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Abstract
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Decision-making permeates every aspect of human and societal development,
from individuals’ daily choices to the complex decisions made by communities
and institutions. Central to effective decision-making is the discipline of opti-
mization, which seeks the best choice from a set of alternatives based on specific
criteria. This thesis focuses on optimization problems fueled by the ever-growing
abundance of data. In an era where data is ubiquitous, machine learning algo-
rithms offer unprecedented potential to enhance decision-making across diverse
sectors such as healthcare, finance, and technology. The enthusiastic adoption
of machine learning in various sectors has necessitated a more cautious approach
upon realizing that the reliability of these systems in complex real-world situa-
tions is not always guaranteed. At the heart of this investigation is the ambition
to design algorithms equipped to make reliable data-driven decisions. This en-
tails addressing the challenges of ensuring robust performance outside training
environments, incorporating fairness measures when needed, and achieving de-
cision interpretability while maintaining computational efficiency. Attempting
to satisfy all these desires simultaneously is a formidable task, given the chal-
lenges in the data collection phase and modeling. In its most comprehensive
form, our objective in this thesis entails modeling, developing tools for, and
auditing data-driven decision-making systems based on data generated by an
unknown mechanism. The common theme shared within the lines of works in
this thesis is the use of optimal transport. Thus, the first part of this thesis in-
troduces the optimal transport problem, studies its computational complexity,
and proposes numerical solutions. The rest of the thesis explores two interre-
lated learning paradigms: static decision-making, in which decisions have no
immediate impact on the data used in training, and dynamic decision-making,
in which decisions actively influence the data acquisition process. The third
chapter then investigates the development of estimators in scenarios marked by
data scarcity in the target domain despite abundant data in a related source
domain. Utilizing optimal transport, we propose robust estimators that capital-
ize on source data while accommodating the sparse target data. In the fourth
chapter, we focus on creating fair and robust models. We introduce a distri-
butionally robust logistic regression model with an unfairness penalty, which
helps to prevent discrimination based on sensitive attributes such as gender or
ethnicity. This model is tractable when an optimal transport-based ambiguity
set is utilized. While it is important to train fair models, it is equally cru-
cial to rigorously examine machine learning models before deploying them in
practice. In the fifth chapter, we use ideas from the optimal transport theory
and propose a statistical test for detecting unfair classifiers. The sixth chap-
ter extends linear quadratic Gaussian control problems to their distributionally
robust counterparts using an optimal transport-based ambiguity set, offering
structural insights that aid in the efficient design of numerical solutions.
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Il processo decisionale permea ogni aspetto dello sviluppo umano e sociale,
dalle scelte quotidiane degli individui alle decisioni complesse prese da comu-
nità e istituzioni. Al centro di un processo decisionale efficace c’è la disci-
plina dell’ottimizzazione, che cerca la scelta migliore tra un insieme di alter-
native in base a criteri specifici. Questa tesi si concentra sui problemi di ot-
timizzazione alimentati dalla crescente abbondanza di dati. In un’epoca in
cui i dati sono onnipresenti, gli algoritmi di apprendimento automatico of-
frono un potenziale senza precedenti per migliorare il processo decisionale in
diversi settori come la sanità, la finanza e la tecnologia. L’adozione entusiastica
dell’apprendimento automatico in vari settori ha reso necessario un approc-
cio più cauto, dopo aver capito che l’affidabilità di questi sistemi in situazioni
complesse del mondo reale non è sempre garantita. Il cuore di questa ricerca
è l’ambizione di progettare algoritmi in grado di prendere decisioni affidabili
basate sui dati. Ciò comporta la necessità di garantire prestazioni robuste al di
fuori degli ambienti di addestramento, di incorporare misure di equità quando
necessario e di ottenere l’interpretabilità delle decisioni mantenendo l’efficienza
computazionale. Tentare di soddisfare tutti questi desideri simultaneamente
è un compito formidabile, date le sfide nella fase di raccolta dei dati e nella
modellazione. Nella sua forma più completa, il nostro obiettivo in questa tesi
comporta la modellazione, lo sviluppo di strumenti e la verifica di sistemi deci-
sionali guidati dai dati e basati su dati generati da un meccanismo sconosciuto.
Il tema comune alle linee di lavoro di questa tesi è l’uso del trasporto ottimale.
La prima parte di questa tesi introduce il problema del trasporto ottimale, stu-
dia la sua complessità computazionale e propone soluzioni numeriche. Il resto
della tesi esplora due paradigmi di apprendimento interconnessi: il processo
decisionale statico, in cui le decisioni non hanno un impatto immediato sui
dati utilizzati nell’addestramento, e il processo decisionale dinamico, in cui le
decisioni influenzano attivamente il processo di acquisizione dei dati. Il terzo
capitolo analizza lo sviluppo di stimatori in scenari caratterizzati dalla scar-
sità di dati nel dominio di destinazione, nonostante l’abbondanza di dati in un
dominio di origine correlato. Utilizzando il trasporto ottimale, proponiamo sti-
matori robusti che sfruttano i dati di partenza e al tempo stesso si adattano ai
dati scarsi dell’obiettivo. Nel quarto capitolo, ci concentriamo sulla creazione
di modelli equi e robusti. Introduciamo un modello di regressione logistica dis-
tributivamente robusto con una penalità di iniquità, che aiuta a prevenire la
discriminazione basata su attributi sensibili come il genere o l’etnia. Questo
modello è fattibile quando si utilizza un set di ambiguità ottimale basato sul
trasporto. Se è importante addestrare modelli equi, è altrettanto cruciale esam-
inare rigorosamente i modelli di apprendimento automatico prima di impiegarli
nella pratica. Nel quinto capitolo utilizziamo le idee della teoria del trasporto
ottimale e proponiamo un test statistico per individuare i classificatori ingiusti.
Il sesto capitolo estende i problemi di controllo lineare quadratico gaussiano alle
loro controparti robuste dal punto di vista distributivo, utilizzando un insieme di
ambiguità basato sul trasporto ottimale, offrendo spunti strutturali che aiutano
a progettare in modo efficiente le soluzioni numeriche.
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A good decision is based on
knowledge and not on numbers.

Plato

Decisions are ubiquitous. In nature, choosing the best option among others
might drastically increase the species’ survival rate. The ability to gather in-
formation, learn, generate knowledge, and finally make a pondered choice plays
a crucial role in defining humanity’s rational nature. Since the beginning of
known human history, we have been continuously faced with the challenge of
decision-making, as individuals or as a group, with one overarching goal: secure
the best possible outcome. As individuals, we have decided to live as a group,
and as a group, we started to build cities close to a water source. This collective
decision-making process was not arbitrary; it was rooted in the understanding
that proximity to water not only facilitated daily living but also enabled agri-
culture, trade, and security. Over time, these settlements evolved into complex
societies, each with its systems of governance, culture, and technology, reflecting
the cumulative knowledge and decisions of countless generations. As societies
became more complex, so did the decisions they faced.

A discipline that seeks to leverage mathematical and computational methods
to find the most effective solution is optimization. This discipline is dedicated
to the best utilization of our degrees of freedom, known as variables, within
certain constraints, guided by a quantitative measure known as the cost (loss)
function. The field of optimization is rich and varied, encompassing a wide array
of problem types. This thesis, in particular, is mostly concerned with optimiza-
tion problems that use data as a primary source of information and knowledge
for the problem formulation and its solution. As we talk about data-driven
tasks, we inevitably touch upon the realm of machine learning – a field of study
within artificial intelligence that is dedicated to developing statistical algorithms
capable of learning from data to make predictions or decisions in unseen sce-
narios, autonomously. The potential of these machine learning algorithms has
been further amplified recently by the abundant surge in the availability of data
across various domains, including medicine, education, policy-making, market-
ing, civics, and many more. This data deluge has created opportunities for the
development of systems capable of implementing highly precise and personalized
predictions for individuals at unprecedented scales, which has led to their use
in decision-making systems. The healthcare industry leverages these algorithms
to decide whom to prioritize for disease screening [Agg+22] and allocate scarce
resources [Fri+13]. In the banking sector, they play a crucial role in deciding
who qualifies for loans [LSM19] and in detecting potential cases of money laun-
dering [ZT19]. Similarly, technology companies rely on algorithms to target
advertisements for various goods, services, and housing [Spe+18], and employ-
ment [LT19] opportunities. Today, thanks to the availability of precise sensors,
including high-definition cameras and high-capacity servers, we are witnessing a
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surge in machine learning models integrated also into our physical environment.
Robotic surgeries are becoming increasingly common, enabling minimally in-
vasive procedures, enhancing precision, and reducing recovery times [CMG21].
There are approximately 30 million self-driving cars around, and in our virtual
interactions, intelligent conversational agents like ChatGPT serviced 180.5 mil-
lion users by August 2023, offering real-time assistance and information. These
advances highlight the transition of intelligent systems from theoretical models
to active participants in shaping our reality, where their decisions have a signif-
icant impact on our lives. This evolution prompts an elemental question: How
can we trust the decisions made on our behalf?

The enthusiastic adoption of machine learning in various sectors has neces-
sitated a more cautious approach upon realizing that the reliability of these sys-
tems in complex situations is not always guaranteed. For example, Amazon used
a hiring tool to automatically rate job applicants based on their resumes. Due
to the male dominance across the tech industry, the tool was trained on a biased
dataset and taught itself that male candidates were preferable [Das18]. Another
example is the inaccuracy of pulse oximeters in measuring blood oxygen levels
in various racial groups during the COVID-19 pandemic in 2020 [Sjo+20] caus-
ing delays in their treatment [Ort22]. On the autonomous vehicles side, recent
years have witnessed both driver and pedestrian fatalities due to malfunctions
in automated vehicle control systems [Nat17; Nat20]. These examples under-
score the critical need for vigilance and ethical considerations in the deployment
of machine learning systems, highlighting the delicate balance between techno-
logical innovation and its implications on society. Consequently, the essence of
our endeavor extends well beyond the mere capability of these systems to make
decisions, and this thesis is therefore dedicated to contributing to answering the
following overarching question:

How do we design algorithms to make
reliable data-driven decisions?

We stand at a pivotal moment, seeking to clarify our expectations from decision-
making systems, particularly our interpretation of “reliability”—a term that
has been somewhat nebulous until now. Ultimately, we aspire for our decision-
making models not to disappoint us in terms of their performance when they are
deployed in the real world. We will refer to this as out-of-sample performance.
Hence, our objective is for our models to establish conservative performance
benchmarks during training, with the aim of surpassing these benchmarks upon
deployment, all while maintaining computational efficiency . Ensuring compu-
tational efficiency is integral for several reasons. First, models that require less
computational resources can be scaled easily for larger instances, allowing them
to be deployed across a wider range of platforms and devices, from high-end
servers to mobile devices, making them accessible to a broader audience. Second,
computational efficiency translates to faster decision-making, which is crucial
in time-sensitive applications such as autonomous driving, market-making, and
emergency response systems. Third, it contributes to sustainability by reduc-
ing energy consumption and allowing companies to benefit from carbon credit
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markets, aligning with the growing need for eco-friendly technologies. Lastly,
efficient computation helps in managing operational costs, making it economi-
cally feasible to implement and maintain these systems on a large scale. Thus,
computational efficiency is not merely a technical requirement but a cornerstone
of making advanced decision-making models viable, responsive, and sustainable
in real-world applications. At the same time, we strive to ensure accountability
in institutional decision-making processes by aiming for guarantees of fairness,
depending on the domain of application. The underlying models must be de-
signed to identify, mitigate, and, where possible, eliminate biases that may exist
in the available data, which can stem from historical inequalities or systemic is-
sues. We also want these systems to come with interpretable decisions, enabling
individuals to understand the rationale behind decisions made for themselves or
others.

Attempting to satisfy all these desires simultaneously is a formidable task
primarily due to the difficulties in articulating these requirements as technical
specifications for auditing models before their deployment at scale. Addition-
ally, the phase of data generation and collection introduces its own challenges,
including, for example, that the observational data may exhibit biases stemming
from historical discrimination or the underrepresentation of certain demograph-
ics, leading to predictions that inadvertently sustain or introduce inequalities.
Unobserved confounders in data present another critical challenge, especially
when proxies, like exam scores, are used to gauge an individual’s intellectual ca-
pabilities for recruitment purposes. Additionally, serial dependencies in data can
arise, such as in interactive decision-making systems where past decisions affect
future data collection. This creates a feedback loop, complicating the model’s
analysis as the collected data is directly influenced by prior decisions. Further-
more, there could be disparities in learning and deployment environments. For
example, a predictive model for healthcare applications trained with data from
urban hospitals in wealthy countries may face performance issues when applied
in rural clinics of developing countries, owing to unrepresented variations in
disease prevalence, environmental factors, and healthcare access. Even without
such discrepancies between environments, securing reliable performance on data
not seen during training presents its own set of challenges. This is notably true
in situations involving limited data availability, such as in the development of
machine learning models for rare disease diagnosis. In such cases, researchers
might only have a small dataset of case studies available, which complicates the
model’s ability to adapt and perform accurately in new, unseen circumstances.
The underlying data distribution is the invisible rule that dictates the chances
of each possible outcome occurring within a dataset. It is like a recipe that
shapes how the data points are spread out or clustered and only visible through
the collected data. When the dataset is scarce, it is as if we are trying to un-
derstand the full recipe of a dish by only tasting a single spoonful. Just as this
spoonful might miss many of the ingredients and nuances that give the dish its
full flavor, a small dataset lacks the breadth and depth to capture the proper-
ties of the underlying data distribution. A conventional strategy is the sample
average approximation, where decision-makers minimize the average of the loss



15

function evaluated at available data points. However, this approach may over-
look potential, yet unseen, scenarios that could drastically impact performance;
see ludic fallacy detailed in [Tal10]. In contrast, Distributionally Robust Opti-
mization (DRO) offers a more resilient solution. DRO aims for decisions that
hold up well even under the most adverse conditions within a defined ambiguity
set—a range of probable data distributions that likely includes the unknown
real-world data distribution. Conceptually, DRO sets up a zero-sum game be-
tween the decision-maker and a fictitious adversary, often represented as nature,
who selects the most undesirable distribution from the ambiguity set to ‘test’
the decision. This model strategy prepares for the worst-case scenario, thus
ideally under-promising during training to over-deliver in deployment. How-
ever, the complexity of modeling such zero-sum games means (so far) accepting
a trade-off: enhanced robustness might come at the expense of computational
efficiency. Hence, the modeling phase introduces its own set of challenges, such
as the formulation of an optimization problem for the underlying task, the as-
sessment of its computational complexity, and the pursuit of tractable reformu-
lations, if there are any. Subsequent algorithm design mandates scalability to
industry-sized applications, sub-optimality guarantees, autonomy, sustainable
implementation, and deployment.

In its most comprehensive form, our objective in this thesis entails modeling,
developing tools for, and auditing data-driven decision-making systems based
on data generated by an unknown mechanism. The common theme shared
within the forthcoming lines of works in this thesis is the use of optimal trans-
port, a mathematical field that was born by the French mathematician Gaspard
Monge [Mon81a] at the end of the eighteenth century. The field emerged to find
the most efficient way to transport a given quantity of soil from one location to
another for the purpose of construction. Over time, optimal transport has cap-
tured the imagination and intellectual curiosity of an array of scholars spanning
various disciplines, including mathematics, physics, chemistry, economics, and
engineering; see [Vil03, § 3]. Hence, optimal transport has evolved into a crit-
ical tool and plays a fundamental role in comparing probability distributions,
showcasing its extensive applicability since its inception. With the gradual ac-
knowledgment of optimal transport’s practical implications, a pressing question
emerges: How hard is it to solve the optimal transport problem? Indeed, Part I
of this thesis is dedicated to addressing this very question. The rest of the the-
sis, as shown in Figure 1, explores two interrelated learning paradigms: first,
static (or offline) decision-making, where decisions have no immediate impact
on data collected discussed in Part II; and second, dynamic (or interactive)
decision-making, in which decisions actively influence the data acquisition pro-
cess detailed in Part III.

This manuscript reflects collaborative works. Throughout, it employs the
collective “we” to acknowledge various contributions, even as the specific indi-
viduals involved may change. The outline below specifies related publications
and thus involved individuals for every chapter of each part.

1The image featuring the Earth and hands was created with the assistance of DALL·E.
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In this section, we provide a concise overview of the key contributions of this
thesis. For a more comprehensive analysis of the findings and a discussion on
related literature, please refer to the respective chapters. Furthermore, each
chapter introduces its own notation and is designed to be read independently.

Part-I: Computation of Optimal Transport

Optimal transport (OT) defines minimum cost of transforming a probability
measure to some other probability measure with respect to some prescribed
transportation cost function and can be viewed as a measure of distance between
these two distributions. In the remainder of this thesis, we distinguish discrete,
semi-discrete and continuous optimal transport problems in which either both,
only one or none of the two probability measures are discrete, respectively. This
part is exclusively spared to computational optimal transport, first discrete and
then semi-discrete.

Chapter 1: Discrete Optimal Transport [Ta23]

This chapter formally introduces the optimal transport problem and studies its
computational complexity when it is evaluated between the distributions of two
K-dimensional discrete random vectors. The best known algorithms for this
problem run in polynomial time in the maximum of the number of atoms of
the two distributions. However, if the components of either random vector are
independent, then this number can be exponential in K even though the size of
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the problem description scales linearly with K. We prove that the described op-
timal transport problem is #P-hard even if all components of the first random
vector are independent uniform Bernoulli random variables, while the second
random vector has merely two atoms, and even if only approximate solutions
are sought. We also develop a dynamic programming-type algorithm that ap-
proximates the OT distance in pseudo-polynomial time when the components
of the first random vector follow arbitrary independent discrete distributions,
and we identify special problem instances that can be solved exactly in strongly
polynomial time.

Chapter 2: Semi-discrete Optimal Transport [TSAK23]

Semi-discrete optimal transport problems, which evaluate the Wasserstein dis-
tance between a discrete and a generic (possibly non-discrete) probability mea-
sure, are believed to be computationally hard. Even though such problems are
ubiquitous in statistics, machine learning and computer vision, however, this
perception has not yet received a theoretical justification. To fill this gap, we
prove that computing the Wasserstein distance between a discrete probability
measure supported on two points and the Lebesgue measure on the standard
hypercube is already #P-hard. This insight prompts us to seek approximate
solutions for semi-discrete optimal transport problems. We thus perturb the
underlying transportation cost with an additive disturbance governed by an
ambiguous probability distribution, and we introduce a distributionally robust
dual optimal transport problem whose objective function is smoothed with the
most adverse disturbance distributions from within a given ambiguity set. We
further show that smoothing the dual objective function is equivalent to reg-
ularizing the primal objective function, and we identify several ambiguity sets
that give rise to several known and new regularization schemes. As a byprod-
uct, we discover an intimate relation between semi-discrete optimal transport
problems and discrete choice models traditionally studied in psychology and
economics. To solve the regularized optimal transport problems efficiently, we
use a stochastic gradient descent algorithm with imprecise stochastic gradient
oracles. A new convergence analysis reveals that this algorithm improves the
best known convergence guarantee for semi-discrete optimal transport problems
with entropic regularizers.

Part-II: Static Decision-making

Chapter 3: Distributionally Robust Domain Adaptation [Taş+21b]

Estimators, when trained on a few target domain samples, may predict poorly.
Supervised domain adaptation aims to improve predictive accuracy by exploit-
ing additional labeled training samples from a source distribution that is close
to the data-generating distribution in the target domain. For example, consider
understanding the dynamics of ride-sharing platforms, which requires insights
about the demand and supply from both sides of the market. These insights are
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signaled through the ride fares, which can be explained by characteristics such
as the travel distances and the origin-destination pairs of the trips, the time of
the day, and the weather conditions. The capability to correctly predict ride
fares directly translates into improved profit forecasts, and thus it vitally sup-
ports the growth of new-coming platforms. In a competitive market, a follower
(e.g., Lyft) needs to target a slightly different market segment than the leader
(e.g., Uber) who had entered earlier. Thus, the demand and supply character-
istics of the follower may differ from those of the leader. Nevertheless, as both
platforms provide on-demand transportation, it is reasonable to assume that
their supply and demand dynamics are similar. The follower, who possesses
limited data, can query demand on the leader’s platform to collect data in or-
der to leap forward in its predictive precision. We investigate novel strategies
to synthesize a family of least squares estimator experts that are robust with
regard to moment conditions. When these moment conditions are specified us-
ing Kullback-Leibler divergence or OT, we can find robust estimators efficiently
using convex optimization.

Chapter 4: Learning Fair and Robust Models [Taş+20]

We propose a distributionally robust logistic regression model with an unfairness
penalty that prevents discrimination with respect to sensitive attributes such as
gender or ethnicity. This model is equivalent to a tractable convex optimization
problem if a OT ball centered at the empirical distribution on the training
data is used to model distributional uncertainty and if a new convex unfairness
measure is used to incentivize equalized opportunities. We demonstrate that the
resulting classifier improves fairness at a marginal loss of predictive accuracy on
both synthetic and real datasets. We also derive linear programming-based
confidence bounds on the level of unfairness of any pre-trained classifier by
leveraging techniques from optimal uncertainty quantification over OT balls.

Chapter 5: Auditing for Fairness [Taş+21a]

Before deployment in practice, machine learning models must be rigorously
examined to identify any inherent algorithmic biases. We use ideas from the
theory of OT to propose a statistical hypothesis test for detecting unfair classi-
fiers. Leveraging the geometry of the feature space, the test statistic quantifies
the distance of the empirical distribution supported on the test samples to the
manifold of distributions that render a pre-trained classifier fair. We develop a
rigorous hypothesis testing mechanism for assessing the probabilistic fairness of
any pre-trained logistic classifier, and we show both theoretically and empiri-
cally that the proposed test is asymptotically correct. In addition, the proposed
framework offers interpretability by identifying the most favorable perturbation
of the data so that the given classifier becomes fair.
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Part-III: Dynamic Decision-making

Chapter 6: Distributionally Robust Control [Taş+23]

Linear-Quadratic-Gaussian (LQG) control is a fundamental control paradigm
that is studied in various fields such as engineering, computer science, eco-
nomics, and neuroscience. It involves controlling a system with linear dynamics
and imperfect observations, subject to additive noise, with the goal of minimiz-
ing a quadratic cost function for the state and control variables. We consider a
generalization of the discrete-time, finite-horizon LQG problem, where the noise
distributions are unknown and belong to OT-based ambiguity sets centered at
nominal (Gaussian) distributions. The objective is to minimize a worst-case
cost across all distributions in the ambiguity set, including non-Gaussian dis-
tributions. Despite the added complexity, we prove that a control policy that
is linear in the observations is optimal for this problem, as in the classic LQG
problem. We propose a numerical solution method that efficiently character-
izes this optimal control policy. Our method uses the Frank-Wolfe algorithm
to identify the least-favorable distributions within the OT ambiguity sets and
computes the controller’s optimal policy using Kalman filter estimation under
these distributions.
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God made the integers, all else is
the work of humanity.

Leopold Kronecker

1.1. Introduction

Optimal transport (OT) theory is closely intertwined with probability theory
and statistics [BLM13; Vil08] as well as with economics and finance [Gal16], and
it has spurred fundamental research on partial differential equations [BB00;
Bre91]. In addition, OT problems naturally emerge in numerous application
areas spanning machine learning [ACB17; CCO17; RCP16], signal process-
ing [Fer+14; KR15; PR17; TPG16], computer vision [RTG00; Sol+14; Sol+15]
and distributionally robust optimization [BM19; GK22; EK18]. For a com-
prehensive survey of modern applications of OT theory we refer to [Kol+17;
PC19a]. Historically, the first OT problem was formulated by Gaspard Monge
as early as in 1781 [Mon81b]. Monge’s formulation aims at finding a measure-
preserving map that minimizes some notion of transportation cost between two
probability distributions, where all probability mass at a given origin location
must be transported to the same target location. Due to this restriction, an
optimal transportation map is not guaranteed to exist in general, and Monge’s
problem could be infeasible. In 1942, Leonid Kantorovich formulated a convex
relaxation of Monge’s problem by introducing the notion of a transportation
plan that allows for mass splitting [Kan42]. Interestingly, an optimal trans-
portation plan always exists. This paradigm shift has served as a catalyst for
significant progress in the field.

In this chapter we study Kantrovich’s OT problem between two discrete
distributions

µ =
∑

i∈I
µiδxi

and ν =
∑

j∈J
νjδyj

,

on RK , where µ ∈ RI and ν ∈ RJ denote the probability vectors, whereas
xi ∈ RK for i ∈ I = {1, . . . , I} and yj ∈ RK for j ∈ J = {1, . . . , J} represent
the discrete support points of µ and ν, respectively. Throughout the chapter we
assume that µ and ν denote the probability distributions of two K-dimensional
discrete random vectors x and y, respectively. Given a transportation cost
function c : RK × RK → [0,+∞], we define the OT distance between the
discrete distributions µ and ν as

Wc(µ, ν) = min
π∈Π(µ,ν)

∑

i∈I

∑

j∈J
c(xi,yj)πij , (1.1)

where Π(µ,ν) = {π ∈ RI×J
+ : π1 = µ, π⊤1 = ν} denotes the polytope of

probability matrices π with marginal probability vectors µ and ν. Thus, every
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π ∈ Π(µ,ν) defines a discrete probability distribution

π =
∑

i∈I

∑

j∈J
πijδ(xi,yj)

of (x,y) under which x and y have marginal distributions µ and ν, respec-
tively. Distributions with these properties are referred to as transportation
plans. If there exists p ≥ 1 such that c(x,y) = ∥x − y∥p for all x,y ∈ RK ,
then Wc(µ, ν)

1/p is termed the p-th Wasserstein distance between µ and ν. The
OT problem (1.1) constitutes a linear program that admits a strong dual linear
program of the form

max µ⊤ψ + ν⊤ϕ

s.t. ψ ∈ RI , ϕ ∈ RJ

ψi + ϕj ≤ c(xi,yj) ∀i ∈ I, j ∈ J .

Strong duality holds because π = µν⊤ is feasible in (1.1) and the optimal value
is finite. Both the primal and the dual formulations of the OT problem can be
solved exactly using the simplex algorithm [Dan51], the more specialized net-
work simplex algorithm [Orl97] or the Hungarian algorithm [Kuh55]. Both prob-
lems can also be addressed with dual ascent methods [BT97], customized auction
algorithms [Ber81; Ber92] or interior point methods [Kar84; LS14; NN94]. More
recently, the emergence of high-dimensional OT problems in machine learn-
ing has spurred the development of efficient approximation algorithms. Many
popular approaches for approximating the OT distance between two discrete
distributions rely on solving a regularized variant of problem (1.1). For in-
stance, when augmented with an entropic regularizer, problem (1.1) becomes
amenable to greedy methods such as the Sinkhorn algorithm [Sin67; Cut13]
or the related Greenkhorn algorithm [AG18; AWR17; CK20], which run or-
ders of magnitude faster than the exact methods. Other promising regularizers
that have attracted significant interest include the Tikhonov [BSR18; DPR18;
ES18; Seg+18], Lasso [LOG16], Tsallis entropy [Muz+17] and group Lasso reg-
ularizers [Cou+16]. In addition, Newton-type methods [Bla+18; Qua19], quasi-
Newton methods [BSR18], primal-dual gradient methods [DGK18; GHJ20; JST19;
LHJ19a; LHJ19b], iterative Bregman projections [Ben+15] and stochastic av-
erage gradient descent algorithms [Gen+16] are also used to find approximate
solutions for discrete OT problems.

The existing literature mainly addresses OT problems between discrete dis-
tributions that are specified by enumerating the locations and the probabilities
of the underlying atoms. In this case, the worst-case time-complexity of solving
the linear program (1.1) with an interior point algorithm, say, grows polyno-
mially with the problem’s input description. In contrast, we focus here on OT
problems between discrete distributions supported on a number of points that
grows exponentially with the dimensionK of the sample space even though these
problems admit an input description that scales only polynomially with K. In
this case, the worst-case time-complexity of solving the linear program (1.1) di-
rectly with an interior point algorithm grows exponentially with the problem’s
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input description. More precisely, we henceforth assume that µ is the distri-
bution of a random vector x ∈ RK with independent components. Hence, µ
is uniquely determined by the specification of its K marginals, which can be
encoded using O(K) bits. Yet, even if each marginal has only two atoms, µ ac-
commodates already 2K atoms. OT problems involving such distributions are
studied by [Çel+21] with the aim to find a discrete distribution with independent
marginals that minimizes the Wasserstein distance from a prescribed discrete
distribution. While [Çel+21] focus on solving small instances of this nonconvex
problem, our results surprisingly imply that even evaluating this problem’s ob-
jective function is hard. In summary, we are interested in scenarios where the
discrete OT problem (1.1) constitutes a linear program with exponentially many
variables and constraints. We emphasize that such linear programs are not nec-
essarily hard to solve [GLS12], and therefore a rigorous complexity analysis is
needed. We briefly review some useful computational complexity concepts next.

Recall that the complexity classP comprises all decision problems (i.e., prob-
lems with a Yes/No answer) that can be solved in polynomial time. In contrast,
the complexity class NP comprises all decision problems with the property that
each ‘Yes’ instance admits a certificate that can be verified in polynomial time.
A problem is NP-hard if every problem in NP is polynomial-time reducible to
it, and an NP-hard problem is NP-complete if it belongs to NP. In this chap-
ter we will mainly focus on the complexity class #P, which encompasses all
counting problems associated with decision problems in NP [Val79b; Val79a].
Loosely speaking, an instance of a #P problem thus counts the number of dis-
tinct polynomial-time verifiable certificates of the corresponding NP instance.
Consequently, a #P problem is at least as hard as its NP counterpart, and #P
problems cannot be solved in polynomial time unless #P coincides with the
class FP of polynomial-time solvable function problems. A Turing reduction
from a function problem A to a function problem B is an algorithm for solving
problem A that has access to a fictitious oracle for solving problem B in one unit
of time. Note that the oracle plays the role of a subroutine and may be called
several times. A polynomial-time Turing reduction from A to B runs in time
polynomial in the input size of A. We emphasize that, even though each oracle
call requires only one unit of time, the time needed for computing all oracle
inputs and reading all oracle outputs is attributed to the runtime of the Turing
reduction. A problem is #P-hard if every problem in #P is polynomial-time
Turing reducible to it, and a #P-hard problem is #P-complete if it belongs to
#P [Val79a; Jer03].

Several hardness results for variants and generalizations of the OT problem
have recently been discovered. For example, multi-marginal OT andWasserstein
barycenter problems were shown to be NP-hard [ABA21; ABA22], whereas the
problem of computing the Wasserstein distance between a continuous and a
discrete distribution was shown to be #P-hard even in the simplest conceiv-
able scenarios [TSAK23]. In this chapter, we focus on OT problems between
two discrete distributions µ and ν. We formally prove that such problems are
also #P-hard when µ and/or ν may have independent marginals. Specifically,
we establish a fundamental limitation of all numerical algorithms for solving
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OT problems between discrete distributions µ and ν, where µ has independent
marginals. We show that, unless FP = #P, it is not possible to design an al-
gorithm that approximates Wc(µ, ν) in time polynomial in the bit length of the
input size (which scales only polynomially with the dimension K) and the bit
length log2(1/ε) of the desired accuracy ε > 0. This result prompts us to look
for algorithms that output ε-approximations in pseudo-polynomial time, that is,
in time polynomial in the input size, the magnitude of the largest number in
the input and the inverse accuracy 1/ε. It also prompts us to look for special
instances of the OT problem with independent marginals that can be solved in
weakly or strongly polynomial time. An algorithm runs in weakly polynomial
time if it computes Wc(µ, ν) in time polynomial in the bit length of the input.
Similarly, an algorithm runs in strongly polynomial time if it computesWc(µ, ν)
in time polynomial in the bit length of the input and if, in addition, it requires
a number of arithmetic operations that grows at most polynomially with the
dimension of the input (i.e., the number of input numbers).

The key contributions of this chapter can be summarized as follows.

• We prove that the discrete OT problem with independent marginals is #P-
hard even if µ represents the uniform distribution on the vertices of the
K-dimensional hypercube and ν has only two support points, and even if
only approximate solutions of polynomial bit length are sought (see Theorem
1.3.3).

• We demonstrate that the discrete OT problem with independent marginals
can be solved in strongly polynomial time by a dynamic programming-type
algorithm if both µ and ν are supported on a fixed bounded subset of a scaled
integer lattice with a fixed scaling factor and if ν has only two atoms—even
if µ represents an arbitrary distribution with independent marginals (see
Theorem 1.4.1, Corollary 2 and the subsequent discussion). The design of
this algorithm reveals an intimate connection between OT and the condi-
tional value-at-risk arising in risk measurement.

• Using a rounding scheme to approximate µ and ν by distributions µ̃ and ν̃
supported on a scaled integer lattice with a sufficiently small grid spacing
constant, we show that if ν has only two atoms, then ε-accurate approxi-
mations of the OT distance between µ and ν can always be computed in
pseudo-polynomial time via dynamic programming—even if µ represents
an arbitrary distribution with independent marginals (see Theorem 1.4.4).
This result implies that the OT problem with independent marginals is in
fact #P-hard in the weak sense [GJ79, § 4].

Our complexity analysis complements existing hardness results for two-stage
stochastic programming problems. Indeed, [DS06; DS15], [HKW16] and [DDN21]
show that computing optimal first-stage decisions of linear two-stage stochas-
tic programs and evaluating the corresponding expected costs is hard if the
uncertain problem parameters follow independent (discrete or continuous) dis-
tributions. This chapter establishes similar hardness results for discrete OT
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problems. Our work also complements the work of [Gen+16], who describe
a stochastic gradient descent method for computing ε-optimal transportation
plans in O(1/ε2) iterations. Their method can in principle be applied to the
discrete OT problems with independent marginals studied here. However, un-
like our pseudo-polynomial time dynamic programming-based algorithm, their
method is non-deterministic and does not output an approximation of the OT
distance Wc(µ, ν).

The remainder of this chapter is structured as follows. In Section 1.2 we re-
view a useful #P-hardness result for a counting version of the knapsack problem.
By reducing this problem to the OT problem with independent marginals, we
prove in Section 1.3 that the latter problem is also #P-hard even if only approx-
imate solutions are sought. In Section 1.4 we develop a dynamic programming-
type algorithm that computes approximations of the OT distance in pseudo-
polynomial time, and we identify special problem instances that can be solved
exactly in strongly polynomial time.

Notation. We use boldface letters to denote vectors and matrices. The vec-
tors of all zeros and ones are denoted by 0 and 1, respectively, and their di-
mensions are always clear from the context. The calligraphic letters I,J ,K
and L are reserved for finite index sets with cardinalities I, J,K and L, that is,
I = {1, . . . , I} etc. We denote by ∥ · ∥ the 2-norm, and for any x ∈ RK we use
δx to denote the Dirac distribution at x.

1.2. A Counting Version of the Knapsack Prob-
lem

Counting the number of feasible solutions of a 0/1 knapsack problem is a seem-
ingly simple but surprisingly challenging task. Formally, the problem of interest
is stated as follows.

#Knapsack

Instance. A list of items with weights wk ∈ Z+, k ∈ K, and a
capacity b ∈ Z+.

Goal. Count the number of subsets of the items whose total
weight is at most b.

The #Knapsack problem is known to be #P-complete [Dye+93], and thus
it admits no polynomial-time algorithm unless FP = #P. [Dye+93] discov-
ered a randomized sub-exponential time algorithm that provides almost correct
solutions with high probability by sampling feasible solutions using a random
walk. By relying on a rapidly mixing Markov chain, [MS04] then developed the
first fully polynomial randomized approximation scheme. Later, [Dye03] inter-
weaved dynamic programming and rejection sampling approaches to obtain a
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considerably simpler fully polynomial randomized approximation scheme. How-
ever, randomization remains essential in this approach. Deterministic dynamic
programming-based algorithms were developed more recently by [Gop+11], and
[ŠVV12]. In the next section we will demonstrate that a certain class of discrete
OT problems with independent marginals is at least as hard as the #Knapsack
problem.

1.3. OT with Independent Marginals

Consider now a variant of the OT problem (1.1), where the discrete multivari-
ate distribution µ = ⊗k∈Kµk is a product of K independent univariate marginal
distributions µk =

∑
l∈L µ

l
kδxl

k
with support points xlk ∈ R and corresponding

probabilities µl
k for every l ∈ L. This implies that µ accommodates a total

of I = LK support points. The assumption that each µk, k ∈ K, accommodates
the same number L of support points simplifies notation but can be imposed
without loss of generality. Indeed, the probability of any unneeded support point
can be set to zero. The other discrete multivariate distribution ν =

∑
j∈J νjδyj

has no special structure. Assume for the moment that all components of the
support points as well as all probabilities of µk, k ∈ K, and ν are rational
numbers and thus representable as ratios of two integers, and denote by U the
maximum absolute numerical value among all these integers, which can be en-
coded using O(log2 U) bits. Thus, the total number of bits needed to represent
the discrete distributions µ and ν is bounded above by O(max{KL, J} log2 U).
Note that this encoding does not require an explicit enumeration of the loca-
tions and probabilities of the I = LK atoms of the distribution µ. It is well
known that the linear program (1.1) can be solved in polynomial time by the
ellipsoid method, for instance, if µ is encoded by such an inefficient exhaustive
enumeration, which requires up to O(max{I, J} log2 U) input bits. Thus, the
runtime of the ellipsoid method scales at most polynomially with I, J and log2 U .
As I = LK grows exponentially with K, however, this does not imply tractabil-
ity of the OT problem at hand, which admits an efficient encoding that scales
only linearly with K. In the remainder of this chapter we will prove that the OT
problem with independent maringals is #P-hard, and we will identify special
problem instances that can be solved efficiently.

In order to prove #P-hardness, we focus on the following subclass of OT prob-
lems with independent marginals, where µ is the uniform distribution on {0, 1}K ,
and ν has only two support points.
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#OT (for p ≥ 1 fixed)

Instance. Two support points y1,y2 ∈ RK , y1 ̸= y2, and a probability
t ∈ [0, 1].

Goal. For µ denoting the uniform distribution on {0, 1}K and ν = tδy1
+

(1 − t)δy2
, compute an approximation W̃c(µ, ν) of Wc(µ, ν) for c(x,y) =

∥x− y∥p such that the following hold.

(i) The bit length of W̃c(µ, ν) is polynomially bounded in the bit length
of the input (y1,y2, t).

(ii) We have |W̃c(µ, ν)−Wc(µ, ν)| ≤ ε, where

ε=
1

4I
min

{
|∥xi − y1∥p−∥xi − y2∥p| : i ∈ I, ∥xi−y1∥p−∥xi−y2∥p ̸=0

}

with I = 2K and xi, i ∈ I, representing the different binary vectors
in {0, 1}K .

We first need to show that the #OT problem is well-posed, that is, we need
to ascertain the existence of a sufficiently accurate approximation that can be
encoded in a polynomial number of bits. To this end, we first prove that the
maximal tolerable approximation error ε is not too small.

Lemma 1.3.1. There exists ε ∈ (0, ε] whose bit length is polynomially bounded
in the bit length of (y1,y2, t).

Proof. Note first that encoding an instance of the #OT problem requires at
least K bits because the K coordinates of y1 and y2 need to be enumerated.
Note also that, by the definition of ε, there exists an index i⋆ ∈ I with ε =
1
4I |∥xi⋆ −y1∥p−∥xi⋆ −y2∥p|. As p ∈ [1,∞), ∥xi⋆ −y1∥p and ∥xi⋆ −y2∥p may
be irrational numbers that cannot be encoded with any finite number of bits
even if the vectors y1 and y2 have only rational entries. Thus, ε is generically
irrational, in which case we need to construct ε ∈ (0, ε). To simplify notation,
we henceforth use the shorthands a = ∥xi⋆ − y1∥2 and b = ∥xi⋆ − y2∥2, which
can be computed in polynomial time using O(K) additions and multiplications.
Without loss of generality, we may assume throughout the rest of the proof
that a ≥ b. If a ≥ b ≥ 1, then we have

ε=
1

2K+2

∣∣∣ap/2 − bp/2
∣∣∣ = 1

2K+2

∣∣∣∣
ap − bp

ap/2 + bp/2

∣∣∣∣ ≥
1

2K+2

∣∣∣∣
a⌊p⌋ − b⌊p⌋

a⌈p/2⌉ + b⌈p/2⌉

∣∣∣∣ ≜ ε > 0.

Here, the first (weak) inequality holds because ap−⌊p⌋ ≥ 1 and (b/a)p−⌊p⌋ ≤ 1,
which guarantees that

|ap − bp| = ap−⌊p⌋
∣∣∣a⌊p⌋ − (b/a)

p−⌊p⌋
b⌊p⌋

∣∣∣ >
∣∣∣a⌊p⌋ − b⌊p⌋

∣∣∣ ,
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whereas the second (strict) inequality follows from the construction of ε as a
strictly positive number, which implies that a ̸= b. The tolerance ε constructed
in this way can be computed via O(K) additions and multiplications, and as p is
not part of the input, its bit length is thus polynomially bounded. If a ≥ 1 ≥ b
or a, b ≤ 1, then ε can be constructed in a similar manner. Details are omitted
for brevity.

Lemma 1.3.1 readily implies that for any instance of the #OT problem
there exists an approximate OT distance W̃c(µ, ν) that satisfies both condi-

tions (i) as well as (ii). For example, we could construct W̃c(µ, ν) by rounding
the exact OT distance Wc(µ, ν) to the nearest multiple of ε. By construc-
tion, this approximation differs from Wc(µ, ν) at most by ε, which is itself not
larger than ε. In addition, this approximation trivially inherits the polynomial
bit length from ε. We emphasize that, in general, W̃c(µ, ν) cannot be set to
the exact OT distance Wc(µ, ν), because Wc(µ, ν) may be irrational and thus
have infinite bit length. However, Corollary 1 below implies that if p is even,
then W̃c(µ, ν) =Wc(µ, ν) satisfies both conditions (i) as well as (ii).

Note that the #OT problem is parametrized by p. The following example
shows that if p was treated as an input parameter, then the problem would have
exponential time complexity.

Example 1.3.2. Consider an instance of the #OT problem with K = 1, y1 =
1, y2 = 2 and t = 0. In this case we have µ = 1

2δ0 + 1
2δ1, ν = δ2 and ε =

1
8 . An elementary analytical calculation reveals that Wc(µ, ν) = 1

2 (1 + 2p).

The bit length of any ε-approximation W̃c(µ, ν) of Wc(µ, ν) is therefore bounded
below by log2(

1
2 (1 + 2p) − 1

8 ) ≥ p − 1, which grows exponentially with the bit

length log2(p) of p. Note that the time needed for computing W̃c(µ, ν) is at least
as large as its own bit length irrespective of the algorithm that is used. If p
was an input parameter of the #OT problem, the problem’s worst-case time
complexity would therefore grow at least exponentially with its input size.

The following main theorem shows that the #OT problem is hard even
if p = 2.

Theorem 1.3.3 (Hardness of #OT). #OT is #P-hard for any p ≥ 1.

We prove Theorem 1.3.3 by reducing the #Knapsack problem to the #OT
problem via a polynomial-time Turing reduction. To this end, we fix an instance
of the #Knapsack problem with input w ∈ ZK

+ and b ∈ Z+, and we denote by
νt = tδy1

+(1− t)δy2
the two-point distribution with support points y1 = 0 and

y2 = 2bw/∥w∥2, whose probabilities are parameterized by t ∈ [0, 1]. Recall also
that µ is the uniform distribution on {0, 1}K , that is, µ = 1

I

∑
i∈I δxi , where

I = 2K and {xi : i ∈ I} = {0, 1}K . Without loss of generality, we may assume
that the support points of µ are ordered so as to satisfy

∥x1−y1∥p−∥x1−y2∥p ≤ ∥x2−y1∥p−∥x2−y2∥p≤· · ·≤∥xI−y1∥p−∥xI−y2∥p.
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Below we will demonstrate that computing Wc(µ, νt) approximately is at least
as hard as solving the #Knapsack problem, which amounts to evaluating the
cardinality of I(w, b) = {x ∈ {0, 1}K : w⊤x ≤ b}.
Lemma 1.3.4. If c(x,y) = ∥x − y∥p for some p ≥ 1, then the OT distance
Wc(µ, νt) is continuous, piecewise affine and convex in t ∈ [0, 1]. Moreover, it
admits the closed-form formula

Wc(µ, νt) =
1

I

⌊tI⌋∑

i=1

∥xi − y1∥p +
1

I

I∑

i=⌊tI⌋+1

∥xi − y2∥p

+
(tI − ⌊tI⌋)

I

(
∥x⌊tI⌋+1 − y1∥p − ∥x⌊tI⌋+1 − y2∥p

)
.

(1.2)

Proof. For any fixed t ∈ [0, 1], the discrete OT problem (1.1) satisfies

Wc(µ, νt) = min
π∈Π(µ,νt)

∑

i∈I

∑

j∈J
∥xi − yj∥pπij

=





min
q1,q2∈RI

+

t
∑

i∈I
∥xi − y1∥pq1,i + (1− t)

∑

i∈I
∥xi − y2∥pq2,i

s.t. tq1 + (1− t)q2 = 1/I, 1⊤q1 = 1, 1⊤q2 = 1.

The second equality holds because the transportation plan can be expressed as

π =
∑

i∈I

∑

j∈J
πijδ(xi,yj)

= t · q1 ⊗ δy1
+ (1− t) · q2 ⊗ δy2

,

with qj =
∑

i∈I qj,iδxi
representing the conditional distribution of x given y =

yj under π for every j = 1, 2. This is a direct consequence of the law of
total probability. By applying the variable transformations q1 ← tIq1 and
q2 ← (1− t)Iq2 to eliminate all bilinear terms, we then find

Wc(µ, νt) =





min
q1,q2∈RI

+

1

I

∑

i∈I
∥xi − y1∥pq1,i +

1

I

∑

i∈I
∥xi − y2∥p q2,i

s.t. 1⊤q1 = tI, 1⊤q2 = (1− t)I, q1 + q2 = 1.

(1.3)

Observe that (1.3) can be viewed as a parametric linear program. By [DT03,
Theorem 6.6], its optimal value Wc(µ, νt) thus constitutes a continuous, piece-
wise affine and convex function of t. It remains to be shown that Wc(µ, νt)
admits the analytical expression (1.2). To this end, note that the decision vari-
able q2 and the constraint q1 + q2 = 1 in problem (1.3) can be eliminated by
applying the substitution q2 ← 1 − q1. Renaming q1 as q to reduce clutter,
problem (1.3) then simplifies to

min
q∈RI

1

I

∑

i∈I
(∥xi − y1∥p − ∥xi − y2∥p) qi +

1

I

∑

i∈I
∥xi − y2∥p

s.t. 1⊤q = tI, 0 ≤ q ≤ 1.

(1.4)
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Recalling that the atoms of µ are ordered such that ∥x1− y1∥p−∥x1− y2∥p ≤
· · · ≤ ∥xI − y1∥p − ∥xI − y2∥p, one readily verifies that problem (1.4) is solved
analytically by

q⋆i =





1 if i ≤ ⌊tI⌋
tI − ⌊tI⌋ if i = ⌊tI⌋+ 1
0 if i > ⌊tI⌋+ 1.

Substituting q⋆ into (1.4) yields (1.2), and thus the claim follows.

Lemma 1.3.4 immediately implies that the bit length of Wc(µ, νt) is polyno-
mially bounded.

Corollary 1. If c(x,y) = ∥x−y∥p and p is even, then the bit length of the OT
distance Wc(µ, νt) grows at most polynomially with the bit length of (y1,y2, t).

Proof. The bit length of (y1,y2, t) is finite if and only if all of its components are
rational and thus representable as ratios of two integers. We denote by U ∈ N
the maximum absolute value of these integers.

For ease of exposition, we assume first that p = 2 and t = 1. In addition,
we use D ∈ N to denote the least common multiple of the denominators of
the K components of y1. It is easy to see that D ≤ UK . By Lemma 1.3.4, the
OT distance Wc(µ, νt) can thus be expressed as the average of the I quadratic
terms ∥xi−y1∥2 = x⊤

i xi+2x⊤
i y1+y

⊤
1 y1 for i ∈ I. Each such term is equivalent

to a rational number with denominator D2 and a numerator that is bounded
above by K(1 + 2U + U2)D2. Indeed, each component of xi is binary, whereas
each component of y1 can be expressed as a rational number with denomina-
tor D and a numerator with absolute value at most UD. By Lemma 1.3.4,
Wc(µ, νt) is thus representable as a rational number with denominator ID2 and
a numerator with absolute value at most IK(1+U)2D2. Therefore, the number
of bits needed to encode Wc(µ, νt) is at most of the order

O
(
log2(IKU

2D2))
)
≤ O

(
log2(2

KKU2U2K)
)
= O (K log2(U)) ,

where the inequality holds because I = 2K andD ≤ UK . As bothK and log2(U)
represent lower bounds on the bit length of (y1,y2, t), we have thus shown that
the bit length of Wc(µ, νt) is indeed polynomially bounded in the bit length
of (y1,y2, t). If p is any even number and t any rational probability, then the
claim can be proved using similar—yet more tedious—arguments. Details are
omitted for brevity.

Corollary 1 implies that the OT distance Wc(µ, νt) is rational whenever p is
an even integer and t is rational. Otherwise, Wc(µ, νt) is generically irrational
because the Euclidean norm of a vector v = (v1, . . . , vK) is irrational unless
(v1, . . . , vK , ∥v∥) is proportional to a Pythagorean (K + 1)-tuple, where the
inverse proportionality factor is itself equal to the square of an integer. We will
now show that the cardinality of the set I(w, b) can be computed by solving
the univariate minimization problem

min
t∈[0,1]

Wc(µ, νt). (1.5)
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Lemma 1.3.5. If c(x,y) = ∥x − y∥p for some p ≥ 1, then t⋆ = |I(w, b)|/I
is an optimal solution of problem (1.5). If in addition each component of w is
even and b is odd, then t⋆ is unique.

Proof. From the proof of Lemma 1.3.4 we know that the OT distance Wc(µ, νt)
coincides with the optimal value of (1.3). Thus, problem (1.5) can be reformu-
lated as

min
t∈[0,1]

q1,q2∈RI
+

1

I

∑

i∈I
∥xi − y1∥pq1,i +

1

I

∑

i∈I
∥xi − y2∥p q2,i

s.t. 1⊤q1 = tI, 1⊤q2 = (1− t)I, q1 + q2 = 1.

(1.6)

Note that the decision variable t as well as the two normalization constraints
for q1 and q2 are redundant and can thus be removed without affecting the
optimal value of (1.6). In other words, there always exists t ∈ [0, 1] such that
1⊤q1 = tI and 1⊤q2 = (1− t)I. Hence, (1.6) simplifies to

min
q1,q2∈RI

+

1

I

∑

i∈I
∥xi − y1∥pq1,i +

1

I

∑

i∈I
∥xi − y2∥p q2,i

s.t. q1 + q2 = 1.

(1.7)

Next, introduce the disjoint index sets

I0 = {i ∈ I : ∥xi − y1∥ = ∥xi − y2∥}
I1 = {i ∈ I : ∥xi − y1∥ < ∥xi − y2∥}
I2 = {i ∈ I : ∥xi − y1∥ > ∥xi − y2∥},

which form a partition of I. Using these sets, optimal solution of problem (1.7)
can be expressed as

q⋆1,i =





θi if i ∈ I0
1 if i ∈ I1
0 if i ∈ I2

and q⋆2,i =





1− θi if i ∈ I0
0 if i ∈ I1
1 if i ∈ I2

(1.8)

Therefore, we have

min
t∈[0,1]

Wc(µ, νt) =
1

I

∑

i∈I
min

{
∥xi − y1∥p, ∥xi − y2∥p

}
.

Any minimizer (q⋆1, q
⋆
2) of (1.7) gives thus rise to a minimizer (t⋆, q⋆1, q

⋆
2) of (1.6),

where t⋆ = (1⊤q⋆1)/I. Moreover, the minimizers of (1.5) are exactly all numbers
of the form t⋆ = (1⊤q⋆1)/I corresponding to the minimizer (q⋆1, q

⋆
2) of (1.7). In

view of (1.8), this observation allows us to conclude that

argmin
t∈[0,1]

Wc(µ, νt) = [|I1|/I, |I0 ∪ I1|/I] . (1.9)
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By the definitions of I(w, b), y1 and y2, it is further evident that

|I(w, b)| =
∣∣{i ∈ I : w⊤xi ≤ b

}∣∣

=
∣∣∣
{
i ∈ I : ∥xi − y1∥2 ≤ ∥xi − y2∥2

}∣∣∣ = |I1 ∪ I0|.

Therefore, we may finally conclude that

|I(w, b)|/I ∈ argmin
t∈[0,1]

Wc(µ, νt).

Assume now that each component of w is even and b is odd. In this case,
there exists no x ∈ {0, 1}K that satisfies x⊤w = b and consequentially I0
is empty. Consequently, the interval of minimizers in (1.9) collapses to the
singleton |I1|/I = |I(w, b)|/I. This observation completes the proof.

Armed with Lemmas 1.3.4 and 1.3.5, we are now ready to prove Theo-
rem 1.3.3.

Proof of Theorem 1.3.3. Select an instance of the #Knapsack problem with
input w ∈ ZK

+ and b ∈ Z+. Throughout this proof we will assume without loss
of generality that each component of w is even and that b is odd. Indeed, if
this was not the case, we could replace w with w′ = 2w and b with b′ = 2b+1.
It is easy to verify that the two instances of the #Knapsack problem with
inputs (w, b) and (w′, b′) have the same solution. In addition, the bit length
of (w′, b′) is polynomially bounded in the bit length of (w, b).

Given w and b, define the distributions µ and νt for t ∈ [0, 1] as well as
the set I(w, b) in the usual way. From Lemma 1.3.4 we know that Wc(µ, νt) is
continuous, piecewise affine and convex in t. The analytical formula (1.2) further
implies that Wc(µ, νt) is affine on the interval [(i − 1)/I, i/I] with slope ai · I,
where

ai =Wc(µ, νi/I)−Wc(µ, ν(i−1)/I) ∀i ∈ I. (1.10)

Thus, (1.5) constitutes a univariate convex optimization problem with a con-
tinuous piecewise affine objective function. As each component of w is even
and b is odd, Lemma 1.3.5 implies that t⋆ = |I(w, b)|/I is the unique mini-
mizer of (1.5). Therefore, the given instance of the #Knapsack problem can
be solved by solving (1.5) and multiplying its unique minimizer t⋆ with I.

In the following we will first show that if we had access to an oracle that
computes Wc(µ, νt) exactly, then we could construct an algorithm that finds t⋆

and the solution t⋆I of the #Knapsack problem by calling the oracle 2K times
(Step 1). Next, we will prove that if we had access to an oracle that solves
the #OT problem and thus outputs only approximations of Wc(µ, νt), then we
could extend the algorithm from Step 1 to a polynomial-time Turing reduction
from the #Knapsack problem to the #OT problem (Step 2). Step 2 implies
that #OT is #P-hard.

Step 1. Assume now that we have access to an oracle that computesWc(µ, νt)
exactly. In addition, introduce an array a = (a0, a1, . . . , aI) with entries ai,
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i ∈ I, defined as in (1.10) and with a0 = −∞. Thus, each element of a can be
evaluated with at most two oracle calls. The array a is useful because it contains
all the information that is needed to solve the univariate convex optimization
problem (1.5). Indeed, as Wc(µ, νt) is a convex piecewise linear function with
slope ai · I on the interval [i/I, (i − 1)/I], the array a is sorted in ascending
order, and the unique minimizer t⋆ of (1.5) satisfies

|I(w, b)| = t⋆I = max
{
i ∈ I ∪ {0} : ai ≤ 0

}
. (1.11)

In other words, counting all elements of the set I(w, b) and thereby solving
the #Knapsack problem is equivalent to finding the maximum index i ∈ I ∪
{0} that meets the condition ai ≤ 0. The binary search method detailed in
Algorithm 1 efficiently finds this index. Binary search methods are also referred
to as half-interval search or bisection algorithms, and they represent iterative
methods for finding the largest number within a sorted array that is smaller or
equal to a given threshold (0 in our case). Algorithm 1 first checks whether the
number in the middle of the array is non-positive. Depending on the outcome,
either the part of the array to the left or to the right of the middle element may
be discarded because the array is sorted. This procedure is repeated until the
array collapses to the single element corresponding to the sought number. As
the length of the array is halved in each iteration, the binary search method
applied to an array of length I returns the solution in log2 I = K iterations
[Cor+09, § 12].

Algorithm 1 Binary search method

Input: An array a ∈ RI with I = 2K sorted in ascending order
1: Initialize n = 0 and n = I
2: for k = 1, . . . ,K do
3: Set n← (n+ n)/2
4: if an ≤ 0 then n← n else n← n
5: end for

6: if an ≤ 0 then n← n else n← n
Output: n

One can use induction to show that, in any iteration k of Algorithm 1, n is
given by a multiple of 2K−k and represents indeed an eligible index. Similarly,
in any iteration k we have n− n = 2K−k+1.

Step 2. Assume now that we have only access to an oracle that solves the
#OT problem, which merely returns an approximation W̃c(µ, νt) of Wc(µ, νt).
Setting ã0 = −∞ and

ãi = W̃c(µ, νi/I)− W̃c(µ, ν(i−1)/I) ∀i ∈ I, (1.12)

we can then introduce a perturbed array ã = (ã0, ã1, . . . , ãI) which provides an
approximation for a. In the following we will prove that, even though ã is no
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longer necessarily sorted in ascending order, the sign of ãi coincides with the sign
of ai for every i ∈ I. Algorithm 1 therefore outputs the exact solution |I(w, b)|
of the #Knapsack problem even if its input a is replaced with ã. To see this,
we first note that

ai =
1

I
(∥xi − y1∥p − ∥xi − y2∥p) ∀i ∈ I, (1.13)

which is an immediate consequence of the analytical formula (1.2) forWc(µ, νt).
We emphasize that (1.13) has only theoretical relevance but cannot be used to
evaluate ai in practice because it relies on our assumption that the support
points xi, i ∈ I, are ordered such that ∥xi−y1∥p−∥xi−y2∥p is non-decreasing
in i. Indeed, there is no efficient algorithm for ordering these 2K points in
practice. Using (1.13), we then find

ε =
1

4
min
i∈I
{|ai| : ai ̸= 0} = 1

4
min
i∈I
|ai|,

where the first equality follows from the definition of ε, and the second equality
holds because each component ofw is even and b is odd, which implies that ∥xi−
y1∥ ≠ ∥xi−y2∥ and thus ai ̸= 0 for all i ∈ I. The last formula for ε immediately
implies that |ai| ≥ 4ε for all i ∈ I. Together with the estimate

|ãi− ai| ≤
∣∣∣W̃c(µ, νi/I)−Wc(µ, νi/I)

∣∣∣+
∣∣∣W̃c(µ, ν(i−1)/I)−Wc(µ, ν(i−1)/I)

∣∣∣ ≤ 2ε,

this implies that ãi has indeed the same sign as ai for every i ∈ I. As the
execution of Algorithm 1 depends on the input array only through the signs
of its components, Algorithm 1 with input ã computes indeed the exact solu-
tion |I(w, b)| of the #Knapsack problem. If the perturbed slope ãn in line 4
of Algorithm 1 is evaluated via (1.12) by calling the #OT oracle twice, then
Algorithm 1 constitutes a Turing reduction from the #P-hard #Knapsack
problem to the #OT problem.

To prove that the #OT problem is #P-hard, it remains to be shown that
if any oracle call requires unit time, then the Turing reduction constructed
above runs in polynomial time in the bit length of (w, b). This is indeed the
case because Algorithm 1 calls the #OT oracle only 2K times in total and
because all other operations can be carried out efficiently. In particular, the
time needed for reading the oracle outputs is polynomially bounded in the size
of (w, b). Indeed, the bit length of W̃c(µ, νi/I) is polynomially bounded in the
bit length of (y1,y2, i/I) thanks to the definition of the #OT problem, and the
time needed for computing (y1,y2, i/I) is trivially bounded by a polynomial in
the bit length of (w, b) for any i ∈ I. These observations complete the proof.

We emphasize that the Turing reduction derived in the proof of Theo-
rem 1.3.3 can be implemented without knowing the accuracy level ε of the
#OT oracle. This is essential because ε is defined as the minimum of exponen-
tially many terms, and we are not aware of any method to compute it efficiently.
Without such a method, a Turing reduction relying on ε could not run in poly-
nomial time.
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Remark 1 (Polynomial-Time Turing Reductions). Recall that a polynomial-
time Turing reduction from problem A to problem B is a Turing reduction that
runs in polynomial time in the input size of A under the hypothetical assump-
tion that there is an oracle for solving B in unit time. The time needed for
computing oracle inputs and reading oracle outputs is attributed to the Turing
reduction and is not absorbed in the oracle. Thus, a Turing reduction can run
in polynomial time only if the oracle’s output size is guaranteed to be polynomi-
ally bounded. The existence of a polynomial-time Turing reduction from A to B
implies that if there was an efficient algorithm for solving B, then we could
solve A in polynomial time (this operationalizes the assertion that “A is not
harder than B”). One could use this implication as an alternative definition,
that is, one could define a polynomial-time Turing reduction as a Turing reduc-
tion that runs in polyonomial time provided that the oracle runs in polynomial
time. In our opinion, this alternative definition would be perfectly reasonable.
However, it is not equivalent to the original definition by [Val79a], which com-
pels us to ascertain that the oracle output has polynomial size irrespective of
the oracle’s actual runtime. Instead, the alternative definition directly refers to
the oracle’s actual runtime. In that it conditions on oracles that run in poly-
nomial time, it immediately guarantees that their outputs have polynomial size.
In short, the original definition requires the bit length of the oracle’s output
to be polynonmially bounded for every oracle that solves B (which requires a
proof), whereas the alternative definition requires such a bound only for oracles
that solve B in polynomial time (which requires no proof). As Theorem 1.3.3
relies on the original definition of a polynomial-time Turing reduction, we had
to introduce condition (ii) in the definition of the #OT problem. We consider
the differences between the original and alternative definitions of polynomial-
time Turing reductions as pure technicalities, but discussing them here seems
relevant for motivating our formulation of the #OT problem.

Assume now that p is an even number, and consider any instance of the #OT
problem. In this case, all coefficients of the linear program (1.1) are rational, and
thus Wc(µ, νt) is a rational number that can be computed in finite time (e.g.,
via the simplex algorithm). From Corollary 1 we further know that Wc(µ, νt)

has polynomially bounded bit length. Thus, W̃c(µ, νt) =Wc(µ, νt) satisfies both
properties (i) and (ii) that are required of an admissible approximation of the OT
distance. Nevertheless, Theorem 1.3.3 asserts that computingWc(µ, νt) approx-
imately is already #P-hard. This trivially implies that computing Wc(µ, νt)
exactly is also #P-hard.

1.4. Dynamic Programming-Type Solution Meth-
ods

We now return to the generic OT problem with independent marginals, where
µ is representable as ⊗k∈Kµk, the marginals of µ constitute arbitrary univariate
distributions supported on L points, and ν constitutes an arbitrary multivari-
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ate distribution supported on J points. This problem class covers all instances
of the #OT problem, and by Theorem 1.3.3 it is therefore #P-hard even if
only approximate solutions are sought. In fact, any problem class that is rich
enough to contain all instances of the #OT problem is #P-hard. We will now
demonstrate that, for p = 2, particular instances of the OT problem with inde-
pendent marginals can be solved in polynomial or pseudo-polynomial time by a
dynamic programming-type algorithm even though the distribution µ involves
exponentially many atoms and the linear program (1.1) has exponential size.
Throughout this discussion we call N ⊆ R a one-dimensional regular grid with
cardinality N if there exist ŝ1, . . . , ŝN ∈ R and a grid spacing constant d > 0
such that ŝi+1 = ŝi + d for all i = 1, . . . , N − 1 and N = {ŝ1, . . . , ŝN}. We
say that a set M ⊆ R spans the one-dimensional regular grid N if M ⊆ N ,
minM = minN and maxM = maxN .

Theorem 1.4.1 (Dynamic Programming-Type Algorithm for OT Problems
with Independent Marginals). Suppose that µ = ⊗k∈Kµk is a product of K in-
dependent univariate distributions of the form µk =

∑
l∈L µ

l
kδxl

k
and that νt =

tδy1
+ (1− t)δy2

is a two-point distribution. If c(x,y) = ∥x− y∥2 and ifM =
{xlk(y1,k − y2,k) : k ∈ K, l ∈ L} spans a regular one-dimensional grid N with
(known) cardinality N , then the OT distance between µ and νt can be com-
puted exactly by a dynamic programming-type algorithm using O(KL log2(KL)+
KLN+K2N2) arithmetic operations. If all problem parameters are rational and
representable as ratios of two integers with absolute values at most U , then the
bit lengths of all numbers computed by this algorithm are polynomially bounded
in K, L, N and log2(U).

Assuming thatM spans some regular one-dimensional gridN , Theorem 1.4.1
establishes an upper bound on the number of arithmetic operations needed
to solve the OT problem with independent marginals. We will see that the
proof of Theorem 1.4.1 is constructive in that it develops a concrete dynamic
programming-type algorithm that attains the indicated upper bound (see Algo-
rithm 2). However, this bound depends on the cardinality N of the grid N , and
Theorem 1.4.1 does not relate N to K, L or U . More importantly, it provides
no guidelines for constructing N or even proving its existence.

Remark 2 (Existence of N ). If all support points of µ and ν have rational
components, then a regular one-dimensional grid N satisfying the assumptions
of Theorem 1.4.1 is guaranteed to exist. In general, however, its cardinality
scales exponentially with K and L, implying that the dynamic programming-type
algorithm of Theorem 1.4.1 is inefficient. To see this, assume that for all k ∈ K,
l ∈ L and j ∈ {1, 2} there exist integers ak,l, cj,k ∈ Z and bk,l, dj,k ∈ N such
that xlk = ak,l/bk,l and yj,k = cj,k/dj,k. Thus, we have

xlk(y1,k − y2,k) =
alk(c1,kd2,k − c2,kd1,k)

bk,ld1,kd2,k
k ∈ K, ∀l ∈ L,

which implies that all elements ofM can be expressed as rational numbers with
common denominator D =

∏
k∈K,l∈L bk,ld1,kd2,k. Clearly, M therefore spans
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a regular one-dimensional grid N with grid spacing constant d = D−1 and
cardinality N = D(maxM−minM)+1. If U denotes as usual an upper bound
on the absolute values of the integers ak,l, bk,l, cj,k and dj,k for all k ∈ K, l ∈ L
and j ∈ {1, 2}, then we have D ≤ U3KL, and all elements of M have absolute
values of at most 2U3. The cardinality of N therefore satisfies N ≤ 4U3(KL+1)+
1. This reasoning suggests that, in the worst case, the dynamic programming-
type algorithm of Theorem 1.4.1 may require up to O(K2U3(KL+1)) arithmetic
operations.

Remark 2 guarantees that a regular one-dimensional grid N satisfying the
assumptions of Theorem 1.4.1 exists whenever the input bit length of the OT
problem with independent marginals is finite. However, Remark 2 also reveals
that the algorithm of Theorem 1.4.1 may be highly inefficient in general. Re-
mark 3 below discusses special conditions under which this algorithm is of prac-
tical interest.

Remark 3 (Efficiency of the Dynamic Programming-Type Algorithm). The
algorithm of Theorem 1.4.1 is efficient on problem instances that display the
following properties.

(i) IfM spans a regular one-dimensional grid whose cardinality N grows only
polynomially with K and L but is independent of U , then the number of
arithmetic operations required by the algorithm of Theorem 1.4.1 grows
polynomially with K and L but is independent of U , and the bit lengths of
all numbers computed by this algorithm are polynomially bounded in K, L
and log2(U). Hence, the algorithm runs in strongly polynomial time on a
Turing machine.

(ii) IfM spans a regular one-dimensional grid whose cardinality N grows poly-
nomially with K, L and log2(U), then the number of arithmetic operations
required by the algorithm of Theorem 1.4.1 as well as the bit lengths of all
numbers computed by this algorithm are polynomially bounded in K, L
and log2(U). Hence, the algorithm runs in weakly polynomial time on a
Turing machine.

(iii) IfM spans a regular one-dimensional grid whose cardinality grows polyno-
mially with K, L and U (but exponentially with log2(U)), then the number
of arithmetic operations required by the algorithm of Theorem 1.4.1 grows
polyonomially with K, L and U , and the bit lengths of all numbers com-
puted by this algorithm are polynomially bounded in K, L and log2(U).
Hence, the algorithm runs in pseudo-polynomial time on a Turing ma-
chine.

Before proving Theorem 1.4.1, we recall the definition of the Conditional
Value-at-Risk (CVaR) by [RU02]. Specifically, if the random vector x is gov-
erned by the probability distribution µ, then the CVaR at level t ∈ (0, 1) of any
Borel measurable loss function ℓ(x) is defined as

CVaRt[ℓ(x)] = inf
β∈R

β +
1

t
Ex∼µ [max{ℓ(x)− β, 0}] .
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Here, the minimization problem over β is solved by the Value-at-Risk (VaR) at
level t [RU02, Theorem 10], which is defined as the left (1 − t)-quantile of the
loss distribution, that is,

VaRt[ℓ(x)] = inf {τ ∈ R : µ[ℓ(x) ≤ τ ] ≥ 1− t} .

The proof of Theorem 1.4.1 also relies on the following lemma.

Lemma 1.4.2 (Minkowski sums of regular one-dimensional grids). If N is a
one-dimensional regular grid with cardinality N and grid spacing constant d > 0,
then the k-fold Minkowski sum

∑k
i=1N of N is another one-dimensional regular

grid with cardinality k(N − 1) + 1 and the same grid spacing constant d.

Proof. Any regular one-dimensional grid with cardinality N and grid spacing
constant d > 0 is representable as the image of {1, . . . , N} under the affine trans-
formation f(s) = ŝ1 − d+ ds, where ŝ1 denotes the smallest element of N . It is
immediate to see that the k-fold Minkowski sum ofN is another one-dimensional
regular grid with grid spacing constant d. In addition, the cardinality of this
Minkowski sum satisfies

∣∣∣∣∣
k∑

i=1

N
∣∣∣∣∣ =

∣∣∣∣∣
k∑

i=1

f({1, . . . , N})
∣∣∣∣∣ =

∣∣∣∣∣f
(

k∑

i=1

{1, . . . , N}
)∣∣∣∣∣

= |f({k, . . . , kN})| = |{k, . . . , kN}| = k(N − 1) + 1,

where the second equality holds because f is affine and because the cardinality
of any set is invariant under translations. Thus, the claim follows.

Proof of Theorem 1.4.1. Throughout this proof we exceptionally assume that
each arithmetic operation can be performed in unit time irrespective of the bit
lengths of the involved operands. We emphasize that everywhere else in the
chapter, however, time is measured in the standard Turing machine model of
computation. Throughout this proof we further set I = LK and denote as usual
by xi, i ∈ I, the I different support points of µ. Then, the OT distance between
µ and νt can be expressed as

Wc(µ, νt) = min
π∈Π(µ,νt)

∑

i∈I

∑

j∈J

(
∥xi∥2 + ∥yj∥2 − 2x⊤

i yj

)
πij

= Ex∼µ

[
∥x∥2

]
+ Ey∼νt

[
∥y∥2

]
− 2 max

π∈Π(µ,νt)

∑

i∈I

∑

j∈J
x⊤
i yjπij . (1.14)

The two expectations in (1.14) can be evaluated in O(KL) arithmetic operations
because

Ex∼µ

[
∥x∥2

]
=
∑

k∈K
Exk∼µk

[
(xk)

2
]
=
∑

k∈K

∑

l∈L
µl
k(x

l
k)

2 and

Ey∼νt

[
∥y∥2

]
= t∥y1∥2 + (1− t)∥y2∥2,
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and it is easy to verify that their bit lengths are polynomially bounded in K,
L and log2(U). Moreover, as in the proof of Lemma 1.3.5, the maximization
problem in (1.14) simplifies to

max
π∈Π(µ,νt)

∑

i∈I

∑

j∈J
x⊤
i yjπij =





max
q1,q2∈RI

+

t
∑

i∈I
x⊤
i y1q1,i + (1− t)

∑

i∈I
x⊤
i y2q2,i

s.t. 1⊤q1 = 1, 1⊤q2 = 1

tq1,i + (1− t)q2,i = µ[x = xi] ∀i ∈ I.

=
∑

i∈I
x⊤
i y2 µ[x=xi]+





max
q∈RI

+

∑

i∈I
x⊤
i (y1−y2)qi

s.t. 1⊤q = t

qi ≤ µ[x=xi] ∀i ∈ I,
(1.15)

where the second equality follows from the variable substitution q ← tq1 and the
subsequent elimination of q2 by using the equations (1− t)q2,i = µ[x = xi]− qi
for all i ∈ I. Observe next that the first sum in (1.15) can again be evaluated
using O(KL) arithmetic operations because

∑

i∈I
x⊤
i y2 µ[x = xi] = Ex∼µ

[
x⊤y2

]
=
∑

k∈K
Exk∼µk

[xky2,k] =
∑

k∈K

∑

l∈L
xlkµ

l
ky2,k,

and the bit length of this sum is polynomially bounded in K, L and log2(U).
For t = 0, the optimal value of the maximization problem in (1.15) vanishes.
For t = 1, on the other hand, the problem’s optimal solution satisfies qi = µ[x =
xi] for all i ∈ I. By using now standard arguments, one readily verifies that the
corresponding optimal value can once again be computed in O(KL) arithmetic
operations and has polynomially bounded bit length in K, L and log2(U). In
the remainder of the proof we may thus assume that t ∈ (0, 1). To solve the
maximization problem in (1.15) in this generic case, we first reformulate it as

t ·max

{∑

i∈I
ℓ(xi)µ[x = xi] qi : 0 ≤ q ≤ t · 1,

∑

i∈I
µ[x = xi] qi = 1

}
(1.16)

by applying the variable substitution qi ← qi/(t ·µ[x = xi]) and defining ℓ(x) =
x⊤(y1 − y2). The maximization problem in (1.16) is then readily recognized
as the dual representation of the CVaR of ℓ(x) at level t; see, e.g., [SDR21,
Example 6.16]. The expression (1.16) thus equals t · CVaRt(ℓ(x)).

