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Abstract

Turning pass-through network architectures into
iterative ones, which use their own output as in-
put, is a well-known approach for boosting perfor-
mance. In this paper, we argue that such architec-
tures offer an additional benefit: The convergence
rate of their successive outputs is highly corre-
lated with the accuracy of the value to which they
converge. Thus, we can use the convergence rate
as a useful proxy for uncertainty. This results in
an approach to uncertainty estimation that pro-
vides state-of-the-art estimates at a much lower
computational cost than techniques like Ensem-
bles, and without requiring any modifications to
the original iterative model. We demonstrate its
practical value by embedding it in two application
domains: road detection in aerial images and the
estimation of aerodynamic properties of 2D and
3D shapes.
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1. Introduction
It has long been known that using deep networks to recur-
sively refine predictions is often beneficial. This has been
demonstrated for semantic segmentation (Zhou et al., 2018;
Wang et al., 2019), pose estimation (Newell et al., 2016),
depth estimation (Zhang et al., 2018a), multi-task learn-
ing (Xu et al., 2018), delineation (Mosińska et al., 2018),
natural language processing (A.Vaswani et al., 2017; Devlin
et al., 2018), among others. Given a network f parame-
terized by weights Θ and takes as input a vector x, which
can represent an image or a text, and produces an output
y, the output of the recursion’s ith iteration can be writ-
ten as yi = fΘ(x,yi−1), where yi−1 is the output of the
previous iteration. This recursion often yields improved
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Figure 1. Uncertainty in recursive models. Such models use their
initial predictions as inputs to produce subsequent predictions. We
display the output of three consecutive iterations of a network
trained to compute distance maps to road pixels. (Top:) All roads
are clearly visible. The three maps are similar and the per pixel
variance is low. (Bottom:) The road in the red square is tree-
covered. It is eventually detected properly but the variance is high.

performance over non-iterative methods using the same net-
work architectures (Shen et al., 2017; Zhang et al., 2018b;
Wang et al., 2019; Oner et al., 2021; 2022), while requir-
ing less labeled data for training purposes (Mosińska et al.,
2018). In essence, giving a previous output as input to the
network sets up a virtuous circle in which the model receives
relevant spatial attention signals that serve as priors and help
generate improved predictions. For example, in the road de-
lineation example of Fig. 1, the presence of road fragments
with gaps in them cues the network to the possible existence
of connecting segments. These ideas been explored before
the advent of Deep Learning, for example using Tensor Vot-
ing (Medioni et al., 2000), but incorporating them into deep
networks has given them a new lease on life.

The key insight of this paper is that how fast this refinement
occurs is closely connected to the accuracy of the prediction.
A hard sample typically requires more refinement iterations
than an easy one. Thus, convergence speed can be used as a
proxy for certainty. This yields an approach to uncertainty
estimation that is on par with Deep Ensembles (Lakshmi-
narayanan et al., 2017), while delivering increased accuracy
at a much lower computational cost and without requiring
any modifications to the original iterative model. This makes
our approach practical and easy to deploy across many dif-
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ferent applications. This is significant because Ensembles
is often considered to be one of the very best uncertainty
estimation methods whose only severe drawback is its high
computational cost.

More specifically, we derive uncertainty measures by ana-
lyzing the variance in outputs from consecutive iterations of
an iterative model, where higher variance indicates greater
uncertainty. We demonstrate that this is fast, accurate, and
easy to deploy in two very different application domains,
road detection in aerial images and the estimation of aero-
dynamic properties of 2D and 3D shapes. These two appli-
cations feature unique sets of challenges, which underscore
the versatility and broad applicability of our approach.

Our contributions are as follows:

• We introduce an effective method for estimating un-
certainty in iterative models. It relies on consistency
across consecutive predictions and does not require
modifying the network architectures.

• We provide extensive experiments and analyses to
demonstrate the correctness and effectiveness of the
proposed method. In particular, we show that going
from a toy example to our two complex real-world sce-
narios, there remains a consistent correlation between
convergence speed and prediction accuracy.

• Our method, once embedded in a Bayesian Optimiza-
tion framework, delivers state-of-the-art accuracy and
predictive uncertainty quantification in both road detec-
tion from aerial images and 2D/3D shape optimization.

The code will be made publicly available.

2. Related Work
2.1. Uncertainty Estimation

Uncertainty Estimation (UE) aims at accurately evaluat-
ing the reliability of a model’s predictions. Deep Ensem-
bles (Lakshminarayanan et al., 2017), MC-Dropout (Gal
& Ghahramani, 2016), and Bayesian Networks (Mackay,
1995) have emerged as the most influential approaches.

Deep Ensembles involve training multiple networks, start-
ing from different initial conditions. They are noted for the
potential diversity of their predictions, attributable to ran-
domness from weight initialization, data augmentation, and
stochastic gradient updates. This diversity is central to their
effectiveness (Perrone & Cooper, 1995; Fort et al., 2019).
In many situations, they deliver more reliable uncertainty es-
timates than other methods (Ovadia et al., 2019; Gustafsson
et al., 2020; Ashukha et al., 2020; Postels et al., 2022). They
therefore remain the leading technique, despite the high
computational cost of training several networks instead of a

single one and of performing several forward passes at infer-
ence time. One of the active research directions is reducing
the training and inference time of ensembling methods, as
well as their memory requirements. For example, Antorán
et al. (2020) try to emulate ensemble predictions by produc-
ing several outputs based on features at different levels of
the model, and Daxberger et al. (2021) perform Bayesian
inference only on a subset of the model’s weights chosen
through a pruning-like procedure.

Among the other techniques, MC-Dropout involves ran-
domly zeroing out network weights and assessing the effect
and is popular due to its lower computational cost. Un-
fortunately, its estimates remain less reliable than those of
Deep Ensembles (Ashukha et al., 2020), even though there
has been recent attempts at improving it (Wen et al., 2020;
Durasov et al., 2021). Similarly, Bayesian Networks rarely
outperform Deep Ensembles (Blundell et al., 2015; Graves,
2011; Hernández-Lobato & Adams, 2015; Kingma et al.,
2015).

