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Abstract— Evaluating and updating the obstacle avoidance
velocity for an autonomous robot in real-time ensures robust-
ness against noise and disturbances. A passive damping con-
troller can obtain the desired motion with a torque-controlled
robot, which remains compliant and ensures a safe response
to external perturbations. Here, we propose a novel approach
for designing the passive control policy. Our algorithm com-
plies with obstacle-free zones while transitioning to increased
damping near obstacles to ensure collision avoidance. This
approach ensures stability across diverse scenarios, effectively
mitigating disturbances. Validation on a 7DoF robot arm
demonstrates superior collision rejection capabilities compared
to the baseline, underlining its practicality for real-world ap-
plications. Our obstacle-aware damping controller represents a
substantial advancement in secure robot control within complex
and uncertain environments.

I. INTRODUCTION

Robots operating in unstructured, dynamic environments
must balance adapting the path to the surroundings and
following a desired motion. In human-robot collaboration,
they must efficiently complete their tasks while ensuring safe
compliance in the presence of potential collisions.

Velocity adjustments based on real-time sensory informa-
tion are essential in complex and dynamic environments.
Achieving this necessitates algorithms that are easily con-
figurable and capable of rapid evaluation. As such, closed-
form control laws eliminate the need for frequent replan-
ning. Dynamical Systems (DS) is a valuable framework for
representing such desired motion [1] where the behavior of
the desired first-order DS is approximated through suitable
controllers.

Most widely used robotic systems consist of rigid mate-
rials. Consequently, the interaction of these robotic systems
with the surroundings leads to abrupt energy transfers, pos-
ing the risk of damage to the robot and its environment.
However, modern robotic platforms are equipped with force
and torque sensing capabilities that enable precise control
over the forces exerted by the robot. However, integrating
these sensors makes the feedback controller more complex.
The robot must achieve its designated position by following
a desired velocity profile while remaining compliant with
interaction forces. The control problem of balancing position,
velocity, and force constraints is addressed by impedance
controllers [2].
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Fig. 1: The proposed passive obstacle-aware controller lets the robot
absorb external disturbances while ensuring collision avoidance.
While tipping over the closed pasta box on this dinner table setup
might be acceptable. Yet, the delicate wine glasses demand careful
handling to prevent breakage.

Obstacle avoidance is fundamental to motion control,
with reactive approaches capable of handling dynamic and
intricate environments [1]. The controller should remain
compliant in free space while adhering to the desired motion
when getting close to the obstacle. Furthermore, when en-
countering surfaces like fragile glass on a table, the controller
must adopt stiffness to prevent a collision, yet it should be
compliant when interacting with an operator (Fig. 1).

This work introduces a novel approach incorporating dy-
namic obstacle avoidance using DS and variable impedance
control, enhancing adaptability, reactivity, and safety in
robotic movements. It empowers robots to navigate complex
environments, proactively avoiding collisions and rejecting
disturbances. Our approach is evaluated through an im-
plementation on a 7-degree-of-freedom (7DoF) robot arm,
demonstrating robust and safe control in real-world scenar-
ios.

A. Related Work

1) Force Control: Impedance control, a powerful feed-
back algorithm, effectively applies Cartesian impedance to
nonlinear manipulators’ end-points [2] . The controller re-
places the computationally intensive inverse kinematics with
the more straightforward forward kinematics. Impedance
control establishes a dynamic relationship between desired
position, velocity, and force, offering a holistic control frame-
work. Initially, impedance controllers employed constant
stiffness, but researchers have explored various dynamic
control parameter approaches to enhance adaptability in com-
plex environments [3], [4]. However, introducing dynamic
parameters into the control framework requires taking special
care of the system’s stability. Furthermore, admittance con-
trol is designed to adapt to external forces while remaining



stable contact [5]. Admittance control can be interpreted as
a special type of impedance control.

Passive velocity controllers use a state-dependent velocity,
converted into a control force through a damping control
law. Since the controllers have variable damping parameters,
stability can be guaranteed using storage tanks [6]. However,
high compliance often results in decreased motion following.
Yet, carefully designing the damping matrix, which increases
stiffness in the direction of motion but remains compliant
otherwise, results in improved convergence [7]. Combining
impedance controllers with admittance controllers can be
used to increase accuracy in cooperative control [8]. How-
ever, these controllers’ adaptations focus on improving move-
ment accuracy rather than actively rejecting disturbances.

