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Abstract

Microsecond time-resolved cryo-electron microscopy has
emerged as a novel approach for directly observing protein
dynamics. By providing microsecond temporal and near-
atomic spatial resolution, it has the potential to elucidate a wide
range of dynamics that were previously inaccessible and
therefore, to significantly advance our understanding of protein
function. This review summarizes the properties of the laser
melting and revitrification process that underlies the technique
and describes different experimental implementations. Strate-
gies for initiating and probing dynamics are discussed. Finally,
the microsecond time-resolved observation of the capsid dy-
namics of cowpea chlorotic mottle virus, an icosahedral plant
virus, is reviewed, which illustrates important features of the
technique as well as its potential.

Addresses
Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of
Molecular Nanodynamics, CH-1015 Lausanne, Switzerland

Corresponding author: Lorenz, Ulrich J. (ulrich.lorenz@epfl.ch)
(Lorenz U.J.)
Current Opinion in Structural Biology 2024, 87:102840

This review comes from a themed issue on Cryo-electron microscopy
(2024)

Edited by Pilar Cossio and Edward Egelman

For a complete overview see the Issue and the Editorial

Available online xxx

https://doi.org/10.1016/j.sbi.2024.102840

0959-440X/© 2024 The Author(s). Published by Elsevier Ltd. This is an
open access article under the CC BY license (http://creativecommons.
org/licenses/by/4.0/).

Keywords
Time-resolved cryo-electron microscopy, Cryo-electron microscopy,
Protein dynamics, Melting and revitrification.

Introduction
Protein structure determination has made remarkable
progress, particularly with the recent success of cryo-
electron microscopy (cryo-EM) [1]. Machine
learningebased approaches have even made it possible to
predict protein structure from the amino-acid sequence
with reasonable confidence [2,3]. In contrast, our under-

standing of protein function is lagging behind, since it is
not routinely possible to observe proteins as they perform
www.sciencedirect.com
their tasks [4]. It currently appears out of reach entirely to
predict the dynamics of a protein from a novel amino acid
sequence and the function that these motions give rise to
[5]. Observing proteins at work is challenging because it
requires not only near-atomic spatial resolution but also a
time resolution of at least microseconds, the timescale on
which the large-amplitude domain motions occur that are
typically associated with the activity of a protein [6].
Several time-resolved techniques with atomic resolution
are available to structural biologists, including Nuclear
Magnetic Resonance (NMR) spectroscopy, which has
providedmuch insight into the characteristic timescales of

the motions of proteins [6]. However, while such mea-
surements are usually performed at equilibrium, the time
resolution ofNMR is orders ofmagnitude too low to probe
many out-of-equilibrium processes. Ultrafast x-ray crys-
tallography has enabled such observations, in particular of
photoactive systems, where the ultrafast motions of the
chromophore can be directly visualized [7e9]. However,
protein dynamics do not naturally occur in a crystal envi-
ronment, which is known to hinder many of the large-
amplitude motions that ensue on longer timescales [4].
Cryo-EM, which is projected to become the dominant

method in structural biology, does not require a crystalline
sample [10,11]. However, with a time resolution of milli-
seconds, time-resolved cryo-EM is about three orders of
magnitude too slow to observe many relevant domain
motions. Over the last years, microsecond time-resolved
cryo-EM has emerged as a novel technique that prom-
ises to fill this gap by enabling observations of protein
dynamics, with bothmicrosecond temporal aswell as near-
atomic spatial resolution.
Concept
Figure 1 illustrates the concept of microsecond time-
resolved cryo-EM experiments. A cryo sample is flash
melted with a laser pulse, and dynamics of the
embedded proteins are initiated with a suitable stim-
ulus as soon as the sample is liquid. While these dy-

namics unfold, the laser, which keeps the sample liquid,
is switched off at a well-defined point in time. The
sample cools rapidly and revitrifies, trapping the pro-
teins in their transient configurations, which can sub-
sequently be reconstructed with single-particle cryo-
EM techniques. As detailed in the following, this
approach has several crucial features that make it suit-
able for the observation of protein dynamics.
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Figure 1

Experimental concept of microsecond time-resolved cryo-EM. A cryo sample is melted with a microsecond laser pulse, and dynamics of the
embedded particles are induced once the sample is liquid. As they unfold, the heating laser is switched off, and the sample rapidly cools and revitrifies,
trapping proteins in their transient configurations (Adapted from Refs. [14,16]).

