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Partial discharge localization 
in power transformer tanks using 
machine learning methods
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This paper presents a comparison of machine learning (ML) methods used for three-dimensional 
localization of partial discharges (PD) in a power transformer tank. The study examines ML and deep 
learning (DL) methods, ranging from support vector machines (SVM) to more complex approaches 
like convolutional neural networks (CNN). Multiple case studies are considered, each with different 
attributes, including sensor position, frequency content of the PD signal, and size of the transformer 
tank. The paper focuses on predicting the PD location in three-dimensional space using single-sensor 
electric field measurements. Various aspects of each method are analyzed, such as the input signal, 
core methodology, correlation coefficient between the predicted location and the actual location, 
and root mean square error (RMSE). These features are discussed and compared across the different 
methods. The results indicate that the CNN model exhibits superior performance in terms of location 
accuracy among the methods considered.
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Source localization has many applications in fields such as medicine, acoustics, electromagnetics, and  lightning1. 
In the realm of electromagnetics, Partial discharges (PDs) are electrical breakdowns that occur within electrical 
insulations, such as those in transformers. Over time, PDs can lead to the complete breakdown of the insula-
tion system, causing extensive damage to the transformer. PDs are a major contributor to the failure of power 
transformers, transmission lines, and gas insulation, among other components. Any malfunction in a power 
transformer can result in power outages and reduced reliability of electrical power networks. Therefore, the early 
detection and localization of PDs is crucial in order to prevent potential hazards and minimize further  damage2,3.

PD localization  techniques2 can be categorized into two groups: acoustic and electromagnetic. Acoustic 
detection and localization  methods2,4–7 rely on detecting the sound waves emitted by PD sources. Compared 
to electromagnetic methods, acoustic methods are less sensitive to weak PDs and those that occur within the 
 winding7,8. Acoustic sensors can be mounted on the external walls of the power transformer, making acoustic 
detection a non-invasive technique. Nevertheless, the acoustic signal may be contaminated by external acoustic 
environmental noise.

Electromagnetic localization based  methods2,4,7–10 utilize electromagnetic waves emitted by PD sources. The 
detection methods that employ ultra high frequency (UHF) radiation are particularly sensitive to weak PDs 
occurring within the winding. Moreover, UHF measurements are commonly electromagnetically shielded by 
grounding the transformer tank to mitigate external disturbances such as corona and environmental  noise11.

Classical acoustic and electromagnetic three-dimensional localization methods rely on the Time Difference 
of Arrival (TDoA) of signals. However, these methods are highly sensitive to noise due to the need for precise 
determination of the onset time of the arriving  signals11. Moreover, they require a minimum of four time-
synchronized sensors as well as direct propagation paths from the PD sources to the multiple sensors to operate 
effectively. In the case of acoustic methods, reasonable accuracy can be achieved by implementing appropriate 
signal processing techniques. However, TDoA-based electromagnetic methods encounter inaccuracies caused 
by inhomogeneities and scattering within transformers.
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Recently, a novel approach based on time reversal has been proposed in the electromagnetic and acoustic 
regimes. This approach can localize the sources of partial discharges inside a transformer using only a single 
sensor. In comparison to the conventional TDoA method, the time reversal-based method demonstrates robust-
ness to noise in the experimental signals. Moreover, it remains effective even in the presence of obstacles that 
obstruct the direct line of sight between the sensor and the PD source. The technique requires a model of the 
transformer tank to carry out the backward propagation  stage12.

The creation of a PD localization system demands a significant level of accuracy, sensitivity, and robustness. 
These qualities have been essential for power grid operators and installers over the past decades. Traditionally, 
PD diagnostics primarily rely on features extracted through conventional techniques such as statistical analysis, 
and time–frequency analysis. Simple threshold values are then computed to make  decisions11. Advanced signal 
processing techniques like the discrete wavelet transform (DWT) are employed to extract more sophisticated 
and powerful features, while conventional machine learning (ML) methods, including Back-Propagation Neural 
Networks (BPNN), support vector machines (SVM), and fuzzy inference systems (FIS), are gradually utilized 
for classification and regression  tasks11. In recent times, with advancements in computing and information tech-
nologies, deep learning (DL) has gained significant attention as a subset of ML for intelligent PD  diagnostics13.