Many impedance controllers with time-varying control
rely on energy tanks to ensure stability. This is a virtual
state, which is filled or emptied depending on the controller
command. Limiting the energy tank to a maximum value
ensures the system’s stability [9]. However, when this limit
is reached, the controller is constrained and interferes with
the controller’s optimal functioning. This can result in the
controller not achieving some functionalities, such as colli-
sion avoidance. Alternatively, the impedance controller can
be constrained by adapting the damping and stiffness and the
rate of change based on a Lyapunov function [10].

2) Obstacle Avoidance: In dynamic environments, ob-
stacle avoidance is quickly evaluated to ensure safe robot
navigation. Repulsive force fields pointing away from obsta-
cles can create a collision-free motion [11]. However, these
artificial potential fields are susceptible to local minima,
which led to the introduction of navigation functions. A
global function that combines the repulsive force fields while
ensuring a global minimum and the goal [12]. Such functions
depend on the distribution of the obstacles and are hard to
adapt to dynamic environments and high dimensional spaces
[13].

Passive controllers can also track the desired motion of the
artificial potential field while compensating for Coriolis and
centrifugal forces [14]. Nonetheless, these methods lack the
guarantee of disturbance repulsion around obstacles, which is
addressed by the integration of circular fields, which rotates
the robot’s path around the obstacles [15]. This allows force-
controlled navigation in cluttered environments, yielding
convergence for simple obstacles [16]. Conversely, repulsive
fields can be combined with elastic, global planning [17]
for improved convergence. This allowed adding a repulsive
force from the obstacle, ensuring collision avoidance [18].
However, methods based on artificial potential fields are
prone to local minima in cluttered environments.

Harmonic potential functions can ensure the absence of
local minima in free space [19]. In previous work, we
combined harmonic potential functions with the dynamical
system framework to obtain reactive, local minima-free mo-
tion [1], [20]. It allows for generating a desired velocity
based on the robot’s position in real time. For implementation
on a torque-controlled robot arm, we utilized a passive
controller that closely adheres to the desired velocity [7].

However, one of the limitations of the passive controller is
its inability to account for the physical surroundings. This
makes the robot susceptible to disturbances close to obsta-
cles, potentially leading to collisions. Although DS passive-
controlled robots work well in interactive scenarios, they
cannot ensure they navigate through an obstacle environment
collision-free. For example, they often give in when being
pushed toward an obstacle. This work presents a method to
address this problem by modifying the passive control law
design, making the controller aware of its environment.

B. Contribution

We introduce a passive controller that incorporates into
the feedback control loop as visualized in Figure 2. In this
work, we make the following contributions:

• A novel obstacle-aware passive controller (Sec. III)
• A passivity guarantee (without storage tank) which

applies to general damping controllers (Theorem III.1)
• A collision avoidance analysis which provides insight

into the path consistency around obstacles (Sec. IV)
• Implementation and testing on 7DoF robot arm (Sec. V)

Fig. 2: The desired velocity f b(ξ) can result from a learned velocity
field or pointing towards a desired attractor ξa. The desired velocity
is used to evaluate the obstacle avoidance velocity f(ξ), fed into
the force controller to obtain the control force τ c. In order to
achieve collision avoidance, the distance function Γo(ξ), the normal
direction no(ξ), and the reference direction ro(ξ) are evaluated for
each obstacle o = 1..Nobs.

II. PRELIMINARIES

Let ξ ∈ RN describe the system’s state in an N ≥ 2
dimensional space, e.g., the robot’s joint or Cartesian space
positions. The function f(ξ) : RN → RN represents a
smoothly defined dynamical system (DS) describing the
desired velocity at a given state ξ. The first and second-order
time derivatives are denoted by one and two dots over the
symbol respectively, i.e., ξ̇ = d

dtξ is the systems velocity,
and ξ̈ = d2

dt2 ξ is the acceleration. In general, superscripts
are used for variable names, whereas subscripts are used for
enumerations.

A. Obstacle Avoidance

Let us assume the base velocity f b(ξ) : RN → RN , which
describes the desired, state-dependent motion of the robot. As
proposed by [1], [21], an obstacle avoiding velocity f(ξ) :
RN → RN can be achieved by a simple matrix multiplication
(or modulation) as follows:

f(ξ) = E(ξ)diag (λr, λe, ..., λe)E(ξ)−1f b(ξ)

with E(ξ) = [r(ξ) e1(ξ) ... ed−1(ξ)]
(1)
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Fig. 3: The Γ-field is defined individually for each of the obstacles.
At each position ξ, we can evaluate the surface normal n(ξ).
The velocity f(ξ) (gray) avoids collision with the obstacles and
converges towards the attractor (star).

where the tangent directions e(·) ∈ RN are perpendicular to
the surface normal n(ξ) ∈ RN , see Fig. 3. The reference
vector r(ξ) = (ξ − ξr) /∥ξ − ξr∥ is pointing towards the
the reference point ξr ∈ RN . This construction of the basis
matrix is valid for starshaped obstacles, i.e., shapes for which
a reference point exists, from which a line in any direction
only crosses the surface once [20].