By assumption, there exists a one-dimensional regular grid N with cardinal-
ity N such that xlk(y1,k − y2,k) ∈ N for every k ∈ K and l ∈ L. This readily

implies that ℓ(xi) = x⊤
i (y1 − y2) ∈ NK =

∑K
k=1N . Assume from now on

without loss of generality that NK = {ŝK,1, . . . , ŝK,|NK |} and that the elements
of NK are sorted in ascending order, that is, ŝK,1 < · · · < ŝK,|NK |. Also, denote
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by nt the unique index satisfying

nt∑

n=1

µ[ℓ(x) = ŝK,n] ≥ 1− t >
nt−1∑

n=1

µ[ℓ(x) = ŝK,n]. (1.17)

By [RU02, Proposition 8], the expression (1.16) can therefore be reformulated
as

t ·CVaRt[ℓ(x)]=

(
nt∑

n=1

µ[ℓ(x)= ŝK,n]− (1− t)
)
ŝK,nt+

|NK |∑

n=nt+1

µ[ℓ(x)= ŝK,n]ŝK,n.

(1.18)
Computing (1.18) thus amounts to evaluating a sum of O(|NK |) terms. We will
now prove that evaluating this sum requires O(KL log2(KL) +KLN +K2N2)
arithmetic operations. To this end, we first show that the grid points ŝK,n,
n = 1, . . . , |NK |, can be computed in time O(KL log2(KL) + KN) (Step 1),
then we show that the probabilities µ[ℓ(x) = ŝK,n], n = 1, . . . , |NK |, can be
computed recursively in time O(KLN + K2N2) (Step 2), and finally we use
these ingredients to compute the right hand side of (1.18) in time O(KN)
(Step 3).

Step 1. By assumption, the regular grid N has known cardinality N and is
spanned by M = {xlk(y1,k − y2,k) : k ∈ K, l ∈ L}. To compute all elements
of N , we first compute all elements ofM in time O(KL) and sort them in non-
decreasing order in time O(KL log2(KL)) using merge sort, for example. AsM
spans N , the minimum and the maximum ofM coincide with the minimum ŝ1
and the maximum ŝN of N , respectively. Given ŝ1 and ŝN , we can then compute
the grid spacing constant d = (ŝN − ŝ1)/(N − 1) as well as the elements ŝn =
ŝ1 + d(n− 1), n = 1, . . . , N , of N , which requires O(N) arithmetic operations.
The bit lengths of all numbers computed so far are bounded by a polynomial
in log2(U) and log2(N).

It is easy to see that NK =
∑K

k=1N is also a one-dimensional regular grid
that has the same grid spacing constant as N and whose minimum ŝK,1 = Kŝ1
can be computed in constant time. The elements of NK are then obtained by
computing ŝK,n = ŝK,1+d(n−1) for all n = 1, . . . , |NK |, where |NK | = K(N −
1) + 1 thanks to Lemma 1.4.2. This computation requires O(KN) arithmetic
operations, and the bit lengths of all involved numbers are still bounded by a
polynomial in log2(U) and log2(N). This completes Step 1.

Step 2. We now show that the probabilities µ[ℓ(x) = ŝK,n] for n = 1, . . . , |NK |
can be calculated recursively in time O(K2N2). To this end, we introduce the

partial sums ℓk(x) =
∑k

m=1 xm(y1,m − y2,m) for every k ∈ K and note that
ℓK(x) = ℓ(x). For every k ∈ K, the range of the function ℓk(x) is a subset of

the one-dimensional regular grid Nk =
∑k

k′=1N . The law of total probability
then implies that

µ[ℓk(x) = ŝ] =
∑

ŝ′∈N
µ [ℓk−1(x) = ŝ− ŝ′, xk(y1,k − y2,k) = ŝ′]
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∀k ∈ K\{1}, ∀ŝ ∈ Nk,

where ŝ1, . . . , ŝN denote as usual the elements of N , and where µ[ℓ1(x) = ŝ] =
µ1[x1(y1,1 − y2,1) = ŝ] for all ŝ ∈ N1. As ℓk(x) = ℓk−1(x) + xk(y1,k − y2,k),
ℓk−1(x) is constant in xk, . . . , xK and the components of x are mutually inde-
pendent under the product distribution µ = ⊗k∈Kµk, we thus have

µ[ℓk(x) = ŝ] =
∑

ŝ′∈N
µ [ℓk−1(x) = ŝ− ŝ′]× µk [xk(y1,k − y2,k) = ŝ′] (1.19)

∀k ∈ K\{1}, ∀ŝ ∈ Nk.

The marginal probabilities µk[xk(y1,k − y2,k) = ŝ′] for all k ∈ K and ŝ′ ∈ N
can be pre-computed in time O(KLN). Given µ[ℓk−1(x) = ŝ], ŝ ∈ Nk−1, each
probability µ[ℓk(x) = ŝ], ŝ ∈ Nk, can then be computed in time O(N) by
using (1.19). As |Nk| = O(kN) for every k ∈ K thanks to Lemma 1.4.2, each
iteration k ∈ K of the the dynamic programming-type recursion (1.19) requires
at most O(KN2) arithmetic operations. Finally, as there are O(K) iterations
in total, the sought probabilities µ[ℓK(x) = ŝ], ŝ ∈ NK , can be computed in
time O(K2N2). An elementary calculation further shows that the bit lengths
of these probabilities are bounded by a polynomial in K, N and log2(U). This
completes Step 2.

Step 3. As all terms appearing in the sum on the right hand side of (1.18)
have been pre-computed in Steps 1 and 2, the sum itself can now be evaluated
in time O(KN) thanks to Lemma 1.4.2. Note that the critical index nt defined
in (1.17) can also be computed in time O(KN). The bit lengths of all numbers
involved in these calculations are bounded by a polynomial inK, N and log2(U).
This completes Step 3.

In summary, the time required for evaluating the CVaR in (1.18) totals O(KL
log2(KL) + KLN + K2N2), which matches the overall time required for all
calculations described in Steps 1, 2 and 3. This computation time dominates
the time O(KL) spent on all preprocessing steps, and thus the claim follows.

The dynamic programming-type procedure developed in the proof of The-
orem 1.3.3 is summarized in Algorithm 2. This procedure outputs the OT
distance between µ and νt (denoted by Wc). In addition, Algorithm 2 can be
used for constructing the optimal transportation plan from µ to νt.
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Algorithm 2 OT with Independent Marginals

Input: {µl
k}k∈K,l∈L, {xlk}k∈K,l∈L, y1,y2 ∈ RK , t, N

1: Initialize ŝ1 = min
k∈K,l∈L

xlk(y1,k − y2,k) and ŝN =

max
k∈K,l∈K

xlk(y1,k − y2,k)
2: Set d = (ŝN − ŝ1)/(N − 1) and ŝn = ŝ1 + d(n − 1) ∀n =

1, . . . , N
3: Compute µk[xk(y1,k − y2,k) = ŝn] ∀k ∈ K and n ∈ N
4: Set µ[ℓ1(x) = ŝn] = µ1[x1(y1,1 − y2,1) = ŝn] ∀n = 1, . . . , N
5: for k = 2, . . . ,K do
6: for n = 1, . . . , k(N − 1) + 1 do
7: ŝk,n = kŝ1 + d(n− 1)
8: µ[ℓk(x) = ŝk,n] =

∑
ŝ′∈N

µ[ℓk−1(x) = ŝk,n − ŝ′] ×
µk[xk(y1,k − y2,k) = ŝ′]

9: end for
10: end for
11: Find the index nt ∈ {1, . . . ,K(N − 1) + 1} satisfying (1.17)
12: Set

CVaR =
1

t

[( nt∑

n=1

µ[ℓK(x) = ŝK,n]− 1 + t
)
ŝK,nt

− 2

K(N−1)+1∑

n=nt+1

µ[ℓK(x) = ŝK,n]ŝK,n

]

13: Set

Wc =
∑

k∈K

∑

l∈L
µl
k(x

l
k)

2 + t
∑

k∈K
y21,k + (1− t)

∑

k∈K
y22,k

− 2
∑

k∈K

∑

l∈L
xlkµ

l
ky2,k − 2t · CVaR

Output: Wc

Remark 4 (Optimal Transportation Plan). The critical index nt computed by
Algorithm 2 allows us to construct an optimal transportation plan π⋆ ∈ RI×J

+

that solves the linear program (1.1), where π⋆
i,j denotes the probability mass

moved from xi to yj for every i ∈ I and j ∈ J . To see this, note that the
defining properties of nt in (1.17) imply that VaRt[ℓ(x)] = ŝK,nt

and µ[ℓ(x) =
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ŝK,nt
] > 0. We may thus define π⋆ via

π⋆
i,1 =





µ[x = xi] if ℓ(xi) > ŝK,nt

t− 1 +
∑nt

n=1 µ[ℓ(x) = ŝK,n]

µ[ℓ(x) = ŝK,nt ]
× µ[x = xi] if ℓ(xi) = ŝK,nt

0 if ℓ(xi) < ŝK,nt

and π⋆
i,2 = µ[x = xi] − π⋆

i,1 for all i ∈ I. By the first inequality in (1.17), we
have π⋆ ≥ 0. In addition, we trivially find π⋆

i,1 + π⋆
i,2 = µ[x = xi] for all i ∈ I,

and we have
∑

i∈I
π⋆
i,1 =

∑

i∈I:
ℓ(xi)>ŝK,nt

µ[x = xi]+

∑

i∈I:
ℓ(xi)=ŝK,nt

t− 1 +
∑nt

n=1 µ[ℓ(x) = ŝK,n]

µ[ℓ(x) = ŝK,nt
]

× µ[x = xi]

=

|NK |∑

n=nt+1

µ[ℓ(x) = ŝK,n] + t− 1 +

nt∑

n=1

µ[ℓ(x) = ŝK,n] = t = 1−
∑

i∈I
π⋆
i,2.

In summary, this shows that π⋆ is feasible in the OT problem (1.1). Finally,
we have
∑

i∈I

∑

j∈J
π⋆
ij∥xi − yj∥2 = Ex∼µ

[
∥x∥2

]
+ Ey∼νt

[
∥y∥2

]
− 2

∑

i∈I

∑

j∈J
x⊤
i yjπ

⋆
ij

= Ex∼µ

[
∥x∥2

]
+ Ey∼νt

[
∥y∥2

]
−

2 Ex∼µ

[
x⊤y2

]
− 2

∑

i∈I
ℓ(xi)π

⋆
i,1

= Ex∼µ

[
∥x∥2

]
+ Ey∼νt

[
∥y∥2

]
−

2 Ex∼µ

[
x⊤y2

]
− 2t · CVaRt[ℓ(x)],

where the first two equalities follow from (1.14) and (1.15), respectively, while
the third equality exploits the definitions of π⋆ and the CVaR. The last expres-
sion manifestly matches the output Wc of Algorithm 2. Hence, we may conclude
that π⋆ is indeed optimal in (1.1). Note that evaluating π⋆

ij for a fixed i ∈ I
and j ∈ J requires at most O(NK +KL) arithmetic operations provided that
the critical index nt and the probabilities µ[ℓ(x) = ŝK,n], n ∈ NK , are given.
These quantities are indeed computed by Algorithm 2.

In the following we will identify special instances of the OT problem with
independent marginals that can be solved efficiently. Assume first that both µ
and ν are supported on {0, 1}K . This implies that all marginals of µ represent
independent Bernoulli distributions. Unlike in Theorem 1.3.3, however, these
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Bernoulli distributions may be non-uniform. The following corollary shows that,
in this case, the OT problem with independent marginals can be solved in
strongly polynomial time.

Corollary 2 (Binary Support). Suppose that all assumptions of Theorem 1.4.1
hold. If in addition L = 2, x1k = 0 and x2k = 1 for all k ∈ K, and y1,y2 ∈
{0, 1}K , then the OT distance between µ and νt can be computed in strongly
polynomial time.

Proof. Under the given assumptions, we haveM = {xlk(y1,k− y2,k) : k ∈ K, l ∈
L} ⊆ {−1, 0, 1}. Hence, Theorem 1.4.1 applies with N ⊆ {−1, 0, 1} and N ≤ 3,
and therefore Algorithm 2 computes Wc(µ, νt) using O(K2) arithmetic opera-
tions. AsN is constant inK, L and log2(U), Remark 3 (i) implies thatWc(µ, νt)
can be computed in strongly polynomial time in the Turing machine model.

By generalizing the proof of Corollary 2 in the obvious way, one can show
that the OT problem with independent marginals remains strongly polynomial-
time solvable whenever µ and νt are supported on a (fixed) bounded subset of the
scaled integer lattice ZK/M for some (fixed) scaling factor M ∈ N. If µ and νt
are supported on a subset of ZK/M that may grow with the problem’s input
size or if the scaling factor M may grow with the input size, then Algorithm 2
ceases to run in polynomial time. We now show, however, that Algorithm 2
stills run in pseudo-polynomial time in these cases.

Corollary 3 (Lattice Support). Suppose that all assumptions of Theorem 1.4.1
hold. If there exists a positive integer M ≤ U , such that xlk ∈ Z/M for all k ∈ K
and l ∈ L, while y1,y2 ∈ ZK/M , then the OT distance between µ and νt can
be computed in pseudo-polynomial time.

Proof. Under the given assumptions, we haveM = {xlk(y1,k− y2,k) : k ∈ K, l ∈
L} ⊆ Z/M2. Therefore, M spans a one-dimensional regular grid N ⊆ Z/M2

with grid spacing constant d = 1/M2 and cardinality

N = (maxM−minM) /d

= max
k∈K, l∈L

{
Mxlk(My1,k −My2,k)

}
− min

k∈K, l∈L

{
Mxlk(My1,k −My2,k)

}
.

(1.20)
Recall that xlk = alk/b

l
k for some alk ∈ Z and blk ∈ N with |alk|, |blk| ≤ U and

that M ≤ U . We may thus conclude that |Mxlk| ≤ U2 for all k ∈ K and l ∈ L.
Similarly, one can show that |My1,k| ≤ U2 and |My2,k| ≤ U2 for all k ∈ K.
By (1.20), we thus have N ≤ 4U2, which implies via Theorem 1.4.1 that Algo-
rithm 2 computes Wc(µ, νt) using O(KL log2(KL) +K2U4) arithmetic opera-
tions. We emphasize that the number of arithmetic operations thus grows poly-
nomially with K, L and U but exponentially with log2(U). By Remark 3 (iii),
Wc(µ, νt) can therefore be computed in pseudo-polynomial time.

So far we have discussed methods to solve the OT problem with independent
marginals exactly. In the remainder of this section we will show that approximate
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solutions can always be computed in pseudo-polynomial time. The following
lemma provides a key ingredient for this argument.

Lemma 1.4.3 (Approximating OT Distances). Consider four discrete proba-
bility distributions µ =

∑
i∈I µiδxi

, µ̃ =
∑

i∈I µiδx̃i
, ν =

∑
j∈J νjδyj

and ν̃ =∑
j∈J νjδỹj

supported on a hypercube [−U,U ]K for some U > 0. If c(x,y) =

∥x − y∥2 and there exists ε ≥ 0 such that ∥x̃i − xi∥∞ ≤ ε for all i ∈ I
and ∥ỹj − yj∥∞ ≤ ε for all j ∈ J , then we have

|Wc(µ, ν)−Wc(µ̃, ν̃)| ≤ 8KUε. (1.21)

We emphasize that Lemma 1.4.3 holds for arbitrary discrete distributions µ,
µ̃, ν and ν̃ provided that µ̃ and ν̃ are obtained by perturbing only the support
points of µ and ν, respectively, but not the corresponding probabilities. In par-
ticular, the lemma holds even if µ and µ̃ fail to represent product distributions
with independent marginals, and even if ν and ν̃ fail to represent two-point
distributions. Note also that, by slight abuse of notation, µi, i ∈ I, represent
here the probabilties of the support points of µ and should not be confused with
the univariate marginal distributions µk, k ∈ K, in the rest of the chapter.

Proof of Lemma 1.4.3. The elementary identity |a2 − b2| = (a + b)|a − b| for
any a, b ∈ R+ implies that

|Wc(µ, ν)−Wc(µ̃, ν̃)| =
(
Wc(µ, νt)

1
2 +Wc(µ̃, ν̃)

1
2

) ∣∣∣Wc(µ, ν)
1
2 −Wc(µ̃, ν̃)

1
2

∣∣∣ .
(1.22)

By the definition of the OT distance, the first term on the right-hand-side
of (1.22) satisfies

Wc(µ, ν)
1
2 +Wc(µ̃, ν̃)

1
2 =


 min

π∈Π(µ,ν)

∑

i∈I

∑

j∈J
∥xi − yj∥2πij




1
2

+


 min

π̃∈Π(µ̃,ν̃)

∑

i∈I

∑

j∈J
∥x̃i − ỹj∥2π̃ij




1
2

≤ 4
√
KU,

where the inequality holds because π and π̃ are probability distributions and
because

∥xi− yj∥2 ≤ K∥xi− yj∥2∞ ≤ 4KU2 and ∥x̃i− ỹj∥2 ≤ ∥x̃i− ỹj∥2∞ ≤ 4KU2

for all i ∈ I and j ∈ J , taking into account that all support points of the four
probability distributions µ, µ̃, ν and ν̃ fall into the hypercube [−U,U ]K . The
second term on the right-hand-side of (1.22) satisfies
∣∣∣Wc(µ, ν)

1
2 −Wc(µ̃, ν̃)

1
2

∣∣∣ ≤
∣∣∣Wc(µ, ν)

1
2 −Wc(µ̃, ν)

1
2

∣∣∣+
∣∣∣Wc(µ̃, ν)

1
2 −Wc(µ̃, ν̃)

1
2

∣∣∣
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≤Wc(µ, µ̃)
1
2 +Wc(ν, ν̃)

1
2

=


 min

πµ∈Π(µ,µ̃)

∑

i,i′∈I
∥xi − x̃i′∥2πµ

ii′




1
2

+


 min

πν∈Π(ν,ν̃)

∑

j,j′∈J
∥yj − ỹj′∥2πν

jj′




1
2

≤
(
1

I

∑

i∈I
∥xi − x̃i∥2

) 1
2

+


 1

J

∑

j∈J
∥yj − ỹj∥2




1
2

≤ 2
√
Kε,

where the second inequality holds because the 2-Wasserstein distance is a metric
and thus obeys the triangle inequality [Vil08, § 6], whereas the third inequality
holds because πµ and πν with πµ

ii′ = 1
I δii′ for all i, i′ ∈ I and πν

jj′ = 1
J δjj′

for all j, j′ ∈ J , respectively, are feasible transportation plans. Finally, the last
inequality follows from our assumption that ∥xi−x̃i∥∞ ≤ ε and ∥yj−ỹj∥∞ ≤ ε,
which implies that

∥xi − x̃i∥2 ≤ K∥xi − x̃i∥2∞ ≤ Kε2 and ∥yj − ỹj∥2 ≤ K∥yj − ỹj∥2∞ ≤ Kε2

for all i ∈ I and j ∈ J . Substituting the above estimates back into (1.22)
finally yields (1.21).

We now address the approximate solution of OT problems with independent
marginals.

Theorem 1.4.4 (Approximate Solutions of the OT Problem with Indepen-
dent Marginals). Suppose that µ = ⊗k∈Kµk with µk =

∑
l∈L µ

l
kδxl

k
for ev-

ery k ∈ K and that νt = tδy1
+(1− t)δy2

, and let ε > 0 be an error tolerance. If
c(x,y) = ∥x− y∥2 and if all probabilities and coordinates of the support points
of µ and νt are representable as fractions of two integers with absolute values of
at most U , then the OT distance between µ and νt can be computed to within
an absolute error of at most ε by a dynamic programming-type algorithm us-
ing O(KL log2(KL) + K6U8/ε4) arithmetic operations. The bit lengths of all
numbers computed by this algorithm are polynomially bounded in K, L, log2(U)
and log2(

1
ε ).

Proof. In order to approximate Wc(µ, νt) to within an absolute accuracy of ε,
we define M = ⌈8KU/ε⌉ and map all support points of µ and ν to the near-
est lattice points in ZK/M to construct perturbed probability distributions µ̃
and ν̃t, respectively. Specifically, we construct x̃

l
k by rounding xlk to the nearest

point in Z/M for every k ∈ K and l ∈ L. This requires O(KL) arithmetic oper-
ations. We then define the perturbed marginal distributions µ̃k =

∑
l∈L µ

l
kδx̃l

k

for all k ∈ K and set µ̃ = ⊗k∈Kµ̃k. In addition, we denote by x̃i, i ∈ I, the I dif-
ferent support points of µ̃. Here, it is imperative to use the same orderings for
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the support points of µ and µ̃, which implies that ∥xi − x̃i∥∞ ≤ 1
M ≤ ε

8KU
for all i ∈ I thanks to the construction of µ̃. We further construct ỹj,k
by rounding yj,k to the nearest points in Z/M for every j ∈ J = {1, 2}
and k ∈ K, and we define ỹj = (ỹj,1, . . . , ỹj,K) for all j ∈ J . This construc-
tion requires O(K) arithmetic operations and guarantees that ∥yj − ỹj∥∞ ≤
1
M ≤ ε

8KU for all j ∈ J . Finally, we introduce the perturbed two-point dis-
tribution ν̃t = tδỹ1

+ (1 − t)δỹ2
. All support points of µ and ν have rational

coordinates that are representable as fractions of two integers with absolute val-
ues at most U . Therefore, µ and ν are supported on [−U,U ]K . Similarly, as U
and M are integers, which implies that U is an integer multiple of 1

M , and as
all support points of µ̃ and ν̃ are obtained by mapping the support points of µ
and ν to the nearest lattice points in ZK/M , respectively, the perturbed distri-
butions µ̃ and ν̃ must also be supported on [−U,U ]K . Lemma 1.4.3 therefore
guarantees that |Wc(µ, νt)−Wc(µ̃, ν̃t)| ≤ ε.

In the remainder of the proof we will estimate the number of arithmetic
operations needed to compute Wc(µ̃, ν̃t). Note first that the coordinates of
all support points of µ̃ and ν̃t are fractions of integers with absolute values
of at most Ũ = MU . To see this, recall that xlk = alk/b

l
k for some alk ∈ Z

and blk ∈ N with |alk|, |blk| ≤ U . Using ‘round’ to denote the rounding op-
erator that maps any real number to its nearest integer, we can express x̃lk
as ãlk/b̃

l
k with ãlk = round(Mxlk) ∈ Z and b̃lk = M ∈ N. By construction, we

have |ãlk| ≤ MU = Ũ and b̃lk = M ≤ Ũ for all k ∈ K and l ∈ L. Similarly, one
can show that ỹj,k is representable as a fraction of two integers with absolute

values of at most Ũ for all j ∈ J and k ∈ K. As M ≤ Ũ , µ̃ and ν̃ thus sat-
isfy all assumptions of Corollary 3 with Ũ instead of U , respectively. From the
proof of this corollary we may therefore conclude that Wc(µ̃, ν̃t) can be com-
puted in O(KL log2(KL) + K2Ũ4) arithmetic operations using Algorithm 2.
As Ũ = MU = O(KU2/ε), this establishes the claim about the number of
arithmetic operations. From the definitions of Ũ and M and from the analysis
of Algorithm 2 in Theorem 1.4.1, it is clear that the bit lengths of all numbers
computed by the proposed procedure are indeed polynomially bounded in K,
L, log2(U) and log2(

1
ε ). This observation completes the proof.

Theorem 1.4.4 shows that an ε-approximation of Wc(µ, νt) can be computed
with a number of arithmetic operations that grows only polynomially with K,
L, U and 1

ε but exponentially with log2(U) and log2(
1
ε ). By Remark 3 (iii),

approximations of Wc(µ, νt) can therefore be computed in pseudo-polynomial
time.
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2.1. Introduction

Optimal transport theory has a long and distinguished history in mathematics
dating back to the seminal work of [Mon81b] and [Kan42]. While originally
envisaged for applications in civil engineering, logistics and economics, opti-
mal transport problems provide a natural framework for comparing probability
measures and have therefore recently found numerous applications in statistics
and machine learning. Indeed, the minimum cost of transforming a probability
measure µ on X to some other probability measure ν on Y with respect to a
prescribed cost function on X × Y can be viewed as a measure of distance be-
tween µ and ν. If X = Y and the cost function coincides with (the pth power of)
a metric on X ×X , then the resulting optimal transport distance represents (the
pth power of) a Wasserstein metric on the space of probability measures over X
[Vil08]. In the remainder of this chapter we distinguish discrete, semi-discrete
and continuous optimal transport problems in which either both, only one or
none of the two probability measures µ and ν are discrete, respectively.

In the wider context of machine learning, discrete optimal transport prob-
lems are nowadays routinely used, for example, in the analysis of mixture
models [Kol+17; Ngu+13] as well as in image processing [AMJJ18; Fer+14;
KR15; PR17; TPG16], computer vision and graphics [PW08; PW09; RTG00;
Sol+14; Sol+15], data-driven bioengineering [Fey+17; Kun+18; Wan+10], clus-
tering [Ho+17], dimensionality reduction [Caz+18; Fla+18; RCP16; Sch16;
SC15], domain adaptation [Cou+16; Mur+18], distributionally robust optimiza-
tion [EK18; Ngu+20], scenario reduction [HR07; Ruj+18], scenario generation
[Pfl01; HP07], the assessment of the fairness properties of machine learning
algorithms [Gor+19; Taş+20; Taş+21a] and signal processing [Tho+17].

The discrete optimal transport problem represents a tractable linear pro-
gram that is susceptible to the network simplex algorithm [Orl97]. Alterna-
tively, it can be addressed with dual ascent methods [BT97], the Hungarian
algorithm for assignment problems [Kuh55] or customized auction algorithms
[Ber81; Ber92]. The currently best known complexity bound for computing an
exact solution is attained by modern interior-point algorithms. Indeed, if N
denotes the number of atoms in µ or in ν, whichever is larger, then the discrete
optimal transport problem can be solved in time1 Õ(N2.5) with an interior point
algorithm by [LS14]. The need to evaluate optimal transport distances between
increasingly fine-grained histograms has also motivated efficient approximation
schemes. [Bla+18] and [Qua19] show that an ϵ-optimal solution can be found in
time O(N2/ϵ) by reducing the discrete optimal transport problem to a matrix
scaling or a positive linear programming problem, which can be solved efficiently
by a Newton-type algorithm. [JST19] describe a parallelizable primal-dual first-
order method that achieves a similar convergence rate.

The tractability of the discrete optimal transport problem can be improved
by adding an entropy regularizer to its objective function, which penalizes

1We use the soft-O notation Õ(·) to hide polylogarithmic factors.
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the entropy of the transportation plan for morphing µ into ν. When the
weight of the regularizer grows, this problem reduces to the classical Schrödinger
bridge problem of finding the most likely random evolution from µ to ν [Sch31].
Generic linear programs with entropic regularizers were first studied by [Fan92].
[CSM94] prove that the optimal values of these regularized problems converge
exponentially fast to the optimal values of the corresponding unregularized prob-
lems as the regularization weight drops to zero. Non-asymptotic convergence
rates for entropeq: semi-disc: dualy regularized linear programs are derived by
[Wee18]. [Cut13] was the first to realize that entropic penalties are computation-
ally attractive because they make the discrete optimal transport problem sus-
ceptible to a fast matrix scaling algorithm by [Sin67]. This insight has spurred
widespread interest in machine learning and led to a host of new applications of
optimal transport in color transfer [Chi+18], inverse problems [KR17; Adl+17],
texture synthesis [Pey+17], the analysis of crowd evolutions [Pey15] and shape
interpolation [Sol+15] to name a few. This surge of applications inspired in
turn several new algorithms for the entropy regularized discrete optimal trans-
port problem such as a greedy dual coordinate descent method also known as the
Greenkhorn algorithm [AWR17; CK20; AG18]. [DGK18] and [LHJ19a] prove
that both the Sinkhorn and the Greenkhorn algorithms are guaranteed to find
an ϵ-optimal solution in time Õ(N2/ϵ2). In practice, however, the Greenkhorn
algorithm often outperforms the Sinkhorn algorithm [LHJ19a]. The runtime
guarantee of both algorithms can be improved to Õ(N7/3/ϵ) via a randomization
scheme [LHJ19b]. In addition, the regularized discrete optimal transport prob-
lem can be addressed by tailoring general-purpose optimization algorithms such
as accelerated gradient descent algorithms [DGK18], iterative Bregman projec-
tions [Ben+15], quasi-Newton methods [BSR18] or stochastic average gradient
descent algorithms [Gen+16]. While the original optimal transport problem
induces sparse solutions, the entropy penalty forces the optimal transporta-
tion plan of the regularized optimal transport problem to be strictly positive
and thus completely dense. In applications where the interpretability of the
optimal transportation plan is important, the lack of sparsity could be unde-
sirable; examples include color transfer [PKD07], domain adaptation [Cou+16]
or ecological inference [Muz+17]. Hence, there is merit in exploring alterna-
tive regularization schemes that retain the attractive computational properties
of the entropic regularizer but induce sparsity. Examples that have attracted
significant interest include smooth convex regularization and Tikhonov regular-
ization [DPR18; BSR18; Seg+18; ES18], Lasso regularization [LOG16], Tsallis
entropy regularization [Muz+17] or group Lasso regularization [Cou+16].

Much like the discrete optimal transport problems, the significantly more
challenging semi-discrete optimal transport problems emerge in numerous appli-
cations including variational inference [Amb+18], blue noise sampling [Qin+17],
computational geometry [Lév15], image quantization [DG+12] or deep learning
with generative adversarial networks [ACB17; GPC18; Gul+17]. Semi-discrete
optimal transport problems are also used in fluid mechanics to simulate incom-
pressible fluids [Goe+15].

Exact solutions of a semi-discrete optimal transport problem can be con-
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structed by solving an incompressible Euler-type partial differential equation
discovered by [Bre91]. Any optimal solution is known to partition the support
of the non-discrete measure into cells corresponding to the atoms of the discrete
measure [AHA98], and the resulting tessellation is usually referred to as a power
diagram. [Mir15] uses this insight to solve Monge-Ampère equations with a
damped Newton algorithm, and [KMT16] show that a closely related algorithm
with a global linear convergence rate lends itself for the numerical solution of
generic semi-discrete optimal transport problems. In addition, [Mér11] proposes
a quasi-Newton algorithm for semi-discrete optimal transport, which improves a
method due to [AHA98] by exploiting Llyod’s algorithm to iteratively simplify
the discrete measure. If the transportation cost is quadratic, [Bon13] relates
the optimal transportation plan to the Knothe-Rosenblatt rearrangement for
mapping µ to ν, which is very easy to compute.

As usual, regularization improves tractability. [Gen+16] show that the dual
of a semi-discrete optimal transport problem with an entropic regularizer is
susceptible to an averaged stochastic gradient descent algorithm that enjoys a
convergence rate of O(1/

√
T ), T being the number of iterations. [ANWS22]

show that the optimal value of the entropically regularized problem converges
to the optimal value of the unregularized problem at a quadratic rate as the
regularization weight drops to zero. Improved error bounds under stronger
regularity conditions are derived by [Del21].

Continuous optimal transport problems constitute difficult variational prob-
lems involving infinitely many variables and constraints. [BB00] recast them
as boundary value problems in fluid dynamics, and [PPO14] solve discretized
versions of these reformulations using first-order methods. For a comprehen-
sive survey of the interplay between partial differential equations and optimal
transport we refer to [Eva97]. As nearly all numerical methods for partial differ-
ential equations suffer from a curse of dimensionality, current research focuses
on solution schemes for regularized continuous optimal transport problems. For
instance, [Gen+16] embed their duals into a reproducing kernel Hilbert space
to obtain finite-dimensional optimization problems that can be solved with a
stochastic gradient descent algorithm. [Seg+18] solve regularized continuous
optimal transport problems by representing the transportation plan as a multi-
layer neural network. This approach results in finite-dimensional optimization
problems that are non-convex and offer no approximation guarantees. How-
ever, it provides an effective means to compute approximate solutions in high
dimensions. Indeed, the optimal value of the entropically regularized contin-
uous optimal transport problem is known to converge to the optimal value of
the unregularized problem at a linear rate as the regularization weight drops
to zero [Chi+20; CT21; EMR15; Pal19]. Due to a lack of efficient algorithms,
applications of continuous optimal transport problems are scarce in the extant
literature. [PC19a] provide a comprehensive survey of numerous applications
and solution methods for discrete, semi-discrete and continuous optimal trans-
port problems.

This chapter focuses on semi-discrete optimal transport problems. Our main
goal is to formally establish that these problems are computationally hard, to
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propose a unifying regularization scheme for improving their tractability and
to develop efficient algorithms for solving the resulting regularized problems,
assuming only that we have access to independent samples from the continuous
probability measure µ. Our regularization scheme is based on the observation
that any dual semi-discrete optimal transport problem maximizes the expec-
tation of a piecewise affine function with N pieces, where the expectation is
evaluated with respect to µ, and where N denotes the number of atoms of the
discrete probability measure ν. We argue that this piecewise affine function
can be interpreted as the optimal value of a discrete choice problem, which
can be smoothed by adding random disturbances to the underlying utility val-
ues [Thu27; McF74]. As probabilistic discrete choice problems are routinely
studied in economics and psychology, we can draw on a wealth of literature in
choice theory to design various smooth (dual) optimal transport problems with
favorable numerical properties. For maximal generality we will also study semi-
parametric discrete choice models where the disturbance distribution is itself
subject to uncertainty [NST09; Mis+14; FLW17; ALN18]. Specifically, we aim
to evaluate the best-case (maximum) expected utility across a Fréchet ambigu-
ity set containing all disturbance distributions with prescribed marginals. Such
models can be addressed with customized methods from modern distribution-
ally robust optimization [NST09]. For Fréchet ambiguity sets, we prove that
smoothing the dual objective is equivalent to regularizing the primal objective
of the semi-discrete optimal transport problem. The corresponding regularizer
penalizes the discrepancy between the chosen transportation plan and the prod-
uct measure µ ⊗ ν with respect to a divergence measure constructed from the
marginal disturbance distributions. Connections between primal regularization
and dual smoothing were previously recognized by [BSR18] and [PC20] in dis-
crete optimal transport and by [Gen+16] in semi-discrete optimal transport.
As they are constructed ad hoc or under a specific adversarial noise model,
these existing regularization schemes lack the intuitive interpretation offered by
discrete choice theory and emerge as special cases of our unifying scheme.

The key contributions of this chapter are summarized below.

i. We study the computational complexity of semi-discrete optimal transport
problems. Specifically, we prove that computing the optimal transport
distance between two probability measures µ and ν on the same Euclidean
space is #P-hard even if only approximate solutions are sought and even
if µ is the Lebesgue measure on the standard hypercube and ν is supported
on merely two points.

ii. We propose a unifying framework for regularizing semi-discrete optimal
transport problems by leveraging ideas from distributionally robust opti-
mization and discrete choice theory [NST09; Mis+14; FLW17; ALN18].
Specifically, we perturb the transportation cost to every atom of the dis-
crete measure ν with a random disturbance, and we assume that the vec-
tor of all disturbances is governed by an uncertain probability distribution
from within a Fréchet ambiguity set that prescribes the marginal distur-
bance distributions. Solving the dual optimal transport problem under
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the least favorable disturbance distribution in the ambiguity set amounts
to smoothing the dual and regularizing the primal objective function. We
show that numerous known and new regularization schemes emerge as spe-
cial cases of this framework, and we derive a priori approximation bounds
for the resulting regularized optimal transport problems.

iii. We derive new convergence guarantees for an averaged stochastic gradient
descent (SGD) algorithm that has only access to a biased stochastic gradi-
ent oracle. Specifically, we prove that this algorithm enjoys a convergence
rate of O(1/

√
T ) for Lipschitz continuous and of O(1/T ) for generalized

self-concordant objective functions. We also show that this algorithm
lends itself to solving the smooth dual optimal transport problems ob-
tained from the proposed regularization scheme. When the smoothing is
based on a semi-parametric discrete choice model with a Fréchet ambiguity
set, the algorithm’s convergence rate depends on the smoothness proper-
ties of the marginal noise distributions, and its per-iteration complexity
depends on our ability to compute the optimal choice probabilities. We
demonstrate that these choice probabilities can indeed be computed effi-
ciently via bisection or sorting, and in special cases they are even available
in closed form. As a byproduct, we show that our algorithm can improve
the state-of-the-art O(1/

√
T ) convergence guarantee of [Gen+16] for the

semi-discrete optimal transport problem with an entropic regularizer.

The rest of this chapter unfolds as follows. In Section 2.2 we study the
computational complexity of semi-discrete optimal transport problems, and in
Section 2.3 we develop our unifying regularization scheme. In Section 2.4 we an-
alyze the convergence rate of an averaged SGD algorithm with a biased stochas-
tic gradient oracle that can be used for solving smooth dual optimal transport
problems, and in Section 2.5 we compare its empirical convergence behavior
against the theoretical convergence guarantees.

Notation. We denote by ∥ · ∥ the 2-norm, by [N ] = {1, . . . , N} the set of all

integers up to N ∈ N and by ∆d = {x ∈ Rd
+ :

∑d
i=1 xi = 1} the probability

simplex in Rd. For a logical statement E we define 1E = 1 if E is true and
1E = 0 if E is false. For any closed set X ⊆ Rd we defineM(X ) as the family
of all Borel measures and P(X ) as its subset of all Borel probability measures
on X . For µ ∈ P(X ), we denote by Ex∼µ[·] the expectation operator under µ and
define L(X , µ) as the family of all µ-integrable functions f : X → R, that is, f ∈
L(X , µ) if and only if

∫
X |f(x)|µ(dx) <∞. The Lipschitz modulus of a function

f : Rd → R is defined as lip(f) = supx,x′{|f(x)−f(x′)|/∥x−x′∥ : x ̸= x′}. The
convex conjugate of f : Rd → [−∞,+∞] is the function f∗ : Rd → [−∞,+∞]
defined through f∗(y) = supx∈Rd y⊤x− f(x).
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2.2. Hardness of Computing Optimal Transport

Distances

If X and Y are closed subsets of finite-dimensional Euclidean spaces and c :
X × Y → [0,+∞] is a lower-semicontinuous cost function, then the Monge-
Kantorovich optimal transport distance between two probability measures µ ∈
P(X ) and ν ∈ P(Y) is defined as

Wc(µ, ν) = min
π∈Π(µ,ν)

E(x,y)∼π [c(x,y)] , (2.1)

where Π(µ, ν) denotes the family of all couplings of µ and ν, that is, the set of all
probability measures on X×Y with marginals µ on X and ν on Y. One can show
that the minimum in (2.1) is always attained [Vil08, Theorem 4.1]. If X = Y
is a metric space with metric d : X × X → R+ and the transportation cost is
defined as c(x,y) = dp(x,y) for some p ≥ 1, then Wc(µ, ν)

1/p is termed the p-
th Wasserstein distance between µ and ν. The optimal transport problem (2.1)
constitutes an infinite-dimensional linear program over measures and admits a
strong dual linear program over functions [Vil08, Theorem 5.9].

Proposition 2.2.1 (Kantorovich duality). The optimal transport distance be-

tween µ ∈ P(X ) and ν ∈ P(Y) admits the dual representation

Wc(µ, ν) =





sup Ey∼ν [ϕ(y)]− Ex∼µ [ψ(x)]

s.t. ψ ∈ L(X , µ), ϕ ∈ L(Y, ν)

ϕ(y)− ψ(x) ≤ c(x,y) ∀x ∈ X , y ∈ Y.

(2.2)

The linear program (2.2) optimizes over the two Kantorovich potentials ψ ∈
L(X , µ) and ϕ ∈ L(Y, ν), but it can be reformulated as the following non-linear
program over a single potential function,

Wc(µ, ν) = sup
ϕ∈L(Y,ν)

Ey∼ν [ϕ(y)]− Ex∼µ [ϕc(x)] , (2.3)

where ϕc : X → [−∞,+∞] is called the c-transform of ϕ and is defined through

ϕc(x) = sup
y∈Y

ϕ(y)− c(x,y) ∀x ∈ X , (2.4)

see [Vil03, § 5] for details. The Kantorovich duality is the key enabling mech-
anism to study the computational complexity of the optimal transport prob-
lem (2.1).

Theorem 2.2.2 (Hardness of computing optimal transport distances). Com-

puting Wc(µ, ν) is #P-hard even if X = Y = Rd, c(x,y) = ∥x − y∥p for some

p ≥ 1, µ is the Lebesgue measure on the standard hypercube [0, 1]d, and ν is a

discrete probability measure supported on only two points.
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To prove Theorem 2.2.2, we will show that computing the optimal transport
distance Wc(µ, ν) is at least as hard computing the volume of the knapsack
polytope P (w, b) = {x ∈ [0, 1]d : w⊤x ≤ b} for a given w ∈ Rd

+ and b ∈
R+, which is known to be #P-hard [DF88, Theorem 1]. Specifically, we will
leverage the following variant of this hardness result, which establishes that
approximating the volume of the knapsack polytope P (w, b) to a sufficiently
high accuracy is already #P-hard.

Lemma 2.2.3 ([HKW16, Lemma 1]). Computing the volume of the knapsack

polytope P (w, b) for a given w ∈ Rd
+ and b ∈ R+ to within an absolute accuracy

of δ > 0 is #P-hard whenever

δ <
1

2d!(∥w∥1 + 2)d(d+ 1)d+1
∏d

i=1 wi

. (2.5)

Fix now any knapsack polytope P (w, b) encoded by w ∈ Rd
+ and b ∈ R+.

Without loss of generality, we may assume that w ̸= 0 and b > 0. Indeed, we are
allowed to exclude w = 0 because the volume of P (0, b) is trivially equal to 1.
On the other hand, b = 0 can be excluded by applying a suitable rotation and
translation, which are volume-preserving transformations. In the remainder,
we denote by µ the Lebesgue measure on the standard hypercube [0, 1]d and by
νt = tδy1

+(1−t)δy2
a family of discrete probability measures with two atoms at

y1 = 0 and y2 = 2bw/∥w∥2, respectively, whose probabilities are parameterized
by t ∈ [0, 1]. The following preparatory lemma relates the volume of P (w, b) to
the optimal transport problem (2.1) and is thus instrumental for the proof of
Theorem 2.2.2.

Lemma 2.2.4. If c(x,y) = ∥x−y∥p for some p ≥ 1, then we have Vol(P (w, b))

= argmint∈[0,1]Wc(µ, νt).

Proof. By the definition of the optimal transport distance in (2.1) and our choice

of c(x,y), we have

min
t∈[0,1]

Wc(µ, νt) = min
t∈[0,1]

min
π∈Π(µ,νt)

E(x,y)∼π [∥x− y∥p]

= min
t∈[0,1]





min
q1,q2∈P(Rd)

t

∫

Rd

∥x− y1∥pq1(dx)+

(1− t)
∫

Rd

∥x− y2∥p q2(dx)

s.t. t · q1 + (1− t) · q2 = µ,

where the second equality holds because any coupling π of µ and νt can be

constructed from the marginal probability measure νt of y and the probability

measures q1 and q2 of x conditional on y = y1 and y = y2, respectively, that
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is, we may write π = t · q1 ⊗ δy1
+ (1− t) · q2 ⊗ δy2

. The constraint of the inner

minimization problem ensures that the marginal probability measure of x under

π coincides with µ. By applying the variable transformations q1 ← t · q1 and

q2 ← (1− t) · q2 to eliminate all bilinear terms, we then obtain

min
t∈[0,1]

Wc(µ, νt) =





min
t∈[0,1]

q1,q2∈M(Rd)

∫

Rd

∥x− y1∥pq1(dx) +
∫

Rd

∥x−y2∥p q2(dx)

s.t.

∫

Rd

q1(dx) = t

∫

Rd

q2(dx) = 1− t

q1 + q2 = µ.

Observe next that the decision variable t and the two normalization con-

straints can be eliminated without affecting the optimal value of the resulting

infinite-dimensional linear program because the Borel measures q1 and q2 are

non-negative and because the constraint q1 + q2 = µ implies that q1(Rd) +

q2(Rd) = µ(Rd) = 1. Thus, there always exists t ∈ [0, 1] such that q1(Rd) = t

and q2(Rd) = 1− t. This reasoning implies that

min
t∈[0,1]

Wc(µ, νt) =





min
q1,q2∈M(Rd)

∫

Rd

∥x− y1∥pq1(dx)+
∫

Rd

∥x− y2∥p q2(dx)

s.t. q1 + q2 = µ.

The constraint q1+ q2 = µ also implies that q1 and q2 are absolutely continuous

with respect to µ, and thus

min
t∈[0,1]

Wc(µ, νt) =





min
q1,q2∈M(Rd)

∫

Rd

∥x− y1∥p
dq1
dµ

(x)+

∥x− y2∥p dq2
dµ (x)µ(dx)

s.t.
dq1
dµ

(x) +
dq2
dµ

(x) = 1 ∀x ∈ [0, 1]d

=

∫

Rd

min {∥x− y1∥p, ∥x− y2∥p} µ(dx), (2.6)

where the second equality holds because at optimality the Radon-Nikodym

derivatives must satisfy

dqi
dµ

(x) =

{
1 if ∥x− yi∥p ≤ ∥x− y3−i∥p
0 otherwise
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for µ-almost every x ∈ Rd and for every i = 1, 2.

In the second part of the proof we will demonstrate that the minimization

problem mint∈[0,1]Wc(µ, νt) is solved by t⋆ = Vol(P (w, b)). By Proposition 2.2.1

and the definition of the c-transform, we first note that

Wc(µ, νt⋆) = max
ϕ∈L(Rd,νt⋆ )

Ey∼νt⋆
[ϕ(y)]− Ex∼µ[ϕc(x)]

= max
ϕ∈R2

t⋆ · ϕ1 + (1− t⋆) · ϕ2 −
∫

Rd

max
i=1,2

{ϕi − ∥x− yi∥p}µ(dx)

(2.7)

= max
ϕ∈R2

t⋆ · ϕ1 + (1− t⋆) · ϕ2 −
2∑

i=1

∫

Xi(ϕ)

(ϕi − ∥x− yi∥p)µ(dx),

where

Xi(ϕ) = {x ∈ Rd : ϕi − ∥x− yi∥p ≥ ϕ3−i −
∥∥x− y3−i

∥∥p} ∀i = 1, 2.

The second equality in (2.7) follows from the construction of νt⋆ as a probability

measure with only two atoms at the points yi for i = 1, 2. Indeed, by fixing

the corresponding function values ϕi = ϕ(yi) for i = 1, 2, the expectation

Ey∼νt⋆
[ϕ(y)] simplifies to t⋆ · ϕ1 + (1 − t⋆) · ϕ2, while the negative expectation

−Ex∼µ[ϕc(x)] is maximized by setting ϕ(y) to a large negative constant for all

y /∈ {y1,y2}, which implies that

ϕc(x) = sup
y∈Rd

ϕ(y)− ∥x− y∥p = max
i=1,2

{ϕi − ∥x− yi∥p} ∀x ∈ [0, 1]d.

Next, we will prove that any ϕ⋆ ∈ R2 with ϕ⋆1 = ϕ⋆2 attains the maximum of

the unconstrained convex optimization problem on the last line of (2.7). To see

this, note that

∇ϕ

[
2∑

i=1

∫

Xi(ϕ)

(ϕi − ∥x− yi∥p)µ(dx)
]
=

2∑

i=1

∫

Xi(ϕ)

∇ϕ(ϕi − ∥x− yi∥p)µ(dx)

=

[
µ(X1(ϕ))

µ(X2(ϕ))

]

virtue of the Reynolds theorem. Thus, the first-order optimality condition2

t⋆ = µ(X1(ϕ)) is necessary and sufficient for global optimality. Fix now any

2Note that the first-order condition 1 − t⋆ = µ(X2(ϕ)) for ϕ2 is redundant in view of

the first-order condition t⋆ = µ(X1(ϕ)) for ϕ1 because µ is the Lebesgue measure on [0, 1]d,

whereby µ(X1(ϕ) ∪ X2(ϕ)) = µ(X1(ϕ)) + µ(X2(ϕ)) = 1.
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ϕ⋆ ∈ R2 with ϕ⋆1 = ϕ⋆2 and observe that

t⋆ = Vol(P (w, b)) =µ
({
x ∈ Rd : w⊤x ≤ b

})

=µ
({
x ∈ Rd : ∥x∥2 ≤ ∥x− 2bw/∥w∥2∥2

})

=µ
({
x ∈ Rd : ∥x− y1∥p ≤ ∥x− y2∥p

})
= µ(X1(ϕ

⋆)),

where the first and second equalities follow from the definitions of t⋆ and the

knapsack polytope P (w, b), respectively, the fourth equality holds because y1 =

0 and y2 = 2bw/∥w∥2, and the fifth equality follows from the definition of

X1(ϕ
⋆) and our assumption that ϕ⋆1 = ϕ⋆2. This reasoning implies that ϕ⋆

attains indeed the maximum of the optimization problem on the last line of (2.7).

Hence, we find

Wc(µ, νt⋆) = t⋆ · ϕ⋆1 + (1− t⋆) · ϕ⋆2 −
2∑

i=1

∫

Xi(ϕ⋆)

(ϕ⋆i − ∥x− yi∥p)µ(dx)

=

2∑

i=1

∫

Xi(ϕ⋆)

∥x− yi∥p µ(dx) =
∫

Rd

min
i=1,2

{∥x− yi∥p} µ(dx)

= min
t∈[0,1]

Wc(µ, νt),

where the second equality holds because ϕ⋆1 = ϕ⋆2, the third equality exploits

the definition of X1(ϕ
⋆), and the fourth equality follows from (2.6). We may

thus conclude that t⋆ = Vol(P (w, b)) solves indeed the minimization problem

mint∈[0,1]Wc(µ, νt).

Using similar techniques, one can further prove that ∂tWc(µ, νt) exists and

is strictly increasing in t, which ensures that Wc(µ, νt) is strictly convex in t

and, in particular, that t⋆ is the unique solution of mint∈[0,1]Wc(µ, νt). Details

are omitted for brevity.

Proof of Theorem 2.2.2. Lemma 2.2.4 applies under the assumptions of the the-

orem, and therefore the volume of the knapsack polytope P (w, b) coincides with

the unique minimizer of

min
t∈[0,1]

Wc(µ, νt). (2.8)

From the proof of Lemma 2.2.4 we know that the Wasserstein distanceWc(µ, νt)

is strictly convex in t, which implies that the minimization problem (2.8) con-

stitutes a one-dimensional convex program with a unique minimizer. A near-

optimal solution that approximates the exact minimizer to within an absolute

accuracy δ = (6d!(∥w∥1 + 2)d(d + 1)d+1
∏d

i=1 wi)
−1 can readily be computed
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with a binary search method such as Algorithm 5 described in Lemma 2.5.1 (i),

which evaluates g(t) =Wc(µ, νt) at exactly 2L = 2(⌈log2(1/δ)⌉+1) test points.

Note that δ falls within the interval (0, 1) and satisfies the strict inequality (2.5).

Note also that L grows only polynomially with the bit length of w and b; see

Appendix 2.5 for details. One readily verifies that all operations in Algorithm 5

except for the computation of Wc(µ, νt) can be carried out in time polynomial

in the bit length of w and b. Thus, if we could compute Wc(µ, νt) in time

polynomial in the bit length of w, b and t, then we could efficiently compute

the volume of the knapsack polytope P (w, b) to within accuracy δ, which is

#P-hard by Lemma 2.2.3. We have thus constructed a polynomial-time Turing

reduction from the #P-hard problem of (approximately) computing the volume

of a knapsack polytope to computing the Wasserstein distance Wc(µ, νt). By

the definition of the class of #P-hard problems (see, e.g., [VL90, Definition 1]),

we may thus conclude that computing Wc(µ, νt) is #P-hard.

Corollary 4 (Hardness of computing approximate optimal transport distances).

Computing Wc(µ, ν) to within an absolute accuracy of

ε =
1

4
min
l∈[2L]

{
|Wc(µ, νtl)−Wc(µ, νtl−1

)| :Wc(µ, νtl) ̸=Wc(µ, νtl−1
)
}
,

where L = ⌈log2(1/δ)⌉+ 1, δ = (6d!(∥w∥1 + 2)d(d+ 1)d+1
∏d

i=1 wi)
−1 and tl =

l/2L for all l = 0, . . . , 2L, is #P-hard even if X = Y = Rd, c(x,y) = ∥x− y∥p
for some p ≥ 1, µ is the Lebesgue measure on the standard hypercube [0, 1]d,

and ν is a discrete probability measure supported on only two points.

Proof. Assume that we have access to an inexact oracle that outputs an approx-

imate optimal transport distance W̃c(µ, νt) with |W̃c(µ, νt)−Wc(µ, νt)| ≤ ε for

any fixed t ∈ [0, 1]. By Lemma 2.5.1 (ii), which applies thanks to the definition

of ε, we can then find a 2δ-approximation for the unique minimizer of (2.8)

using 2L oracle calls. Note that δ′ = 2δ falls within the interval (0, 1) and

satisfies the strict inequality (2.5). Recall also that L grows only polynomially

with the bit length of w and b; see Appendix 2.5 for details. Thus, if we could

compute W̃c(µ, νt) in time polynomial in the bit length of w, b and t, then we

could efficiently compute the volume of the knapsack polytope P (w, b) to within

accuracy δ′, which is #P-hard by Lemma 2.2.3. Computing Wc(µ, ν) to within

an absolute accuracy of ε is therefore also #P-hard.

The hardness of optimal transport established in Theorem 2.2.2 and Corol-
lary 4 is predicated on the hardness of numerical integration. A popular tech-
nique to reduce the complexity of numerical integration is smoothing, whereby
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an initial (possibly discontinuous) integrand is approximated with a differen-
tiable one [DKS13]. Smoothness is also a desired property of objective functions
when designing scalable optimization algorithms [Bub15]. These observations
prompt us to develop a systematic way to smooth the optimal transport problem
that leads to efficient approximate numerical solution schemes.

2.3. Smooth Optimal Transport

The semi-discrete optimal transport problem evaluates the optimal transport
distance (2.1) between an arbitrary probability measure µ supported on X and

a discrete probability measure ν =
∑N

i=1 νiδyi with atoms y1, . . . ,yN ∈ Y and
corresponding probabilities ν = (ν1, . . . , νN ) ∈ ∆N for some N ≥ 2. In the
following, we define the discrete c-transform ψc : RN × X → [−∞,+∞) of
ϕ ∈ RN through

ψc(ϕ,x) = max
i∈[N ]

ϕi − c(x,yi) ∀x ∈ X . (2.9)

Armed with the discrete c-transform, we can now reformulate the semi-discrete
optimal transport problem as a finite-dimensional maximization problem over
a single dual potential vector.

Lemma 2.3.1 (Discrete c-transform). The semi-discrete optimal transport prob-

lem is equivalent to

Wc(µ, ν) = sup
ϕ∈RN

ν⊤ϕ− Ex∼µ[ψc(ϕ,x)]. (2.10)

Proof. As ν =
∑N

i=1 νiδyi is discrete, the dual optimal transport problem (2.3)

simplifies to

Wc(µ, ν) = sup
ϕ∈RN

sup
ϕ∈L(Y,ν)

{
ν⊤ϕ− Ex∼µ [ϕc(x)] : ϕ(yi) = ϕi ∀i ∈ [N ]

}

= sup
ϕ∈RN

ν⊤ϕ− inf
ϕ∈L(Y,ν)

{
Ex∼µ [ϕc(x)] : ϕ(yi) = ϕi ∀i ∈ [N ]

}
.

Using the definition of the standard c-transform, we can then recast the inner

minimization problem as

inf
ϕ∈L(Y,ν)

{
Ex∼µ

[
sup
y∈Y

ϕ(y)− c(x,y)
]

: ϕ(yi) = ϕi ∀i ∈ [N ]

}

= Ex∼µ

[
max
i∈[N ]

{ϕi − c(x,yi)}
]

= Ex∼µ [ψc(ϕ,x)] ,

where the first equality follows from setting ϕ(y) = ϕ for all y /∈ {y1, . . . ,yN}
and letting ϕ tend to −∞, while the second equality exploits the definition of

the discrete c-transform. Thus, (2.10) follows.
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The discrete c-transform (2.9) can be viewed as the optimal value of a dis-
crete choice model, where a utility-maximizing agent selects one of N mutually
exclusive alternatives with utilities ϕi − c(x,yi), i ∈ [N ], respectively. Dis-
crete choice models are routinely used for explaining the preferences of travelers
selecting among different modes of transportation [BAL85], but they are also
used for modeling the choice of residential location [McF78], the interests of
end-users in engineering design [WC03] or the propensity of consumers to adopt
new technologies [HM13].

In practice, the preferences of decision-makers and the attributes of the
different choice alternatives are invariably subject to uncertainty, and it is im-
possible to specify a discrete choice model that reliably predicts the behavior of
multiple individuals. Psychological theory thus models the utilities as random
variables [Thu27], in which case the optimal choice becomes random, too. The
theory as well as the econometric analysis of probabilistic discrete choice models
were pioneered by [McF74].

The availability of a wealth of elegant theoretical results in discrete choice
theory prompts us to add a random noise term to each deterministic utility
value ϕi − c(x,yi) in (2.9). We will argue below that the expected value of
the resulting maximal utility with respect to the noise distribution provides a
smooth approximation for the c-transform ψc(ϕ,x), which in turn leads to a
smooth optimal transport problem that displays favorable numerical proper-
ties. For a comprehensive survey of additive random utility models in discrete
choice theory we refer to [DM84] and [Dag14]. Generalized semi-parametric dis-
crete choice models where the noise distribution is itself subject to uncertainty
are studied by [NST09]. Using techniques from modern distributionally robust
optimization, these models evaluate the best-case (maximum) expected utility
across an ambiguity set of multivariate noise distributions. Semi-parametric
discrete choice models are studied in the context of appointment scheduling
[MRZ15], traffic management [AAN16] and product line pricing [Li+19].

We now define the smooth (discrete) c-transform as a best-case expected
utility of the type studied in semi-parametric discrete choice theory, that is,

ψc(ϕ,x) = sup
θ∈Θ

Ez∼θ

[
max
i∈[N ]

ϕi − c(x,yi) + zi

]
, (2.11)

where z represents a random vector of perturbations that are independent of x
and y. Specifically, we assume that z is governed by a Borel probability measure
θ from within some ambiguity set Θ ⊆ P(RN ). Note that if Θ is a singleton
that contains only the Dirac measure at the origin of RN , then the smooth c-
transform collapses to ordinary c-transform defined in (2.9), which is piecewise
affine and thus non-smooth in ϕ. For many commonly used ambiguity sets,
however, we will show below that the smooth c-transform is indeed differentiable
in ϕ. In practice, the additive noise zi in the transportation cost could originate,
for example, from uncertainty about the position yi of the i-th atom of the
discrete distribution ν. This interpretation is justified if c(x,y) is approximately
affine in y around the atoms yi, i ∈ [N ]. The smooth c-transform gives rise to
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the following smooth (semi-discrete) optimal transport problem in dual form.

W c(µ, ν) = sup
ϕ∈RN

Ex∼µ

[
ν⊤ϕ− ψc(ϕ,x)

]
(2.12)

Note that (2.12) is indeed obtained from the original dual optimal transport
problem (2.10) by replacing the original c-transform ψc(ϕ,x) with the smooth
c-transform ψc(ϕ,x). As smooth functions are susceptible to efficient numerical
integration, we expect that (2.12) is easier to solve than (2.10). A key insight
of this work is that the smooth dual optimal transport problem (2.12) typically
has a primal representation of the form

min
π∈Π(µ,ν)

E(x,y)∼π [c(x,y)] +RΘ(π), (2.13)

where RΘ(π) can be viewed as a regularization term that penalizes the com-
plexity of the transportation plan π. In the remainder of this section we
will prove (2.13) and derive RΘ(π) for different ambiguity sets Θ. We will
see that this regularization term is often related to an f -divergence, where
f : R+ → R ∪ {∞} constitutes a lower-semicontinuous convex function with
f(1) = 0. If τ and ρ are two Borel probability measures on a closed subset
Z of a finite-dimensional Euclidean space, and if τ is absolutely continuous
with respect to ρ, then the continuous f -divergence form τ to ρ is defined as
Df (τ ∥ ρ) =

∫
Z f(dτ/dρ(z))ρ(dz), where dτ/dρ stands for the Radon-Nikodym

derivative of τ with respect to ρ. By slight abuse of notation, if τ and ρ are two
probability vectors in ∆N and if ρ > 0, then the discrete f -divergence form τ
to ρ is defined as Df (τ ∥ ρ) =

∑N
i=1 f(τi/ρi)ρi. The correct interpretation of

Df is usually clear from the context.

The following lemma shows that the smooth optimal transport problem (2.13)
equipped with an f -divergence regularization term is equivalent to a finite-
dimensional convex minimization problem. This result will be instrumental to
prove the equivalence of (2.12) and (2.13) for different ambiguity sets Θ.

Lemma 2.3.2 (Strong duality). If η ∈ ∆N with η > 0 and η =
∑N

i=1 ηiδyi

is a discrete probability measure on Y, then problem (2.13) with regularization

term RΘ(π) = Df (π∥µ⊗ η) is equivalent to

sup
ϕ∈RN

Ex∼µ

[
min
p∈∆N

N∑

i=1

ϕiνi − (ϕi − c(x,yi))pi +Df (p ∥ η)
]
. (2.14)

Proof of Lemma 2.3.2. If Ex∼µ[c(x,yi)] =∞ for some i ∈ [N ], then both (2.13)

and (2.14) evaluate to infinity, and the claim holds trivially. In the remainder of

the proof we may thus assume without loss of generality that Ex∼µ[c(x,yi)] <∞
for all i ∈ [N ]. Using [RW09, Theorem 14.6] to interchange the minimization
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over p with the expectation over x, problem (2.14) can first be reformulated as

sup
ϕ∈RN

min
p∈LN

∞(X ,µ)
Ex∼µ

[
N∑

i=1

ϕiνi − (ϕi − c(x,yi))pi(x) +Df (p(x)∥η)
]

s.t. p(x) ∈ ∆N µ-a.s.,

where LN
∞(X , µ) denotes the Banach space of all Borel-measurable functions

from X to RN that are essentially bounded with respect to µ. Interchanging

the supremum over ϕ with the minimum over p and evaluating the resulting

unconstrained linear program over ϕ in closed form then yields the dual problem

min
p∈LN

∞(X ,µ)
Ex∼µ

[
N∑

i=1

c(x,yi)pi(x) +Df (p(x)∥η)
]

s.t. Ex∼µ [p(x)] = ν, p(x) ∈ ∆N µ-a.s.

(2.15)

Strong duality holds for the following reasons. As c and f are lower-semiconti-

nuous and c is non-negative, we may proceed as in [Sha17, § 3.2] to show that the

dual objective function is weakly∗ lower semicontinuous in p. Similarly, as ∆N

is compact, one can use the Banach-Alaoglu theorem to show that the dual fea-

sible set is weakly∗ compact. Finally, as f is real-valued and Ex∼µ[c(x,yi)] <∞
for all i ∈ [N ], the constant solution p(x) = ν is dual feasible for all ν ∈ ∆N .

Thus, the dual problem is solvable and has a finite optimal value. This argument

remains valid if we add a perturbation δ ∈ H = {δ′ ∈ RN :
∑N

i=1 δ
′
i = 0} to the

right hand side vector ν as long as δ > −ν. The optimal value of the perturbed

dual problem is thus pointwise finite as well as convex and—consequently—

continuous and locally bounded in δ at the origin of H. As ν > 0, strong

duality therefore follows from [Roc74a, Theorem 17 (a)].

Any dual feasible solution p ∈ LN
∞(X , µ) gives rise to a Borel probability

measure π ∈ P(X × Y) defined through π(y ∈ B) = ν(y ∈ B) for all Borel sets
B ⊆ Y and π(x ∈ A|y = yi) =

∫
A pi(x)µ(dx)/νi for all Borel sets A ⊆ X and

i ∈ [N ]. This follows from the law of total probability, whereby the joint distri-

bution of x and y is uniquely determined if we specify the marginal distribution

of y and the conditional distribution of x given y = yi for every i ∈ [N ]. By

construction, the marginal distributions of x and y under π are determined by

µ and ν, respectively. Indeed, note that for any Borel set A ⊆ X we have

π(x ∈ A) =
N∑

i=1

π(x ∈ A|y = yi) · π(y = yi) =

N∑

i=1

π(x ∈ A|y = yi) · νi
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=

N∑

i=1

∫

A
pi(x)µ(dx) =

∫

A
µ(dx) = µ(x ∈ A),

where the first equality follows from the law of total probability, the second and

the third equalities both exploit the construction of π, and the fourth equality

holds because p(x) ∈ ∆N µ-almost surely due to dual feasibility. This reasoning

implies that π constitutes a coupling of µ and ν (that is, π ∈ Π(µ, ν)) and is

thus feasible in (2.13). Conversely, any π ∈ Π(µ, ν) gives rise to a function

p ∈ LN
∞(X , µ) defined through

pi(x) = νi ·
dπ

d(µ⊗ ν) (x,yi) ∀i ∈ [N ].

By the properties of the Randon-Nikodym derivative, we have pi(x) ≥ 0 µ-

almost surely for all i ∈ [N ]. In addition, for any Borel set A ⊆ X we have

∫

A

N∑

i=1

pi(x)µ(dx) =

∫

A

N∑

i=1

νi ·
dπ

d(µ⊗ ν) (x,yi)µ(dx)

=

∫

A×Y

dπ

d(µ⊗ ν) (x,y) (µ⊗ ν)(dx,dy)

=

∫

A×Y
π(dx,dy) =

∫

A
µ(dx),

where the second equality follows from Fubini’s theorem and the definition of

ν =
∑N

i=1 νiδyi
, while the fourth equality exploits that the marginal distribution

of x under π is determined by µ. As the above identity holds for all Borel sets

A ⊆ X , we find that
∑N

i=1 pi(x) = 1 µ-almost surely. Similarly, we have

Ex∼µ [pi(x)] =

∫

X
νi ·

dπ

d(µ⊗ ν) (x,yi)µ(dx)

=

∫

X×{yi}

dπ

d(µ⊗ ν) (x,y) (µ⊗ ν)(dx,dy)

=

∫

X×{yi}
π(dx,dy) =

∫

{yi}
ν(dy) = νi

for all i ∈ [N ]. In summary, p is feasible in (2.15). Thus, we have shown

that every probability measure π feasible in (2.13) induces a function p feasible

in (2.15) and vice versa. We further find that the objective value of p in (2.15)

coincides with the objective value of the corresponding π in (2.13). Specifically,

we have

Ex∼µ

[
N∑

i=1

c(x,yi) pi(x) +Df (p(x)∥η)
]
=

∫

X

N∑

i=1

c(x,yi)pi(x)µ(dx)+
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∫

X

N∑

i=1

f

(
pi(x)

ηi

)
ηi µ(dx)

=

∫

X

N∑

i=1

c(x,yi) · νi ·
dπ

d(µ⊗ ν) (x,yi)µ(dx)+

∫

X

N∑

i=1

f

(
νi
ηi
· dπ

d(µ⊗ ν) (x,yi)

)
· ηi µ(dx)

=

∫

X×Y
c(x,y)

dπ

d(µ⊗ ν) (x,y) (µ⊗ ν)(dx,dy)+
∫

X×Y
f

(
dπ

d(µ⊗ η) (x,y)
)
(µ⊗ η)(dx,dy)

= E(x,y)∼π [c(x,y)] +Df (π∥µ⊗ η),

where the first equality exploits the definition of the discrete f -divergence, the

second equality expresses the function p in terms of the corresponding proba-

bility measure π, the third equality follows from Fubini’s theorem and uses the

definitions ν =
∑N

i=1 νiδyi
and η =

∑N
i=1 ηiδyi

, and the fourth equality follows

from the definition of the continuous f -divergence. In summary, we have thus

shown that (2.13) is equivalent to (2.15), which in turn is equivalent to (2.14).

This observation completes the proof.

Proposition 2.3.3 (Approximation bound). If η ∈ ∆N with η > 0 and η =∑N
i=1 ηiδyi

is a discrete probability measure on Y, then problem (2.13) with

regularization term RΘ(π) = Df (π∥µ⊗ η) satisfies

|W c(µ, ν)−Wc(µ, ν)|≤max

{∣∣∣∣ min
p∈∆N

Df (p∥η)
∣∣∣∣,
∣∣∣∣max
i∈[N ]

{
f

(
1

ηi

)
ηi+f(0)

∑

k ̸=i

ηk

}∣∣∣∣

}
.

Proof. By Lemma 2.3.2, problem (2.13) is equivalent to (2.14). Note that the in-

ner optimization problem in (2.14) can be viewed as an f -divergence regularized

linear program with optimal value ν⊤ϕ− ℓ(ϕ,x), where

ℓ(ϕ,x) = max
p∈∆N

N∑

i=1

(ϕi − c(x,yi))pi −Df (p∥η).

Bounding Df (p∥η) by its minimum and its maximum over p ∈ ∆N then yields

the estimates

ψc(ϕ,x)− max
p∈∆N

Df (p∥η) ≤ ℓ(ϕ,x) ≤ ψc(ϕ,x)− min
p∈∆N

Df (p∥η). (2.16)
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Here, ψc(ϕ,x) stands as usual for the discrete c-transform defined in (2.9),

which can be represented as

ψc(ϕ,x) = max
p∈∆N

N∑

i=1

(ϕi − c(x,yi))pi. (2.17)

Multiplying (2.16) by −1, adding ν⊤ϕ, averaging over x using the probability

measure µ and maximizing over ϕ ∈ RN further implies via (2.10) and (2.14)

that

Wc(µ, ν) + min
p∈∆N

Df (p∥η) ≤W c(µ, ν) ≤Wc(µ, ν) + max
p∈∆N

Df (p∥η). (2.18)

As Df (p∥η) is convex in p, its maximum is attained at a vertex of ∆N [Hof81,

Theorem 1], that is,

max
p∈∆N

Df (p∥η) = max
i∈[N ]

{
f

(
1

ηi

)
ηi + f(0)

∑

k ̸=i

ηk

}
.

The claim then follows by substituting the above formula into (2.18) and rear-

ranging terms.

In the following we discuss three different classes of ambiguity sets Θ for
which the dual smooth optimal transport problem (2.12) is indeed equivalent
to the primal reguarized optimal transport problem (2.13).

2.3.1. Generalized Extreme Value Distributions

Assume first that the ambiguity set Θ represents a singleton that accommodates
only one single Borel probability measure θ on RN defined through

θ(z ≤ s) = exp (−G (exp(−s1), . . . , exp(−sN ))) ∀s ∈ RN , (2.19)

where G : RN → R+ is a smooth generating function with the following prop-
erties. First, G is homogeneous of degree 1/λ for some λ > 0, that is, for any
α ̸= 0 and s ∈ RN we have G(αs) = α1/λG(s). In addition, G(s) tends to
infinity as si grows for any i ∈ [N ]. Finally, the partial derivative of G with
respect to k distinct arguments is non-negative if k is odd and non-positive if
k is even. These properties ensure that the noise vector z follows a generalized
extreme value distribution in the sense of [Tra09, § 4.1].

Proposition 2.3.4 (Entropic regularization). Assume that Θ is a singleton

ambiguity set that contains only a generalized extreme value distribution with

G(s) = exp(−e)N∑N
i=1 ηis

1/λ
i for some λ > 0 and η ∈ ∆N , η > 0, where e

stands for Euler’s constant. Then, the components of z follow independent
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Gumbel distributions with means λ log(Nηi) and variances λ2π2/6 for all i ∈
[N ], while the smooth c-transform (2.11) reduces to the log-partition function

ψ(ϕ,x) = λ log

(
N∑

i=1

ηi exp

(
ϕi − c(x,yi)

λ

))
. (2.20)

In addition, the smooth dual optimal transport problem (2.12) is equivalent to the

regularized primal optimal transport problem (2.13) with RΘ(π) = Df (π∥µ⊗η),
where f(s) = λs log(s) and η =

∑N
i=1 ηiδyi

.

Note that the log-partition function (2.20) constitutes indeed a smooth ap-
proximation for the maximum function in the definition (2.9) of the discrete
c-transform. As λ decreases, this approximation becomes increasingly accurate.
It is also instructive to consider the special case where µ =

∑M
i=1 µiδxi is a

discrete probability measure with atoms x1, . . . ,xM ∈ X and corresponding
vector of probabilities µ ∈ ∆M . In this case, any coupling π ∈ Π(µ, ν) consti-

tutes a discrete probability measure π =
∑M

i=1

∑N
j=1 πijδ(xi,yj)

with matrix of

probabilities π ∈ ∆M×N . If f(x) = s log(s), then the continuous f -divergence
reduces to

Df (π∥µ⊗ η) =
M∑

i=1

N∑

j=1

πij log(πij)−
M∑

i=1

N∑

j=1

πij log(µi)−
M∑

i=1

N∑

j=1

πij log(ηj)

=

M∑

i=1

N∑

j=1

πij log(πij)−
M∑

i=1

µi log(µi)−
N∑

j=1

νj log(ηj),

where the second equality holds because π is a coupling of µ and ν. Thus,
Df (π∥µ ⊗ η) coincides with the negative entropy of the probability matrix π
offset by a constant that is independent of π. For f(s) = s log(s) the choice of
η has therefore no impact on the minimizer of the smooth optimal transport
problem (2.13), and we simply recover the celebrated entropic regularization
proposed by [Cut13; Gen+16; RW18; PC19a] and [Cla+21].