All the above methods are sampling-based and require sev-
eral forwards passes at inference time. Thus, when a fast
response time is required, as in robotics control, sampling-
free approaches with single-pass inference become of in-
terest. However, deploying them often requires significant
modifications to the network’s architecture (Postels et al.,
2019), substantial changes to the training procedures (Ma-
linin & Gales, 2018), limiting their application to very spe-
cific tasks (Amersfoort et al., 2020; Malinin & Gales, 2018;
Mukhoti et al., 2021), or reducing the quality of the uncer-
tainty estimate (Postels et al., 2022; Ashukha et al., 2020).
As a result, they have not gained as much traction as MC-
Dropout and Ensembles.

2.2. Iterative Refinement Methods

Iterative refinement techniques have been for many differ-
ent purposes (Mnih & Hinton, 2010; Pinheiro & Collobert,
2014; Tu & Bai, 2009; Shen et al., 2017). This incorporates
surrounding context into the prediction (Seyedhosseini et al.,
2013), proving particularly useful for tasks such delineation
(Sironi et al., 2016), human pose estimation (Newell et al.,
2016), semantic segmentation (Zhang et al., 2018b; Wang
et al., 2019), depth estimation (Durasov et al., 2019; Xu
et al., 2018), and multi-task learning (Durasov et al., 2022b).
In the first use case of this work, we build upon the recursive
networks used in (Mosińska et al., 2018) to delineate roads
by computing distance maps to the road pixels, as shown in
Fig. 1. The network is a UNet (Ronneberger et al., 2015)
that takes as input the image and the distance map computed
at the previous iteration, starting from a blank one. However,
whereas the typical focus of delineation papers is to increase
performance in terms of a number of delineation metrics,
ours is to provide an uncertainty estimate on the detections

2



Enabling Uncertainty Estimation in Iterative Neural Networks

without sacrificing performance. In the second use case, we
use an iterative model with Graph Neural Networks (Monti
et al., 2017; Baqué et al., 2018) for 2D and 3D shape opti-
mization. We show that uncertainty measures can be used
to effectively select out-of-distribution data to enhance the
training dataset.

3. Method
Let us consider a recursive network fΘ, where Θ are the
network weights. fΘ takes as input a vector x—an image or
a 3D shape in the examples presented in the results section—
and its own output y—a segmentation image or a pressure
field in our examples. At the ith iteration, we have

yi = fΘ(x,yi−1) , (1)

where the initial value y0 can be taken to be a vector of ze-
ros. This computation is repeated N times and yN is taken
to be the final output. In supervised approaches, the network
is trained so that yN matches the ground truth, with (Newell
et al., 2016; Carreira et al., 2016) or without (Chen et al.,
2018; Gupta & Chandraker, 2020) supervision on the inter-
mediate outputs {y1, . . .yN−1}. Our key insight is that, at
inference time, rather than treating yN as the sole output,
as is usually done, we should consider the whole sequence
Y = {y1, . . .yN} because it provides valuable information
about prediction certainty.

In the remainder of this section, we first discuss the behav-
ior of this series of estimates and then propose a simple
algorithm that exploits it to estimate uncertainty.

3.1. Motivation

Each iteration of Eq.1 takes the current prediction yi−1 and
refines it into yi. This resembles what a denoising auto-
encoder does when mapping a noisy input signal to its true
value. Hence, the theoretical understanding of reconstruc-
tion errors in auto-encoders is relevant to our problem.

In fact, the reconstruction error for a sample fed into an
autoencoder can indicate whether the sample lies within the
training distribution of the model or not (Japkowicz et al.,
1995). More formally, given a denoising or contractive
autoencoder, R, and a sample x, the reconstruction error
|R(x) − x| is closely related to the log-probability of the
data distribution pdata(x) (Bengio et al., 2013; Alain &
Bengio, 2014). This understanding was later expanded to
include a broader spectrum of autoencoders (Kamyshanska
& Memisevic, 2013), and then to standard autoencoders
trained under stochastic optimization (Solinas et al., 2020).
This theoretical work has been effectively applied to many
practical tasks requiring out-of-distribution detection (Zhou,
2022; Sabokrou et al., 2016).

Thus, as in Bengio et al. (2013); Alain & Bengio (2014), we

can rewrite the update equation of Eq. 1 as

yi+1 − yi = fΘ(x,yi)− yi ∝
∂ log p(yi|x)

∂yi
, (2)

where p(yi|x) is the probability of the model yielding the
prediction yi given the input x. In other words, the recur-
sion can be understood as a gradient ascent on log p(yi|x),
which explains why the prediction progressively improves
as illustrated by Fig. 2 in a simple regression case. We can
distinguish three different scenarios

• In distribution, without aleatoric noise. x is in-
distribution, there is little noise in the training data,
which makes the aleatoric uncertainty low and the
probability p peaked. So, if yi is already close to being
correct, the derivative of the log probability will be
small and it will not move much. In contrast, it is not
correct but still within the main mode of the proba-
bility distribution, the derivative will be large and the
convergence rapid. This is the case x = 2.0.

• In distribution, with aleatoric noise. x is in-
distribution, the training data is noisy, making the he
aleatoric uncertainty higher and the probability p less
peaked. If yi is not initially correct but still within the
main mode of the probability distribution, the deriva-
tive will be smaller than in the no-noise scenario, and
thus the convergence slower, as in the case of x = 5.0.

• Out of distribution. x is out-of-distribution, which
can be understood as epistemic uncertainty and p can-
not be expected to have a well-defined peaked shape
but often tends to be flatter. The behavior is then some-
what random as in the case of x = −2.0 and x = 7.0.

In short, both aleatoric and epistemic uncertainty are likely
to impact convergence speed negatively.