The diagonal values λ(·) in (1) are often referred to as
eigenvalues since they modify the length of the input velocity
in specific directions. The eigenvalue in reference direction
λr(ξ) ≤ 1, is designed to reduce the velocity towards the
obstacle. Conversely, the velocity increases along the tangent
direction using λe(ξ) ≥ 1. The eigenvalues in reference
direction λr and tangent direction λe are defined as:

λr(ξ) = 1− 1/Γ(ξ), λe(ξ) = 1 + 1/Γ(ξ) (2)

with the continuous distance function Γ(ξ) ∈ R≥0, which
has a value of Γ(ξ) = 1 on the boundary of an obstacle, and
monotonically increases along the normal to the surface of
the obstacle (Fig. 3). In this work, we use:

Γ(ξ) = 1+ ∥ξ− ξb∥/R0 with ξb = b(ξ− ξr) + ξr (3)

with b ∈ R>0, such that ξb ∈ RN lies on the surface of
the obstacle, and R0 ∈ R)>0 is the distance scaling, we use
R0 = 1.

B. Force Control

1) Rigid Body Dynamics: A force-controlled system is
subject to acceleration, inertia, and external disturbances. Its
general rigid-body dynamics based on the state ξ are given
as

M(ξ)ξ̈ + C(ξ, ξ̇)ξ̇ + g(ξ) = τc + τe (4)

where we have the mass matrix of the robot M(ξ) ∈ RN×N ,
the Coriolis matrix C(ξ, ξ̇) ∈ RN , the gravity vector g(ξ) ∈
RN ), the control torque τc ∈ RN , and the external torque,
also referred as disturbance, τe ∈ RN .

2) Damping Controller: Damping control [7] offers a
powerful method for computing control forces from a ve-
locity field. This controller provides selective disturbance
rejection based on the direction of the desired motion.
Typically, the controller is configured with high damping

along the direction of motion, ensuring rapid convergence
of the robot’s velocity to the desired value and achieving
excellent tracking performance. In contrast, the controller
exhibits high compliance in the direction perpendicular to
the motion, enabling flexible behavior and greater resistance
to external forces. The passive control force is evaluated as
follows:

τc = g(ξ) +D(ξ)
(
f(ξ)− ξ̇

)
(5)

This control law embeds a gravity compensation term g(ξ) ∈
RN and a positive-definite damping term, which dampens the
difference between the desired velocity f(ξ) and the actual
velocity ξ̇. The positive definite damping matrix D(ξ) ∈
RN×N is given as:

D(ξ) = Q(ξ)S(ξ)Q(ξ)−1 (6)

where Q(ξ) = [q1 , q2 , ... , qN ] is an orthonormal basis
matrix, of which the first vector is pointing in the desired
direction of motion

q1(ξ) = qf
1 (ξ) = f(ξ)/∥f(ξ)∥ (7)

The diagonal matrix S(ξ) ∈ RN×N consists of damping
factors si ∈ R>0 in the corresponding direction i = 1..N .
This design allows the separate design of the damping in
the direction of motion and perpendicular to the motion.
Increased consistency with the desired velocity is achieved
by using a high value for the first damping factor. Conversely,
the damping in the remaining directions is set lower to allow
compliance perpendicular to the motion, i.e., si/s1 ≪ 1, i =
2..N .

III. OBSTACLE AWARE PASSIVITY

We propose a novel controller, which ensures passivity
as defined in (5) but adapts the damping matrix given in
(6) based on the desired velocity ξ̇ and obstacles in the
surrounding. Far away from obstacles, the system is designed
to follow the initial velocity, but approaching the obstacle
increases the damping, decreasing the chance of a collision.

