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Abstract—This paper presents a rigorous assessment of natural
frequencies associated with fault-originated travelling waves in
power networks, factoring in the presence of multiple junctions
and branches. The proposed assessment exploits the Baum-Liu-
Tesche (BLT) equation. An enhanced fault location accuracy is
consequently attained leveraging rectified natural frequencies.

Index Terms—Baum-Liu-Tesche equation, fault location, fault
transients, natural frequencies, travelling waves

I. INTRODUCTION

THE frequency-domain spectrum of fault-originated trav-
elling waves (TWs) features the presence of distinct fre-

quencies identified as natural or path-characteristic frequencies
fps, which reflect the nature of the TWs propagating through
different paths pertaining to a faulty power network [1]–[3].
In light of this, fps are employed in a dual capacity: firstly, as
an indicator or metric for a fault event, functioning in the de-
termination of its type and location (e.g., [1], [2]); secondly,
the spectral attributes exhibited by the post-fault TWs at fps
are leveraged as a foundational element by various other TW-
based fault location (FL) methods (e.g., [3]).

Historically, there stands an analytical formula, demonstrat-
ing an inverse relationship (governed by a constant coefficient
npi

) between a specific natural frequency fpi
and the length

Lpi
of its corresponding path pi [1],

fAna
pi

= v/(npi
Lpi

), (1)

where v is the TWs’ propagation velocity. ‘Ana’ signifies the
use of (1) to produce the estimate. However, it is imperative
to clarify that (1) is established upon certain assumptions:

1. v remains constant and independent of frequency.
2. The boundary conditions are simplified to open circuits

at an observation point (OP) and to short circuits at the fault
location. Consequently, the coefficient np1 is determined to be
4 for the fault-related path (see p1 in Fig. 1).

3. The discontinuities along a path caused by junctions are
neglected. Lpi

is the length of the transmission line (TL) con-
necting an opted OP to a specific junction, terminal, or FL.

As a result, fAna
pi

might be subjected to errors, especially in
the context of complex power networks (e.g., a higher number
of junctions). These errors afterwards lead to inaccuracies in
FL when referencing the a priori fps. Also, note that the ap-
plicability of (1) is limited to homogeneous power networks.

This paper proposes that improved accuracy in estimating
fps necessitates a detailed analysis of fault transients, which
aims to adequately illustrate post-fault TW signals in the fre-
quency domain by taking account of

• Topological (and existing inhomogeneous) features of tar-
geted faulty power networks
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Fig. 1: IEEE 34-bus distribution feeder (the section with AC feeding
at Bus 832). In the single-line diagram (a), a portion of the TW paths
is depicted, wherein the fault-related path p1 extends from the chosen
OP Bus 832 to the FL Bus 844, passing through Buses 834 and 858.
The directed-graph schematic (b) designates a terminal/junction as a
node and a TL an edge. The direction of edge k dictates the positive
direction of the coordinate xk-axis and that of the current Ik(xk).

• Distributed and frequency-dependent attributes of TLs
• Scattering characteristics of connected power equipment
• Fault impedance (if it exists)

It is evident that the inclusion of the first two items allows for
addressing the oversimplifications introduced by assumptions
1 and 3, while the remaining two items are directed towards
assumption 2. The rigorous assessment of fps follows numer-
ically solving fault transients in the frequency domain. The nu-
merical analysis exploits the Baum-Liu-Tesche (BLT) equation
(e.g., [4]) and specially adapts it to the FL problem.

II. DERIVATION OF MODIFIED BLT EQUATION

The ensuing derivation revolves round two-conductor TLs
(2TLs)1. Let us refer back to the general solution for the volt-
age at the two terminals of a 2TL (e.g., Fig. 2):{

V (0) = V + + V − = V re
(0) + V in

(0)

V (L) = V +e−γL + V −e+γL = V in
(L) + V re

(L)
, (2)

where V ± are undetermined constants dependent on frequen-
cies. The superscripts ‘re’ and ‘in’ indicate the reflected and
incident components, respectively. Also, note that to maintain
brevity, evident frequency dependencies, like the one of the
propagation constant γ, are not emphasized.