Table S1, based on the review  of13 and including articles published since 2021, presents an overview of papers 
that utilize ML methods for PD diagnosis. The studies predominantly focus on detection, pattern recognition, 
and classification, as shown in the table. However, only about 12.7% of these studies address the problem of 
localization. In terms of applications, only 16.50% of the studies are focused on transformers, while others 
examine PDs in gas-insulated transmission lines (GIL), gas-insulated switchgear (GIS), high-voltage cables, and 
electrical equipment. One of the primary reasons for the limited attention given to PD localization is its inherent 
difficulty compared to detection and classification. Notably, the CNN model has garnered researchers’ attention 
due to its exceptional performance in signal and image processing, as depicted in Table S1. For PD localization, 
the bagging-kernel extreme learning machine (Bagging-KELM)14 achieves the best result in GIL, with an average 
error of 0.93 cm. Neural networks, bagging techniques, and SVMs are the most frequently employed models 
in PD localization studies. It should be noted that all the methods presented in Table S1 have been individually 
investigated, considering various configurations and scenarios. This diversity in approaches has made the task of 
comparison quite challenging. The aim of this paper is to provide a comprehensive comparison of these models 
within specific and well-defined scenarios. In particular, several well-known ML-based methods are investi-
gated for the three-dimensional localization of partial discharges inside a power transformer tank. ML and DL 
methods frequently used in recent articles on PDs are examined, considering their compatibility for regression 
problems. Multiple case studies involving various attributes are presented. These attributes encompass sensor 
positioning, number of sensors, frequency content of the PD signal, and the size of the transformer tank. The 
PD location in the three-dimensional space is determined using single-sensor electric field measurements for 
all case studies, except for one case study in which three sensors are considered. The features of each method, 
such as input signal, core methodology, correlation coefficient of predicted location with the real location, and 
root mean square error (RMSE) analysis, are discussed and compared.

The novelty of the paper lies in the three-dimensional localization of PD sources within a power transformer 
tank using only a single sensor, achieved through ML and DL techniques. These techniques include BPNN, CNN, 
SVR, and XGBoost methods. The paper also provides a comprehensive comparison of the performance of each 
method in localizing the PD sources.

The remainder of the paper is organized as follows: “Case studies” presents the data generation, “Data pre-
processing” illustrates the data preprocessing procedure, and in “Machine learning methods”, explanations for 
each model are provided. “Results and discussion” focuses on the model comparison and presents the results. 
Finally, in “Conclusion”, concluding remarks are provided.

Case studies
This section presents the various case studies considered in the analysis. All the case studies have been simulated 
using microwave studio (CST) software. The geometry of the transformer tank is illustrated in Fig. 1. The ori-
gin of the coordinate system is located at the center of the transformer tank. For simplicity, the study does not 
include the windings and ferromagnetic cores. The transformer tank is made of steel with a conductivity σ of 
7.69e6 S/m. The volume of the transformer tank, as shown in Fig. 1, is 1000 × 500 × 500  mm3. The thickness of the 
tank walls is 10 mm. In the study, the PD sources are modeled as small dipole antennas with a length of 10 mm, 
excited by a Gaussian pulse. The figure does not depict the dipole antenna used to model the PD source. Different 
orientations of the PDs are considered in the considered case studies. Please refer to Table 1 for further details.

The emitted fields from the PD sources are detected by three different sensors, represented by monopole 
antennas, as shown in Fig. 1. The length and radius of the monopole antennas are 67.8 and 2.5 mm, respectively. 
The red cones in Fig. 1 depict the antenna inputs. Five different case studies are discussed in the paper, as shown 
in Table 1. The description of each case study is presented in the subsequent subsections.

Case study #1
In the first case study, a single monopole antenna placed along the x-axis is employed to receive the PD signal 
(see Fig. 1 and Table 1). The coordinates of the monopole antenna are (x = −500 mm, y = −150 mm, z = −150 mm). 
The PD is modeled as a 10 mm y-polarized dipole antenna positioned randomly within the transformer tank of 
Fig. 1. The PD signal in the simulation is a Gaussian pulse with a frequency bandwidth of 0.5–3 GHz, see Table 1. 
A total of 600 Monte-Carlo simulations were conducted for this case study. The location of the PD source within 
the transformer tank was randomly selected using a uniform probability distribution function for each direction.
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Case study #2
The second case study is similar to CS#1, except for the location and polarization of the monopole antenna used 
to receive the PD signals. In CS#2, a y-axis polarized monopole antenna is employed as the receiving sensor, 
situated at coordinates (x = −400 mm, y = −240 mm, z = −150 mm). This case study utilizes 1000 Monte-Carlo 
simulations, see Table 1.

Case study #3
In the third case study, the location of the PD sources is randomly selected inside the transformer tank using a 
uniform probability function, similar to case study #1. However, unlike the previous case studies, the PD source 
polarization is arbitrary. To achieve this, three new variables are introduced to indicate the rotation angles 
along the x, y, and z axes. These three angles are selected using a uniform probability distribution function in 
the range of 0–360 degrees. The three dipole antennas are used to record the electric fields emitted by the PD 
source. However, even though the fields are captured by all three antennas, each at a different location and with 
a different polarization, the captured signals from the monopole antennas are considered separately. In other 
words, for the purpose of localizing the PD source, the electric field components are utilized individually. The 
locations of the receiving antenna can be found in Fig. 1.