Proof of Proposition 2.3.4. Substituting the explicit formula for the generating

function G into (2.19) yields

θ(z ≤ s) = exp

(
− exp(−e)N

N∑

i=1

ηi exp
(
−si
λ

))

=

N∏

i=1

exp
(
− exp(−e)Nηi exp

(
−si
λ

))

=

N∏

i=1

exp

(
− exp

(
−si − λ(log(Nηi)− e)

λ

))
,
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where e stands for Euler’s constant. The components of the noise vector z are

thus independent under θ, and zi follows a Gumbel distribution with location

parameter λ(log(Nηi)− e) and scale parameter λ for every i ∈ [N ]. Therefore,

zi has mean λ log(Nηi) and variance λ2π2/6.

If the ambiguity set Θ contains only one single probability measure θ of

the form (2.19), then Theorem 5.2 of [McF81] readily implies that the smooth

c-transform (2.11) simplifies to

ψ(ϕ,x) = λ logG (exp(ϕ1 − c(x,y1)), . . . , exp(ϕN − c(x,yN ))) + λe. (2.21)

The closed-form expression for the smooth c-transform in (2.20) follows im-

mediately by substituting the explicit formula for the generating function G

into (2.21). One further verifies that (2.20) can be reformulated as

ψc(ϕ,x) = max
p∈∆N

N∑

i=1

(ϕi − c(x,yi))pi − λ
N∑

i=1

pi log

(
pi
ηi

)
. (2.22)

Indeed, solving the underlying Karush-Kuhn-Tucker conditions analytically shows

that the optimal value of the nonlinear program (2.22) coincides with the smooth

c-transform (2.20). In the special case where ηi = 1/N for all i ∈ [N ], the

equivalence of (2.20) and (2.22) has already been recognized by [ADPT88].

Substituting the representation (2.22) of the smooth c-transform into the dual

smooth optimal transport problem (2.12) yields (2.14) with f(s) = λs log(s). By

Lemma 2.3.2, problem (2.12) is thus equivalent to the regularized primal optimal

transport problem (2.13) with RΘ(π) = Df (π∥µ⊗η), where η =
∑N

i=1 ηiδyi
.

2.3.2. Chebyshev Ambiguity Sets

Assume next that Θ constitutes a Chebyshev ambiguity set comprising all Borel
probability measures on RN with mean vector 0 and positive definite covariance
matrix λΣ for some Σ ≻ 0 and λ > 0. Formally, we thus set Θ = {θ ∈ P(RN ) :
Eθ[z] = 0, Eθ[zz

⊤] = λΣ}. In this case, [ALN18, Theorem 1] implies that the
smooth c-transform (2.11) can be equivalently expressed as

ψc(ϕ,x) = max
p∈∆N

N∑

i=1

(ϕi − c(x,yi))pi + λ tr
(
(Σ1/2(diag(p)− pp⊤)Σ1/2)1/2

)
,

(2.23)
where diag(p) ∈ RN×N represents the diagonal matrix with p on its main
diagonal. Note that the maximum in (2.23) evaluates the convex conjugate of
the extended real-valued regularization function

V (p) =

{
−λ tr

(
(Σ1/2(diag(p)− pp⊤)Σ1/2)1/2

)
if p ∈ ∆N

∞ if p /∈ ∆N
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at the point (ϕi − c(x,yi))i∈[N ]. As Σ ≻ 0 and λ > 0, [ALN18, Theorem 3]
implies that V (p) is strongly convex over its effective domain ∆N . By [RW09,
Proposition 12.60], the smooth discrete c-transform ψc(ϕ,x) is therefore indeed
differentiable in ϕ for any fixed x. It is further known that problem (2.23)
admits an exact reformulation as a tractable semidefinite program; see [Mis+12,
Proposition 1]. If Σ = I, then the regularization function V (p) can be re-
expressed in terms of a discrete f -divergence, which implies via Lemma 2.3.2
that the smooth optimal transport problem is equivalent to the original optimal
transport problem regularized with a continuous f -divergence.

Proposition 2.3.5 (Chebyshev regularization). If Θ is the Chebyshev ambigu-

ity set of all Borel probability measures with mean 0 and covariance matrix λI

with λ > 0, then the smooth c-transform (2.11) simplifies to

ψc(ϕ,x) = max
p∈∆N

N∑

i=1

(ϕi − c(x,yi))pi + λ

N∑

i=1

√
pi(1− pi). (2.24)

In addition, the smooth dual optimal transport problem (2.12) is equivalent to

the regularized primal optimal transport problem (2.13) with RΘ(π) = Df (π∥µ⊗
η) + λ

√
N − 1, where η = 1

N

∑N
i=1 δyi

and

f(s) =




−λ
√
s(N − s) + λs

√
N − 1 if 0 ≤ s ≤ N

+∞ if s > N.
(2.25)

Proof. The relation (2.24) follows directly from (2.23) by replacing Σ with I.

Next, one readily verifies that −∑i∈[N ]

√
pi(1− pi) can be re-expressed as

the discrete f -divergence Df (p∥η) from p to η = ( 1
N , . . . ,

1
N ), where f(s) =

−λ
√
s(N − s) + λ

√
N − 1. This implies that (2.24) is equivalent to

ψc(ϕ,x) = max
p∈∆N

N∑

i=1

(ϕi − c(x,yi))pi −Df (p∥η).

Substituting the above representation of the smooth c-transform into the dual

smooth optimal transport problem (2.12) yields (2.14) with

f(s) = −λ
√
s(N − s) + λs

√
N − 1.

By Lemma 2.3.2, (2.12) thus reduces to the regularized primal optimal transport

problem (2.13) with RΘ(π) = Df (π∥µ⊗ η), where η = 1
N

∑N
i=1 δyi

.

Note that the function f(s) defined in (2.25) is indeed convex, lower-semi-
continuous and satisfies f(1) = 0. Therefore, it induces a standard f -divergence.
Proposition 2.3.5 can be generalized to arbitrary diagonal matrices Σ, but the
emerging f -divergences are rather intricate and not insightful. Hence, we do
not show this generalization. We were not able to generalize Proposition 2.3.5
to non-diagonal matrices Σ.



2.3. Smooth Optimal Transport 77

2.3.3. Marginal Ambiguity Sets

We now investigate the class of marginal ambiguity sets of the form

Θ =
{
θ ∈ P(RN ) : θ(zi ≤ s) = Fi(s) ∀s ∈ R, ∀i ∈ [N ]

}
, (2.26)

where Fi stands for the cumulative distribution function of the uncertain dis-
turbance zi, i ∈ [N ]. Marginal ambiguity sets completely specify the marginal
distributions of the components of the random vector z but impose no restric-
tions on their dependence structure (i.e., their copula). Sometimes marginal
ambiguity sets are also referred to as Fréchet ambiguity sets [Fré51]. We will
argue below that the marginal ambiguity sets explain most known as well as
several new regularization methods for the optimal transport problem. In par-
ticular, they are more expressive than the extreme value distributions as well
as the Chebyshev ambiguity sets in the sense that they induce a richer family
of regularization terms. Below we denote by F−1

i : [0, 1]→ R the (left) quantile
function corresponding to Fi, which is defined through

F−1
i (t) = inf{s : Fi(s) ≥ t} ∀t ∈ R.

We first prove that if Θ constitutes a marginal ambiguity set, then the smooth
c-transform (2.11) admits an equivalent reformulation as the optimal value of a
finite convex program.

Proposition 2.3.6 (Smooth c-transform for marginal ambiguity sets). If Θ

is a marginal ambiguity set of the form (2.26), and if the underlying cumu-

lative distribution functions Fi, i ∈ [N ], are continuous, then the smooth c-

transform (2.11) can be equivalently expressed as

ψc(ϕ,x) = max
p∈∆N

N∑

i=1

(ϕi − c(x,yi))pi +
N∑

i=1

∫ 1

1−pi

F−1
i (t)dt (2.27)

for all x ∈ X and ϕ ∈ RN . In addition, the smooth c-transform is convex and

differentiable with respect to ϕ, and ∇ϕψc(ϕ,x) represents the unique solution

of the convex maximization problem (2.27).

Recall that the smooth c-transform (2.11) can be viewed as the best-case util-
ity of a semi-parametric discrete choice model. Thus, (2.27) follows from [NST09,
Theorem 1]. To keep this chapter self-contained, we provide a new proof of
Proposition 2.3.6, which exploits a natural connection between the smooth c-
transform induced by a marginal ambiguity set and the conditional value-at-risk
(CVaR).

Proof of Proposition 2.3.6. Throughout the proof we fix x ∈ X and ϕ ∈ RN ,

and we introduce the nominal utility vector u ∈ RN with components ui =
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ϕi − c(x,yi) in order to simplify notation. In addition, it is useful to define the

binary function r : RN → {0, 1}N with components

ri(z) =





1 if i = min argmax
j∈[N ]

uj + zj ,

0 otherwise.

For any fixed θ ∈ Θ, we then have

Ez∼θ

[
max
i∈[N ]

ui + zi

]
=Ez∼θ

[ N∑

i=1

(ui + zi)ri(z)
]
=

N∑

i=1

uipi+

N∑

i=1

Ez∼θ [ziqi(zi)] ,

where pi = Ez∼θ[ri(z)] and qi(zi) = Ez∼θ[ri(z)|zi] almost surely with respect

to θ. From now on we denote by θi the marginal probability distribution of the

random variable zi under θ. As θ belongs to a marginal ambiguity set of the

form (2.26), we thus have θi(zi ≤ s) = Fi(s) for all s ∈ R, that is, θi is uniquely
determined by the cumulative distribution function Fi. The above reasoning

then implies that

ψc(ϕ,x) = sup
θ∈Θ

Ez∼θ

[
max
i∈[N ]

ui + zi

]

=





sup

N∑

i=1

uipi +

N∑

i=1

Ez∼θ [ziqi(zi)]

s.t. θ ∈ Θ, p ∈ ∆N , q ∈ LN (R)

Ez∼θ [ri(z)] = pi ∀i ∈ [N ]

Ez∼θ[ri(z)|zi] = qi(zi) θ-a.s. ∀i ∈ [N ]

(2.28)

≤





sup

N∑

i=1

uipi +

N∑

i=1

Ezi∼θi [ziqi(zi)]

s.t. p ∈ ∆N , q ∈ LN (R)

Ezi∼θi [qi(zi)] = pi ∀i ∈ [N ]

0 ≤ qi(zi) ≤ 1 θi-a.s. ∀i ∈ [N ].

(2.29)

The inequality can be justified as follows. One may first add the redundant

expectation constraints pi = Ezi∼θ[qi(zi)] and the redundant θi-almost sure

constraints 0 ≤ qi(zi) ≤ 1 to the maximization problem over θ, p and q without

affecting the problem’s optimal value. Next, one may remove the constraints

that express pi and qi(zi) in terms of ri(z). The resulting relaxation provides

an upper bound on the original maximization problem. Note that all remaining
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expectation operators involve integrands that depend on z only through zi for

some i ∈ [N ], and therefore the expectations with respect to the joint proba-

bility measure θ can all be simplified to expectations with respect to one of the

marginal probability measures θi. As neither the objective nor the constraints

of the resulting problem depend on θ, we may finally remove θ from the list

of decision variables without affecting the problem’s optimal value. For any

fixed p ∈ ∆N , the upper bounding problem (2.29) gives rise the following N

subproblems indexed by i ∈ [N ].

sup
qi∈L(R)

{
Ezi∼θi [ziqi(zi)] : Ezi∼θi [qi(zi)] = pi, 0 ≤ qi(zi) ≤ 1 θi-a.s.

}
(2.30a)

If pi > 0, the optimization problem (2.30a) over the functions qi ∈ L(R) can be

recast as an optimization problem over probability measures θ̃i ∈ P(R) that are
absolutely continuous with respect to θi,

sup
θ̃i∈P(R)

{
pi Ezi∼θ̃i

[zi] :
dθ̃i
dθi

(zi) ≤
1

pi
θi-a.s.

}
, (2.30b)

where dθ̃i/dθi denotes as usual the Radon-Nikodym derivative of θ̃i with re-

spect to θi. Indeed, if qi is feasible in (2.30a), then θ̃i defined through θ̃i[B] =
1
pi

∫
B
qi(zi)θi(dzi) for all Borel sets B ⊆ R is feasible in (2.30b) and attains the

same objective function value. Conversely, if θ̃i is feasible in (2.30b), then

qi(zi) = pi dθ̃i/dθi(zi) is feasible in (2.30a) and attains the same objective

function value. Thus, (2.30a) and (2.30b) are indeed equivalent. By [FS04,

Theorem 4.47], the optimal value of (2.30b) is given by pi θi-CVaRpi(zi) =∫ 1

1−pi
F−1
i (t)dt, where θi-CVaRpi(zi) denotes the CVaR of zi at level pi un-

der θi.

If pi = 0, on the other hand, then the optimal value of (2.30a) and the

integral
∫ 1

1−pi
F−1
i (t)dt both evaluate to zero. Thus, the optimal value of the

subproblem (2.30a) coincides with
∫ 1

1−pi
F−1
i (t)dt irrespective of pi. Substitut-

ing this optimal value into (2.29) finally yields the explicit upper bound

sup
θ∈Θ

Ez∼θ

[
max
i∈[N ]

ui + zi

]
≤ sup

p∈∆N

N∑

i=1

uipi +

N∑

i=1

∫ 1

1−pi

F−1
i (t)dt. (2.31)

Note that the objective function of the upper bounding problem on the right

hand side of (2.31) constitutes a sum of the strictly concave and differentiable

univariate functions uipi +
∫ 1

1−pi
F−1
i (t). Indeed, the derivative of the ith func-

tion with respect to pi is given by ui + F−1
i (1− pi), which is strictly increasing



80 Chapter 2. Semi-discrete Optimal Transport

in pi because Fi is continuous by assumption. The upper bounding problem

in (2.31) is thus solvable as it has a compact feasible set as well as a differen-

tiable objective function. Moreover, the solution is unique thanks to the strict

concavity of the objective function. In the following we denote this unique

solution by p⋆.

It remains to be shown that there exists a distribution θ⋆ ∈ Θ that at-

tains the upper bound in (2.31). To this end, we define the functions q⋆i (zi) =

1{zi>F−1
i (1−p⋆

i )} for all i ∈ [N ]. By [FS04, Remark 4.48], q⋆i (zi) is optimal

in (2.30a) for pi = p⋆i . In other words, we have Ezi∼θi [q
⋆
i (zi)] = p⋆i and

Ezi∼θi [ziq
⋆
i (zi)] =

∫ 1

1−p⋆
i
F−1
i (t)dt. In addition, we also define the Borel mea-

sures θ+i and θ−i through

θ+i (B) = θi(B|zi > F−1
i (1− p⋆i )) and θ−i (B) = θi(B|zi ≤ F−1

i (1− p⋆i ))

for all Borel sets B ⊆ R, respectively. By construction, θ+i is supported

on (F−1
i (1− p⋆i ),∞), while θ−i is supported on (−∞, (F−1

i (1− p⋆i )]. The law of

total probability further implies that θi = p⋆i θ
+
i + (1− p⋆i )θ−i . In the remainder

of the proof we will demonstrate that the maximization problem on the left

hand side of (2.31) is solved by the mixture distribution

θ⋆ =

N∑

j=1

p⋆j ·
(
⊗j−1

k=1θ
−
k

)
⊗ θ+j ⊗

(
⊗N

k=j+1θ
−
k

)
.

This will show that the inequality in (2.31) is in fact an equality, which in turn

implies that the smooth c-transform is given by (2.27). We first prove that

θ⋆ ∈ Θ. To see this, note that for all i ∈ [N ] we have

θ⋆(zi ≤ s) = p⋆i θ
+
i (zi ≤ s) + (

∑
j ̸=i p

⋆
j )θ

−
i (zi ≤ s) = θi(zi ≤ s) = Fi(s),

where the second equality exploits the relation
∑

j ̸=i p
⋆
j = 1 − p⋆i . This obser-

vation implies that θ⋆ ∈ Θ. Next, we prove that θ⋆ attains the upper bound

in (2.31). By the definition of the binary function r, we have

Ez∼θ⋆

[
max
i∈[N ]

ui + zi

]
= Ez∼θ⋆ [(ui + zi)ri(z)]

= Ezi∼θi [(ui + zi)Ez∼θ⋆ [ri(z)|zi]]

= Ezi∼θi

[
(ui + zi) θ

⋆
(
i = min argmax

j∈[N ]

uj + zj
∣∣zi
)]

= Ezi∼θi

[
(ui + zi) θ

⋆
(
zj < ui + zi − uj ∀j ̸= i

∣∣zi
)]
,
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where the third equality holds because ri(z) = 1 if and only if

i = min argmax
j∈[N ]

uj + zj ,

and the fourth equality follows from the assumed continuity of the marginal

distribution functions Fi, i ∈ [N ], which implies that θ⋆(zj = ui + zi − uj ∀j ̸=
i
∣∣zi) = 0 θi-almost surely for all i, j ∈ [N ]. Hence, we find

Ez∼θ⋆

[
max
i∈[N ]

ui + zi

]
= p⋆i Ezi∼θ+

i

[
(ui + zi) θ

⋆
(
zj < ui + zi − uj ∀j ̸= i

∣∣zi
)]

+ (1− p⋆i )Ezi∼θ−
i

[
(ui + zi) θ

⋆
(
zj < ui + zi − uj ∀j ̸= i

∣∣zi
)]

= p⋆i Ezi∼θ+
i

[
(ui + zi)

(∏

j ̸=i

θ−j (zj < zi + ui − uj)
)]

(2.32a)

+
∑

j ̸=i

p⋆j Ezi∼θ−
i

[
(ui + zi)

( ∏

k ̸=i,j

θ−k (zk < zi + ui − uk)
)
θ+j (zj < zi + ui − uj)

]
,

(2.32b)

where the first equality exploits the relation θi = p⋆i θ
+
i + (1− p⋆i )θ−i , while the

second equality follows from the definition of θ⋆. The expectations in (2.32) can

be further simplified by using the stationarity conditions of the upper bounding

problem in (2.31), which imply that the partial derivatives of the objective

function with respect to the decision variables pi, i ∈ [N ], are all equal at

p = p⋆. Thus, p⋆ must satisfy

ui + F−1
i (1− p⋆i ) = uj + F−1

j (1− p⋆j ) ∀i, j ∈ [N ]. (2.33)

Consequently, for every zi > F−1
i (1− p⋆i ) and j ̸= i we have

θ−j (zj < zi + ui − uj) ≥ θ−j (zj ≤ F−1
i (1− p⋆i ) + ui − uj)

= θ−j (zj ≤ F−1
j (1− p⋆j )) = 1,

where the first equality follows from (2.33), and the second equality holds be-

cause θ−j is supported on (−∞, F−1
j (1−p⋆j )]. As no probability can exceed 1, the

above reasoning implies that θ−j (zj < zi + ui − uj) = 1 for all zi > F−1
i (1− p⋆i )

and j ̸= i. Noting that q⋆i (zi) = 1{zi>F−1
i (1−p⋆

i )} represents the characteristic

function of the set (F−1
i (1−p⋆i ),∞) covering the support of θ+i , the term (2.32a)

can thus be simplified to

p⋆i Ezi∼θ+
i

[
(ui + zi)

(∏

j ̸=i

θ−j (zj < zi + ui − uj)
)
q⋆i (zi)

]
= Ezi∼θi [(ui + zi)q

⋆
i (zi)] .
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Similarly, for any zi ≤ F−1
i (1− p⋆i ) and j ̸= i we have

θ+j (zj < zi + ui − uj) ≤ θ+j (zj < F−1
i (1− p⋆i ) + ui − uj)

= θ+j (zj < F−1
j (1− p⋆j )) = 0,

where the two equalities follow from (2.33) and the observation that θ+j is sup-

ported on (F−1
j (1−p⋆j ),∞), respectively. As probabilities are non-negative, the

above implies that θ+j (zj < zi + ui− uj) = 0 for all zi ≤ F−1
i (1− p⋆i ) and j ̸= i.

Hence, as θ−i is supported on (−∞, F−1
i (1− p⋆i )], the term (2.32b) simplifies to

∑

j ̸=i

p⋆jEzi∼θ−
i

[
(ui + zi)

( ∏

k ̸=i,j

θ−k (zk < zi + ui − uk)
)

θ+j (zj < zi + ui − uj)1{zi≤F−1
i (1−p⋆

i )}

]
= 0.

By combining the simplified reformulations of (2.32a) and (2.32b), we finally

obtain

Ez∼θ⋆

[
max
i∈[N ]

ui + zi

]
=

N∑

i=1

Ezi∼θi [(ui + zi)q
⋆
i (zi)]=

N∑

i=1

uip
⋆
i +

N∑

i=1

∫ 1

1−p⋆
i

F−1
i (t)dt,

where the last equality exploits the relations

Ezi∼θi [q
⋆
i (zi)] = p⋆i and Ezi∼θi [ziq

⋆
i (zi)] =

∫ 1

1−p⋆
i

F−1
i (t)dt

derived in the first part of the proof. We have thus shown that the smooth

c-transform is given by (2.27).

Finally, by the envelope theorem [Fue00, Theorem 2.16], the gradient of

∇ϕψ(ϕ,x) exists and coincides with the unique maximizer p⋆ of the upper

bounding problem in (2.27).

The next theorem reveals that the smooth dual optimal transport prob-
lem (2.12) with a marginal ambiguity set corresponds to a regularized primal
optimal transport problem of the form (2.13).

Theorem 2.3.7 (Fréchet regularization). Suppose that Θ is a marginal ambigu-

ity set of the form (2.26) and that the marginal cumulative distribution functions

are defined through

Fi(s) = min{1,max{0, 1− ηiF (−s)}} (2.34)

for some probability vector η ∈ ∆N and strictly increasing function F : R→ R
with

∫ 1

0
F−1(t)dt = 0. Then, the smooth dual optimal transport problem (2.12)

is equivalent to the regularized primal optimal transport problem (2.13) with

RΘ = Df (π∥µ⊗ η), where f(s) =
∫ s

0
F−1(t)dt and η =

∑N
i=1 ηiδyi

.
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The function f(s) introduced in Theorem 2.3.7 is smooth and convex because

its derivative df(s)/ds = F−1(s) is strictly increasing, and f(1) =
∫ 1

0
F−1(t)dt =

0 by assumption. Therefore, this function induces a standard f -divergence.
From now on we will refer to F as the marginal generating function.

Proof of Theorem 2.3.7. By Proposition 2.3.6, the smooth dual optimal trans-

port problem (2.12) is equivalent to

W c(µ, ν)= sup
ϕ∈RN

Ex∼µ

[
min
p∈∆N

N∑

i=1

ϕiνi −
N∑

i=1

(ϕi − c(x,yi))pi−
N∑

i=1

∫ 1

1−pi

F−1
i (t)dt

]
.

As F is strictly increasing, we have F−1
i (s) = −F−1((1−s)/ηi) for all s ∈ (0, 1).

Thus, we find

f(s) =

∫ s

0

F−1(t)dt = − 1

ηi

∫ 1−sηi

1

F−1

(
1− z
ηi

)
dz = − 1

ηi

∫ 1

1−sηi

F−1
i (z)dz,

(2.35)

where the second equality follows from the variable substitution z ← 1 − ηit.
This integral representation of f(s) then allows us to reformulate the smooth

dual optimal transport problem as

W c(µ, ν)= sup
ϕ∈RN

Ex∼µ

[
min
p∈∆N

N∑

i=1

ϕiνi −
N∑

i=1

(ϕi − c(x,yi))pi +
N∑

i=1

ηi f

(
pi
ηi

)]
,

which is manifestly equivalent to problem (2.14) thanks to the definition of the

discrete f -divergence. Lemma 2.3.2 finally implies that the resulting instance

of (2.14) is equivalent to the regularized primal optimal transport problem (2.13)

with regularization term RΘ(π) = Df (π∥µ⊗ η). Hence, the claim follows.

Theorem 2.3.7 imposes relatively restrictive conditions on the marginals of z.
Indeed, it requires that all marginal distribution functions Fi, i ∈ [N ], must be
generated by a single marginal generating function F through the relation (2.34).
The following examples showcase, however, that the freedom to select F offers
significant flexibility in designing various (existing as well as new) regularization
schemes. Details of the underlying derivations are relegated to Appendix 2.5.

Example 2.3.8 (Exponential distribution model). Suppose that Θ is a marginal

ambiguity set with (shifted) exponential marginals of the form (2.34) induced by

the generating function F (s) = exp(s/λ − 1) with λ > 0. Then the smooth

dual optimal transport problem (2.12) is equivalent to the regularized optimal

transport problem (2.13) with an entropic regularizer of the form RΘ(π) =
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Df (π∥µ ⊗ η), where f(s) = λs log(s), while the smooth c-transform (2.11) re-

duces to the log-partition function (2.20). This example shows that entropic

regularizers are not only induced by singleton ambiguity sets containing a gen-

eralized extreme value distribution (see Section 2.3.1) but also by marginal am-

biguity sets with exponential marginals.

Example 2.3.9 (Uniform distribution model). Suppose that Θ is a marginal

ambiguity set with uniform marginals of the form (2.34) induced by the gen-

erating function F (s) = s/(2λ) + 1/2 with λ > 0. In this case the smooth

dual optimal transport problem (2.12) is equivalent to the regularized optimal

transport problem (2.13) with a χ2-divergence regularizer of the form RΘ(π) =

Df (π∥µ ⊗ η), where f(s) = λ(s2 − s). Such regularizers were previously in-

vestigated by [BSR18] and [Seg+18] under the additional assumption that ηi

is independent of i ∈ [N ], yet their intimate relation to noise models with

uniform marginals remained undiscovered until now. In addition, the smooth

c-transform (2.11) satisfies

ψ(ϕ,x) = λ+ λ spmax
i∈[N ]

ϕi − c(x,yi)
λ

,

where the sparse maximum operator ‘spmax’ inspired by [MA16] is defined

through

spmax
i∈[N ]

ui = max
p∈∆N

N∑

i=1

uipi − p2i /ηi ∀u ∈ RN . (2.36)

The envelope theorem [Fue00, Theorem 2.16] ensures that spmaxi∈[N ] ui is smooth

and that its gradient with respect to u is given by the unique solution p⋆ of the

maximization problem on the right hand side of (2.36). We note that p⋆ has

many zero entries due to the sparsity-inducing nature of the problem’s simpli-

cial feasible set. In addition, we have limλ↓0 λ spmaxi∈[N ] ui/λ = maxi∈[N ] ui.

Thus, the sparse maximum can indeed be viewed as a smooth approximation of

the ordinary maximum. In marked contrast to the more widely used LogSumExp

function, however, the sparse maximum has a sparse gradient. Proposition 2.6.1

in Appendix 2.6 shows that p⋆ can be computed efficiently by sorting.

Example 2.3.10 (Pareto distribution model). Suppose that Θ is a marginal

ambiguity set with (shifted) Pareto distributed marginals of the form (2.34)

induced by the generating function F (s) = (s(q − 1)/(λq) + 1/q)1/(q−1) with

λ, q > 0. Then the smooth dual optimal transport problem (2.12) is equivalent
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to the regularized optimal transport problem (2.13) with a Tsallis divergence reg-

ularizer of the form RΘ(π) = Df (π∥µ⊗η), where f(s) = λ(sq−s)/(q−1). Such
regularizers were investigated by [Muz+17] under the additional assumption that

ηi is independent of i ∈ [N ]. The Pareto distribution model encapsulates the ex-

ponential model (in the limit q → 1) and the uniform distribution model (for

q = 2) as special cases. The smooth c-transform admits no simple closed-form

representation under this model.

Example 2.3.11 (Hyperbolic cosine distribution model). Suppose that Θ is

a marginal ambiguity set with hyperbolic cosine distributed marginals of the

form (2.34) induced by the generating function F (s) = sinh(s/λ − k) with

k =
√
2 − 1 − arcsinh(1) and λ > 0. Then the marginal probability density

functions are given by scaled and truncated hyperbolic cosine functions, and the

smooth dual optimal transport problem (2.12) is equivalent to the regularized

optimal transport problem (2.13) with a hyperbolic divergence regularizer of the

form RΘ(π) = Df (π∥µ ⊗ η), where f(s) = λ(sarcsinh(s) −
√
s2 + 1 + 1 + ks).

Hyperbolic divergences were introduced by [GHS20] in order to unify several

gradient descent algorithms.

Example 2.3.12 (t-distribution model). Suppose that Θ is a marginal ambi-

guity set where the marginals are determined by (2.34), and assume that the

generating function is given by

F (s) =
N

2


1 +

s−
√
N − 1√

λ2 + (s−
√
N − 1)2




for some λ > 0. In this case one can show that all marginals constitute t-

distributions with 2 degrees of freedom. In addition, one can show that the

smooth dual optimal transport problem (2.12) is equivalent to the Chebyshev

regularized optimal transport problem described in Proposition 2.3.5.

To close this section, we remark that different regularization schemes differ
as to how well they approximate the original (unregularized) optimal trans-
port problem. Proposition 2.3.3 provides simple error bounds that may help
in selecting suitable regularizers. For the entropic regularization scheme asso-
ciated with the exponential distribution model of Example 2.3.8, for example,
the error bound evaluates to maxi∈[N ] λ log(1/ηi), while for the χ2-divergence
regularization scheme associated with the uniform distribution model of Exam-
ple 2.3.9, the error bound is given by maxi∈[N ] λ(1/ηi − 1). In both cases, the
error is minimized by setting ηi = 1/N for all i ∈ [N ]. Thus, the error bound
grows logarithmically with N for entropic regularization and linearly with N for
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χ2-divergence regularization. Different regularization schemes also differ with
regard to their computational properties, which will be discussed in Section 2.4.

2.4. Numerical Solution of Smooth Optimal Trans-

port Problems

The smooth semi-discrete optimal transport problem (2.12) constitutes a stochas-
tic optimization problem and can therefore be addressed with a stochastic gra-
dient descent (SGD) algorithm. In Section 2.4.1 we first derive new convergence
guarantees for an averaged gradient descent algorithm that has only access to a
biased stochastic gradient oracle. This algorithm outputs the uniform average of
the iterates (instead of the last iterate) as the recommended candidate solution.
We prove that if the objective function is Lipschitz continuous, then the subop-
timality of this candidate solution is of the order O(1/

√
T ), where T stands for

the number of iterations. An improvement in the non-leading terms is possible
if the objective function is additionally smooth. We further prove that a conver-
gence rate of O(1/T ) can be obtained for generalized self-concordant objective
functions. In Section 2.4.2 we then show that the algorithm of Section 2.4.1 can
be used to efficiently solve the smooth semi-discrete optimal transport prob-
lem (2.12) corresponding to a marginal ambiguity set of the type (2.26). As a
byproduct, we prove that the convergence rate of the averaged SGD algorithm
for the semi-discrete optimal transport problem with entropic regularization is
of the order O(1/T ), which improves the O(1/

√
T ) guarantee of [Gen+16].

2.4.1. Averaged Gradient Descent Algorithm with Biased

Gradient Oracles

Consider a general convex minimization problem of the form

min
ϕ∈Rn

h(ϕ), (2.37)

where the objective function h : Rn → R is convex and differentiable. We
assume that problem (2.37) admits a minimizer ϕ⋆. We study the convergence
behavior of the inexact gradient descent algorithm

ϕt = ϕt−1 − γgt(ϕt−1), (2.38)

where γ > 0 is a fixed step size, ϕ0 is a given deterministic initial point and the
function gt : Rn → Rn is an inexact gradient oracle that returns for every fixed
ϕ ∈ Rn a random estimate of the gradient of h at ϕ. Note that we allow the
gradient oracle to depend on the iteration counter t, which allows us to account
for increasingly accurate gradient estimates. In contrast to the previous sections,
we henceforth model all random objects as measurable functions on an abstract
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filtered probability space (Ω,F , (Ft)t≥0,P), where F0 = {∅,Ω} represents the
trivial σ-field, while the gradient oracle gt(ϕ) is Ft-measurable for all t ∈ N
and ϕ ∈ Rn. In order to avoid clutter, we use E[·] to denote the expectation
operator with respect to P, and all inequalities and equalities involving random
variables are understood to hold P-almost surely.

In the following we analyze the effect of averaging in inexact gradient descent
algorithms. We will show that after T iterations with a constant step size γ =
O(1/

√
T ), the objective function value of the uniform average of all iterates

generated by (2.38) converges to the optimal value of (2.37) at a sublinear rate.
Specifically, we will prove that the rate of convergence varies between O(1/

√
T )

and O(1/T ) depending on properties of the objective function. Our convergence
analysis will rely on several regularity conditions.

Assumption 1 (Regularity conditions). Different combinations of the following

regularity conditions will enable us to establish different convergence guarantees

for the averaged inexact gradient descent algorithm.

(i) Biased gradient oracle: There exists tolerances εt > 0, t ∈ N ∪ {0},
such that

∥∥E
[
gt(ϕt−1)

∣∣Ft−1

]
−∇h(ϕt)

∥∥ ≤ εt−1 ∀t ∈ N.

(ii) Bounded gradients: There exists R > 0 such that

∥∇h(ϕ)∥ ≤ R and ∥gt(ϕ)∥ ≤ R ∀ϕ ∈ Rn, ∀t ∈ N.

(iii) Generalized self-concordance: The function h is M -generalized self-

concordant for some M > 0, that is, h is three times differentiable, and

for any ϕ,ϕ′ ∈ Rn the function u(s) = h(ϕ + s(ϕ′ − ϕ)) satisfies the

inequality ∣∣∣∣
d3u(s)

ds3

∣∣∣∣ ≤M∥ϕ− ϕ
′∥ d

2u(s)

ds2
∀s ∈ R.

(iv) Lipschitz continuous gradient: The function h is L-smooth for some

L > 0, that is, we have

∥∇h(ϕ)−∇h(ϕ′)∥ ≤ L∥ϕ− ϕ′∥ ∀ϕ,ϕ′ ∈ Rn.

(v) Bounded second moments: There exists σ > 0 such that

E
[∥∥gt(ϕt−1)−∇h(ϕt−1)

∥∥2 |Ft−1

]
≤ σ2 ∀t ∈ N.
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The averaged gradient descent algorithm with biased gradient oracles lends
itself to solving both deterministic as well as stochastic optimization problems.
In deterministic optimization, the gradient oracles gt are deterministic and out-
put inexact gradients satisfying ∥gt(ϕ) − ∇h(ϕ)∥ ≤ εt for all ϕ ∈ Rn, where
the tolerances εt bound the errors associated with the numerical computation
of the gradients. A vast body of literature on deterministic optimization focuses
on exact gradient oracles for which these tolerances can be set to 0. Inexact
deterministic gradient oracles with bounded error tolerances are investigated by
[NB00] and [d’A08]. In this case exact convergence to ϕ⋆ is not possible. If
the error bounds decrease to 0, however, [LT93; SRB11] and [FS12] show that
adaptive gradient descent algorithms are guaranteed to converge to ϕ⋆.

In stochastic optimization, the objective function is representable as h(ϕ) =
E[H(ϕ,x)], where the marginal distribution of the random vector x under P
is given by µ, while the integrand H(ϕ,x) is convex and differentiable in ϕ
and µ-integrable in x. In this setting it is convenient to use gradient oracles of
the form gt(ϕ) = ∇ϕH(ϕ,xt) for all t ∈ N, where the samples xt are drawn
independently from µ. As these oracles output unbiased estimates for ∇h(ϕ),
all tolerances εt in Assumptions 1 (i) may be set to 0. SGD algorithms with
unbiased gradient oracles date back to the seminal paper by [RM51]. Nowa-
days, averaged SGD algorithms with Polyak-Ruppert averaging figure among
the most popular variants of the SGD algorithm [Rup88; PJ92; Nem+09]. For
general convex objective functions the best possible convergence rate of any
averaged SGD algorithm run over T iterations amounts to O(1/

√
T ), but it

improves to O(1/T ) if the objective function is strongly convex; see for example
[NV08; Nem+09; SS+09; DS09; Xia09; MB11; SS+11; LJSB12]. While smooth-
ness plays a critical role to achieve acceleration in deterministic optimization,
it only improves the constants in the convergence rate in stochastic optimiza-
tion [SST10; Dek+12; Lan12; CDO18; Kav+19]. In fact, [Tsy03] demonstrates
that smoothness does not provide any acceleration in general, that is, the best
possible convergence rate of any averaged SGD algorithm can still not be im-
proved beyond O(1/

√
T ). Nevertheless, a substantial acceleration is possible

when focusing on special problem classes such as linear or logistic regression
problems [Bac14; BM13; HKL14]. In these special cases, the improvement in
the convergence rate is facilitated by a generalized self-concordance property of
the objective function [Bac10]. Self-concordance was originally introduced in
the context of Newton-type interior point methods [NN94] and later general-
ized to facilitate the analysis of probabilistic models [Bac10] and second-order
optimization algorithms [STD19].

In the following we analyze the convergence properties of the averaged SGD
algorithm when we have only access to an inexact stochastic gradient oracle, in
which case the tolerances εt cannot be set to 0. To our best knowledge, inexact
stochastic gradient oracles have only been considered by [CDO18; HSL20] and
[AS20]. Specifically, [HSL20] use sequential semidefinite programs to analyze the
convergence rate of the averaged SGD algorithm when µ has a finite support.
In contrast, we do not impose any restrictions on the support of µ. [CDO18]
and [AS20], on the other hand, study the convergence behavior of accelerated
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gradient descent algorithms for smooth stochastic optimization problems under
the assumption that ϕ ranges over a compact domain. The proposed algorithms
necessitate a projection onto the compact feasible set in each iteration. In con-
trast, our convergence analysis does not rely on any compactness assumptions.
We note that compactness assumptions have been critical for the convergence
analysis of the averaged SGD algorithm in the context of convex stochastic
optimization [Nem+09; Dek+12; Bub15; CDO18]. By leveraging a trick due
to [Bac14], however, we can relax this assumption provided that the objective
function is Lipschitz continuous.

Proposition 2.4.1. Consider the inexact gradient descent algorithm (2.38) with

constant step size γ > 0. If Assumptions 1 (i)–(ii) hold with εt ≤ ε̄/(2
√
1 + t)

for some ε̄ ≥ 0, then we have for all p ∈ N that

E

[(
h

(
1

T

T∑

t=1

ϕt−1

)
− h(ϕ⋆)

)p]1/p
≤ ∥ϕ0 − ϕ⋆∥2

γT
+ 20γ (R+ ε̄)

2
p.

If additionally Assumption 1 (iii) holds and if G = max{M,R + ε̄}, then we

have for all p ∈ N that

E



∥∥∥∥∥∇h

(
1

T

T∑

t=1

ϕt−1

)∥∥∥∥∥

2p


1/p

≤ G2

T

(
10
√
p+

4p√
T

+ 80G2γ
√
Tp+

2∥ϕ0 − ϕ⋆∥2
γ
√
T

+
3∥ϕ0 − ϕ⋆∥
Gγ
√
T

)2

.

The proof of Proposition 2.4.1 relies on two lemmas. In order to state these
lemmas concisely, we define the Lp-norm, of a random variable z ∈ Rn for any

p > 0 through ∥z∥Lp
= (E [∥z∥p])1/p. For any random variables z, z′ ∈ Rn and

p ≥ 1, Minkowski’s inequality [BLM13, § 2.11] then states that

∥z + z′∥Lp
≤ ∥z∥Lp

+ ∥z′∥Lp
. (2.39)

Another essential tool for proving Proposition 2.4.1 is the Burkholder-Rosenthal-
Pinelis (BRP) inequality [Pin94, Theorem 4.1], which we restate below without
proof to keep this chapter self-contained.

Lemma 2.4.2 (BRP inequality). Let zt be an Ft-measurable random variable

for every t ∈ N and assume that p ≥ 2. For any t ∈ [T ] with E[zt|Ft−1] = 0

and ∥zt∥Lp
<∞ we then have

∥∥∥∥∥max
t∈[T ]

∥∥∥∥∥
t∑

k=1

zk

∥∥∥∥∥

∥∥∥∥∥
Lp

≤ √p
∥∥∥∥∥

T∑

t=1

E[∥zt∥2|Ft−1]

∥∥∥∥∥

1/2

Lp/2

+ p

∥∥∥∥max
t∈[T ]

∥zt∥
∥∥∥∥
Lp

.



90 Chapter 2. Semi-discrete Optimal Transport

The following lemma reviews two useful properties of generalized self-concordant
functions.

Lemma 2.4.3. [Generalized self-concordance] Assume that the objective func-

tion h of the convex optimization problem (2.37) isM -generalized self-concordant

in the sense of Assumption 1 (iii) for some M > 0.

(i) [Bac14, Appendix D.2] For any sequence ϕ0, . . . ,ϕT−1 ∈ Rn, we have

∥∥∥∥∥∇h
(

1

T

T∑

t=1

ϕt−1

)
− 1

T

T∑

t=1

∇h(ϕt−1)

∥∥∥∥∥ ≤ 2M

(
1

T

T∑

t=1

h(ϕt−1)− h(ϕ⋆)

)
.

(ii) [Bac14, Lemma 9] For any ϕ ∈ Rn with ∥∇h(ϕ)∥ ≤ 3κ/(4M), where κ is

the smallest eigenvalue of ∇2h(ϕ⋆), and ϕ⋆ is the optimizer of (2.37), we

have h(ϕ)− h(ϕ⋆) ≤ 2∥∇h(ϕ)∥2/κ.

Armed with Lemmas 2.4.2 and 2.4.3, we are now ready to prove Proposi-
tion 2.4.1.

Proof of Proposition 2.4.1. The first claim generalizes Proposition 5 by [Bac14]

to inexact gradient oracles. By the assumed convexity and differentiability of

the objective function h, we have

h(ϕk−1) ≤ h(ϕ⋆) +∇h(ϕk−1)
⊤(ϕk−1 − ϕ⋆) (2.40)

= h(ϕ⋆) + gk(ϕk−1)
⊤(ϕk−1 − ϕ⋆) (2.41)

+
(
∇h(ϕk−1)− gk(ϕk−1)

)⊤
(ϕk−1 − ϕ⋆).

In addition, elementary algebra yields the recursion

∥ϕk − ϕ⋆∥2 = ∥ϕk − ϕk−1∥2 + ∥ϕk−1 − ϕ⋆∥2 + 2(ϕk − ϕk−1)
⊤(ϕk−1 − ϕ⋆).

Thanks to the update rule (2.38), this recursion can be re-expressed as

gk(ϕk−1)
⊤(ϕk−1 − ϕ⋆) =

1

2γ

(
γ2∥gk(ϕk−1)∥2 + ∥ϕk−1 − ϕ⋆∥2 − ∥ϕk − ϕ⋆∥2

)
,

where γ > 0 is an arbitrary step size. Combining the above identity with (2.40)

then yields

h(ϕk−1)

≤ h(ϕ⋆) +
1

2γ

(
γ2∥gk(ϕk−1)∥2 + ∥ϕk−1 − ϕ⋆∥2 − ∥ϕk − ϕ⋆∥2

)

+
(
∇h(ϕk−1)− gk(ϕk−1)

)⊤
(ϕk−1 − ϕ⋆)
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≤ h(ϕ⋆) +
1

2γ

(
γ2R2 + ∥ϕk−1 − ϕ⋆∥2 − ∥ϕk − ϕ⋆∥2

)

+
(
∇h(ϕk−1)− gk(ϕk−1)

)⊤
(ϕk−1 − ϕ⋆),

where the last inequality follows from Assumption 1 (ii). Summing this inequal-

ity over k then shows that

2γ

t∑

k=1

(
h(ϕk−1)− h(ϕ⋆)

)
+ ∥ϕt − ϕ⋆∥2 ≤ At, (2.42)

where

At = tγ2R2 + ∥ϕ0 − ϕ⋆∥2 +
t∑

k=1

Bk and

Bt = 2γ
(
∇h(ϕt−1)− gt(ϕt−1)

)⊤
(ϕt−1 − ϕ⋆)

for all t ∈ N. Note that the term on the left hand side of (2.42) is non-negative

because ϕ⋆ is a global minimizer of h, which implies that the random variable

At is also non-negative for all t ∈ N. For later use we further define A0 =

∥ϕ0 − ϕ⋆∥2. The estimate (2.42) for t = T then implies via the convexity of h

that

h

(
1

T

T∑

t=1

ϕt−1

)
− h(ϕ⋆) ≤

AT

2γT
, (2.43)

where we dropped the non-negative term ∥ϕT−ϕ⋆∥2/(2γT ) without invalidating
the inequality. In the following we analyze the Lp-norm of AT in order to obtain

the desired bounds from the proposition statement. To do so, we distinguish

three different regimes for p ∈ N, and we show that the Lp-norm of the non-

negative random variable AT is upper bounded by an affine function of p in

each of these regimes.

Case I (p ≥ T/4): By using the update rule (2.38) and Assumption 1 (ii),

one readily verifies that

∥ϕk − ϕ⋆∥ ≤ ∥ϕk−1 − ϕ⋆∥+ ∥ϕk − ϕk−1∥ ≤ ∥ϕk−1 − ϕ⋆∥+ γR.

Iterating the above recursion k times then yields the conservative estimate ∥ϕk−
ϕ⋆∥ ≤ ∥ϕ0 − ϕ⋆∥+ kγR. By definitions of At and Bt for t ∈ N, we thus have

At = tγ2R2 + ∥ϕ0 − ϕ⋆∥2 + 2γ
∑t

k=1

(
∇h(ϕk−1)− gk(ϕk−1)

)⊤
(ϕk−1 − ϕ⋆)

≤ tγ2R2 + ∥ϕ0 − ϕ⋆∥2 + 4γR
∑t

k=1 ∥ϕk−1 − ϕ⋆∥
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≤ tγ2R2 + ∥ϕ0 − ϕ⋆∥2 + 4γR
∑t

k=1 (∥ϕ0 − ϕ⋆∥+ (k − 1)γR)

≤ tγ2R2 + ∥ϕ0 − ϕ⋆∥2 + 4tγR∥ϕ0 − ϕ⋆∥+ 2t2γ2R2

≤ tγ2R2 + ∥ϕ0 − ϕ⋆∥2 + 4t2γ2R2 + ∥ϕ0 − ϕ⋆∥2 + 2t2γ2R2

≤ 7t2γ2R2 + 2∥ϕ0 − ϕ⋆∥2,

where the first two inequalities follow from Assumption 1 (ii) and the conser-

vative estimate derived above, respectively, while the fourth inequality holds

because 2ab ≤ a2 + b2 for all a, b ∈ R. As At ≥ 0, the random variable At is

bounded and satisfies |At| ≤ 2∥ϕ0−ϕ⋆∥2+7t2γ2R2 for all t ∈ N, which implies

that

∥AT ∥Lp
≤ 2∥ϕ0 − ϕ⋆∥2 + 7T 2γ2R2 ≤ 2∥ϕ0 − ϕ⋆∥2 + 28Tγ2R2p, (2.44)

where the last inequality holds because p ≥ T/4. Note that the resulting upper

bound is affine in p.

Case II (2 ≤ p ≤ T/4): The subsequent analysis relies on the simple bounds

maxt∈[T ] εt−1 ≤ ε̄
2 and

∑T
t=1 εt−1 ≤ ε̄

√
T , (2.45)

which hold because εt ≤ ε̄/(2
√
1 + t) by assumption and because

∑T
t=1 1/

√
t ≤

2
√
T , which can be proved by induction. In addition, it proves useful to in-

troduce the martingale differences B̄t = Bt − E[Bt|Ft−1] for all t ∈ N. By the

definition of At and the subadditivity of the supremum operator, we then have

max
t∈[T+1]

At−1 = max
t∈[T+1]

{
(t− 1)γ2R2 + ∥ϕ0 − ϕ⋆∥2 +

t−1∑

k=1

E[Bk|Fk−1] +

t−1∑

k=1

B̄k

}

≤ Tγ2R2 + ∥ϕ0 − ϕ⋆∥2 +max
t∈[T ]

t∑

k=1

E[Bk|Fk−1] + max
t∈[T ]

t∑

k=1

B̄k.

As p ≥ 2, Minkowski’s inequality (2.39) thus implies that

∥∥∥∥ max
t∈[T+1]

At−1

∥∥∥∥
Lp

≤ Tγ2R2 + ∥ϕ0 − ϕ⋆∥2 +
∥∥∥∥∥max
t∈[T ]

t∑

k=1

E[Bk|Fk−1]

∥∥∥∥∥
Lp

(2.46)

+

∥∥∥∥∥max
t∈[T ]

t∑

k=1

B̄k

∥∥∥∥∥
Lp

. (2.47)

In order to bound the penultimate term in (2.46), we first note that

|E[Bk|Fk−1]| = 2γ
∣∣∣E
[(
∇h(ϕk−1)− gt(ϕk−1)

)
|Fk−1

]⊤
(ϕk−1 − ϕ⋆)

∣∣∣
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≤ 2γ∥E
[(
∇h(ϕk−1)− gk(ϕk−1)

)
|Fk−1

]
∥∥ϕk−1 − ϕ⋆∥

≤ 2γεk−1∥ϕk−1 − ϕ⋆∥ ≤ 2γεk−1

√
Ak−1 (2.48)

for all k ∈ N, where the second inequality holds due to Assumption 1 (i), and

the last inequality follows from (2.42). This in turn implies that for all t ∈ [T ]

we have

∣∣∣∣∣
t∑

k=1

E[Bk|Fk−1]

∣∣∣∣∣ ≤ 2γ

t∑

k=1

εk−1

√
Ak−1

≤ 2γ

(
t∑

k=1

εk−1

)(
max
k∈[t]

√
Ak−1

)

≤ 2γε̄
√
tmax
k∈[t]

√
Ak−1,

where the last inequality exploits (2.45). Therefore, the penultimate term

in (2.46) satisfies

∥∥∥∥∥max
t∈[T ]

t∑

k=1

E[Bk|Fk−1]

∥∥∥∥∥
Lp

≤ 2γε̄
√
T

∥∥∥∥ max
t∈[T+1]

√
At−1

∥∥∥∥
Lp

= 2γε̄
√
T

∥∥∥∥ max
t∈[T+1]

At−1

∥∥∥∥
1/2

Lp/2

,

(2.49)

where the equality follows from the definition of the Lp-norm.

Next, we bound the last term in (2.46) by using the BRP inequality of

Lemma 2.4.2. To this end, note that

|B̄t| ≤ |Bt|+ |E[Bt|Ft−1]|
≤ 2γ∥ϕt−1 − ϕ⋆∥∥∇h(ϕt−1)− gt(ϕt−1)∥+ 2γεt−1

√
At−1

≤ 2γ
√
At−1

(
∥∇h(ϕt−1)∥+ ∥gt(ϕt−1)∥

)
+ 2γεt−1

√
At−1

≤ 2γ(2R+ εt−1)
√
At−1

for all t ∈ N, where the second inequality exploits the definition of Bt and (2.48),

the third inequality follows from (2.42), and the last inequality holds because

of Assumption 1 (ii). Hence, we obtain

∥∥maxt∈[T ] |B̄t|
∥∥
Lp
≤ 2γ

(
2R+max

t∈[T ]
εt−1

)∥∥∥∥max
t∈[T ]

√
At−1

∥∥∥∥
Lp

≤ (4γR+ γε̄)

∥∥∥∥ max
t∈[T+1]

At−1

∥∥∥∥
1/2

Lp/2

,
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where the second inequality follows from (2.45) and the definition of the Lp-

norm. In addition, we have

∥∥∥∥∥
T∑

t=1

E[B̄2
t |Ft−1]

∥∥∥∥∥

1/2

Lp/2

=

∥∥∥∥∥∥

√√√√
T∑

t=1

E[B̄2
t |Ft−1]

∥∥∥∥∥∥
Lp

≤ 2γ

∥∥∥∥∥∥

√√√√
T∑

t=1

(2R+ εt−1)2At−1

∥∥∥∥∥∥
Lp

≤ 2γ

(
T∑

t=1

(2R+ εt−1)
2

)1/2 ∥∥∥∥ max
t∈[T+1]

A
1/2
t−1

∥∥∥∥
Lp

≤ 2γ


2R

√
T +

√√√√
T∑

t=1

ε2t−1



∥∥∥∥ max
t∈[T+1]

A
1/2
t−1

∥∥∥∥
Lp

≤
(
4γR
√
T + γε̄

√
T
)∥∥∥∥ max

t∈[T+1]
At−1

∥∥∥∥
1/2

Lp/2

,

where the first inequality exploits the upper bound on |B̄t| derived above, which

implies that E[B̄2
t |Ft−1] ≤ 4γ2(2R + εt−1)

2At−1. The last three inequalities

follow from the Hölder inequality, the triangle inequality for the Euclidean norm

and the two inequalities in (2.45), respectively. Recalling that p ≥ 2, we may

then apply the BRP inequality of Lemma 2.4.2 to the martingale differences B̄t,

t ∈ [T ], and use the bounds derived in the last two display equations in order

to conclude that∥∥∥∥∥max
t∈[T ]

∣∣∣∣∣
t∑

k=1

B̄k

∣∣∣∣∣

∥∥∥∥∥
Lp

≤
(
4γR

√
pT + γε̄

√
pT + γε̄p+ 4γRp

)∥∥∥∥ max
t∈[T+1]

At−1

∥∥∥∥
1/2

Lp/2

.

(2.50)

Substituting (2.49) and (2.50) into (2.46), we thus obtain
∥∥∥∥ max
t∈[T+1]

At−1

∥∥∥∥
Lp

≤ Tγ2R2 + ∥ϕ0 − ϕ⋆∥2 +
(
4γR

(
√
pT + p

)
+

γε̄

(
√
pT + p+ 2

√
T

))∥∥∥∥∥ max
t∈[T+1]

At−1

∥∥∥∥∥

1/2

Lp/2

≤ Tγ2R2 + ∥ϕ0 − ϕ⋆∥2 + 6γ (R+ ε̄)
√
pT

∥∥∥∥ max
t∈[T+1]

At−1

∥∥∥∥
1/2

Lp/2

,

where the second inequality holds because p ≤ T/4 by assumption, which implies

that
√
pT + p ≤ 1.5

√
pT and

√
pT + p+ 2

√
T ≤ 6

√
pT . As Jensen’s inequality
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ensures that ∥z∥Lp/2
≤ ∥z∥Lp

for any random variable z and p > 0, the following

inequality holds for all 2 ≤ p ≤ T/4.
∥∥∥∥ max
t∈[T+1]

At−1

∥∥∥∥
Lp

≤ Tγ2R2 + ∥ϕ0 − ϕ⋆∥2 + 6γ (R+ ε̄)
√
pT

∥∥∥∥ max
t∈[T+1]

At−1

∥∥∥∥
1/2

Lp

To complete the proof of Case II, we note that for any numbers a, b, c ≥ 0 the

inequality c ≤ a+ 2b
√
c is equivalent to

√
c ≤ b+

√
b2 + a and therefore also to

c ≤ (b+
√
b2 + a)2 ≤ 4b2 + 2a. Identifying a with Tγ2R2 + ∥ϕ0 − ϕ⋆∥2, b with

3γ (R+ ε̄)
√
pT and c with ∥maxt∈[T+1]At−1∥Lp

then allows us to translate the

inequality in the last display equation to

∥AT ∥Lp
≤
∥∥∥∥ max
t∈[T+1]

At−1

∥∥∥∥
Lp

≤ 2Tγ2R2 + 2∥ϕ0 − ϕ⋆∥2 + 36γ2 (R+ ε̄)
2
pT.

(2.51)

Thus, for any 2 ≤ p ≤ T/4, we have again found an upper bound on ∥AT ∥Lp

that is affine in p.

Case III (p = 1): Recalling the definition of AT ≥ 0, we find that

∥AT ∥L1
= E[AT ] = Tγ2R2 + ∥ϕ0 − ϕ⋆∥2 + E

[
T∑

t=1

E[Bt|Ft−1]

]

≤ Tγ2R2 + ∥ϕ0 − ϕ⋆∥2 +
∥∥∥∥∥max
t∈[T ]

t∑

k=1

E[Bk|Fk−1]

∥∥∥∥∥
L1

≤ Tγ2R2 + ∥ϕ0 − ϕ⋆∥2 + 2γε̄
√
T

∥∥∥∥ max
t∈[T+1]

At−1

∥∥∥∥
1/2

L1/2

≤ Tγ2R2 + ∥ϕ0 − ϕ⋆∥2 + 2γε̄
√
T

∥∥∥∥ max
t∈[T+1]

At−1

∥∥∥∥
1/2

L2

,

where the second inequality follows from the estimate (2.49), which holds indeed

for all p ∈ N, while the last inequality follows from Jensen’s inequality. By the

second inequality in (2.51) for p = 2, we thus find

∥AT ∥L1
≤ Tγ2R2 + ∥ϕ0 − ϕ⋆∥2 (2.52a)

+ 2ε̄γ
√
T ·
√
2Tγ2R2 + 2∥ϕ0 − ϕ⋆∥2 + 72γ2(R+ ε̄)2T (2.52b)

≤ 2Tγ2R2 + 2∥ϕ0 − ϕ⋆∥2 + 36γ2(R+ ε̄)2T + 2ε̄2γ2T, (2.52c)

where the last inequality holds because 2ab ≤ 2a2 + b2/2 for all a, b ∈ R.
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We now combine the bounds derived in Cases I, II and III to obtain a

universal bound on ∥AT ∥Lp
that holds for all p ∈ N. Specifically, one readily

verifies that the bound

∥AT ∥Lp
≤ 2∥ϕ0 − ϕ⋆∥2 + 40γ2 (R+ ε̄)

2
pT, (2.53)

is more conservative than each of the bounds (2.44), (2.51) and (2.52), and thus

it holds indeed for any p ∈ N. Combining this universal bound with (2.43)

proves the first inequality from the proposition statement.

In order to prove the second inequality, we need to extend [Bac14, Proposi-

tion 7] to biased gradient oracles. To this end, we first note that

∥∥∥∥∥∇h
(

1

T

T∑

t=1

ϕt−1

)∥∥∥∥∥ ≤
∥∥∥∥∥∇h

(
1

T

T∑

t=1

ϕt−1

)
− 1

T

T∑

t=1

∇h(ϕt−1)

∥∥∥∥∥

+

∥∥∥∥∥
1

T

T∑

t=1

∇h(ϕt−1)

∥∥∥∥∥

≤ 2M

(
1

T

T∑

t=1

h(ϕt−1)− h(ϕ⋆)

)
+

∥∥∥∥∥
1

T

T∑

t=1

∇h(ϕt−1)

∥∥∥∥∥

≤ M

Tγ
AT +

∥∥∥∥∥
1

T

T∑

t=1

∇h(ϕt−1)

∥∥∥∥∥ ,

where the second inequality follows from Lemma 2.4.3 (i), and the third inequal-

ity holds due to (2.42). By Minkowski’s inequality (2.39), we thus have for any

p ≥ 1 that

∥∥∥∥∥∇h
(

1

T

T∑

t=1

ϕt−1

)∥∥∥∥∥
L2p

≤ M

Tγ
∥AT ∥L2p +

∥∥∥∥∥
1

T

T∑

t=1

∇h(ϕt−1)

∥∥∥∥∥
L2p

≤ 2M

Tγ
∥ϕ0 − ϕ⋆∥2 + 80Mγ (R+ ε̄)

2
p+

∥∥∥∥∥
1

T

T∑

t=1

∇h(ϕt−1)

∥∥∥∥∥
L2p

,

where the last inequality follows from the universal bound (2.53). In order

to estimate the last term in the above expression, we recall that the update

rule (2.38) is equivalent to gt(ϕt−1) =
(
ϕt−1 − ϕt

)
/γ, which in turn implies
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that
∑T

t=1 gt(ϕt−1) = (ϕ0 − ϕT ) /γ. Hence, for any p ≥ 1, we have
∥∥∥∥∥
1

T

T∑

t=1

∇h(ϕt−1)

∥∥∥∥∥
L2p

=

∥∥∥∥∥
1

T

T∑

t=1

(
∇h(ϕt−1)− gt(ϕt−1)

)
+
ϕ0 − ϕ⋆

Tγ
+
ϕ⋆ − ϕT

Tγ

∥∥∥∥∥
L2p

≤
∥∥∥∥∥
1

T

T∑

t=1

∇h(ϕt−1)− gt(ϕt−1)

∥∥∥∥∥
L2p

+

1

Tγ
∥ϕ0 − ϕ⋆∥+ 1

Tγ
∥ϕ⋆ − ϕT ∥L2p

≤
∥∥∥∥∥
1

T

T∑

t=1

∇h(ϕt−1)− gt(ϕt−1)

∥∥∥∥∥
L2p

+

1

Tγ
∥ϕ0 − ϕ⋆∥+ 1

Tγ
∥AT ∥1/2Lp

≤
∥∥∥∥∥
1

T

T∑

t=1

∇h(ϕt−1)− gt(ϕt−1)

∥∥∥∥∥
L2p

+

1 +
√
2

Tγ
∥ϕ0 − ϕ⋆∥+ 2

√
10 (R+ ε̄)

√
p√

T
,

where the first inequality exploits Minkowski’s inequality (2.39), the second

inequality follows from (2.42), which implies that ∥ϕ⋆ − ϕT ∥ ≤
√
AT , and the

definition of the Lp-norm. The last inequality in the above expression is a direct

consequence of the universal bound (2.53) and the inequality
√
a+ b ≤ √a+

√
b

for all a, b ≥ 0. Next, define for any t ∈ N a martingale difference of the form

Ct =
1

T

(
∇h(ϕt−1)− gt(ϕt−1)− E[∇h(ϕt−1)− gt(ϕt−1)|Ft−1]

)
.

Note that these martingale differences are bounded because

∥Ct∥ ≤
1

T

(
∥∇h(ϕt−1)∥+ ∥gt(ϕt−1)∥+ ∥E[∇h(ϕt−1)− gt(ϕt−1)|Ft−1]∥

)

≤ 2R+ εt−1

T
≤ 2R+ ε̄

T
,

and thus the BRP inequality of Lemma 2.4.2 implies that
∥∥∥∥∥

T∑

t=1

Ct

∥∥∥∥∥
L2p

≤
√
2p

2R+ ε̄√
T

+ 2p
2R+ ε̄

T
.

Recalling the definition of the martingale differences Ct, t ∈ N, this bound

allows us to conclude that

1

T

∥∥∥∥∥
T∑

t=1

∇h(ϕt−1)− gt(ϕt−1)

∥∥∥∥∥
L2p

≤
∥∥∥∥∥

T∑

t=1

Ct

∥∥∥∥∥
L2p

+
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1

T

∥∥∥∥∥
T∑

t=1

E[∇h(ϕt−1)− gt(ϕt−1)|Ft−1]

∥∥∥∥∥
L2p

≤
√
2p

2R+ ε̄√
T

+ 2p
2R+ ε̄

T
+

ε̄√
T

≤ 2
√

2p
R+ ε̄√
T

+ 4p
R+ ε̄

T
,

where the second inequality exploits Assumption 1 (i) as well as the second

inequality in (2.45). Combining all inequalities derived above and observing

that 2
√
2 + 2

√
10 < 10 finally yields

∥∥∥∥∥∇h
(

1

T

T∑

t=1

ϕt−1

)∥∥∥∥∥
L2p

≤ 2M

Tγ
∥ϕ0 − ϕ⋆∥2 + 80Mγ (R+ ε̄)

2
p

+ 2
√

2p
R+ ε̄√
T

+ 4p
R+ ε̄

T

+
1 +
√
2

Tγ
∥ϕ0 − ϕ⋆∥+ 2

√
10 (R+ ε̄)

√
p√

T

≤ G√
T

(
10
√
p+

4p√
T

+ 80G2γ
√
Tp+

2

γ
√
T
∥ϕ0 − ϕ⋆∥2 + 3

Gγ
√
T
∥ϕ0 − ϕ⋆∥

)
,

where G = max{M,R+ ε̄}. This proves the second inequality from the propo-

sition statement.

The following corollary follows immediately from the proof of Proposition 2.4.1.

Corollary 5. Consider the inexact gradient descent algorithm (2.38) with con-

stant step size γ > 0. If Assumptions 1 (i)–(ii) hold with εt ≤ ε̄/(2
√
1 + t) for

some ε̄ ≥ 0, then we have

1

T

T∑

t=1

E
[
(∇h(ϕt)− gt(ϕt))

⊤
(ϕt − ϕ⋆)

]

≤ ε̄√
T

√
2∥ϕ0 − ϕ⋆∥2 + 74γ2(R+ ε̄)2T .

Proof of Corollary 5. Defining Bt as in the proof of Proposition 2.4.1, we find

1

T

T∑

t=1

E
[
(∇h(ϕt)− gt(ϕt))

⊤
(ϕt − ϕ⋆)

]
=

1

2γT
E

[
T∑

t=1

E[Bt|Ft−1]

]
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≤ ε̄√
T

√
2Tγ2R2 + 2∥ϕ0 − ϕ⋆∥2 + 72γ2(R+ ε̄)2T ,

where the inequality is an immediate consequence of the reasoning in Case (III)

in the proof of Proposition 2.4.1. The claim then follows from the trivial in-

equality R+ ε̄ ≥ R.

Armed with Proposition 2.4.1 and Corollary 5, we are now ready to prove
the main convergence result.

Theorem 2.4.4. Consider the inexact gradient descent algorithm (2.38) with

constant step size γ > 0. If Assumptions 1 (i)–(ii) hold with εt ≤ ε̄/(2
√
1 + t)

for some ε̄ ≥ 0, then the following statements hold.

(i) If γ = 1/(2(R+ ε̄)2
√
T ), then we have

E

[
h

(
1

T

T∑

t=1

ϕt−1

)]
− h(ϕ⋆) ≤ (R+ ε̄)2√

T
∥ϕ0 − ϕ⋆∥2+

1

4
√
T

+
ε̄√
T

√
2∥ϕ0 − ϕ⋆∥2 + 37

2(R+ ε̄)2
.

(ii) If γ = 1/(2(R+ε̄)2
√
T+L) and the Assumptions 1 (iv)–(v) hold in addition

to the blanket assumptions mentioned above, then we have

E

[
h

(
1

T

T∑

t=1

ϕt

)]
− h(ϕ⋆) ≤ L

2T
∥ϕ0 − ϕ⋆∥2 + (R+ ε̄)2√

T
∥ϕ0 − ϕ⋆∥2+

σ2

4(R+ ε̄)2
√
T

+
ε̄√
T

√
2∥ϕ0 − ϕ⋆∥2 + 37

2(R+ ε̄)2
.

(iii) If γ = 1/(2G2
√
T ) with G = max{M,R + ε̄}, the smallest eigenvalue κ

of ∇2h(ϕ⋆) is strictly positive and Assumption 1 (iii) holds in addition to

the blanket assumptions mentioned above, then we have

E

[
h

(
1

T

T∑

t=1

ϕt−1

)]
− h(ϕ⋆) ≤ G2

κT
(4G∥ϕ0 − ϕ⋆∥+ 20)

4
.

The proof of Theorem 2.4.4 relies on the following concentration inequalities
due to [Bac14].

Lemma 2.4.5. [Concentration inequalities]
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(i) [Bac14, Lemma 11]: If there exist a, b > 0 and a random variable z ∈ Rn

with ∥z∥Lp
≤ a+ bp for all p ∈ N, then we have

P [∥z∥ ≥ 3bs+ 2a] ≤ 2 exp(−s) ∀s ≥ 0.

(ii) [Bac14, Lemma 12]: If there exist a, b, c > 0 and a random variable z ∈ Rn

with ∥z∥Lp
≤ (a
√
p+ bp+ c)2 for all p ∈ [T ], then we have

P
[
∥z∥ ≥ (2a

√
s+ 2bs+ 2c)2

]
≤ 4 exp(−s) ∀s ≤ T.

Proof of Theorem 2.4.4. Define At as in the proof of Proposition 2.4.1. Then,

we have

E

[
h

(
1

T

T−1∑

t=0

ϕt

)
− h(ϕ⋆)

]
≤ E[AT ]

2γT
=
∥ϕ0 − ϕ⋆∥2

2γT
+
γR2

2
+ (2.54)

1

T

T∑

t=1

E
[
(∇h(ϕt)− gt(ϕt))

⊤
(ϕt − ϕ⋆)

]

≤ ∥ϕ0 − ϕ⋆∥2
2γT

+ (2.55)

γR2

2
+

ε̄√
T

√
2∥ϕ0 − ϕ⋆∥2 + 74γ2(R+ ε̄)2T ,

(2.56)

where the two inequalities follow from (2.43) and from Corollary 5, respectively.

Setting the step size to γ = 1/(2(R + ε̄)2
√
T ) then completes the proof of

assertion (i).

Assertion (ii) generalizes [Dek+12, Theorem 1]. By the L-smoothness of

h(ϕ), we have

h(ϕt) ≤ h(ϕt−1) +∇h(ϕt−1)
⊤(ϕt − ϕt−1) (2.57)

+
L

2
∥ϕt − ϕt−1∥2

= h(ϕt−1) + gt(ϕt−1)
⊤(ϕt − ϕt−1) + (∇h(ϕt−1)− gt(ϕt−1))

⊤(ϕt − ϕt−1)+

(2.58)

L

2
∥ϕt − ϕt−1∥2

≤ h(ϕt−1) + gt(ϕt−1)
⊤(ϕt − ϕt−1) (2.59)

+
ζ

2
∥∇h(ϕt−1)− gt(ϕt−1)∥2 +

L+ 1/ζ

2
∥ϕt − ϕt−1∥2, (2.60)
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where the last inequality exploits the Cauchy-Schwarz inequality together with

the elementary inequality 2ab ≤ ζa2 + b2/ζ, which holds for all a, b ∈ R and

ζ > 0. Next, note that the iterates satisfy the recursion

∥ϕt−1 − ϕ⋆∥2 = ∥ϕt−1 − ϕt∥2 + ∥ϕt − ϕ⋆∥2 + 2(ϕt−1 − ϕt)
⊤(ϕt − ϕ⋆),

which can be re-expressed as

gt(ϕt−1)
⊤(ϕt − ϕ⋆) =

1

2γ

(
∥ϕt−1 − ϕ⋆∥2 − ∥ϕt−1 − ϕt∥2 − ∥ϕt − ϕ⋆∥2

)

by using the update rule (2.38). In the remainder of the proof we assume that

0 < γ < 1/L. Substituting the above equality into (2.60) and setting ζ =

γ/(1− γL) then yields

h(ϕt) ≤ h(ϕt−1) + gt(ϕt−1)
⊤(ϕ⋆ − ϕt−1) +

γ

2(1− γL)∥∇h(ϕt−1)− gt(ϕt−1)∥2

+
1

2γ

(
∥ϕt−1 − ϕ⋆∥2 − ∥ϕt − ϕ⋆∥2

)
.

By the convexity of h, we have h(ϕ⋆) ≥ h(ϕt−1)+∇h(ϕt−1)
⊤(ϕ⋆−ϕt−1), which

finally implies that

h(ϕt) ≤ h(ϕ⋆) +
(
∇h(ϕt−1)− gt(ϕt−1)

)⊤
(ϕt−1 − ϕ⋆)

+
γ

2(1− γL)∥∇h(ϕt−1)− gt(ϕt−1)∥2

+
1

2γ

(
∥ϕt−1 − ϕ⋆∥2 − ∥ϕt − ϕ⋆∥2

)
.

Averaging the above inequality over t and taking expectations then yields the

estimate

E

[
1

T

T∑

t=1

h(ϕt)

]
− h(ϕ⋆) ≤ ∥ϕ0 − ϕ⋆∥2

2γT
+

γ

2(1− γL)E
[
1

T

T∑

t=1

∥∇h(ϕt−1)− gt(ϕt−1)∥2
]
+

E

[
1

T

T∑

t=1

(
∇h(ϕt−1)− gt(ϕt−1)

)⊤
(ϕt−1 − ϕ⋆)

]

≤ ∥ϕ0 − ϕ⋆∥2
2γT

+
γσ2

2(1− γL)+

ε̄√
T

√
2∥ϕ0 − ϕ⋆∥2 + 74γ2(R+ ε̄)2T ,
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where the second inequality exploits Assumption 1 (v) and Corollary 5. Using

Jensen’s inequality to move the average over t inside h, assertion (ii) then follows

by setting γ = 1/(2(R+ ε̄)2
√
T +L) and observing that γ/(1− γL) = 1/(2(R+

ε̄)2
√
T ).

To prove assertion (iii), we distinguish two different cases.

Case I: Assume first that 4G2∥ϕ0 − ϕ⋆∥2 + 6G∥ϕ0 − ϕ⋆∥ ≤ κ
√
T/(8G2),

where G = max{M,R + ε̄} and κ denotes the smallest eigenvalue of ∇2h(ϕ⋆).

