the TT-Model P as the discrete analogue of P (x)

with discretization set X . Refine and normalize the TT-model as described in
Section 2.5.2 and 4.3.4.

2. Inference Phase (Online):

(a) Given: The task-parameter x1 = xt ∈ Ωx1 , the desired number of solutions
K.

(b) Construct the conditional TT Model Pxt from P (see Section 2.9.3).
(c) Generate N candidate solutions {xl

2}Nl=1 from the TT distribution Pr(x2|x1 =
xt) = (Pxt

x2)2

Z (Algorithm 4 or 5).
(d) Evaluate the cost function at these samples and choose the best-K samples as

approximation for the optima {x̂∗l

2 }Kl=1.
(e) Fine-tune the approximate solutions using gradient-based approaches on

C(xt, x2) to obtain the optima {x∗l

2 }Kl=1.

• ci, the initial cost value of the approximate solutions from TTGO.

• cf , the cost value after refinement.

• Success, the percentage of samples that converge to a good solution, i.e., with the
cost value below a given threshold.

To compare the performance of the proposed approach with random initialization, we
initialize the solver with random samples generated from the uniform distribution across
the entire domain. To observe the effect of prioritized sampling, we also use TTGO with
various values of α. The performance evaluation involves generating 100 random test
cases within the task space. For each test case, we generate N samples using both the

74

4.5 Experiments

(a) (b) (c) (d)

Figure 4.3: A single sample taken from a conditional TT distribution with α = 1 for
inverse kinematics of a 3-link planar manipulator in the presence of obstacles (gray
spheres). The yellow circle and the green segments depict the base and the links of the
robot, respectively. The target end-effector positions are shown in red. The samples are
very close to the targets and collision-free, even without fine-tuning the solutions.

(a) (b) (c) (d)

Figure 4.4: Best 10 out of 50 samples taken from a conditional TT distribution with
α = 0.8 for inverse kinematics of a 3-link planar manipulator in the presence of obstacles.
The samples are already close enough to the optima even without fine-tuning the solutions
and the multimodality of the solutions is clearly visible.

TT and uniform distribution methods and select the best sample based on the initial
cost value as the approximate solution. We vary the number of samples N from 1 to
1000. The SLSQP solver is used to optimize the sample with respect to the given cost
function. We then evaluate the initial cost ci, the final cost after refinement cf , and the
convergence status for each method. The average performance of both methods across all
test cases is computed. The results for the robotics tasks are summarized in Table 4.1-4.3
and are discussed in the corresponding sections.

4.5.1 Inverse Kinematics Problems

We consider here the optimization formulation of numerical Inverse Kinematics (IK). The
task parameters x1 then correspond to the desired end-effector pose, while the decision

75

Chapter 4. Optimization using Tensor Train

(a) (b)

(c) (d)

Figure 4.5: The samples taken from a conditional TT distribution for the IK of a Franka
Emika manipulator in the presence of obstacles, after refinement. We can see that there
is a continuous set of solutions due to the additional degrees of freedom.

variables x2 are the joint angles. We use approximately n2 = 50 discretization points
for each of the joint angles (∼ 5◦) and approximately n1 = 200 discretization points
(∼ 0.5cm) for each task parameter. Ωx1 ⊂ R3 is the rectangular space that includes the
robot workspace. Ωx2 = ×d2

k=1[θmink
, θmaxk

], Ωx2 ⊂ Rd2 where [θmink
, θmaxk

] represents
the joint angle limits for the k-th joint.

We consider two IK problems: 6-DoF IK to clearly demonstrate the multimodal so-
lutions and 7-DoF IK with obstacle cost to consider the infinite solution space. In
both cases, we transform the cost function into an unnormalized density function as
P (x) = exp

(
−C(x)2)

.

76

4.5 Experiments

Inverse Kinematics for 6-DoF Robot:

A 6-DoF robot has a finite number of joint angle configurations that correspond to a
given end-effector pose. In this section, we consider the 6-DoF Universal Robot that
can have up to 8 IK solutions. While there is an analytical solution for such robots,
it is a nice case study to illustrate the capability of TT to approximate multimodal
distributions in a robotics problem where the modes are very distinct from one another.
We constrain the end-effector orientation to a specific value (i.e., facing upward without
any free axis of rotation), and set the end-effector position as the task parameter. Hence,
x1 ∈ Ωx1 ⊂ R3 while x2 ∈ Ωx2 ⊂ R6, so d = 9, where Ωx1 is the rectangular domain
enclosing the workspace of the manipulator.

We observe that our approach is able to retrieve most of the 8 IK solutions for a given
end-effector pose. Figure 4.6 shows the refined samples from TTGO by conditioning the
TT distribution on a desired end-effector position. This validates our claim that TTGO
is able to provide multimodal solutions even for a complex distribution.

Inverse Kinematics for 7-DoF Robot with Obstacle Cost:

A 7-DoF robot can have an infinite number of joint angle configurations for a given
end-effector pose, unlike a 6-DoF robot. It can also have multiple solution modes similar
to the 6-DoF robot. To ensure a collision-free solution, we introduce an obstacle cost
to the optimization formulation, using the same collision cost as in CHOMP [63]. This
collision cost uses a precomputed Signed-distance Function (SDF) to compute the distance
between each point on the robot link and the nearest obstacle. When there are obstacles,
numerical IK typically involves generating multiple solutions and checking for collision
until a collision-free configuration is found. However, in cluttered environments, this
approach may have a low success rate, requiring the user to generate many IK solutions
before finding a collision-free one. By adding an obstacle cost to optimize for collision-free
configurations directly, the non-convexity of the problem increases significantly, leading
the solver to get stuck at poor local optima, especially with a high weight on the obstacle
cost. Therefore, it is an interesting case study to demonstrate how TTGO can avoid
poor local optima and find robust solutions in this challenging scenario.

We first test the IK with obstacle cost for a 3-DoF planar robot to provide some intuition
on the effectiveness of our approach. Figure 4.3 and Figure 4.4 show some samples from
TTGO conditioned on the target end-effector position (shown in red). By setting α = 1,
we focus the sampling around the mode of the distribution, enabling us to obtain a very
good solution even with only 1 sample (Figure 4.3). As we decrease α to 0.8 and retrieve
more samples, we can see that multiple solutions can be obtained easily (Figure 4.4).

77

Chapter 4. Optimization using Tensor Train

Note that even without the refinement step, all samples reach the goal closely while being
collision-free.

We then apply the formulation on the 7-DoF Franka Emika robot, where the collision
environment is set to be a table, a box, and a shelf. The task parameters correspond
to the end-effector position in the shelf, while the gripper is constrained to be oriented
horizontally with one free DoF around the vertical axis. Hence, x1 ∈ R3 while x2 ∈ R7,
so d = 10. The number of parameters of the TT cores is 1.4× 107 whereas the original
tensor P has 1× 1018 parameters. TT-cross found the tensor in TT-format using only
2× 108 evaluations of the function P . For this application, a rank of 60 already produces
satisfactory performance.

Figure 4.5 shows samples generated from a TT distribution on a given end-effector position
after refinement. Note that unlike in the 6 DoF case, we can see here a continuous set
of IK solutions due to the additional degrees of freedom. We also note that distinctly
different modes of solutions can also be observed in this case, as can be seen in the
accompanying video.

The results are reported in Table 4.1. We can see that our approach consistently
outperforms uniform sampling by a wide margin across the three metrics. The initial cost
values of TTGO samples are much lower than uniform samples, and after refinement,
they converge to smaller cost values on average. The success rates of TTGO samples are
also much higher. Furthermore, from qualitative analysis, the approximate solutions of
TTGO are very close to the optimized solution. It is especially important to note that
the best out of 1000 uniform samples (bottom right corner of the table) is still worse
than a single sample from TTGO with α > 0.75 (top left corner).

We can see the effect of prioritized sampling by comparing the performance of different
values of α. In general, using higher values of α improves the performance, as we
concentrate the samples around the high-density region. TTGO samples with α = 0.9
have impressive performance with 94% success rates even by using only one sample per
test case. However, higher α means less diversity of solutions, so a trade-off between
solution quality and diversity needs to be considered when choosing the value of α. Note
that even with α = 0 we still obtain a very good performance by using as few as 10
samples.

78

4.5 Experiments

Tables 3.1–3.3 The performance measures for three different applications with the
Franka Emika manipulator. We compare the performance of our approach for initializing
a given gradient-based solver (namely, SLSQP) against initialization from uniform
distribution. I The three performance metrics are the cost at the initialization (ci), the
cost after optimization (cf) using the solver and the success rate (Success). The criteria
for success is that cf ≤ 0.25. We compute the average of each of these measures over
100 randomly chosen test cases. Each of the target points are chosen so that they are
sufficiently away from the surface of the obstacle but they are not guaranteed to be
feasible.

Table 4.1: Inverse kinematics of the Franka Emika robot

Method α

Samples
1 10 100 1000

ci cf Success ci cf Success ci cf Success ci cf Success

TTGO

0.9 1.04 0.01 94.00% 0.55 0.02 98.00% 0.37 0.02 98.00% 0.26 0.02 99.00%
0.75 1.52 0.07 84.00% 0.65 0.02 95.00% 0.37 0.02 95.00% 0.24 0.03 97.00%
0.5 2.01 0.08 88.00% 0.85 0.04 93.00% 0.43 0.04 93.00% 0.28 0.01 98.00%
0 2.88 0.17 71.00% 1.23 0.05 91.00% 0.68 0.05 91.00% 0.39 0.04 96.00%

Uniform - 8.42 1.22 37.75% 4.47 0.91 45.50% 2.56 0.5 59.25% 1.59 0.24 75.00%

Table 4.2: Target Reaching

Method α

Samples
1 10 100 1000

ci cf Success ci cf Success ci cf Success ci cf Success

TTGO

0.9 3.99 0.17 62.00% 1.1 0.09 86.00% 0.71 0.1 86.00% 0.58 0.09 88.00%
0.75 5.63 0.21 53.00% 1.29 0.14 72.00% 0.78 0.1 86.00% 0.56 0.1 83.00%
0.5 4.53 0.17 50.00% 1.54 0.14 64.00% 0.96 0.11 83.00% 0.62 0.1 84.00%
0 6.7 0.31 46.00% 2.06 0.18 60.00% 1.3 0.12 82.0 0.84 0.12 86.00%

Uniform - 13.85 1.34 19.25% 4.79 0.91 28.75% 3.02 0.68 41.00% 2.06 0.45 53.50%

Table 4.3: Pick-and-Place

Method α

Samples
1 10 100 1000

ci cf Success ci cf Success ci cf Success ci cf Success

TTGO

0.9 2.41 0.16 70.00% 1.41 0.15 81.00% 1.05 0.15 79.00% 0.87 0.14 89.00%
0.75 3.25 0.17 66.00% 1.71 0.17 66.00% 1.31 0.14 84.00% 1.01 0.15 78.00%
0.5 4.31 0.26 54.00% 2.33 0.19 62.00% 1.66 0.17 77.00% 1.29 0.18 76.00%
0 6.2 0.27 48.00% 2.98 0.23 48.00% 2.17 0.21 58.00% 1.61 0.18 71.00%

Uniform - 9.64 0.78 23.75% 5.23 0.63 30.25% 3.95 0.49 39.5% 3.07 0.39 44.25%

79

Chapter 4. Optimization using Tensor Train

(a) (b) (c) (d)

Figure 4.6: 8 IK solutions of the UR10 robot for a given pose from TTGO samples after
refinement, shown from four different views. 5 of the solutions are drawn transparently
to provide better visualization. The desired end-effector position is shown in red.

4.5.2 Motion Planning of Manipulators

In this section, we explore the use of our framework in the motion planning of the Franka
Emika robot to generate obstacle-free robot motions. This problem is high dimensional,
as a robot with m degrees of freedom and T time intervals results in optimization variables
x2 with mT dimensions. To address this issue, we adopt a trajectory representation
using movement primitives with basis functions, as commonly done in learning from
demonstration [80, 33]. The optimization variables in this representation consist of the
superposition weights of the basis functions. Our formulation of movement primitives
guarantees that the motion always starts from the initial configuration and ends at the
given final configuration. In the case of a goal reaching in the task space, we need to
first determine the corresponding final configuration, which can be done using inverse
kinematics. In our motion planning formulation, we optimize both the final configuration
and the weights of the basis functions jointly.

The cost function in our motion planning formulation includes the reaching cost, the
joint limit cost, the smoothness cost, and the obstacle cost, which is the same cost used
in inverse kinematics. It is important to note that if we want to ensure that the solution
avoids small obstacles, the number of time discretizations must be large, which can result
in more than 700 dimensions for motion planning with a Franka Emika robot. The use
of the obstacle cost helps the solver directly optimize for a collision-free configuration,
but it also significantly increases the non-convexity of the problem, making it susceptible
to getting stuck in poor local optima, especially with a large weight on the obstacle cost.
Details on the motion planning formulation can be found in Appendix B.3.

80

4.5 Experiments

We consider two different motion planning tasks as follows:

1. Target Reaching: From the initial configuration θ0 ∈ Rm, reach a target location
pd ∈ R3.

2. Pick-and-Place: From the initial configuration θ0 ∈ Rm, reach two target locations
p1

d (picking location) and p2
d (placing location) in sequence before returning to the

initial configuration θ0.

For the target reaching problem, the task parameter is the target location x1 = pd and
the decision variables x2 = (θ1, w). Here, θ1 ∈ Ωθ ⊂ Rm is the joint angle defining
the final configuration and w = (wk)m

k=1 ∈ RJm, where wk = (wk
j)J

j=1 ∈ RJ are the
superposition weights of the basis functions representing the motion from θ0 to θ1. We
use J = 2 and m = 7 for the 7-DoF Franka Emika manipulator, so the total number of
dimensions for the reaching task is d = 3 + 7 + 2× 7 = 24.

For the pick-and-place problem, the task parameters are the two target locations (pick and
place location): x1 = (p1

d, p2
d). The decision variables are x2 = (θ1, θ2, 01w, 12w, 20w),

where θ1 and θ2 are the configurations corresponding to the two target points, w =
(01wk, 12wk, 20wk)m

k=1 where uvw ∈ RJm are the weights of the basis functions represent-
ing the movement from the configuration θu to θv. Hence, the total number of dimensions
for the pick-and-place task is d = 2× 3 + 2× 7 + 3× 2× 7 = 62.

We use the transformation P (x) = exp
(
−C(x)2)

. The target location pd for target
reaching and p1

d in the pick-and-place problem are inside the shelf as in the IK problems
(picking location). For the pick-and-place task, the second target location p2

d is on the
top of the box (drop location). We discretize each of the task parameters using 100
points and the decision variables with 30 points. We use radial basis functions with
J = 2, which we find sufficient for our applications. The bounds on the weights of basis
function for a joint are the same as the joint limits i.e., (wk

min, wk
max) = (θmink

, θmaxk
).

Figure 4.7 shows some examples of a reaching task for a 3-DoF planar manipulator. We
can see here that the TTGO samples lead to good solutions, i.e., they avoid collisions
while reaching the target quite accurately. In comparison, random sampling initialization
often results in poor local optima, where the final solutions still have collisions even after
the refinement. Figure 4.8 shows the same reaching task for the Franka Emika robot,
where the multimodality of the solutions is clearly visible. We also test the trajectory on
the real robot setup as shown in Figure 4.10 and 4.11.

The results are presented in Table 4.2 and 4.3. Similarly to the IK results, our approach
outperforms uniform sampling by a wide margin across all metrics. In reaching tasks and

81

Chapter 4. Optimization using Tensor Train

especially in pick-and-place tasks, uniform sampling performs quite badly in terms of
success rates, since the tasks are much more difficult than the IK problem. Taking only
1 TTGO sample also does not produce satisfying performance here (i.e., ∼ 60 − 70%)
success rates, but using 10-100 samples already makes a good improvement. In pick-
and-place tasks, since we consider the three different phases as a single optimization
problem, it becomes quite complicated, and low values of α do not provide good success
rates, but prioritized sampling with α = 0.9 manages to achieve 89% success rates using
1000 TTGO samples. This is mainly because this task is of very high dimensions with
complicated cost functions involved resulting in large modeling errors by TT-cross in
representing the probability function in TT format.

4.5.3 Application to Single Task Optimization

Up to now, we have presented our approach using TTGO in its general form, where
we take into account different task parameters during the training of the TT model.
This approach allows us to rapidly generate approximate solutions for a specific task by
conditioning the TT model. However, our approach is also applicable when we only need
to solve a single task. In this case, the TT model represents the probability distribution
of only the optimization variables, and the training time is substantially shorter compared
to the general case. We found that a maximum TT-rank of less than 5 works well for the
applications examined in this study. In terms of computational time and solution quality,
our approach is comparable to evolutionary methods such as CMA-ES or GA, but with
the added benefit of being able to provide multiple solutions.