The PD signal used in this case study is a Gaussian pulse with a frequency bandwidth covering the range of 0.5 
to fmax GHz. The value of fmax is randomly selected using a uniform probability distribution function between 
1 and 3 GHz. A total of 1000 Monte Carlo simulations were conducted for this case study to ensure a consistent 
number of instances and maintain uniform fairness across all case studies. Additionally, another 1000 samples 
are planned for consideration in the triple sensor case study.

Case study #4
The fourth case study is similar to the previous case study (CS#3), but it uses a larger transformer tank size: 
1000 × 1000 × 500  mm3, which is twice as long in the y-axis direction compared to the tank size used in the 
previous three cases. The locations of the monopole antennas used in this study are, respectively, at posi-
tions (x = −500 mm, y = −400 mm, z = −150 mm), (x = 400 mm, y = −500 mm, z = −150 mm), and (x = 400 mm, 
y = 400 mm, z = −250 mm).

Figure 1.  The transformer tank including three identical monopole antennas representing sensors aligned in 
three different axes. The inset is a zoom of antenna 2.

Table 1.  Five different case studies are discussed in the paper. 1 The three monopole antenna feeds are located, 
respectively, at positions (x = −500 mm, y = −150 mm, z = −150 mm), (x = 400 mm, y = −250 mm, z = −150 mm), 
and (x = 400 mm, y = 150 mm, z = −250 mm). 2fmax is randomly selected between 1.0 to 3.0 GHz.

Case study Tank dimension  (mm3) PD orientation Antenna  polarization1 Bandwidth (GHZ) Number of samples

CS#1 1000 × 500 × 500 y-axis x-axis 0.5–3 600

CS#2 1000 × 500 × 500 y-axis y-axis 0.5–3 1000

CS#3 1000 × 500 × 500 Random x-, y-, or/and z-axis 0.5−fmax
2 2000

CS#4 1000 × 1000 × 500 Random x-, y-, or z-axis 0.5−fmax 1000

CS#5 2000 × 1000 × 1000 Random x-, y-, or z-axis 0.5−fmax 1000
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Case study #5
The transformer tank size used in this last case study is 2000 × 1000 × 1000  mm3, which means that the length 
of the tank sides along the axes is twice that of the tank used in CS#1 to CS#3. The monopole antennas used in 
this study are, respectively, at positions (x = −500 mm, y = −400 mm, z = −150 mm), (x = 400 mm, y = −500 mm, 
z = −150 mm), and (x = 400 mm, y = 400 mm, z = −250 mm).

Data preprocessing
Data preprocessing is a crucial step in signal processing that plays a vital role in achieving accurate and efficient 
solutions with minimal complexity. Moreover, preliminary experiments have demonstrated the necessity of 
preprocessing of both the PD signals and actual labels (locations). In this study, data preprocessing consists of 
five key steps: cut-off, normalization, resampling, label shifting, and train-test dataset splitting.

Cut off
The first stage of preprocessing involves trimming a specific duration of time from all signal instances. This step 
is crucial in simulations because the wave maintains a constant speed, and the onset time provides information 
about the location of the PD (partial discharge) in the radial direction. However, this approach can lead to unfair 
predictions when compared to practical tests. To achieve a more robust model, it is beneficial to implement this 
preprocessing step.

Specifically, the duration of the signal is cut down to 40 ns by trimming the beginning and the end as follows: 
A starting threshold is defined as the time at which the signal begins to fluctuate more than 0.001 V in amplitude. 
This threshold is denoted as t, representing the starting time. Any data prior to this threshold is discarded. The 
remaining time duration (duration of the signal–t) is then trimmed from the end of the signal so that the total 
duration is 40 ns. However, since the initial sample rates of the instances differ, they will have varying numbers 
of samples.

Normalization
The next step in preprocessing is normalization, which aims to expedite the training of the model. To achieve this, 
the entire signal is divided by the absolute value of the maximum signal amplitude, which can vary significantly 
for PD signals in the database. Consequently, the output signal is constrained to fluctuate between −1 and 1.

Resampling
The simulated signals generated using the CST-MWS software have varying sampling rates due to the imple-
mentation of the finite integration technique during the simulations. Consequently, these signals have different 
numbers of samples. To ensure consistency in the input shape of the model, resampling becomes a crucial step, 
aiming to achieve an equal number of samples for all signals. In this paper, the down-sampling procedure is 
based on polyphase filtering, which offers computationally efficient resampling and filtering capabilities with 
high accuracy when applied to signals with defined sample rates.