By a standard formula for the expected value of a non-negative random variable,

we find

E

[
h

(
1

T

T∑

t=1

ϕt−1

)
− h(ϕ⋆)

]
=

∫ ∞

0

P

[
h

(
1

T

T∑

t=1

ϕt−1

)
− h(ϕ⋆) ≥ u

]
du

=

∫ u1

0

P

[
h

(
1

T

T∑

t=1

ϕt−1

)
− h(ϕ⋆) ≥ u

]
du

+

∫ u2

u1

P

[
h

(
1

T

T∑

t=1

ϕt−1

)
− h(ϕ⋆) ≥ u

]
du

(2.61)

+

∫ ∞

u2

P

[
h

(
1

T

T∑

t=1

ϕt−1

)
− h(ϕ⋆) ≥ u

]
du,

where u1 = 8G2

κT (4G2∥ϕ0−ϕ⋆∥2+6G∥ϕ0−ϕ⋆∥)2 and u2 = 8G2

κT (κ
√
T

4G2 +4G2∥ϕ0−
ϕ⋆∥2+6G∥ϕ0−ϕ⋆∥)2. The first of the three integrals in (2.61) is trivially upper

bounded by u1. Next, we investigate the third integral in (2.61), which is easier

to bound from above than the second one. By combining the first inequality in

Proposition 2.4.1 for γ = 1/(2G2
√
T ) with the trivial inequality G ≥ R+ ε̄, we

find

∥∥∥∥∥h
(

1

T

T∑

t=1

ϕt−1

)
− h(ϕ⋆)

∥∥∥∥∥
Lp

≤ 2G2

√
T
∥ϕ0 − ϕ⋆∥2 + 10√

T
p ∀p ∈ N.

Lemma 2.4.5 (i) with a = 2G2∥ϕ0−ϕ⋆∥2/
√
T and b = 10/

√
T thus implies that

P

[
h

(
1

T

T∑

t=1

ϕt−1

)
− h(ϕ⋆) ≥ 30√

T
s+

4G2

√
T
∥ϕ0 − ϕ⋆∥2

]
≤ 2 exp(−s) ∀s ≥ 0.

(2.62)
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We also have

u2 −
4G2

√
T
∥ϕ0 − ϕ⋆∥2 ≥ u2 −

κ

8G2
≥ 8G2

κT

(
κ
√
T

4G2

)2

− κ

8G2
=

3κ

8G2
≥ 0,

(2.63)

where the first inequality follows from the basic assumption underlying Case I,

while the second inequality holds due to the definition of u2. By (2.62) and (2.63),

the third integral in (2.61) satisfies

∫ ∞

u2

P

[
h

(
1

T

T∑

t=1

ϕt−1

)
− h(ϕ⋆) ≥ u

]
du

=

∫ ∞

u2− 4G2
√

T
∥ϕ0−ϕ⋆∥2

P

[
h

(
1

T

T∑

t=1

ϕt−1

)
− h(ϕ⋆) ≥ u+

4G2

√
T
∥ϕ0 − ϕ⋆∥2

]
du

≤ 2

∫ ∞

u2− 4G2
√

T
∥ϕ0−ϕ⋆∥2

exp

(
−
√
Tu

30

)
du

=
60√
T

exp

(
−
√
T

30

(
u2 −

4G2

√
T
∥ϕ0 − ϕ⋆∥2

))

≤ 60√
T

exp

(
−κ
√
T

80G2

)
≤ 2400G2

κT
,

where the first inequality follows from the concentration inequality (2.62) and

the insight from (2.63) that u2 − 4G2
√
T
∥ϕ0 − ϕ⋆∥2 ≥ 0. The second inequality

exploits again (2.63), and the last inequality holds because exp(−x) ≤ 1/(2x)

for all x > 0. We have thus found a simple upper bound on the third integral

in (2.61). It remains to derive an upper bound on the second integral in (2.61).

To this end, we first observe that the second inequality in Proposition 2.4.1 for

γ = 1/(2G2
√
T ) translates to

∥∥∥∥∥∥

∥∥∥∥∥∇h
(

1

T

T∑

t=1

ϕt−1

)∥∥∥∥∥

2
∥∥∥∥∥∥
Lp

≤ G2

T

(
10
√
p+

4p√
T

+ 40p+ 4G2∥ϕ0 − ϕ⋆∥2 + 6G∥ϕ0 − ϕ⋆∥
)2

∀p ∈ N.

Lemma 2.4.5 (ii) with a = 10G/
√
T , b = 4G/T + 40G/

√
T and c = 4G3∥ϕ0 −

ϕ⋆∥2/
√
T + 6G2∥ϕ0 − ϕ⋆∥/

√
T thus gives rise to the concentration inequality

P

[ ∥∥∥∥∥∇h
(

1

T

T∑

t=1

ϕt−1

)∥∥∥∥∥

2
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≥ 4G2

T

(
10
√
s+

4s√
T

+ 40s+ 4G2∥ϕ0 − ϕ⋆∥2 + 6G∥ϕ0 − ϕ⋆∥
)2
]

≤ 4 exp(−s),

which holds only for small deviations s ≤ T . However, this concentration in-

equality can be simplified to

P

[ ∥∥∥∥∥∇h
(

1

T

T∑

t=1

ϕt−1

)∥∥∥∥∥

≥ 2G√
T

(
12
√
s+ 40s+ 4G2∥ϕ0 − ϕ⋆∥2 + 6G∥ϕ0 − ϕ⋆∥

)
]
≤ 4 exp(−s),

which remains valid for all deviations s ≥ 0. To see this, note that if s ≤ T/4,

then the simplified concentration inequality holds because 4s/T ≤ 2
√
s/T . Oth-

erwise, if s > T/4, then the simplified concentration inequality holds trivially

because the probability on the left hand vanishes. Indeed, this is an immediate

consequence of Assumption 1 (ii), which stipulates that the norm of the gradi-

ent of h is bounded by R, and of the elementary estimate 24G
√
s/T > G ≥ R,

which holds for all s > T/4.

In the following, we restrict attention to those deviations s ≥ 0 that are

small in the sense that

12
√
s+ 40s ≤ κ

√
T

4G2
. (2.64)

Assume now for the sake of argument that the event inside the probability in

the simplified concentration inequality does not occur, that is, assume that

∥∥∥∥∥∇h
(

1

T

T∑

t=1

ϕt−1

)∥∥∥∥∥ (2.65)

<
2G√
T

(
12
√
s+ 40s+ 4G2∥ϕ0 − ϕ⋆∥2 + 6G∥ϕ0 − ϕ⋆∥

)
. (2.66)

By (2.64) and the assumption of Case I, (2.65) implies that

∥∇h( 1
T

T∑

t=1

ϕt−1)∥ < 3κ/(4G) < 3κ/(4M).

Hence, we may apply Lemma 2.4.3 (ii) to conclude that h( 1
T

∑T
t=1 ϕt−1) −

h(ϕ⋆) ≤ 2
κ∥∇h( 1

T

∑T
t=1 ϕt−1)∥2. Combining this inequality with (2.65) then
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yields

h

(
1

T

T∑

t=1

ϕt−1

)
−h(ϕ⋆)<

8G2

κT

(
12
√
s+ 40s+4G2∥ϕ0 − ϕ⋆∥2 + 6G∥ϕ0−ϕ⋆∥

)2
.

(2.67)

By the simplified concentration inequality derived above, we may thus conclude

that

4 exp(−s) ≥ P

[ ∥∥∥∥∥∇h
(

1

T

T∑

t=1

ϕt−1

)∥∥∥∥∥ ≥

2G√
T

(
12
√
s+ 40s+ 4G2∥ϕ0 − ϕ⋆∥2 + 6G∥ϕ0 − ϕ⋆∥

)
]

(2.68)

≥ P

[
h

(
1

T

T∑

t=1

ϕt−1

)
− h(ϕ⋆) ≥ (2.69)

8G2

κT

(
12
√
s+ 40s+ 4G2∥ϕ0 − ϕ⋆∥2 + 6G∥ϕ0 − ϕ⋆∥

)2
]

(2.70)

for any s ≥ 0 that satisfies (2.64), where the second inequality holds be-

cause (2.65) implies (2.67) or, equivalently, because the negation of (2.67) im-

plies the negation of (2.65). The resulting concentration inequality (2.70) now

enables us to construct an upper bound on the second integral in (2.61). To

this end, we define the function

ℓ(s) =
8G2

κT

(
12
√
s+ 40s+ 4G2∥ϕ0 − ϕ⋆∥2 + 6G∥ϕ0 − ϕ⋆∥

)2

for all s ≥ 0, and set s̄ = ((9/400 + κ
√
T/(160G2))

1
2 − 3/20)2. Note that s ≥ 0

satisfies the inequality (2.64) if and only if s ≤ s̄ and that ℓ(0) = u1 as well

as ℓ(s̄) = u2. By substituting u with ℓ(s) and using the concentration inequal-

ity (2.70) to bound the integrand, we find that the second integral in (2.61)

satisfies

∫ u2

u1

P

[
h

(
1

T

T∑

t=1

ϕt−1

)
− h(ϕ⋆) ≥ u

]
du

=

∫ s̄

0

P

[
h

(
1

T

T∑

t=1

ϕt−1

)
− h(ϕ⋆) ≥ ℓ(s)

]
dℓ(s)

ds
ds
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≤
∫ s̄

0

4e−s d

ds

(
8G2

κT

(
12
√
s+ 40s+ τ

)2
)
ds

≤ 32G2

κT

∫ ∞

0

e−s
(
144 + 3200s+ 1440s1/2 + 80τ + 12τs−1/2

)
ds

=
32G2

κT

(
144 + 3200Γ(2) + 1440Γ(3/2) + 80τ + 12τΓ(1/2)

)

≤ 32G2

κT
(4621 + 102τ),

where τ is is a shorthand for 4G2∥ϕ0 − ϕ⋆∥2 + 6G∥ϕ0 − ϕ⋆∥, and Γ denotes

the Gamma function with Γ(2) = 1, Γ(1/2) =
√
π and Γ(3/2) =

√
π/2; see for

example [Rud64, Chapter 8]. The last inequality is obtained by rounding all

fractional numbers up to the next higher integer. Combining the upper bounds

for the three integrals in (2.61) finally yields

E

[
h

(
1

T

T∑

t=1

ϕt−1

)
− h(ϕ⋆)

]
≤ 8G2

κT

(
τ2 + 18484 + 408τ + 300

)

=
8G2

κT

(
16G4∥ϕ0 − ϕ⋆∥4 + 48G3∥ϕ0 − ϕ⋆∥3+

1668G2∥ϕ0 − ϕ⋆∥2

+ 2448G∥ϕ0 − ϕ⋆∥+ 18784
)

≤ G2

κT
(4G∥ϕ0 − ϕ⋆∥+ 20)4.

This complete the proof of assertion (iii) in Case I.

Case II: Assume now that 4G2∥ϕ0 − ϕ⋆∥2 + 6G∥ϕ0 − ϕ⋆∥ > κ
√
T/(8G2),

where G is defined as before. Since h has bounded gradients, the inequal-

ity (2.56) remains valid. Setting the step size to γ = 1/(2G2
√
T ) and using the

trivial inequalities G ≥ R+ ε̄ ≥ R, we thus obtain

E

[
h

(
1

T

T∑

t=1

ϕt−1

)]
− h(ϕ⋆) ≤ G2

√
T
∥ϕ0 − ϕ⋆∥2 + 1

4
√
T
+

ε̄√
T

√
2∥ϕ0 − ϕ⋆∥2 + 37

2G2

≤ G2

√
T
∥ϕ0 − ϕ⋆∥2 + 2G√

T
∥ϕ0 − ϕ⋆∥+ 5√

T
,

where the second inequality holds because G ≥ ε̄ and
√
a+ b ≤ √a+

√
b for all

a, b ≥ 0. Multiplying the right hand side of the last inequality by G2(32G2∥ϕ⋆
0−

ϕ⋆∥2 + 48G∥ϕ⋆
0 − ϕ⋆∥)/(κ

√
T ), which is strictly larger than 1 by the basic
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assumption underlying Case II, we then find

E

[
h

(
1

T

T∑

t=1

ϕt−1

)]
− h(ϕ⋆)

≤ G2

κT

(
G2∥ϕ0 − ϕ⋆∥2 + 2G∥ϕ0 − ϕ⋆∥+ 5

) (
32G2∥ϕ⋆

0−ϕ⋆∥2 + 48G∥ϕ⋆
0−ϕ⋆∥

)

≤ G2

κT
(4G∥ϕ0 − ϕ⋆∥+ 20)4.

This observation completes the proof.

2.4.2. Smooth Optimal Transport Problems with Marginal

Ambiguity Sets

The smooth optimal transport problem (2.12) can be viewed as an instance
of a stochastic optimization problem, that is, a convex maximization prob-
lem akin to (2.37), where the objective function is representable as h(ϕ) =
Ex∼µ[ν

⊤ϕ − ψc(ϕ,x)]. Throughout this section we assume that the smooth
(discrete) c-transform ψc(ϕ,x) defined in (2.11) is induced by a marginal am-
biguity set of the form (2.26) with continuous marginal distribution functions.
By Proposition 2.3.6, the integrand ν⊤ϕ − ψc(ϕ,x) is therefore concave and
differentiable in ϕ. We also assume that ψc(ϕ,x) is µ-integrable in x, that we
have access to an oracle that generates independent samples from µ and that
problem (2.12) is solvable.

The following proposition establishes several useful properties of the smooth
c-transform.

Proposition 2.4.6 (Properties of the smooth c-transform). If Θ is a marginal

ambiguity set of the form (2.26) with cumulative distribution functions Fi, i ∈
[N ], then ψc(ϕ,x) has the following properties for all x ∈ X .

(i) Bounded gradient: If Fi, i ∈ [N ], are continuous, then we have

∥∇ϕψc(ϕ,x)∥ ≤ 1

for all ϕ ∈ RN .

(ii) Lipschitz continuous gradient: If Fi, i ∈ [N ], are Lipschitz continuous

with Lipschitz constant L > 0, then ψc(ϕ,x) is L-smooth with respect to

ϕ in the sense of Assumption 1 (iv).

(iii) Generalized self-concordance: If Fi, i ∈ [N ], are twice differentiable

on the interiors of their respective supports and if there is M > 0 with

sup
s∈F−1

i (0,1)

|d2Fi(s)/ds
2|

dFi(s)/ds
≤M, (2.71)
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then ψc(ϕ,x) is M -generalized self-concordant with respect to ϕ in the

sense of Assumption 1 (iii).

Proof. As for (i), Proposition 2.3.6 implies that ∇ϕψc(ϕ,x) ∈ ∆N , and thus

we have ∥∇ϕψc(ϕ,x)∥ ≤ 1. As for (ii), note that the convex conjugate of the

smooth c-transform with respect to ϕ is given by

ψ∗
c(p,x) = sup

ϕ∈RN

p⊤ϕ− ψ(ϕ,x)

= sup
ϕ∈RN

inf
q∈∆N

N∑

i=1

piϕi − (ϕi − c(x,yi))qi −
∫ 1

1−qi

F−1
i (t)dt

= inf
q∈∆N

sup
ϕ∈RN

N∑

i=1

piϕi − (ϕi − c(x,yi))qi −
∫ 1

1−qi

F−1
i (t)dt

=





N∑

i=1

c(x,yi)pi −
∫ 1

1−pi

F−1
i (t)dt if p ∈ ∆N

+∞ otherwise,

where the second equality follows again from Proposition 2.3.6, and the inter-

change of the infimum and the supremum is allowed by Sion’s classical minimax

theorem. In the following we first prove that ψ∗
c(p,x) is 1/L-strongly convex in

p, that is, the function ψ∗
c(p,x)−∥p∥2/(2L) is convex in p for any fixed x ∈ X .

To this end, recall that Fi is assumed to be Lipschitz continuous with Lipschitz

constant L. Thus, we have

L ≥ sup
s1,s2∈R
s1 ̸=s2

|Fi(s1)−Fi(s2)|
|s1 − s2|

= sup
s1,s2∈R
s1>s2

Fi(s1)−Fi(s2)

s1 − s2
≥ sup
pi,qi∈(0,1)

pi>qi

pi−qi
F−1
i (pi)− F−1

i (qi)
,

where the second inequality follows from restricting s1 and s2 to the preimage of

(0, 1) with respect to Fi. Rearranging terms in the above inequality then yields

−F−1
i (1− qi)− qi/L ≤ −F−1

i (1− pi)− pi/L

for all pi, qi ∈ (0, 1) with qi < pi. Consequently, the function −F−1
i (1−pi)−pi/L

is non-decreasing and its primitive −
∫ 1

1−pi
F−1
i (t)dt − p2i /(2L) is convex in pi

on the interval (0, 1). This implies that

ψ∗
c(p,x)−

∥p∥22
2L

=

N∑

i=1

c(x,yi)pi −
∫ 1

1−pi

F−1
i (t)dt− p2i

2L

constitutes a sum of convex univariate functions for every fixed x ∈ X . Thus,

ψ∗
c(p,x) is 1/L-strongly convex in p. By [KSST09, Theorem 6], however, any
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convex function whose conjugate is 1/L-strongly convex is guaranteed to be

L-smooth. This observation completes the proof of assertion (ii). As for as-

sertion (iii), choose any ϕ,φ ∈ RN and x ∈ X , and introduce the auxiliary

function

u(s) = ψc (ϕ+ s(φ− ϕ),x) (2.72)

= max
p∈∆N

N∑

i=1

(ϕi + s(φi − ϕi)− c(x,yi))pi +
∫ 1

1−pi

F−1
i (t)dt. (2.73)

For ease of exposition, in the remainder of the proof we use prime symbols to

designate derivatives of univariate functions. A direct calculation then yields

u′(s) = (φ− ϕ)⊤∇ϕψ (ϕ+ s(φ− ϕ),x) and

u′′(s) = (φ− ϕ)⊤∇2
ϕψ (ϕ+ s(φ− ϕ),x) (φ− ϕ) .

By Proposition 2.3.6, p⋆(s) = ∇ϕψc (ϕ+ s(φ− ϕ),x) represents the unique

solution of the maximization problem in (2.72). In addition, by [STD19, Propo-

sition 6], the Hessian of the smooth c-transform with respect to ϕ can be com-

puted from the Hessian of its convex conjugate as follows.

∇2
ϕψc (ϕ+ s(φ− ϕ),x) =

(
∇2

pψ
∗
c(p

⋆(s),x)
)−1

= diag
(
[F ′

1(F
−1
1 (1− p⋆1(s))), . . . , F ′

N (F−1
N (1− p⋆N (s)))]

)

Hence, the first two derivatives of the auxiliary function u(s) simplify to

u′(s) =
N∑

i=1

(φi − ϕi)p⋆i (s) and u′′(s) =
N∑

i=1

(φi − ϕi)2F ′
i (F

−1
i (1− p⋆i (s))).

Similarly, the above formula for the Hessian of the smooth c-transform can be

used to show that (p⋆i )
′(s) = (φi − ϕi)F ′

i (F
−1
i (1 − p⋆i (s))) for all i ∈ [N ]. The

third derivative of u(s) therefore simplifies to

u′′′(s) = −
N∑

i=1

(φi − ϕi)2
F ′′
i (F

−1
i (1− p⋆i (s)))

F ′
i (F

−1
i (1− p⋆i (s)))

(p⋆i )
′(s)

= −
N∑

i=1

(φi − ϕi)3F ′′
i (F

−1
i (1− p⋆i (s))).

This implies via Hölder’s inequality that

|u′′′(s)| =
∣∣∣∣∣

N∑

i=1

(φi − ϕi)2 F ′
i (F

−1
i (1− p⋆i (s)))

F ′′
i (F

−1
i (1− p⋆i (s)))

F ′
i (F

−1
i (1− p⋆i (s)))

(φi − ϕi)
∣∣∣∣∣
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≤
(

N∑

i=1

(φi − ϕi)2 F ′
i (F

−1
i (1− p⋆i (s)))

)(
max
i∈[N ]

∣∣∣∣
F ′′
i (F

−1
i (1− p⋆i (s)))

F ′
i (F

−1
i (1− p⋆i (s)))

(φi − ϕi)
∣∣∣∣
)
.

Notice that the first term in the above expression coincides with u′′(s), and the

second term satisfies

max
i∈[N ]

∣∣∣∣
F ′′
i (F

−1
i (1− p⋆i (s)))

F ′
i (F

−1
i (1− p⋆i (s)))

(φi − ϕi)
∣∣∣∣ ≤ max

i∈[N ]

∣∣∣∣
F ′′
i (F

−1
i (1− p⋆i (s)))

F ′
i (F

−1
i (1− p⋆i (s)))

∣∣∣∣ ∥φ− ϕ∥∞

≤M∥φ− ϕ∥,

where the first inequality holds because maxi∈[N ] |aibi| ≤ ∥a∥∞∥b∥∞ for all

a, b ∈ RN , and the second inequality follows from the definition of M and the

fact that the 2-norm provides an upper bound on the ∞-norm. Combining the

above results shows that |u′′′(s)| ≤ M∥φ− ϕ∥u′′(s) for all s ∈ R. The claim

now follows because ϕ,φ ∈ RN and x ∈ X were chosen arbitrarily.

In the following we use the averaged SGD algorithm of Section 2.4.1 to solve
the smooth optimal transport problem (2.12). A detailed description of this
algorithm in pseudocode is provided in Algorithm 3. This algorithm repeatedly
calls a sub-routine for estimating the gradient of ψc(ϕ,x) with respect to ϕ.
By Proposition 2.3.6, this gradient coincides with the unique solution p⋆ of the
convex maximization problem (2.27). In addition, from the proof of Proposi-
tion 2.3.6 it is clear that its components are given by

p⋆i = θ⋆

[
i = min argmax

j∈[N ]

ϕj − c(x,yj) + zj

]
∀i ∈ [N ],

where θ⋆ represents an optimizer of the semi-parametric discrete choice prob-
lem (2.11). Therefore, p⋆ can be interpreted as a vector of choice probabilities
under the best-case probability measure θ⋆. Sometimes these choice probabili-
ties are available in closed form. This is the case, for instance, in the exponential
distribution model of Example 2.3.8, which is equivalent to the generalized ex-
treme value distribution model of Section 2.3.1. Indeed, in this case p⋆ is given
by a softmax of the utility values ϕi − c(x,yi), i ∈ [N ], i.e.,

p⋆i =
ηi exp ((ϕi − c(x,yi))/λ)∑N

j=1 ηj exp ((ϕj − c(x,yj))/λ)
∀i ∈ [N ]. (2.74)

Note that these particular choice probabilities are routinely studied in the cele-
brated multinomial logit choice model [BAL85, § 5.1]. The choice probabilities
are also available in closed form in the uniform distribution model of Exam-
ple 2.3.9. As the derivation of p⋆ is somewhat cumbersome in this case, we
relegate it to Appendix 2.6. For general marginal ambiguity sets with continu-
ous marginal distribution functions, we propose a bisection method to compute
the gradient of the smooth c-transform numerically up to any prescribed accu-
racy; see Algorithm 4.
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Theorem 2.4.7 (Biased gradient oracle). If Θ is a marginal ambiguity set of

the form (2.26) and the cumulative distribution function Fi is continuous for

every i ∈ [N ], then, for any x ∈ X , ϕ ∈ RN and ε > 0, Algorithm 4 outputs

p ∈ RN with ∥p∥ ≤ 1 and ∥∇ϕψ(ϕ,x)− p∥ ≤ ε.

Proof. Thanks to Proposition 2.3.6, we can recast the smooth c-transform in

dual form as

ψc(ϕ,x) = min
ζ∈RN

+

τ∈R

sup
p∈RN

N∑

i=1

(ϕi − c(x,yi))pi+

N∑

i=1

∫ 1

1−pi

F−1
i (t)dt+ τ

(
N∑

i=1

pi − 1

)
+

N∑

i=1

ζipi.

Strong duality and dual solvability hold because we may construct a Slater point

for the primal problem by setting pi = 1/N , i ∈ [N ]. By the Karush-Kuhn-

Tucker optimality conditions, p⋆ and (τ⋆, ζ⋆) are therefore optimal in the primal

and dual problems, respectively, if and only if we have

∑N
i=1 p

⋆
i = 1, p⋆i ≥ 0 ∀i ∈ [N ] (primal feasibility)

ζ⋆i ≥ 0 ∀i ∈ [N ] (dual feasibility)

ζ⋆i p
⋆
i = 0 ∀i ∈ [N ] (complementary slackness)

ϕi−c(x,yi)+F−1
i (1−p⋆i )+τ⋆+ζ⋆i =0 ∀i ∈ [N ] (stationarity).

If p⋆i > 0, then the complementary slackness and stationarity conditions imply

that ζ⋆i = 0 and that ϕi − c(x,yi) + F−1
i (1− p⋆i ) + τ⋆ = 0, respectively. Thus,

we have p⋆i = 1 − Fi(c(x,yi) − ϕi − τ⋆). If p⋆i = 0, on the other hand, then

similar arguments show that ζ⋆i ≥ 0 and ϕi − c(x,yi) + F−1
i (1) + τ⋆ ≤ 0.

These two inequalities are equivalent to 1 − Fi(c(x,yi) − ϕi − τ⋆) ≤ 0. As

all values of Fi are smaller or equal to 1, the last equality must in in fact

hold as an equality. Combining the insights gained so far thus yields p⋆i =

1− Fi(c(x,yi)− ϕi − τ⋆), which holds for all i ∈ [N ] irrespective of the sign of

p⋆i . Primal feasibility therefore ensures that
∑N

i=1 1−Fi(c(x,yi)−ϕi− τ⋆) = 1.

Finding the unique optimizer p⋆ of (2.27) (i.e., finding the gradient of ψc(ϕ,x))

is therefore tantamount to finding a root τ⋆ of the univariate equation

N∑

i=1

1− Fi(c(x,yi)− ϕi − τ) = 1. (2.75)

Note the function on the left hand side of (2.75) is continuous and non-decreasing

in τ because of the continuity (by assumption) and monotonicity (by definition)
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of the cumulative distribution functions Fi, i ∈ [N ]. Hence, the root finding

problem can be solved efficiently via bisection. To complete the proof, we first

show that the interval between the constants τ and τ defined in Algorithm 4 is

guaranteed to contain τ⋆. Specifically, we will demonstrate that evaluating the

function on the left hand side of (2.75) at τ or τ yields a number that is not

larger or not smaller than 1, respectively. For τ = τ we have

1− Fi(c(x,yi)− ϕi − τ) = 1− Fi

(
c(x,yi)− ϕi−

min
j∈[N ]

{
c (x,yj)− ϕj − F−1

j (1− 1/N)
}
)

≤ 1− Fi

(
F−1
i (1− 1/N)

)
= 1/N ∀i ∈ [N ],

where the inequality follows from the monotonicity of Fi. Summing the above in-

equality over all i ∈ [N ] then yields the desired inequality
∑N

i=1 1−Fi(c(x,yi)−
ϕi − τ) ≤ 1. Similarly, for τ = τ we have

1− Fi(c(x,yi)− ϕi − τ) = 1− Fi

(
c(x,yi)− ϕi−

max
j∈[N ]

{
c

(
x,yj

)
− ϕj − F−1

j (1− 1/N)

})

≥ 1− Fi

(
F−1
i (1− 1/N)

)
= 1/N ∀i ∈ [N ].

We may thus conclude that
∑N

i=1 1−Fi(c(x,yi)−ϕi− τ) ≥ 1. Therefore, [τ , τ ]

constitutes a valid initial search interval for the bisection algorithm. Note that

the function 1−Fi(c(x,yi)−ϕi−τ), which defines pi in terms of τ , is uniformly

continuous in τ throughout R. This follows from [Bil95, Problem 14.8] and

our assumption that Fi is continuous. The uniform continuity ensures that the

tolerance

δ(ε) = min
i∈N

{
max

δ

{
δ : |Fi(t1)− Fi(t2)| ≤ ε/

√
N ∀t1, t2 ∈ R with |t1−t2|≤δ

}}

(2.76)

is strictly positive for every ε > 0. As the length of the search interval is halved

in each iteration, Algorithm 4 outputs a near optimal solution τ with |τ − τ⋆| ≤
δ(ε) after ⌈log2((τ − τ)/δ(ε))⌉ iterations. Moreover, the construction of δ(ε)

guarantees that |1−Fi(c(x,yi)−ϕi− τ)− p⋆i | ≤ ε/
√
N for all τ with |τ − τ⋆| ≤

δ(ε). Therefore, the output p ∈ RN
+ of Algorithm 4 satisfies |pi−p⋆i | ≤ ε/

√
N for



2.4. Numerical Solution of Smooth Optimal Transport Problems
113

each i ∈ [N ], which in turn implies that ∥p− p⋆∥ ≤ ε. By construction, finally,

Algorithm 4 outputs p ≥ 0 with
∑

i∈[N ] pi < 1, which ensures that ∥p∥ ≤ 1.

Thus, the claim follows.

If all cumulative distribution functions Fi, i ∈ [N ], are Lipschitz continuous
with a common Lipschitz constant L > 0, then the uniform continuity param-
eter δ(ε) required in Algorithm 4 can simply be set to δ(ε) = ε/(L

√
N). We

are now ready to prove that Algorithm 3 offers different convergence guaran-
tees depending on the continuity and smoothness properties of the marginal
cumulative distribution functions.

Algorithm 3 Averaged SGD

Input: γ, T, ε̄

1: Set ϕ0 ← 0

2: for t = 1, 2, . . . , T do

3: Sample xt from µ

4: Choose εt−1 ∈ (0, ε̄/(2
√
t)]

5: Set p← Bisection(xt,ϕt−1, εt−1)

6: Set ϕt ← ϕt−1 + γ(ν − p)
7: end for

Output:
¯
ϕT = 1

T

∑T
t=1 ϕt−1 and ϕ̄T = 1

T

∑T
t=1 ϕt

Algorithm 4 Bisection method to approximate ∇ϕψc(ϕ,x)

Input: x,ϕ, ε

1: Set τ ← maxi∈[N ] {c(x,yi)− ϕi − F−1
i (1− 1/N)}

2: Set τ ← mini∈[N ] {c(x,yi)− ϕi − F−1
i (1− 1/N)}

3: Evaluate δ(ε) as defined in (2.76)

4: for k = 1, 2, . . . , ⌈log2((τ − τ)/δ(ε))⌉ do
5: Set τ ← (τ + τ)/2

6: Set pi ← 1− Fi(c(x,yi)− ϕi − τ) for i ∈ [N ]

7: if
∑

i∈[N ] pi > 1 then τ ← τ else τ ← τ

8: end for

Output: p with pi = 1− Fi(c(x,yi)− ϕi − τ), i ∈ [N ]

Corollary 6. Use h(ϕ) = Ex∼µ[ν
⊤ϕ− ψc(ϕ,x)] as a shorthand for the objec-

tive function of the smooth optimal transport problem (2.12), and let ϕ⋆ be a
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maximizer of (2.12). If Θ is a marginal ambiguity set of the form (2.26) with

distribution functions Fi, i ∈ [N ], then for any T ∈ N and ε̄ ≥ 0, the outputs

¯
ϕT = 1

T

∑T
t=1 ϕt−1 and ϕ̄T = 1

T

∑T
t=1 ϕt of Algorithm 3 satisfy the following

inequalities.

(i) If γ = 1/(2(2 + ε̄)
√
T ) and Fi is continuous for every i ∈ [N ], then we

have

W c(µ, ν)− E
[
h
(
¯
ϕT

)]
≤ (2 + ε̄)2√

T
∥ϕ⋆∥2+

1

4
√
T

+
ε̄√
T

√
2∥ϕ⋆∥2 + 37

2(2 + ε̄)2
.

(ii) If γ = 1/(2
√
T +L) and Fi is Lipschitz continuous with Lipschitz constant

L > 0 for every i ∈ [N ], then we have

W c(µ, ν)− E
[
h
(
ϕ̄T

)]
≤ L

2T
∥ϕ⋆∥2 + (2 + ε̄)2√

T
∥ϕ⋆∥2 + ε̄2 + 2

4(2 + ε̄)2
√
T
+

ε̄√
T

√
2∥ϕ⋆∥2 + 37

2(2 + ε̄)2
.

(iii) If γ = 1/(2G2
√
T ) with G = max{M, 2 + ε̄}, Fi satisfies the generalized

self-concordance condition (2.71) with M > 0 for every i ∈ [N ], and the

smallest eigenvalue κ of −∇2
ϕh(ϕ

⋆) is strictly positive, then we have

W c(µ, ν)− E
[
h
(
¯
ϕT

)]
≤ G2

Tκ
(4G∥ϕ0 − ϕ⋆∥+ 20)

4
.

Proof. Recall that problem (2.12) can be viewed as an instance of the con-

vex minimization problem (2.37) provided that its objective function is in-

verted. Throughout the proof we denote by pt(ϕt,xt) the inexact estimate

for ∇ϕψ(ϕt,xt) output by Algorithm 4 in iteration t of the averaged SGD al-

gorithm. Note that

∥∥E
[
ν − pt(ϕt−1,xt)

∣∣Ft−1

]
−∇h(ϕt−1)

∥∥

=
∥∥E
[
pt(ϕt−1,xt)−∇ϕψc(ϕt−1,xt)

]∥∥

≤ E
[∥∥pt(ϕt−1,xt)−∇ϕψc(ϕt−1,xt)

∥∥]

≤ εt−1 ≤
ε̄

2
√
t
,
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where the two inequalities follow from Jensen’s inequality and the choice of εt−1

in Algorithm 3, respectively. The triangle inequality and Proposition 2.4.6 (i)

further imply that

∥∇h(ϕ)∥ = E
[∥∥ν −∇ϕψc(ϕ,x)

∥∥] ≤ ∥ν∥+ E
[∥∥∇ϕψc(ϕ,x)

∥∥] ≤ 2.

Assertion (i) thus follows from Theorem 2.4.4 (i) with R = 2. As for asser-

tion (ii), we have

E
[∥∥ν − pt(ϕt−1,xt)−∇h(ϕt−1)

∥∥2 |Ft−1

]

= E
[∥∥pt(ϕt−1,xt)− E

[
∇ϕψc(ϕt−1,x)

]∥∥2 |Ft−1

]

= E
[∥∥∥pt(ϕt−1,xt)−∇ϕψc(ϕt−1,x)+

∇ϕψc(ϕt−1,x)− E
[
∇ϕψc(ϕt−1,x)

] ∥∥∥
2∣∣∣Ft−1

]

≤ E
[
2
∥∥∥pt(ϕt−1,xt)−∇ϕψc(ϕt−1,x)

∥∥∥
2

+

2
∥∥∥∇ϕψc(ϕt−1,x)− E

[
∇ϕψc(ϕt−1,x)

]∥∥∥
2∣∣∣Ft−1

]

≤ 2ε2t−1 + 2 ≤ ε̄2 + 2,

where the second inequality holds because ∇ϕψc(ϕt−1,x) ∈ ∆N and because

∥∇ϕψc(ϕt−1,x)∥22 ≤ 1, while the last inequality follows from the choice of

εt−1 in Algorithm 1. As ψ(ϕ,x) is L-smooth with respect to ϕ by virtue of

Proposition 2.4.6 (ii), we further have

∥∇h(ϕ)−∇h(ϕ′)∥ =
∥∥E
[
∇ϕψc(ϕ,x)−∇ϕψc(ϕ

′,x)
]∥∥

≤ L∥ϕ−ϕ′∥ ∀ϕ,ϕ′ ∈ Rn.

Assertion (ii) thus follows from Theorem 2.4.4 (ii) with R = 2 and σ =
√
ε̄2 + 2.

As for assertion (iii), finally, we observe that h is M -generalized self-concordant

thanks to Proposition 2.4.6 (iii). Then, assertion (iii) thus follows from Theo-

rem 2.4.4 (iii) with R = 2.

One can show that the objective function of the smooth optimal transport
problem (2.12) with marginal exponential noise distributions as described in
Example 2.3.8 is generalized self-concordant. Hence, the convergence rate of
Algorithm 3 for the exponential distribution model of Example 2.3.8 is of the
order O(1/T ), which improves the state-of-the-art O(1/

√
T ) guarantee estab-

lished by [Gen+16].
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2.5. Numerical Experiments

All experiments are run on a 2.6 GHz 6-Core Intel Core i7, and all optimization
problems are implemented in MATLAB R2020a. The corresponding codes are
available at https://github.com/RAO-EPFL/Semi-Discrete-Smooth-OT.git.

We now aim to assess the empirical convergence behavior of Algorithm 3
and to showcase the effects of regularization in semi-discrete optimal transport.
To this end, we solve the original dual optimal transport problem (2.10) as
well as its smooth variant (2.12) with a Fréchet ambiguity set corresponding to
the exponential distribution model of Example 2.3.8, to the uniform distribu-
tion model of Example 2.3.9 and to the hyperbolic cosine distribution model
of Example 2.3.11. Recall from Theorem 2.3.7 that any Fréchet ambiguity set
is uniquely determined by a marginal generating function F and a probabil-
ity vector η. As for the exponential distribution model of Example 2.3.8, we
set F (s) = exp(10s−1) and ηi = 1/N for all i ∈ [N ]. In this case problem (2.12)
is equivalent to the regularized primal optimal transport problem (2.13) with
an entropic regularizer, and the gradient ∇ϕψc(ϕ,x), which is known to coin-
cide with the vector p⋆ of optimal choice probabilities in problem (2.27), admits
the closed-form representation (2.74). We can therefore solve problem (2.12)
with a variant of Algorithm 3 that calculates ∇ϕψc(ϕ,x) exactly instead of
approximately via bisection. As for the uniform distribution model of Exam-
ple 2.3.9, we set F (s) = s/20 + 1/2 and ηi = 1/N for all i ∈ [N ]. In this case
problem (2.12) is equivalent to the regularized primal optimal transport prob-
lem (2.13) with a χ2-divergence regularizer, and the vector p⋆ of optimal choice
probabilities can be computed exactly and highly efficiently by sorting thanks to
Proposition 2.6.1 in the appendix. We can therefore again solve problem (2.12)
with a variant of Algorithm 3 that calculates ∇ϕψc(ϕ,x) exactly. As for the
hyperbolic cosine model of Example 2.3.11, we set F (s) = sinh(10s − k) with
k =
√
2−1−arcsinh(1) and ηi = 1/N for all i ∈ [N ]. In this case problem (2.12)

is equivalent to the regularized primal optimal transport problem (2.13) with
a hyperbolic divergence regularizer. However, the vector p⋆ is not available
in closed form, and thus we use Algorithm 4 to compute p⋆ approximately.
Lastly, note that the original dual optimal transport problem (2.10) can be
interpreted as an instance of (2.12) equipped with a degenerate singleton am-
biguity set that only contains the Dirac measure at the origin of RN . In this
case ψc(ϕ,x) = ψc(ϕ,x) fails to be smooth in ϕ, but an exact subgradient
p⋆ ∈ ∂ϕψc(ϕ,x) is given by

p⋆i =




1 if i = min argmax

i∈[N ]

ϕi − c(x,yi),

0 otherwise.

We can therefore solve problem (2.10) with a variant of Algorithm 3 that has
access to exact subgradients (instead of gradients) of ψc(ϕ,x). Note that the
maximizer ϕ⋆ of (2.10) may not be unique. In our experiments, we force Algo-
rithm 3 to converge to the maximizer with minimal Euclidean norm by adding

https://github.com/RAO-EPFL/Semi-Discrete-Smooth-OT.git
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a vanishingly small Tikhonov regularization term to ψc(ϕ,x). Thus, we set
ψc(ϕ,x) = ψc(ϕ,x) + ε∥ϕ∥22 for some small regularization weight ε > 0, in
which case p⋆ + 2εϕ ∈ ∂ϕψc(ϕ,x) is an exact subgradient.

In the following we set µ to the standard Gaussian measure on X = R2

and ν to the uniform measure on 10 independent samples drawn uniformly
from Y = [−1, 1]2. We further set the transportation cost to c(x,y) = ∥x−y∥∞.
Under these assumptions, we use Algorithm 3 to solve the original as well as
the three smooth optimal transport problems approximately for T = 1, . . . , 105.
For each fixed T the step size is selected in accordance with Corollary 6. We
emphasize that Corollary 6 (i) remains valid if ψc(ϕ,x) fails to be smooth in ϕ
and we have only access to subgradients; see [NV08, Corollary 1]. Denoting
by ϕ̄T the output of Algorithm 3, we record the suboptimality

W c(µ, ν)− Ex∼µ

[
ν⊤ϕ̄T − ψc(ϕ̄T ,x)

]

of ϕ̄T in (2.12) as well as the discrepancy ∥ϕ̄T −ϕ⋆∥22 of ϕ̄T to the exact max-
imizer ϕ⋆ of problem (2.12) as a function of T . In order to faithfully measure
the convergence rate of ϕ̄T and its suboptimality, we need to compute ϕ⋆ as
well as W c(µ, ν) to within high accuracy. This is only possible if the dimen-
sion of X is small (e.g., if X = R2 as in our numerical example); even though
Algorithm 3 can efficiently solve optimal transport problems in high dimen-
sions. We obtain high-quality approximations for W c(µ, ν) and ϕ⋆ by solving
the finite-dimensional optimal transport problem between ν and the discrete
distribution that places equal weight on 10 × T samples drawn independently
from µ. Note that only the first T of these samples are used by Algorithm 3.
The proposed high-quality approximations of the entropic and χ2-divergence
regularized optimal transport problems are conveniently solved via Nesterov’s
accelerated gradient descent method, where the suboptimality gap of the tth

iterate is guaranteed to decay as O(1/t2) under the step size rule advocated
in [Nes83, Theorem 1]. To our best knowledge, Nesterov’s accelerated gradient
descent algorithm is not guaranteed to converge with inexact gradients. For the
hyperbolic divergence regularized optimal transport problem, we thus use Algo-
rithm 3 with 50×T iterations to obtain an approximation for W c(µ, ν) and ϕ

⋆.
In contrast, we model the high-quality approximation of the original optimal
transport problem (2.10) in YALMIP [L0̈4] and solve it with MOSEK. If this
problem has multiple maximizers, we report the one with minimal Euclidean
norm.

Figure 2.1 shows how the suboptimality of ϕ̄T and the discrepancy between
ϕ̄T and the exact maximizer decay with T , both for the original as well as
for the entropic, the χ2-divergence and hyperbolic divergence regularized opti-
mal transport problems, averaged across 20 independent simulation runs. Fig-
ure 2.1a suggests that the suboptimality decays as O(1/

√
T ) for the original

optimal transport problem, which is in line with the theoretical guarantees
by [NV08, Corollary 1], and as O(1/T ) for the entropic, the χ2-divergence
and the hyperbolic divergence regularized optimal transport problems, which
is consistent with the theoretical guarantees established in Corollary 6. Indeed,
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(a) (b)

Figure 2.1: Suboptimality (a) and discrepancy to ϕ⋆ (b) of the outputs ϕ̄T of

Algorithm 3 for the original (blue), the entropic regularized (orange), the χ2-

divergence regularized (red) and the hyperbolic divergence regularized (purple)

optimal transport problems.

entropic regularization can be explained by the exponential distribution model
of Example 2.3.8, where the exponential distribution functions Fi satisfy the
generalized self-concordance condition (2.71) with M = 1/λ. Similarly, χ2-
divergence regularization can be explained by the uniform distribution model of
Example 2.3.9, where the uniform distribution functions Fi satisfy the general-
ized self-concordance condition with any M > 0. Finally, hyperbolic divergence
regularization can be explained by the hyperbolic cosine distribution model of
Example 2.3.11, where the hyperbolic cosine functions Fi satisfy the generalized
self-concordance condition withM = 1/λ. In all cases the smallest eigenvalue of
−∇2

ϕEx∼µ[ν
⊤ϕ⋆−ψc(ϕ

⋆,x)], which we estimate when solving the high-quality
approximations of the two smooth optimal transport problems, is strictly pos-
itive. Therefore, Corollary 6 (iii) is indeed applicable and guarantees that the
suboptimality gap is bounded above by O(1/T ). Finally, Figure 2.1b suggests
that ∥ϕ̄T−ϕ⋆∥22 converges to 0 at rateO(1/T ) for the entropic, the χ2-divergence
and the hyperbolic divergence regularized optimal transport problems, which is
consistent with [Bac14, Proposition 10].

Appendix

Approximating the Minimizer of a Strictly Convex Function. The fol-
lowing lemma is key ingredient for the proofs of Theorem 2.2.2 and Corollary 4.

Lemma 2.5.1. Assume that g : [0, 1] → R+ is a strictly convex function with

unique minimizer t⋆ ∈ [0, 1], and define L = ⌈log2(1/δ)⌉+1 for some prescribed

tolerance δ ∈ (0, 1). Then, the following hold.
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(i) Given an oracle that evaluates g exactly, we can compute a δ-approxima-

tion for t⋆ with 2L oracle calls.

(ii) Given an oracle that evaluates g inexactly to within an absolute accuracy

ε=
1

4
min
l∈[2L]

{|g(tl)− g(tl−1)| : g(tl) ̸= g(tl−1)} with tl =
l

2L
∀l = 0, . . . , 2L,

we can compute a 2δ-approximation for t⋆ with 2L oracle calls.

Proof. Consider the uniform grid {t0, . . . , t2L}, and note that the difference 2−L

between consecutive grid points is strictly smaller than δ. Next, introduce a

piecewise affine function ḡ : [0, 1] → R+ that linearly interpolates g between

consecutive grid points. By construction, ḡ is affine on the interval [tl−1, tl]

with slope al/δ and al = g(tl) − g(tl−1) for all l ∈ [2L]. In addition, ḡ is

continuous and inherits convexity from g. As g is strictly convex, it is easy to

verify that ḡ has also a kink at every inner grid point tl for l ∈ [2L − 1], and

therefore the distance between the unique minimizer t⋆ of g and any minimizer

of ḡ is at most 2−L < δ. In order to compute a δ-approximation for t⋆, it thus

suffices to find a minimizer of ḡ.

Next, define a = (a0, . . . , a2L) with a0 = −∞. As ḡ has a kink at every

inner grid point, we may conclude that the array a is sorted in ascending order,

that is, al > al−1 for all l ∈ [2L]. This implies that at most one element

of a can vanish. In the following, define l⋆ = max{l ∈ {0} ∪ [2L] : al ≤ 0}.
If l⋆ = 0, then ḡ is uniquely minimized by tl⋆ = 0, and t⋆ must fall within the

interval [t0, t1]. If l⋆ > 0 and al⋆ < 0, on the other hand, then ḡ is uniquely

minimized by tl⋆ , and t⋆ must fall within the interval [tl⋆−1, tl⋆+1]. If l⋆ > 0

and al⋆ = 0, finally, then every point in [tl⋆−1, tl⋆ ] minimizes ḡ, and t⋆ must also

fall within [tl⋆−1, tl⋆ ]. In any case, tl⋆ provides a δ-approximation for t⋆. In the

remainder of the proof we show that the index l⋆ can be computed efficiently by

Algorithm 5. This bisection scheme maintains lower and upper bounds l and l

on the sought index l⋆, respectively, and reduces the search interval between l

and l by a factor of two in each iteration. Thus, Algorithm 5 computes l⋆ in

exactly L iterations [Cor+09, § 12].

We remark that l is guaranteed to be an integer and thus represents a valid

index in each iteration of the algorithm because l and l are initialized as 0

and 2L, respectively. Note also that if we have access to an oracle for evaluating g

exactly, then any element al of the array a can be computed with merely two

oracle calls. Algorithm 5 thus computes l⋆ with 2L oracle calls in total. Hence,

assertion (i) follows.



120 Chapter 2. Semi-discrete Optimal Transport

Algorithm 5 Binary search algorithm

Input: An array a ∈ R2L sorted in ascending

order

1: Initialize l = 0 and l = 2L

2: while l < l do

3: Set l← (l + l)/2

4: if al ≤ 0 then l← l else l← l

5: end while

6: if al ≤ 0 then l← l else l← l

Output: l⋆ ← l

As for assertion (ii), assume now that we have only access to an inexact

oracle that outputs, for any fixed t ∈ [0, 1], an approximate function value g̃(t)

with |g̃(t) − g(t)| ≤ ε, where ε is defined as in the statement of the lemma.

Reusing the notation from the first part of the proof, one readily verifies that ε =
1
4 minl∈[2L]{al : al ̸= 0}. Next, set ã0 = −∞, and define ãl = g̃(tl)− g̃(tl−1) for

all l ∈ [2L]. Therefore, ã = (ã0, . . . , ã2L) can be viewed as an approximation

of a. Moreover, Algorithm 5 with input ã computes an approximation l̃⋆ of l⋆

in L iterations. Next, we will show that |l̃⋆ − l⋆| ≤ 1 even though ã is not

necessarily sorted in ascending order. To see this, note that |al| ≥ 4ε for all l ∈
[2L] with al ̸= 0 by the definition of ε. By the triangle inequality and the

assumptions about the inexact oracle, we further have

|al − ãl| ≤ |g̃(tl)− g(tl)|+ |g̃(tl−1)− g(tl−1)| ≤ 2ε ∀l ∈ [2L].

This reasoning reveals that ãl has the same sign as al for every l ∈ [2L] with al ̸=
0. In addition, it implies that tl̃⋆ approximates t⋆ irrespective of whether or not

the array a has a vanishing element. Indeed, if no element of a vanishes, then

ãl has the same sign as al for all l ∈ [2L]. As Algorithm 5 only checks signs,

this implies that l̃⋆ = l⋆ and that tl̃⋆ provides a δ-approximation for t⋆ as in

assertion (i). If one element of a vanishes, on the other hand, then ãl has the

same sign as al for all l ∈ [2L] with l ̸= l⋆. As Algorithm 5 only checks signs,

this implies that |l̃⋆ − l⋆| ≤ 1. Recalling that |t⋆ − tl⋆ | ≤ δ, we thus have

|tl̃⋆ − t⋆| ≤ |tl̃⋆ − tl⋆ |+ |t⋆ − tl⋆ | ≤ 2δ.

In either case, tl̃⋆ provides a 2δ-approximation for t⋆. As any element of the

array ã can be evaluated with two oracle calls, Algorithm 5 computes l̃⋆ with
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2L oracle calls in total. Hence, assertion (ii) follows.

Efficiency of Binary Search

We adopt the conventions of [Sch98, § 2.1] to measure the size of a computational
problem, which is needed to reason about the problem’s complexity. Specifically,
the size of a scalar x ∈ R is defined as

size(x) =





1 + ⌈log2 (|p|+ 1)⌉+ ⌈log2 (q + 1)⌉ if x = p
q with p ∈ Z and

q ∈ N are relatively prime,

∞ if x is irrational,

where we reserve one bit to encode the sign of x. The size of a real vector is
defined as the sum of the sizes of its components plus its dimension. Thus, the
input size of an instance w ∈ Rd

+ and b ∈ R+ of the knapsack problem described
in Lemma 2.2.3 amounts to

size(w, b) = d+ 1 +

d∑

i=1

size(wi) + size(b).

In the following we will prove that the number of iterations

L=

⌈
log2(6) + log2 d! + +d log2(∥w∥1+2)+(d+1) log2(d+1)+

d∑

i=1

log2(wi)

⌉
+1

of the bisection algorithm used in the proof of Theorem 2.2.2 is upper bounded
by a polynomial in size(w, b). The claim holds trivially if any component of
(w, b) is irrational. Below we may thus assume that wi = pi/qi and b =
pd+1/qd+1, where pi ∈ Z+ and qi ∈ N are relatively prime for every i ∈ [d+ 1].
This implies that

size(w, b) = 2d+ 1 +

d+1∑

i=1

⌈log2 (pi + 1)⌉+ ⌈log2 (qi + 1)⌉.

In order to show that L is bounded by a polynomial in size(w, b), we first note
that

log2 d! ≤ log2 d
d ≤ d2 ≤ size(w, b)2 and (d+1) log2(d+1) ≤ (d+1)2 ≤ size(w, b)2.

(2.77)
This follows from the properties of the logarithm and the definition of the size
function. Similarly, we find

d log2(2 + ∥w∥1) = d log2

(
2 +

d∑

i=1

pi/qi

)

≤ d log2((d+ 1)max{2,max
i∈[d]
{pi/qi}})



122 Chapter 2. Semi-discrete Optimal Transport

= d log2(d+ 1) + dmax{1,max
i∈[d]
{log2(pi)− log2(qi)}}

≤ (d+ 1) log2(d+ 1) + dmax{1,max
i∈[d]
{log2(pi) + log2(qi)}}

≤ size(w, b)2 + size(w, b)max
i∈[d]
{log2(pi + 1) + log2(qi + 1)}

≤ 2 size(w, b)2,

where the first inequality follows from the monotonicity of the logarithm, the
second inequality holds because log2(qi) ≥ 0 for all qi ∈ N, and the third
inequality exploits the second bound in (2.77) as well as the trivial estimates
d ≤ size(w, b) and 1 = log2 2 ≤ log2(qi + 1) for all qi ∈ N. The last inequality,
finally, follows from the observation that

max
i∈[d]
{log2(pi + 1) + log2(qi + 1)} ≤

d∑

i=1

log2(pi + 1) + log2(qi + 1) ≤ size(w, b).

Using a similar reasoning, we find

d∑

i=1

log2(wi) =

d∑

i=1

log2(pi/qi) ≤
d∑

i=1

log2(pi) + log2(qi) ≤ size(w, b),

and thus all terms in the definition of L grow at most quadratically with
size(w, b). Hence, the number of iterations L of the bisection algorithm is indeed
bounded by a polynomial in size(w, b).

Derivations for the Examples of Marginal Ambiguity Sets

Example 2.5.2 (Exponential distribution model). If the marginal generating

function in (2.34) is set to F (s) = exp(s/λ − 1) for some λ > 0, then the

marginal distribution function Fi for any i ∈ [N ] reduces to

Fi(s) = min {1,max{0, 1− ηi exp(−s/λ− 1)}} ,

which characterizes a (shifted) exponential distribution. Defining f as in Theo-

rem 2.3.7, we then obtain

f(s) =

∫ s

0

F−1(t)dt = λ

∫ s

0

(log(t) + 1)dt = λs log(s),

where the third equality exploits the standard convention that 0 log(0) = 0. The

proof of Theorem 2.3.7 further implies that
∫ 1

1−pi
F−1
i (t)dt = −ηif(pi/ηi) for

all i ∈ [N ]; see (2.35). By Proposition 2.3.6 we thus have

ψc(ϕ,x) = max
p∈∆N

N∑

i=1

(ϕi − c(x,yi))pi − λ
N∑

i=1

pi log

(
pi
ηi

)
.
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Next, assign Lagrange multipliers τ and ζ to the simplex constraints
∑N

i=1 pi = 1

and p ≥ 0, respectively. If we can find p⋆, τ⋆ and ζ⋆ that satisfy the Karush-

Kuhn-Tucker optimality conditions

∑N
i=1 p

⋆
i = 1, p⋆i ≥ 0 ∀i ∈ [N ] (primal feasibility)

ζ⋆i ≥ 0 ∀i ∈ [N ] (dual feasibility)

ζ⋆i p
⋆
i = 0 ∀i ∈ [N ] (complementary

slackness)

ϕi − c(x,yi)− λ log
(

pi

ηi

)
− λ− τ⋆ + ζ⋆i = 0 ∀i ∈ [N ] (stationarity),

then p⋆ is optimal in the above maximization problem. To see that p⋆, τ⋆ and

ζ⋆ exist, we use the stationarity condition to conclude that p⋆i = ηi exp((ϕi −
c(x,yi) − λ − τ⋆ + ζ⋆i )/λ) > 0. As ηi > 0, we have ζ⋆i = 0 by complementary

slackness. We may then conclude that p⋆i = ηi exp((ϕi−c(x,yi)−λ−τ⋆)/λ) for
all i ∈ [N ], which implies via primal feasibility that

∑N
i=1 ηi exp((ϕi− c(x,yi)−

λ − τ⋆)/λ) = 1. Solving this equation for τ⋆ and substituting the resulting

formula for τ⋆ back into the formula for p⋆i yields

τ⋆ = λ log

(
N∑

i=1

ηi exp

(
ϕi − c(x,yi)− λ

λ

))
and

p⋆i =
ηi exp ((ϕi − c(x,yi))/λ)∑N

j=1 ηj exp ((ϕj − c(x,yj))/λ)
∀i ∈ [N ].

The vector p⋆ constructed in this way constitutes an optimal solution for the

maximization problem that defines ψc(ϕ,x). Evaluating the objective function

value of p⋆ in this problem finally confirms that the smooth c-transform coincides

with the log-partition function (2.20).

Example 2.5.3 (Uniform distribution model). If the marginal generating func-

tion in (2.34) is set to F (s) = s/(2λ) + 1/2 for some λ > 0, then the marginal

distribution function Fi for any i ∈ [N ] reduces to

Fi(s) = min{1,max{0, 1 + ηis/(2λ)− ηi/2}},

which characterizes a uniform distribution. Defining f as in Theorem 2.3.7, we

then obtain

f(s) =

∫ s

0

F−1(t)dt = λ

∫ s

0

(2t− 1)dt = λ(s2 − s).
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The proof of Theorem 2.3.7 further implies that
∫ 1

1−pi
F−1
i (t)dt = −ηif(pi/ηi)

for all i ∈ [N ]; see (2.35). By Proposition 2.3.6, the smooth c-transform thus

simplifies to

ψc(ϕ,x) = max
p∈∆N

N∑

i=1

(ϕi − c(x,yi))pi − λ
N∑

i=1

p2i
ηi

+ λ

= λ+ λ spmax
i∈[N ]

ϕi − c(x,yi)
λ

,

where the last equality follows from the definition of the sparse maximum oper-

ator in (2.36).

Example 2.5.4 (Pareto distribution model). If the marginal generating func-

tion in (2.34) is set to F (s) = (s(q − 1)/(λq) + 1/q)1/(q−1) for some λ, q > 0,

then the marginal distribution function Fi for any i ∈ [N ] reduces to

Fi(s) = min

{
1,max

{
0, 1− ηi

(
s(1− q)
λq

+
1

q

) 1
q−1

}}
,

which characterizes a Pareto distribution. Defining f as in Theorem 2.3.7, we

then obtain

f(s) =

∫ s

0

F−1(t)dt =
λ

q − 1

∫ s

0

(qtq−1 − 1)dt = λ
sq − s
q − 1

.

Example 2.5.5 (Hyperbolic cosine distribution model). If the marginal gen-

erating function in (2.34) is set to F (s) = sinh(s/λ − k) for some λ > 0 and

for k =
√
2− 1− arcsinh(1), then the marginal distribution function Fi for any

i ∈ [N ] reduces to

Fi(s) = min {1,max {0, 1 + ηi sinh(s/λ+ k)}} ,

which characterizes a hyperbolic cosine distribution. Defining f as in Theo-

rem 2.3.7, we then obtain

f(s) =

∫ s

0

F−1(t)dt

= λ

∫ s

0

(arcsinh(s) + k)dt = λ(sarcsinh(s)−
√
s2 + 1 + 1 + ks).

Example 2.5.6 (t-distribution model). If the marginal generating function

in (2.34) is set to

F (s) =
N

2


1 +

s−
√
N − 1√

λ2 + (s−
√
N − 1)2
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for some λ, q > 0, then the marginal distribution function Fi for any i ∈ [N ]

reduces to

Fi(s) = min



1,max



0, 1− ηiN

2


1− s+

√
N − 1√

λ2 + (s+
√
N − 1)2









 ,

which characterizes a t-distribution with 2 degrees of freedom. Defining f as in

Theorem 2.3.7, we then find

f(s) =

∫ s

0

F−1(t)dt = λ

∫ s

0

(
2s−N

2
√
s(N − s)

+
√
N − 1

)
dt

= −λ
√
s(N − s) + λs

√
N − 1.

2.6. The Sparse Maximum Function

The following proposition, which is a simple extension of [MA16, Proposition 1],
suggests that the solution of (2.36) can be computed by a simple sorting algo-
rithm.

Proposition 2.6.1. Given u ∈ RN , let σ be a permutation of [N ] with uσ(1) ≥
uσ(2) ≥ · · · ≥ uσ(N), and set

k = max

{
j ∈ [N ] : 2 +

(
j∑

i=1

ησ(i)

)
uσ(j) >

j∑

i=1

ησ(i)uσ(i)

}
and

τ⋆ =

(∑k
i=1 ησ(i)uσ(i)

)
− 2

∑k
i=1 ησ(i)

.

Then p⋆i = ηi[ui − τ⋆]+/2, i ∈ [N ], is optimal in (2.36), where [·]+ = max{0, ·}
stands for the ramp function.

Proof. Assign Lagrange multipliers τ and ζ to the simplex constraints
∑N

i=1 pi =

1 and p ≥ 0 in problem (2.36), respectively. If we can find p⋆, τ⋆ and ζ⋆ that

satisfy the Karush-Kuhn-Tucker conditions

∑N
i=1 p

⋆
i = 1, p⋆i ≥ 0 ∀i ∈ [N ] (primal feasibility)

ζ⋆i ≥ 0 ∀i ∈ [N ] (dual feasibility)

ζ⋆i p
⋆
i = 0 ∀i ∈ [N ] (complementary slackness)

ui − 2p⋆
i

ηi
− τ⋆ + ζ⋆i = 0 ∀i ∈ [N ] (stationarity),

then p⋆ is optimal in (2.36). In the following, we show that p⋆, τ⋆ and ζ⋆

exist. Note first that if p⋆i > 0, then ζ⋆i = 0 by complementary slackness and
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p⋆i = ηi(ui − τ⋆)/2 by stationarity. On the other hand, if p⋆i = 0, then ζ⋆i ≥ 0

by dual feasibility and ui − τ⋆ ≤ 0 by stationarity. In both cases we have

p⋆i = ηi[ui − τ⋆]+/2 for all i ∈ [N ], which implies that
∑N

i=1 ηi[ui − τ⋆]+ = 2 by

primal feasibility. It thus remains to show that τ⋆ as defined in the proposition

statement solves this nonlinear scalar equation. To this end, note that by the

definitions of the permutation σ and the index k we have

uσ(j) ≥ uσ(k) >
(
∑k

i=1 ησ(i)uσ(i))− 2
∑k

i=1 ησ(i)
= τ⋆

for all j ≤ k. The definition of the index k further implies that

2 +

(
k+1∑

i=1

ησ(i)

)
uσ(k+1) ≤

k+1∑

i=1

ησ(i)uσ(i).

A simple reordering, dividing both sides of the above inequality by
∑k

i=1 ησ(i),

and using the definition of τ⋆ then yields uσ(k+1) ≤ τ⋆. In addition, by the

definition of the permutation σ, we have uσ(j) ≤ uσ(k+1) for all j > k. Hence,

we conclude that uσ(j) ≤ τ⋆ for all j > k. One can then show that

N∑

i=1

ηi[ui − τ⋆]+ =

k∑

i=1

ησ(i)(uσ(i) − τ⋆) = 2,

as desired. Therefore, problem (2.36) is indeed solved by p⋆i = ηi[ui − τ⋆]+/2,
i ∈ [N ].



127

Part II

Static Decision Making





129
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Figure 3.1: The architecture of our framework for supervised domain adaptation

when the unseen target test samples arrive sequentially.

3.1. Introduction

A natural approach to improving predictive performance in data-scarce tasks
involves translating informative signals from a data-abundant source domain to
the data-scarce target domain. This transfer of knowledge is commonly referred
to as domain adaptation or transfer learning, and it is increasingly applied in a
wide range of settings, see for example [WC20; CW18; WKW16] and [Red+19].

We consider the supervised domain adaptation setting with scarce labeled
target data. The key challenge here is the absence of meaningful data to tune any
parameters. However, in many practically relevant applications, new data will
arrive sequentially to enrich the information on the target domain. In this case,
many online algorithms can be utilized to adaptively learn the best predictor
on the target domain, which also guarantee optimal asymptotic regrets [LS20].

In this chapter, we take a pragmatic approach to resolve a specific setup of
the domain adaptation problem. We assume access to a scarce labelled target
data, and the future target data arrives sequentially. For example, consider un-
derstanding the dynamics of ride-sharing platforms requires insights about the
demand and supply from both sides of the market. These insights are signalled
through the ride fares, which can be explained by characteristics such as the
travel distances and the origin-destination pairs of the trips, the time of the day
as well as the weather conditions. The capability to correctly predict ride fares
directly translates into improved profit forecasts, and thus it vitally supports
the growth of new-coming platforms. In a competitive market, a follower (e.g.,
Lyft) needs to target a slightly different market segment than the leader (e.g.,
Uber) who had entered earlier. Thus, the demand and supply characteristics for
the follower may differ from those of the leader. Nevertheless, as both platforms
provide on-demand transportation, it is reasonable to assume that their supply
and demand dynamics are similar. The follower, who possesses limited data, can
query demand on the leader’s platform to collect data in order to leap forward
in its predictive precision. Our approach to solve this problem is illustrated in
Figure 3.1 and it consists of two components:
1. Expert Generation Module: This module generates a set of competitive

experts E by fine-tuning the explanatory power of the source domain data
and harnessing the signal guidance from the scarce target domain data.

2. Expert Aggregation Module: Acting on the sequential arrival of the
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unseen target data, this module aggregates the predictive capability of the
generated experts via an online aggregation mechanism. In this work we will
use the Bernstein Online Aggregation mechanism.

We will propose two ways to generate the experts. The first approach gener-
ates experts corresponding to optimal decisions along a path, with the intention
to interpolate between the source and the target distributions. We will consider
two types of trajectories, guided by either the Kullback-Leibler or the Wasser-
stein divergence. The second approach generates distribution regions around
both the source and the target. The intersection of these regions is used to
generate distributionally robust experts. The geometrical intuition is to find
the “direction” induced by the aforementioned divergences, in which the source
data can explain the target data. Once the experts are deployed, the aggregation
mechanism is executed without re-adapting the experts.

Our ultimate goal is to ensure a competitive performance in the short term
and not in the asymptotic regime when the number of test samples from the
target domain tends to infinity. Indeed, as soon as the target sample size is suf-
ficient, training the machine learning model on all available target data becomes
more attractive. From a short term horizon benchmark, our approach offers an
appealing warm start for online training procedure, and it may also lead to a
faster convergence rate depending on the underlying algorithm.

Contributions. We explore the expert generation problem in the context
of supervised domain adaptation.

• We introduce a novel framework to synthesize a family of robust least squares
experts by altering various moment-based distribution sets. These sets grad-
ually interpolate from the source information to the target information, cap-
turing different belief levels on the explanatory power of the source domain
onto the target domain.

• We present two intuitive strategies to construct the sets of moment infor-
mation, namely the “Interpolate, then Robustify” and the “Surround, then
Intersect” strategies. Both strategies are simply characterized by two parame-
ters representing the aforementioned explanatory power of belief of the source
domain and the level of desired robustness.

• We show that when the moment information is prescribed using a Kullback-
Leibler or a Wasserstein-type divergence, the experts are efficiently formed by
solving convex optimization problems, that can even be solved by a first-order
gradient descent algorithm or off-the-shelf solvers.

This chapter is structured as follows. Section 3.2 delineates the problem
setup and describes in details two common strategies to generate experts: the
convex combination and the reweighting strategies. Section 3.3 introduces our
framework to generate experts, while Section 3.4 and 3.5 dive into details about
our “Interpolate, then Robustify” and our “Surround, then Intersect” strategies,
respectively. Section 3.6 demonstrates experimentally that the proposed robust
strategies systematically outperform non-robust interpolations of the empirical
least squares estimators.
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Literature Review. Domain adaptation arises in various applications in-
cluding natural language processing [Søg13; Li12; JZ07; BMP06], survival anal-
ysis [Li+16] and computer vision [WD18; Csu17]. Domain adaptation meth-
ods can be classified into three categories. Unsupervised domain adaptation
only requires unlabelled target data, but in large amounts [Ghi+16; Bak+13;
GL15; Wan+20a; Lon+16; BD+07; Cou+17]. Semi-supervised domain adapta-
tion requires labelled target data [Yao+15; KSD10; SNB05; LPHLS12; Sah+11;
Mat+20; Sun+11]. Finally, supervised domain adaptation only requires scarce
labelled target data [Mot+17b; Mot+17a; Tze+15; KTP17]. If the target data
is scarce and label information is available, supervised domain adaptation out-
performs unsupervised domain adaptation [Mot+17b]. The domain adaptation
literature further ramifies by imposing different distributional assumptions into
covariate shift [Shi00; Sug+08] or label shift [LWS18; Azi+19].

The domain adaptation literature for regression problems focuses primar-
ily on instance-based reweighting strategies [GV14; Sug+08; GV14; Hua+06;
CM14; Che+16], which aim to minimize some distance between the source and
target distributions. Most of the instance-based methods solve an optimization
problem to find the weights of the instances [GV14; CMM19], which may be
computationally expensive when data is abundant. Other approaches rely on
deep learning models to minimize the discrepancy between the domain distri-
butions [Zha+18; Ric+20]. The literature on regression for domain adaptation
also extends towards boosting-based methods [PS10], and deep learning meth-
ods [Sal+19].

We also uses ideas and techniques from robust optimization and adver-
sarial training, which have attracted considerable attention in machine learn-
ing [ND16; Gao+18; BKM19; Ngu+19a]. Robust optimization for least squares
problem with uncertain data was studied in [GL97]. Distributionally robust op-
timization with moment ambiguity sets was proposed in [DY10] and extended
in [GS10] and [Kuh+19]. Ambiguity sets prescribed by divergences were previ-
ously used to robustify Bayes classification [Ngu+19b; NSB20].

Our work is also similar to [Che+16] that consider unsupervised domain
adaptation regression, and [Wan+20a] that consider robust domain adaption
for the classification setting.

Notation. We use Id to denotes the identity matrix in Rd. The set of
p-by-p positive (semi-)definite matrices is denoted by Sp++ (Sp+). All proofs are
relegated to the Appendix.

3.2. Problem Statement and Background

We consider a generic linear regression setting, in which X is a d-dimensional
covariate and Y is a univariate response variable. In the context of supervised
domain adaptation, we have access to the source domain data (x̂i, ŷi)

NS
i=1 con-

sisting of NS labelled samples drawn from the source distribution. In addition,
we are given a limited number of NT labelled samples (x̂j , ŷj)

NT
j=1 from the target
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distribution. Our goal is to predict the responses of the test samples (xj , yj)
J
j=1,

which are drawn from the target distribution and arrive sequentially. To this
end, we will construct several experts.

In the linear regression setting, each expert is characterized by a vector
β ∈ Rd. Given a covariate-response pair (x, y) ∈ Rd ×R, we use the square loss
function to measure the mismatch between the expert’s prediction β⊤x and the
actual response y. Using the target domain data (x̂i, ŷi)

NT
i=1, one approach is to

solve the ridge regression problem

min
β∈Rd

1

NT

NT∑

j=1

(β⊤x̂j − ŷj)2 + η∥β∥22

for some η ≥ 0 to obtain the empirical target predictor

β̂T =


 1

NT

NT∑

j=1

x̂j x̂
⊤
j + ηId




−1
 1

NT

NT∑

j=1

x̂j ŷj


 .

When NT is small, however, the empirical target predictor may perform poorly
on the future target data (xj , yj)

J
j=1.

If the source domain distribution is sufficiently close to the target domain
distribution, it is expedient to exploit the available information in the source
domain data to construct better predictors for the target domain data. With this
promise, one can synthesize several predictors to form an ensemble of experts,
and one can apply an online aggregation scheme to predict on the unseen target
data. We now first describe several interpolation schemes to generate experts.

Convex Combination Strategy. Denote by β̂S the empirical source
predictor, which is obtained by solving the ridge regression problem on the
source data. The convex combination strategy generates predictors by forming
convex combinations between β̂S and β̂T. More precisely, for any λ ∈ [0, 1] a
new predictor is synthesized by setting

β̂λ = λβS + (1− λ)βT.

The parameter λ represents our belief in the explanatory power of the source
domain data: if λ = 0, the source domain has no power to explain the target
domain, and we recover β̂0 = βT, the empirical target predictor. If λ = 1, the
source domain has an absolute predictive power on the target domain, and it is
beneficial to use β̂1 = β̂S because the sample size NS is large. Discretizing λ in
the range [0, 1] forms a family of experts E .

Reweighting Strategy. Reweighting samples is a common strategy in do-
main adaptation, transfer learning and adversarial training. [GV14] synthesize
experts, for example, by solving

min
β∈Rd

NS∑

i=1

wh,i(β
⊤x̂i − ŷi)2 +

NT∑

j=1

(β⊤x̂j − ŷj)2 + η∥β∥22



134 Chapter 3. Distributionally Robust Domain Adaptation

for some non-negative weights wh,i determined via a Gaussian kernel with band-
width h > 0 of the form

wh,i =

NS∑

l=1

αl exp

(
−∥x̂i − x̂l∥

2
2 + (ŷi − ŷl)2
h2

)

for i = 1, . . . , NS. Here, the parameter vector α ∈ RNS
+ solves the exponential

cone optimization problem

max

NT∑

j=1

log
( NS∑

l=1

αl exp
(
−∥x̂j − x̂l∥

2
2 + (ŷj − ŷl)2
h2

))

s.t.

NS∑

i=1

NS∑

l=1

αl exp

(
−∥x̂i − x̂l∥

2
2 + (ŷi − ŷl)2
h2

)
=NS.

The predictor βh, parametrized by the kernel weight h, that solves the reweighted
ridge regression problem has the form

( NT∑

j=1

x̂j x̂
⊤
j +

NS∑

i=1

wix̂ix̂
⊤
i + ηId

)−1( NT∑

j=1

x̂j ŷj +

NS∑

i=1

wix̂iŷi

)
.