3.2. Estimating Uncertainty

In Section 3.1, we have argued that when the input x to net-
work fΘ is in-domain with respect to the sample distribution
that was used to train the network and the aleatoric uncer-
tainty is low, we can expect the convergence of sequence Y
tends to be quick. In contrast, when x is out-of-domain or
the aleatoric uncertainty is high, we can expect it to be far
more erratic. To exploit this insight, for a given x t we take
the variance of sequence Y as a proxy for uncertainty. We
take it to be

U i = V ar({yi
1,y

i
2, · · · ,yi

N}) , (3)

where i corresponds to the ith pixel/node in the original in-
put x and N is the number of iterations passing through the
iterative network. Here the variance represents the conver-
gence speed, where higher values imply slower convergence
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Figure 2. Uncertainty vs Convergence. In this example, we gen-
erated training data from a sinusoidal function for x ∈ [1, 6] and
added Gaussian noise with a variance that increases from left to
right. We take fΘ to be a simple MLP with three hidden layers
that takes two inputs, x and the output of the previous iteration.
We train it to predict the noisy data points at each step of the
iterative process by minimizing the loss of Eq. 4. Once trained,
we use fΘ to produce predictions Y(x) = {y1(x), . . .yN (x)}
for x ∈ [−3, 7] (Top): The red line denotes the final prediction
yN (x), and the standard deviation of Y(x) is shown in pink. It
increases away from the data and when the data is noisy, as it
should. (Bottom): The plots depict the values in the sequence
Y(x) for four different values. For x = 2, both aleatoric and sys-
temic uncertainties are low and convergence quickly. For x = 5,
the aleatoric uncertainty data is high because the data is noisy and
the convergence is slow. For x = −2.0 and x = 7.0 the systemic
uncertainty is high because the points are out of distribution and
the convergence is slow or erratic.

and vice versa. This approach lets us evaluate uncertainties
at the pixel or node level. To obtain a scalar uncertainty es-
timate for the whole output y, we average the values across
all pixels/nodes.

In the result section, we show that this variance estimate
strongly correlates with the actual accuracy of the prediction
on experimental data. Note that for the arguments made for
two in-distribution cases discussed at the end Section 3.1 to
apply, the prediction yi has to fall within the mode of the
probability distribution. To maximize the chances of this
happening, at training time, we supervise the network so
that all yi in Y are as close possible to the ground-truth by
minimizing

Ltotal =

N∑
i=1

D(yi,y
gt), (4)

where D is a measure of distance and gt stands for ground-
truth.

4. Experiments
Our approach applies to both classification and regression.
To demonstrate the first, we use it for road delineation pur-
poses, that is, classifying pixels in aerial images as belong-
ing to roads or not. To demonstrate the second, we use
it to assess the reliability of performance numbers—-drag
for cars and lift-to-drag for airfoils—predicted by networks
given 2D and 3D shapes as input. We then use these re-
liability estimates to implement a Bayesian optimization
scheme that enables us to refine the shapes for improved
performance. For both classification and regression, we
outperform Deep Ensembles and MC-Dropout, along with
Kriging in the regression case.

4.1. Delineation

Tasks such as road detection or modeling thin biological
structures from images fall within the heading of visual
delineation. After more than 50 years of research, it remains
an open topic even though modern networks have boosted
the state-of-the-art. Their final output often is a binary map
indicating where in the image pixels belonging to structures
of interest are. Generating such a map can be viewed as
classifying the pixels as belonging to the target structures or
not.

Datasets. We experimented on two publicly available
datasets.

• RoadTracer. It comprises high-resolution satellite im-
ages covering urban areas of forty cities in six different
countries (Bastani et al., 2018). Fifteen cities are set
aside for validation purposes. The ground truth was
generated using OpenStreetMap.

• Massachusetts. The Massachusetts dataset features
both urban and rural neighborhoods, with many differ-
ent kinds of roads ranging from small paths to high-
ways. We used the same splits as in (Hu et al., 2019).

Together, these datasets exhibit a very large variety of urban
scapes, which makes them a comprehensive benchmark for
aerial road network reconstruction.

Baselines. Architectures such as U-Net (Ronneberger
et al., 2015) or SegNet (Badrinarayanan et al., 2017) are
commonly employed for delineation purposes, given their
effectiveness in image segmentation challenges. For a fair
comparison, all the method we tested rely on the standard U-
Net (Ronneberger et al., 2015) architecture, with five blocks,
each with three sequences of convolution-ReLU-batch nor-
malization. Max-pooling in 2× 2 windows followed each
of the blocks. The initial feature size was set to 32 and grew
to 1024 in the smallest feature map in the network. The
network is trained to output a distance map that can then be
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thresholded to produce the binary one. We augmented the
training data with vertical and horizontal flips, along with
random rotations. Thus, the four methods we compare are

• U-Net. Standard U-Net (Ronneberger et al., 2015).

• MC-Dropout. Adding drop-out layers (Gal & Ghahra-
mani, 2016) into the standard U-Net to estimate the
mean and variance of the predictions.

• Deep Ensembles. Using five standard U-Nets to esti-
mate the mean and variance of the predictions (Laksh-
minarayanan et al., 2017).

• Ours. Using a recursive version of the standard U-
Net (Wang et al., 2019), A dual-gated recurrent unit has
been added in the bridge part of the network. During
training, we performed three iterations. After each one,
the output of the network is used as an additional input
channel for the next one.

Corr Comp Qual F1 APLS
U-Net 85.2 59.5 54.3 21.1 65.04

R
TMC-Dropout 87.1 58.2 54.1 20.4 58.78

Deep Ensembles 87.4 66.7 60.8 22.1 68.81
Ours 85.2 77.8 68.6 24.5 77.21
U-Net 81.5 91.4 77.8 13.8 65.42

M
SMC-Dropout 81.6 92.3 78.2 13.6 59.65

Deep Ensembles 83.6 90.4 78.7 14.1 67.53
Ours 92.3 86.7 81.1 15.4 78.04

Table 1. Delineation accuracy on RoadTracer (top), and Mas-
sachusetts (bottom). The best result in each category is in bold
and the second best is in bold. Most correspond to Ours and
DeepE.

Metrics. For road delineation, the true measure of success
is preservation of the topology of the road networks rather
than the very precise location of the centerline. This is
ussually expressed in terms of hte following metrics:

• APLS (↑). Average Path Length Similarity, defined as
an aggregation of relative length difference of shortest
paths between pairs of corresponding points in the
reconstructed and predicted maps (van Etten, 2019).