Based on the conducted experiments, the best performance was observed when using 400, 800, and 1200 
samples as the number of input features for the model for values ranging between 50 and 4800 for SVR. The 
number of samples does not have a significant effect on XGBoost performance. Consequently, a value of 400 
samples was selected. Increasing the number of samples beyond this value would not significantly enhance 
accuracy but would significantly prolong the model training process. Additionally, polyphase filtering has proven 
to be a suitable approach, preserving over 98% of the signal content, as indicated by the computed correlation 
coefficient between the original and resampled signals.

In Fig. 2, the effect of sample rates ranging from 50 to 4800 is depicted across three separate databases (used 
for CS#1, CS#2, and CS#3) for the x, y, and z directions (horizontal axis). The coefficient of determination (R) 
for predicted locations by the Support Vector Regression (SVR) model is shown on the vertical axis. The best 
result is obtained with a number of samples ranging from 400 to 1200. Therefore, signals with a sample rate of 
400 are used throughout the paper to reduce computational tasks.

Figure 2.  The variation of the R metric versus the number of samples for three separate datasets (CS#1, CS#2, 
and CS#3) along the y-axis using the SVR method.
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Shifting labels (location of PD sources)
Since labels are ranged from negative to positive numbers, which correspond to the location of the PD source 
inside the cavity along the x-, y-, and z-axis, the model might not be able to distinguish the sign of numbers 
during both the training and evaluation stages. The solution used here involves shifting all the labels to positive 
regions, thereby yielding a more resilient model. Nonetheless, the amount of shifting may vary depending on 
the specific tank shape in each case study.

Splitting training and test dataset
Before training, the datasets are divided into train and test data, with 80% of the dataset used for training and 20% 
for testing. To ensure a fair comparison of results between models, the training dataset is randomly shuffled using 
a seed number of 11. This procedure guarantees that each partition undergoes a complete pattern randomization.

Machine learning methods
A flowchart depicting the ML and DL-based approaches proposed in the paper is presented in Figure S1 in 
the Supplementary Information. The initial step involves data collection, which is simulated using CST-MWS 
software. Once the data is collected, it needs to undergo preprocessing before being fed into the models. During 
preprocessing, the data is initially trimmed and then normalized to fall within the range of 1 to −1. Following 
normalization, the data is resampled to consist of 400 samples. Given that the labels span from negative to posi-
tive numbers, representing the PD source’s location within the cavity along the x-, y-, and z-axis, the location 
labels’ origin is shifted to ensure all labels are positive.

After the data is prepared for model input, a range of models is assessed to identify the one with the highest 
accuracy. Subsequently, these models are trained using 80% of the preprocessed data and evaluated using the 
remaining preprocessed data for testing purposes. Finally, the model that performs the best is selected as the 
optimal choice.

Four frequent models have been chosen from those in Table S1: Support Vector Machine (SVM), neural 
networks (NN), convolution neural networks (CNN) and XGBoost which encompasses boosting methods.

Each model used in this paper has gone through a grid search for hyperparameters. The grid search condition 
is slightly different depending on each model architecture. All ML methods used in this paper have the same 
input: a 1D preprocessed PD signal in the time domain with 400 samples, except for three sensor case study (see 
“Three sensors”, for which 1200 samples were used. To assess the degree of association between two variables, 
correlation coefficients are used.

Support vector regression
A simple linear support vector machine (SVM) classifier operates by drawing a straight line between two classes. 
This means that all the data points on one side of the line will be classified as one category, while the data points 
on the other side will be assigned to a different category. As a result, there are numerous possible lines to select 
from.

Support vector regression (SVR) applies the same principle as SVM, but it is used for regression problems. 
SVR is a widely used algorithm with various  applications15. To optimize SVR, a grid search is performed on 
the gamma, regularization parameter, and kernel. The best outcome was achieved by setting the gamma value 
to 0.01, the regularization parameter to 1000 (where the strength of regularization is inversely proportional) 
and employing the radial basis function (“RBF”) as the kernel. Since SVR does not inherently support multi-
dimensional regression, the multi-target regression strategy is employed to expand its capabilities, fitting one 
regressor per target.

XGBoost
A gradient boosting decision tree (GBDT) is an ensemble learning algorithm, similar to random forest, used 
for both classification and regression tasks. Ensemble learning algorithms combine multiple machine learning 
algorithms to obtain improved models. XGBoost is an example of a parallel tree boosting  algorithm16 and it is 
implemented using the XGBoost library. In this case, default hyperparameters are used as the model performance 
does not improve after grid search. Additionally, XGBoost also supports multi-target regression strategy.

back-propagation neural network (BPNN)
DL has made significant progress in various applications. One of the first DL models that has been extensively 
examined is the Backpropagation Neural Network (BPNN). The BPNN consists of multiple layers, with each 
layer containing a number of neurons that adapt complex functions through a series of nonlinear transforma-
tions. The architecture of this model is illustrated in Fig. 3. It comprises three main parts: the input layer, hidden 
layers, and output layer.