Hence, the damping matrix D(ξ) ∈ RN×N smoothly
changes from being aligned with the direction of the velocity,
as used in [7], to be aligned with the averaged normal of the
obstacles. The desired damping matrix transitions between
velocity preserving and collision avoidance using a smoothly
defined linear combination:

D(ξ) = (1− w(ξ))Df (ξ) + w(ξ)Do(ξ) (8)

The damping matrix is made up of two components: the
velocity damping. Df ∈ RN×N which prioritizes following
the desired velocity similar to [7], and the obstacle damping
Do ∈ RN×N which is designed to reject disturbances
towards obstacles. The two damping matrices are positive
definite and are smoothly summed using the danger weight
w(ξ) ∈ [0, 1]. Far away from obstacles the weight reaches
w(ξ) = 0, whereas w(ξ) = 1 when approaching a boundary:

w(ξ) = max

(
0,

Γcrit − Γ(ξ)

Γcrit − 1

)
∥n(ξ)∥

with Γ(ξ) = min
o=1..Nobs

Γo(ξ)
(9)



The critical distance defines the distance where the system
increases the damping towards the obstacle. Df (ξ) and
Dobs(ξ) follow design given in (6) and are positive definite
matrices, thus D(ξ) is positive definite, too.

A. Damping for Collision Repulsion

1) Normal Direction: The damping matrix Do(ξ) rejects
velocities in the direction of the obstacles. To allow this, we
introduce an averaged normal direction:

n(ξ) =

No∑
o=1

no(ξ)
1/(Γo(ξ)− 1)∑No

p=1 1/(Γp(ξ)− 1)
(10)

where the unit normals no(ξ) pointing away from the
obstacle o = 1, .., No and are perpendicular to the surface,
see Figure 3.

The averaged normal n(ξ) is a weighted linear combi-
nation of the obstacles’ normals, giving more importance to
closer obstacles. Additionally, the averaged normal converges
to an obstacle normal as we converge towards it, i.e.,
limΓo(ξ)→1 n(ξ) = no(ξ). Note that the averaged normal
is a zero-vector when two obstacles oppose each other.

2) Decomposition Matrix: The decomposition matrix
Qo(ξ) has its first vector aligned with the normal to the
obstacle:

qo
1(ξ) = n(ξ)/∥n(ξ)∥ ∀ ξ : ∥n(ξ)∥ > 0 (11)

In the case that ∥n(ξ)∥ = 0, the danger weight w(ξ) from
(9) reaches 0. Hence, the obstacle-aware damping in (8) has
no effect and is not evaluated.

The second vector is set to be aligned with the desired
velocity as much as possible, allowing increased velocity
following (Fig. 3). However, it has to remain orthonormal to
qo
1

qo
2 =

q̂o
2

∥q̂o
2∥

q̂o
2 = qf

1 − qo
1p ∀ ξ : |p| < 1 (12)

where velocity unit vector qf
1 is defined in (7), and the object

weight is evaluated as p =
〈
qo
1, q

f
1

〉
. For the case that |p| =

1, the second basis qo
2 is set to be any orthonormal vector.

The remaining vectors qo
d, d = 3, .., N are constructed to

form an orthonormal basis to the first two.
3) Damping Values: We define the values of the diagonal

matrix So(ξ) as

So
d(ξ) =


so d = 1

|p|sc + (1− |p|)sf d = 2

sc d = 3..N

(13)

where the damping along the nominal direction sf ∈ R>0,
obstacle-damping so ∈ R>0, and the compliant-damping
sc ∈ R>0 are user-defined parameters which determine the
behavior of the passive-controller. The first entry of So

dictates the damping towards the obstacle, and the second
entry the desired velocity following. Note how the second
value approaches the compliant damping, as normal and
velocity become parallel.

To ensure continuity across time of the control force as
defined in (5), the values of the diagonal damping matrix
So(ξ) in the tangent directions are equal when the normal
aligns with the velocity, i.e.:

lim
|p|→1

Sd = Se, d > 2..N, e > 2..N (14)

Hence, the choice of orthonormal vectors qo
d, d > 2..N does

not influence the control force as long as the matrix Qd has
full rank.

4) Damping Only Towards Obstacle: In the presence of
an obstacle, the disturbances should be damped strongly
when the agent is pushed against the obstacle. Conversely,
the system can remain compliant if the motion is away from
the obstacle. This is achieved by setting updating the first
damping value So

1 if the robot is moving away from the
surface:

So
1 (ξ) =

so if
(
f(ξ)− ξ̇

)T

n(ξ) > 0

sc otherwise
(15)

Since qo
1(ξ) given in (11) is pointing along the obstacle

normal n(ξ), the first obstacle damping value So
1 (ξ) does

not have any effect on the control force τ c given in (5)

when
(
f(ξ)− ξ̇

)T

n(ξ) = 0. Hence, the damping value
can be discontinuous across time, but the resulting control
force remains continuous.