2 Cryo-electron microscopy (2024)
Instrumentation and sample geometry
Melting and revitrification experiments were first
performed in situ, that is, inside a transmission electron
microscope, as illustrated in Figure 1a [12,13]. Micro-
second laser pulses are created by chopping the output of a
continuous wave laser (532 nm) with an acousto-optic
modulator. The laser beam enters the microscope column

from the left, is reflected by a smallmirror above the upper-
pole piece of the objective lens, and strikes the sample at
close-to-normal incidence. Figure 1b illustrates the sample
geometry.Holey gold specimen supports on a goldmesh are
well suited because of their high heat conductivity. The
laser beam is focused onto the center of a grid square
(typical spot size of tens of microns), where it locally melts
the cryo sample by heating up the gold film. In a typical
experiment, a circular area with a diameter of 5e10 holes is
revitrified. As illustrated in Figure 2b, the surrounding
sample areas, which are too far from the center of the laser

focus and do not reach the melting point, crystallize [14].
Conveniently, the appearance of a crystalline ring around
the revitrified area provides on-the-fly feedback on the
success of a revitrification experiment. Moreover, by
adjusting the laser power to keep the diameter of the
revitrified area constant, a repeatable temperature evolu-
tion across different grid squares can be ensured.

Alternatively, microsecond time-resolved cryo-EM ex-
periments can also be carried out with a correlative light-
electron microscopy approach [15]. As illustrated in

Figure 1c, revitrification is performed in an optical mi-
croscope, with the sample held in a liquid-nitrogen-
cooled cryo stage. As before, the melting laser is
focused onto the sample, striking it at normal incidence.
After several grid squares have been revitrified, the
sample is then transferred to an electron microscope for
Current Opinion in Structural Biology 2024, 87:102840
high-resolution imaging. This correlative approach will
certainly be more accessible to most researchers since it

is technically less involved than the in situ experiments.
A drawback is that it is more difficult to obtain on-the-
fly feedback on the success of an experiment, particu-
larly since the crystalline ring surrounding the revitrified
area is more challenging to visualize.

Temperature evolution of the sample and
time resolution
The characteristic temperature evolution of the sample
under laser irradiation determines the time resolution of
the experiment. A simulation is shown in Figure 3a [16].
For a bare specimen support (red curve), the tempera-
ture in the center of the laser focus rises rapidly after the

laser is switched on, before it plateaus and remains
stable for the remainder of the laser pulse. Once the
laser is switched off, heat is efficiently dissipated toward
the surroundings, which have remained at cryogenic
temperature, and the sample cools rapidly (1 ms time
constants for heating and cooling). The simulation
agrees well with the experimental characterization of
the temperature evolution shown in Figure 3b, where,
the diffraction intensity of the gold film (reflections
highlighted in the diffraction pattern in the inset) is
used as a temperature probe and is stroboscopically

recorded with nanosecond electron pulses [12]. The
simulations in Figure 3a show that increasing the
thickness of the vitreous ice layer adds more inertia to
the system, with both the heating and cooling times
increasing to a few microseconds (blue-green curves).
This is consistent with time-resolved electron diffrac-
tion experiments that directly probe the temperature
evolution of the cryo sample [17]. Importantly, the
speed with which the sample cools dictates how rapidly
www.sciencedirect.com
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Figure 2

Sample geometry and instrumentation. (a) Illustration of the modified transmission electron microscope for in-situ melting and revitrification experi-
ments (Adapted from Ref. [14].). (b) Illustration of the sample geometry (Adapted from Ref. [17].). (c) Photograph of the optical microscope used for
melting and revitrification experiments with a correlative light-electron microscopy approach (Adapted from Ref. [15].).
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transient states can be trapped and therefore de-
termines the time resolution. For a typical sample ge-
ometry and ice thicknesses suitable for cryo-EM, one

can therefore achieve a time-resolution of 5 ms or better
for typical gold-specimen supports [16].

Note that the simulations in Figure 3a assume that the
sample does not evaporate. In the vacuum of an electron
microscope, this is not the case unless evaporation is
prevented, for example, by sandwiching the sample
between two graphene layers [16]. If evaporation
occurs, the temperature evolution remains qualitatively
similar, even though higher laser powers are required to
compensate for the evaporative cooling of the sample