The input layer serves as a simple fully connected layer that feeds into the hidden layers. The hidden layers 
consist of three dense layers, each containing 512 units with the rectified linear unit (ReLU) activation function. 
On the other hand, the output layer is another dense layer with three units representing the 3D source location. To 
optimize the model, the Nadam  optimizer17 is used, and the learning rate gradually decreases from 0.1 to 0.001.

Convolutional neural network (CNN)
A convolutional neural network (CNN) operates in a similar manner to conventional fully connected multilayer 
perceptron neural networks, but with additional convolutional layers positioned at the front of the  network18. The 
model considered in this study is the 1D CNN  model19. This particular model yielded the best results, as indicated 



6

Vol:.(1234567890)

Scientific Reports |        (2024) 14:11785  | https://doi.org/10.1038/s41598-024-62527-9

www.nature.com/scientificreports/

in Table 2. In comparison to the back-propagation neural network (BPNN), the CNN 1D model is more com-
plex, which leads to higher computational cost but also improved accuracy. All layers in the model employ the 
rectified linear unit (ReLU) activation function, and the optimizer used is similar to that of the back propagation 
neural network (BPNN). For a comprehensive representation of the model’s architecture, please refer to Fig. 4.

CNN-based methods automatically identify and utilize hierarchical features in signals received by sensors. 
In CNN-based methods, multiple layers of convolutional filters are applied to the signal, progressively obtaining 
higher-level features. This is crucial for localizing partial discharges, where the spatial information of the source 
is encoded in the signal. Other methods like SVM and XGBoost rely on global features extracted from the signal 
in partial discharge localization applications. It should be noted that in other applications, feature engineering 
can improve the performance by selecting the best features to achieve better results. For example, SVM-based 
approaches excel in classification tasks where feature boundaries can be distinctly defined in a high-dimensional 

Figure 3.  Architecture of BPNN model. The first layer is the input layer, each fully connected layer has 512 
units, and the output layer estimates the x, y and z coordinates of the PD source.

Table 2.  RMSE in mm and correlation coefficient (R) for each model and case study. For CS#3, three different 
directions corresponding to the receiving antenna are listed as X, Y, and Z. The origin of the coordinate system 
is at the center of the transformer tank.

Models case studies SVR XGBOOST BPNN CNN

CS#1
R

x 0.94 0.88 0.94 0.99

y 0.91 0.91 0.91 0.97

z 0.84 0.73 0.86 0.94

RMSE 74.46 95.57 73.22 39.89

CS#2
R

x 0.94 0.89 0.94 0.99

y 0.96 0.84 0.95 0.98

z 0.94 0.88 0.89 0.97

RMSE 58.76 83.62 60.98 27.04

CS#3 X
R

x 0.92 0.83 0.9 0.95

y 0.42 0.36 0.5 0.56

z 0.4 0.32 0.5 0.59

RMSE 106.46 122.51 102.42 89.44

CS#3 Y
R

x 0.87 0.81 0.87 0.96

y 0.77 0.49 0.74 0.83

z 0.69 0.55 0.65 0.8

RMSE 97.38 117.71 100.18 67.14

CS#3 Z
R

x 0.86 0.81 0.82 0.93

y 0.75 0.58 0.71 0.81

z 0.69 0.3 0.65 0.79

RMSE 100.46 119.82 109.2 75.7
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space but do not inherently extract features from complex patterns like images. Therefore, through the use of 
convolutional layers and pooling operations, CNNs can capture spatial hierarchies and dependencies between 
different parts of the data, such as the location and spread of discharge patterns within a transformer tank.

Results and discussion
All models are evaluated based on their performance measured by the root mean square error (RMSE) and cor-
relation coefficient (R) criteria in each coordinate for all case studies. The Pearson correlation  coefficient20 is a 
numerical measure that determines the linear correlation between measured values and values simulated by the 
model, with an optimal value of 1.

In Eq. (1), the variable i represents the actual location, while j represents the predicted location in the same 
direction, such as the y direction. The parameter Cij denotes the covariance between i and j, and Cii represents 
the standard deviation of i.

One way to evaluate the goodness of fit of a regression model to a dataset is by calculating the Root Mean 
Square Error (RMSE). RMSE is a metric that measures the distance between the predicted values from the model 
and the actual values in the dataset. A lower RMSE indicates a better fit of the model to the dataset. The formal 
definition of RMSE is as follows:

where, x̂l , ŷl , and ẑl are predicted values, xi, yi, and zi are observed values respectively. The quantity n is the 
number of samples.