Given the scenario of Fig. 2a, where a 2TL is subjected to
lumped excitation imposed by a series voltage source, Baum
et al. derived the BLT equation as a compact matrix formula,
by which the voltage responses at the terminals read:[

V (0) V (L)
]T

= (S + 12) (S − P )
−1

E, (3)
with S, P , and E being the frequency-dependent scattering
matrix, propagation matrix, and excitation vector, respectively
[4]. 12 represents the identity matrix of order 2.

1This focus is with the justifications: i) the derivation approach and results
can be extended to multi-conductor TLs (MTLs) by using matrix notation; ii)
2TLs directly relate to existing power network configuration like mono-polar
HVDC links; iii) each decoupled mode of MTLs is modelled in a 2TL circuit.
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Fig. 2: A 2TL subjected to lumped excitation with (a) a series voltage
source and (b) a shunt voltage source positioned at an arbitrary loca-
tion along the line. (b) is accompanied by its directed graph.

On the other hand, considering the FL problem, fault-origi-
nated transients are typically simulated as the responses of a
step function injected through a fault admittance (or imped-
ance), as illustrated using VS and YS in Fig. 2b. To likewise
solve the terminal voltages, a re-derivation is necessary to
specify V ± in (2) following the provided boundary conditions.

With respect to the positive direction of the x-axis, V +e−γx

and V −e+γx constitute the forward and backward TWs, re-
spectively. Each is further recognized as either an incident or
a reflected wave at the line terminals, as explained in (2). The
incident and reflected waves can be related using the reflec-
tion coefficient S11, which factors in the modelling and input
impedance of terminal power equipment. As per the labelling
of the two terminals as nodes 1 and 2 (see Fig. 2b), their
re-spective S11 parameters are denoted S1 and S2.

At the assumed fault location, x = xs, both the voltage and
current are continuous prior to a fault event. That is

CV ,xs
Vn,xs

= 12×1, and CI,xs
In,xs

= 02×1, (4)

where, according to Fig. 2b,

Vn,xs
=

[
V (x<

s ) V (x>
s )
]T

and In,xs
=

[
−I(x<

s ) I(x>
s )
]T
, (5)

with the voltage and current connection matrices being

CV ,xs
=

[
1 −1

]
and CI,xs

=
[
1 1

]
. (6)

In the wake of injecting VS (through YS), x = xs behaves as
a plus-one junction, and thus the boundary condition holds

V (x<
s ) = V (x>

s ) = VS + (I(x<
s ) − I(x>

s )) /YS. (7)

The combination of (4) and (7) yields[
V re

(x<
s ) V re

(x>
s )
]T

= Sxs

[
V in

(x<
s ) V in

(x>
s )
]T
+Exs , (8)

where Sxs governs the interaction between the incident waves
and the reflected ones. It is a 2× 2 matrix solved by

Sxs
=

[
−CV ,xs

CI,xs(YC,xs +YS)

]−1[
CV ,xs

CI,xs(YC,xs −YS)

]
(9)

with

YC,xs
= diag (YC , YC) and YS = diag (YS, 0) . (10)

Moreover, the added excitation vector Exs , which illustrates
the fault effect (i.e., the voltage injection), is derived as

Exs
=

[
−CV ,xs

CI,xs(YC,xs +YS)

]−1[
YSVS

]
(11)

Through the integration of the four sets of incident and re-
flected waves, the first matrix equation can be formulated, en-
compassing the scattering matrix and the excitation vector:

V re
(0)

V re
(x<

s )

V re
(x>

s )

V re
(L)

 =

 S1

Sxs

S2




V in
(0)

V in
(x<

s )

V in
(x>

s )

V in
(L)

+

 Exs

 . (12)

Let V in
n and V re

n refer to the vector of incident and reflected
waves. Then, (12) can be rewritten as

V re
n = SV in

n +E, (13)
where, following (3), the scattering supermatrix is denoted as
S (the same applies to P and E hereinafter).