[17]. Evaporative cooling is useful by providing a nega-
tive feedback that limits the maximum temperature
that the sample can reach, close to room temperature for
typical sample geometries [14]. At the same time, the
evaporation and eventual breakup of the liquid film limit
the maximum observation time to tens of microseconds.
Spatial resolution
The melting and revitrification process leaves the parti-
cles intact and does not appear to impose a limit on the
attainable spatial resolution. This is demonstrated in
Figure 3c, which compares reconstructions of apoferritin
from a conventional and an in-situ revitrified cryo sample
(details in Figure 3d) [18]. Within the resolution of the
www.sciencedirect.com
reconstructions of 1.6 Å, the two structures are indistin-
guishable. A similar result is obtained with the correlative
approach [15]. Evidently, the melting and revitrification

process neither damages the particles nor does it induce
any structural changes. This can be rationalized by
considering that flash melting simply reverses the vitri-
fication process, which is well-known to preserve protein
structure. A notable difference is that during laser
melting with a rectangular laser pulse, about a third of the
sample transiently crystallizes [19]. The fact that this
does not alter the protein structure is consistent with the
observation that high-resolution reconstructions can be
obtained from devitrified cryo samples, which even
exhibit reduced beam-induced motion [20]. If necessary,

transient crystallization can be avoided altogether by
adding an intense initial spike to the rectangular laser
pulse and so achieve a heating rate in excess of 108 K/s,
which is sufficient to outrun crystallization [21].
Properties of revitrified cryo samples and
overcoming preferred orientation
While the melting and revitrification process leaves the
structure of the embedded particles unchanged, it does
somewhat alter the properties of the cryo sample. While
only minor changes are observed in the beam-induced
specimen motion [22], the angular distribution of the
particles is significantly changed [18]. As shown in
Figure 3e, a conventional apoferritin sample exhibits
Current Opinion in Structural Biology 2024, 87:102840
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Figure 3

Temporal and spatial resolution of melting and revitrification experiments as well as changes in the preferred particle orientation. (a) Simulation
of the temperature evolution of a typical sample under laser irradiation. Note that evaporative cooling of the sample, which is not included here, provides
an additional negative feedback on the temperature evolution [14]. (b) Experimental characterization of the temperature evolution from a time-resolved
diffraction experiment with nanosecond electron pulses. The diffraction intensity of the gold film is used as the temperature probe, with the selected
reflections highlighted in the diffraction pattern in the inset. Scale bar, 5 nm−1 (Adapted from Ref. [16].). (c) Reconstructions of apoferritin from con-
ventional and revitrified cryo samples are indistinguishable. (d) Details of the reconstructions in (c), with a model of apoferritin [41] placed into the density
through rigid-body fitting. (e, f) Revitrification reduces preferred particle orientation, as evident from the angular distribution of the particles in the re-
constructions in (c) (Adapted from Ref. [18].).

4 Cryo-electron microscopy (2024)
distinct maxima in the angular distribution, which result
from the preferential adsorption of hydrophobic parts of
the protein surface to the airewater interface [23,24].
Unlike apoferritin, some asymmetric particles may show
such severe preferred orientation that the number of
available views becomes too limited to obtain a

reconstructionda common reason for cryo-EM projects
to fail. Interestingly, revitrification produces a more
even angular distribution (Figure 3f), which is also
observed for other proteins [25,26]. Evidently, small
forces are exerted upon the particles during the melting
and revitrification process, which reshuffles their
angular distribution. This is in line with the observation
that revitrified samples frequently also exhibit an
uneven spatial distribution of the particles [18]. Melting
Current Opinion in Structural Biology 2024, 87:102840
and revitrification may therefore potentially provide a
simple tool for overcoming issues with preferred orien-
tation. Whether the presence of the airewater interface
may potentially alter the dynamics of some proteins
remains to be studied.

Initiating and observing dynamics
A range of stimuli for initiating protein dynamics are
readily available that are compatible with the melting
and revitrification approach. For example, the melting
laser itself can serve as a stimulus if its power is
increased to induce a temperature jump [14]. It is also
possible to use a second laser pulse to trigger a photo-
active protein once the sample is liquid [27,28]. One of

the most versatile approaches consists in using light to
www.sciencedirect.com
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release photocaged reagents, such as caged adenosine
triphosphate (ATP), ions, redox active compounds, or
small peptides [29e31]. These compounds can be
uncaged with the sample still frozen since they can only
initiate dynamics once laser melting has liberated the
proteins from their matrix of vitreous ice. In contrast to
uncaging while the sample is liquid [32], this offers the
advantage that even compounds with small absorption

cross sections and poor quantum yields can be released
in large quantities and that reagents with slow uncaging
dynamics can be used without reducing the temporal
resolution of the experiment. The slow diffusion and
binding of some compounds presents a fundamental
Figure 4

| Observing protein dynamics on the microsecond timescale: Capsid mo
prepared at pH 7.6, at which its capsid assumes an extended configuration (a).
pH, the contracted state of the capsid is most stable (e). However, contractio
partially contracted configurations are trapped (d). (f) Variability analysis of th
Analysis of the contraction mechanism of CCMV. The particle distribution in (f
each slice, from which the motions of the capsid proteins are then determine

www.sciencedirect.com
limit to the temporal resolution that can be overcome if
the caged compound can be predocked to the protein.