For such applications involving a single task parameter, our work is closely related
to TTOpt [59]. TTOpt is a gradient-free optimization technique based on TT-cross,
which has been shown to perform comparably to evolutionary strategies. The goal of
TTOpt is to maximize a reward function, which is similar to the probability density
function considered in this work. TTOpt discretizes the reward function and assumes
that the maximum element of the discrete approximation of the reward function closely
approximates the true maximum. TT-cross is used in TTOpt to find the maximum
of the discrete approximation. In this context, TT-cross is used not to build a TT
approximation, but rather for its ability to identify the maximal elements of a tensor,
which are likely to be in the maximum volume submatrix. This submatrix is found
using the maxvol algorithm in TT-cross, and the maximal element of the submatrix
is updated monotonically over iterations. During each iteration, the maximal element
from the submatrix is stored in memory and updated until convergence. In contrast, we
first model the density function using TT-cross and then use TTGO to approximate a
solution, which is then refined using local search techniques, with the option of estimating

82

4.5 Experiments

(a) TTGO Task-1 (b) TTGO Task-2

(c) Random Task-1 (d) Random Task-2

Figure 4.7: Motion Planning of Planar Manipulators: The task is to reach a given target
point in the square region depicted in cyan (task space) from a fixed initial configuration
(dark green configuration). The final configuration and the joint angle trajectory to reach
the target point are the decision variables. The approximate solutions from TTGO for
two different tasks are given in (a) and (b) (before refinement). The solution obtained by
a gradient-based solver with random initialization can result in poor local optima, as can
be seen in (c) and (d).

multiple solutions.

To test the performance of our approach for single-task optimization, we have applied it to
motion planning of both the 2-D planar robot and Franka Emika manipulator. We set the
initial and the desired final configurations, and TTGO finds the trajectory to move to the
final configuration while avoiding the obstacles. The joint angle trajectory is represented
using the motion primitives as described in Appendix B.4, thus the optimization variables
are the weights of the basis functions. We used 2 radial basis functions for each joint.

83

Chapter 4. Optimization using Tensor Train

(a) (b)

(c) (d)

Figure 4.8: Best 3 out of 1000 samples taken from a conditional TT distribution with
α = 0.75 for the reaching task of a manipulator in the presence of obstacles, after
refinement. The initial configuration is shown in white, while the final configuration is
shown in red, green, and blue, for each solution. The end-effector path is shown by the
dotted curves. The multimodality is clearly visible from these three solutions.

For the 2-D planar robot, we replicate the setting in Figure 7 of [60], but we move the
obstacle positions and add two more obstacles to increase the difficulty of the problem.
With a fixed task parameter, the training of the TT model only takes less than 7 seconds,
and we easily obtain multiple solutions. Figure 4.12 shows four solutions obtained by
TTGO after the refinement step. We can clearly see the multimodality of the solutions.

For the Franka Emika manipulator, we use the same setting as in Section 4.5, i.e.,
with the shelf, table, and box as the collision objects. In addition, we add a cost to
maintain the end-effector pose (horizontal) throughout the trajectory. The initial and
final configurations are set such that both end-effector positions are located within the
shelf, and they are computed using TTGO for IK, as explained in Section 4.5.1. With this

84

4.5 Experiments

(a) (b)

(c) (d)

Figure 4.9: A sample taken from a conditional TT distribution for the pick-and-place
task, after refinement. (a) to (d) represent the same motion in different perspectives. In
green, we see the picking configuration (from the shelf) and placing configuration (on the
box), while the initial configuration is shown in white. The end-effector positions in the
shelf and the box are the task parameters.

setting, we are able to obtain multiple solutions consistently for all possible scenarios (we
test with different end-effector positions within the shelf) with 10 iterations of TT-cross
and a maximal TT-rank of 5. With the fixed task parameter, it only takes under 5
seconds to obtain the solutions (includes TT modeling, sampling and fine tuning). Some
solutions for a given task are shown in Figure 4.1.

In comparison, SMTO [60] takes ∼ 2 minutes to solve the 2-D planar robot problem and
the 7-DoF manipulator example (using their MATLAB code), whereas LSMO [61] takes
even longer, i.e., more than five minutes (according to their paper). For the 2-D example,
SMTO fails to find any solution when we added more obstacles as in Figure 4.12, even

85

Chapter 4. Optimization using Tensor Train

Figure 4.10: The motion from the initial configuration to the final configuration in the
real robot implementation of one of the TTGO solutions for the reaching task.

Figure 4.11: Real robot implementation of one of the TTGO solutions for the pick-
and-place task. The motion from the initial configuration to the final configuration
(same as the initial configuration in this case) via the picking configuration and placing
configuration is depicted.

after increasing the covariance by 100 times. This is because none of the initial samples
from the proposal distribution is close to the feasible region. We also tried increasing the
number of samples from 600 (standard value) to 2000, but it still cannot find any solution.
Furthermore, adding the number of samples by ∼ 3 times increases the computation time
of SMTO by ∼ 3 times, i.e., from ∼ 150s to ∼ 500s.

86

4.6 Discussion

(a) (b) (c) (d)

Figure 4.12: Four different solutions obtained by TTGO for a motion planning task with
4-link planar manipulator. The initial and final configuration are given (dark green) and
the optimization variables are the weights of the basis functions (two basis functions per
joint) that determine the joint angle trajectory.

0 250 500 750 1000
0
3
6
9

12
15
18
21
24
27
30

SAMPLES

TI
M

E
[m

s]

r=10
r=50

(a) d = 7

0 250 500 750 1000
0

40
80

120
160
200
240
280
320
360
400

SAMPLES

TI
M

E
[m

s]

r=10
r=50

(b) d = 70

Figure 4.13: Sampling Time: The sampling procedure has a computational complexity
of O(ndr2) and it is independent of the application. (a) and (b) show the computation
time curves for two different values of d with the size of each mode being n = 100. For
each figure, we show the sampling time for two different ranks as shown in red (r = 10)
and green (r = 50).

4.6 Discussion

4.6.1 Quality of the Approximation

In this chapter, we used a TT model to approximate an unnormalized PDF. The quality of
the approximation of the PDF using the TT model highly depends on the TT-rank. If the

87

Chapter 4. Optimization using Tensor Train

approximation is good, the TTGO solutions are more accurate and the fine-tuning step is
often not necessary. A nice property of our approach that is derived from the TT-Cross
method is that the model capacity can be incrementally augmented (i.e., non-parametric
modeling). By increasing the number of iterations of TT-Cross and allowing a higher
rank of the TT model, the approximation accuracy can be improved continuously. For
initialization purposes, though, we found that the discrete version is enough, as the
initialization does not have to be precise.

When training the TT model, we can evaluate the quality of the approximation by picking
a set of random indices, computing the value of the approximate function at those indices,
and comparing it against the actual function value. This is an important evaluation
for most applications that aim at finding an accurate low-rank TT decomposition of
a given tensor across the whole domain. For our case, though, we are only interested
in the maxima of the function, and we do not really care about the approximation
accuracy in the low-density region, i.e., the region with high cost. Even if TT-Cross
cannot find an accurate low-rank TT representation across the whole domain (e.g., due
to non-smoothness), it can still capture the maximal elements robustly [59, 15] as the
interpolation in the TT-Cross algorithm is done using the high magnitude elements. In
practice, we found that even when the approximation errors do not converge during the
training, the resulting samples from the TT model are still very good as initialization.

4.6.2 Comparison with Previous Work using Variational Inference

As described in Section 4.2.3, the work closest to our approach is SMTO [60] that also
transforms the cost function into an unnormalized PDF. SMTO uses Variational Inference
to find the approximate model as a Gaussian Mixture Model (GMM) by minimizing the
forward KL divergence. Its main limitation, however, is that it requires a good proposal
distribution to generate the initial samples for training the model. These samples are
used to find the initial GMM parameters, and subsequent iterations sample directly from
the GMM. Hence, the initial samples have a large effect on the final solutions. When
the initial samples do not cover some of the modes, subsequent iterations will have a
very small chance of reaching those modes. We verified this by running the open-source
codes provided by the author. Even for the 4-DoF manipulator example (Figure 7 in
their paper), with the standard parameters given by the author, SMTO cannot find a
single solution when the position of the obstacles are changed to increase the difficulty
of the motion planning problem (e.g., by moving the large obstacle closer to the final
configuration). It starts to find a solution only after we increased the covariance of the
proposal distribution by 10-100 times the standard values, because the initial samples
can then cover the region near the feasible solutions. Furthermore, when we added one

88

4.6 Discussion

more obstacle, SMTO failed to find any solution, even with the higher covariance and a
larger number of samples. In comparison, we have shown in this work that our approach
can solve difficult optimization problems reliably while also providing multiple solutions.
Their 4-DoF setup is in fact very similar to our planar manipulator example in Figure
4.7, and we have shown in Section 4.5.3 that our approach can consistently produce good
solutions for different target locations. Since our approach does not use any gradient
information to find the TT model, it does not get stuck in poor local optima easily.

In [61], another method called LSMO was proposed to handle functions with an infinite
set of solutions by learning the latent representation. As we showed in Appendix B.1
for sinusoidal and Rosenbrock functions, our approach is naturally able to handle these
kinds of distributions, even without any special consideration or change on the method.
Unlike our approach, SMTO and LSMO need to solve every single optimization problem
from scratch. With the terminology used in our work, this corresponds to the task
parameters being constant—a special case of the problem formulation considered so far
in this chapter. For such problems, since we only have a single task, the training phase
in our approach can be much faster by using a very low TT rank (r < 10 almost always
works for most optimization problems without task parameters) and fewer iterations of
TT-Cross. The advantage of our approach in such applications as compared to other
global optimization approaches such as CMA-ES is that TTGO can provide multiple
solutions. For example, we could find the optima of a 50D mixture of Gaussians with 5
components and 30D Rosenbrock considered in Section B.1 in less than 2 seconds. In this
way, TTGO can be considered as a tool for global optimization that can offer multiple
solutions.

In this work, we proposed a more generic approach based on TTGO. By anticipating
and parameterizing the possible optimization problems using the task parameters, our
approach allows the distribution of the computational effort into an offline and an online
phase. In practice, this means that most of the computation time takes place during offline
computation, while the online computation (conditioning on the TT model and sampling
from it using TTGO) only takes a few milliseconds. SMTO and LSMO, in comparison,
take several minutes to solve a single motion planning problem for the 7-DoF manipulator
case. Similarly, most trajectory optimization solvers (e.g., CHOMP, TrajOpt) and global
optimization solvers (e.g., CMA-ES) can only solve a given optimization problem at each
run.

89

Chapter 4. Optimization using Tensor Train

4.6.3 Multimodality

As we have shown in this chapter, TTGO is able to generate samples from multiple modes
consistently. Furthermore, continuing the iteration of TT-Cross will result in covering
more modes as the rank of TT-model can be dynamically increased in the TT-Cross
algorithm. However, unlike GMM, it is not easy to sample from only a specific mode,
or to identify how many modes there are in a given problem. If we need to cluster the
samples, standard clustering algorithms such as k-means clustering can be used.

4.6.4 Computation Time

The computation time of our approach can be divided into offline computation, i.e., the
time to construct the TT model P , and online computation, i.e., the time to condition
the TT model on the given task parameters and to sample (TTGO).

The offline training uses an NVIDIA GEFORCE RTX 3090 GPU with 24GB memory,
while the sampling time evaluation is performed on an AMD Ryzen 7 4800U laptop.

The offline computation time depends on the number of TT-Cross iterations, the maximum
rank r, and the discretization (i.e., how many elements along each dimension of the
tensor). The number of function evaluations has O(ndr2) complexity hence linear in terms
of the number of dimensions and the number of discretization points. The computation
time of a single cost function also has a significant influence on the computation time.
However, we used parallel implementation with GPU that allows us to construct all of
the models in our applications in an unsupervised manner (using TT-Cross) in less than
one hour.

The rank r and the number of iterations of TT-Cross also determine the variety in the
solutions proposed by TTGO. If the application does not demand multiple solutions, we
can keep the maximum allowable rank of the TT model and the number of iterations of
TT-Cross to be very low, which results in a significant saving in offline computation time
and the sampling time in the online phase. However, for the experiments in this work,
we kept the rank r to be reasonably large (about r = 60 for IK and motion planning
problems with manipulators) so that we could obtain a variety of solutions from TTGO.

For most of the 2D benchmark functions, it takes less than 0.01s to obtain the TT
model. For the high-dimensional mixture of Gaussians and Rosenbrock functions with
d < 30, we could obtain good enough TT-models in less than 60s. It takes about 30s
for the inverse kinematics problem with the Franka Emika robot, which corresponds to
30 iterations of TT-Cross. Finally, the target reaching task takes around 10 minutes

90

4.7 Limitations

while the pick-and-place task takes around 1 hour. The motion planning computation
time is relatively slower due to the time for computing a single cost function since we
compute the obstacle cost at small time intervals. It can be made faster by considering
the continuous collision cost as done in TrajOpt [65], since it allows us to use coarser
time discretization for evaluating the collision cost, resulting in a faster evaluation of the
cost function.

For the online computation time, the conditioning time is insignificant as it is very fast,
so we focus on the sampling time. Unlike the TT model construction, the sampling
time does not depend on the cost function and only depends on the size of the tensor.
The computation complexity is O(ndr2). Results of sampling time evaluation with the
different number of samples averaged over 100 tests are given in Figure 4.13. We show
the results for d = 7 and d = 70, roughly corresponding to the IK and the pick-and-place
task, respectively. We can see that due to the parallel implementation, generating 1000
samples is not much different compared to generating 1 sample. For the IK problem,
generating 1 sample takes around 1-3ms, which is comparable to the solving time of a
standard IK solver. For the pick-and-place task, generating 1 sample takes around 15ms,
much faster than a typical computation time for motion planning (typically in the order
of 1s).

4.7 Limitations

One of the major limitations of our approach is to scale it to very high-dimensional prob-
lems. Although it has been tested up to 100 dimensions, many robotics problems involve
an even greater number of dimensions. To address this issue, we utilized here motion
primitive representations, which are effective for some trajectory planning applications.
However, for other purposes, we may need to use nonlinear dimensionality reduction
techniques such as autoencoders as a preprocessing step to determine task parameters and
decision variables for TTGO. Another potential solution to this challenge is to explore
the product-of-experts strategy, as presented in [81], which we plan to investigate in
future work.

Although constraints like joint limits can be handled naturally in TTGO, other constraints
in the optimization problem need to be handled by imposing a penalty on the constraint
violation in the cost function itself (i.e., formulated as soft constraints, similar to the
problem formulation in evolutionary strategies and reinforcement learning). This may
not be ideal for some applications in robotics that require hard constraints. However,
the existing techniques for constrained optimization are mostly gradient-based, hence
sensitive to initialization. Thus, we could still use TTGO for initializing such solvers.

91

Chapter 4. Optimization using Tensor Train

It should be noted that for our approach to achieve fast offline computation time, it is
necessary to process a batch of cost function evaluations in parallel. Without access to
this parallelization capability, the time required to find the TT model using TT-Cross
could become unacceptably long.

4.8 Further Possible Extensions

Our approach can be applied to other robotics problems as long as they can be ex-
pressed as optimization problems. For example, optimal control formulates the task
of determining control commands as an optimization problem. Recent research has
employed a database approach to warm start an optimal control solver (as explained
in Section 4.2.2), which could potentially benefit from the use of TTGO. It should be
noted that control problems can be more demanding than planning problems since the
cost function is more sensitive (i.e., slight changes in the control commands can result in
significantly different state trajectories and cost values). Therefore, additional research
is necessary to adapt the approach to such problems. Moreover, certain applications,
like task and motion planning [82] or footstep planning for legged robots [83], can be
formulated as Mixed Integer Programming (MIP). Given that our approach does not
necessitate gradient information, combining discrete and continuous optimization can
provide another compelling area for further research.

The choice of transformation used to obtain the probability function from the cost
function plays an important role in our approach. In the chapter, we used an exponential
function as the transformation function, however, a study on other possible transformation
functions should be investigated in future work. Moreover, in many robotics applications,
the user has the flexibility to design the cost function. This will also play a role in our
approach, as smoother functions can be captured as a low rank TT model using TT-Cross
with significantly lower computational cost. In the robotic applications considered in this
chapter, we used the standard cost functions and it was non-smooth due to the cost on
collision avoidance. However, a smoother cost function could still potentially be designed
for such applications. This could improve the performance and the computation time
reported in this chapter.

