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Abstract—In this paper, we present a model for the analytical
computation of the power flow sensitivity coefficients (SCs) for
hybrid AC/DC networks. The SCs are defined as the partial
derivates of the nodal voltages with respect to the active and
reactive power injections and are used in the literature to
model the grid constraints in a linear way (e.g. in real-time
grid-aware control applications). The proposed method is
inspired by an existing SC computation process proposed for
AC networks and here suitably extended to include both the DC
grid and the relevant AC/DC Interfacing Converters (ICs). The
ICs can operate under different control modes i.e. voltage or
power. Additionally, the model can compute the SCs for three-
phase networks subjected to unbalanced loading conditions. The
proposed method is numerically validated on a 26-node hybrid
AC/DC microgrid and on a multiterminal HVDC network that
links two asynchronous AC transmission grids. Furthermore, we
provide a formal proof regarding the uniqueness of the proposed
SCs computational model for hybrid AC/DC networks.

Index Terms—Sensitivity coefficients, Hybrid AC/DC networks,
HVDC, Optimal power flow, Unbalanced networks, Microgrids.

I. INTRODUCTION

Hybrid AC/DC microgrids and multiterminal high voltage
AC/DC grids are promising solutions for future power grids
expected to host a large share of renewable sources. Integrating
AC and DC networks has several advantages. 1) An increased
overall efficiency of the system, because DC sources and loads
are directly connected in the DC grid and thus fewer power
conversion sources are required [1] 2) A lower infrastructure
investment cost because of the material savings from cables
and transformers. 3) A more flexible grid control that is
mainly driven by the controllability of the AC/DC Interfacing
Converters (ICs) [1], [2].

Real-time control is critical for the secure and optimal
operation of hybrid AC/DC networks that are typically
characterised by fast dynamics, caused by the ICs and the
connected Distributed Energy Resources (DERs). One of the
main blocks of any grid-aware real-time control is the Optimal
Power Flow (OPF), which aims at computing the optimal
setpoints of the controllable DERs in both the AC and DC
grid and the optimal ICs’ setpoints in order to minimize a
certain objective [3]. Depending on the IC’s operating mode,
these setpoints can be powers (active or reactive) or voltages
(AC or DC).

The OPF requires an accurate model of the hybrid network
to formulate the grid constraints. Typically, this is defined by
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the power flow (PF) model. The PF equations for the AC
network, DC network and ICs are non-linear and non-convex
and, therefore, imply computational complexity to determine
the global minimum.

To increase the tractability of the optimisation problem,
these constraints are typically linearized or convexified using
relaxation techniques [4]–[8]. This work focuses on the former
approach where the power flow equations are linearized using
the well-known Sensitivity Coefficients (SCs) concept. SCs
are formally defined as the partial derivatives of the controlled
variables (e.g. nodal voltages or branch currents) with respect
to the controllable variables (e.g. power injections). Therefore,
having an efficient computation method for the SCs is crucial
for fast real-time control applications.

Traditionally, the SCs are computed relying on the inversion
of the Jacobian matrix of the solved unified power flow
problem. This method, however, has several major drawbacks.
1) It requires solving the full unified load flow of the
AC/DC network to obtain the Jacobian matrix. Reference [9]
shows that keeping the Jacobian matrix constant introduces
significant errors, and would thus have to be recomputed
frequently. 2) The Jacobian matrix does not allow to retrieve
the SCs of nodes where the voltage is regulated, such as PV
nodes in the AC system and V-nodes in the DC system. 3)
The method always computes the full sensitivity matrix. This
is a disadvantage in time-critical control applications where
the full knowledge of the sensitivity matrix is not required,
but only the SCs of certain controllable nodes.

Therefore, in this work, we present a method for the
computation of the SCs (voltage and current) for balanced and
unbalanced three-phase hybrid AC/DC networks that tackles
all three of these above-listed problems. The method accounts
for the different operation modes of the ICs, does not depend
on the load flow Jacobian matrix and relies only on the
network’s admittance matrix and the state of the grid.

The paper is structured as follows: In Section II, the state-
of-the-art on the SC computation techniques is reviewed.
Section III briefly presents the unified PF model of the hybrid
AC/DC network that is used in this work and introduces the
nomenclature that is used throughout the paper. Section IV
introduces the proposed analytical model that allows for the
efficient computation of the voltage SCs in hybrid AC/DC
networks. Furthermore, the computation of other SCs, such as
the branch currents is discussed. In Section V, the proposed
model is numerically validated on a hybrid AC/DC microgrid
and an HVDC multiterminal transmission system.
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II. STATE-OF-THE-ART REVIEW

The literature has presented several methods that allow
for an efficient computation of the SCs. Most of the works,
however, are only applicable to AC networks and are still
based on the knowledge of the power flow Jacobian. Reference
[10] proposes a method to compute the voltage SC without
the need for the power flow Jacobian matrix, however, the
method is only applicable to radial networks and does not
account for the presence of branches shunt elements. In [11], a
closed-form expression based on a first-order Taylor expansion
is presented. The work also presents the second and third-
order Taylor series expansions to improve the accuracy. In
[12], a linear approximation of the balanced power flow
solution is presented together with a sufficient condition for
the existence of a solution. Both PQ and voltage-controlled
(PV) are considered. Reference [9] proposes a closed-form
method based on the Gauss-Seidel approximation and the Z-
bus impedance matrix to express the SCs as explicit functions.
References [13], [14] are also based on the impedance matrix.
All these methods, however, still rely on the inversion of the
PF Jacobian. In the application of hybrid AC/DC networks,
reference [15] proposes a linear approximation where the
square of the DC voltage is used as a controllable variable.
The ICs’ models are approximated using a first-order Taylor
expansion.

The authors of [16], [17] developed a state-dependent linear
model that allows for an efficient computation of the (AC
network’s) SCs, with a guaranteed uniqueness of the solution.
Reference [18] extends this method to account for generic
multiphase unbalanced networks with PQ and PV nodes and
enables voltage-dependent nodal power injection models. This
methodology only requires knowledge of the state of the grid
and its admittance matrix. Reference [19] uses this method to
express the linear grid constraints for an OPF problem. The
authors show that when the SCs are updated dynamically, the
convergence speed and accuracy are compatible with real-time
control requirements.

In this work, we leverage the concept presented in [16],
[17], to develop a computational model for the SCs in hybrid
AC/DC networks with multiple ICs. The main challenge lies
in the derivation of an accurate SC model that includes the AC
network, DC network and the ICs that obey different control
modes depending on their operation mode.

In view of the above, the main contribution of this work
is the analytical SC computational model for hybrid AC/DC
networks that guarantees the uniqueness of the SCs. The model
accounts for all types of nodes in the AC and DC grid and
for the different operating conditions of the ICs. The proposed
model can be used for networks under unbalanced conditions
and allows for intentionally negative sequence power injection.
Furthermore, the model allows for multiple (AC) slack nodes,
includes the filters and losses of the ICs and is applicable to
both distributions and transmission systems.

III. UNIFIED POWER FLOW MODEL FOR HYBRID AC/DC
NETWORKS

The proposed model for the computation of the voltage
SC is derived using the unified PF model for hybrid AC/DC

networks presented in the author’s previous work [20]. The
PF model includes the AC network, DC network and the
ICs that can operate in different operating modes (voltage
or power control). Compared to other works presented in the
literature, the proposed method allows to consider multiple ICs
to regulate the DC voltage 1.