Discretizing the bandwidth h forms a family of experts E .
Bernstein Online Aggregation (BOA). We now give a brief overview

on the BOA algorithm, which is a recursive expert aggregation procedure for
sequential prediction [CBL06]. For a given set of experts E = {β1, . . . , β|E|} and
an incumbent weight πk,j−1 for expert k at time j−1, this algorithm aggregates
the individual expert’s predictions linearly based on the arrival of the input data

(xj , yj) as
∑|E|

k=1 πk,jβ
⊤
k xj . The weights of the experts are updated using the

exponential rule

πk,j =
exp(−υ(1 + υLk,j)Lk,j)πk,j−1∑|E|
k=1 exp(−υ(1 + υLkj)Lk,j)πk,j−1

,

where υ > 0 is the learning rate and Lk,j = (β⊤
k xj − yj)

2−∑|E|
k=1(β

⊤
k xj −

yj)
2πk,j−1. This algorithm is initialized with weights πk,0 ≥ 0 satisfying

∑|E|
k=1 πk,0

= 1. The cumulative loss for the stream of test data (xj , yj)
J
j=1 is

J∑

j=1




|E|∑

k=1

πk,jβ
⊤
k xj − yj




2

. (3.1)

For the square loss, the BOA procedure is optimal for the model selection ag-
gregation problem, that is, the excess risk of its batch version achieves the fast
rate of convergence log(|E|)/J in deviation; see [Win17].
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3.3. Predictor Generation via Distributionally Ro-

bust Linear Regression

We now specify our framework to generate the set of competitive experts E for
future prediction. Our construction is based on the premises that the source do-
main carries the explanatory power on the target domain to a certain extent and
that the scarce target data can provide directional guidance to pull information
from the source data. Moreover, we also leverage ideas from distributionally
robust optimization and adversarial training, which have been shown to sig-
nificantly improve the out-of-sample predictive performance [DN18; MEK18;
BKM19; Gao20; Lam19].

With this in mind, our expert generation scheme blends two elements: a
distributional probing strategy and a robust estimation procedure. The distri-
butional probing strategy frames the distribution set B, and then each expert is
constructed by solving a distributionally robust least squares estimation prob-
lem of the form

inf
β∈Rd

sup
Q∈B

EQ[(β
⊤X − Y )2], (3.2)

where Q is a joint distribution over (X,Y ). Generating a collection of distribu-
tion sets B in a systematic manner and solving (3.2) for each such set will form
a family of experts E .

In a purely data-driven setting with no additional information, it is attrac-
tive to probe into the distributional regions in between the empirical source
distribution P̂S = N−1

S

∑NS

i=1 δ(x̂i,ŷi) and the empirical target distribution P̂T =

N−1
T

∑NT

j=1 δ(x̂j ,ŷj). Because probability distributions reside in infinite-dimensional

spaces, framing B in between P̂S and P̂T is a non-trivial task. Fortunately, be-
cause the expected square loss only depends on the first two moments of the joint
distribution of (X,Y ), it suffices to prescribe B using a finite parametrization
of distributional moments. To this end, let p = d + 1 represent the dimension
of the joint vector (X,Y ). For a given set U on the space of mean vectors and
covariance matrices Rp × Sp+, we consider B as the lifted distribution set that
contains all distributions whose moments belong to U, that is,

B = {Q ∈M(Rp) : Q ∼ (µ,Σ), (µ,Σ) ∈ U} ,

whereM(Rp) denotes the set of all distributions on Rp, and the notation Q ∼
(µ,Σ) expresses that Q has mean µ and covariance matrix Σ. It is convenient
to construct the moment information set U using a divergence on Rp × Sp+.

Definition 1 (Divergence). A divergence ψ on Rp × Sp+ satisfies the following

properties:

• non-negativity: for any (µ,Σ), (µ̂, Σ̂) ∈ Rp×Sp+, we have ψ((µ,Σ) ∥ (µ̂, Σ̂)) ≥
0,
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• indiscernability: ψ((µ,Σ)∥(µ̂, Σ̂))=0 implies (µ,Σ)=(µ̂, Σ̂).

In this chapter, we will explore two divergences in the space of mean vectors
and covariance matrices that are motivated by popular measures of dissimilarity
between distributions. The divergence D is motivated by the Kullback-Leibler
(KL) divergence.

Definition 2 (Kullback-Leibler-type divergence). The divergence D from tuple

(µ,Σ) ∈ Rp × Sp++ to tuple (µ̂, Σ̂) ∈ Rp × Sp++ amounts to

D
(
(µ,Σ) ∥ (µ̂, Σ̂)

)
≜

(µ̂− µ)⊤Σ̂−1(µ̂− µ)+Tr
[
ΣΣ̂−1

]
− log det(ΣΣ̂−1)−p.

In fact D is equivalent to the KL divergence between two non-degenerate
Gaussian distributions N (µ,Σ) and N (µ̂, Σ̂) (up to a factor of 2). As a conse-

quence, D is non-negative, and it collapses to 0 if and only if Σ = Σ̂ and µ = µ̂.
We can also show that D is affine-invariant. However, we emphasize that D is
not symmetric and D

(
(µ,Σ) ∥ (µ̂, Σ̂)

)
̸= D

(
(µ̂, Σ̂) ∥ (µ,Σ)

)
in general.

We also study the divergence W which is motivated by the Wasserstein
distance.

Definition 3 (Wasserstein-type divergence). The divergence W between two

tuples (µ,Σ) ∈ Rp × Sp+ and (µ̂, Σ̂) ∈ Rp × Sp+ amounts to

W
(
(µ,Σ)∥(µ̂, Σ̂)

)
≜∥µ− µ̂∥22 +Tr

[
Σ+ Σ̂− 2

(
Σ̂

1
2ΣΣ̂

1
2

) 1
2
]
.

The divergence W coincides with the squared type-2 Wasserstein distance
between two Gaussian distributions N (µ,Σ) and N (µ̂, Σ̂) [GS84]. One can

readily show thatW is non-negative, and it vanishes if and only if (µ,Σ)=(µ̂, Σ̂).
Thus, W is a symmetric divergence.

In Sections 3.4 and 3.5 we examine in detail two strategies to frame U and
its corresponding distribution set B in a principled manner, and we devise op-
timization techniques to solve the resulting robust estimation problems.

3.4. “Interpolate, then Robustify” Strategy

“Interpolate, then Robustify” (IR) is an intuitive strategy to systematically

probe into distributional regions between P̂S and P̂T. Let (µ̂S, Σ̂S) be the em-

pirical mean vector and covariance matrix of P̂S, that is,

µ̂S =
1

NS

NS∑

i=1

(
x̂i
ŷi

)
, Σ̂S =

1

NS

NS∑

i=1

(
x̂i
ŷi

)(
x̂i
ŷi

)⊤
− µ̂Sµ̂

⊤
S ,

and let (µ̂T, Σ̂T) be defined analogously for P̂T. The IR strategy applies re-
peatedly the following two steps to generate distribution sets. First, interpolate
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between (µ̂S, Σ̂S) and (µ̂T, Σ̂T) to obtain a new pair (µ̂λ, Σ̂λ) parametrized by
λ ∈ [0, 1]. Second, construct a moment set Uλ,ρ as a ball of radius ρ circum-

scribing the pair (µ̂λ, Σ̂λ), then lift the moment set Uλ,ρ to the corresponding

distribution set Bλ,ρ. More specifically, (µ̂λ, Σ̂λ) is the ψ-barycenter between

(µ̂S, Σ̂S) and (µ̂T, Σ̂T), which is obtained by solving

min
µ∈Rp,Σ∈Sp+

λψ((µ,Σ)∥(µ̂S, Σ̂S))+

(1−λ)ψ((µ,Σ)∥(µ̂T, Σ̂T)).
(3.3)

⇢

(bµS, b⌃S)

(bµ�, b⌃�)

(bµT, b⌃T)

Figure 3.2: The dashed curve shows the barycenter interpolations parametrized

by λ ∈ [0, 1]. Ellipses represent Uλ,ρ at different λ.

Then, we employ the divergence ψ to construct an uncertainty set Uλ,ρ in
the mean-covariance matrix space as

Uλ,ρ ≜
{
(µ,Σ) ∈ Rp × Sp+ : ψ((µ,Σ)∥(µ̂λ, Σ̂λ)) ≤ ρ

}
.

The outlined procedure is illustrated in Figure 3.2. An expert is now obtained
by solving the distributionally robust least squares problem (3.2) with respect
to the distribution set

Bλ,ρ = {Q ∈M(Rp) : Q ∼ (µ,Σ), (µ,Σ) ∈ Uλ,ρ}.

Notice that in this strategy the parameter λ ∈ [0, 1] characterizes the ex-
planatory power of the source domain to the target domain: if λ = 0, then
(µ̂λ, Σ̂λ) = (µ̂T, Σ̂T), and if λ = 1, then (µ̂λ, Σ̂λ) = (µ̂S, Σ̂S). Thus, as λ de-

creases, (µ̂λ, Σ̂λ) is moving farther away from the source information (µ̂S, Σ̂S),

and (µ̂λ, Σ̂λ) is pulled towards the target information (µ̂T, Σ̂T).
The choice of the divergence ψ influences both the barycenter problem (3.3)

and the formation of the set Uλ,ρ. Next, we study the special case of the IR
strategy with the KL-type divergence and the Wasserstein-type divergence.

3.4.1. Kullback-Leibler-type Divergence

The KL-type divergence D in Definition 2 is not symmetric. Hence, it is worth-
while to note that the barycenter problem (3.3) optimizes over (µ,Σ) being
placed in the first argument of D, and that the set Uλ,ρ is also defined with
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the pair (µ,Σ) being placed in the first argument. Under the divergence D, the

barycenter (µ̂λ, Σ̂λ) admits a closed form expression. This fact is well-known in
the field of KL fusion of Gaussian distributions [Bat+13].

Proposition 3.4.1 (KL barycenter). Suppose that ψ is the KL-type divergence.

If Σ̂S, Σ̂T ≻ 0, then (µ̂λ, Σ̂λ) is the minimizer of the barycenter problem (3.3)

with

Σ̂λ = (λΣ̂−1
S + (1− λ)Σ̂−1

T )−1 ≻ 0,

µ̂λ = Σ̂λ

(
λΣ̂−1

S µ̂S + (1− λ)Σ̂−1
T µ̂T

)
.

For a given λ ∈ [0, 1] and ρ ≥ 0, the corresponding IR-KL expert is obtained
by solving

min
β∈Rd

{
fλ,ρ(β) ≜ sup

Q∈Bλ,ρ

EQ[(β
⊤X − Y )2]

}
. (3.4)

Problem (3.4) can be efficiently solved using a gradient-descent algorithm. To
do this, the next proposition establishes the relevant properties of fλ,ρ.

Proposition 3.4.2 (Properties of fλ,ρ). The function fλ,ρ is convex and con-

tinuously differentiable with

∇fλ,ρ(β)=
2κ⋆

(
ω2Σ̂λw+(κ⋆−ω1)(Σ̂λ+µ̂λµ̂

⊤
λ )w

)
1:d

(κ⋆ − ω1)2
,

where w = [β⊤,−1]⊤, ω1 = w⊤Σ̂λw, ω2 = (w⊤µ̂)2 and κ⋆ ∈ (ω1, ω1

(
1 + 2ρ +√

1 + 4ρω2

)
/(2ρ)] is the unique solution of the equation

ρ = (κ− ω1)
−2ω1ω2 + (κ− ω1)

−1ω1 + log(1− κ−1ω1).

Furthermore, fλ,ρ is locally smooth at any β ∈ Rd, i.e., there exist constants

Cβ , ϵβ > 0 such that for any β′ ∈ Rd with ∥β′−β∥2 ≤ ϵβ, we have ∥∇fλ,ρ(β′)−
∇fλ,ρ(β)∥2 ≤ Cβ ∥β′ − β∥2.

Thanks to Proposition 3.4.2, we can apply the adaptive gradient method to
solve problem (3.4) to global optimality, and the algorithm enjoys a sublinear
rate |fλ,ρ(β̄k)− fλ,ρ(β⋆

λ,ρ)| ≤ O(k−1), where β̄k is a certain average of the iter-
ates, and β⋆

λ,ρ is an optimal solution of (3.4). The algorithm and its guarantees
are detailed in [MM19].

3.4.2. Wasserstein-type Divergence

Under the divergenceW in Definition 3, problem (3.3) resembles the Wasserstein
barycenter in the space of Gaussian distributions. The result from [AC11, §6.2]
implies that the barycenter (µ̂λ, Σ̂λ) admits a closed form expression following
the McCann’s interpolant [McC97, Example 1.7].
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⇢T⇢S

(bµS, b⌃S) (bµT, b⌃T) (bµS, b⌃S) (bµT, b⌃T) (bµS, b⌃S) (bµT, b⌃T) (bµS, b⌃S) (bµT, b⌃T)

Figure 3.3: Varying (ρS, ρT) frames different moment sets UρS,ρT (hatched re-

gions). The radius ρS increases from left to right.

Proposition 3.4.3 (Wasserstein interpolation). Suppose that ψ is the Wasserstein-

type divergence. If Σ̂S ≻ 0, then (µ̂λ, Σ̂λ) is the minimizer of problem (3.3) with

µ̂λ = λµ̂S + (1− λ)µ̂T,

Σ̂λ = (λIp + (1− λ)L)Σ̂S(λIp + (1− λ)L),

where L = Σ̂
1
2

T(Σ̂
1
2

TΣ̂SΣ̂
1
2

T)
− 1

2 Σ̂
1
2

T.

For a given λ ∈ [0, 1] and ρ ≥ 0, we obtain the corresponding IR-Wasserstein
expert by solving a conic program using off-the-shelf solvers such as [MOS19].

Proposition 3.4.4 (IR-Wasserstein expert). Suppose that ψ is the Wasserstein-

type divergence. Problem (3.2) with B ≡ Bλ,ρ is equivalent to the second order

cone program

min
β∈Rd

∥∥∥∥∥(Σ̂λ + µ̂λµ̂
⊤
λ )

1
2

[
β

−1

]∥∥∥∥∥
2

+
√
ρ

∥∥∥∥∥

[
β

−1

]∥∥∥∥∥
2

.

3.5. “Surround, then Intersect” Strategy

“Surround, then Intersect” (SI) probes naturally into the distributional space
by intersecting two balls centered at the empirical moments. More specifically,
this strategy circumscribes (µ̂S, Σ̂S) (respectively, (µ̂T, Σ̂T)) with a ball of ra-
dius ρS (respectively, ρT) using the ψ-divergence. Consequentially, the moment
information set UρS,ρT

in the mean vector-covariance matrix space is defined as

UρS,ρT
≜





(µ,Σ) ∈ Rp × Sp+ such that:

ψ((µ,Σ)∥(µ̂S, Σ̂S)) ≤ ρS
ψ((µ,Σ)∥(µ̂T, Σ̂T)) ≤ ρT
Σ+ µµ⊤ ⪰ εIp




,

where the small constant ε > 0 improves numerical stability. This construction
is graphically illustrated in Figure 3.3. An expert is now obtained by solving the
distributionally robust least squares problem (3.2) subject to the distributional
set

BρS,ρT
= {Q ∈M(Rp) : Q ∼ (µ,Σ), (µ,Σ) ∈ UρS,ρT

} .
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Note that BρS,ρT
is well-defined only if the radii (ρS, ρT) are sufficiently large so

that the intersection of the two balls becomes non-empty. A sensible approach to
set these parameters is to fix ρS and to find a sufficiently large ρT so that UρS,ρT

is non-empty. In this way, the SI strategy characterizes the explanatory power of
the source domain to the target domain by the radius ρS: if ρS = 0 then UρS,ρT

becomes a singleton {(µ̂S, Σ̂S)}, representing the belief that the source domain
possess absolute explanatory power onto the target domain. As ρS increases,
UρS,ρT is gradually pulled towards the empirical target moments (µ̂T, Σ̂T). Next,
we study the special case of the SI strategy with the KL-type divergence and
the Wasserstein-type divergence.

3.5.1. Kullback-Leibler-type Divergence

Recall thatD is asymmetric and (µ,Σ) is the first argument ofD in the definition
of UρS,ρT

. We first study conditions on ρT under which the ambiguity set BρS,ρT

is non-empty.

Proposition 3.5.1 (Minimum radius). Suppose that ψ is the KL-type diver-

gence. For any ρS > 0 the sets UρS,ρT
and BρS,ρT

are non-empty if ρT ≥
D((µ̂γ⋆ , Σ̂γ⋆) ∥ (µ̂T, Σ̂T)), where γ

⋆ is a maximizer of

sup D((µ̂γ , Σ̂γ)∥(µ̂S, Σ̂S))+D((µ̂γ , Σ̂γ)∥(µ̂T, Σ̂T))−γρS
s.t. γ ∈ R+, Σ̂γ = (1 + γ)(γΣ̂−1

S + Σ̂−1
T )−1 ∈ Sp+,

µ̂γ = Σ̂γ(γΣ̂
−1
S µ̂S + Σ̂−1

T µ̂T)/(1 + γ) ∈ Rp

The above optimization problem is effectively one-dimensional and can there-
fore be solved by bisection on γ. The next theorem asserts that the SI-KL
experts are formed by solving a semidefinite program.

Theorem 3.5.2 (SI-KL Expert). Suppose that ψ is the KL-type divergence

and B ≡ BρS,ρT
is non-empty. Then β⋆ = (M⋆

XX)−1M⋆
XY solves problem (3.2),

where (M⋆
XX ,M

⋆
XY ) is a solution of the convex semidefinite program

sup τ

s.t. MXX ∈ Rd×d, MXY ∈ Rd×1, MY Y ∈ R
τ ∈ R+, µ ∈ Rp, M ∈ Sp++, t ∈ R+

µ̂⊤
k Σ̂

−1
k µ̂k − 2µ̂⊤

k Σ̂
−1
k µ+Tr

[
M Σ̂−1

k

]
−

log det(M Σ̂−1
k )−log(1−t)− p≤ρk ∀k∈{S,T}[

M µ

µ⊤ t

]
⪰ 0,

[
MXX MXY

M⊤
XY MY Y − τ

]
⪰ 0

M =

[
MXX MXY

M⊤
XY MY Y

]
⪰ εIp.
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3.5.2. Wasserstein-type Divergence

The space Rp × Sp+ can be endowed with a distance inherited from the Wasser-
stein distance between Gaussian distribution. For any ρS > 0, the minimum
radius for ρT that makes BρS,ρT non-empty is known in closed form.

Proposition 3.5.3 (Minimum radius). Suppose that ψ is the Wasserstein-type

divergence. For any ρS > 0 the sets UρS,ρT and BρS,ρT are non-empty if

ρT ≥
(√

W((µ̂S, Σ̂S) ∥ (µ̂T, Σ̂T))−
√
ρS

)2

.

The next theorem asserts that the SI-Wasserstein experts are constructed
by solving a semidefinite program.

Theorem 3.5.4 (SI-Wasserstein expert). Suppose that ψ is the Wasserstein-

type divergence and B ≡ BρS,ρT
is non-empty. Then β⋆=(M⋆

XX)−1M⋆
XY solves

problem (3.2), where (M⋆
XX ,M

⋆
XY ) is a solution of the linear semidefinite pro-

gram

sup τ

s.t. MXX ∈ Rd×d,MXY ∈ Rd×1,MY Y ∈ R
τ ∈ R+, µ ∈ Rp,M,H ∈ Sp+, CS, CT ∈ Rp×p

∥µ̂k∥22−2µ̂⊤
k µ+Tr

[
M+Σ̂k−2Ck

]
≤ρk[

H Ck

C⊤
k Σ̂k

]
⪰ 0




k∈{S,T}

[
M −H µ

µ⊤

]
⪰ 0

[
MXX MXY

M⊤
XY MY Y−τ

]
⪰0, M=

[
MXX MXY

M⊤
XY MY Y

]
⪰εIp.

3.6. Numerical Experiments

The second-order cone and semidefinite programs are modelled in MATLAB via
YALMIP [L0̈4] and solved with [MOS19]. All experiments are run on an Intel
i7-8700 CPU (3.2 GHz) computer with 16GB RAM. The corresponding codes
are available at https://github.com/RAO-EPFL/DR-DA.git.

We now aim to assess the performance of experts and demonstrate the effects
of robustness. In all experiments we generate the set E = {β1, . . . , β|E|} of
experts with |E| = 10.

We consider four family of robust experts generated by:

https://github.com/RAO-EPFL/DR-DA.git
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• IR-KL: with ρ=D((µ̂T, Σ̂T)∥ (µ̂S, Σ̂S))/(3|E|) and λ is spaced from 1 to 0 in
exponentially increasing steps.1

• IR-WASS: with ρ=W((µ̂T, Σ̂T)∥(µ̂S, Σ̂S))/(3|E|) and λ is spaced from 1 to 0
in exponentially increasing steps.

• SI-KL: with ρS spaced from 10−3 to D((µ̂T, Σ̂T) ∥ (µ̂S, Σ̂S))−1 in exponentially
increasing steps. For a given ρS, ρT is set to the sum of the minimum target
radius satisfying the condition of Proposition 3.5.1 and ρS/2.

2

• SI-WASS: with ρS spaced from 10−4 to W((µ̂T, Σ̂T) ∥ (µ̂S, Σ̂S)) in increasing
exponential steps. For a given ρS, ρT is set to the sum of the minimum radius
that satisfies the condition in Proposition 3.5.3 and ρS/2.

We benchmark against the Convex Combination (CC) and Reweighting (RW)
experts in Section 3.2 generated by
• CC-L: with λ equally spaced in [0, 1], thus provides uniformly spaced distri-
butional regions in between domains.

• CC-TL: with λ equally spaced in [0, 0.5], thus distributional regions are
formed around the target domain.

• CC-SL: with λ equally spaced in [0.5, 1], thus distributional regions are formed
around the source domain.

• CC-TE: with λ spaced from 0 to 1 in exponentially increasing steps, thus
the constructed distributional regions are concentrated towards the target
domain.

• CC-SE: with λ spaced from 1 to 0 in exponentially increasing steps, thus
the constructed distributional regions are concentrated towards the source
domain.

• RWS: with h equally spaced in [0.5, 10].
We consider a family of sequential empirical ridge regression estimators gen-

erated by training for each J over
• LSE-T, the union of the target dataset (x̂j , ŷj)

NT
j=1, and the sequentially ar-

riving target test data (xj , yj)
J−1
j=1 ,

• LSE-T&S, the union of the source data (x̂i, ŷi)
NS
i=1, the target data (x̂j , ŷj)

NT
j=1

and the sequentially arriving target test data (xj , yj)
J−1
j=1 .

Note that both LSE-T and LSE-T&S predictors dynamically incorporate the
new data to adapt the prediction. Thereby, they have an unfair advantage in
the long run over the other experts that are trained only once at the beginning
with NT samples from the test domain.

The main reason behind using exponential step sizes originates from the
asymmetric nature of D. For simplicity, we also use it for experts with W. To

1We say that λ is spaced from a to b in K exponentially increasing steps if λ1 = a

and λk+1 = λk − (a− b) exp(k)/
∑K−1

i=1 exp(i) for all k ∈ {2, . . . ,K − 1}.
2If d ≥ 15, then the minimum value of ρS is set to 5 to improve numerical stability.
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ensure fairness in the competition between experts, we vary the parameters of
the non-robust experts also in exponential steps.

We compare the performance of our model against the above non-robust
benchmarks on 5 Kaggle datasets:3

• Uber&Lyft contains d = 38 features of Uber and Lyft cab rides in Boston
including the distances, date and time of the hailing, a weather summary for
that day. The prediction target is the price of the ride. We divide the dataset
based on the company, Uber (source) and Lyft (target).

• US Births (2018) has d = 36 predictive features of child births in the United
States in the year of 2018 including the gender of the infant, mother’s weight
gain, and mother’s per-pregnancy body mass index. The task is to predict the
weight of the infants. We divide the dataset based on gender: male (source)
and female (target).

• Life Expectancy contains d = 19 predictive features, and the target variable
is the life expectancy at birth. The dataset is divided into two subgroups:
developing (source) and developed (target) countries.

• House Prices in King Country contains d= 14 predictive variables, the
target variable is the transaction price of the houses. We split the dataset into
two domains: houses built in [1950, 2000) (source) and [2000, 2010] (target).

• California Housing Prices has d = 9 predictive features, the target variable
is the price of houses. We divide this dataset into houses with less than an
hour drive to the ocean shore (source) and houses in inland (target).

We use all samples from the source domain for training, and we form the
target training set by drawing NT= d samples from the target dataset. Later,
we randomly sample J=1000 data points from the remaining target samples to
form the sequentially arriving target test samples. Note that the performance
of the experts is sensitive to the data, and thus we replicate this procedure 100
times. We set the regularization parameter of the ridge regression problem
to η = 10−6 and the learning rate of the BOA algorithm to υ = 0.5. We
measure the performance of the experts by the cumulative loss (3.1) calculated
for every J .

Table 3.1 shows the average cumulative loss of each aggregated expert ob-
tained by the BOA algorithm for all datasets and for J={5, 10, 50, 100} across 100
independent runs. In each row, the minimum loss is normalized to 1, and the re-
maining entries are presented by the multiplicative factor of the minimum value.
This result suggests that the IR-WASS and SI-WASS experts perform favorably
over the competitors in that their cumulative loss at each time step is substan-
tially lower than that of most other competitors. Figure 3.4 demonstrates how
the average cumulative loss in (3.1) grows over time for the Uber&Lyft dataset.
Figure 3.4 shows that the loss of LSE-T&S is initially constant at a high level,
which highlights the discrepancy between the two domain distributions.

3Descriptions and download links are provided in the appendix.
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Figure 3.4: Cumulative loss averaged over 100 runs, Uber&Lyft.

The growth rate of LSE-T decays faster than that of other experts, and the
time when LSE-T saturates indicates when the combined target domain data
alone is sufficient to construct a single, competitive predictor without using any
source domain data.
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Appendix

Proof of Section 3.4

Proof of Proposition 3.4.1. Note that optimization problem (3.3) constitutes

an unbounded convex optimization problem when ψ is the Kullback-Leibler-

type divergence of Definition 1. Let g(µ,Σ) ≜ λD((µ,Σ) ∥ (µ̂S, Σ̂S)) + (1 −
λ)D((µ,Σ) ∥ (µ̂T, Σ̂T)), then, the first order optimality condition reads

∇µg(µ,Σ) = 2λΣ̂−1
S (µ− µ̂S) + 2(1− λ)Σ̂−1

T (µ− µ̂T) = 0,

∇Σg(µ,Σ) = λΣ̂−1
S − λΣ−1 + (1− λ)Σ̂−1

T − (1− λ)Σ−1 = 0.

One can then show (µ̂λ, Σ̂λ) provided in statement of Proposition 3.4.1 solves

the system of equalities above.

Below we prove Proposition 3.4.2. In the proof of Proposition 3.4.2 and its
auxiliary lemmas, Lemma 3.6.1 and Lemma 3.6.2, we omit the subscripts λ and
ρ to avoid clutter.

Lemma 3.6.1 (Dual problem). Fix (µ̂, Σ̂) ∈ Rp × Sp++ and ρ ≥ 0. For any

symmetric matrix H ∈ Sp, the optimization problem




sup
µ,Σ

Tr
[
H(Σ + µµ⊤)

]

s.t. Tr
[
ΣΣ̂−1

]
− log det(ΣΣ̂−1)− p+ (µ− µ̂)⊤Σ̂−1(µ− µ̂) ≤ ρ,

Σ ≻ 0

(3.5a)

admits the dual formulation




inf κ(ρ− µ̂⊤Σ̂−1µ̂) + κ2µ̂⊤Σ̂−1[κΣ̂−1 −H]−1Σ̂−1µ̂−
κ log det(I − Σ̂

1
2HΣ̂

1
2 /κ)

s.t. κ ≥ 0, κΣ̂−1 ≻ H.
(3.5b)

Proof of Lemma 3.6.1. For any µ ∈ Rp such that (µ − µ̂)⊤Σ̂−1(µ − µ̂) ≤ ρ,

denote the set Sµ as

Sµ ≜
{
Σ ∈ Sp++ : Tr

[
ΣΣ̂−1

]
− log detΣ ≤ ρµ

}
,

where ρµ ∈ R is defined as ρµ ≜ ρ + p − log det Σ̂ − (µ − µ̂)⊤Σ̂−1(µ − µ̂).

Using these auxiliary notations, problem (3.5a) can be re-expressed as a nested

program of the form

sup
µ

µ⊤Hµ+ sup
Σ∈Sµ

Tr
[
HΣ

]

s.t. (µ− µ̂)⊤Σ̂−1(µ− µ̂) ≤ ρ,
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where we emphasize that the constraint on µ is redundant, but it is added to

ensure the feasibility of the inner supremum over Σ for every feasible value of µ

of the outer problem. We now proceed to reformulate the supremum subproblem

over Σ.

Assume momentarily thatH ̸= 0 and that µ satisfies (µ−µ̂)⊤Σ̂−1(µ−µ̂) < ρ.

In this case, one can verify that Σ̂ is a Slater point of the convex set Sµ. Using

a duality argument, we find

sup
Σ∈Sµ

Tr
[
HΣ

]
= sup

Σ≻0
inf
ϕ≥0

Tr
[
HΣ

]
+ ϕ

(
ρµ − Tr

[
Σ̂−1Σ

]
+ log detΣ

)

= inf
ϕ≥0

{
ϕρµ + sup

Σ≻0

{
Tr
[
(H − ϕΣ̂−1)Σ

]
+ ϕ log detΣ

}}
,

where the last equality follows from strong duality [Ber09b, Proposition 5.3.1].

If H − ϕΣ̂−1 ̸≺ 0, then the inner supremum problem becomes unbounded.

To see this, let σ ∈ R+ be the maximum eigenvalue of H − ϕΣ̂−1 with the

corresponding eigenvector v, then the sequence (Σk)k∈N with Σk = I + kvv⊤

attains the asymptotic maximum objective value of +∞. If H−ϕΣ̂−1 ≺ 0 then

the inner supremum problem admits the unique optimal solution

Σ⋆(ϕ) = ϕ(ϕΣ̂−1 −H)−1, (3.6)

which is obtained by solving the first-order optimality condition. By placing

this optimal solution into the objective function and arranging terms, we have

sup
Σ∈Sµ

Tr
[
HΣ

]
= inf

ϕ≥0

ϕΣ̂−1≻H

ϕ
(
ρ−(µ−µ̂)⊤Σ̂−1(µ−µ̂)

)
−ϕ log det(I−Σ̂ 1

2HΣ̂
1
2 /ϕ).

(3.7)

We now argue that the above equality also holds when µ is chosen such that

(µ− µ̂)⊤Σ̂−1(µ− µ̂) = ρ. In this case, Sµ collapses into a singleton {Σ̂}, and the

left-hand side supremum problem attains the value Tr
[
HΣ̂

]
. The right-hand

side infimum problem becomes

inf
ϕ≥0

ϕΣ̂−1≻H

− ϕ log det(I − Σ̂
1
2HΣ̂

1
2 /ϕ).

One can show using the l’Hopital rule that

lim
ϕ↑+∞

− ϕ log det(I − Σ̂
1
2HΣ̂

1
2 /ϕ) = Tr

[
HΣ̂

]
,

which implies that the equality holds. Furthermore, when H = 0, the left-

hand side of (3.7) evaluates to 0, while the infimum problem on the right-hand
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side of (3.7) also attains the optimal value of 0 asymptotically as ϕ decreases

to 0. This implies that (3.7) holds for all H ∈ Sp and for any µ satisfying

(µ− µ̂)⊤Σ̂−1(µ− µ̂) ≤ ρ.
The above line of argument shows that problem (3.5a) can now be expressed

as the following maximin problem

sup
µ:(µ−µ̂)⊤Σ̂−1(µ−µ̂)≤ρ

inf
ϕ≥0

ϕΣ̂−1≻H

µ⊤Hµ+ ϕ
(
ρ− (µ− µ̂)⊤Σ̂−1(µ− µ̂)

)
−

ϕ log det(I − Σ̂
1
2HΣ̂

1
2 /ϕ).

For any ϕ ≥ 0 such that ϕΣ̂−1 ≻ H, the objective function is concave in µ. For

any µ, the objective function is convex in ϕ. Furthermore, the feasible set of µ

is convex and compact, and the feasible set of ϕ is convex. As a consequence,

we can apply Sion’s minimax theorem [Sio58] to interchange the supremum and

the infimum operators, and problem (3.5a) is equivalent to

inf
ϕ≥0

ϕΣ̂−1≻H




ϕρ−ϕ log det(I − Σ̂

1
2HΣ̂

1
2 /ϕ)

+ sup
µ:(µ−µ̂)⊤Σ̂−1(µ−µ̂)≤ρ

µ⊤Hµ− ϕ(µ− µ̂)⊤Σ̂−1(µ− µ̂)



 .

For any ϕ which is feasible for the outer problem, the inner supremum problem

is a convex quadratic optimization problem because ϕΣ̂−1 ≻ H. Using a strong

duality argument, the value of the inner supremum equals to the value of

inf
ν≥0

{
νρ−(ν + ϕ)µ̂⊤Σ̂−1µ̂+ sup

µ
µ⊤(H−(ϕ+ ν)Σ̂−1)µ+2(ν + ϕ)(Σ̂−1µ̂)⊤µ

}

= inf
ν≥0

νρ− (ν + ϕ)µ̂⊤Σ̂−1µ̂+ (ν + ϕ)2(Σ̂−1µ̂)⊤[(ϕ+ ν)Σ̂−1 −H]−1(Σ̂−1µ̂),

where the equality follows from the fact that the unique optimal solution in the

variable µ is given by

(ϕ+ ν)[(ϕ+ ν)Σ̂−1 −H]−1Σ̂−1µ̂. (3.8)

By combining two layers of infimum problem and using a change of variables

κ← ϕ+ ν, problem (3.5a) can now be written as




inf κ(ρ− µ̂⊤Σ̂−1µ̂) + κ2µ̂⊤Σ̂−1[κΣ̂−1 −H]−1Σ̂−1µ̂

−ϕ log det(I − Σ̂
1
2HΣ̂

1
2 /ϕ)

s.t. ϕ ≥ 0, ϕΣ̂−1 ≻ H, κ− ϕ ≥ 0.

(3.9)

We now proceed to eliminate the multiplier ϕ from the above problem. To this

end, rewrite the above optimization problem as

inf κ(ρ− µ̂⊤Σ̂−1µ̂) + κ2µ̂⊤Σ̂−1[κΣ̂−1 −H]−1Σ̂−1µ̂+ g(κ)

s.t. κ ≥ 0, κΣ̂−1 ≻ H,
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where g(κ) is defined for every feasible value of κ as

g(κ) ≜

{
inf −ϕ log det(I − Σ̂

1
2HΣ̂

1
2 /ϕ)

s.t. ϕ ≥ 0, ϕΣ̂−1 ≻ H, ϕ ≤ κ.
(3.10)

Let g0(ϕ) denote the objective function of the above optimization, which is

independent of κ. Let σ1, . . . , σp be the eigenvalues of Σ̂
1
2HΣ̂

1
2 , we can write

the function g directly using the eigenvalues σ1, . . . , σp as

g0(ϕ) = −ϕ
p∑

i=1

log(1− σi/ϕ).

It is easy to verify by basic algebra manipulation that the gradient of g0 satisfies

∇g0(ϕ) =
p∑

i=1

[
log

(
ϕ

ϕ− σi

)
− ϕ

ϕ− σi

]
+ p ≤ 0,

which implies that the value of ϕ that solves (3.10) is κ, and thus g(κ) =

−κ log det(I − Σ̂
1
2HΣ̂

1
2 /κ). Substituting ϕ by κ in problem (3.9) leads to the

desired claim.

Lemma 3.6.2 (Optimal solution attaining f(β)). For any (µ̂, Σ̂) ∈ Rp × Sp++,

ρ ∈ R++ and w ∈ Rp, f(β) equals to the optimal value of the optimization

problem





sup
µ,Σ≻0

w⊤(Σ + µµ⊤)w

s.t. Tr
[
ΣΣ̂−1

]
− log det(ΣΣ̂−1)− p+ (µ− µ̂)⊤Σ̂−1(µ− µ̂) ≤ ρ,

(3.11a)

which admits the unique optimal solution

Σ⋆ = κ⋆(κ⋆Σ̂−1 − ww⊤)−1, µ⋆ = Σ⋆Σ̂−1µ̂, (3.11b)

with κ⋆ > w⊤Σ̂w being the unique solution of the nonlinear equation

ρ =
(w⊤µ̂)2w⊤Σ̂w

(κ− w⊤Σ̂w)2
+

w⊤Σ̂w

κ− w⊤Σ̂w
+ log

(
1− w⊤Σ̂w

κ

)
. (3.11c)

Moreover, we have κ⋆ ≤ w⊤Σ̂w
(
1 + 2ρ+

√
1 + 4ρ(w⊤µ̂)2

)
/(2ρ).

Proof of Lemma 3.6.2. First, note that

f(β) = sup
Q∈B

EQ
[
(β⊤X − Y )2

]
= sup

Q∈B
EQ
[
w⊤ξξ⊤w

]
= sup

(µ,Σ)∈U
w⊤ (Σ+ µµ⊤)w,
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which, by the definition of U and definition (2), equals to the optimal value of

problem (3.11a).

From the duality result in Lemma 3.6.1, problem (3.11a) is equivalent to

inf κ(ρ− µ̂⊤Σ̂−1µ̂) + (κΣ̂−1µ̂)⊤[κΣ̂−1 − ww⊤]−1(κΣ̂−1µ̂)

−κ log det(I − Σ̂
1
2ww⊤Σ̂

1
2 /κ)

s.t. κ ≥ 0, κΣ̂−1 ≻ ww⊤.

Applying [Ber09a, Fact 2.16.3], we have the equalities

det(I − Σ̂
1
2ww⊤Σ̂

1
2 /κ) = 1− w⊤Σ̂w/κ

(κΣ̂−1 − ww⊤)−1 = κ−1Σ̂ + κ−2
(
1− w⊤Σ̂w/κ

)−1
Σ̂ww⊤Σ̂,

and thus by some algebraic manipulations we can rewrite

f(β) =

{
inf κρ+ κ(w⊤µ̂)2

κ−w⊤Σ̂w
− κ log

(
1− w⊤Σ̂w/κ

)

s.t. κ > w⊤Σ̂w.
(3.12)

Let f0 be the objective function of the above optimization problem. The gradi-

ent of f0 satisfies

∇f0(κ) = ρ− (w⊤µ̂)2w⊤Σ̂w

(κ− w⊤Σ̂w)2
− w⊤Σ̂w

κ− w⊤Σ̂w
− log

(
1− w⊤Σ̂w

κ

)
.

By the above expression of ∇f0(κ) and the strict convexity of f0(κ), the value

κ⋆ that solves (3.11c) is also the unique minimizer of (3.12). In other words,

f0(κ) = f(β).

We now proceed to show that (µ⋆,Σ⋆) defined as in (3.11b) is feasible and

optimal. First, we prove feasibility of (µ⋆,Σ⋆). By direct computation,

(µ⋆ − µ̂)⊤Σ̂−1(µ⋆ − µ̂) = µ̂⊤(Σ̂−1Σ⋆ − I)Σ̂−1(Σ⋆Σ̂−1 − I)µ̂ =
(µ̂⊤w)2w⊤Σ̂w

(κ⋆ − w⊤Σ̂w)2
.

(3.13a)

Moreover, because Σ⋆Σ̂−1 = I + (κ⋆ − w⊤Σ̂w)−1Σ̂ww⊤, we have

Tr
[
Σ⋆Σ̂−1

]
− log det(Σ⋆Σ̂−1)− p = (κ⋆ − w⊤Σ̂w)−1w⊤Σ̂w + log

(
1− w⊤Σ̂w

κ⋆
)
.

(3.13b)

Combining (3.13a) and (3.13b), we have

Tr
[
Σ⋆Σ̂−1

]
− log det(Σ⋆Σ̂−1)− p+ (µ⋆ − µ̂)⊤Σ̂−1(µ⋆ − µ̂) = ρ,

where the first equality follows from the definition of D, and the second equality

follows from the fact that κ⋆ solves (3.11c). This shows the feasibility of (µ⋆,Σ⋆).
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Next, we prove the optimality of (µ⋆,Σ⋆). Through a tedious computation,

one can show that

w⊤(Σ⋆ + (µ⋆)(µ⋆)⊤)w = w⊤(Σ⋆ +Σ⋆Σ̂−1µ̂µ̂⊤Σ̂−1Σ⋆)w

=w⊤Σ̂w
(
1 +

w⊤Σ̂w

κ⋆ − w⊤Σ̂w

)
+ (µ̂⊤w)2

(
1 +

2w⊤Σ̂w

κ⋆ − w⊤Σ̂w

)
+

(w⊤µ̂)2(w⊤Σ̂w)2

(κ⋆ − w⊤Σ̂w)2

=
κ⋆w⊤Σ̂w

κ⋆ − w⊤Σ̂w
+

(κ⋆)2(µ̂⊤w)2

(κ⋆ − w⊤Σ̂w)2

=
κ⋆w⊤Σ̂w

κ⋆ − w⊤Σ̂w
+
κ⋆(µ̂⊤w)2w⊤Σ̂w

(κ⋆ − w⊤Σ̂w)2
+

κ⋆(µ̂⊤w)2

κ⋆ − w⊤Σ̂w

=κ⋆ρ− κ⋆ log
(
1− w⊤Σ̂w

κ⋆
)
+

κ⋆(µ̂⊤w)2

κ⋆ − w⊤Σ̂w
= f0(κ

⋆) = f(β),

where the antepenultimate equality follows from the fact that κ⋆ solves (3.11c),

and the last equality holds because κ⋆ is the minimizer of (3.12). Therefore,

(µ⋆,Σ⋆) is optimal to problem (3.11a). The uniqueness of (µ⋆,Σ⋆) now follows

from the unique solution of Σ and µ with respect to the dual variables from (3.6)

and (3.8), respectively.

It now remains to show the upper bound on κ⋆. Towards that end, we note

that for any κ > w⊤Σ̂w,

0 = ρ− (w⊤µ̂)2w⊤Σ̂w

(κ⋆ − w⊤Σ̂w)2
− w⊤Σ̂w

κ⋆ − w⊤Σ̂w
− log

(
1− w⊤Σ̂w

κ⋆

)

> ρ− (w⊤µ̂)2w⊤Σ̂w

(κ⋆ − w⊤Σ̂w)2
− w⊤Σ̂w

κ⋆ − w⊤Σ̂w
.

Solving the above quadratic inequality in the variable κ⋆ − w⊤Σ̂w yields the

desired bound. This completes the proof.

We are now ready to prove Proposition 3.4.2.

Proof of Proposition 3.4.2. The convexity of f follows immediately by noting

that it is the pointwise supremum of the family of convex functions EQ[(β
⊤X −

Y )2] parametrized by Q.

To prove the continuously differentiability and the formula for the gradient,

recall the expression (3.12) for the function f(β):

f(β) =

{
inf κρ+ κ(w⊤µ̂)2

κ−w⊤Σ̂w
− κ log

(
1− w⊤Σ̂w/κ

)

s.t. κ > w⊤Σ̂w.
(3.14)
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Problem (3.14) has only one constraint. Therefore, LICQ (hence MFCQ) always

holds, which implies that the Lagrange multiplier ζβ of problem (3.14) is unique

for any β. Also, it is easy to see that the constraint of problem (3.14) is never

binding. So, ζβ = 0 for any β. The Lagrangian function Lβ : R × R → R is

given by

Lβ(κ, ζ) = ρκ+
ω2κ

κ− ω1
− κ log

(
1− ω1

κ

)
+ ζ(ω1 − κ),

where ω1 = w⊤Σ̂w and ω2 = (w⊤µ̂)2. The first derivative with respect to κ is

dLβ

dκ
(κ, ζ) = ρ− ω1ω2

(κ− ω1)2
− log

(
1− ω1

κ

)
− ω1

κ− ω1
− ζ.

The second derivative with respect to κ is

d2Lβ

dκ2
(κ, ζ) =

ω1

(κ− ω1)3

(
2ω2 +

ω1

κ
(κ− ω1)

)
.

From the proof of Lemma 3.6.2, we have that the minimizer κβ of problem (3.14)

is precisely the κ⋆ defined by equation (3.11c) (below we write κβ instead of κ⋆

to emphasize and keep track of the dependence on β). Therefore, for any β, the

minimizer κβ exists and is unique. So, there exists some constant ηβ > 0 such

that
d2Lβ

dκ2
(κβ , ζβ) ≥ ηβ > 0.

Therefore, for any β, the strong second order condition at κβ holds (see [Sti18,

Definition 6.2]). By [Sti18, Theorem 6.7],

∇f(β) = ∇βLβ(κβ , ζβ) = ∇βLβ(κβ , 0) ∀β ∈ Rd. (3.15)

Then we compute

∇wLβ(κ, ζ) = ∇w

[
κ(w⊤µ̂)2

κ− w⊤Σ̂w
− κ log

(
1− w⊤Σ̂w

κ

)
+ ζ(w⊤Σ̂w − κ)

]

=
2κω2

(κ− ω1)2
Σ̂w +

2κ

(κ− ω1)
µ̂µ̂⊤w +

2κ

(κ− ω1)
Σ̂w + 2ζΣ̂w.

Hence,

∇βLβ(κ, ζ) =
dw

dβ

⊤
· ∇wLβ(κ, ζ) = [Id 0d] · ∇wLβ(κ, ζ),

which, when combined with (3.15), yields the desired gradient formula

∇f(β) =
2κβ

(
ω2Σ̂w+(κβ−ω1)(Σ̂+µ̂µ̂⊤)w

)
1:d

(κβ − ω1)2
.
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By [Sti18, Theorem 6.5], the function β 7→ κβ is locally Lipschitz continuous,

i.e., for any β ∈ Rd, there exists cβ , ϵβ > 0 such that if ∥β′ − β∥2 ≤ ϵβ , then

|κβ′ − κβ | ≤ cβ ∥β′ − β∥2 .

Note that ω1 and ω2 are both locally Lipschitz continuous in β. Also, it is easy

to see that κβ > ω1 for any β. Thus, ∇f(β) is locally Lipschitz continuous in

β.

Proof of 3.4.3. Noting that problem (3.3) is the barycenter problem between

two Gaussian distributions with respect to the Wasserstein distance, the proof

then directly follows from [AC11, §6.2] and [McC97, Example 1.7].

Proof of Proposition 3.4.4. Again we omit the subscripts λ and ρ. Reminding

that ξ = (X,Y ), we find

sup
Q∈B

EQ[(β
⊤X − Y )2] = sup

Q∈B
EQ[(w

⊤ξ)2]

=





inf κ
(
ρ− ∥µ̂∥22 − Tr

[
Σ̂
])

+ z +Tr
[
Z
]

s.t. κ ∈ R+, z ∈ R+, Z ∈ Sp+[
κI − ww⊤ κΣ̂

1
2

κΣ̂
1
2 Z

]
⪰ 0,

[
κI − ww⊤ κµ̂

κµ̂⊤ z

]
⪰ 0

=

{
inf κ

(
ρ− ∥µ̂∥22 − Tr

[
Σ̂
])

+ κ2µ̂⊤(κI − ww⊤)−1µ̂+ κ2 Tr
[
Σ̂(κI − ww⊤)−1

]

s.t. κ ≥ ∥w∥22,
(3.16)

where the second equality follows from [Kuh+19, Lemma 2]. By applying [Ber09a,

Fact 2.16.3], we find

(κI − ww⊤)−1 = κ−1I + κ−2
(
1− ∥w∥22/κ

)−1
ww⊤. (3.17)

Combining (3.16) and (3.17), we get

sup
Q∈B

EQ[(β
⊤X − Y )2] =

{
inf κρ+ κw⊤(Σ̂ + µ̂µ̂⊤)w/(κ− ∥w∥22)
s.t. κ ≥ ∥w∥22.

One can verify through the first-order optimality condition that the optimal

solution κ⋆ is

κ⋆ = ∥w∥2


∥w∥2 +

√
w⊤(Σ̂ + µ̂µ̂⊤)w

ρ


 ,
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and by replacing this value κ⋆ into the objective function, we find

sup
Q∈B

EQ[(β
⊤X − Y )2] =

(√
w⊤(Σ̂ + µ̂µ̂⊤)w +

√
ρ∥w∥2

)2
,

which then completes the proof.

Proof of Section 3.5

Lemma 3.6.3 (Compactness). For k ∈ {S,T}, the set

Vk = {(µ,M) ∈ Rp×Sp++ :M −µµ⊤ ∈ Sp++,D((µ,M −µµ⊤) ∥ (µ̂k, Σ̂k)) ≤ ρk}

is convex and compact. Furthermore, the set

V ≜ {(µ,M) ∈ Rp × Sp++ : (µ,M − µµ⊤) ∈ UρS,ρT
}

is also convex and compact.

Proof of Lemma 3.6.3. For any (µ,M) ∈ Rp × Sp++ such that M − µµ⊤ ∈ Sp++,

we find

D
(
(µ,M − µµ⊤) ∥ (µ̂k, Σ̂k)

)

=(µ− µ̂k)
⊤Σ̂−1

k (µ− µ̂k) + Tr
[
(M − µµ⊤)Σ̂−1

]
− log det((M − µµ⊤)Σ̂−1

k )− p
=µ̂⊤

k Σ̂
−1
k µ̂k − 2µ̂⊤

k Σ̂
−1
k µ+Tr

[
M Σ̂−1

k

]
− log det(M Σ̂−1

k )− log(1− µ⊤M−1µ)− p,
(3.18)

where in the last expression, we have used the determinant formula [Ber09a,

Fact 2.16.3] to rewrite

det(M − µµ⊤) = (1− µ⊤M−1µ) detM.

Because M − µµ⊤ ∈ Sp++, one can show that 1− µ⊤M−1µ > 0 by invoking

the Schur complement, and as such, the logarithm term in the last expression

is well-defined. Moreover, we can write

Vk =





(µ,M) :

(µ,M) ∈ Rp × Sp++, M − µµ⊤ ∈ Sp++, ∃t ∈ R+ :

µ̂⊤
k Σ̂

−1
k µ̂k − 2µ̂⊤

k Σ̂
−1
k µ+Tr

[
M Σ̂−1

k

]

− log det(M Σ̂−1
k )− log(1− t)− p ≤ ρ[

M µ

µ⊤ t

]
⪰ 0





, (3.19)

which is a convex set. Notice that by Schur complement, the semidefinite con-

straint is equivalent to t ≥ µ⊤M−1µ.
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Next, we show that Vk is compact. Denote by Uk = {(µ,Σ) ∈ Rp × Sp+ :

D((µ,Σ) ∥ (µ̂k, Σ̂k)) ≤ ρk}. Then, it is easy to see that Vk is the image of Uk

under the continuous mapping (µ,Σ) 7→ (µ,Σ + µµ⊤). Therefore, it suffices to

prove the compactness of Uk. Towards that end, we note that

D
(
(µ,Σ) ∥ (µ̂k, Σ̂k)

)
= (µ̂k − µ)⊤Σ̂−1

k (µ̂k − µ) +Tr
[
ΣΣ̂−1

k

]
− log det(ΣΣ̂−1

k )− p

is a continuous and coercive function in (µ,Σ). Thus, as a level set of D
(
(µ,Σ) ∥

(µ̂k, Σ̂k)
)
, Uk is closed and bounded, and hence compact.

To prove the last claim, by the definitions of V and UρS,ρT
we write

V = {(µ,M) ∈ Rp × Sp++ : (µ,M − µµ⊤) ∈ UρS,ρT}
= {(µ,M) ∈ Rp × Sp++ : (µ,M) ∈ VS} ∩ {(µ,M) ∈ Rp × Sp++ : (µ,M) ∈ VT}∩

(3.20)

{(µ,M) ∈ Rp × Sp++ :M ⪰ εI}. (3.21)

The convexity of {(µ,M) ∈ Rp × Sp++ : (µ,M − µµ⊤) ∈ UρS,ρT} then follows

from the convexity of the three sets in (3.21). Furthermore, from the first part

of the proof, we know that both {(µ,M) ∈ Rp × Sp++ : (µ,M) ∈ VS} and

{(µ,M) ∈ Rp × Sp++ : (µ,M) ∈ VT} are compact sets, so is their intersection.

Also, the last set {(µ,M) ∈ Rp × Sp++ : M ⪰ εI} in (3.21) is closed. Since any

closed subset of a compact set is again compact, we conclude that V is compact.

This completes the proof.

Proof of Theorem 3.5.2. As ξ = (X,Y ), we can rewrite

min
β∈Rd

sup
Q∈BρS,ρT

EQ[(β
⊤X − Y )2] (3.22a)

= min
β∈Rd

sup
Q∈BρS,ρT

[
β

−1

]⊤
EQ[ξξ

⊤]

[
β

−1

]
(3.22b)

= min
β∈Rd

sup
(µ,M−µµ⊤)∈UρS,ρT

[
β

−1

]⊤
M

[
β

−1

]

= min
β∈Rd

sup
(µ,M)∈V

[
β

−1

]⊤
M

[
β

−1

]

= sup
(µ,M)∈V

min
β∈Rd

[
β

−1

]⊤
M

[
β

−1

]
(3.22c)
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= sup
(µ,M)∈V

MY Y −M⊤
XYM

−1
XXMXY (3.22d)

where (3.22c) follows from the Sion’s minimax theorem, which holds because

the objective function is convex in β, concave in M , and Lemma 3.6.3. Equa-

tion (3.22d) exploits the unique optimal solution in β as β⋆ = M−1
XXMXY , in

which the matrix inverse is well defined because M ≻ 0 for any feasible M .

Finally, after an application of the Schur complement reformulation to (3.22d),

the nonlinear semidefinite program in the theorem statement follows from rep-

resentations (3.19) and (3.21). This completes the proof.

Proof of Proposition 3.5.3. It is well-known that the space of probability mea-

sures equipped with the Wasserstein distance W2 is a geodesic metric space (see

[Vil08, Section 7] for example), meaning that for any two probability distribu-

tions N0 and N1, there exists a constant-speed geodesic curve [0, 1] ∋ a 7→ Na

satisfying

W2(Na,Na′) = |a− a′|W2(N0,N1) ∀a, a′ ∈ [0, 1].

The claim follows trivially if W2(NS,NT) ≤ √ρS. Therefore, we assume

W2(NS,NT) >
√
ρS.

Consider the the geodesic Nt from N0 = NS to N1 = NT. Also, denote by

Uk = {(µ,Σ) ∈ Rp × Sp+ : D((µ,Σ) ∥ (µ̂k, Σ̂k)) ≤ ρk} for k ∈ {S,T}. Then, US

and UT has empty intersection if and only if

W2(Na,NS) ≤
√
ρS =⇒W2(Na,NT) >

√
ρT ∀a ∈ [0, 1],

which is in turn equivalent to

aW2(NT,NS) ≤
√
ρS =⇒ (1− a)W2(NT,NS) ≤

√
ρT ∀a ∈ [0, 1].

Picking a =
√
ρS

W2(NT,NS)
∈ (0, 1), then we have

(
1−

√
ρS

W2(NT,NS)

)
W2(NT,NS) ≤

√
ρT.

The above inequality can be rewritten as

W2(NT,NS) ≤
√
ρS +

√
ρT,

which contradicts with our supposition

ρT ≥
(√

W((µ̂S, Σ̂S) ∥ (µ̂T, Σ̂T))−
√
ρS

)2

.

Thus, US and UT has non-empty intersection.
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Proof of Theorem 3.5.4. As ξ = (X,Y ), we can rewrite

min
β∈Rd

sup
Q∈BρS,ρT

(P̂)
EQ[(β

⊤X − Y )2] (3.23a)

= min
β∈Rd

sup
(µ,M−µµ⊤)∈UρS,ρT

[
β

−1

]⊤
M

[
β

−1

]

= sup
(µ,M−µµ⊤)∈UρS,ρT

min
β∈Rd

[
β

−1

]⊤
M

[
β

−1

]
(3.23b)

= sup
(µ,M−µµ⊤)∈UρS,ρT

MY Y −M⊤
XYM

−1
XXMXY (3.23c)

where (3.23b) follows from the Sion’s minimax theorem, which holds because

the objective function is convex in β, concave in M , and the set UρS,ρT is

compact [SA+18, Lemma A.6]. Equation (3.23c) exploits the unique optimal

solution in β as β⋆ = M−1
XXMXY , in which the matrix inverse is well defined

because M − µµ⊤ ⪰ εI for any feasible M .

Additional Numerical Results

In the following the details of the datasets used in Section 3.6 are presented.

• Uber&Lyft4 has NS = 5000 instances in the source domain and 5000 avail-
able samples in the target domain.

• US Births (2018)5 has NS = 5172 samples in the source domain and 4828
available samples in the target domain.

• Life Expectancy6 has NS = 1407 instances in the source domain and 242
available samples in the target domain.

• House Prices in King County7 has NS = 543 instances in the source
domain and 334 available samples in the target domain.

• California Housing Prices8 has NS = 9034 instances in the source domain,
and 6496 available instances in the target domain.

4Available publicly at https://www.kaggle.com/brllrb/

uber-and-lyft-dataset-boston-ma
5Available publicly at https://www.kaggle.com/des137/us-births-2018
6Available publicly at https://www.kaggle.com/kumarajarshi/life-expectancy-who
7Available publicly at https://www.kaggle.com/c/house-prices-advanced-regression-techniques/

data
8The modified version that we use is available publicly at https://www.kaggle.

com/camnugent/california-housing-prices and the original dataset is available publicly

at https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html

https://www.kaggle.com/brllrb/uber-and-lyft-dataset-boston-ma
https://www.kaggle.com/brllrb/uber-and-lyft-dataset-boston-ma
https://www.kaggle.com/des137/us-births-2018
https://www.kaggle.com/kumarajarshi/life-expectancy-who
https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data
https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data
https://www.kaggle.com/camnugent/california-housing-prices
https://www.kaggle.com/camnugent/california-housing-prices
https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html
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(a) US Births (2018) (b) Life Expectancy

(c) House Prices in KC (d) California Housing

Figure 3.5: Cumulative loss averaged over 100 runs on logarithmic scale
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Figure 3.5 demonstrates how the average cumulative loss in (3.1) grows over time
for the US Births (2018), Life Expectancy, House Prices in KC and California
Housing datasets. The results suggest that the IR-WASS and SI-WASS experts
perform favorably over the competitors in that their cumulative loss at each
time step is lower than that of most other competitors.
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4. Learning Fair and

Robust Models

4.1. Introduction

Machine learning models are increasingly being harnessed to aid decision-making
across key sectors, influencing crucial outcomes such as employment, loan ap-
provals, medical prescriptions, and judicial decisions on bail or parole. The
potential for algorithms to surpass human decision-makers lies in their remark-
able capacity to analyze extensive datasets beyond human capabilities and their
efficiency in executing intricate calculations rapidly. Moreover, algorithms are
perceived to provide a more objective alternative to human decision-making,
which is often marred by subjectivity and vulnerability to biases. While al-
gorithmic decision-making processes boast efficiency and comprehensive data
utilization, their supposed objectivity is sometimes misleading. For instance,
research has highlighted biases in algorithms within the U.S. criminal justice
system, falsely suggesting that African Americans are likelier to commit crimes
than white Americans [Cho17; Mul16]. Similarly, Google’s ad-targeting algo-
rithm has been shown to preferentially present higher-paying executive job ads
to men over women [DTD15]. Moreover, an AI-driven hiring tool used by Ama-
zon was found to be biased against women applying for software development
and technical roles [Das18].

There are several possible explanations for biased behaviour of machine
learning algorithms. First, the training data could already be corrupted by
human biases due to biased device measurements or historically biased human
decisions, amongst others [FN96]. Machine learning algorithms are designed
to learn and preserve these biases [BG18; Man+16]. Second, minimizing the
average prediction error privileges the majority populations over the minorities.
Third, sensitive attributes can have an implicit detrimental effect on the deci-
sion making process even if they are not explicitly represented in the training
data. Sensitive attributes are any attributes such as the race, gender or age
of a person that distinguish privileged from unprivileged individuals. It is of-
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ten illegal to use these sensitive attributes for decision making. Thus, a näıve
approach to mitigate algorithmic biases would be to remove all sensitive in-
formation from the training data. This leads to fairness through unawareness.
However, sensitive attributes are often correlated to other attributes that seem
less problematic (such as a person’s hair length or skin pigmentation), and this
enables algorithms to make unfair recommendations based on predictions of the
sensitive attributes. Ultimately, this results in an implicit use of the sensitive
attributes under the guise of fairness [BS16; BYF20; Kle+18; LMC18].

The scientific community has spent substantial efforts to establish mathe-
matical definitions of algorithmic fairness and to ensure that machine learning
models are actually fair in the sense of these definitions. In the following, we
explain some of the most popular fairness definitions in the context of binary
classification and identify without loss of generality the positive outcome with
the “advantaged” outcome, such as “admission to a college” or “receiving a
promotion.” Demographic parity [Dwo+12] requires the likelihood of a positive
outcome (e.g., a person being hired) to be the same regardless of whether the
person is in the protected (e.g., female) group or not. Equalized odds [Har+16]
requires the probability of a person in the positive class being correctly classi-
fied and the probability of a person in a negative class being misclassified should
both be the same for persons in the privileged and unprivileged groups. Equal
opportunities [Har+16] can be viewed as a relaxation of the equalized odds cri-
terion as it requires non-discrimination only within the privileged group. Hence,
equal opportunities requires the true positive rates to be equal in the privileged
and unprivileged groups. Other notions of fairness include the disparate im-
pact [Fel+15] and disparate mistreatment [Zaf+17a] criteria. The central idea
behind any notion of fairness is to require the decisions of a classifier to be
balanced among the privileged and unprivileged groups and label sets. For a
comprehensive survey and further discussions of fairness in machine learning we
refer to [Ber+18; CR20; CD+17; Meh+19].

Logistic regression is one of the most popular classification methods [HJLS13].
Its objective is to establish a probabilistic relationship between a random feature
vector X ∈ X = Rp and a random binary explanatory variable Y ∈ Y = {0, 1}.
We assume here that there is a single sensitive attribute A ∈ A = {0, 1}, which
is also random and is not contained in the feature vector X, and we consider
the privileged learning setting [VV09; QS17], where the sensitive information
is only available at the training stage but not at the testing stage. Note that
predicting Y from X ensures fairness through unawareness. In the remainder,
we denote by {(x̂i, âi, ŷi)}Ni=1 a finite set of training samples that are drawn
independently from the probability distribution P of the joint random vector
(X,A, Y ). In logistic regression, the conditional probability P[Y = 1|X = x] is
modeled as the sigmoidal hypothesis

hβ(x) = (1 + exp(−β⊤x))−1,

where the weight vector β ∈ Rp constitutes an unknown regression parame-
ter. Classical logistic regression determines β by solving the tractable convex
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optimization problem

min
β

1

N

N∑

i=1

ℓβ(x̂i, ŷi), ℓβ(x, y) = −y log(hβ(x))− (1− y) log(1− hβ(x)) (4.1)

which minimizes the empirical log-loss, that is, the negative log-likelihood func-
tion of the training data. To make logistic regression fair, we will include an un-
fairness measure in problem (4.1). Specifically, we will either include a fairness
constraint that requires the unfairness measure to fall below a given threshold,
or we will include the unfairness measure as a penalty term in the objective
function. As it is not possible to satisfy multiple notions of fairness simul-
taneously [Ber+18; KMR16], we focus on unfairness measures related to equal
opportunities. However, our method is general enough to cater for other notions
of fairness.

Definition 4 (Unfairness measure). If f : [0, 1] → R is measurable, then the

unfairness of a hypothesis h : X → [0, 1] with respect to f under a distribution

Q of (X,A, Y ) is

Uf (Q, h) =
∣∣EQ[f(h(X))|A = 1, Y = 1]− EQ[f(h(X))|A = 0, Y = 1]

∣∣.

The largerUf (Q, h), the more unfair is the hypothesis h, and ifUf (Q, h) = 0,
then the hypothesis is maximally fair. Different choices of f induce different
notions of fairness. If f(z) = 1{z≥τ}, then Uf (Q, h) = 0 means that h is
fair in view of the equal opportunities criterion [Har+16]. Here, τ ∈ [0, 1] is
the classification threshold. If f(z) = z, then Uf (Q, h) = 0 means that the
hypothesis h is fair in view of the probabilistic equal opportunities criterion for
probabilistic classifiers [Ple+17].

It is well known that increasing the fairness of an algorithm typically reduces
its accuracy [Fri+19; LMC18; MW18]. This prompts us to introduce an ideal
fair logistic regression model

min
β

EP[−Y log(hβ(X))− (1− Y ) log(1− hβ(X))] + ηUf (P, hβ), (4.2)

where η ∈ R+ is a tuning parameter that balances the trade-off between accu-
racy and fairness. Unfortunately, problem (4.2) is difficult to solve for several
reasons. If f(z) = 1{z≥τ}, then the unfairness measure Uf (P, hβ) is discontinu-
ous in β, and if f(z) = z, then Uf (P, hβ)—though smooth—is still non-convex
in β. In both cases, it seems difficult to solve (4.2) to global optimality. In addi-
tion, the distribution P is unknown and only indirectly observable through the
N independent training samples. Thus, an important input for problem (4.2)
is unavailable in practice. The latter shortcoming could be addressed by simply
replacing the unknown true distribution P in (4.2) with the empirical distribu-

tion P̂N , which is defined as the discrete uniform distribution on the N training
samples. However, this näıve approach could result in over-fitting and yield
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classifiers with a poor out-of-sample performance (both in terms of accuracy
and fairness) if N is small relative to p.

The concerns over poor out-of-sample performance prompt us to pursue
a distributionally robust approach, whereby the objective function in (4.2) is
minimized in view of the most adverse distribution Q within some ambiguity set
that reflects all available distributional information. The ambiguity set could be
characterized through moment and support information [DY10; GS10; WKS14],

or it could be defined as a ball around P̂N with respect to a distance measure
for distributions such as the Prohorov metric [EI06] or the Kullback-Leibler di-
vergence [HH13]. Due to its attractive measure concentration properties, we
use here the Wasserstein metric to construct ambiguity sets [Kuh+19; MEK18;
PW07]. Moreover, Wasserstein distributional robustness offers probabilistic in-
terpretations for popular regularization techniques [BKM19; GCK17; SMK15].

The main contributions of this chapter can be summarized as follows.

1. Log-probabilistic equal opportunities: We propose a new unfairness
measure and the corresponding fairness criterion, termed log-probabilistic
equal opportunities, which approximates the probabilistic equal opportuni-
ties criterion. We then prove that the empirical (i.e., P = P̂N ) fair logistic
regression model (4.2) with the new unfairness measure is equivalent to a
tractable convex program.

2. Distributionally robust fair logistic regression: We robustify the fair
logistic regression model against all distributions in a Wasserstein ball cen-
tered at P̂N , and we prove that this model is still equivalent to a tractable
convex program if unfairness is quantified under the log-probabilistic equal
opportunities criterion. Experiments suggest that the resulting classifiers
improve fairness at a marginal loss of accuracy.

3. Unfairness quantification: Using similar techniques fromWasserstein dis-
tributionally robust optimization, we develop two highly tractable linear pro-
grams whose optimal values provide confidence bounds on the unfairness of
any fixed classifier with respect to the (classical) probabilistic equal oppor-
tunities criterion. We also devise a hypothesis test that checks whether a
given classifier is fair in view of equal opportunities.

The existing literature on algorithmic fairness can be subdivided into three
categories. Papers in the first category propose to pre-process the training data
before solving a plain-vanilla classification problem [Cal+17; Gor+19; Fel+15;
KC12; LRT11; Sam+18; Zem+13]. Papers in the second category enforce fair-
ness during the training step by appending fairness constraints to the classifi-
cation problem [Don+18; MW18; Woo+17; Zaf+17a; Zaf+17b], by including
regularization terms that penalize discrimination [Bah+20; HV19; Kam+12;
KAS11] or by (approximately) penalizing any mismatches between the true
positive rates and the false negative rates across different groups [BL17]. Sev-
eral other papers in this category propose adversarial approaches to algorithmic
fairness [ES15; Gar+19; Has+18; KKG18; Mad+18; Rez+20; YBS20; ZLM18].
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Papers in the third category modify a pre-trained classifier in order to increase
its fairness properties while preserving its classification performance as much as
possible [CD+17; Dwo+18; Har+16; MW18].

The method proposed here can be viewed as an adversarial approach per-
taining to the second category. There are only few other papers that study
fairness from a distributionally robust perspective. A classification model with
fairness constraints embedded in the ambiguity set is proposed in [Rez+20], a re-
peated loss minimization model with a χ2-divergence ambiguity set is considered
in [Has+18] and robust fairness constraints based on a total variation ambiguity
set that captures noisy protected group information is described in [Wan+20b].
In addition, a fair distributionally robust classification model with a Wasser-
stein ambiguity set is studied in [YBS20], but this model deals with individual
fairness and does not admit a tractable convex reformulation. In contrast, we
consider marginally constrained Wasserstein ambiguity sets to enforce a notion
of group fairness and provide a tractable convex reformulation.

4.2. Fair Logistic Regression

Recall that the fair logistic regression model (4.2) is non-convex if f(z) = 1{z≥τ},
which induces equal opportunities, or if f(z) = z, which induces probabilistic
equal opportunities. In order to convexify (4.2), we thus propose a new un-
fairness measure corresponding to f(z) = log(z), and we refer to the fairness
criterion induced by the condition Uf (Q, h) = 0 as log-probabilistic equal oppor-
tunities. A classifier is fair in view of this criterion if the expected log-probability
of a person in the positive class being correctly classified is the same for persons
in the privileged and unprivileged groups. We also note that the log-probability
function f(hβ(x)) = − log(1 + exp(−β⊤x)) can be viewed as a concave approx-
imation of the sigmoid function hβ(x). Concave (or convex) approximations of
non-convex functions are routinely used in machine learning and arise, for ex-
ample, when one replaces a non-convex loss function (such as the zero-one loss)
with a convex surrogate loss function (such as the hinge loss or the log-loss) or
when one replaces a non-convex risk measure (such as the value-at-risk) with a
convex one (such as the conditional value-at-risk).

We now denote by p̂ay = P̂N (A = a, Y = y) the empirical proportion of
people with attribute a ∈ A in class y ∈ Y, and we define ra = 1/p̂a1 for all
a ∈ A. Using this notation, we can prove that the logistic regression model (4.2)
with the log-probabilistic equal opportunities unfairness measure is tractable
under the empirical distribution for all sufficiently small η.

Theorem 4.2.1 (Fair logistic regression). If f(z) = log(z), η ≤ min {p̂11, p̂01}
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and P = P̂N , then problem (4.2) is equivalent to the tractable convex program

min
β∈Rp,t∈R

t

s.t. EP̂N
[ℓβ(X,Y ) + ηr1 log(hβ(X))1(1,1)(A, Y )−

ηr0 log(hβ(X))1(0,1)(A, Y )] ≤ t
EP̂N

[ℓβ(X,Y ) + ηr0 log(hβ(X))1(0,1)(A, Y )−
ηr1 log(hβ(X))1(1,1)(A, Y )] ≤ t,

where the expectation under P̂N is a finite sum.

4.3. Distributionally Robust Fair Logistic Regres-

sion

Approximating the unknown data-generating distribution P with the empirical
distribution P̂N may result in overfitting. Following [BKM19; GCK17; SMK15],

we thus regularize the nominal classification problem under P̂N by robustifying
it against all distributions in a Wasserstein ball around P̂N that contains the
unknown true distribution P with high confidence.

Definition 5 (Wasserstein distance). The type-1 Wasserstein distance between

two probability distributions Q1 and Q2 of a random vector ξ ∈ Rn is defined as

W(Q1,Q2) = inf
π∈Π(Q1,Q2)

Eπ[c(ξ1, ξ2)], (4.3)

where Π(Q1,Q2) denotes the set of all joint distributions of the random vectors

ξ1 ∈ Rn and ξ2 ∈ Rn under which ξ1 and ξ2 have marginal distributions Q1

and Q2, respectively, and where c : Rn × Rn → [0,∞] constitutes a lower semi-

continuous ground metric.

When computing Wasserstein distances between distributions on X ×A×Y,
we will use

c
(
(x, a, y), (x′, a′, y′)

)
= ∥x− x′∥+ κA|a− a′|+ κY |y − y′| (4.4)

as the ground metric, where ∥·∥ is a norm on Rp and κA, κY ∈ (0,∞]. Using the
Wasserstein distance with the ground metric (4.4), we define the ambiguity set

Bρ(P̂N ) as the Wasserstein ball of radius ρ ≥ 0 around the empirical distribution

P̂N , intersected with the set of all distributions under which the marginal of
(A, Y ) matches the empirical marginal. Thus,

Bρ(P̂N ) =
{
Q ∈M :W(Q, P̂N ) ≤ ρ, Q(A = a, Y = y) = p̂ay ∀a ∈ A, y ∈ Y

}
,
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whereM stands for the set of all possible distributions on X ×A×Y. Note that
Bρ(P̂N ) is non-empty as it contains at least P̂N . Note also that all distributions

in Bρ(P̂N ) can be obtained by reshaping P̂N at a transportation cost of at
most ρ. The parameter κA represents the transportation cost of changing the
sensitive attribute from A to 1 − A, and thus it can be viewed as our trust
in A. A similar interpretation applies to κY . We can now formally introduce
the distributionally robust fair logistic regression model

min
β

sup
Q∈Bρ(P̂N )

EQ[−Y log(hβ(X))−(1−Y ) log(1−hβ(X))]+ηUf (Q, hβ), (4.5)

which minimizes a combination of the expected log-loss and some unfairness
measure under the most adverse distribution in Bρ(P̂N ). Wasserstein ambiguity
sets with marginal constraints were first studied in [Fro+19], where it was found
that restricting the marginals of the outputs and/or the features eliminates un-
realistic data distributions from the ambiguity set and often improves the per-
formance of the resulting classifiers while maintaining strong robustness guar-
antees. We are now ready to prove that (4.5) is tractable if the log-probabilistic
equal opportunities unfairness measure is used and if η is sufficiently small.