We used here an unsupervised approach for obtaining the TT model (and consequently
the TT distribution, which captures low-cost solutions) using TT-Cross, which only
requires the definition of the cost function. This approach is motivated by the fact that
in various applications, it may not be feasible to access the samples (or solutions) that
correspond to low cost for different task parameters. Nevertheless, if we have a repository
of good solutions (i.e., optimal solutions for different possible task parameters), we can

92

4.9 Conclusion

use an alternative approach. Instead of using TT-Cross to obtain the TT model, we can
use other modeling techniques like supervised learning or density estimation techniques,
as described in [26, 84, 25]. These techniques can still capture multiple solutions, given
the expressive power and generalization abilities of TT models, while also enabling quick
retrieval of solutions, as explained in this work using TTGO.

Morover, TTGO has the potential to be utilized for Learning-from-Demonstration in
robotics. One way to do this is by employing density modeling approaches [26, 25] to
create models of the demonstrations in TT format for different tasks. The techniques
proposed in this chapter can then be used in the inference phase to generate a new
solution for a new task. We describe this in more detail in the subsequent chapter.

4.9 Conclusion

In this chapter, we introduced TTGO and a novel framework for providing approxi-
mate solutions to optimization problems. Our evaluation on challenging benchmark
optimization functions and robotics applications (including inverse kinematics and mo-
tion planning) shows that our approach can produce high-quality solutions for difficult
optimization problems that are often unsolvable with standard random initialization of
solvers. Additionally, TTGO can provide multiple solutions from different modes, where
applicable, and allows for adjustment of the sampling priority to either focus on obtaining
the best solution or generating a diverse set of solutions. These features are highly
beneficial in initializing optimization solvers for challenging robotics problems. Moreover,
TTGO has the potential to be applied to other robotics tasks that can be formulated as
optimization problems, such as task and motion planning or optimal control, and learning
from demonstration. It could also serve as an alternative to mixed integer programming,
which is commonly used in legged robotics and contact-rich manipulation. Future work
will investigate these possibilities.

93

5 Learning to Control using Tensor
Train

Optimal control of dynamic systems with nonlinear dynamics poses a significant challenge
in robotics. To tackle this challenge, we introduce a novel algorithm, Generalized Policy
Iteration using Tensor Train (TTPI), rooted in Approximate Dynamic Programming
(ADP). We employ Tensor Train (TT) to approximate the state-value and advantage
functions. Leveraging the optimization technique Tensor Train for Global Optimization
(TTGO) from Chapter 4 for policy retrieval from the advantage function, allows us to
effectively address complex nonlinear systems beyond the capabilities of existing ADP
algorithms. Importantly, our algorithm excels in handling robotic systems with hybrid
action spaces, a formidable challenge for current methodologies. Unlike existing ADP
algorithms, the proposed approach does not make any assumption on the structure of the
dynamics model and only requires access to a simulator. We first test the approach for
various classical control problems. We demonstrate the superiority of our approach over
previous baselines for some benchmark problems with hybrid action spaces. Additionally,
the robustness and generalization of the policy for hybrid systems are showcased through
a real-world robotics experiment involving a non-prehensile manipulation task.

Publication Note

The material presented in this chapter is adapted from the following publication:
• S. Shetty, T. Xue, and S. Calinon, “Generalized policy iteration using tensor

approximation for hybrid control,” in International Conference on Learning Rep-
resentations (ICLR), 2024, (spotlight paper, 5% acceptance rate)

Supplementary material including videos and source codes related to this chapter are
available at: https://sites.google.com/view/ttpi4control/home

95

https://sites.google.com/view/ttpi4control/home

Chapter 5. Learning to Control using Tensor Train

5.1 Introduction

Robotic systems often exhibit complex nonlinear dynamics that may involve hybrid
actions. The need for real-time control, high precision, and adequate robustness to cope
with disturbances or changes in the environment can result in demanding computational
requirements that are challenging to meet with classical control methods. Optimal
Control (OC) based on the principles of Dynamic Programming (DP) is a popular tool in
robotics but they are still limited to systems with continuous actions and differentiable
dynamics.

Approximate DP (ADP) and Reinforcement Learning (RL) overcomes the curse of dimen-
sionality faced by classical DP algorithms by using function approximation techniques
[85, 86]. ADP is synonymous with OC and uses the system’s model to obtain an optimal
policy, while RL focuses on learning a policy through trial-and-error interactions with the
environment. Both methods aim to find a compact representation of the value functions
to obtain a control policy. ADP faces difficulty in approximating the value function
throughout the entire state space. Conversely, RL restricts its approximation to a smaller
region where data is collected, resulting in limited generalizability but greater scalability.
However, the existing approaches for both ADP and RL face challenges in handling
hybrid action space. Furthermore, existing ADP approaches make assumptions on the
dynamic model of the system (e.g., control affine), hence can not work with modern
simulation tools, and also find it challenging to cope with large action spaces and hybrid
states.

In this chapter, we present a novel ADP algorithm, called Generalized Policy Iteration
using Tensor Train (TTPI) which overcomes the challenges faced by existing ADP methods
for hybrid system control, and unlike existing methods does not require any assumption
on the system dynamics and the reward function. TTPI is an approximate version of the
Generalized Policy Iteration (GPI) algorithm—a DP algorithm that encompasses both
Value Iteration (VI) and Policy Iteration (PI) algorithms. We use Tensor Train (TT)
(see Chapter 2), to model the state-value and the advantage function.

TT acts as a versatile function approximator that allows us to simultaneously handle
continuous and discrete state and action variables as described in Chapter 2. It approxi-
mates a given function as a sum of products of univariate functions, allowing for fast
algebraic operations and interpretation. The use of TT-Cross (see Section 2.8) provides
us with a powerful gradient-free method to approximate functions in a nonparametric
manner, allowing us to achieve TT approximation of state-value and advantage function
with a desired accuracy in a fast manner, by exploiting the knowledge of the system
model (e.g., a simulator) and the reward function. Moreover, the TT representation of

96

5.2 Background

the advantage function enables us to use optimization techniques such as Tensor Train
for Global Optimization (TTGO) as described in Chapter 4 to retrieve policies for hybrid
action spaces.

The TT representation is particularly effective when the function being approximated
is smooth, resulting in a low-rank representation in the TT format. Our experiments
demonstrate that such property is frequently observed in ADP while dealing with hybrid
systems. Indeed, even though the system dynamics and reward functions may be
non-smooth and discontinuous, the optimal value functions typically exhibit low-rank
structures.

Contributions: We introduce TTPI, a novel ADP algorithm for optimal control that
leverages TT as a function approximator to address the challenges of hybrid system control
in robotics. Our approach is interpretable and eliminates the need for differentiability of
the system dynamics and reward function, which is a common assumption in the existing
ADP algorithms. Our experiments demonstrate that TTPI outperforms state-of-the-
art algorithms in terms of both training time and performance on various benchmark
control tasks for hybrid control. To showcase the practicality and generalization of our
approach, we conducted a real-world robotic experiment where we successfully tackled a
non-prehensile planar manipulation task that is notoriously difficult for existing control
methods. Our results demonstrate the robustness of the policy and highlight the potential
of our approach to addressing complex control problems in robotics.

5.2 Background

5.2.1 The Optimal Control Problem

We consider a discrete-time dynamic system with d1-dimensional state space and d2-
dimensional action space. For ease of presentation, we assume the dynamic system to
be deterministic, however, our approach can also handle a stochastic model (see Section
5.3.2).

We denote the state at time t by st = (s1
t , . . . , sd1

t) , and action by at = (a1
t , . . . , ad2

t).
The dynamics of the system is given by:

st+1 = f(st, at),
s.t. si

t ∈ Ωsi , ∀i ∈ {1, . . . , d1},

aj
t ∈ Ωaj , ∀j ∈ {1, . . . , d2},

(5.1)

where the domain of each state Ωsi and action Ωaj can be a bounded real interval or a

97

Chapter 5. Learning to Control using Tensor Train

discrete set. Let Ωs denote the state space and Ωa denote the action space.

Let r(s, a) represent the reward function and ∆t be the time step for the discrete time
control. We define R(s, a) = r(s, a)∆t. Our goal is to obtain an optimal policy π∗ for
the following infinite horizon optimal control problem for any given initial state in the
state space s0 ∈ Ωs:

π∗ = arg max
π

∞∑
t=0

γtR(st, π(st)), ∀s0

where st+1 = f(st, π(st))
(5.2)

where γ is the discount factor 0 ≤ γ < 1.

We do not make any assumption on the structure or differentiability of the dynamics f

and the reward function r. For example, a black box deterministic simulator that returns
the next state and the reward for the state-action pair satisfies our requirement. However,
for a fast implementation of our algorithm described in Section 5.3.1, the simulator should
ideally process a batch of state-action pairs for parallel implementation.

5.2.2 Dynamic Programming

The state-value function V π corresponding to a policy π, with discount factor γ, is defined
as follows:

V π(s0) =
∞∑

t=0
γtR(st, π(st)), ∀s0,

where st+1 = f(st, π(st)), ∀t.
(5.3)

Given a state-value function V : Ωs → R, a policy π and the discount factor γ, the Bellman
operator Bπ is a functional that is defined as BπV (s) = R(s, π(s)) + γV (f(s, π(s))), ∀s ∈
Ωs where Bπ : V → V.

We define the advantage function AV corresponding to the value function V as follows:

AV (s, a) = R(s, a) + γ(V (f(s, a))− V (s)), ∀(s, a) ∈ Ωs × Ωa. (5.4)

98

5.3 Generalized Policy Iteration using Tensor Train

5.2.3 Challenges in Approximate Dynamic Programming

Algorithm 6 describes the value iteration (VI)
algorithm [85], a popular DP algorithm.
One of the challenges in implementing the
VI algorithm and other similar DP algo-
rithms including the Policy Iteration (PI) al-
gorithm [85] in practice is the curse of dimen-
sionality in representing the value function
when the involved state space is either high-
dimensional or includes continuous states.
ADP addresses this challenge by using func-
tion approximation techniques.
In addition, retrieving the policy πk from the
advantage function is difficult if it is noncon-
vex, if there are bounds on the actions, if the
action space is large, or if the action space is
hybrid. An inefficient optimization technique
for policy retrieval increases the overall time
of the algorithm, as it must be repeated for
each state in every iteration, and it results
in a sub-optimal policy. The lack of such
policy retrieval techniques is a bottleneck in
the development of ADP algorithms for a
general nonlinear system, including hybrid
systems.

Algorithm 6 VI Algorithm
1: Input: Initial value function V 0,

convergence threshold ϵ

2: Output: Optimal policy π∗

3: Set k = 0
4: repeat
5: πk(s) := arg max

a
AV k(s, a)

6: V k+1 = BπkV k

7: if ∥V k+1 − V k∥∞ < ϵ then
8: break
9: end if

10: k ← k + 1
11: until convergence
12: V ∗ = V k

13: π∗(s) = arg max
a

AV ∗(s, a)

5.3 Generalized Policy Iteration using Tensor Train

We overcome the challenges mentioned in the ADP algorithms using TT as a function
approximator. First, we propose to model the advantage function explicitly in TT format.
As described in Chapter 2, the spline-based interpolation techniques (see Section 2.5.1)
allow TT representation to handle a mix of continuous and discrete variables (in this
case states and actions).

In addition to the availability of algorithms like TT-Cross for finding function approxi-
mation and the accompanying algebraic tools, an advantage of using TT decomposition
for approximating functions in ADP is its ability to efficiently find optima over a mix
of continuous and discrete variables. This was introduced as Tensor Train for Global

99

Chapter 5. Learning to Control using Tensor Train

Optimization (TTGO) in Chapter 4. In this chapter, we exploit this framework and use
the deterministic version of TTGO described in Section 4.3 for policy retrieval from the
advantage function modeled in TT format.

Recall that TTGO provides approximate optima of a function in TT format. The solution
obtained from such a procedure can be refined further using local optimization techniques
such as Newton-type optimization for continuous variables. But, in practice, the refine-
ment procedure is often not required. In this chapter, we identify and exploit TTGO’s
ability to handle a mix of continuous and discrete variables. In addition, we perform
optimization in the batch form: we propose to model the advantage function A(s, a) in
ADP in TT format, and adapt TTGO to obtain the optimal actions a corresponding to
a batch of states s (i.e. parallel computation of arg max

a
A(s, a)) in an efficient manner.

5.3.1 Description of the Algorithm

By combining the conceptual ideas proposed so far, Algorithm 7 presents the TTPI
algorithm, which addresses the previously mentioned challenges in ADP using TT as
the function approximator for state-value and advantage functions and TTGO for policy
retrieval. A pictorial description of the algorithm is presented in Figure 5.1.

In the TTPI algorithm, the value update step involves computation of the policy πk(s)
(i.e., arg max

a
AV k(s, a)) numerous times across several iterations. To compute V k

j in

TT-format, the function BπkV k
j−1 is queried iteratively using TT-Cross(BπkV k

j−1, rmax, ϵ),
with batches of states (usually ranging from 10,000 to 100,000 in practice). This requires
computing the policy πk for each of these states in batch form. We use TT-round to
compress the value functions in TT format at the end of every policy evaluation (i.e.,
after updating the value function for the current policy). We use cubic spline-based
interpolation for continuous variables which reduces the number of discretization points
required by TT-cross to construct the TT model.

To resolve the bottleneck in policy retrieval, we propose to compute the advantage
function AV k in TT format using TT-Cross. This is efficient as the calculation only
requires evaluating V k and R(s, a), which are cheap to compute. As a result, πk(s)
over batches of states can be obtained quickly. Most importantly, this allows us to
handle hybrid action space. The computational cost involved in retrieving a solution is
O(nNd2 r2

max) which is linear in the number of discretizations (n) of an action variable,
the number of candidates used in TTGO (N) and the dimension of action space (d2).

A PyTorch-based GPU-accelerated implementation of these algorithm can be found

100

5.3 Generalized Policy Iteration using Tensor Train

Policy from TTGO

Model / Simulator

Advantage Function

State-Value Function

Figure 5.1: This figure shows an iteration of the TTPI algorithm described in Algorithm
7. At each iteration, we compute state-value function in TT format using TT-cross
using the previous estimate of the state-value function and the policy, where the policy
is retrieved from TTGO with the advantage function. The advantage function is also
computed in TT format using TT-cross using the state-value function.

at https://sites.google.com/view/ttpi4control/home. The software is based on [79], a
library for working with tensor networks. The computational cost of the algorithm
increases linearly with the number of dimensions in both state and action spaces and
grows quadratically with the rank of the functions represented in TT format, thanks to
the properties of TT-Cross and TT-representation.

5.3.2 Adaptation to Stochastic Systems

In this section, we show how our approach can be extended to consider stochastic system
dynamics. Instead of relying on deterministic system dynamics of the form s′ = f(s, a),
we consider the transition probability P (s′, s, a) and the reward function R(s, a) in
TT format. The transition probability P (s′, s, a) can be obtained by fitting a density
model to data collected from the robot. To achieve this, we can employ the TT format
for density modeling as suggested by [25] and [26]. Alternatively, if the function P is
available in a different format such as NN, we can utilize TT-Cross. By leveraging the
algebraic tools provided in TT format, we can normalize P such that

∑
s′ P (s′, s, a) = 1

(or integrate if s′ is continuous). The following outlines the procedure to update the

101

https://sites.google.com/view/ttpi4control/home

Chapter 5. Learning to Control using Tensor Train

value function and policy under this approach:

V k =TT-Cross(Uk, Ω̂s, rmax, ϵ),
Uk(s) =R(s, πk(s)) + γW k(s, πk(s)),

W k(s, a) =
∑
s′

P (s′, s, a)V k(s′),

AV k(s, a) =R(s, a) + γ(W k(s, a)− V k(s)),
πk(s) = arg max

a
AV k(s, a).

(5.5)

In the above algorithm, as P and V k are both in TT format, we can obtain W k

efficiently by using algebraic operation over TT format (namely, element-wise product
and contraction operations over s′). Then AV k can be readily computed in TT-format
using addition operations over the TT tensors as R, W k, and V k are also in TT format.
We only need TT-cross to find V k. Hence the algorithm would be very efficient if
P is known in TT format. But, in this chapter, we will only consider systems with
deterministic dynamics.

5.4 Experiments

In our experiments, we utilized an NVIDIA GeForce RTX 3090 GPU with 24GB of
memory. For the applications considered, we discretized each continuous variable with 100
points using uniform discretization. To approximate the value and advantage functions
in TT format using TT-Cross, an accuracy of ϵ = 10−3 proved sufficient. We set rmax
to a large value of 100. The discount factor was chosen in the range of 0.99 to 0.9999,
depending on the time step ∆t which ranged from 0.01 to 0.001. The rank of the value
function in the applications considered ranged between 5 to 50, and the rank of the
advantage function was roughly twice that of the value function.