We consider a generic hybrid AC/DC grid shown in Figure
1. The grid consists of i ∈ N AC nodes, j ∈ M DC nodes
and the pair (l, k) ∈ L is a couple of AC/DC converter nodes.
We assume that l ∈ N and k ∈ M.

Fig. 1: The generic hybrid AC/DC network. Only one AC/DC
converter is considered for simplicity.

The AC system is modelled using the traditional power
system theory and consists of three types of nodes: a Slack
node (Nslack), PQ nodes (NPQ) and PV nodes (NPV ).
Furthermore, we assume that the zero-injection nodes can
be modelled as PQ nodes. The AC network is described
by its compound three-phase nodal admittance matrix Yac

that describes the relation between the phase-to-ground nodal
voltages Eac and the nodal current injections Iac: Iac =
YacEac. The admittance matrix is constructed using the line
impedances that are represented using the standard three-phase
Π-equivalent model, see Figure 2. Y (i,n),L is the longitudinal
admittance between nodes i and n, and Y (i,n),Ti

and Y (i,n),Tn

are the shunt elements in node i and n. The compound
admittance matrix is assumed to be known.

Fig. 2: The generic three-phase Π-equivalent branch model.

The DC system is modelled identically to the AC network
using the classic AC theory where the electrical quantities
are strictly real values: the reactive power Q = 0, the
line impedance Z = R and the shunts are nil. Two types
of controllable nodes are introduced: constant power nodes
(MP) and constant voltage nodes (MV). The DC network
is described by its compound admittance matrix. Therefore,
Idc = YdcEdc, where Edc is the phase-to-ground nodal DC
voltage vector, Idc the nodal DC current injections and Ydc

the compound admittance matrix, which is again assumed to
be known.

The interfacing converters, typically operated as Voltage
Source Converters (VSCs), interface the AC and the DC

1It is worth noting that the presence of multiple voltage-controlled ICs
results in an increased systems redundancy, improves the flexibility of the
control and, generally, results in more realistic grid architectures [21].
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system in one or more nodes (i.e., |L| ≥ 1)2.
The control scheme allows the VSCs to operate in different

modes and control different electrical quantities [22]. Usually,
the control pairs are the active and reactive power injection:
Pac − Qac, or the DC voltage and the reactive power:
Vdc −Qac. The VSCs use a phase-locked loop (PLL) -based
control scheme to synchronise to the grid. During unbalanced
loading conditions, the PLL typically synchronises to the
positive sequence components to only inject positive sequence
power, i.e., the homopolar and negative sequence components
of the injected power are zero. In specific cases, the ICs can
also intentionally inject negative sequence power to reduce
the unbalanced loading conditions.

In conclusion, the set of AC and DC nodes is described as:

N = Nslack ∪NPQ ∪NPV ∪ Ll,PQ ∪ Ll,VdcQ,

M = MPdc
∪MVdc

∪ Lk,PQ ∪ Lk,VdcQ,

and the different nodes in the hybrid AC/DC network are
summarised in Table I. The nomenclature and indices of the
node types of Table I are consistently used throughout this
paper.

TABLE I: Different types of nodes in hybrid AC/DC networks and
their known and unknown variables.

Bus Type IC ctrl. Known var. Unknown var. Index
AC slack |Eac|, ̸ Eac Pac,Qac s ∈ Nslack

Pac, Qac Pac,Qac |Eac|, ̸ Eac i ∈ NPQ

Pac, |Vac| Pac,|Vac| Qac, ̸ Eac i ∈ NPV

ICac
P - Q Pac Qac |Eac|, ̸ Eac l ∈ LPQ

Vdc - Q Qac Pac, |Eac|, ̸ Eac l ∈ LVdcQ

ICdc
P - Q Pdc Edc k ∈ LPQ

Vdc - Q Edc Pdc k ∈ LVdcQ

Pdc Pdc Edc j ∈ MP

Edc Edc Pdc j ∈ MV

It is worth noticing that the DC grid doesn’t have a ’real’ DC
slack bus. However, in at least one of the nodes, the voltage
needs to be regulated to ensure a safe operation of the DC
grid, this can be either an IC operating in Vdc −Q mode or a
DC voltage node MV .

The generic PF equations for a hybrid, unbalanced AC/DC
network are shown in (1). The model allows for multiple ICs
with different operating modes [20]. Equations 1a - 1c model
the PQ and PV nodes in the AC grid, equations 1d and 1e
model the P and V nodes in DC network and equations 1g -
1j model the different operating modes of the ICs.

AC nodes

ℜ
{
Eϕ

i

∑
n∈N

Yac
i,nEϕ

n

}
= Pϕ∗

i , ∀i ∈ NPQ ∪NPV (1a)

2The PF model only requires a lumped average model. Therefore, from the
PF point of view, a two-level and a multi-level modular converter (MMC) are
modelled identically. Only the converter losses and the filters are modelled
differently. However, as any passive filter can be represented by a generic two-
port equivalent circuit, we can easily incorporate the filter as an equivalent
Π-equivalent branch model. Furthermore, a Current Source Converter CSC is
modelled similarly to the VSC, except under unbalanced loading conditions
as reported in [20]

ℑ
{
Eϕ

i

∑
n∈N

Yac
i,nEϕ

n

}
= Qϕ∗

i , ∀i ∈ NPQ (1b)

(Eϕ′
i )2 + (Eϕ′′

i )2 = |Eϕ∗
i |2, ∀i ∈ NPV (1c)

DC nodes

Ej

∑
m∈M

Y dc
j,mEm = P ∗

j , ∀j ∈ MP (1d)

Ej = E∗
j , ∀j ∈ MV (1e)

IC nodes

E∗
k

(
Y dc
(k,k)E

∗
k +

∑
m∈M
m ̸=k

Y dc
(k,m)Em

)
= ℜ

{
E+

l

∑
n∈N

Yac
(l,n)E

+
n

}
, ∀(l, k) ∈ LVdcQ (1f)

ℜ
{
E+

l

∑
n∈N

Y+ac
(l,n)E

+
n

}
= P ∗

l , ∀l ∈ LPQ (1g)

ℑ
{
E+

l

∑
n∈N

Y+,ac
(l,n)E+

n

}
= Q∗

l , ∀l ∈ LPQ ∪ LVdcQ (1h)

E0′
l = 0, E0′′

l = 0, ∀l ∈ LPQ ∪ LVdcQ (1i)

En′
l = 0, En′′

l = 0, ∀l ∈ LPQ ∪ LVdcQ (1j)

Where, ϕ is the phase: ϕ ∈ {a, b, c}, the underbar
□ indicates the complex conjugate. The prime symbols
□′ and □′′ refer to the real and imaginary parts of the
complex electrical quantities. The subscripts 0,+,− denote the
homopolar (zero), positive and negative sequence components
following the standard symmetrical component decomposition.
The asterisk □∗ refers to the controllable variables.

IV. METHODOLOGY

Using the power flow model in (1) a closed-form
mathematical expression is derived to compute the voltage SCs
for the AC nodes, DC nodes and IC nodes in a unified way. In
order not to lose the generality of the method, the voltage SCs
are computed with respect to the set X controllable variables
of the PF model (1). Furthermore, let x be any element from
the set X . Therefore,

X =
{
Pϕ∗
i , Qϕ∗

i , |Eϕ∗
i |, P ∗

j , E
∗
j , P

∗
l , Q

∗
l , E

∗
k

}
∀ i ∈ N ,∀ j ∈ M,∀ (l, k) ∈ L

(2)

In what follows, we derive the SCs with respect to each
element in X using the procedure:

1) Compute the partial derivative with respect to x ∈ X of
the PF equations (1).