In light of x = xs being an additional junction, the propaga-
tion supermatrix is derived from (2) as

P = diag
([

e+γxs

e+γxs

]
,

[
e+γ(L−xs)

e+γ(L−xs)

])
, (14)

which allows the second matrix equation to be established:
V re
n = PV in

n . (15)
Synthesizing (13) and (15) results in solving

V in
n = (P − S)

−1
. (16)

The addition of V in
n and V re

n , using (15) and (16), yields
Vn = (P + 14) (P − S)

−1
E, (17)

where
Vn =

[
V (0) V (x<

s ) V (x>
s ) V (L)

]T
. (18)

So far, (17) retrieves a compact matrix formula for solving
the terminal responses in the FL problem. Observe its modifi-
cation to the BLT equation (3), including the rearrangement of
the first two terms and the involved matrix/vector terms being
reconstructed (in terms of their dimension and elements).

III. SOLUTION FOR FAULT TRANSIENTS IN COMPLEX
POWER NETWORKS USING MODIFIED BLT EQUATION

The modified BLT equation (17) is applicable in analysing
fault transients in complex power networks that feature multi-
ple junctions and branches, along with inhomogeneity. Without
losing generality, this section illustrates the analysis approach
using the power network depicted in Fig. 1 as a reference.

The directed graph Fig. 1b decomposes the power network
into seven edges. A node voltage vector is constructed for each
edge by combining the voltage at the associated two nodes

Vn,ek =
[
Vk(0) Vk(Lk)

]
, k = 1, 2, . . . , 7. (19)

Note that when edge K (K ∈ k) is presumed to be the faulty
branch, it is viewed as consisting of two sub-edges because
of the addition of an FL along it, as explained by (7). In this
case, Vn,eK complies with (18). By stacking these node volt-
age vectors based on the edge numbers in ascending order, the
resulting 16× 1 overall node voltage supervector is

Vn 16×1 =
[
Vn,e1 . . . Vn,e7

]T
. (20)

In a similar fashion, the integrated propagation supermatrix
with the dimension of 16 by 16 is structured as

P16×16 = diag
(
Pe1 , . . . , Pe7

)
, (21)

in which PeK is specified taking the form of (14), while the
remaining sub-matrices can be derived according to (2) as

Pek =

[
e+γkLk

e+γkLk

]
, k ∈ ∁{1,2,...,7}K. (22)

To illustrate the formulation of the overall scattering matrix
S, we assume a fault event along the TL of edge 3, with
K specified as 3. Nodes 1 to 5 are the terminals of their re-
spective branches. Each node is thus characterized by a single
reflection coefficient S11, labelled S1 through S5. For instance,
take S5, which is placed in the cell indexed (12, 12) in S,
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Fig. 3: Graphical illustration of mapping the scattering matrices S6

to S8 and Sxs into the overall scattering matrix S. For each among
S6 to S8, its three rows in ascending row order are mapped into the
rows numbered r1, r2, and r3 of S, respectively. The arrangement
of columns mirrors this pattern, with the column numbers c1, c2,
and c3 being the same as r1, r2, and r3, respectively. When applied
to Sxs , the mapping process is adjusted to involve two rows and
two columns. The accompanying table lists the values of r1 to r3,
aligning with the assumption that edge 3 is the faulty branch.
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Fig. 4: Magnitude spectrum of V1(0) related to the 1p-g fault cases
at Bus 846. The local peaks in magnitudes of V1(0) align closely in
terms of fps for fault impedances of 0.1 Ω and 200 Ω, respectively.

corresponding to the assignment of V5(L5) with index 12 in Vn

as per (20). Likewise, S1 to S4 are arranged along the diagonal
of S at rows 1, 4, 8, and 10, respectively. Nodes 6 to 8 each
are junctions where three TLs come to an end. The scattering
characteristics are thus governed by a 3× 3 scattering matrix,
namely S6 to S8. For example, the interaction among V1(L1),
V2(0), and V3(0) occurs at node 6. Consistent with the indexing
of the three voltages as 2, 3, and 13 in Vn, the elements of
S6 are distributed within S at the intersections of rows and
columns 2, 3, and 13 (see Fig. 3). The scattering matrix of the
fault location, Sxs

, is given in (9). Its positioning in S refers
to the indices of V3(x

<
s ) and V3(x

>
s ) in Vn.

Finally, the overall excitation supervector E exhibits spar-
sity with solely the K -th sub-vector, EeK , showcasing non-
zero elements. EeK is identified by referencing (12) and (13).
Specific to the illustrated case, E is structured as

E16×1 =
[
01×2 01×2 Ee3 01×2 . . .