B. Damping for Velocity Preservation
The decomposition matrix Qf is an orthonormal basis with

the first vector being parallel to the desired velocity f(ξ).
Hence, the values of the diagonal matrix Sf are high in
the direction of the desired velocity (first component) but
more compliant in the remaining directions. Moreover, the
damping is set to ensure that when passing a narrow passage
between two obstacles, where the normal vector cancels
n(ξ) ≈ 0, with additionally a low distance value Γ(ξ) ≈ 1,
the damping perpendicular to the velocity direction is high.
We set:

Sf
d = wpso +

{
(1− wp)sf d = 1

(1− wp)ss d = 2..N

with wp = min
(
1, ∥n(ξ)∥2 +∆Γ2

)
and ∆Γ = max

(
Γcrit − Γ(ξ)

Γcrit − 1
, 0

) (16)

C. Cluttered Environments
In a cluttered environment, the normal vectors of the

individual obstacles can be opposing. And hence using (10)
and (9), we get:

∥n(ξ)∥ → 0 and lim
Γ(ξ)→1

w(ξ) = 0 (17)

Additionally using (8) and (16) we obtain:

lim
Γ→1,∥n∥→0

D(ξ) = DS(ξ) + 0 = Iso (18)

Hence, there is high damping in all directions to reject dis-
turbances towards potential obstacles and ensure a collision-
free motion even in cluttered environments.



D. Passivity Analysis

The stability analysis of the system gives information
about the stability region of the proposed controller. We
analyze passivity by observing the evolution of the kinetic
energy of the system, given as:

W (ξ, ξ̇) =
1

2
ξ̇
T
M(ξ)ξ̇ (19)

Lemma III.1. Let us assume a robotic system as described
in (4) is controlled using (5) using the damping matrix D(ξ)
given in (8) with damping values sd = 1, d = 1..N . The
system is passive with respect to the input-output pair ξe,
ξ̇ when exceeding the desired velocity f(ξ) , i.e., Ẇ ≤
ξ̇
T
τ e, ∀ξ ∈ RN : ∥ξ̇∥ ≥ ∥f(ξ)∥ and the storage function

being the kinetic energy W ∈ R>0 given in (19)

Proof: The time derivative of storage function W can
be evaluated as:

Ẇ (ξ, ξ̇) = ξ̇
T
M(ξ)ξ̈ +

1

2
ξ̇
T
Ṁ(ξ)ξ̇

=
1

2
ξ̇
T
(
Ṁ(ξ)− 2C(ξ)

)
ξ̇ − ξ̇

T
D(ξ)

(
ξ̇ − f(ξ)

)
+ ξ̇

T
τ e

= −ξ̇
T
D(ξ)

(
ξ̇ − f(ξ)

)
+ ξ̇

T
τ e (20)

where the second order dynamics ξ̈ are evaluated according
to the rigid body dynamics defined in (4). Furthermore, Ṁ−
2C is skew-symmetric for any physical system; hence, the
corresponding summand is zero.

Let us investigate the region where the passivity holds.
Since in the Lemma, we assumed all damping values to be
equal to one, we have:

D(ξ) = Q(ξ)S(ξ)Q(ξ)−1 = Q(ξ)IQ(ξ)−1 = I (21)

where I ∈ RN×N is the identity matrix.
It follows that the system is passive with respect to the

input, the external force τe, and the output, the velocity ξ̇,
if:

ξ̇
T
D(ξ)

(
ξ̇ − f(ξ)

)
= ξ̇

T
∆f ≥ 0 , ∆f = ξ̇ − f(ξ)

(22)
On the border of this region, the two vectors ∆f and ξ̇

are orthogonal. Hence, using Thale’s theorem, this region
can be interpreted as a circle in velocity-space with radius
∥f(ξ)∥/2 and center f(ξ)/2, see Figure 4.

Moreover, the system is passive as long as the observed
velocity ξ̇ is outside the circular-red region, which is a subset
of the region where the magnitude of the observed velocity
is smaller than the desired velocity f(ξ), i.e.,

Ẇ (ξ, ξ̇) ≤ ξ̇
T
τ e ∀ξ : ∥ξ̇∥ ≥ ∥f(ξ)∥ (23)

As in the orange region, the system is not passive; the
storage function W could increase, and hence, the velocity ξ̇
increases non-passively. This behavior is not unexpected, as
the controller is designed to approach the desired dynamics
f(ξ). Hence, as long as the desired velocity is not reached,
the kinetic energy increases even with no force input τ e.
However, as soon as the system velocity ξ̇ exceeds the

desired velocity f(ξ), the system behaves passively. We can
use this to ensure the stability of the system:

Theorem III.1. Let f(ξ) is the desired velocity with
bounded magnitude, i.e., ∥f(ξ)∥ < vmax,∀ξ ∈ RN . The
closed loop system (4) using the controller from (5) and
the damping matrix D(ξ) given in (8) is bounded-input,
bounded-output (BIBO) stable with respect to the input
disturbance force τ e, and output the velocity ξ̇ for all times
T = 0, .., ∞.