• CCQ (↑). Metric that measures spatial co-occurrence
of annotated and predicted road pixels. The Correct-
ness, Completeness and Quality are equivalent to pre-
cision, recall and intersection-over-union, where the
definition of a true positive has been relaxed from spa-
tial coincidence of prediction and annotation to co-
occurrence within a distance of 5 pixels (Wiedemann
et al., 1998).

• F1 Score (↑). A balance between precision and recall,
the F1 score is twice the product of precision and re-
call divided by their sum. It’s widely used in binary

segmentation to equally weigh false positives and false
negatives (Fawcett, 2006).

To similarly evaluate the quality of the uncertainty estimates,
as in (Postels et al., 2022), we compute

• Relative Area Under the Lift Curve (rAULC). It is de-
rived from the Area Under the Lift Curve concept (Vuk
& Curk, 2006) and assesses the calibration quality of
uncertainty measures across various methods.

• Pearson Correlation Coefficient (Corr). It measures
the correlation between the estimated uncertainty and
the actual error.

Evaluation. We report accuracy and uncertainty results in
Tabs. 1 and 2. For all uncertainty evaluations, we calculate
predictions and uncertainty for each pixel in the image.
We then divide these into 512 × 512 crops, averaging the
uncertainties and errors across each crop to ensure a more
stable evaluation of the metrics. In terms of uncertainty
estimation, Deep Ensembles and Ours are comparable and
outperform the others. In terms of accuracy, Ours does
best. To highlight this, in Fig. 3, we show scatter plots
of estimated uncertainty vs actual accuracy. Note that our
results exhibit a more linear behavior, which is what the
Pearson Correlation Coefficient measures.

rAULC Corr Train Inf
MC-Dropout 30.18 59.72 1x 5x R

TDeep Ensembles 72.19 79.42 5x 5x
Ours 69.23 74.73 2.8x 2.7x

MC-Dropout 19.56 32.50 1x 5x M
SDeep Ensembles 78.65 76.39 5x 5x

Ours 79.27 87.46 2.8x 2.7x

Table 2. Delineation uncertainty quality on RoadTracer (top),
and Massachusetts (bottom). The best result in each category is
in bold and the second best is in bold. Most correspond to Ours
and DeepE. The Train and Inf metrics represent the total training
time and inference time for the model, respectively, relative to a
single model.

ROC-AUC PR-AUC
MC-Dropout 61.25 62.64 R

TDeep Ensembles 67.03 67.85
Ours 67.09 72.11

Table 3. RoadTracer vs Massachusetts out-of-distribution de-
tection results. The best result in each category is in bold and the
second best is in bold. Most correspond to Ours and DeepE

To further evaluate our uncertainty estimates, we use the
same insight as in (Malinin & Gales, 2018; Durasov et al.,
2022a): A network trained on samples drawn from a given
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distribution should be more confident on samples drawn
from the same distribution than on samples drawn from a
different one. In this context, we conducted an out-of-
distribution detection task. We utilized the model trained on
the RoadTracer dataset, treating its test set as in-distribution
data. For out-of-distribution data, we selected the test set
of the Massachusetts dataset. These two datasets exhibit
markedly different landscapes. RoadTracer primarily fea-
tures images of urban centers, whereas Massachusetts en-
compasses aerial images of rural areas.

We rely on the uncertainty measure generated by our model
to decide whether a sample is in-domain or out-of-domain.
We then apply standard detection metrics, ROC and PR
AUCs (Malinin & Gales, 2018), to quantify the performance
of our model. As for calibration metrics, we perform this
evaluation using 512 × 512 crops: we average per-pixel
uncertainties across the entire crop and classify it as in- or
out-of-distribution based on this averaged uncertainty value.
We report our results in Tab. 3.
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Figure 3. Error vs Uncertainty. These plots illustrate the error-
uncertainty relationship for three methods on the RoadTracer (Top)
and Massachusetts (Bottom) datasets. Our method surpasses the
others on the Massachusetts dataset and performs comparably with
Ensembles on RoadTracer. Correlation numbers are in Tab. 2. The
red line indicates the optimal linear fit.

4.2. Aerodynamics Prediction and Optimization

We now showcase the effectiveness of our approach at esti-
mating the uncertainly of surrogate models used to estimate
and optimize aerodynamic performance.

Bayesian optimization. To refine 2D and 3D shapes and
increase their expected aerodynamic performance, we rely
on Bayesian Optimization (BO) (Mockus, 2012) as depicted
by Fig. 4. Our implementation comprises four steps:

1. Use the training shapes and simulation results to train a
surrogate model fΘ.

2. Take each shape from the unlabelled pool and make a
prediction with fΘ.

3. Given the uncertainty of the predictions, compute the
acquisition function (Auer, 2002; Qin et al., 2017) for

the shapes in the unlabelled pool. This function balances
between exploration and exploitation, and it is the key to
the success of Bayesian optimization.

4. Pick the best new shapes in terms of the acquisition
function, optimize their shape with gradient optimization,
add them to the training set, and iterate.

These are standard BO steps, as described in Appendix A.2,
except for step #4. It involves exploring the shape space
without running additional simulations. It takes advantage
of the fact that GNNs allow for gradient-based shape opti-
mization. The key to implementing Bayesian shape opti-
mization is an effective way to estimate not only the perfor-
mance value associated with a shape but also the uncertainty
on this estimate in step #3, which is something ordinary
GNNs (Monti et al., 2017) do not provide, and which is
being addressed by our approach.