Theorem 4.3.1 (Distributionally robust fair logistic regression). If f(z) =

log(z) and η ≤ min{p̂11, p̂01}, then problem (4.5) is equivalent to the tractable

convex program

min t

s.t. β ∈ Rp, t ∈ R, λ0, λ1 ∈ R+, µ0, µ1 ∈ R|A|×|Y|, ν0, ν1 ∈ RN

∥β∥∗(1 + ηr0) ≤ λ1, ∥β∥∗(1 + ηr1) ≤ λ0
ρλa′ +

∑
a∈A, y∈Y

p̂ay µa′ay +
1
N

N∑
i=1

νa′i ≤ t ∀a′ ∈ {0, 1}

log(hβ(−x̂i)) + κA|a− âi|λa + κY |ŷi|λa + µaa0 + νai ≥ 0

log(hβ(−x̂i)) + κA|a′ − âi|λa + κY |ŷi|λa + µaa′0 + νai ≥ 0

(1− ηra) log(hβ(x̂i)) + κA|a− âi|λa + κY |1− ŷi|λa + µaa1 + νai ≥ 0

(1 + ηra′) log(hβ(x̂i)) + κA|a′ − âi|λa + κY |1− ŷi|λa + µaa′1 + νai ≥ 0





∀i ∈ [N ],∀a, a′ ∈ A : a′ = 1− a,

where ∥ · ∥∗ represents the norm dual to ∥ · ∥ on Rp.

Note that the assumption on η implies that ηra = η/p̂a1 ≤ 1 for all a ∈ A,
and thus it is easy to verify that the reformulation of Theorem 4.3.1 is indeed
convex. For many commonly used norms, this reformulation can be addressed
with an exponential cone solver such as MOSEK. Alternatively, one may develop
customized first-order methods by adapting the algoritghm proposed in [LHS19]
to account for an unfairness measure in the objective.
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4.4. Unfairness Quantification

A regulator may find it difficult to quantify the degree of discrimination of each
pre-trained logistic classifier because this quantity depends critically on the test
data at hand. To this end, we first define the worst (highest) possible unfairness
levels of the classifier h across all distributions in a Wasserstein ambiguity set
of the form Bρ(P̂N ) as

Uf = supQ∈Bρ(P̂N )Uf (Q, h).

Here, by slight abuse of notation, P̂N should be interpreted as the discrete
uniform distribution on N test samples {(x̂i, âi, ŷi)}Ni=1 drawn independently
from P.

The first main result of this section is to show that Uf can be re-expressed
in terms of the optimal values of two highly scalable linear programs when
f(z) = 1{z≥τ}, that is, when unfairness is measured with respect to the standard
equal opportunity criterion. Thus, there is no need to resort to approximations
involving log-probabilities.

To see this, we define X0 = {x ∈ X : h(x) < τ} and X1 = {x ∈ X : h(x) ≥
τ}, and we set

V(a, a′)= sup
Q∈Bρ(P̂N )

Q[X ∈ X1|A = a, Y = 1]−Q[X ∈ X1|A = a′, Y = 1] ∀a, a′ ∈ A.

(4.6)
In addition, we define dyi = infx∈Xy

∥x − x̂i∥ for all y ∈ Y and i ∈ [N ] as the
distances of the testing features x̂i to the sets Xy. Our ability to quantify the
fairness of h will critically depend on whether dyi can be computed efficiently.
For linear classifiers the sets X1 and X0 constitute half-spaces, and therefore dyi
can be computed in closed form. For more complicated classifiers such as neural
networks, however, one may have to resort to heuristics to estimate dyi. Using
this notation, we can state the following main result.

Theorem 4.4.1 (Unfairness quantification). If f(z) = 1{z≥τ}, then we obtain

Uf = max{V(1, 0),V(0, 1)}, where V(a, a′) can be computed for all a, a′ ∈ A
with a ̸= a′ as the optimal value of a tractable linear program, that is,

V(a, a′) =





min ρλ+ p̂⊤µ+N−11⊤ν

s.t. λ ∈ R+, µ ∈ R2×2, ν ∈ RN

νi + κA|a− âi|λ+ κY |ŷi|λ+ µa0 ≥ 0

νi + κA|a′ − âi|λ+ κY |ŷi|λ+ µa′0 ≥ 0

νi + κA|a− âi|λ+ κY |1− ŷi|λ+ µa1 ≥ 0

νi + d1iλ+ κA|a− âi|λ+ κY |1− ŷi|λ+ µa1 ≥ ra
νi + d0iλ+ κA|a′ − âi|λ+ κY |1− ŷi|λ+ µa′1 ≥ 0

νi + κA|a′ − âi|λ+ κY |1− ŷi|λ+ µa′1 ≥ −ra′





∀i ∈ [N ].
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The bounds on the unfairness measure related to equal opportunity can be
computed even faster if we have absolute trust in A and Y , that is, if κA =
κY = ∞. To see this, we select x̂⋆i ∈ argminxi∈∂X1

∥xi − x̂⋆i ∥ and we assume
for the simplicity of exposition that ∥x̂i − x̂⋆i ∥ > 0 for all i ∈ [N ]. We define
non-negative rewards and weights through

(caa′i, waa′i) =





(ra, d1i) if x̂i ∈ int(X0), âi = a, ŷi = 1,

(ra′ , d0i) if x̂i ∈ int(X1), âi = a′, ŷi = 1,

(0,+∞) otherwise

for all a, a′ ∈ A and i ∈ [N ]. In addition, we introduce the notational shorthand

V̂(a, a′) = P̂N [X ∈ X1|A = a, Y = 1]− P̂N [X ∈ X1|A = a′, Y = 1] ∀a, a′ ∈ A,

which can be evaluated by computing a finite sum. We can then prove the
following theorem.

Theorem 4.4.2 (Absolute trust in A and Y ). If f(z) = 1{z≥τ} and κA = κY =

∞, then

V(a, a′)=V̂(a, a′)+ max
z∈[0,1]N





1

N

∑

i∈[N ]

caa′izi :
1

N

∑

i∈[N ]

waa′izi ≤ ρ



 ∀a, a

′ ∈ A.

(4.7)

Theorem 4.4.2 asserts that evaluating V(a, a′) is tantamount to solving a
continuous knapsack problem in N variables, which can be solved by a greedy
heuristics in time O(N logN).

It is instructive to study the worst- and best-case distributions that de-
termine Uf and Uf . By Theorem 4.4.1, these extremal distributions can be
constructed from the extremal distributions that determine V(1, 0) and V(0, 1).
As the objective function of (4.6) represents a conditional expectation of a
discontinuous integrand that fails to be upper semi-continuous, however, the
supremum in (4.6) is not attained. We thus construct suboptimal distributions
that attain the supremum of (4.6) asymptotically. For linear classifiers, the
projections x̂⋆i of the test samples to the decision boundary may be constructed
analytically. For more sophisticated classifiers, however, they may have to be
approximated using heuristic methods.

Proposition 4.4.3 (Extremal distributions). If f(z) = 1{z≥τ}, κA = κY =∞
and z⋆ is a maximizer of the linear program in (4.7) for some fixed a, a′ ∈ A,
then

Q⋆ =
1

N

(∑N
i=1 z

⋆
i δ(x̂⋆

i ,âi,ŷi) +
∑N

i=1(1− z⋆i )δ(x̂i,âi,ŷi)

)
,

is feasible in (4.6), and for any ε > 0 there exists Q⋆
ε ∈ Bε(Q⋆) that is ε-

suboptimal in (4.6).
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Figure 4.1: Classification boundaries (left), Pareto Frontiers (right)

Note that Q⋆ is in general strictly suboptimal in (4.6), but every neighbor-
hood of Q⋆ contains ε-suboptimal distributions Q⋆

ε for any ε > 0. In principle,
Q⋆

ε can be constructed explicitly from Q⋆. However, the construction is cum-
bersome and therefore omitted.

4.5. Numerical Experiments

Below we refer Uf (P, h) as the deterministic unfairness (Det-UNF) if f(z) =
1{z≥τ}, the probabilistic unfairness (Prob-UNF) if f(z) = z and the log-probabi-
listic unfairness (LogProb-UNF) if f(z) = log(z). Details regarding the setup of
the experiments such as the data generation procedure and parameter selection
etc. are relegated to Appendix 4.6.
Synthetic Experiments. To show the effects of the unfairness penalty and
the robustification, we compare the classical, fair and distributionally robust fair
logistic regression models (LR, FLR and DR-FLR, respectively) on a dataset
with N = 25 training samples and p = 2 features. As the sensitive attribute
A strongly correlates with X1, fair classifiers assign low weight to X1, which
leads to horizontal decision boundaries. Penalizing unfairness with η = 0.1
and robustifying the model with a Wasserstein radius of ρ = 0.05 ostensibly
increases the fairness of the classifier, see Figure 4.1 (left). Compared to the
LR classifier, the DR-FLR classifier lowers Det-UNF from 0.86 to 0.58 at the
expense of reducing the accuracy from 69% to 62%.

The fair logistic regression model (4.5) constitutes a bi-criteria optimization
problem that simulataneously minimizes the log-loss and the log-probabilistic
unfairness. It is thus reminiscent of the Markowitz mean-variance model that
seeks an optimal trade-off between the risk and return of an investment portfo-
lio. The optimal classifers for different values of η trace out a Pareto frontier in
the unfairness/loss plane. Following [Bro93], we can now distinguish true, esti-
mated and actual Pareto frontiers. The true frontier is obtained by training and
evaluating the classifier under the (unknown) true distribution, while the esti-
mated and actual frontiers are obtained by training the classifier on the training
dataset and evaluating it on the training and testing datasets, respectively. It is
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Dataset Metric LR FLR DOB+[Don+18] ZVRG [Zaf+17a] DR-FLR

Drug

Accuracy 0.78±0.01 0.78 ± 0.01 0.78 ± 0.01 0.79 ± 0.01 0.78 ± 0.00

Det-UNF 0.08 ± 0.06 0.08 ± 0.05 0.10 ± 0.09 0.48 ± 0.09 0.03 ± 0.05

Prob-UNF 0.08 ± 0.04 0.08 ± 0.04 - - 0.05 ± 0.02

LogProb-UNF 0.23 ± 0.19 0.24 ± 0.19 - - 0.15 ± 0.10

Adult

Accuracy 0.80±0.01 0.80 ± 0.01 0.78 ± 0.02 0.77 ± 0.01 0.79 ± 0.01

Det-UNF 0.08±0.05 0.06 ± 0.05 0.08 ± 0.08 0.10 ± 0.06 0.06 ± 0.04

Prob-UNF 0.17±0.07 0.12 ± 0.07 − − 0.12 ± 0.07

LogProb-UNF 0.98±0.55 0.64 ± 0.51 − − 0.56 ± 0.42

Compas

Accuracy 0.65±0.01 0.65 ± 0.02 0.58 ± 0.04 0.65 ± 0.01 0.58 ± 0.04

Det-UNF 0.25±0.03 0.24 ± 0.03 0.12 ± 0.07 0.22 ± 0.01 0.11 ± 0.07

Prob-UNF 0.12±0.02 0.11 ± 0.02 − − 0.02 ± 0.02

LogProb-UNF 0.28±0.07 0.24 ± 0.07 − − 0.06 ± 0.04

Arrhythmia

Accuracy 0.63±0.03 0.62 ± 0.03 0.61 ± 0.03 0.62 ± 0.03 0.61 ± 0.03

Det-UNF 0.17±0.08 0.12 ± 0.07 0.08 ± 0.06 0.23 ± 0.13 0.07 ± 0.06

Prob-UNF 0.10±0.05 0.06 ± 0.04 − − 0.03 ± 0.03

LogProb-UNF 0.21±0.10 0.14 ± 0.08 − − 0.07 ± 0.05

Table 4.1: Testing accuracy and unfairness (average ± standard deviation) for

N = 150.

known that the estimated frontier optimistically underestimates and the actual
frontier pessimistically overestimates the true frontier on average [Bro93]. It has
also been argued that robustifying a bi-criteria model tends to move the actual
and estimated frontiers closer to each other as well as closer to the true frontier
[MCG10], thus improving out-of-sample performance. Figure 4.1 (right) visu-
alizes this effect for a synthetic dataset, where the sensitive attributes correlate
with the labels.

Experiments with Real Data. We now benchmark the LR, FLR and
DR-FLR classifiers against fair classifiers proposed in [Don+18] (DOB+) and
[Zaf+17a] (ZVRG) on four publicly available datasets (Adult, Drug, COMPAS,
Arrhythmia1). While the Adult dataset comes with designated training and
testing samples, in all other datasets we randomly select 2/3 of the samples for
training. Ultimately, the ratio of training samples to features is of the order of
10 in all datasets.

To train the DR-FLR classifier, we draw 150 training samples and keep the
others as validation samples. We then set η = min{p̂11, p̂01}/2, κA = κY = 0.5
and tune ρ ∈ [10−5, 10−1]2 on a logarithmic search grid with 50 discretization
points using the validation procedure from [Don+18]. Using these hyperparam-
eters, we then re-train the DR-FLR classifier on another set of 150 randomly
drawn training samples. The DOB+ and ZVRG classifiers are computed using

1We only use the first 12 out of 278 non-sensitive features of the Arrhythmia dataset so

that we can use the same search grid for ρ across all datasets (in the other datasets p ranges

from 5 to 12).
2After we obtain the logarithmic scale, we multiply the values by 5, and thus ρ ∈

[5.10−5, 5.10−1] at the end.
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the authors’ code. The accuracy and unfairness measures of all classifiers is
then evaluated on the testing data.

Table 4.1 suggests that the DR-FLR classifier performs favorably relative
to its competitors in that it always decreases LogProb-UNF substantially and
often yields the lowest Det-UNF with only a moderate loss in accuracy.

Worst-Case Distribution. Next, we visualize the extremal distribution Q⋆

from Proposition 4.4.3 for 4 pre-trained classifiers (classical logistic regression,
support vector machine with RBF kernel, Gaussian processes with RBF kernel,
AdaBoost). Figure 4.2 illustrates which test samples are projected to the de-
cision boundary under the adversarial distribution Q⋆ until the transportation
budget corresponding to the Wasserstein radius ρ is exhausted.

A=1
A=0

A=1
A=0

A=1
A=0

A=1
A=0

(a) Logistic Regres-

sion (b) SVM (RBF) (c) GP (RBF) (d) AdaBoost

Figure 4.2: Visualization of the extremal distribution Q⋆ for different classifiers.

The red/blue background color represents the class partitions. The top row

shows the test data, and the bottom row (zoomed) shows how samples with

z⋆i > 0 are moved to the decision boundary.

Appendix

This appendix is organized as follows. Section 4.5 contains all proofs omit-
ted from the main text, while Section 4.6 provides detailed information on the
numerical experiments and reports on additional numerical experiments.

Proofs

We first describe a strong semi-infinite duality result that forms the basis for
several proofs. To this end, assume that ϕ : X×A×Y → R is a Borel measurable
loss function, and recall that p̂ay = P̂N (A = a, Y = y) for all a ∈ A and y ∈ Y.
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The semi-infinite program

sup
Q∈M

EQ[ϕ(X,A, Y )]

s.t. W(Q, P̂N ) ≤ ρ
Q(A = a, Y = y) = p̂ay ∀a ∈ A, ∀y ∈ Y

(4.8)

thus evaluates the worst-case expected loss over all distributions in a Wasserstein
ball of radius ρ ≥ 0 around the discrete nominal distribution P̂N under which
the marginal distributions of A and Y coincide with their nominal marginal dis-
tributions. The following proposition generalizes existing strong duality results
without marginal distribution information [BM19; GK22; MEK18; ZG18] and
can be seen as a variant of [Fro+19, Theorem 2], which includes information on
the marginal distribution of features and outputs. The proposition can also be
derived from a general theory of moment problems [Sha01, Section 3]. We omit
the proof for brevity.

Proposition 4.5.1 (Strong duality). If p̂ay ∈ (0, 1) for all a ∈ A and y ∈ Y
and if ρ > 0, then (4.8) admits the strong semi-infinite dual

inf ρλ+
∑

a∈A

∑

y∈Y
p̂ayµay +

1

N

N∑

i=1

νi

s.t. λ ∈ R+, µ ∈ R2×2, ν ∈ RN

λ c
(
(xi, ai, yi), (x̂i, âi, ŷi)

)
+ µaiyi

+ νi ≥ ϕ(xi, ai, yi)
∀(xi, ai, yi) ∈ X ×A× Y, ∀i ∈ [N ].

(4.9)

Also, if the supremum of (4.8) is finite, then the infimum of (4.9) is attained.

Corollary 7 (Absolute trust in A and Y ). If p̂ay ∈ (0, 1) for all a ∈ A and

y ∈ Y and if ρ > 0 and κA = κY =∞, then (4.8) admits the strong semi-infinite

dual

inf ρλ+ 1
N

∑N
i=1 νi

s.t. λ ∈ R+, ν ∈ RN

λ∥xi − x̂i∥+ νi ≥ ϕ(xi, âi, ŷi) ∀xi ∈ X , ∀i ∈ [N ].

(4.10)

Proof of Corollary 7. When κA = κY =∞, the left hand side of the i-th semi-

infinite constraint in (4.9) evaluates to ∞ unless ai = âi and yi = ŷi. In this

case, the constraint is trivially satisfied and can be omitted. Furthermore, by

definition of p̂ay we have

∑

a∈A

∑

y∈Y
p̂ayµay =

1

N

N∑

i=1

µâiŷi .
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Consequently, problem in (4.9) reduces to

inf ρλ+
1

N

N∑

i=1

µâiŷi
+

1

N

N∑

i=1

νi

s.t. λ ∈ R+, µ ∈ R2×2, ν ∈ RN

λ ∥xi − x̂i∥+ µâiŷi + νi ≥ ϕ(xi, âi, ŷi) ∀xi ∈ X , ∀i ∈ [N ].

(4.11)

We can further simplify problem (4.11) by applying the change of variables

νi ←− µâiŷi +νi, i ∈ [N ], which yields the reformulation (4.10). This observation

completes the proof.

Proofs of Section 4.2

Proof of Theorem 4.2.1. We define the log-loss function through

ℓβ(x, y) = −y log(hβ(x))− (1− y) log(1− hβ(x)) ∀x ∈ X , ∀y ∈ Y.

By introducing an auxiliary epigraphical variable, problem (4.2) can then be

reformulated as

min
β,t

t

s.t. EP[ℓβ(X,Y )] + ηUf (P, hβ) ≤ t.
(4.12)

As f(z) = log(z) and P = P̂N by assumption, the unfairness measure simplifies

to

Uf (P̂N , hβ) = |EP̂N
[log(hβ(X))|A = 1, Y = 1]−EP̂N

[log(hβ(X))|A = 0, Y = 1]|.

By the definition of conditional expectations, we further have

EP̂N
[log hβ(X)|A = a, Y = 1] =

EP̂N
[log hβ(X)1{(a,1)}(A, Y )]

P̂N (A = a, Y = 1)

= ra EP̂N
[log hβ(X)1{(a,1)}(A, Y )]

for all a ∈ A, where the second equality follows from the definition of ra. For

any fixed a, a′ ∈ A with a ̸= a′ and β ∈ Rp we then introduce the function

T̂aa′

β = EP̂N
[ℓβ(X,Y )+ηra log(hβ(X))1{(a,1)}(A, Y )−ηra′ log(hβ(X))1{(a′,1)}(A, Y )].

By expanding the absolute value in the definition of Uf (P̂N , hβ), problem (4.12)

simplifies to

min
β,t

t

s.t. T̂10
β ≤ t, T̂01

β ≤ t,
(4.13)
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which is manifestly equivalent to the optimization problem in the theorem state-

ment. Note that by the definition of the log-loss function, we obtain

T̂aa′

β = EP̂N
[−Y log(hβ(X))− (1− Y ) log(1− hβ(X)) + ηra log(hβ(X))1{(a,1)}(A, Y )

− ηra′ log(hβ(X))1{(a′,1)}(A, Y )]

= − 1

N

( ∑

i∈[N ]:
ŷi=1
âi=a

(1−ηra) log(hβ(x̂i))+
∑

i∈[N ]:
ŷi=1
âi=a′

(ηra′+1) log(hβ(x̂i))+
∑

i∈[N ]:
ŷi=0

log(1− hβ(x̂i))
)
,

where the second equality holds because the expectation under the empirical

distribution P̂N can be expressed as a finite sum, and terms can be grouped

by the labels and the sensitive attributes of the training samples. Thus, T̂aa′

β

is convex in β for η ≤ min{p̂11, p̂01}, in which case problem (4.13) becomes a

tractable convex program. This concludes the proof.

Proofs of Section 4.3

The proof of Theorem 4.3.1 relies on the following simple corollary of [SMK15,
Lemma 1].

Lemma 4.5.2. If β ∈ Rp and γ ∈ R+, while gβ(x) = γ log(1 + exp(−⟨β, x⟩))
is a convex function of x ∈ Rp, then we have

sup
x∈Rp

γgβ(x)− λ∥x− x̂∥ =




γgβ(x̂) if γ∥β∥∗ ≤ λ
+∞ otherwise

for all λ ∈ R++, where ∥ · ∥∗ represents the dual norm of ∥ · ∥.

Proof of Theorem 4.3.1. To simplify notation, we define the log-loss function as

usual as

ℓβ(x, y) = −y log hβ(x)− (1− y) log(1− hβ(x)) ∀x ∈ X , ∀y ∈ Y.

By introducing an auxiliary epigraphical variable, problem (4.5) can then be

reformulated as

min
β,t

t

s.t. sup
Q∈Bρ(P̂N )

EQ[ℓβ(X,Y )] + ηUf (Q, hβ) ≤ t. (4.14)

As f(z) = log(z) by assumption, the unfairness measure simplifies to

Uf (Q, hβ) = |EQ[log(hβ(X))|A = 1, Y = 1]− EQ[log(hβ(X))|A = 0, Y = 1]|.
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By the definition of conditional expectations, we have for all Q ∈ Bρ(P̂N )

and a ∈ A that

EQ[log hβ(X)|A = a, Y = 1] =
EQ[log hβ(X)1{(a,1)}(A, Y )]

Q(A = a, Y = 1)

= raEQ[log hβ(X)1{(a,1)}(A, Y )],

where the second equality holds because Q(A = a, Y = 1) = p̂ay = 1/ra for any

Q ∈ Bρ(P̂N ). For any fixed a, a′ ∈ A with a ̸= a′ and β ∈ Rp we then introduce

the function

ϕaa
′

β (x̃, ã, ỹ) = ℓβ(x̃, ỹ)+η ra log(hβ(x̃))1{(a,1)}(ã, ỹ)−η ra′ log(hβ(x̃))1{(a′,1)}(ã, ỹ)

of x̃ ∈ X , ã ∈ A and ỹ ∈ Y, and we define

Taa′

β = sup
Q∈Bρ(P̂N )

EQ[ϕ
aa′

β (X,A, Y )].

The integrand ϕaa
′

β satisfies the linear growth condition of [YKW20, Theo-

rem 2.2], which guarantees that Taa′

β is finite. By using the above notational

conventions and introducing an auxiliary epigraphical variable as in the proof

of Theorem 4.2.1, problem (4.14) is simplified to

min
β,t

t

s.t. T10
β ≤ t, T01

β ≤ t.
(4.15)

To convert problem (4.5) to a convex program, we need to simplify the con-

straints that involve Taa′

β . To this end, we may use Proposition 4.5.1 to obtain

Taa′

β =





min ρλ+
∑

a∈A

∑

y∈Y
p̂ayµay +

1

N

N∑

i=1

νi

s.t. λ ∈ R+, µ ∈ R2×2, ν ∈ RN

λ c
(
(xi, ai, yi), (x̂i, âi, ŷi)

)
+ µaiyi

+ νi ≥ ϕaa
′

β (xi, ai, yi)

∀(xi, ai, yi) ∈ X ×A× Y, ∀i ∈ [N ].

(4.16)

As Taa′

β is finite, Proposition 4.5.1 also ensures that the minimum of prob-

lem (4.16) is attained.

We now investigate the i-th semi-infinite constraint in (4.16) for a fixed ai

and yi. Thanks to the additive separability of the transportation cost, this
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constraint can be reformulated as

νi ≥ sup
xi∈X

{
ϕaa

′

β (xi, ai, yi)− λ∥xi − x̂i∥
}
− κA|ai − âi|λ− κY |yi − ŷi|λ− µaiyi

(4.17)

If yi = 0 and ai ∈ A, then ϕaa
′

β (xi, ai, 0) = − log(1−hβ(xi)), and by Lemma 4.5.2,

we have

sup
xi∈X

{
ϕaa

′

β (xi, ai, 0)− λ∥xi − x̂i∥
}
= sup

xi∈X
− log(1− hβ(xi))− λ∥xi − x̂i∥

=




− log(1− hβ(x̂i)) if ∥β∥∗ ≤ λ,
+∞ otherwise,

which implies that the constraint (4.17) is equivalent to the inequalities

∥β∥∗ ≤ λ and νi ≥ − log(1− hβ(x̂i))− κA|ai − âi|λ− κY |ŷi|λ− µai0.

If ai = a and yi = 1, then ϕaa
′

β (xi, a, 1) = (ηra − 1) log(hβ(xi)), and by

Lemma 4.5.2, we have

sup
xi∈X

{
ϕaa

′

β (xi, a, 1)−λ∥xi−x̂i∥
}
=




(ηra−1) log(hβ(x̂i)) if (1− ηra)∥β∥∗ ≤ λ,
+∞ otherwise,

which implies that the constraint (4.17) is equivalent to

(1−ηra)∥β∥∗ ≤ λ and νi ≥ (ηra−1) log(hβ(x̂i))−κA|a−âi|λ−κY |1−ŷi|λ−µa1.

If ai = a′ and yi = 1, finally, then ϕaa
′

β (xi, a
′, 1) = −(1 + ηra′) log(hβ(xi)), and

we can use an analogous argument involving Lemma 4.5.2 to show that

sup
xi∈X

{
ϕaa

′

β (xi, a
′, 1)−λ∥xi−x̂i∥

}
=




−(1 + ηra′) log(hβ(x̂i)) if (1+ηra′)∥β∥∗≤λ,
+∞ otherwise,

which implies that the constraint (4.17) is equivalent to

(1+η ra′)∥β∥∗ ≤ λ and νi ≥ −(1+η ra′) log(hβ(x̂i))−κA|a′−âi|λ−κY |1−ŷi|λ−µa′1.

Substituting the above reformulations of constraint (4.17) corresponding to all
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possible combinations of ai and yi into (4.16) yields

Taa′

β =





min ρλ+
∑

a∈A

∑

y∈Y
p̂ayµay +

1

N

N∑

i=1

νi

s.t. λ ∈ R+, µ ∈ R2×2, ν ∈ RN

∥β∥∗ ≤ λ, ∥β∥∗(1− ηra) ≤ λ, ∥β∥∗(1 + ηra′) ≤ λ
νi ≥ − log(1− hβ(x̂i))− κA|a− âi|λ− κY |ŷi|λ− µa0

νi ≥ − log(1− hβ(x̂i))− κA|a′ − âi|λ− κY |ŷi|λ− µa′0

νi ≥ (ηra − 1) log(hβ(x̂i))− κA|a− âi|λ− κY |1− ŷi|λ− µa1

νi ≥−(1 + ηra′) log(hβ(x̂i))−κA|a′−âi|λ−κY |1− ŷi|λ−µa′1





∀i ∈ [N ].

Note that the constraints ∥β∥∗ ≤ λ and ∥β∥∗(1 − ηra) ≤ λ are redundant in

view of the constraint ∥β∥∗(1 + ηra′) ≤ λ. The claim then follows by substitut-

ing the dual reformulations for Taa′

β into (4.15) and eliminating the embedded

minimization operators.

4.5.1. Proofs of Section 4.4

Proof of Theorem 4.4.1. By the definition of V(a, a′) for a, a′ ∈ A, one readily

verifies that the bounds on the unfairness measure can be expressed as

Uf = max{V(1, 0),V(0, 1)} and Uf = max{0,−V(1, 0),−V(0, 1)}.

For any fixed a, a′ ∈ A with a ̸= a′ we then introduce the function

ϕaa
′
(x̃, ã, ỹ) = ra1X1×{(a,1)}(x̃, ã, ỹ)− ra′1X1×{(a′,1)}(x̃, ã, ỹ),

which depens on x̃ ∈ X , ã ∈ A and ỹ ∈ Y, and which allows us to re-express

V(a, a′) as

V(a, a′) =





sup
Q∈M

EQ[ϕ
aa′

(X,A, Y )]

s.t. W(Q, P̂N ) ≤ ρ
Q(A = a, Y = y) = p̂ay ∀a ∈ A, ∀y ∈ Y.

Note that the function ϕaa
′
is piecewise constant and thus bounded, which

implies that V(a, a′) is finite. The strong duality result from Proposition 4.5.1
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further implies that

V(a, a′) =





min ρλ+ p̂⊤µ+ 1
N 1⊤ν

s.t. λ ∈ R+, µ ∈ R4, ν ∈ RN

λc
(
(xi, ai, yi), (x̂i, âi, ŷi)

)
+ µaiyi

+ νi ≥ ϕaa
′
(xi, ai, yi)

∀(xi, ai, yi) ∈ X ×A× Y, ∀i ∈ [N ].

(4.18)

Note that the minimum of problem (4.18) is attained because V(a, a′) is finite.

By the definition of the transportation cost, the i-th semi-infinite constraint

in (4.18) can be expressed more explicitly as

νi ≥ sup
xi∈X

{
ϕaa

′
(xi, ai, yi)− λ∥xi − x̂i∥

}
− κA|ai − âi|λ− κY |yi − ŷi|λ− µaiyi

∀ai ∈ A, ∀yi ∈ Y.
(4.19)

If yi = 0 and ai ∈ A, then ϕaa
′
(xi, ai, 0) = 0, and thus (4.19) simplifies to

νi ≥ −κA|ai − âi|λ− κY |ŷi|λ− µai0 ∀ai ∈ A.

If ai = a and yi = 1, then ϕaa
′
(xi, a, 1) = ra1X1

(xi), and we have

sup
xi∈X

ra1X1(xi)− λ∥xi − x̂i∥ =




ra if x̂i ∈ X1

max{0, ra − λd1i} if x̂i ̸∈ X1

= max{0, ra − λd1i},

where the last equality holds because d1i = 0 if x̂i ∈ X1. Thus, constraint (4.19)

reduces to

νi ≥ max{0, ra − λd1i} − κA|a− âi|λ− κY |1− ŷi|λ− µa1.

If ai = a′ and yi = 1, finally, then we have ϕaa
′
(xi, a

′, 1) = −ra′1X1
(xi), and

thus

sup
xi∈X

− ra′1X1
(xi)− λ∥xi − x̂i∥ =




max{−ra′ ,−λd0i} if x̂i ∈ X1

0 if x̂i ̸∈ X1

= max{−ra′ ,−λd0i},

where the last equality holds because d0i = 0 whenever x̂i ̸∈ X1. Because

the set X1 is closed, the supremum in the above expression is not attained.

Constraint (4.19) now becomes

νi ≥ max{−ra′ ,−λd0i} − κA|a′ − âi|λ− κY |1− ŷi|λ− µa′1.
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In summary, the semi-infinite constraint (4.19) is equivalent to the six linear

constraints

νi ≥ −κA|a− âi|λ− κY |ŷi|λ− µa0

νi ≥ −κA|a′ − âi|λ− κY |ŷi|λ− µa′0

νi ≥ ra − λd1i − κA|a− âi|λ− κY |1− ŷi|λ− µa1

νi ≥ −κA|a− âi|λ− κY |1− ŷi|λ− µa1

νi ≥ −ra′ − κA|a′ − âi|λ− κY |1− ŷi|λ− µa′1

νi ≥ −λd0i − κA|a′ − âi|λ− κY |1− ŷi|λ− µa′1.

The claim now follows by substituting this reformulation into (4.18) for every

i ∈ [N ].

Proof of Theorem 4.4.2. If κA = κY = ∞, then the linear programming refor-

mulation derived in Theorem 4.4.1 simplifies to

min ρλ+
∑

a∈A

∑

y∈Y
p̂ayµay +

1

N

N∑

i=1

νi

s.t. λ ∈ R+, µ ∈ R2×2, ν ∈ RN

νi + µâi0 ≥ 0 if ŷi = 0

νi + µa1 + d1iλ ≥ ra if âi = a, ŷi = 1

νi + µa1 ≥ 0 if âi = a, ŷi = 1

νi + µa′1 ≥ −ra′ if âi = a′, ŷi = 1

νi + µa′1 + d0iλ ≥ 0 if âi = a′, ŷi = 1





∀i ∈ [N ].

(4.20)

Furthermore, the first constraint µâi
≥ −νi force µâi0 = −νi for all {i ∈ [N ] :

ŷi = 0}. Hence, by definition of p̂ay we have

∑

a∈A
p̂a0µa0 = − 1

N

∑

i∈[N ]:ŷi=0

νi.

Consequently, by defining the sets Īa = {i ∈ [N ] : âi = a, ŷi = 1} and Īa′ =

{i ∈ [N ] : âi = a′, ŷi = 1}, problem in (4.20) is further simplified to

min ρλ+ p̂a1µa1 + p̂a′1µa′1 +
1
N

∑
i∈Īa∪Īa′

νi

s.t. λ ∈ R+, µ ∈ R2×2, ν ∈ RN

νi + µa1 + d1iλ ≥ ra
νi + µa1 ≥ 0

}
∀i ∈ Īa

νi + µa′1 ≥ −ra′

νi + µa′1 + d0iλ ≥ 0

}
∀i ∈ Īa′ .



4.5. Numerical Experiments 181

By introducing the Lagrangian multipliers γ1, γ2 ∈ R|Īa|
+ and γ3, γ4 ∈ R|Īa′ |

+ , we

obtain the linear dual problem of the above problem as

max ra
∑
i∈Īa

γ1i − ra′
∑

i∈Īa′

γ3i

s.t. γ1 ∈ R|Īa|
+ , γ2 ∈ R|Īa|

+ , γ3 ∈ R|Īa′ |
+ , γ4 ∈ R|Īa′ |

+

ρ− ∑
i∈Īa

γ1id1i −
∑

i∈Īa′

γ4id0i ≥ 0

p̂a1 −
∑
i∈Īa

(γ2i + γ1i) = 0

p̂a′1 −
∑

i∈Īa′

(γ3i + γ4i) = 0

1/N − γ1i − γ2i = 0 ∀i ∈ Īa
1/N − γ3i − γ4i = 0 ∀i ∈ Īa′ .

(4.21)

We now define the sets Ia = {i ∈ Īa : x̂i ∈ int(X0)} and Ia′ = {i ∈ Īa′ : x̂i ∈
int(X1)}. Due to the last two constraints, γ2i + γ1i = 1/N and γ3i + γ4i = 1/N ,

the third and the forth constraints of (4.21) become redundant as
∑

i∈Īa
1/N =

p̂a1 and
∑

i∈Īa′ 1/N = p̂a′1 by definition of the sets Īa and Īa′ . Notice that due

to last constraint in (4.21), we have γ3i = 1/N − γ4i for all i ∈ Īa′ . Then, we

can further simplify problem (4.21) to

max ra
∑
i∈Īa

γ1i − ra′
∑

i∈Īa′

(
1
N − γ4i

)

s.t. γ1 ∈ R|Īa|
+ , γ2 ∈ R|Īa|

+ , γ3 ∈ R|Īa′ |
+ , γ4 ∈ R|Īa′ |

+

ρ− ∑
i∈Ia

γ1id1i −
∑

i∈Ia′

γ4id0i ≥ 0

γ1i + γ2i = 1/N ∀i ∈ Īa
γ3i + γ4i = 1/N ∀i ∈ Īa′ .

(4.22)

Because the variables γ2i ∈ R|Īa|
+ and γ3i ∈ R|Īa′ |

+ do not appear in the objective

of problem (4.22) and ra, ra′ > 0, we can further simplify problem (4.22) to

max ra
∑
i∈Īa

γ1i − ra′
∑

i∈Īa′

(
1
N − γ4i

)

s.t. γ1 ∈ R|Īa|
+ , γ4 ∈ R|Īa′ |

+

ρ− ∑
i∈Ia

γ1id1i −
∑

i∈Ia′

γ4id0i ≥ 0

γ1i ≤ 1/N ∀i ∈ Īa
γ4i ≤ 1/N ∀i ∈ Īa′ .

(4.23)

Note that for γ⋆1 and γ⋆4 that optimize problem (4.23) for all i /∈ Ia, γ⋆1i takes
the value 1/N , and similarly for all i /∈ Ia′ , γ⋆4i takes the value 1/N . Hence, it is
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sufficient to optimize over values of γ1i and γ4i for all i ∈ Ia ∪ Ia′ . By applying

the variable transformations γ1i ←− zi/N for all i ∈ Ia and γ4i ←− zi/N for all

i ∈ Ia′ , where z ∈ R|Ia|+|Ia′ |
+ , the problem (4.23) can be restated as

max ra
|Īa\Ia|

N + ra
N

∑
i∈Ia

zi − ra′
|Ia′ |
N + ra′

N

∑
i∈Ia′

zi

s.t. z ∈ R|Ia|+|Ia′ |
+

∑
i∈Ia

zid1i +
∑

i∈Ia′

zid0i ≤ Nρ

zi ≤ 1 ∀ i ∈ Ia ∪ Ia′ .

(4.24)

Observe that ra|Īa\Ia|/N − ra′ |Ia′ |/N is equivalent to empirical value function

V̂(a, a′), which is defined as in the theorem statement. By introducing the

non-negative rewards and weights through

(caa′i, waa′i) =





(ra, d1i) if i ∈ Ia,
(ra′ , d0i) if i ∈ Ia′ ,

(0,+∞) otherwise,

we can re-write the optimization problem in (4.24) as

V̂(a, a′) + max
z∈[0,1]N





1

N

∑

i∈[N ]

caa′izi :
1

N

∑

i∈[N ]

waa′izi ≤ ρ



 ∀a, a

′ ∈ A, a ̸= a′,

where the equivalence of the two problems holds because z⋆i = 0 for all {i ∈
[N ] : waa′i = +∞}. This observation concludes the proof.

Proof of Proposition 4.4.3. For ρ = 0, we have V(a, a′) = V̂(a, a′) and Q⋆ = P̂N

is the optimal solution that attains the supremum in (4.6). For the rest of the

proof, it suffices to consider when ρ > 0.

We define the set I = {i ∈ [N ] : âi = a, ŷi = 1, x̂i ∈ int(X0)} ∪ {i ∈ [N ] :

âi = a′, ŷi = 1, x̂i ∈ int(X1)}. First, we show that Q⋆ defined in the statement

of the Proposition 4.4.3 satisfies Q⋆ ∈ Bρ(P̂N ). Notice that Q⋆ does not flip any

label on A and Y as κA = κY =∞, thus it preserves the marginals

Q⋆(A = a, Y = y) = P̂N (A = a, Y = y) ∀a ∈ A, y ∈ Y.

Moreover, the distance from Q⋆ to P̂N satisfies

W(Q⋆, P̂N ) ≤ 1

N

∑

i∈[N ]

z⋆i ∥x̂⋆i − x̂i∥ =
1

N

∑

i∈I
waa′iz

⋆
i ≤ ρ,
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where the first inequality follows by definition of the Wasserstein distance, the

equality is from the definition of waa′i, and the last inequality is from the fea-

sibility of z⋆ in the linear program in (4.7).

In what follows, we will construct a distribution Q⋆
ε ∈ Bε(Q⋆) that is ε-

suboptimal in (4.7) for ρ > 0. For simplicity of exposition, we assume that

x̂i ̸= x̂⋆i for all i ∈ [N ] and the norm on X used in the Wasserstein ground

metric is a 2-norm. For any given ε, we choose θ ∈ [0, 1] that satisfies θ ≥
1 − Nε/∑i∈J ra′z⋆i , where J = {i ∈ [N ] : x̂i ∈ X1, âi = a′, ŷi = 1}. We set

ϵ0, ϵ1, ϵ2 ∈ R+ to satisfy the following criteria
{

θϵ0 + (1− θ)ϵ1 ≤ ε,
(1− θ)(ϵ1 + ϵ2) ≥ ε

so that for all i ∈ [N ], the set

{x ∈ X1 : ∥x− x̂⋆i ∥ ≤ ϵ1, ∥x− x̂i∥ ≤ ∥x̂⋆i − x̂i∥ − ϵ2}

is non-empty. When the norm on X is a 2-norm, the above condition is satisfied

by setting θϵ0 = ε/2, (1 − θ)ϵ1 = ε/2, and ϵ2 = ϵ1. For other norms, this

requirement can be satisfied by properly scaling ϵ0 down and scaling ϵ1 and ϵ2

up to meet the criteria. For each i ∈ [N ], consider the tuple (x̂ε0i, x̂
ε
1i) defined

as

(x̂ε0i, x̂
ε
1i) =




(x̂0i, x̂1i) if i ∈ J ,
(x̂⋆i , x̂

⋆
i ) otherwise,

where x̂0i ∈ X0 such that ∥x̂0i−x̂⋆i ∥ ≤ ϵ0, and x̂1i ∈ X1 such that ∥x̂1i−x̂⋆i ∥ ≤ ϵ1,
and ∥x̂1i − x̂i∥ ≤ ∥x̂⋆i − x̂i∥ − ϵ2. Notice that the existence of x̂0i is guaranteed

because x̂⋆i is the projection of x̂i onto ∂X1, or equivalently onto cl(X0), and

hence X0 ∩ {xi : ∥xi − x̂⋆i ∥ ≤ ϵ0} is non-empty for any ϵ0 ∈ R++. Consider now

distribution Q⋆
ε that is constructed as

Q⋆
ε =

1

N

(
N∑
i=1

θz⋆i δ(x̂ε
0i,âi,ŷi) +

N∑
i=1

z⋆i (1− θ)δ(x̂ε
1i,âi,ŷi) +

N∑
i=1

(1− z⋆i )δ(x̂i,âi,ŷi)

)
.

We will show that Q⋆
ε ∈ Bρ(Q⋆). By definition of Q⋆

ε, we have

W(Q⋆
ε,Q⋆) ≤ 1

N

∑

i∈J

(
θz⋆i ∥x̂0i − x̂⋆i ∥+ (1− θ)z⋆i ∥x̂⋆i − x̂1i∥

)

≤ θϵ0 + (1− θ)ϵ1 ≤ ε,

where the first inequality is due to z⋆i ≤ 1 for all i ∈ [N ], J ⊂ [N ], ∥x̂0i−x̂⋆i ∥ ≤ ϵ0
and ∥x̂1i − x̂⋆i ∥ ≤ ϵ1. The last inequality follows by assumption on ϵ0 and ϵ1.
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Next, we show that Qε ∈ Bρ(P̂N ). Similarly, by construction of Q⋆
ε we have

W(Q⋆
ε, P̂N ) ≤ 1

N


∑

i∈[N ]

θz⋆i ∥x̂ε0i − x̂i∥+
∑

i∈[N ]

(1− θ)z⋆i ∥x̂ε1i − x̂i∥




=
1

N

∑

i∈[N ]\J
θz⋆i ∥x̂⋆i − x̂i∥+

1

N

∑

i∈J
θz⋆i ∥x̂0i − x̂i∥

+
1

N

∑

i∈[N ]\J
(1− θ)z⋆i ∥x̂⋆i − x̂i∥+

1

N

∑

i∈J
(1− θ)z⋆i ∥x̂1i − x̂i∥

≤ 1

N

∑

i∈[N ]\J
θz⋆i ∥x̂⋆i − x̂i∥+

1

N

∑

i∈J
θz⋆i ∥x̂0i − x̂i∥

+
1

N

∑

i∈[N ]\J
(1− θ)z⋆i ∥x̂⋆i − x̂i∥+

1

N

∑

i∈J
(1− θ)z⋆i ∥x̂⋆i − x̂i∥ − (1− θ)ϵ2

=
1

N

∑

i∈[N ]

z⋆i ∥x̂⋆i − x̂i∥+
1

N

∑

i∈J
θz⋆i (∥x̂0i−x̂i∥−∥x̂⋆i−x̂i∥)−(1−θ)ϵ2

≤ ρ+ 1

N

∑

i∈J
θz⋆i ∥x̂0i − x̂⋆i ∥ − (1− θ)ϵ2 ≤ ρ+ θϵ0 − (1− θ)ϵ2 ≤ ρ,

where the first equality is due to the definition of x̂ε0i and x̂ε1i. The second

inequality follows by construction of x̂1i, that is, it satisfies ∥x̂1i − x̂i∥ ≤ ∥x̂⋆i −
x̂i∥ − ϵ2. The third inequality follows from triangle inequality, that is, ∥x̂0i −
x̂i∥ ≤ ∥x̂0i− x̂⋆i ∥+∥x̂i− x̂⋆i ∥ and since z⋆i is feasible in (4.7). The last equality is

due to the choice of ϵ0 and ϵ2 that satisfies θϵ0+(1−θ)ϵ2 ≤ 0. As a consequence,

we have Q⋆
ε ∈ Bρ(P̂N ).

In the last step, we verify that Q⋆
ε is an ε-suboptimal solution of the maxi-

mization problem that defines V(a, a′). Notice that because P̂N is an empirical

distribution, we have

V̂(a, a′) =
1

N

∑

i∈[N ]: x̂i∈X1

âi=a, ŷi=1

ra −
1

N

∑

i∈[N ]: x̂i∈X1

âi=a′, ŷi=1

ra′ .

By definition of Q⋆
ε, we have the following equalities

Q⋆
ε(X ∈ X1|A = a, Y = 1) = Q⋆(X ∈ X1|A = a, Y = 1) (4.25a)

Q⋆
ε(X ∈ X1|A = a′, Y = 1) = Q⋆(X ∈ X1|A = a′, Y = 1)− θ

N

∑

i∈J
ra′z⋆i

(4.25b)

Similarly by definition of Q⋆, we have the following equalities

Q⋆[X ∈ X1|A = a, Y = 1]−Q⋆[X ∈ X1|A = a′, Y = 1]
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=
1

N

∑

i∈[N ]:âi=a
ŷi=1

raz
⋆
i +

1

N

∑

i∈[N ]:x̂i∈X1

âi=a,ŷi=1

ra(1− z⋆i )− (4.26)

1

N

∑

i∈[N ]:âi=a′

ŷi=1

ra′z⋆i −
1

N

∑

i∈J
ra′(1− z⋆i )

= V̂(a, a′) +
1

N

∑

i∈[N ]:x̂i∈int(X0)
âi=a,ŷi=1

raz
⋆
i −

1

N

∑

i∈[N ]:x̂i∈int(X0),
âi=a′,ŷi=1

ra′z⋆i

= V̂(a, a′) +
1

N

∑

i∈[N ]:x̂i∈int(X0)
âi=a,ŷi=1

raz
⋆
i +

1

N

∑

i∈[N ]:x̂i∈int(X1)
âi=a′,ŷi=1

ra′z⋆i− (4.27)

1

N

∑

i∈[N ]:x̂i∈int(X1)
âi=a′,ŷi=1

ra′z⋆i

= V(a, a′)− 1

N

∑

i∈[N ]:x̂i∈int(X1)
âi=a′,ŷi=1

ra′z⋆i , (4.28)

where the first equality follows by construction of Q⋆, and the second equality

follows from the definition of V̂(a, a′). The third equality follows by realizing

that z⋆i = 0 for all indices in the set {i ∈ [N ] : x̂i ∈ int(X0), âi = a′, ŷi = 1},
and we add and subtract the same term to have a representation in terms of

V(a, a′). Moreover, the last equality is due to the definition of V(a, a′).

Now, we will show that Q⋆
ε provides ε-suboptimal solution to the maximiza-

tion problem that defines V(a, a′). By taking the difference of (4.25a) and

(4.25b),

Q⋆
ε(X ∈ X1|A = a, Y = 1)−Q⋆

ε(X ∈ X1|A = a′, Y = 1)

= Q⋆(X ∈ X1|A = a, Y = 1)−Q⋆(X ∈ X1|A = a′, Y = 1) +
θ

N

∑

i∈J
ra′z⋆i

= V(a, a′)− 1

N

∑

i∈J
ra′z⋆i +

θ

N

∑

i∈J
ra′z⋆i ≥ V(a, a′)− ε,

where the second equality is due to (4.28). The last inequality follows as θ ≥
1−Nε/∑i∈J ra′z⋆i . This concludes the proof.

Additional Theoretical Results

In the main chapter, we solve problem in (4.5) for general κA and κY . If κA
and κY ceases to be finite then the problem can be substantially simplified.
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Corollary 8 (Absolute trust in A and Y ). If f(z) = log(z), η ≤ min{p̂11, p̂01}
and κA = κY = ∞, then problem (4.5) simplifies to the following tractable

convex program

min t

s.t. β ∈ Rp, t ∈ R, λ0, λ1 ∈ R+, ν0, ν1 ∈ RN

∥β∥∗(1 + ηra′) ≤ λa
ρλa +

1
N

∑N
i=1 νai ≤ t

νai + log(hβ(−x̂i)) ≥ 0 if ŷi = 0

νai + (1− ηra) log(hβ(x̂i)) ≥ 0 if âi = a, ŷi = 1

νai + (1 + ηra′) log(hβ(x̂i)) ≥ 0 if âi = a′, ŷi = 1




∀i ∈ [N ]





∀a, a′ ∈ A : a′ = 1− a.

Proof of Corollary 8. The proof follows the same steps as the proof of Theo-

rem 4.3.1 until the reformulation of Taa′

β . Thanks to Corollary 7, Taa′

β coincides

with the optimal value of

inf ρλ+ 1
N

∑N
i=1 νi

s.t. λ ∈ R+, ν ∈ RN

λ∥xi − x̂i∥+ νi ≥ ϕaa
′

β (xi, âi, ŷi) ∀xi ∈ X , ∀i ∈ [N ],

(4.29)

where the function ϕaa
′

β is as it is defined in the proof of Theorem 4.3.1. We

now proceed to consider the constraint of problem (4.29), which can be written

in a simplified form as

νi ≥ sup
xi∈X

{
ϕaa

′

β (xi, âi, ŷi)− λ∥xi − x̂i∥
}
. (4.30)

Suppose that ŷi = 0, then ϕaa
′

β (xi, âi, 0) = − log(1−hβ(xi)), and by Lemma 4.5.2,

we have

sup
xi∈X

{
ϕaa

′

β (xi, ai, 0)− λ∥xi − x̂i∥
}
= sup

xi∈X
− log(1− hβ(xi))− λ∥xi − x̂i∥

=




− log(1− hβ(x̂i)) if ∥β∥∗ ≤ λ,
+∞ otherwise,

and so the constraint (4.30) when ŷi = 0 becomes

{
νi ≥ − log(1− hβ(x̂i))
∥β∥∗ ≤ λ.
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If âi = a and ŷi = 1, then ϕaa
′

β (xi, a, 1) = (ηra − 1) log(hβ(xi)). We thus have

by Lemma 4.5.2 that

sup
xi∈X

{
ϕaa

′

β (xi, a, 1)− λ∥xi − x̂i∥
}
=




(ηra − 1) log(hβ(x̂i)) if (1− ηra)∥β∥∗ ≤ λ,
+∞ otherwise.

If âi = a and ŷi = 1, then the constraint (4.30) becomes
{

νi ≥ (ηra − 1) log(hβ(x̂i))

(1− ηra)∥β∥∗ ≤ λ.

Using an analogous argument for the case where âi = a′ and ŷi = 1, we have

ϕaa
′

β (xi, a
′, 1) = −(1 + ηra′) log(hβ(xi)). By Lemma 4.5.2, we have

sup
xi∈X

{
ϕaa

′

β (xi, a
′, 1)−λ∥xi−x̂i∥

}
=




−(1+ηra′) log(hβ(x̂i)) if (1+ηra′)∥β∥∗≤λ,
+∞ otherwise.

If âi = a′ and ŷi = 1, then the constraint (4.30) is equivalent to
{

νi ≥ −(1 + η ra′) log(hβ(x̂i))

(1 + η ra′)∥β∥∗ ≤ λ.

Injecting all the specific cases of constraint (4.30) into problem (4.29), the value

Taa′

β is equal to the optimal value of the following optimization problem

min ρλ+ 1
N

∑N
i=1 νi

s.t. λ ∈ R+, ν ∈ RN

∥β∥∗ ≤ λ, ∥β∥∗(1− ηra) ≤ λ, ∥β∥∗(1 + ηra′) ≤ λ
νi ≥ − log(1− hβ(x̂i)) if ŷi = 0

νi ≥ (ηra − 1) log(hβ(x̂i)) if âi = a, ŷi = 1

νi ≥ −(1 + ηra′) log(hβ(x̂i)) if âi = a′, ŷi = 1




∀i ∈ [N ].

(4.31)

Note that the constraints ∥β∥∗ ≤ λ and ∥β∥∗(1− ηra) ≤ λ are redundant in

view of the constraint ∥β∥∗(1 + ηra′) ≤ λ. The claim then follows by substitut-

ing the dual reformulations for Taa′

β into (4.15) and eliminating the embedded

minimization operators.

4.6. Further Discussion and Details of Numerical

Results

In this section, we provide further details about the experiments in the Sec-
tion 4.5, including synthetic experiments, real dataset experiments and illustra-
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tions of the extremal distribution. All optimization problems are implemented
in Python 3.7 and all experiments were run on an Intel i7-700K CPU (4.2 GHz).

Synthetic Experiments. To show the decision boundaries in Figure 4.1,
we generate binary classification data that has 2 dimensional feature vectors
with two subgroups one of them being the minority (i.e., A = 0). We generate
5000 and 2000 binary class labels Y ∈ {0, 1} uniformly at random for majority
subgroup (A = 1), and minority subgroup (A = 0) respectively. Then, we set
the conditional true distributions of 2 dimensional feature vectors as following
Gaussian distributions.

X|A = 1, Y = 1 ∼ N ([6, 0], [3.5, 0; 0, 3.5]),

X|A = 1, Y = 0 ∼ N ([2, 0], [3.5, 0; 0, 3.5]),

X|A = 0, Y = 0 ∼ N ([−4, 0], [5, 0; 0, 5]),
X|A = 0, Y = 1 ∼ N ([−2, 0], [5, 0; 0, 5]).

Next, we use stratified sampling3 to obtain N = 50 points from the generated
data as a training dataset. We set the rest of the dataset the test dataset that
we calculate the accuracy and the unfairness of the trained models.

To obtain the Pareto frontiers in Figure 4.1, we use the synthetic experiment
from [Zaf+17b]. In this setting, we set the true distributions of the class labels
P(Y = 0) = P(Y = 1) = 1/2. Next, we set the conditional distributions of the
2 dimensional feature vectors as the following Gaussian distributions

X|Y = 1 ∼ N ([2; 2], [5, 1; 1, 5]), X|Y = 0 ∼ N ([−2;−2], [10, 1; 1, 3]).

Then, we draw sensitive attribute of each sample x from a Bernoulli distribution,

P(A = 1|X = x′) = pdf(x′|Y = 1)/(pdf(x′|Y = 1) + pdf(x′|Y = 0)),

where x′ = [cos(π/4), sin(π/4); sin(π/4), cos(π/4)]x is a rotated version of the
feature vector x and pdf(·|Y = y) is the Gaussian probability density function
of X|Y = y.

We sample 400 i.i.d. samples from P as our dataset, and we stratify sample
100 data points from this dataset and set it as training set, while we set the
rest as the test dataset. The procedure to obtain the frontiers is explained
as in Section 4.5. We fix ρ for DR-FLR to 0.01 and and the range of η is
[10−4,min{p̂11, p̂01}] with 5 equi-distant points.
Experiments with Real Data. We consider four publicly available datasets
(Adult, Drug, COMPAS, Arrythmia). We obtain Adult dataset from UCI repos-
itory4, it contains 14 features concerning demographic characteristics of 45222
instances (32561 for training and 12661 for test). The prediction task is to de-
termine whether a person makes over 50000$ a year, where we consider gender
as the sensitive attribute. The Drug dataset5 have records for 1885 respondents.

3Stratified sampling is a method of sampling from a population which can be partitioned

into subgroups, and requires sampling each subgroup independently.
4https://archive.ics.uci.edu/ml/datasets/adult
5https://archive.ics.uci.edu/ml/datasets/Drug+consumption+%28quantified%29
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Each respondent is described by 12 features, including level of education, age,
gender, country of residence and ethnicity. The task is to determine whether the
user ever used heroin or not. We consider ethnicity as the sensitive attribute.
COMPAS (Correctional Offender Management Profiling for Alternative Sanc-
tions)6 is a popular algorithm used by judges and parole officers for scoring
criminal defendant’s likelihood of recidivism. It has been shown that the algo-
rithm is biased in favor of white defendants based on a 2-year follow up study.
This dataset contains variables used by the COMPAS algorithm in scoring de-
fendants, along with their outcomes within 2 years of the decision for over 10000
criminal defendants. We concentrate on the one that includes only violent re-
cidivism, where ethnicity is the sensitive attribute. We obtain the Arrhythmia
dataset from UCI repository7 which contains 279 attributes8, where the aim is
to distinguish between the presence and absence of cardiac arrhythmia and to
classify it in one of the 16 groups. In our case, we changed the task with the
binary classification between normal arrhythmia against 15 different classes of
arrhythmia.
Training, Validation and Testing Procedure. In all other datasets we
randomly select 2/3 of the samples for training and we set the rest of the data
for testing. We repeat the training, validation and testing process for K3 times,
while the Adult dataset comes with designated training and testing samples,
and thus K3 = 1.
Validation. We select the hyper-parameter(s) of the classifier(s) (e.g., the
radius of the Wasserstein ball for DR-FLR) using a cross-validation procedure on
the training set similar to [Don+18]. First, we collect statistics of the parameters
of the model by splitting the training set into sub-training set (N samples) and
a validation set for K1 times. In the first step, the value of the parameter in the
grid with highest accuracy calculated over the validation set is identified. In the
second step, we shortlist all the values of parameter in the grid with accuracy
close (in our case 70%−98%) to the maximum accuracy in that range minus the
lowest possible accuracy. Finally, from this list, we select the parameter value
that provides the lowest unfairness measure with respect to the log-probabilistic
equal opportunity.
Testing. We stratify sample N samples from the training set and we collect
the statistics regarding the performance of the classifiers on the test dataset.
We repeat this process for K2 times.
Discussion on Table 4.1 in Section 4.5. Table 4.1 summarizes the testing
accuracy and unfairness of averaged over K1 = 3,K2 = 100,K3 = 2, where
we tune the radius of Wasserstein ball ρ ∈ [10−5, 10−1]9 for DR-FLR classifier
on a logarithmic search grid with 50 discretization points: All methods are

6https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-

analysis
7https://archive.ics.uci.edu/ml/datasets/Arrhythmia
8We only use the first 12 out of 278 non-sensitive features of the Arrhythmia dataset so

that we can use the same search grid for ρ across all datasets (in the other datasets p ranges

from 5 to 12).
9After we obtain the logarithmic scale, we multiply the values by 5, and thus ρ ∈
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trained with N = 150 and we set η = min{p̂11, p̂01}/2 both for FLR and DR-
FLR, κA = κY = 0.5 for DR-FLR, DOB+ [Don+18] (the model parameter
ϵ = 0), and ZVRG [Zaf+17b] (the model parameter ϵ = 10−4). We use the
following accuracy thresholds at the validation step to tune radius of Wasserstein
distance for DR-FLR: 95% for Drug and Adult, 97% for Arrhythmia dataset
and 73% for COMPAS dataset. The difference of the threshold is due to the
structure of dataset. For example, the COMPAS dataset is mostly categorical
(other than one attribute that is numerical) and thus to decrease the unfairness,
the threshold that we use in the validation step for the accuracy should be
smaller than the one would use for other datasets that consists mostly numerical
attributes. Moreover, the accuracy threshold also depends on how unbalanced
the dataset is, which determines the lowest possible accuracy that is attained
when a classifier only predicts 1 (or 0) for all samples.
Worst Case Distribution. To illustrate the extremal distribution Q⋆ from
Proposition 4.4.3, we generate two interleaving half circles, which is a simple toy
dataset for visualization. We assign the sensitive attributes of the data points
uniformly at random by setting two-thirds of the data as the majority subgroup
and the remaining one-third as the minority subgroup. We generate 500 samples
and split them into training and test sets by 85%-15% proportion. Next, we train
the classifiers with the training set and calculate the worst-case unfairness Uf

for a prescribed radius ρ. The illustrated extremal distribution Q⋆ in Figure 4.2
are obtained with radius of the Wasserstein ball 0.02, 0.05, 0.05, 0.01 for classical
logistic regression, support vector machine with RBF kernel, Gaussian process
wiht RBF kernel and AdaBoost, respectively.

4.6.1. Additional Numerical Experiments

In this section, we provide additional experiments to compare the performance
of different classifiers.

Discussion on Table 4.2. An interesting experiment would be to compare
the performance of DOB+ and LR, FLR and DR-FLR, when we also tune the
parameter of the classifier that is used in DOB+. Because SVM is a determin-
istic classifier, we cannot calculate the (log-)probabilistic unfairness. Thus, in
the cross-validation procedure, we choose the parameter that gives the lowest
unfairness with respect to the deterministic equal opportunity both for DR-FLR
and DOB+ from the acceptable parameter grid which provides accuracy higher
than the given threshold.

The results in Table 4.2 summarize the testing accuracy and unfairness av-
eraged over K1 = 5, K2 = 100, K3 = 5, where we tune the radius of Wasser-
stein ball ρ ∈ [10−5, 10−1]10 for DR-FLR classifier and regularization parameter
C ∈ [10−1, 102] of linear support vector machine for DOB+ method on a log-
arithmic search grid with 50 discretization points. We keep the same training

[5.10−5, 5.10−1] at the end.
10After we obtain the logarithmic scale, we multiply the values by 5, and thus ρ ∈ [5 ·

10−5, 5 · 10−1] at the end.
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Dataset Metric LR FLR DOB+[Don+18] DR-FLR

Drug

Accuracy 0.79±0.01 0.79± 0.01 0.79± 0.01 0.79± 0.01

Det-UNF 0.06± 0.05 0.06± 0.05 0.09± 0.07 0.04± 0.04

Prob-UNF 0.06± 0.05 0.06± 0.05 - 0.05± 0.04

LogProb-UNF 0.21± 0.20 0.20± 0.20 - 0.16± 0.14

Adult

Accuracy 0.80±0.01 0.80± 0.01 0.79± 0.01 0.79± 0.01

Det-UNF 0.08± 0.06 0.06± 0.06 0.16± 0.10 0.06± 0.06

Prob-UNF 0.17± 0.08 0.12± 0.08 − 0.12± 0.08

LogProb-UNF 1.01± 0.77 0.68± 0.68 − 0.64± 0.65

Compas

Accuracy 0.65±0.01 0.65± 0.02 0.60± 0.03 0.60± 0.03

Det-UNF 0.24± 0.04 0.23± 0.04 0.17± 0.06 0.15± 0.07

Prob-UNF 0.12± 0.02 0.10± 0.03 − 0.03± 0.02

LogProb-UNF 0.25± 0.06 0.22± 0.06 − 0.07± 0.04

Arrhythmia

Accuracy 0.63±0.03 0.63± 0.03 0.65± 0.02 0.62± 0.03

Det-UNF 0.21±0.11 0.15± 0.10 0.11± 0.08 0.09± 0.08

Prob-UNF 0.14±0.07 0.09± 0.06 − 0.05± 0.04

LogProb-UNF 0.28± 0.17 0.19± 0.15 − 0.09± 0.08

Table 4.2: Testing accuracy and unfairness (average ± standard deviation). For

DR-FLR ρ and for DOB+ method regularization parameter C of linear SVM is

tuned given the training data. LR, FLR, DOB+ and DR-FLR are trained with

N = 150 samples stratify sampled from the training split.

sample size N = 150 for all LR, FLR, DOB+ and DR-FLR. We use the follow-
ing accuracy thresholds at the validation step to tune ρ for DR-FLR and C for
DOB+: 95% for Drug, Adult, and Arrhythmia datasets and 70% for COMPAS
dataset.
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5.1. Introduction

The past decade witnessed data and algorithms becoming an integrative part of
the human society. Recent technological advances are now allowing us to collect
and store an astronomical amount of unstructured data, and the unprecedented
computing power is enabling us to convert these data into decisional insights.
Nowadays, machine learning algorithms can uncover complex patterns in the
data to produce an exceptional performance that can match, or even surpass,
that of humans. These algorithms, as a consequence, are proliferating in every
corner of our lives, from suggesting us the next vacation destination to helping
us create digital paintings and melodies. Machine learning algorithms are also
gradually assisting humans in consequential decisions such as deciding whether a
student is admitted to college, picking which medical treatment to be prescribed
to a patient, and determining whether a person is convicted. Arguably, these
decisions impact radically many people’s lives, together with the future of their
loved ones.

Algorithms are conceived and function following strict rules of logic and al-
gebra; it is hence natural to expect that machine learning algorithms deliver
objective predictions and recommendations. Unfortunately, in-depth investiga-
tions reveal the excruciating reality that state-of-the-art algorithmic assistance
is far from being free of biases. For example, a predictive algorithm widely
used in the United States criminal justice system is more likely to misclassify
African-American offenders into the group of high recidivism risk compared to
white-Americans [Cho17; Mul16]. The artificial intelligence tool developed by
Amazon also learned to penalize gender-related keywords such as “women’s” in
the profile screening process, and thus may prefer to recommend hiring male
candidates for software development and technical positions [Das18]. Further,
Google’s ad-targeting algorithm displayed advertisements for higher-paying ex-
ecutive jobs more often to men than to women [DTD15].

There are several possible explanations for why cold, soulless algorithms
may trigger biased recommendations. First, the data used to train machine
learning algorithms may already encrypt human biases manifested in the data
collection process. These biases arise as the result of a suboptimal design of ex-
periments, or from historically biased human decisions that accumulate over cen-
turies. Machine-learned algorithms, which are apt to detect underlying patterns
from data, will unintentionally learn and maintain these existing biases [BG18;
Man+16]. For example, secretary or primary school teacher are professions
which are predominantly taken by women, thus, natural language processing
systems are inclined to associate female attributes to these jobs. Second, train-
ing a machine learning algorithm typically involves minimizing the prediction
error which privileges the majority populations over the minority groups. Clini-
cal trials, for instance, typically involve very few participants from the minority
groups such as indigenous people, and thus medical interventions recommended
by the algorithms may not align perfectly to the characteristics and interests of
patients from the minority groups. Finally, even when the sensitive attributes
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are not used in the training phase, strong correlations between the sensitive
attributes and the remaining variables in the dataset may be exploited to gen-
erate unjust actions. For example, the sensitive attribute of race can be easily
inferred with high accuracy based on common non-sensitive attributes such as
the travel history of passengers or the grocery shopping records of customers.

The pressing needs to redress undesirable algorithmic biases have propelled
the rising field of fair machine learning1. A building pillar of this field involves
the verification task: given a machine learning algorithm, we are interested in
verifying if this algorithm satisfies a chosen criterion of fairness. This task is
performed in two steps: first, we choose an appropriate notion of fairness, then
the second step invokes a computational procedure, which may or may not in-
volve data, to decide if the chosen fairness criterion is fulfilled. A plethora of
criteria for fair machine learning were proposed in the literature, many of them
are motivated by philosophical or sociological ideologies or legal constraints. For
example, anti-discrimination laws may prohibit making decisions based on sen-
sitive attributes such as age, gender, race or sexual orientation. Thus, a näıve
strategy, called fairness through unawareness, involves removing all sensitive
attributes from the training data. However, this strategy seldom guarantees
any fairness due to the inter-correlation issues [GH+16; Gar+19], and thus po-
tentially fails to generate inclusive outcomes [BS16; BYF20; Kle+18; LMC18].
Other notions of fairness aim to either promote individual fairness [Dwo+12],
prevent disparate treatment [Zaf+17a] or avoid disparate mistreatment [Fel+15;
Zaf+17b] of the algorithms. Towards similar goals, notions of group fairness fo-
cus on reducing the difference of favorable outcomes proportions among differ-
ent sensitive groups. Examples of group fairness notions include disparate im-
pact [Zaf+17a], demographic parity (statistical parity) [CV10; Dwo+12], equal-
ity of opportunity [Har+16] and equalized odds [Har+16]. The notion of coun-
terfactual fairness [Gar+19] was also suggested as a measure of causal fairness.
Despite the abundance of available notions, there is unfortunately no general
consensus on the most suitable measure to serve as the industry standard. More-
over, except in trivial cases, it is not possible for a machine learning algorithm
to simultaneously satisfy multiple notions of fairness [Ber+18; KMR16]. There-
fore, the choice of the fairness notion is likely to remain more an art than a
science.

This chapter focuses not on the normative approach to choosing an ideal
notion of machine learning fairness. We endeavor in this chapter to shed more
light on the computational procedure to complement the verification task. Con-
cretely, we position ourselves in the classification setting, which is arguably the
most popular task in machine learning. Moreover, we will focus on notions
of group fairness, and we employ the framework of statistical hypothesis test
instead of algorithmic test.

Contributions. Our work makes two concrete contributions to the problem of
fairness testing of machine learning’s classifiers.

1Comprehensive surveys on fair machine learning can be found in [Ber+18; CR20; CD+17;

Meh+19].
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1. We propose the Wasserstein projection framework to perform statistical hy-
pothesis test of group fairness for classification algorithms. We derive in
details the computation of the test statistic and the limiting distribution
when fairness is measured using the probabilistic equality of opportunity
and probabilistic equalized odds criteria.

2. We demonstrate that the Wasserstein projection hypothesis testing paradigm
is asymptotically correct and can exploit additional information on the ge-
ometry of the feature space. Moreover, we also show that this paradigm
promotes transparency and interpretability through the analysis of the most
favorable distributions.

The remaining of the chapter is structured as follows. In Section 5.2, we
introduce the general problem of statistical hypothesis test of classification
fairness, and depict the current landscape of fairness testing in the literature.
Section 5.3 details our Wasserstein projection approach to this problem. Sec-
tions 5.4 and 5.5 apply the proposed framework to test if a pre-trained logistic
classifier satisfies the fairness notion of probabilistic equal opportunity and prob-
abilistic equalized odds, respectively. Numerical experiments are presented in
Section 5.6 to empirically validate the correctness and demonstrate the power
of our proposed paradigm.

All technical proofs are relegated to the Appendix.

5.2. Statistical Testing Framework for Fairness and

Literature Review

We consider throughout this chapter a generic binary classification setting. Let
X = Rd and Y = {0, 1} be the space of feature inputs and label outputs of
interest. We assume that there is a single sensitive attribute corresponding to
each data point and its space is denoted by A = {0, 1}. A probabilistic classifier
is represented by a function h(·) : X → [0, 1] that outputs for each given sample
x ∈ X the probability that x belongs to the positive class. The deterministic
classifier predicts class 1 if h(x) ≥ τ and class 0 otherwise, where τ ∈ [0, 1] is a
classification threshold. Note that the function h depends only on the feature
X, but not on the sensitive attribute A, thus predicting Y using h satisfies
fairness through unawareness.

The central goal of this chapter is to provide a statistical test to detect if a
classifier h fails to satisfy a prescribed notion of machine learning fairness. A
statistical hypothesis test can be cast with the null hypothesis being

H0: the classifier h is fair,

against the alternative hypothesis being

H1: the classifier h is not fair.
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In this chapter, we focus on statistical notions of group fairness, which are
usually defined using conditional probabilities. A prevalent notion of fairness
in machine learning is the criterion of equality of opportunity2, which requires
that the true positive rate are equal between subgroups.

Definition 6 (Equal opportunity [Har+16]). A classifier h(·) : X → [0, 1]

satisfies the equal opportunity criterion relative to Q if

Q(h(X) ≥ τ |A = 1, Y = 1) = Q(h(X) ≥ τ |A = 0, Y = 1),

where τ is the classification threshold.

Another popular criterion of machine learning fairness is the equalized odds,
which is more stringent than the equality of opportunity: it requires that the
positive outcome is conditionally independent of the sensitive attributes given
the true label.

Definition 7 (Equalized odds [Har+16]). A classifier h(·) : X → [0, 1] satisfies

the equalized odds criterion relative to Q if

Q(h(X) ≥ τ |A = 1, Y = y) = Q(h(X) ≥ τ |A = 0, Y = y) ∀y ∈ Y,

where τ is the classification threshold.

Notice that the criteria of fairness presented in Definitions 6 and 7 are de-
pendent on the distribution Q: a classifier h can be fair relative to a distribution
Q1, but it may become unfair with respect to another distribution Q2 ̸= Q1.
If we denote by P the true population distribution that governs the random
vector (X,A, Y ), then it is imperative and reasonable to test for group fairness
with respect to P. For example, to test for the equality of opportunity, we can
reformulate a two-sample equal conditional mean test of the null hypothesis

H0 : EP[1h(X)≥τ |A = 1, Y = 1] = EP[1h(X)≥τ |A = 0, Y = 1],

and one can potentially employ a Welch’s t-test with proper adjustment for
the randomness of the sample size. Unfortunately, deriving the test becomes
complicated when the null hypothesis involves an equality of multi-dimensional
quantities, which arises in the case of equalized odds, due to the complication
of the covariance terms. Variations of the permutation tests were also proposed
to detect discriminatory behaviour of machine learning algorithms following
the same formulation of the one-dimensional two-sample equality of conditional
mean test [DiC+20; Tra+17]. However, these permutation tests follow a black-
box mechanism and are unable to be generalized to multi-dimensional tests.
Tests based on group fairness notions can also be accomplished using an algo-
rithmic approach as in [DiC+20; Sal+18; Gor+19].