2) Regroup the partial derivatives to obtain the linear
system of equations A u(x) = b(x), where u(x) is
the vector of the voltage SCs ∂E

∂x as defined in (3).

u(x) =

[
∂Eϕ′

i

∂x
,
∂Eϕ′′

i

∂x
,
∂Ej

∂x
,
∂Eϕ′

l

∂x
,
∂Eϕ′′

l

∂x
,
∂Ek

∂x

]
∀ i ∈ N , j ∈ M, (l, k) ∈ L, ϕ ∈ {a, b, c}, x ∈ X (3)

3) Solve the linear system of equations to obtain u(x).

The assumptions made in the closed-form computation of the
voltage SCs are reported below.
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• The voltage of the Slack bus Eϕ
s is fixed and can

therefore, not be influenced by any control variables other
than itself. Therefore,

∂|Eϕ′

s |
∂|Eϕ′

s |
= 1,

∂|Eϕ′′

s |
∂|Eϕ′′

s |
= 1,

∂|Eϕ′

s |
∂x

= 0,
∂|Eϕ′′

s |
∂x

= 0,

∀ x ∈ X (4)

The voltage SCs of the slack node can be computed
directly and is not required to be included in the linear
system of equations. Therefore, the slack voltage is also
not included in the set of controllable variables X .

• Trivially, the partial derivative of any voltage with respect
to itself is 1. This is relevant for the voltage-controllable
nodes: the PV nodes in the AC grid, V nodes in the DC
grid and the IC operating under Vdc −Q mode.

∂|Eϕ∗
i |

∂|Eϕ∗
i |

= 1, ∀i ∈ NPV ,

∂E∗
j

∂E∗
j

= 1, ∀j ∈ MV ,

∂E∗
k

∂E∗
k

= 1, ∀k ∈ LVdcQ (5)

• We assume that the nodal voltage magnitudes of the
voltage-controllable AC, DC and IC nodes are fixed
and cannot be influenced by any other control variable.
Therefore, the partial derivative of these voltages with
respect to the other control variables equals zero.

∂|Eϕ∗
i |

∂x
= 0, ∀i ∈ NPV , ∀x ∈ X \ {|Eϕ∗

i |}

∂E∗
j

∂x
= 0, ∀j ∈ MV , ∀x ∈ X \ {E∗

j }

∂E∗
k

∂x
= 0, ∀k ∈ LVdcQ, ∀x ∈ X \ {E∗

k} (6)

Finally, the SC of a voltage in rectangular coordinates
can be easily transformed to polar coordinates using the
transformations in (7) and (8). In what follows, the SCs will
be computed in the rectangular coordinate system.

∂E

∂x
=

∂E
′

∂x
+ j

∂E
′′

∂x
= E

(
1

|E|
∂|E|
∂x

+ j
∂ ̸ E

∂x

)
∂E

∂x
=

∂E
′

∂x
− j

∂E
′′

∂x
= E

(
1

|E|
∂|E|
∂x

− j
∂ ̸ E

∂x

)
(7)

and,

∂|E|
∂x

=
1

|E|
ℜ
{
E
∂E

∂x

}
and

∂ ̸ E

∂x
=

1

|E|2
ℑ
{
E
∂E

∂x

}
(8)

Furthermore, to improve the clarity of this paper, the
expressions ϕ ∈ {a, b, c} and x ∈ X are omitted from every
equation below, but are valid.

A. Voltage SC in the AC grid

In the generic case, the voltage SCs for the PQ and PV
nodes in the AC grid with respect to x are computed starting
from the power flow equation (1a) and (1b) that relate the
power injection to the nodal voltages.

Pϕ∗
i + jQϕ∗

i = Eϕ
i

∑
n∈N

Yac
i,nEϕ

n, ∀i ∈ NPQ (9)

Next, we take the partial derivative of (9) with respect to x.

∂Pϕ∗
i

∂x
+ j

∂Qϕ∗
i

∂x
= Eϕ

i

∂

∂x

( ∑
n∈N

Yac
i,nEϕ

n

)
+

∂Eϕ
i

∂x

∑
n∈N

Yac
i,nEϕ

n

∀i ∈ NPQ (10)

Using the identities in (7), we can reformulate (10) into its
real and imaginary components. Furthermore, because Eϕ

i in
the first term is not dependent on n, we can bring it into the
summation.

∂Pϕ∗
i

∂x
+ j

∂Qϕ∗
i

∂x
=

∑
n∈N

Eϕ
i Yac

i,n

(∂Eϕ′

n

∂x
− j

∂Eϕ′′

n

∂x

)
+
(∂Eϕ′

i

∂x
− j

∂Eϕ′′

i

∂x

) ∑
n∈N

Yac
i,nEϕ

n (11)

Expression (11) can be simplified by substituting:

Fϕ
i,n = Eϕ

i Yac
i,n and Hϕ

i =
∑

n∈N
Yac

i,nEϕ
n (12)

Substituting (12) in (11) and rearranging the real and
imaginary terms, gives the expression for the active and
reactive power injections that is linear in ∂E

∂x .

∂Pϕ∗
i

∂x
=

(
Fϕ′

i,i +Hϕ′

i

) ∂Eϕ′

i

∂x
+

∑
n∈N\{i}

Fϕ′

i,n

∂Eϕ′

n

∂x

+
(
Fϕ′′

i,i −Hϕ′′

i

) ∂Eϕ′′

i

∂x
+

∑
n∈N\{i}

Fϕ′′

i,n

∂Eϕ′′

n

∂x

∀i ∈ NPQ ∪NPV (13)

∂Qϕ∗
i

∂x
=

(
Fϕ′′

i,i +Hϕ′′

i

) ∂Eϕ′

i

∂x
+

∑
n∈N\{i}

Fϕ′

i,n

∂Eϕ′

n

∂x

+
(
−Fϕ′

i,i +Hϕ′

i

) ∂Eϕ′′

i

∂x
−

∑
n∈N\{i}

Fϕ′′

i,n

∂Eϕ′′

n

∂x

∀i ∈ NPQ (14)

The voltage SCs of the PV nodes in the AC grid are
computed starting from the PF model (1c) that relates the
voltage magnitude to its real and imaginary part.

|Eϕ∗
i |2 = (Eϕ′

i )
2
+ (Eϕ′′

i )
2
, ∀i ∈ NPV (15)

Next, we take the partial derivative of (15) with respect to
x to obtain the linear expression of the voltage sensitivity
coefficients.

|Eϕ∗
i |∂|E

ϕ∗
i |

∂x
= Eϕ′

i

∂Eϕ′

i

∂x
+ Eϕ′′

i

∂Eϕ′′

i

∂x
, ∀i ∈ NPV (16)

B. Voltage SC in the DC grid

The DC grid model distinguishes P nodes (MP ) and V
nodes (MV ). Because of its DC nature, all the electrical
quantities are real: Ej = Ej , ∀j ∈ M.