]T
. (23)

Substituting the matrix terms of (17) with the counterparts
derived from the above system-wide analysis results in

Vn = (P + 116) (P − S)
−1 E. (24)

It covers the voltages observed at all terminals and junctions in
response to a fault occurrence with its location and impedance
being assumed. Refer to Fig. 4 for an example of the magni-
tude spectrum of V1(0), illustrating the post-fault TW voltage
signal observed at Bus 832, for 1p-g fault cases at Bus 8462.

IV. CONCLUSION

We conclude this paper by showcasing the enhanced estima-
tion of fps, and thereby, the improved accuracy in FL achieved
through the use of (24).

In the spectrum of the solved fault transient, the frequency
point featuring the first dominant component is identified as

2For comparative analyses, the implementation of (24) matches the param-
eter settings of [1]: mode-0 parameters are utilized to analyse single-phase
solid (1p-g) faults and mode-1 ones for three-phase solid (3p-g) faults. The
sampling rate is 10 MHz. The fault impedance is set at 0.1 Ω (i.e., YS as 10
S). The input impedance of all terminal transformers is modelled as 10 kΩ.
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Fig. 5: (a) Estimated fp1 as a function of the FL (defined at 1-meter
intervals) along the TL of edge 3 for 3p-g faults. (b) The enlarged
view of the colour-filled area in Fig. 5a. The horizontal line, marked
at the ordinate fCWT

p1 , intersects the vertical line at the abscissa of
Bus 844 at point O. The horizontal line, along with the vertical one,
intersect the two x3-fp1 curves at four distinct points labelled A to
D. The five points form two right triangles. ∆fAna

p1 and ∆fBLT
p1 are

identifiable as the two vertical legs. ∆xAna and ∆xBLT are recognised
as the two horizontal legs.

the natural frequency of the fault-related path (i.e., p1 in Fig.
1a), corresponding to fBLT

p1
identified within |V1(0)| of Fig. 4.

Extending this analysis to a set of assumed FLs along the TL
of edge 3, the resulting pairs of x3-fBLT

p1
mapping relationship

can be visually represented by the curve depicted in Fig. 5a.
The curve x3-fAna

p1
is likewise obtained referring to (1). To as-

sess the accuracy attained, these a priori estimates are com-
pared with their post-fault counterparts according to ∆f

(·)
p1 as

|f (·)
p1 − fCWT

p1
|, with ‘(·)’ being held for ‘Ana’ and ‘BLT’. The

values of fCWT
p1

are referenced in [1], as a result of utilizing
the continuous wavelet transform (CWT) to identify fp1

within
post-fault TW signals. Table I presents the results of applying
the analysis outlined above to all buses shown in Fig. 1a, cov-
ering both 1p-g and 3p-g faults. It is clear that, between fAna

p1
s

and fBLT
p1

s, fCWT
p1

s converge more closely to the latter, with a
single exception being the 3p-g fault case at Bus 864. In the
other cases, the averaged value of ∆fBLT

p1
s is 0.61 kHz for the

1p-g fault cases and 0.42 kHz for the 3p-g ones, in contrast to
∆fAna

p1
, which averages 1.44 kHz and 2.04 kHz, respectively.

The most notable improvement is observed at Bus 848’s 3p-g
fault case, achieving 0.2 kHz against 3.16 kHz.

The refined estimation of fps is pivotal in facilitating their
dual function in FL, leading to enhanced accuracy. The dia-
grammatic explanation in Fig. 5b indicates that the abscissae of
the intersection points B and D match the FLs as estimated by
tracing the respective curves of x3-fp1 . The corresponding FL
errors, ∆xAna and ∆xBLT, are quantified as the absolute differ-
ences between the estimated values and the true FL’s abscissa.
In Table II, the results listed in the ‘∆xAna’ columns, as cited
from [1], include a noticeable portion of the errors exceeding
300 m, a level of accuracy achievable by GPS-aided TW meth-
ods [5]. Contrastingly, with one exception, the values of ∆xBLT

are shown to be largely below 300 m. The 3p-g fault case at
Bus 848 is notable for an optimal reduction in the error, from
1374.2 m to 75.8 m. Among the FL methods that rely on fp-
related spectral attributes, the time-reversal (TR) category is
considered for examination. It is observed that the reversed-
time fault current exhibits energy concentration at fps [3]. Spe-
cific to the fault cases analysed, for each predefined FL, (24)
solves its corresponding fault transient V1(0) and subsequently
pinpoints fps at those frequencies where V1(0) exhibits a local
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TABLE I: Estimates of fp1 and Their Absolute Differences Relative
to the Referenced CWT Counterparts (Values in kHz)