5.4.1 Simulation Experiments

Baseline: To the best of our knowledge, there are no established approaches for OC
based on ADP algorithms that can handle hybrid actions. To evaluate our algorithm
performance, we compared it against Deep RL techniques for hybrid action spaces such
as HyAR, HPPO and PDQN [87, 88, 89]. The HyAR algorithm has shown superiority
over other Deep RL techniques for high-dimensional hybrid action spaces. It is important
to acknowledge that TTPI assumes access to the system dynamics (e.g., a simulator) and
the reward function, whereas Deep RL techniques, in theory, are agnostic to the system

102

5.4 Experiments

Algorithm 7 TTPI: Generalized Policy Iteration using Tensor Train
1: Input:
2: nv: Number of value update steps
3: ϵ: Accuracy of TT representation
4: rmax: Maximum TT-rank
5: δmax: Convergence tolerance
6: r(s, a): Reward function
7: ∆t: Time Discretization
8: f(s, a): Forward simulation
9: Ω̂s: Discretization of state space

10: Ω̂: Discretization of state-action space (Ω̂s × Ω̂a)
11: N : Number of candidate samples for optima used in TTGO.

12: Output: Policy π∗

13: Initialize:
14: Initialize in TT-format: V 0 = 0

15: Initialize Advantage model: AV 0 = TT-Cross(R(s, a), Ω̂, rmax, ϵ)
16: (alternatively, initialize arbitrarily)

17: Set k = 0
18: while δ ≤ δmax do

19: k ← k + 1

20: πk(s) := argmax
a

AV k−1(s, a) (Use TTGO)

21: V k
0 = V k−1

22: for j ← 1 to nv do

23: V k
j (s) = TT-Cross(Bπk

V k
j−1, Ω̂s, rmax, ϵ)

24: end for

25: V k = TT-round(V k
nv

, ϵ)

26: Ak(s, a) = R(s, a) + γ(V k(f(s, a))− V k(s))

27: AV k = TT-Cross(Ak, Ω̂, rmax, ϵ)

28: δ = ∥V k−V k−1∥2
∥V k−1∥2

29: end while

30: Set V ∗ = V k

31: π∗(s) = argmax
a

AV ∗(s, a)

103

Chapter 5. Learning to Control using Tensor Train

Figure 5.2: The tasks considered in this study
involve controlling an agent to reach a target
point in a 2D space. In the first task, called
“Catch-Point”, the agent has control over its
heading direction (continuous) and the op-
tion to either stop or move toward the target
(binary variable). In the second task, known
as “Hard-Move”, the agent is equipped with
m actuators, and it can decide to activate or
deactivate each actuator (m binary actions)
and specify acceleration along each actuator
(m continuous variables).

model and implicitly address a more challenging problem than TTPI. However, many of
these methods are data-inefficient and, like TTPI, assume access to a simulator.

Evaluation: We evaluated our algorithm on two benchmark problems involving systems
with hybrid action spaces: the Catch-Point (CP) Problem and the Hard-Move (HM)
problem, as proposed by [87]. The Catch-Point Problem has four states and an action
space with one discrete and one continuous action. The Hard-Move problem has m

actuators, resulting in a total of 2m action variables (i.e., d2 = 2m), with m binary and m

continuous variables. Thus, this problem allows testing the scalability for high-dimensional
action spaces by increasing m.

The results, as presented in the table, provide strong evidence of TTPI’s superior
performance compared to the baseline method. TTPI demonstrates faster training times
and generates highly performant policies. In contrast, the baseline method struggles
with generalization and produces lower-quality solutions, particularly for the Hard-Move
problem with a number of actuation d2 > 24 . This is attributed to TT-Cross accurately
modeling the value functions by leveraging the system model and reward function, in a
fast manner and efficient policy retrieval using TTGO.

5.4.2 Additional Simulation Experiments

In addition to the benchmark problems on hybrid actions provided in the main section,
we performed further experiments to evaluate the performance of our approach on some
benchmark optimal control problems involving continuous states including Point-mass
control (double integrator) with obstacles, Cart-Pole Swing-up, and Box-pivoting. The
video and the supplementary material provided on the website associated with the chapter
show the performance of the policy obtained by TTPI on these tasks.

104

5.4 Experiments

d1 d2 HPPO PDQN HyAR TTPI
T µ S T µ S T µ S T µ S

CP 4 2 0.5h 0.13
±0.01

86%
±6% 1.9h 0.16

±0.05
84%
±6% 4h 0.15

±0.02
92%
±4% 30s 1 100%

HM(8) 4 16 1.4h 0.15
±0.01

8%
±2% 2.1h 0.19

±0.03
8%
±3% 8h 0.92

±0.01 100% 850s 0.93
±0.01 100%

HM(12) 4 24 NA NA NA NA NA NA 10h 0.92
±0.05

12%
±5% 946s 0.92

±0.01 100%

HM(16) 4 32 NA NA NA NA NA NA 10h NA 0% 1743s 0.92
±0.02 100%

Table 5.1: We used the success rate (S) for reaching the target position as one of
the metrics. We note that the primary objective of both approaches, in the problems
considered here, is to reach the goal in the shortest possible time or path. So as a second
metric (µ), we calculate the square of the ratio between the length of the trajectory
generated by each policy and the length of the shortest path for HM task. For CP task,
µ is the inverse of the number of catch motions till reaching the goal. The table includes
the training time (T) required to obtain the policy used for evaluation. The number of
states is d1 and the number of actions is d2.

5.4.3 Real Robot Experiments

We demonstrate the effectiveness of our proposed method for hybrid system control
on a planar pushing task with a face-switching mechanism [90] and involves discrete
states and actions. The objective is to push a block with freedom in switching both
the contact modes and faces. It is modeled using 6 states and 4 actions. The action
includes a discrete variable representing the index of next contact face. Its underactuated
and hybrid nature, coupled with multiple discrete contact modes, makes it difficult to
design effective control strategies, and it has been a test-bed problem for the control of
hybrid systems. Previous approaches, such as mixed integer programming [91] and hybrid
Differential Dynamic Programming [92], have struggled with the high computational
cost required for solving the problem, which requires robust algorithms that can handle
the complexity of hybrid systems with both continuous and discrete variables. Note
that typically such a non-prehensile manipulation problem is formulated differently as
continuous control [93] due to a lack of methodologies to handle hybrid actions and is
not representative of hybrid control in robotics applications.

The objective of the task is to push a block with the option of switching the face of the
block to be pushed, as well as the contact mode used for pushing. We demonstrate that
the proposed algorithms can achieve this task robustly in both simulation and the real
world. A video of the experiments is provided in the supplementary material.

The state of the system is denoted as [q⊤
s q⊤

p cc]⊤, where qs = [sx sy sθ]⊤ is the
position and orientation of the block, qp = [px py]⊤ is the position of end-effector, and

105

Chapter 5. Learning to Control using Tensor Train

cc ∈ {0, 1, 2, 3} is the current contact face. The action is expressed as [v⊤ cn]⊤, where
v = [vn vt]⊤ is the velocity of the end-effector, and cn ∈ {0, 1, 2, 3} is the next contact
face. The system, therefore, has d1 = 6 states and d2 = 3 control variables in total,
including both continuous and discrete variables.

Figure 5.3: Simulation of the motion of the
block under a policy from four different initial
states. The colored trajectories represent
the motion of the block to the target (qs =
[0 0 0]⊤), by means of contact mode and face
switching.

We first trained the control policy in simulation based on the predefined motion equation.
The continuous variables in state and action spaces are discretized into 100 bins. The
domain is set in the range from [−0.5m,−0.5m,−π] to [0.5m, 0.5m, π], with maximum
velocity defined as 0.1 m/s. The accuracy of TT-cross is defined as 10−3. The rank of
the final value function was found to be 4 and the rank of the advantage function was
40. Each iteration of the VI procedure took about 10 seconds on average. To test the
generalization capability of the policy, we randomly selected 1000 initialization points in
the domain. A success rate of 100% was obtained in under 10 minutes of training. Fig.
5.3 shows the simulation results. The reward function is defined as:

R(s, a) = −2∥qs∥ − (1− δ(cc − cn)), (5.6)

where qs represent the block pose, δ(cc − cn) will return 1 if cc = cn (no face switching),
otherwise, 0. Note that the flexibility offered by our method allows us to utilize such
reward functions.

We then tested the trained policy on the real robot setup (Fig. 5.4), using a 7-axis Franka
Emika robot and a RealSense D435 camera. The slider (rs = 6 cm) is a 3D-printed
prismatic object with PLA, lying on a flat plywood surface, with an Aruco Marker on
the top face. A wooden pusher (rp = 0.5cm) is attached to the robot to move the object.
The motion of the object is tracked by the camera at 30 HZ, and the policy is updated
at 100 HZ, with a low-level Cartesian velocity controller (1000 HZ) actuating the robot.

106

5.5 Related Work

Table 5.2: Performance of three real-world experiments

Experiments xerr/cm yerr/cm θerr/rad

Reaching -0.83 1.07 -0.06
Reaching with additional weight 2.89 -1.04 -0.01
Reaching with external disturbance -4.78 -4.10 -0.04

Three experiments were conducted to assess the robustness of our policy: a) Reaching
task: The robot pushes the slider from qs0 = [0.05m 0.16m 0]⊤ to the origin (Fig. 5.4a);
b) Reaching with additional weight: The robot pushes the block from the same
initialization as before, but with an additional weight, 3 times heavier than the block
(Fig. 5.4b); c) Reaching with external disturbance: The same initialization like
before, but with a significant external disturbance of qdist = [0.1m 0.03m 90◦]⊤ exerted
by a human (Fig. 5.4c).

The results of these experiments are shown in Table 5.2. The results show that in all
experiments, the policy successfully reaches the final target in terms of both position and
orientation. The error increases with the disturbance, while orientation errors remain
less than 4◦ and position errors remain less than 5cm even under significant disturbance.
Experiment 3 demonstrates that the policy is able to dynamically select the contact face
based on the current state, as evidenced by the change in contact face after a 90◦ rotation.
This highlights the ability of our method to handle both continuous and discrete variables
in hybrid systems.

Our algorithm achieves robust performance 100% success rate (reaching the goal) in
both simulation and real-world experiments for this task. The experiments demonstrate
successful reaching of the target position and orientation, even in the presence of additional
weight and external disturbances, as shown in Fig. 5.4. This indicates the potential of
TTPI for solving complex hybrid system control.

5.5 Related Work

In recent years, research has surged in the domain of optimal control for hybrid systems
which involve a mix of discrete and continuous state and action variables. Classical
techniques, like Mixed-Integer Programming (MIP) [94], unify continuous and discrete
variables in a single optimization problem. Abstraction and reachability analysis methods
[95] help adapt hybrid systems for traditional solvers. However, they often involve
high computational complexity and are not suitable for real-time decision-making. This
motivates the development of Approximate Dynamic Programming (ADP) techniques,
which involve approximating value functions to alleviate computational burdens and

107

Chapter 5. Learning to Control using Tensor Train

(a) Reaching (b) with additional weight (c) with disturbance

Figure 5.4: Pusher-slider system where the robot pushes an object by contact switching.
Three experiments were performed: The block being pushed towards the target as modeled
(a), with additional weight on the block leading to nonuniform friction distribution (b),
and with external disturbance (c). The policy obtained from TTPI was robust to handle
these scenarios.

handle high-dimensional settings.

The use of low-rank tensor approximation techniques for solving ADP was previously
proposed in [6], [7], and [96]. In [7] and [96], they proposed a TT-based value iteration
algorithm, where the TT was used to approximate the value function, and the policy
was retrieved using Newton-type optimization technique based on the value function.
This limits the application and speed of the algorithm, as the policy retrieval procedure
demands the system dynamics and the reward function to be differentiable and the action
space to be continuous.

Some of the NN-based ADP for continuous state and action space have been proposed
in fitted-Q iteration [97] and fitted-value iteration [98]. However, these methods have
demonstrated their applicability only to systems with low dimensional systems and they
have not been successful in handling hybrid action space. The NN-based ADP methods
have been overshadowed by the rise of Deep RL as they have demonstrated scalability to
problems with high dimensional state and action space. To overcome the issues in Deep
RL for handling hybrid actions several improvements were proposed by [99, 100, 88] and
[87].

108

5.6 Limitation and Future Work

5.6 Limitation and Future Work

TTPI approximates the state-value and advantage function over the entire state-action
space, resulting in a highly generalizable policy. However, computational complexity and
storage issues may arise when these functions are not low-rank in the TT representation.
For instance, systems involving highly agile movements like the acrobat (double pendulum
swing-up) can lead to high-rank in the TT representation. Nonetheless, decreasing the
time step ∆t has been observed to reduce the rank of these functions which may enable
the approach to handle such systems at the expense of longer training time.

TTPI may be well-suited for commonly encountered systems with discontinuities and
hybrid characteristics, such as manipulation and legged robotics. However, a drawback is
its reliance on highly parallelized simulators. Hand-coding the system’s dynamics and
reward function, as demonstrated in this work, may not be practical for more complex
dynamics involving contact. The availability of recently introduced GPU-based simulators
like NVIDIA Isaac Gym presents an opportunity to test the algorithm on more intricate
applications.

Concerning scalability, although existing Deep RL techniques struggle to produce optimal
policies and handle hybrid action space, they can cope well with high-dimensional state
space (e.g., images as states). On the other hand, TTPI can handle high-dimensional
hybrid actions and perform better compared to existing ADP methods, it may not be
suitable for very high-dimensional state spaces. However, we could potentially enable our
method to handle such high-dimensional problems by formulating our approach as an
RL problem instead of ADP or OC. In such cases, instead of TT-Cross, gradient-based
methodologies (see Section 2.10) could be used. This is described in more detail in
Section 5.6.1. Alternatively, we could use TTPI for model-based RL. In this case, a
dynamic model and a reward model of the system could be learned in a latent space
(lower dimension than the original observation space such as images) and then we can
apply TTPI on the latent space dynamic model.

5.6.1 Neural Tensor Train for Policy Learning

In this section, we describe how techniques proposed in this chapter along with the
TTGO proposed in Chapter 4 can enable policy learning in a data-driven setting. In the
RL setting, more specifically Q-learning, we have the data (s, a, r) (i.e., state, action,
reward) in addition to the access to a simulator or real robot and the objective is to learn
a Q-model. For imitation learning, we have only access to (s, a) (in some applications
(s, a, r)) without a simulator.

109

Chapter 5. Learning to Control using Tensor Train

Tensor Train

Figure 5.5: This figure shows the architecture of the Neural Tensor Train defined in
(5.7). The state s is passed through an encoder (e.g., a neural network) to obtain a
lower dimensional feature ŝ. Then, the feature concatenated with action a, i.e., (ŝ, a),
is passed to the TT basis model F (ŝ, a). This architecture facilitates retrieval policy
a∗ = arg max

a
Qntt(s, a) through TTGO. For density modeling applications a decoder

needs to be included as described in (5.10).

We propose to use the methodology described in Section 2.10 for function approximation
(i.e., a linear combination of basis functions with weights represented in TT format as the
model), called TT-basis model. Although it has been demonstrated to work for handling
high-dimensional problems such as the classification of images in [23] and [24] and density
estimation in [25], this framework does not still perform well for very high-dimensional
problems when compared to Neural Networks and needs adaptation. We aim to overcome
this issue for policy learning by using the observation that the action space is typically
low-dimensional in robotics (approximately equal to the number of joints in a robot) and
it is the state space (observation space) which is typically high-dimensional (e.g., images)
in these frameworks. To overcome the dimensionality issues with state space, we propose
to rely on a Neural Network (NN) to encode the state into a latent variable ŝ ∈ Rd̂1 with
d̂1 ≤ d1. We concatenate the corresponding latent variable with the action (ŝ, a) and
treat this as input to the TT-basis model. This framework still allows us to use TTGO
for policy retrieval as described below for applications such as Q-learning and imitation
learning. Thus, we combine the benefits of NN and TT, by proposing a new architecture
called Neural Tensor Train (NeuralTT) for policy learning for data-driven settings in
robotics.