The constructed models were trained and tested using eightfold cross-validation. However, for all the results 
presented in this paper, the seed number 11 was used to split the training and test datasets. The implementation 
was done using the Python programming language, and the models were trained and evaluated on a computer 
with an NVIDIA GeForce GTX 1660 TI and 4 GB of graphics memory. To facilitate further research, all codes 
and datasets used in this study have been made available on GitHub. (https:// github. com/ Farzi nkh/ Parti al_ 
Disch arge.)

Single sensor
Table 2 presents the R metric (corresponding to the correlation coefficient of the PD source estimation) and 
the RMSE value (corresponding to the three-dimensional localization error) for four different models: SVR, 
XGBoost, BPNN, and CNN. The first main column provides experiment details, including the case study number 
(refer to Table 1), and displays the R metric or the RMSE. The second to fifth columns present the results for the 
SVR, XGBoost, BPNN, and CNN models, respectively. For instance, the shaded row in Table 2 represents the R 
metric for the z-coordinate of all the different models in the first case study (CS#1).

In CS#1, the CNN model performs the best, with accuracies of 0.99, 0.97, and 0.94 for the x, y, and z-coor-
dinates, respectively. The RMSE is 39.89 mm, which is considered excellent for partial discharge applications. 
In this case study, the receiving antenna is oriented along the x-axis, and the PD source polarization is along 
the y-axis. The second-best model is BPNN, which achieves accuracies of 0.94, 0.96, and 0.80 for the x, y, and 
z-coordinates, respectively. SVR exhibits similar performance to BPNN, with a slight reduction (2 percent) in 

(1)Rij =
Cij

√

CiiCjj
,

(2)RMSE =

√

√

√

√

n
∑

i=1

(

x̂l − xi
)2

+
(

ŷl − yi
)2

+
(

ẑl − zi
)2

n
,

Figure 4.  Architecture of the CNN model. The input layer consists of 400 nodes. Layer 1 is a 1D CNN layer 
with dimensions (394, 64) followed by an average pooling layer with dimensions (98, 64). Layer 2 is another 1D 
CNN layer with dimensions (89, 256) followed by an average pooling layer with dimensions (44, 256). The first 
fully connected (FC) layer has 512 units, the second FC layer has 256 units, and the third FC layer has 512 units. 
The output of the model represents the x, y, and z coordinates of PD.

https://github.com/Farzinkh/Partial_Discharge
https://github.com/Farzinkh/Partial_Discharge
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the estimation accuracy along the z-coordinate. Finally, XGBoost achieves accuracies of 0.8, 0.91, and 0.73 for 
the x, y, and z-coordinates, respectively. The localization error averages for SVR, XGBoost, BPNN, and CNN are 
74.46, 95.57, 73.22, and 39.89 mm, respectively. Figure 5 (a) (b), and (c) show the evaluation curves (the esti-
mated versus the actual location of the PD source) for the CNN method for the x, y, and z coordinates in CS#1.

In CS#2, the performance of the CNN method is better than in other models, similar to the previous case 
study. It can estimate the PD source location with accuracies of 0.99, 0.98, and 0.97 for the x, y, and z-coordinates, 
respectively. In contrast to CS#1, the SVR performs slightly better than the BPNN method. The accuracies of 
SVR and BPNN are (0.94, 0.96, 0.94) and (0.94, 0.95, 0.89), respectively, with each parenthesis representing the 
x, y, and z coordinates. Finally, the XGBoost method presents the worst results in terms of accuracy in estimating 
the PD source. Its accuracy is lower than 0.89 for all coordinates. In CS#2, both the antenna direction and PD 
polarization are along the y-axis. The localization error averages for SVR, XGBoost, BPNN, and CNN are 58.76, 
83.62, 60.98, and 27.04 mm, respectively. Figure 6 (a), (b), and (c) show the evaluation curves (the estimated 
versus the actual location of the PD source) for the CNN method for the x, y, and z coordinates in CS#2.

The last three main rows in Table 2 are devoted to CS#3. Unlike the two previous case studies (i.e., CS#1 and 
CS#2), the performance of all models is reduced. This is because in CS#3, the polarization of the PD source is 
randomly changed in the simulation. Generally, the CNN method performs better than the other methods, simi-
lar to the previous case studies. In CS#3, when the receiving antenna along the x-axis is used, the performance of 
BPNN is better than SVR; otherwise, SVR outperforms the BPNN method. In this case study, like the previous 
ones, the performance of XGBoost is the worst. The evaluation curves for all four models are shown in Fig. 7. It 
can be observed from the figure that the performance of the CNN method is superior to that of the other meth-
ods. The CNN exhibits higher accuracy for the x-coordinate compared to the y and z coordinates, as indicated 
in Table 2. According to Table 2 and Fig. 7, it is evident that, across all techniques and case studies (especially for 
CS#3), the accuracy of PD source estimation yields better results for the x-coordinate. To investigate the reason 
behind this observation, CS#4 and CS#5 were employed.