Proof:
To ensure BIBO stability, let us analyze the integral of the

impulse of the response for the external force τ e:∫ T

0

∥∥∥ξ̇∥∥∥ dt =

∫
t/∈Tn

∥∥∥ξ̇∥∥∥ dt+

∫
t∈Tn

∥∥∥ξ̇∥∥∥ dt

≤ Kp + vmaxTn

(24)

where Tn denotes the set of time instances where the system
is not shown to be passive (Fig. 4), specifically ∥ξ̇∥ ≤
∥f(ξ)∥, and Tn ∈ R≥0 is the total duration which the system
spends in this region. Additionally, from passivity in the
inner region, the system is bounded by a constant Kp ∈ R≥0.
Hence, the impulse response is bounded, and the system is
BIBO stable.

However, from (8), we know that a general damping
matrix S(ξ) can have non-uniform diagonal values. This is
analyzed by introducing the coordinate transfers:

v̄ =
√

S(ξ)Q(ξ)−1ξ̇ and ∆̄f =
√

S(ξ)Q(ξ)−1∆f (25)

where the square root of the diagonal matrix S(ξ) is taken
element-wise. The transfer is then used to rewrite (22) as:

ξ̇
T
D(ξ)∆f = ξ̇

T
Q(ξ)S(ξ)Q(ξ)−1∆f = v̄T ∆̄f (26)

Hence, the BIBO analysis of (24) applied to the trans-
formed system results as:∫ T

0

∥v̄∥ dt =

∫
t/∈T̄n

∥v̄∥ dt+

∫
t∈T̄n

∥v̄∥ dt

< Kp + vmaxT̄nmax
(

eig
(
D
))

/min
(

eig
(
D
)) (27)

where T̄n denotes the region where the transformed system
v̄ is not shown to be passive, i.e. ∥v̄∥ ≤ ∥∆̄f∥, and T̄n ∈

Fig. 4: Analyzing the system in velocity-space yields that the
system is passive if it has a velocity ξ̇ larger than the desired
velocity f(ξ), i.e., outside the dashed circle. However, the system
can be non-passive for small velocities when

〈
ξ̇, ∆f

〉
< 0 (yellow

circle).



R≥0 the corresponding time. Additionally, min (eig(D)) and
max (eig(D)) are the smallest and largest eigenvalue of the
damping matrix D respectively.

Hence, since the transformed system with velocity v̄ is
BIBO stable, the original system with velocity ξ̇ is BIBO
stable, too, as long as it is a continuous, finite transform.

For an orthogonal decomposition matrix Q(ξ), the re-
gion of non-passivity is an ellipse where the direction of
the axes points along column vectors of Q(ξ), and the
corresponding axes lengths are the diagonal elements of
∥f(ξ)T

√
S(ξ)∥/2

√
S(ξ)

(−1)
. If the ratio of the first damp-

ing value to the other axis i ≥ 2 is large, i.e., s1/si ≫ 1,
it can lead to non-passivity even though the velocity ξ̇ is
already larger (but not pointing in the correct direction) than
the desired velocity. However, the non-passive region is still
bounded. This proof holds for any basis Q which is not
singular. However, the controller must be carefully chosen
to ensure that the speed up is limited when the basis is close
to singular, for example, by limiting the relative difference
of the stretching vectors. Furthermore, as stable behavior
is ensured for a general shape of a damping matrix D(ξ),
the global stability proof extends to any positive definite
damping matrix matrices.

Since the damping matrix D(ξ) changes dynamically, a
change in the environment can move the system outside
of the passive region. However, a finite maximum velocity
always exists, at which the system is ensured to be passive.

IV. COLLISION AVOIDANCE

The principal goal of the controller introduced in the
previous section is its ability to ensure collision avoidance in
the presence of external disturbances. However, the control
force τ c proposed in (5) does not explicitly consider external
forces. Yet, it is designed to correct the agent’s velocity ξ̇ if
it deviates from the desired velocity ξ̈.1

Since interaction with the environment results in a force
on the system, often over a short period ∆t ≪ 1. Hence, we
can define the velocity after impact vI as:

vI ≈
∫ tI+∆t

tI
ξ̈dt ≈

∫ tI+∆t

tI
M−1(ξ)τ e dt (28)

using the controller from (4), and under absence of the
control force τ c during this short timeframe. Additionally,
{ξ}tI is the velocity before the impact.