110

5.6 Limitation and Future Work

Supervised Learning and Deep Q-Learning

Suppose we have access to data D = {(s, a, q)i}i=M
i=1 where q ∈ R is a score defining

how good is the state-action pair. For supervised learning, the input to the function
approximation model is (s, a) and the target output is the score q. We define below the
Neural Tensor Train model for such a setup:

ŝ = Encoder(s; θ), ŝ ∈ Rd̂1 ,

F ((ŝ, a); W) =
〈

W , Φ((ŝ, a))
〉

,

Qntt((s, a); W , θ) = F ((ŝ, a); W),

(5.7)

where Φ((ŝ, a)) is basis function and W is the weight tensor in TT format as described
in (2.20) in Section 2.10, and θ is the parameters of encoder function which is a Neural
Network.

Given this architecture and the dataset, we can learn the parameters W and θ of the
parameterized function Qntt through stochastic batch gradient-descent and the familiar
back-propagation algorithm. The choice of loss function includes the mean squared error
with appropriate regularization on the learning parameters:

Loss(W , θ) =
∑

(s,a,q)∈D
(q −Qntt((s, a); W , θ))2 + λ1∥W∥+ λ2∥θ∥. (5.8)

Given the learned model Qntt, we can retrieve a policy using TTGO with:

π(s) = arg max
a

Qntt(s, a),

i.e., π(s) = arg max
a

F ((ŝ, a)), where ŝ = Encoder(s; θ),

i.e., π(s) = arg max
a

F((ŝ, a)),

(5.9)

where we obtain the TT model F of the TT-basis model F ((ŝ, a)) for employing TTGO
directly by discretizing and using the techniques described in Section 2.5.2.

We can also apply the above framework to Deep Q-learning (a.k.a. DQN) with Qntt as
the approximation of the Q-function. In this case, the score q is the target value for the
Q-function approximation in the Q-iteration algorithm. The advantage is that the policy
can be retrieved from the TTGO algorithm which is otherwise a well-known bottleneck
in DQN.

111

Chapter 5. Learning to Control using Tensor Train

Imitation Learning

For this application, we assume the data to be a collection of state-action pair D =
{(s, a)i}i=M

i=1 obtained from an expert. We frame this as a density modeling problem
with a density model defined as:

ŝ = Encoder(s; θ), ŝ ∈ Rd̂1 ,

s̃ = Decoder(ŝ; θ̂), s̃ ∈ Rd1 ,

F ((ŝ, a); W) =
〈
W , Φ((ŝ, a))

〉
,

Qntt((s, a); W , θ) = F ((ŝ, a); W)2

Z
,

(5.10)

where Φ((ŝ, a)) is some basis function and W is the weight tensor in TT format and Z

is the normalization constant as described in Section 2.10 and (2.21). θ and θ̂ are the
parameters of the encoder and decoder function which are Neural Networks.

Given this architecture and the dataset D, we can learn the parameters W, θ and θ̂

of the parameterized function Qntt through stochastic batch gradient-descent and the
familiar back-propagation algorithm. The choice of loss function for density estimation is
described below, which includes a loss term for encoder-decoder architecture along with
a negative log-likelihood for density estimation:

Loss(W , θ, θ̂) =
∑

(s,a)∈D

(
∥s− s̃∥2 − log(Qntt((s, a); W , θ))

)
+λ1∥W∥+λ2∥θ∥+λ3∥θ̂∥.

(5.11)

Once the model is trained, we can retrieve the policy as in (5.9).

5.7 Conclusion

In this chapter, we presented TTPI, an ADP algorithm that can handle nonlinear systems
without any assumption on the structure of dynamics. Through simulation experiments,
we showed that the algorithm is superior to state-of-the-art algorithms for dealing with
hybrid action spaces in terms of training time, generalization, and the quality of the policy.
We demonstrated the robustness of the policy of TTPI through real-world experiments.
The results demonstrate that our approach is promising for policy learning.

112

6 Conclusion

In many applications in robotics, the choice of function approximation plays a crucial
role in determining the feasibility and the computation efficiency of the algorithms. This
thesis demonstrates the significance of Tensor Networks (TNs) for function approximation
in robotics. In particular, we have demonstrated how the Tensor Train (TT), a type
of TN, can greatly benefit robotics by solving several well-known problems in robotics
that were previously considered intractable, including inverse kinematics with obstacle
avoidance, motion planning, ergodic exploration, and optimal control.

While classical function approximation techniques such as Gaussian Mixture Models
(GMMs) and Gaussian Processes (GPs) possess desirable features for applications in
robotics such as interpretability and facilitating calculus, probabilistic modeling, and
optimization, they are limited in expressibility and scalability. On the other hand,
modern deep learning frameworks based on Neural Networks (NNs) are expressive and
scalable, however, they do not facilitate calculus, probabilistic modeling, and optimization,
which limits their use in many applications in robotics. The TNs form a nice bridge by
being expressive (low to medium scale), allowing calculus, probabilistic modeling, and
optimization. This thesis identifies and exploits these properties of TT, a particular TN,
and introduces a novel framework called TTGO for the optimization of functions in TT
format, for solving a variety of problems in robotics that were not possible with other
function approximation techniques.

As described in Chapter 2, TT is equipped with powerful techniques, including gradient-
based and gradient-free approaches, to approximate target functions or the data in
TT representation. Unlike other function approximation techniques such as NNs, they
facilitate algebra and calculus, and hence operations such as multivariate integration,
differentiations, and solving PDEs can be done efficiently. Furthermore, they are especially
suited for probabilistic modeling and optimization (introduced in Chapter 4) which are

113

Chapter 6. Conclusion

of key importance in robotics.

In Chapter 3, we proposed a solution to improve the scalability and deployability of a
well-known ergodic exploration algorithm called Spectral Multiscale Coverage (SMC).
The SMC algorithm suffers from a curse of dimensionality mainly due to the computation
of Fourier-series coefficients and algebraic operations over several high-dimensional tensors
required to compute the control commands. We overcome these issues by using TT
representation. The use of TT allowed us to find Fourier series coefficients of high-
dimensional functions efficiently. Furthermore, the TT representation of various tensors
involved allowed us to perform algebraic operations over these tensors in an efficient
manner. Thus, it enabled us to compute the control commands efficiently and implement
ergodic exploration in a closed-loop manner, which is crucial for successfully handling
tasks like peg-in-hole insertions.

The solution proposed in Chapter 3 applies to other robotics applications dealing with
challenges involving calculus (specifically integration, differentiation, spectral analysis,
and solving PDEs) and algebraic operations over tensors. For example, another popular
exploration algorithm called HEDAC [54] suffers from a similar issue in scalability and
deployability as it involves convolution over high-dimensional tensors and solving diffusion
equations (a parabolic PDE). By using the TT representation we could potentially improve
the computational efficiency of such algorithms.

In Chapter 4, we introduced a new technique called TTGO to optimize functions in
TT format. This method is highly parallelizable and can handle a mix of continuous
and discrete variables. This amplifies the importance of TT for function approximation,
particularly in robotics where many problems are formulated as optimization problems.
We demonstrated its effectiveness in solving inverse kinematics with obstacles and motion
planning problems.

With TTGO in hand, in Chapter 5, we proposed an algorithm called TTPI for optimal
control synthesis using Approximate Dynamic Programming (ADP). This algorithm
overcomes the common issue of dealing with high-dimensional state and action space
in ADP algorithms and can handle more complex systems including hybrid state and
action space. Furthermore, it enables ADP algorithms to work with modern simulators
without assumptions about the structure of the dynamic model. This suggests that TT
representation is a promising tool for policy learning, impacting various algorithms used
for learning policies, including Reinforcement Learning and Imitation Learning.

Although TT is applicable for a wide range of problems in robotics, it is not suitable for
applications involving very high dimensionality and hence unsuitable for applications such
as policy learning for systems with high-dimensional state space such as images. A novel

114

architecture called Neural Tensor Train (NeuralTT) as proposed in Section 5.6.1 has the
potential to overcome this issue for policy learning by combining the benefits of modern
deep learning frameworks and TT. The modern deep learning frameworks such as Neural
Networks do not facilitate calculus or optimization and hence pose challenges in retrieving
policies when the function being approximated (or learned) is a joint function of states
and actions (e.g., Q-function or energy function). NeuralTT combines the scalability of
deep learning frameworks with the benefits of TT for calculus and optimization. This
makes it a promising tool for policy learning in various applications such as imitation
learning (density modeling) and reinforcement learning.

The techniques proposed in this thesis using TT could be improved in terms of perfor-
mance by using better discretization strategies (e.g., Chebyshev grid instead of uniform
discretization), quantization procedures (e.g., use of quantized tensor train [16]) and
improvement in cross-approximation (TT-Cross) algorithms. We have used spline-based
interpolation for approximating functions of continuous variables, however, other method-
ologies such [101, 102, 48] which directly consider the interpolation scheme during the
cross approximation could potentially improve the efficiency of approximating target
functions in TT format.

In this thesis, we have targeted well-known problems such as ergodic exploration, inverse
kinematics, motion planning, and policy learning. In addition to the several poten-
tial extensions of the techniques introduced in each chapter, it would be interesting
to explore other areas in robotics with similar challenges including state estimation,
system identification, Simultaneous Localization and Mapping (SLAM), and control using
Koopman operators [103]. While this thesis has primarily utilized only TT, a specific
TN architecture, it would be interesting to explore other more expressive and complex
tensor networks, including tree tensor networks, MERA, and PEPS [1].

115

A Appendix to Chapter 3

A.1 Proof of Fourier Coefficients Decomposition

A one-dimensional integral

s =
∫ l

x=0
f(x)dx,

can be computed numerically with the Gaussian-Quadrature (GQ) rule as

s =
N∑

j=1
αjf(xj),

where N represents the degree of approximation (specified by the user), xj represents the
discretization points, and αj are the corresponding weights. For any polynomial function
of degree less than 2N − 1, the above summation gives exact result without any error
in the integration. For a given N , xj and αj can be computed and are readily available
using software packages for scientific computing.

We need to evaluate the multidimensional integral (3.1) to find Ŵk. Let xj be the
discretization points and αj the corresponding weights, with j ∈ {1, . . . , N}, obtained
from the GQ rule for a given N . Let J = {j = (j1, . . . , jd) : ji ∈ {1, . . . , N}} be the
index set. We can discretize the domain Ω at xj = (xj1 , . . . , xjd

), with j ∈ J . Let P
be the tensor formed by evaluating the reference distribution P (x) at the discretization
points, i.e., Pj = P (xj).

117

Appendix A. Appendix to Chapter 3

Then, we can evaluate (3.1) using GQ as

Ŵk =
∑
j∈J

αj1 · · ·αjd
P (xj)Φk(xj),

=
∑
j∈J

αj1 · · ·αjd
P (xj)ϕi1(xj1) · · ·ϕid

(xjd
), ∀k ∈ K. (A.1)

Discretizing P (x) at the GQ points xj = (xj1 , . . . , xjd
) with j ∈ J , we can get the tensor

P , with Pj = P (xj).

Consider a TT-representation of P given by the TT-cores (P1, P2, . . . , Pd), so that for
j = (j1, . . . , jd) ∈ J we have

Pj = P1
:,j1,:P2

:,j2,: · · ·Pd
:,jd,:.

Substituting the above expression in (A.1) yields

Ŵk =
∑
j∈J

αj1 · · ·αjd
P1

:,j1,: · · ·Pd
:,jd,:ϕk1(xj1) · · ·ϕkd

(xjd
)

=
(N∑

j1=1
αj1P1

:,j1,:ϕk1(xj1)
)
· · ·

(N∑
jd=1

αjd
Pd

:,jd,:ϕkd
(xjd

)
)

. (A.2)

Also, we know that the TT-decomposition of Ŵ takes the form

Ŵk = Ŵ1
:,k1,: · · ·Ŵ

d
:,kd,:, ∀k ∈ K. (A.3)

Comparing (A.2) with (A.3), we obtain an expression for the TT-cores of the TT-
decomposition of Ŵ as

Ŵ i
:,k,: =

N∑
j=1

αjP i
:,j,:ϕk(xj), ∀k ∈ (1, . . . , K),

∀i ∈ (1, . . . , d).
(A.4)

118

B Appendices to Chapter 4

B.1 Evaluations on Benchmark Functions

We apply our framework to extended versions of some benchmark functions for numerical
optimization techniques, i.e., Rosenbrock and Himmelblau functions. They are known
to be notoriously difficult for gradient-based optimization techniques to find the global
optima, which could be more than one. Some of the functions also have some parameters
that can change the shape of the functions. We consider these parameters as the task
parameters, hence making the problem even more challenging. The benchmark functions
are considered as the cost functions and we transform them to obtain a suitable probability
density function. In addition, we also include a sinusoidal function to show that TTGO
can handle a cost function with an infinite number of global optima, and a mixture of
Gaussians to test the performance of TTGO on a high-dimensional multimodal function.

Furthermore, we also evaluate the prioritized sampling approach proposed in this work.
We show how the sampling parameter α influences the obtained solutions. When α is
small, the generated samples cover a wide region around many different local optima.
When α is close to one, the obtained samples are observed to be very close to the global
optima. All the results can be observed in Figure B.1- B.6, where the samples from the
TT distribution (without any refinement by another solver) are shown as blue dots. The
contour plot corresponds to the cost function in Figure B.1-B.5 and the density function
in Figure B.6, where the dark region is the region with low cost (i.e., high density).

In all of the test cases, we observe that the solutions proposed by TTGO are close to
the actual optima and that the refinement using SLSQP quickly leads to global optima
consistently. When there exist multiple solutions, we are also able to find them. Note
that the task parameters influence the locations of the global optima, and TTGO can

119

Appendix B. Appendices to Chapter 4

adapt accordingly by conditioning the model on the given task parameters. In all of the
following cases, we choose a uniform discretization of the domain with the number of
discretization points nk = 500 set for each variable to construct the TT model.

Except for the sinusoidal function, uniform sampling requires a large number of samples
to reach the global optima. For the mixture of Gaussians case, it fails most of the time to
get the global optima even after the refinement step. In contrast, we could consistently
get the optima using TTGO with few samples. In fact, by using α close to 1, we could
find the global optima with just one sample from the TT distribution.

Sinusoidal Function:

C(x) = 1− 0.5(1 + sin
(
4π||x||/

√
d

)
)

P (x) = 1− C(x),

where x = x2 = (y1, y2), , Ωx2 = [−2, 2]2 with no task parameters. For this function, find-
ing the optima is not a difficult problem. However, as the cost function has uncountably
many global optima (on the circles separated by one period of the sinusoidal function),
we use it to test the approximation power of TT-model and check the multimodality in
the TTGO samples. As we can see in Figure B.1 for d = 2, the samples from the TT
model mainly come from the modes corresponding to the optima and the nearby region
with cost values comparable to the optimal cost. At α = 0, we can still observe a few
samples in the white area (low density region), and as we increase α, the samples become
more concentrated in the dark area, i.e., high-density region.

Rosenbrock Function:

C(a, b, y1, . . . , yd2) =
d2/2∑
k=1

(y2k−1 − a)2 + b(y2k−1 − y2
2k)2

P (x) = exp
(
−C(x)2

)
,

where x = (x1, x2), x1 = (a, b), x2 = (y1, . . . , yd2), Ωx1 = [−1.5, 1.5]× [50, 150], Ωx2 =
[−2, 2]d2 . The function is similar to a banana distribution which is quite difficult to
approximate. The cost function C(x) for a specified (a, b) has a unique global minima at
(a, a2, . . . , a, a2). However, if we do not initialize the solution from the parabolic valley
area (see Figure B.2), a gradient-based solver will have difficulty in converging to the

120

B.1 Evaluations on Benchmark Functions

global optima quickly. We can see from Figure B.2 that TTGO samples are concentrated
around this region, allowing most of them to reach the global optima after refinement. In
fact, by increasing the α, the TTGO samples are already very close to the global optima
(as shown in red).

Figure B.3 shows how the task parameters x1 = (a, b) change the shape of the function
with respect to x2 and consequently the location of the global optima. After the offline
training, we condition our TT model on these task parameters and sample from the
conditional distribution Pr(x2|x1 = (a, b)). We can see in this figure that TTGO can
adapt to the new task parameters easily, as the samples are concentrated around the new
global optima.

We also test TTGO performance on Rosenbrock functions for d2 up to 30 and find that
it can find the global optima consistently. We show in the figures the results for the 2D
case, which are easier to visualize.

Himmelblau’s function:

C(a, b, y1, y2) = (y2
1 + y2 − a)2 + (y1 + y2

2 − b)2

P (x) = exp
(
−C(x)2

)
,

where x = (x1, x2), x1 = (a, b), x2 = (y1, y2), P (x) = exp(−C(x)), Ωx1 = [0, 15]2, Ωx2 =
[−5, 5]2. The cost function C(a, b, y1, y2) for a given (a, b) has multiple distinct global
optima and many local optima. The samples from the TT distribution Pr(x2|x1 = (a, b))
are shown in Figure B.4–B.5 for different choice of task parameters and the prioritized
sampling parameters α. We can see that TTGO can generate samples from all of the
modes consistently according to the task parameters.