Observe the antenna oriented along the y axis in CS#3 (forth column of Table 2). In this case, the minimum 
and maximum localization errors are 12.1 and 347.54 mm, respectively, and the mean value is 98.09 mm. Figure 8 
displays the density of the three-dimensional localization error obtained from the CNN model on the test dataset. 
For better insight, all predicted errors are classified in Fig. 8 into eight 42 mm bins, starting with zero and ending 
with the maximum error. The blue bars represent the local density in each stage, while the yellow bars represent 
the overall density. According to this figure, 88% of PD source localizations have errors less than 168 mm (lower 
than 17 cm), which validates the relatively accurate nature of this model in predicting locations of PD sources.

To investigate the effects of the PD’s location on the obtained results, Fig. 9 presents the RMSE of the CNN 
model results for CS#3 with the y-direction receiving antenna. The transformer tank is divided into three sec-
tions based on the distance between each section and the corner of the transformer tank. The vertical axis 
represents the RMSE for each section. It can be observed that the CNN method can accurately estimate the 
PD’s location anywhere inside the tank, as the localization error associated with the PD’s location in the CNN 
method is negligible.

Figure 5.  The CNN model’s estimated location compared to the actual location of PD sources for CS#1: (a) 
x-coordinate, (b) y-coordinate, and (c) z-coordinate. The number of instances for all the curves is 120.

Figure 6.  The CNN model’s estimated location compared to the actual location of PD sources for CS#2: (a) 
x-coordinate, (b) y-coordinate, and (c) z-coordinate. The number of instances for all the curves is 196.
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Three sensors
A possible approach to increase the accuracy of the model is to increase the number of sensors, as increasing the 
number of samples for each signal does not provide any significant advantage (see Fig. 2). Using three separate 
sensors in different directions is beneficial when dealing with a variety of PD frequencies (ranging from 0.5 to 
3 GHz). The procedure becomes slightly more complex in terms of the model architecture, as shown in Fig. 10. 
Based on the conducted experiments, since simple preprocessing methods for merging PD signals like sum-
mation, subtraction, and averaging as feature extraction on three signals (each containing 400 samples) in the 

Figure 7.  Evaluation curves for (a–c) SVR, (d–f) XGBoost, (g–i) BPNN, and (j–l) CNN (the y direction is 
considered for the receiving antenna) methods. The number of instances for all the curves is 200.
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element-wise procedure do not improve the accuracy of the model, a more advanced method was required. One 
solution for achieving high model accuracy is by employing CNN models once again as feature extraction lay-
ers to achieve a 400-sample signal which is the desired input shape for the base model and utilizes the transfer 
learning technique. According to the figure, a solution for achieving high model accuracy in merging the PD 
preprocessed signals (each containing 400 samples) is to employ CNN models once again and to utilize transfer 
learning techniques. The architecture used to adapt a signal with 400 samples for input into the preceding model 
(the base model) to include a CNN 1D layer (1137,10), a Max pooling layer (162,10), and an FC layer with 400 
units as embedding layer. These extra layers are added before the base model. It is important to note that the 
preceding model plays a vital role and was specifically trained for one sensor operating within the 0 to 3 GHz 
PD frequency range.

Figure 8.  The density of three-dimensional localization error obtained from the CNN model. The blue bars 
represent the local density, while the yellow bars represent the overall density.

Figure 9.  The RMSE versus the location of the PD source inside the transformer for CNN method in CS#3 in 
ranges less than 162, between 162 and 336 and more than 336.

Figure 10.  Architecture of the CNN model to utilize transfer learning techniques.
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For this experiment, two scenarios are considered. The datasets of CS#3 are divided into two equal parts, each 
with a length of 1000 samples. The first scenario involves training the base model on CS#3 (Part I) and CS#3 (Part 
II) for 3-sensor transfer learning. The second scenario reverses the order of the datasets. The results of these two 
experiments are presented in Table 3. In the first scenario, the RMSE error decreases from 67.14 to 46.13 mm 
for the single-sensor and the three-sensor CNN models, respectively, leading to a 31.2% improvement. In the 
second scenario, the RMSE error decreases from 84.2 to 61.85 mm for the single and the three-sensor CNN 
models, respectively, leading to a 22.35% improvement. According to these records, the use of three sensors lead 
to an improvement in the accuracy of about 26%.

Figures 11 and 12 display the overall density of the three-dimensional localization error obtained from the 
CNN models on CS#3 (Part I) and (Part II) (refer to the fourth column of Table 3). The dashed lines represent the 
overall density for the single-sensor pre-trained CNN model, while the solid lines represent the overall density 
for the three-sensor CNN model. According to these figures, using three sensors leads to a more robust model 

Table 3.  RMSE in mm and correlation coefficient (R) for the CNN method for CS#3.