Figure 4aee illustrate the implementation of such a
time-resolved experiment [33], which uses a caged
proton to trigger the dynamics of cowpea chlorotic
mottle virus (CCMV) [34,35]. During its life cycle, this
icosahedral plant virus switches between a contracted

and an extended configuration, a motion that involves
large-amplitude movements of the capsid proteins and
that can be initiated by a pH jump [36]. As illustrated in
Figure 4a, a cryo sample of the extended state is pre-
pared in the presence of a caged proton. With the
tions of CCMV. (a–e) Experimental concept. A cryo sample of the virus is
By releasing a photoacid, the pH is then jumped down to 4.5. At such a low
n only begins once the sample is laser melted (b, c). Upon revitrification,
e extended, partially contracted, and fully contracted ensembles. (g)
) is sliced along the first component, and reconstructions are obtained for
d. Abbreviation: CCMV = cowpea chlorotic mottle virus.
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sample still in its vitreous state, the caged proton is then
released through ultraviolet irradiation, which drops the
pH from 7.6 to 4.5. At such a low pH, the contracted
configuration is most stable (Figure 4e, as obtained from
a sample prepared at pH 5.0). However, the particles
cannot react to the pH jump as long as they are trapped
in the matrix of vitreous ice. Contraction only begins
once the sample is melted (Figure 4b,c). When the laser

is switched off after 30 ms and the sample revitrifies, the
particles are trapped in partially contracted configura-
tions (Figure 4d).

A more detailed analysis reveals that the transient
ensemble obtained after 30 ms features significant
conformational heterogeneity. Figure 4f shows a vari-
ability analysis (cryoSPARC [37]) of the mixed datasets
of the extended, partially contracted, and fully
contracted particles. By slicing the particle distribution
along the first variability component and obtaining re-

constructions for each slice, details of the contraction
mechanism can be revealed. Figure 4g shows that the
partially contracted ensemble (slices 8e12) features a
large spread in particle diameters. This is because the
contraction occurs in a dissipative medium, so that the
particles move at different speeds. The reconstruction
of Figure 4c,d therefore corresponds to a motion-blurred
average and consequently only yields a comparably low
resolution of 8.0 Å. The contraction is accompanied by
rotations of the pentamers and hexamers of the capsid as
well as superimposed rotations of the capsid subunits

(Figure 4g). The observation of the capsid dynamics of
CCMV demonstrates for the first time that microsecond
time-resolved cryo-EM enables the study of protein
dynamics that occur in vivo. It is difficult to imagine how
any other approach could currently yield a similarly
detailed picture of the mechanics of this nano-
scale machine.
Outlook
The experiments reviewed here establish all the crucial
features of the melting and revitrification approach that
make it possible to directly observe awide range of protein
dynamics that have previously been inaccessible. Several
technical challenges remain to be addressed. During laser
melting, evaporation and eventual breakup of the thin

liquid film currently limit the temporal observation
window of the technique to several tens of microseconds.
In order to bridge the gap to traditional, millisecond time-
resolved cryo-EM experiments [10,11], it is desirable to
extend this window to several hundreds of microseconds.
At the same time, it should also be possible to probe even
faster dynamics on the nanosecond timescale. Shaped
laser pulses that offer higher heating rates are a first step to
improve the time resolution of the technique [38]. The
large conformational heterogeneity of the transient
ensemble observed for CCMV is likely going to be a gen-

eral feature of microsecond time-resolved cryo-EM
Current Opinion in Structural Biology 2024, 87:102840
experiments. While this has made it possible to capture a
large fraction of the contraction trajectory of CCMV from
just a single timepoint, it simultaneously presents a chal-
lenge for the data analysis. Computational approaches for
conformational sorting [39,40] will therefore likely play a
crucial role in analyzing time-resolved experiments. It
should be noted that as a single-particle technique, cryo-
EM offers inherent advantages for dealing with such dy-

namic heterogeneity compared with x-ray crystallography
orNMRspectroscopy. Finally, itwill be crucial tomake the
technology easily accessible for the broader community.
This makes it an urgent goal to refine and automate the
correlative approach discussed here [15]. If watching
proteins perform their function becomes indeed
straightforward and routine, large numbers of such ob-
servations may eventually form the basis for training
machine-learning algorithms to predict function or even
design artificial enzymes [5].
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