Mixture of Gaussians:

P (x) =
J∑

j=1
αj exp

(
−βj ||x− aj ||2

)
,

We use an unnormalized mixture of Gaussian functions to define the probability function
P (x) to test our framework for high-dimensional multimodal functions. For verification,
we design the mixture components so that we know the global optima a priori by carefully
choosing the centers, mixture coefficients and variances. We test it for various values
for the number of mixtures J , β ∈ [1, 1000] and the dimension d ∈ (2, . . . , 50) of x. We

121

Appendix B. Appendices to Chapter 4

(a) α = 0 (b) α = 0.5 (c) α = 0.75 (d) α = 0.9

Figure B.1: 1000 samples (shown as blue dots) from the TT distribution of a 2D sinusoidal
function for different values of α. The function has an infinite number of global optima
(on the dark circles) and we see that TTGO is able to sample from these regions. As we
increase α, the samples become more concentrated on the circles.

choose x = (x1, x2) with Ωx = [−2, 2]d for various choices of values and dimension of
x. As TTGO does not differentiate between task parameters and optimization variables
internally, we could consider various possibilities to segment x into (x1, x2) as task
parameters and decision variables. We tested this problem for d < 100, and our approach
could consistently find the optima with less than 100 samples from the TT-model, for
arbitrary choice of variables being conditioned as task parameters. In contrast, finding the
optima using Newton-type optimization with random initialization is highly unlikely for
βj > 1 and d > 10, even after considering millions of samples from uniform distribution
for initialization.

Figure B.6 shows one particular example with J = 10, βj = 175 and d = 50. To visualize,
we choose x1 ∈ Rd−2 and x2 ∈ R2, and we generate 1000 samples from the conditional
TT distribution Pr(x2|x1). With low values of α, the samples are generated around all
the different modes, but as α is increased, the samples become more concentrated around
the mode with the highest probability.

B.2 Inverse Kinematics Formulation

The cost function for the inverse kinematics problem in Section 4.5.1 is given by

C(x) = 1
3

(
Cp(θ, pd)

βp
+ Cobst(θ)

βobst
+ Corient(θ)

βorient

)
, (B.1)

where x = (x1, x2) and:

• Cp(θ, pd) = ∥pd − p(θ)∥, Euclidean distance of the end effector position from the

122

B.2 Inverse Kinematics Formulation

(a) (a, b) = (1, 100) (b) (a, b) = (0, 140) (c) (a, b) = (0.5, 60) (d) (a, b) = (−1, 100)

Figure B.2: 1000 samples from the conditional TT distribution of a Rosenbrock function
for various choices of the task parameters (a, b) and α = 0. The function has a unique
global optimum at (a, a2) as shown in red. As the task parameters change, the global
optimum moves accordingly, but TTGO is still able to sample from the high-density
regions.

(a) α = 0 (b) α = 0.5 (c) α = 0.75 (d) α = 0.9

Figure B.3: 1000 samples from the conditional TT distribution of a Rosenbrock function
with the task parameters a = 1, b = 100 and various values of α. As α increases, the
samples become more concentrated around the global optimum (as shown in red).

desired position.

• Cobst(θ) represents the obstacle cost based on the Signed Distance Function (SDF).
The links are approximated as a set of spheres (as done in CHOMP), and we use
the SDF to compute the distance from each sphere to the nearest obstacle.

• Corient(θ) represents the cost on the orientation of the end-effector. In our applica-
tion, we specify a desired orientation of the end-effector, given by quaternion qd,
while allowing a rotation around the axis of rotation vd which corresponds to the
z-axis of the world frame. This constraints the gripper orientation to be horizontal
while allowing rotation around the z-axis. This is suitable for picking cylindrical
objects from a shelf. The cost is then Corient(θ) = 1− < v(θ), vd >2 where v(θ)
represents the screw axis (computed from the quaternion) of the actual end-effector
frame w.r.t. the desired frame. Alternatively, if the application demands a variation

123

Appendix B. Appendices to Chapter 4

(a) (a, b) = (3, 3) (b) (a, b) = (3, 14) (c) (a, b) = (7, 11) (d) (a, b) = (13, 5)

Figure B.4: 1000 samples from the conditional TT distribution of a 2D Himmelblau
function for various choices of the task parameters (a, b) and α = 0. The location of the
multiple global optima (in red) depend on the task parameters, but TTGO is able to
generate the samples from the high-density regions.

(a) α = 0 (b) α = 0.5 (c) α = 0.9 (d) α = 1

Figure B.5: 1000 samples from the conditional TT distribution of a 2D Himmelblau
function with task parameters a = 7, b = 11 for various values of α. As α increases, the
samples become more concentrated around the global optima.

in the desired orientation, one could use the pose (pd, qd) directly as the task
parameter.

• βp, βobst, βorient are scaling factors for each cost. Intuitively, they represent the
acceptable value for each cost. We use βp = 0.05, βobst = 0.01 , and βorient = 0.2
for the orientation.

For the IK problem of the 6-DoF UR10 robot, there is no obstacle cost, and the orientation
is specified to be identity (corresponding to upward-facing end-effector orientation)
without any free axis of rotation.

124

B.3 Motion Planning Formulation

(a) α = 0 (b) α = 0.5 (c) α = 0.75

(d) α = 0.9

Figure B.6: 1000 samples from the conditional TT distribution of a mixture of Gaussians
with J = 10, d = 50, βj = 175, and various values of α. For visualization, we choose the
the first d− 2 coordinates of µj to be the same for all j and choose the task-parameters
to be the first d − 2 coordinate of the centers. This density function has one global
optimum (in red) and some other modes that are comparable to the global optimum. As
α increases, the samples become more concentrated around the mode with the highest
density.

B.3 Motion Planning Formulation

For both the reaching and the pick-and-place tasks, the cost function, x = (x1, x2), is
given by

C(x) = 1
4

(
Cp(x)

βp
+ Cobst(x)

βobst
+ Corient(x)

βorient
+ Ccontrol(x)

βcontrol

)
, (B.2)

with the following objectives:

• Cp(x) represents the cost on the end effector position(s) from the target location(s).

• Cobst(x) represents the cost incurred from the obstacles computed using SDF as in
Section 4.5.1 but accumulated for the whole motion.

• Corient(x) represents the cost on the orientation of the end effector at the target
location(s).

• Ccontrol(x) represents the cost of the length of the joint angle trajectory and the
length of the end effector trajectory.

125

Appendix B. Appendices to Chapter 4

• βp, βobst, βorient, βcontrol are scaling factors for each cost. Intuitively, they represent
the acceptable nominal cost value for each cost. We use βp = 0.05, βobst = 0.1,
βorient = 0.2, βcontrol = 2.

We consider the initial configuration of the manipulator to be fixed (we can relax this
condition by considering the initial configuration as a task parameter). In the reaching
task, the objective is to reach an end effector target location on the shelf. In the pick-
and-place task, the objective is to reach a target on the shelf to pick an object, then
move to another target above the box to place the object, and finally move back to the
initial configuration.

Instead of considering the target in configuration space, we focus on Cartesian space, which
presents unique challenges for optimization-based motion planning solvers. Reaching
a target in configuration space typically yields a clear gradient to the solver, whereas
reaching a Cartesian target poses a more difficult optimization problem due to the larger
solution space, as the target may correspond to multiple configurations. A gradient-based
solver will attempt to reach the target with the configuration that is closest to the
initial configuration, particularly if initialized with a stationary trajectory at the initial
configuration. However, if this solution is infeasible, it is challenging for the solver to
find a different solution with a final configuration significantly different from the initial
one, unless initialized well. One alternative approach is to use inverse kinematics (IK) to
identify several possible final configurations, then use motion planning solvers to reach
those configurations. However, it is not easy to select good configurations as the target,
as it is difficult to determine whether a specific configuration is reachable from the initial
configuration. Moreover, even when a solution is found, it may be highly suboptimal.

Our approach involves tackling both the IK problem and motion planning problem con-
currently, with decision variables comprising the robot configuration(s) for the Cartesian
target(s) and the joint angle trajectory needed to achieve those configurations. While
optimizing both simultaneously can be challenging, our TTGO formulation enables us to
obtain multiple solutions. To simplify the problem’s complexity, we use motion primitives
to represent the joint angle trajectory, as outlined in Appendix B.4. By utilizing our
motion primitives formulation and given the initial and final configurations, we ensure
that the movement always starts from the initial configuration and ends at the final
configuration while complying with joint limitations.

Consider an m-DoF manipulator. The configuration of the manipulator can be represented
using the joint angles θ = (θ1, . . . , θm) ∈ Rm. We can assume that the domain of the
joint angles is bounded by a rectangular domain Ωθ = ×m

i=1[θmini , θmaxi]. We represent
the trajectory evolution in terms of the phase of the motion, i.e., t ∈ (0, 1) with t = 1

126

B.4 Motion Primitives

representing the end of the motion.

B.4 Motion Primitives

In our motion planning formulation, we generate motions using a basis function represen-
tation that satisfies the boundary conditions (with respect to phase/time) and the limits of
the trajectory (the magnitude) while maintaining zero velocity at the boundary. Suppose
we are given a choice of basis functions ϕ = (ϕk)J

j=1, ϕj(t) ∈ R,∀t ∈ [0, 1]. For example,
we could use radial basis functions ϕj(t) = exp

(
−γ(t− µj)2)

with µj ∈ [0, 1], γ ∈ R+.
We define a trajectory using a weighted combination of these basis functions as τ̂(t) =∑J

j=1 wjϕj(t). We transform this trajectory so that the boundary conditions and joint
limits are satisfied.

Given the trajectory τ̂(t), t ∈ [0, 1], and the boundary conditions τ(0) = τ0, τ(1) = τ1
and the limits τmin ≤ τ(t) ≤ τmax, we can transform τ̂(t) to obtain a trajectory τ(t) =
Ψ(τ̂(t), τ0, τ1, τmin, τmax) such that τ(0) = τ0, τ(1) = τ1 and τmin ≤ τ(t) ≤ τmax. We
define the transformation Ψ as follows:

1. Input: τ̂ , τ0, τ1, τmin, τmax

2. Discretize the time interval [0, 1] uniformly to obtain {ti}Ni=0 so that dt = ti+1 − ti,
t ∈ {ti}Ni=0.

3. Define ẑ(t) = τ̂(t) + τ0− τ̂(0) + t(τ1− τ0 + τ̂(0)− τ̂(1)), which satisfies the specified
boundary conditions.

4. Clip the trajectory within the joint limits to obtain z(t) = clip(ẑ(t), τmin, τmax).
The clipping will result in non-smoothness.

5. Smoothen the trajectory z(t) to obtain the desired trajectory τ(t): To do this, we
append the trajectory z(t) with the same values as initial value in the beginning
and with the final value at the end. Then we can apply a moving average filter
over the trajectory. This creates the desired smooth trajectory τ(t) that has zero
velocity at the boundary.

This way we can generate smooth motion while satisfying the boundary conditions and
the joint limits, and maintain zero velocity at the boundary.

127

Appendix B. Appendices to Chapter 4

Figure B.7: A distribution of 50 smooth trajectories generated by transforming trajectories
generated by using two radial basis functions with weights chosen uniformly in the range
[−1, 1]. The transformations are done to maintain a boundary condition τ0 = −0.25, τ1 =
0.25 and the limits τmin = −1, τmax = 1.

B.5 Comparison of Various Function Approximation Tech-
niques

In this section, we aim to illustrate the advantages of function approximation using the
Tensor Train (TT) decomposition.

The standard procedure for approximating a Probability Density Function (PDF) with a
GMM using Expectation Maximization (EM) involves the following steps: data collection
(sampling from the PDF), determining the number of components for the GMM, and
initializing the GMM parameters. However, it is essential to acknowledge that GMM-
based approaches, particularly when using EM, can face challenges related to sensitivity
to the number of components specified in the surrogate GMM. This sensitivity can impact
the quality of the approximation.

To address some of these challenges, Variational Inference (VI) techniques have been
developed as used in [10]. VI offers an alternative approach to approximating a PDF with
a GMM and has the advantage of not requiring an exact number of mixture components
as input. Instead, VI only necessitates an upper bound on the number of potential
mixture components. In our experiments, we utilized the VI algorithm provided by the
scikit-learn package to approximate a PDF using GMM which is also called Bayesian
GMM (BGMM) approximation.

We aim to demonstrate that while GMM-based approaches have their merits, they may
not be suitable for applications involving high-dimensional functions and the need for
precise modeling of joint probability distributions. In such cases, as demonstrated in our

128

B.5 Comparison of Various Function Approximation Techniques

work, the TT decomposition offers distinct advantages in terms of accuracy and efficiency
for function approximation, making it a preferred choice for the applications considered.

Experiment Setting: We created an ideal setting for function approximation using
GMM. We use another GMM (target PDF/GMM) with a known mean and covariances
as the target PDF and try to approximate it using BGMM. This allows us to quickly
generate as many samples as possible from the target PDF (because sampling from the
target GMM is straightforward). The amount of dataset generated for GMM modeling is
scaled with the dimensionality. We specify the number of mixture components in the
surrogate GMM to be twice that of the target GMM (an upper bound). This provides
an ideal target PDF and hyperparameters for function approximation using GMM. The
approximated model is finally evaluated with test data. We perform this evaluation for
variations in dimensionality (d) number of mixture components (k) of the target GMM,
and various choices of mean and covariances in the target GMM.

We created an ideal setup for GMM-based function approximation. Using another GMM
as target PDF with known parameters, we aimed to precisely approximate it with GMM.
This approach allowed us to efficiently generate a large dataset from the target GMM.
The amount of dataset generated for GMM modeling is scaled with the dimensionality.
The approximated model was tested across various dimensions, mixture components, and
target GMM configurations.

Observations: The performance of the GMM model (see Figure B.8) was notably subpar
and non-scalable in our evaluation. Notably, as the dimensionality (d) or the number of
components (k) in the target GMM increased, the accuracy of the approximated GMM
model deteriorated significantly, even within this idealized framework. This phenomenon
is a well-documented challenge associated with GMM approximation, particularly when
dealing with high-dimensional data [8].

In real-world scenarios, such as applications in robotics, the challenges further intensify:

• Data Collection: Gathering data from the target PDF for GMM approximation
can be a formidable task and it is not possible and is often not feasible for real
robotic applications. Approaches like importance sampling with variational inference
attempt to address this challenge, but they inevitably introduce a drop in accuracy.
For example, SMTO employs importance sampling with the proposal distribution
centered around trajectories between two given paths.

• Limitations in Expressiveness of GMM: GMMs exhibit limited expressive
power and are known to struggle when confronted with high-dimensional data [8].

129

Appendix B. Appendices to Chapter 4

In stark contrast, the TT format consistently outperforms GMM, even in ideal settings
tailored for GMM modeling. The TT model demonstrates accuracy that is orders of
magnitude higher than its GMM counterpart, and the computational time required
to obtain the TT approximation is similarly orders of magnitude faster than GMM
modeling. This is illustrated in Figure B.8, and the experimental details are provided in
the accompanying software for reproduction.

Furthermore, we observed that GMM modeling experienced convergence challenges as
dimensions and the number of mixture components increased. The impractical demands
on data storage and computation time further hindered its scalability.

To demonstrate the scalability of TT, we conducted a similar comparison with Neural
Networks (NN) under identical conditions (with the target function being a GMM).
For NN regression, we generated a dataset by randomly sampling inputs from the
function/pdf domain (NN inputs), with corresponding pdf values as the target outputs.
This comparison is illustrated in Figure B.9. Our findings indicate that even for high-
dimensional cases, the TT model outperforms the NN model in terms of accuracy and
computation time.

Conclusion: This evaluation clearly highlights the formidable challenges associated
with modeling a target Probability Density Function (PDF) using Gaussian Mixture
Models (GMM). In practical applications, this approach frequently falls short in terms of
accuracy and computational efficiency, rendering it impractical for tasks like modeling
joint distributions for warm-starting, as demonstrated in our work.

The intrinsic advantages of the TT format for function approximation underscore our
rationale for selecting this approach in our research. TT not only overcomes the limitations
and challenges of existing methods employing GMM but also excels in terms of accuracy
and computational speed. This underlines the effectiveness and suitability of TT as a
preferred method for modeling complex joint distributions in scenarios like warm-starting,
affirming the core contribution of our work.