Pre-trained model dataset Direction

Accuracy (R)

R RMSE (mm)

CS#3 (Part I)

x 0.9821

46.1367y 0.9262

z 0.9169

CS#3 (Part II)

x 0.9679

61.8552y 0.8327

z 0.8668

Figure 11.  The density of three-dimensional localization error obtained from the CNN models for the first 
scenario. The dashed lines represent the overall density for the single-sensor CNN model trained on CS#3 (Part 
I) with a y-direction receiving antenna, while the solid lines represent the overall density for the three sensor 
CNN model.

Figure 12.  The density of three-dimensional localization error obtained from the CNN models for the second 
scenario. The dashed lines represent the overall density for the single-sensor CNN model trained on CS#3 (Part 
II) with a y-direction receiving antenna, while the solid lines represent the overall density for the three-sensor 
CNN model.
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while evaluating unseen data for 80% density regarding transfer model performance on the base model’s dataset 
(DS) and base model performance on the transfer model’s DS.

Effect of the cavity shape and size
In the previous case studies, the localization accuracy in the x direction was observed to be higher than in the 
other directions. The only difference between the directions in the procedure is in the lengths of the transformer 
tank sides. Specifically, the x direction is longer than the others. Two experiments were conducted in CS#4 and 
CS#5 changing the tank dimensions and using the same single-sensor CNN model used in the preceding case 
studies to examine the impact of the shape and size of the cavity (see Table 1).

In the first experiment, CS#4 was used to determine the relationship between the accuracy of the predicted 
PD localization in all coordinates and the shape of the cavity. Since the cavity in this dataset has dimensions of 
1000 × 1000 × 500  mm3, (compare to the 500 × 1000 × 500  mm3 dimensions of the previous case studies), it is 
expected that the accuracy in the x and y directions will be approximately the same. This is indeed the case, as 
indicated in Table 4.

In the second experiment, CS#5, the cavity size was increased by a factor of 2 compared to case study CS#3, 
resulting in dimensions of 2000 × 1000 × 1000  mm3. Comparatively, the accuracy remains approximately constant 
compared to the CS#3 (refer to the fourth column of Table 2 and fourth column of Table 4).

Conclusions
In this study, a DL-based approach was presented for the 3D localization of PDs within the transformer tanks. 
Four models were examined, namely BPNN, CNN, SVR, and XGBoost, which were selected based on their fre-
quency in recent related articles and their previous success in localization tasks. Five case studies were considered 
for this study, each encompassing various conditions such as the maximum and minimum frequency content 
of the PD signals, antenna and PD source polarization, and the size of the transformer tank. These case studies 
were generated through Monte Carlo simulations. The models were developed using the Python language on a 
GPU processor to enhance the computational process.

CNN showed significant accuracy compared to the other models, with an average correlation coefficient of 
0.98 and 0.86 for all dimensions in the case studies CS#2 (maximum frequency of 3 GHz) and CS#3 (random 
maximum frequency in the y-direction), respectively. In the former case study, 99.2% of the localizations had an 
error of less than 13.3 cm, and in the latter, 88% had an error of less than 17 cm. However, CNN still exhibited 
limitations in practical robustness. To address this problem, a three-sensor CNN model was introduced, which 
demonstrated a 26% improvement in robustness compared to the single sensor model, as well as at least a 22% 
improvement in accuracy. The accuracy of the models is related to the size of the cavity; however, there is no 
simple relationship. Based on the experiments, the models performed much better in a cavity with two equal 
dimensions.

The most challenging aspect of implementing this research in practice is collecting enough signals from differ-
ent types of real power transformers in various locations where PD sources occur. In future work, the proposed 
method will be applied to a practical power transformer using signals received by a single antenna inside the 
transformer tank under real-world conditions.

Data availability
The datasets generated and analyzed during the current study, as well as the source codes and all computed 
results, figures, and other related materials, are available in the “Partial_Discharge” repository at github.com/
Farzinkh/Partial_Discharge.
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Table 4.  RMSE in mm and correlation coefficient (R) for the CNN method for CS#4 and CS#5.

Case study Direction

Accuracy

Case study Direction

Accuracy

R RMSE (mm) R RMSE (mm)

CS#4 X direction

x 0.8755

109.1582 CS#5 X direction

x 0.8392

242.6377y 0.8685 y 0.6205

z 0.8550 z 0.6104

CS#4 Y direction

x 0.8378

121.2639 CS#5 Y direction

x 0.9141

190.1929y 0.8382 y 0.7397

z 0.8482 z 0.8008

CS#4 Z direction

x 0.6192

174.0885 CS#5 Z direction

x 0.9227

199.3289y 0.6368 y 0.7285

z 0.6651 z 0.6593
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