Datasets. Given a set of N 3D shapes {xi}1≤i≤N rep-
resented by triangulated meshes, we run a physics-based
simulator yielding a corresponding set {yi}1≤i≤N of phys-
ical values, such as pressure at each vertex. Let R be the
function that takes as input the y values and returns an over-
all performance value r = R(y), such as overall drag for a
car or lift for a wing. R is task-specific. For example, in the
case of drag, it is computed by integrating pressure values
over the 3D shape. The simulator also generates {ri}1≤i≤N

in conjunction with the yi’s. Assuming that each mesh xi

is parameterized by a lower-dimensional latent vector zi
and that there is a differentiable mapping P : z → x, this
gives us the initial training set T = {(zi,xi, ri,yi)}i that
we need to initialize our optimization scheme. Similarly,
we expect a larger pool of unlabeled shapes, consisting of
latent vectors and meshes denoted as U = {(zi,xi)}i, but
no simulation data. We train the surrogate model using sam-
ples from T (Step 1) and use it to perform predictions (Step
2), compute the acquisition function (Step 3), and select
samples for simulations from the set U (Step 4).

• Airfoils. We generated a dataset comprising 1500 two-
dimensional airfoil shapes. This was achieved by ran-
domly selecting NACA parameters, zi, and producing
corresponding airfoil contours, xi. The pressure dis-
tribution, yi, over each airfoil surface was computed
using the XFoil simulator. Additionally, the global
lift-to-drag ratio, ri, a measure of aerodynamic effi-
ciency, was calculated for each shape. The dataset
was divided into 1000 training samples, 300 testing
samples, and 200 high-performance shapes, treated as
out-of-distribution samples for uncertainty analysis.

• Cars. We use a cleaned-up and processed subset of
the ShapeNet dataset (Chang et al., 2015) that features
N = 1500 car meshes suitable for CFD simulation.
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Figure 4. Bayesian optimization pipeline. (1) Run physical simulations. (2) Train the GNN. (3) Evaluate the acquisition function on
samples without an associated physical simulation. (4) Select promising samples according the acquisition function, optimize their shape,
add them to the training set, and go back to step 1.

For each such mesh xi, we run OpenFOAM (Jasak
et al., 2007) to estimate the pressure field yi and drag ri
created by air traveling at 15 meters per second towards
the car. We also use MeshSDF (Remelli et al., 2020)
in conjunction with an auto-decoding approach (Park
et al., 2019) to learn a function P : R256 → R and a
set of latent vectors {zi} such that ∀i xi = P (zi). We
use the same protocols as for Airfoils for splitting.

Baselines. We compare our method against widely recog-
nized and universally adopted baselines, which are consid-
ered the gold standard in the field:

• KNN: Given a set of simulated shapes, we use a stan-
dard K-Nearest Neighbors regressor to estimate the
performance of additional shapes and add the best one
to the training set. No uncertainty is computed. For this
approach, we use K = 8 and employ distance-based
neighbor weighting, as this has been shown to be the
optimal choice for this task (Baqué et al., 2018).

• Kriging: Using a Gaussian Processes (GPs) to esti-
mate performance values and corresponding uncer-
tainty (Laurenceau et al., 2010) directly from param-
eters z. As discussed above, it can be directly used
to perform Bayesian Optimization. For GPs, we use
the squared exponential kernel, which has been shown
to be particularly effective for aerodynamic predic-
tion (Toal & Keane, 2011; Rosenbaum & Schulz,
2013).

• GNN: GNNs (Baqué et al., 2018; Hines & Bekemeyer,
2023) are a valid alternative to GPs for the purpose of
estimating performance numbers. Since they do not
compute uncertainties, we simply add the ones that
receive the best score from the GNN to the training set
and optimize their shape as in (Baqué et al., 2018).

• Deep Ensembles: We use sets of GNNs to predict
mean and variances of performance values, which is
known as an Ensemble-based technique. These are
then exploited by the procedure introduced previously
in this section. For all of the experiments, we use 5
GNNs in ensemble.

• MC-Dropout: Instead of using Ensembles to estimate
the performance numbers and their uncertainty, we use
MC-Dropout in the Bayesian optimization procedure.

• Ours: Using the iterative GNN to simultaneously esti-
mate the performance values and their uncertainty for
the Bayesian optimization procedure.

Metrics. We use the following metrics to evaluate the
quality of our baselinse in terms of predictions accuracy and
uncertainty estimation:

• Mean absolute error (↓) (MAE). It is the average of the
absolute differences between the predicted and actual
values. It is a common metric for regression tasks.

• Opimized performance. We use our baselines to per-
form Bayesian optimization as it was described above.
We then report the best performance value, ri lift-to-
drag value for airfoils and ri drag value for cars, ob-
tained by each method and the dynamics of optimiza-
tion process.

Evaluation. As all six methods being compared rely on
an emulator, the left Airfoil and Cars plots in Fig. 5 depict
the accuracy of each on the test set as a function of the
number of samples from the training set used to train it.
Ours outperforms the others consistently, especially when
there are only a few training examples. For this accuracy
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(Airfoils) (Cars) (Airfoils) (Cars)

Figure 5. Left. Accuracy of the lift-to-drag estimate as a function of the number of exemplars used to train the emulators. Right.
Lift-to-drag ratio of the shapes during optimization, as a function of number of iterations.

Krig MC-DP DeepE Ours
ROC-AUC 0.79 0.84 0.88 0.87 A

IR

PR-AUC 0.78 0.82 0.86 0.88
ROC-AUC 0.62 0.73 0.90 0.86

C
A

RPR-AUC 0.52 0.62 0.78 0.79

Table 4. Evaluation the uncertainty measure for 2D airfoils
(AIR) and 3D cars (CAR). The best result in each category is
in bold and the second best is in bold. They all correspond to
Ours and Deep Ensembles. The two approaches are comparable
in terms of evaluating uncertainty but the reentrant GNNs deliver
better accuracy, as shown in Fig. 5.

evaluation, at each iteration, we add 100 new samples for
Airfoils and 150 for Cars.