2We use two terms “equality of opportunity” and “equal opportunity” interchangeably.
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From a broader perspective, deriving tests for fairness is an active area of
research, and many testing procedures have been recently proposed to test for in-
dividual fairness [XYS20; JVS20], for counterfactual fairness [BYF20; Gar+19]
and diverse other criteria [Bel+18; Wex+19; Tra+17].

Literature related to optimal transport. Optimal transport is a long-
standing field that dates back to the seminal work of Gaspard Monge [Mon81b].
In the past few years, it has attracted significant attention in the machine learn-
ing and computer science communities thanks to the availability of fast ap-
proximation algorithms [Cut13; DGK18; Ben+15; BSR18; Gen+16]. Optimal
transport is particularly successful in various learning tasks, notably generative
mixture models [Kol+17; Ngu+13], image processing [AMJJ18; Fer+14; KR15;
PR17; TPG16], computer vision and graphics [PW08; PW09; RTG00; Sol+14;
Sol+15], clustering [Ho+17], dimensionality reduction [Caz+18; Fla+18; RCP16;
Sch16; SC15], domain adaptation [Cou+16; Mur+18], signal processing [Tho+17]
and data-driven distributionally robust optimization [Kuh+19; BKM19; GCK17;
ZG18]. Recent comprehensive survey on optimal transport and its applications
can be found in [PC19a; Kol+17].

In the context of fair classification, ideas from optimal transport have been
used to construct fair logistic classifier [Taş+20], to detect classifiers that does
not obey group fairness notions, or to ensure fairness by pre-processing [Gor+19],
to learn a fair subspace embedding that promotes fair classification [YBS20], to
test individual fairness [XYS20], or to construct a counterfactual test [BYF20].

5.3. Wasserstein Projection Framework for Sta-

tistical Test of Fairness

We hereby provide a fresh alternative to the testing problem of machine learning
fairness. On that purpose, for a given classifier h, we define abstractly the
following set of distributions

Fh = {Q ∈ P : the classifier h is fair relative to Q} , (5.1)

where P denotes the space of all distributions on X × A × Y. Intuitively, the
set Fh contains all probability distributions under which the classifier h satisfies
the prescribed notion of fairness. It is trivial to see that if Fh contains the true
data-generating distribution P, then the classifier h is fair relative to P. Thus,
we can reinterpret the hypothesis test of fairness using the hypotheses

H0: P ∈ Fh, H1: P ̸∈ Fh.

Testing the inclusion of P in Fh is convenient if P is endowed with a distance.
In this chapter, we equip P with the Wasserstein distance.

Definition 8 (Wasserstein distance). The type-2 Wasserstein distance between
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two probability distributions Q and Q′ supported on Ξ is defined as

W(Q′,Q) = min
π∈Π(Q′,Q)

√
Eπ[c(ξ′, ξ)2],

where the set Π(Q′,Q) contains all joint distributions of the random vectors

ξ′ ∈ Ξ and ξ ∈ Ξ under which ξ′ and ξ have marginal distributions Q′ and Q,

respectively, and c : Ξ× Ξ→ [0,∞] constitutes a lower semi-continuous ground

metric.

The type-2 Wasserstein distance3 is a special instance of the optimal trans-
port. The squared Wasserstein distance between Q′ and Q can be interpreted as
the cost of moving the distribution Q′ to Q, where c(ξ′, ξ) is the cost of moving
a unit mass from ξ′ to ξ. Being a distance on P, W is symmetric, non-negative
and vanishes to zero if Q′ = Q. The Wasserstein distance is hence an attractive
measure to identify if P belongs to Fh. Using this insight, the hypothesis test
for fairness has the equivalent representation

H0: infQ∈Fh
W(P,Q) = 0, H1: infQ∈Fh

W(P,Q) > 0.

Even though P remains elusive to our knowledge, we are given access to a
set of i.i.d test samples {(x̂i, âi, ŷi)}Ni=1 generated from the true distribution P.
Thus we can rely on the empirical value

inf
Q∈Fh

W(P̂N ,Q),

which is the distance from the empirical distribution supported on the samples
P̂N =

∑N
i=1 δ(x̂i,âi,ŷi) to the set Fh. To perform the test, it is sufficient to study

the limiting distribution of the test statistic using proper scaling under the null
hypothesis H0. The outcome of the test is determined by comparing the test
statistic to the quantile value of the limiting distribution at a chosen level of
significant α ∈ (0, 1).
Advantages. The Wasserstein projection framework to hypothesis testing that
we described above offers several advantages over the existing methods.

1. Geometric flexibility: The definition of the Wasserstein distance implies that
there exists a joint ground metric c on the space of the features, the sensitive
attribute and the label. If the modelers or the regulators possess any struc-
tural information on an appropriate metric on Ξ = X × A × Y, then this
information can be exploited in the testing procedure. Thus, the Wasserstein
projection framework equips the users with an additional freedom to inject
prior geometric information into the statistical test.

2. Mutivariate generalizability: Certain notions of fairness, such as equalized
odds, are prescribed using multiple equalities of conditional expectations.
The Wasserstein projection framework encapsulates these equalities simul-
taneously in the definition of the set Fh, and provides a joint test of these

3From this point, we omit the term “type-2” for brevity.
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equalities without the hassle of decoupling and testing individual equalities
as being done in the currently literature.

3. Interpretability: If we denote by Q⋆ the projection of the empirical distribu-
tion P̂N onto the set of distributions Fh, i.e.,

Q⋆ = arg min
Q∈Fh

W(P̂N ,Q),

then Q⋆ encodes the minimal perturbation to the empirical samples so that
the classifier h becomes fair. The distribution Q⋆ is thus termed the most
favorable distribution, and examining Q⋆ can reveal the underlying mecha-
nism and explain the outcome of the hypothesis test. The accessibility to
Q⋆ showcases the expressiveness of the Wasserstein projection framework.

Whilst theoretically sound and attractive, there are three potential diffi-
culties with the Wasserstein projection approach to statistical test of fairness.
First, to project P̂N onto the set Fh, we need to solve an infinite-dimensional
optimization problem, which is inherently difficult. Second, for many notions of
machine learning fairness such as the equality of opportunity and the equalized
odds, the corresponding set Fh in (5.1) is usually prescribed using nonlinear
constraints. For example, if we consider the equal opportunity criterion in Def-
inition 6, then the set Fh can be re-expressed using a fractional function of the
probability measure as

Fh =

{
Q ∈ P s.t.

Q(h(X) ≥ τ,A = 1, Y = 1)

Q(A = 1, Y = 1)
=

Q(h(X) ≥ τ,A = 0, Y = 1)

Q(A = 0, Y = 1)

}
.

Apart from involving nonlinear constraints, it is easy to verify that the set Fh is
also non-convex, which amplifies the difficulty of computing the projection onto
Fh. Finally, the limiting distribution of the test statistic is difficult to analyze
due to the discontinuity of the probability function at the set {x ∈ X : h(x) =
τ}. The asymptotic analysis with this discontinuity is of a combinatorial nature,
and is significantly more problematic than the asymptotic analysis of smooth
quantities.

While these difficulties may be overcome via various ways, in this chapter
we choose the following combination of remedies. First, we will use a relaxed
notion of fairness termed probabilistic fairness, which was originally introduced
in [Ple+17]. Second, when computing the Wasserstein distances between distri-
butions on X ×A× Y, we use

c
(
(x′, a′, y′), (x, a, y)

)
= ∥x− x′∥+∞|a− a′|+∞|y − y′| (5.2)

as the ground metric, where ∥ · ∥ is a norm on Rd. This case corresponds
to having an absolute trust in the label and in the sensitive attribute of the
training samples. This absolute trust restriction is common in the literature of
fair machine learning [XYS20; Taş+20].

We now briefly discuss the advantage of using the ground metric of the

form (5.2). Denote by p ∈ R|A|×|Y|
++ the array of the true marginals of (A, Y ),
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in particular, pay = P(A = a, Y = y) for all a ∈ A and y ∈ Y. Further,

let p̂N ∈ R|A|×|Y|
++ be the array of the empirical marginals of (A, Y ) under the

empirical measure P̂N , that is, p̂Nay = P̂N (A = a, Y = y) for all a ∈ A and y ∈ Y.
Throughout this chapter, we assume that the empirical marginals are proper,
that is, p̂Nay ∈ (0, 1) for any (a, y) ∈ A × Y. We define temporarily the simplex

set ∆ := {p̄ ∈ R|A|×|Y|
++ :

∑
a∈A,y∈Y p̄ay = 1}. Subsequently, for any marginals

p̄ ∈ ∆, we define the marginally-constrained set of distributions

Fh(p̄) ≜

{
Q ∈ P :

h is fair relative to Q
Q(A = a, Y = y) = p̄ay ∀(a, y) ∈ A× Y

}
.

Using these notations, one can readily verify that

Fh = ∪p̄∈∆Fh(p̄).

Moreover, the next result asserts that in order to compute the projection of P̂N

onto Fh, to suffices to project onto the marginally-constrained set Fh(p̂
N ).

Lemma 5.3.1 (Projection with marginal restrictions). Suppose that the ground

metric is chosen as in (5.2). If a measure Q ∈ Fh satisfies W(P̂N ,Q) < ∞,

then Q ∈ Fh(p̂
N ).

A useful consequence of Lemma 5.3.1 is that

inf
Q∈Fh

W(P̂N ,Q) = inf
Q∈Fh(p̂N )

W(P̂N ,Q), (5.3)

where the feasible set of the problem on the right-hand side is the marginally-
constrained set Fh(p̂

N ) using the empirical marginals p̂N . For two notions of

probabilistic fairness that we will explore in this chapter, projecting P̂N onto
Fh(p̂

N ) is arguably easier than onto Fh. Thus, this choice of ground metric
improves the tractability when computing the test statistic.

Third, and finally, we will focus on the logistic regression setting, which is
one of the most popular classification methods [HJLS13]. In this setting, the
conditional probability P[Y = 1|X = x] is modelled by the sigmoid function

hβ(x) =
1

1 + exp(−β⊤x)
,

where β ∈ Rd is the regression parameter. Moreover, a classifier with β = 0, is
trivially fair. Thus, it suffices to consider β ̸= 0.
Notations. We use ∥ · ∥∗ to denote the dual norm of ∥ · ∥. For any integer
N , we define [N ] := {1, 2, . . . , N}. Given N test samples (x̂i, âi, ŷi)

N
i=1, we use

Iy ≜ {i ∈ [N ] : ŷi = y} to denote the index set of observations with label y.
The parameters λi are defined as

∀i ∈ [N ] : λi =





(p̂N11)
−1 if (âi, ŷi) = (1, 1),

−(p̂N01)−1 if (âi, ŷi) = (0, 1),

(p̂N10)
−1 if (âi, ŷi) = (1, 0),

−(p̂N00)−1 if (âi, ŷi) = (0, 0).

(5.4)
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5.4. Testing Fairness for Probabilistic Equal Op-

portunity Criterion

In this section, we use the ingredients introduced in the previous section to
concretely construct a statistical test for the fairness of a logistic classifier hβ .
Specifically, we will employ the probabilistic equal opportunity criterion which
was originally proposed in [Ple+17].

Definition 9 (Probabilistic equal opportunity criterion [Ple+17]). A logistic

classifier hβ : X → [0, 1] satisfies the probabilistic equalized opportunity criteria

relative to a distribution Q if

EQ[hβ(X)|A = 1, Y = 1] = EQ[hβ(X)|A = 0, Y = 1].

The probabilistic equal opportunity criterion, which serves as a surrogate
for the equal opportunity criterion in Definition 6, depends on the smooth and
bounded sigmoid function hβ but is independent of the classification thresh-
old τ . Motivated by [LPL20], we empirically illustrate in Figure 5.1 that the
probabilistic surrogate provides a good approximation of the equal opportu-
nity criterion. Figure 5.1a plots the absolute difference of the classification
probabilities |P(h(X) ≥ 1

2 |A = 1, Y = 1) − P(h(X) ≥ 1
2 |A = 0, Y = 1)|,

while Figure 5.1b plots the absolute difference of the sigmoid expectations
|EP[h(X)|A = 1, Y = 1] − EP[h(X)|A = 0, Y = 1]|. One may observe that
the regions of β so that the absolute differences fall close to zero are similar in
both plots. This implies that a logistic classifier hβ which is equal opportunity
fair is also likely to be probabilistic equal opportunity fair, and vice versa.

2 0 2
2

2

1

0

1

2

1

0.0

0.2

0.4

(a) Equal opportunity

2 0 2
2

2

1

0

1

2

1

0.2

0.4

(b) Probabilistic equal opportu-

nity

Figure 5.1: Comparison of fairness notions for d = 2 and hβ(x) = 1/(1+exp( 13−
β1x1 − β2x2)).

We use the superscript “opp” to emphasize that fairness is measured us-
ing the probabilistic equal opportunity criterion. Consequentially, the set of
distributions Fopp

hβ
that makes the logistic classifier hβ fair is

Fopp
hβ

=
{

Q ∈ P such that EQ[hβ(X)|A = 1, Y = 1] = EQ[hβ(X)|A = 0, Y = 1]
}
.
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The statistical hypothesis test to verify whether the classifier hβ is fair is for-
mulated with the null and alternative hypotheses

Hopp
0 : P ∈ Fopp

hβ
, Hopp

1 : P ̸∈ Fopp
hβ

.

The remainder of this section unfolds as follows. In Section 5.4.1, we delineate
the computation of the projection of P̂N onto Fopp

hβ
. Section 5.4.2 studies the

limiting distribution of the test statistic, while Section 5.4.3 examines the most
favorable distribution.

5.4.1. Wasserstein Projection

Lemma 5.3.1 suggests that it is sufficient to consider the projection onto the
marginally-constrained set Fopp

hβ
(p̂N ), where p̂N is the empirical marginals of

the empirical distribution P̂N . In particular, Fopp
hβ

(p̂N ) is

Fopp
hβ

(p̂N )=

{
Q ∈ P :

(p̂N11)
−1EQ[hβ(X)1(1,1)(A, Y )] = (p̂N01)

−1EQ[hβ(X)1(0,1)(A, Y )]
Q(A = a, Y = y) = p̂Nay ∀(a, y) ∈ A× Y

}
,

where the equality follows from the law of conditional expectation. Notice that
the set Fopp

hβ
(p̂N ) is prescribed using linear constraints of Q, and thus it is more

amenable to optimization than the set Fopp
hβ

. It is also more convenient to work
with the squared distance function R whose input is the empirical distribution
P̂N and its corresponding vector of empirical marginals p̂N by

Ropp(P̂N , p̂N ) :=





inf W(Q, P̂N )2

s.t. EQ[hβ(X)((p̂N11)
−1
1(1,1)(A, Y )− (p̂N01)

−1
1(0,1)(A, Y ))] = 0

EQ[1(a,y)(A, Y )] = p̂Nay ∀(a, y) ∈ A× Y.

Notice that the constraints of the above infimum problem are linear in the mea-
sure Q, but the functions inside the expectation operators are possibly nonlinear
functions of p̂N . Using the equivalent characterization (5.3), the following rela-
tion holds

inf
Q∈Fopp

hβ

W(P̂N ,Q) = inf
Q∈Fopp

hβ
(p̂N )

W(P̂N ,Q) =

√
Ropp(P̂N , p̂N ).

We now proceed to show how computing the projection can be reduced to solving
a finite-dimensional optimization problem.

Proposition 5.4.1 (Dual reformulation). The squared projection distance Ropp(P̂N , p̂N )

equals to the optimal value of the following finite-dimensional optimization prob-

lem

sup
κ∈R

1

N

∑

i∈I1

inf
xi∈X

{
∥xi − x̂i∥2 + κλihβ(xi)

}
. (5.5)
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While Proposition 5.4.1 asserts that computing the squared projection dis-
tance Ropp(P̂N , p̂N ) is equivalent to solving a finite-dimensional problem, un-
fortunately, this saddle point problem is in general difficult. Indeed, because
hβ is non-convex, even finding the optimal inner solution x⋆i for a fixed value
of the outer variable γ ∈ R is generally NP-hard [MK85]. The situation can be
partially alleviated if ∥ · ∥ is an Euclidean norm on Rd.

Lemma 5.4.2 (Univariate reduction). Suppose that ∥ · ∥ is the Euclidean norm

on Rd, we have

Ropp(P̂N , p̂N ) = sup
κ∈R

1

N

∑

i∈I1

min
ki∈[0, 18 ]

γ2λ2i ∥β∥22k2i +
γλi

1 + exp(γλi∥β∥22ki − β⊤x̂i)
.

(5.6)

The proof of Lemma 5.4.2 follows trivially from application of Lemma 5.8.1
to reformulate the inner infimum problems for each i ∈ I1. Lemma 5.4.2 offers
a significant reduction in the computational complexity to solve the inner sub-
problems of (5.5). Instead of optimizing over d-dimensional vector xi, the repre-
sentation in Lemma 5.4.2 suggests that it suffices to search over a 1-dimensional
space for ki. While the objective function is still non-convex in ki, we can per-
form a grid search over a compact interval to find the optimal solution for ki
to high precision. The grid search operations can also be parallelized across the
index i thanks to the independent structure of the inner problems. Further-
more, the objective function of the supremum problem is a point-wise minimum
of linear, thus concave, functions of γ. Hence, the outer problem is a concave
maximization problem in γ, which can be solved using a golden section search
algorithm.

5.4.2. Limiting Distribution

We now characterize the limit properties of Ropp(P̂N , p̂N ). The next theorem
assert that the limiting distribution is of the chi-square type.

Theorem 5.4.3 (Limiting distribution – Probabilistic equal opportunity). Sup-

pose that (x̂i, âi, ŷi) are i.i.d. samples from P. Under the null hypothesis Hopp
0 ,

we have

N ×Ropp(P̂N , p̂N )
d.−→ θχ2

1,

where χ2
1 is a chi-square distribution with 1 degree of freedom,

θ =

(
EP

[∥∥∥∥∇hβ(X)

(
1(1,1)(A, Y )

p11
− 1(0,1)(A, Y )

p01

)∥∥∥∥
2

∗

])−1
σ2
1

p201p
2
11
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with σ2
1 = Cov(Z1), and Z1 is the random variable

Z1 = hβ(X)
(
p011(1,1)(A, Y )− p111(0,1)(A, Y )

)

+ 1(0,1)(A, Y )EP[1(1,1)(A, Y )hβ(X)]

− 1(1,1)(A, Y )EP[1(0,1)(A, Y )hβ(X)].

Construction of the hypothesis test. Based on the result of Theorem 5.4.3,
the statistical hypothesis test proceeds as follows. Let ηopp1−α denote the (1−α)×
100% quantile of θχ2

1, where α ∈ (0, 1) is the predetermined significance level.
By Theorem 5.4.3, the statistical decision has the form

Reject Hopp
0 if ŝoppN > ηopp1−α

with ŝoppN = N × Ropp(P̂N , p̂N ). The limiting distribution θχ2
1 is nonpivotal

because θ depends on the true distribution P. Luckily, because the quantile
function of θχ2

1 is continuous in θ, if θ̂N is a consistent estimator of θ then it is

also valid to use the quantile of θ̂Nχ
2
1 for the purpose of testing. We thus proceed

to discuss a consistent estimator θ̂N constructed from the available data. First,
notice that p̂N01 and p̂N11 are consistent estimator for p01 and p11. Similarly, the
law of large numbers asserts that the denominator term in the definition of θ
can be estimated by the sample average

EP

[∥∥∥∥∇hβ(X)

(
1(1,1)(A, Y )

p11
− 1(0,1)(A, Y )

p01

)∥∥∥∥
2

∗

]

≈ T̂N =
∥β∥2∗
N

N∑

i=1

hβ(x̂i)
2(1− hβ(x̂i))2

(
1(1,1)(âi, ŷi)

(p̂N11)
2

+
1(0,1)(âi, ŷi)

(p̂N01)
2

)
.

Under the null hypothesis Hopp
0 , Z1 has mean 0. The sample average estimate

of σ2
1 is σ2

1 ≈ (σ̂N )2 with

(σ̂N
1 )2 =

1

N

N∑

i=1

[
hβ(x̂i)

(
p011(1,1)(âi, ŷi)− p111(0,1)(A, Y )

)

+ 1(0,1)(âi, ŷi)
( N∑

j=1

1(1,1)(âj , ŷj)hβ(x̂j)
)

(5.7)

− 1(1,1)(âi, ŷi)
( N∑

j=1

1(0,1)(âj , ŷj)hβ(x̂j)
)]2

.

Using a nested arguments involving the continuous mapping theorem and Slut-
sky’s theorem, the estimator

θ̂N =
(σ̂N

1 )2

T̂N (p̂N01)
2(p̂N11)

2
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is consistent for θ. Let the corresponding (1−α)×100% quantile of the random

variable θ̂Nχ2
1 be η̂opp1−α. The statistical test decision using the plug-in consistent

estimate becomes

Reject Hopp
0 if ŝoppN > η̂opp1−α.

5.4.3. Most Favorable Distributions

We now discuss the construction of the most favorable distribution Q⋆, the
projection of the empirical distribution P̂N onto the set Fopp

hβ
. Intuitively, Q⋆

is the distribution closest to P̂N that makes hβ a fair classifier under the equal
opportunity criterion. If ∥ · ∥ is the Euclidean norm, the information about Q⋆

can be recovered from the optimal solution of problem (5.6) by the result of the
following lemma.

Lemma 5.4.4 (Most favorable distribution). Suppose that ∥·∥ is the Euclidean

norm. Let κ⋆ be the optimal solution of problem (5.6), and for any i ∈ I1, let
k⋆i be a solution of the inner minimization of (5.6) with respect to κ⋆. Then the

most favorable distribution Q⋆ = arg min
Q∈Fopp

hβ

W(P̂N ,Q) is a discrete distribution

of the form

Q⋆ =
1

N

(∑

i∈I0

δ(x̂i,âi,ŷi) +
∑

i∈I1

δ(x̂i−k⋆
i κ

⋆λiβ,âi,ŷi)

)
.

By using the result of Lemma 5.4.2, it is easy to verify that Q⋆ satisfies
W(Q⋆, P̂N )2 = Ropp(P̂N , p̂N ). Moreover, one can also show that Q⋆ ∈ Fopp

hβ
.

These two observations imply that Q⋆ is the projection of P̂N onto Fopp
hβ

. The
detailed proof is omitted.

Lemma 5.4.4 suggests that in order to obtain the most favorable distribu-
tion, it suffices to perturb only the data points with positive label. This is
intuitively rational because the notion of probabilistic equality of opportunity
only depends on the positive label, and thus the perturbation with a minimal
energy requirement should only move sample points with ŷi = 1. When the
underlying geometry is the Euclidean norm, the optimal perturbation of the
point x̂i is to move it along a line dictated by β with a scaling factor k⋆i γ

⋆λi.
Notice that λi defined in (5.4) are of opposite signs between samples of different
sensitive attributes, which implies that it is optimal to perturb x̂i in opposite
directions dependent on whether âi = 0 or âi = 1. This is, again, rational
because moving points in opposite direction brings the clusters of points closer
to the others, which reduces the discrepancy in the expected value of hβ(X)
between subgroups.

As a final remark, we note that Q⋆ is not necessarily unique. This is because
of the non-convexity of the inner problem over ki in (5.6), which leads to the
non-uniqueness of the optimal solution k⋆i (see Appendix 5.8 and Figure 5.5).
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5.5. Testing Fairness for Probabilistic equalized

odds Criterion

In this section, we extend the Wasserstein projection framework to the statistical
test of probabilistic equalized odds for a pre-trained logistic classifier.

Definition 10 (Probabilistic equalized odds criterion [Ple+17]). A logistic clas-

sifier hβ(·) : X → [0, 1] satisfies the probabilistic equalized odds criteria relative

to Q if

EQ[hβ(X)|A = 1, Y = y] = EQ[hβ(X)|A = 0, Y = y] ∀y ∈ Y.
The notion of probabilistic equalized odds requires that the conditional ex-

pectation of hβ to be independent of A for any label subgroup, thus it is more
stringent than the probabilistic equal opportunity studied in the previous sec-
tion. We use the superscript “odd” in this section to emphasize on this specific
notion of fairness. The definition of the probabilistic equalized odds prescribes
the following set of distributions

Fodd
hβ

=

{
Q ∈ P :

EQ[hβ(X)|A = 1, Y = 1] = EQ[hβ(X)|A = 0, Y = 1]
EQ[hβ(X)|A = 1, Y = 0] = EQ[hβ(X)|A = 0, Y = 0]

}
.

Correspondingly, the Wasserstein projection hypothesis test for probabilisitc
equalized odds can be formulated as

Hodd
0 : P ∈ Fodd

hβ
, Hodd

1 : P ̸∈ Fodd
hβ

.

In the sequence, we study the projection onto the manifold Fodd
hβ

in Sec-
tion 5.5.1. Section 5.5.2 examines the asymptotic behaviour of the test statis-
tic, and we close this section by studying the most favorable distribution Q⋆ in
Section 5.5.3.

5.5.1. Wasserstein Projection

Following a similar strategy as in Section 5.4, we define the set

Fodd
hβ

(p̂N ) =




Q ∈ P :

(p̂N11)
−1EQ[hβ(X)1(1,1)(A, Y )] = (p̂N01)

−1EQ[hβ(X)1(0,1)(A, Y )]

(p̂N10)
−1EQ[hβ(X)1(1,0)(A, Y )] = (p̂N00)

−1EQ[hβ(X)1(0,0)(A, Y )]

Q(A = a, Y = y) = p̂Nay ∀(a, y) ∈ A× Y




,

and the squared distance function

Rodd(P̂N , p̂N ) =





inf W(Q, P̂N )2

s.t. EQ[hβ(X)((p̂N11)
−1
1(1,1)(A, Y )− (p̂N01)

−1
1(0,1)(A, Y ))] = 0

EQ[hβ(X)((p̂N10)
−1
1(1,0)(A, Y )− (p̂N00)

−1
1(0,0)(A, Y ))] = 0

EQ[1(a,y)(A, Y )] = p̂Nay ∀(a, y) ∈ A× Y.
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The equivalent relation (5.3) suggests that the projection onto the set of distri-
butions Fodd

hβ
satisfies

inf
Q∈Fodd

hβ

W(P̂N ,Q) = inf
Q∈Fodd

hβ
(p̂N )

W(P̂N ,Q) =

√
Rodd(P̂N , p̂N ).

The squared distance Rodd(P̂N , p̂N ) can be computed by solving the saddle
point problem in the following proposition.

Proposition 5.5.1 (Dual reformulation). The squared projection distance Rodd(P̂N , p̂N )

equals to the optimal value of the following finite-dimensional optimization prob-

lem

sup
κ∈R,ζ∈R

1

N

N∑

i=1

inf
xi∈X

{
∥xi − x̂i∥2 + (κλi11(ŷi) + ζλi10(ŷi))hβ(xi)

}
. (5.8)

To complete this section, we now discuss an efficient way to computeRodd(P̂N , p̂N ).

The next lemma reveals that computing Rodd(P̂N , p̂N ) can be decomposed into
two subproblems of similar structure.

Lemma 5.5.2 (Univariate reduction). We have

Rodd(P̂N , p̂N ) = Ropp(P̂N , p̂N ) + UN ,

where UN is computed as

UN = sup
ζ∈R

1

N

∑

i∈I0

inf
xi∈X

{
∥xi − x̂i∥2 + ζλihβ(xi)

}
.

Furthermore, if ∥ · ∥ is the Euclidean norm on Rd, then

UN = sup
ζ∈R

1

N

{∑

i∈I0

min
ki∈[0, 18 ]

ζ2λ2i ∥β∥22k2i +
ζλi

1 + exp(ζλi∥β∥22ki − β⊤x̂i)

}
.

(5.9)

Notice that problem (5.9) has a similar structure to problem (5.6): the mere
difference is that the summation in the objective function of (5.9) runs over
the index set I0 = {i ∈ [N ] : ŷi = 0} instead of I1 in (5.6). Solving for UN

thus incurs the same computational complexity as, and can also be performed
in parallel with, computing Ropp(P̂N , p̂N ).
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5.5.2. Limiting Distribution

The next result asserts that the squared projection distance Rodd has the
O(N−1) convergence rate.

Theorem 5.5.3 (Limiting distribution – Probabilistic equalized odds). Suppose

that (x̂i, âi, ŷi) are i.i.d. samples from P. Under the null hypothesis Hodd
0 , we

have

N ×Rodd(P̂N , p̂N )
d.−→

sup
γ,ζ

{
γH1 + ζH0+

EP

[∥∥∥∥∥

(
γ

ζ

)⊤(
p−1
11 1(1,1)(A, Y )− p−1

01 1(0,1)(A, Y )

p−1
10 1(1,0)(A, Y )− p−1

00 1(0,0)(A, Y )

)
∇hβ(X)

∥∥∥∥∥

2

∗

]}
,

where ∇hβ(X) = hβ(X)(1 − hβ(X)β, and Hy = N (0, σ2
y)/(p1yp0y) with σ2

y =

Cov(Zy), and Zy are random variables

Zy = hβ(X)
(
p0y1(1,y)(A, Y )− p1y1(0,y)(A, Y )

)

+ 1(0,y)(A, Y )EP[1(1,y)(A, Y )hβ(X)]

− 1(1,y)(A, Y )EP[1(0,y)(A, Y )hβ(X)].

Construction of the hypothesis test. Contrary to the explicit chi-square
limiting distribution for the probabilistic equal opportunity fairness in Theo-
rem 5.4.3, the limiting distribution for the probabilistic equalized odds fairness
is not available in closed form. Nevertheless, the limiting distribution in this
case can be obtained by sampling H0 and H1 and solving a collection of opti-
mization problems for each sample. Notice that the objective function of the
supremum problem presented in Theorem 5.5.3 is continuous in H1 and H0, one
thus can define

Ĥy = N (0, σ̂2
y)/(p̂

N
1yp̂

N
0y),

where σ̂2
y is the sample average estimate of σ2

y, which can be computed using an
equation similar to (5.7). The limiting distribution can be computed by solving
the optimization problem with plug-in values

sup
γ,ζ

{
γĤ1 + ζĤ0+

EP̂N

[∥∥∥∥∥

(
γ

ζ

)⊤(
(p̂N11)

−1
1(1,1)(A, Y )− (p̂N01)

−1
1(0,1)(A, Y )

(p̂N10)
−1
1(1,0)(A, Y )− (p̂N00)

−1
1(0,0)(A, Y )

)
∇hβ(X)

∥∥∥∥∥

2

∗

]}
.

Notice that the expectation in taken over the empirical distribution P̂N , and
can be written as a finite sum. The last optimization problem can be solved
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efficiently using quadratic programming for any realization of Ĥ1 and Ĥ0. The
objective values can be collected to compute the (1−α)×100%-quantile estimate
η̂odd1−α of the limiting distribution. The statistical test decision using the plug-in
estimate becomes

Reject Hodd
0 if ŝoddN > η̂odd1−α,

where ŝoddN = N ×Rodd(P̂N , p̂N ).

5.5.3. Most Favorable Distributions

If the feature space X is endowed with an Euclidean norm, then the most
favorable distribution Q⋆, defined in this section as the projection of P̂N onto
Fodd

hβ
, can be constructed by exploiting Lemma 5.5.2.

Lemma 5.5.4 (Most favorable distribution). Suppose that ∥·∥ is the Euclidean

norm. Let κ⋆ and ζ⋆ be the optimal solution of problems (5.6) and (5.9), re-

spectively. For any i ∈ I1, let k⋆i be the solution of the inner minimization

of (5.6) with respect to κ⋆, and for any i ∈ I0, let k⋆i be a solution of the inner

minimization of (5.9) with respect to ζ⋆. Then the most favorable distribution

Q⋆ = argminQ∈Fodd
hβ

W(P̂N ,Q) is a discrete distribution of the form

Q⋆ =
1

N

(∑

i∈I0

δ(x̂i−k⋆
i ζ

⋆λiβ,âi,ŷi) +
∑

i∈I1

δ(x̂i−k⋆
i κ

⋆λiβ,âi,ŷi)

)
.

The proof of Lemma 5.5.4 follows from verifying that Q⋆ ∈ Fodd
hβ

and that

W(Q⋆, P̂N )2 = Rodd(P̂N , p̂N ) using Lemma 5.5.2, the detailed proof is omitted.
For probabilistic equalized odds, the most favorable distribution Q⋆ alters the
locations of both i ∈ I0 and i ∈ I1. The directions of perturbation are dependent
on λi, which is determined using (5.4). Notice that λi carry opposite signs
corresponding to whether âi = 0 or âi = 1, thus the perturbations will move x̂i
in opposite directions based on the value of the sensitive attribute âi.

5.6. Numerical Experiment

All experiments are run on an Intel Xeon based cluster composed of 287 com-
pute nodes each with 2 Skylake processors running at 2.3 GHz with 18 cores
each. We only use 2 nodes of this cluster and all optimization problems are
implemented in Python version 3.7.3. In all experiments, we use the 2-norm to
measure distances in the feature space. Moreover, we focus on the hypothesis
test of probabilistic equal opportunity, and thus the Wasserstein projection, the
limiting distribution and the most favorable distribution follow from the results
presented in Section 5.4.
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5.6.1. Validation of the Hypothesis Test

We now demonstrate that our proposed Wasserstein projection framework for
statistical test of fairness is a valid, or asymptotically correct, test. We consider
a binary classification setting in which X is 2-dimensional feature space. The
true distribution P has true marginal values pay being

p11 = 0.2, p01 = 0.1, p10 = 0.3, p00 = 0.4.

Moreover, conditioning on (A, Y ), the feature X follows a Gaussian distribution
of the form

X|A = 1, Y = 1 ∼ N ([6, 0], [3.5, 0; 0, 5]),

X|A = 0, Y = 1 ∼ N ([−2, 0], [5, 0; 0, 5]),
X|A = 1, Y = 0 ∼ N ([6, 0], [3.5, 0; 0, 5]),

X|A = 0, Y = 0 ∼ N ([−4, 0], [5, 0; 0, 5]).
The true distribution P is thus a mixture of Gaussian, and under this speci-
fication, a simple algebraic calculation indicates that a logistic classifier with
β = (0, 1)⊤ is fair with respect to the probabilistic equal opportunity criteria in
Definition 9. We thus focus on verifying fairness for this specific classifier. In the
first experiment, we empirically validate Theorem 5.4.3. To this end, we gener-
ate N ∈ {100, 500} i.i.d. samples from P to be used as the test data, and then

calculate the squared projection distance Ropp(P̂N , p̂N ) using Proposition 5.4.1.
The process is repeated 2,000 times to obtain an empirical estimate of the dis-
tribution of N × Ropp(P̂N , p̂N ). We also generate another set of one million
i.i.d. samples from P to estimate the limiting distribution θχ2

1. Figure 5.2 shows

that the empirical distribution of N × Ropp(P̂N , p̂N ) converges to the limiting
distribution θχ2

1 as N increases.
The second set of experiments aims to show that our proposed Wasser-

stein projection hypothesis test is asymptotically valid. We generate N ∈
{100, 500, 1000} i.i.d. samples from P and calculate the test statisticN×Ropp(P̂N , p̂N ).

The same data is used to estimate θ̂N and compute the (1−α)×100%-quantile

of θ̂Nχ2
1 to perform the quantile based test as laid out in Section 5.4.2. We

repeat this procedure for 2,000 replications to keep track of the rejection pro-
jection at different significant values of α ∈ {0.5, 0.3, 0.1, 0.05, 0.01}. Table 5.1
summarizes the rejection probabilities of Wasserstein projection tests for equal
opportunity criterion under the null hypothesis Hopp

0 . We can observe that at
sample size N > 100, the rejection probability is close to the desired level α,
which empirically validates our testing procedure.

5.6.2. Most Favorable Distribution Analysis

In this section, we visualize the most favorable distributionQ⋆ from Lemma 5.4.4
for a vanilla logistic regression classifier with weight β = (0.4, 0.12)⊤. We sim-
ply generate 28 samples with equal subgroup proportions to form the empirical
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Figure 5.2: Empirical distribution of N×Ropp(P̂N , p̂N ) taken over 2,000 replica-

tions (histogram) versus the limiting distribution θχ2
1 (blue curve) with different

sample sizes N . Fig. 5.2a-5.2b are density plots, Fig. 5.2c-5.2d are cumulative

distribution plots.

distribution P̂N . To find the support of Q⋆, we solve problem (5.6), whose opti-
mizer dictates the transportation plan of each sample x̂i. Figure 5.3 visualizes
the original test samples that forms P̂N , along with the most favorable distribu-
tion Q⋆. Green lines in the figure represent how samples are perturbed. As we
are testing for the probabilistic notion of equal opportunity, only the samples
with positive label ŷi = 1 presented in blue are perturbed in order to obtain
Q⋆. Furthermore, we observe that the positively-labeled test samples are trans-
ported along the axis directed by β (black arrow). Moreover, the samples with
different sensitive attributes, represented by different shapes, move in opposite
direction so that they get closer to each other, which reduces the discrepancy
in the expected value of hβ(X) between the relevant subgroups.

5.6.3. The COMPAS Dataset

COMPAS (Correctional Offender Management Profiling for Alternative Sanc-
tions)4 is a commercial tool used by judges and parole officers for scoring crim-
inal defendant’s likelihood of recidivism. The COMPAS dataset is used by the

4https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis

https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis
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Figure 5.3: Visualization of the most favorable distribution Q⋆ for a logistic

classifier with weight β = (0.4, 0.12)⊤. The black arrow indicates the vector

β. Colors represent class, while symbolic shapes encode the sensitive values.

The green lines show the transport plan of the empirical test samples from

their original positions (indicated with transparent colors) to their ultimate

destinations (with non-transparent colors).
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Figure 5.4: Test statistic and accuracy of Tikhonov regularized logistic regres-

sion on test data with rejection threshold η̂0.95.
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N = 100 N = 500 N = 1000 α

0.511 0.4905 0.5 0.50

0.282 0.2895 0.299 0.30

0.048 0.0895 0.093 0.10

0.007 0.0425 0.0405 0.05

0.0 0.0065 0.005 0.01

Table 5.1: Comparison of the null rejection probabilities of probabilistic equal

opportunity tests with different significance levels α and test sample sizes N .

COMPAS algorithm to compute the risk score of reoffending for defendants, and
also contains the criminal records within 2 years after the decision. The dataset
consists of 6,172 samples with 10 attributes including gender, age category, race,
etc. We concentrate on the subset of the data with violent recidivism, and we
use race (African-American and Caucasian) as the sensitive attribute. We split
70% of the COMPAS data to train a Tikhonov-regularized logistic classifier,
with the tuning penalty parameter λ chosen in the range from 0 to 100 with 50
equi-distant points. The remaining 30% of the data is used as the test samples
for auditing.

Figure 5.4 demonstrates the relation between the accuracy and the degree of
fairness with respect to the regularization parameter λ. Strong regularization
penalty (high values of λ) results in small values of the test statistic, but the
classifier has low test accuracy. On the contrary, weak penalization leads to
undesirable fairness level but higher prediction accuracy. The pink dashed line
in Figure 5.4 shows the rejection threshold of the Wasserstein projection test at
significance level α = 0.05 for varying value of the regularization parameter λ.
We can observe that the Wasserstein projection test recommends a rejection of
the null hypothesis Hopp

0 for a wide range of λ. Only at λ sufficiently large that
the test fails to reject the null hypothesis.

5.7. Appendix - Proofs

5.7.1. Proofs of Section 5.2

Proof of Lemma 5.3.1. Because the fairness constraints are similar in both sets

Fh and Fh(p̂
N ), it thus suffice to verify that Q satisfies the marginal conditions

Q(A = a, Y = y) = p̂Nay for all (a, y) ∈ A × Y. By the definition of the

Wasserstein distance and the ground metric c, there exists a coupling π such
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that

W(P̂N ,Q)2 = Eπ[(∥X ′ −X∥+∞|A′ −A|+∞|Y ′ − Y |)2]

and the marginal distribution of π are P̂N and Q, respectively. By the law

of total probability and because P̂N is an empirical distribution, we can write

π = N−1
∑N

i=1 δ(x̂i,âi,ŷi)⊗Qi, where Qi denotes the conditional distributions of

(X,A, Y ) given (X ′, A′, Y ′) = (x̂i, âi, ŷi) for all i ∈ [N ].

Suppose without any loss of generality that there exists a tuple (a, y) ∈ A×Y
such that Q(A = a, Y = y) > p̂Nay. This means

Q(A = a, Y = y) =
1

N

N∑

i=1

Qi(A = a, Y = y) >
1

N

N∑

i=1

1(a,y)(âi, ŷi).

This implies that there must exist an index i⋆ ∈ [N ] with (âi⋆ , ŷi⋆) ̸= (a, y), and

that

Qi⋆(A = a, Y = y) > 0.

However, this further implies that

W(P̂N ,Q)2 =
1

N

N∑

i=1

EQi
[(∥x̂i −X∥+∞|âi −A|+∞|ŷi − Y |)2]

≥ 1

N
EQi⋆

[(∥x̂i⋆ −X∥+∞|âi⋆ −A|+∞|ŷi⋆ − Y |)2]

≥ 1

N
Qi⋆(A = a, Y = y) (∞(âi⋆ − a) +∞(ŷi⋆ − y))2 =∞,

where the equality follows from the decomposition of π using the law of total

probability and the first inequality follows because the transportation cost is

nonnegative. This contradicts the fact that W(P̂N ,Q) <∞.

5.7.2. Proofs of Section 5.4

Before proving Proposition 5.4.1, we first prove a preparatory lemma that veri-
fies the Slater condition of the conic optimization problem. To shorten the nota-
tion, we write ξ = (X,A, Y ) and denote Ξ = X ×A×Y, Ξ̂N = {(x̂i, âi, ŷi)}Ni=1.

We assume that N ≥ 2 and ξ̂i = (x̂i, âi, ŷi) are distinct. We useM+(Ξ × Ξ̂N )

to denote the set of all nonnegative measures on Ξ× Ξ̂N .

Lemma 5.7.1 (Slater condition - Probabilistic equal opportunity). Suppose

that β ̸= 0, p̂N11 ∈ (0, 1) and p̂N01 ∈ (0, 1). Define the function

fβ(X,A, Y ) ≜
1

p̂N11
hβ(X)1(1,1)(A, Y )− 1

p̂N01
hβ(X)1(0,1)(A, Y ),
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and let f be a vector-valued function f : Ξ× Ξ̂N → RN+1

f(ξ, ξ′) =




1ξ̂i
(ξ′)
...

1ξ̂N
(ξ′)

fβ(ξ)



.

Then we have




1/N
...

1/N

0



∈ int

{
Eπ[f(ξ, ξ

′)] : π ∈M+(Ξ× Ξ̂N )
}
.

Proof of Lemma 5.7.1. It suffices to show that for any

q ∈
(

1

2N
,

3

2N

)N

×
(
−1

4
,
1

4

)
,

there exists a nonnegative measure π ∈M+(Ξ× Ξ̂N ) such that q = Eπ[f(ξ, ξ
′)].

We will verify this claim by constructing π explicitly. To this end, define the

following locations

xay ∈ X ∀(a, y) ∈ A× Y,

and set π ∈M+(Ξ× Ξ̂N ) explicitly as

π(ξ = (xâiŷi
, âi, ŷi), ξ

′ = (x̂i, âi, ŷi)) = qi,

and π is 0 everywhere else. By construction, one can verify that Eπ[1ξ̂i
(ξ′)] = qi

for all i ∈ [N ]. If we define the following index sets Iay = {i ∈ [N ] : âi = a, ŷi =

y}, then

Eπ[fβ(ξ)] = (p̂N11)
−1hβ(x11)

∑

i∈I11

qi − (p̂N01)
−1hβ(x01)

∑

i∈I01

qi.

It now remains to find the locations of x11 and x01 to balance the above equation.

We have the following two cases.

1. Suppose that qN+1 ≥ 0. In this case, choose x01 ∈ X such that hβ(x01) =
1
6 .

The condition Eπ[fβ(ξ)] = qN+1 requires that

hβ(x11) =
qN+1 +

1
6 (p̂

N
01)

−1
∑

i∈I01
qi

(p̂N11)
−1
∑

i∈I11
qi

.
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Because qN+1 ≥ 0 and qi are strictly positive, the term on the right hand

side is strictly positive. Moreover, we have

(p̂N01)
−1
∑

i∈I01

qi <
3

2
and (p̂N11)

−1
∑

i∈I11

qi >
1

2

for any feasible value of qi, which implies that

0 <
qN+1 +

1
6 (p̂

N
01)

−1
∑

i∈I01
qi

(p̂N11)
−1
∑

i∈I11
qi

<
1
4 + 1

4
1
2

= 1.

This implies the existence of x11 ∈ X so that Eπ[fβ(ξ)] = qN+1.

2. Suppose that qN+1 < 0. In this case, we can choose x11 ∈ X such that

hβ(x11) =
1
6 . A similar argument as in the previous case implies the existence

of x01 ∈ X such that Eπ[fβ(ξ)] = qN+1.

Combining the two cases leads to the postulated results.

We are now ready to prove Proposition 5.4.1.

Proof of Proposition 5.4.1. For the purpose of this proof, we define the function

λ : A× Y → R as

λ(a, y) =
1(1,1)(a, y)

p̂N11
− 1(0,1)(a, y)

p̂N01
. (5.10)

By definition of the squared distance function Ropp, we have

Ropp(P̂N , p̂N ) =





inf
Q∈P

W(P̂N ,Q)2

s.t. (p̂N11)
−1EQ[hβ(X)1(1,1)(A, Y )] = (p̂N01)

−1EQ[hβ(X)1(0,1)(A, Y )]

Q(A = a, Y = y) = p̂Nay ∀a ∈ A, y ∈ Y

=





inf
π

Eπ[c
(
(X ′, A′, Y ′), (X,A, Y )

)2
]

s.t. π ∈ P((X ×A× Y)× (X ×A× Y))
Eπ[fβ(X,A, Y )] = 0

π(A = a, Y = y) = p̂Nay ∀a ∈ A, y ∈ Y
Eπ[1(x̂i,âi,ŷi)(X

′, A′, Y ′)] = 1/N ∀i ∈ [N ],

where the function fβ is defined as

fβ(x, a, y) ≜ (p̂N11)
−1hβ(x)1(1,1)(a, y)− (p̂N01)

−1hβ(x)1(0,1)(a, y)hβ(x)λ(a, y),

(5.11)
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and P(S) denotes the set of all joint probability measures supported on S.
Because of the infinity individual cost on A and Y by the definition of cost

in (5.2), any joint measure π with finite objective value should satisfies π(A =

a, Y = y) = P̂N (A′ = a, Y ′ = y) = p̂Nay for any a ∈ A and y ∈ Y. Thus, the set

of constraints π(A = a, Y = y) = p̂Nay can be eliminated without alternating the

optimization problem. We thus have

Ropp(P̂N , p̂N ) =





inf
π

Eπ[c
(
(X ′, A′, Y ′), (X,A, Y )

)2
]

s.t. π ∈ P((X ×A× Y)× (X ×A× Y))
Eπ[fβ(X,A, Y )] = 0

Eπ[1(x̂i,âi,ŷi)(X
′, A′, Y ′)] = 1/N ∀i ∈ [N ].

To shorten the notations, we use Ξ = X × A × Y and Ξ̂N = {(x̂i, âi, ŷi)}.
Moreover, define the vector q̄ and the vector-valued Borel measurable function

on Ξ× Ξ̂N as

q̄ =




0

1/N
...

1/N




f(ξ, ξ′) =




fβ(ξ)

1ξ̂i
(ξ′)
...

1ξ̂N
(ξ′)



.

By using the introduced notation, we can reformulate the above optimization

problem as

inf
{
Eπ[c(ξ, ξ

′)2] : π ∈M+(Ξ× Ξ̂N ),Eπ[f(ξ, ξ
′)] = q̄

}

which is a problem of moments. By Lemma 5.7.1, the above optimization prob-

lem satisfies the Slater condition, thus the strong duality result [Smi95, Sec-

tion 2.2] implies that

Ropp(P̂N , p̂N ) =





sup
1

N

N∑

i=1

bi

s.t. b ∈ RN , κ ∈ R
N∑

i=1

bi1(x̂i,âi,ŷi)(x
′, a′, y′)− κfβ(x, a, y) ≤

c
(
(x′, a′, y′), (x, a, y)

)2

∀(x, a, y), (x′, a′, y′) ∈ X ×A× Y.

(5.12)
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Note that the problem in (5.12) can be equivalently represented as





sup
1

N

N∑

i=1

bi

s.t. b ∈ RN , κ ∈ R
bi − κfβ(xi, ai, yi) ≤ c

(
(x̂i, âi, ŷi), (xi, ai, yi)

)2

∀(xi, ai, yi) ∈ X ×A× Y,∀i ∈ [N ]

= sup
κ∈R

1

N

N∑

i=1

inf
xi∈X

{
∥xi − x̂i∥2 + κfβ(xi, âi, ŷi)

}
. (5.13)

Because fβ has the form (5.11), we have the equivalent problem

sup
κ∈R

1

N

N∑

i=1

inf
xi∈X

{
∥xi − x̂i∥2 + κλ(âi, ŷi)hβ(xi)

}
.

For any i ∈ I0, λ(âi, ŷi) = 0, and in this case we have the optimal solution of xi

satisfies x⋆i = x̂i. As a consequence, the summation collapses to a partial sum

over I1. This observation completes the proof.

Proof of Theorem 5.4.3. Leveraging equation (5.13), we can express

Ropp(P̂N , p̂N ) = sup
γ

EP̂N

[
inf
∆
γhβ(X +∆)

(
1(1,1)(A, Y )

p̂N11
− 1(0,1)(A, Y )

p̂N01

)
+ ∥∆∥2

]
.

We define

HN ≜
1√
N

N∑

i=1

hβ(x̂i)

(
1(1,1)(âi, ŷi)

p̂N11
− 1(0,1)(âi, ŷi)

p̂N01

)
,

and using this expression we can reformulate R(P̂N , p̂N ) as

sup
γ

{
1√
N
γHN + EP̂N

[
inf
∆
γ[hβ(X +∆)− hβ(X)]×

(5.14)
(
1(1,1)(A, Y )

p̂N11
− 1(0,1)(A, Y )

p̂N01

)
+ ∥∆∥2

]}
.

Because hβ is a sigmoid function, it is differentiable, and by the fundamental

theorem of calculus, we have for any x ∈ X ,

hβ(x+∆)− hβ(x) =
∫ 1

0

∇hβ(x+ t∆) ·∆dt,
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where · represents the inner product on Rd. By applying variable transforma-

tions γ ← γ
√
N and ∆← ∆

√
N , we have

N ×Ropp(P̂N , p̂N )

= sup
γ

{
γHN + EP̂N

[
inf
∆
γ

∫ 1

0

∇hβ
(
X + t

∆√
N

)
·∆dt×

(
1(1,1)(A, Y )

p̂N11
− 1(0,1)(A, Y )

p̂N01

)
+ ∥∆∥2

]}

=sup
γ

{
γHN +

1

N

N∑

i=1

inf
∆i

γ

∫ 1

0

∇hβ
(
x̂i + t

∆i√
N

)
·∆idt×

(
1(1,1)(âi, ŷi)

p̂N11
− 1(0,1)(âi, ŷi)

p̂N01

)
+ ∥∆i∥2

}
,

where the second equality follows by the definition of the empirical distribution

P̂N . For any values of p̂N01 > 0 and p̂N11 > 0, we have for any γ ̸= 0,

P
(∥∥∥∥γ∇hβ(X)

(
1(1,1)(A,Y )

p̂N11
−1(0,1)(A,Y )

p̂N01

)∥∥∥∥
∗
=0

)
=

P
(
(p̂N11)

−1
1(1,1)(A,Y )=(p̂N01)

−1
1(0,1)(A, Y )

)
= P(Y =0)<1,

which implies that

P
(∥∥∥∥γ∇hβ(X)

(
1(1,1)(A, Y )

p̂N11
− 1(0,1)(A, Y )

p̂N01

)∥∥∥∥
∗
> 0

)
> 0.

This coincides with Assumption A4 in [BKM19]. Using the same argument as

in the proof of [BKM19, Theorem 3], we can show that the optimal solution for

γ and ∆i belong to a compact set with high probability. Moreover, we have

1(1,1)(âi, ŷi)

p̂N11
− 1(0,1)(âi, ŷi)

p̂N01
=
1(1,1)(âi, ŷi)

p11
(1− oP(1))−

1(0,1)(âi, ŷi)

p01
(1− oP(1)) ,

and thus

N ×Ropp(P̂N , p̂N )

= sup
γ

{
γHN +

1

N

N∑

i=1

inf
∆i

γ

∫ 1

0

∇hβ
(
x̂i + t

∆i√
N

)
·∆idt×

(
1(1,1)(âi, ŷi)

p11
− 1(0,1)(âi, ŷi)

p01

)
+ ∥∆i∥2 + oP(1)

}
.
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In the next step, fix any tuple (a, y) ∈ A×Y, and denote the following constant

M1 = |p−1
11 1(1,1)(a, y)− p−1

01 1(0,1)(a, y)|.

We find

∥[∇hβ(x+∆)−∇hβ(x)](p−1
11 1(1,1)(a, y)− p−1

01 1(0,1)(a, y))∥∗
=|hβ(x+∆)− hβ(x)− hβ(x+∆)2 + hβ(x)

2|∥β∥∗M1

≤(|hβ(x+∆)− hβ(x)|+ |hβ(x+∆)2 − hβ(x)2|)∥β∥∗M1.

Because the sigmoid function is slope-restricted in the interval [0, 1] [FMP19,

Proposition 2], we have

0 ≤ hβ(x+∆)− hβ(x)
β⊤∆

≤ 1,

which implies that

|hβ(x+∆)− hβ(x)| ≤ |β⊤∆| ≤ ∥β∥∗∥∆∥,

where the second inequality follows from Hölder inequality. Using a similar

argument, we have

|hβ(x+∆)2 − hβ(x)2| = ≤ (hβ(x+∆) + hβ(x))|hβ(x+∆)− hβ(x)| ≤ 2∥β∥∗∥∆∥.

Combining these inequalities, we conclude that

∥[∇hβ(x+∆)−∇hβ(x)](p−1
11 1(1,1)(a, y)− p−1

01 1(0,1)(a, y))∥2 ≤ 3∥β∥2∗M1∥∆∥,

and thus Assumption 6’ in [BKM19] is satisfied. If HN d.−→ Z̃ for some random

variable Z̃, then [BKM19, Lemma 4] asserts that

N ×Ropp(P̂N , p̂N )

d.−→ sup
γ∈R

{
γZ̃ − γ2

4
EP

[∥∥∥∥∇hβ(X)

(
1(1,1)(A, Y )

p11
− 1(0,1)(A, Y )

p01

)∥∥∥∥
2

∗

]}

=

(
EP

[∥∥∥∥∇hβ(X)

(
1(1,1)(A, Y )

p11
− 1(0,1)(A, Y )

p01

)∥∥∥∥
2

∗

])−1

Z̃2,

where the equality sign follows from the fact that for any realization of Z̃, the

optimal solution of γ is

γ⋆(Z̃) =
2Z̃

EP

[∥∥∥∇hβ(X)
(
1(1,1)(A,Y )

p11
− 1(0,1)(A,Y )

p01

)∥∥∥
2

∗

] .
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We now study the limit distribution Z̃. In the next step, we study the limit of

HN .

HN =
1√
N

N∑

i=1

hβ(x̂i)

(
1(1,1) (âi, ŷi)

p̂N11
− 1(0,1) (âi, ŷi)

p̂N01

)

=
1

p̂N11p̂
N
01

× 1√
N

N∑

i=1

hβ(x̂i)
(
p̂N011(1,1) (âi, ŷi)− p̂N111(0,1) (âi, ŷi)

)

=
1

p̂N11p̂
N
01

×
( 1√

N

N∑

i=1

hβ(x̂i)
(
p011(1,1) (âi, ŷi)− p111(0,1)(âi, ŷi)

)

+
√
N(p̂N01 − p01)

1

N

N∑

i=1

1(1,1)(âi, ŷi)hβ(x̂i)

−
√
N(p̂N11 − p11)

1

N

N∑

i=1

1(0,1)(âi, ŷi)hβ(x̂i)
)

By Slutsky’s theorem, we have

√
N(p̂N01 − p01)×

1

N

N∑

i=1

(
1(1,1) (âi, ŷi)hβ(x̂i)− EP[1(1,1)(A, Y )hβ(X)]

)
= oP(1),

√
N(p̂N11 − p11)×

1

N

N∑

i=1

(
1(0,1)(âi, ŷi)hβ(x̂i)− EP[1(0,1) (A, Y )hβ(X)]

)
= oP(1).

Under the null hypothesis Hopp
0 , we have

HN =
1

p̂N11p̂
N
01

×
[ 1√

N

N∑

i=1

hβ(x̂i)
(
p011(1,1) (âi, ŷi)− p111(0,1)(âi, ŷi)

)

+
√
N

(
1

N

N∑

i=1

1(0,1)(âi, ŷi)− p01
)
EP[1(1,1)(A, Y )hβ(X)]

−
√
N

(
1

N

N∑

i=1

1(1,1)(âi, ŷi)− p11
)
EP[1(0,1)(A, Y )hβ(X)]

]
+ oP(1)

=
1

p̂N11p̂
N
01

×
[ 1√

N

N∑

i=1

hβ(x̂i)
(
p011(1,1) (âi, ŷi)− p111(0,1)(âi, ŷi)

)

+
1√
N

N∑

i=1

(
1(0,1)(âi, ŷi)− p01

)
EP[1(1,1)(A, Y )hβ(X)]

− 1√
N

N∑

i=1

(
1(1,1)(âi, ŷi)− p11

)
EP[1(0,1)(A, Y )hβ(X)]

]
+ oP(1)

d.−→ Z̃,
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where Z̃ ∼ 1
p11p01

N (0, σ2), σ2 = Cov(Z), where Z is defined as in the theorem

statement. Defining θ completes the proof.

5.7.3. Proofs of Section 5.5

The proof of Proposition 5.5.1 necessitates the following preparatory lemma.
We use the same notations with Lemma 5.7.1.

Lemma 5.7.2 (Slater condition - Probabilistic equalized odds). Suppose that

β ̸= 0 and p̂Nay ∈ (0, 1) for all (a, y) ∈ A× Y. Define the functions

fβ(X,A, Y ) ≜
1

p̂N11
hβ(X)1(1,1)(A, Y )− 1

p̂N01
hβ(X)1(0,1)(A, Y ),

gβ(X,A, Y ) ≜
1

p̂N10
hβ(X)1(1,0)(A, Y )− 1

p̂N00
hβ(X)1(0,0)(A, Y ),

and let f be a vector-valued function f : Ξ× Ξ̂N → RN+2

f(ξ, ξ′) =




1ξ̂i
(ξ′)
...

1ξ̂N
(ξ′)

fβ(ξ)

gβ(ξ)




Then we have



1/N
...

1/N

0

0



∈ int

{
Eπ[f(ξ, ξ

′)] : π ∈M+(Ξ× Ξ̂N )
}
.

Proof of Lemma 5.7.2. It suffices to show that for any

q ∈
(

1

2N
,

3

2N

)N

×
(
−1

4
,
1

4

)2

,

there exists a nonnegative measure π ∈M+(Ξ× Ξ̂N ) such that q = Eπ[f(ξ, ξ
′)].

The proof follows a similar argument as that of Lemma 5.7.1 by noticing that

Eπ[gβ(ξ)] = (p̂N10)
−1hβ(x10)

∑

i∈I10

qi − (p̂N00)
−1hβ(x00)

∑

i∈I00

qi,

and the specification of x10 and x00 can be achieved using similar steps.
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Proof of Proposition 5.5.1. To ease the exposition, we let the function Λ : A×
Y → R2 be defined as

Λ(a, y) =

(
(p̂N11)

−1
1(1,1)(a, y)− (p̂N01)

−1
1(0,1)(a, y)

(p̂N10)
−1
1(1,0)(a, y)− (p̂N00)

−1
1(0,0)(a, y)

)
.

Moreover, we define fβ as in (5.11), and additionally define gβ as

gβ(x, a, y) = (p̂N10)
−1hβ(x)1(1,0)(a, y)− (p̂N00)

−1hβ(x)1(0,0)(a, y).

From the definition of Rodd(P̂N , p̂N ), we have

Rodd(P̂N , p̂N ) =





inf
Q∈P

W(P̂N ,Q)2

s.t. (p̂N11)
−1EQ[hβ(X)1(1,1)(A, Y )] =

(p̂N01)
−1EQ[hβ(X)1(0,1)(A, Y )]

(p̂N10)
−1EQ[hβ(X)1(1,0)(A, Y )] =

(p̂N00)
−1EQ[hβ(X)1(0,0)(A, Y )]

Q(A = a, Y = y) = p̂Nay ∀a ∈ A, y ∈ Y

=





inf
π

Eπ[c
(
(X ′, A′, Y ′), (X,A, Y )

)2
]

s.t. π ∈ P((X ×A× Y)× (X ×A× Y))
Eπ[fβ(X,A, Y )] = 0

Eπ[gβ(X,A, Y )] = 0

π(A = a, Y = y) = p̂Nay ∀a ∈ A, y ∈ Y
Eπ[1(x̂i,âi,ŷi)(X

′, A′, Y ′)] = 1/N ∀i ∈ [N ].

To shorten the notations, we use Ξ = X × A × Y and Ξ̂N = {(x̂i, âi, ŷi)}.
Moreover, define the vector q̄ and the vector-valued Borel measurable function

on Ξ× Ξ̂N as

q̄ =




0

0

1/N
...

1/N




f(ξ, ξ′) =




fβ(ξ)

gβ(ξ)

1ξ̂i
(ξ′)
...

1ξ̂N
(ξ′)



.

By using the introduced notation, we can reformulate the above optimization

problem as

inf
{
Eπ[c(ξ, ξ

′)2] : π ∈M+(Ξ× Ξ̂N ),Eπ[f(ξ, ξ
′)] = q̄

}



5.7. Appendix - Proofs 225

which is a problem of moments. By Lemma 5.7.2, the above optimization prob-

lem satisfies the Slater condition, thus the strong duality result [Smi95, Sec-

tion 2.2] implies that

Rodd(P̂N , p̂N ) =





sup
1

N

N∑

i=1

bi

s.t. b ∈ RN , κ ∈ R, ζ ∈ R
N∑

i=1

bi1(x̂i,âi,ŷi)(x
′, a′, y′)− κfβ(x, a, y)−

ζgβ(x, a, y) ≤ c
(
(x′, a′, y′), (x, a, y)

)2

∀(x, a, y), (x′, a′, y′) ∈ X ×A× Y

=





sup
1

N

N∑

i=1

bi

s.t. b ∈ RN , κ ∈ R, ζ ∈ R
bi − κfβ(xi, ai, yi)−
ζgβ(xi, ai, yi) ≤ c

(
(x̂i, âi, ŷi), (xi, ai, yi)

)2

∀(xi, ai, yi) ∈ X ×A× Y,∀i ∈ [N ]

= sup
κ,ζ

1

N

N∑

i=1

inf
xi∈X

{
∥xi − x̂i∥2 + γfβ(xi, âi, ŷi) + ζgβ(xi, âi, ŷi)

}
,

By definition of fβ , gβ and the parameters λi, we have

γfβ(xi, âi, ŷi) + ζgβ(xi, âi, ŷi) = (κλi11(ŷi) + ζλi10(ŷi))hβ(xi).

The proof is complete.

Proof of Lemma 5.5.2. Because [N ] = I0 ∪ I1, we can write

Rodd(P̂N , p̂N ) = sup
κ∈R

1

N

∑

i∈I1

inf
xi∈X

{
∥xi − x̂i∥2 + κλihβ(xi)

}
+

sup
ζ∈R

1

N

∑

i∈I0

inf
xi∈X

{
∥xi − x̂i∥2 + ζλihβ(xi)

}
.

Note that the first supremum coincides with Ropp(P̂N , p̂N ), and the second

supremum is UN . Under the Euclidean norm assumption, we can use Lemma 5.8.1

to reformulate the inner infimum problems for UN , which leads to (5.9).

Proof of Theorem 5.5.3. By applying a similar duality argument as in the proof

of Theorem 5.4.3, we can reformulate Rodd(P̂N , p̂N ) as

Rodd(P̂N , p̂N ) =
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sup
γ,ζ

EP̂N


inf

∆

{
γhβ(X +∆)

(
1(1,1)(A,Y )

p̂N
11

− 1(0,1)(A,Y )

p̂N
01

)

+ζhβ(X +∆)
(
1(1,0)(A,Y )

p̂N
10

− 1(0,0)(A,Y )

p̂N
00

)
+ ∥∆∥2

}


= sup
γ,ζ

{
1√
N

(ζHN
0 + γHN

1 )+

EP̂N


inf∆




γ[hβ(X +∆)− hβ(X)]
(
1(1,1)(A,Y )

p̂N
11

− 1(0,1)(A,Y )

p̂N
01

)

+ζ[hβ(X +∆)− hβ(X)]
(
1(1,0)(A,Y )

p̂N
10

− 1(0,0)(A,Y )

p̂N
00

)

+∥∆∥2







}

with the random variables HN
0 and HN

1 being defined as

HN
0 ≜

1√
N

N∑

i=1

hβ(x̂i)
(1(1,0)(âi, ŷi)

p̂N10
− 1(0,0)(âi, ŷi)

p̂N00

)
,

HN
1 ≜

1√
N

N∑

i=1

hβ(x̂i)
(1(1,1)(âi, ŷi)

p̂N11
− 1(0,1)(âi, ŷi)

p̂N01

)
.

Notice that the condition

P



∥∥∥
(
γ1

γ0

)⊤

Λ(A, Y )∇hβ(X)
∥∥∥
∗
> 0


 > 0

is satisfied for any (γ0, γ1) ̸= 0. Using the same argument as in the proof of

[BKM19, Theorem 3], we can show that the optimal solution for γ, ζ and ∆i

belong to a compact set with high probability. As p̂ay − pay = oP(1) for any

(a, y) ∈ A× Y, we have

N ×Rodd(P̂N , p̂N ) = sup
γ,ζ

{
γHN

1 +

ζHN
0 +

1

N

N∑

i=1

inf
∆i

γ

∫ 1

0

∇hβ
(
x̂i + t

∆i√
N

)
·∆idt ×

(
γ

ζ

)⊤(
p−1
11 1(1,1)(âi, ŷi)− p−1

01 1(0,1)(âi, ŷi)

p−1
10 1(1,0)(âi, ŷi)− p−1

00 1(0,0)(âi, ŷi)

)
+ ∥∆i∥2 + oP(1)

}
.

Using a similar argument, we can bound

∥[∇hβ(x+∆)−∇hβ(x)](p−1
10 1(1,0)(a, y)− p−1

00 1(0,0)(a, y))∥2 ≤ 3∥β∥2∗M0∥∆∥

for some constantM0, and thus Assumption 6’ in [BKM19] is satisfied. IfHN
0

d.−→
H0 and HN

1
d.−→ H1 for some random variables H0 and H1, then [BKM19,
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Lemma 4] asserts that

N ×Rodd(P̂N , p̂N )
d.−→

sup
γ,ζ

{
γH1 + ζH0+

EP

[∥∥∥
(
γ

ζ

)⊤(
p−1
11 1(1,1)(A, Y )− p−1

01 1(0,1)(A, Y )

p−1
10 1(1,0)(A, Y )− p−1

00 1(0,0)(A, Y )

)
∇hβ(X)

∥∥∥
2

∗

]}
.

Using the same limiting argument as in the proof of Theorem 5.4.3, we have the

characterization of H1 and H0 as in the statement of the theorem.
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0.00 0.02 0.04 0.06 0.08 0.10 0.12
k

18

19

20

21

22

L(
k)

(a) β = (0, 1)⊤, x̂ =

(−2, 10)⊤, ω = 17.6

0.00 0.02 0.04 0.06 0.08 0.10 0.12
k

4

6

8

10

12

L(
k)

(b) β = (−5, 5)⊤, x̂ =

(3, 5)⊤, ω = 4

0.00 0.02 0.04 0.06 0.08 0.10 0.12
k

2

4

6

8

10

12

14

L(
k)

(c) β = (−6, 5)⊤, x̂ =

(3, 5)⊤, ω = 4

0.00 0.02 0.04 0.06 0.08 0.10 0.12
k

4

5

6

7

8

9

10

11

12

L(
k)

(d) β = (−4.7, 5)⊤, x̂ =

(3, 5)⊤, ω = 4

Figure 5.5: Plots of L(k) with respect to k for different values of β, x̂ and ω.

The following lemma is used repeatedly to prove Lemmas 5.4.2 and 5.5.2.

Lemma 5.8.1. For any ω ∈ R, x̂ ∈ Rp and β ∈ Rp, we have

inf
x∈Rp

∥x− x̂∥22 +
ω

1 + exp(−β⊤x)
= min

k∈[0, 18 ]
ω2∥β∥22k2 +

ω

1 + exp(−β⊤x̂+ kω∥β∥22)
.

(5.15)
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Proof of Lemma 5.8.1. Any x ∈ Rp can be written using the orthogonal decom-

position as x = x̂ − kωβ − k′β⊥ for some k ∈ R, k′ ∈ R and β⊥ perpendicular

to β, that is, β⊤(β⊥) = 0. Optimizing over x is equivalent to jointly optimizing

over k, k′ and β⊥ as

inf ∥kωβ + k′β⊥∥22 +
ω

1 + exp(−β⊤x̂+ kω∥β∥22)
s.t. k ∈ R, k′ ∈ R, β⊥ ∈ Rp, β⊤(β⊥) = 0.

After extending the norm, and by noticing that the optimal solution in k′ and

β⊥ should satisfy k′β⊥ = 0, the above optimization problem is equivalent to

inf k2ω2∥β∥22 +
ω

1 + exp(−β⊤x̂+ kω∥β∥22)
s.t. k ∈ R.

Let L(k) be the objective function of the above optimization problem, we have

∇kL(k) = 2ω2∥β∥22k −
ω2∥β∥22 exp(−β⊤x̂+ kω∥β∥22)
(1 + exp(−β⊤x̂+ kω∥β∥22))2

= ω2∥β∥22 (2k − σ(k)(1− σ(k))) ,

where for the purpose of this proof, we define σ(k) as

σ(k) ≜
1

1 + exp(−β⊤x̂+ kω∥β∥22)
∈ (0, 1).

Notice that σ(k)(1 − σ(k)) ∈ (0, 14 ) for any value of k ∈ R. Because ∇kL(k) is

continuous in k, ∇kL(k) ≤ 0 for any k ≤ 0, and ∇kL(k) ≥ 0 for any k ≥ 1
8 , one

can conclude that there exists an optimal solution k⋆ that lies in the compact

range [0, 18 ]. This completes the proof.

Let L(k) be the objective function of the optimization problem (5.15). Fig-
ure 5.5 visualizes several instances of L(k) for different values of inputs β, x̂
and ω. Note that L(k) is non-convex in k, and the optimizer of L(k) is not
necessarily unique as indicated in Figure 5.5d.

5.9. Appendix - Numerical Results

We use the synthetic experiment from [Zaf+17b] to generate unfairness land-
scapes provided in Figure 5.1. We set the true distributions of the class labels
P(Y = 0) = P(Y = 1) = 1/2, and conditioning on Y , the feature X is dis-
tributed as

X|Y = 1 ∼ N ([2; 2], [5, 1; 1, 5]),
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X|Y = 0 ∼ N ([−2;−2], [10, 1; 1, 3]).

Then, we draw sensitive attribute of each sample x from a Bernoulli distribution,
that is

P(A = 1|X = x′) = pdf(x′|Y = 1)/(pdf(x′|Y = 1) + pdf(x′|Y = 0)),

where x′ = [cos(π/4), sin(π/4); sin(π/4), cos(π/4)]x is a rotated version of the
feature vector x and pdf(·|Y = y) is the Gaussian probability density function
of X given Y = y.
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Life can only be understood going

backwards, but it must be lived

going forwards.

Søren Kierkegard

6.1. Introduction

The Linear Quadratic Regulator (LQR) is a classic control problem that has
served as a building block for numerous applications in engineering and com-
puter science [Aug+13; Che12], economics [HS05], or neuroscience [TJ02]. It
involves controlling a system with linear dynamics and imperfect observations
affected by additive noise, with the goal of minimizing a quadratic state and
control cost. Under the assumption that noise terms are independent and nor-
mally distributed (a case referred to as Linear-Quadratic-Gaussian, or LQG),
it is well known that the optimal control policy depends linearly on the obser-
vations and can be obtained efficiently by using the Kalman filtering procedure
and dynamic programming [Ber17].

Motivated by practical settings where noise distributions may not be readily
available or may not be Gaussian, this paper considers a discrete-time, finite-
horizon generalization of the LQG setting where noise distributions are unknown
and are chosen adversarially from ambiguity sets characterized by a Wasserstein
distance and centered around nominal (Gaussian) distributions.

We show that, even under distributional ambiguity, the optimal control pol-
icy remains linear in the system’s observations. Our proof is novel and does
not rely on traditional recursive dynamic programming arguments. Instead, we
re-parametrize the control policy in terms of the purified state observations and
we derive an upper bound for the resulting minimax formulation by relaxing
the ambiguity set (from a Wasserstein ball into a Gelbrich ball) while simulta-
neously restricting the controller to linear dependencies. We then use convex
duality to prove that this upper bound matches a lower bound obtained by re-
stricting the ambiguity set in the dual of the minimax formulation. This implies
the optimality of linear output feedback controllers, thus generalizing the classic
results to a distributionally robust setting.