FL
(Bus)

Single-phase solid (1p-g) fault Three-phase solid (3p-g) fault

fAna
p1

(∆fAna
p1

) fBLT
p1

(∆fBLT
p1

) fAna
p1

(∆fAna
p1

) fBLT
p1

(∆fBLT
p1

)

834 20.59 (1.29) 18.94 (0.36) 22.75 (1.55) 20.95 (0.25)
836 14.29 (1.29) 12.28 (0.72) 15.80 (2.10) 13.58 (0.12)
838 10.72 (1.02) 8.93 (0.77) 11.85 (1.45) 9.90 (0.50)
840 13.55 (1.35) 11.52 (0.68) 15.08 (1.88) 12.74 (0.46)
842 20.04 (1.04) 18.41 (0.59) 22.14 (1.44) 20.33 (0.37)
844 17.86 (2.06) 15.30 (0.50) 19.87 (2.57) 16.90 (0.40)
846 13.80 (2.50) 10.69 (0.61) 15.35 (3.05) 11.84 (0.46)
848 13.36 (2.36) 10.29 (0.71) 14.76 (3.16) 11.40 (0.20)
858 45.18 (0.28) 45.09 (0.19) 49.94 (1.34) 49.83 (1.23)
860 17.31 (1.11) 15.50 (0.70) 19.26 (1.66) 17.13 (0.57)
862 14.03 (1.33) 12.03 (0.67) 15.61 (2.21) 13.30 (0.10)
864 34.00 (1.60) 34.81 (0.79) 37.84 (0.06) 38.42 (0.52)

TABLE II: Fault Location Errors Resulting from the Application of
the Two Types of fp-Based Methods (Values in Meters)

FL
(Bus)

Single-phase solid (1p-g) fault Three-phase solid (3p-g) fault

∆xAna ∆xBLT ∆xBLT-TR ∆xAna ∆xBLT ∆xBLT-TR

834 218.2 60.0 1.0 239.7 38.0 1.0
836 468.7 219.6 0.6 721.0 34.6 0.6
838 660.5 468.7 0.7 874.3 292.7 6.8
840 548.2 235.1 0.1 706.1 146.1 0.1
842 183.3 84.3 19.4 234.4 50.3 5.5
844 490.9 73.8 1.0 560.9 54.8 1.0
846 1077.7 214.3 0.1 1211.5 150.3 0.1
848 1080.2 274.8 0.9 1374.2 75.8 0.9
858 9.4 0.5 0.5 41.0 0.5 0.5
860 265.7 135.7 7.6 367.1 83.7 7.6
862 500.9 84.3 0.6 791.4 30.3 6.8
864 88.9 63.8 8.5 3.1 0.8 0.8

peak in magnitude. During the FL process, each predefined FL
is assigned an energy value, which is calculated by aggregating
the squared modulus of the fault current components present
at the estimated fps linked to the FL. The location with the
highest energy value is identified as the estimated FL. As evi-
denced by the results under the header ∆xBLT-TR, the energy
metric further diminishes the FL errors to a minimal level.

The analyses above indicate that the two types of FL meth-
ods are implemented through a data-driven strategy, as exem-
plified in [6]. Specifically, the estimation of fps is conducted
prior to actual fault events, utilizing the parameters of targeted
power networks. This preparatory step yields a database that
indexes the estimates of fps for a set of user-defined FLs. The
online process examines post-fault TW signals with reference
to the a priori fps across the database to identify the true FL.
Also, given the closely aligned behaviour observed in Fig. 4,
it is feasible to assume near-zero fault impedance for locating
both solid faults and those with relatively small impedance.
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