As in the delineation experiments, we also evaluate the
quality of uncertainty estimates through the lens of Out-
of-distribution Detection (Fort et al., 2021) task. To this
end, given all the 3D shapes we have, we took the 200 top-
performing ones in terms of their lift-to-drag ratio to be the
out-of-distribution samples. For both datasets, the remain-
ing shapes were then considered as the in-distribution ones.
One thousand of these were used to train the emulators, and
the others were used for testing purposes. After training,
we generated uncertainty values for each shape in the in-
distribution and out-of-distribution test sets. Finally, we
computed standard ROC-AUC, PR-AUC (Malinin & Gales,
2018) metrics for in- or out-of-distribution classification
based on the uncertainty estimate. As can be seen in the
top rows of Tab. 4, our approach generates uncertainty of a
quality similar to that of ensembles. Furthermore, as shown
in Fig. 7, our method often only require 3 iterations to con-
verge. This makes them a little faster than an ensemble of 5
ordinary GNNs and, importantly, requires far less memory
and training time. We provide more details in Appendix A.3.

We now turn to shape optimization using each one of the
6 methods. In each case, we used 100 randomly chosen
samples from the training set, along with the corresponding
simulations, to train the initial emulator. The rest of the
training set, plus the OOD set, were treated as a set of unla-
belled shapes. After the initial training, we ran the inference
for each shape in it. For non-uncertainty approaches (KNN

Convergence

Error

Convergence

Error

Figure 6. Convergence rate vs error. For the in-distribution air-
foil at the top, the consecutive values of predicted lift-to-drag
values converge quickly and the limit is very close to the correct
answer. By contrast, for an out-of-distribution airfoil below, the
convergence is much slower and the limit is wrong. This is a
behavior that we have consistently observed in our experiments.

and GNN), this yielded predicted performance values, and
for the other values of the acquisition function (UCB (Auer,
2002) with λ = 3). We sorted the unlabelled shapes accord-
ing to these values and picked the 10 best. For GNN-based
methods, for each one of these 10 shapes, we also per-
formed 10 steps of gradient-based optimization (Kingma &
Ba, 2015). This relatively small number of iterations was
chosen to allow us to reap the benefits of GNN-based shape
optimization (Baqué et al., 2018), without moving too far
away from the starting points and producing shapes whose
acquisition value is too different from that of the starting
point. We discuss the influence of the number of iterations
we perform in Appendix A.5. Finally, we ran simulations
for these chosen shapes, added them to the training set, and
iterated. For each method, we ran this whole process three
times and plot the resulting lift-to-drag ratios as a function
of the number of BO iterations performed in the airfoil plot
in Fig. 5. The shaded areas depict the corresponding vari-
ances. Again, our method outperforms the other approaches
by a statistically significant margin.

Recall from Section 3 that our approach is predicated on the
fact that convergence of the iterative GNNs can be expected
to be slower for out-of-distribution samples than for in-
distribution ones. The plot on the left side of Fig. 7 validates
this hypothesis on the in-distribution and out-of-distribution
splits.
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Figure 7. Convergence rates for in- and out-of-distribution samples. We plot the distribution of the number of iterations to convergence
of our iterative GNNs for in-distribution vs. out-of-distribution samples from the test sets of airfoils and cars. In general, convergence
takes significantly fewer steps for in-distribution samples than for out-of-distribution ones.

5. Ablation study
5.1. Calibration Evaluation

Though rAULC and correlation metrics from Sec. 4 pro-
vide comprehensive information about calibration quality,
we also provide the results for Expected Calibration Error
(ECE) (Guo et al., 2017) evaluation. Tab. 5 provides ECE
values for different methods, including MC-Dropout, En-
sembles, and our proposed method. The results show that
our method achieves better calibration than both Ensembles
and MC-Dropout for all datasets.

MC-Dropout Ensembles Ours
ECE (RT) 0.997 1.138 0.475
ECE (MS) 0.558 0.794 0.419

ECE (Airfoils) 1.758 1.162 1.142
ECE (Cars) 0.267 0.232 0.227

Table 5. Expected Calibration Error (ECE) evaluation. As it
was previously demonstrated for the rAULC metric, our method
outperforms other approaches in terms of ECE calibration.

5.2. Image Classification

We expanded our experimental evaluation to include the
widely-used task of image classification on the MNIST
dataset, a popular benchmark for out-of-distribution (OOD)
detection and uncertainty estimation. For the OOD task,
we used FashionMNIST as the OOD samples, which is a
standard choice in this context. To add more variability, we
ran these experiments with two model architectures:

• CNN Architecture: A convolutional neural network
(CNN) with several 2D convolutional layers followed
by a fully-connected classification head.

• MLP Architecture: A multilayer perceptron (MLP)
with 5 fully-connected layers, treating images as 784-
dimensional vectors.

We evaluated these experiments using the same metrics as in

our previous evaluations, ensuring consistency and compa-
rability. The results are summarized in Table 6. As for our
previous results, our method outperforms other approaches
both in terms of model’s accuracy and uncertainty quality.

MC-DP Ensembles Ours
Acc 97.8 98.8 99.0

C
N

N

ECE 0.021 0.018 0.013
ROC-AUC 94.4 98.5 98.5
PR-AUC 93.8 98.1 98.5

Train 1x 5x 3x
Inf 5x 5x 3x
Acc 96.1 97.7 97.4

M
L

P

ECE 0.026 0.022 0.020
ROC-AUC 61.5 89.5 89.6
PR-AUC 69.2 89.9 88.7

Train 1x 5x 3x
Inf 5x 5x 3x

Table 6. MNIST classification results for CNN (top), and MLP
(bottom) architectures. The best result in each category is in bold
and the second best is in bold. Most correspond to Ours and Deep
Ensembles.

6. Conclusion
We have presented an approach to assessing the quality
of predictions by iterative networks at a much lower cost
than Deep Ensembles, currently the most reliable approach
to such an assessment, and more reliably than other state-
of-the-art methods. Our method relies on measuring how
fast successive estimates converge and does require neither
any change in network architecture nor training more than
one. In the shape optimization part of this work, we have
focused on aerodynamics but the principle applies to many
other devices, ranging from the cooling plates of an electric
vehicle battery to the optics of an image acquisition device.
In future work, we will therefore explore a broader set of
potential applications.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Appendix
In this section, we first examine the behavior of iterative net-
works in a very simple case. We then provide details about
the training procedure and additional supporting evidence
for some of the claims made in the paper.