The power injection in the DC node j is expressed as
presented in the PF model (1d),

P ∗
j = Ej

∑
m∈M

Y dc
j,mEm, ∀j ∈ MP (17)
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The voltage SCs are computed by taking the partial derivative
of equation (17) to x.

∂P ∗
j

∂x
= Ej

∑
m∈M

Y dc
j,m

∂Em

∂x
+

∂Ej

∂x

∑
m∈M

Y dc
j,mEm

∀j ∈ MP (18)

Using the identities in (19), the expression (18) is simplified
to (20)

Fj,m = EjY
dc
j,m and Hj =

∑
m∈M

Y dc
j,mEm (19)

∂P ∗
j

∂x
= (Fj,j +Hj)

∂Ej

∂x
+

∑
m∈M\{j}

Fj,m
∂Em

∂x

∀j ∈ MP (20)

The voltage SCs of the V nodes are formulated in (21).
∂E∗

j

∂x
=

∂Ej

∂x
, ∀j ∈ MV (21)

C. Voltage SC for the Interfacing Converters
Finally, the expressions of the partial derivatives of the

IC’s voltages are formulated to be included in the unified
closed-form SC model. Every IC is connected to a node pair
(k, l) ∈ L, where l is the IC’s AC node and k is the IC’s DC
node. To improve the clarity of the model, first, the system of
equations is derived for balanced grid conditions. In the next
section (IV-D), the SC model is adapted for unbalanced grid
conditions.

For the IC’s operating mode Vdc −Q, the SCs are
computed starting from the PF equations described in (1f) and
(1h). The model relating the controllable DC voltage to the
other AC and DC nodal voltages is given in (22).

ℜ
{
Eϕ

l

∑
n∈N

Yac
(l,n)En

}
= Eϕ∗

k

(
Y dc
(k,k)E

∗
k +

∑
m∈M\{k}

Y dc
(k,m)Em

)
∀(l, k) ∈ LVdcQ (22)

Next, we take the partial derivative of (22) to x. The derivative
of the left-hand side of (22) is computed analogously to (12),
however, the indices have to be suitably adapted to the IC’s
AC node l. The derivative of the right-hand side reads:

∂E∗
k

∂x

(
Y dc
(k,k)E

∗
k +

∑
m∈M\{k}

Y dc
(k,m)Em

)
+

E∗
k

(
Y dc
(k,k)

∂E∗
k

∂x
+

∑
m∈M\{k}

Y dc
(k,m)

∂Em

∂x

)
(23)

Finally, we regroup the terms to obtain a linear relation of
the partial derivative of the controllable DC voltage ∂E∗

k

∂x .
Furthermore, the expression is simplification using (19).(

F(k,k) +Hk

)∂E∗
k

∂x
= −

∑
m∈M\{k}

F(k,m)
∂Em

∂x

+
(
Fϕ′

l,l +Hϕ′

l

) ∂Eϕ′

l

∂x
+

∑
n∈N\{l}

Fϕ′

l,n

∂Eϕ′

n

∂x

+
(
Fϕ′′

l,l −Hϕ′′

l

) ∂Eϕ′′

l

∂x
+

∑
n∈N\{l}

Fϕ′′

l,n

∂Eϕ′′

n

∂x

∀(l, k) ∈ LVdcQ (24)

For the operating mode P−Q, the partial derivatives of
the active power injections of the ICs into the AC grid are
described similarly to (13).

∂Pϕ∗
l

∂x
=

(
Fϕ′

l,l +Hϕ′

l

) ∂Eϕ′

l

∂x
+

∑
n∈N\{i}

Fϕ′

l,n

∂Eϕ′

n

∂x

+
(
Fϕ′′

l,l −Hϕ′′

l

) ∂Eϕ′′

l

∂x
+

∑
n∈N\{l}

Fϕ′′

l,n

∂Eϕ′′

n

∂x

∀l ∈ LPQ (25)

Typically, the ICs operating in P − Q mode, are given an
AC power reference to track. Using the active power balance
at the IC between the AC and the DC network, we can say
that Pϕ∗

l = P ∗
k . Therefore, the partial derivatives of the active

power injected into the DC grid is described in (26)

∂P ∗
k

∂x
= (Fk,k +Hk)

∂Ek

∂x
+

∑
m∈M\{k}

Fk,m
∂Em

∂x

∀k ∈ LVdcQ (26)

The reactive power injection of the IC is described
identically to equation (14), where the indices are suitably
adapted. Therefore, the linear SC model for the reactive power
injection in both the P −Q and the Vdc −Q operating mode
is given by (27).

∂Qϕ∗
l

∂x
=

(
Fϕ′′

l,l +Hϕ′′

l

) ∂Eϕ′

l

∂x
+

∑
n∈N\{l}

Fϕ′′

l,n

∂Eϕ′

n

∂x

+
(
−Fϕ′

l,l +Hϕ′

l

) ∂Eϕ′′

l

∂x
−

∑
n∈N\{l}

Fϕ′

l,n

∂Eϕ′′

n

∂x

∀l ∈ LVdcQ ∪ LPQ (27)

D. Unbalanced loading conditions

For unbalanced loading conditions, the linear SC model
described by equations (13), (14), (16), (20), (21), (24), (25),
(26) and (27) has to be adapted accordingly. The linear
equations for the AC and DC system are written for each
phase individually, and therefore, remain the same. Only the
expressions of the IC’s models have to be adapted. The PLL
of each IC typically synchronizes with the positive sequence
component of the AC grid’s voltage. Therefore, the voltage’s
zero and negative sequence components are zero at the AC
terminal and, therefore, the ICs only inject positive sequence
power.

Using the Fortescue transformation, we decompose the
three-phase voltages and currents into their symmetrical
components as shown in (28) 3. E0+− = [E0 E+ E−]⊺ is
the vector containing the zero, positive and negative sequence
component of the nodal voltage phasor, T is the transformation
matrix, Eabc = [Ea Eb Ec]⊺ and α = e

2
3πj .

E0+− = TEabc with, T =
1

3

[
1 1 1
1 α α2

1 α2 α

]
(28)

For the Vdc −Q operating mode, the PF model is adapted
in (29) for unbalanced loading conditions. Because the ICs

3The symmetrical component transformation requires the assumption that
the lines’ admittance matrices are circular symmetric.
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only inject the positive sequence power, the active power
balance between the AC and DC part is based on the positive
sequence voltage E+.

ℜ
{
E+

l

∑
n∈N

Y ac
(l,n)E

+
n

}
= E∗

k

(
Y dc
(k,k)E

∗
k +

∑
m∈M\{k}

Y dc
(k,m)Em

)
∀(l, k) ∈ LVdcQ (29)

If we take the partial derivative of (29) to x, we obtain a
linear expression in ∂E+

∂x . However, the partial derivative of
the positive sequence voltages are not part of the vector of
unknowns in (3). Therefore, ∂E+

∂x in (29) has to be transformed
again to its phase domain to obtain a linear expression
dependent only on the unknowns of (3).
We transform the identities F and H to their sequence domain
as shown in (30). Because of the unbalanced nature, the
three phases cannot be treated individually anymore, but the
electrical quantities become vectors. Therefore, the identities
F0+−

i,n and H0+−
i are 3-by-3 matrices where every row refers

to the zero, positive and negative sequence components.
Furthermore, we use the notation where F0

i,n is the first row
related to the homopolar sequence, F+

i,n is the second row
related to the positive sequence and F−

i,n is the third row
related to the negative sequence. The partial derivative of the
vector Eabc to x is equal to ∂Eabc

∂x =
[
∂Ea

∂x , ∂Eb

∂x , ∂Ec

∂x

]⊺
.