In our experiment, TT-Cross was able to find the TT representation of the GMM
accurately in under 20 seconds for each test case, while NN and GMM took several
minutes and had a significantly higher error (often several orders of magnitude higher).
Furthermore, the other methods required significant effort to tune the hyperparameters,
whereas TT-Cross, as it is a non-parametric and unsupervised approach, was much easier
to use. This is because TT-Cross finds the approximation by querying data (the function
values at various points) intelligently [20] and exploits the structure in the function
(i.e., low-rank or separability). It can do so as TT-Cross directly takes the function
to be approximated as the input. On the other hand, NN takes a fixed set of samples

130

B.5 Comparison of Various Function Approximation Techniques

Figure B.8: The ratio of error in the approximation of the TT model found using TT-cross
over BGMM model found using VI. The TT model is orders of magnitude more accurate
than the GMM approximation. The experiment is conducted for the target PDF being
GMM with variations in dimensions (d), and number of mixture components (k). For
each case, the results are averaged over various choices of covariances (but constant
volume) and mean in the target GMM.

from the function and does supervised learning to find the function approximation. We
acknowledge that the approximation error in NN in our experiments could potentially
be reduced by using more training data, and using a more exhaustive search for best
hyperparameters. However, this would increase the training time and manual effort.

Although NN is an established tool for supervised learning over datasets, it is inefficient,
compared to TT-Cross, when we need to approximate a known low-rank function
accurately. Unlike TT-Cross, NN works with data collected from the function for the
approximation and does not have a feedback mechanism to query points from the function
during the approximation procedure. Thus, choosing NN as a function approximation
technique in Approximate Dynamic Programming as described in Chapter 5, where we
need to repeatedly approximate value functions from the previous estimations, comes
with a drawback. The software code for this comparison is provided in the supplementary
material at https://sites.google.com/view/ttgo/home.

131

https://sites.google.com/view/ttgo/home

Appendix B. Appendices to Chapter 4

Figure B.9: The ratio of error in the approximation of the TT model was found using
TT-cross over the Neural Network (NN) model. For high-dimensional problems, the TT
model is orders of magnitude more accurate. The experiment is conducted for the target
PDF being GMM with variations in dimensions (d), and number of mixture components
(k). For each case, the results are averaged over various choices of covariances (but
constant volume) and mean in the target GMM.

132

Bibliography

[1] R. Orús, “A practical introduction to tensor networks: Matrix product states and
projected entangled pair states,” Annals of Physics, vol. 349, pp. 117–158, 2013.

[2] L. Grasedyck, D. Kressner, and C. Tobler, “A literature survey of low-rank tensor
approximation techniques,” GAMM-Mitteilungen, vol. 36(1), pp. 53–78, 2013.

[3] A. Cichocki, “Era of big data processing: A new approach via tensor networks and
tensor decompositions,” ArXiv, vol. 1403.2048, 2014.

[4] S. Rabanser, O. Shchur, and S. Günnemann, “Introduction to tensor decompositions
and their applications in machine learning,” ArXiv, vol. 1711.10781, 2017.

[5] R. Ballester-Ripoll, P. Lindstrom, and R. Pajarola, “TTHRESH: Tensor compres-
sion for multidimensional visual data,” IEEE Transactions on Visualization and
Computer Graphics, vol. 26, pp. 2891–2903, 2018.

[6] M. B. Horowitz, A. Damle, and J. W. Burdick, “Linear Hamilton Jacobi Bellman
equations in high dimensions,” IEEE Conference on Decision and Control (CDC),
pp. 5880–5887, 2014.

[7] A. Gorodetsky, S. Karaman, and Y. Marzouk, “Efficient high-dimensional stochas-
tic optimal motion control using tensor-train decomposition,” in Proc. Robotics:
Science and Systems (R:SS), July 2015, pp. 1–8.

[8] S. Shetty, J. Silvério, and S. Calinon, “Ergodic exploration using tensor train:
Applications in insertion tasks,” IEEE Trans. on Robotics, vol. 38, no. 2, pp.
906–921, 2022.

[9] S. Shetty, T. Lembono, T. Löw, and S. Calinon, “Tensor trains for global opti-
mization problems in robotics,” International Journal of Robotics Research (IJRR),
2023.

133

Bibliography

[10] S. Shetty, T. Xue, and S. Calinon, “Generalized policy iteration using tensor approxi-
mation for hybrid control,” in International Conference on Learning Representations
(ICLR), 2024, (spotlight paper, 5% acceptance rate).

[11] L. Brudermüller, T. Lembono, S. Shetty, and S. Calinon, “Trajectory prediction
with compressed 3d environment representation using tensor train decomposition,”
in Proc. IEEE Intl Conf. on Advanced Robotics (ICAR), 2021, pp. 633–639.

[12] B. Nemec, M. M. Hrovat, M. Simonič, S. Shetty, S. Calinon, and A. Ude, “Robust
execution of assembly policies using a pose invariant task representation,” in 2023
20th International Conference on Ubiquitous Robots (UR), 2023, pp. 779–786.

[13] A. Cichocki, A. H. Phan, Q. Zhao, N. Lee, I. Oseledets, M. Sugiyama, and D. P.
Mandic, “Tensor networks for dimensionality reduction and large-scale optimization:
Part 2 applications and future perspectives,” ArXiv, vol. 1708.09165, 2017.

[14] N. Kishore Kumar and J. Schneider, “Literature survey on low rank approximation
of matrices,” Linear and Multilinear Algebra, vol. 65, no. 11, pp. 2212–2244, 2017.

[15] S. A. Goreinov, I. Oseledets, D. V. Savostyanov, E. E. Tyrtyshnikov, and N. Zama-
rashkin, “How to find a good submatrix,” in Matrix Methods: Theory, Algorithms
And Applications: Dedicated to the Memory of Gene Golub. World Scientific, 2010,
pp. 247–256.

[16] A. Cichocki, N. Lee, I. V. Oseledets, A. H. Phan, Q. Zhao, and D. P. Mandic,
“Tensor networks for dimensionality reduction and large-scale optimization: Part 1
low-rank tensor decompositions,” Foundations and Trends in Machine Learning,
vol. 9, pp. 249–429, 2016.

[17] I. V. Oseledets, “Tensor-train decomposition,” SIAM Journal on Scientific Com-
puting, vol. 33, pp. 2295–2317, 2011.

[18] N. Lee and A. Cichocki, “Fundamental tensor operations for large-scale data analysis
using tensor network formats,” Multidimensional Systems and Signal Processing,
vol. 29, no. 3, pp. 921–960, 2018.

[19] S. Dolgov and D. Savostyanov, “Parallel cross interpolation for high-precision
calculation of high-dimensional integrals,” Computer Physics Communications, vol.
246, p. 106869, 2020.

[20] D. V. Savostyanov and I. Oseledets, “Fast adaptive interpolation of multi-
dimensional arrays in tensor train format,” The 2011 International Workshop
on Multidimensional (nD) Systems, pp. 1–8, 2011.

134

Bibliography

[21] I. Oseledets and E. Tyrtyshnikov, “TT-cross approximation for multidimensional
arrays,” Linear Algebra and its Applications, vol. 432, no. 1, pp. 70–88, 2010.

[22] S. Dolgov, K. Anaya-Izquierdo, C. Fox, and R. Scheichl, “Approximation and
sampling of multivariate probability distributions in the tensor train decomposition,”
Statistics and Computing, vol. 30, pp. 603–625, 2020.

[23] A. Novikov, M. Trofimov, and I. V. Oseledets, “Exponential machines,” in Interna-
tional Conference on Learning Representations, ICLR, 2017.

[24] E. M. Stoudenmire and D. J. Schwab, “Supervised learning with tensor networks,”
in NIPS, 2016.

[25] G. S. Novikov, M. E. Panov, and I. Oseledets, “Tensor-train density estimation,”
in Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intel-
ligence, vol. 161. PMLR, 2021, pp. 1321–1331.

[26] Z.-Y. Han, J. Wang, H. Fan, L. Wang, and P. Zhang, “Unsupervised generative
modeling using matrix product states,” Phys. Rev. X, vol. 8, p. 031012, Jul 2018.

[27] J. Stokes and J. Terilla, “Probabilistic modeling with matrix product states,”
Entropy, vol. 21, 2019.

[28] A. Hubenko, V. A. Fonoberov, G. Mathew, and I. Mezic, “Multiscale adaptive
search,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernet-
ics), vol. 41, no. 4, pp. 1076–1087, 2011.

[29] L. M. Miller, Y. Silverman, M. A. MacIver, and T. D. Murphey, “Ergodic exploration
of distributed information,” IEEE Transactions on Robotics, vol. 32, pp. 36–52,
2016.

[30] G. Mathew and I. Mezić, “Metrics for ergodicity and design of ergodic dynamics
for multi-agent systems,” Physica D: Nonlinear Phenomena, vol. 240, no. 4-5, pp.
432–442, 2011.

[31] G. Mathew, S. Kannan, A. Surana, S. Bajekal, and K. R. Chevva, “Experimental im-
plementation of spectral multiscale coverage and search algorithms for autonomous
UAVs,” in AIAA Guidance, Navigation, and Control (GNC) Conference, 2013, p.
5182.

[32] A. Mavrommati, E. Tzorakoleftherakis, I. Abraham, and T. D. Murphey, “Real-time
area coverage and target localization using receding-horizon ergodic exploration,”
IEEE Transactions on Robotics, vol. 34, pp. 62–80, 2018.

135

Bibliography

[33] S. Calinon, “Mixture models for the analysis, edition, and synthesis of continuous
time series,” in Mixture Models and Applications, N. Bouguila and W. Fan, Eds.
Springer, Cham, 2019, pp. 39–57.

[34] L. M. Miller and T. D. Murphey, “Trajectory optimization for continuous ergodic
exploration,” in American Control Conference (ACC), 2013, pp. 4196–4201.

[35] L. Dressel and M. J. Kochenderfer, “Tutorial on the generation of ergodic trajectories
with projection-based gradient descent,” IET Cyber-Physical Systems: Theory &
Applications, vol. 4, pp. 89–100, 2019.

[36] ——, “Using neural networks to generate information maps for mobile sensors,” in
IEEE Conference on Decision and Control (CDC), 2018, pp. 2555–2560.

[37] E. Ayvali, H. Salman, and H. Choset, “Ergodic coverage in constrained environments
using stochastic trajectory optimization,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2017, pp. 5204–5210.

[38] I. Abraham, A. Prabhakar, and T. D. Murphey, “An ergodic measure for ac-
tive learning from equilibrium,” IEEE Transactions on Automation Science and
Engineering, 2021.

[39] S.-k. Yun, “Compliant manipulation for peg-in-hole: Is passive compliance a key
to learn contact motion?” in IEEE International Conference on Robotics and
Automation (ICRA), 2008, pp. 1647–1652.

[40] P. R. Giordano, A. Stemmer, K. Arbter, and A. Albu-Schaffer, “Robotic assembly
of complex planar parts: An experimental evaluation,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2008, pp. 3775–3782.

[41] H. Park, J. Park, D.-H. Lee, J.-H. Park, M.-H. Baeg, and J.-H. Bae, “Compliance-
based robotic peg-in-hole assembly strategy without force feedback,” IEEE Trans-
actions on Industrial Electronics, vol. 64, no. 8, pp. 6299–6309, 2017.

[42] M. P. Polverini, A. M. Zanchettin, S. Castello, and P. Rocco, “Sensorless and
constraint based peg-in-hole task execution with a dual-arm robot,” in IEEE
International Conference on Robotics and Automation (ICRA), 2016, pp. 415–420.

[43] D. Ehlers, M. Suomalainen, J. Lundell, and V. Kyrki, “Imitating human search
strategies for assembly,” in IEEE International Conference on Robotics and Au-
tomation (ICRA), May 2019, pp. 7821–7827.

[44] M. J. A. Zeestraten, I. Havoutis, J. Silvério, S. Calinon, and D. G. Caldwell, “An
approach for imitation learning on Riemannian manifolds,” IEEE Robotics and
Automation Letters (RA-L), vol. 2, no. 3, pp. 1240–1247, June 2017.

136

Bibliography

[45] S. Calinon, “Gaussians on Riemannian manifolds: Applications for robot learning
and adaptive control,” IEEE Robotics and Automation Magazine (RAM), vol. 27,
no. 2, pp. 33–45, June 2020.

[46] G. Mathew, A. Surana, and I. Mezic, “Uniform coverage control of mobile sensor
networks for dynamic target detection,” IEEE Conference on Decision and Control
(CDC), pp. 7292–7299, 2010.

[47] C. Lubich, I. V. Oseledets, and B. Vandereycken, “Time integration of tensor
trains,” SIAM J. Numerical Analysis, vol. 53, pp. 917–941, 2015.

[48] D. Bigoni, A. P. Engsig-Karup, and Y. M. Marzouk, “Spectral tensor-train decom-
position,” SIAM Journal on Scientific Computing, vol. 38, no. 4, pp. A2405–A2439,
2016.

[49] Hyeonjun Park, Ji-Hun Bae, Jae-Han Park, Moon-Hong Baeg, and Jaeheung Park,
“Intuitive peg-in-hole assembly strategy with a compliant manipulator,” in IEEE
International Symposium on Robotics (ISR), 2013, pp. 1–5.

[50] J. C. Triyonoputro, W. Wan, and K. Harada, “Quickly inserting pegs into uncertain
holes using multi-view images and deep network trained on synthetic data,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2019, pp. 5792–5799.

[51] B. O. Koopman, “The theory of search. I. kinematic bases,” Operations research,
vol. 4, no. 3, pp. 324–346, 1956.

[52] ——, “The theory of search. II. target detection,” Operations research, vol. 4, no. 5,
pp. 503–531, 1956.

[53] ——, “The theory of search: III. the optimum distribution of searching effort,”
Operations research, vol. 5, no. 5, pp. 613–626, 1957.

[54] S. Ivić, B. Crnković, and I. Mezić, “Ergodicity-based cooperative multiagent area
coverage via a potential field,” IEEE Transactions on Cybernetics, vol. 47, pp.
1983–1993, 2017.

[55] M. Rakhuba and I. Oseledets, “Fast multidimensional convolution in low-rank
tensor formats via cross approximation,” SIAM J. Sci. Comput., vol. 37, 2015.

[56] N. Hansen, S. D. Müller, and P. Koumoutsakos, “Reducing the time complexity of
the derandomized evolution strategy with covariance matrix adaptation (cma-es),”
Evolutionary computation, vol. 11, no. 1, pp. 1–18, 2003.

137

Bibliography

[57] D. Whitley, “A genetic algorithm tutorial,” Statistics and computing, vol. 4, no. 2,
pp. 65–85, 1994.

[58] R. A. Rutenbar, “Simulated annealing algorithms: An overview,” IEEE Circuits
and Devices magazine, vol. 5, no. 1, pp. 19–26, 1989.

[59] K. Sozykin, A. Chertkov, R. Schutski, A.-H. Phan, A. Cichocki, and I. Oseledets,
“TTOpt: A maximum volume quantized tensor train-based optimization and its
application to reinforcement learning,” Advances in Neural Information Processing
Systems, vol. 35, pp. 26 052–26 065, 2022.

[60] T. Osa, “Multimodal trajectory optimization for motion planning,” International
Journal of Robotics Research (IJRR), vol. 39, no. 8, pp. 983–1001, 2020.

[61] ——, “Motion planning by learning the solution manifold in trajectory optimization,”
International Journal of Robotics Research (IJRR), vol. 41, no. 3, pp. 281–311,
2022.

[62] E. Pignat, T. Lembono, and S. Calinon, “Variational inference with mixture model
approximation for applications in robotics,” in Proc. IEEE Intl Conf. on Robotics
and Automation (ICRA), 2020, pp. 3395–3401.

[63] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith, C. M. Dellin,
J. A. Bagnell, and S. S. Srinivasa, “CHOMP: Covariant hamiltonian optimization
for motion planning,” International Journal of Robotics Research (IJRR), vol. 32,
no. 9-10, pp. 1164–1193, 2013.

[64] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal, “STOMP:
Stochastic trajectory optimization for motion planning,” in Proc. IEEE Intl Conf.
on Robotics and Automation (ICRA), 2011, pp. 4569–4574.

[65] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan, S. Patil,
K. Goldberg, and P. Abbeel, “Motion planning with sequential convex optimization
and convex collision checking,” International Journal of Robotics Research (IJRR),
vol. 33, no. 9, pp. 1251–1270, 2014.

[66] M. Mukadam, J. Dong, X. Yan, F. Dellaert, and B. Boots, “Continuous-time
gaussian process motion planning via probabilistic inference,” International Journal
of Robotics Research (IJRR), vol. 37, no. 11, pp. 1319–1340, 2018.