A.1. Analysis of a Simple Case

To model the behavior of our iterative networks in a simpler
and easier-to-analyze context, we replace CNNs and GNNs
with a perceptron fW that takes two scalar inputs x and y
and outputs a scalar. Given a training set {(xi, ri) , 1 ≤ i ≤
N}, we make it iterative by computing

y1i = fW (x, 0)

y2i = fW (x, y1i )

...

yti = fW (x, yt−1
i ) (5)

for each i, where ti is a different random integer between 1
and T for each sample. In these examples, we use T = 5.
We then minimize the total loss

∑
i(ri − y

(ti)
i )2. Fig. 8

depicts the results of this process when the xi are uniformly
sampled between 0 and 1 and the ri are taken to be sin(a ∗
xi) ∗ cos(b ∗ xi) for different values of a and b. For values
of x between 0 and 1, that is, for values that are within
the training domain, we have y0i ≈ y1i .... ≈ yTi ≈ ri. In
contrast, out of domain, that is, outside the range [0,1], this
is not true anymore, and we can see strong oscillations of
the successive yti values for 1 ≤ t ≤ T . This makes sense
because deep networks are known not to extrapolate well.
Thus, even though the network is trained to produce similar
predictions for all values of t in-domain, the out-of-domain
predictions are essentially random, and there is no reason for
them to be equal. In the results section, we showed that, for
both airfoils and car shapes, out-of-domain values of x tend
to produce oscillations and slow convergence. Interestingly,
we observe exactly the same behavior on this very simple
example, as evidenced by the fact that the curves of Fig. 8
are not superposed for x < 0 and x > 1.

The exact values obtained for these out-of-domain samples
are very hard to predict. As can be seen by comparing the
two rows of Fig. 8, they depend critically on the chosen
activation function, tanh or ReLu in this case. They also de-
pend heavily on how the networks have been initialized, as
can be seen in Fig. 9. In one case, we initialized the weights
of our perceptrons using normally distributed weights. In
the other, we used the slightly more sophisticated Xavier
Initialization (Kumar, 2017).

Crucially, in all cases, seeing large variations in the values
of the successive yk(x) for a given x is always a warning
sign that the estimated value is likely to be incorrect. This
is what we exploit in this work.

A.2. Bayesian Optimization

Given a performance estimator of uknown reliability,
exploration-and-exploitation techniques seek to find global
optimum of that estimator while at the same time accounting
for potential inaccuracies in its predictions.

Bayesian Optimization (BO) (Mockus, 2012) is one of the
best-known approaches to finding global minima of a black-
box function g : A → R, where A represents the space of
possible shapes, without assuming any specific functional
form for g. It is often preferred to more direct approaches,
such as the adjoint method (Allaire, 2015), when g is expen-
sive to evaluate, which often is the case when g is imple-
mented by a physics-based simulator.

BO typically starts with a surrogate model fΘ : A → R
whose output depends on a set of parameters Θ. fΘ is
assumed to approximate g, to be fast to compute, and to
be able to evaluate the reliability of its own predictions in
terms of a uncertainty. It is used to explore A quickly in
search of a solution of x∗ = argminx∈A g(x). Given an
initial training set {(xi, ri)}i of input shapes xi and outputs
ri = g(xi), it iterates the following steps:

Step 1: Find Θ that yields the best possible predic-
tion by fΘ.

Step 2: Generate new samples not present in the
training set.

Step 3: Evaluate an acquisition function on these
samples.

Step 4: Add the best ones to the training set and go
back to Step 1.

As shown in the example of Fig. 13, the role of the acqui-
sition function is to gauge how desirable it is to evaluate a
point, based on the current state of the model. It is often
taken to be the Expected Improvement (EI) (Qin et al., 2017)
or Upper Confidence Bound (UCB) (Auer, 2002) that favor
samples with the greatest potential for improvement over the
current optimum. It is computed as a function of the values
predicted by the surrogate and their associated uncertainty.

A.3. Training setups

For our experiments, we used single Tesla V100 GPU with
32Gb of memory. The training process was implemented
using the Pytorch (Paszke et al., 2017) and Pytorch Geomet-
rics (Fey & Lenssen, 2019) frameworks.

Airfoils. For airfoils, we have generated 1500 shapes from
NACA parameters, and simulated pressure and lift-to-drag
values with XFOIL simulator. As an emulator, we use archi-
tecture that consists of 35 GMM layers (Monti et al., 2017)
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(a = 3, b = 4) (a = 5, b = 4) (a = 8, b = 9)

Figure 8. Learning to interpolate a 1D function. Using a two-layer perceptron to interpolate f(x) = sin(a ∗x) cos(b ∗ y) given training
pairs (x, f(x)) for which 0 < x < 1. Each curve represents the value of yt

i from Eq. 5 for values of x ranging from -1.0 to 2.0, that is,
both inside and outside the training domain. There is one curve per iteration i in Eq. 5, ranging from 1 to 5. Top row. Taking tanh to be
the activation function. Bottom row. Using ReLu.

GNN Deep Ensembles MC-Dropout Ours
Memory 1x 5x 1x 1x A

IRInf. Time 1x 5x 5x 3x
Train. Time 1x 5x 1x 2x

Memory 1x 5x 1x 1x C
A

RInf. Time 1x 5x 5x 3x
Train. Time 1x 5x 1x 2x

Table 7. Computational costs. The Memory, Inference Time, and Training Time metrics measure the amount of time and memory
required to train the network(s) and to perform inference, in comparison to a single model.

with ReLU activations. First, we extract node features with
these GMM layers and pass them to pressure branch, that
consists out of 3 GMM layers, and lift-to-drag branch, that
uses global pooling and 3 fully-connected layers to predict
final scalar. For training, we use Adam optimizer (Kingma
& Ba, 2015) and perform 200 epochs with 128 batch size
and 0.001 learning rate. Both for lift-to-drag and pressure,
we use mean squared error (MSE) loss and combine them
into final loss with weights 1 for scalar and 100 for pressure.