F0+−
i,n = T−1diag(Yac

i,nTEabc
i )

H0+−
i = T−1diag(

∑
n∈N

Yac
i,nTEabc

i ) (30)

Next, using the above identities, a linear expression of the
phase-domain partial derivatives, ∂Eϕ

∂x , is formulated for the
ICs operating in Vdc −Q mode (31).(

F(k,k) +Hk

)∂E∗
k

∂x
= −

∑
m∈M\{k}

F(k,m)
∂Em

∂x

+
(
F+′

l,l + H+′

i

)∂Eabc′

l

∂x
+
( ∑
n∈N\{l}

F+′

l,n

)∂Eabc′

n

∂x

+
(
F+′′

l,l −H+′′

i

)∂Eabc′′

l

∂x
+

( ∑
n∈N\{l}

F+′′

l,n

)∂Eabc′′

n

∂x

∀(l, k) ∈ LVdcQ (31)

Furthermore, because the ICs only inject the positive sequence
powers, the negative and zero sequence powers are zero.
As explained in [20], formulating the linear system of
equations using the partial derivative of the zero and negative
power injection, results in the trivial expression and thus
an undetermined problem. Therefore, the derivation of the
SC model starts from expressions (1i) and (1j) that are
reformulated into the phase-domain as shown in (32):

E0′

l = T0′Eabc′

l −T0′′Eabc′′

l = 0, (32a)

E−′

l = T−′
Eabc′

l −T−′′
Eabc′′

l = 0, (32b)
∀l ∈ LVdcQ ∪ LPQ

where e.g. T0′ refers to the row of the transformation matrix
that corresponds to the zero sequence. Taking the partial
derivative of (32) gives the linear expression:

T0′ ∂E
abc′

l

∂x
−T0′′ ∂E

abc′′

l

∂x
= 0, (33a)

T−′ ∂Eabc′

l

∂x
−T−′′ ∂Eabc′′

l

∂x
= 0, (33b)

∀l ∈ LVdcQ ∪ LPQ

For the P−Q operating mode, equation (25) is similarly
adapted for unbalanced conditions. In the case that the IC
is only injecting positive sequence power, SC model for the
active power injection consists of (34) and the linear equations
in (33) to describe the zero and negative power injection.

∂P p∗
l

∂x
=

(
F+′

l,l + H+′

i

)∂Eabc′

l

∂x
+
( ∑
n∈N\{l}

F+′

l,n

)∂Eabc′

n

∂x

+
(
F+′′

l,l −H+′′

i

)∂Eabc′′

l

∂x
+

( ∑
n∈N\{l}

F+′′

l,n

)∂Eabc′′

n

∂x

∀l ∈ LPQ (34)

The reactive power injections of both operation modes of
the IC under unbalanced conditions is formulated in (35).

∂Qϕ∗
l

∂x
=

(
F+′′

l,l + H+′′

i

)∂Eabc′

l

∂x
+
( ∑
n∈N\{l}

F+′′

l,n

)∂Eabc′

n

∂x

+
(
F+′

l,l −H+′

i

)∂Eabc′′

l

∂x
+

( ∑
n∈N\{l}

F+′

l,n

)∂Eabc′′

n

∂x

(35a)

T0′′ ∂E
abc′

l

∂x
+T0′ ∂E

abc′′

l

∂x
= 0 (35b)

T−′′ ∂Eabc′

l

∂x
+T−′ ∂Eabc′′

l

∂x
= 0 (35c)

∀l ∈ LVdcQ ∪ LPQ

In the specific case that the IC control also allows
intentionally negative power injection, equations (34) and (35)
are reformulated for the negative sequence to replace (33b) and
(35c).

E. Linear system of equations

The closed-form SC model for hybrid AC/DC networks is
formulated as equations (13), (14), (16), (20), (21), (24), (26),
(31), (33), (34) and (35). Regrouping these equations results
in a system of equations that is linear with respect to the
partial derivatives of the voltage (3). The model is formulated
as A u(x) = b(x).

The matrix A is defined in (36) as a 7 × 7 block matrix, one
for each type of node in the AC grid, DC grid and ICs. The
rows represent the linearized PF equations derived above. The
columns represent the individual terms of each linearized PF
equation, grouped per node type. The matrix A only depends
on the state of the grid i.e., the nodal voltage at every node,
and the admittance matrix. Furthermore, it is independent of
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the control variables x ∈ X and thus has to be computed
only once. We do not give explicitly the expressions for Aij

since they are trivially derived from (13), (14), (16), (20), (21),
(24), (26), (31), (33), (34) and (35). In Appendix A, a detailed
numerical example of the construction of the matrix A is given
for a 5-node example grid.

(36)

The vector b, shown in (37), is unique for every control
variable x. The vector is constructed by substituting x in
the left-hand side of (13), (14), (16), (20), (21), (24), (26),
(31), (33), (34) and (35) for every control variable. Because
the construction of b(x) is unique for every control variable,
the different vectors are not be explicitly given due to
space limitations. However, a numerical example is given in
Appendix A and the full model has been made publically
available on https://github.com/DESL-EPFL.

(37)

Corollary 1: The analytical model for the computation of
the SCs for hybrid AC/DC grids, given by equations (13),
(14), (16), (20), (21), (24), (26), (31), (33), (34) and (35)
has a unique solution in any operating point where the PF
model’s Jacobian of the hybrid AC/DC network is invertible.
This follows directly from the theorem in [23] that proves the
uniqueness of the solution of the SCs for a solely AC network.
The proof of the corollary is given in Appendix B.

It is interesting to mention that the SCs are inherently a
property of the system. They are only dependent on the state
of the network, the network’s admittance matrix and the type
of node, i.e. if the control variable is a voltage or a power.

Furthermore, the converter and resource limits are not
influencing the computation of the SCs. This is because the
PF model, used to derive the SCs, can be represented as
a continuous hyperplane in the n-dimensional space, that is

locally linearized. Therefore, the converter limits are simply a
constraint that can be applied a posteriori in this n-dimensional
space to upperbound the converters and resource setpoints, and
has accordingly no impact on the SCs.

F. Current sensitivity coefficients

Using the voltage SCs and assuming the knowledge of
the systems admittance matrix, we derive all other SCs,
such as the branch currents, current injections, sequence
voltages/currents and line losses. Below, the branch current
sensitivity coefficients are computed using the Π-equivalent
line model (see Figure 2). The AC current flow between the
buses i and n and the DC current flow between buses j and
m is expressed as:

Ii,n = Y ac
(i,n),L

(
Ei − En

)
+ Y ac

(i,n),Ti
Ei,

Ij,m = Y dc
(j,m),L (Ej − Em) , (38)

where the complex voltage SC are computed using (7).
Therefore, the branch current sensitivity coefficients are
described in (40).

∂Ii,n
∂x

=Y ac
(i,n),L(

∂Ei

∂x
− ∂En

∂x
) + Y ac

(i,n),Ti

∂Ei

∂x
(39)

∂Ij,m
∂x

=Y dc
(j,m),L(

∂Ej

∂x
− ∂Em

∂x
) (40)

V. NUMERICAL VALIDATION

The proposed analytical method is benchmarked against two
different numerical methods: 1) a perturb-and-observe-based
method and 2) a method based on the inversion of the Jacobian
of the solved load flow4.