Furthermore, let us consider a desired velocity f(ξ),
which is a constant, collision-free vector field parallel to the
surface of a flat obstacle surface (see Fig. 5):

⟨f(ξ), n(ξ)⟩ = 0 f(ξ) = const. , n(ξ) = const. (29)

where n(ξ) is the surface’s normal vector, and the agent
moves in a straight line, hence we can neglect the Coriolis
effect. For disturbances in such environments, we show that
our approach can ensure the impenetrability of the obstacle
up to an upper bound on the magnitude of the disturbance:

1Note that for a discrete-time (digital) controller, this results in a delay.

Lemma IV.1. Consider a point-mass agent with mass m ∈
R>0, whose motion evolves according to the rigid body dy-
namics given in (4) controlled by (5), with constant damping
matrix D from (8). The agent tracks a constant reference
velocity f , whose vector field moves parallel to a flat obstacle
as given in (29). Any motion path initiated in free space will
remain collision-free for all times, i.e., Γ({ξt}) ≥ 1 with
t ≥ 0 if the impact velocity vI as given in (28) at time
t = 0 is limited by ∥vI∥ < sf∥ξ − ξb∥/m, with respect to
the closest surface point ξb ∈ RN .

Proof: According to the Bony-Bezis theorem [22], the
trajectories are collision-free if there is zero velocity towards
the obstacle on the surface, i.e.,∣∣∣n(ξ)T {ξ̇}t

∣∣∣ = 0 ∀Γ(ξ) = 1 (30)

We want to find the time when the agent stops moving
towards the obstacle, enabling us to evaluate the distance
traveled as a function of the velocity after disturbance vI .
Let us assume without loss of generality that the disturbance
occurs at time t = 0. Hence, the velocity at time T can be
computed as:

{ξ̇}T =

∫ T

0

ξ̈ dt =

∫ T

0

M−1D
(
ξ̇ − f(ξ)

)
dt

= M−1

∫ (
(1− w)Df + wDo

) (
ξ̇ − f(ξ)

)
dt

(31)

Furthermore, since the vector field, f(ξ) is constant and
the obstacle’s surface does not have any curvature, it follows
from (8) that the damping matrices Do and Df are constant.
Moreover, by design of the damping matrices, from (11)
it follow that Do(ξ)n(ξ) = son(ξ), and from (7) that
Df (ξ)n(ξ) = sfn(ξ).

From (30) follows that it is sufficient to observe the normal
component of the vectors only. Thus, in the rest of this
paragraph, the components along the normal are denoted by
scalar values, e.g. ξ̇ =

〈
ξ̇, n(ξ)

〉
n(ξ). Hence, we get:

0 =
∣∣∣n(ξ)T {ξ̇}t

∣∣∣ = 1

m

∫ T

0

((1− w)nTDfn+ wso) ξ̇ dt

<
1

m

∫ T

0

sf ξ̇ dt =
sf

m
(ξ − {ξ}0) + vI dt (32)

where m = max (eig(M)), with the maximum displacement
as:

∥{ξ}0 − ξ∥ ≤ ∥vI∥m/sf (33)

Lemma IV.1 assumes constant velocity field f(ξ) and
flat obstacle surface. This is an appropriate assumption for
large velocities after disturbances towards the obstacle, i.e.,
∥vI∥ ≫ ∥f(ξ)∥ and starting close to the surface. Since
the distance traveled has to be flat to avoid collision, the
vectorfield is likely to show small changes, and the surface
has little deviation.

Nevertheless, there is no guarantee against drifting into ob-
stacles in the presence of highly curved surfaces and velocity
fields. However, designing a repulsive field as proposed in
[20] can ensure collision avoidance in such scenarios.



Fig. 5: A disturbance occurs of a point-agent at position p0 with
velocity after the impact of {ξ̇}0 = v0 + vI . A high damping in
the direction of the obstacle in the presence of a constant velocity
field (gray) ensures collision avoidance. Whereas different damping
values so and optionally a maximum repulsion force τmax lead to
different trajectories.

V. EVALUATION

The proposed obstacle aware controller2 is compared to a
baseline, the velocity preserving, passive controller [7].

A. Obstacle Aware Passivity Using a Robot Arm

The obstacle-aware passivity controller was implemented
to guide a 7-degree-of-freedom robot arm (Panda from
Franka Emika) while moving around a cubic obstacle.