Cars. For cars dataset, we have generated 1500 shapes
from MeshSDF vectors, and simulated pressure and drag
values with OpenFOAM simulator. As an emulator, we use
architecture that consists of 50 GMM layers with ELU acti-
vations (Clevert et al., 2015) and skip-connections (He et al.,
2016). Similar to airfoils, we extract node features with
these GMM layers and pass them to pressure branch, that
consists out of 5 GMM layers, and drag branch, that uses
global pooling and 5 fully-connected layers to predict final
scalar. For training, we use Adam optimizer and perform 6
epochs with 8 batch size and 0.001 learning rate. Both for

lift-to-drag and pressure, we use mean squared error (MSE)
loss and combine them into final loss with weights 1 for
scalar and 1/200 for pressure.

A.4. Propagating Information

In a standard GNN information is propagated across the
shape with each successive convolution. Hence, it is com-
paratively slow and our reentrant GNNs address this. To
support, this claim we ran an experiment to test the influ-
ence of the receptive fields of the GNNs, which control the
speed at which information percolates across the network.
We trained 5 airfoils and car emulator models of increasing
depth while keeping total weights number fixed. Starting
from the original architecture, we plot the prediction mean
error for both lift-to-drag and drag in Fig. 10 in red. As
expected, the error decreases as depth increases and more
information is propagated across the shape. The exact same
behavior can be observed when using our GNN run iter-
atively, as shown by the black curves. This supports our
claim that each iteration helps propagate the information
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(Before training) (After training)

Figure 9. Influence of initialization. We plot the same curves as in Fig. 8 when learning to interpolate the function f(x) = sin(5 ∗
x) cos(4 ∗ y), but over a more extended range of x and starting from a different initialization of the perceptron weights in each row.
Before training. As before, each curve represents the values yt

i as a function of x. Here we plot those returned by our perceptrons after
initialization of their activation weights, but before actual training. The two plots correspond to the two different initializations. After
training. Values after training. There are similar for 0 < x < 1 but different out of this domain. Not that they are also very different
across the two rows because of the slightly different initializations.

Lift-to-Drag Drag

Figure 10. Propagating information across an shape. A compa-
rable behavior is observed when increasing the depth of a standard
GNN (red curves) and when running several iterations of a shal-
lower iterative GNN (black curves).

across the shape just as effectively as when using the deeper
network.

A.5. Gradient Optimization

Given the shapes selected according to the acquisition func-
tion during Bayesian Optimization, our method performs
several gradient steps in order to refine these shapes and
makes them more performant. In this subsection, we exam-
ine the impact of performing this optimization.

Figure 11. Impact of refining the shapes. Turning on gradient
optimization of new samples delivers a small performance increase,
but smaller than the one used by replacing ensembles with a version
of our approach without the refinement.

In the results shown in the main paper, given the current
state of the emulator, we performed 10 steps of an Adam-
based optimizer with a 1e − 4 learning rate to refine each
selected shape. In Fig. 11, we plot the results obtained for
the airfoils by doing this refinement (Ours), not doing it
(Ours w/o grad), or using deep ensembles (Deep Ensem-
bles) baseline. Ours without refinement already delivers an
improvement overs ensembles, with a further but smaller
improvement when performing the refinement. We tried
increasing the number of refinement steps but that brought
no further improvement.
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Figure 12. Test predictions and uncertainties produced by different methods on two datasets.
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MC-DP Ens. Ens. Iter. Ours
Corr 87.1 87.4 88.1 85.2

Comp 58.2 66.7 76.1 77.8
Qual 54.1 60.8 69.1 68.6
F1 20.4 22.1 24.4 24.5

APLS 58.78 68.81 78.40 77.21
rAULC 30.18 72.19 69.03 69.23

Corr (unc.) 59.72 79.42 79.17 74.73
ECE 0.997 1.138 0.850 0.475
Train 1x 5x 14x 2.8x
Inf 5x 5x 13.5x 2.7x

Table 8. Uncertainty and performance metrics on RT Dataset.
The best result in each category is in bold and the second best is
in bold. Most correspond to Ours and Iterative Ensembles.

A.6. Ensembles on Iterative Architecture

Another baseline for comparison could involve applying
Deep Ensembles (DE) to our iterative architecture. While
this approach would significantly increase computational
complexity, it could provide better metrics for uncertainty
estimation. In this subsection, we compare the proposed DE
baseline against our model.

In the Tables 8 and 9 below, we present the results of this
comparison. While the DE baseline delivers good accuracy
and uncertainty quality, it is approximately 14 times slower
than the single model baseline and about 5 times slower
than our approach. These results confirm that while DE
applied to the iterative architecture provides high-quality un-
certainty estimates and accuracy, the computational cost is
significantly higher compared to our approach. Our method
strikes a balance between computational efficiency and per-
formance, making it a more practical choice for real-world
applications where computational resources and time are
critical factors.

MC-DP Ens. Ens. Iter. Ours
Corr 81.6 83.6 93.9 92.3

Comp 92.3 90.4 85.9 86.7
Qual 78.2 78.7 81.3 81.1
F1 13.6 14.1 14.8 15.4

APLS 59.65 67.53 78.81 78.04
rAULC 19.56 78.65 69.03 79.27

Corr (unc.) 32.50 76.39 76.51 87.46
ECE 0.558 0.794 0.746 0.419

ROC-AUC 61.25 67.03 68.42 67.09
PR-AUC 62.64 67.85 71.25 72.11

Train 1x 5x 14x 2.8x
Inf 5x 5x 13.5x 2.7x

Table 9. Uncertainty and performance metrics on MS Dataset.
The best result in each category is in bold and the second best is
in bold. Most correspond to Ours and Iterative Ensembles.

Figure 13. Bayesian Optimization. Given three initial data points
for the function (dashed blue), we want to optimize, we train a
GP surrogate model (Step 1) and compute the UCB acquisition
function (Auer, 2002) over the [0, 1] range (Steps 2-3). We then
select the points that maximize, evaluate the target function at
those points, and include the results in our training dataset (Step
4). The process is then iterated and, eventually, we find the true
maximum of the function at x ≈ 1, whereas a simple gradient
based method would probably have remained trapped at the local
maximum x ≈ 0.58.
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