The perturbation-based validation method follows a perturb-
and-observe strategy where a small perturbation is individually
applied to each controllable variable. This process is repeated
for every node in the system, i.e. all the PQ-nodes, PV-nodes,
P-nodes, V-nodes and the IC-nodes. The state of the network is
computed before and after the perturbation and the numerical
SCs are derived as in (41).

∆E
′

i

∆x
=

Et0
i − Et1

i

xt0 − xt1
∀x ∈ X , i ∈ N (41a)

∆E
′

j

∆x
=

Et0
j − Et1

i

xt0 − xt1
∀x ∈ X , j ∈ M, (41b)

where t = t0 is before the perturbation and t = t1 is after
when the system reaches its post-perturbation steady-state5.

The second validation method is based on the inversion of
the Jacobian of the solved load flow. As described in Section I,
the Jacobian-based method only allows to validate the SCs of
the power-dependent nodes (active and reactive). The SC of the
voltage-dependent nodes, i.e. where x = El ∀l ∈ LVdcQ, x =
Ej ∀j ∈ MP and x = |Ei| ∀i ∈ NPV can only be validated
using the perturbation-based method. The two methods are

4Because no other method for the computation of the SC for hybrid
multiterminal AC/DC networks has been presented in the literature, we cannot
benchmark our proposed method against any other method.

5The value of t1 is case-dependent and assessed by the user as a function
of the perturbation type and its location.

https://github.com/DESL-EPFL
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considered as the ’ground truth’ for the benchmarking of the
proposed analytical method. The metrics used to quantify the
accuracy levels of the proposed method are the RMSE (root
mean squared error) and the maximum error of all voltage SCs
either on the real or imaginary part. The numerical validation is
performed on a 26-node hybrid AC/DC low-voltage microgrid
under balanced and unbalanced loading conditions (Section
V-A) and on a multiterminal HVDC grid that interconnects
two non-synchronous AC transmission grid (Section V-B).

A. Hybrid AC/DC microgrid

The topology of the 26-node hybrid AC/DC grid is shown
in Figure 3. The grid consists of the low voltage AC CIGRE
benchmark grid [24] that is suitably extended with a DC grid.
The AC network consists of 18 nodes and has a base voltage of
400V. The DC grid consists of 8 nodes and has a base voltage
of 800V. The base power for both networks is 100 kW. Table
II summarises the node types and IC’s operating modes of the
hybrid network. The line parameters of the grid are shown in
Table III. Further information about the hybrid grid and its
resources is given in [25].

B20

B01B02B03

B04B05

B06

B07
B14

B08B09

B10

B12B13

B11

AC

DC
B15

B18

B17

B16

B22

B19

B21

B26

B23

B25

B24

����

����

����

AC

DC

AC

DC

AC

DC

����

AC grid

DC grid

Fig. 3: Topology of the hybrid 26-node AC/DC microgrid.

TABLE II: Node types in the hybrid AC/DC microgrid

AC DC
Bus Type Bus # Bus Type Bus #
PQ 2-14 P 24-26
VSC (Edc −Qac) 15,18 VSC (Edc −Qac) 19,20
VSC (Pac - Qac) 16,17 VSC (Pac - Qac) 21,22
AC slack 1

The hybrid microgrid with the different ICs is modelled in a
time-domain model in the EMTP-RV simulation environment6

[26]. The loads in the AC and DC networks are represented
as constant power loads. The boundary conditions of the
simulation, i.e. the power injections in the P(Q) nodes and the
voltage profile in (P)V and IC nodes, are sampled from real
measurements of the hybrid AC/DC microgrid that is available

6The simulation model is made publicly available on the DESL GitHub
pagehttps://github.com/DESL-EPFL

TABLE III: Line parameters of the hybrid 26-node AC/DC
microgrid.

Line R (Ω/km) X (Ω/km) B (µS/km) Amp. (A) Length (m)
1 - 2 0.27 0.119 100.5 207 70
2 - 3 3.30 0.141 47.1 44 30
2 - 4 0.27 0.119 100.5 207 35
4 - 5 0.78 0.126 66.0 108 30
4 - 6 1.21 0.132 72.3 82 105
6 - 7 1.21 0.132 72.3 82 30
4 - 8 0.55 0.126 81.7 135 70
8 - 9 0.27 0.119 100.5 207 30
8 - 10 1.21 0.132 72.3 82 105
10 - 11 3.30 0.141 47.1 44 30
10 - 12 1.21 0.132 72.3 82 35
12 - 13 1.21 0.132 72.3 82 30
7 - 14 0.78 0.126 66.0 108 38
9 - 15 0.55 0.122 81.7 135 114.5
13 - 16 0.55 0.122 81.7 135 114.5
11 - 17 0.55 0.122 81.7 135 114.5
7 - 18 0.55 0.122 81.7 135 114.5
19 - 23 0.075 0.089 91.7 45 250
20 - 24 0.075 0.089 91.7 45 500
21 - 25 0.075 0.089 91.7 45 1000
22 - 26 0.075 0.089 91.7 45 2000
23 - 26 0.075 0.089 91.7 45 250
24 - 25 0.075 0.089 91.7 45 500
25 - 23 0.075 0.089 91.7 45 1000

at the Distributed Electrical System Laboratory (DESL) at the
EPFL. The proposed SC computation method is validated for
balanced and unbalanced loading conditions. The unbalanced
conditions are generated by injecting a difference of 0.5 p.u.
between the phases of bus B09 .

In the perturb-and-observe-based method, the ground truth
is obtained using (41) where the setpoint of the EMTP-RV
simulation are individually perturbed with ∆400W, ∆Q =
400VAr and ∆V = 4V. The Jacobian matrix is computed
using the PF algorithm presented in Section III for the same
boundary conditions as the EMTP-RV model.

The results of the numerical validation are presented in
Figure 4 as the distribution of the error between the proposed
analytical model and the numerical methods (perturbation-
based and Jacobian-based). The error distributions of certain
nodes in the AC network, DC network and IC are shown. The
colored bars represent the 80% quantiles and the maximum
error is indicated. The balanced case is shown in blue, and
the case with the unbalanced loading conditions is shown in
yellow.

Fig. 4: 80% quantiles of the error of the proposed SC computation
method for the hybrid 26-node microgrid. All values are in p.u.

It can be observed that the perturbation-based validation has
a significantly larger error than the Jacobian-based validation.
This is because a large perturbation value is needed due to
the truncation error of the time-domain simulation. Because
the SCs are more accurate in the region close to the

https://github.com/DESL-EPFL
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current operating point, the results are less accurate for larger
perturbation values. Nonetheless, the analytical solution has an
RMSE in the order of 10−4 p.u. and max error in the order of
10−3 p.u. Therefore, we can assert that the analytical method
for the computation of the voltage SCs in hybrid AC/DC
networks provides reliable estimates.

The computation of the voltage SCs takes on average 60ms
on a 2020 Apple Macbook Pro with an Intel Quad-Core i7
processor and 32 GB of RAM.

B. Multiterminal HVDC network

The proposed SC method is further validated on a
large-scale transmission system that consists of two non-
synchronous AC networks that are connected by two
multiterminal HVDC grids. The networks topology, that has
been originally proposed in [27], is given in Figure 5.