The joint torque is computed using inverse kinematics
combined with the proposed passive controller for the po-
sition, but a proportional controller for the orientation:

τ q = J†(q)

[
D(ξ)

(
f(ξ)− ξ̇

)
pα(α−αa)

]
(34)

where J† represents the Moore-Penrose pseudo inverse of
the Jacobian matrix, and α and αa denote the end effector’s
orientation and the desired orientation, respectively. The an-
gular damping parameter is chosen as pα = 5.5. The desired
orientation αa is pointing downward with a quaternion value
of (w, x, y, z) = (0, 1, 0, 0). For the angle subtraction, we use
quaternion representation to avoid singularities, but an angle-
axis representation of the orientation is used to evaluate the
torque from the angular offset.

The angular damping is chosen as pα = 5.5. The damp-
ing values are set as so = 160 s−1, sf = 64 s−1], and
sc = 16 s−1.

The robot start position is approximately at ξ0 =
[0.3m, 0.4m, 0.3m, ]T and the attractor is at position ξa =
[0.26m,−0.53m, 0.33m]T . The controller operates at a fre-
quency of 500Hz. The robot encounters a single squared
box with axes length 0.16m and a margin of 0.12m, placed
in front of the robot base (Fig. 6). The precise location
of the box is tracked in real-time using a marker-based
vision system (Optitrack). When passing the box, the robot
is pushed with te towards the box. The experiment is

2Source code: https://github.com/hubernikus/obstacle_
aware_damping

(a) Obstacle-aware controller rejects repulsion and avoids collision

(b) Velocity preserving controller leads to collision with obstacle

(c) The two control methods compared with the undisturbed trajectory. The
wider line indicates a higher x-value. The darker arrow is the actual, and
the desired velocity is the brighter arrow.

(d) The specific trajectory is represented by a full line, while the average
(dashed line) and variance (shaded area) are evaluated over ten epochs. The
mean and variance of the control force are evaluated in the logarithmic
space.

Fig. 6: The robot arm, guided by the obstacle-aware passive
controller, effectively avoids the disturbance towards the obstacle
while maintaining a margin of 0.16m around the obstacle. The
experiment was repeated ten times with a similar disturbance
applied to the robot arm in each run.

https://github.com/hubernikus/obstacle_aware_damping
https://github.com/hubernikus/obstacle_aware_damping


repeated ten times for both controllers and compared to the
undisturbed motion.

This outcome is attributed to the obstacle-aware con-
troller’s stronger control force, with a high peak occur-
ring around 1.45 s when the disturbance is encountered. In
contrast, the velocity-preserving controller only acts when
the robot almost collides, leading to a delayed response.
Additionally, the obstacle-aware controller exhibits higher
forces, contributing to improved tracking of the avoidance
trajectory. These findings affirm the superior collision avoid-
ance capabilities and tracking performance of the obstacle-
aware passivity controller in real-world robot arm scenarios.

VI. DISCUSSION

We introduced a novel passive obstacle-aware controller
that takes as an input the desired, collision-free velocity
and outputs a control torque. The stability proof enables
the controller to be used with any bounded input velocity
field, and this result extends to a general class of damping
controllers. Furthermore, the controller is shown to reject
disturbances, and the parameter-tuning for the discrete-time
system has been analyzed. The controller was experimentally
evaluated and compared to a baseline passive controller.
Applied to a real robot arm, the disturbance force was
successfully rejected, ensuring collision avoidance while
following a reference motion.

A. Applicability and Theoretical Analysis

The theoretical analysis from Theorem III.1 indicates
BIBO stability for a system with bounded desired velocity.
Consequently, controllers like the damping-based approach
in [7] do not require an energy tank. Yet, introducing an
adaptive proportional term K can lead to instabilities [9],
[10]. Careful consideration of the controller design and
stability analysis is necessary to ensure robust and safe
performance in practical applications. Nevertheless, the pas-
sivity proof enables a broad range of time-varying damping
controllers to be safely applied to robotic systems.

B. Caution in Obstacle’s Proximity

In this work, we assume the obstacles’ position to be
precisely known. However, in many scenarios, the robot
might have limited perception as it approaches an obstacle.
Hence, the robot should be more compliant to enable safe
workspace exploration rather than increasing the damping.
Future work should explore how to combine these two
opposing paradigms: safe control for avoidance yet cautious
exploration.

REFERENCES

[1] L. Huber, A. Billard, and J.-J. Slotine, “Avoidance of convex and
concave obstacles with convergence ensured through contraction,”
IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1462–
1469, 2019.

[2] N. Hogan, “Impedance control: An approach to manipulation: Part
ii—implementation,” 1985.
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