[67] T. Sugihara, “Solvability-unconcerned inverse kinematics by the Levenberg–
Marquardt method,” IEEE Trans. on Robotics, vol. 27, no. 5, pp. 984–991, 2011.

138

Bibliography

[68] A. Escande, N. Mansard, and P.-B. Wieber, “Fast resolution of hierarchized inverse
kinematics with inequality constraints,” in Proc. IEEE Intl Conf. on Robotics and
Automation (ICRA), 2010, pp. 3733–3738.

[69] T. S. Lembono, A. Paolillo, E. Pignat, and S. Calinon, “Memory of motion for
warm-starting trajectory optimization,” IEEE Robotics and Automation Letters
(RA-L), vol. 5, no. 2, pp. 2594–2601, April 2020.

[70] M. Stolle and C. G. Atkeson, “Policies based on trajectory libraries.” in Proc. IEEE
Intl Conf. on Robotics and Automation (ICRA), 2006, pp. 3344–3349.

[71] P.-B. Wieber, R. Tedrake, and S. Kuindersma, “Modeling and control of legged
robots,” in Springer Handbook of Robotics, 2nd Ed., 2016.

[72] N. Mansard, A. Del Prete, M. Geisert, S. Tonneau, and O. Stasse, “Using a memory
of motion to efficiently warm-start a nonlinear predictive controller,” in Proc. IEEE
Intl Conf. on Robotics and Automation (ICRA), 2018, pp. 2986–2993.

[73] K. K. Hauser, “Learning the problem-optimum map: Analysis and application
to global optimization in robotics,” IEEE Transactions on Robotics, vol. 33, pp.
141–152, 2016.

[74] M. Stolle, H. Tappeiner, J. Chestnutt, and C. G. Atkeson, “Transfer of policies
based on trajectory libraries,” in Proc. IEEE/RSJ Intl Conf. on Intelligent Robots
and Systems (IROS), 2007, pp. 2981–2986.

[75] N. Jetchev and M. Toussaint, “Trajectory prediction: learning to map situations
to robot trajectories,” in Proc. Intl Conf. on Machine Learning (ICML), 2009, pp.
449–456.

[76] E. Dantec, R. Budhiraja, A. Roig, T. Lembono, G. Saurel, O. Stasse, P. Fernbach,
S. Tonneau, S. Vijayakumar, S. Calinon, et al., “Whole body model predictive
control with a memory of motion: Experiments on a torque-controlled talos,” in
Proc. IEEE Intl Conf. on Robotics and Automation (ICRA), 2021, pp. 8202–8208.

[77] D. A. Zheltkov and A. Osinsky, “Global optimization algorithms using tensor trains,”
in International Conference on Large-Scale Scientific Computing. Springer, 2019,
pp. 197–202.

[78] A. Chertkov, G. V. Ryzhakov, G. S. Novikov, and I. Oseledets, “Optimization of
functions given in the tensor train format,” ArXiv, vol. abs/2209.14808, 2022.

[79] M. Usvyatsov, R. Ballester-Ripoll, and K. Schindler, “tntorch: Tensor network
learning with PyTorch,” Journal of Machine Learning Research, vol. 23, no. 208,
pp. 1–6, 2022.

139

Bibliography

[80] A. Paraschos, C. Daniel, J. R. Peters, and G. Neumann, “Probabilistic movement
primitives,” Advances in Neural Information Processing Systems (NIPS), vol. 26,
2013.

[81] E. Pignat, J. Silvério, and S. Calinon, “Learning from demonstration using products
of experts: Applications to manipulation and task prioritization,” International
Journal of Robotics Research (IJRR), vol. 41, no. 2, pp. 163–188, 2022.

[82] M. A. Toussaint, K. R. Allen, K. A. Smith, and J. B. Tenenbaum, “Differentiable
physics and stable modes for tool-use and manipulation planning,” in Proc. Robotics:
Science and Systems (R:SS), 2018, pp. 1–8.

[83] R. Deits and R. Tedrake, “Footstep planning on uneven terrain with mixed-integer
convex optimization,” in Proc. IEEE Intl Conf. on Humanoid Robots (Humanoids),
2014, pp. 279–286.

[84] J. Miller, G. Rabusseau, and J. Terilla, “Tensor networks for probabilistic sequence
modeling,” in International Conference on Artificial Intelligence and Statistics.
PMLR, 2021, pp. 3079–3087.

[85] R. S. Sutton and A. G. Barto, “Reinforcement learning: An introduction,” IEEE
Transactions on Neural Networks, vol. 16, pp. 285–286, 2005.

[86] D. Bertsekas, Dynamic programming and optimal control: Volume I. Athena
scientific, 2012, vol. 1.

[87] B. Li, H. Tang, Y. ZHENG, J. HAO, P. Li, Z. Wang, Z. Meng, and L. Wang,
“HyAR: Addressing discrete-continuous action reinforcement learning via hybrid
action representation,” in International Conference on Learning Representations,
2022.

[88] Z. Fan, R. Su, W. Zhang, and Y. Yu, “Hybrid actor-critic reinforcement learning
in parameterized action space,” in International Joint Conference on Artificial
Intelligence, 2019.

[89] J. Xiong, Q. Wang, Z. Yang, P. Sun, L. Han, Y. Zheng, H. Fu, T. Zhang, J. Liu,
and H. Liu, “Parametrized deep q-networks learning: Reinforcement learning with
discrete-continuous hybrid action space,” arXiv preprint arXiv:1810.06394, 2018.

[90] T. Xue, H. Girgin, T. S. Lembono, and S. Calinon, “Demonstration-guided optimal
control for long-term non-prehensile planar manipulation,” in Proc. IEEE Intl Conf.
on Robotics and Automation (ICRA), 2023, pp. 4999–5005.

140

Bibliography

[91] F. R. Hogan and A. Rodriguez, “Feedback control of the pusher-slider system: A
story of hybrid and underactuated contact dynamics,” in Algorithmic Foundations of
Robotics XII: Proceedings of the Twelfth Workshop on the Algorithmic Foundations
of Robotics. Springer, 2020, pp. 800–815.

[92] N. Doshi, F. R. Hogan, and A. Rodriguez, “Hybrid differential dynamic program-
ming for planar manipulation primitives,” in 2020 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2020, pp. 6759–6765.

[93] J. D. A. Ferrandis, J. P. De Moura, and S. Vijayakumar, “Nonprehensile planar
manipulation through reinforcement learning with multimodal categorical explo-
ration,” in 2023 IEEE/RSJ International Conference on Intelligent Robots and
Systems, IROS 2023. IEEE, 2023.

[94] T. Marcucci and R. Tedrake, “Warm start of mixed-integer programs for model
predictive control of hybrid systems,” IEEE Transactions on Automatic Control,
vol. 66, no. 6, pp. 2433–2448, 2020.

[95] R. Alur, T. Dang, and F. Ivančić, “Predicate abstraction for reachability analysis
of hybrid systems,” ACM transactions on embedded computing systems (TECS),
vol. 5, no. 1, pp. 152–199, 2006.

[96] A. I. Boyko, I. Oseledets, and G. Ferrer, “TT-QI: Faster value iteration in tensor
train format for stochastic optimal control,” Computational Mathematics and
Mathematical Physics, vol. 61, pp. 836–846, 2021.

[97] A. Antos, C. Szepesvári, and R. Munos, “Fitted q-iteration in continuous action-
space mdps,” Advances in neural information processing systems, vol. 20, 2007.

[98] M. Lutter, B. Belousov, S. Mannor, D. Fox, A. Garg, and J. Peters, “Continuous-
time fitted value iteration for robust policies,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2022.

[99] M. J. Hausknecht and P. Stone, “Deep reinforcement learning in parameterized
action space,” in International Conference on Learning Representations, ICLR,
Y. Bengio and Y. LeCun, Eds., 2016.

[100] H. Fu, H. Tang, J. Hao, Z. Lei, Y. Chen, and C. Fan, “Deep multi-agent reinforce-
ment learning with discrete-continuous hybrid action spaces,” in Proceedings of
the 28th International Joint Conference on Artificial Intelligence, ser. IJCAI’19.
AAAI Press, 2019, p. 2329–2335.

[101] A. Gorodetsky, S. Karaman, and Y. Marzouk, “A continuous analogue of the tensor-
train decomposition,” Computer methods in applied mechanics and engineering,
vol. 347, pp. 59–84, 2019.

141

Bibliography

[102] S. Dolgov, D. Kalise, and L. Saluzzi, “Data-driven tensor train gradient cross
approximation for hamilton–jacobi–bellman equations,” SIAM Journal on Scientific
Computing, vol. 45, no. 5, pp. A2153–A2184, 2023.

[103] I. Abraham and T. D. Murphey, “Active learning of dynamics for data-driven
control using koopman operators,” IEEE Transactions on Robotics, vol. 35, pp.
1071–1083, 2019.

142

‘

Suhan Shetty
Lausanne, Switzerland

H +41 762931120
B suhan.n.shetty@gmail.com
Í suhannshetty.github.io

SuhanShetty
SuhanNShetty

Summary
My research in robotics lies at the intersection of data-efficient machine learning and control engineering.
In particular, using tensor networks I develop algorithms for Robot Control, Reinforcement Learning, and
Motion Planning that were previously considered to be intractable.

Education
June 2019 –

Feb 2024
Doctor of Philosophy.
École Polytechnique Fédérale de Lausanne
Thesis: Robot Learning using Tensor Networks

June 2014–
June 2016

Master of Engineering.
Indian Institute of Science, Bangalore, India
Thesis: Trajectory Tracking and Control of Car-like Robots

Work Experience
June 2019 –

Feb 2024
Idiap Research Institute, Martigny, Switzerland.
Research Assistant at Robot Learning and Interaction Group
Developing fast and memory efficient algorithms for robot exploration as used in the project
CoLLaboratE for industrial assembly tasks, reinforcement learning and fast optimization al-
gorithms as used in projects Learn-Real and MEMMO for robot control and motion planning.

2023 June –
September

Disney Research Studios, Zurich, Switzerland.
Research Intern
Developed deep reinforcement learning algorithms for concurrently learning the policy and
state estimator for robust locomotion of bipedal robots.

Oct 2018 –
April 2019

Robert Bosch Center for Cyber-Physical Systems, Bangalore, India.
Research Associate
Applied reinforcement learning to generate walking gaits for an in-house manufactured
quadruped robot called Stoch.

July 2016 –
Mar 2018

The MathWorks Inc., Bangalore, India.
Engineering Development Group
Developed MATLAB and Simulink based models for demonstrating the applicability
of MATLAB products such as Control System Toolbox, Robotics System Toolbox and
Automated Driving System Toolbox in robotics applications.

Publications
2023 S Shetty, T Xue, and S Calinon, "Generalized Policy Iteration using Tensor Approximation

for Hybrid Control", International Conference on Learning Representations (ICLR-2024).
[Spotlight Paper, 5% acceptance rate]

2023 T Xue∗, S Shetty∗, and S Calinon, "Dynamic Programming using Tensor Approximation
for Contact-rich Manipulation", Workshop on Embracing Contacts, IEEE ICRA.

2023 S Shetty, T Lemobono, T Loew, and S Calinon, "Tensor Train for Global Optimization
Problems in Robotics", The International Journal of Robotics Research (IJRR).

2021 S Shetty, J Silverio, and S Calinon, "Ergodic Exploration Using Tensor Train: Applications
in Insertion Tasks", in IEEE Transactions on Robotics.
[Awarded Idiap’s Paper of the year 2021 by Idiap Research Institute, Switzerland]

2021 L Brudermüller, T Lembono, S Shetty, S Calinon, "Trajectory Prediction with Compressed
3D Environment Representation using Tensor Train Decomposition", in Proc. IEEE Intl
Conf. on Advanced Robotics (ICAR).

2019 S Kolathaya, A Joglekar, S Shetty, D Dholakiya, A Sagi, S Bhattacharya, A Singla, S Bhat-
nagar, A Ghosal, B Amrutur, "Trajectory based deep policy search for quadrupedal walking",
in 28th IEEE International Conference on Robot and Human Interactive Communication
(RO-MAN).

2019 S Shetty, A Ghosal, "Trajectory Tracking and Control of Car-Like Robots", in Machines,
Mechanism and Robotics, Lecture Notes in Mechanical Engineering. Springer, Singapore.

Presentations
2023 "Generalized Policy Iteration using Tensor Approximation for Hybrid Control", 3rd NAVER

LABS Europe International Workshop on AI for Robotics, Grenoble, France.
2022 "Ergodic Exploration Using Tensor Train: Applications in Insertion Tasks", International

Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, (Presented virtually).
2020 "Mixture of Tensor-Normal Distribution for Imitation Learning in Robotics", Swiss Machine

Learning Days (SMLD), Lausanne, Switzerland.

Supervision
2022 "Tensor-variate dictionary learning of movement primitives", Mickael Gindroz, MSc Thesis,

EPFL.
2021 "Multilinear Models for the Manipulation of Objects by Robots", Valentin Honorez, Faculté

Polytechnique de Mons (UMONS), Belgium.

Programming Skills
{ Languages: Python, C++, MATLAB
{ Frameworks: Pytorch, Tensorflow, JAX, ROS, Git, LaTeX, Unix
{ Robotic Simulators: Mujoco, Pybullet, NVIDIA Isaac Gym, NVIDIA Orbit

Academic Service
{ Reviewer for IEEE Transactions on Robotics (2023), IROS (2023)

Miscellaneous
{ Ranked in top 100 among 200k candidates in the Graduate Aptitude Test in Engineering (Mechanical

Engineering Division) in the year 2014. This is a highly competitive national level mathematics and
technical aptitude test held by India’s top tier universities for graduate studies.

{ Ranked 12th in the Engineering Sciences in the National Eligibility Test for Junior Research Fellow in
the year 2013. The test is held by the Council of Scientific and Industrial Research, India for research
scholarship.

	Abstract
	Résumé
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Thesis Outline
	Publications

	Background
	Function Approximation using Matrix Factorization
	Separation of Variables using Matrix Factorization
	Matrix Cross Approximation

	Tensors
	Tensors as Discrete Analogue of a Function
	Tensor Networks
	Tensor Train
	Continous Function Approximation using Tensor Train
	Refining Tensor Train Model

	Algebraic Operations over Tensor Train
	Compression of Tensor Train with Rounding Operation
	Approximating Functions in Tensor Train using Cross Approximation
	Probability Modeling using Tensor Train
	Tensor Train Distribution
	Sampling from Tensor Train distribution
	Conditioning Tensor Train Distribution

	Tensor Train for Data-Driven Learning

	Ergodic Exploration using Tensor Train
	Introduction
	Motivation and Related Work
	Challenges in Ergodic Control
	Challenges in Peg-in-hole Insertion Task

	Problem Definition and Background
	Ergodic Control using Tensor Train
	Finding the Fourier Series Coefficients
	Ergodic Control on Riemannian Manifolds

	Numerical Evaluation
	Sensorless Peg-in-Hole Insertion using Ergodic Exploration
	Simulation experiments
	Experimental Setup for Peg-in-hole Task
	Initialization and Preprocessing for Ergodic Control
	Experimental Results

	Future Work
	Conclusion

	Optimization using Tensor Train
	Introduction
	Related work
	Optimization in Robotics
	Predicting Good Initialization
	Multimodal Optimization
	Optimization using Tensor Train

	Tensor Train for Global Optimization
	Stochastic Approaches
	Deterministic Approaches
	Finding Optima of Arbitrary Tensor Train Model
	Normalizing Tensor Train Model

	Applications to Function Optimization in Robotics
	Experiments
	Inverse Kinematics Problems
	Motion Planning of Manipulators
	Application to Single Task Optimization

	Discussion
	Quality of the Approximation
	Comparison with Previous Work using Variational Inference
	Multimodality
	Computation Time

	Limitations
	Future Work
	Conclusion

	Learning to Control using Tensor Train
	Introduction
	Background
	The Optimal Control Problem
	Dynamic Programming
	Challenges in Approximate Dynamic Programming

	Generalized Policy Iteration using Tensor Train
	Description of the Algorithm
	Adaptation to Stochastic Systems

	Experiments
	Simulation Experiments
	Additional Simulation Experiments
	Real Robot Experiments

	Related Work
	Limitation and Future Work
	Neural Tensor Train for Policy Learning

	Conclusion

	Conclusion
	Appendix to Chapter 3
	Proof of Fourier Coefficients Decomposition

	Appendices to Chapter 4
	Evaluations on Benchmark Functions
	Inverse Kinematics Formulation
	Motion Planning Formulation
	Motion Primitives
	Comparison of Various Function Approximation Techniques

	Bibliography
	Curriculum Vitae