The two considered AC networks are the IEEE 57-bus and
IEEE 14-bus reference systems. Both AC systems have a base
voltage of 100 kV and a base power of 100MVA. The AC
networks are interfaced using two separate HVDC networks
of 7 nodes and 3 nodes, as shown in Figure 5. Both DC grids
have a base voltage of 200 kV and a base power of 100MVA.

The proposed SC computational method is validated using
the perturbation-based method where the PF of is recomputed
after a small perturbation of 1 × 10−7 p.u. is applied. The
perturbation is performed for every node individually. The
results are summarised for each node type, i.e. PQ, PV ,
ICPQ, ICVdcQ and Pdc in Table IV. The RMSE and the
maximum error are both in the order of 10−8. Comparing these
results to the validation for the 26-node hybrid microgrid, the
error is significantly smaller. This is because the perturbation
value is small and in the limit where the perturbation ϵ → 0,
the numerical approximation in (41) becomes equal to the
analytical closed from SC. The computation of the SC takes
around 140ms.

AC

DC

AC

DC

AC

DC

AC

DC

DC
AC

DC
AC

DC
AC

AC

DC

HVDC 1

HVDC 2

AC 2 -
IEEE 14

AC 1 -
IEEE 57

IC 1

IC 2

IC 3

IC 6

IC 7

IC 4

IC 5

IC 8

Fig. 5: Topology of the two multiterminal HVDC grids interfacing
two non-synchronous AC grids. The interfacing converters in blue
regulate the DC voltage

Node type Network RMSE [p.u.] Max error [p.u.]
PQ AC 1.72e-8 22.6e-8
PV AC 1.85e-8 11.2e-8
P - Q IC 1.45e-8 6.21e-8
Vdc - Q IC 1.50e-8 6.22e-8
Pdc DC 1.48e-8 5.44e-8

TABLE IV: The RMSE and maximum error of the proposed
SC computation method for the multiterminal HVDC transmission
network

VI. CONCLUSION

In this paper, we present a method for the analytical
computation of the power flow SCs in balanced and
unbalanced hybrid AC/DC networks. The SCs, defined as the
partial derivatives of the nodal voltage with respect to the
power injections, allow to formulate the grid constraints in
the OPF problem in a fully linear way. Therefore, leveraging
the real-time control of hybrid AC/DC networks. The proposed
method is inspired by an existing SC computation process of
solely AC networks and extended for hybrid networks using a
unified PF model that accounts for the AC grid, DC grid and
the various operation modes of the ICs. The uniqueness of
the proposed SCs computational model is shown in a formal
proof. The model is numerically validated on a 26-node hybrid
AC/DC microgrid and on a multiterminal HVDC network that
links two asynchronous AC transmission grids. It is shown
that the accuracy of the SCs for the systems is in the order of
10−4 p.u. and 10−8 p.u., respectively. The computation time
is around 10 to 100 ms and, therefore, within the limits for
time-critical control applications.

APPENDIX A
SIMPLIFIED GRID EXAMPLE

To demonstrate the model, we will compute the sensitivity
coefficients of a small hybrid example grid containing one
PQ-node in the AC grid, one P-node in the DC grid, one
interfacing converter and one AC slack node. The grid is
shown in Figure 6. The line parameters and nodal voltage
and power injections are given in Table V. The base values
are the same as for the hybrid microgrid of Section V-A.

AC

DC

B1 B2 B3 B4 B5

Fig. 6: Topology of the simplified example grid

Line R (Ω) X (Ω) B (µS)
1 - 2 0.019 8.3e−3 7.1

2 - 3 0.1 4.2e−3 1.4

4 - 5 0.018 0.022 11.3

Bus Nodal Voltage Power inj.
1 1 0.15 + 0.2i

2 0.997̸ 1.6e−3 0.4 + 0.2i

3 0.963̸ 26e−3 −0.52− 0.4i

4 1 0.52

5 0.968 −0.5

TABLE V: Line parameters, nodal voltages and power injections of
the considered grid.

The SCs are computed using the system of equations
composed by (13), (14), (16), (20), (21), (24), (26), (31),
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3

Fϕ′
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(42)

(33), (34) and (35). The system of equations of the 5-node
hybrid grid is given in (V). The structure of A matrix and
the b(x) vector is described in (36) and (37). The vector b(x)
is dependent on the controllable variable x, while the matrix
A is constant. The variables F and H are straight-forward
computed using the systems admittance matrix and the grids
state as reported in (12). The SCs are analytically computed
by solving this system of equations for every value of x.

The sensitivity matrices with respect to the active power
(KP ), the reactive power (KQ) and nodal voltages (KV )
are given in (43). The physical meaning of these sensitivity
matrices is that if, e.g. the active power in node 2 increases by
∆P , the voltage in node 2 will increase by (0.0120+0.0052i)·
∆P p.u. and in node 3 by (0.0123 + 0.0048i) ·∆P p.u. The
voltage of the other nodes remains unchanged as these are
voltage-regulated nodes.

KP =


0 0 0 0 0
0 0.0120 + 0.0052i 0 0 0.0137 + 0.0060i
0 0.0123 + 0.0048i 0 0 0.0853 + 0.0084i
0 0 0 0 0
0 0 0 0 0.069

 ,

KQ =


0 0 0 0 0
0 0.0053− 0.0119i 0.0059− 0.0116i 0 0
0 0.0058− 0.0116i 0.0126− 0.0734i 0 0
0 0 0 0 0
0 0 0 0 0

 ,

KV =


0 0 0 0 0
0 0 0 0.0005 + 0.0002i 0
0 0 0 0.0028 + 0.0003i 0
0 0 0 1 0
0 0 0 1.0345 0

 (43)

These analytically computed SCs are compared with
numerical ones that are obtained by perturbating the
controllable variables. The magnitude of the perturbation is
1 × 10−7. The results, represented as the RMSE and the
maximum error between the analytically and the numerically
computed voltage SCs, are shown in Table VI.

Ctrl. var. Network RMSE [p.u.] Max error [p.u.]
P2 AC 1.48e−8 3.18e−8

Q2 AC 0.47e−8 0.75e−8

P5 IC 0.41e−8 0.75e−8

E4 IC 2.56e−8 4.53e−8

Q3 DC 1.67e−8 3.47e−8

TABLE VI: The RMSE and maximum error of the analytical
computed SC for the different node types for the simplified grid
example

APPENDIX B
PROOF OF UNIQUENESS

The system of equations (13), (14), (16), (20), (21), (24),
(26), (31), (33), (34) and (35) is linear with respect to the

partial derivatives of the real and imaginary part of the nodal
voltage. Therefore, the uniqueness of the solution, i.e. the
voltage SCs, can be proved by showing that the homogeneous
system of equations only has the trivial solution. The corollary
is based on the main theorem in [23]. Because of space
limitations, the proof is only shown for the system under
balanced loading conditions.

Similarly to what has been done in [23], the linear system
of equations given in Section IV can be written as in (44)
where ∆′ and ∆′′ are the unknown real and imaginary partial
derivatives of the nodal voltages (in this case for both the AC
and DC grids).