We also find that the worst-case distribution is actually Gaussian, which
leads to a very efficient algorithm for finding optimal controllers. Specifically,
we propose an algorithm based on the Frank-Wolfe first-order method that at
every step solves sub-problems corresponding to classic LQG control problems,
using Kalman filtering and dynamic programming. We show that this algo-
rithm enjoys a sublinear convergence rate and is susceptible to parallelization.
Lastly, we implement the algorithm leveraging PyTorch’s automatic differenti-
ation module and we find that it yields uniformly lower runtimes than a direct
method (based on solving semidefinite programs) across all problem horizons.
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6.1.1. Literature Review

This paper is related to the ample literature in control theory and engineering
aimed at designing controllers that are robust to noise. The classic LQR/LQG
theory, developed in the 1960s, examined linear dynamical systems in either time
or frequency domain, seeking to minimize a combination of quadratic state and
control costs (in time-domain) or the H2 norm of the system’s transfer func-
tion (in frequency domain). Motivated by findings that LQG controllers do not
provide the guaranteed robust stability properties of LQR controllers [Doy78],
much effort has been devoted subsequently to designing controllers that are ro-
bust to worst-case perturbations, typically evaluated in terms of the H∞ norm
of the system’s transfer function (see, e.g., [Doy+88; ZD98] for a comprehen-
sive review of H∞ and H2 controllers). Because H∞ controllers tend to be
overly conservative [KIL22], various approaches have been proposed to balance
the performance of nominal and robust controllers, e.g., by combining H2 and
H∞ approaches [BH88; DZB89]. A parallel stream of literature has considered
risk-sensitive control [Whi81], which minimizes an entropic risk measure instead
of the expected quadratic cost. Although risk-sensitive control has a distribu-
tionally robust flavor (as the entropic risk measure is equivalent to a distribu-
tionally robust quadratic objective penalized via Kullback-Leibler divergence),
risk-sensitive control models do not admit a distributionally robust formulation
because the entropic risk measure is convex, but not coherent [FS11]. In con-
trast, our distributionally robust model provides a direct interpretation of the
exact set of noise distributions against which the controller provides safeguards,
and leads to a computationally tractable framework for finding the optimal
controller.

In this sense, our work is more directly related to the literature on distri-
butionally robust control, which seeks controllers that minimize expected costs
under worst-case noise distributions [BIP11; KY23; KLN21; PJD00; VP+16;
Yan21]. Closest to our work are [Han23; KY23]. [KY23] proves the optimality
of linear state-feedback control policies for a related minimax LQR model with
a Wasserstein distance but with perfect state observations. With perfect ob-
servations, the optimal policies in the classic LQR formulation are independent
of the noise distribution and are thus inherently already robust, so considering
imperfect observations is what makes the problem significantly more challenging
in our case. [Han23] studies a minimax formulation based on the Wasserstein
distance with both state and observation noise but without any control policy,
and focuses solely on the problem of estimating the states. Several papers have
considered robust formulations with imperfect observations but for constrained
systems [BTBN05; BTBN06; KLN21], which are more challenging; the common
approach is to restrict attention to linear feedback policies for computational
tractability, and without proving their optimality.

Also related is the recent literature stream on distributionally robust opti-
mization using the Wasserstein distance [MEK18]. Within this stream, the clos-
est work is [Ngu+23; SA+18], which consider the problem of minimax mean-
squared-error estimation when ambiguity is modeled with a Wasserstein dis-
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tance from a nominal Gaussian distribution. Our proof builds on some ideas
from these papers (e.g., relying on the Gelbrich distance in the construction of
the upper bound), which it combines with ideas from control theory on puri-
fied output-feedback to obtain the overall construction. Also related is [AG22],
which studies multistage distributionally robust problems with ambiguity sets
given by a nested Wasserstein distance for stochastic processes and identifies
computationally tractable cases. For a broader overview of developments related
to optimal transport and Wasserstein distance with an emphasis on computa-
tional tractability and applications in machine learning, we refer to [PC19b].

Finally, our paper is also related to literature that documents the optimal-
ity of linear/affine policies in (distributionally) robust dynamic optimization
models. [BIP10; ISS13] prove optimality for one-dimensional linear systems af-
fected by additive noise and with perfect state observations, but with general
(convex) state and/or control costs, [HGK11; VPGM13] provide computation-
ally tractable approaches to quantifying the suboptimality of affine controllers
in finite or infinite-horizon settings, and [BG12; EHG21; GTW21] characterize
the performance of affine policies in two-stage (distributionally) robust dynamic
models.

Notation. All random objects are defined on a probability space (Ω,F ,P).
Thus, the distribution of any random vector ξ : Ω→ Rd is given by the pushfor-
ward distribution Pξ = P ◦ ξ−1 of P with respect to ξ. The expectation under P
is denoted by EP[·]. For any t ∈ Z+, we set [t] = {0, . . . , t}.

6.2. Problem Definition

We consider a discrete-time linear dynamical system

xt+1 = Atxt +Btut + wt ∀t ∈ [T − 1] (6.1)

with states xt ∈ Rn, control inputs ut ∈ Rm, process noise wt ∈ Rn and system
matrices At ∈ Rn×n and Bt ∈ Rn×m. The controller only has access to imperfect
state measurements

yt = Ctxt + vt ∀t ∈ [T − 1] (6.2)

corrupted by observation noise vt ∈ Rp, where Ct ∈ Rp×n and usually p ≤
n (so that observing yt would not allow reconstructing xt even if there were
no observation noise). The control inputs ut are causal, i.e., depend on the
past observations y0, . . . , yt but not on the future observations yt+1, . . . , yT−1.
More precisely, the set of feasible control inputs Uy is the set of random vectors
(u0, u1, . . . , uT−1) where for every t there exists a measurable control policy φt :
Rp(t+1) → Rm such that ut = φt(y0, . . . , yt). Controlling the system generates
costs that depend quadratically on the states and the controls:

J =

T−1∑

t=0

(x⊤t Qtxt + u⊤t Rtut) + x⊤TQTxT , (6.3)
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where Qt ∈ Sn+ and Rt ∈ Sm++ represent the state and input cost matrices,

respectively. The exogenous random vectors x0, {wt}T−1
t=0 and {vt}T−1

t=0 are mu-
tually independent and follow probability distributions given by Px0

, {Pwt
}T−1
t=0 ,

and {Pvt}T−1
t=0 , respectively. As the control inputs are causal, the system equa-

tions (6.2) imply that xt, ut and yt can be expressed as measurable functions of
the exogenous uncertainties x0 as well as ws and vs, s ∈ [t], for every t. From now
on we may thus assume without loss of generality that Ω = Rn×Rn×T ×Rp×T

is the space of realizations of the exogenous uncertainties, F is the Borel σ-
algebra on Ω and P = Px0

⊗ (⊗T−1
t=0 Pwt

)⊗ (⊗T
t=0Pvt), where P1⊗P2 denotes the

independent coupling of the distributions P1 and P2.
In this context, the classic LQG model assumes that P is known and Gaus-

sian, and seeks u ∈ Uy that minimizes EP[J ]. Appendix §6.6 reviews the
standard approach for computing optimal control inputs by estimating states
through Kalman filtering techniques and using dynamic programming.

In contrast, we assume that P is only known to belong to an ambiguity set
W, and we formulate a distributionally robust LQG problem that seeks u ∈ Uy
to minimize the worst-case expected cost:

max
P∈W

EP

[
T−1∑

t=0

(x⊤t Qtxt + u⊤t Rtut) + x⊤TQTxT

]
. (6.4)

We construct the ambiguity set W as a ball based on the Wasserstein dis-
tance. Specifically, we assume that a nominal Gaussian distribution P̂ = P̂x0

⊗
(⊗T−1

t=0 P̂wt
) ⊗ (⊗T

t=0P̂vt) is available so that P̂x0
= N (0, X̂0), P̂wt

= N (0, Ŵt),

and P̂vt = N (0, V̂t) for all t ∈ [T − 1], and W is given by:

W =Wx0 ⊗ (⊗T−1
t=0 Wwt)⊗ (⊗T−1

t=0 Wvt),

where

Wx0
= {Px0

∈ P(Rn) :W(P̂x0
,Px0

) ≤ ρx0
, EPx0

[x0] = 0}
Wwt = {Pwt ∈ P(Rn) :W(P̂wt ,Pwt) ≤ ρwt , EPwt

[wt] = 0}
Wvt = {Pvt ∈ P(Rm) :W(P̂vt ,Pvt) ≤ ρvt , EPvt

[vt] = 0},
and W is the 2-Wasserstein distance. Thus, by construction, all exogenous
random variables x0, w0, . . . , wT−1, v0, . . . , vT−1 are independent under every
distribution in W.

Definition 11 (2-Wasserstein distance). The 2-Wasserstein distance between

two distributions P1 and P2 on Rd with finite second moments is given by

W(P1,P2) =

(
inf

π∈Π(P1,P2)

∫

Rd×Rd

∥ξ1 − ξ2∥22 π(dξ1,dξ2)
) 1

2

,

where Π(P1,P2) denotes the set of all couplings, that is, all joint distributions of

the random variables ξ1 and ξ2 with marginal distributions P1 and P2, respec-

tively.
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Our model strictly generalizes the classic LQG setting,1 which can be re-
covered by choosing ρx0 = ρwt = ρvt = 0. The parameters ρ thus allow quan-
tifying the uncertainty about the nominal model and building robustness to
mis-specification. We emphasize that the Wasserstein ambiguity set W con-
tains many non-Gaussian distributions and it is not readily obvious that the
worst-case distribution in (6.4) is in fact Gaussian. However, the set W is also
non-convex, as it contains only distributions under which the exogenous uncer-
tainties are independent, which makes the distributionally robust LQG problem
potentially difficult to solve.

6.3. Nash Equilibrium and Optimality of Linear

Output Feedback Controllers

We henceforth view the distributionally robust LQG problem as a zero-sum
game between the controller, who chooses causal control inputs, and nature, who
chooses a distribution P ∈ W. In this section we show that this game admits a
Nash equilibrium, where nature’s Nash strategy is a Gaussian distribution P⋆ ∈
W and the controller’s Nash strategy is a linear output feedback policy based
on the Kalman filter evaluated under P⋆.

Purified Observations. Before outlining our proof strategy, we first simplify
the problem formulation by re-parametrizing the control inputs in a more con-
venient form (following [BTBN05; BTBN06; HGK11]). Note that the control
inputs in the LQG formulation are subject to cyclic dependencies, as ut de-
pends on yt, while yt depends on xt through (6.2), and xt depends again on ut
through (6.1), etc. Because these dependencies make the problem hard to an-
alyze, it is preferable to instead consider the controls as functions of a new set
of so-called purified observations instead of the actual observations yt.

Specifically, we first introduce a fictitious noise-free system

x̂t+1 = Atx̂t +Btut ∀t ∈ [T − 1] and ŷt = Ctx̂t ∀t ∈ [T − 1]

with states x̂t ∈ Rn and outputs ŷt ∈ Rp, which is initialized by x̂0 = 0 and
controlled by the same inputs ut as the original system (6.2). We then define
the purified observation at time t as ηt = yt − ŷt and we use η = (η0, . . . , ηT−1)
to denote the trajectory of all purified observations.

As the inputs ut are causal, the controller can compute the fictitious state x̂t
and output ŷt from the observations y0, . . . , yt. Thus, ηt is representable as a
function of y0, . . . , yt. Conversely, one can show by induction that yt can also
be represented as a function of η0, . . . , ηt. Moreover, any measurable function
of y0, . . . , yt can be expressed as a measurable function of η0, . . . , ηt and vice-
versa [HGK11, Proposition II.1]. So if we define Uη as the set of all control

1Our assumption that noise terms are zero-mean is consistent with the standard LQG

model [Ber17]. Requiring EPx0
[x0] = 0 is assumed for clarity and without loss of generality.
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inputs (u0, u1, . . . , uT−1) so that ut = ψt(η0, . . . , ηt) for some measurable func-
tion ψt : Rp(t+1) → Rm for every t ∈ [T − 1], the above reasoning implies
that Uη = Uy.

In view of this, we can rewrite the distributionally robust LQG problem
equivalently as

p⋆ =

{
min
x,u,y

max
P∈W

EP
[
u⊤Ru+ x⊤Qx

]

s.t. u ∈ Uy, x = Hu+Gw, y = Cx+ v

=

{
min
x,u

max
P∈W

EP
[
u⊤Ru+ x⊤Qx

]

s.t. u ∈ Uη, x = Hu+Gw,
(6.5)

where x = (x0, . . . , xT ), u = (u0, . . . , uT−1), y = (y0, . . . , yT−1), w = (x0, w0,
. . . , wT−1), v = (v0, . . . , vT−1), η = (η0, . . . , ηT−1), and R, Q, H, G and C are
suitable block matrices (see Appendix §6.7 for their precise definitions). The
latter reformulation involving the purified observations η is useful because these
are independent of the inputs. Indeed, by recursively combining the equations of
the original and the noise-free systems, one can show that η = Dw+ v for some
block triangular matrix D (see Appendix §6.7 for its construction). This shows
that the purified observations depend (linearly) on the exogenous uncertainties
but not on the control inputs. Hence, the cyclic dependencies complicating the
original system are eliminated in (6.5).

Subsequently, we also study the dual of (6.5), defined as

d⋆ =

{
max
P∈W

min
x,u

EP
[
u⊤Ru+ x⊤Qx

]

s.t. u ∈ Uη, x = Hu+Gw.
(6.6)

The classic minimax inequality implies that p⋆ ≥ d⋆. If we can prove that p⋆ =
d⋆, that (6.5) has a solution u⋆ and that (6.6) has a solution P⋆, then (u⋆,P⋆)
must be a Nash equilibrium of the zero-sum game at hand [Roc74b, Theo-
rem 2]. However, because Uη is an infinite-dimensional function space and W is
an infinite-dimensional, non-convex set of non-parametric distributions, the ex-
istence of a Nash equilibrium (in pure strategies) is not at all evident. Instead,
our proof strategy will rely on constructing an upper bound for p⋆ and a lower
bound for d⋆, and showing that these match.

Upper Bound for p⋆. We obtain an upper bound for p⋆ by suitably enlarging
the ambiguity set W and restricting the controllers ut to linear dependencies.
We enlarge W by ignoring all information about the distributions in W except
for their covariance matrices, and by replacing the Wasserstein distance with
the Gelbrich distance. To that end, we first define the Gelbrich distance on the
space of covariance matrices.

Definition 12 (Gelbrich distance). The Gelbrich distance between the two co-
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variance matrices Σ1,Σ2 ∈ Sd+ is given by

G(Σ1,Σ2) =

√
Tr

(
Σ1 +Σ2 − 2

(
Σ

1
2
2 Σ1Σ

1
2
2

) 1
2

)
.

We are interested in the Gelbrich distance because of its close connection to
the 2-Wasserstein distance. Indeed, it is known that the 2-Wasserstein distance
between two distributions with zero means is bounded below by the Gelbrich
distance between the respective covariance matrices.

Proposition 6.3.1 (Gelbrich bound [Gel90, Theorem 2.1]). For any two distri-

butions P1 and P2 on Rd with zero means and covariance matrices Σ1,Σ2 ∈ Sd+,
respectively, we have W(P1,P2) ≥ G(Σ1,Σ2).

Recalling that X̂0, Ŵ t and V̂ t respectively denote the covariance matrices for
x0, wt and vt under the nominal distribution P̂, we can then define the following
Gelbrich ambiguity set for the exogenous uncertainties:

G = Gx0 ⊗ (⊗T−1
t=0 Gwt)⊗ (⊗T−1

t=0 Gvt),

where

Gx0 = {Px0 ∈ P(Rn) : EPx0
[x0] = 0, EP[x0x

⊤
0 ] = X0, G(X0, X̂0) ≤ ρx0}

Gwt = {Pwt ∈ P(Rn) : EPwt
[wt] = 0, EP[wtw

⊤
t ] =Wt, G(Wt, Ŵt) ≤ ρwt}

Gvt = {Pvt ∈ P(Rm) : EPvt
[vt] = 0, EP[vtv

⊤
t ] = Vt, G(Vt, V̂t) ≤ ρvt}.

By construction, the random vectors x0, {wt}T−1
t=0 and {vt}T−1

t=0 are thus mutually
independent under any P ∈ G. In addition and as a direct consequence of
Proposition 6.3.1, G constitutes an outer approximation for the Wasserstein
ambiguity set W, as summarized in the next result.

Corollary 9 (Gelbrich hull). We have W ⊆ G.

Because G covers W, we henceforth refer to it as the Gelbrich hull of the
Wasserstein ambiguity set W. To finalize our construction of the upper bound
on p⋆, we focus on linear policies2 of the form u = q + Uη = q + U(Dw + v),
where q = (q0, . . . , qT−1), and U is a block lower triangular matrix

U =




U0,0

U1,0 U1,1

...
. . .

UT−1,0 . . . . . . UT−1,T−1


 . (6.7)

2Technically, the policies are affine because they include a constant term, but we retain

the more common terminology that focuses on the dependencies.
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The block lower triangularity of U ensures that the corresponding controller
is causal, which in turn ensures that u ∈ Uη. In the following, we denote by
U the set of all block lower triangular matrices of the form (6.7). An upper
bound on problem (6.5) can now be obtained by restricting the controller’s
feasible set to causal controllers that are linear in the purified observations η
and by relaxing nature’s feasible set to the Gelbrich hull G of W. The resulting
bounding problem is given by

p⋆ =

{
min

U,q,x,u
max
P∈G

EP
[
u⊤Ru+ x⊤Qx

]

s.t. U ∈ U , u = q + U(Dw + v), x = Hu+Gw.
(6.8)

As we obtained (6.8) by restricting the feasible set of the outer minimization
problem and relaxing the feasible set of the inner maximization problem in (6.5),
it is clear that p⋆ ≥ p⋆. Recall also that problem (6.5) constitutes an infinite-
dimensional zero-sum game, where the agents optimize over measurable policies
and non-parametric distributions, respectively. In contrast, the next proposition
shows that problem (6.8) is equivalent to a finite-dimensional zero-sum game.

Proposition 6.3.2. Problem (6.8) is equivalent to the optimization problem

p⋆ =





min
q∈RpT

U∈U

max
W∈GW
V ∈GV

Tr
((
D⊤U⊤(R+H⊤QH)UD+ 2G⊤QHUD +G⊤QG

)
W
)

+Tr
((
U⊤(R+H⊤QH)U

)
V
)
+q⊤(R+H⊤QH)q,

(6.9)

where

GW =




W ∈ Sn(T+1)

+ :

W = diag(X0,W0, . . . ,WT−1),

X0 ∈ Sn+, Wt ∈ Sn+ ∀t ∈ [T − 1]

G(X0, X̂0)
2 ≤ ρ2x0

, G(Wt, Ŵt)
2 ≤ ρ2wt

∀t ∈ [T − 1]





GV =

{
V ∈ SpT+ : V = diag(V0, . . . , VT−1),

Vt ∈ Sp+, G(Vt, V̂t)2 ≤ ρ2vt
∀t ∈ [T − 1]

}
.

We emphasize that Proposition 6.3.2 remains valid even if the nominal dis-
tribution P̂ fails to be normal. Note also that, while nature’s feasible set in (6.8)
is non-convex due to the independence conditions, the sets GW and GV are con-
vex and even semidefinite representable thanks to the properties of the squared
Gelbrich distance.3 By dualizing the inner maximization problem, one can
therefore reformulate the minimax problem (6.9) as a convex semidefinite pro-
gram (SDP). Even though this SDP is computationally tractable in theory, it
involves O(T (mp+n2+p2)) decision variables. For practically interesting prob-
lem dimensions, it thus quickly exceeds the capabilities of existing solvers.

3Note that the ambiguity sets GW and GV appearing in (6.9) involve the squared Gel-

brich distance, G(Σ1,Σ2)2. The reason is that G(Σ1,Σ2)2 is known to be jointly convex

in Σ1,Σ2 and semidefinite representable [Ngu+23, Proposition 2.3], unlike the Gelbrich dis-

tance G(Σ1,Σ2) itself, which is generally non-convex.
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Lower Bound for d⋆. To derive a tractable lower bound on d⋆, we restrict
nature’s feasible set to the familyWN of all normal distributions in the Wasser-
stein ambiguity set W. The resulting bounding problem is thus given by

d⋆ =

{
max
P∈WN

min
x,u

EP
[
u⊤Ru+ x⊤Qx

]

s.t. u ∈ Uη, x = Hu+Gw.
(6.10)

As we obtained (6.10) by restricting the feasible set of the outer maximization
problem in (6.6), it is clear that d⋆ ≤ d⋆. Next, we show that (6.10) can
be recast as a finite-dimensional zero-sum game. This result critically relies
on the following known fact regarding the 2-Wasserstein distance between two
normal distributions, which coincides with the Gelbrich distance between their
covariance matrices.

Proposition 6.3.3 (Tightness for normal distributions [GS84, Proposition 7]).

For any two normal distributions P1 = N (0,Σ1) and P2 = N (0,Σ2) with zero

means we have W(P1,P2) = G(Σ1,Σ2).

With this, we can provide a finite-dimensional reformulation, as summarized
in the next result.

Proposition 6.3.4. Problem (6.10) is equivalent to the optimization problem

d⋆ =





max
W∈GW
V ∈GV

min
q∈RpT

U∈U

Tr
((
D⊤U⊤(R+H⊤QH)UD+ 2G⊤QHUD +G⊤QG

)
W
)

+Tr
((
U⊤(R+H⊤QH)U

)
V
)
+q⊤(R+H⊤QH)q,

(6.11)

where GW and GV are defined exactly as in Proposition 6.3.2.

Proposition 6.3.4 relies on Proposition 6.3.3 and thus fails to hold unless P̂ is
normal. Also, one can again reformulate (6.11) as a tractable SDP by dualizing
the inner minimization problem.

Conclusions. Propositions 6.3.2 and 6.3.4 reveal that problems (6.9) and (6.11)
are dual to each other, that is, they can be transformed into one another by
interchanging minimization and maximization. The following main theorem
shows that strong duality holds irrespective of the problem data.

Theorem 6.3.5 (Strong duality of (6.9) and (6.11)). We have p⋆ = d⋆.

Theorem 6.3.5 follows immediately from Sion’s classic minimax theorem [Sio58],
which applies because GW and GV are convex as well as compact thanks to
[Ngu+23, Lemma A.6].

By weak duality and the construction of the bounding problems (6.9) and (6.11),
we trivially have d⋆ ≤ d⋆ ≤ p⋆ ≤ p⋆. Theorem 6.3.5 reveals that all of these
inequalities are in fact equalities, each of which gives rise to a non-trivial insight.
The first key insight is that (6.5) and (6.6) are strong duals.
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Corollary 10 (Strong duality of (6.5) and (6.6)). We have p⋆ = d⋆.

We stress that, unlike Theorem 6.3.5, Corollary 10 establishes strong duality
between two infinite-dimensional zero-sum games. The second key implication
of Theorem 6.3.5 is that the distributionally robust LQG problem (6.5) is solved
by a linear output-feedback controller.

Corollary 11 (The controller’s Nash strategy is linear in the observations).

There exist U⋆ ∈ U and q⋆ ∈ Rm such that the distributionally robust LQG

problem (6.5) is solved by u⋆ = q⋆ + U⋆y.

The identity p⋆ = p⋆ readily implies that (6.5) is solved by a causal controller
that is linear in the purified observations. However, any causal controller that
is linear in the purified observations η can be reformulated exactly as a causal
controller that is linear in the original observations y and vice-versa [BTBN06,
Proposition 3]. Thus, Corollary 11 follows. The third key implication of The-
orem 6.3.5 is that the dual distributionally robust LQG problem is solved by a
normal distribution.

Corollary 12 (Nature’s Nash strategy is a normal distribution). The dual

distributionally robust LQG problem (6.6) is solved by a distribution P⋆ ∈ WN .

Corollary 12 is a direct consequence of the identity d⋆ = d⋆. Note that
the optimal normal distribution P⋆ is uniquely determined by the covariance
matrices W ⋆ and V ⋆ of the exogenous uncertain parameters, which can be
computed by solving problem (6.11). That the worst-case distribution is actually
Gaussian is not a-priori expected and is surprising given that the Wasserstein
ball contains many non-Gaussian distributions.

6.4. Efficient Numerical Solution of Distribution-

ally Robust LQG Problems

Having proven these structural results, we next turn attention to the problem
of finding the optimal strategies. Our next result shows that, under a mild
regularity condition, the optimal controller u⋆ of the distributionally robust
LQG problem (6.5) can be computed efficiently from P⋆.

Proposition 6.4.1 (Optimality of Kalman filter-based feedback controllers).

If V̂t ≻ 0 for all t ∈ [T − 1], then problem (6.6) is solved by a Gaussian distri-

bution P⋆ under which vt has a covariance matrix V ⋆
t ≻ 0 for every t ∈ [T − 1],

and (6.5) is solved by the optimal LQG controller corresponding to P⋆. Addi-

tionally, the optimal value of problem (6.9) and its strong dual (6.11) does not
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change if we restrict GW and GV to G+W and G+V , respectively, where

G+W =
{
W ∈ GW : X0 ⪰ λmin(X̂0)I, Wt ⪰ λmin(Ŵt)I ∀t ∈ [T − 1]

}
,

G+V =
{
V ∈ GV : Vt ⪰ λmin(V̂t)I ∀t ∈ [T − 1]

}
.

This implies that the optimal controller can be computed by solving a classic
LQG problem corresponding to nature’s optimal strategy P⋆, which can be done
very efficiently through Kalman filtering and dynamic programming (see Ap-
pendix §6.6 for details). It thus suffices to design an efficient algorithm for com-
puting P⋆, which is uniquely determined by the covariance matrices (W ⋆, V ⋆)
that solve problem (6.11). To this end, we first reformulate (6.11) as

max
W∈G+

W ,V ∈G+
V

f(W,V ), (6.12)

where we restrict GW and GV to G+W and G+V , respectively, due to Proposi-
tion 6.4.1, and where f(W,V ) denotes the optimal value function of the inner
minimization problem in (6.11). As (6.11) is a reformulation of (6.10) and as
the family of all causal purified output-feedback controllers matches the family
of causal output-feedback controllers, f(W,V ) can also be viewed as the optimal
value of the classic LQG problem corresponding to the normal distribution P
determined by the covariance matrices W and V . These insights lead to the
following structural result.

Proposition 6.4.2. f(W,V ) is concave and β-smooth in (W,V ) ∈ G+W × G+V
for some β > 0.

By Proposition 6.4.2, it is possible to address problem (6.12) with a Frank-
Wolfe algorithm [DR70; Dun79; Dun80; DH78; FW56; LP66]. Each iteration of
this algorithm solves a direction-finding subproblem, that is, a variant of prob-
lem (6.12) that maximizes the first-order Taylor expansion of f(W,V ) around
the current iterates.

max
LW∈G+

W ,LV ∈G+
V

⟨∇W f(W,V ), LW −W ⟩+ ⟨∇V f(W,V ), LV − V ⟩ (6.13)

The next iterates are then obtained by moving towards a maximizer (L⋆
W , L⋆

V )
of (6.13), i.e., we update

(W,V )← (W,V ) + α · (L⋆
W −W,L⋆

v − V ),

where α is an appropriate step size. The proposed Frank-Wolfe algorithm enjoys
a very low per-iteration complexity because problem (6.13) is separable. To see
this, we reformulate (6.13) as

max
LW ,LV

⟨∇X0
f(W,V ), LX0

−X0⟩+
∑T−1

t=0 ⟨∇Wt
f(W,V ), LWt

−Wt⟩+ ⟨∇Vt
f(W,V ), LVt

− Vt⟩
s.t. G(LX0

, X̂0)
2 ≤ ρ2x0

, G(LWt
, Ŵt)

2 ≤ ρ2wt
, G(LVt

, V̂t)
2 ≤ ρ2vt ∀t ∈ [T−1]

LX0 ⪰ λmin(X̂0)I, LWt ⪰ λmin(Ŵt)I, LVt ⪰ λmin(V̂t)I ∀t ∈ [T − 1].
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Hence, (6.13) decomposes into 2T + 1 separate subproblems that can be solved
in parallel. That is, for any matrix Z ∈ {X0,W0, . . . ,WT−1, V0, . . . , VT−1} we
solve a separate subproblem of the form

max
LZ⪰λmin(Ẑ)

{
⟨∇Zf(W,V ), LZ − Z⟩ : G(LZ , Ẑ)

2 ≤ ρ2z
}
. (6.14)

These subproblems can be reformulated as tractable SDPs and are thus amenable
to efficient off-the-shelf solvers. By [Ngu+23, Theorem 6.2], however, one can
exploit the structure of the Gelbrich distance in order to reduce (6.14) to a
univariate algebraic equation that can be solved to any desired accuracy δ > 0
by a highly efficient bisection algorithm. We say that Lδ

Z is a δ-approximate
solution of problem (6.14) for some δ ∈ (0, 1) if Lδ

Z is feasible in (6.14) and if

⟨∇Zf(W,V ), Lδ
Z − Z⟩ ≥ δ⟨∇Zf(W,V ), L⋆

Z − Z⟩,

where L⋆
Z is an exact maximizer of (6.14). Note that, by the concavity of f(W,V ),

the inner product on the right-hand side is nonnegative and vanishes if and only
if Z maximizes f(W,V ) over the feasible set of (6.14). For further details we
refer to Appendix §6.10 in the supplementary material.

Remark 5 (Automatic differentiation). Recall that f(W,V ) coincides with

the optimal value of the LQG problem corresponding to the normal distribu-

tion P determined by the covariance matrices W and V . By using the under-

lying dynamic programming equations, f(W,V ) can thus be expressed in closed

form as a serial composition of O(T ) rational functions (see Appendix §6.6
for details). Hence, ∇Zf(W,V ) can be calculated symbolically for any Z ∈
{X0,W0, . . . ,WT−1, V0, . . . , VT−1} by repeatedly applying the chain and product

rules. However, the resulting formulas are lengthy and cumbersome. We thus

compute the gradients numerically using backpropagation. The cost of evaluat-

ing ∇Zf(W,V ) is then of the same order of magnitude as the cost of evaluat-

ing f(W,V ).

A detailed description of the proposed Frank-Wolfe method is given in Al-
gorithm 6 below.

By [Jag13, Theorem 1 and Lemma 7], which applies thanks to the structural
properties of f(W,V ) established in Proposition 6.4.2, Algorithm 6 attains a
suboptimality gap of ϵ within O(1/ϵ) iterations.

6.5. Numerical Experiments

All experiments are run on an Intel i7-8700 CPU (3.2 GHz) machine with 16GB
RAM. All linear SDP problems are modeled in Python 3.8.6 using CVXPY
[Agr+18; DB16] and solved with MOSEK [MOS19]. The gradients of f(W,V )
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Algorithm 6 Frank-Wolfe algorithm for solving (6.12)

Input: initial iterates W , V , nominal covariance matrices Ŵ , V̂ , oracle

precision δ ∈ (0, 1)

1: set initial iteration counter k = 0

2: while stopping criterion is not met do

3: for Z ∈ {X0,W0, . . . ,WT−1, V0, . . . , VT−1} do in parallel

4: compute ∇Zf(W,V )

5: find a δ-approximate solution Lδ
Z of (6.14)

6: end

7: g ← ⟨∇W f(W,V ), Lδ
W −W ⟩+ ⟨∇V f(W,V ), Lδ

V − V ⟩
8: (W,V )← (W,V ) + 2/(2 + k) · (Lδ

W −W,Lδ
V − V )

9: end while

10: Output: W and V

are computed via Pymanopt [TKW16] with PyTorch’s automated differentiation
module [Pas+17; Pas+19].

Consider a class of distributionally robust LQG problems with n = m =
p = 10. We set At = 0.1 × A to have ones on the main diagonal and the
superdiagonal and zeroes everywhere else (Ai,j = 1 if i = j or i = j − 1
and Ai,j = 0 otherwise), and the other matrices to Bt = Ct = Qt = Rt =
Id. The Wasserstein radii are set to ρx0

= ρwt
= ρvt = 10−1. The nominal

covariance matrices of the exogenous uncertainties are constructed randomly
and with eigenvalues in the interval [1, 2] (so as to ensure they are positive
definite). The code is publicly available in the Github repository https://

github.com/RAO-EPFL/DR-Control.

The optimal value of the distributionally robust LQG problem (6.5) can be
computed by directly solving the SDP reformulation of (6.11) with MOSEK or
by solving the nonlinear SDP (6.12) with our Frank-Wolfe method detailed in
Algorithm 6. We next compare these two approaches in 10 independent simu-
lation runs, where we set a stopping criterion corresponding to an optimality
gap below 10−3 and we run the Frank-Wolfe method with δ = 0.95. Figure 6.1a
illustrates the execution time for both approaches as a function of the planning
horizon T ; runs where MOSEK exceeds 100s are not reported. Figure 6.1b vi-
sualizes the empirical convergence behavior of the Frank-Wolfe algorithm. The
results highlight that the Frank-Wolfe algorithm achieves running times that
are uniformly lower than MOSEK across all problem horizons and is able to
find highly accurate solutions already after a small number of iterations (50
iterations for problem instances of time horizon T = 10).

https://github.com/RAO-EPFL/DR-Control
https://github.com/RAO-EPFL/DR-Control
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Figure 6.1: (a) Execution time for MOSEK and Frank-Wolfe algorithm over

10 simulation runs as a function of the horizon T (solid lines show the mean

and the shaded areas correspond to 1 standard deviation). (b) Convergence of

optimality gap for Frank-Wolfe algorithm with horizon T = 10.

Appendix

The supplementary material is structured as follows. Appendix §6.6 presents
the well-known solution to the classic LQG problem using dynamic program-
ming and Kalman Filter estimation. Appendix §6.7 provides the definitions of
the stacked system matrices utilized in the compact formulation (6.5) of the
distributionally robust LQG problem. Appendix §6.8 contains the proofs of the
formal statements in the main text and provides additional technical results.
Appendix §6.9 derives the SDP reformulation of the dual problem (6.11). Ap-
pendix §6.10, finally, elaborates on the bisection algorithm used for solving the
linearization oracle of the Frank-Wolfe algorithm.

6.6. Solution of the LQG Problem

The classic LQG problem can be solved efficiently via dynamic programming;
see, e.g., [Ber17]. That is, the unique optimal control inputs satisfy u⋆t = Ktx̂t
for every t ∈ [T − 1], where Kt ∈ Rn×n is the optimal feedback gain matrix,
and x̂t = EP[xt|y0, . . . , yt] is the minimum mean-squared-error estimator of xt
given the observation history up to time t. Thanks to the celebrated separation
principle, Kt can be computed by pretending that the system is deterministic
and allows for perfect state observations, and x̂t can be computed while ignoring
the control problem.

To compute Kt, one first solves the deterministic LQR problem correspond-
ing to the LQG problem at hand. Its value function x⊤t Ptxt at time t is quadratic
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in xt, and Pt obeys the backward recursion

Pt = A⊤
t Pt+1At +Qt −A⊤

t Pt+1Bt(Rt +B⊤
t Pt+1Bt)

−1B⊤
t Pt+1At ∀t ∈ [T − 1]

(6.15a)
initialized by PT = QT . The optimal feedback gain matrix Kt can then be
computed from Pt+1 as

Kt = −(Rt +B⊤
t Pt+1Bt)

−1B⊤
t Pt+1At ∀t ∈ [T − 1]. (6.15b)

Since xt and (y0, . . . , yt) are jointly normally distributed, the minimum mean-
squared-error estimator x̂t can be calculated directly using the formula for the
mean of a conditional normal distribution. Alternatively, however, one can use
the Kalman filter to compute x̂t recursively, which is significantly more insightful
and efficient. The Kalman filter also recursively computes the covariance ma-
trix Σt of xt conditional on y0, . . . , yt and the covariance matrix Σt+1|t of xt+1

conditional on y0, . . . , yt evaluated under P. Specifically, these covariance ma-
trices obey the forward recursion

Σt = Σt|t−1 − Σt|t−1C
⊤
t (CtΣt|t−1C

⊤
t + Vt)

−1CtΣt|t−1

Σt+1|t = AtΣtA
⊤
t +Wt

}
∀t ∈ [T − 1] (6.16)

initialized by Σ0|−1 = X0. Using Σt|t−1, we then define the Kalman filter gain
as

Lt = ΣtC
⊤
t V

−1
t ∀t ∈ [T − 1]

which allows us to compute the minimum mean-squared-error estimator via the
forward recursion

x̂t+1 = Atx̂t +Btut + Lt+1 (yt+1 − Ct+1(Atx̂t +Btut)) ∀t ∈ [T − 1]

initialized by x̂0 = L0y0. One can also show that the optimal value of the LQG
problem amounts to

T−1∑

t=0

Tr((Qt − Pt)Σt) +

T∑

t=1

Tr(Pt(At−1Σt−1A
⊤
t−1 +Wt−1)) + Tr(P0X0). (6.17)

6.7. Definitions of Stacked System Matrices

The stacked system matrices appearing in the distributionally robust LQG prob-
lem (6.5) are defined as follows. First, the stacked state and input cost matrices
Q ∈ Sn(T+1) and R ∈ SmT are set to

Q =




Q0

Q1

. . .

QT


 and R =




R0

R1

. . .

RT−1


 ,
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respectively. Similarly, the stacked matrices appearing in the linear dynamics
and the measurement equations C ∈ RpT×n(T+1), G ∈ Rn(T+1)×n(T+1) and
H ∈ Rn(T+1)×mT are defined as

C =




C0 0
C1 0

. . .
. . .

CT−1 0


 , G =




A0
0

A1
0 A1

1
...

. . .

AT
0 AT

1 . . . AT
T




and

H =




0
A1

1B0 0
A2

1B0 A2
2B1 0

...
. . .

... 0
AT

1 B0 AT
2 B1 . . . . . . AT

TBT−1




,

respectively, where At
s =

∏t−1
k=sAk for every s < t and At

s = In for s = t.
Using the stacked system matrices, we can now express the purified observa-

tion process η as a linear function of the exogenous uncertainties w and v that
is not impacted by u; see also [BTBN05; SB10]

Lemma 6.7.1. We have η = Dw + v, where D = CG.

Proof of Lemma 6.7.1. The purified observation process is defined as η = y− ŷ.
Recall now that the observations of the original system satisfy y = Cx + v.

Similarly, one readily verifies that the observations of the fictitious noise-free

system satisfy ŷ = Cx̂. Thus, we have η = C(x− x̂) + v. Next, recall that the

state of the original system satisfies x = Hu + Gw, and note that the state of

the fictitious noise-free system satisfies x̂ = Hu. Combining all of these linear

equations finally shows that u cancels out and that η = CGw+v = Dw+v.

6.8. Proofs

6.8.1. Additional Technical Results

It is well known that every causal controller that is linear in the original obser-
vations y can be reformulated as a causal controller that is linear in the purified
observations η and vice versa [BTBN05; SB10]. Perhaps surprisingly, however,
the one-to-one transformation between the respective coefficients of y and η is
not linear. To keep this paper self-contained, we review these insights in the
next lemma.
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Lemma 6.8.1. If u = Uη + q for some U ∈ U and q ∈ RpT , then u = U ′y + q′

for U ′ = (I + UCH)−1U and q′ = (I + UCH)−1q. Conversely, if u = U ′y + q′

for some U ′ ∈ U and q′ ∈ RpT , then u = Uη + q for U = (I − U ′CH)−1U ′ and

q = (I − U ′CH)−1q′.

Proof of Lemma 6.8.1. If u = Uη + q for some U ∈ U and q ∈ RpT , then we

have

u = Uη + q = U(y − ŷ) + q = Uy − UCx̂+ q = Uy − UCHu+ q,

where the second equality follows from the definition of η, the third equality

holds because y = Cx+ v, and the last equality exploits our earlier insight that

ŷ = Cx̂. The last expression depends only on y and u. Solving for u yields

u = U ′y + q′, where U ′ = (I + UCH)−1U and q′ = (I + UCH)−1q. Note that

(I + UCH) is indeed invertible because I + UCH is a lower triangular matrix

with all diagonal entries equal to one, ensuring a determinant of one.

Similarly, if u = U ′y + q′ for some U ′ ∈ U and q′ ∈ RpT , then we have

u = U ′y + q′ = U ′(η + ŷ) + q′ = U ′η + U ′Cx̂+ q′ = U ′η + U ′CHu+ q′.

Solving for u yields u = Uη + q, where U = (I − U ′CH)−1U ′ and q = (I −
U ′CH)−1q′. Note again that (I−U ′CH) is indeed invertible because (I−U ′CH)

is a lower triangular matrix with all diagonal entries equal to one.

6.8.2. Proofs of Section 6.3

Proof of Proposition 6.3.2. In problem (6.8), both u and x are linear in w and

v, i.e., u = q+UDw+Uv and x = Hu+Gw = Hq+HUDw+HUv+Gw. By

substituting the linear representations of u and x into the objective function of

problem (6.8), we obtain the following equivalent reformulation.

min
q∈RpT

U∈U

max
P∈G

EP
[
w⊤ (D⊤U⊤(R+H⊤QH)UD + 2D⊤U⊤H⊤QG+G⊤QG

)
w
]

+ EP
[
v⊤
(
U⊤(R+H⊤QH)U

)
v
]
+ q⊤(R+H⊤QH)q

For any fixed P ∈ G, we can express the expectation in the objective function

of the above problem in terms of the covariance matrices W = EP[ww
⊤] and

V = EP[vv
⊤]. Thus, the problem becomes

min
q∈RpT

U∈U

max
W,V,P

Tr
((
D⊤U⊤(R+H⊤QH)UD+ 2G⊤QHUD +G⊤QG

)
W
)

+Tr
((
U⊤(R+H⊤QH)U

)
V
)
+q⊤(R+H⊤QH)q

s.t. P ∈ G, W = EP[ww
⊤], V = EP[vv

⊤].
(6.18)
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Recall now the definition of G, and note that the requirements G(X0, X̂0) ≤ ρx0
,

G(Wt, Ŵt) ≤ ρwt
and G(Vt, V̂t) ≤ ρvt are equivalent to the convex constraints

G(X0, X̂0)
2 ≤ ρ2x0

, G(Wt, Ŵt)
2 ≤ ρ2wt

and G(Vt, V̂t)
2 ≤ ρ2vt , respectively, for all

t ∈ [T − 1]. The definition of G also implies that

W = EP[ww
⊤] = diag(X0,W0, . . . ,WT−1)

and

V = EP[vv
⊤] = diag(V0, . . . , VT−1).

Problem (6.18) thus constitutes a relaxation of problem (6.9). Indeed, the fea-

sible set of the inner maximization problem in (6.18) is a subset of the feasible

set of the inner maximization problem in (6.9). Moreover, for any W and

V feasible in the inner maximization problem in (6.9), the distribution P =

Px0 ⊗ (⊗T−1
t=0 Pwt)⊗ (⊗T

t=0Pvt) defined through Px0 = N (0, X0), Pwt = N (0,Wt)

and Pvt = N (0, Vt), t ∈ [T − 1], is feasible in the inner maximization problem

in (6.18) with the same objective value. The relaxation is thus exact, and the

optimal values of (6.8), (6.9) and (6.18) coincide.

Proof of Proposition 6.3.4. Recall that the space Uy of all causal output-feedback
controllers coincides with the space Uη of all causal purified output-feedback

controllers. We can thus replace the feasible set Uη of the inner minimization

problem in (6.10) with Uy. Hence, for any fixed P ∈ WN , the inner minimiza-

tion problem in (6.10) constitutes a classic LQG problem. By standard LQG

theory [Ber17], it is solved by a linear output-feedback controller of the form

u = U ′y+q′ for some U ′ ∈ U and q′ ∈ RpT ; see also Appendix §6.6. Lemma 6.8.1

shows, however, that any linear output-feedback controller can be equivalently

expressed as a linear purified-output feedback controller of the form u = Uη+ q

for some U ∈ U and q ∈ RpT . In summary, the above reasoning shows that

the feasible set of the inner minimization problem in (6.10) can be reduced to

the family of all linear purified-output feedback controllers without sacrificing

optimality. Thus, problem (6.10) is equivalent to

max
P∈WN

min
q,U,x,u

EP
[
u⊤Ru+ x⊤Qx

]

s.t. U ∈ U , u = q + Uη, x = Hu+Gw.

Using a similar reasoning as in the proof of Proposition 6.3.2, we can now

substitute the linear representations of u and x into the objective function and
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reformulate the above problem as

max
W,V,P

min
q∈RpT

U∈U

Tr
((
D⊤U⊤(R+H⊤QH)UD+ 2G⊤QHUD +G⊤QG

)
W
)

+Tr
((
U⊤(R+H⊤QH)U

)
V
)
+q⊤(R+H⊤QH)q

s.t. P ∈ WN , W = EP[ww
⊤], V = EP[vv

⊤].

As WN contains only normal distributions, Proposition 6.3.3 implies that

W(Px0
, P̂x0

) = G(X0, X̂0),W(Pwt
, P̂wt

) = G(Wt, Ŵt) andW(Pvt , P̂vt) = G(Vt, V̂t)

for all t ∈ [T − 1]. We may thus replace the requirement W(Px0
, P̂x0

) ≤ ρx0

in the definition of WN by G(X0, X̂0) ≤ ρx0
, which is equivalent to the con-

vex constraint G(X0, X̂0)
2 ≤ ρ2x0

. The conditions on the marginal distributions

of wt and vt, t ∈ [T − 1], admit similar reformulations. The definition of WN
also implies that

W = EP[ww
⊤] = diag(X0,W0, . . . ,WT−1) and

V = EP[vv
⊤] = diag(V0, . . . , VT−1).

Thus, the feasible set of the outer maximization problem in (6.11) constitutes a

relaxation of that in (6.10). One readily verifies that the relaxation is exact by

using similar arguments as in the proof of Proposition 6.3.2. Thus, the claim

follows.

Proof of Theorem 6.3.5. By Proposition 6.3.2, p̄⋆ coincides with the minimum

of (6.9). Similarly, by Proposition 6.3.4 d⋆ coincides with the maximum of (6.11).

Note that problems (6.9) and (6.11) only differ by the order of minimization and

maximization. Note also that U is convex and closed, GW and GV are convex

and compact by virtue of [Ngu+23, Lemma A.6], and the (identical) trace terms

in (6.9) and (6.11) are bilinear in (W,V ) and (U, q). The claim thus follows from

Sion’s minimax theorem [Sio58].

6.8.3. Proofs of Section 6.4

Note that Proposition 6.4.1 is consistent with Corollary 11 because the optimal
LQG controller corresponding to P⋆ is linear in the past observations.

Proof of Proposition 6.4.1. By [Ngu+23, Lemma A.3], the inner problem in (6.9)

admits a maximizer (W ⋆, V ⋆) with X⋆
0 ⪰ λmin(X̂0) as well as W ⋆

t ⪰ λmin(Ŵt)

and V ⋆
t ⪰ λmin(V̂t) for all t ∈ [T − 1]. Thus, the optimal value of problem (6.9)

and its strong dual (6.11) does not change if we restrict GW and GV to G+W
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and G+V , respectively. We may thus conclude that problem (6.11) has a maxi-

mizer (W ⋆, V ⋆) with V ⋆
t ⪰ λmin(V̂t) ≻ 0 for all t ∈ [T − 1]. This in turn implies

that problem (6.6) is solved by a normal distribution P⋆ under which the co-

variance matrix of the observation noise vt satisfies V
⋆
t ≻ 0 for every t ∈ [T −1].

As (6.5) and (6.6) are strong duals, the optimal solution u⋆ of problem (6.5)

forms a Nash equilibrium with P⋆, i.e., u⋆ is a best response to P⋆ and thus solves

the classic LQG problem corresponding to P⋆. As Rt ≻ 0 for every t ∈ [T − 1],

this best response u⋆ is unique, and as V ⋆
T ≻ 0 for every t ∈ [T −1], u⋆ is in fact

the Kalman filter-based optimal output-feedback strategy corresponding to P⋆

(which can be obtained using the techniques highlighted in Appendix §6.6).

Before proving Proposition 6.4.2, recall that f(W,V ) is called β-smooth for
some β > 0 if for all W,W ′ ∈ G+W , V, V ′ ∈ G+V

|∇f(W,V )−∇f(W ′, V ′)| ≤ β
(
∥W −W ′∥2F + ∥V − V ′∥2F

) 1
2

where ∥ · ∥F denotes the Frobenius norm.

Proof of Proposition 6.4.2. The function f(W,V ) is concave because the objec-

tive function of the inner minimization problem in (6.11) is linear (and hence

concave) in W and V and because concavity is preserved under minimization.

To prove that f(W,V ) is β-smooth, we first recall from Proposition 6.3.3 that

it coincides with the optimal value of the inner minimization problem in (6.10).

As Uη = Uy, f(W,V ) can thus be viewed as the optimal value of the classic LQG

problem corresponding to the normal distribution P determined by the covari-

ance matrices W and V . Hence, f(W,V ) coincides with (6.17), where Σt, for

t ∈ [T −1], is a function of (W,V ) defined recursively through the Kalman filter

equations (6.16). Note that all inverse matrices in (6.16) are well-defined be-

cause any V ∈ G+V is strictly positive definite. Therefore, Σt constitutes a proper

rational function (that is, a ratio of two polyonmials with the polynomial in the

denominator being strictly positive) for every t ∈ [T − 1]. Thus, f(W,V ) is

infinitely often continuously differentiable on a neighborhood of G+W × G+V .

As f(W,V ) is concave and (at least) twice continuously differentiable, it is

β-smooth on G+W ×G+V if and only if the largest eigenvalue of the Hessian matrix

of −f(W,V ) is bounded above by β throughout G+W × G+V . Also, the largest

eigenvalue of the positive semidefinite Hessian matrix ∇2(−f(W,V )) coincides

with the spectral norm of ∇2f(W,V ). We may thus set

β = sup
W∈G+

W ,V ∈G+
V

∥∇2f(W,V )∥2, (6.19)
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where ∥ · ∥2 denotes the spectral norm. The supremum in the above maximiza-

tion problem is finite and attained thanks to Weierstrass’ theorem, which ap-

plies because f(W,V ) is twice continuously differentiable and the spectral norm

is continuous, while the sets G+W and G+V are compact by virtue of [Ngu+23,

Lemma A.6]. This observation completes the proof.

6.9. SDP Reformulation of the Lower Bounding

Problem

Instead of solving the dual problem (6.11) with the customized Frank-Wolfe
algorithm of Section 6.4, it can be reformulated as an SDP amenable to off-the-
shelf solvers. This reformulation is obtained by dualizing the inner minimization
problem and by exploiting the following preliminary lemma.

Lemma 6.9.1. For any Ẑ ∈ Sd+ and ρz ≥ 0, the set GZ = {Z ∈ Sd+ : G(Z, Ẑ) ≤
ρz} coincides with

{
Z ∈ Sd+ : ∃Ez ∈ Sd+ with Tr(Z + Ẑ − 2Ez) ≤ ρ2z,

[
Ẑ

1
2ZẐ

1
2 Ez

Ez I

]
⪰ 0

}
.

Proof of Lemma 6.9.1. By Definition 12, we have

GZ = {Z ∈ Sd+ : Tr(Z + Ẑ − 2(Ẑ
1
2ZẐ

1
2 )

1
2 ) ≤ ρ2z}.

Next, introduce an auxiliary variable Ez ∈ Sd+ subject to the matrix inequal-

ity E2
z ⪯ (Ẑ

1
2ZẐ

1
2 ). By [Bel68, Theorem 1], this inequality can be recast

as Ez ⪯ (Ẑ
1
2ZẐ

1
2 )

1
2 . Hence, we can reformulate the nonlinear matrix inequal-

ity in the above representation of GZ as Tr(Z + Ẑ − 2Ez) ≤ ρ2z. A standard

Schur complement argument reveals that the inequality E2
z ⪯ (Ẑ

1
2ZẐ

1
2 ) is also

equivalent to
[
Ẑ

1
2ZẐ

1
2 Ez

Ez I

]
⪰ 0.

The claim then follows by combining all of these insights.

We are now ready to derive the desired SDP reformulation of problem (6.11).
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Proposition 6.9.2. If V̂ ≻ 0, then problem (6.11) is equivalent to the SDP

max Tr(G⊤QGW )− Tr(F (R+H⊤QH)−1)

s.t. W ∈ Sn(T+1)
+ , V ∈ SpT+ , M ∈M, F ∈ STm

+

Ex0 ∈ Sn+, Ewt ∈ Sn+, Evt ∈ Sp+ ∀t ∈ [T − 1]

Tr(W0 + X̂0 − 2Ex0
) ≤ ρ2x0

,

Tr(Wt+1 + Ŵt − 2Ewt) ≤ ρ2wt
, Tr(Vt + V̂t − 2Evt) ≤ ρ2vt ∀t ∈ [T − 1]

[
X̂

1
2
0 X0X̂

1
2
0 Ex0

Ex0
In

]
⪰0,

[
Ŵ

1
2
t Wt+1Ŵ

1
2
t Ewt

Ewt In

]
⪰0,

[
V̂

1
2
t VtV̂

1
2
t Evt

Evt Ip

]
⪰0 ∀t ∈ [T−1]

[
F H⊤QGWD⊤ +M/2

(H⊤QGWD⊤ +M/2)⊤ DWD⊤ + V

]
⪰ 0

W0 ⪰ λmin(X̂0)I, Wt+1 ⪰ λmin(Ŵt)I, Vt ⪰ λmin(V̂t)I ∀t ∈ [T − 1].

(6.20)

Here, M denotes the set of all strictly upper block triangular matrices of the

form 


0 M1,2 M1,3 . . . M1,T

0 M2,3 M2,T

. . .
...

0 MT−1,T

0



∈ RTm×Tp,

where Mt,s ∈ Rm×p for every t, s ∈ Z with 1 ≤ t < s ≤ T .

Proof of Proposition 6.9.2. The proof relies on dualizing the inner minimization

problem in (6.11). Note that strong duality holds because the primal problem is

trivially feasible and involves only equality constraints, which implies that any

feasible point is in fact a Slater point. In the following we useM ∈M to denote

the Lagrange multiplier of the constraint U ∈ U , which requires all blocks of

the matrix U above the main diagonal to vanish. The Lagrangian function of

the inner minimization problem in (6.11) can therefore be represented as

L(q, U,M) = Tr
((
D⊤U⊤(R+H⊤QH)UD +G⊤QG

)
W
)
+ 2Tr(G⊤QHUDW )

+Tr
((
U⊤(R+H⊤QH)U

)
V
)
+ q⊤(R+H⊤QH)q +Tr(UM⊤).

Recall now that R ≻ 0 and Q ⪰ 0, and thus R+H⊤QH ≻ 0. Consequently, L
is minimized by q⋆ = 0 for any fixed U and M . In addition, the partial gradient
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of L with respect U is given by

∂L
∂U

= 2(R+H⊤QH)UDWD⊤ + 2(R+H⊤QH)UV + 2H⊤QGWD⊤ +M.

Recall also that V ∈ G+V is strictly positive, which implies that DWD⊤+V ≻ 0

is invertible. As we already know that R+H⊤QH ≻ 0 is invertible, as well, L
is minimized by

U⋆ = −(R+H⊤QH)−1
(
H⊤QGWD⊤ +M/2

)
(DWD⊤ + V )−1

for any fixed M . Substituting both q⋆ and U⋆ into L yields the dual objective

function

g(M) = L(q⋆, U⋆,M) = Tr(G⊤QGW )

− Tr
(
(R+H⊤QH)−1(H⊤QGWD⊤ +M/2)(DWD⊤ + V )−1(H⊤QGWD⊤+M/2)⊤

)
.

The dual of the inner minimization problem in (6.11) is thus given by maxM∈M g(M).

To linearize the dual objective function, we next introduce an auxiliary vari-

able F ∈ SmT
+ subject to the matrix inequality F ⪰ (H⊤QGWD⊤+M/2)(DWD⊤+

V )−1(H⊤QGWD⊤ +M/2)⊤. By using a standard Schur complement reformu-

lation, we can then rewrite the dual problem as

max Tr(G⊤QGW )− Tr((R+H⊤QH)−1F )

s.t. M ∈M, F ∈ SmT
+[

F H⊤QGWD⊤ +M/2

(H⊤QGWD⊤ +M/2)⊤ DWD⊤ + V

]
⪰ 0.

(6.21)

Next, by replacing the inner problem in (6.11) with its strong dual (6.21), we

can reformulate (6.11) as

max Tr(G⊤QGW )− Tr((R+H⊤QH)−1F )

s.t. M ∈M, F ∈ SmT
+ , W ∈ Sn(T+1)

+ , V ∈ SpT+[
F H⊤QGWD⊤ +M/2

(H⊤QGWD⊤ +M/2)⊤ DWD⊤ + V

]
⪰ 0

G(X0, X̂0)
2 ≤ ρ2x0

, G(Wt, Ŵt) ≤ ρ2wt
, G(Vt, V̂t) ≤ ρ2vt ∀t ∈ [T − 1].

(6.22)

By Proposition 6.4.1, the inclusion of the constraints X0 ⪰ λmin(X̂0)I, Wt ⪰
λmin(Ŵt)I and Vt ⪰ λmin(V̂t)I for all t ∈ [T − 1] has no effect on the solution to

problem (6.22). In addition, by Lemma 6.9.1, each (non-linear) Gelbrich con-

straint in (6.22) can be reformulated as an equivalent (linear) SDP constraint.

Thus, problem (6.22) reduces to (6.20), and the claim follows.
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6.10. Bisection Algorithm for the Linearization

Oracle

We now show that the direction-finding subproblem (6.14) can be solved effi-
ciently via bisection. To this end, we first establish that (6.14) can be reduced
to the solution of a univariate algebraic equation.

Proposition 6.10.1 ([Ngu+23, Proposition A.4 (iii)]). If Ẑ ∈ Sd++, ΓZ ∈ Sd+,
ΓZ ̸= 0 and ρz ∈ R++, then

max ⟨ΓZ , L− Z⟩
s.t. G(L, Ẑ) ≤ ρz

L ⪰ λmin(Ẑ)I

(6.23)

is uniquely solved by L⋆ = (γ⋆)2(γ⋆I − ΓZ)
−1Ẑ(γ⋆I − ΓZ)

−1, where γ⋆ is the

unique solution of

ρ2z − ⟨Ẑ, (I − γ⋆(γ⋆I − ΓZ)
−1)2⟩ = 0 (6.24)

in the interval (λmax(ΓZ),∞).

In practice, we need to solve the algebraic equation (6.24) numerically. The
numerical error in approximating γ⋆ should be contained to ensure that L⋆

approximates the exact maximizer of problem (6.23). The next proposition
shows that, for any tolerance δ ∈ (0, 1), a δ-approximate solution of (6.23) can
be computed with an efficient bisection algorithm.

Proposition 6.10.2 ([Ngu+23, Theorem 6.4]). For any fixed ρz ∈ R++, Ẑ ∈
Sd++ and ΓZ ∈ Sd+,ΓZ ̸= 0, define G+Z = {Z ∈ Sd+ : G(Z, Ẑ) ≤ ρz, Z ⪰ λmin(Ẑ)}
as the feasible set of problem (6.23), and let Z ∈ G+Z be any reference covari-

ance matrix. Additionally, let δ ∈ (0, 1) be the desired oracle precision, and

define φ(γ) = γ(ρ2 + ⟨γ(γI − ΓZ)
−1 − I, Ẑ⟩) − ⟨Z,ΓZ⟩ for any γ > λmax(ΓZ).

Then, Algorithm 7 returns in finite time a matrix Lδ
Z ∈ Sd+ with the follow-

ing properties. (i) Feasibility: Lδ
Z ∈ G+Z (ii) δ-Suboptimality: ⟨Lδ

Z − Z,ΓZ⟩ ≥
δmaxL∈G+

Z
⟨ΓZ , L− Z⟩.

In summary, for any Z ∈ {X0,W0, . . . ,WT−1, V0, . . . , VT−1}, Algorithm 7
computes a δ-approximate solutions to the direction-finding subproblem (6.14)
with ΓZ = ∇Zf(W,V ).

6.11. Additional Information on Experiments

Generation of Nominal Covariance Matrices. The nominal covariance
matrices of the exogenous uncertainties are constructed randomly using the
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Algorithm 7 Bisection algorithm to compute Lδ
Z

Input: nominal covariance matrix Ẑ ∈ Sd++, radius ρ ∈ R++,

reference covariance matrix Z ∈ G+Z ,

gradient matrix ΓZ ∈ Sd+, ΓZ ̸= 0, precision δ ∈ (0, 1),

dual objective function ϕ(γ) defined in Proposition 6.10.2

1: set λ1 ← λmax(ΓZ), and let p1 be an eigenvector for λ1

2: set γ ← λ1(1 + (p⊤1 Ẑp1)
1
2 /ρ) and γ ← λ1(1 + Tr(Ẑ)

1
2 /ρ)

3: repeat

4: set γ̃ ← (γ + γ)/2 and L← (γ̃)2(γ̃I − ΓZ)
−1Ẑ(γ̃I − ΓZ)

−1

5: if dϕ
dγ (γ̃) < 0 then set γ ← γ̃ else γ ← γ̃ endif

6: until dϕ
dγ (γ̃) > 0 and ⟨L− Z,ΓZ⟩ ≥ δϕ(γ̃)

Output: L

following procedure. For each exogenous uncertainty z ∈ {x0, w0, . . . , wT−1, v0,
. . . , vT−1}, we denote the dimension of z by d and sample a matrix MZ ∈
Rd×d from the uniform distribution on the hypercube [0, 1]d×d. Next, we define
ΞZ ∈ Rd×d as the orthogonal matrix whose columns represent the orthonormal
eigenvectors of the symmetric matrix MZ +M⊤

Z . Finally, we set Ẑ = ΞZΛZΞ
⊤
Z ,

where ΛZ is a diagonal matrix whose main diagonal is sampled uniformly from
the interval [1, 2]d. The rationale for adopting this cumbersome procedure is to
ensure that the covariance matrix Ẑ is positive definite.

Optimality Gap. The optimality gap of the Frank-Wolfe algorithm vi-
sualized in Figure 6.1b is calculated as the sum of the surrogate optimality
gaps ⟨Lδ

Z − Z,∇Zf(W,V )⟩ across all Z ∈ {X0,W0 . . . ,WT−1, V0, . . . , VT−1}.
For more information on the surrogate optimality gaps see [Jag13].
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Now I mark a temporary pause in my exploration of reliable data-driven deci-
sion making and reflect on and summarize the progress we have made thus far.

Computation of Optimal Transport. At the beginning of this thesis, in
late 2018, it was clear that optimal transport has applications across numerous
domains. Surprisingly perhaps its computational complexity was not estab-
lished. We fill this gap by formally establishing its hardness in Part I both for
discrete and semi-discrete optimal transport problem. One might ponder the
merit of investigating ‘impossibility results’ such as delving deep into compu-
tational complexity, which might be seen as mere markers of what we cannot
achieve. However, by understanding these mathematical constraints, we not
only delineate the boundaries what is feasible but also sharpen our research
objectives. In essence, by acknowledging and studying our limitations, we can
set clearer, more achievable goals, ultimately advancing our collective pursuit
of knowledge. Indeed, at second part of each chapter we provide numerical so-
lutions to approximately solve both problems, as we have already shown that
we do not have hope for solving these problems in polynomial time.
Robust Domain Adaptation. In Chapter 3, we investigate strategies to
synthesize a family of least squares estimator experts that are robust with regard
to moment conditions for supervised domain adaptation problem. When these
moment conditions are specified using Kullback-Leibler divergence or optimal
transport, we can find robust estimators efficiently using convex optimization.
The theoretical and experimental results in this chapter suggest that IR-WASS
and SI-WASS are attractive schemes to generate a family of robust least squares
experts. Moreover, the IR-WASS and SI-WASS experts are extremely easy
to compute because it requires solving only a second-order cone or a linear
semidefinite program. We observe that KL-type divergence schemes are less
numerically stable due to the computation of the log-determinant and the inverse
of a nearly singular covariance matrix Σ̂T. Setting the parameters for KL-type
divergence schemes is also harder due to the asymmetry of the divergence D.
While this chapter focuses solely on interpolating schemes, it would also be
interesting to explore extrapolating schemes in future research.
Learning Fair and Robust Models. The proliferation of artificial intelli-
gence, particularly large language models, into our everyday lives, underscores
the urgent need to ensure these systems are fair. As they become more inter-
twined with our decision-making processes in content recommendations, cus-
tomer service, and even personal assistants, the ramifications of any biases
within these models grow significantly. In Chapter 4, we propose distribution-
ally robust fair classification models that prevents discrimination with respect
to sensitive attributes such as gender or ethnicity. However, given the perva-
sive nature of these technologies, the first-order challenge has now expanded to
include understanding fairness and the essential task of auditing these models
for any form of prejudice. The ultimate objective of fair machine learning is
to address the complex question: “What is fair?” Defining fairness is a chal-
lenge even in tangible, real-world situations. Thus, creating a mathematical
representation for this abstract concept amplifies the difficulty. While there is
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no universal agreement on the exact definition, the concept of discrimination
varies significantly across different domains. A prominent approach could in-
volve collaborating with policymakers and domain experts, particularly in crim-
inal justice, medicine, and education. By combining these insights, one could
aim to develop a principled methodology to shed considerable light on this long-
standing question and contribute to designing commercial auditing mechanisms
for AI systems.
Auditing for Fairness. In Chapter 5, we propose a statistical hypothesis test
for group fairness of classification algorithms based on the theory of optimal
transport. Our test statistic relies on computing the projection distance from
the empirical distribution supported on the test samples to the manifold of dis-
tributions that renders the classifier fair. When the notion of fairness is chosen
to be either the probabilistic equal opportunity or the probabilistic equalized
odds, we show that the projection can be computed efficiently. We provide the
limiting distribution of the test statistic and show that our Wasserstein projec-
tion test is asymptotically correct. Our proposed test also offers the flexibility
to incorporate the geometric information of the feature space into testing pro-
cedure. Finally, analyzing the most favorable distribution can help interpreting
the reasons behind the outcome of the test.

The Wasserstein projection hypothesis test is the culmination of a benevolent
motivation and effort, and it aims to furnish the developers, the regulators and
the general public a quantitative method to verify certain notions of fairness
in the classification setting. At the same time, we acknowledge the risks and
limitations of the results presented in this chapter. First, it is essential to
keep in mind that this chapter focuses on probabilistic notions of fairness, in
particular, we provide the Wasserstein statistical test for probabilistic equality
of opportunity and probabilistic equalized odds. Probabilistic notions are only
approximations of the original definitions, and the employment of probabilistic
notions are solely for the technical purposes. Due to the sensitivity of the test
result on the choice of fairness notions, a test that is designed for probabilistic
notions may not be applicable to test for original notions of fairness due to
the interplay with the threshold τ and the radical difference of both the test
statistic and the limiting distribution. If a logistic classifier hβ is rejected using
our framework for probabilistic equal opportunity, it does not necessarily imply
that the classifier hβ fails to satisfy the equal opportunity criterion, and vice
versa. The same argument holds when we test for probabilistic equalized odds.
Second, the outcome of the Wasserstein projection test is dependent on the
choice of the underlying metric on the feature, the sensitive attribute and the
label spaces. Indeed, the test outcome can change if we switch the metric of
the feature space, for example, from the Euclidean norm to a 1-norm. In the
scope of this chapter, we do not study how sensitive the test outcome is with
respect to the choice of the metric, nor can we make any recommendation on the
optimal choice of the metric. Nevertheless, it is reasonable to recommend that
the metric should be chosen judiciously, and the action of tuning the metric in
order to obtain favorable test outcome should be prohibited. Third, to simplify
the computation, we have assumed absolute trust on the sensitive attributes and
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the label. The users of our test should be mindful if there is potential corruption
to these values. Moreover, our test is constructed under the assumption that
there is no missing values in the test data. This assumption, unfortunately, may
not hold in real-world implementations. Constructing statistical test which is
robust to adversarial attacks and missing data using the Wasserstein projection
framework is an interesting research direction. Fourth, the statistical test in
this chapter is for a simple null hypothesis. In practice, the regulators may be
interested in a relaxed fairness test in which the difference of the conditional
expectations is upper bounded by a fixed positive constant ϵ. The extension of
the Wasserstein hypothesis testing framework for a composite null hypothesis is
non-trivial, thus we leave this idea for future study. Finally, any auditing process
for algorithmic fairness can become a dangerous tool if it falls into the hand of
unqualified or vicious inspectors. The results in this chapter are developed to
broaden our scientific understanding, and we recommend that the test and its
outcomes should be used as an informative reference, but not as an absolute
certification to promote any particular classifier or as a justification for any
particular classification decision.

We thus sincerely recommend that the tools proposed in this chapter be
exercised with utmost consideration.
Robust Control. In Chapter 6, we consider a generalization of the discrete-
time, finite-horizon linear quadratic Gaussian control problem, where the noise
distributions are unknown and belong to optimal transport-based ambiguity
sets centered at nominal (Gaussian) distributions. The objective is to minimize
a worst-case cost across all distributions in the ambiguity set, including non-
Gaussian distributions. Despite the added complexity, we prove that a control
policy that is linear in the observations is optimal for this problem, as in the
classic LQG problem. We propose a numerical solution method that efficiently
characterizes this optimal control policy using Frank-Wolfe algorithm to identify
the worst-case distributions and computing the optimal control policy using
Kalman filter estimation under these distributions.

In view of the popularity of LQG models, the results in this work carry
important theoretical and practical implications. Despite considering a general-
ization of the classic LQG setting where the noise affecting the system dynamics
and the observations follows unknown (and potentially non-Gaussian) distribu-
tions, our findings suggest that certain classic structural results continue to hold
and that highly efficient methods can be adapted to tackle this more realistic
(and more challenging) problem. Specifically, that control policies depending
linearly on observations continue to be optimal and that the worst-case distribu-
tion turns out to be Gaussian is surprising from a theoretical angle and also has
direct practical implications, because it allows leveraging the highly efficient
Kalman filter in conjunction with dynamic programming and a Frank-Wolfe
method to design an efficient computational procedure for solving the problem.

The results also raise several important questions that warrant future ex-
ploration. First, it would be highly relevant to consider extensions where the
system matrices are also affected by uncertainty, as this captures many appli-
cations of practical interest in, e.g., reinforcement learning or revenue man-
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agement. Second, it would be worth exploring an infinite horizon setting or
relaxing the assumption that the nominal distribution is Gaussian, as both as-
sumptions may be limiting the practical appeal of the framework. Third, one
could also attempt to prove structural optimality results or design novel algo-
rithms for generating high-quality suboptimal solutions for the more general
setting involving constraints on states and/or control inputs. Lastly, one could
improve the presented algorithmic proposal by exploiting topological properties
of the objective so as to guarantee linear convergence rates in the Frank-Wolfe
procedure.

The fact that our ambiguity set for the distributionally robust linear quadratic
Gaussian control problem contains non-Gaussian distributions sheds light on the
challenging problem of controlling a linear-quadratic system that does not have
Gaussian noise by upper bounding its optimal cost with the optimal cost of the
distributionally robust linear quadratic control problem. Nevertheless, a notable
limitation of this direction stands out: identifying if an arbitrary distribution
falls within an optimal transport-based ambiguity set is a computationally chal-
lenging task [TSAK23].
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Contact: bahar.taskesen@epfl.ch, www.bahartaskesen.com

Education
Doctor of Science in Risk Analytics and Optimization.
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[Adl+17] J. Adler, A. Ringh, O. Öktem, and J. Karlsson. “Learning to solve inverse

problems using Wasserstein loss”. arXiv:1710.10898 (2017).

[ADPT88] S. P. Anderson, A. De Palma, and J.-F. Thisse. “A representative consumer

theory of the logit model”. International Economic Review 29.3 (1988), pp. 461–

466.

[AG18] B. K. Abid and R. Gower. “Stochastic algorithms for entropy-regularized opti-

mal transport problems”. Artificial Intelligence and Statistics. 2018, pp. 1505–

1512.

[AG22] R. Arora and R. Gao. “Data-driven multistage distributionally robust optimiza-

tion with nested distance: Time consistency and tractable dynamic reformula-

tions”. Available at Optimization Online (2022).

[Agg+22] R. Aggarwal, K. Bibbins-Domingo, R. W. Yeh, Y. Song, N. Chiu, R. K. Wad-

hera, C. Shen, and D. S. Kazi. “Diabetes screening by race and ethnicity in

the United States: Equivalent body mass index and age thresholds”. Annals of

Internal Medicine 175.6 (2022), pp. 765–773.

[Agr+18] A. Agrawal, R. Verschueren, S. Diamond, and S. Boyd. “A rewriting system

for convex optimization problems”. Journal of Control and Decision 5.1 (2018),

pp. 42–60.

[AHA98] F. Aurenhammer, F. Hoffmann, and B. Aronov. “Minkowski-type theorems and

least-squares clustering”. Algorithmica 20.1 (1998), pp. 61–76.
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[PKD07] F. Pitié, A. C. Kokaram, and R. Dahyot. “Automated colour grading using

colour distribution transfer”. Computer Vision and Image Understanding 107.1-

2 (2007), pp. 123–137.

[Ple+17] G. Pleiss, M. Raghavan, F. Wu, J. Kleinberg, and K. Q. Weinberger. “On fairness

and calibration”. Advances in Neural Information Processing Systems. 2017,

pp. 5680–5689.
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