0 = Hϕ′

i ∆′
i +

∑
n∈N

Fϕ′

i,n∆
′
n −Hϕ′′

i ∆′′
i +

∑
n∈N

Fϕ′′

i,n∆
′′
n

∀i ∈ NPQ ∪NPV (44a)

0 = Hϕ′′

i ∆′
i +

∑
n∈N

Fϕ′

i,n∆
′
n +Hϕ′

i ∆′′
i −

∑
n∈N

Fϕ′′

i,n∆
′′
n

∀i ∈ NPQ (44b)

0 = Eϕ′

i ∆′
i + Eϕ′′

i ∆′′
i , ∀i ∈ NPV (44c)

0 = Hj∆j +
∑

m∈M
Fj,m∆m ∀j ∈ MP (44d)

0 = ∆j , ∀j ∈ MV (44e)
0 = Hk∆k +

∑
m∈M

Fk,m∆m ∀k ∈ LPQ (44f)

0 = Hϕ′

i ∆
′

l +
∑

n∈N
Fϕ′

l,n∆
′

n −Hϕ′′

i ∆
′′

l +
∑

n∈N
Fϕ′′

l,n∆
′′

n

∀l ∈ LPQ, (44g)

0 = Hϕ′′

i ∆
′

l +
∑

n∈N
Fϕ′′

l,n∆
′

n +Hϕ′

i ∆
′′

l −
∑

n∈N
Fϕ′

l,n∆
′′

n

∀l ∈ LEdcQ ∪ LPQ (44h)

0 = Hϕ′

i ∆
′

l +
∑

n∈N
Fϕ′

l,n∆
′

n −Hϕ′′

i ∆
′′

l +
∑

n∈N
Fϕ′′

l,n∆
′′

n

−
∑

m∈M\{k}
Fk,m∆m, ∀(l, k) ∈ LEdcQ (44i)

We want to show that the only solution to this system is
the trivial one i.e., ∆′ = ∆′′ = 0. Let’s consider two
hybrid AC/DC networks with the same topology and the same
parameters i.e., with identical Yac and Ydc. The voltages in
network I are given in (45) and the voltages in network II are
given in (46) where ϵ is a positive real number.

EI
i = Ei + ϵ∆i, ∀i ∈ NPQ ∪NPV (45a)

EI
j = Ej + ϵ∆j , ∀j ∈ MP (45b)

E1
l = El + ϵ∆l, ∀l ∈ LPQ ∪ LVdcQ (45c)

EI
k = Ek + ϵ∆k, ∀k ∈ LPQ (45d)

EI
k = Ek, ∀k ∈ LVdcQ (45e)

EI
j = Ej , ∀j ∈ MV (45f)

EII
i = Ei − ϵ∆i, ∀i ∈ NPQ ∪NPV (46a)
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EII
j = Ej − ϵ∆j , ∀j ∈ MP (46b)

EII
l = El − ϵ∆l, ∀l ∈ LPQ ∪ LVdcQ (46c)

EII
k = Ek − ϵ∆k, ∀k ∈ LPQ (46d)

EII
k = Ek, ∀k ∈ LVdcQ (46e)

EII
j = Ej , ∀j ∈ MV (46f)

Using (1) we can formulate the PF equations for the two
networks. We use the following notation for the complex AC
voltages: EI

i = EI′

i + jEI′′

i and the identity F , defined
in (12), is reformulated as F I,ϕ

i,n = Fϕ
i,n + ϵF∆,ϕ

i,n , where
F∆

i,n = ∆iYac
i,n. The PF equations of the first network are

given in (47) and for the second network in (48). The equations
are constructed starting from (1), the voltages (45) and (46)
are substituted, and the equations are split into their real and
imaginary part. Next, we subtract the PF models in (47) and
(48) for network I and II to obtain (49).

P I,ϕ
i − P II,ϕ

i = ∀i ∈ NPQ ∪NPV

2ϵ
(
Hϕ′

i ∆′
i +

∑
n∈N

Fϕ′

i,n∆
′
n −Hϕ′′

i ∆′′
i +

∑
n∈N

Fϕ′′

i,n∆
′′
n

)
(49a)

QI,ϕ
i −QII,ϕ

i = ∀i ∈ NPQ

2ϵ
(
Hϕ′′

i ∆′
i +

∑
n∈N

Fϕ′

i,n∆
′
n +Hϕ′

i ∆′′
i −

∑
n∈N

Fϕ′′

i,n∆
′′
n

)
(49b)

|EIϕ
i |2 − |EIIϕ

i |2 = 2ϵ
(
Eϕ′

i ∆′
i + Eϕ′′

i ∆′′
i ,

)
, ∀i ∈ NPV (49c)

P I
j − P II

j = 2ϵ
(
Hj∆j +

∑
m∈M

Fj,m∆m

)
, ∀j ∈ MP (49d)

P I
k − P II

k = 2ϵ
(
Hk∆k +

∑
m∈M

Fk,m∆m

)
, ∀k ∈ LPQ (49e)

P I,ϕ
l − P II,ϕ

l = ∀l ∈ LPQ

2ϵ
(
Hϕ′

i ∆
′

l +
∑

n∈N
Fϕ′

l,n∆
′

n −Hϕ′′

i ∆
′′

l +
∑

n∈N
Fϕ′′

l,n∆
′′

n

)
(49f)

QI,ϕ
l −QII,ϕ

l = ∀l ∈ LEdcQ ∪ LPQ

2ϵ
(
Hϕ′′

i ∆
′

l +
∑

n∈N
Fϕ′′

l,n∆
′

n +Hϕ′

i ∆
′′

l −
∑

n∈N
Fϕ′

l,n∆
′′

n

)
(49g)

(47h) − (48h) = ∀(l, k) ∈ LEdcQ

2ϵ
(
Hϕ′

i ∆
′

l +
∑

n∈N
Fϕ′

l,n∆
′

n −Hϕ′′

i ∆
′′

l +
∑

n∈N
Fϕ′′

l,n∆
′′

n

−
∑

m∈M\{k}
Fk,m∆m

)
(49h)

By substituting (44) into (49), it follows that:

P I,ϕ
i = P II,ϕ

i ∀i ∈ NPQ ∪NPV ,

QI,ϕ
i = QII,ϕ

i ∀i ∈ NPQ,

P I
j = P II

j ∀j ∈ MP ,

P I
k = P II

k ∀k ∈ LPQ,

P I,ϕ
l = P II,ϕ

l ∀l ∈ LPQ,

QI,ϕ
l = QII,ϕ

l ∀l ∈ LPQ ∪ LVdcQ

|EIϕ
i | = |EIIϕ

i | ∀i ∈ NPV ,

EI
j = EII

j ∀j ∈ MV ,

EI
k = EII

k ∀k ∈ LVdcQ. (50)

Therefore, network I and II have the same power injections
in the power-controllable nodes and the same voltages at the
voltage-controllable nodes. According to the hypothesis in
Corollary 1, the PF Jacobian, i.e. the derivative of the unified
PF equations, is invertible. Next, we apply the inverse function
theorem that states that the PF equations are also invertible in a

neighbourhood around the current operating point. Assume we
take an ϵ arbitrary small so all the voltages EI and EII belong
to this neighbourhood with a one-to-one mapping between the
voltages and the power injections. Because we showed before
in (49) that the active and reactive power injections are exactly
the same in network I and network II, the voltages EI and
EII must also be exactly the same. Therefore, (45) = (46), and
thus ∆i,∆j ,∆l,∆k = 0 for all i ∈ N , j ∈ M, (l, k) ∈ L.
Therefore, the homogeneous system of equations in (44) only
has the trivial solution and the uniqueness of the solution is
proved.
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